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Preface 

The series of International Conferences on Extending Database Technology (EDBT) 
is an established and prestigious forum for the exchange of the latest research results 
in data management. It provides unique opportunities for database researchers, 
practitioners, developers, and users to explore new ideas, techniques, and tools, and to 
exchange experiences. This volume contains the proceedings of the 10th EDBT 
Conference, held in Munich, Germany, March 27-29, 2006. The conference included 
3 keynote talks, 56 full-size and 4 half-size research papers in 20 sessions, 8 industrial 
presentations in 3 sessions, 1 panel session, 5 tutorials in 7 sessions, and 20 
demonstrations in 4 sessions. All of the research papers as well as papers and 
abstracts from most of the other sessions are included here. 

Distinguished members of the database and information-retrieval communities 
delivered the three keynotes, which were all in the spirit of the banner theme chosen 
for EDBT 2006: “From Database Systems to Universal Data Management.” Martin 
Kersten, a pioneer in the area of database support for ambient application 
environments and the investigator of several kernel database architectures, discussed 
various hard issues that arise in organic database systems, i.e., systems that can be 
embedded in several hardware applications and have autonomic behavior. Alan 
Smeaton, a leader in content-based retrieval of information in a wide variety of media, 
introduced us to the world of digital video libraries and challenged us with several 
open problems associated with their effective management. Finally, David Maier, 
whose introduction of object-oriented concepts to the field has been pivotal for the 
establishment of object-relational databases as the current state of the art, used the 
Lewis and Clark expedition as an analogy to discuss the problems faced when trying 
to deploy dataspace systems, i.e., systems that manage enterprise data in the entire 
spectrum from fully structured to completely unstructured. 

The Research Program Committee consisted of 76 members and was chaired by 
Yannis Ioannidis (University of Athens). It accepted 60 papers (56 regular-size and 4 
half-size) out of 352 submissions, both of which are the largest numbers ever for 
EDBT. Papers were submitted from 37 countries. The reviewing process was 
managed by the Microsoft Conference Management Toolkit, developed and supported 
by Surajit Chaudhuri and the CMT team (from Microsoft Research). 

The Industrial and Applications Program was assembled by a small committee 
under Alfons Kemper (Technical University of Munich). The 8 short papers that 
appear in the proceedings were selected from 28 submissions. 

One panel session was solicited by Klemens Böhm (University of Karlsruhe), who 
also selected five tutorials out of ten submissions. 

Christian Böhm (University of Munich) led a 14-member committee in putting 
together the Demonstrations Program, consisting of 20 demonstrations selected from 
52 submitted proposals. 

Mike Hatzopoulos (University of Athens) edited the proceedings. He also 
produced an electronic version for inclusion in the SIGMOD digital library and for 
posting on the Web prior to the conference. 

The program and social activities of EDBT 2006 are the result of a huge effort by 
many hundreds of authors, reviewers, presenters, and organizers. We thank them all 
for helping to make the conference a success. In particular, we want to thank Gisela 
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Krügel and Josef Lankes (both from the Technical University of Munich) for the 
smooth local organization.  

Finally, this 10th edition of the EDBT Conference series coincides with the year of 
retirement of Joachim Schmidt, who was one of the “fathers” of EDBT. The success 
of the EDBT Association, its conferences, and services to the community is largely 
due to the effort and expertise that its founders invested. As a tribute to Joachim’s 
commitment and dedication to EDBT, the organizers invited Joachim as an Honorary 
Chair of this year’s conference. Thank you Joachim for all these years! 
 
 
Yannis Ioannidis  Program Chair 
Marc H. Scholl  General Chair 
Florian Matthes  Executive Chair 
Michael Hatzopoulos  Proceedings Chair 
Klemens Böhm  Panel and Tutorial Chair 
Alfons Kemper  Industrial and Applications Chair 
Torsten Grust  Workshop Chair 
Christian Böhm  Demonstrations Chair 
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Database Architecture Fertilizers: Just-in-Time,
Just-Enough, and Autonomous Growth
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Organic Databases

Ambient application environments call for innovations in database technology to ful-
fill the dream of an organic database, a database system which can be embedded in a
wide collection of hardware appliances and provides an autonomous self-descriptive,
self-organizing, self-repairable, self-aware and stable data store-recall functionality to
its environment.

The envisioned setting consists of a large collection of database servers holding por-
tions of the database. Each server joins this assembly voluntarily, donating storage and
processing capacity, but without a “contract” to act as an obedient agent for the user in
coordination of access to all other servers. They are aware of being part of a distributed
database, but do not carry the burden to make this situation transparent for the application.

Applications should be prepared that updates sent to a server are either accepted,
rejected with referrals, or only partly dealt with. An active client is the sole basis to
exploit the distributed system and to realize the desired level of ACID properties.

The query language envisioned for this system avoids the trap to allocate unbounded
resources to semantically ill-phrased, erroneous, or simply too time-consuming queries.
It limits the amount of resources spent and returns a partial answer together with referral
queries. The user can at any point in time come back and use the referral queries to
obtain more answers.

The topics presented are part of ongoing long-term research in novel database tech-
nology based on and extending MonetDB1.
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Digital Video: Just Another Data Stream?
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Technology is making huge progress in allowing us to generate data of all kinds,
and the volume of such data which we routinely generate is exceeded only by
its variety and its diversity. For certain kinds of data we can manage it very
efficiently (web searching and enterprise database lookup are good examples of
this), but for most of the data we generate we are not good at all about managing
it effectively. As an example, video information in digital format can be either
generated or captured, very easily in huge quantities. It can also be compressed,
stored, transmitted and played back on devices which range from large-format
displays to portable handhelds, and we now take all of this for granted. What we
cannot yet do with video, however, is effectively manage it based on its actual
content. In this presentation I will summarise where we are in terms of being able
to automatically analyse and index, and then provide searching, summarisation,
browsing and linking within large collections of video libraries and I will outline
what I see as the current challenges to the field.
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Charting a Dataspace: Lessons from Lewis and Clark 

David Maier 

Department of Computer Science, Portland State University,  
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Learning from the Past 

A dataspace system (DSS) aims to manage all the data in an enterprise or project, be it 
structured, unstructured or somewhere between. A fundamental task in deploying a 
DSS is discovering the data sources in a space and understanding their relationships. 
Charting these connections helps prepare the way for other DSS services, such as 
cataloging, search, query, indexing, monitoring and extension. In this, the 
bicentennial of the Lewis and Clark Expedition, it is enlightening to look back at the 
problems and issues they encountered in crossing an unfamiliar territory. Many 
challenges they confronted are not that different from those that arise in exploring a 
new dataspace: evaluating existing maps, understanding local legends and myths, 
translating between languages, reconciling different world models, identifying 
landmarks and surveying the countryside. I will illustrate these issues and possible 
approaches using examples from medication vocabularies and gene annotation. 

The work I describe on dataspaces is joint with Mike Franklin and Alon Halevy. 
Nick Rayner, Bill Howe, Ranjani Ramakrishnan and Shannon McWeeney have all 
contributed to the work on understanding relationships among data sources. 
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Abstract. Recent years have seen growing interest in effective algorithms for
summarizing and querying massive, high-speed data streams. Randomized sketch
synopses provide accurate approximations for general-purpose summaries of the
streaming data distribution (e.g., wavelets). The focus of existing work has typi-
cally been on minimizing space requirements of the maintained synopsis — how-
ever, to effectively support high-speed data-stream analysis, a crucial practical
requirement is to also optimize: (1) the update time for incorporating a stream-
ing data element in the sketch, and (2) the query time for producing an approx-
imate summary (e.g., the top wavelet coefficients) from the sketch. Such time
costs must be small enough to cope with rapid stream-arrival rates and the real-
time querying requirements of typical streaming applications (e.g., ISP network
monitoring). With cheap and plentiful memory, space is often only a secondary
concern after query/update time costs.

In this paper, we propose the first fast solution to the problem of tracking
wavelet representations of one-dimensional and multi-dimensional data streams,
based on a novel stream synopsis, the Group-Count Sketch (GCS). By imposing
a hierarchical structure of groups over the data and applying the GCS, our al-
gorithms can quickly recover the most important wavelet coefficients with guar-
anteed accuracy. A tradeoff between query time and update time is established,
by varying the hierarchical structure of groups, allowing the right balance to be
found for specific data stream. Experimental analysis confirms this tradeoff, and
shows that all our methods significantly outperform previously known methods
in terms of both update time and query time, while maintaining a high level of
accuracy.

1 Introduction

Driven by the enormous volumes of data communicated over today’s Internet, several
emerging data-management applications crucially depend on the ability to continu-
ously generate, process, and analyze massive amounts of data in real time. A typical
example domain here comprises the class of continuous event-monitoring systems de-
ployed in a wide variety of settings, ranging from network-event tracking in large ISPs
to transaction-log monitoring in large web-server farms and satellite-based environ-
mental monitoring. For instance, tracking the operation of a nationwide ISP network

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 4–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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requires monitoring detailed measurement data from thousands of network elements
across several different layers of the network infrastructure. The volume of such mon-
itoring data can easily become overwhelming (in the order of Terabytes per day). To
deal effectively with the massive volume and continuous, high-speed nature of data in
such environments, the data streaming paradigm has proven vital. Unlike conventional
database query-processing engines that require several (expensive) passes over a static,
archived data image, streaming data-analysis algorithms rely on building concise, ap-
proximate (but highly accurate) synopses of the input stream(s) in real-time (i.e., in one
pass over the streaming data). Such synopses typically require space that is significantly
sublinear in the size of the data and can be used to provide approximate query answers
with guarantees on the quality of the approximation. In many monitoring scenarios, it is
neither desirable nor necessary to maintain the data in full; instead, stream synopses can
be used to retain enough information for the reliable reconstruction of the key features
of the data required in analysis.

The collection of the top (i.e., largest) coefficients in the wavelet transform (or, de-
composition) of an input data vector is one example of such a key feature of the stream.
Wavelets provide a mathematical tool for the hierarchical decomposition of functions,
with a long history of successful applications in signal and image processing [16, 22].
Applying the wavelet transform to a (one- or multi-dimensional) data vector and retain-
ing a select small collection of the largest wavelet coefficient gives a very effective form
of lossy data compression. Such wavelet summaries provide concise, general-purpose
summaries of relational data, and can form the foundation for fast and accurate approx-
imate query processing algorithms (such as approximate selectivity estimates, OLAP
range aggregates and approximate join and multi-join queries. Wavelet summaries can
also give accurate (one- or multi-dimensional) histograms of the underlying data vec-
tor at multiple levels of resolution, thus providing valuable primitives for effective data
visualization.

Most earlier stream-summarization work focuses on minimizing the space require-
ments for a given level of accuracy (in the resulting approximate wavelet representation)
while the data vector is being rendered as a stream of arbitrary point updates. However,
while space is an important consideration, it is certainly not the only parameter of in-
terest. To effectively support high-speed data-stream analyses, two additional key para-
meters of a streaming algorithm are: (1) the update time for incorporating a streaming
update in the sketch, and (2) the query time for producing the approximate summary
(e.g., the top wavelet coefficients) from the sketch. Minimizing query and update times
is a crucial requirement to cope with rapid stream-arrival rates and the real-time query-
ing needs of modern streaming applications. Furthermore, there are essential tradeoffs
between the above three parameters (i.e., space, query time, and update time), and it can
be argued that space usage is often the least important of these. For instance, consider
monitoring a stream of active network connections for the users consuming the most
bandwidth (commonly referred to as the “top talkers” or “heavy hitters” [6, 18]). Typical
results for this problem give a stream-synopsis space requirement of O(1/ε), meaning
that an accuracy of ε = 0.1% requires only a few thousands of storage locations, i.e.,
a few Kilobytes, which is of little consequence at all in today’s off-the-shelf systems
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featuring Gigabytes of main memory1. Now, suppose that the network is processing IP
packets on average a few hundred bytes in length at rates of hundreds of Mbps; essen-
tially, this implies that the average processing time per packet must much less than one
millisecond: an average system throughput of tens to hundreds of thousands of packets
per second. Thus, while synopsis space is probably a non-issue in this setting, the times
to update and query the synopsis can easily become an insurmountable bottleneck. To
scale to such high data speeds, streaming algorithms must guarantee provably small
time costs for updating the synopsis in real time. Small query times are also important,
requiring near real-time response. (e.g., for detecting and reacting to potential network
attacks). In summary, we need fast item processing, fast analysis, and bounded space
usage — different scenarios place different emphasis on each parameter but, in general,
more attention needs to be paid to the time costs of streaming algorithms.

Our Contributions. The streaming wavelet algorithms of Gilbert et al. [11] guaranteed
small space usage, only polylogarithmic in the size of the vector. Unfortunately, the
update- and query-time requirements of their scheme can easily become problematic for
real-time monitoring applications, since the whole data structure must be “touched” for
each update, and every wavelet coefficient queried to find the best few. Although [11]
tries to reduce this cost by introducing more complex range-summable hash functions
to make estimating individual wavelet coefficients faster, the number of queries does
not decrease, and the additional complexity of the hash functions means that the update
time increases further. Clearly, such high query times are not acceptable for any real-
time monitoring environment, and pose the key obstacle in extending the algorithms
in [11] to multi-dimensional data (where the domain size grows exponentially with data
dimensionality).

In this paper, we propose the first known streaming algorithms for space- and time-
efficient tracking of approximate wavelet summaries for both one- and multi-dimensional
data streams. Our approach relies on a novel, sketch-based stream synopsis structure,
termed the Group-Count Sketch (GCS) that allows us to provide similar space/accuracy
tradeoffs as the simple sketches of [11], while guaranteeing: (1) small, logarithmic up-
date times (essentially touching only a small fraction of the GCS for each streaming
update) with simple, fast, hash functions; and, (2) polylogarithmic query times for com-
puting the top wavelet coefficients from the GCS. In brief, our GCS algorithms rely on
two key, novel technical ideas. First, we work entirely in the wavelet domain, in the
sense that we directly sketch wavelet coefficients, rather than the original data vector,
as updates arrive. Second, our GCSs employ group structures based on hashing and hi-
erarchical decomposition over the wavelet domain to enable fast updates and efficient
binary-search-like techniques for identifying the top wavelet coefficients in sublinear
time. We also demonstrate that, by varying the degree of our search procedure, we can
effectively explore the tradeoff between update and query costs in our GCS synopses.
Our GCS algorithms and results also naturally extend to both the standard and non-
standard form of the multi-dimensional wavelet transform, essentially providing the
only known efficient solution for streaming wavelets in more than one dimension. As

1 One issue surrounding using very small space is whether the data structure fits into the faster
cache memory, which again emphasizes the importance of running time costs.
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our experimental results with both synthetic and real-life data demonstrate, our GCS
synopses allow very fast update and searching, capable of supporting very high speed
data sources.

2 Preliminaries

In this section, we first discuss the basic elements of our stream-processing model and
briefly introduce AMS sketches [2]; then, we present a short introduction to the Haar
wavelet decomposition in both one and multiple dimensions, focusing on some of its
key properties for our problem setting.

2.1 Stream Processing Model and Stream Sketches

Our input comprises a continuous stream of update operations, rendering a data vector
a of N values (i.e., the data-domain size). Without loss of generality, we assume that
the index of our data vector takes values in the integer domain [N ] = {0, . . . , N − 1},
where N is a power of 2 (to simplify the notation). Each streaming update is a pair
of the form (i,±v), denoting a net change of ±v in the a[i] entry; that is, the ef-
fect of the update is to set a[i] ← a[i] ± v. Intuitively, “+v” (“−v”) can be seen as
v insertions (resp., deletions) of the ith vector element, but more generally we allow
entries to take negative values. (Our model instantiates the most general and, hence,
most demanding turnstile model of streaming computations [20].) Our model gener-
alizes to multi-dimensional data: for d data dimensions, a is a d-dimensional vec-
tor (tensor) and each update ((i1, . . . , id),±v) effects a net change of ±v on entry
a[i1, . . . , id].2

In the data-streaming context, updates are only seen once in the (fixed) order of
arrival; furthermore, the rapid data-arrival rates and large data-domain size N make
it impossible to store a explicitly. Instead, our algorithms can only maintain a concise
synopsis of the stream that requires only sublinear space, and, at the same time, can
(a) be maintained in small, sublinear processing time per update, and (b) provide query
answers in sublinear time. Sublinear here means polylogarithmic in N , the data-vector
size. (More strongly, our techniques guarantee update times that are sublinear in the size
of the synopsis.)

Randomized AMS Sketch Synopses for Streams. The randomized AMS sketch [2] is
a broadly applicable stream synopsis structure based on maintaining randomized linear
projections of the streaming input data vector a. Briefly, an atomic AMS sketch of a is
simply the inner product 〈a, ξ〉 =

∑
i a[i]ξ(i), where ξ denotes a random vector of four-

wise independent ±1-valued random variates. Such variates can be easily generated
on-line through standard pseudo-random hash functions ξ() using only O(log N) space
(for seeding) [2, 11]. To maintain this inner product over the stream of updates to a,
initialize a running counter X to 0 and set X ← X ± vξ(i) whenever the update
(i,±v) is seen in the input stream. An AMS sketch of a comprises several independent

2 Without loss of generality we assume a domain of [N ]d for the d-dimensional case — different
dimension sizes can be handled in a straightforward manner. Further, our methods do not need
to know the domain size N beforehand — standard adaptive techniques can be used.
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atomic AMS sketches (i.e., randomized counters), each with a different random hash
function ξ(). The following theorem summarizes the key property of AMS sketches for
stream-query estimation, where ||v||2 denotes the L2-norm of a vector v, so ||v||2 =√
〈v, v〉 =

√∑
i v[i]2.

Theorem 1 ([1, 2]). Consider two (possibly streaming) data vectors a and b, and let
Z denote the O(log(1/δ))-wise median of O(1/ε2)-wise means of independent copies
of the atomic AMS sketch product (

∑
i a[i]ξj(i))(

∑
i b[i]ξj(i)). Then, |Z − 〈a, b〉| ≤

ε||a||2||b||2 with probability≥ 1− δ.

Thus, using AMS sketches comprising only O( log(1/δ)
ε2 ) atomic counters we can ap-

proximate the vector inner product 〈a, b〉 to within ±ε||a||2||b||2 (hence implying an
ε-relative error estimate for ||a||22).

2.2 Discrete Wavelet Transform Basics

The Discrete Wavelet Transform (DWT) is a useful mathematical tool for hierarchically
decomposing functions in ways that are both efficient and theoretically sound. Broadly
speaking, the wavelet decomposition of a function consists of a coarse overall approxi-
mation together with detail coefficients that influence the function at various scales [22].
Haar wavelets represent the simplest DWT basis: they are conceptually simple, easy to
implement, and have proven their effectiveness as a data-summarization tool in a variety
of settings [4, 24, 10].

One-Dimensional Haar Wavelets. Consider the one-dimensional data vector
a = [2, 2, 0, 2, 3, 5, 4, 4] (N = 8). The Haar DWT of a is computed as follows. We
first average the values together pairwise to get a new “lower-resolution” representation
of the data with the pairwise averages [2+2

2 , 0+2
2 , 3+5

2 , 4+4
2 ] = [2, 1, 4, 4]. This averag-

ing loses some of the information in a. To restore the original a values, we need detail
coefficients, that capture the missing information. In the Haar DWT, these detail coef-
ficients are the differences of the (second of the) averaged values from the computed
pairwise average. Thus, in our simple example, for the first pair of averaged values, the
detail coefficient is 0 since 2−2

2 = 0, for the second it is −1 since 0−2
2 = −1. No infor-

mation is lost in this process – one can reconstruct the eight values of the original data
array from the lower-resolution array containing the four averages and the four detail
coefficients. We recursively apply this pairwise averaging and differencing process on
the lower-resolution array of averages until we reach the overall average, to get the full
Haar decomposition. The final Haar DWT of a is given by wa = [11/4, −5/4, 1/2, 0,
0, −1, −1, 0], that is, the overall average followed by the detail coefficients in order
of increasing resolution. Each entry in wa is called a wavelet coefficient. The main ad-
vantage of using wa instead of the original data vector a is that for vectors containing
similar values most of the detail coefficients tend to have very small values. Thus, elim-
inating such small coefficients from the wavelet transform (i.e., treating them as zeros)
introduces only small errors when reconstructing the original data, resulting in a very
effective form of lossy data compression [22].

A useful conceptual tool for visualizing and understanding the (hierarchical) Haar
DWT process is the error tree structure [19] (shown in Fig. 1(a) for our example
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Fig. 1. Example error-tree structures for (a) a one-dimensional data array (N = 8), and (b) non-
standard two-dimensional Haar coefficients for a 4 × 4 data array (coefficient magnitudes are
multiplied by +1 (−1) in the “+” (resp., “-”) labeled ranges, and 0 in blank areas)

array a). Each internal tree node ci corresponds to a wavelet coefficient (with the root
node c0 being the overall average), and leaf nodes a[i] correspond to the original data-
array entries. This view allows us to see that the reconstruction of any a[i] depends only
on the log N + 1 coefficients in the path between the root and a[i]; symmetrically, it
means a change in a[i] only impacts its log N + 1 ancestors in an easily computable
way. We define the support for a coefficient ci as the contiguous range of data-array
that ci is used to reconstruct (i.e., the range of data/leaf nodes in the subtree rooted
at ci). Note that the supports of all coefficients at resolution level l of the Haar DWT
are exactly the 2l (disjoint) dyadic ranges of size N/2l = 2log N−l over [N ], defined
as Rl,k = [k · 2log N−l, . . . , (k + 1) · 2log N−l − 1] for k = 0, . . . , 2l − 1 (for each
resolution level l = 0, . . . , log N ). The Haar DWT can also be conceptualized in terms
of vector inner-product computations: let φl,k denote the vector with φl,k[i] = 2l−log N

for i ∈ Rl,k and 0 otherwise, for l = 0, . . . , log N and k = 0, . . . , 2l−1; then, each of
the coefficients in the Haar DWT of a can be expressed as the inner product of a with
one of the N distinct Haar wavelet basis vectors:

{1
2
(φl+1,2k − φl+1,2k+1) : l = 0, . . . , log N − 1; k = 0, . . . , 2l − 1} ∪ {φ0,0}

Intuitively, wavelet coefficients with larger support carry a higher weight in the re-
construction of the original data values. To equalize the importance of all Haar DWT
coefficients, a common normalization scheme is to scale the coefficient values at level
l (or, equivalently, the basis vectors φl,k) by a factor of

√
N/2l. This normalization

essentially turns the Haar DWT basis vectors into an orthonormal basis — letting c∗i
denote the normalized coefficient values, this fact has two important consequences:
(1) The energy of the a vector is preserved in the wavelet domain, that is, ||a||22 =∑

i a[i]2 =
∑

i(c
∗
i )

2 (by Parseval’s theorem); and, (2) Retaining the B largest coeffi-
cients in terms of absolute normalized value gives the (provably) best B-term approx-
imation in terms of Sum-Squared-Error (SSE) in the data reconstruction (for a given
budget of coefficients B) [22].

Multi-Dimensional Haar Wavelets. There are two distinct ways to generalize the Haar
DWT to the multi-dimensional case, the standard and nonstandard Haar decomposi-
tion [22]. Each method results from a natural generalization of the one-dimensional
decomposition process described above, and both have been used in a wide variety of
applications. Consider the case where a is a d-dimensional data array, comprising Nd
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entries. As in the one-dimensional case, the Haar DWT of a results in a d-dimensional
wavelet-coefficient array wa with Nd coefficient entries. The non-standard Haar DWT
works in log N phases where, in each phase, one step of pairwise averaging and dif-
ferencing is performed across each of the d dimensions; the process is then repeated
recursively (for the next phase) on the quadrant containing the averages across all di-
mensions. The standard Haar DWT works in d phases where, in each phase, a com-
plete 1-dimensional DWT is performed for each one-dimensional row of array cells
along dimension k, for all k = 1, . . . , d. (full details and efficient decomposition al-
gorithms are in [4, 24].) The supports of non-standard d-dimensional Haar coefficients
are d-dimensional hyper-cubes (over dyadic ranges in [N ]d), since they combine 1-
dimensional basis functions from the same resolution levels across all dimensions. The
cross product of a standard d-dimensional coefficient (indexed by, say, (i1, . . . , id))
is, in general a d-dimensional hyper-rectangle, given by the cross-product of the 1-
dimensional basis functions corresponding to coefficient indexes i1, . . . , id.

Error-tree structures can again be used to conceptualize the properties of both forms
of d-dimensional Haar DWTs. In the non-standard case, the error tree is essentially
a quadtree (with a fanout of 2d), where all internal non-root nodes contain 2d−1 co-
efficients that have the same support region in the original data array but with differ-
ent quadrant signs (and magnitudes) for their contribution. For standard d-dimensional
Haar DWT, the error-tree structure is essentially a “cross-product” of d one-dimensional
error trees with the support and signs of coefficient (i1, . . . , id) determined by the prod-
uct of the component one-dimensional basis vectors (for i1, . . . , d). Fig. 1(b) depicts a
simple example error-tree structure for the non-standard Haar DWT of a 2-dimensional
4 × 4 data array. It follows that updating a single data entry in the d-dimensional data
array a impacts the values of (2d − 1) log N + 1 = O(2d log N) coefficients in the
non-standard case, and (log N + 1)d = O(logd N) coefficients in the standard case.
Both multi-dimensional decompositions preserve the orthonormality, thus retaining the
largest B coefficient values gives a provably SSE-optimal B-term approximation of a.

3 Problem Formulation and Overview of Approach

Our goal is to continuously track a compact B-coefficient wavelet synopsis under our
general, high-speed update-stream model. We require our solution to satisfy all three
key requirements for streaming algorithms outlined earlier in this paper, namely: (1)
sublinear synopsis space, (2) sublinear per-item update time, and (3) sublinear query
time, where sublinear means polylogarithmic in the domain size N . As in [11], our al-
gorithms return only an approximate synopsis comprising (at most) B Haar coefficients
that is provably near-optimal (in terms of the captured energy of the underlying vector)
assuming that our vector satisfies the “small-B property” (i.e., most of its energy is con-
centrated in a small number of Haar DWT coefficients) — this assumption is typically
satisfied for most real-life data distributions [11].

The streaming algorithm presented by Gilbert et al. [11] (termed “GKMS” in the
remainder of the paper) focuses primarily on the one-dimensional case. The key idea is
to maintain an AMS sketch for the streaming data vector a (as discussed in Sec. 2.1).
To produce the approximate B-term representation, GKMS employs the constructed
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sketch of a to estimate the inner product of a with all wavelet basis vectors, essen-
tially performing an exhaustive search over the space of all wavelet coefficients to iden-
tify important ones. Although techniques based on range-summable random variables
constructed using Reed-Muller codes were proposed to reduce or amortize the cost of
this exhaustive search by allowing the sketches of basis vectors to be computed more
quickly, the overall query time for discovering the top coefficients remains superlinear
in N (i.e., at least Ω( 1

ε2 N log N)), violating our third requirement. For large data do-
mains, say N = 232 ≈ 4 billion (such as the IP address domain considered in [11]),
a query can take a very long time: over an hour, even if a million coefficient queries
can be answered per second! This essentially renders a direct extension of the GKMS
technique to multiple dimensions infeasible since it implies an exponential explosion
in query cost (requiring at least O(Nd) time to cycle through all coefficients in d di-
mensions). In addition, the update cost of the GKMS algorithm is linear in the size of
the sketch since the whole data structure must be “touched” for each update. This is
problematic for high-speed data streams and/or even moderate sized sketch synopses.

Our Approach. Our proposed solution relies on two key novel ideas to avoid the short-
comings of the GKMS technique. First, we work entirely in the wavelet domain: in-
stead of sketching the original data entries, our algorithms sketch the wavelet-coefficient
vector wa as updates arrive. This avoids any need for complex range-summable hash
functions. Second, we employ hash-based grouping in conjunction with efficient binary-
search-like techniques to enable very fast updates as well as identification of important
coefficients in polylogarithmic time.

– Sketching in the Wavelet Domain. Our first technical idea relies on the observation
that we can efficiently produce sketch synopses of the stream directly in the wavelet do-
main. That is, we translate the impact of each streaming update on the relevant wavelet
coefficients. By the linearity properties of the DWT and our earlier description, we
know that an update to the data entries corresponds to only polylogarithmically many
coefficients in the wavelet domain. Thus, on receiving an update to a, our algorithms
directly convert it to O(polylog(N)) updates to the wavelet coefficients, and maintain
an approximate representation of the wavelet coefficient vector wa.

– Time-Efficient Updates and Large-Coefficient Searches. Sketching in the wavelet do-
main means that, at query time, we have an approximate representation of the wavelet-
coefficient vector wa and need to be able to identify all those coefficients that are
“large”, relative to the total energy of the data ‖wa‖22 = ‖a‖22. While AMS sketches can
give us these estimates (a point query is just a special case of an inner product), querying
remains much too slow taking at least Ω( 1

ε2 N) time to find which of the N coefficients
are the B largest. Note that although a lot of earlier work has given efficient stream-
ing algorithms for identifying high-frequency items [5, 6, 18], our requirements here
are quite different. Our techniques must monitor items (i.e., DWT coefficients) whose
values increase and decrease over time, and which may very well be negative (even
if all the data entries in a are positive). Existing work on “heavy-hitter” tracking fo-
cuses solely on non-negative frequency counts [6] often assumed to be non-decreasing
over time [5, 18]. More strongly, we must find items whose squared value is a large
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b buckets

c subbuckets

x h(id(x))

t repetitions

f(x) +u   (x)ξ

Fig. 2. Our Group-Count Sketch (GCS) data structure: x is hashed (t times) to a bucket and then
to a subbucket within the bucket, where a counter is updated

fraction of the total vector energy ||wa||22: this is a stronger condition since such “L2
2heavy

hitters” may not be heavy hitters under the conventional sum-of-counts definition. 3

At a high level, our algorithms rely on a divide-and-conquer or binary-search-like
approach for finding the large coefficients. To implement this, we need the ability to
efficiently estimate sums-of-squares for groups of coefficients, corresponding to dyadic
subranges of the domain [N ]. We then disregard low-energy regions and recurse only
on high-energy groups — note that this guarantees no false negatives, as a group that
contains a high-energy coefficient will also have high energy as a whole. Furthermore,
our algorithms also employ randomized, hash-based grouping of dyadic groups and
coefficients to guarantee that each update only touches a small portion of our synopsis,
thus guaranteeing very fast update times.

4 Our Solution: The GCS Synopsis and Algorithms

We introduce a novel, hash-based probabilistic synopsis data structure, termed Group-
Count Sketch (GCS), that can estimate the energy (squared L2 norm) of fixed groups of
elements from a vector w of size N under our streaming model. (To simplify the expo-
sition we initially focus on the one-dimensional case, and present the generalization to
multiple dimensions later in this section.) Our GCS synopsis requires small, sublinear
space and takes sublinear time to process each stream update item; more importantly,
we can use a GCS to obtain a high-probability estimate of the energy of a group within
additive error ε||w||22 in sublinear time. We then demonstrate how to use GCSs as the
basis of efficient streaming procedures for tracking large wavelet coefficients.

Our approach takes inspiration from the AMS sketching solution for vector L2-norm
estimation; still, we need a much stronger result, namely the ability to estimate L2
norms for a (potentially large) number of groups of items forming a partition of the
data domain [N ]. A simple solution would be to keep an AMS sketch of each group
separately; however, there can be many groups, linear in N , and we cannot afford to
devote this much space to the problem. We must also process streaming updates as
quickly as possible. Our solution is to maintain a structure that first partitions items of
w into their group, and then maps groups to buckets using a hash function. Within each
bucket, we apply a second stage of hashing of items to sub-buckets, each containing
an atomic AMS sketch counter, in order to estimate the L2 norm of the bucket. In our

3 For example, consider a set of items with counts {4, 1, 1, 1, 1, 1, 1, 1, 1}. The item with count
4 represents 2

3 of the sum of the squared counts, but only 1
3 of the sum of counts.
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analysis, we show that this approach allows us to provide accurate estimates of the
energy of any group in w with tight ±ε||w||22 error guarantees.

The GCS Synopsis. Assume a total of k groups of elements of w that form a partition of
[N ]. For notational convenience, we use a function id that identifies the specific group
that an element belongs to, id : [N ] → [k]. (In our setting, groups correspond to fixed
dyadic ranges over [N ] so the id mapping is trivial.) Following common data-streaming
practice, we first define a basic randomized estimator for the energy of a group, and
prove that it returns a good estimate (i.e., within ±ε||w||22 additive error) with constant
probability > 1

2 ; then, by taking the median estimate over t independent repetitions,
we are able to reduce the probability of a bad estimate to exponentially small in t. Our
basic estimator first hashes groups into b buckets and then, within each bucket, it hashes
into c sub-buckets. (The values of t, b, and c parameters are determined in our analysis.)
Furthermore, as in AMS sketching, each item has a {±1} random variable associated
with it. Thus, our GCS synopsis requires three sets of t hash functions, hm : [k] →
[b], fm : [N ] → [c], and ξm : [N ] → {±1} (m = 1, . . . , t). The randomization
requirement is that hm’s and fm’s are drawn from families of pairwise independent
functions, while ξm’s are four-wise independent (as in basic AMS); such hash functions
are easy to implement, and require only O(log N) bits to store.

Our GCS synopsis s consists of t · b · c counters (i.e., atomic AMS sketches), labeled
s[1][1][1] through s[t][b][c], that are maintained and queried as follows:

UPDATE(i, u). Set s[m][hm(id(i))][fm(i)]+ = u · ξm(i), for each m = 1, . . . , t.

ESTIMATE(GROUP). Return the estimatemedianm=1,... ,t

∑c
j=1(s[m][hm(GROUP)][j])2

for the energy of the group of items GROUP ∈ {1, . . . , k} (denoted by ‖GROUP‖22).

Thus, the update and query times for a GCS synopsis are simply O(t) and O(t · c),
respectively. The following theorem summarizes our key result for GCS synopses.

Theorem 2. Our Group-Count Sketch algorithms estimate the energy of item groups
of the vector w within additive error ε||w||22 with probability ≥ 1 − δ using space of
O
( 1

ε3 log 1
δ

)
counters, per-item update time ofO

(
log 1

δ

)
, and query time ofO

( 1
ε2 log 1

δ

)
.

Proof. Fix a particular group GROUP and a row r in the GCS; we drop the row index m
in the context where it is understood. Let BUCKET be the set of elements that hash into
the same bucket as GROUP does: BUCKET = {i | i ∈ [1, n] ∧ h(id(i)) = h(GROUP)}.
Among those, let COLL be the set of elements other than those of GROUP: COLL =
{i | i ∈ [1, n] ∧ id(i) �= GROUP ∧ h(id(i)) = h(GROUP)}. In the following, we abuse
notation in that we refer to a refer to both a group and the set of items in the group with
the same name. Also, we write ‖S‖22 to denote the sum of squares of the elements (i.e.
L2

2) in set S: ‖S‖22 =
∑

i∈S w[i]2.
Let est be the estimator for the sum of squares of the items of GROUP. That is,

est =
∑c

j=1 estj where estj = (s[m][hm(GROUP)][j])2 is the square of the count in
sub-bucket SUBj . The expectation of this estimator is, by simple calculation, the sum of
squares of items in sub-bucket j, which is a fraction of the sum of squares of the bucket.
Similarly, using linearity of expectation and the four-wise independence of the ξ hash
functions, the variance of est is bounded in terms of the square of the expectation:
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E[est] = E[‖BUCKET‖22] Var[est] ≤ 2
cE[‖BUCKET‖42]

To calculate E[‖BUCKET‖22], observe that the bucket contains items of GROUP as well
as items from other groups denoted by the set COLL which is determined by h. Because
of the pairwise independence of h, this expectation is bounded by a fraction of the total
energy. Therefore:

E[‖BUCKET‖22] = ‖GROUP‖22 + E[‖COLL‖22] ≤ ‖GROUP‖22 + 1
b ||w||22

and E[‖BUCKET‖42] = ‖GROUP‖42 + E[‖COLL‖42] + 2‖GROUP‖22E[‖COLL‖22]
≤ ||w||42 + 1

b ||w||42 + 2||w||22 · 1
b ||w||22 ≤ (1 + 3

b )||w||42 ≤ 2||w||22
since ‖GROUP‖22 ≤ ||w||22 and b ≥ 3. The estimator’s expectation and variance satisfy

E[est] ≤ ‖GROUP‖22 + 1
b ||w||22 Var[est] ≤ 4

c‖w‖42
Applying the Chebyshev inequality we obtain Pr

[
|est− E[est]| ≥ λ||w||22

]
≤ 4

cλ2

and by setting c = 32
λ2 the bound becomes 1

8 , for some parameter λ. Using the above
bounds on variance and expectation and the fact that |x− y| ≥ ||x| − |y|| we have,

|est− E[est]| ≥
∣∣∣∣est− ‖GROUP‖22 −

1
b
||w||22

∣∣∣∣ ≥ ∣∣∣∣∣∣est− ‖GROUP‖22
∣∣− 1

b
||w||22

∣∣∣∣ .
Consequently (note that Pr[|x| > y] ≥ Pr[x > y]),

Pr
[∣∣est− ‖GROUP‖22

∣∣− 1
b
||w||22 ≥ λ||w||22

]
≤ Pr

[
|est− E[est]| ≥ λ||w||22

]
≤ 1

8
or equivalently, Pr

[∣∣est− ‖GROUP‖22
∣∣ ≥ (λ + 1

b

)
||w||22

]
≤ 1

8 . Setting b = 1
λ we get

Pr
[∣∣est− ‖GROUP‖22

∣∣ ≥ 2λ||w||22
]
≤ 1

8 and to obtain an estimator with ε||w||22 addi-
tive error we require λ = ε

2 which translates to b = O(1
ε ) and c = O( 1

ε2 ).
By Chernoff bounds, the probability that the median of t independent instances of the

estimator deviates by more than ε||w||22 is less than e−qt, for some constant q. Setting
this to the probability of failure δ, we require t = O

(
log 1

δ

)
, which gives the claimed

bounds. ��

Hierarchical Search Structure for Large Coefficients. We apply our GCS synopsis
and estimators to the problem of finding items with large energy (i.e., squared value)
in the w vector. Since our GCS works in the wavelet domain (i.e., sketches the wavelet
coefficient vector), this is exactly the problem of recovering important coefficients. To
efficiently recover large-energy items, we impose a regular tree structure on top of the
data domain [N ], such that every node has the same degree r. Each level in the tree in-
duces a partition of the nodes into groups corresponding to r-adic ranges, defined by the
nodes at that level. 4 For instance, a binary tree creates groups corresponding to dyadic
ranges of size 1, 2, 4, 8, and so on. The basic idea is to perform a search over the tree
for those high-energy items above a specified energy threshold, φ||w||22. Following the
discussion in Section 3, we can prune groups with energy below the threshold and, thus,
avoid looking inside those groups: if the estimated energy is accurate, then these can-
not contain any high-energy elements. Our key result is that, using such a hierarchical
search structure of GCSs, we can provably (within appropriate probability bounds) re-
trieve all items above the threshold plus a controllable error quantity ((φ+ε)||w||22), and
retrieve no elements below the threshold minus that small error quantity ((φ− ε)||w||22).

4 Thus, the id function for level l is easily defined as idl(i) = �i/rl�.



Fast Approximate Wavelet Tracking on Streams 15

Theorem 3. Given a vector w of size N we can report, with high probability ≥ 1 − δ,
all elements with energy above (φ + ε)||w||22 (where φ ≥ ε) within additive error of
ε||w||22 (and therefore, report no item with energy below (φ − ε)||w||22 ) using space

of O
(

logr N
ε3 · log r logr N

φδ

)
, per item processing time of O

(
logr N · log r logr N

φδ

)
and

query time of O
(

r
φε2 · logr N · log r logr N

φδ

)
.

Proof. Construct logr N GCSs (with parameters to be determined), one for each level
of our r-ary search-tree structure. We refer to an element that has energy above φ||w||22
as a “hot element”, and similarly groups that have energy above φ||w||22 as “hot ranges”.
The key observation is that all r-adic ranges that contain a hot element are also hot.
Therefore, at each level (starting with the root level), we identify hot r-adic ranges by
examining only those r-adic ranges that are contained in hot ranges of the previous
level. Since there can be at most 1

φ hot elements, we only have to examine at most
1
φ logr N ranges and pose that many queries. Thus, we require the failure probability

to be logr N
φδ for each query so that, by the union bound, we obtain a failure probability

of at most δ for reporting all hot elements. Further, we require each level to be accurate
within ε||w||22 so that we obtain all hot elements above (φ + ε)||w||22 and none below
(φ− ε)||w||22. The theorem follows. ��

Setting the value of r gives a tradeoff between query time and update time. Asymp-
totically, we see that the update time decreases as the degree of the tree structure, r,
increases. This becomes more pronounced in practice, since it usually suffices to set
t, the number of tests, to a small constant. Under this simplification, the update cost
essentially reduces to O(logr N), and the query time reduces to O( r

ε2φ logr N). (We
will see this clearly in our experimental analysis.) The extreme settings of r are 2 and
N : r = 2 imposes a binary tree over the domain, and gives the fastest query time but
O(log2 N) time per update; r = N means updates are effectively constant O(1) time,
but querying requires probing the whole domain, a total of N tests to the sketch.

Sketching in the Wavelet Domain. As discussed earlier, given an input update stream
for data entries in a, our algorithms build GCS synopses on the corresponding wavelet
coefficient vector wa, and then employ these GCSs to quickly recover a (provably good)
approximate B-term wavelet representation of a. To accomplish the first step, we need
an efficient way of “translating” updates in the original data domain to the domain of
wavelet coefficients (for both one- and multi-dimensional data streams).

– One-Dimensional Updates. An update (i, v) on a translates to the following collection
of log N + 1 updates to wavelet coefficients (that lie on the path to leaf a[i], Fig. 1(a)):(
0, 2−

1
2 log Nv

)
,
{(

2log N−l + k, (−1)k mod 22−
l
2 v
)
: for each l=0,. . ., log N − 1

}
,

where l = 0, . . . , log N − 1 indexes the resolution level, and k = �i2−l�. Note that
each coefficient update in the above set is easily computed in constant time.

– Multi-Dimensional Updates. We can use exactly the same reasoning as above to pro-
duce a collection of (constant-time) wavelet-coefficient updates for a given data update
in d dimensions (see, Fig. 1(b)). As explained in Section 2.2, the size of this collec-
tion of updates in the wavelet domain is O(logd N) and O(2d log N) for standard and
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non-standard Haar wavelets, respectively. A subtle issue here is that our search-tree
structure operates over a linear ordering of the Nd coefficients, so we require a fast
method for linearizing the multi-dimensional coefficient array — any simple lineariza-
tion technique will work (e.g., row-major ordering or other space-filling curves).

Using GCSs for Approximate Wavelets. Recall that our goal is to (approximately)
recover the B most significant Haar DWT coefficients, without exhaustively search-
ing through all coefficients. As shown in Theorem 3, creating GCSs for for dyadic
ranges over the (linearized) wavelet-coefficient domain, allows us to efficiently identify
high-energy coefficients. (For simplicity, we fix the degree of our search structure to
r = 2 in what follows.) An important technicality here is to select the right threshold
for coefficient energy in our search process, so that our final collection of recovered
coefficients provably capture most of the energy in the optimal B-term representation.
Our analysis in the following theorem shows how to set this threshold, an proves that,
for data vectors satisfying the “small-B property”, our GCS techniques can efficiently
track near-optimal approximate wavelet representations. (We present the result for the
standard form of the multi-dimensional Haar DWT — the one-dimensional case follows
as the special case d = 1.)

Theorem 4. If a d-dimensional data stream over the [N ]d domain has a B-term stan-
dard wavelet representation with energy at least η||a||22, where ||a||22 is the entire energy,
then our GCS algorithms can estimate an at-most-B-term standard wavelet represen-

tation with energy at least (1− ε)η||a||22 using space of O(B3d log N
ε3η3 · log Bd log N

εηδ ), per

item processing time of O(d logd+1 N · log Bd log N
εηδ ), and query time of O( B3d

ε3η3 · log N ·
log Bd log N

εηδ ).

Proof. Use our GCS search algorithm and Theorem 3 to find all coefficients with energy
at least εη

B ||a||22 = εη
B ||w||22. (Note that ||a||22 can be easily estimated to within small

relative error from our GCSs.) Among those choose the highest B coefficients; note
that there could be less than B found. For those coefficients selected, observe we incur
two types of error. Suppose we choose a coefficient which is included in the best B-
term representation, then we could be inaccurate by at most εη

B ||a||22. Now, suppose we
choose coefficient c1 which is not in the best B-term representation. There has to be a
coefficient c2 which is in the best B-term representation, but was rejected in favor of
c1. For this rejection to have taken place their energy must differ by at most 2 εη

B ||a||22
by our bounds on the accuracy of estimation for groups of size 1. Finally, note that for
any coefficient not chosen (for the case when we pick fewer than B coefficients) its true
energy must be less than 2 εη

B ||a||22. It follows that the total energy we obtain is at most
2εη||a||22 less than that of the best B-term representation. Setting parameters λ, ε′, N ′

of Theorem 3 to λ = ε′ = εη
B and N ′ = Nd we obtain the stated space and query time

bounds. For the per-item update time, recall that a single update in the original data
domain requires O(logd N) coefficient updates. ��

The corresponding result for the non-standard Haar DWT follows along the same lines.
The only difference with Theorem 4 comes in the per-update processing time which, in
the non-standard case, is O(d2d log N · log Bd log N

εηδ ).
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Fig. 3. Performance on one-dimensional data

5 Experiments

Data Sets and Methodology. We implemented our algorithms in a mixture of C and
C++, for the Group-Count sketch (GCS) with variable degree. For comparison we also
implemented the method of [11] (GKMS) as well as a modified version of the algorithm
with faster update performance using ideas similar to those in the Group-Count sketch,
which we denote by fast-GKMS. Experiments were performed on a 2GHz processor
machine, with 1GB of memory. We worked with a mixture of real and synthetic data:

– Synthetic Zipfian Data was used to generate data from arbitrary domain sizes and
with varying skewness. By default the skewness parameter of the distribution is
z = 1.1.

– Meteorological data set5 comprised of 105 meteorological measurements. These
were quantized and projected appropriately to generate data sets with dimensional-
ities between 1 and 4. For the experiments described here, we primarily made use
of the AirTemperature and WindSpeed attributes to obtain 1- and 2-dimensional
data streams.

In our experiments, we varied the domain size, the size of the sketch6 and the degree
of the search tree of our GCS method and measured (1) per-item update time, (2) query

5 http://www-k12.atmos.washington.edu/k12/grayskies/
6 In each experiment, all methods are given the same total space to use.
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time and (3) accuracy. In all figures, GCS-k denotes that the degree of the search tree is
2k; i.e. GCS-1 uses a binary search tree, whereas GCS-logn uses an n-degree tree, and
so has a single level consisting of the entire wavelet domain.
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Fig. 4. Accuracy of Wavelet Synopses

One-Dimensional Experiments. In the first experimental setup we used a synthetic
1-dimensional data stream with updates following the Zipfian distribution (z = 1.1).
Space was increased based on the log of the dimension, so for log N = 14, 280KB
was used, up to 600KB for log N = 30. Figure 3 (a) shows the per-item update time
for various domain sizes, and Figure 3 (b) shows the time required to perform a query,
asking for the top-5 coefficients. The GKMS method takes orders of magnitude longer
for both updates and queries, and this behavior is seen in all other experiments, so we
do not consider it further. Apart from this, the ordering (fastest to slowest) is reversed
between update time and query time. Varying the degree of the search tree allows up-
date time and query time to be traded off. While the fast-GKMS approach is the fastest
for updates, it is dramatically more expensive for queries, by several orders of mag-
nitude. For domains of size 222, it takes several hours to recover the coefficients, and
extrapolating to a 32 bit domain means recovery would take over a week. Clearly this
is not practical for realistic monitoring scenarios. Although GCS-logn also performs
exhaustive search over the domain size, its query times are significantly lower as it does
not require a sketch construction and inner-product query per wavelet coefficient.

Figures 3 (c) and (d) show the performance as the sketch size is increased. The
domain size was fixed to 218 so that the fast-GKMS method would complete a query in
reasonable time. Update times do not vary significantly with increasing space, in line
with our analysis (some increase in cost may be seen due to cache effects). We also
tested the accuracy of the approximate wavelet synopsis for each method. We measured
the SSE-to-energy ratio of the estimated B-term synopses for varying B and varying
zipf parameter and compared it against the optimal B-term synopsis computed offline.
The results are shown in Figures 4 (a) and (b), where each sketch was given space
360KB. In accordance to analysis (GCS requires O(1

ε ) times more space to provide the
same guarantees with GKMS) the GCS method is slightly less accurate when estimating
more than the top-15 coefficients. However, experiments showed that increasing the size
to 1.2MB resulted in equal accuracy. Finally we tested the performance of our methods
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Fig. 5. Performance on 1-d Real Data and multi-d Real and Synthetic Data

on single dimensional meteorological data of domain size 220. Per-item and query times
in Figure 5 (a) are similar to those on synthetic data.

Multi-Dimensional Experiments. We compared the methods for both wavelet decom-
position types in multiple dimensions. First we tested our GCS method for a synthetic
dataset (z = 1.1, 105 tuples) of varying dimensionality. In Figure 5 (b) we kept the
total domain size constant at 224 while varying the dimensions between 1 and 4. The
per-item update time is higher for the standard decomposition, as there are more up-
dates on the wavelet domain per update on the original domain. The increase in query
time can be attributed to the increasing sparseness of the domain as the dimensionality
increases which makes searching for big coefficients harder. This is a well known effect
of multidimensional standard and non-standard decompositions. For the real dataset,
we focus on the two dimensional case; higher dimensions are similar. Figure 5(c) and
(d) show results for the standard and non-standard respectively. The difference between
GCS methods and fast-GKMS is more pronounced, because of the additional work in
producing multidimensional wavelet coefficients, but the query times remain signifi-
cantly less (query times were in the order of hours for fast-GKMS), and the difference
becomes many times greater as the size of the data domain increases.

Experimental Summary. The Group-Count sketch approach is the only method that
achieves reasonable query times to return an approximate wavelet representation of



20 G. Cormode, M. Garofalakis, and D. Sacharidis

data drawn from a moderately large domain (220 or larger). Our first implementation is
capable of processing tens to hundreds of thousands of updates per second, and giving
the answer to queries in the order of a few seconds. Varying the degree of the search tree
allows a tradeoff between query time and update time to be established. The observed
accuracy is almost indistinguishable from the exact solution, and the methods extend
smoothly to multiple dimensions with little degradation of performance.

6 Related Work

Wavelets have a long history of successes in the signal and image processing arena
[16, 22] and, recently, they have also found their way into data-management applica-
tions. Matias et al. [19] first proposed the use of Haar-wavelet coefficients as synopses
for accurately estimating the selectivities of range queries. Vitter and Wang [24] de-
scribe I/O-efficient algorithms for building multi-dimensional Haar wavelets from large
relational data sets and show that a small set of wavelet coefficients can efficiently pro-
vide accurate approximate answers to range aggregates over OLAP cubes. Chakrabarti
et al. [4] demonstrate the effectiveness of Haar wavelets as a general-purpose approx-
imate query processing tool by designing efficient algorithms that can process com-
plex relational queries (with joins, selections, etc.) entirely in the wavelet-coefficient
domain. Schmidt and Shahabi [21] present techniques using the Daubechies family
of wavelets to answer general polynomial range-aggregate queries. Deligiannakis and
Roussopoulos [8] introduce algorithms for building wavelet synopses over data with
multiple measures. Finally, I/O efficiency issues are studied by Jahangiri et al. [15] for
both forms of the multi-dimensional DWT.

Interest in data streams has also increased rapidly over the last years, as more algo-
rithms are presented that provide solutions in a streaming one-pass, low memory envi-
ronment. Overviews of data-streaming issues and algorithms can be found, for instance,
in [3, 20]. Sketches first appeared for estimating the second frequency moment of a set
of elements [2] and have since proven to be a useful summary structure in such a dy-
namic setting. Their application includes uses for estimating join sizes of queries over
streams [1, 9], maintaining wavelet synopses [11], constructing histograms [12, 23], es-
timating frequent items [5, 6] and quantiles [13]. The work of Gilbert et al. [11] for
estimating the most significant wavelet coefficients is closely related to ours. As we
discuss, the limitation is the high query time required for returning the approximate
representation. In follow-up work, the authors proposed a more theoretical approach
with somewhat improved worst case query times [12]. This work considers an approach
based on a complex construction of range-summable random variables to build sketches
from which wavelet coefficients can be obtained. The update times remain large. Our
bounds improve those that follow from [12], and our algorithm is much simpler to im-
plement. In similar spirit, Thaper et al. [23] use AMS sketches to construct an optimal
B-bucket histogram of large multi-dimensional data. No efficient search techniques are
used apart from an exhaustive greedy heuristic which always chooses the next best
bucket to include in the histogram; still, this requires an exhaustive search over a huge
space. The idea of using group-testing techniques to more efficiently find heavy items
appears in several prior works [6, 7, 12]; here, we show that it is possible to apply similar
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ideas to groups under L2 norm, which has not been explored previously. Recently, dif-
ferent techniques have been proposed for constructing wavelet synopses that minimize
non-Euclidean error metrics, under the time-series model of streams [14, 17].

7 Conclusions

We have proposed the first known streaming algorithms for space- and time-efficient
tracking of approximate wavelet summaries for both one- and multi-dimensional data
streams. Our approach relies on a novel, Group-Count Sketch (GCS) synopsis that, un-
like earlier work, satisfies all three key requirements of effective streaming algorithms,
namely: (1) polylogarithmic space usage, (2) small, logarithmic update times (essen-
tially touching only a small fraction of the GCS for each streaming update); and, (3)
polylogarithmic query times for computing the top wavelet coefficients from the GCS.
Our experimental results with both synthetic and real-life data have verified the effec-
tiveness of our approach, demonstrating the ability of GCSs to support very high speed
data sources. As part of our future work, we plan to extend our approach to the problem
of extended wavelets [8] and histograms [23].
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Abstract. Streaming environments typically dictate incomplete or ap-
proximate algorithm execution, in order to cope with sudden surges in
the data rate. Such limitations are even more accentuated in mobile en-
vironments (such as sensor networks) where computational and memory
resources are typically limited. This paper introduces the first “resource
adaptive” algorithm for periodicity estimation on a continuous stream
of data. Our formulation is based on the derivation of a closed-form
incremental computation of the spectrum, augmented by an intelligent
load-shedding scheme that can adapt to available CPU resources. Our
experiments indicate that the proposed technique can be a viable and
resource efficient solution for real-time spectrum estimation.

1 Introduction

Spectrum estimation, that is, analysis of the frequency content of a signal, is a
core operation in numerous applications, such as data compression, medical data
analysis (ECG data) [2], pitch detection of musical content [4], etc. Widely used
estimators of the frequency content are the periodogram and the autocorrelation
[5] of a sequence. For statically stored sequences, both methods have an O(nlogn)
complexity using the Fast Fourier Transform (FFT). For dynamically updated
sequences (streaming case), the same estimators can be computed incrementally,
by continuous update of the summation in the FFT computation, through the
use of Momentary Fourier Transform [12, 9, 15].

However, in a high-rate, data streaming environment with multiple processes
‘competing’ over computational resources, there is no guarantee that each run-
ning process will be allotted sufficient processing time to fully complete its op-
eration. Instead of blocking or abandoning the execution of processing threads
that cannot fully complete, a desirable compromise would be for the system to
make provisions for adaptive process computation. Under this processing model
every analytic unit (e.g., in this case the ‘periodogram estimation unit’) can
provide partial (‘coarser’) results under tight processing constraints.

Under the aforementioned processing model and given limited processing time,
we are not seeking for results that are accurate or perfect, but only ‘good-
enough’. Since a typical streaming application will require fast, ‘on-the-fly’ deci-
sions, we present an intelligent sampling procedure that can decide whether to

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 23–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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retain or discard an examined sample. Our technique is based on a lightweight
linear predictor, which records a sample only if its value cannot be predicted by
previously seen sequence values.

Due to the sampling process, the retaineddata samples (a subset of the examined
data window) are not guaranteed to be equi-spaced. Hence, we also elaborate on
a closed-form periodogram estimation given unevenly spaced samples. We should
note that the proposed method for periodogram reconstruction based on irregu-
larly spaced samples is significantly more lightweight than the widely used Lomb
periodogram [13] (which incurs a very high computational burden).

Other recent work on periodicity estimation on data streams has appeared
in [6], where the authors study sampling techniques for period estimation us-
ing sublinear space. [8] proposes sampling methods for retaining (with a given
approximation error) the most significant Fourier coefficients. In [11] Papadim-
itriou, et al., adapt the use of wavelet coefficients for modeling a data stream,
providing also a periodicity estimator using logarithmic space complexity. How-
ever, none of the above approaches address the issue of resource adaptation
which is one of the main contributions of our work.

In the sections that follow we will illustrate the main concepts behind the
adaptive computation of the spectrum. In section 3 we describe our intelligent
‘on-the-fly’ sampling, and in section 4 we elaborate on the closed-form incre-
mental computation of the periodogram from unevenly spaced data samples.
Finally, section 5 provides extensive experiments that depict the accuracy and
effectiveness of the proposed scheme, under given complexity constraints.

2 Overview of Our Approach

Considering a data streaming scenario, our goal is to provide efficient mecha-
nisms for estimating and updating the spectrum1 within the current data win-
dow. We use the periodogram as an estimate of the spectrum. A schematic of
our resource-adaptive methodology is provided in Fig. 1.

At any given time, there might not be enough processing capacity to provide a
periodogram update using all the samples within the data window. The first step
toward tackling this problem is the reduction of points using an ‘on-the-fly’ load-
shedding scheme. Sub-sampling can lead to data aliasing and deteriorate the qual-
ity of the estimated periodogram. Therefore our sampling should not only be fast
but also intelligent, mitigating the impact of the sub-sampling on the squared er-
ror of the estimated periodogram. Sampling is based on a linear predictor, which
retains a sample only if its value cannot be predicted by its neighbors. An esti-
mator unit is also employed, which changes over time the ‘elasticity’ of the linear
predictor, for proper adaptation to the current CPU load.

If there is enough CPU time to process the final number of retained samples,
the spectrum is computed. Otherwise, more samples are dropped randomly and
the new estimate is computed on the remaining samples.

1 Note that during the course of the paper, we may use the terms periodicity estima-
tion, spectrum estimation and periodogram estimation interchangeably.
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Fig. 1. Visual depiction of our methodology

The computation of the approximate periodogram is based on a formulation of
the DFT and the periodogram using unevenly spaced samples, a necessary step
due to the sampling process. Under a sliding window model, some of the previ-
ously used samples are discarded, while new samples are added in the window.
The proposed periodicity estimation algorithm possesses a very simple update
structure, requiring only subtraction of contributions from discarded samples
and addition of contributions due to the newly included samples.

The contributions of this paper are summarized below:

– We provide an abstraction of the resource adaptation problem for periodicity
estimation.

– We propose an intelligent load-shedding scheme along with a parameter es-
timator unit that tunes the adaptation to the current CPU load.

– We present a closed-form Fourier approximation using unevenly spaced sam-
ples and we show how to update it incrementally.

We analyze the performance of our proposed approach under CPU constraints,
and we measure the complexity abstractly, in terms of the number of multiplica-
tions, additions and divisions involved (making the analysis independent of the
underlying processor architecture). Even though our model is very spartan in its
memory utilization, we do not explicitly impose any memory constraints, since
this work focuses primarily on CPU adaptation. However, inclusion of potential
memory constraints is a straightforward addition to our model.

2.1 Notation

The Discrete Fourier Transform is used to analyse the frequency content in a
discrete and evenly sampled signal. In particular for a discrete time signal x[n]
the DFT X [m] is defined for all samples 0 ≤ m, n ≤ N − 1 as:

X [m] =
1√
N

N−1∑
n=0

x[n]e−j 2πnm
N (1)
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The periodogram P of a signal corresponds to the energy of its DFT:

P [m] = ||X [m]||2 (2)

Consider now, a continuous signal x(t) sampled unevenly at discrete time
instants {t0, t1, . . . , tN−1}. We show an example of this in Fig. 2.

( )tx

t0t 1t 2t 3t 4tT

Fig. 2. Unevenly sampled signal

We write this unevenly sampled signal using the discrete notation as x[kn]
where ti = kiT (kiεZ+) and T corresponds to the sampling interval with all
sampling instants as multiples. This is also shown in Fig. 2. In the remainder
of this paper we will describe an adaptive load-shedding algorithm that retains
unevenly spaced samples and we will also provide an incremental DFT estimation
for such discrete signals.

We measure the complexity of all our algorithms in terms of the number of
additions (subtractions), multiplications and divisions involved in the compu-
tations. Thus, we label the complexity of a single multiplication as ξMul, of a
division as ξDiv and of a sum/subtraction as ξSub.

3 Load-Shedding Scheme

We consider the typical problem of running spectral analysis where we slide a
window across the temporal signal and incrementally update the signal’s DFT
(and the respective periodogram). We start with an evenly sampled signal, with
sampling interval T . Consider that the window slides by a fixed amount Width×
T . As a result of this sliding we discard n1 points from the beginning of the signal
and add n2 points to the end. However, if the available CPU cycles do not allow
us to update the DFT using all the points, we can adaptively prune the set
of added points using uneven sub-sampling to meet the CPU constraint while
minimizing the impact on the accuracy of the updated DFT.

3.1 Intelligent Sampling Via a Linear Predictor

We now present an algorithm (with linear complexity) for the adaptive pruning
of the newly added samples. In order to decide whether we can retain a particular
sample, we determine whether it can be linearly2 predicted from its neighbors.
2 Higher order predictors are also possible, but result in higher complexity.
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In particular, to make a decision for sample ki we compare the interpolated value
xint[ki] with the actual value x[ki], where the interpolated value is computed as:

xint[ki] =
x[ki−1](ki+1 − ki) + x[ki+1](ki − ki−1)

ki+1 − ki−1
(3)

where sample ki−1 is the last retained sample before sample ki and sample
ki+1 is the immediately following sample. If |xint[ki] − x[ki]| ≤ Thresh×|x[ki]|

100
we can discard the sample ki, otherwise we retain it. The parameter Thresh is
an adaptive threshold that determines the quality of the approximation. If the
threshold is large, more samples are discarded, and similarly if the threshold is
small fewer samples are discarded3. We show an example of this interpolation
scheme in Fig. 3.

[ ]1
int kx

0k 1k 2k 3k

[ ]1kx

Thresh
Discard

[ ]2
int kx

0k 1k 2k 3k

[ ]2kx

Thresh

Cannot Discard

Fig. 3. Linear interpolation scheme for adaptive pruning of samples

In Fig. 3, we show two steps of the algorithm. In the first step, we decide
that we can discard sample k1 as it can be interpolated by samples k0 and k2.
In the next step, we decide that we cannot discard sample k2, as it cannot be
interpolated using samples k0 and k3, its neighbors. If we start out with n2
samples that we need to prune, the complexity of this algorithm is:

ξinterp = (2ξMul + 4ξSub + ξDiv)(n2 − 2) (4)

In Section 3.2 we discuss how to tune the threshold Thresh in order to obtain
the desired number of n̂2 samples, out of the n2 samples added by the sliding
window.

In Fig. 4 we illustrate on a stream that measures web usage, a comparison
of our intelligent sampling method against the equi-sampling technique, which
samples data at a specified time interval. We execute our algorithm for a specific
threshold and reduce the data points within a window from M down to N

3 Note that the squared approximation error due to this sub-sampling scheme cannot
be bounded in general for all signals, however we select it for its computational sim-
plicity. In particular, for the wide variety of signals we consider in our experiments,
we do not observe squared error significantly larger than the absolute squared thresh-
old value. Modification of this scheme to guarantee bounds on the approximation
error is a direction for future research.
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Fig. 4. Comparison of spectrum estimation errors for intelligent sampling and equi-
sampling techniques
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Fig. 5. Estimation comparisons for additional datasets

(unevenly spaced). We estimate the resulting periodogram (see section 4) as well
the periodogram derived by equi-sampling every N/M points. It is apparent from
the figure that intelligent sampling provides a much higher quality reconstruction
of the periodogram, because it can retain important features of the data stream.
Additional examples on more datasets are provided in Fig. 5.
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3.2 Threshold Estimator

The load-shedding algorithm assumes the input of a threshold value, which
directly affects the resulting number of retained points within the examined
window. The desirable number of final points after the thresholding is dic-
tated by the available CPU load. An optimal threshold value would lead to

WebLog Data, Thresh = 60, compression = 47.9452%

Periodogram

Original Signal
Retained Points

Before Load Shedding
After Load Shedding

WebLog Data, Thresh = 100, compression = 69.0411%

Periodogram

Original Signal
Retained Points

Before Load Shedding
After Load Shedding

WebLog Data, Thresh = 120, compression = 80%

Original Signal
Retained Points

Periodogram

Before Load Shedding
After Load Shedding

Fig. 6. [Weblog Data]: Spectrum approximation for different threshold values
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Chaotic, Thresh = 60, compression = 63.5742%

Periodogram

Original Signal
Retained Points

Before Load Shedding
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chaotic.dat, Thresh = 100, compression = 80.957%
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chaotic.dat, Thresh = 120, compression = 86.0352%
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Before Load Shedding
After Load Shedding

Fig. 7. [Chaotic Data]: Spectrum approximation for different threshold values

sampling exactly as many points as could be processed by the currently avail-
able CPU time. However, there is no way of predicting accurately the correct
threshold without having seen the complete data, or without resorting to an
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expensive processing phase. In Figures 6 and 7 we provide various examples of
the spectrum approximation for different parameters of the load-shedding thres-
hold value.

We will provide a simple estimator of the threshold value with constant com-
plexity, which is derived by training on previously seen portions of the data
stream. The expectation is that the training will be performed on a data subset
that captures a sufficient variation of the stream characteristics. The estima-
tor will accept as input the desired number of final samples that should remain
within the examined window, along with a small subset of the current data char-
acteristics, which -in a way- describe its ‘shape’ or ‘state’ (e.g. a subset of the
data moments, its fractal dimensionality, etc.). The output of the estimator is a
threshold value that will lead (with high expectation) to the desirable number
of window samples.

The estimator is not expected to have zero error, but it should lead approx-
imately to the desired compression ratio. In the majority of cases the selected
threshold will lead either to higher or lower compression ratio. Intuitively, higher
compression (or overestimated threshold) is preferable. This is the case, because
then one does not have to resort to the additional phase of dropping randomly
some of the retained samples (a sampling that is ‘blind’ and might discard cru-
cial points, such as important local minima or maxima). In the experiments, we
empirically verify that this desirable feature is true for the threshold estimator
that is presented in the following section.

3.3 Training Phase

Assume that F is a set of features that capture certain desirable characteristics
of the examined data window w, and P ∈ {0, 1, . . . , |w|} describes how many
points can be processed at any given time. The threshold estimator will provide
a mapping F × P �→ T , where T is a set of threshold values.

It is not difficult to imagine, that data whose values change only slightly (or
depict small variance of values) do not require a large threshold value. The re-
verse situation exists for sequences that are ‘busy’, or exhibit large variance of
values. With this observation in mind, we will use the variance within the ex-
amined window as a descriptor of the window state. Higher order moments of
the data could also be used in conjunction with the variance for improving the
accuracy of the predictor. However, for simplicity and for keeping the computa-
tional cost as low as possible, we select to use just the variance in our current
prototype implementation.

The training phase proceeds as follows; given the training data we run a
sliding window on them. For each data window we compute the variance and
we execute the load-shedding algorithm for different threshold values (typically,
20, 40, . . . , 100, 120). After the algorithm execution the remaining number of data
points is recorded. This process is repeated for all the extracted data windows.
The result of this algorithm will be a set of triplets: [threshold, variance,
number of points]. Given this, we can construct the estimator as a mapping
f(numPoints, variance) �→ Thresh, where the actual estimator is essentially
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stored as a 2-dimensional array for constant retrieval time. An example of this
mapping is shown in Fig. 8.

It is clear that the training phase is not performed in real-time. However it
happens only once (or periodically) and it allows for a very fast prediction step.

varia nce

threshold

N
u

m
b

e
r 

o
f 

P
o
in

ts

{variance, t1}

{variance, t2}

{variance , t1}{variance , t2}

etc

etc

Fig. 8. Training phase for the threshold estimator

3.4 Additional Notes

There are a couple of points that we would like to bring to the attention of the
reader:

1. Even though we assume that the training data will provide ‘sufficient’ clues
on the data stream characteristics, the estimator might come upon an in-
put of [variance, numPoints] that has not encountered during the train-
ing phase. In this case, we can simply provide the closest match, e.g. the
entry that has the closest distance (in the Euclidean sense) to the given
variance and number of points. Alternatively, we could provide an extrapo-
lation of the values, in other words, explicitly learn the mapping function.
This can be achieved by constructing an RBF network [1] based on the
training triplets. Since this approach is significantly more expensive and
could present over-fitting problems, in our experiments we follow the former
alternative.

2. Over the period of time, the stream characteristics may gradually change,
and finally differ completely from the training data, hence leading to inconsis-
tent predictions. We can compensate for this by ‘readjusting’ the predictor,
by also recording the observed threshold error during the algorithm execu-
tion. This will result in a more extended maintenance phase of the estimator,
but this cost is bound to pay off in the long run for datasets that exhibit
frequent ‘concept drifts’ [10, 7]. We do not elaborate more on this exten-
sion, but we note it as potential addition for a more complex version of the
threshold estimator.
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4 Incremental Spectrum Estimation for Unevenly
Sampled Signals

Consider a signal x[ki], 0 ≤ i ≤ N − 1, as shown in Fig. 2. Since the DFT is
defined only for evenly sampled signals, we implicitly recreate an evenly sampled
signal before computing the DFT. For this, we again use a linear interpolator
(that matches our sub-sampling algorithm), thereby reconstructing a piece-wise
linear evenly sampled signal. The DFT of this evenly sampled signal may be
computed in terms of the sum of contributions of each of the individual line
segments that constitute it. Due to the nature of the linear interpolator the
contribution of each line segment to the DFT may be analytically derived in
terms of only the endpoints of the segment (i.e. samples in the original unevenly
sampled signal) and the distance between them. This means that we do not
actually need to interpolate the unevenly sampled signal but can derive a closed
form expression for the DFT under the assumption of a linear interpolation
scheme. Similar approaches to ours have also been followed in [2]. Note that
while the time domain signal consists of only N (uneven) samples, in order to
compute the Discrete Fourier Transform (DFT) of this signal, we need to sample
the DFT at least M = kN−1 − k0 times to avoid time domain aliasing. If we
denote by Xn[m] the contributions to the Fourier Transform from each of the
N−1 line segments that make up the implicitly recreated evenly sampled signal,
then the DFT of the whole signal can be written as:

X [m] =
N−1∑
n=1

Xn[m] (5)

where for m = 1, . . . , M − 1

Xn[m] =
1

(kn − kn−1)(2πm
M )2

[(x[kn−1]− x[kn])(e−j
2πmkn−1

M − e−j 2πmkn
M )

+ j
2πm

M
(x[kn]e−j 2πmkn

M − x[kn−1]e−j
2πmkn−1

M )]
(6)

and for m = 0
Xn[0] =

1
2
(x[kn−1] + x[kn])(kn − kn−1) (7)

A significant benefit that equation (5) brings is that the DFT for such un-
evenly sampled signals can be evaluated incrementally. Hence, if we shift the
window by a fixed width such that the first n1 points are discarded, and n2
points are added at the end, then the DFT of the signal may be updated as
follows:

Xnew[m] = Xold[m]−
n1∑

n=1

Xn[m] +
N+n2−1∑

n=N

Xn[m] (8)

We now consider the complexity of computing this update. As with several
papers that analyze the complexity of the FFT, we assume that the complex
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exponentials e
j2πmkn

M (and the intermediate value 2πmkn

M ) are considered pre-
computed for all m and n. Using our labels for complexity as defined in the
notation, the complexity of computing one single update coefficient Xn[m] for
m = 1, . . . , M − 1 may be represented as:

ξ̂ = 6ξMul + 5ξSub + ξDiv (9)

and for m = 0 as
ξ̂ = 2ξMul + 2ξSub (10)

Finally, the complexity of updating all the M DFT coefficients in this scenario
is:

ξupdate(M, n1, n2) = (n1 + n2)[(M − 1)(6ξMul + 5ξSub + ξDiv)
+ (2ξMul + 2ξSub) + MξSub] + 2MξSub

(11)

4.1 Benefit of Sub-sampling Algorithm

Using our sub-sampling algorithm we can reduce the number of samples that
need to be used to update the DFT. Consider that as a result of the pruning, we
can reduce n2 samples into a set of n̂2 samples (n̂2 ≤ n2). While the reduction in
the number of samples directly translates to a reduction in the complexity of the
update, we also need to factor in the additional cost of the sub-sampling algo-
rithm. Comparing equations (11) and (4) we realize that the overall complexity
of the update (including the sub-sampling) is reduced when:

ξupdate(M, n1, n2) ≥ ξupdate(M, n1, n̂2) + ξinterp (12)

To determine when this happens, consider a simple case when n̂2 = n2 − 1, i.e.
the sub-sampling leads to a reduction of one sample. The increase in complexity
for the sub-sampling is (2ξMul + 4ξSub + ξDiv)(n2 − 2) while the corresponding
decrease in the update complexity is (M − 1)(6ξMul + 5ξSub + ξDiv) + (2ξMul +
2ξSub) + MξSub (from equation (11)). Clearly, since n̂2 < n2 ≤ M , one can
easily realize that the reduction in complexity far outweighs the increase due to
the sub-sampling algorithm. In general, equation (12) is always true when the
sub-sampling algorithm reduces the number of samples (i.e., when n̂2 < n2).

If, at a certain time, the CPU is busy, thereby imposing a computation con-
straint of ξlimit, we need to perform our DFT update within this constraint. If
ξupdate(M, n1, n2) > ξlimit we cannot use all the samples n2 for the update, and
hence we need to determine the optimal number of samples to retain n̂2, such
that ξupdate(M, n1, n̂2) + ξinterp ≤ ξlimit. Specifically, we may compute this as:

n̂2 ≤
ξlimit − ξinterp − 2MξSub

(M − 1)(6ξMul + 5ξSub + ξDiv) + (2ξMul + 2ξSub) + MξSub
− n1 (13)

Finally, we can achieve this by tuning the sub-sampling threshold Thresh based
on the algorithm described in Section 3.2.
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5 Experiments

The usefulness of the proposed resource-adaptive periodicity estimation depends
on two factors:

– The accuracy of the approach, which is indicated by the quality of the DFT
approximation and its respective periodogram. If the periodogram after the
load-shedding closely resembles the original one, then the provided estimate
is meaningful.

– The adaptiveness of the proposed methodology, which is highly dependent
on the quality of the threshold estimator. An accurate estimator will lead to
sampling rates that closely adapt to the current CPU loads.

We examine separately those two factors in order to provide a more thorough
and clear evaluation.

5.1 Quality of DFT Estimation

The quality of the approximated Fourier coefficients is measured on a variety
of periodic datasets obtained from the time-series archive at UC Riverside [14].
These datasets only have a length of 1024, therefore it is difficult to provide a
meaningful evaluation on the streaming version of the algorithm. However, by
providing the whole sequence as input to the periodicity estimation unit we can
evaluate the effectiveness of the load-shedding scheme in conjunction with the
closed-form DFT computation on the unevenly spaced samples. We compute
the accuracy by comparing the estimated periodogram against the actual one
(had we not discarded any point from the examined data window). We run
the above experiment on different threshold values Thresh = 20 . . . 120. For
example, a value of Thresh = 20 signifies that the predicted value (using the
linear predictor) does not differ more than 20% from the actual sequence value.

Note that the original periodogram is evaluated on a window of M points
(M = 1024), while the one based on uneven sampling uses only the N remaining
samples (N ≤ M). In order to provide a meaningful comparison between them
we evaluate the latter periodogram on all M/2 frequencies -see equation 6-, even
though this is not necessary on an actual deployment of the algorithm.

We compare the accuracy of our methodology against a naive approach that
uses equi-sampling every N/M points (i.e., leading again to N remaining points
within the examined window). This approach is bound to introduce aliasing
and distort more the original periodogram, because (unlike the intelligent load-
shedding) it does not adapt according to the signal characteristics.

Figures 9, 10 indicate the periodogram error introduced by the intelligent and
the equi-sampling techniques. On top of each bar we also portray the compression
achieved using the specific threshold Thresh, computed as 100 ∗ (1−N/1024).

The results suggest that the load-shedding scheme employed by our technique
can lead to spectrum estimates of much higher quality than competing methods.
In two cases (Fig. 9, Reality Check) the equi-sampling performs better than
the linear interpolator, but this occurs only for minute compression ratios (i.e.,
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Fig. 9. Spectrum estimation comparison for various compression rates. The proposed
intelligent sampling provides spectrum reconstruction of higher quality given the same
number of samples.

when the threshold discards less than 10 samples per 1024 points). In general
the observed reduction in the estimation error compared to equi-sampling, can
range from 10% to more than 90% on the 14 datasets examined in this paper.

5.2 Threshold Estimator Accuracy

For testing the accuracy of the threshold estimator we need longer datasets,
which could be used for simulating a sliding window model execution and ad-
ditionally provide a training subset. We utilize real datasets provided by the
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Fig. 10. Again the intelligent sampling outperforms equi-sampling techniques for the
same compression rates

automotive industry. These are diagnostic measurements that monitor the evo-
lution of variables of interest during the operation of a vehicle. Examples of
such measurements could be the engine pressure, the torque, vibration patterns,
instantaneous fuel economy, engine load at current speed, etc.

Periodic analysis is an indispensable tool in automotive industry, because pre-
dictive maintenance can be possible by monitoring the changes in the spectrum
of the various rotating parts. Therefore, a change in the periodic structure of the
various engine measurements can be a good indicator of machine wear and/or
of an incipient failure.

The measurements that we use have length of 50000 points and represent
monitoring of a variable over an extended period of time4. On this data we use
a sliding window of 1024 points. We generate a synthetic CPU load, which is
provided as input to the periodicity estimation unit. Based on the synthetic CPU
trace, at any given point in time the periodicity unit is given adequate time
for processing a set of points with cardinality within the range of 50 to 1024

4 We have not provided the name of the specific engine measurement, because it is
provided to us unlabeled by our automotive partner.
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Fig. 11. A deployment of our algorithm on streaming automotive measurements. We
constrast the estimated spectrum with the original one at two instances of the sliding
window.
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Fig. 12. Left : Histogram of the threshold estimator error. Right : Cases of overestimated
threshold (fewer remaining samples -more desirable) are more frequent than instances
of underestimated threshold

(1024 being the length of the window). In Fig. 11 we show two instances of the
approximated spectrum under limited CPU resources. On the first instance the
indicated available CPU of 12.41% means that only 12.41% of the total window
points should remain after the load-shedding, given the available processing time.

Executing our algorithm on the complete data stream, we monitor the accu-
racy of the threshold estimator. The estimator is fed with the current CPU load
and provides a threshold estimate Threshest that will lead with high probability
to P̂ remaining points (so that they could be sufficiently processed given the
available CPU load). Suppose that the actual remaining points after the appli-
cation of the threshold Threshest are P . An indicator of the estimator accuracy
is provided by contrasting the estimated number of points P̂ against the actual
remaining ones P (error = |P̂ − P |).

The experimental results are very encouraging and indicate an average er-
ror on the estimated number of points in the range of 5% of the data window.
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For this experiment, if the predicted number of points for a certain threshold
is 250 points, the actual value of remaining points could be (for example) 200
points. This is the case of an overestimated threshold which compressed more
the flowing data stream. As mentioned before, this case is more desirable (than
an underestimated threshold), because no additional points need to be subse-
quently dropped from the current data window (which is not bound to introduce
additional aliasing problems).

A histogram of the estimator approximation error is given on the left part of
Fig. 12. We observe that for the majority of data windows the estimation error is
small, while fewer instances of the algorithm execution report a large error in the
threshold estimation. On the right part of Fig. 12 we also provide how many cases
of overestimated thresholds we have and how many underestimated. The overes-
timated ones (more desirable) are higher than the underestimated, which again
indicates many of the attractive properties of the proposed threshold predictor.

6 Conclusion

We have presented the first resource-adaptive method for periodicity estimation.
The key aspects of the proposed method are: (1) An intelligent load-shedding
scheme that can adapt to the CPU load using a lightweight predictor. (2) A
DFT estimation that utilizes unevenly spaced samples, provided by the previ-
ous phase. We have shown the quality of the approximated DFT and we also
demonstrated that our scheme can adapt closely to the available CPU resources.
We compare our intelligent load-shedding scheme against equi-sampling and we
show improvements in the periodogram estimation ranging from 10% to 90%.
As part of future work, we plan to examine whether it is possible to reduce even
further the computational cost. This could be achieved by investigating the pos-
sibility of a ‘butterfly’ structure [3] in the incremental spectrum computation.
We also plan to modify the sub-sampling algorithm in order to support provable
bounds on the periodogram approximation error.
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Abstract. Recent advances in hardware technology have resulted in the
ability to collect and process large amounts of data. In many cases, the
collection of the data is a continuous process over time. Such continuous
collections of data are referred to as data streams. One of the interesting
problems in data stream mining is that of predictive query processing.
This is useful for a variety of data mining applications which require us
to estimate the future behavior of the data stream. In this paper, we will
discuss the problem from the point of view of predictive summarization.
In predictive summarization, we would like to store statistical charac-
teristics of the data stream which are useful for estimation of queries
representing the behavior of the stream in the future. The example uti-
lized for this paper is the case of selectivity estimation of range queries.
For this purpose, we propose a technique which utilizes a local predictive
approach in conjunction with a careful choice of storing and summarizing
particular statistical characteristics of the data. We use this summariza-
tion technique to estimate the future selectivity of range queries, though
the results can be utilized to estimate a variety of futuristic queries. We
test the results on a variety of data sets and illustrate the effectiveness
of the approach.

1 Introduction

A number of technological innovations in recent years have facilitated the auto-
mated storage of data. For example, a simple activity such as the use of credit
cards or accessing a web page creates data records in an automated way. Such
dynamically growing data sets are referred to as data streams. The fast nature of
data streams results in several constraints in their applicability to data mining
tasks. For example, it means that they cannot be re-examined in the course of
their computation. Therefore, all algorithms need to be executed in only one pass
of the data. Furthermore, if the data stream evolves, it is important to construct
a model which can be rapidly updated during the course of the computation.
The second requirement is more restrictive, since it needs us to design the data
stream mining algorithms while taking temporal evolution into account. This
means that standard data mining algorithms on static data sets cannot be easily
modified to create a one-pass analogue for data streams. A number of data min-
ing algorithms for classical problems such as clustering and classification have
been proposed in the context of data streams in recent years [1-8, 14].

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 41–58, 2006.
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An important problem in data stream computation is that of query selectiv-
ity estimation. Such queries include, but are not limited to problems such as
selectivity estimation of range queries. Some examples of such queries are as
follows:

– Find the number of data points lying in the range cube R. (Range Query)
– For a target point X, find the number of data points within a given

radius r. (Radius Query)

A more general formulation of the above queries is to find the number of data
points which satisfy a user-specified set of constraints U . While this includes all
standard selectivity estimation queries, it also allows for a more general model
in which the selectivity of arbitrary constraints can be determined. For example,
the constraint U could include arbitrary and non-linear constraints using some
combinations of the attributes. This model for selectivity estimation is signifi-
cantly more general than one which supports particular kinds of queries such as
range queries.

Consider an aggregation query on a data stream for a given window of time
(T1, T2). While the query processing problem has been explored in the context
of data streams [6, 7, 10, 11, 13, 15], these methods are designed for processing of
historical queries. These correspond to cases in which T1 and T2 are less than
the current time t0. In this paper, we examine the problem of predictive query
estimation. In the predictive query estimation problem, we attempt to estimate
the selectivity of queries in a future time interval by making use of the current
trends of the data stream. Thus, the generic data stream predictive selectivity
estimation problem is defined as follows:

Definition 1. Estimate the number of points in a data stream in the future
time interval (T1, T2), which satisfy the user-specified set of constraints U .

We note that predictive query processing is a significantly more difficult problem
than historical query processing. This is because the historical behavior of the
stream is already available, whereas the future behavior can only be estimated
from the evolution trends in the data stream. This creates significant challenges
in deciding on the nature of the summary information to be stored in order
to estimate the responses to predictive queries. Some work has been done on
performing high-level regression analysis to data cubes, but this work is designed
for finding unusual trends in the data, and cannot be used for estimation of the
selectivity of arbitrary user queries.

In order to solve the predictive querying problem, we use an approach in
which we utilize local regression analysis in conjunction with storage of the
summary covariance structure of different data localities. The local predictive
approach stores a sufficient amount of summary statistics that it is able to create
effective predictive samples in different data localities. These predictive samples
can then be used in order to estimate the accuracy of the underlying queries.
The sizes of the predictive samples can be varied depending upon the desired
level of accuracy. We will show that such a local approach provides significant
advantages over the technique of global regression. This is because the latter
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cannot generate the kind of refined summary constructed by the local approach.
The refined summary from the local approach provides the ability to perform
significantly superior estimation of the future data points. Thus, this approach
is not only flexible (in terms of being able to handle arbitrary queries) but is also
more effective over a wide variety of data sets. Furthermore, the summaries can
be processed very efficiently because of the small size of the data stored. Thus,
the paper presents a flexible, effective and efficient approach to predictive data
summarization.

This paper is organized as follows. In the next section, we will discuss the overall
framework for the approach. We will also discuss the summary statistics which are
required to be stored in order to implement this framework. In section 3, we will
discuss the algorithms in order to create the summary statistics, and the process
of performing the estimation. The empirical sections are discussed in section 4.
Section 5 contains the conclusions and summary.

2 The Overall Summarization Framework

In order to perform predictive selectivity estimation, we need to store a sufficient
amount of summary statistics so that the overall behavior of the data can be
estimated. One way of achieving this goal is the use of histograms in order to
store the summary information in the data. While traditional methods such as
histograms and random sampling are useful for performing data summarization
and selectivity estimation in a static data set, they are not particularly useful
for predicting future behavior of high dimensional data sets. This is because of
several reasons:

(1) Histograms are not very effective for selectivity estimation and summariza-
tion of multi-dimensional sets. It has been estimated in [12] that for higher
dimensional data sets, random sampling may be the only effective approach.
However, random sampling is not very effective for predictive querying because
the samples become stale very quickly in an evolving data stream.
(2) Since the data may evolve over time, methods such as histograms are not
very effective for data stream summarization. This is because when the behavior
of the data changes substantially, the summary statistics of the current his-
tograms may not effectively predict future behavior.
(3) In this paper, we propose a very general model in which queries of arbitrary
nature are allowed. Thus, the geometry of the queries is not restricted to partic-
ular kinds of rectangular partitions such as range queries. While summarization
methods such as histograms are effective for rectangular range queries,they are
not very effective for arbitrary queries. In such cases, random sampling is the
only effective approach for static data sets. However, our empirical results will
show that the random sampling approach is also not very useful in the context
of an evolving data stream.

The overall approach in this paper emphasizes predictive pseudo-data gen-
eration. The essential idea in predictive pseudo-data generation is to store a
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sufficient amount of summary statistics so that representative pseudo-data can
be generated for the future interval (T1, T2). The summary statistics include
such parameters as the number of data points arriving, the mean along each
dimension as well as relevant second order statistics which encode the covari-
ance structure of the data. While such statistics are stored on a historical basis,
they are used to estimate the corresponding statistics for any future time hori-
zon (T1, T2). Such estimated statistics can then be used to generate the sample
pseudo-data records within the desired horizon (T1, T2). We note that while the
sample records (which are generated synthetically) will not represent the true
records within the corresponding future time horizon, their aggregate statistics
will continue to reflect the selectivity of the corresponding queries. In other
words, the aggregation queries can be resolved by determining the number of
pseudo-data points which satisfy the user query. The advantage of using pseudo-
data is that it can be leveraged to estimate the selectivity of arbitrary queries
which are not restricted to any particular geometry or form. This is not the
case for traditional methods such as histograms which work with only a limited
classes of queries such as rectangular range queries.

We will now describe the statistics of the data which are maintained by the
stream summarization algorithm. The summary statistics consist of the first
order statistics as well as the co-variance structure of the data. In order to
introduce these summary statistics, we will first introduce some further nota-
tions and definitions. Let us consider a set of N records denoted by D, each
of which contains d dimensions. The records in the database D are denoted
by X1 . . . XN . The dimensions of each individual record Xi are denoted by
(x1

i . . . xd
i ). For a subset of records Q from the database D, we define the sum-

mary statistics Stat(Q) = (Sc(Q), F s(Q), n(Q)), which defines the complete
covariance structure of Q. Specifically, Sc(Q) corresponds to the second or-
der statistics of Q, Fs(Q) corresponds to the first order structure, and n(Q)
corresponds to the number of data points. Each of these statistics are defined
as follows:

(1) Product Sum (Second Order Covariance) Statistics. For each pair
of dimensions i and j, we store the sum of the product for the corresponding
dimension pairs. For the sake of convention (and to avoid duplication), we assume
that i ≤ j. The product sum for the dimension pairs i, j and record set Q is
denoted by Scij(Q). The corresponding value is defined as follows:

Scij(Q) =
∑
k∈Q

xk
i · xk

j (1)

The second order statistics is useful in computing covariance structure of the
data records in Q. We note that a total of d · (d + 1)/2 values (corresponding to
different values of i and j) need to be maintained in the vector Sc(Q).

(2) First Order Statistics. For each dimension i we maintain the sum of the
individual attribute values. Thus, a total of d values are maintained. The value
for the dimension i is denoted by Fsi(Q), and is defined as follows:
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Fsi(Q) =
∑
k∈Q

xk
i (2)

We denote the vector (Fs1(Q) . . . F sd(Q)) by Fs(Q).

(3) Zero Order Statistics. The zero order statistics n(Q) contains one value
and is equal to the number of records in Q.

Thus, the total number of values which need to be stored in the vector Stat(Q)
is equal to d2/2 + 3 · d/2 + 1. We make the following observations about the
statistics which are stored:

Observation 21. Each of the statistical values in Stat(Q) can be expressed
as a linearly separable and direct sum of corresponding functional values over
individual records.

Observation 22. The covariance Cij between the dimensions i and j can be
expressed in the following form:

Cij = Scij(Q)/n(Q)− Fsi · Fsj/(n(Q) · n(Q)) (3)

The first observation is important because it ensures that these statistical values
can be efficiently maintained in the context of a data stream. This is because
Stat(Q) can be computed as the simple arithmetic sum over the corresponding
functional values over individual records. The second observation is important
because it ensures that the covariance between the individual dimensions can
be computed in terms of the individual statistical values. Thus, the statistical
values provide a comprehensive idea of the covariance structure of the data. This
is achieved by the method of principal component analysis. Since we will use this
technique in our paper, we will discuss this method in detail below.

Let us assume that the covariance matrix of Q is denoted by C(Q) = [Cij ].
Therefore, Cij is equal to the covariance between the dimensions i and j. This
covariance matrix is known to be positive-semidefinite and can be diagonalized
as follows:

C(Q) = P (Q) ·Δ(Q) · P (Q)T (4)

Here the columns of P (Q) represent the orthonormal eigenvectors, whereas Δ(Q)
is a diagonal matrix which contains the eigenvalues. The eigenvectors and eigen-
values have an important physical significance with respect to the data points in
Q. Specifically, the orthonormal eigenvectors of P (Q) represent an axis system
in which the second order correlations of Q are removed. Therefore, if we were
to represent the data points of Q in this new axis system, then the covariance
between every pair of dimensions of the transformed data set would be zero.
The eigenvalues of Δ(Q) would equal the variances of the data Q along the
corresponding eigenvectors. Thus, the orthonormal columns of the matrix P (Q)
define a new axis system of transformation on Q, in which Δ(Q) is the new
covariance matrix.

We note that the axis system of transformation represented by Q is a par-
ticularly useful way to regenerate a sample of the data from the distribution
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represented by these statistics. This is because of the pairwise (second-order)
independence between the dimensions of the transformed system. As a result,
the data values along each of the transformed dimensions can also be generated
independently of one another.1 Thus, the covariance matrix serves the essential
purpose of summarizing the hidden structure of the data.

This structural description can be used to estimate and generate future sam-
ples of the data. In order to do so, we use the historical statistics in order to esti-
mate the future statistics. The aim of this approach is to effectively re-generate
the data samples, while taking into account the evolution of the data. In the
next section, we will discuss the details of the approach and its application to
the predictive query estimation problem. In order to actually store the statis-
tics, we use both a global and a local predictive approach. In the global approach,
the summary statistics of the entire data are stored at regular intervals. Let us
denote the data points which have arrived till time t by DS(t). As each data
point Xt arrives, we add the corresponding values of Fs({Xt}) and Scij({Xt})
to Fs(DS(t)) and Sc(DS(t)) respectively. The value of n(DS(t)) is incremented
by one unit as well. Thus, the additivity property of the statistics ensures that
they can be maintained effectively in a fast stream environment.

In order to improve the accuracy of prediction, we use a local approach in
which the prediction is performed separately on each data locality. In the local
predictive approach, the statistics are maintained separately for each data local-
ity. In other words, the data stream DS(t) is segmented out into q local streams
which are denoted by DS1(t), DS2(t), . . . DSq(t) respectively. We note that the
statistics for each local segment are likely to be more refined than the statistics
for the entire data stream. This results in more accurate prediction of the future
stream summaries. Correspondingly, we will show that the selectivity results are
also more accurate in the local approach. We note that the local predictive ap-
proach degenerates to the global case when the value of q is set to 1. Therefore,
we will simply present the predictive query estimation method for the local case.
The global case can be trivially derived from this description.

The process of maintaining the q local streams is illustrated in Figure 1.
The first step is to create the initial set of statistics. This is achieved by stor-
ing an initial portion of the stream onto the disk. The number of initial data
points stored on disk is denoted by Init. A k-means algorithm is applied to
this set of points in order to create the initial clusters. Once the initial clusters
DS1(t) . . .DSq(t) have been determined, we generate the corresponding statis-
tics Stat(DS1(t)) . . . Stat(DSq(t)) from these clusters. For each incoming data
point, we determine its distance to the centroid of each of the local streams. We
note that the centroid of each local stream DSi(t) can be determined easily by
dividing the first order statistics Fs(DSi(t)) by the number of points n(DSi(t)).
We determine the closest centroid to each data point. Let us assume that the
index of the closest centroid is min ∈ {1, . . . q}. We assign that data point to
the corresponding local stream. At the same time, we update Stat(DSmin(t))

1 This results in a second-order approximation which is useful for most practical pur-
poses.
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Algorithm. MaintainLocalStream(Data Stream: DS(t),
TimeStamp: t);

begin
Store the first Init points from the data stream;
Apply k-means clustering to create l clusters;
Denote each cluster by DSi(t) for i ∈ {1, . . . q};
Compute Stat(DSi(t)) for i ∈ {1, . . . q};

for each incoming data point X do
begin

Compute centroid of each DSi(t) using Stat(DSi(t));
Compute closest centroid index min ∈ {1, . . . q};
Assign X to closest centroid and update

corresponding statistics DSi(t);
end

end

Fig. 1. Local Stream Maintenance

by adding the statistics of the incoming data point to it. At regular intervals of
r, we also store the corresponding state of the statistics to disk. Therefore, the
summary statistics at times 0, r, 2 · r, . . . t · r . . . are stored to disk.

3 The Predictive Query Estimation Method

In this section, we will discuss the predictive query estimation technique. Let
us assume that the user wishes to find a response to the query R over the
time interval (T1, T2). In order to achieve this goal, a statistical sample of the
data needs to be generated for the interval (T1, T2). This sample needs to be
sufficiently predictive of the behavior of the data for the interval (T1, T2). For
this purpose, we also need to generate the summary statistics which are relevant
to the future interval (T1, T2).

Let us assume that the current time is t0 ≤ T1 < T2. In order to generate the
statistical samples in the data, we utilize a history of length T2 − t0. In other
words, we determine p evenly spaced snapshots in the range (t0 − (T2 − t0), t0).
These p evenly spaced snapshots are picked from the summary statistics which
are stored on disk. In the event that the length of the stream is less than (T2−t0),
we use the entire stream history and pick p evenly spaced snapshots from it. Let
us assume that the time stamps for these snapshots are denoted by b1 . . . bp.
These snapshots are also referred to as the base snapshots. Then, we would like
to generate a functional form for Stat(DSi(t)) for all values of t that are larger
than t0. In order to achieve this goal, we utilize a local regression approach for
each stream DSi(t). Specifically, each component of Stat(DSi(t)) is generated
using a polynomial regression technique.

The generation of the zeroth order and first order statistics from Stat(DSi(t))
is done slightly differently from the generation of second order statistics. A bursty
data stream can lead to poor approximations of the covariance matrix. This is
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because rapid changes in the covariance values could occur due to either changes
in the speed of arriving data points, or due to changes in inter-attribute corre-
lations. In order to improve the accuracy further, we use the correlation matrix
for the period between (t0 − (T2 − t0), t0) as a more usable predictor of future
behavior. We note that the correlation matrix is far less sensitive to the absolute
magnitudes and rate of arrival of the data points, and is therefore likely to vary
more slowly with time. The correlation between the dimensions i and j for a
set of data points Q is denoted by θij(Q) and is essentially equal to the scaled
covariance between the dimensions. Therefore, if Covij(Q) be the covariance
between the dimensions i and j, we have:

θij(Q) =
Covij(Q)√

Covii(Q) · Covjj(Q)
(5)

We note that unlike the covariance, the correlation matrix is scaled with respect
the absolute magnitudes of the data values, and also the number of data points.
This ensures that the correlation between the data points remains relatively
stable for a bursty data stream with noise in it. The value of θij(Q) lies between
0 and 1 for all i, j ∈ {1, . . . d}.

The local predictive approach works on each local stream DSi(t) separately,
and determines the values of certain statistical variables at the base snapshot
times b1 . . . bp. These statistical variables are as follows:

(1) For each local stream DSi(t) and j ∈ {1 . . . p − 1} we determine the num-
ber of data points arriving in the time interval [bj, bj+1]. This can be derived
directly from the summary statistics stored in the snapshots, and is equal to
n(DSi(bj+1)− n(DSi(bj)). We denote this value by η(i, bj).
(2) For each local stream DSi(t), j ∈ {1 . . . p − 1}, and k ∈ {1 . . . d}, we de-
termine the mean of the data points which have arrived in the time interval
[bj , bj+1]. This can again be estimated from the summary statistics stored in the
snapshots at b1 . . . bp. The corresponding value is equal to (Fsk(DSi(bj+1)) −
Fsk(DSi(bj)))/(n(DS i(bj+1))− n(DSi(bj))). We denote this value by μk(i, bj).
(3) For each local stream DSi(t), j ∈ {1 . . . p− 1}, and dimension k ∈ {1 . . . d},
we determine the variance of the data points which have arrived in the time
interval [bj, bj+1]. This is estimated by using a two step process. First we com-
pute the second order moment of dimension k in interval [bj , bj+1]. This second
order moment is equal to (Sckk(DS i(bj+1)) − Sckk(DSi(bj)))/(n(DS i(bj+1)) −
n(DSi(bj))). We denote this value by SquareMomentkk(i, bj). Then, the vari-
ance in interval [bj , bj+1] is equal to SquareMomentkk(i, bj) − μk(i, bj)2. We
denote this variance by σ2

k(i, bj).
(4) For each local stream DSi(t), j ∈ {1 . . . p − 1}, and dimension pairs k, l ∈
{1 . . . d}, we determine the correlation between these dimension pairs. The cor-
relation is determined by the expression (SquareMomentkl(i, bj) − μk(i, bj) ∗
μl(i, bj))/(σk(i, bj) ∗ σl(i, bj)). The correlation is denoted by φkl(i, bj).

For each of the statistical values η(i, bj), μk(i, bj), σ2
k(i, bj), and φkl(i, bj), we

have (p− 1) different instantiations for different values of k and l. Therefore, for
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each of the different values, we would like to define a functional form in terms
of the time t. In the following discussion, we will discuss the general approach
by which the functional form is that of the expression η. Let us assume that the
functional form is determined by the expression H(η, i, t). Note that the value
of H(η, i, t) refers to the number of data points in an interval of length (b2− b1)
and starting at the point t for data stream DSi(t). We also assume that this
functional form H(η, i, t) is expressed polynomially as follows:

H(η, i, t) = am · tm + am−1 · tm−1 + . . . + a1 · t + a0 (6)

The coefficients a0 . . . am define the polynomial function for H(η, i, t). These co-
efficients need to be approximated using known instantiations of the function
H(η, i, t). The order m is chosen based on the number (p−1) of known instanti-
ations. Typically, the value of m should be significantly lower than the number
of instantiations (p−1). For a particular data stream DSi(t), we know the value
of the function for (p − 1) values of t which are given by t = b1 . . . bp−1. Thus,
for each j = 1 . . . (p − 1), we would like H(η, i, bj) to approximate η(i, bj) as
closely as possible. In order to estimate the coefficients a0 . . . am, we use a linear
regression technique in which we minimize the mean square error of the approxi-
mation of the known instantiations. The process is repeated for each data stream
DSi(t) and each statistical2 variable η, μk, σk, and φkl. Once these statistical
variables have been determined, we perform the predictive estimation process.
As mentioned earlier, it is assumed that the query corresponds to the future
interval (T1, T2). The first step is to estimate the total number of data points in
the interval (T1, T2). We note that the expression H(η, i, t) corresponds to the
number of points for data stream i in an interval of length3 (b2− b1). Therefore,
the number of data points s(i, T1, T2) in stream i for the interval (T1, T2) is given
by the following expression:

s(i, T1, T2) =
∫ T2

t=T1

H(η, i, t)
b2 − b1

dt (7)

The value of (b2 − b1) is included in the denominator of the above expression,
since the statistical parameter η has been estimated as the number of data points
lying in an interval of length (b2− b1) starting at a given moment in time. Once
the number of data points in the time interval (T1, T2) for each stream DSi(t)
have been estimated, the next step is to generate Nsamp(i) sample points using
the statistics η, μ, σ, and φ. The value of Nsamp(i) is chosen proportionally to
s(i, T1, T2) and should at least be equal to the latter. Larger values of Nsamp(i)
lead to greater accuracy at the expense of greater computational costs. We will

2 We note that the fitting method need not have the same order for all the polynomials.
For the zeroth, first order, and second order statistics, we used second order, first
order and zeroth order polynomials respectively. This turns out to be more useful in
a bursty data stream in which these parameters can vary rapidly.

3 Since the intervals are evenly spaced, we note that (bj − bj−1) is equal to (b2 − b1)
for each value of j ∈ {1, . . . (p − 1)}.



50 C.C. Aggarwal

discuss the process of generating each sample point slightly later. Each of these
sample points is tested against the user-defined query predicate, and the fraction
of points f(i,U) which actually satisfy the predicate U from data stream DSi(t)
is determined. The final estimation ES(U) for the query U is given by the sum
of the estimations over the different data streams. Therefore, we have:

ES(U) =
q∑

i=1

s(i, T1, T2) · f(i,U) (8)

It now remains to describe how each sample point from stream i is generated
using the summary statistics.

The first step is to generate the time stamp of the sample point from stream
DSi(t) . Therefore, we generate a sample time ts ∈ (T1, T2) from the relative
density distribution η(i, T ). Once the sample time has been determined, all the
other statistical quantities such as mean, variance, and correlation can be instan-
tiated to μk(i, ts), σ2

k(i, ts), and φkl(i, ts) respectively. The covariance σkl(i, ts)
between each pair of dimensions k and l can be computed as:

σkl(i, ts) =
√

σ2
k(i, ts) · σ2

l (i, ts) · φkl(i, ts) (9)

The equation 9 relates the covariance with the statistical correlation by scaling
appropriately with the product of the standard deviation along the dimensions
k and l. This scaling factor is given by

√
σ2

k(i, ts) · σ2
l (i, ts). Once the covariance

matrix has been computed, we generate the eigenvectors {e1 . . . ed} by using the
diagonalization process. Let us assume that the corresponding eigenvalues are
denoted by {λ1 . . . λd} respectively. We note that λi denotes the variance along
the eigenvector ei. Since the eigenvectors represent the directions of zero corre-
lation4, the data values can be generated under the independence assumption
in the transformed axis system denoted by {e1 . . . ed}. We generate the data in
each such dimension using the uniform distribution assumption. Specifically, the
offset from the mean μ(i, ts) of stream DSi(t) along ej is generated randomly
from a uniform distribution with standard deviation equal to

√
λj . While the

uniform distribution assumption is a simplifying one, it does not lead to an ad-
ditional loss of accuracy. Since each data stream DSi(t) represents only a small
locality of the data, the uniform distribution assumption within a locality does
not affect the global statistics of the generated data significantly. Once the data
point has been generated using this assumption, we test whether it satisfies the
user query constraints U . This process is repeated over a number of different data
points in order to determine the fraction f(i,U) of the data stream satisfying the
condition U . The overall process of query estimation is illustrated in Figure 2.
It is important to note that the input set of constraints U can take on any form,
and are not restricted to any particular kind of query. Thus, this approach can
also be used for a wide variety of problems that traditional selectivity estimation

4 We note that the eigenvectors represent the directions of zero second-order correla-
tion. However, a second-order approximation turns out be effective in practice.
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Algorithm. EstimateQuery(Local Statistics: Stat(DSi(bj)),
Query Interval: (T1, T2), Query: U);

begin
Derive η(i, bj), μk(i, bj), σ2

k(i, bj), φkl(i, bj) from
Stat(DSi(bj));

Use local polynomial regression to generate
functional forms H(η, i, t), H(μ, i, t), H(σ, i, t),
and H(φ, i, t) for each stream i;
s(i, T1, T2) = T2

t=T1

H(η,i,t)
b2−b1

dt;
Generate s(i, T1, T2) pseudo-points for each stream
using statistics η, μ, σ and φ;

Let f(i, U) be the fraction of data points satisfying
predicate U from data stream DSi;

ES(U) = q
i=1 s(i, T1, T2).f(i, U);

report(ES(U));
end

Fig. 2. The Query Estimation Algorithm

methods cannot solve. For example, one can use the pseudo-points to estimate
statistical characteristics such as the mean or sum across different records. We
note that we can reliably estimate most first order and second order parameters
because of the storage of second-order covariance structure. A detailed descrip-
tion of these advanced techniques is beyond the scope of this paper and will be
discussed in future research. In the next section, we will discuss the effectiveness
and efficiency of the predictive summarization procedure for query selectivity
estimation.

4 Empirical Results

We tested our predictive summarization approach over a wide variety of real
data sets. We tested our approach for the following measures:
(1) We tested the accuracy of the estimation procedure. The accuracy of the
estimation was tested in various situations such as that of a rapidly evolving data
stream or a relatively stable data stream. The aim of testing different scenarios
was to determine how well these situations adjusted to the predictive aspect of
the estimation process.
(2) We tested the rate of summarization of the stream processing framework.
These tests determine the workload limits (maximum data stream arrival rate)
that can be handled by the pre-processing approach.
(3) We tested the efficiency of the query processing approach for different data
sets. This is essential to ensure that individual users are able to process offline
queries in an efficient manner.

The accuracy of our approach was tested against two techniques:
(1) We tested the technique against a random sampling approach. In this
method, we estimated the query selectivity of U corresponding to future in-
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terval (T1, T2) by using a sample of data points in the most recent window of
size (T2−T1). This technique can work poorly in a rapidly evolving data stream,
since the past window may not be a very good reflection of future behavior.
(2) We tested the local technique against the global technique in terms of the
quality of query estimation. The results show that the local technique was sig-
nificantly more effective on a wide variety of data sets and measures. This is
because the local technique is able to estimate parameters which are specific to
a given segment. This results in more refined statistics which can estimate the
evolution in the stream more effectively.

4.1 Test Data Sets

We utilized some real data sets to test the effectiveness of the approach. A good
candidate for such testing is the KDD-CUP’99 Network Intrusion Detection
stream data set. The Network Intrusion Detection data set consists of a series
of TCP connection records from two weeks of LAN network traffic managed
by MIT Lincoln Labs. Each record can correspond to a normal connection, an
intrusion or an attack. This data set evolves rapidly, and is useful in testing
the effectiveness of the approach in situations in which the characteristics of the
data set change rapidly over time.

Second, besides testing on the rapidly evolving network intrusion data stream,
we also tested our method over relatively stable streams. The KDD-CUP’98
Charitable Donation data set shows such behavior. This data set contains 95412
records of information about people who have made charitable donations in
response to direct mailing requests, and clustering can be used to group donors
showing similar donation behavior. As in [9], we will only use 56 fields which can
be extracted from the total 481 fields of each record. This data set is converted
into a data stream by taking the data input order as the order of streaming and
assuming that they flow-in with a uniform speed.

The last real data set we tested is the Forest CoverType data set and was
obtained from the UCI machine learning repository web site [16]. This data
set contains 581012 observations and each observation consists of 54 attributes,
including 10 quantitative variables, 4 binary wilderness areas and 40 binary soil
type variables. In our testing, we used all the 10 quantitative variables.

4.2 Effectiveness Results

We first tested the prediction accuracy of the approach with respect to the global
approach and a random sampling method. In the sampling method, we always
maintained a random sample of the history of the data stream. When a query
was received, we used the random sample from the most recent history of the
stream in order to estimate the effectiveness of the queries. The queries were
generated as follows. First, we randomly picked k′ = d/2 dimensions in the
data with the greatest standard deviation. From these dimensions, we picked k
dimensions randomly, where k was randomly chosen from (2, 4). The aim of pre-
selecting widely varying dimensions was to pick queries which were challenging
to the selectivity estimation process. Then, the ranges along each dimension were
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generated from a uniform random distribution. In each case, we performed the
tests over 50 such randomly chosen queries and presented the averaged results.

In Figure 3, we have illustrated the predictive error of the Network Intrusion
data set with stream progression. In each group of stacked bars in the chart, we
have illustrated the predictive error of each method. Different stacks correspond
to different time periods in the progression of the stream. The predictive accuracy
is defined as the difference between the true and predictive selectivity as a percent-
age of the true value. On the X-axis, we have illustrated the progression of the data
stream. The predictive error varied between 5% and 20% over the different meth-
ods. It is clear that in each case, the local predictive estimationmethodprovides the
greatest accuracy in prediction. While the local method is consistently superior to
the method of global approach, the latter is usually better than pure random sam-
pling methods. This is because random sampling methods are unable to adjust to
the evolution in the data stream. In some cases, the 5% random sampling method
was slightly better than global method. However, in all cases, the local predictive
estimation method provided the most accurate result. Furthermore, the 2% sam-
pling method was the least effective in all cases. The situations in which the 5%
sampling method was superior to global method were those in which the stream
behavior was stable and did not vary much over time.

In order to verify this fact, we also performed empirical tests using the charitable
donation data set which exhibited much more stable behavior than the Network
Intrusion Set. The results are illustrated in Figure 4. The stable behavior of the
charitable donation data set ensured that the random sampling method did not
show much poorer performance than the predictive estimation methods. However,
in each case, the local predictive estimation method continued to be significantly
superior to other techniques. In some cases, the 5% sampling method was slightly
better than the global estimation method. Because of the lack of evolution of the
data set, the sampling method was relatively more robust. However, it was still
outperformed by the local predictive method in all cases.
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Fig. 5. Predictive Error of Different
Methods with Stream Progression (Forest
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Finally, the results for the forest cover data set are illustrated in Figure 5.
This data set showed similar relative trends between the different methods. How-
ever, the results were less skewed than the network intrusion data set. This is
because the network intrusion data set contained sudden bursts of changes in
data behavior. These bursts correspond to the presence of intrusions in the data.
These intrusions also show up in the form of sudden changes in the underlying
data attributes. While the forest cover data set evolved more than the charita-
ble donation data set, it seemed to be more stable than the network intrusion
data set. Correspondingly, the relative performance of the sampling methods im-
proved over that for the network intrusion data set, but was not as good as the
charitable donation data set. As in the previous cases, the predictive estimation
approach dominated significantly over other methods.

We also tested the effectiveness of the approach in specific circumstances
where the data was highly evolving. In order to model such highly evolving data
sets, we picked certain points in the data set at which the class distribution of
the data stream showed a shift. Specifically, when the percentage presence
of the dominant class in successive blocks of 1000 data points showed a change of
greater than 5%, these positions in the data stream were considered to be highly
evolving. All queries to be tested were generated in a time interval which began
at a lag of 100 data points from the beginning of the shift. This ensured that the
queries followed a region with a very high level of evolution. For each data set,
ten such queries were generated using the same methodology described earlier.
The average selectivity error over the different data sets was reported in Figure
6. Because of the greater level of evolution in the data set, the absolute error
values are significantly higher. Furthermore, the random sampling method per-
formed poorly for all three data sets. The results were particularly noticeable for
the network intrusion data set. This is because the random sampling approach
uses only the history of past behavior. This turned out to be poor surrogate in
this case. Since the random sampling approach relied exclusively on the history
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of the data stream, it did not provide very good results in cases in which the
stream evolved rapidly. These results show that the predictive estimation tech-
nique was a particularly useful method in the context of a highly evolving data
stream.

We also tested the effectiveness of the predictive estimation analysis with in-
creasing number of segments in the data stream. The results for the network
intrusion data set are presented in Figure 7. These results show that the error
in estimation reduced with the number of segments in the data stream, but lev-
elled off after the use of 7 to 8 segments. This is because the use of an increasing
number of segments enhanced the power of data locality during the parame-
ter estimation process. However, there was a limit to this advantage. When the
number of clusters was increased to more than 20, the error rate increased sub-
stantially. In these cases, the number of data points from each cluster (which
were used for the polynomial fitting process) reduced to a point which leads to
a lack of statistical robustness. The results for the charitable donation data set
are presented in Figure 8. While the absolute error numbers are slightly lower
in each case, the trends are quite similar. Therefore, the results show that it
is a clear advantage to use a large number of segments in order to model the
behavior of each data locality.

4.3 Stream Processing and Querying Efficiency

In this section, we will study the processing efficiency of the method, and its
sensitivity with respect to the number of segments used in the data stream.
The processing efficiency refers to the online rate at which the stream can be
processed in order to create and store away the summary statistics generated
by the method. The processing efficiency was tested in terms of the number of
data points processed per second with stream progression. The results for the
case of the network intrusion and charitable donation data sets are illustrated in
Figure 9. On the X-axis, we have illustrated the progression of the data stream.
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Fig. 10. Stream Processing Time with In-
creasing Number of Local Segments

The Y-axis depicts the processing rate of the stream in terms of the number
of data points processed every minute. It is clear that the algorithm was stable
throughout the execution of the data stream. The processing rate for the network
intrusion data set was higher because of its lower dimensionality. Furthermore,
the execution times were relatively small, and several thousand data points were
processed per minute. This is because the stream statistics can be updated using
relatively straightforward additive calculations on each point. We have drawn
multiple plots in Figure 9 illustrating the effect of using the different data sets.

In order to illustrate the effect of using different number of segments, we have
illustrated the variation in processing rate with the number of stream segments in
Figure 10. Both data sets are illustrated in this figure. As in the previous case,
the lower dimensionality of the network intrusion data set resulted in higher
processing efficiency. It is clear that the number of data points processed per
second reduces with increasing number of segments. This is because of the fact
that the time for finding the closest stream segment (in order to find which set
of local stream segment statistics to update) was linear in the number of local
stream segments. However, the majority of the time was spent in the (fixed) cost
of updating stream statistics. This cost was independent of the number of stream
segments. Correspondingly, the overall processing rate was linear in the number
of stream segments (because of the cost of finding the closest stream segment),
though the fixed cost of updating stream statistics (and storing it away) tended
to dominate. Therefore, the results of Figure 10 illustrate that the reduction in
processing rate with increasing number of stream segments is relatively mild.

Finally, we studied the efficiency of querying the data stream. We note that
the querying efficiency depends upon the number of segments stored in the data
stream. This is because the statistics need to be estimated separately for each
stream segment. This requires separate processing of each segment and leads
to increased running times. We have presented the results for the Charitable
Donation and Network Intrusion Data data set in Figure 11. In order to improve
the accuracy of evaluation, we computed the running times over a batch of one
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Fig. 11. Stream Query Time with Increasing Number of Local Segments

hundred examples and reported the average running times per query on the
Y -axis. On the X-axis, we have illustrated the number of stream segments used.
It is clear that in each case, the running time varied between 0.3 and 8 seconds.
A relevant observation is that the most accurate results for query responses is
obtained when about 7-10 segments were used in these data sets. For these cases,
the query response times were less than 2 seconds in all cases. Furthermore, we
found the running time to vary linearly with the number of stream segments. The
network intrusion and the charitable donation data sets showed similar results
except that the running times were somewhat higher in the latter case. This is
because of the higher dimensionality of the latter data set which increased the
running times as well.

5 Conclusions and Summary

In this paper, we discussed a method for predictive query estimation of data
streams. The approach used in this paper can effectively estimate the changes
in the data stream resulting from the evolution process. These changes are in-
corporated in the model in order to perform the predictive estimation process.
We note that the summarization approach in this paper is quite general and
can be applied to arbitrary kinds of queries as opposed to simple techniques
such as range queries. This is because the summarization approach constructs
pseudo-data which can be used in conjunction with an arbitrary query. While
this scheme has been developed and tested for query estimation, the technique
can be used for any task which requires predictive data summarization. We tested
the scheme on a number of real data sets, and compared it against an approach
based on random sampling. The results show that our scheme significantly out-
performs the method of random sampling as well as the global approach. The
strength of our approach arises from its careful exploitation of data locality in
order to estimate the inter-attribute correlations. In future work, we will uti-
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lize the data summarization approach to construct visual representations of the
data stream.
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Abstract. Ontologies are increasingly used to represent the intended
real-world semantics of data and services in information systems. Unfor-
tunately, different databases often do not relate to the same ontologies
when describing their semantics. Consequently, it is desirable to have
information about the similarity between ontology concepts for ontol-
ogy alignment and integration. This paper presents the SOQA-SimPack
Toolkit (SST), an ontology language independent Java API that enables
generic similarity detection and visualization in ontologies. We demon-
strate SST’s usefulness with the SOQA-SimPack Toolkit Browser, which
allows users to graphically perform similarity calculations in ontologies.

1 Introduction

In current information systems, ontologies are increasingly used to explicitly rep-
resent the intended real-world semantics of data and services. Ontologies provide
a means to overcome heterogeneity by providing explicit, formal descriptions of
concepts and their relationships that exist in a certain universe of discourse,
together with a shared vocabulary to refer to these concepts. Based on agreed
ontological domain semantics, the danger of semantic heterogeneity can be re-
duced. Ontologies can, for instance, be applied in the area of data integration
for data content explication to ensure semantic interoperability between data
sources.

Unfortunately, different databases often do not relate to the same ontolo-
gies when describing their semantics. That is, schema elements can be linked
to concepts of different ontologies in order to explicitly express their intended
meaning. This complicates the task of finding semantically equivalent schema
elements since at first, semantic relationships between the concepts have to be
detected to which the schema elements are linked to. Consequently, it is desirable
to have information about the similarity between ontological concepts. In addi-
tion to schema integration, such similarity information can be useful for many
applications, such as ontology alignment and integration, Semantic Web (ser-
vice) discovery, data clustering and mining, semantic interoperability in virtual
organizations, and semantics-aware universal data management.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 59–76, 2006.
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The task of detecting similarities in ontologies is aggravated by the fact that
a large number of ontology languages is available to specify ontologies. Besides
traditional ontology languages, such as Ontolingua [5] or PowerLoom1, there is
a notable number of ontology languages for the Semantic Web, such as SHOE2,
DAML3, or OWL4. That is, data semantics can often be described with respect to
ontologies that are represented in various ontology languages. In consequence,
mechanisms for effective similarity detection in ontologies must be capable of
coping with heterogeneity caused by the use of different ontology languages.
Additionally, it is desirable that different similarity measures can be employed
so that different approaches to identify similarities among concepts in ontologies
can be reflected.

For instance, assume that in an example scenario, a developer of an integrated
university information system is looking for semantically similar elements from
database schemas that relate to the following ontologies to describe their se-
mantics: (1) the Lehigh University Benchmark Ontology5 that is represented in
OWL, (2) the PowerLoom Course Ontology6 developed in the SIRUP project
[21], (3) the DAML University Ontology7 from the University of Maryland, (4)
the Semantic Web for Research Communities (SWRC) Ontology8 modeled in
OWL, and (5) the Suggested Upper Merged Ontology (SUMO)9, which is also
an OWL ontology. Assume further that there are schema elements linked to all
of the 943 concepts which these five ontologies are comprised of. Unless suitable
tools are available, identifying semantically related schema elements in this set
of concepts and visualizing the similarities appropriately definitely turns out to
be time-consuming and labor-intensive.

In this paper, we present the SOQA-SimPack Toolkit (SST), an ontology
language independent Java API that enables generic similarity detection and
visualization in ontologies. Our main goal is to define a Java API suitable for
calculating and visualizing similarities in ontologies for a broad range of on-
tology languages. Considering the fact that different databases often do not
relate to the same ontologies, we aim at calculating similarities not only within
a given ontology, but also between concepts of different ontologies. For these
calculations, we intend to provide a generic and extensible library of ontologi-
cal similarity measures capable of capturing a variety of notions of “similarity”.
Note that we do not focus on immediate ontology integration. Instead, we strive
for similarity detection among different pre-existing ontologies, which are sepa-
rately used to explicitly state real-world semantics as intended in a particular
setting.

1 http://www.isi.edu/isd/LOOM/PowerLoom/
2 http://www.cs.umd.edu/projects/plus/SHOE/
3 http://www.daml.org
4 http://www.w3.org/2004/OWL/
5 http://www.lehigh.edu/~zhp2/univ-bench.owl
6 http://www.ifi.unizh.ch/dbtg/Projects/SIRUP/ontologies/course.ploom
7 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml
8 http://www.ontoware.org/projects/swrc/
9 http://reliant.teknowledge.com/DAML/SUMO.owl
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This paper is structured as follows: Section 2 gives an overview of the founda-
tions of the SOQA-SimPack Toolkit and Section 3 presents SST’s functionality
and architecture in detail. In Section 4, the SOQA-SimPack Toolkit Browser is
illustrated, which allows users to graphically perform similarity calculations in
ontologies. Section 5 discusses related work and Section 6 concludes the paper.

2 Foundations of the SOQA-SimPack Toolkit

In this section, the SIRUP Ontology Query API [22] and SimPack [2] are pre-
sented, which form the basis for the SOQA-SimPack Toolkit.

2.1 The SIRUP Ontology Query API

To overcome the problems caused by the fact that ontologies can be specified in
a manifold of ontology languages, the SIRUP Ontology Query API (SOQA) [22]
was developed for the SIRUP approach to semantic data integration [21]. SOQA
is an ontology language independent Java API for query access to ontological
metadata and data that can be represented in a variety of ontology languages.
Besides, data of concept instances can be retrieved through SOQA. Thus, SOQA
facilitates accessing and reusing general foundational ontologies as well as spe-
cialized domain-specific ontologies through a uniform API that is independent
of the underlying ontology language.

In general, ontology languages are designed for a particular purpose and,
therefore, they vary in their syntax and semantics. To overcome these differences,
the SOQA Ontology Meta Model [22] was defined. It represents modeling capa-
bilities that are typically supported by ontology languages to describe ontologies
and their components; that is, concepts, attributes, methods, relationships, in-
stances, and ontological metadata. Based on the SOQA Ontology Meta Model,
the functionality of the SOQA API was designed. Hence, SOQA provides users
and applications with unified access to metadata and data of ontologies accord-
ing to the SOQA Ontology Meta Model. In the sense of the SOQA Ontology
Meta Model, an ontology consists of the following components:

– Metadata to describe the ontology itself. This includes name, author, date
of last modification, (header) documentation, version, copyright, and URI
(Uniform Resource Identifier) of the ontology as well as the name of the on-
tology language the ontology is specified in. Additionally, each ontology has
extensions of all concepts, attributes, methods, relationships, and instances
that appear in it.

– Concepts which are entity types that occur in the particular ontology’s uni-
verse of discourse — that is, concepts are descriptions of a group of individu-
als that share common characteristics. In the SOQA Ontology Meta Model,
each concept is characterized by a name, documentation, and a definition
that includes constraints;10 additionally, it can be described by attributes,

10 In SOQA, axioms/constraints are subsumed by the definitions of the particular meta
model elements.
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methods, and relationships. Further, each concept can have direct and indi-
rect super- and subconcepts, equivalent and antonym concepts, and coordi-
nate concepts (that are situated on the same hierarchy level as the concept
itself). For example, ontology language constructs like <owl:Class...> from
OWL and (defconcept...) from PowerLoom are represented as concepts
in the SOQA Ontology Meta Model.

– Attributes that represent properties of concepts. Each attribute has a name,
documentation, data type, definition, and the name of the concept it is spec-
ified in.

– Methods which are functions that transform zero or more input parameters
into an output value. Each method is described by a name, documentation,
definition, its parameters, return type, and the name of the concept the
method is declared for.

– Relationships that can be established between concepts, for instance, to build
taxonomies or compositions. Similar to the other ontology components, a
name, documentation, and definition can be accessed for each relationship.
In addition, the arity of relationship, i.e., the number of concepts it relates,
as well as the names of these related concepts are available.

– Instances of the available concepts that together form the extension of the
particular concept. Each instance has a name and provides concrete incar-
nations for the attribute values and relationships that are specified in its
concept definition. Furthermore, the name of the concept the instance be-
longs to is available.

Ontology
ontology

Attribute Instance

Method Relationship

concept

concept concept

MetaModelElement

Concept

concept

Fig. 1. Overview of the SOQA Ontology Meta Model as a UML Class Diagram

A UML class diagram of the SOQA Ontology Meta Model is shown in Figure 1.
Note that the SOQA Ontology Meta Model is deliberately designed not only
to represent the least common denominator of modeling capabilities of widely-
used ontology languages. In deciding whether or not to incorporate additional
functionality that is not supported by some ontology languages, we opted for
including these additional modeling capabilities (e.g., information on methods,
antonym concepts, ontology authors, etc.), provided that they are useful for users
of the SOQA API and available in important ontology languages.
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Architecturally, the SOQA API reflects the Facade [6] design pattern. That
is, SOQA provides a unified interface to a subsystem that retrieves information
from ontologies, which are specified in different ontology languages. Through
the SOQA Facade, the internal SOQA components are concealed from external
clients; instead, a single point for unified ontology access is given (see
Figure 2). For example, the query language SOQA-QL [22] uses the API pro-
vided by the SOQA Facade to offer declarative queries over data and metadata
of ontologies that are accessed through SOQA. A second example for an exter-
nal SOQA client is the SOQA Browser [22] that enables users to graphically
inspect the contents of ontologies independent of the ontology language they are
specified in. Last, but not least, (third-party) Java applications can be based
on SOQA for unified access to information that is specified in different ontol-
ogy languages. Possible application areas are virtual organizations, enterprise
information and process integration, the Semantic Web, and semantics-aware
universal data management.

User

SOQA

OWL W1 

PowerLoom W2 

DAML W3 

... Wn 
SOQA

Browser

Other

Applications

SOQA-QL

Ontologies Wrappers

R1 

R2 

R3 

Rn 

Reasoners User

User

Fig. 2. Overview of the SOQA Software Architecture

Internally, ontology wrappers are used as an interface to existing reasoners
that are specific to a particular ontology language (see Figure 2). Up to now,
we have implemented SOQA ontology wrappers for OWL, PowerLoom, DAML,
and the lexical ontology WordNet [11].

2.2 SimPack

SimPack is a generic Java library of similarity measures for the use in ontologies.
Most of the similarity measures were taken from the literature and adapted for
the use in ontologies. The library is generic, that is, the measures can be applied
to different ontologies and ontology formats using wrappers. The question of
similarity is an intensively researched subject in the computer science, artificial
intelligence, psychology, and linguistics literature. Typically, those studies focus
on the similarity between vectors [1, 17], strings [14], trees or graphs [18], and
objects [7]. In our case we are interested in the similarity between resources in
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ontologies. Resources may be concepts (classes in OWL) of some type or indi-
viduals (instances) of these concepts. The remainder of this section will discuss
different types of similarity measures, thereby explaining a subset of the mea-
sures implemented in SimPack.11

Vector-Based Measures. One group of similarity measures operates on vec-
tors of equal length. To simplify their discussion, we will discuss all measures
as the similarity between the (binary) vectors x and y, which are generated
from the resources Rx and Ry of some ontology O. The procedure to generate
these vectors depends on how one looks at the resources. If the resources are
considered as sets of features (or properties in OWL terminology), finding all
the features for both resources results in two feature sets which are mapped to
binary vectors and compared by one of the measures presented in Equation 1
through 3. For instance, if resource Rx has the properties type and name and
resource Ry type and age, the following vectors x and y result using a trivial
mapping M1 from sets to vectors:

Rx = {type, name} ⇒ x′ =

⎛⎝ 0
name
type

⎞⎠⇒ x =

⎛⎝0
1
1

⎞⎠

Ry = {type, age} ⇒ y′ =

⎛⎝ age
0

type

⎞⎠⇒ y =

⎛⎝1
0
1

⎞⎠
Typically, the cosine measure, the extended Jaccard measure, and the overlap
measure are used for calculating the similarity between such vectors [1]:

simcosine(x,y) =
x · y

||x||2 · ||y||2
(1)

simjaccard(x,y) =
x · y

||x||22 + ||y||22 − x · y (2)

simoverlap(x,y) =
x · y

min(||x||22, ||y||22)
(3)

In these equations, ||x|| denotes the L1-norm of x, i.e. ||x|| =
∑n

i=1 |xi|, whereas
||x||2 is the L2-norm, thus ||x||2 =

√∑n
i=1 |xi|2. The cosine measure quantifies

the similarity between two vectors as the cosine of the angle between the two
vectors whereas the extended Jaccard measure computes the ratio of the number
of shared attributes to the number of common attributes [19].

11 We have also introduced a formal framework of concepts and individuals in ontologies
but omit it here due to space limitations. Please refer to [2] for further details about
the formal framework.
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String-Based Measures. A different mapping M2 from the feature set of a
resource makes use of the underlying graph representation of ontologies. In this
mapping, a resource R is considered as starting node to traverse the graph along
its edges where edges are properties of R connecting other resources. These re-
sources in turn may be concepts or, eventually, data values. Here, these sets are
considered as vectors of strings, x and y respectively. The similarity between
strings is often described as the edit distance (also called the Levenshtein edit
distance [9]), that is, the minimum number of changes necessary to turn one
string into another string. Here, a change is typically either defined as the in-
sertion of a symbol, the removal of a symbol, or the replacement of one symbol
with another. Obviously, this approach can be adapted to strings of concepts
(i.e., vectors of strings as the result of mapping M2) rather than strings of char-
acters by calculating the number of insert, remove, and replacement operations
to convert vector x into vector y, which is defined as xform(x,y). But should
each type of transformation have the same weight? Is not the replacement trans-
formation, for example, comparable with a deleting procedure followed by an
insertion procedure? Hence, it can be argued that the cost function c should
have the behavior c(delete) + c(insert) ≥ c(replace). We can then calculate the
worst case (i.e., the maximum) transformation cost xformwc(x,y) of x to y by
replacing all concept parts of x with parts of y, then deleting the remaining
parts of x, and inserting additional parts of y. The worst case cost is then used
to normalize the edit distance resulting in

simlevenshtein(Rx, Ry) =
xform(x,y)

xformwc(x,y)
(4)

Full-Text Similarity Measure. We decided to add a standard full-text sim-
ilarity measure simtfidf to our framework. Essentially, we exported a full-text
description of all concepts in an ontology to their textual representation and
built an index over the descriptions using Apache Lucene12. For this, we used a
Porter Stemmer [13] to reduce all words to their stems and applied a standard,
full-text TFIDF algorithm as described in [1] to compute the similarity between
concepts.

TFIDF counts the frequency of occurrence of a term in a document in relation
to the word’s occurrence frequency in a whole corpus of documents. The resulting
word counts are then used to compose a weighted term vector describing the
document. In such a TFIDF scheme, the vectors of term weights can be compared
using one of the vector-based similarity measures presented before.

Distance-Based Measures. The most intuitive similarity measure of concepts
in an ontology is their distance within the ontology [15], defined as the number of
sub-/super-concept (or is-a) relationships between them. These measures make
use of the hierarchical ontology structure for determining the semantic similar-
ity between concepts. As ontologies can be represented by rooted, labeled and
unordered trees where edges between concepts represent relationships, distances
12 http://lucene.apache.org/java/docs/
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between concepts can be computed by counting the number of edges on the path
connecting two concepts. Sparrows, for example, are more similar to blackbirds
than to whales since they reside closer in typical biological taxonomies. The cal-
culation of the ontology distance is based on the specialization graph of concepts
in an ontology. The graph representing a multiple inheritance framework is not
a tree but a directed acyclic graph. In such a graph, the ontology distance is
usually defined as the shortest path going through a common ancestor or as the
shortest path in general, potentially connecting two concepts through common
descendants/specializations.

One possibility to determine the semantic similarity between concepts is
simedge as given in [16] (but normalized), which is a variant of the edge counting
method converting from a distance (dissimilarity) into a similarity measure:

simedge(Rx, Ry) =
2 ∗MAX − len(Rx, Ry)

2 ∗MAX
(5)

where MAX is the length of the longest path from the root of the ontology to
any of its leaf concepts and len(Rx, Ry) is the length of the shortest path from
Rx to Ry.

A variation of the edge counting method is the conceptual similarity measure
introduced by Wu & Palmer [20]:

simcon =
2 ∗N3

N1 + N2 + 2 ∗N3
(6)

where N1, N2 are the distances from concepts Rx and Ry, respectively, to their
Most Recent Common Ancestor MRCA(Rx, Ry) and N3 is the distance from
MRCA(Rx, Ry) to the root of the ontology.

Information-Theory-Based Measures. The problem of ontology distance-
based measures is that they are highly dependent on the (frequently) subjec-
tive construction of ontologies. To address this problem, researchers have pro-
posed measuring the similarity between two concepts in an ontology in terms of
information-theoretic entropy measures [16, 10]. Specifically, Lin [10] argues that
a class (in his case a word) is defined by its use. The information of a class is
specified as the probability of encountering a class’s (or one of its descendants’)
use. In cases where many instances are available, the probability p of encounter-
ing a class’s use can be computed over the instance corpus. Alternatively, when
the instance space is sparsely populated (as currently in most Semantic Web on-
tologies) or when instances are also added as subclasses with is-a relationships
(as with some taxonomies), then we propose to use the probability of encoun-
tering a subclass of a class. The entropy of a class is the negative logarithm of
that probability. Resnik [16] defined the similarity as

simresnik(Rx, Ry) = max
Rz∈S(Rx,Ry)

[− log2 p(Rz)] (7)

where S(Rx, Ry) is the set of concepts that subsume both Rx and Ry, and
p(Rz) is the probability of encountering a concept of type z (i.e., the frequency
of concept type z) in the corresponding ontology.
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Lin defined the similarity between two concepts slightly differently:

simlin(Rx, Ry) =
2 log2 p(MRCA(Rx, Ry))
log2 p(Rx) + log2 P (Ry)

(8)

Intuitively, this measure specifies similarity as the probabilistic degree of overlap
of descendants between two concepts.

3 The SOQA-SimPack Toolkit

The SOQA-SimPack Toolkit (SST) is an ontology language independent Java
API that enables generic similarity detection and visualization in ontologies.
Simply stated, SST accesses data concerning concepts to be compared through
SOQA; this data is then taken as an input for the similarity measures provided
by SimPack. That is, SST offers ontology language independent similarity cal-
culation services based on the uniform view on ontological content as provided
by the SOQA Ontology Meta Model. SST services that have already been im-
plemented include:

– Similarity calculation between two concepts according to a single similarity
measure or a list of them.

– Similarity calculation between a concept and a set of concepts according to
a single or a list of similarity measures. This set of concepts can either be a
freely composed list of concepts or all concepts from an ontology taxonomy
(sub)tree.

– Retrieval of the k most similar concepts of a set of concepts for a given
concept according to a single or a list of similarity measures. Again, this set
of concepts can either be a freely composed list of concepts or all concepts
from an ontology taxonomy (sub)tree.

– Retrieval of the k most dissimilar concepts of a set of concepts for a given
concept according to a single or a list of similarity measures. As before, a
freely composed list of concepts or all concepts from an ontology taxonomy
(sub)tree can be used to specify the set of concepts.

Note that for all calculations provided by SST, the concepts involved can be
from any ontology that is connected through SOQA.13 That is, not only is it
possible to calculate similarities between concepts from a single ontology (for ex-
ample, Student and Employee from the DAML University Ontology) with a given
set of SimPack measures, but also can concepts from different ontologies be used
in the very same similarity calculation (for example, Student from the Power-
Loom Course Ontology can be compared with Researcher from WordNet). For
all SST computations, the results can be output textually (floating point values
or sets of concept names, depending on the service). Alternatively, calculation
results can automatically be visualized and returned by SST as a chart.
13 Generally, this is every ontology that can be represented in an ontology language.

In fact, it is every ontology that is represented in a language for which a SOQA
wrapper is available.
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Using concepts from different ontologies in the same similarity calculation is en-
abled by the fact that in SST, all ontologies are incorporated into a single ontology
tree. That is, the root concepts of the available ontologies (e.g., owl:Thing) are di-
rect subconcepts of a so-called Super Thing root concept. This makes it possible
that, for instance, not only vector- and text-based similarity measures, but also
distance-based measures that need a contiguous, traversable path between the con-
cepts can be applied to concepts in SST. Alternatively, we could have replaced all
root concepts of all ontologies with one general Thing concept. This, however, is a
first step into the direction of ontology integration by mapping semantically equiv-
alent concepts from different ontologies and not our goal in this research (conse-
quentially, the ontologies should then completely be merged). Moreover, replacing
the roots with Thing means, for example for OWL ontologies, that all direct sub-
concepts of owl:Thing from arbitrary domains are put directly under Thing and,
thus, become immediate neighbors, blurring which ontology and domain a partic-
ular concept originates from. This is illustrated in Figure 3: Whereas the university
domain of ontology1 and the ornithology domain of ontology2 remain separated in
the first case, they are jumbled in the second. However, not mixing arbitrary do-
mains is essential for distance-based similarity measures which found their judg-
ments on distances in graphs (in Figure 3(b), Student is as similar to Professor as
to Blackbird, due to the equality of the graph distances between Student, Professor,
and Blackbird). Hence, we opted for introducing the Super Thing concept as the
root of the tree of ontologies in the SOQA-SimPack Toolkit.

daml:Thing

Sparrow Blackbird

owl:Thing

Student Professor

Super_Thing

Ontology1 Ontology2

(a) Classifying All Ontologies Below
Super Thing

Sparrow BlackbirdStudent Professor

Thing

Ontology1 Ontology2

(b) Replacing the Root Concepts of
All Ontologies with Thing

Fig. 3. Comparison of Approaches to Building a Single Tree for a Set of Ontologies

Like SOQA, the SOQA-SimPack Toolkit architecturally reflects the Facade
design pattern: SST provides a unified interface to a subsystem which is in charge
of generic similarity calculations based on data from ontologies that are specified
in different ontology languages. The SST Facade shields external clients from its
internal components and represents a single access point for unified ontological
similarity services (see Figure 4). External users of the services provided by the
SST Facade include:

– The SOQA-SimPack Toolkit Browser that is a tool to graphically perform
similarity calculations in ontologies independent of the ontology language
they are specified in;
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SOQA-

SimPack

Toolkit

Facade

SOQA-SimPack

Toolkit Browser

Other

Applications

User

User

SimPack

SOQA

Ontologies

MeasureRunner

Implementations

SOQAWrapper

for SimPack

Fig. 4. Overview of the SOQA-SimPack Toolkit Software Architecture

– (Third-party) Java applications that use SST as a single point of access to
generic similarity detection and visualization services as provided by the SST
Facade. Possible application areas are ontology alignment and integration,
Semantic Web (service) discovery, data clustering and mining, semantic in-
teroperability in virtual organizations, and semantics-aware universal data
management.

Behind the SOQA-SimPack Toolkit Facade, MeasureRunner implementations
are used as an interface to the different SimPack similarity measures available.
Each MeasureRunner is a coupling module that is capable of retrieving all neces-
sary input data from the SOQAWrapper for SimPack and initiating a similarity
calculation between two single concepts for a particular similarity measure. For
example, there is a TFIDFMeasureRunner that returns a floating point value
expressing the similarity between two given concepts according to the TFIDF
measure. More advanced similarity calculations, such as finding the k most
similar concepts for a given one, are performed by tailored methods in the
SOQA-SimPack Toolkit Facade itself based on the basic services supplied by
underlying MeasureRunner implementations. By providing an additional Mea-
sureRunner, SST can easily be extended to support supplementary measures
(e.g., new measures or combinations of existing measures). Hence, the SOQA-
SimPack Toolkit provides not only means for generic similarity detection, but
can also be a fruitful playground for development and experimental evaluation
of new similarity measures.

The SOQAWrapper for SimPack as another internal component of SST is in
charge of retrieving ontological data as required by the SimPack similarity mea-
sure classes. This includes, for example, retrieval of (root, super, sub) concepts,
provision of string sequences from concepts as well as depth and distance cal-
culations in ontologies. Basically, all of this is done by accessing the necessary
ontological data according to the SOQA Ontology Meta Model through SOQA
and by providing the requested information as expected by SimPack. Summing
up, the MeasureRunner implementations together with the SOQAWrapper for Sim-
Pack integrate both SOQA and SimPack on a technical level on behalf of the
SST Facade.
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Based on its Facade architecture, the SOQA-SimPack Toolkit provides a set
of methods for ontology language independent similarity detection and visualiza-
tion in ontologies. The following three method signatures (S1) to (S3) illustrate
how similarities can be calculated with SST:

public double getSimilarity(String firstConceptName, (S1)
String firstOntologyName, String secondConceptName,
String secondOntologyName, int measure)

public Vector<ConceptAndSimilarity> getMostSimilarConcepts (S2)
(String conceptName, String conceptOntologyName,
String subtreeRootConceptName, String subtreeOntologyName,
int k, int measure)

public Image getSimilarityPlot(String firstConceptName, (S3)
String firstOntologyName, String secondConceptName,
String secondOntologyName, int[] measures)

In the examples given before, method signature (S1) provides access to the cal-
culation of the similarity between the two given concepts — the similarity mea-
sure to be used is specified by an integer constant (e.g., SOQASimPackToolkit-
Facade.LIN MEASURE for the measure by Lin). Note that in SST, for each con-
cept we have to specify which ontology it originates from (parameters first-
OntologyName and secondOntologyName, respectively). This is necessary since
in SST’s single ontology tree (into which all ontologies are incorporated), concept
names are generally not unique anymore. For example, in case that more than
one OWL ontology is used for similarity calculations, we have more than one
owl:Thing concept as a direct subconcept of Super Thing. Distinguishing which
ontology the particular owl:Thing is the root of is essential (e.g., for graph-based
measures) since the (direct) subconcepts for each owl:Thing concept differ. (S2)
enables SST clients to retrieve the k most similar concepts for the given one
compared with all subconcepts of the specified ontology taxonomy (sub)tree. In
the result set, ConceptAndSimilarity instances contain for each of the k concepts
the concept name, the name of its ontology, and the respective similarity value.
Finally, (S3) computes the similarity between two concepts according to a set of
measures and sets up a chart to visualize the computations.

Beyond access to similarity calculations, the SOQA-SimPack Toolkit Facade
provides a variety of helper methods — for example, for getting information
about a particular SimPack similarity measure, for displaying a SOQA Ontology
Browser [22] to inspect a single ontology, or for opening a SOQA Query Shell to
declaratively query an ontology using SOQA-QL [22].

Recall that in our running example from Section 1, a developer is looking for
similarities among the concepts of five ontologies. In this scenario, the SOQA-
SimPack Toolkit can be used, for instance, to calculate the similarity between
the concept base1 0 daml:Professor from the DAML University Ontology and
concepts from the other ontologies according to different SimPack similarity
measures as shown in Table 1. Behind the scenes, SST initializes the necessary
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Table 1. Comparisons of base1 0 daml:Professor with Concepts from Other Ontologies

Concept Conceptual Leven- Lin Resnik Shortest TFIDF
Similarity shtein Path

base1 0 daml:Professor 0.7778 1.0 0.8792 2.7006 1.0 1.0
univ-bench owl:AssistantProfessor 0.1111 0.1029 0.0 0.0 0.0588 0.3224
COURSES:EMPLOYEE 0.1176 0.0294 0.0 0.0 0.0625 0.0475
SUMO owl txt:Human 0.1 0.0028 0.0 0.0 0.0526 0.0151
SUMO owl txt:Mammal 0.0909 0.0032 0.0 0.0 0.0476 0.0184
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Fig. 5. SST Visualization of the Ten Most Similar Concepts for base1 0 daml:Professor

MeasureRunner instances which in turn manage the calculation of the desired
similarity values by SimPack based on ontological information retrieved through
SOQA. Note that for the plausibility of the calculated results, the SimPack
measures as taken from the literature are responsible in general; in case that the
available measures do not seem to be suitable for a particular domain, the set of
available similarity measures can easily be extended by providing supplementary
MeasureRunner implementations for further similarity measures.

In addition to numeric results, the SOQA-SimPack Toolkit is able to visualize
the results of similarity calculations. For instance, our developer can retrieve the
k most similar concepts for base1 0 daml:Professor compared with all concepts
from all five ontologies in our scenario. In response to this, SST can produce a
bar chart as depicted in Figure 5. To generate the visualizations, SST creates
data files and scripts that are automatically given as an input to Gnuplot14,
which then produces the desired graphics. Thus, the SOQA-SimPack Toolkit
can effectively be employed to generically detect and visualize similarities in on-
tologies according to an extensible set of similarity measures and independently
of the particular ontology languages in use.

14 http://www.gnuplot.info
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4 The SOQA-SimPack Toolkit Browser

The SOQA-SimPack Toolkit Browser is a tool that allows users to graphically
perform similarity calculations and visualizations in ontologies based on the
SOQA-SimPack Toolkit Facade. In general, it is an extension of the SOQA
Browser [22] enabling users to inspect the contents of ontologies independently
of the particular ontology language (i.e., according to the SOQA Ontology Meta
Model). Based on the unified view of ontologies it provides, the SOQA-SimPack
Toolkit Browser can be used to quickly survey concepts and their attributes,
methods, relationships, and instances that are defined in ontologies as well
as metadata (author, version, ontology language name, etc.) concerning the
ontology itself.

In addition, the SOQA-SimPackToolkit Browser provides an interface to all the
methods of SST through its Similarity Tab (see Figure 6). That is, it is a tool for
performing language independent similarity calculations in ontologies and for re-
sult visualization. In the Similarity Tab, users can select the similarity service to be
run — for example, producing a graphical representation of the similarity calcula-
tion between two concepts according to the Resnik measure. Then, input fields are

Fig. 6. The SOQA-SimPack Toolkit Browser and its Similarity Calculation Tab
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inserted into the Similarity Tab so that all necessary input values can be entered;
here, concept names can directly be mouse-dragged from the Concept Hierarchy
view and dropped into the respective input field. In the end, the calculated results
are shown in tabular or graphical form, depending on the selected service.

In our running example, the SOQA-SimPack Toolkit Browser can first be
employed by the developer to quickly get a unified overview of the five ontologies
represented in PowerLoom, OWL, and DAML respectively. Subsequently, he or
she can use the Similarity Tab and calculate, for instance, the k most similar
concepts for univ-bench owl:Person according to the TFIDF measure. The result
is then presented in a table as shown in Figure 6. Thus, contrasting a conventional
scenario where several ontology-language specific tools have to be employed for
ontology access, the developer who takes advantage of SST does not have to cope
with different ontology representation languages in use. Based on the unified view
of ontologies as provided by the SOQA Ontology Meta Model, our developer can
generically apply a rich and extensible set of SimPack similarity measures for
similarity detection through the services offered by the SOQA-SimPack Toolkit.
The results of these calculations can be presented as numerical values, textual
lists (of concept names), or visualized in graphics. Hence, similarity detection in
ontologies is facilitated and leveraged through the SOQA-SimPack Toolkit and
its browser for the benefit of human users and applications.

5 Related Work

Closest to our work is the ontology alignment tool OLA presented by Euzénat
et al. [4]. OLA is implemented in Java and relies on a universal measure for
comparing entities of ontologies. Basically, it implements a set of core similarity
functions which exploit different aspects of entities, such as textual descriptions,
inter-entity relationships, entity class membership, and property restrictions.
OLA relies on WordNet to compare string identifiers of entities. The main dif-
ference to our approach is OLA’s restriction and dedication to the alignment
of ontologies expressed in OWL-Lite. Using our generic approach, however, it is
possible to compare and align entities of ontologies represented in a variety of
ontology languages with the same set of similarity measures.

Noy andMusen’s approach [12] follows similar goals: the comparison, alignment,
and merging of ontologies to improve their reuse in the Semantic Web. The authors
implemented a suite of tools called PROMPT that interactively supports ontology
merging and the finding of correlations between entities to simplify the overall in-
tegration task. Compared to the SOQA-SimPack Toolkit, PROMPT is restricted
to the comparison and merging of ontologies expressed in a few common ontology
languages, such as RDF, DAML, and OWL. SST, on the other hand, offers the pos-
sibility to incorporate ontologies represented in a much broader range of languages.
This includes not only ontologies described with recent Semantic Web languages,
but also ones represented in traditional ontology languages, like PowerLoom. Fur-
thermore, the SOQA-SimPack Toolkit supports ontologies supplied by knowledge
bases, such as CYC [8], and by lexical ontology systems, such as WordNet.
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Ehrig et al. [3] propose an approach that measures similarity between en-
tities on three different layers (data layer, ontology layer, and context layer).
Finally, an amalgamation function is used to combine the partial similarities
of each layer and to compute the overall similarity between two entities. This
approach differs from ours in its strong focus on entity layers and its amalga-
mation of individual layer-based similarity measures. Whilst it is easily possible
to introduce such combined similarity measures through additional MeasureRun-
ner implementations into the SOQA-SimPack Toolkit, we have left experiments
with such measures for future work. In addition to this, we intend to extend the
set of provided similarity measures in future, e.g., by incorporating measures
from the SecondString project15 which focuses on implementing approximate
string-matching algorithms, and from SimMetrics16 which presents similarity
and distance metrics for data integration tasks.

6 Conclusions and Future Work

In this paper, we presented the SOQA-SimPack Toolkit, an ontology language
independent Java API that enables generic similarity detection and visualization
in ontologies. This task is central for application areas like ontology alignment
and integration, Semantic Web (service) discovery, data clustering and mining,
semantic interoperability in virtual organizations, and semantics-aware universal
data management. SST is founded on (1) the SIRUP Ontology Query API, an
ontology language independent Java API for query access to ontological meta-
data and data, and (2) SimPack, a generic Java library of similarity measures
adapted for the use in ontologies.

The SOQA-SimPack Toolkit is extensible in two senses: First, further ontol-
ogy languages can easily be integrated into SOQA by providing supplementary
SOQA wrappers, and second, our generic framework is open to employ a multi-
tude of additional similarity measures by supplying further MeasureRunner im-
plementations. Hence, the extensible SOQA-SimPack Toolkit provides not only
means for generic similarity detection, but can also be a fruitful playground for
development and experimental evaluation of new similarity measures.

Contrasting a conventional scenario where several ontology-language specific
tools have to be adopted for ontology access, users and applications taking ad-
vantage of the SOQA-SimPack Toolkit do not have to cope with different on-
tology representation languages in use. SST supports a broad range of ontology
languages, including not only ontologies described with recent Semantic Web
languages, but also ones represented in traditional ontology languages, like Pow-
erLoom. Furthermore, ontologies supplied by knowledge bases, such as CYC,
and by lexical ontology systems, such as WordNet, can be used in the SOQA-
SimPack Toolkit.

Based on the unified view on ontologies as provided by the SOQA Ontology
Meta Model, users and applications can generically apply a rich set of SimPack
15 http://secondstring.sourceforge.net
16 http://www.dcs.shef.ac.uk/~sam/simmetrics.html
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similarity measures for similarity detection in SST services. By taking advantage
of an extensible library of ontological similarity measures, a variety of notions of
“similarity” can be captured. Additionally, for all calculations provided by SST,
concepts can be used from any ontology that is connectible through SOQA. This
is accomplished by incorporating all ontologies into a single ontology tree. The
results of these calculations can be presented as numerical values, textual lists
(of concept names), or visualized in graphics. As an application that is based on
SST, we provide the SOQA-SimPack Toolkit Browser, a tool to graphically per-
form similarity calculations in ontologies independent of the ontology language
they are specified in. Thus, similarity detection in ontologies is facilitated and
leveraged through the SOQA-SimPack Toolkit and its browser for the benefit of
human users and applications.

Future work includes the implementation of additional similarity measures
(especially for trees) and the provision of more advanced result visualizations.
Besides, we intend to do a thorough evaluation to find the best performing simi-
larity measures in different task domains and to experiment with more advanced,
combined similarity measures. In the end, a comprehensive assessment of SST
in the context of data and schema integration is planned.
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Abstract. One significant part of today’s Web is Web databases, which can dy-
namically provide information in response to user queries. To help users submit
queries to different Web databases, the query interface matching problem needs to
be addressed. To solve this problem, we propose a new complex schema matching
approach, Holistic Schema Matching (HSM). By examining the query interfaces
of real Web databases, we observe that attribute matchings can be discovered
from attribute-occurrence patterns. For example, First Name often appears to-
gether with Last Name while it is rarely co-present with Author in the Books
domain. Thus, we design a count-based greedy algorithm to identify which at-
tributes are more likely to be matched in the query interfaces. In particular, HSM
can identify both simple matching i.e., 1:1 matching, and complex matching, i.e.,
1:n or m:n matching, between attributes. Our experiments show that HSM can
discover both simple and complex matchings accurately and efficiently on real
data sets.

1 Introduction

Today, more and more databases that dynamically generate Web pages in response to
user queries are available on the Web. These Web databases compose the deep Web,
which is estimated to contain a much larger amount of high quality information and to
have a faster growth than the static Web [1, 3].

While each static Web page has a unique URL by which a user can access the page,
most Web databases are only accessible through a query interface. Once a user submits a
query describing the information that he/she is interested in through the query interface,
the Web server will retrieve the corresponding results from the back-end database and
return them to the user.

To build a system/tool that helps users locate information in numerous Web data-
bases, the very first task is to understand the query interfaces and help dispatch user
queries to suitable fields of those interfaces. The main challenge of such a task is that
different databases may use different fields or terms to represent the same concept. For
example, to describe the genre of a CD in the MusicRecords domain, Category is used
in some databases while Style is used in other databases. In the Books domain, First
Name and Last Name are used in some databases while Author is used in others to
denote the writer of a book.

In this paper, we specifically focus on the problem of matching across query inter-
faces of structured Web databases. The query interface matching problem is related to

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 77–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



78 W. Su, J. Wang, and F. Lochovsky

a classic problem in the database literature, schema matching, if we define an entry or
field in a query interface as an attribute and all attributes in the query interface form
a schema of the interface1. Schema matching maps semantically related attributes be-
tween pairs of schemas in the same domain. When matching the attributes, we call a 1:1
matching, such as Category with Style, a simple matching and a 1:n or m:n matching,
such as First Name, Last Name with Author, a complex matching. In the latter case,
attributes First Name and Last Name form a concept group before they are matched
to attribute Author. We call attributes that are in the same concept group grouping at-
tributes and attributes that are semantically identical or similar to each other synonym
attributes. For example, attributes First Name and Last Name are grouping attributes,
and First Name with Author or Last Name with Author are synonym attributes.

Discovering grouping attributes and synonym attributes in the query interfaces of
relevant Web databases is an indispensable step to dispatch user queries to various Web
databases and integrate their results. Considering that millions of databases are available
on the Web [3], computer-aided interface schema matching is definitely necessary to
avoid tedious and expensive human labor.

Although many solutions have been proposed to solve the schema matching problem,
current solutions still suffer from the following limitations:

1. simple matching: most schema matching methods to date only focus on discovering
simple matchings between schemas [2, 6, 9, 16].

2. low accuracy on complex matching: although there are some methods that can iden-
tify complex matchings, their accuracy is practically unsatisfactory [5, 12].

3. time consuming: some methods employ machine-learning techniques that need a
lot of training time and some have time complexity exponential to the number of
attributes [8, 10].

4. domain knowledge required: some methods require domain knowledge, instance
data or user interactions before or during the matching process [2, 5, 8, 14, 16, 17].

In this paper, we propose a new interface schema matching approach, Holistic
Schema Matching (HSM), to find matching attributes across a set of Web database
schemas of the same domain. HSM takes advantage of the term occurrence pattern
within a domain and can discover both simple and complex matchings efficiently with-
out any domain knowledge.

The rest of the paper is organized as follows. Section 2 reviews related work and
compares our approach to previous approaches. In section 3, we introduce our obser-
vations on Web database query interfaces and give an example that motivates our ap-
proach. Section 4, the main section of the paper, presents the holistic schema matching
approach HSM. Our experiments on two datasets and the results are reported in section
5. Section 6 concludes the paper and discusses several further open research issues.

2 Related Work

Being an important step for data integration, schema matching has attracted much atten-
tion [2, 5-10, 12, 14, 16, 17]. However, most previous work either focuses on discover-
ing simple matchings only or has un-satisfactory performance on discovering complex

1 The terms “schema” and “interface” will be used in this paper interchangeably.
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matchings. This is because complex matching discovery is fundamentally harder than
simple matching discovery. While the number of simple matching candidates between
two schemas is bounded by the product of the sizes of the two schemas, the number of
complex matching candidates is exponential with respect to the size of the two schemas.

As a result, the performance of some existing complex matching discovery algo-
rithms is not satisfactory. [5] tries to convert the problem of matching discovery into the
problem of searching in the space of possible matches. [12] views the input schemas
as graphs and designs a matching algorithm based on a fixpoint computation using the
fact that two nodes are similar when their adjacent nodes are similar. Both approaches
can handle simple matchings well (average accuracy around 78% in [5] and 58% in
[12]), but their accuracy drops dramatically for complex matchings (around 55% in [5]
and negative accuracy in [12]). [17] out performs [5, 12] by utilizing different kinds of
information, such as linguistic similarity, type similarity and domain similarity between
attributes. However, it also needs user interaction during the matching process to tune
system parameters.

Different from most existing approaches, [2, 16] are notable in that they focus on ex-
ploiting instance-level information, such as instance-value overlapping. However, these
two approaches can only handle simple matchings. In addition, data instances are very
hard to obtain in the Web database environment.

[14, 10] are similar approaches in that they manage to combine multiple algorithms
and reuse their matching results. [14] proposes several domain-independent combina-
tion methods, such as max and average, and [10] employs a weighted sum and adapts
machine learning techniques to learn the importance of each individual component for
a particular domain. Although the approach in [10] is able to learn domain-specific
knowledge and statistics, it requires a lot of human effort to manually identify correct
matchings as training data.

In contrast to the above works, our approach is capable of discovering simple and
complex matchings at the same time without using any domain knowledge, data in-
stances or user involvement. The HSM approach proposed in this paper can be con-
sidered as a single matcher that only focuses on exploiting domain-specific attribute
occurrence statistics. HSM is specifically designed, and is thus more suitable, for the
hidden Web environment where there are a large number of online interfaces to match
whose attributes are usually informative in order to be understood by ordinary users.
Compared with the above works, HSM is not suitable for a traditional database envi-
ronment, where there are often only two schemas involved in the matching process and
the attribute names could be very non-informative, such as attr1 and attr2, depending
on the database designers.

Our HSM approach is very close to DCM developed in [7], which discovers com-
plex matchings holistically using data mining techniques. In fact, HSM and DCM are
based on similar observations that frequent attribute co-presence indicates a synonym
relationship and rare attribute co-presence indicates a grouping relationship. However,
HSM has two major differences (advantages) compared to DCM:

1. measurement: DCM defines a H-measure, H = f01f10
f+1f1+

, to measure the negative
correlation between two attributes by which synonym attributes are discovered.
Such a measure may give a high score for rare attributes, while HSM’s matching
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score measure does not have this problem. Suppose there are 50 input schemas,
where 25 schemas are {A1, A3}, 24 schemas are {A1, A4} and the remaining one
is {A1, A2, A4}. In these schemas, A3 and A4 are actual synonym attributes ap-
pearing a similar number of times and A2 is a rare and “noisy” attribute that only
appears once. According to the negative measure of DCM, the matching score
H23 = 1×25

1×25 = 1, and the matching score H34 = 25×25
25×25 , is also 1. In contrast,

HSM measures the matching scores as X23 = 0.96 and X34 = 12.5 (see section
4.1). In this extreme case, DCM cannot differentiate frequent attributes from rare
attributes, which affects its performance.

2. matching discovery algorithm: The time complexity of HSM’s matching discovery
algorithm is polynomial with respect to the number of attributes, n, while the time
complexity of DCM is exponential with respect to n. DCM tries to first identify all
possible groups and then discover the matchings between them. To discover grouping
attributes, it calculates the positive correlation between all combinations of groups,
from size 2 to size n (the worst case). In contrast, HSM only considers the group-
ing score between every two attributes, and the complex matching is discovered by
adding each newly found group member into the corresponding group incrementally.
Consequently, HSM discovers the matchings much faster than DCM does.

Our experimental results in section 5.2 show that HSM not only has a higher accuracy
than DCM, but is also much more efficient for real Web databases.

3 Intuition: Parallel Schemas

In this section, we first present our observations about interface schemas and interface
attributes of Web databases in a domain, on which the HSM approach is based. Then,
examples are given to motivate the intuition of HSM.

3.1 Observations

In Web databases, query interfaces are not designed arbitrarily. Web database designers
try to design the interfaces to be easily understandable and usable for querying impor-
tant attributes of the back-end databases. For Web databases in the same domain that
are about a specific kind of product or a specific topic, their query interfaces usually
share many characteristics:

1. Terms describing or labeling attributes are usually unambiguous in a domain al-
though they may have more than one meaning in an ordinary, comprehensive dic-
tionary. For example, the word title has ten meanings as a noun and two meanings
as a verb in WordNet [13]. However, it always stands for “the name of a book”
when it appears in query interfaces of the Books domain.

2. According to [8], the vocabulary of interfaces in the same domain tends to converge
to a relatively small size. This indicates that the same concepts in a domain are
usually described by the same set of terms.

3. Synonym attributes are rarely co-present in the same interface. For example, Au-
thor and Last Name never appeared together in any query interface that we inves-
tigate in the Books domain.
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4. Grouping attributes are usually co-present in the same interface to form a “larger”
concept. For example, in the Airfares domain, From is usually paired with To to
form a concept, which is the same as the concept formed by another frequently co-
present attribute pair, Departure city and Arrival city. This phenomenon is recog-
nized as collocation in natural language [11] and is very common in daily life.

3.2 Motivating Examples

We use the query interfaces shown in Figure 1 to illustrate the main idea of HSM. Let
us first consider the schemas in Figure 1(a) and 1(b). The two schemas are semantically
equal2, i.e., any single attribute or set of grouping attributes in one of them semantically
corresponds to a single attribute or set of grouping attributes in the other. If we compare
these two schemas by putting them in parallel and deleting the attributes that appear in
both of them (according to observation 1), we get the matching correspondence between
the grouping attributes {First Name, Last Name} and the attribute Author.

(a) AddAll.com

(b) hwg.org (c) Amazon.com (d) Randomhouse.com

Fig. 1. Examples of query interfaces

Definition 1. Given two schemas S1 and S2, each of which are comprised of a set of
attributes, the two schemas form a parallel schema Q, which comprises two attribute
sets {{S1 − S1

⋂
S2} and {S2 − S1

⋂
S2}}.

Table 1. Examples of parallel schemas

AddAll.com hwg.org
Author First Name

Last Name
(a)

Amazon.com RandomHouse.com
Author First Name
Subject Last Name

Publisher Keyword
Category

(b)

Table 1(a) shows the parallel schema formed by the schemas in Figure 1(a) and
1(b). The complex matching {First Name, Last Name}={Author} is directly avail-
able from this parallel schema. However, in most cases, matching is not so easy because

2 We ignore the word “(Optional)” that appears in Figure 1(b) because it will be discarded during
query interface preprocessing [7].
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two target schemas may not be semantically equal, such as the schemas in Figure 1(c)
and 1(d). After putting these two schemas in parallel and deleting common attributes,
the parallel schema in Table 1(b) is obtained. Unfortunately, correct matchings are not
directly available from this parallel schema.

To address this problem, we consider any two attributes cross-copresent in a parallel
schema to be potential synonym attributes. For example Author with First Name and
Author with Last Name in Table1(b) are potential synonym attributes. As a result, if
two attributes are potential synonym attributes appearing in many parallel schemas, we
may be statistically confident to find the synonym relationship between them
(observation 3).

Furthermore, we also notice that First Name and Last Name are always co-present
in the same query interface, which indicates that they are very likely to be grouping
attributes that form a concept group (observation 4). Suppose we also know that Au-
thor with First Name and Author with Last Name are synonym attributes. We can
compose an attribute group containing First Name and Last Name, with both of the
two members matched to Author. That is, {First Name, Last Name}={Author} is
discovered as a complex matching.

4 Holistic Schema Matching Algorithm

We formalize the schema matching problem as the same problem described in [7]. The
input is a set of schemas S = {S1, . . . , Su}, in which each schema Si (1 ≤ i ≤ u)
contains a set of attributes extracted from a query interface and the set of attributes
A = ∪u

i=1Si = {A1, . . . , An} includes all attributes in S. We assume that these
schemas come from the same domain. The schema matching problem is to find all
matchings M = {M1, . . . , Mv} including both simple and complex matchings. A
matching Mj (1 ≤ j ≤ v) is represented as Gj1 = Gj2 = . . . = Gjw , where Gjk

(1 ≤ k ≤ w) is a group of attributes3 and Gjk is a subset of A, i.e., Gjk ⊂ A. Each
matching Mj should represent the semantic synonym relationship between two attribute
groups Gjk and Gjl (l �= k), and each group Gjk should represent the grouping rela-
tionship between the attributes within it. More specifically, we restrict each attribute to
appear no more than one time inM (observation 1 and 4).

A matching example is {First Name, Last Name} = {Author} in the Books do-
main, where attributes First Name and Last Name form an attribute group and at-
tribute Author forms another group and the two groups are semantically synonymous.
Besides this matching, suppose another matching {Author} = {Writer} is found. Ac-
cording to our restriction, we will not directly include the latter matching in the match-
ing setM. Instead, we may adjust the original matching to {First Name, Last Name}
= {Author} = {Writer} or {First Name, Last Name, Writer} = {Author}, depending
on whether the relationship found between Writer and {First Name, Last Name} is a
grouping or a synonym relationship.

The workflow of the schema matching algorithm is shown in Figure 2. Before the
schema matching discovery, two scores, matching score and grouping score, are calcu-
lated between every two attributes. The matching score is used to evaluate the possibility

3 An attribute group can have just one attribute.
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Fig. 2. Holistic Schema Matching Workflow

that two attributes are synonym attributes and the grouping score is used to evaluate the
possibility that two attributes are in the same group in a matching.

The matching score is calculated in two steps. First, Synonym Attribute Candidate
Generation takes all schemas as input and generates all candidates for synonym attributes
based on the observation that synonym attributes rarely co-occur in the same interface
schema. Then, Matching Score Calculation calculates matching scores between the can-
didates based on their cross-copresence count (see section 4.1) in the parallel schemas.

Grouping Score Calculation takes all schemas as input and calculates the grouping
score between every two attributes based on the observation that grouping attributes
frequently co-occur in the same schema.

After calculating the grouping and matching score between every two attributes, we
use a greedy algorithm in Schema Matching Discovery that iteratively chooses the high-
est matching score to discover synonym matchings between pairs of attributes. At the
same time, the grouping score is used to decide whether two attributes that match to
the same set of other attributes belong to the same group. At the end, a matching list is
outputted, including both simple and complex matchings. The overall time complexity
of HSM is O(un2+n3) where n is the number of attributes and u is the number of input
schemas. We will explain the time complexity of HSM in detail later in this section.

The rest of this section is organized according to the workflow shown in Figure 2.
Subsection 4.1 presents how to calculate the matching score between every two at-
tributes. Subsection 4.2 shows how to calculate the grouping score between every two
attributes, and finally subsection 4.3 describes how the matchings can be identified us-
ing the grouping and matching scores. In these subsections, the schemas in Table 2 will
be used as examples of input schemas.

Table 2. Examples of input schemas

S1 S2 S3 S4 S5
Title Title Title Title Title

First Name Author Author First Name Author
Last Name Subject Category Last Name Category
Category Publisher Publisher
Publisher
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4.1 Matching Score Calculation

As discussed above, in HSM, the matching scores between two attributes are calculated
in two steps: Synonym attribute candidate generation and matching score calculation.

Synonym Attribute Candidate Generation. A synonym attribute candidate is a pair
of attributes that are possibly synonyms. If there are n attributes in the input schemas,
the maximum number of synonym attribute candidates is C2

n = n(n−1)
2 . However, not

every two attributes from A can be actual candidates for synonym attributes. For ex-
ample in the Books domain, attributes Title and Author should not be considered as
synonym attribute candidates, while Author and First Name should. Recall that, in
section 3.1, we observed that synonym attributes are rarely co-present in the same
schema. In fact, Author and First Name do seldom co-occur in the same interface,
while Title and Author appear together very often. This observation can be used to re-
duce the number of synonym attribute candidates dramatically.

Example 1. For the four input schemas in Table 2, if we make a strict restriction that
any two attributes co-present in the same schema cannot be candidates for synonym
attributes, the number of synonym attribute candidates becomes 5 (shown in Table 3),
instead of 21 when there is no restriction at all.

Table 3. Synonym attribute candidates

1 First Name, Author
2 First Name, Subject
3 Last Name, Author
4 Last Name, Subject
5 Category, Subject

In HSM, we assume that two attributes (Ap, Aq) are synonym attribute candidates
if Ap and Aq are co-present in less than Tpq schemas. Intuitively, Tpq should be in
proportion to the normalized frequency of Ap and Aq in the input schemas set S. Hence,
in our experiments, we set the co-presence threshold of Ap and Aq as

Tpq =
α(Cp + Cq)

u
(1)

where α is determined empirically, Cp and Cq are the count of attributes Ap and Aq

in S, respectively, and u is the number of input schemas. In out experiments, α is
empirically set to be 3. 4

Suppose there are 50 input schemas and two attributes A1 and A2 that occur 20 and
25 times, respectively, then T12 = 2.7. This means that A1 and A2 should be co-present
in no more than two schemas to be synonym attribute candidates.

We use L = {(Ap, Aq), p = 1..n, q = 1..n, p �= q, Cpq < Tpq} to represent the set
of synonym attribute candidates, where Cpq is the count of the co-occurrences of Ap

and Aq in the same schema.

4 The experiments have the best performance when α ∈ [2, 4]. We select a middle value of the
range [2,4] here in our experiments.
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Matching Score Calculation. For any two attributes Ap and Aq , a matching score Xpq

measures the possibility that Ap and Aq are synonym attributes. The bigger the score,
the more likely that the two attributes are synonym attributes.

Definition 2. Given a parallel schema Q, we call Ap and Aq to be cross-copresent in
Q if Ap ∈ S1 − S1

⋂
S2 and Aq ∈ S2 − S1

⋂
S2.

If we compare every two schemas, we can get Dpq = (Cp − Cpq)(Cq − Cpq) parallel
schemas in which Ap and Aq are cross-copresent. The bigger Dpq is, i.e., the more often
Ap and Aq are cross-copresent in a parallel schema, the more likely that Ap and Aq are
synonym attributes. However Dpq itself is not able to distinguish a scenario such as that
in Example 2:

Example 2. Suppose there are 50 input schemas, where 15 schemas are {A1, A3}, 15
schemas are {A1, A4}, 15 schemas are {A1, A5} and the rest 5 are {A2}. Our intuition
is that the matching A3 = A4 = A5 should be more preferred than matching A1 = A2
because it is highly like that A2 is a noise attribute and occur randomly. Dpq alone is not
able to correctly catch this case because D12 = D34 = D35 = D45 = 225. Meanwhile,
we also notice that C1 + C2 = 50 and C3 + C4 = C3 + C5 = C4 + C5 = 30. Hence if
we divide Dpq by Cp + Cq , we can reduce the problem caused by noise attributes, such
as A2 above.

Hence, we formulate the matching score between Ap and Aq as:

Xpq =

{
0 if (Ap, Aq) /∈ L
(Cp−Cpq)(Cq−Cpq)

(Cp+Cq) otherwise,
(2)

Specifically designed for the schema matching problem, this matching score has the
following important properties:

1. Null invariance [15]. For any two attributes, adding more schemas that do not con-
tain the attributes does not affect their matching score. That is, we are more inter-
ested in how frequently attributes Ap and Aq are cross co-present in the parallel
schemas than how frequently they are co-absent in the parallel schemas.

2. Rareness differentiation. The matching score between rare attributes and the other
attributes is usually low. That is, we consider it is more likely that a rare attribute
is cross co-present with other attributes by accident. Example 3 shows that the
matching scores for rare attributes, e.g., Subject, are usually small.

Example 3. Matching scores between the attributes from the schemas in Table 2 are
shown in Table 4, given the synonym attribute candidates in Table 3.

In this example, the matching scores between all the actual synonym attributes are non-
zero and high, such as the score between First Name and Author and the score between
Category and Subject, which is desirable. The matching scores between some non-
synonym attributes are zero, such as the score between Title and Category and the
score between Publisher and Author, which is also desirable. However, the matching
scores between some non-synonym attributes are also non-zero yet low, such as the
score between First Name and Subject, which is undesirable. To tackle this problem,
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Table 4. Matching scores

Title First Last Cate- Publi- Au- Sub-
Name Name gory sher thor ject

Title 0 0 0 0 0 0
First Name 0 0 0 1.2 0.67
Last Name 0 0 1.2 0.67
Category 0 0 0.75
Publisher 0 0
Author 0
Subject

our matching discovery algorithm is designed to be greedy by considering the match-
ings with higher scores first when discovering synonym attributes (see section 4.3).

We use X = {Xpq, p = 1..n, q = 1..n, p �= q} to denote the set of matching scores
between any two different attributes.

4.2 Grouping Score Calculation

As mentioned before, a grouping score between two attributes aims to evaluate the pos-
sibility that the two attributes are grouping attributes. Recall observation 4 in
section 3.1, attributes Ap and Aq are more liable to be grouping attributes if Cpq is
big. However using Cpq only is not sufficient in many cases. Suppose there are 50 input
schemas, where 8 schemas are {A1, A2}, 10 schemas are {A1, A3}, 10 schemas are
{A3, A4}, and the rest are {A4}. In this example, C12 = 8 and C13 = 10. Note that A2
always appears together with A1 and A3 does not co-occur with A1 half of the time,
which indicates that A1 and A2 are more likely to be a group than A1 and A3. Given
cases like this, we consider two attributes to be grouping attributes if the less frequent
one usually co-occurs with the more frequent one. We propose the following grouping
score measure between two attributes Ap and Aq:

Ypq =
Cpq

min(Cp, Cq)
. (3)

We need to set a grouping score threshold Tg such that attributes Ap and Aq will
be considered as grouping attributes only when Ypq > Tg . Practically, Tg should be
close to 1 as the grouping attributes are expected to co-occur most of the time. In our
experiment, Tg is an empirical parameter and the experimental results show that it has
similar performance in a wide range (see section 5.2).

Example 4. Grouping scores between the attributes from the schemas in Table 2 are
shown in Table 5.

In Table 5, the actual grouping attributes First Name and Last Name have a large
grouping score, which is desirable. However, it is not very ideal that some non-grouping
attributes also have large grouping scores, e.g., Publisher and Subject. This is not a
problem in our matching discovery algorithm, which is designed to be matching score
centric and always consider the grouping scores together with the matching scores when
discovering grouping attributes (see section 4.3).

We use Y = {Ypq, p = 1..n, q = 1..n, p �= q} to denote the set of grouping scores
between any two different attributes.
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Table 5. Grouping scores between every two different attributes

Title First Last Cate- Publi- Au- Sub-
Name Name gory sher thor ject

Title 1 1 1 1 1 1
First Name 1 0.5 0.5 0 0
Last Name 0.5 0.5 0 0
Category 0.67 0.67 0
Publisher 0.67 1
Author 1
Subject

The time complexity of both matching score calculation and grouping score calcu-
lation are O(un2) as there are u schemas to go through and it takes a maximum of
O(n2) time to go through each schema to obtain the co-occurrence counts for any two
attributes in Equation (2) and (3).

4.3 Schema Matching Discovery

Given the matching score and grouping score between any two attributes, we propose
an iterative matching discovery algorithm, as shown in Algorithm 1. In each iteration,
a greedy selection strategy is used to choose the synonym attribute candidates with the
highest matching score (Line 4) until there is no synonym attribute candidate available
(Line 5). Suppose Xpq is the highest matching score in the current iteration. We will
insert its corresponding attributes Ap and Aq into the matching set M depending on
how they appear inM:

1. If neither Ap nor Aq has appeared in M (Lines 7 - 8), {Ap} = {Aq} will be
inserted as a new matching intoM.

2. If only one of Ap and Aq has appeared inM (Lines 9 - 16), suppose it is Ap that
has appeared in Mj (the j-th matching ofM), then Aq will be added into Mj too
if:

– Aq has non-zero matching scores between all existing attributes in Mj . In this
case, {Aq} is added as a new matching group into Mj (Lines 11 - 12).

– there exists a group Gjk in Mj where the grouping score between Aq and any
attribute in Gjk is larger than the given threshold Tg , and Aq has non-zero
matching score between any attribute in the rest of the groups of Mj . In this
case, {Aq} is added as a member into the group Gjk in Mj (Lines 13 - 15).

– If both Ap and Aq have appeared in M, Xpq will be ignored because each
attribute is not allowed to appear more than one time inM. The reason for this
constraint is that if Ap and Aq have been added intoM already, they must have
had higher matching scores in a previous iteration.

Finally, we delete Xpq from X (Line 17) at the end of each iteration.
One thing that is not mentioned in the algorithm is how to select the matching score

if there is more than one highest score inX . Our approach is to select a score Xpq where
one of Ap and Aq has appeared inM, but not both. This way of selection makes full
use of previously discovered matchings that have higher scores. If there is still more
than one score that fits the condition, the selection will be random5.

5 Actually a tie occurs very seldom in our experiments.
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Algorithm 1. Schema Matching Discovery
Input:
A = {Ai, i = 1...n}: the set of attributes from input schemas
X = {Xpq , p = 1 . . . n, q = 1 . . . n, p �= q}: the set of matching scores between two attributes
Y = {Ypq, p = 1 . . . n, q = 1 . . . n, p �= q}: the set of grouping scores between two attributes
Tg: the threshold of grouping score
Output:
M = {Mj , j = 1...v}: the set of complex matchings where each matching Mj is represented as
Gj1 = . . . = Gjw , and Gjk, k = 1...w stands for a group of grouping attributes in A
1: begin
2: M ← ∅
3: while X �= ∅ do
4: choose the highest matching score Xpq in X
5: if Xpq = 0 then break;
6: end if
7: if neither Ap nor Aq appears in M then
8: M ← M + {{Ap} = {Aq}}
9: else if only one of Ap and Aq appears in M then

10: /*Suppose Ap appears in Mj and Aq does not appear in M*/
11: if For each attribute Ai in Mj , Xqi > 0 then
12: Mj ← Mj + (= {Aq})
13: else if there exists a matching group Gjk in Mj such that for any attribute Al in

Gjk ,Yql > Tg , and for any attribute Am in other groups Gjx, x �= k, Xqm > 0
then

14: Gjk ← Gjk + {Aq}
15: end if
16: end if
17: X ← X − Xpq

18: end while
19: return M
20: end

Example 5 illustrates the matching discovery iterations using the attributes from the
schemas in Table 2.

Example 5. Before the iteration starts, there is no matching among attributes
(Figure 3(a)). In the first iteration, First Name with Author and Last Name with
Author have the highest matching score from Table 4. As the matching set is empty
now, we randomly select one of the above two pairs, say, First Name with Author.
Hence, {First Name}={Author} is added toM (Figure 3(b)) and the matching score
between First Name and Author is deleted fromX . In the second iteration, Last Name
with Author has the highest matching score. Because Author has already appeared in
M, Last Name can only be added into the matching in which Author appears, i.e.,
{First Name}={Author}. Suppose the grouping threshold Tg is set to 0.9. We then
let Last Name form a group with First Name as their grouping score is above the
threshold (Table 5). Hence, the matching {First Name}={Author} is modified to be
{First Name, Last Name}={Author} inM (Figure 3(c)). After the group is formed,
the matching score of Last Name with Author is deleted from X . In the third iteration,
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Category and Subject have the highest matching score. Accordingly, the matching
{Category}={Subject} is added toM (Figure 3(d)) and the matching score between
them is deleted from X . In the fourth and fifth iterations, no more attributes are added
toM because all attributes associated with the current highest matching score, such as
First Name with Subject, have already appeared inM, i.e., they have been matched
already. After that, no matching candidates are available and the iteration stops with
the final matching results shown in Figure 3(d).

(a) (b) (c) (d)

Fig. 3. Matching discovery iterations

The greediness of this matching discovery algorithm has the benefit of filtering bad match-
ings in favor of good ones. For instance, in the above example, even though the match-
ing score between First Name and Subject is non-zero, the algorithm will not wrongly
match these two attributes because their matching score is lower than the score between
First Name and Author, and also lower than the score between Category and Subject.

Another interesting and beneficial characteristic of this algorithm is that it is matching
score centric, i.e., the matching score plays a much more important role than the grouping
score. In fact, the grouping score is never considered alone without the matching score.
For instance in the above example, even though the grouping score between Publisher
and Subject is 1, they are not considered by the algorithm as grouping attributes. Recall
that a matching {Category}={Subject} is found in the early iterations. In order for
Publisher to form a group with Subject, it must have a non-zero matching score with
Subject’s matching opponent, i.e., Category. Obviously, this condition is not satisfied
in the example. Similarly, although Title has high grouping scores with all the other
attributes, it forms no groups as its matching score with all the other attributes is zero.

The time complexity of the matching discovery algorithm is O(n3) because a max-
imum of n2 (i.e., the number of scores in X ) iterations are needed, and within each
iteration a maximum of n comparisons (i.e., the number of attributes inM) are needed.

To conclude, the overall time complexity of HSM is O(un2 + n3) since the time
complexity of its three steps, matching score calculation, grouping score calculation
and schema matching discovery are O(un2), O(un2) and O(n3), respectively.

5 Experiments

We choose two datasets, TEL-8 and BAMM, from the UIUC Web integration reposi-
tory [4], as the testsets for our HSM matching approach. The TEL-8 dataset contains
query interface schemas extracted from 447 deep Web sources of eight representative
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domains: Airfares, Hotels, Car Rentals, Books, Movies, Music Records, Jobs and Auto-
mobiles. Each domain contains about 20-70 schemas and each schema contains 3.6-7.2
attributes on average depending on the domain. The BAMM dataset contains query
interface schemas extracted from four domains: Automobiles, Books, Movies and Mu-
sic Records. Each domain has about 50 schemas and each schema contains 3.6-4.7
attributes on average depending on the domain.

In TEL-8 and BAMM, Web databases’ query interfaces are manually extracted and
their attribute names are preprocessed to remove some irrelevant information, e.g.,
“search for book titles” is cleaned and simplified to “title”. In addition, the data type of
each attribute is also recognized in TEL-8 which can be string, integer or datetime. For
details of the preprocessing and type recognition, interested readers can refer to [4].

5.1 Metrics

We evaluate the set of matchings automatically discovered by HSM, denoted byMh, by
comparing it with the set of matchings manually collected by a domain expert, denoted
by Mc. To facilitate comparison, we adopt the metric in [7], target accuracy, which
evaluates how similar Mh is to Mc. Given a matching set M and an attribute Ap, a
Closenym set Cls(Ap|M) is used to refer to all synonym attributes of Ap inM.

Example 6. For a matching set {{A1, A2}={A3}={A4}}, the closenym set of A1 is
{A3, A4}, the closenym set of A2 is also {A3, A4}, the closenym set of A3 is {A1, A2,
A4} and the closenym set of A4 is {A1, A2, A3}. If two attributes have the same closesym
set, they are grouping attributes, such as A1 with A2. If two attribute have each other in
their closenym sets, they are synonym attributes, such as A1 with A3 and A3 with A4.

The target accuracy metric includes target precision and target recall. For each attribute
Ap, the target precision and target recall of its closesym set inMh with respect toMc

are:

PAp(Mh,Mc) =
|Cls(Ap|Mc) ∩ Cls(Ap|Mh)|

|Cls(Ap|Mh)| ,

RAp(Mh,Mc) =
|Cls(Ap|Mc) ∩ Cls(Ap|Mh)|

|Cls(Ap|Mc)|
.

According to [7], the target precision and target recall of Mh (the matching set
discovered by a matching approach) with respect toMc (the correct matching set) are
the weighted average of all the attributes’ target precision and target recall (See equ.
(4) and (5)). The weight of an attribute Ap is set as Cp

n
k=1 Ck

in which Cp denotes the
count of Ap and Ck denotes the count of attribute Ak in S. The reason for calculating
the weight in this way is that a frequently used attribute is more likely to be used in a
query submitted by a user.

PT (Mh,Mc) =
∑
Ap

Cp∑n
k=1 Ck

PAp(Mh,Mc), (4)

RT (Mh,Mc) =
∑
Ap

Cp∑n
k=1 Ck

RAp(Mh,Mc). (5)



Holistic Schema Matching for Web Query Interfaces 91

5.2 Experimental Results

Similar to [7], in our experiment we only consider attributes that occur more than an
occurrence-percentage threshold Tc in the input schema set S, where Tc is the ratio of
the count of an attribute to the total number of input schemas. This is because occur-
rence patterns of the attributes may not be observable with only a few occurrences. In
order to illustrate the influence of such a threshold on the performance of HSM, we run
experiments with Tc set at 20%, 10% and 5%.

Result on the TEL-8 dataset. Table 6 shows the matchings discovered by HSM in the
Airfares and CarRentals domains, when Tc is set at 10%. In this table, the third column
indicates whether the matching is correct: Y means fully correct, P means partially
correct and N means incorrect. We see that HSM can identify very complex match-
ings among attributes. We note that destination in Airfares (the third row in Airfares)
should not form a group by itself to be synonymous to other groups. The reason is that
destination co-occurs with different attributes in different schemas, such as depart,
origin, leave from to form the same concept, and those attributes are removed because
their occurrence-percentages are lower than 10%.

Table 6. Discovered matchings for Airfares and CarRentals when Tc = 10%

Domain Discovered Matching Correct?
Airfares {departure date (datetime), return date (datetime)} = {depart (datetime), return (datetime)} Y

{adult (integer), children (integer), infant (integer), senior (integer)} ={passenger (integer)} Y
{destination (string)} = {from (string), to (string)} ={arrival city (string), departure city (string)} P

{cabin (string)} = {class (string)} Y
CarRentals {drop off city (string), pick up city (string)} ={drop off location (string), pick up location (string)} Y

{drop off (datetime), pick up (datetime)= { pick up date (datetime), Y
drop off date (datetime), pick up time (datetime), drop off time (datetime)}

Table 7. Target accuracy for TEL-8

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Airfares 1 1 1 .94 .90 .86
Automobiles 1 1 1 1 .76 .88

Books 1 1 1 1 .67 1
CarRentals 1 1 .89 .91 .64 .78

Hotels 1 1 .72 1 .60 .88
Jobs 1 1 1 1 .70 .72

Movies 1 1 1 1 .72 1
MusicRecords 1 1 .74 1 .62 .88

Average 1 1 .92 .98 .70 .88

(a) HSM with Tg = 0.9

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Airfares 1 1 1 .71 .56 .51
Automobiles 1 1 .93 1 .67 .78

Books 1 1 1 1 .45 .77
CarRentals .72 1 .72 .60 .46 .53

Hotels .86 1 .86 .87 .38 .34
Jobs 1 .86 .78 .87 .36 .46

Movies 1 1 1 1 .48 .65
MusicRecords 1 1 .76 1 .48 .56

Average .95 .98 .88 .88 .48 .58

(b) DCM

Table 7(a) presents the performance of HSM on TEL-8 when the grouping score
threshold Tg is set to 0.9. As expected, the performance of HSM decreases when we
reduce the occurrence-percentage threshold Tc (from 20% to 5%), meaning that more
rare attributes are taken into consideration. Moreover, we can see that the performance
of HSM is almost always better than the performance of DCM, which was implemented
with the optimal parameters reported in [7], especially for a small occurrence percent-
age threshold such as 5%, as shown in Table 7(b).
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We note that the target recall is always higher than the target precision because we do
not remove the less likely matchings, which are discovered in later iterations with small
matching scores. These less likely matchings will reduce the target precision, while they
are likely to improve the target recall. One reason that we do not set a threshold to filter
lower score matchings is that the threshold is domain dependent. We also consider that
it is much easier for a user to check whether a matching is correct than to discover a
matching by himself/herself.

Result on the BAMM dataset. The performance of HSM on BAMM is shown in
Table 8(a), when the grouping score threshold Tg is set to 0.9, and the target accu-
racy of DCM on BAMM is listed in Table 8(b). For the BAMM dataset, HSM always
outperforms DCM.

Table 8. Target accuracy for BAMM

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Automobiles 1 1 .56 1 .75 1
Books 1 1 .86 1 .82 1
Movies 1 1 1 1 .90 .86

MusicRecords 1 1 .81 1 .72 1

Average 1 1 .81 1 .80 .97

(a) HSM with Tg = 0.9

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Automobiles 1 1 .56 1 .45 1
Books 1 1 .63 1 .47 .78
Movies 1 1 1 1 .45 .53

MusicRecords 1 1 .52 1 .36 .55

Average 1 1 .81 1 .43.3 .72

(b) DCM

We note that the target precision in the Automobiles domain is low when Tc = 10%.
Again, the reason is that we do not remove the matchings with low matching scores,
which are less likely to be correct matchings. We also note an exception that, in the
Automobiles domain, the precision when Tc = 5% is much better than the precision
when Tc = 10%. This is because there are some incorrect matchings identified when
Tc = 10%, while most newly discovered matchings when Tc = 5% are correct.

Influence of grouping score threshold. The performance of HSM with different Tg

on TEL-8 is shown in Table 9(a). We can see that Tg actually does not affect the per-
formance of HSM much in a wide range. The target accuracy of HSM is stable with
different Tg , except for the target accuracy in domain CarRentals. A similar phenom-
enon can be observed when we run experiments on BAMM using different Tg , as shown
in Table 9(b). The explanation is as follows:

1. We use a greedy algorithm to always consider high matching scores first and the
grouping score plays a minor role in the algorithm. Therefore, the change of group-
ing score threshold does not make much difference.

2. As we observed, an attribute usually co-occurs with the same set of attributes to
form a larger concept. Hence, most grouping attributes have a grouping score equal
to 1. This makes the grouping attribute discovery robust to the change of Tg . The
reason why the target accuracy in domain CarRentals changes with Tg is that some
attributes in this domain co-occur with different sets of attributes to form the same
concept, which makes their grouping scores less than 1 and thus the accuracy is
affected by the threshold.
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Table 9. Target accuracy of HSM with different grouping score thresholds when Tc = 10%

Domain Tg = .7 Tg = .8 Tg = .9 Tg = .95
PT RT PT RT PT RT PT RT

Airfares 1 .94 1 .94 1 .94 1 .94
Automobiles 1 1 1 1 1 1 1 1

Books 1 1 1 1 1 1 1 1
CarRentals .69 .71 .75 .81 .89 .91 .86 .88

Hotels .72 1 .72 1 .72 1 .72 1
Jobs 1 1 1 1 1 1 1 1

Movies 1 1 1 1 1 1 1 1
MusicRecords .74 1 .74 1 .74 1 .74 1

Average .89 .96 .90 .97 .92 .98 .92 .98

(a) TEL-8

Domain Tg = .7 Tg = .8 Tg = .9 Tg = .95
PT RT PT RT PT RT PT RT

Automobiles .55 1 .55 1 .55 1 .55 1
Books .86 1 .86 1 .86 1 .92 1
Movies 1 1 1 1 1 1 1 1

MusicRecords 1 1 1 1 1 1 1 1

Average .85 1 .85 1 .85 1 .87 1

(b) BAMM

Table 10. Actual execution time in seconds

Dataset BAMM TEL − 8
20% 10% 5% 20% 10% 5%

DCM 0.861 5.171 12.749 2.332 15.813 12624.5
HSM 0.063 0.202 0.297 0.207 0.781 2.313

speedup ratio 13.7 25.6 42.9 11.3 20.2 5458

Actual Execution Time. As we have pointed out, HSM discovers matchings in time
polynomial to the number of attributes while DCM discovers matchings in time expo-
nential to the number of attributes. In our experiments, both HSM and DCM are imple-
mented in C++ and were run on a PC with an Intel 3.0G CPU and 1G RAM. Table 10
shows the actual execution time accumulated on TEL-8 and BAMM with different Tc. It
can be seen that HSM is always an order of magnitude faster than DCM. The time needed
by DCM grows faster when Tc is smaller, i.e., when more attributes are considered for
matching. As shown in Table 11, DCM takes more than three hours to generate all the
matchings for the TEL-8 dataset when the occurrence-percentage threshold Tc = 5%.

6 Conclusions and Future Work

In this paper, we present a holistic schema matching approach, HSM, to holistically
discover attribute matchings across Web query interfaces. The approach employs sev-
eral steps, including matching score calculation that measures the possibility of two
attributes being synonym attributes, grouping score calculation that evaluates whether
two attributes are grouping attributes, and finally a matching discovery algorithm that
is greedy and matching score centric. HSM is purely based on the occurrence patterns
of attributes and requires neither domain-knowledge nor user interaction. Experimental
results show that HSM discovers both simple and complex matchings with very high
accuracy in time polynomial to the number of attributes and the number of schemas.

However, we also note that HSM suffers from some limitations that will be the focus
of our future work. In the Airfares domain in Table 6, although the matching {from,
to}={arrival city, departure city} has been correctly discovered, HSM is not able to
identify the finer matchings {from}={arrival city} and {to}={departure city}. To ad-
dress this problem, we can consider to employ some auxiliary semantic information
(i.e., an ontology) to identify the finer matchings.
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We also plan to focus on matching the rare attributes for which HSM’s performance
is not stable. One promising direction may be to exploit other types of information, such
as attribute types, linguistic similarity between attribute names, instance overlapping,
and/or schema structures.
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Abstract. In this paper, we describe and situate the TUPELO system for data
mapping in relational databases. Automating the discovery of mappings between
structured data sources is a long standing and important problem in data manage-
ment. Starting from user provided example instances of the source and target
schemas, TUPELO approaches mapping discovery as search within the trans-
formation space of these instances based on a set of mapping operators. TU-
PELO mapping expressions incorporate not only data-metadata transformations,
but also simple and complex semantic transformations, resulting in significantly
wider applicability than previous systems. Extensive empirical validation of TU-
PELO, both on synthetic and real world datasets, indicates that the approach is
both viable and effective.

1 Introduction

The data mapping problem, automating the discovery of effective mappings between
structured data sources, is one of the longest standing problems in data management
[17, 24]. Data mappings are fundamental in data cleaning [4, 32], data integration [19],
and semantic integration [8, 29]. Furthermore, they are the basic glue for constructing
large-scale semantic web and peer-to-peer information systems which facilitate coop-
eration of autonomous data sources [15]. Consequently, the data mapping problem has
a wide variety of manifestations such as schema matching [31, 34], schema mapping
[17, 26], ontology alignment [10], and model matching [24, 25].

Fully automating the discovery of data mappings is an “AI-complete” problem in
the sense that it is as hard as the hardest problems in Artificial Intelligence [24]. Con-
sequently, solutions have typically focused on discovering restricted mappings such
as one-to-one schema matching [31]. More robust solutions to the problem must not
only discover such simple mappings, but also facilitate the discovery of the structural
transformations [18, 39] and complex (many-to-one) semantic mappings [8, 14, 29, 31]
which inevitably arise in coordinating heterogeneous information systems. We illustrate
such mappings in the following scenario.

Example 1. Consider the three relational databases Flights A, B, and C maintain-
ing cost information for airline routes as shown in Fig. 1. These databases, which ex-
hibit three different natural representations of the same information, could be managed
by independent travel agencies that wish to share data.

� The current paper is a continuation of work first explored in poster/demo presentations (IHIS05
and SIGMOD05) and a short workshop paper [11].
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FlightsA

Flights:
Carrier Fee ATL29 ORD17
AirEast 15 100 110
JetWest 16 200 220

FlightsB

Prices:
Carrier Route Cost AgentFee
AirEast ATL29 100 15
JetWest ATL29 200 16
AirEast ORD17 110 15
JetWest ORD17 220 16

FlightsC

AirEast:
Route BaseCost TotalCost
ATL29 100 115
ORD17 110 125

JetWest:
Route BaseCost TotalCost
ATL29 200 216
ORD17 220 236

Fig. 1. Three airline flight price databases, each with the same information content

Note that mapping between the databases in Fig. 1 requires (1) matching schema el-
ements, (2) dynamic data-metadata restructuring, and (3) complex semantic mapping.
For example, mapping data from FlightsB to FlightsA involves (1) matching the
Flights andPrices table names and (2) promoting data values in theRoutecolumn
to attribute names. Promoting these values will dynamically create as many new attribute
names as there are Route values in the instance of FlightsB. Mapping the data in
FlightsB to FlightsC requires (3) a complex semantic function mapping the sum
of Cost and AgentFee to the TotalCost column in the relations of FlightsC.

1.1 Contributions and Outline

In this paper we present the TUPELO data mapping system for semi-automating the
discovery of data mapping expressions between relational data sources (Section 2). TU-
PELO is an example driven system, generating mapping expressions for interoperation
of heterogeneous information systems which involve schema matching, dynamic data-
metadata restructuring (Section 2.1), and complex (many-to-one) semantic functions
(Section 4). For example, TUPELO can generate the expressions for mapping between
instances of the three airline databases in Fig. 1.

Data mapping in TUPELO is built on the novel perspective of mapping discovery
as an example driven search problem. We discuss how TUPELO leverages Artificial
Intelligence search techniques to generate mapping expressions (Sections 2 and 3). We
also present experimental validation of the system on a variety of synthetic and real
world scenarios (Section 5) which indicates that the TUPELO approach to data mapping
is both viable and effective. We conclude the paper with a discussion of related research
(Section 6) and directions for future work (Section 7).

2 Dynamic Relational Data Mapping with TUPELO

In this section we outline the architecture and implementation of the TUPELO system,
illustrated in Fig. 2. TUPELO generates an effective mapping from a source relational
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Fig. 2. Data Mapping in the TUPELO System

schema S to a target relational schema T . The system discovers this mapping using
(1) example instances s of S and t of T and (2) illustrations of any complex semantic
mappings between the schemas. Mapping discovery in TUPELO is a completely syn-
tactic and structurally driven process which does not make use of a global schema or
any explicit domain knowledge [2, 16].

We first introduce the mapping language L used in TUPELO. This language focuses
on simple schema matching and structural transformations. We then discuss the Rosetta
Stone principle which states that examples of the same information under two different
schemas can be used to discover an effective mapping between the schemas. We close
the section by describing the idea that drives data mapping in the TUPELO system,
namely that data mapping is fundamentally a search problem.

2.1 Dynamic Relational Transformations

TUPELO generates expressions in the transformation language L, a fragment of the
Federated Interoperable Relational Algebra (FIRA) [39]. FIRA is a query algebra for
the interoperation of federated relational databases. The operators in L (Table 1) ex-
tend the relational algebra with dynamic structural transformations [18, 32, 39]. These
include operators for dynamically promoting data to attribute and relation names, a
simple merge operator [40], and an operator for demoting metadata to data values. The
operators, for example, can express the transformations in Fig. 1 such as mapping the
data from FlightsB to FlightsA.

Example 2. Consider in detail the transformation from FlightsB to FlightsA.
This mapping is expressed in L as:

R1 :=↑CostRoute (FlightsB)
Promote Route values to attribute names with
corresponding Cost values.

R2 := π

Route( π

Cost(R1))
Drop attributes Route and Cost.

R3 := μCarrier(R2)
Merge tuples on Carrier values.

R4 := ρattAgentFee→Fee(ρrelPrices→Flights(R3))
Rename attribute AgentFee to Fee and relation Prices to Flights
(i.e., match schema elements).

The output relation R4 is exactly FlightsA.
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Table 1. Operators for dynamic relational data mapping

Operation Effect

→B
A (R)

Dereference Column A on B. ∀t ∈ R, append a new column named B with
value t[t[A]].

↑A
B (R)

Promote Column A to Metadata. ∀t ∈ R, append a new column named t[A]
with value t[B].

↓ (R)
Demote Metadata. Cartesian product of relation R with a binary table contain-
ing the metadata of R.

℘A(R) Partition on Column A. ∀v ∈ πA(R), create a new relation named v, where
t ∈ v iff t ∈ R and t[A] = v.

×(R,S) Cartesian Product of relation R and relation S.

π

A(R) Drop column A from relation R.

μA(R) Merge tuples in relation R based on compatible values in column A [40].

ρ
att/rel
X→X′ (R) Rename attribute/relation X to X ′ in relation R.

FIRA is complete for the full data-metadata mapping space for relational data
sources [39]. The language L maintains the full data-metadata restructuring power of
FIRA. The operators in L focus on bulk structural transformations (via the →, ↑, ↓,
℘, ×, π, and μ operators) and schema matching (via the rename operator ρ). We view
application of selections (σ) as a post-processing step to filter mapping results accord-
ing to external criteria, since it is known that generalizing selection conditions is a
nontrivial problem. Hence, TUPELO does not consider applications of the relational σ
operator. Note that using a language such as L for data mapping blurs the distinction
between schema matching and schema mapping since L has simple schema matching
(i.e., finding appropriate renamings via ρ) as a special case.

2.2 The Rosetta Stone Principle

An integral component of the TUPELO system is the notion of “critical” instances s
and t which succinctly characterize the structure of the source and target schemas S
and T , respectively. These instances illustrate the same information structured under
both schemas. The Rosetta Stone principle states that such critical instances can be used
to drive the search for data mappings in the space of transformations delineated by the
operators inL on the source instance s. Guided by this principle, TUPELO takes as input
critical source and target instances which illustrate all of the appropriate restructurings
between the source and target schemas.

Example 3. The instances of the three airline databases presented in Fig. 1 illustrate
the same information under each of the three schemas, and are examples of succinct
critical instances sufficient for data mapping discovery.

Critical Instance Input and Encoding. Critical instances can be easily elicited from
a user via a visual interface akin to the Lixto data extraction system [13] or visual
interfaces developed for interactive schema mapping [1, 3, 26, 37]. In TUPELO, critical
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Fig. 3. TUPELO GUI

instances are articulated by a user via a front-end GUI that has been developed for the
system (Figure 3). Since critical instances essentially illustrate one entity under different
schemas, we also envision that much of the process of generating critical instances can
be semi-automated using techniques developed for entity/duplicate identification and
record linkage [2, 38].

Critical instances are encoded internally in Tuple Normal Form (TNF). This nor-
mal form, which encodes databases in single tables of fixed schema, was introduced
by Litwin et al. as a standardized data format for database interoperability [23]. TU-
PELO makes full use of this normal form as an internal data representation format.
Given a relation R, the TNF of R is computed by first assigning each tuple in R a
unique ID and then building a four column relation with attributes TID, REL, ATT,
VALUE, corresponding to tuple ID, relation name, attribute name, and attribute value,
respectively. The table is populated by placing each tuple in R into the new table in a
piecemeal fashion. The TNF of a database is the single table consisting of the union of
the TNF of each relation in the database.

Example 4. We illustrate TNF with the encoding of database FlightsC:

TID REL ATT VALUE
t1 AirEast Route ATL29
t1 AirEast BaseCost 100
t1 AirEast TotalCost 115
t2 AirEast Route ORD17
t2 AirEast BaseCost 110
t2 AirEast TotalCost 125
t3 JetWest Route ATL29
t3 JetWest BaseCost 200
t3 JetWest TotalCost 216
t4 JetWest Route ORD17
t4 JetWest BaseCost 220
t4 JetWest TotalCost 236

The TNF of a relation can be built in SQL using the system tables. The benefits of
normalizing the input instances in this manner with a fixed schema include (1) ease and
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uniformity of handling of the data, (2) both metadata and data can be handled directly
in SQL, and (3) sets of relations are encoded as single tables, allowing natural multi-
relational data mapping from databases to databases.

2.3 Data Mapping as a Search Problem

In TUPELO the data mapping problem is seen fundamentally as a search problem. Given
critical instances s and t of the source and target schemas, data mapping is an explo-
ration of the transformation space of L on the source instance s. Search successfully
terminates when the target instance t is located in this space. Upon success, the trans-
formation path from the source to the target is returned. This search process is illustrated
in Figure 4. The branching factor of this space is proportional to |s| + |t|; however in-
telligent exploration of the search space greatly reduces the number of states visited, as
we discuss next.

. . . .
. . . .

. . . .

Target State

Source State

Fig. 4. Search space for data mapping discovery

Heuristic Search Algorithms. Due to their simplicity and effectiveness, we chose to
implement the heuristic based Iterative Deepening A* (IDA) and Recursive Best-First
Search (RBFS) search algorithms from the Artificial Intelligence literature [28]. In the
heuristic exploration of a state space, both of these algorithms use a heuristic function
to rank states and selectively search the space based on the rankings. The evaluation
function f for ranking a search state x is calculated as f(x) = g(x)+h(x), where g(x)
is the number of transformations applied to the start state to get to state x and h(x) is
an educated guess of the distance of x from the target state. Search begins at the source
critical instance s and continues until the current search state is a structurally identical
superset of the target critical instance t (i.e., the current state contains t). The transfor-
mation path from s to t gives a basic mapping expression in L. After this expression
has been discovered, filtering operations (via relational selections σ) must be applied if
necessary according to external criteria, as discussed in Section 2.1. The final output of
TUPELO is an expression for mapping instances of the source schema to corresponding
instances of the target schema.
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The two search algorithms used in TUPELO operate as follows. IDA performs a
depth-bounded depth-first search of the state space using the f -rankings of states as
the depth bound, iteratively increasing this bound until the target state is reached [28].
RBFS performs a localized, recursive best-first exploration of the state space, keep-
ing track of a locally optimal f -value and backtracking if this value is exceeded [28].
Each of these algorithms uses memory linear in the depth of search; although they
both perform redundant explorations, they do not suffer from the exponential mem-
ory use of basic A* best-first search which led to the ineffectiveness of early im-
plementations of TUPELO. Furthermore, they both achieve performance asymptotic
to A*.

Simple Enhancements to Search. To further improve performance of the search al-
gorithms, we also employed the simple rule of thumb that “obviously inapplicable”
transformations should be disregarded during search. For example if the current search
state has all attribute names occurring in the target state, there is no need to explore ap-
plications of the attribute renaming operator. We incorporated several such simple rules
in TUPELO.

3 Search Heuristics

Heuristics are used to intelligently explore a search space, as discussed in Section 2.3.
A search heuristics h(x) estimates the distance, in terms of number of intermediate
search states, of a given database x from a target database t. A variety of heuristics
were implemented and evaluated. This section briefly describes each heuristic used in
TUPELO.

Set Based Similarity Heuristics. Three simple heuristics measure the overlap of val-
ues in database states. Heuristic h1 measures the number of relation, column, and data
values in the target state which are missing in state x:

h1(x) = |πREL(t)− πREL(x)|
+ |πATT(t)− πATT(x)|
+ |πVALUE(t)− πVALUE(x)|.

Here, π is relational projection on the TNF of x and t, and |x| is the cardinality of
relation x. Heuristic h2 measures the minimum number of data promotions (↑) and
metadata demotions (↓) needed to transform x into the target t:

h2(x) = |πREL(t) ∩ πATT(x)|
+ |πREL(t) ∩ πVALUE(x)|
+ |πATT(t) ∩ πREL(x)|
+ |πATT(t) ∩ πVALUE(x)|
+ |πVALUE(t) ∩ πREL(x)|
+ |πVALUE(t) ∩ πATT(x)|.

Heuristic h3 takes the maximum of h1 and h2 on x:

h3(x) = max{h1(x), h2(x)}.
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Databases as Strings: The Levenshtein Heuristic. Viewing a database as a string
leads to another heuristic. Suppose d is a database in TNF with tuples

〈k1, r1, a1, v1〉 , . . . , 〈kn, rn, an, vn〉 .

For each tuple, let si = ri � ai � vi, where � is string concatenation. Define string(d)
to be the string d1 � · · ·� dn, where d1, . . . , dn is a lexicographic ordering of the strings
si, potentially with repetitions. The Levenshtein distance between string x and string y,
L(x, y), is defined as the least number of single character insertions, deletions, and sub-
stitutions required to transform x into y [20]. Using this metric, we define the following
normalized Levenshtein heuristic:

hL(x) = round

(
k

L(string(x),string(t))
max{|string(x)|, |string(t)|}

)
where |w| is the length of string w, k � 1 is a scaling constant (scaling the interval
[0, 1] to [0, k]), and round(y) is the integer closest to y.

Databases as Term Vectors: Euclidean Distance. Another perspective on a database
is to view it as a document vector over a set of terms [36]. Let A = {a1, . . . , an} be
the set of tokens occurring in the source and target critical instances (including attribute
and relation names), and let

D = {〈a1, a1, a1〉 , . . . , 〈an, an an〉}

be the set of all n3 triples over the tokens in A. Given a search database d in TNF with
tuples 〈k1, r1, a1, v1〉 , . . . , 〈km, rm, am, vm〉, define d̄ to be the n3-vector 〈d1,. . ., dn3〉
where di equals the number of occurrences of the ith triple of D in the list

〈r1, a1, v1〉 , . . . , 〈rm, am, vm〉 .

This term vector view on databases leads to several natural search heuristics. The
standard Euclidean distance in term vector space from state x to target state t gives us
a Euclidean heuristic measure:

hE(x) = round

(√√√√ n∑
i=1

(xi − ti)2
)

where xi is the ith element of the database vector x̄.
Normalizing the vectors for state x and target t gives a normalized Euclidean heuris-

tic for the distance between x and t:

h|E|(x) = round

(
k

√√√√ n∑
i=1

[
xi

|x̄| −
ti
|t̄|

]2
)

where k � 1 is a scaling constant and |x̄| =
√∑n

i=1 x2
i , as usual.
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Databases as Term Vectors: Cosine Similarity. Viewing databases as vectors, we can
also define a cosine similarity heuristic measure, with scaling constant k � 1:

hcos(x) = round

(
k

[
1−

∑n
i=1 xiti
|x̄||t̄|

])
Cosine similarity measures the cosine of the angle between two vectors in the database
vector space. If x is very similar to the target t, hcos returns a low estimate of the
distance between them.

4 Supporting Complex Semantic Mappings

The mapping operators in the language L (Table 1) accommodate dynamic
data-metadata structural transformations and simple one-to-one schema matchings.
However, as mentioned in Section 1, many mappings involve complex semantic trans-
formations [8, 14, 29, 31]. As examples of such mappings, consider several basic com-
plex mappings for bridging semantic differences between two tables.

Example 5. A semantic mapping f1 from airline names to airline ID numbers:

Carrier
AirEast
JetWest

f1�−→
CID
123
456

A complex function f2 which returns the concatenation of passenger first and last
names:

Last First
Smith John
Doe Jane

f2�−→
Passenger
John Smith
Jane Doe

The complex function f3 between FlightsB and FlightsCwhich maps AgentFee
and Cost to TotalCost:

CID Route Cost AgentFee
123 ATL29 100 15
456 ATL29 200 16
123 ORD17 110 15
456 ORD17 220 16

f3�−→

CID Route TotalCost
123 ATL29 115
456 ATL29 216
123 ORD17 125
456 ORD17 236

Other examples include functions such as date format, weight, and international finan-
cial conversions, and semantic functions such as the mapping from employee name to
social security number (which can not be generalized from examples), and so on.

Support for Semantic Mapping Expressions. Any complex semantic function is
unique to a particular information sharing scenario. Incorporating such functions in
a non-ad hoc manner is essential for any general data mapping solution. Although
there has been research on discovering specific complex semantic functions [6, 14],
no general approach has been proposed which accommodates these functions in larger
mapping expressions.
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TUPELO supports discovery of mapping expressions with such complex semantic
mappings in a straight-forward manner without introducing any specialized domain
knowledge. We can cleanly accommodate these mappings in the system by extending
L with a new operator λ which is parameterized by a complex function f and its input-
output signature:

λB
f,Ā(R).

Example 6. As an illustration of the operator, the mapping expression to apply function
f3 in Example 5 to the values in theCost and AgentFee attributes, placing the output
in attribute TotalCost:

λTotalCostf3,Cost, AgentFee(FlightsB).

The semantics of λ is as follows: for each tuple T in relation R, apply the mapping f to
the values of T on attributes Ā = 〈A1, . . . , An〉 and place the output in attribute B. The
operator is well defined for any tuple T of appropriate schema (and is the identity map-
ping on T otherwise). Note that this semantics is independent of the actual mechanics
of the function f . Function symbols are assumed to come from a countably infinite set
F = {fi}i=∞

i=0 .

Discovery of Semantic Mapping Expressions. TUPELO generates data mapping ex-
pressions in L. Extending L with the λ operator allows for the discovery of mapping
expressions with arbitrary complex semantic mappings. Given critical input/output in-
stances and indications of complex semantic correspondences f between attributes Ā
in the source and attribute B in the target, the search is extended to generate appropriate
mapping expressions which also include the λ operator (Figure 4).

For the purpose of searching for mapping expressions, λ expressions are treated just
like any of the other operators. During search all that needs to be checked is that the
applications of functions are well-typed. The system does not need any special semantic
knowledge about the symbols in F; they are treated simply as “black boxes” during
search. The actual “meaning” of a function f is retrieved during the execution of the
mapping expression on a particular database instance, perhaps maintained as a stored
procedure. Apart from what can be captured in search heuristics, this is probably the
best that can be hoped for in general semantic integration. That is, all data semantics
from some external sources of domain knowledge must be either encapsulated in the
functions f or somehow introduced into the search mechanism, for example via search
heuristics.

This highlights a clear separation between semantic functions which interpret the
symbols in the database, such as during the application of functions in F, and syntactic,
structural transformations, such as those supported by generic languages like L. This
separation also extends to a separation of labor in data mapping discovery: discovering
particular complex semantic functions and generating executable data mapping expres-
sions are treated as two separate issues in TUPELO.

Discovering complex semantic functions is a difficult research challenge. Some re-
cent efforts have been successful in automating the discovery of restricted classes of
complex functions [6, 14]. There has also been some initial research on optimization of
mapping expressions which contain executable semantic functions [4].
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Focusing on the discovery of data mapping expressions, TUPELO assumes that the
necessary complex functions between the source and target schemas have been discov-
ered and that these correspondences are articulated on the critical instance inputs to the
system (Fig. 2). These correspondences can be easily indicated by a user via a visual
interface, such as those discussed in Section 2.2. Internally, complex semantic maps
are just encoded as strings in the VALUE column of the TNF relation. This string indi-
cates the input/output type of the function, the function name, and the example function
values articulated in the input critical instance.

5 Empirical Evaluation

The TUPELO system has been fully implemented in Scheme. In this section we dis-
cuss extensive experimental evaluations of the system on a variety of synthetic and
real world data sets. Our aim in these experiments was to explore the interplay of the
IDA and RBFS algorithms with the seven heuristics described in Section 3. We found
that overall RBFS had better performance than IDA. We also found that heuristics h1,
h3, normalized Euclidean, and Cosine Similarity were the best performers on the test
data sets.

Experimental Setup. All evaluations were performed on a Pentium 4 (2.8 GHz) with
1.0 GB main memory running Gentoo Linux (kernel 2.6.11-gentoo-r9) and Chez
Scheme (v6.9c). In all experiments, the performance measure is the number of states
examined during search. We also included the performance of heuristic h0 for compar-
ison with the other heuristics. This heuristic is constant on all values (∀x, h0(x) = 0)
and hence induces brute-force blind search. Through extensive empirical evaluation of
the heuristics and search algorithms on the data sets described below, we found that the
following values for the heuristic scaling constants k give overall optimal performance:

Norm. Euclidean Cosine Sim. Levenshtein
IDA k = 7 k = 5 k = 11
RBFS k = 20 k = 24 k = 15

These constant k values were used in all experiments presented below.

5.1 Experiment 1: Schema Matching on Synthetic Data

In the first experiment, we measured the performance of IDA and RBFS using all seven
heuristics on a simple schema matching task.

Data Set. Pairs of schemas with n = 2, . . . , 32 attributes were synthetically generated
and populated with one tuple each illustrating correspondences between each schema:〈

A1
a1

,
B1
a1

〉 〈
A1 A2
a1 a2

,
B1 B2
a1 a2

〉
· · ·

〈
A1 · · · A32
a1 · · · a32 ,

B1 · · · B32
a1 · · · a32

〉
Each algorithm/heuristic combination was evaluated on generating the correct match-
ings between the schemas in each pair (i.e., A1↔B1, A2↔B2, etc.).
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Fig. 5. Number of states examined using IDA for schema matching on synthetic schemas
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Fig. 6. Number of states examined using RBFS for schema matching on synthetic schemas. Note
that the number of states examined using the normalized Euclidean and Cosine Similarity heuris-
tics were identical.

Results. The performance of IDA on this data set is presented in Fig. 5, and the per-
formance of RBFS is presented in Fig. 6. Heuristic h2 performed identically to h0, and
heuristic h3’s performance was identical to h1. Hence they are omitted in Figs 5 and 6.
RBFS had performance superior to IDA on these schemas, with the h1, Levenshtein,
normalized Euclidean, and Cosine Similarity heuristics having best performance.

5.2 Experiment 2: Schema Matching on the Deep Web

In the second experiment we measured the performance of IDA and RBFS using all
seven heuristics on a set of over 200 real-world query schemas extracted from deep
web data sources [5].

Data Set. The Books, Automobiles, Music, and Movies (BAMM) data set from the
UIUC Web Integration Repository1 contains 55, 55, 49, and 52 schemas from deep web
query interfaces in the Books, Automobiles, Music, and Movies domains, respectively.
The schemes each have between 1 and 8 attributes. In this experiment, we populated

1 http://metaquerier.cs.uiuc.edu/repository, last viewed 26 Sept 2005.
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the schemas of each domain with critical instances. We then measured the average cost
of mapping from a fixed schema in each domain to each of the other schemas in that
domain.
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Fig. 7. Average number of states examined for mapping discovery in the four BAMM Domains
using (a) IDA and (b) RBFS
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Fig. 8. Average number of states examined for mapping discovery across all BAMM domains

Results. The average performance of IDA on each of the BAMM domains is presented
in Fig. 7 (a). Average RBFS performance on each of the BAMM domains is given in
Fig. 7 (b). The average performance of both algorithms across all BAMM domains
is given in Fig. 8. We found that RBFS typically examined fewer states on these do-
mains than did IDA. Overall, we also found that the Cosine Similarity and normalized
Euclidean heuristics had the best performance.

5.3 Experiment 3: Real World Complex Semantic Mapping

In the third experiment we evaluated the performance of TUPELO on discovering com-
plex semantic mapping expressions for real world data sets in the real estate and
business inventory domains.
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Data Set. We measured performance of complex semantic mapping with the schemas
for the Inventory and Real Estate II data sets from the Illinois Semantic Integration
Archive.2 In the Inventory domain there are 10 complex semantic mappings between the
source and target schemas, and in the Real Estate II domain there are 12. We populated
each source-target schema pair with critical instances built from the provided datasets.

Results. The performance on both domains was essentially the same, so we present the
results for the Inventory schemas. The number of states examined for mapping discovery
in this domain for increasing numbers of complex semantic functions is given in Fig. 9.
On this data, we found that RBFS and IDA had similar performance. For the heuristics,
the best performance was obtained by the h1, h3 and cosine similarity heuristics.
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Fig. 9. Number of states for complex semantic mapping discovery in the Inventory domain using
(a) IDA and (b) RBFS

5.4 Discussion of Results

The goal of the experiments discussed in this section was to measure the performance
of TUPELO on a wide variety of schemas. We found that TUPELO was effective for dis-
covering mapping expressions in each of these domains, even with the simple heuristic
search algorithms IDA and RBFS. It is clear from these experiments that RBFS is in
general a more effective search algorithm than IDA. Although we found that heuristic
h1 exhibited consistently good performance, it is also clear that there was no perfect
all-purpose search heuristic. TUPELO has also been validated and shown effective for
examples involving the data-metadata restructurings illustrated in Fig. 1 [11]. It was
found in that domain that no particular heuristic had consistently superior performance.
We can conclude from these observations that work still needs to be done on developing
more intelligent search heuristics.

6 Related Work

The problem of overcoming structural and semantic heterogeneity has a long history
in the database [8] and Artificial Intelligence [29] research communities. In Section 1

2 http://anhai.cs.uiuc.edu/archive/, last viewed 26 Sept 2005.
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we have already situated TUPELO in the general research landscape of the data map-
ping problem. We now briefly highlight related research not discussed elsewhere in the
paper:

– Schema Matching. A wide variety of existing systems have leveraged Artificial
Intelligence techniques for solving different aspects of schema matching and map-
ping. These include neural networks, Bayesian learning, and genetic programming
approaches [7, 22, 27, 33]. The TUPELO view on data mapping as search comple-
ments this body of research; this view also complements the characterization of
schema matching as constraint satisfaction proposed by Smiljanic et al. [35].

– Data-Metadata Transformations. Few data mapping systems have considered the
data-metadata structural transformations used in the TUPELO mapping language
L. Systems that have considered some aspects of these transformations include
[6, 9, 26].

– Example-Driven Data Mapping. The notion of example-based data mapping is
an ancient idea, by some accounts dating back to the 4th century [30]. Recent
work most closely related to the example driven approach of TUPELO include
[21, 30, 33].

– Executable Mapping Expressions. Most schema matching systems do not address
the issue of generating executable mapping expressions, which is in general con-
sidered to be an open hard problem [24]. Several notable systems that do generate
such expressions include [1, 25, 26, 33].

TUPELO complements and extends this research by (1) attacking the data mapping
problem as a basic search problem in a state space and by (2) addressing a broader class
of mapping expressions including data-metadata transformations and complex seman-
tics functions. We have also initiated a formal investigation of various aspects of the
data mapping problem for relational data sources [12].

7 Conclusions and Future Work

In this paper we presented and illustrated the effectiveness of the TUPELO system for
discovering data mapping expressions between relational data sources. Novel aspects
of the system include (1) example-driven generation of mapping expressions which in-
clude data-metadata structural transformations and complex semantic mappings and (2)
viewing the data mapping problem as fundamentally a sarch problem in a well de-
fined search space. Mapping discovery is performed in TUPELO using only the syntax
and structure of the input examples without recourse to any domain-specific seman-
tic knowledge. The implementation of TUPELO was described and the viability of the
approach illustrated on a variety of synthetic and real world schemas.

There are several promising avenues for future work on TUPELO. As is evident from
the empirical evaluation presented in Section 5, further research remains on developing
more sophisticated search heuristics. The Levenshtein, Euclidean, and Cosine Simi-
larity based search heuristics mostly focus on the content of database states. Successful
heuristics must measure both content and structure. Is there a good multi-purpose search
heuristic? Also, we have only applied straightforward approaches to search with the
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IDA and RBFS algorithms. Further investigation of search techniques developed in the
AI literature is warranted. Finally, the perspective of data mapping as search is not lim-
ited to relational data sources. In particular, the architecture of the TUPELO system can
be applied to the generation of mapping expressions in other mapping languages and
for other data models. Based on the viability of the system for relational data sources,
this is a very promising area for future research.

Acknowledgments. We thank the Indiana University database group, Alexander Bilke,
Jan Van den Bussche, and Robert Warren for their helpful feedback and support.

References

1. Bernstein, Philip A., et al. Interactive Schema Translation with Instance-Level Mappings
(System Demo). Proc. VLDB Conf., pp. 1283-1286, Trondheim, Norway, 2005.

2. Bilke, Alexander and Felix Naumann. Schema Matching using Duplicates. Proc. IEEE
ICDE, pp. 69-80, Tokyo, Japan, 2005.

3. Bossung, Sebastian, et al. Automated Data Mapping Specification via Schema Heuristics and
User Interaction. Proc. IEEE/ACM ASE, pp. 208-217, Linz, Austria, 2004.

4. Carreira, Paulo and Helena Galhardas. Execution of Data Mappers. Proc. ACM SIGMOD
Workshop IQIS, pp. 2-9, Paris, France, 2004.

5. Chang, K. C.-C., B. He, C. Li, M. Patel, and Z. Zhang. Structured Databases on the Web:
Observations and Implications. SIGMOD Record, 33(3):61-70, 2004.

6. Dhamankar, Robin, et al. iMAP: Discovering Complex Semantic Matches between Database
Schemas. Proc. ACM SIGMOD, pp. 383-394, Paris, France, 2004.

7. Doan, AnHai, Pedro Domingos, and Alon Halevy. Learning to Match the Schemas of Data-
bases: A Multistrategy Approach. Machine Learning 50(3):279-301, 2003.

8. Doan, A., N. Noy, and A. Halevy (Eds). Special Section on Semantic Integration. SIGMOD
Record 33(4), 2004.

9. Embley, D. W., L. Xu, and Y. Ding. Automatic Direct and Indirect Schema Mapping: Expe-
riences and Lessons Learned. In [8], pp.14-19.

10. Euzenat, Jérôme et al. State of the Art on Ontology Alignment. Tech. Report D2.2.3, IST
Knowledge Web NoE, 2004.

11. Fletcher, George H.L. and Catharine M. Wyss. Mapping Between Data Sources on the Web.
Proc. IEEE ICDE Workshop WIRI, Tokyo, Japan, 2005.

12. Fletcher, George H.L., et al. A Calculus for Data Mapping. Proc. COORDINATION Work-
shop InterDB, Namur, Belgium, 2005.

13. Gottlob, Georg, et al. The Lixto Data Extraction Project – Back and Forth between Theory
and Practice. Proc. ACM PODS, pp. 1-12, Paris, France, 2004.

14. He, Bin, et al. Discovering Complex Matchings Across Web Query Interfaces: A Correlation
Mining Approach. Proc. ACM KDD, 2004.

15. Ives, Zachary G., Alon Y. Halevy, Peter Mork, and Igor Tatarinov. Piazza: Mediation and
Integration Infrastructure for Semantic Web Data. J. Web Sem. 1(2):155-175, 2004.

16. Kang, Jaewoo and Jeffrey F. Naughton. On Schema Matching with Opaque Column Names
and Data Values. Proc. ACM SIGMOD, pp. 205-216, San Diego, CA, 2003.

17. Kolaitis, Phokion G. Schema Mappings, Data Exchange, and Metadata Management.
Proc. ACM PODS, pp. 61-75, Baltimore, MD, USA, 2005.

18. Krishnamurthy, Ravi, et al. Language Features for Interoperability of Databases with
Schematic Discrepancies. Proc. ACM SIGMOD, pp. 40-49, Denver, CO, USA, 1991.



Data Mapping as Search 111

19. Lenzerini, Maurizio. Data Integration: A Theoretical Perspective. Proc. ACM PODS,
pp. 233-246, Madison, WI, 2002.

20. Levenshtein, Vladimir I. Binary codes capable of correcting deletions, insertions, and rever-
sals. Doklady Akademii Nauk SSSR 163(4):845-848, 1965.

21. Levy, A.Y., and J.J. Ordille. An Experiment in Integrating Internet Information Sources.
Proc. AAAI Fall Symp. AI Apps. Knowl. Nav. Ret., pp. 92-96, Cambridge, MA, USA, 1995.

22. Li, Wen-Syan and Chris Clifton. SEMINT: A Tool for Identifying Attribute Correspondences
in Heterogeneous Databases Using Neural Networks. Data Knowl. Eng. 33(1):49-84, 2000.

23. Litwin, Witold, Mohammad A. Ketabchi, and Ravi Krishnamurthy. First Order Normal Form
for Relational Databases and Multidatabases. SIGMOD Record 20(4):74-76, 1991.

24. Melnik, Sergey. Generic Model Management: Concepts and Algorithms, LNCS 2967.
Springer Verlag, Berlin, 2004.

25. Melnik, Sergey, et al. Supporting Executable Mappings in Model Management. Proc. ACM
SIGMOD, Baltimore, MD, USA, 2005.

26. Miller, Renée J., Laura M. Haas, and Mauricio A. Hernández. Schema Mapping as Query
Discovery, Proc. VLDB Conf., pp. 77-88, Cairo, Egypt, 2000.

27. Morishima, Atsuyuki, et al. A Machine Learning Approach to Rapid Development of XML
Mapping Queries. Proc. IEEE ICDE, pp.276-287, Boston, MA, USA, 2004.

28. Nilsson, Nils J. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco,
1998.

29. Noy, N.F., A. Doan, and A.Y. Halevy (Eds). Special Issue on Semantic Integration. AI Mag-
azine 26(1), 2005.

30. Perkowitz, Mike and Oren Etzioni. Category Translation: Learning to Understand Informa-
tion on the Internet. Proc. IJCAI, pp. 930-938, Montréal, Canada, 1995.
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Abstract. Skyline queries help users make intelligent decisions over complex
data, where different and often conflicting criteria are considered. Current skyline
computation methods are restricted to centralized query processors, limiting scal-
ability and imposing a single point of failure. In this paper, we address the prob-
lem of parallelizing skyline query execution over a large number of machines by
leveraging content-based data partitioning. We present a novel distributed skyline
query processing algorithm (DSL) that discovers skyline points progressively. We
propose two mechanisms, recursive region partitioning and dynamic region en-
coding, to enforce a partial order on query propagation in order to pipeline query
execution. Our analysis shows that DSL is optimal in terms of the total num-
ber of local query invocations across all machines. In addition, simulations and
measurements of a deployed system show that our system load balances com-
munication and processing costs across cluster machines, providing incremental
scalability and significant performance improvement over alternative distribution
mechanisms.

1 Introduction

Today’s computing infrastructure makes a large amount of information available to con-
sumers, creating an information overload that threatens to overwhelm Internet users.
Individuals are often confronted with conflicting goals while making decisions based
on extremely large and complex data sets. Users often want to optimize their decision-
making and selection criteria across multiple attributes. For example, a user browsing
through a real-estate database for houses may want to minimize the price and maximize
the quality of neighborhood schools. Given such a multi-preference criteria, the system
should be able to identify all potentially “interesting” data records. Skyline queries pro-
vide a viable solution by finding data records not “dominated” by other records in the
system, where data record x dominates y if x is no worse than y in any dimension of
interest, and better in at least one dimension. Records or objects on the skyline are “the
best” under some monotonic preference functions1.

A more general variant is the constrained skyline query [19], where users want to find
skyline points within a subset of records that satisfies multiple “hard” constraints. For
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1 Without loss of generality, we assume in this paper that users prefer the minimum value on all
interested dimensions.
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example, a user may only be interested in car records within the price range of $10,000
to $15,000 and mileage between 50K and 100K miles. The discussion hereafter focuses
on this generalized form of the skyline query.

Until recently, Skyline query processing and other online analytical processing
(OLAP) applications have been limited to large centralized servers. As a platform, these
servers are expensive, hard to upgrade, and provide a central point of failure. Previous
research has shown common-off-the-shelf (COTS) cluster-based computing to be an
effective alternative to high-end servers [3], a fact confirmed by benchmarks [4] and
deployment in large query systems such as Google [6]. In addition, skyline queries
are especially useful in the context of Web information services where user preference
plays an important role. Integrating structured data from a large number of data sources,
those services [2] help Web surfers formulate “structured” queries over large data sets
and typically process considerable query load during peak hours. For these Web ser-
vices, a scalable distributed/parallel approach can significantly reduce processing time,
and eliminate high query load during peak hours.

Our paper is the first to address the problem of parallelizing progressive skyline
queries on a share-nothing architecture. This paper makes four key contributions. First,
we present a recursive region partitioning algorithm and a dynamic region encoding
method. These methods enforce the skyline partial order so that the system pipelines
participating machines during query execution and minimizes inter-machine communi-
cation. As a query propagates, our system prunes data regions and corresponding ma-
chines for efficiency, and progressively generates partial results for the user. In addition,
we propose a “random sampling” based approach to perform fine-grain load balancing
in DSL. Next, we perform analysis to show that our approach is optimal in minimizing
number of local query invocations across all machines. Finally, we describe the clus-
ter deployment of a full implementation on top of the CAN [21] content distribution
network, and present thorough evaluations of its bandwidth, scalability, load balancing
and response time characteristics under varying system conditions. Results show DSL
clearly outperforms alternative distribution mechanisms.

The rest of the paper is organized as follows: Section 2 describes our design goals as
well as two simple algorithms for distributed skyline calculation. We present our core
algorithm (DSL) in Section 3. In Section 4, we address the query load-balancing prob-
lem in DSL. We then evaluate our system via simulation and empirical measurements
in Section 5. Finally, we present related work in Section 6 and conclude in Section 7.

2 Design Goals and Proposals

In this section, we describe our design goals for parallel/distributed skyline query process-
ing algorithms. We then present two simple solutions and discuss their limitations.

2.1 Goals

In addition to basic requirements for skyline processing, we describe three design goals
for a distributed skyline algorithm. 1) Progressiveness. Similar to the requirements for
centralized solutions [17], a distributed algorithm should be able to progressively pro-
duce the result points to the user: i.e., the system should return partial results
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immediately without scanning the entire data set. Progressiveness in a distributed set-
ting further requires that results be returned without involving all the nodes in the sys-
tem. This eliminates the need for a centralized point for result aggregation. 2) Scala-
bility. Incremental scalability is the primary goal for our system. In order to scale to
a large number of participant machines, we require that internode communication be
minimized, and processing load should be spread evenly across all nodes. It should
also be easy to add more nodes into the system to handle increased data volume and/or
heavier query load. 3) Flexibility. Our goal for flexibility has two components. First, the
system should support constrained skyline queries, and find skyline records in arbitrar-
ily specified query ranges during the runtime. Second, the distributed algorithm should
not impose any restrictions on the local implementation on each machine, thus allowing
easy incorporation of “state of the art” centralized skyline solutions.

2.2 Simple Solutions

In this section, we discuss two simple approaches towards distributing data and query
processing across multiple machines. We analyze both proposals according to our stated
goals.

Naive partitioning. One simple approach is to partition data records randomly across
all machines, and to contact all nodes to process each query. Each node calculates a
result set from local data, and all result sets are merged at a centralized node. To reduce
congestion, we can organize the nodes into a multi-level hierarchy where intermediate
nodes aggregate result sets from children nodes. We call this approach the naive method.

While easy to implement, this approach has several drawbacks. First, each query
must be processed by all nodes even if the query range is very small, resulting in sig-
nificant unnecessary computation. Second, most data points transmitted across the net-
work are not in the final skyline, resulting in significant waste in bandwidth. Finally, this
method is not progressive, since the final result set cannot be reported until all the nodes
have finished their local computations. Note that using locally progressive algorithms
does not produce globally progressive results.

(a) (b)

Fig. 1. (a) CAN multicast-based Method with in-network pruning. (b) Observation: partial order
between nodes.
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CAN Multicast. An improved algorithm utilizes the notion of content-based data parti-
tioning. Specifically, we normalize the entire data space and directly map it to a virtual
coordinate space. Each participating machine is also mapped into the same coordinate
space and is responsible for a specific portion of that space. Then every machine stores
all the data points that fall into its space. During query processing, a multicast tree is
built to connect together all nodes overlapping with the query range, with the root at
the node that hosts the bottom-left point of the query range2. The query propagates
down the tree, nodes perform local computation, and result sets are aggregated up back
to the root. Ineligible data points are discarded along the path to preserve bandwidth.
Figure 1(a) illustrates how the tree is dynamically built at query time. Node 3 hosts
the bottom-left point of the query range ((0.3, 0.3),(0.9, 0.9)), and acts as the multicast
tree root. In this paper, we implement the content-based data partitioning scheme by
leveraging the existing code base of the CAN [21] content distribution network. There-
fore we call this approach the CAN-multicast method. While the following discussion
is based on the CAN overlay network, our solutions do not rely on the specific features
of the CAN network such as decentralized routing and are thus applicable to general
cases of content-based data partition as well.

The CAN-multicast method explicitly places data so that constrained skyline queries
only access the nodes that host the data within the query range. This prunes a signifi-
cant portion of unnecessary data processing, especially for constrained skyline queries
within a small range. However, its nodes within the query box still behave the same
as those in the naive method. Thus it shares the bandwidth and non-progressiveness
drawbacks.

3 Progressive Distributed Skylines

In this section, we begin by making observations from exploring the simple methods
described in the last section. Based on these observations, we propose our progressive
skyline query processing algorithm (DSL) and show the analytical results regarding its
behavior.

3.1 Observations

Our progressive algorithm derives from several observations. Using the CAN multicast
method, no result can be reported until results from all nodes in the query range are
considered. We note that this strategy can be optimized by leveraging content-based
data placement. Skyline results from certain nodes are guaranteed to be part of the
final skyline, and can be reported immediately. For example, in Figure 1(a), no data
points from other nodes can dominate those from node 3, and node 3 can reports its
local results immediately. Meanwhile, node 8’s calculations must wait for results from
3 and 4, since its data points can be dominated by those two nodes. On the other hand,
data points in nodes 4 and 2 are mutually independent from a skyline perspective; that
is, no points from node 2 can dominate points in node 4 and vice versa. Therefore, their

2 The choice of the root will not impact the final result set as long as all the nodes in the query
range are covered by the tree.
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calculations can proceed in parallel. We summarize this observation as: any node in
the virtual CAN space can decide whether its local skyline points are in the final result
set or not by only consulting a subset of all the other nodes within the query range
(Observation 1).

Based on the Observation 1, we visualize the computational dependency between
nodes in Figure 1(b). Each edge in the graph captures the precedence relationship be-
tween CAN nodes. During query propagation, skyline points must be evaluated at all
“upstream” nodes before “downstream” nodes can proceed. Based on this, we also ob-
serve that with skyline values from upstream nodes, some nodes within the query region
do not need to execute the query(Observation 2). For example, in Figure 1(a), any sky-
line point from node 3 means that the query execution on nodes 5, 6, 9 and 10 should
be skipped. In Theorem 4, our solution is proven to be optimal inthis sense.

3.2 Partial Orders over Data Partitions

We now formalize the notion of partial order over data partitions. According to CAN
terminology, we call each data partition a zone in the CAN virtual space. Let Qab

be a d-dimensional query region in CAN space; a(a1, a2, ..., ad), b(b1, b2, ..., bd) be
the bottom-left and top-right points, respectively. The master node of Qab, denoted as
M(Qab), is the CAN node whose zone contains the point a (e.g. Node 3 is the master
node in Figure 1(a)).

Let point x(x1, x2, ..., xd) be the top-right point of M(Qab)’s CAN zone (e.g. point
(0.5,0.5) in Figure 1(a)). M(Qab) partitions the query region Qab as follows: for each
dimension i(1 ≤ i ≤ d), if xi < bi, M(Qab) partitions Qab into two halves on di-
mension i: namely the upper interval [xi, bi] and the lower interval [ai, xi]; if xi ≥ bi,
the partition will not occur on this dimension since M(Qab) “covers” Qab on dimen-
sion i. Thus, M(Qab) divides the query space Qab into at most 2d subregions (e.g., the
query region in Figure 1(a) is partitioned into 4 subregions by node 3). We denote all the
subregions resulting from the partition as the region set RS(Qab) and |RS(Qab)| ≤ 2d.

Example 1. Figure 2 shows all four possibilities for region partitioning on a 2-d CAN
space. a, b determine the query box Qab and x represents the top-right point of
M(Qab)’s zone. In (a), RS(Qab) contains 4 subregions (denoted as r0, r1, r2, r3) since
x falls inside the query box and both dimensions are split. In (b) and (c), only one
dimension is divided since x is greater than b in at least one dimension. Therefore,
RS(Qab) contains 2 subregions (denoted as r0, r1) in both cases. Finally, in (d), the
zone of M(Qab) covers the entire query space (on both dimensions), and no partition-
ing occurs. �
Given a query region Qab and its master node’s zone, the region partitioning process
as well as its resulting region set RS(Qab) can be uniquely determined. It is important
to note that the region partitioning process is dynamically determined, depending on 1)
query region Qab of the current skyline query; 2) the CAN zone of the node M(Qab)
containing the virtual coordinate a. Furthermore, since there does not exist a “global”
oracle in a distributed setting and each node only sees its own zone, this process is exe-
cuted at the master node M(Qab). Next we define a partial order relation on RS(Qab).



Parallelizing Skyline Queries for Scalable Distribution 117

(a) (b) (c) (d)

Fig. 2. Region partitions on 2-d CAN space

Definition 1. (Skyline Dependent, �): Relation “Skyline Dependent, �” is a rela-
tion over Region Set RS(Qab): region ri is “Skyline Dependent” on region rj , i.f.f.
∃p(p1, p2, ..., pd) ∈ ri, ∃q(q1, q2, ..., qd) ∈ rj , s.t. ∀k, 1 ≤ k ≤ d, qk ≤ pk, i.e., q
“dominates” p.

Example 2. In Figure 2(a), there are four subregions resulting from the partition of the
query region Qab. Specifically, RS(Qab) = {r0, r1, r2, r3}. And according to Defini-
tion , r1 � r0, r2 � r0, r3 � r0, r3 � r1 and r3 � r2.

Theorem 1. “Skyline Dependent,�” is a reflexive, asymmetric, and transitive relation
over RS(Qab), and thus it defines a partial order over the region set RS(Qab).

Proof. It is straightforward to show the reflectivity and transitivity of “Skyline Depen-
dent”. Asymmetry can be derived by the fact that all the subregions resulting from the
region partitioning process are convex polygons. �
Intuitively, for each incoming query, if we can control the system computation flow to
strictly satisfy the above partial order, then we can produce skyline results progressively.
Hence nodes in a region would not be queried until they see the results from all “Skyline
Dependent” regions. The reason for this is that with the aid of the partial order between
regions, the local skyline on each participant node is only affected by the data in its
“Skyline Dependent” regions, i.e. each region is able to determine its final result based
only on the data from its “Skyline Dependent” regions and its own data records. This
exactly captures our previous two observations.

3.3 Dynamic Region Partitioning and Encoding

We still face two remaining challenges. The first challenge involves generalizing the
above approach to the case where subregions are distributed over multiple CAN zones.
We call this the Resolution Mismatch Problem. We address this challenge with a Recur-
sive Region Partitioning technique. Specifically, for a query range Qab, for each subre-
gions in RS(Qab) resulting from a region partitioning based on master node M(Qab), the
same region partitioning process is carried out recursively. Since after one region parti-
tioning, at least the bottom-left subregion r0 is entirely covered by the zone of M(Qab),
we can resolve one part of the region Qab at each step. Consequently, this recursive
process will terminate when the entire query region is partitioned and matches the un-
derlying CAN zones. Figure 3(a) shows that for the query range ((0.3,0.3),(0.9,0.9)), in
total, region partitioning process is invoked three times on node 3, 2, and 6 sequentially
until each of the resulting subregions is covered exactly by one CAN zone.
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Algorithm 1. Successor Calculation

1: Qab: the “parent” region of rcd;
2: rcd: a region ∈ RS(Qab);
3: ID(rcd): the code of rcd;
4: succ(rcd): successors of region rcd;
5: succ(rcd) ←− Ø; //Initialization
6: foreach i,s.t. ID(rcd)[i]== ’0’
7: begin
8: oneSucessor.code[i] ←− ’1’; // flip one ’0’ bit to ’1’
9: oneSucessor.region[i] ←−(d[i],b[i] ); // Set the corresponding region interval to the “upper

interval”
10: succ(rcd) ←− succ(ri) oneSuccessor;
11: end
12: Return succ(rcd);
13: END

The second challenge that naturally arises is that the query range for a constrained
skyline query is only given at query time. The recursive region partitioning and the
partial order information are also computed at query time, since they are completely
dependent on the query range. In order to enforce the partial order during the query
propagation in a distributed setting, the master nodes in the subregions should know
the predecessors they need to hear from before their own regions are activated, as well
as their successive regions that it should trigger upon its own completion. Below, we
present a dynamic region encoding scheme to capture this “context” information during
the query processing time. In our solution, once a node receives its code from one of its
predecessors, it obtains all the necessary information to behave correctly.

Definition 2. (Dynamic Region Encoding) Given query region Qab, let x be the top-
right point of master node M(Qab)’s CAN zone. For each d-dimensional region r ∈
RS(Qab), we assign a d-digit code ID(r) to region r. where ID(r)[i] equals to ‘0’ if
the interval of r on the ith dimension = [ai, xi]; ID(r)[i] = ‘1’ if the interval of r on
the ith dimension = [xi, bi]; ID(r)[i] = ‘*’ if during the region partition the original
interval on ith dimension is not divided.

Informally, the ith digit of ID(r) encodes whether r takes on the “lower half” (‘0’),
the “upper half” (‘1’) or the “original interval” (‘*’) as the result of the corresponding
region partitioning. Based on this region coding scheme, we define a “Skyline Precede”
relation as follows:

Definition 3. (Skyline Precede, ≺) Relation “Skyline Precede” (≺) is a relation over
region set RS(Qab): region ri “Skyline Precede” rj , or ri ≺ rj , i.f.f. code ID(ri)
differs from ID(rj) in only one bit, say, the kth bit, where ID(ri)[k] = ‘0′ and
ID(rj)[k] = ‘1′. We denote pred(ri) as the set containing all the regions that “Sky-
line Precede” ri, and succ(ri) as the set containing all the regions that ri “Skyline
Precede”.

“Skyline Precede” precisely defines the order in which a distributed skyline query
should be propagated and executed. In Algorithm 1 we describe how a specific



Parallelizing Skyline Queries for Scalable Distribution 119

(a) (b)

Fig. 3. (a) Finding the skyline points in range ((0.3,0.3),(0.9,0.9)). In total, region partitioning
operation happens 3 times. (b) The query propagation order according to DSL.

region rcd calculates its successor set succ(rcd) in RS(Qab) based on its code ID(rcd)
(pred(rcd) is computed analogously). Basically, each successor is generated by flipping
one single ‘0’ bit to ‘1’ (line 8) and adjust the region interval on that dimension to
the “upper interval” accordingly (line 9). Therefore, the query coordinates a, b of
region Qab, and c, d (its own region rcd) and code ID(rcd) are all the information that
needs to be sent for correct query propagation. Figure 3(a) illustrates the region codes
and the “Skyline Precede” relationship on a 2-d CAN network given the initial query
range ((0.3,0.3),(0.9,0.9)). For example, node 5 is given code ‘10’, its own query region
((0.5, 0.3),(0.9,0.5)), the whole query region ((0.3,0.3),(0.9,0.9)), it flips the ‘0’ bit to
‘1’ and adjust the y-interval from (0.3,0.5) to (0.5,0.9) and get its only successor region
((0.5,0.5), (0.9,0.9)) with code ‘11’.

The relationship between “Skyline Dependent,�” and “Skyline precede, ≺” is de-
scribed by Lemma 1. Lemma 1 guarantees that, if we enforce that the query propagation
follows the “Skyline Precede,≺” relation, by the time a region starts, all and only its
“Skyline Dependent,�” regions are completed.

Lemma 1. For any two region ri and rj (ri, rj ∈ RS(Qab)), ri � rj , i.f.f. there exists
a sequence of regions, s.t.:rj ≺ rj+1... ≺ ri−1 ≺ ri.

Proof. According to Definition 2, in order for region ri to be Skyline Dependent on
region rj , for those bits in which ID(ri) differs from code ID(rj), ID(ri) must be
‘1’ and ID(rj) must be ‘0’. This, together with Definition 3, ensures the correctness of
Lemma 1. �

3.4 Algorithm Description

Now we present our system for Distributed SkyLine query, or DSL. We assume that the
data is injected into the system either by feeds from merchant’s product databases [1]
or from a Web database crawler that “pulls” structured data records from external Web
sources [24]. The data space is normalized to [0, 1] on each dimension and every data
object is stored at the corresponding CAN node. Starting from the global query region,
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Algorithm 2. Distributed Skyline(DSL) Computation
1: Qcd: current region to evaluate; Qab: the “parent” region of Qcd

2: ID(Qcd): region code for Qcd; skyline: skyline results from upstream regions;
3: M(Qcd): master node of Qcd;
4:
5: QUERY(Qcd, Qab, ID(Qcd), skyline)
6: Procedure
7: calculate predecessor set pred(Qcd) and successor set succ(Qcd);
8: if all regions in pred(Qcd) are completed then
9: if skyline dominates Qcd then

10: M(Qcd).COMPLETE();
11: end if
12: localresults ←− M(Qcd).CalculateLocalSkyline(skyline, Qcd);
13: skyline ←− skyline ∪ localresults;
14: if M(Qcd).zone covers Qcd then
15: M(Qcd).COMPLETE();
16: else
17: M(Qcd) partitions Qcd into RS(Qcd);
18: foreach successor Qgh in RS(Qcd)
19: M(Qgh).QUERY(Qgh,Qcd,ID(Qgh),skyline);
20: end if
21: end if
22: End Procedure
23:
24: COMPLETE()
25: Procedure
26: if succ(Qcd) equals to NULL then
27: M(Qab).COMPLETE();
28: else
29: foreach successor Qef in succ(Qcd)
30: M(Qef ).QUERY(Qef , Qab, ID(Qef ), skyline);
31: end if
32: End Procedure

DSL recursively applies the region partitioning process to match the underlying CAN
zones and the query propagation between the resulting subregions strictly complies with
the “Skyline Precede” relationship which is enforced using dynamic region coding.

On each node involved, the DSL computation is composed of two asynchronous
procedures: QUERY and COMPLETE. These two procedures are described in Algo-
rithm 2. To activate a subregion Qcd of Qab, a query message q is routed towards point c
in the CAN virtual space using the CAN overlay routing mechanism. The node hosting c
becomes the master node of the region, or M(Qcd). Upon receiving q, the QUERY pro-
cedure on M(Qcd) is invoked. DSL’s QUERY procedure on M(Qcd) will be provided
4 parameters: 1) its region code ID(Qcd); 2) its own query region Qcd; 3) the skyline
point set skyline discovered from its “upstream” regions and 4) its “parent” query re-
gion Qab. Using this information, M(Qcd) is able to calculate its position in the parent
query region Qab, i.e. its immediate predecessors pred(Qcd) (line 9) and successors
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succ(Qcd) (line 10). M(Qcd) starts computation on its own query region Qcd only
after hearing from all its predecessors in pred(Qcd) (line 11). M(Qcd) first checks
whether its own zone covers region Qcd or whether Qcd has already been dominated
by “upstream” skyline points in skyline (line 14). If either is positive, M(Qcd) will
not further partition its query region Qcd and just directly call its local COMPLETE
procedure meaning it finishes evaluating the region Qcd (line 15). Otherwise it re-
cursively partitions Qcd into a new region set RS(Qcd) (line 17), in which M(Qcd)
is responsible for the “first” subregion. For each successive region Qgh in the new re-
gion set of RS(Qcd), M(Qcd) activates Qgh’s QUERY procedure by routing a query
message q′ to the corresponding bottom-left virtual point g (line 18-19).

In COMPLETE procedure, M(Qcd) proceeds with the computation by invoking the
QUERY procedures on its successors in succ(Qcd)(line 29-30). If Qcd happens to
be the last subregion in region set RS(Qab), i.e. set succ(Qcd) contains no successive
regions, M(Qcd) will pass the control back to the master node M(Qab) of its “parent”
region Qab and invokes the COMPLETE procedure on M(Qab)(line 27), i.e. the
recursion “rebounds”. The entire computation terminates if the COMPLETE procedure
on the master node of the global query region is invoked.

Figure 3(a) shows the recursive region partitioning process and its corresponding re-
gion codes of a constrained skyline query with initial query range ((0.3, 0.3),
(0.9, 0.9)). Figure 3(b) illustrates the actual query propagation order between machines
according to DSL.

Theorem 2. (Correctness and Progressiveness): For any constrained skyline query,
DSL described above can progressively find all and only the correct skyline points in
the system.

3.5 Algorithm Analysis

In this subsection, we present two analytical results. First, in Theorem 3, we show DSL’s
bandwidth behavior, which measures the inter-machine communication overhead and
is critical for the system scalability. Then we show in Theorem 4 DSL’s optimality in
terms of the total number of local skyline query invocation on each participating ma-
chine, which measures the I/O overhead and is important for its response time perfor-
mance. We omit the proof here, please refer to a forthcoming technical report version
for complete proofs.

Theorem 3. (Bandwidth Behavior): In DSL, only the data tuples in the final answer set
may be transmitted across machines.

Theorem 4. (Optimality): For a given data partitioning strategy, the total number of
local skyline query invocations in DSL is minimized.

4 Load Balancing

Load balancing plays an important role in the performance of any practical distributed
query system. Some data storage load balancing techniques are described in [12], and
specific data load balancing work for CAN-based systems can be found in [14]. This
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paper focuses only on addressing the query load imbalance issue inherent in DSL. We
assume that compared to local query processing involving disk I/O, control messages
consume negligible amounts of system resources. Therefore, our goal is to balance the
number of local skyline queries processed on each node.

4.1 Query Load Imbalance in DSL

Our DSL solution leads to a natural query load imbalance. In DSL, query propagation
always starts from the bottom-left part of the query box. An intermediate master node
will not split its region if the region is dominated by “upstream” skyline points. When
the region split does not take place, all nodes inside the region other than the master
node will be left untouched which causes query load imbalance. Intuitively, for a given
query range, nodes from the top-right regions are less likely to be queried than their “up-
stream” counterparts. In addition, real world query loads are more likely to be skewed,
i.e. some query ranges are far more popular than others, which may further exacerbate
this problem.

(a) original load distribu-
tion(independent and anticorre-
lated; random query)

(b) after zone replication (inde-
pendent and anti-correlated; ran-
dom query)

Fig. 4. Query Load Visualization

Figure 4(a) visualizes the original query load in a 2-d CAN space without load bal-
ancing. The darkness level of each zone represents the number of times a local skyline
calculation is invoked on the corresponding node. The darker a zone appears, the heav-
ier its load. We use independent as well as anti-correlated data sets, both with cardinality
of 1 million on a 5000 node system. The workload consists of 1000 constrained sky-
line queries with randomly generated query ranges (For more about experiment setting,
please see Section 5). We see in Figure 4(a) that the query load exhibits strong imbal-
ance among nodes with zones at the bottom-left corner being much heavier loaded.

4.2 Dynamic Zone Replication

To address the load imbalance problem, we propose a dynamic zone replication scheme.
Our proposal is similar to the approach used in [26], but is tailored specifically to ad-
dress the load imbalance in DSL.

Specifically, each node pi in the system periodically generates m random points in
the d dimensional CAN space. We set m equal to 10 by default. pi routes probes to
these points to ask for the query load at the local node. After obtaining all the replies, pi

compares its own load with the “random” probes. pi will only initiate the zone replica-
tion process when its load is heavier than some threshold T of all samples. T is a system
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parameter set to 0.5 by default. In zone replication, pi sends a copy of its zone contents
to the least loaded node pmin in the sample set, and records pmin’s virtual coordinates
in its replicationlist.

If a node has performed zone replication, local query processing adjusts to take ad-
vantage. When calculating a local skyline query, pi picks a virtual coordinate vj from
its replicationlist in a round-robin fashion. Then pi forwards the query to the node
pj responsible for vj for actual processing. To avoid unnecessary load probing mes-
sages, we set the probing interval proportional to the rank of node’s query load in its
latest samples. By doing so, lightly loaded machines probe less frequently while nodes
in heavily loaded zones probe and distribute their load more aggressively. Figure 4(b)
visualizes the system load distribution on both data sets after dynamic zone replication.
On both data sets, the load distribution is much “smoother” than in Figure 4(a).

5 Performance Evaluation

5.1 Experimental Setup

We evaluate our DSL system through both simulation and measurements of a real de-
ployed system. Our system is implemented on the Berkeley PIER query engine [16],
and uses PIER’s CAN implementation and runtime environment. Because PIER uses
identical interfaces for both discrete-event simulations and real deployment code, we
used identical code in our simulations and cluster deployment. Our simulations ran on
a Linux box with an Intel Pentium IV 2.4 GHz processor and 2 GB of RAM. The real
measurement ran on a cluster composed of 20 Dell PowerEdge 1750 Servers, each with
Intel 2.6Ghz Xeon CPUs and 2GBs of memory. We run 4 node instances on each server,
for a total of 80 nodes. Since the cluster is shared with other competing applications,
we ran the same experiment 10 times and the average response time is reported. In this
experiment, the data space is static in the sense that neither deletion nor insertion is
allowed during the query processing.

We summarize default parameters in Table 1. Specifically, we use both independent
(uniform) and anti-correlated data sets with cardinality of 1 million and dimensionality
from 2–5 [19]. For those experiments where the results reflect the same trend on both
data sets, we only show one of them to save space. The number of nodes in the simu-
lation varies from 100 to 10000. The default query load in simulation consists of 1000
sequential constrained skyline queries with the query range randomly generated. More
specifically, for each dimension, both the starting point and the length of the interval
are randomly distributed.

Table 1. Default setting

Parameter Domain Default
Total nodes (Simulation) [100,10000] 5000
Total nodes (Deployment) 80 80
Data cardinality 1,000,000 1,000,000
Dimensions (Simulation) 2, 3, 4, 5 2
Dimensions (Deployment) 2, 3, 4, 5 3
Query Range Pattern random, biased random



124 P. Wu et al.

We used three metrics in the experiment: percentage of nodes visited per query, num-
ber of data points transmitted per query and average query response time. All the re-
sponse time results are from real measurement and the results of the other two metrics
are based on simulation. Our experiments are divided into two groups: First, we show
comparative results on the three distributed skyline query methods described in this pa-
per. Second, we study the effects of different system parameters on DSL’s performance.

5.2 Comparative Studies

Scalability Comparison. Figure 5 compares the three methods in terms of the number
of node visited for each query on the anti-correlated data set. We show the cumulative
density function (CDF) of percentage of queries (y-axis) against the percentage of nodes
visited (x-axis). As expected, the naive method contacts all the nodes in the system for
every incoming query, significantly limiting its scalability. The CAN-multicast method
considerably improves upon the naive method: 90 percent of the queries will contact
less than 40% of the nodes in the system. However, the remaining 10% of the queries
still visit roughly 60% of all nodes. In a 5000 node system, this translates into visiting
3000 nodes for a single query! In contrast, DSL does a much better job of isolating
the relevant data: no query involves more than 10% of the nodes, and roughly 90% of
queries contact less than 1% of all nodes.

Bandwidth Comparison. Figure 6 shows the bandwidth performance of all three
methods on the anti-correlated data set when varying system size from 100 to 10000
nodes. We measure for each query the average number of data tuples transmitted per
node. The x-axis plots the total number of nodes in the system and y-axis shows the av-
erage number of data points transmitted for a single query divided by the total number
of nodes. Here we use the number of data points to characterize the bandwidth con-
sumption, because data points are the dominant factor in the overall bandwidth usage
when compared to control messages. For all system sizes, DSL outperforms the other
two methods by one order of magnitude. This validates our claim in Theorem 3 that
DSL saves bandwidth by transmitting only the data points inside the final result set.
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Query Response Time Comparison. We compare DSL’s query response latency with
the naive method and the CAN-multicast method. Due to the space constraints, we only
show a workload containing one global skyline query, i.e. find all skyline points in
the entire data set3. There are a total of 130 skyline points in the result set. For each
skyline point returned (x-axis), Figure 7 depicts the elapsed time of all three methods
(y-axis). The progressive behavior of DSL is not clearly reflected here due to the log-
arithmic scale of the y-axis. In fact, the initial results of DSL are reported within 0.8
seconds, while the last skyline point is reported in less than 1.2 seconds. As expected,
DSL demonstrates orders of magnitude performance improvement over the other two
methods.

A surprising result is that CAN multicast method performs much worse than the
naive method. There are two reasons for this. First, our query is a global skyline query
without constraints. This means the CAN-multicast method has no advantage over the
naive method. Second, the CAN-multicast method dynamically constructs a query prop-
agation tree which is less efficient than the naive method where the entire tree is stati-
cally built at the beginning.

In summary, DSL is the clear winner over the other two alternative distribution meth-
ods in all the three metrics.

5.3 Performance Study of DSL

In this subsection, we study DSL’s performance under different system settings.

Scalability. Figure 8 uses a CDF to illustrate the effect of system size on the number
of nodes visited per query. We ran the simulation by varying the system size from 100
to 10000 nodes. Figure 8 shows a very clear trend: with the increase of the system
size, the average number of participating nodes is quite stable. For example, when the
system size is 100, most queries touches 15 machines. When the system size grows to
10000, all queries involve less than 3% of the node population; and among them, a large
portion (80%) of the queries only touch less than 0.5% (or 50 in a 10000 node system)

3 We have also tested several other query ranges and DSL is the consistent winner with the first
several skyline points returned almost instantly (see Figure 13).
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Fig. 9. Effectiveness of dynamic zone replication

of the nodes. The reason behind is that with the virtual space partitioned by more nodes,
the average partition size on each node becomes smaller. The finer granularity of zone
partitioning allows a more accurate pruning of relevant nodes and data points. This
simulation shows that DSL can scale up to a fairly large number of machines.

Effects of Dynamic Zone Replication on Load Balancing. In this simulation, we
study the effects of dynamic zone replication scheme on load balancing. We tested both
the random query pattern as well as the biased query pattern. We only show the biased
query load results because random query results were already visualized in Figure 4.

Figure 9 compares query load distributions before and after dynamic zone repli-
cation. The workload consists of 1000 constrained skyline queries evaluated on both
anti-correlated and independent data sets. Each node reports the number of times its
local skyline procedure is invoked. The x-axis represents the query load percentage and
the y-axis plots the percentage of nodes with that load. In a perfectly balanced system
with 5000 nodes, each node would perform 0.02% of the total number of local query
operations.

The original load distribution is clearly imbalanced. In the anti-correlated data set,
almost the entire query load is taken by 10% of the machines. 2% of the nodes are each
responsible for more than 0.2% of the total query load, or overloaded by a factor of 10!
After dynamic zone replication is used on both data sets, the query load is much more
evenly distributed and closer to the ideal. Together with the previous visualization re-
sults, these results clearly show that dynamic zone replication is effective for balancing
the query load in the system.

Effects of Dimensionality on Bandwidth. Now we study the effects of dimensionality
on DSL’s bandwidth overhead. We vary the dimensionality of queries from 2 to 5, which
according to [7] satisfies most real world applications. Figure 10 shows the effect of
dimensionality on the average bandwidth usage on the anti-correlated data set. The y-
axis represents the average number of data points transmitted by every node for each
query and the x-axis plots the dimensionality. Overall, the bandwidth usage steadily
increases with the dimensionality. Specifically, on a 2-d data set, an average node only
injects 1 data point into the network and this number grows to 20 on the 5-d data set. The
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main reason for this increase is that the original size of the skyline result set increases
rapidly with dimensionality and thus more result points need to be transmitted with the
query message from the “upstream” machines to the “downstream” nodes, leading to
greater bandwidth consumption.

Effects of Dimensionality on Scalability. Figure 11 shows the effects of dimension-
ality on the percentage of nodes visited per query on the independent data set. We vary
the dimensionality from 2 to 5 and show the relationship between the query load per-
centage and node percentage involved. With the increase of the dimensionality, more
nodes are involved in query processing. This is due to two reasons. First, as described
above, with the increase in dimensionality, the skyline result size increases dramatically
and thus more nodes are likely to store data points in the final result set. Second, with
higher dimensionality, more virtual space needs to be visited while the number of ma-
chines used to partition the virtual spaces remains the same. However, even when the
dimension number grows to as large as 5, most queries are evaluated across a small por-
tion of the nodes. Specifically, more than 90% of queries each require less than 10% of
all nodes. This demonstrates that DSL is scalable with the increase of dimensionality.

Effects of Dimensionality on Response Time. In Figure 12, we study the effects of
dimensionality on the query response time on the independent data set. We still use one
global skyline query as our query load. Under each dimensionality setting, Figure 12
shows the average response delay for all skyline results reported by DSL. Due to the
progressiveness of DSL, initial result points are typically received much faster than
this average number. As the number of dimensions grows, the average delay increases
steadily. On the 2-d data set, the average response delay is 0.6 seconds. As the num-
ber of dimensions grows to 5, the average response time grows to roughly 2 seconds.
This is explained by three factors. First, as was shown in Figure 10, DSL’s bandwidth
consumption increases with dimensionality, and therefore more time is spent on data
transmission between nodes. Second, as was shown in simulations (Figure 11), the per-
centage of nodes visited per query also increases in the higher dimensional data sets.
Since more machines are involved, it takes more time for the query to propagate to
the “downstream” nodes. Finally, local skyline calculations at each node also becomes
more expensive in higher dimension datasets.
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Effects of Query Range on Response Time. In Figure 13, we investigate the effects of
query box size on the response time. For each query box size, we generate 10 constrained
skyline queries, each of which has a query range covering a certain percentage of the
entire data space. We show the average response delay of 10 queries. For each point along
the line, we also draw a bounding box that depicts the standard deviation of the response
delay. Clearly, the average response delay increases with the growth of the query box
size. In particular, when the query range equals 20%, the average delay is less than 0.2
seconds. The delay increases to 0.85 seconds when the query range grows to 100%.

6 Related Work

Skyline query processing algorithms have received considerable attention in recent
database research. Early work [7] proposed the Block-nested loops, Divide and conquer,
and B-tree solutions. Later work proposed the Indexing and Bitmaps solutions [23].
This was further improved in [17], where Nearest neighbor search (NN) was used on
a R-tree indexed data set to progressively discover skyline points. The best centralized
method, BBS [19], has been shown to be I/O optimal, and outperforms NN. Other work
addresses continuous skyline queries over data streams [18], extends skyline query to
categorical attribute domains where total order may not exist [8]. One latest work [13]
introduces a new generic algorithm LESS with O(n) average case running time. Simi-
lar results are presented in [25] and [20] on efficient computation methods of finding
skyline points in subspaces. Huang et al. investigate efficient methods for supporting
skyline queries in the context of Mobile Ad Hoc networks (MANETs) [15].

The notion of recursive partitioning of the data space in DSL is similar to NN and
BBS. However, fundamental differences distinguish our effort from these two works.
In NN, the order of the intermediate partitions will not influence its correctness and a
distributed solution relying on NN queries is doomed to be inefficient. On the other hand,
unlike BBS, there does not exist an “oracle” in the distributed environment to order the
candidate partitions in a centralized priority queue. Moreover, DSL recursively partitions
the query region during run-time to match the underlying node zones, since, unlike BBS,
there does not exist certain a-priori “recursive” index structures like R-Tree.
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The only previous work that calculates skyline query over distributed sources was
presented in [5]. In this work, data is vertically distributed across different web infor-
mation services. A centralized site is responsible for probing attribute values from each
site to calculate the final skyline. This limits the scale of distribution and may result
in intolerable response time due to round trip communications with multiple sources.
Unlike this approach, DSL is targeted at cluster-based internet services, in which one
integrates external data and has total control over the data placement. In addition, our
solution provides incremental scalability, where performance is improved by adding
additional machines to the cluster.

Parallel databases [9] and distributed database systems such as Mariposa [22] used
multiple machines to efficiently process queries on partitioned data relations. In partic-
ular, previous research on parallel database systems have shown that “range partition-
ing” can successfully help query processing in share-nothing architectures(e.g. parallel
sorting [10] and parallel join [11]). Skyline processing in these settings has not been
studied, and is the problem addressed in this paper.

7 Conclusion and Future Work

In this paper, we address an important problem of parallelizing the progressive sky-
line queries on share nothing architectures. Central to our algorithm DSL, is the use
of partial orders over data partitions. We propose two methods: namely recursive re-
gion partitioning and dynamic region encoding, for implementing this partial order for
pipelining machines in query execution. We provide analytical and optimality result of
our algorithm. Finally, we introduce the use of dynamic zone replication to distribute
computation evenly across nodes. We implemented the DSL system on top of the PIER
code base, and use the resulting code to perform extensive experiments on a simulation
platform as well as a real cluster deployment. Our evaluation shows DSL to signifi-
cantly outperform other distribution approaches, and that dynamic zone replication is
extremely effective in distribution query load. As future work, we will further explore
the resilience of query processing to node failures and replications, and DSL’s band-
width consumption in higher dimension data sets.
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Abstract. We consider the conflicting problems of ensuring data-access load 
balancing and efficiently processing range queries on peer-to-peer data net-
works maintained over Distributed Hash Tables (DHTs). Placing consecutive 
data values in neighboring peers is frequently used in DHTs since it accelerates 
range query processing. However, such a placement is highly susceptible to 
load imbalances, which are preferably handled by replicating data (since repli-
cation also introduces fault tolerance benefits). In this paper, we present  
HotRoD, a DHT-based architecture that deals effectively with this combined 
problem through the use of a novel locality-preserving hash function, and a tun-
able data replication mechanism which allows trading off replication costs for 
fair load distribution. Our detailed experimentation study shows strong gains in 
both range query processing efficiency and data-access load balancing, with 
low replication overhead. To our knowledge, this is the first work that concur-
rently addresses the two conflicting problems using data replication. 

1   Introduction 

Structured peer-to-peer (P2P) systems have provided the P2P community with effi-
cient and combined routing and location primitives. This goal is accomplished by 
maintaining a structure in the system, emerging by the way that peers define their 
neighbors. Different structures have been proposed, the most popular of which being: 
distributed hash tables (DHTs), such as CAN [17], Pastry [18], Chord [21], Tapestry 
[24], which use hashing schemes to map peers and data keys to a single, modular 
identifier space; distributed balanced trees, where data are stored at the nodes of a 
tree, such as P-Grid[1], PHT [16], BATON [11], etc. 

One of the biggest shortcomings of DHTs that has spurred considerable research is 
that they only support exact-match queries. Therefore, the naïve approach to deal with 
range queries over DHTs would be to individually query each value in the range, 
which is greatly inefficient and thus infeasible in most cases. Although there are many 
research papers that claim to support range queries over DHTs more “cleverly” and, 
thus, efficiently ([2], [9], [19], [22]), all of them suffer from access load imbalances in 
the presence of skewed data-access distributions. Only a few approaches deal with 
both problems, i.e. load balancing and efficient range query processing, in DHTs 
([5]), or other structures ([3], [7], [11]). However, these solutions are based on data 
migration which is sometimes inadequate in skewed data access distributions. This is 
more apparent in the case of a single popular data value which makes the peer that 
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stores it heavily loaded. Transferring this value to another peer only transfers the 
problem. In such cases, access load balancing is best addressed using replication of 
popular values to distribute the access load among the peers storing such replicas. 

In this work we propose solutions for efficiently supporting range queries together 
with providing a fair load distribution over DHTs using replication. Our approach is 
based on two key ideas. The first is to use locality-preserving data placement, i.e. to 
have consecutive values stored on neighboring peers; thus, collecting the values in a 
queried range can be achieved by single-hop neighbor to neighbor visits. The second 
is to replicate popular values or/and ranges to fairly distribute access load among 
peers. However, using data replication together with a locality-preserving data place-
ment is not simple: if the replicas of a popular value are placed in neighboring peers, 
the access load balancing problem still exists in this neighborhood of peers that is al-
ready overloaded; On the other hand, if the replicas are randomly distributed, addi-
tional hops are required each time a replica is accessed during range query processing. 
Addressing these two conflicting goals is the focus of this paper.  

Specifically, we make the following contributions: 

1. We define a novel locality-preserving hash function, used for data placement in a 
DHT, which both preserves the order of values and handles value/range replica-
tion. The above can be applied to any DHT with slight modifications (we use 
Chord [21] for our examples and in our experiments). 

2. We propose a tunable replication scheme: by tweaking the degree of replication, a 
system parameter, we can trade off replication cost for access load balancing. This 
is useful when we know, or can predict the characteristics of the query workload.  

3. We develop a locality-preserving, DHT architecture, which we coin HotRoD, that 
incorporates the above contributions, employing locality-preserving replication to 
ensure access-load balancing, and efficient range query processing. 

4. We comprehensively evaluate HotRoD. We propose the use of a novel load balanc-
ing metric, Lorenz curves and the Gini coefficient (which is being heavily used in 
other disciplines, such as economics and ecology), that naturally captures the fair-
ness of the load distribution. We compare HotRoD against baseline competitors for 
both range query processing efficiency and load distribution fairness. Further, we 
study the trade-offs in replication costs vs. achievable load balancing. 

5. Our results from extensive experimentation with HotRoD show that HotRoD 
achieves its main goals: significant speedups in range query processing and  dis-
tributes accesses fairly to DHT nodes, while requiring only small replication over-
head. Specifically, a significant hop count saving in range query processing, from 
5% to 80% compared against standard DHTs. Furthermore, data-access load is  
significantly more fairly distributed among peers, with only a small number of rep-
licas (i.e. less than 100% in total). As the range query spans, or data-access skew-
ness increases, the benefits of our solution increase.   

To our knowledge, this is the first work to concurrently address the issues of repli-
cation-based data-access load balancing and efficient range query processing in 
structured P2P networks and study in detail its performance features. 

The rest of the paper is organized as follows: In section 2 we introduce the HotRoD 
architecture, its locality-preserving hash function, and the mechanisms for replica man-
agement, and in section 3 we present the algorithm for range query processing. In  
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section 4 we experimentally evaluate HotRoD, and present its ability to tune replication. 
Finally, we discuss related work, in section 5, and conclude in section 6.  

2   HotRoD: A Locality-Preserving Load Balancing Architecture 

The main idea behind the proposed architecture is a novel hash function which: (a) 
preserves the ordering of data to ensure efficient range query processing, and, (b) rep-
licates and fairly distributes popular data and their replicas among peers. 

HotRoD is built over a locality-preserving DHT, i.e. data are placed in range parti-
tions over the identifier space in an order-preserving way. Many DHT-based data 
networks are locality-preserving (Mercury [5], OP-Chord [22, 15], etc) in order to 
support range queries. However, this additional capability comes at a price: locality-
preserving data placement causes load imbalances, whereas trying to provide load 
balancing, the order of data breaks. HotRoD strives for a uniform access load distribu-
tion by replicating popular data across peers in the network: its algorithms detect 
overloaded peers and distribute their access load among other, underloaded, peers in 
the system, through replication. (We should mention that instances of the algorithms 
run at each peer, and no global schema knowledge is required).  

In the following sub-sections, we overview the underlying locality-preserving 
DHT, define a novel locality-preserving hash function, and algorithms to detect load 
imbalances and handle data replication and load balancing. 

2.1   The Underlying Locality-Preserving DHT  

We assume that data objects are the database tuples of a k-attribute relation R(A1, A2, 
…, Ak), where Ai (1 i k ) are R’s attributes. The attributes Ai are used as single-
attribute indices of any tuple t in R. Their domain is DAi, for any 1 i k .  Every tu-
ple t in R is uniquely identified by a primary key, key(t), which can be either one of its 
Ai attributes, or calculated by more than one Ai attributes.  

In DHT-based networks, peers and data are assigned unique identifiers in an m-bit 
identifier space (here, we assume an identifier ring modulo-2m). Traditional DHTs use 
secure hash functions to randomly and uniquely assign identifiers to peers and data. 
Here, a tuple’s identifier is produced by hashing its attributes’ values using k (at 
most1) order-preserving hash functions, hashi(), to place tuples in range partitions 
over the identifier space. For fault tolerance reasons, a tuple is also stored at the peer 
mapped by securely hashing its key(t). Thus, data placement requires O((k+1)⋅logN) 
hops - N is the number of peers ([22]).  

Note: We may apply an additional level of indirection by storing pointers to tuples, as 
index tuples Ii(t): {vi(t) key(t)},  instead of tuples themselves. At this point, we make 
no distinction.  

As most existing DHTs, tuples use consistent hashing ([12]): a tuple with identifier id 
is stored at the peer whose identifier is the “closest” to id in the identifier space (i.e. 
the successor function, succ(), of Chord [21]). Peers also maintain routing information 

                                                           
1 Functions hash
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i
. 



134 T. Pitoura, N. Ntarmos, and P. Triantafillou 

about peers that lie on the ring at logarithmically increasing distance (i.e. the finger 
tables of Chord [21]). Using this information, routing a message from one peer to an-
other requires O(logN) hops in the worst case, where N is the number of peers. For 
fault-tolerance reasons, each peer also maintains a maximum of logN successors.  

Example 2.1. Fig. 1. illustrates data placement in a 14-bit order-preserving Chord-
like ring, i.e. the id space is [0, 16383]. We assume single-attribute A tuples, DA=[0, 
4096). Let N=7 peers inserted in the network with identifiers 0, 2416, 4912, 7640, 
10600, 11448, and 14720. Each peer is responsible for storing a partition of the at-
tribute domain DA, in an order-preserving way, as shown.  

 

Fig. 1. The substrate locality-preserving DHT. (a) A tuple with value v∈DA is stored on peer 
succ(hash(v)), (b) The range query [1000, 2000] is routed from peer succ(hash(1000))=4912, 
through the immediate successors, to peer succ(hash(2000))=10600. 

A range query is pipelined through those peers whose range of index entries stored at 
them overlaps with the query range. It needs O(logN+ n') routing hops – n' is the 
number of  these peers ([22]). 

Example 2.2. Fig. 1. also illustrates how the range query [1000, 2000] initiated at 
peer 11448 is answered. Using the underlying DHT network look up operation, 
lookup() (i.e. Chord lookup, if the underlying network is Chord), we move to peer 
succ(hash(1000)), which is peer 4912. Peer 4912 retrieves all tuples whose values fall 
into the requested range, and forwards the query to its successor, peer 7640. The 
process is repeated until the query reaches peer 10600 (i.e. succ(hash(2000))), which 
is the last peer keeping the requested tuples. 

Although it accelerates routing for range queries, this scheme cannot handle load bal-
ancing in the case of skewed data-access distributions. HotRoD, the main contribution 
of this work, deals with this problem while still attaining the efficiency of range query 
processing. From this point forward, we assume that R is a single-attribute index A 
relation, whose domain is DA. Handling multi-index attribute relations is straightfor-
ward ([14]), and beyond the scope of this paper. 

2.2   Replication and Rotation 

Each peer keeps track of the number of times, , it was accessed during a time inter-
val, and the average low and high bounds of the ranges of the queries it processed, 
at this time interval – avgLow and avgHigh respectively. We say that a peer is 
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overloaded, or “hot” when its access count exceeds the upper limit of its resource  
capacity, i.e. when > max. An arc of peers (i.e. successive peers on the ring) is “hot” 
when at least one of these peers is hot. 

In our scheme, “hot” arcs of peers are replicated and rotated over the identifier 
space. Thus, the identifier space can now be visualized as a number of replicated, ro-
tated, and overlapping rings, the Hot Ranges/Rings of Data, which we call HotRoD 
(see fig 2). A HotRoD instance consists of a regular DHT ring and a number of virtual 
rings where values are addressed using a multi-rotation hash function, mrhf(), defined 
in the following sub-section. By the term “virtual” we mean that these rings material-
ize only through mrhf(); there are no additional successors, predecessors or other links 
among the peers in the different rings. 

2.3   Multi-rotation Hashing 

We assume that max(A) is the maximum number of instances that each value of an at-
tribute A can have (including the original value and its replicas). This parameter 
depends on the capacity of the system and the access load distribution of A’s values; 
indicative values for max(A) are discussed in section 4.4. We also define the index 
variable ∈[1, max(A)]  to distinguish the different instances of A’s values, i.e. an 
original value v corresponds to =1 (it is the 1st instance of v),  the first replica of v 
corresponds to =2 (it is the 2nd instance of v), and so on. Then, the th instance of a 
value v is assigned an identifier according to the following function, mrhf()2.  

Definition 1: mrhf(). For every value, v∈DA, and ∈[1, max(A)], the Multi-Rotation 

Hash Function (MRHF) }12,,1,0{)](,1[: max −→× mADAmrhf Kρ  is defined as:  

msrandomvhashvmrhf 2mod)][)((),( ⋅+= δδ  (1) 

where m
As 2)(

1
max

⋅= ρ  is the rotation unit (or else, “stride”), and random[] is a 

pseudo-random permutation of the integers in [1, max(A)] and random[1]=0. 

It is obvious that for =1, mrhf() is a one-to-one mapping from DA to {0, 1, …, 2m-1} 
and a mod2m order-preserving hash function. This means that, if v and v' ∈ DA and 
v v', then mrhf(v,1 ) mod2m mrhf(v',1 ) , which means that mrhf(v,1 ) lies before 
mrhf(v',1 )  in a clockwise direction over the identifier ring. For any >1, HotRoD is 
also mod2m order-preserving (the proof is straightforward and omitted for space 
reasons).  

Therefore, a value v is placed on the peer whose identifier is closer to mrhf(v,1 ) ,  
according to the underlying DHT. When the th instance of a value v is created, or else 
the ( -1)th replica of v (i.e. >1), it will be placed on the peer whose identifier is closer 
to mrhf(v,1 )  shifted by ·s clockwise. This can be illustrated as a clockwise rotation 
of the identifier ring by ·s, and, thus, s is called rotation unit, whereas  is also re-
ferred as the number of rotations. 

                                                           
2 Mapping data to peers (i.e. using consistent hashing) are handled by the underlying DHT. 
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Example 2.3. Fig. 2. illustrates a HotRoD network with =2, where ring 1 is the net-
work of fig 1. We assume that peers 4912 and 7640 are “hot”, and, thus, have created 
replicas of their tuples in the peers 14720, and 0. Let s=8191 (i.e. half the identifier 
space). The partitions of the attribute domain that these peers are responsible to store 
in the ring 2 (i.e. the first replicas) are shown in the figure.  

 

Fig. 2. HotRoD for =2. (a) The hot peers 4912, 7640 create replicas of their tuples at peers 
14720, 0 of ring 2. (b) The range query [1000, 2000] initiated at peer 11448 is sent to peer 
mrhf(1000, 2)=14720 at ring 2, then to 0, and it jumps to ring 1, to complete. 

mrhf() leverages the existence of a maximum of max(A) replicas per value v, thus be-
ing able to choose one out of max(A) possible positions for v in the system. That way 
it fights back the effects of load imbalances caused by hash() (which are explained in 
[22]). Note that randomly selecting replicas, using random[], leads to a uniform load 
distribution among replica holders. The result can be thought of as superimposing 
multiple rotated identical rings (as far as data is concerned) on each other, and 
projecting them to the original unit ring. Thus, “hot” (overloaded) and “cold” (under-
loaded) areas of the rings are combined through rotation, to give a uniform overall 
“temperature” across all peers. 

2.4   Replicating Arcs of Peers: Implementation Issues 

We assume that each peer keeps max(A), the per-attribute maximum number of in-
stances of  a value of attribute A (and, thus, it can calculate stride s)3. In addition, each 
peer can calculate the highest value of DA that it is responsible to store at a specific 
ring; we call it higherValue (this is achieved through the reverse function of mrhf(), 
mrhf-1() ). 

                                                           
3 We assume integer domains, whereas real domains can be handled in a similar way. Attribute 

domains other than integer/real valued can be handled by converting them to an appropriate 
integer/real form. Note that this conversion is also central to the design of range queries; e.g. 
range queries for string-valued attributes ought to define some sort of binary comparison op-
erator between values of the attribute. 
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We also define (v(A)) to be the replication factor for a value v(A), i.e. the (current) 
number of its replicas, which should be equal to, or less than max(A). Each peer must 
have “write” access to this measure during replication (see PutRho() below), or “read” 
access during query processing and data placement (see GetRho() below). 

When a peer, p, is detected “hot”, it starts replication. Instead of replicating a sin-
gle peer, we decide to replicate arcs of peers, and specifically the arc consisting of p’s 
successive neighbors that correspond to the range [avgLow, avgHigh]. In that way, 
costly jumps between rings during range query processing are reduced; jumps be-
tween rings happen when different replication factors exist between consecutive val-
ues (i.e. when two non successive peers store their replicas in one peer at a higher 
ring, whereas the peers that lie between them in the lower ring do not have replicas at 
the higher ring).  

In terms of simplicity, in the algorithms presented below we assume that replica-
tion is only initiated at the original ring, i.e. ring 1. 

Each peer periodically (or upon a request of another peer) runs the algorithm 
REPLICATE_ARC() which detects whether it is hot, or not (if  > amax); if it is hot, it 
creates replicas of its tuples, and sends replication messages, CREATE_REPLICA(), to 
both its successor (succ()) and predecessor (pred()). The number of replicas that creates 
is equal to }}],[)()),(({,(max max avgHighavgLowAvAvrho ∈= ραα  (if rho max(A)). 

Upon receiving a replication message, a peer creates rho replicas of those tuples that 
have less than rho replicas, and sends replication messages to its successor (or predeces-
sor, depending on which peer sent the message). Besides, each peer sets the replication 
factor (v(A)) equal to rho, for all values v(A) ∈ [avgLow, avgHigh] that had less than 
rho replicas. The message is sent to all peers that are responsible to store all values v ∈ 
[avgLow, avgHigh], which form an arc on the identifier ring.  

 The pseudocode follows (it uses the inverse function of MRHF, mrhf--1).  

1. REPLICATE_ARC()  
2.   /* p is the current peer */ 
3. BEGIN 
4.  rho = ceiling(a / amax);  
5.  if (rho <= 1) exit; 
6.  for each v(A) , v(A) >= avgLow and v(A) <= avgHigh { 
7.     tmp = GetRho(v(A));  
8.     rho = max(rho, tmp); } 
9.  if (rho > max(A))  rho = max(A);  
10. for each tuple t in p, and v(A) ∈ t   
11.    copy t to succ(mrhf(v(A), k)), for all k: (v(A))  k  rho;  
12. for each value v(A) in (avgLow, avgHigh) { 
13.    if ( (v(A)) < rho) putRho(v(A), rho); } 
14. send create_replica(p,(avgLow, avgHigh), rho, 1) to succ(p);  
15. send create_replica(p,(avgLow, avgHigh), rho, 0) to pred(p);  
16. END 

17. CREATE_REPLICA(n, (low, high), rho, succ)  
18.   /* n is the initiator peer; succ is equal to 1/0, if the 
 message is  propagated through successsor/predecessor l
 inks; p is the current peer */ 
19. BEGIN 
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20.   higherValue = mrhf-1(p, 1);  
21.   if (succ==0 and higherValue<low)  
22.     exit; 
23.   for each tuple t in p, and v(A) ∈ t    
24.     copy t to succ(mrhf(v(A), k)), for all k: (v(A))  k  rho;  
25.   for each value v(A) in (avgLow, avgHigh) { 
26.     if ( (v(A)) < rho) putRho(v(A), rho); } 
27.   if (succ==1 and higherValue<high)  
28.     send create_replica(n,(avgLow, avgHigh),rho,1) to succ(p);  
29.   else if (succ==0) 
30. send create_replica(n,(avgLow, avgHigh),rho,0) to pred(p);  
31. END 

Functions GetRho(), PutRho() manipulate the replication factor, (v(A)) of an at-
tribute value v(A) over the network; the former gets (v(A)), while the latter sets 
(v(A)) equal to a specific number. The replication factor, (v(A)), is uniformly 

hashed in the underlying DHT architecture (using the secure hash function). The ini-
tial values for (v(A)) is 1, for all v(A)∈DA. Since both functions use the underlying 
DHT architecture, their hop-count complexity is O(logN). 

Please note that we do not necessarily replicate all tuples that belong to a peer 
which is replicated. We replicate only the tuples whose values have fewer replicas 
than target rho (this concerns only the first and last peer of the arc). This reduces 
replication costs without affecting the efficiency of range query processing; we 
simply assume that each peer keeps track of the ranges that stores at each ring it be-
longs to. 

2.5   Fault-Tolerance and High Availability 

The existence of replicas in addition to being critical for load balancing purposes is 
instrumental in providing increased data availability and fault-tolerance during query 
processing. Although details are beyond the scope of this paper, HotRoD can straight-
forwardly provide fault tolerance as follows: when a peer storing a queried value does 
not respond, the requesting peer simply selects another -value and redirects the query 
to the peer which keeps a replica of the queried values at a different ring. This contin-
ues until one available replica is retrieved. 

2.6   Managing Tuple Updates  

Tuple Insertion. The peer publishing the tuple stored the tuple at peer 
succ(mrhf(v(A), 1)), and checks if (v(A)) > 1. If true, it creates (v(A))-1 replicas of 
the tuple (or of its indices) and stores them to succ(mrhf(v(A), k)), for 2  k  (v(A)).  

This operation needs O(logN) hops to retrieve (v(A)) plus O( max(A) · logN)  hops 
when (v(A)) > 1, in the worst case (since (v(A))  max(A)). 

Tuple Deletion. A tuple deletion message is sent to peer succ(mrhf(v(A), 1)) and to 
all (v(A))-1 replica holders, if (v(A)) > 1. In addition, peer succ(mrhf(v(A),1)) 
checks if there are other tuples having value v(A), and if not, it sets (v(A))  
equal to 1.  
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The cost of a tuple deletion is, in the worst case, O(( max(A)+2)·logN))  hops (in-
cluding a GetRho() operation to get (v(A)), and a PutRho() operation, to set (v(A)) 
equal to 1, if needed). 

Tuple Update. It consists of one tuple deletion and one tuple insertion operations.  

Naturally, as with all data replication strategies, the load balancing and fault tolerance 
benefits come at the expense of dealing with updates. However, our experimental re-
sults (presented below) show that with a relatively small overall number of replicas 
our central goals can be achieved, indicating that the relevant replication (storage and 
update overheads) will be kept low. 

2.7   Discussion 

Optimal max Values 
The calculation of optimal max(A) is important for the efficiency and scalability of 
HotRoD. This value should be selected without assuming any kind of global knowl-
edge. Fortunately, the skewness of expected access distributions has been studied, and 
it can be given beforehand; for example, the skewness parameter (i.e. theta-value) for 
the Zipf distribution ([20]). Given this, and the fact that each additional replica cre-
ated is expected through HotRoD to take on an equal share of the load, our present 
approach is based on selecting a value for max(A) to bring the total expected hits for 
the few heaviest-hit peers (e.g., 2-3%) close to the expected average hits all peers 
would observe, if the access distribution was completely uniform. 

Data Hotspots at -value Holders 
In order to avoid creating new data hotspots at the peers responsible for storing 
(v(A)) of a value v(A), our approach is as follows:  

• max(A) instances for this metadata information ( -value) of each value can be 
easily maintained, with each replica selected at random at query start time (re-
call that max(A) is kept in each peer). 

• The hottest values are values that participate in a number of range queries of 
varying span. Thus, all these queries may start at several different points.  

3   Range Query Processing 

Consider a range query [vlow(A), vhigh(A)] on attribute A initiated at peer pinit. A brief 
description of the algorithm to answer the query follows: peer pinit randomly selects 
a number, r from 1 to (vlow(A)), the current number of replicas of vlow(A). Then, it 
forwards the query to peer pl: succ(mrhf(vlow(A), r)). Peer pl searches for matching 
tuples and forwards the query to its successor, p. Peer p repeats similarly as long as 
it finds replicas of values of R at the current ring. Otherwise, p forwards the  
range query to a (randomly selected) lower-level ring and repeats. Processing is  
finished when all values of R have been looked up. The pseudocode of the  
algorithm follows: 
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1. PROCESS_RANGE_QUERY(pinit,(vlow(A),vhigh(A)) )  
2. BEGIN 
3.   rho = GetRho(vlow(A));  
4.   r = random(1, rho); 
5.   send Forward_Range(pinit, (vlow(A), vhigh(A)), r) to 
     succ(mrhf(vlow(A)), r);  
6. END 

7. FORWARD_RANGE(pinit, (vl(A), vh(A)), r)  
8.   /* p is the current peer */ 
9. BEGIN 
10.   Search p locally and send matching tuples to pinit;  
11.   higherValue = mrhf-1(p, r);  
12.   if (higherValue < vh(A)) { 
13.     vnext(A) = higherValue+1;  
14.     rho = GetRho(vnext(A));  
15.     if (rho >= r)  
16.       send Forward_Range(pinit,(vnext(A),vh(A)),r) to succ(p);  
17.     else { 
18.       r_next=random(1, rho);  
19.       send Forward_Range(pinit,(vnext(A), vh(A)), r_next) 
     to succ(mrhf(vnext(A), r_next)); } }  
20. END 

higherValue of p is used to forward the query to the peer responsible for the lowest 
value of DA that is higher than higherValue. Let this value be vnext(A). If there is such 
a peer in ring r (i.e. this happens when (vnext(A)) is equal to, or higher than r), p for-
wards the query to its successor. Otherwise, p sends the query to a peer at a lower-
level ring, selected randomly from 1 to (vnext(A)) (using the lookup operation of the 
underlying DHT). This happens when the range consists of values with different 
number of replicas. The algorithm finishes when the current higherValue is equal to, 
or higher than vhigh(A). 

Example 3.1. Fig. 2b illustrates how the range query of example 2.2 is processed in 
HotRoD. First, we assume that peer 11448 forwards the query to peer 14720, i.e. 
lookup(mrhf(1000, 2)). Moving through successors, the query reaches peer 0. But, the 
range partition (1910, 2000] is not found at ring 2. Therefore, the query “jumps” to 
ring 1, peer 10600 (i.e. lookup(mrhf(1911, 2))), where it finishes. 

4   Experimental Evaluation 

We present a simulation-based evaluation of HotRoD. The experiments have been 
conducted on a heavily modified version of the internet-available Chord simulator, 
extended to support relations, order-preserving hashing, replication, and range queries.  

We compare the performance of HotRoD against:  

− Plain Chord (PC), as implemented by the original Chord simulator;  
− an imaginary enhanced Chord (EC), assuming that for each range the system 

knows the identifiers of the peers that store all values of the range;  
− OP-Chord, a locality preserving Chord-based network ([22, 15]) 
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The results are presented in terms of:  

a. efficiency of query processing, mainly measured by the number of hops per 
query, assuming that for each peer, the local query processing cost is O(1) ;  

b. access load balancing, measured by the cumulative access load distribution 
curves and the Gini coefficient (defined below); 

c. overhead costs, measured by the number of peers’ and tuples’ replicas. 

4.1   Simulation Model 

The experiments are conducted in a system with N =1,000 peers, and a maximum of 
10 (i.e. logN) finger table entries and 10 immediate successors for each peer. We use 
a single-index attribute relation over a domain of 10,000 integers, i.e. DA=[0, 10,000).  

We report on 5,000 tuples and a series of 20,000 range queries generated as fol-
lows: the mid point of a range is selected using a Zipf distribution ([20]) over DA with 
a skew parameter  taking values 0.5, 0.8, and 1. The lower and upper bounds of a 
range are randomly computed using a maximum range span equal to 2·r, for a given 
parameter r (i.e. r is equal to the average range span). In our experiments, r ranges 
from 1 to 400, and, thus, yielding an average selectivity from 0.01% to 4% of the do-
main size DA.  

Finally, we present experimental results of the HotRoD simulator with different 
maximum numbers of instances, max(A), ranging from 2, i.e. one replicated Chord 
ring, to 150 (in this section, max(A) is denoted as max), to illustrate the trade-off  load 
imbalances with replication overhead costs. We should mention here that the reported 
load imbalances are collected when the system has entered a steady state with respect 
to the peer population and the number of replicas.  

4.2   Efficiency of Query Processing  

Chord and OP-Chord resolve equality queries (i.e. r =1) in ½ ·logN hops, on average. 
In HotRoD, this becomes logN since two Chord lookup operations are needed: one for 
the GetRho() operation and one for the lookup operation on the selected ring.  

Let a range query RQ of span r (i.e. there are r integer values in the query). We as-
sume that the requested index tuples are stored on n peers under Chord and enhanced 
Chord, and on n' peers under OP-Chord. Thus, the average complexity of the range 
query processing is estimated as follows: 

• PC: r equality queries are needed to gather all possible results (one for each 
one of the values belonging to RQ) for an overall hop count of O(r·logN). 

• EC: n equality queries must be executed to gather all possible results for an 
overall hop count of O(n·logN).   

• OP-Chord and HotRoD:  one lookup operation is needed to reach the peer 
holding the lower value of RQ (logN hops), and n'-1 forward operations to the 
successors (n'-1 hops), for a final overall hop count of O(logN + n'); note that 
the constant factor hidden by the big-O notation is higher in HotRoD, due to 
the GetRho() operations needed to be executed first of all. 

The experimental results in terms of hop counts per range query are shown in 
Table 1. Comparing HotRoD against OP-Chord, we conclude, as expected, that  
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HotRoD is more expensive; the extra hops incurred are due to the GetRho() operations, 
which facilitate load balancing. We should note, however, that HotRoD compares very 
well even against EC, ensuring hop-count savings from 4% to 78% for different r’s. As 
r increases, the hop-count benefits of OP-Chord/HotRoD versus PC/EC increase. 

Table 1. Average number of hops per query for different range spans r (  = 0.8) 

   r 50 100 200 400 

PC 123 246 489 898 

EC 25 48 87 190 

OP–Chord 18 20 25 33 

HotRoD ( max=30) 24 27 31 41 

4.3   Access Load Balancing 

We compare load balance characteristics between OP-Chord and HotRoD. We use the 
access count, , which, as defined above, measures the number of successful accesses 
per peer (i.e. hits). We illustrate results using the Lorenz curves and the Gini Coeffi-
cient, borrowed from economics and ecology because of their distinguished ability to 
capture the required information naturally, compactly, and adequately.  

Lorenz curves ([6]) are functions of the cumulative proportion of ordered individu-
als mapped onto the corresponding cumulative proportion of their size. In our context, 
the ordered individuals are the peers ordered by the number of their hits. If all peers 
have the same load, the curve is a straight diagonal line, called the line of equality, or 
uniformity in our context. If there is any imbalance, then the Lorenz curve falls below 
the line of uniformity. Given n ordered peers with li being the load of peer i, and l1  
l2   …  ln, the Lorenz curve is expressed as the polygon joining the points (h/n, 

Lh/Ln), where h=0, 1, 2, …, n, L0= 0, and 
=

=
h

i
ih lL

1

. 

The total amount of load imbalance can be summarized by the Gini coefficient (G) 
([6]), which is defined as the relative mean difference, i.e. the mean of the difference 
between every possible pair of peers, divided by their mean load. It is calculated by: 

,)12( 2

1

μ⋅⋅−−⋅=
=

nlniG
n
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where μ is the mean load. G also expresses the ratio between the area enclosed by the 
line of uniformity and the Lorenz curve, and the total triangular area under the line of 
uniformity. G ranges from a minimum value of 0, when all peers have equal load, to a 
maximum of 1, when every individual, except one has a load of zero. Therefore, as G 
comes closer to 0, load imbalances are reduced, whereas, as G comes closer to 1, load 
imbalances are increased.  

We should mention here that G=0 if and only if all peers in the network have equal 
load. However, this is extremely rare in a P2P network. Therefore, we measured G in 
different setups with different degrees of fairness in load distributions. We noticed 
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that G was very close to 0.5 in all setups with quite a fair load distribution. In general, 
in fair load distributions G’s values ranged from 0.5 to 0.65, whereas in very unfair 
load distribution, from 0.85 to 0.99. Therefore, our target is to achieve values of G 
close to 0.5. Besides, G is used as a summary metric to compare load imbalances be-
tween different architectures (i.e. PC, EC, etc) and different setups. 

We ran experiments with different range spans, r’s, and Zipf parameters, ’s. In 
figure 3, hits distribution is illustrated for r=200 and =0.8 (here, HotRoD ran with 

max = 400, and max=15). The Gini coefficient (G) in PC and EC is 0.784, in OP-
Chord 0.87, and in HotRoD 0.53. G in HotRoD is significantly reduced comparing 
to the other architectures, with a decrease of 32% comparing with PC/EC and 39% 
comparing to OP-Chord. The results of experiments with lower range spans are 
similar. As example, for r=50 and =0.8, G in PC and EC is 0.81, in OP-Chord 
0.95, whereas in HotRoD ( max=100, max=50) G is 0.64, i.e. decreased by 20% and 
32%, respectively (see figure 4). Both examples show clearly how HotRoD 
achieves a great improvement in access load balancing. All experiments have 
shown similar results.  

Furthermore, the resulting Lorenz curves (figures 3 and 4) show that the top 3% 
heaviest-hit peers receive about an order of magnitude fewer hits in HotRoD than in 
OP-Chord. At the same time, the mostly-hit of the remaining (underutilized) 97% of 
the peers receive a hit count that is very slightly above the load they would receive if 
the load was uniformly balanced. The load balancing benefits and key philosophy of 
HotRoD are evident in Lorenz curves. HotRoD attempts to off-load the mostly-hit 
peers by involving the remaining least-hit peers. Thus, intuitively, we should expect 
to see a considerable off-loading for the heaviest-hit peers, while at the same time, we 
should expect to see an increase in the load of the least-hit peers.  

 

Lorenz Curves for Access Load Distribution 
(r = 200,  = 0.8)
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Fig 3. In Chord, OP-Chord, HotRoD, the top 3% heaviest peers receive almost 27%, 60%, 10% 
of total hits  
 
                                                           
4 Although Chord uniformly distributes values among peers (using consistent hashing), it does 

not succeed in fairly distributing access load in case of skewed query distributions. 
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 Access Load Distribution for different max's 
(r=50, =0.8)
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Fig 4.  As max increases, the Lorenz curves that illustrate the access load distribution come 
closer to the line of uniformity, which means that load imbalances and, thus, G are decreased 

We should mention that, in our experiments, the upper access count threshold, 
max, was set equal to the average (value) access load expected to be received by each 

peer in a uniform access load distribution. The latter is equal to 2·r, as we briefly 
prove below. 

Proof sketch. We assume that Q=20,000 queries request r values each, on average, 
and each peer is responsible for an average of |DA|/N=10 values. Therefore, we have 
Q·r·N/|DA| hits uniformly distributed among N peers, and, thus an average of 
Q·r/|DA| hits per peer, which is equal to 2 r, since |DA| = 10,000.          

In our experiments, max was kept low (i.e. less than 50), which introduces a total of 
about 100% additional replicas. This is definitely realistic, given typical sharing net-
work applications ([21], [24]); however, we stress that good load balancing can be 
achieved using even fewer replicas– see below. 

4.4   Overhead Costs – Tuning Replication 

An important issue is the degree of replication required to achieve a good load 
balancing performance. Therefore, we study the HotRoD architecture when tuning the 
parameter max, the maximum allowed number of rings in HotRoD. 

We ran experiments with different range spans, r’s, and different access skew pa-
rameters, ’s. All experiments show that, as max increases, the numbers of peers’ and 
tuples’ replicas are increased till they reach an upper bound each (i.e. for r=50, =0.8, 
the upper bounds are 1449 for peers and 8102 for tuples).  

Figure 5 illustrates how different max’s affect the number of peers’ and tuples’ rep-
licas for r=50 and =0.8. Specifically: for max=2, 11% of peers and 12% of tuples 
have been replicated; for max=5, 25% and 30% respectively; for max=10, 38% and 
47%; for max=50, 85% and 103%. For high max’s, peers and replicas are heavily rep-
licated, till max reaches 117 (as it was experimentally proven), beyond which there is 
no replication and, thus, there are no further benefits in load balancing.  
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Fig. 5. Tuning replication degree by max  

Similar conclusions are drawn from experiments with different r’s and ’s. In gen-
eral, it holds that the lower the range span, r, or the higher the skew parameter, , the 
higher the upper limit of max. For example, for r=50 and =0.5, the upper limit of max 

is 90; for r=200, =0.8, it is 59; for r=200, =0.5, it is 23. 
Figures 4 and 5 illustrate the role that max plays in the access load distribution. As 

max increases, the load imbalances are decreased, and G is decreased. Specifically, G 
is decreased as follows: for max = 2, G=0.92; for max = 5, G=0.88; for max = 50, 
G=0.64; for max  117, G=0.50. On the other hand, the degree of replication (RD) for 
the number of  tuple replicas is increased as follows: for max = 2, RD = 12%; for   

max = 5, RD =30%; for max = 50, RD =103%; for max  117, RD =162%.  
It is obvious that high values of max provide diminished returns in load balancing, 

although the degree of replication is very high. This means that we can achieve a very 
good access load balancing with low values of max, and thus, low overhead costs. 

To recap: In terms of average hop-counts per range query, HotRoD ensures signifi-
cant savings, which increase as the range span r, or the access skew parameter  in-
creases. At the same time, with respect to load balancing, HotRoD achieves its goal of 
involving the lightest hit peers to offer significant help to the heaviest hit peers, while 
the total replication overhead is no more than 100%. 

5   Related Work 

There are quite a few solutions supporting range queries, either relying on an underly-
ing DHT, or not. Some indicative examples of such DHTs solutions follow. Andrze-
jak and Xu ([2]) and Sahin, et al. ([19]) extended CAN ([17]) to allow for range query 
processing; however, performance is expected to be inferior compared to the other 
DHT-based solutions, since CAN lookups require O(2·N1/2) hops, for a two-
dimensional identifier space. Gupta et. al ([9]) propose an architecture based  
on Chord, and a hashing method based on a min-wise independent permutation hash 
function, but they provide only approximate answers to range queries. The system 
proposed in Ntarmos et al. ([14]) optimizes range queries by identifying and  
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exploiting efficiently the powerful peers which have been found to exist in several 
environments. Ramabhadran et al ([16]) superimpose a trie (prefix hash tree – PHT) 
onto a DHT. Although their structure is generic and widely applicable, range queries 
are highly inefficient, since locality is not preserved. Triantafillou and Pitoura ([22]) 
outlined a Chord-based framework for complex query processing, supporting range 
queries. This was the substrate architecture of HotRoD, which we extended here to 
address replication-based load balancing with efficient range query processing. Al-
though capable to support range queries, none of the above support load balancing.  

Among the non-DHT solutions, the majority of them (such as Skip Graphs ([4]), 
SkipNet ([10]), etc) do not support both range queries and load balance. In a recent 
work ([3]), Aspnes et al provide a mechanism for providing load balancing using skip 
graphs. With the use of a global threshold to distinguish heavy from light nodes, they 
let the light nodes continue to receive elements whereas the heavy ones attempt to 
shed elements. However, many issues have been left unanswered, such as fault toler-
ance. Ganesan et al ([7]) propose storage load balance algorithms combined with 
distributed routing structures which can support range queries. Their solution may 
support load balance in skewed data distributions, but it does not ensure balance in 
skewed query distributions. BATON ([11]) is a balanced binary tree overlay network 
which can support range queries, and query load balancing by data migration between 
two, not necessarily adjacent, nodes. In their Mercury system ([5]), Bharambe et al 
support multi-attribute range queries and explicit load balancing, using random sam-
pling; nodes are grouped into routing hubs, each of which is responsible for various 
attributes. 

In all the above approaches, load balancing is based on transferring load from peer 
to peer. We expect that this will prove inadequate in highly-skewed access distribu-
tions where some values may be so popular that single-handedly make the peer that 
stores them heavy. Simply transferring such hot values from peer to peer only trans-
fers the problem. Related research in web proxies has testified to the need of replica-
tion ([23]). Replication can also offer a number of important advantages, such as fault 
tolerance and high availability ([13]) albeit at the storage and update costs. Besides, 
we have experimentally shown that storage and update overheads can be kept low, 
since we can achieve our major goals with a relatively small number of replicas.  

Finally, an approach using replication-based load balancing, as ours, is [8], where a 
replication-based load balancing algorithm over Chord is provided; however, it ap-
pears that knowledge about the existence of replicas is slowly propagated, reducing 
the impact of replication. Besides, it only deals with exact-match queries, avoiding the 
most difficult problem of balancing data access loads in the presence of range queries. 

6   Conclusions  

This paper presents an attempt at concurrently attacking two key problems in struc-
tured P2P data networks: (a) efficient range query processing, and (b) data-access 
load balancing. The key observation is that replication-based load balancing tech-
niques tend to obstruct techniques for efficiently processing range queries. Thus, 
solving these problems concurrently is an important goal and a formidable task. Some 
researchers claim that existing DHTs are ill-suited to range queries since their prop-
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erty of uniform distribution is based on randomized hashing, which does not comply 
with range partitioning (i.e. [5]). However, HotRoD succeeded in combining the good 
properties of DHTs (simplicity, robustness, efficiency, and storage load balancing) 
with range partitioning using a novel hash function which is both locality-preserving 
and randomized (in the sense that queries are processed in randomly selected – repli-
cated - partitions of the identifier space). 

We have taken an encouraging step towards solving the two key aforementioned 
problems through the HotRoD architecture. HotRoD reconciles and trades-off hop-
count efficiency gains for improved data-access load distribution among the peers. 
Compared to base architectures our detailed experimentation clearly shows that 
HotRoD achieves very good hop-count efficiency coupled with a significant im-
provement in the overall access load distribution among peers, with small replication 
overheads. Besides, in parallel with the evaluation of HotRoD, we have introduced 
novel load balancing metrics (i.e. the Lorenz curves and the Gini coefficient) into the 
area of distributed and p2p computing, a descriptive and effective way to measure and 
evaluate fairness of any load distribution. Finally, HotRoD can be superimposed over 
any underlying DHT infrastructure, ensuring wide applicability/impact.  
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Abstract. We consider a collaboration of peers autonomously crawl-
ing the Web. A pivotal issue when designing a peer-to-peer (P2P) Web
search engine in this environment is query routing : selecting a small sub-
set of (a potentially very large number of relevant) peers to contact to
satisfy a keyword query. Existing approaches for query routing work well
on disjoint data sets. However, naturally, the peers’ data collections often
highly overlap, as popular documents are highly crawled. Techniques for
estimating the cardinality of the overlap between sets, designed for and
incorporated into information retrieval engines are very much lacking. In
this paper we present a comprehensive evaluation of appropriate over-
lap estimators, showing how they can be incorporated into an efficient,
iterative approach to query routing, coined Integrated Quality Novelty
(IQN). We propose to further enhance our approach using histograms,
combining overlap estimation with the available score/ranking informa-
tion. Finally, we conduct a performance evaluation in MINERVA, our
prototype P2P Web search engine.

1 Introduction

1.1 Motivation

In recent years, the Peer-to-Peer (P2P) paradigm has been receiving increasing
attention. While becoming popular in the context of file-sharing applications
such as Gnutella or BitTorrent or IP telephony like Skype, the P2P paradigm
is rapidly making its way into distributed data management and information
retrieval (IR) due to its ability to handle huge amounts of data in a highly
distributed, scalable, self-organizing way with resilience to failures and churn.
Given the potentially very large set of peers storing relevant data, one of the
key technical challenges of such a system is query routing (aka collection selec-
tion), which is the process of efficiently selecting the most promising peers for a
particular information need. For example, in a file-sharing or publish-subscribe
setting, a peer may issue a structured query about MP3 files with operas by
the Greek composer Mikis Theodorakis referring to attributes like file type, mu-
sic genre, and composer; and the P2P network should quickly and efficiently
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identify other peers that offer many such files and can deliver them with short
latency. Another example would be a Web search engine based on a P2P overlay,
where a peer initiates a multi-keyword search, and the query routing mechanism
should forward this request to the best peers that offer highly scoring documents
for IR-style top-k results. In this paper, we will primarily address the ranked
retrieval setting for P2P Web search, but our solutions are also applicable to
and beneficial for DB-style structured queries without ranking.

Several techniques borrowed from the literature on distributed IR [20, 12,
24, 28] could be employed for query routing, based on statistics about term fre-
quencies (tf) and inverse document frequencies (idf) that reflect the relevance of
documents to a query term and thus can be aggregated into measures reflect the
wealth and quality of a peer’s corpus. However, these strategies typically ignore
the fact that popular documents are replicated at a significant number of peers.
These strategies often result in promising peers being selected because they share
the same high-quality documents. Consider a single-attribute query for all songs
by Mikis Theodorakis. If, as in many of today’s systems, every selected peer
contributes its best matches only, the query result will most likely contain many
duplicates (of popular songs), when instead users would have preferred a much
larger variety of songs from the same number of peers. Other application classes
with similar difficulties include P2P sensor networks or network monitoring [22].
What is lacking is a technique that enables the quantification of how many novel
results can be contributed to the query result by each of the prospective peers.

1.2 Contribution

Contacting all prospective peers during query execution and exchanging the full
information necessary to determine collection novelty is unacceptable due to the
high cost in latency and network bandwidth. We envision an iterative approach
based on compact statistical synopses, which all peers have precomputed and
previously published to a (decentralized and scalable) directory implemented
by a distributed hash table (DHT). The algorithm, coined IQN routing (for
integrated quality and novelty), performs two steps in each iteration: First, the
Select-Best-Peer step identifies the most promising peer regarding result quality
and novelty based on the statistics that were posted to the directory. Then, the
Aggregate-Synopses step conceptually aggregates the chosen peer’s document
collection with the previously selected peers’ collections (including the query
initiator’s own local collection). This aggregation is actually carried out on the
corresponding synopses obtained from the directory. It is important to note that
this decision process for query routing does not yet contact any remote peers at
all (other than for the, very fast DHT-based, directory lookups). The two-step
selection procedure is iterated until some performance and/or quality constraints
are satisfied (e.g., a predefined number of peers has been chosen).

The effectiveness of the IQN routing method crucially depends on appropri-
ately designed compact synopses for the collection statistics. To support the
Select-Best-Peer step, these synopses must be small (for low bandwidth con-
sumption, latency, and storage overhead), yet they must offer low-error
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estimations of the novelty by the peers’ collections. To support the Aggregate-
Synopses step, it must be possible to combine synopses published by different
peers in order to derive a synopsis for the aggregated collection.

In this paper we consider three kinds of synopses that each peer builds up and
posts on a per-term basis, representing the global ids of documents (e.g., URLs
or unique names of MP3 files) that a peer holds in its collection: Bloom filters
[7], hash sketches [18], and min-wise permutations [9, 10]. These techniques have
been invented for approximate, low-error representation of sets or multisets. In
this paper we show how they can be adapted to a P2P setting and exploited
for our highly effective IQN query routing. We assume that each peer locally
maintains inverted index lists with entries of the form < term, docId, score >,
and posts for each term (or attribute value in a structured data setting) a set
synopsis that captures the docIds that the peer has for the term. These postings
are kept in the DHT-based P2P directory for very efficient lookup by all peers
in the network.

The specific contributions of this paper are as follows:

– We have conducted a systematic study of Bloom filters, hash sketches, and
min-wise permutations to characterize the suitability for the specific purpose
of supporting query routing in a P2P system.

– We have developed the new IQN query routing algorithm that reconciles
quality and novelty measures. We show how this algorithm combines multiple
per-term synopses to support multi-keyword or multi-attribute queries in an
efficient and effective manner.

– We have carried out a systematic experimental evaluation, using real-life
data and queries from TREC benchmarks, that demonstrate the benefits
of IQN query routing (based on min-wise permutations) in terms of result
recall (a standard IR measure) and query execution cost.

The rest of the paper is organized as follows. Section 2 discusses related work
and gives general background on P2P IR. Section 3 introduces the different types
of synopses and presents our experimental comparison of the basic techniques.
Section 4 introduces our P2P testbed, coined MINERVA [5, 6]. Section 5 develops
the IQN routing method in detail. Section 6 discusses special techniques for
handling multi-dimensional queries. Section 7 describes extensions to exploit
histograms on score distributions. Section 8 presents our experimental evaluation
of the IQN routing method versus the best previously published algorithms,
namely, CORI [13] and our prior method from [5].

2 Related Work

Many approaches have been proposed for collection selection in distributed IR,
most notably, CORI [13], the decision-theoretic framework by [28], the GlOSS
method presented in [20], and methods based on statistical language models [32].
In principle, these methods could be applied to a P2P setting, but they fall short
of various critical aspects: they incur major overhead in their statistical models,
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they do not scale up to large numbers of peers with high dynamics, and they
disregard the crucial issue of collection overlap.

The ample work on P2P networks, such as Chord [33], CAN [29], Pastry [31], or
P-Grid [1], has developed scalable routing protocols for single-dimensional
key-based requests only. How to map multidimensional data onto distributed hash
tables (DHTs) and other overlay networks [3, 35] has not received enough atten-
tion, and these approaches do not work for the very-high-dimensional data spaces
formed by text keywords and they do not provide any support for ranked retrieval
either. P2P Web search has emerged as a new topic only recently. A variety of on-
going research projects are pursuing this direction [2, 37, 4, 14, 15, 30, 36, 22], in-
cluding our MINERVA project [5]. Query routing has been identified as a key issue,
but none of the projects has a fully convincing solution so far.

Fundamentals for statistical synopses of (multi-)sets have a rich literature,
including work on Bloom filters [7, 17], hash sketches [18], and min-wise inde-
pendent permutations [9, 10]. We will overview these in Section 3.

There is relatively little work on the specific issue of overlap and novelty
estimation. [38] addresses redundancy detection in a centralized information fil-
tering system; it is unclear how this approach could be made scalable in a highly
distributed setting. [27, 21] present a technique to estimate coverage and overlap
statistics by query classification and use a probing technique to extract features
from the collections. The computational overhead of this technique makes it un-
suitable for a P2P query routing setting where estimates must be made within
the critical response-time path of an online query.

Our own prior work [5] addressed overlap estimation for P2P collections, but
was limited to Bloom filters and used only a simple decision model for query
routing. The current paper shows how to utilize also more sophisticated and
flexible kinds of synopses like min-wise permutations, analyzes their advantages,
and develops the novel IQN routing method. IQN outperforms the method of [5]
by a large margin in terms of the ratio of query result recall to execution cost.

3 Collection Synopses for Information Retrieval

3.1 Measures

Consider two sets, SA and SB, with each element identified by an integer key
(e.g., docID). The overlap of these two sets is defined as |SA ∩ SB|, i.e., the
cardinality of the intersection.

The notions of Containment and Resemblance have been proposed as mea-
sures of mutual set correlation and can be used for our problem setting [8].

Containment(SA, SB) = |SA∩SB |
|SB | is used to represent the fraction of elements

in SB that are already known to SA. Resemblance(SA, SB) = |SA∩SB |
|SA∪SB | represents

the fraction documents that SA and SB share with each other. If the intersec-
tion |SA ∩ SB| is small, so are containment and resemblance, and SB can be
considered a useful information source from the viewpoint of SA. Note that re-
semblance is symmetric, while containment is not. Also, given |SA| and |SB| and
either one of Resemblance or Containment, one can calculate the other [11].
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However, none of these notions can fully capture the requirements of our sys-
tem model. Specifically, we expect peers to have widely varying index list sizes.
Consider now, for example, two collections SA and SB with |SA| � |SB| and a ref-
erence collection SC . Since |SA| is small, so is |SA∩SC |, yielding low containment
and resemblance values, even if SA ⊂ SC . If we preferred collections with low con-
tainment or resemblance, we would prefer SA over SB, even though SA might not
add any new documents. To overcome this problem, we propose the notion of nov-
elty of a set SB with regard to SA, defined as Novelty(SB|SA) = |SB−(SA∩SB)|.

3.2 Synopses

In the following, we briefly overview three relevant statistical synopses methods
from the literature, focusing on estimating resemblance. In Section 5.2 we will
show how to use resemblance to estimate our proposed novelty measure.

Bloom Filters. A Bloom filter (BF) [7] is a data structure that compactly
represents a set as a bit vector in order to support membership queries. Bloom
filters can easily approximate intersections and unions by bit-wise AND and
ORing of two filters. The resemblance between two sets is derived from the
cardinalities of their union and intersection.

Min-Wise Independent Permutations (MIPs). Min-Wise Independent Per-
mutations, or MIPs for short, have been introduced in [9, 10]. This technique
assumes that the set elements can be ordered (which is trivial for integer keys)
and computes N random permutations of the elements. Each permutation uses a
linear hash function of the form hi(x) := ai∗x+bi mod U where U is a big prime
number and ai, bi are fixed random numbers. By ordering the resulting hash val-
ues, we obtain a random permutation. For each of the N permutations, the MIPs
technique determines the minimum hash value, and stores it in an N -dimensional
vector, thus capturing the minimum set element under each of these random
permutations. Its fundamental rationale is that each element has the same prob-
ability of becoming the minimum element under a random permutation.

An unbiased estimate of the pair-wise resemblance of sets using their N -
dimensional MIPs vectors is obtained by counting the number of positions in

Fig. 1. Example of Min-Wise Permutations
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which the two vectors have the same number and dividing this by the num-
ber of permutations N [11]. Essentially, this holds as the matched numbers are
guaranteed to belong to the intersection of the sets.

A heuristic form of approximating also the intersection and union of two sets
would combine two MIPs vectors by taking, for each position, the maximum and
minimum of the two values. The ratio of the number of distinct values in the
resulting aggregated MIPs vector to the vector length N provides an estimate
for the intersection and union cardinalities, but in the intersection case, this is
no longer a statistically sound unbiased estimator.

Hash Sketches. Hash sketches were first proposed by Flajolet and Martin in
[18], to probabilistically estimate the cardinality of a multiset S. [19] proposes
a hash-based synopsis data structure and algorithms to support low-error and
high-confidence estimates for general set expressions. Hash sketches rely on the
existence of a pseudo-uniform hash function h() : S → [0, 1, . . . , 2L). Durand
and Flajolet presented a similar algorithm in [16] (super-LogLog counting) which
reduced the space complexity and relaxed the required statistical properties of
the hash function.

Hash sketches work as follows. Let ρ(y) : [0, 2L) → [0, L) be the position
of the least significant (leftmost) 1-bit in the binary representation of y; that
is, ρ(y) = mink≥0 bit(y, k) �= 0, y > 0, and ρ(0) = L. bit(y, k) denotes the
kth bit in the binary representation of y (bit position 0 corresponds to the
least significant bit). In order to estimate the number n of distinct elements in
a multiset S we apply ρ(h(d)) to all d ∈ S and record the results in a bitmap
vector B[0 . . . L−1]. Since h() distributes values uniformly over [0, 2L), it follows
that P (ρ(h(d)) = k) = 2−k−1.

Thus, for an n-item multiset, B[0] will be set to 1 approximately n
2 times, B[1]

approximately n
4 times, etc. Then, the quantity R(S) = maxd∈Sρ(d) provides

an estimation of the value of log n. [18, 16] present analyses and techniques to
bound from above the error introduced, relying basically on using multiple bit
vectors and averaging over their corresponding R positions.

3.3 Experimental Characterization

We evaluated the above synopses in terms of their general ability to estimate
mutual collection resemblance. For this purpose, we randomly created pairs of
synthetic collections of varying sizes with an expected overlap of 33%.

For a fair and realistic comparison, we restricted all techniques to a synopsis
size of 2,048 bits, and from this space constraint we derived the parameters of
the various synopses (e.g., the number N of different permutations for MIPs).
We report the average relative error (i.e., the difference between estimated and
true resemblance over the true resemblance, averaged over 50 runs with different
synthesized sets).1

1 The expectation values, i.e., the averages over the estimated resemblance values, are
more or less perfect (at least for MIPs and hash sketches) and not shown here. This
is no surprise as the estimators are designed to be unbiased.
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Fig. 2. Relative Error of Resemblance Estimation

Figure 2 shows, on the left side, the relative error as a function of the set
cardinality. We see that MIPs offer accurate estimates with little variance and
that their error is almost independent of the collection sizes. Hash sketches are
also robust with respect to the collection sizes, but on average have a higher
error. Bloom filters perform worse even with small collections, because (given
their size of 2,048 bits) they are overloaded, i.e., they would require more bits
to allow for accurate estimates.

Next, we created synthetic collections of a fixed size (10,000 elements), and
varied the expected mutual overlap. We again report on average relative error.
The results, shown in Figure 2 on the right side, are similar to the observations
above: Bloom Filters suffer again from overload; MIPs and hash sketches offer
accurate estimates with a low variance for all degrees of overlap.

3.4 Discussion

A qualitative comparison for selecting the most appropriate synopsis of the peer
collections should be based on the following criteria: 1) low estimation error,
2) small space requirements for low storage and communication costs, 3) the
ability to aggregate synopses for different sets in order to derive a synopsis for
the results of set operations like union, intersection, or difference, and 4) the
ability to cope with synopses of heterogeneous sizes, e.g., to combine a short
synopsis for a small set with a longer synopsis for a larger set.

Bloom filters can provide tunably accurate estimations of resemblance be-
tween two sets. They also facilitate the construction of aggregate synopses for
the union and intersection of sets, by simply taking the bit-wise OR and bit-
wise AND of the filters of the two sets. ¿From these, it is in turn straightforward
to derive a novelty estimator. A major drawback of Bloom filters is that they
cannot work when different sets have used different size filters.

This leads either to very high bandwidth and storage overhead (when forc-
ing all collections to be represented by an a-priori maximum filter size) or to
high errors (when using inappropriately small size filters, due to very high false
positive probability).
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MIPs and hash sketches can offer set resemblance estimation with small errors
with reasonable space and bandwidth requirements. For the numbers chosen in
our experiments, MIPs work even more accurately (i.e., with a lower variance)
than hash sketches for different combinations of collection sizes and degrees of
overlap, for sets with cardinalities from a few thousand up to millions of elements.

For hash sketches, we are not aware of ways to derive aggregated synopses
for the intersection of two sets (whereas union is straightforward by bit-wise
OR). This somewhat limits their flexibility in some application classes with
conjunctive multi-dimensional queries (cf. Section 6). Moreover, they share with
Bloom filters the disadvantage that all hash sketches need to have the same bit
lengths in order to be comparable.

MIPs are at least as good as the other two techniques in terms of error and
space requirements. In contrast to both Bloom filters and hash sketches, they
can cope, to some extent, with heterogeneous sizes for resemblance estimation.
When comparing two MIPs vectors with N1 and N2 permutations, we can simply
limit ourselves to the min(N1, N2) common permutations and obtain meaningful
estimates. Of course, the accuracy of the estimator may degrade this way, but
we still have a working method and our experiments in Section 8 show that the
accuracy is typically still good enough.

4 MINERVA Prototype for P2P Web Search

MINERVA is a fully operational distributed search engine that we have imple-
mented and that serves as a testbed for our work. A conceptually global but
physically distributed directory, which is layered on top of Chord [33], holds
compact, aggregated information about the peers’ local indexes, to the extent
that the individual peers are willing to disclose. Unlike [23], we use the Chord
DHT to partition the term space, such that every peer is responsible for the
statistics and metadata of a randomized subset of terms within the directory.
For failure resilience and availability, the responsibility for a term can be repli-
cated across multiple peers. We do not distribute the actual index lists or even
documents across the directory.

Directory maintenance, query routing, and query processing work as follows.
Every peer publishes statistics, denoted as Posts, about every term in its local
index to the directory. The peer onto which the term is hashed maintains a
PeerList of all postings for this term from all peers across the network. Posts
contain contact information about the peer who posted the summary together
with statistics to calculate IR-style relevance measures for a term, e.g., the length
of the inverted index list for the term, the maximum or average score among the
term’s inverted list entries, etc. A peer that initiates a multi-keyword query
first retrieves the PeerLists for all query terms from the distributed directory. It
combines this information to identify the most promising peers for the current
query. For efficiency reasons, the query initiator can decide to not retrieve the
complete PeerLists, but only a subset, say the top-k peers from each list based
on IR relevance measures, or more appropriately the top-k peers over all lists,
calculated by a distributed top-k algorithm like [25].
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5 Enhancing Query Execution Using Novelty Estimation

5.1 The IQN Query Routing Method

Good query routing is based on the following three observations:

1. The query initiator should prefer peers that are likely to hold highly relevant
information for a particular query.

2. On the other hand, the query should be forwarded to peers that offer a great
deal of complementary results.

3. Finally, this process should incur acceptable overhead.

For the first aspect, we utilize the statistical metadata about the peers’ local
content quality that all peers post to the distributed directory (based on lo-
cal IR measures like tf*idf-based scores, scores derived from statistical language
models, or PageRank-like authority scores of documents). For the second aspect,
each peer additionally publishes term-specific synopses that can be used to esti-
mate the mutual term-specific novelty. For the third aspect, we ensure that the
synopses are as compact as possible and we utilize in a particularly cost-efficient
way for making routing decisions.

The Integrated Quality Novelty (IQN) method that we have developed based
on this rationale starts from the local query result that the query initiator can
compute by executing the query against its own local collection and builds a syn-
opsis for the result documents as a reference synopsis against which additionally
considered peers are measured. Alternatively to the local query execution, the
peer may also construct the reference synopsis from its already existing local
per-term synopses. In this section we will simplify the presentation and assume
that queries are single-dimensional, e.g., use only one keyword; we will discuss
in Section 6 how to handle multi-keyword or multi-attributed queries.

IQN adds peers to the query processing plan in an iterative manner, by al-
ternating between a Select-Best-Peer and an Aggregate-Synopses step.

The Select-Best-Peer step uses the query-relevant PeerList from the directory,
fetched before the first iteration, to form a candidate peer list and identify the
best peer that is not yet included in the execution plan. Quality is measured
in terms of an IR relevance metric like CORI [13, 12]: CORI computes the
collection score si of the i-th peer with regard to a query Q = {t1, t2, ..., tn} as
si =

∑
t∈Q

si,t

|Q| where si,t = α + (1− α) · Ti,t · Ii,t.
The computations of Ti,t and Ii,t use the number of peers in the system,

denoted np, the document frequency (cdf) of term t in collection i, and the
maximum document frequency (cdfmax) for any term t in collection i:

Ti,t = cdfi,t

cdfi,t+50+150· |Vi|
|V avg |

Ii,t =
log(np+0.5)

cft

log(np+1)

where the collection frequency cft is the number of peers that contain the term
t. The value α is chosen as α = 0.4 [13].
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CORI considers the size |Vi| of the term space of a peer (i.e., the total number
of distinct terms that the peer holds in its local index) and the average term
space size |V avg| over all peers that contain term t.

In practice, it is difficult to compute the average term space size over all
peers in the system (regardless of whether they contain query term t or not). We
approximate this value by the average over all collections found in the PeerLists.

Novelty is measured by the candidate peers’ synopses, also fetched from the
directory upfront, using the techniques of the previous section with further de-
tails provided below. The candidate list is sorted by the product of quality and
novelty. Each IQN iteration selects the best quality*novelty peer, adds it to the
query processing plan, and removes it from the candidate list.

The Aggregate-Synopses step aims to update the expected quality of the result
under the condition that the query will be processed by all those peers that were
previously selected including the one chosen in the current iteration. For this
purpose, IQN aggregates the synopsis of the last selected peer and the references
synopsis, where the latter already captures the results that can be expected from
all peers chosen in previous iterations. The result forms the reference synopsis for
the next iteration. The details of the synopses aggregation depend on the kind
of synopsis structure and is discussed in the following subsection. Note that IQN
always aggregates only two synopses at a time, and also needs to estimate only
the novelty of an additionally considered peer against the reference synopsis.
The algorithm is designed so that pair-wise novelty estimation is all it needs.

The two steps, Select-Best-Peer and Aggregate-Synopses, are iterated until
some specified stopping criterion is satisfied. Good criteria would be reaching
a certain number of maximum peers that should be involved in the query, or
estimating that the combined query result has at least a certain number of (good)
documents. The latter can be inferred from the updated reference synopsis.

5.2 Estimating Pair-Wise Novelty

We show how to utilize the synopses based on MIPs, hash sketches, and Bloom
filters to select the next best peer in an iteration of the IQN method. For simplic-
ity, best refers to highest novelty here. In a real-world application like MINERVA,
the peer selection process will be based on a combination of novelty and quality
as explained in the previous subsection.

Exploiting MIPs. MIPs can be used to estimate the resemblance R between
SA and SB as seen in Section 3.2. Given |SA| and |SB|, we estimate the overlap
between SA and SB as |SA ∩ SB| = R∗(|SA|+|SB|)

(R+1) and can use this overlap esti-
mation to calculate our notion of novelty using the equation from the definition:
Novelty(SB|SA) := |SB − (SA ∩ SB)| = |SB| − |(SA ∩ SB)|. This assumes that
the initial reference synopsis from which IQN starts is given in a form that we
can estimate its cardinality (in addition to having its MIPs representation). This
is guaranteed as the query initiator’s local query result forms the seed for the
reference synopsis.
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Exploiting Hash Sketches. Hash sketches can be used to estimate the cardi-
nality of the union of two sets. Using the equation |SA ∩ SB| = |SA| + |SB| −
|SA ∪ SB|, we can derive the overlap |SA ∩ SB| and subsequently our notion
of novelty. Given hash sketches for all candidate peers and an (initially empty)
hash sketch representing the result space already covered, one can create a hash
sketch for the union of two sets by a bit-wise OR operation, as the document
that is responsible for a set bit will also be present in the combined collection.
Inversely, if none of the documents in either collection has set a specific bit, there
will also be no document in the combined collection setting this particular bit:
HSA∪B[i] = HSA[i] OR HSB[i] ∀i : 1 ≤ i ≤ n.

Exploiting Bloom Filters. Given Bloom filter representations of the reference
synopsis and of the additionally considered peer’s collection, we need to estimate
the novelty of peer p to the query result. For this purpose, we first compute a
Bloom filter bf for the set difference by taking the bit-wise difference, that
is: bf [i] := bfp[i]∧ � bfref [i]. This is not an accurate representation of the set
difference; the bit-wise difference may lead to additional false positives in bf , but
our experiments did not encounter dramatic problems with false positives due
to this operation (unless there were already many false positives in the operands
because of short bitvector length). Finally, we estimate the cardinality of the set
difference from the number of set bits in bf .

5.3 Aggregate Synopses

After having selected the best peer in an iteration of the IQN method, we need
to update the reference synopsis that represents the result space already cov-
ered with the expected contribution from the previously selected peers. This is
conceptually a union operation, since the previous result space is increased with
the results from the selected peer.

Exploiting MIPs. By design of MIPs, it is possible to form the MIPs represen-
tation for the union of two MIPs-approximated sets by creating a vector, taking
the position-wise min of the vectors. This is correct as for each permutation, the
document yielding the minimum for the combined set is the minimum of the two
minima. More formally, given MIPsA[] and MIPsB[], one can form MIPsA∪B[]
as follows MIPsA∪B[i] = min{MIPsA[i], MIPsB[i]} ∀i : 1 ≤ i ≤ n.

A nice property of MIPs that distinguishes this technique from hash sketches
and Bloom filters is that this MIPs-based approximation of unions can be applied
even if the MIPs vectors of the two operands have different lengths, i.e., have
used a different number of permutations. In a large-scale P2P network with
autonomous peers and high dynamics, there may be many reasons why individual
peers want to choose the lengths of their MIPs synopses at their own discretion.
The only agreement that needs to be disseminated among and obeyed by all
participating peers is that they use the same sequence of hash functions for
creating their permutations. Then, if two MIPs have different lengths, we an
always use the smaller number of permutations as a common denominator. This
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loses accuracy in the result MIPs, but still yields a viable synopsis that can be
further processed by the IQN algorithm (and possibly other components of a
P2P search engine).

Exploiting Hash Sketches. Similarly, one can create a hash sketch for the
union of two sets by a bit-wise OR operation, as described in Section 5.2.

Exploiting Bloom Filters. For Bloom filters, forming the union is straightfor-
ward. By construction of the Bloom filters, one can create the Bloom filter for
the combined set from the Bloom filters of two collections by again performing
a bit-wise OR operation: BFA∪B[i] = BFA[i] OR BFB[i] ∀i : 1 ≤ i ≤ n.

6 Multi-dimensional Queries

As the synopses posted by the peers are per term, there is a need to combine
the synopses of all terms or query conditions for a multi-dimensional query
appropriately. This issue primarily refers to the Aggregate-Synopses step of the
IQN method (once we have an overall synopsis for capturing multi-keyword result
estimates, the Select-Best-Peer step is the same as before). We have developed
two techniques for this purpose, a per-peer aggregation method and a per-term
aggregation method. They will be discussed the following subsections. We start,
however, by discriminating two kinds of queries, conjunctive and disjunctive
ones, and discussing their requirements for synopses aggregation.

6.1 Conjunctive vs. Disjunctive Queries

Two query execution models are common in information retrieval: disjunctive
queries and conjunctive queries. Conjunctive queries require a document to con-
tain all query terms (or a file to satisfy all specified attribute-value conditions),
while disjunctive queries search for documents containing any (and ideally many)
of the terms. Both query types can be either with ranking of the results (and
would then typically be interested only in the top-k results) or with Boolean
search predicates. While conjunctive queries have become common in simple IR
systems with human interaction such as Web search engines and are much more
frequent in database querying or file search, disjunctive query models are often
used in environments with large, automatically generated queries or in the pres-
ence of query expansion. The latter is often the case in intranet search, corporate
knowledge management, and business analytics.

The choice for one of these query models has implications for the creation of
per-peer synopses from the original term-specific synopses. In the Select-Best-
Peer stage of IQN, a peer’s novelty has to be estimated based on all terms of a
specific query. For conjunctive queries, the appropriate operation on the per-term
synopses would, thus, be an intersection. For Bloom filters this is straightforward:
we represent the intersection of the two sets by simply combining their corre-
sponding Bloom filters (i.e., bit vectors) using a bitwise AND. However, we are
not aware of any method to create meaningful intersections between synopses
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based on hash sketches, and for MIPs the prior literature does not offer any
solutions either. For hash sketches a very crude approach would be use unions
also for conjunctive queries; this would at least give a valid synopsis as unions
are superset of intersections. But, of course, the accuracy of the synopses would
drastically degrade. This is certainly an inherent disadvantage of hash sketches
for our P2P query routing framework. For MIPs the same crude technique would
be applicable, too, but there is a considerably better, albeit somewhat ad hoc,
heuristic solution. When combining the mininum values under the same per-
mutation from two different MIPs synopses, instead of using the minimum of
the two values (like for union) we could use the maximum for intersection. The
resulting combined MIPs synopsis is no longer the MIPs representation that we
would compute from the real set intersection, but it can serve as an approxima-
tion. It is a conservative representation because the true minumum value under
a permutation of the real set intersection can be no lower than the maximum of
the two values from the corresponding MIPs synopses.

For a disjunctive query model, in contrast, the union operation suffices to
form an aggregated per-peer synopsis from the term-specific synopses of a peer.
This follows since any document being a member of any of the peer’s index lists
qualifies for the result. In Section 5.3 we have introduced ways of creating such
synopses from the synopses of both sets.

In the following, we present two strategies for combining per-term synopses
of different peers to assess their expected novelty with respect to a reference
set and its synopsis. For Bloom filters or MIPs, these can handle both conjunc-
tive or disjunctive queries; for hash sketches a low-error aggregation method for
conjunctions is left for future work.

6.2 Per-Peer Collection Aggregation

The per-peer aggregation method first combines the term-specific set representa-
tions of a peer for all query terms (using union or intersection, depending on the
query type and the underlying type of synopsis). This builds one query-specific
combined synopsis for each peer, which is used by IQN, to estimate the peer’s
novelty with respect to the aggregated reference synopsis of the previously cov-
ered result space. After selecting the most promising peer, its combined synopsis
is aggregated with the reference synopsis of the current IQN iteration.

6.3 Per-Term Collection Aggregation

The per-term aggregation method maintains term-specific reference synopses of
the previously covered result space, σprev(t), one for each term or attribute-
value condition of the query. The term-specific synopses σ(p, t) of each peer p,
considered as a candidate by IQN, are now used to calculate term-specific novelty
values. For the entire query, these values are simply summed up over all terms
in the query. The summation is, of course, a crude estimate of the novelty of the
contribution of p for the entire query result. But this technique leads to a viable
peer selection strategy.
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Per-peer aggregation, discussed in the previous subsection, seems to be more
intuitive and accurate, but the per-term aggregation method offers an inter-
esting advantage: there is no need for an intersection of set synopses, even in
the conjunctive query model. Instead, the magic lies in the aggregation of the
term-specific novelty values. We believe that this aggregation technique can be
further extended, e.g., for exploiting term correlation measures mined from the
P2P system. Our MINERVA testbed has implemented both of the two presented
aggregation techniques, for all three kinds of synopses.

7 Extensions

7.1 Score-Conscious Novelty Estimation Using Histograms

In the previous sections we have focused on techniques that treat collections as
a set of documents. This might be useful in P2P file sharing applications but
in ranked retrieval we can do better. Observe that we are more interested in
the mutual overlap that different peers have in the higher-scoring portions of an
index list. We employ histograms to put documents of each index list into cells,
where each cell represents a score range of an index list.

Synopses are now produced separately for each histogram cell. We calculate
the weighted novelty estimate between two statistics by performing a pairwise
novelty estimation over all pairs of histogram cells, i.e., we estimate the novelties
of all histogram cells of a peer’s synopses with regard to the cells of another peer’s
synopses and aggregate these novelty values using a weighted sum, where the
weight reflects the score range (i.e., we assign a higher weight for overlap among
high-scoring cells).

7.2 Adaptive Synopses Lengths

As mentioned before, a large-scale P2P setting with high churn dictates that
different peers may want to use synopses of different lengths. The MIPs-based
techniques do indeed support this option (although it has a price in terms of
potential reduction of accuracy).

In P2P Web search, an important scenario is the situation where each peer
wants to invest a certain budget B for the total space that all its per-term syn-
opses require together. This is primarily to limit the network bandwidth that
is consumed by posting the synopses to the directory. Although each individual
synopsis is small, peers should batch multiple posts that are directed to the same
recipient so that message sizes do indeed matter. Especially when directory en-
tries are replicated for higher availability and when peers post frequent updates,
the network efficiency of posting synopses is a critical issue.

In this framework, a peer with a total budget B has the freedom to choose
specific a length lenj for the synopsis of term j, such that

∑M
j=1 lenj = B where

M is the total number of terms.
This optimization problem is reminiscent of a knapsack problem. A heuristic

approach that we have pursued is to choose lenj in proportion to a notion of
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benefit for term j at the given peer. Natural candidates for the benefit weights
could be the length of the index list for term j, giving higher weight to lists with
more documents, or the number of list entries with a relevance score above some
threshold, or the number of list entries whose accumulated score mass equals the
90% quantile of the score distribution.

8 Experiments

8.1 Experimental Setup

One pivotal issue when designing our experiments was the absence of a standard
benchmark. While there are benchmark collections for centralized Web search,
it is not clear how to distribute such data across peers of a P2P network. Some
previous studies partitioned the data into many small and disjoint pieces; but
we do not think this is an adequate approach for P2P search with no central co-
ordination and highly autonomous peers. In contrast, we expect a certain degree
of overlap, with popular documents being indexed by a substantial fraction of
all peers, but, at the same time, with a large number of documents only indexed
by a tiny fraction of all peers.

For our experiments we have taken the complete GOV document collection, a
crawl of the .gov Internet domain used in the TREC 2003 Web Track benchmark
(http://trec.nist.gov). This data comprises about 1.5 million documents (mostly
HTML and PDF). All recall measurements that we report below are relative to
this centralized reference collection. So a recall of x percent means that the P2P
Web search system with IQN routing found in its result list x percent of the
results that a centralized search engine with the same scoring/ranking scheme
found in the entire reference collection.

For our P2P testbed, we partitioned the whole data into disjoint fragments,
and then we form collections placed onto peers by using various strategies to
combine fragments. In one strategy, we split the whole data into f fragments
and created collections by choosing all subsets with s fragments, thus, ending up
with

(
f
s

)
collections each of which was assigned to one peer. In a second strategy,

we have split the entire dataset into 100 fragments and used the following sliding-
window technique to form collections assigned to peers: the first peer receives r
(subsequent) fragments f1 to fr, the next peer receives the fragments f1+offset

to fr+offset, and so on. This way, we systematically control the overlap of peers.
For the query workload we took 10 queries from the topic-distillation part of

the TREC 2003 Web Track benchmark [34]. These were relatively short multi-
keyword queries, typical examples being “forest fire” or “pest safety control”.

All experiments were conducted on the MINERVA testbed described in Sec-
tion 4, with peers running on a PC cluster. We compared query routing based
on the CORI method which is merely quality-driven (see Section 5.1) against
the quality- and novelty-conscious IQN method. Recall that CORI is among the
very best database selection methods for distributed IR. We measured the (rela-
tive) recall as defined above, for a specified number of peers to which the query
was forwarded. In the experiments we varied this maximum number of peers per
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query. This notion of recall directly reflects the benefit/cost ratio of the different
query routing methods and their underlying synopses.

8.2 Experimental Results

Figure 3 shows the recall results (micro-averaged over all our benchmark queries),
using the

(
f
s

)
technique in the chart on the left side and the sliding-window

technique on the right side. More specifically we chose f = 6 and s = 3 for the
left chart, which gave us

(6
3

)
= 20 collections for 20 peers, and we chose r = 10

and offset = 2 for 50 collections on 50 peers in the sliding-window setup.
The charts show recall results for 4 variants of IQN: using MIPs or Bloom

filter synopses with two different lengths. The shorter synopsis length was 1024
bits (32 permutations); the longer one was 2048 bits (64 permutations).

Figure 3 clearly demonstrates that all IQN variants outperform CORI by a sub-
stantial margin: in some cases, the recall for a cost-efficient, small number of peers,
e.g., 5 peers, was more than 3 times higher, a very significant gain. Also note that
in the more challenging sliding-window scenario, the IQN methods needed about
5 peers to reach 50% recall, whereas CORI required more than 20 peers.

In the comparison of the two different synopses techniques, our expectation,
from the stand-alone experiments in Section 3, that MIPs can outperform Bloom
filters were fully reconfirmed, now in the full application setting of P2P Web
search. Especially for the smaller synopsis length of 1024 bits, the MIPs-based
IQN beats Bloom filters by a significant margin in terms of recall for a given
number of peers. In terms of number of peers required for achieving a given recall
target, again the improvement is even more prominent. For example, IQN with
1024-bit Bloom filters required 9 peers to exceed 60 % recall, whereas IQN with
MIPs synopses of the same length used only 6 peers. Doubling the bit length
improved the recall of the Bloom filter variant, and led to minor gains for MIPs.

As the network cost of synopses posting (and updating) and the network cost
and load per peer caused by query routing are the major performance issues in a
P2P Web search setting, we conclude that IQN, especially in combination with
short MIPs synopses, is a highly effective means of gaining efficiency, reducing
the network and per-peer load, and thus improving throughput and response
times of the entire P2P system.

Fig. 3. Recall as a function of the number of peers involved per query
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9 Conclusion and Future Work

This paper has developed the novel IQN query routing method for large-scale
P2P systems, with applications in file and Web search. We have characterized
and experimentally studied the strengths and weaknesses of three prominent
types of statistical synopses, and we have shown how these basic techniques can
be incorporated into and effectively leveraged for P2P query routing.

The experiments have proven the high potential of novelty-aware collection
selection. It can drastically decrease the number of collections that have to be
queried in order to achieve good recall. Depending on the actual degree of overlap
between the collections, we have seen remarkable improvements especially at low
numbers of queried peers. This fits exactly with our scenario of P2P Web search
where we want to put low limits in the number of peers involved in a query.

Our future work will aim at further refinements and improvements of distrib-
uted statistics management in a highly dynamic P2P environment.

References

[1] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving data access
in p2p systems. IEEE Internet Computing, 6(1):58–67, 2002.

[2] K. Aberer and J. Wu. Towards a common framework for peer-to-peer web re-
trieval. From Integrated Publication and Information Systems to Virtual Infor-
mation and Knowledge Environments, 2005.

[3] D. Agrawal, A. E. Abbadi, and S. Suri. Attribute-based access to distributed data
over p2p networks. DNIS, 2005.

[4] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Dl meets p2p - distributed
document retrieval based on classification and content. ECDL, 2005.

[5] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Improving
collection selection with overlap awareness in p2p search engines. SIGIR, 2005.

[6] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Minerva:
Collaborative p2p search. VLDB, 2005.

[7] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, 1970.

[8] Broder. On the resemblance and containment of documents. SEQUENCES, 1997.
[9] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-

pendent permutations (extended abstract). STOC, 1998.
[10] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-

pendent permutations. Journal of Computer and System Sciences, 60(3), 2000.
[11] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content de-

livery across adaptive overlay networks. IEEE/ACM Trans. Netw., 12(5):767–780,
2004.

[12] J. Callan. Distributed information retrieval. Advances in information retrieval,
Kluwer Academic Publishers., pages 127–150, 2000.

[13] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with
inference networks. SIGIR, 1995.

[14] P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks.
PODC, 2004.



166 S. Michel et al.

[15] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, and J. Shanmugasun-
daram. An indexing framework for peer-to-peer systems. SIGMOD, 2004.

[16] M. Durand and P. Flajolet. Loglog counting of large cardinalities. In G. Di Bat-
tista and U. Zwick, editors, ESA, LNCS-2832, 2003.

[17] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3), 2000.

[18] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[19] S. Ganguly, M. Garofalakis, and R. Rastogi. Processing set expressions over
continuous update streams. SIGMOD, 2003.

[20] L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss: text-source discovery over
the internet. ACM Trans. Database Syst., 24(2):229–264, 1999.

[21] T. Hernandez and S. Kambhampati. Improving text collection selection with
coverage and overlap statistics. WWW, 2005.

[22] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker, and I. Stoica.
Querying the internet with Pier. VLDB, 2003.

[23] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris. On the
feasibility of peer-to-peer web indexing and search. IPTPS, 2003.

[24] W. Meng, C. T. Yu, and K.-L. Liu. Building efficient and effective metasearch
engines. ACM Computing Surveys, 34(1):48–89, 2002.

[25] S. Michel, P. Triantafillou, and G. Weikum. KLEE: A framework for distributed
top-k query algorithms. VLDB, 2005.

[26] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans. Netw.,
10(5):604–612, 2002.

[27] Z. Nie, S. Kambhampati, and T. Hernandez. Bibfinder/statminer: Effectively
mining and using coverage and overlap statistics in data integration. VLDB,
2003.

[28] H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. SIGIR, 2003.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. SIGCOMM, 2001.

[30] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. Middleware,
2003.

[31] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Middleware, 2001.

[32] L. Si, R. Jin, J. Callan, and P. Ogilvie. A language modeling framework for
resource selection and results merging. CIKM, 2002.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM, 2001.

[34] Text REtrieval Conference (TREC). http://trec.nist.gov/.
[35] P. Triantafillou and T. Pitoura. Towards a unifying framework for complex query

processing over structured peer-to-peer data networks. DBISP2P, 2003.
[36] Y. Wang and D. J. DeWitt. Computing pagerank in a distributed internet search

engine system. VLDB, 2004.
[37] J. Zhang and T. Suel. Efficient query evaluation on large textual collections in

a peer-to-peer environment. 5th IEEE International Conference on Peer-to-Peer
Computing, 2005.

[38] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection in adaptive
filtering. SIGIR, 2002.



Efficient Quantile Retrieval on Multi-dimensional Data�

Man Lung Yiu1, Nikos Mamoulis1, and Yufei Tao2

1 Department of Computer Science, University of Hong Kong,
Pokfulam Road, Hong Kong

{mlyiu2, nikos}@cs.hku.hk
2 Department of Computer Science, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong
taoyf@cs.cityu.edu.hk

Abstract. Given a set of N multi-dimensional points, we study the computation
of φ-quantiles according to a ranking function F , which is provided by the user
at runtime. Specifically, F computes a score based on the coordinates of each
point; our objective is to report the object whose score is the φN -th smallest
in the dataset. φ-quantiles provide a succinct summary about the F -distribution
of the underlying data, which is useful for online decision support, data min-
ing, selectivity estimation, query optimization, etc. Assuming that the dataset is
indexed by a spatial access method, we propose several algorithms for retriev-
ing a quantile efficiently. Analytical and experimental results demonstrate that a
branch-and-bound method is highly effective in practice, outperforming alterna-
tive approaches by a significant factor.

1 Introduction

We study quantile computation of a derived measure over multi-dimensional data.
Specifically, given (i) a set P of N points in d-dimensional space, (ii) a continuous
function F : Rd → R, and (iii) a value φ ∈ [0, 1], a quantile query retrieves the φN -th
smallest F -value of the objects in P . For instance, the median corresponds to the 0.5-
quantile, whereas the maximum is the 1-quantile. Quantiles provide a succinct summary
of a data distribution, finding application in online decision support, data mining, selec-
tivity estimation, query optimization, etc.

Consider a mobile phone company that has conducted a survey on customers’ pref-
erences regarding their favorite service plans. The two dimensions in Figure 1a capture
two properties of a monthly plan (e.g., the price and amount of air-time); each white
point represents the preferences of a customer on these properties. Assume that the
company is planning to launch a new plan corresponding to the black dot q. To evaluate
the potential market popularity of q, the manager would be interested in the distribution
of the similarity between q and customers’ preferences. For this purpose, F may be
defined as the Euclidean distance between q and a white point and quantiles for various
values of φ could be retrieved. As another (spatial) example, assume that point q in
Figure 1a is a pizza shop and the white points correspond to residential buildings. The
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Fig. 1. Examples of quantiles based on derived Euclidean distances

median residential building distance (from the pizza shop) might be useful to the shop
owner, in order to plan adequate number of staff for pizzadelivery.

The query in Figure 1a is a single-source query because the ordering of data points
depends on one source only. A more complex scenario is shown in Figure 1b, where the
white points correspond to residential areas, and the black dots represent supermarkets.
Each dashed polygon is the “influence region” [21] of a supermarket, which covers
those residential areas that find it as the nearest supermarket. A market analyst would
like to obtain the distribution of the distance from a residential area to its nearest su-
permarket, in order to decide a suitable location to open a new supermarket. A quantile
query in this case is a multiple-source one, because the ordering of the white points is
determined by multiple sources (the supermarkets).

Our goal is to compute a quantile by accessing only a fraction of the dataset, with-
out knowing the ranking function F in advance. Previous research [1, 14, 15, 9, 8] in the
database community focused on computing/maintaining approximate quantiles,
whereas we aim at obtaining the exact results. Furthermore, our problem is completely
different than the so-called “spatial quantiles” in computational geometry [12, 5]. For
example, a spatial center is a location p (not necessarily an actual point in the dataset)
such that every hyperplane containing p defines a “balanced” partitioning of the dataset
(i.e., the numbers of points in the two partitions differ by less than a threshold). Our
quantile, on the other hand, is a one-dimensional value in the output domain of F .

We develop several solutions that leverage a multi-dimensional index (e.g., R-tree)
to prune the search space, starting with a variation of the incremental nearest neighbor
(INN) algorithm [11]. This algorithm is not efficient as its cost linearly increases with φ.
We then present a faster algorithm, which iteratively approximates the F -distribution
using linear functions. Our last solution combines the branch-and-bound framework
with novel heuristics that minimize the I/O cost based on several problem characteris-
tics. We analyze the relative performance of the proposed approaches, theoretically and
experimentally. Finally, we generalize our algorithms to other variations of the problem
including progressive retrieval, batch processing, etc.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 formally defines the problem, while Section 4 presents the details of the pro-
posed algorithms, and analyzes their performance. Section 5 extends our solutions to
other types of quantile retrieval. Section 6 contains an experimental evaluation, and fi-
nally, Section 7 concludes the paper with directions for future work.
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2 Related Work

We treat quantile computation of a derived measure as a spatial query. We review index-
ing and query evaluation for multidimensional data in Section 2.1. Section 2.2 surveys
existing methods for retrieving quantiles on non-indexed data.

2.1 Spatial Query Processing

R-trees [10] have been extensively used for indexing spatial data. Figure 2a shows a set
of points on the 2D plane, indexed by the R-tree in Figure 2b. The R-tree is balanced
and each node occupies one disk page. Each entry stores the MBR (minimum bounding
rectangle) that encloses all spatial objects in the corresponding sub-tree. Leaf nodes
store object MBRs and their record-ids in the spatial relation that stores the objects. R-
trees were originally designed for spatial range queries, but they can be used to process
more advanced spatial queries, like nearest neighbors [11], spatial joins [4], reverse
nearest neighbors [21], skyline queries [18], etc.

The aggregate R-tree (aR-tree) [13, 17] is a variant of the R-tree where each entry
is augmented with an aggregate measure of all data objects in the sub-tree pointed by
it. The aR-tree was originally designed for the efficient evaluation of spatial aggregate
queries, where measures (e.g., sales, traffic, etc.) in a spatial region (e.g., a country,
a city center) are aggregated. In Section 4, we show how aR-trees, augmented with
COUNT measures, can be exploited for efficient quantile computation.
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Fig. 2. R-Tree example

Our work is also relevant to nearest neighbor (NN) queries. A NN query asks for the
point closest to an input point q. INN, the state-of-the-art algorithm for NN search [11],
retrieves the nearest neighbors of q incrementally in ascending order of their distance to
q. INN browses the R-tree and organizes the entries of the visited nodes in a min-heap
based on their distances to q. First, all root entries are enheaped. When a non-leaf entry is
dequeued, its child node is accessed and all entries in the child node are enheaped. When
a leaf entry (data object) is dequeued, it is guaranteed to be the next nearest neighbor.

2.2 Quantile Computation

The computation of a quantile is known as the selection problem in the theory com-
munity. [19] is an overview of theoretical results on the selection problem. Sorting the
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elements is a straightforward solution but this requires O(N log N) comparisons. An
early algorithm in [3] needs only O(N) comparisons but it may access some elements
multiple times. It was shown in [16] that O(N

1
t ) memory is necessary and sufficient

for solving the selection problem in t passes of data.
This theoretical result implies that the exact quantile (selection) problem can only be

answered in multiple passes with limited memory. Hence, the database community at-
tempted to compute approximate quantiles with only one pass of the data. An element
is an ε-approximate φ-quantile if its rank is within the range [(φ − ε)N, (φ + ε)N ].
[1, 14, 15, 9, 8] presented algorithms for retrieving an approximate quantile with lim-
ited memory in at most one pass of data. The best result [9] requires only O(1

ε log(εN))
memory. Recently, [6] studied computation of biased (extreme) quantiles in data
streams, which requires less space than the upper bound given by [9]. Observe that
the memory required by the above methods is at least proportional to 1/ε. Thus, they
are not appropriate for computing exact quantiles (or approximate quantiles with very
small ε).

In our problem setting, the ranking function F is dynamic and only known at run-
time. Due to this dynamic nature, pre-materialized results may not be used. In addition,
we aim at utilizing existing indexes to minimize the data required to be accessed in
order to compute the quantile, whereas existing techniques [1, 14, 15, 9, 8, 6] operate
on non-indexed, one-dimensional data. Their focus is the minimization of error, given
a memory budget, where one pass over the data is essential. The problem of comput-
ing quantiles on indexed one-dimensional data (i.e., by a B+-tree) is not interesting,
since the high levels of the tree are already an equi-depth histogram that can be eas-
ily used to derive the quantiles efficiently. On the other hand, there is no total order-
ing of multi-dimensional data, thus R-trees cannot be used directly for ad-hoc spatial
ranking.

A viable alternative for handling dynamic ranking functions in multidimensional
data is to maintain a random sample from the dataset and compute an approximate
quantile value from it. It is known [2] that, for any random sample of size O( 1

ε2 log 1
δ ),

the φ-quantile of the sample is also an ε-approximate quantile of the dataset with prob-
ability at least 1− δ. The number of required samples directly translates to the required
memory size. Thus, random sampling technique is inadequate for retrieving exact quan-
tiles (where ε = 0) or approximate quantiles with very small ε. In this paper, we propose
index-based methods for efficient computation of exact quantiles on derived ranking
measures over multidimensional data.

3 Problem Definition

Let P be a set of N d-dimensional points and F : Rd → R be a continuous function
on the domain of P . The continuity property implies that points close together have
similar F values. The coordinate of a point p along the i-th dimension is denoted by p(i).
Given a real value φ in the range [0, 1], a φ-quantile query returns the φN -th smallest F
value among all points in the dataset. Without loss of generality, we assume that φN is
an integer.

We assume that the dataset is indexed by a COUNT aR-tree. Each entry in the tree
is augmented with the number of points in its subtree. The ranking function F is
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application-dependent. Moreover, we require two bounding functions Fl and Fu, which
take the MBR of a non-leaf entry e as input and return the range [Fl(e), Fu(e)] of pos-
sible F values for any point in it. Given an entry e of the aR-tree, the derived range
[Fl(e), Fu(e)] is used by our algorithms to determine whether the entry can be pruned
or not from search. Computation of tight Fl and Fu bounds is essential for good query
performance. Although our discussion assumes aR-trees, our framework is also ap-
plicable to other hierarchical spatial indexes (where non-leaf nodes are augmented with
aggregate information [13]).

Our aim is to provide a generic framework for processing quantile queries using aR-
trees. In the following, we provide examples of four ranking functions F . The first two
define single-source quantile queries and take one (or zero) parameter (e.g., a query
point). The last two define multiple-source quantile queries with multiple parameters.

Distance ranking. Each object in a dataset is associated with a rank based on its dis-
tance from a reference query point q. For an MBR e, we have Fl(e) = mindist(q, e)
and Fu(e) = maxdist(q, e); the minimum and maximum distances [11], respectively,
between any point in e and q.

Linear ranking. A linear function combines coordinate values of a point into a single
score. Such a function is the generalization of the SUM function used in top-k queries
[7]. Given d weights w1, w2, · · · , wd, the ranking function F is defined as F (p) =∑

i∈[1,d] wi · p(i). For an MBR e, we have Fl(e) =
∑

i∈[1,d] wi · e
(i) and Fu(e) =∑
i∈[1,d] wi · e�(i), where e
(i) and e�(i) are the lower and upper bounds of the extent

of e on the i-th dimension.

Nearest-site distance ranking. This scenario is a generalization of simple distance
ranking. We consider the ranking of objects based on their distances from their nearest
query point in a given set. Given query points (sites) q1, q2, · · · , qm, the ranking func-
tion F is defined as F (p) = mini∈[1,m] dist(qi, p), where dist denotes the distance
function (e.g., Euclidean distance). We have Fl(e) = mini∈[1,m] mindist(qi, e) and
Fu(e) = mini∈[1,m] maxdist(qi, e), for an MBR e. We assume that the number m of
query points is small enough to fit in memory. For example, the data points represent
users and the query points represent facilities (e.g., restaurants in the town).

Furthest-site distance ranking. Unlike the previous example, we consider the rank-
ing of objects based on their distances from their furthest query point in a given set.
For instance, a small group of people (modeled as query points) decide to meet at the
same restaurant. The maximum distance of the restaurant from the group reflects their
meeting time. Given query points (sites) q1, q2, · · · , qm, the ranking function F is de-
fined as F (p) = maxi∈[1,m] dist(qi, p), where dist denotes the distance function (e.g.
Euclidean distance). For an MBR e, we have Fl(e) = maxi∈[1,m] mindist(qi, e) and
Fu(e) = maxi∈[1,m] maxdist(qi, e). As in the previous example, we assume that the
number m of query points is small enough to fit in memory.

4 Quantile Computation Algorithms

In this section, we propose three quantile computation algorithms that apply on an
aR-tree. The first method is a simple extension of a nearest neighbor search technique.
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The second solution is based on iterative approximation. Section 4.3 discusses an op-
timized branch-and-bound method for computing quantiles. Finally, a qualitative cost
analysis of the algorithms is presented in Section 4.4.

4.1 Incremental Search

The incremental quantile computation algorithm (INC) is a generalization of the in-
cremental nearest neighbor (INN) algorithm [11]. It simply retrieves the point with the
next lowest F value until the φN -th object is found. A pseudocode for INC is shown
in Figure 3. The algorithm employs a min-heap H for organizing the entries e to be
visited in ascending order of their Fl(e) value. A counter cnt (initially 0) keeps track of
the number of points seen so far. First, all entries of the root node are enheaped. When
an entry e′ is deheaped, we check whether it is a non-leaf entry. If so, its child node is
accessed and all entries in the node are enheaped. Otherwise (e′ is a leaf entry), e′ is
guaranteed to have the next lowest F value, and the counter cnt is incremented by 1.
The algorithm terminates when the counter reaches φN .

Algorithm INC(R-tree R, Function F , Value φ)
1 cnt:=0;
2 H:=∅;
3 for each entry e ∈ R.root
4 Enheap(H, 〈e, Fl(e)〉);
5 while (H �= ∅)
6 e′:=Deheap(H);
7 if (e′ is a non-leaf entry) then
8 read the node n pointed by e′;
9 for each entry e ∈ n
10 Enheap(H, 〈e, Fl(e)〉);
11 else
12 cnt:=cnt + 1;
13 if (cnt = φN ) then
14 return F (e′);

Fig. 3. The incremental search algorithm (INC)

Observe that the cost of INC is sensitive to φ. For large values of φ, many objects
are accessed before the algorithm terminates. Next, we will present other quantile algo-
rithms, which use the aggregate values stored at the high levels of the aR-tree and their
performance is less sensitive to the value φ.

4.2 Iterative Approximation

The motivation behind our second algorithm is to search the quantiles that correspond
to some F values and progressively refine an approximation for the desired φ-quantile.
Figure 4a illustrates an example distribution of φ as a function of F values. Clearly, we
do not know every value on this graph a priori as the ranking function F is only known at
runtime. Suppose we want to find the 0.25-quantile (i.e. φ = 0.25). We initially obtain
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lower (Fl(R)) and upper bounds (Fu(R)) for the potential values of F without any
cost, according to the MBR of the aR-tree R. In the figure, Fl(R) corresponds to point
a and Fu(R) to point b. We reduce the computation of the 0.25-quantile to a numerical
problem and apply the interpolation method [20] for solving it. The main idea is to
approximate the distribution function as a straight line and iteratively “probe” for exact
quantile values corresponding to the expected values based on the approximation, until
the error is small enough for the F value to correspond to an exact quantile.

Continuing with the example, we first connect points a and b by a straight line, and
take the F -coordinate λ1 of the intersection (see Figure 4a) between the line and a hor-
izontal line at φ = 0.25 (i.e., λ1 is our estimate of the 0.25-quantile). Then, we compute
the point c on the actual φ-F curve whose F -coordinate is λ1 (computation of c will be
explained shortly). Since the φ-coordinate of c is smaller than 0.25 (i.e., λ1 underesti-
mates the 0.25-quantile), we (i) obtain the F -coordinate λ2 of the intersection between
the horizontal line φ = 0.25 and the line connecting c, b, and (ii) retrieve the point d
(Figure 4b) on the actual curve with λ2 as the F -coordinate. As λ2 overestimates the
0.25-quantile (the φ-coordinate of d is greater than 0.25), we perform another iteration
by connecting c and d, which leads to e in Figure 4c. Since the φ-coordinate of e equals
0.25, the algorithm terminates.
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Fig. 4. Iterative approximation example

We now discuss how to use the aR-tree in order to find a point that corresponds to a
value λ for F . This is done using the RANGE COUNT function shown in Figure 5, which
counts the number of data points with F values not greater than λ, while traversing the
tree. The function is first invoked at the root node of an aR-tree. For an intermediate entry
e, if Fu(e) ≤ λ, then all the points under the subtree fall in the range and the counter
is incremented by COUNT(e), the number of points under the subtree of e. note that
COUNT(e) can directly be retrieved from the tree node containing e. Otherwise (Fu(e) >
λ), if e is a non-leaf entry and Fl(e) ≤ λ, then it is possible that some points under e
lie in the query range. Thus, the function is called recursively to compute the remaining
count of data points within the range.

Figure 6 shows the pseudocode of the iterative approximation algorithm (APX).
First, the bounds λl and λu of the F -range that includes the φ-quantile are initial-
ized to Fl(R) and Fu(R), respectively. In addition, values cntl and cntu (conservative
approximations of quantiles at the end-points of the range) are initialized to 0 and N
respectively. At Line 4, we link points (λl, cntl) and (λu, cntu) on the φ-F curve (like
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Algorithm RANGE COUNT(aR-tree node n, Function F , Value λ)
1 cnt:=0;
2 for each entry e ∈ n
3 if (Fu(e) ≤ λ) then
4 cnt:=cnt+COUNT(e);
5 else if (Fl(e) ≤ λ ∧ e is a non-leaf entry) then
6 read the node n′ pointed by e;
7 cnt:=cnt+RANGE COUNT(n′, F, λ);
8 return cnt;

Fig. 5. Counting points in a generalized range

Algorithm Iterative Approximation(aR-tree R, Function F , Value φ)
1 (λl, cntl):=(Fl(R), 0); // conservative lower end
2 (λu, cntu):=(Fu(R), N); // conservative upper end
3 do
4 λ:=λl + λu−λl

cntu−cntl
· (φN − cntl); // linear approximation of quantile value

5 cnt:=RANGE COUNT(R.root, F , λ); // actual rank for the estimated value
6 if (cnt > φN )
7 (λu, cntu):=(λ, cnt);
8 else
9 (λl, cntl):=(λ, cnt);
10 while (cnt �= φN);
11 return λ;

Fig. 6. The iterative approximation algorithm (APX)

the one of Figure 4) by a straight line, and use the line to estimate a value λ for the φ-
quantile. Function RANGE COUNT is then used to compute the number cnt of points
whose F value is at most λ. After that, Lines 6–9 update the coordinates for the next
iteration. The loop iterates until the count cnt converges to φN .

4.3 Branch-and-Bound Quantile Retrieval

Although the iterative approximation algorithm is less sensitive to φ, it is not very
efficient as it needs to access the aR-tree multiple times. We now present a branch-
and-bound algorithm for computing quantiles. Before we describe the algorithm, we
introduce some notations and pruning rules employed by it.

Definition 1. Let S be a set of aR-tree entries. For any e ∈ S, ωl(e, S) denotes the max-
imum possible number of objects whose F value is at most Fu(e) and ωu(e, S) denotes
the maximum possible number of objects whose F value is at least Fl(e). Formally:

ωl(e, S) =
∑

e′∈S,Fl(e′)≤Fu(e)

COUNT(e′) (1)

ωu(e, S) =
∑

e′∈S,Fu(e′)≥Fl(e)

COUNT(e′) (2)
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Fig. 7. Pruning example

Measures ωl(e, S) and ωu(e, S) form the basis of pruning rules for aR-tree entries dur-
ing branch-and-bound traversal for quantile computation. When the context is clear, we
sometimes drop the symbol S and simply use ωl(e) and ωu(e). To illustrate the use of
these measures, consider Figure 7, showing the F range intervals of four aR-tree entries
S = {e1, . . . , e4}. Let φ = 0.5 and N = 50. Note that ωl(e2) = 10 + 10 = 20 < φN ,
which means that all objects p in the subtree of e2 have ranks lower than the quantile.
Thus, we can safely prune e2 and avoid accessing its subtree during quantile computa-
tion. On the other hand, we cannot prune entry e1, since ωl(e1) = 10+10+15 = 35 ≥
φN . Symmetrically, by computing whether ωu(ei) < (1− φ)N + 1, we can determine
if an entry can be pruned due to the lower ranking bound of objects in it.

The algorithm. We can now describe in detail our branch-and-bound (BAB) quantile
computation algorithm (shown in Figure 8). We initialize two variables curl and curu,
which capture the number of objects guaranteed to be before and after the φ-quantile,
respectively. The root of the aR-tree is visited and all entries there are inserted into
set S. Lines 6–8 attempt to prune entries, all objects under which have rankings lower
than φN . For this, we examine the entries ordered by their upper ranking bound Fu(e).
Lemma 1 (trivially proven) states the pruning condition. Lemma 2 suggests that ωl

values of entries can be incrementally computed. We can prune all entries e satisfying
Fu(e) ≤ Fu(e∗l ) where e∗l is the entry with the greatest Fu value satisfying the pruning
condition. Lines 12–14 perform symmetric pruning; entries are examined in descending
order of their lower bounds in order to eliminate those for which all indexed objects have
rankings higher than φN . Finally, in Lines 18–21, a heuristic is used to choose a (non-
leaf) entry ec from S, visit the corresponding node, and update S with its entries. Details
on how to prioritize the entries will be discussed shortly. The algorithm terminates when
the requested quantile is found (Line 10 or 16).

Lemma 1. Pruning condition: Among the objects that were pruned, let curl (curu)
be the number of objects with F values smaller (greater) than the quantile object. An
aR-tree entry e can be pruned if curl + ωl(e) < φN or curu + ωu(e) < N(1−φ)+ 1.

Lemma 2. Efficient computation: Let l1, l2, · · · , l|S| (u1, u2, · · · , u|S|) be aR-tree
entries in a set S such that Fu(li)≤Fu(li+1) (Fl(ui)≥Fl(ui+1)). We have ωl(li+1, S)
= ωl(li, S) +

∑
e∈S,Fu(li)<Fl(e)≤Fu(li+1) COUNT(e) and ωu(ui+1, S) = ωu(ui, S) +∑

e∈S,Fl(ui)>Fu(e)≥Fl(ui+1) COUNT(e).

Management of S. We propose to use two main-memory B+-trees (Tl and Tu) for
indexing the entries in S; one based on their Fl values and another based on their Fu

values. Insertion (deletion) of an entry takes O(log|S|) time in both trees. The rationale
of using the above data structure is that it supports efficient pruning of entries. Lemma 2
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Algorithm BaB Quantile(aR-tree R, Function F , Value φ)
1 curl:=0; curu:=0;
2 S:=∅;
3 for each entry e ∈ R.root
4 S:=S ∪ {e};
5 while (true)
6 e∗

l := entry in S with the greatest Fu value satisfying curl + ωl(e∗
l ) < φN ;

7 for each entry e ∈ S satisfying Fu(e) ≤ Fu(e∗
l ) // pruning entries on the lower side

8 S:=S − {e}; curl:=curl+COUNT(e);
9 el := entry in S with the minimum Fu value;
10 if (curl = φN − 1 ∧ ωl(el) = 1 ∧ el is a leaf entry) then
11 return F (el);
12 e∗

u := entry in S with the least Fl value satisfying curu + ωu(e∗
u) < N(1 − φ) + 1 ;

13 for each entry e ∈ S satisfying Fl(e) ≥ Fl(e∗
u) // pruning entries on the upper side

14 S:=S − {e}; curu:=curu+COUNT(e);
15 eu := entry in S with the maximum Fl value;
16 if (curu = N(1 − φ) ∧ ωu(eu) = 1 ∧ eu is a leaf entry) then
17 return F (eu);
18 if (φ ≤ 0.5) // heuristic for picking the next non-leaf entry to expand
19 set ec as the non-leaf entry, overlapping el’s F -interval, with the maximum count in S;
20 else
21 set ec as the non-leaf entry, overlapping eu’s F -interval, with the maximum count in S;
22 S:=S − {ec};
23 access node n′ pointed by ec;
24 for each entry e ∈ n′

25 S:=S ∪ {e};

Fig. 8. The branch-and-bound quantile computation algorithm (BAB)

suggests that ωl (ωu) values of entries can be incrementally computed. Now, we discuss
how to prune entries with rankings guaranteed to be lower than φN . First, we get the
entry with lowest Fu value from Tu and then compute its ωl value (by accessing entries
in Tl in ascending order). Next, we get the entry with the next lowest Fu value from Tu

and compute its ωl value (by accessing entries in Tl in ascending order, starting from
the last accessed location). The above process repeats until the current entry in Tu does
not satisfy the pruning condition in Lemma 1. Notice that entries (in Tl and Tu) are
accessed sequentially through sibling links in B+-tree leaf nodes. Let e∗l be the entry
with the greatest Fu value satisfying the pruning condition. Then, we remove all leaf
entries e in Tu satisfying Fu(e) ≤ Fu(e∗l ) and delete their corresponding entries in
Tl. A symmetric procedure is applied to prune entries with rankings guaranteed to be
greater than φN .

Order of visited nodes. We now elaborate on which non-leaf entry should be selected
for further expansion (Lines 18–21 in Figure 8); the order of visited aR-tree nodes af-
fects the cost of the algorithm. Before reaching Line 18, entries el and eu have the
minimum value of ωl(el) and ωu(eu) respectively. Intuitively, we should attempt re-
ducing the value ωl(el) (or ωu(eu)) so that entry el (or eu) can be pruned. For entry
el, value ωl(el) is determined by the count of other entries whose F -interval intersects
that of the entry el. Thus, it suffices to identify the non-leaf entry that contributes the
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most to ωl(el) (maximum non-leaf component). Lemma 3 guarantees that such a non-
leaf component always exists. Similarly, we can also compute the maximum non-leaf
component of ωu(eu). The question now is whether the removal of the maximum non-
leaf component of ωl(el) or that of ωu(eu) leads to lower overall I/O cost. Note that
the algorithm terminates when the quantile result is found from either the lower side or
the upper side. Hence, it is not necessary to expand non-leaf entries from both lower
and upper sides. Based on this observation, a good heuristic is to select the maximum
non-leaf component of ωl(el) when φ ≤ 0.5, and that of ωu(eu), otherwise, in order to
reach the requested quantile as fast as possible.

Lemma 3. Non-leaf component: Let el (eu) be the entry in S with the smallest ωl (ωu)
value. There exists a non-leaf entry among all entries e′ ∈ S satisfying Fl(e′) ≤ Fu(el).
Also, there exists a non-leaf entry among all entries e′ ∈ S satisfying Fu(e′) ≥ Fl(eu).

Proof. We will prove the first statement; the proof for the second is symmetric. Con-
sider two cases for the entry el. If el is a non-leaf entry, then the statement is trivially
true. If el is a leaf entry (i.e. a data point), then we have ωl(el) > 1 as it is not pruned
before. As there are no other leaf entries with F value smaller than el, there must exist
a non-leaf entry in S whose interval of F values intersects that of el.

4.4 Qualitative Cost Analysis

This section analyzes qualitatively the performance of the proposed algorithms. Our
analysis considers only the number of (distinct) leaf nodes accessed by the algorithms,
as the total cost is dominated by leaf node accesses (and a large enough memory
buffer will absorb the effect of accessing nodes multiple times by the RANGE COUNT
queries of APX).

As discussed in Section 3, we assume that F is a continuous function. Figure 9a
shows a set of five exemplary contours on the data domain. Each of them connects the
set of locations having the same F value in the data domain. The continuity property of
the ranking function implies that contours close together have similar F values. In our
example, inner contours have lower F values than outer ones. Let F ∗ be the F value
of the quantile corresponding to the target contour in bold. Note that the union of all

0 1

1
1–

low

high

(a) Contours in data domain (b) Region around the target contour

Fig. 9. Analysis example
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contours with F values at most F ∗ enclose φN data points. Figure 9b magnifies the
region around the target contour. Observe that any algorithm that computes the quantile
correctly must access the area enclosed by dotted curves which contain all leaf nodes
(rectangles) intersecting the target contour.

We now examine the search region of the proposed algorithms. The branch-and-
bound quantile algorithm (BAB) accesses the nodes intersecting the target contour,
pruning at the same time a significant fraction of nodes which do not intersect the target
contour. On the other hand, the incremental search algorithm (INC) accesses all nodes
intersecting contours with F values smaller than or equal to F ∗. Clearly, INC is much
more expensive than BAB. The iterative approximation algorithm (APX) employs an
efficient range count algorithm so it only visits the nodes intersecting the target contour
and a few other contours (due to multiple trials). Thus, APX is not as effective as BAB
as APX accesses more space (i.e., more contours). Summarizing, BAB is expected to
outperform both INC and APX in terms of I/O. Another observation is that different
quantiles require different cost. This is obvious for INC. For APX and BAB, it is more
expensive to compute the median than extreme quantiles because more nodes intersect
the target contour of the median than that of extreme quantiles.

5 Variants of Quantile Queries and Problem Settings

In this section, we discuss variants of quantile query evaluation and cases where aR-
trees may not be available. Section 5.1 discusses how the proposed algorithms can be
adapted for approximate quantile queries. Section 5.2 examines efficient computation of
batch quantile queries. Finally, Section 5.3 investigates quantile computation for cases
where the data are indexed by simple (i.e., not aggregate) R-trees or when only spatial
histograms are available.

5.1 Approximate and Progressive Quantile Computation

An ε-approximate quantile query returns an element from the dataset with a rank in
the interval [(φ − ε)N, (φ + ε)N ], where N is the data size, φ and ε are real values in
the range [0, 1]. The goal is to retrieve an accurate enough estimation, at low cost. For
INC, the termination condition at Line 13 of the algorithm in Figure 3 is modified to
cnt = (φ − ε)N . The approximate version of the APX algorithm terminates as soon
as RANGE COUNT returns a number within [(φ − ε)N, (φ + ε)N ]. Specifically, the
condition at Line 10 of Figure 6 is changed to |cnt− φN | > εN . For BAB (see Figure
8), we need to change the termination conditions at Lines 10 and 16, such that the
algorithm stops when there exists a leaf entry in S (a set of temporary entries to be
processed) whose range of possible ranks is enclosed by [(φ − ε)N, (φ + ε)N ]. Thus,
we replace the condition of Line 10 by “curl + 1 ≥ (φ− ε)N ∧ curl + ωl(el) ≤ (φ+
ε)N ∧ el is a leaf entry”. The first condition ensures that all elements with ranks lower
than (φ− ε)N have been pruned, while the second condition ensures that the maximum
possible rank of el does not exceed (φ + ε)N . Similarly, we replace the condition at
Line 16 by “N − curu ≤ (φ + ε)N ∧ N + 1− (curu + ωu(eu)) ≥ (φ− ε)N ∧ eu

is a leaf entry”.
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All three quantile algorithms can be adapted to generate progressively more refined
estimates before the exact result is found. The progressive versions of the algorithms
are identical to the methods described in Section 4, with only one difference. When the
termination condition is checked, we compute and output the minimum value of ε (if
any) for terminating, had the algorithm been approximate.

5.2 Batch Quantile Queries

A batch quantile query retrieves a set of quantiles φ1, φ2, · · · , φm from the database,
where φ1 < φ2 < · · · < φm and each φi is a real value in the range [0, 1]. Batch
quantiles offer a sketch of the underlying F value distribution. A naive solution would
process individual quantile queries separately. We aim at reducing the total cost by
exploiting intermediate results from previous computation.

INC can directly be applied for a batch query. During search, an element is reported
if its rank is exactly φiN for some i ∈ m. The algorithm terminates until the φmN -th
element is found. For APX, the first quantile (i.e. φ1) is computed as usual. In addi-
tion, we maintain a set C for storing computed intermediate coordinates (λ, cnt) (see
Figure 6). These coordinates can be exploited to reduce the initial search space of the
algorithm and improve the overall performance. Before computing the second quantile
(i.e. φ2), the initial pair (λl, cntl) is replaced by the pair in S with the maximum count
not greater than φ2N . Similarly, the pair (λu, cntu) is replaced by the pair in S with the
minimum count not smaller than φ2N . Similarly, intermediate coordinates computed in
this round are added to C for reducing the search space of the next quantile.

We can also define an efficient version of BAB for batch quantile queries. We com-
pute the quantiles in ascending order of their φ values. During the computation of the
first quantile (i.e. φ1), any entry pruned on the upper side (i.e. at Lines 12–14 of Figure
8) is added to another set S′. After the first quantile is computed, we need not start the
computation of the second quantile (i.e. φ2) from scratch. We simply reuse the content
of S in the last computation. Moreover, temporarily pruned entries in S′ are moved
back to S. Finally, we initialize curu to 0, reuse the previous value of curl, and begin
the algorithm at Line 5 in Figure 8. The same procedure is repeated for subsequent
quantiles. In this way, no tree nodes are accessed more than once.

5.3 Quantile Computation Without aR-Trees

R-trees are commonly used for indexing spatial data in GIS or as multi-attribute indexes
in DBMS, in general. On the other hand, aR-trees are not as popular, as they are mainly
used for aggregate queries. For the case where only an R-tree is available on a spatial
dataset (not an aR-tree), we can still apply the BAB algorithm. For each non-leaf entry,
we compute the expected the number of objects (i.e., the aggregate value) and use this
value instead of the actual count. A rough estimate can be derived from the level of the
entry in the tree and the average R-tree node occupancy (which is a commonly main-
tained statistic). Naturally, BAB will not compute exact quantiles in this case, but values
which are hopefully close to the exact result. In Section 6, we experimentally evaluate
the accuracy of BAB on R-trees, by comparing its results with the exact quantiles.

In some streaming applications (e.g., traffic monitoring, mobile services), spatial
data could not be indexed effectively due to high update rates and/or constrained
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storage space. In such cases, a common approach is to maintain spatial histograms [22]
for approximate query processing. A spatial histogram consists of a set of entries, each
associated with a MBR and the number of points inside it. We can derive an approxi-
mate quantile from such histograms, by applying a single pass of the BAB algorithm
to prune histogram entries e that definitely do not containing the quantile. Based on the
remaining (non-pruned) entries, we then compute the approximation and its respective
error ε (in terms of rank).

6 Experimental Evaluation

In this section, we evaluate the proposed algorithms using synthetic and real datasets.
Uniform synthetic datasets were generated by assigning random numbers to dimen-
sional values of objects independently. The default cardinality and dimensionality of a
synthetic dataset are N = 200K and d = 2. We also used real 2D spatial datasets from
Tiger/Line1, LA (131K points) and TS (194K points). Attribute values of all datasets
are normalized to the range [0, 10000]. Each dataset is indexed by a COUNT aR-tree
[17] with disk page size of 1K bytes.

Unless otherwise stated, the default searched quantile is φ = 0.5 (i.e., median)
and the ranking function F is defined as the Euclidean distance from a given query
point, which follows the distribution of the dataset. All algorithms (INC for incremen-
tal search, APX for iterative approximation, BAB for branch-and-bound quantile) were
implemented in C++. We also experimented with BAB-, a computationally cheaper
variant of BAB that attempts pruning using only entries with upper bounds smaller than
the quantile (i.e. Lines 12–17 in Figure 8 are not executed). All experiments were per-
formed on a Pentium IV 2.3GHz PC with 512MB memory. The I/O cost corresponds
to the number of aR-tree nodes accessed. A memory buffer of size 5% the number of
aR-tree nodes is used by APX to avoid excessive number of page faults at repetitive
RANGE COUNT queries. For each experimental instance, the query cost is averaged
over 100 queries with the same properties.

6.1 Experimental Results

Figure 10 shows the cost of the algorithms on real datasets LA and TS, as a function
of φ. The results verify the analysis in Section 4.4 that APX and BAB have higher cost
in computing the median than in calculating extreme quantiles (with φ close to 0 or
1). The cost of INC grows linearly with φ. APX is more efficient because it is based
on RANGE COUNT functions which can be answered effectively by the aR-tree. BAB
incurs the lowest I/O overhead, indicating that the branch-and-bound approach only
needs to explore a small fraction of the index. However, the CPU cost of BAB is slightly
higher than APX because BAB requires considerable time computing the ω values of
the intermediate entries. In practice, the I/O cost dominates, and thus BAB is by far the
most efficient method.

Next, we study the effect of database size N (Figure 11). As expected, BAB has the
lowest I/O cost and outperforms the other two algorithms. BAB- has little I/O overhead

1 www.census.gov/geo/www/tiger/
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Fig. 10. Cost as a function of φ
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Fig. 11. Cost as a function of N , Uniform data, d = 2, φ = 0.5

over BAB, although BAB- misses opportunities for pruning entries with rankings higher
than the quantile. In addition, BAB- has the lowest CPU cost among all algorithms. The
numbers over the instances of INC and BAB are the maximum memory requirements
of the algorithms (for storing the heap and set S) as a percentage of aR-tree size. Note
that they are very low and decrease with N .

Figure 12 shows the cost of the algorithms on uniform data as a function of dimen-
sionality d (together with the maximum memory requirements of INC and BAB). BAB
remains the least expensive algorithm in terms of I/O. APX has the highest I/O cost at
d = 4 because RANGE COUNT becomes less efficient at higher dimensionality. On
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the other hand, the CPU costs of BAB and BAB- increase significantly with dimension-
ality. As d increases, the F -intervals of the entries become wider and intersect many
F -intervals of other entries. INC and APX do not spend time on pruning entries so they
incur high I/O cost. On the other hand, BAB eliminates disqualified entries carefully
at the expense of higher CPU cost. Note that memory requirements of the algorithms
remain within acceptable bounds, even at d = 4.

We also compared the efficiency of our algorithms in retrieving approximate quan-
tiles. Recall that an ε-approximate quantile has a rank within [(φ − ε)N, (φ + ε)N ],
where N is the data size. Figure 13 compares the algorithms for various values of ε.
As expected, all costs decrease with the increase of ε, however, not at the same rate.
The cost of BAB decreases by 95% when ε changes from 0.0001 to 0.1, while the cor-
responding rates for APX and INC are 40% and 20%, respectively. This implies that
BAB is not only the best algorithm for exact quantiles, but also has the highest perfor-
mance savings for approximate computation.

Figure 14 shows the progressiveness of the algorithms for a typical quantile query. As
more disk page are accessed, all the algorithms continuously refine their intermediate
results with decreasing error ε. The values at ε = 0 corresponds to the case when the
exact answer is found. BAB is the most progressive algorithm, followed by APX and
then INC. Thus, BAB provides informative results to users, very early and way before
it converges to the exact result.
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Fig. 14. Progressiveness of the algorithms for a typical query, φ = 0.5
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Fig. 16. Observed error of BAB as a function of φ, on regular R-trees

We also investigated the cost of extracting quantiles based on nearest-site distance
ranking; a problem discussed in Section 3. Given a set Q = {q1, q2, . . . , qm} of query
points (sites), the ranking of a data point p is defined by F (p) = mini∈[1,m] dist(qi, p),
where dist denotes the Euclidean distance between two points. In the experiment, query
points follow the distribution of data points. Figure 15 shows the cost of the algorithms
as a function of the number of query points |Q|. As |Q| increases, F -intervals of more
entries overlap and the costs of all algorithms increase. The cost of BAB increases sub-
linearly with |Q| and the algorithm outperforms its competitors by far.
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Finally, we study the accuracy of the BAB algorithm on regular R-trees (i.e., not
aR-trees), where the count of each entry is estimated from its level, as discussed in
Section 5.3. Figure 16 shows the observed error of BAB as a function of φ, on both
real datasets LA and TS, indicating the difference of ranks (as a fraction of N ) between
the result and the actual quantile. Our solution produces fairly accurate results for real
datasets indexed by regular R-trees. The maximum observed errors for LA and TS are
just 0.07 and 0.05, respectively. The error is maximized at the median but it becomes
negligible for extreme quantiles. As discussed, the I/O cost of BAB is maximized at
φ = 0.5. Higher I/O cost leads to higher error because counts of more entries need to
be estimated.

7 Conclusion

We identified the problem of computing dynamically derived quantiles in multidimen-
sional datasets. We proposed three quantile algorithms (INC, APX, and BAB) which
operate on aggregate R-trees. Also, we analyzed their performance qualitatively and
suggested solutions for handling variants of quantile queries. INC is very expensive for
high values of φ (i.e., quantile value). Although the cost of APX is relatively insensitive
to φ, the algorithm accesses the aR-tree multiple times. BAB is the best algorithm as it
traverses the tree carefully, pruning unnecessary nodes, and minimizing I/O cost.

In this paper we assume relatively low dimensionality, where aR-trees are effec-
tive. For high-dimensional spaces, however, the efficiency of aR-tree (as well as other
space-partitioning access methods) drops significantly, in which case the algorithms
may require accessing the entire dataset. Quantile computation in these environments
is an interesting topic for future work.
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Abstract. Nearest neighbor (NN) queries have been extended from
Euclidean spaces to road networks. Existing approaches are either
based on Dijkstra-like network expansion or NN/distance precomputa-
tion. The former may cause an explosive number of node accesses for
sparse datasets because all nodes closer than the NN to the query must
be visited. The latter, e.g., the Voronoi Network Nearest Neighbor (V N3)
approach, can handle sparse datasets but is inappropriate for medium
and dense datasets due to its high precomputation and storage over-
head. In this paper, we propose a new approach that indexes the network
topology based on a novel network reduction technique. It simplifies the
network by replacing the graph topology with a set of interconnected
tree-based structures called SPIE’s. An nd index is developed for each
SPIE and our new (k)NN search algorithms on an SPIE follow a prede-
termined tree path to avoid costly network expansion. By mathematical
analysis and experimental results, our new approach is shown to be effi-
cient and robust for various network topologies and data distributions.

1 Introduction

Nearest neighbor (NN) search has received intensive attention in spatial data-
base community in the past decade, especially in high-dimensional Euclidean
spaces [10, 1, 13, 15]. Recently, the research focus is brought to spatial network
databases (SNDB) where objects are restricted to move on predefined roads
[11, 6, 9, 8]. In SNDB, a road network is modeled as a graph G (< V, E >),
where a vertex (node) denotes a road junction and an edge denotes the road
between two junctions; and the weight of the edge denotes the network distance.
A nearest neighbor query on the road network is, given a query node q and a
dataset (e.g., restaurants, gas stations) distributed on the nodes V , to find a
data object that is the closest to q in terms of network distance.

Existing research falls into two categories. In the first category, NN search
expands from the query node to adjacent nodes until a data object is found and
further expansion cannot retrieve closer objects [6, 9]. Such network expansion
originates from Dijkstra’s algorithm that finds single-source shortest paths. The
� This work is supported by the Research Grants Council, Hong Kong SAR under
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advantage of this approach is that the network distance, the key to NN search,
is automatically obtained during the expansion. However, the disadvantage is
that the “unguided graph traversal” during network expansion may cause an
explosive number of node accesses, especially for sparse datasets. In the sec-
ond category, solution-based indexes are built on the datasets. Kolahdouzan et
al. proposed V N3 to partition the network into cells by the Network Voronoi
Diagram (NVD) [8]. Each cell contains one data object that is the closest ob-
ject to all the nodes in this cell. These cells are indexed by an R-tree in the
Euclidean space, and thus finding the first NN is reduced to a point location
problem. To answer k-nearest-neighbor (kNN) queries, they showed that the kth
NN must be adjacent to some ith NN (i < k) in the NVD. To speed up distance
computation, they also precompute the distances between border points of adja-
cent cells. However, their approach is advantageous only for sparse datasets and
small/medium k. Furthermore, if more than one dataset exists, NVD indexes
and precomputed distances must be built and maintained separately for each
dataset.

In this paper, we take a new approach by indexing the network topology,
because compared with the datasets the topology is unique and less likely to
change. To reduce index complexity and hence avoid unnecessary network ex-
pansion, we propose a novel technique called network reduction on road networks.
This is achieved by replacing the network topology with a set of interconnected
tree-based structures (called SPIE’s) while preserving all the network distances.
By building a lightweight nd index on each SPIE, the (k)NN search on these
structures simply follows a predetermined path, i.e., the tree path, and network
expansion only occurs when the search crosses SPIE boundaries. By analyti-
cal and empirical results, this approach is shown to be efficient and robust for
road networks with various topologies, datasets with various densities, and kNN
queries with various k. Our contributions are summarized as follows:

– We propose a topology-based index scheme for kNN search on road networks.
To reduce the index complexity, a network reduction technique is developed
to simplify the graph topology by tree-based structures, called SPIE’s.

– We propose a lightweight nd index for the SPIE so that the (k)NN search in
SPIE follows a predetermined tree path. With this index, the whole (k)NN
search can avoid most of the costly network expansions.

– We develop cost models for the network reduction, NN and kNN search
by our nd-based algorithms. These cost models, together with experimental
results, show the efficiency of our approach and the performance impact of
various parameters.

The rest of this paper is organized as follows. Section 2 reviews existing work
of (k)NN search on SNDB. Section 3 presents the network reduction technique.
Section 4 introduces the nd index on the SPIE and NN search algorithms on
the reduced network. The algorithms are extended to kNN search in Section 5.
Section 6 develops the cost models, followed by the performance evaluation in
Section 7. Finally, Section 8 concludes the paper.
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2 Related Work

Nearest neighbor (NN) search on road networks is an emerging research topic
in recent years [11, 6, 9, 8]. It is closely related to the single-source shortest path
problem, which has been studied since Dijkstra [4]. He proposed to use a priority
queue to store those nodes whose adjacent nodes are to be explored. Besides
the Dijkstra algorithm, A∗ algorithm with various expansion heuristics was also
adapted to solve this problem [5].

Among database researchers, Jensen et al. brought out the notion of NN
search on road networks [6]. They proposed a general spatio-temporal framework
for NN queries with both graph representation and detailed search algorithms.
To compute network distances, they adapted the Dijkstra’s algorithm to online
evaluate the shortest path. Papadias et al. incorporated the Euclidean space
into the road network and applied traditional spatial access methods to the
NN search [9]. Assuming that Euclidean distance is the lower bound of network
distance, they proposed incremental Euclidean restriction (IER) to search for
NNs in the Euclidean space as candidates and then to compute their network
distances to the query node for the actual NNs. However, IER cannot be applied
to road networks where that distance bound does not hold, e.g., the network
of transportation time cost. Although they proposed an alternative approach
incremental network expansion (INE), it is essentially a graph traversal from the
query point and thus performs poorly for sparse datasets.

Inspired by the Voronoi Diagram in vector spaces, Kolahdouzan et al.
proposed a solution-based approach for kNN queries in SNDB, called Voronoi
Network Nearest Neighbor (V N3) [8]. They precompute the Network Voronoi Di-
agram (NVD) and approximate each Voronoi cell by a polygon called Network
Voronoi Polygon (NVP). By indexing all NVP’s with an R-tree, searching the
first nearest neighbor is reduced to a point location problem. To answer kNN
queries, they prove that the kth NN must be adjacent to some ith (i < k)
NN in NVD, which limits the search area. To compute network distances for
an NN candidate, they precompute and store the distances between border nodes
of adjacent NVP’s, and even the distances between border nodes and inner nodes
in each NVP. By these indexes and distances, they showed that V N3 outper-
forms INE, by up to an order of magnitude. However, V N3 heavily depends
on the density and distribution of the dataset: as the dataset gets denser, both
the number of NV P ’s and the number of border points increase, causing higher
precomputation overhead and worse search performance. Given that NN search
by network expansion on dense datasets is efficient, V N3 is only useful for sparse
datasets.

Shahabi et al. applied graph embedding techniques to kNN search on road
networks [11]. They transformed a road network to a high-dimensional Euclidean
space where traditional NN search algorithms can be applied. They showed that
KNN in the embedding space is a good approximation of the KNN in the road
network. However, this technique involves high-dimensional (40-256) spatial in-
dexes, which leads to poor performance. Further, the query result is approximate
and the precision heavily depends on the data density and distribution.
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Continuous nearest neighbor (CNN) query is also studied recently. Besides
an efficient solution for NN query, CNN query on road network also requires
to efficiently determine the network positions where the NN(s) change. Various
approaches such as UBA [7], UNICONS [2] are proposed to solve this problem.

3 Reduction on Road Networks

The objectives for network reduction are: (1) to reduce the number of edges while
preserving all network distances, and (2) to replace the complex graph topology
with simpler structures such as trees. To achieve the objectives, we propose to
use the shortest path trees (SPT). The basic idea is to start from a node (called
root) in the road network G and then to grow a shortest path tree from it by
the Dijkstra’s algorithm. During the execution, when a new node n is added to
the tree, we additionally check if its distances in G to all the other tree nodes
are preserved by the tree. This is completed by checking if there is any edge
adjacent to n in G that connects n to a tree node closer than the tree path. Such
an edge is called a shortcut. If n has no shortcuts, it is inserted to the tree as
in Dijkstra’s algorithm; otherwise n becomes a new root and a new SPT starts
to grow from it. The new SPT connects with some existing SPT’s through the
shortcuts of n. The whole process continues until the SPT’s cover all nodes in
network G. These SPT’s form a graph— called an SPT graph— whose edges are
the shortcuts from the root of an SPT to some node in another SPT. Figure 1
illustrates an SPT graph. Obviously the SPT graph is much simpler than the
graph of road network. It is noteworthy that the reduction from a graph to a set

root node
tree node

tree edge
shortcut

reduced edge

SPT

Fig. 1. An Example of Shortest Path Tree Graph

of interconnected trees is not generally beneficial. Nonetheless, road networks
exhibit the following two properties that justify this approach: (1) the degree
of a junction in the road network is normally equal to or greater than 3, some
junctions serving as “hubs” of the network may have even higher degrees; (2) the
girth of the network, i.e., the length of the shortest circuit in the network, is long,
because small circuit means redundant paths between close-by nodes, which is
normally avoided in network design. We show in the cost model (in Section 6.2)
that these two properties lead to effective reduction on road networks.
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In order to further reduce the shortcuts and thus the number of SPT’s, we
augment the SPT’s to allow sibling-to-sibling edges. These edges are called hori-
zontal edges and the SPT’s that support such edges are called shortest path tree
with horizontal edges (SPH). With horizontal edges, SPH’s can store shortcuts
between siblings and thus no new SPH needs to be created in such cases. Later
in Section 4.2 we will prove that SPH still forms a hierarchy and the shortest
path between any two nodes is still easy to allocate.

Algorithm 1. Network Reduction by SPH
Input: a network G and a starting root r
Output: an SPH graph Γ
Procedure:
1: starting node = r;
2: while there is node in G that is not covered in any SPH of Γ do
3: build a blank SPH T and insert T as a vertex into Γ ;
4: insert all the non-sibling shortcuts of starting node as edges to Γ ;
5: build a blank priority queue H and insert < starting node, 0 > to H ;
6: while H is not empty do
7: node n = H .pop();
8: if n has no shortcuts to non-sibling tree nodes then
9: insert n into T ;

10: else
11: break;
12: relax the distances in H according to Dijkstra’s algorithm;

Algorithm 1 shows the procedure of network reduction. The inner while loop
is modified from the Dijkstra’s algorithm to build an individual SPH. Different
from Dijkstra’s algorithm, the inner loop stops whenever there are shortcuts to
non-sibling tree nodes and then a new SPH starts to grow from this node. These
shortcuts are stored as the edges in the SPH graph Γ .

4 Nearest Neighbor Search on SPH Graph

In this section, we present our solution to NN search on the reduced network,
i.e., the SPH graph. The search starts from the SPH where the query node
is located. By building a local index nd on each SPH, this search is efficient.
Searching into the adjacent SPH’s in the graph continues until the distance to
the SPH’s already exceeds the distance to the candidate NN. In what follows,
we first show the nd-based NN search on a tree. Then we extend it to the SPH
and the SPH graph. Finally we present the index construction and maintenance
algorithms. The extension to kNN search is shown in the next section.

4.1 NN Search on Tree

We begin with the NN search on a tree. To avoid network expansion that recur-
sively explores the parent and child nodes from the current searching node, we
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Fig. 2. Nearest Neighbor Search on Tree

store, for each node v, the nearest data object in its descendants (nearest de-
scendant or nd for short). The object is denoted by v.nd.object and its distance
to v is denoted by v.nd.dist. For example, in Figure 2, s.nd is set to < t2, 5 >,
as the nd of s is t2 which is 5 units away. If a node have no data object in its
descendants, its nd is set to <null,∞>.

The pointer to the current searching node, p, starts from the query node q.
Based on the nd index, if p.nd is closer to q than the current NN, p.nd becomes
the new NN and the current nearest distance, nearest dist, is updated. Then p
proceeds to q’s parent, grandparent, · · · , etc., until the distance between p and
q exceeds nearest dist or p reaches the root. Figure 2 shows an example where
p starts at q and then moves to s and r, until it finds the NN. With the nd
index, the search path is at most as long as the tree path to the root. Therefore
the number of node accesses is bounded by the height of the tree. In the next
subsections, we extend the nd index to the SPT and SPT graph.

4.2 SPIE: SPH with Triangular Inequality

An SPH is more complicated than a tree because there are multiple paths from
the source to the destination. In this subsection, our objective is to modify
the SPH obtained from Section 3 so that the weight of each edge (tree edge
or horizontal edge) represents the shortest distance between the two adjacent
nodes. In other words, we modify the SPH to satisfy the triangular inequality,
that is, ∀ three edges ab, bc, ac ∈ SPH.E, w(ac) ≤ w(ab) + w(bc). The modified
SPH is called an SPH with triangular inequality edges (SPIE).

The conversion from an SPH into an SPIE is a local operation. For each node
u, we obtain its child nodes; the set of tree edges and horizontal edges between
these nodes forms a weighted graph. We perform the Floyd-Warshall algorithm
[3] to find all-pairs shortest paths in this graph. The distances of these shortest
paths form the weights of tree edges and horizontal edges in the SPIE. The
following theorem proves that SPIE guarantees that the shortest path of any
two nodes u and v comprises one and only one horizontal edge which connects
one of u’s ancestors and one of v’s ancestors.
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Theorem 1. For two nodes u and v in SPIE that are not descendant/ancestor
of each other, their shortest path consists of the following nodes sequentially,
u0, u1, u2, · · · , us, vt, · · · , v2, v1, v0, where u0 = u, v0 = v, and ui (vi) is the
parent of ui−1 (vi−1); us and vt are the child nodes of lcau,v, the lowest common
ancestor of u and v.

Proof. In order to prove the theorem, we first introduce Lemma 1.

Lemma 1. Any path from node u to its descendant v in an SPIE must include
all the tree edges from u to v. In other words, v’s parent, grandparent, · · · , till
u, must exist in any path from u to v.

Proof. Let level(i) denote the depth of node i (level(root) = 0), and n denote
level(v)− level(u)− 1. By mathematical induction,

1. For n = 1, v’s parent node must be included in the path because otherwise
there are more than one parent for node v, which is prohibited in an SPIE;

2. Assume the lemma holds for n = k. Thus for n = k+1, we only need to prove
t, u’s child and v’s ancestor, is included in the path. By the assumption, all
ancestors of v that are below t are already in the path, especially s, t’s child
and v’s ancestor. Since s is in the path, by the same reasoning as in 1, t must
be in the path.

Hereby, 1 and 2 complete the proof.

We now prove the theorem. Let p denote lcau,v for simplicity.

1. First, we prove that if all sibling edges among p’s children are removed, p
must exist in path(u, v). Consider the two subtrees that are rooted at p’s
two children and contain u and v respectively. Since the only edges linking
them with the rest of the SPIE are the two tree edges adjacent to p, p must
exist in any path between the two subtrees. Thus, p must exist in path(u, v).

2. From Lemma 1, u1, u2, · · · , us must exist in path(u, v). We only need to
prove that they are the only nodes in the path.1 By contradiction, if there
were one node x between ui and ui+1, x must be a sibling node of ui. How-
ever, since all edge weights satisfy triangular inequality, i.e., w(ui, ui+1) ≤
w(ui, x)+w(x, ui+1), removing node x results in an even shorter path, which
contradicts the shortest path condition. Therefore, u1, u2, · · · , us are the only
nodes in the path.

3. Finally we prove that when adding back the sibling edges removed in 1, the
path is the same except that p is removed from path(u, v). On the one hand,
due to triangular inequality, w(us, vt) ≤ w(us, p) + w(p, vt), so p should be
removed from the shortest path. On the other hand, since all added edges
are sibling edges, if any new node is to be added to the path, only sibling
nodes are possible choices; but from 2, adding sibling nodes only increases
the path distance. Therefore, no nodes should be added.

Hereby, 1, 2 and 3 complete the proof. �
1 By symmetry, the proof is the same for the v1, v2, · · · , vt, and hence omitted.
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4.3 NN Search on SPIE and SPIE Graph

By Theorem 1, a shortest path in an SPIE is the same as that in a tree except
that a horizontal edge replaces two tree edges adjacent to the lowest common
ancestor. Therefore, NN search in SPIE still starts from the query node q and
moves upward to its ancestors. The only difference is that, instead of p’s nd,
the nd’s of p’s child nodes (except for the node pointed by the last p), are
examined during the search. This is because if p is the lowest common ancestor
of q and some possible NN, according to Theorem 1, one of p’s children, instead
of p, appears in the path. Figure 3 illustrates the NN search on an SPIE. In
this example, when p = s, the nd of u, instead of s, is examined. Regarding
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Fig. 3. NN search on SPIE

NN search on the SPIE graph, once the search is completed on the current
SPIE, its shortcuts need to be considered. More specifically, the search should
be propagated to those nodes that are adjacent to the shortcuts and are closer to
q than the current NN. With these nodes being query points, new NN searches
on the SPIE’s are started. These searches are processed similarly except that
the distance is accumulated from q. Algorithm 2 shows the pseudo-code of the
NN search on one SPIE. For NN search on the SPIE graph, this algorithm is
invoked with the SPIE that contains q.

4.4 nd Index Construction

The nd index is independently constructed on each SPIE. As aforementioned,
the nd data structure of each node n stores both the nearest descendant and its
shortest distance to n. In addition, based on the fact that the nearest descendant
of n is also the nearest descendant of all nodes along the path from n.nd to n,
n.nd also stores the child node of n in this path to record the path to the nearest
descendant. To build the nd index, a bottom-up fashion is applied: the nd’s of
n’s children are built and then the nearest nd among them is elected as the nd
for n. Algorithm 3 shows the pseudo-code of the bottom-up nd construction.



194 H. Hu, D.L. Lee, and J. Xu

Algorithm 2. NN Search on an SPIE
Input: an SPIE Γ , a query point q, accumulated distance D from the global query
point
Global: the candidate NN r, also the output when the entire search terminates
Procedure: NN search on SPIE(Γ ,q,D)
1: p = q;
2: while distp,q < distr,q do
3: find the best NN object u in p’s child nodes’s nd;
4: if u is better than r then
5: update r;
6: p = p.parent;
7: for each shortcut s, t (s ∈ Γ, t ∈ Φ) do
8: if D + distq,t < distr,q then
9: NN search on SPIE(Φ,t,D + distq,t);

Algorithm 3. Build nd index on an SPIE
Input: an SPIE Γ , a node p
Operation: Build p’s nd recursively
Procedure: build nd(Γ, p)
1: if p is a data object then
2: set p.nd = p;
3: else if p is a leaf node then
4: set p.nd = null;
5: else
6: for each p’s child v do
7: build nd(Γ, v);
8: find the nearest descendant v∗ among p’s child nodes’ nd;
9: set p.nd = v∗;

Regarding disk paging, the nd index is paged in a top-down manner [14]:
starting from the root, the SPIE is traversed in a breadth-first order, where
nd structure is greedily stored in a disk page until it is full. The breadth-first
traversal guarantees that topologically close nodes are physically close on disk.

4.5 Handling Updates

This subsection copes with updates on both network topology and data objects.

Updates on Network Topology. Network updates include the insertion/dele-
tion of nodes, insertion/deletion of edges, and change of edge weights.

– node insertion: the node is inserted to the SPIE that contains the adjacent
node.

– node deletion: only the SPIE that contains this node needs to be rebuilt
by Dijkstra’s algorithm2.

2 If the SPHIE is no longer connected, the SPIE is split.
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– edge insertion: if the edge is an intra-SPIE edge and provides a shorter
distance between the two adjacent nodes, only this SPIE is rebuilt by Dijk-
stra’s algorithm; otherwise if the edge is a shortcut, it is added to the SPIE
graph, otherwise no operation is needed.

– edge deletion: if the edge is an intra-SPIE edge, this SPIE is rebuilt; oth-
erwise if it is a shortcut, it is removed from the SPIE graph; otherwise no
operation is needed.

– increase edge weight: same as edge deletion.
– decrease edge weight: same as edge insertion.

Updates on Data Objects. Updates on data objects include object inser-
tion/deletion. These changes affect the nd index only; the SPIE graph is not
affected. Therefore, data objects updates are less costly than network updates.
Moreover, the inserted/deleted object only affects the nd index of this node and
its ancestors in the SPIE. So the index update starts from the node where the
object insertion/deletion occurs, and repeatedly propagates to the parent until
the nd no longer changes.

5 K-Nearest-Neighbor Search

To generalize NN search to KNN search, every time p points at a new node, we
not only examine the nd of p (or more precisely the nd’s of p’s children), but also
search downwards to examine the nd of p’s descendants for candidate NN farther
than p.nd. The downward search terminates when all (or k, whichever is smaller)
data objects in p’s descendants are found, or when the accumulated distance from
q exceeds the kth NN candidate distance from q. During the downward search,
a priority queue L is used to store the nodes to be examined, sorted by their
accumulated distances from q.

Figure 4 shows an example of a 2NN search on the same SPIE as in Figure 3.
r denotes the current set of 2NN candidates, where < t1, 8 > means a candidate
t1 is 8 units from the query node q. In priority queue L, < x, 1 > means that
the nd of node x that is 1 unit from q is to be examined. Every time p moves
upwards to a new node (e.g., s), the priority queue L is initialized with nd of p’s
children (e.g., u). Then we repeatedly pop up the first node from L, examine its
nd, and push its children to L until L is empty, or two objects have been found,
or the accumulated distance exceeds the second NN distance to q. Afterwards
p moves upwards to its parent and the same procedure is repeated. The entire
NN search terminates, as in Algorithm 2, when the distance from p to q already
exceeds that from the k-th NN candidate to q.

6 Cost Models

In this section, we analyze the effectiveness of our proposed network reduction
and nd-based nearest neighbor search algorithms. We develop cost models for
the number of edges removed during the reduction and nodes accesses (NA)



196 H. Hu, D.L. Lee, and J. Xu

t1

t2

q

s

r

<t1,8>

<t4,3>

<t3,1>

3 1

2 3

21

7

p

Step (2), p = s:

(2)

(1)

<t2,2>

4

3
4 u

x

L r

<m,5> <n,6> <t2,6> <t1,8>

<n,6> <t2,6> <t1,8>

Step (3), p = r:

L r

<y,5> <t3,5> <t2,6>

t3<t3,0>

Step (1), p = q:
L r

<x,1> <v,2> <t1,8>

<v,2> <w,3> <t1,8>

<w,3> <t1,8>

v

2

w

2

m n
1 2

y

(3)

Fig. 4. KNN search on SPIE

during the NN and kNN search. We then compare the latter with the number of
nodes accesses by the naive Dijkstra-like network expansion algorithm. Before
we start the analysis, we first introduce some assumptions and notations.

6.1 Analytical Assumptions and Notations

To simplify the analytical model, we make the following assumptions on the
network topology:

– The degree of each node is equal to f ;
– The weight of each edge is equal to 1;
– There are N nodes in the network and M data objects are uniformly dis-

tributed in the network. Let p = M
N .

Table 1 summarizes all the notations, including those defined in the sequel.

Table 1. Notations for Cost Models

Notation Definition
f degree of each node
N number of nodes
M number of data objects
p probability of a node is an object, p = M

N

g average length of the circuits in the network
r radius of the network
NA number of nodes accesses in the search
D average distance between a node and its NN
Dk average distance between a node and its kth NN
nd cardinality of the d-th layer
Cd sum of cardinality of all layers within the d-th layer
Pi probability that the NN is i units away
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6.2 Cost Model for Network Reduction

We first estimate the number of edges remained after the network reduction. Let
g denote the average length of the circuits in the network. During the reduction
process, each circuit leads to a new shortest path tree with two shortcuts (ref.
Figure 5). Since there are f · N/2 edges, the number of circuits is fN

2g . So the

tree edges

shortcuts

shortest path trees

search route

Fig. 5. A Circuit Leads to A New SPT with Two Shortcuts

number of tree edges and the number of shortcuts after reduction are N − fN
2g ,

and 2fN
2g , respectively. Therefore, the ratio of the number of edges in the SPIE

graph to the road network R is:

R =
(N − fN

2g ) + 2fN
2g

fN/2
=

2
f

+
1
g

(1)

An immediate observation from Equation 1 is that increasing f and g reduces
the ratio and hence enlarges the performance gain of the network reduction.
Nonetheless, the reduction is beneficial even when f and g are small. For exam-
ple, in a network of 2D uniform grid, f equals to 4 and g equals to 4,R = 3/4 < 1.

It is also noteworthy that, although SPIE does not further reduce the edges
from SPT, it helps convert a shortcut to a tree edge, which reduces the NN
search cost since the nd index is built on tree edges.

6.3 Cost Model for NN Search

To derive the number of node accesses in an NN search, we first derive the
average distance (D) between a node and its NN. Let us define the d-th layer
of node q as the set of nodes that are d units away from q. Let nd denote the
cardinality of the d-th layer, and Cd denote the sum of cardinality of all layers
within the d-th layer, i.e., Cd =

∑d
i=1 ni. Then we have:

Cd =
d∑

i=1

ni = 1 + f + f(f − 1) + f(f − 1)2 + ... + f(f − 1)d−1 ≈ (f − 1)d

f − 2
(2)

Let Pi denote the probability that the NN is i units away, and r denote the
radius of the network. Then we have:

D =
r∑

i=0

i× Pi (3)
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Since the data objects are uniformly distributed, we have:

Pi = (1− p)Ci−1(1− (1− p)Ci−Ci−1) (4)

Replacing Pi in (3) with (4) and Ci with (2), we get:

D ≈
r−1∑
i=0

(1 − p)Ci ≈
r−1∑
i=0

(1− p)
(f−1)i

f−2 (5)

Now we estimate the number of node accesses in the NN search. The naive
algorithm searches all nodes within the !D"-th layer. Therefore, NAnaive is given
by:

NAnaive = CD� ≈
(f − 1)D�

f − 2
(6)

Recall that in our nd-based algorithm, the pointer p starts from q, examines
the nd’s of p’s children (except for the child that p previously points at), and
moves upward (and possibly to other SPIE’s through the shortcuts) until the
distance from p to q exceeds !D". Therefore,

NAnd =
D�∑
i=0

(f − 1) = (f − 1)(!D"+ 1) (7)

By comparing (6) and (7), NAnaive is exponential to the average NN distance
D while NAnd is linear to D.

6.4 Cost Model for KNN Search

Similar to the derivation of NN search, we start by estimating Dk, the average
distance of the kth NN to q. Let Pi denote the probability that the kth NN is i
units away. Then,

Pi =
(
Ci
k

)
pk(1− p)Ci−k ≈ C

k
i pk(1− p)Ci

k!(1− p)k
(8)

Different from the NN search, we use the maximum likelihood (ML) estimation
to derive Dk, i.e., Dk = argmaxiPi. To get the maximum value of Pi in 8, it is
equivalent to solve the following equation on the derivatives.

∂ Ck
i (1 − p)Ci

∂i
= 0 =⇒ ∂ Ck

i (1− Cip)
∂i

= 0 (9)

The above derivation requires an additional assumption that p << 1. Solving (9)
and replacing Ci by (2), we obtain,

Dk = argmaxi Pi =
log k(f − 2)− log p(k + 1)

log(f − 1)
(10)
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Now we estimate the number of node accesses in the KNN search. For the
naive algorithm, similar to (6), we have:

NAnaive = CDk� ≈
(f − 1)Dk�

f − 2
(11)

Recall that in our nd-based algorithm, the pointer p starts from q, examines
the nd’s of p’s children (except for the child that p previously points at), searches
downwards, and moves upward (and possibly to other SPIE’s through the short-
cuts) until the distance from p to q exceeds !D". For each downward search, the
number of node accesses, NAdown, is equivalent to the total length of the paths
from the k nearest descendants to p. Let β denote the distance from the kth
nearest descendant to p. We have the following two equations,

β∑
i=1

(f − 1)ip = k

β∑
i=1

(f − 1)ip · i = NAdown

Solving these two equations, we have

NAdown ≈
f · β · k

p
≈ f · k(log k(f − 2)− log p)

p log(f − 1)
(12)

Therefore,

NAnd =
Dk�∑
i=0

NAdown ≈
f · k(!Dk"+ 1)(log k(f − 2)− log p)

p log(f − 1)
(13)

By comparing (11) and (13), we come to a similar conclusion as in Section 6.3
that NAnd << NAnaive.

7 Performance Evaluation

In this section, we present the experimental results on network reduction, nd in-
dex construction and (k)NN search. We used two road networks in the simulation.
The first is synthetic for controlled experiments, which was created by generating
183,231 planar points and connecting them through edges with random weights
between 1 and 10. The degree of nodes follows an exponential distribution with
its mean denoted as f . f is tuned to evaluate its effect on network reduction. The
second is a real road network obtained from Digital Chart of the World (DCW). It
contains 594,103 railroads and roads in US, Canada,Mexico. Among these line seg-
ments, we identified 430,274 unique nodes, and thus the average degree of nodes,
f , is about 2.7. Similar to [9], we used the connectivity-clustered access method
(CCAM) [12] to sort and store the nodes and their adjacent lists. The page size
was set to 4K bytes. The testbed was implemented in C++ on a Win32 platform
with 2.4 GHz Pentium 4 CPU, 512 MB RAM.
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We compare our nd-based NN search algorithm with two competitors. The first
is the Dijkstra-based naive network expansion algorithm which uses a priority
queue to store the nodes to be searched and increasingly expands to their adjacent
nodes on the network. The second is the Voronoi-based Network Nearest Neigh-
bor (NV 3) algorithm [8] which computes the Network Voronoi Diagram for each
dataset. So far, it is known to be the best algorithm for NN search in roadnetworks.

Regarding the performance metrics, we measured the CPU time, the number
of disk page accesses and the number of node accesses. The first two show the
search cost while the last metric indicates the pruning capability of the network
reduction and nd index.

7.1 Network Reduction

We evaluated the performance of the network reduction by measuring the number
of edges before and after the reduction. In Figure 6, the result from the synthetic
networks shows the same trend as Equation 1: when f increases from 2 to 10, the
reduced edges increases from 5% to 60% of the total edges. However, when f gets
even larger, the average length g of a circuit decreases, which partially cancels out
the effect of f . Therefore, we expect the proportion of reduced edges to stabilize
when f > 10. For the real road network, the average node degree f is reduced from
2.7 to 2.05, which is very close to a tree structure. In fact, only 1571 shortest path
trees were created out of the 430,274 nodes. These results confirm the feasibility
and effectiveness of network reduction on large road networks.
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Fig. 6. Effect of Network Reduction

7.2 nd Index Construction

We created three randomly distributed datasets with their cardinality set to
0.001, 0.01, 0.1 (denoted as p) to the total number of nodes on the real road
network. We then built both V N3 index (including the NV P R-tree, NV D’s,
Bor−Bor distances, and OPC distances) and nd index on these datasets. Table 2
shows the index sizes and the clock time for index construction. Note that for
the nd index, we do not count the size and construction time for the SPIE graph,
which is 7.5 MB and 303 seconds respectively, because this one-time cost is shared
by all datasets. The result shows that our nd index has a constant size and almost
constant construction time. It is more efficient to build than V N3 index.
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Table 2. Comparison on Index Construction

Size (MB) p = 0.001 p = 0.01 p = 0.1 Time (s) p = 0.001 p = 0.01 p = 0.1
V N3 347 92 67 V N3 2748 765 512
nd 5.16 5.16 5.16 nd 12 12 14

7.3 NN Search Result

We conducted experiments of NN search on the real road network for the three
datasets and measured the CPU time, page accesses and node accesses3. All
statistics were obtained from an average of 2,000 trials. In Figure 7(a), we observe
that the number of page accesses for both the naive and nd algorithms decreases
as the density of the dataset p increases, whereas the number of page accesses for
V N3 is almost constant. This is because the first two algorithms are based on
graph traversal while V N3 is based on point location on the NVP R-tree. Even
though V N3 precomputes the Network Voronoi Diagram and is thus efficient
in finding the first nearest neighbor, our nd-based algorithm still outperforms
it when p > 0.01, because more queries can be answered by visiting the nd
of a few nodes on a single SPIE. In this sense, nd is more robust than V N3

for datasets with various densities. Figure 7(b) confirms this argument: the nd-
based algorithm reduces the node accesses of the naive algorithm by 2 orders of
magnitude when p = 0.001 but it still reduces the nodes accesses by half when
p = 0.1.
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Fig. 7. Performance Comparison for NN Search

7.4 KNN Search Result

We conducted the kNN search for the p = 0.01 dataset on the real road network,
where k ranges from 1 to 50. We measured the page accesses and CPU time and
plotted the results in Figures 8(a) and 8(b). The results show that when k = 1,
V N3 requires the fewest page accesses and the least CPU time, because V N3

3 Since CPU time was found neglectable in 1NN search, we omit it in this subsection.
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optimizes the 1NN search by only requiring the search to locate the NVP that
contains the query node. However, as k increases, V N3 still needs to traverse
the NVD graph to search for candidate NNs; a major factor that contributes
to the high cost of a kNN search by V N3 is that the distance computation
between each candidate and the query node is carried out separately and from
scratch, while for network-expansion-based algorithms such as the naive and nd-
based algorithms, the distance is computed accumulatively. This argument is
supported by Figures 8(a) and 8(b) where the gap between V N3 and the naive
algorithm decreases as k increases. On the other hand, the nd-based algorithm
performs consistently well for a wide range of k. The reasons are four-folded.
Firstly, recall that after network reduction, each SPIE contains hundreds of
nodes on average, which means that for small k it is likely that the search ends
in one or two SPIE’s. This explains why nd outperforms V N3 even for small k.
Secondly, although kNN search on nd index requires searching for the nd of p’s
descendants, these nd’s are likely stored in the same disk page that p resides.
Thirdly, since there are only 1571 SPIE’s in the SPIE graph, looking for adjacent
SPIE’s to search is efficient. Last but not the least, thanks to the nd index that
avoids naive expansion within one SPIE, the nd algorithm is the least affected
by the increase of k. In Figures 8(a) and 8(b), both page accesses and CPU time
of the nd algorithm are sublinear to k.
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Fig. 8. Performance Comparison for KNN Search: p = 0.01 Dataset

To summarize the results, the network reduction and nd-based (k)NN search
algorithms exhibit the following advantages: (1) the network topology is signifi-
cantly simplified and the reduction is a one-time cost for multiple datasets; (2)
the nd index is lightweight in terms of storage and construction time; (3) the
(k)NN search algorithm performs well for a wide range of datasets with different
densities; (4) the kNN search algorithm performs well for a wide range of k.

8 Conclusion and Future Work

In this paper, we proposed a new kNN search technique for road networks. It
simplifies the network by replacing the graph topology with a set of intercon-
nected tree-based structures called SPIE’s. An nd index was devised on the SPIE
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so that our proposed kNN search on the SPIE follows a predetermined tree path.
Both cost models and experimental results showed that our approach outper-
forms the existing network-expansion-based and solution-based kNN algorithms
for most of the network topologies and data distributions.

In future work, we plan to devise structures other than SPIE to reduce the
network topology. By striking a balance between the topological complexity of
the structure and the kNN searching complexity on it, we can further improve
the performance of our approach.
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Abstract. Utilizing spatial index structures on secondary memory for nearest
neighbor search in high-dimensional data spaces has been the subject of much
research. With the potential to host larger indexes in main memory, applications
demanding a high query throughput stand to benefit from index structures tai-
lored for that environment. “Index once, query at very high frequency” scenarios
on semi-static data require particularly fast responses while allowing for more ex-
tensive precalculations. One such precalculation consists of indexing the solution
space for nearest neighbor queries as used by the approximate Voronoi cell-based
method. A major deficiency of this promising approach is the lack of a way to
incorporate effective dimensionality reduction techniques. We propose methods
to overcome the difficulties faced for normalized data and present a second re-
duction step that improves response times through limiting the dimensionality of
the Voronoi cell approximations. In addition, we evaluate the suitability of our
approach for main memory indexing where speedup factors of up to five can be
observed for real world data sets.

1 Introduction

Research on the topic of nearest neighbor search in high-dimensional spaces tradition-
ally has focused on secondary memory data structures. However, a growing number
of applications stand to gain from a shift to main memory indexing as it promises to
significantly reduce query response times and it becomes increasingly economically
feasible to reserve a few hundred megabytes to do so. In addition, the volatile nature
of main memory is not a disadvantage for semi-static data sets that are backed up on
secondary memory and then read into main memory to be accessed at a high frequency.
This scenario is often observed for server-based indexes where a large number of query-
ing clients demands a low response time and thus a high query throughput on the server
side. Furthermore, applications that use nearest neighbor queries as a base function
for other algorithms such as classification and clustering fit this scenario. The interest
in main memory indexing on the application side has been met by an increase in re-
search activity in that domain over the past few years, which has resulted in several
solutions to main memory indexing and shown that not all secondary memory indexing
structures port well to main memory. Due to its low CPU-utilization, the approximate
Voronoi cell approach to nearest neighbor search[1][2] subsumed in section 3.1 is a
natural candidate for main memory indexing. Voronoi cells describe a covering of the

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 204–221, 2006.
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Fig. 1. Query processing using indexed Voronoi cell-bounding cuboids

underlying data space, so that each data object is assigned to a cell which contains
all possible nearest neighbor locations of the corresponding object. A precomputation
step is used to approximate the complex Voronoi cells with simpler high-dimensional
axis-aligned bounding rectangles (i.e. cuboids) in order to enable low query response
times. However, the approach resists attempts to incorporate effective dimensionality
reduction techniques (cf. section 3.2) as it requires the boundaries of the data space to
be taken into account. Straightforward solutions (bounding boxes, convex hulls) prove
to be unsuitable. This severely limits the application domain of the approximate Voronoi
approach as approximate Voronoi cells in high-dimensional spaces are neither feasible
to compute nor efficient for indexing.

We therefore introduce new approximation-based methods in section 4 to efficiently
overcome the difficulties faced during dimensionality reduction for normalized data
such as size-invariant histograms common in image retrieval applications. A second
reduction presented in section 5 improves response times through limiting the dimen-
sionality of the Voronoi cell bounding cuboids themselves. The cuboids in the reduced
dimensionality are indexed by facilitating either hierarchical or bitmap-based index
structures in main memory as described in section 6. It is possible to find a complete
set of nearest neighbor candidates for a querying point in a filtering step through sim-
ple point-in-cuboid tests (cf. figure 1). The significant performance improvements over
other approaches achieved for the Voronoi-based technique through our two dimen-
sionality reduction steps are shown in section 7 for real world data sets. These are made
possible by the low number of CPU-intensive operations and the low amount of data
transferred over the main memory bus.

2 Related Work

The idea to utilize the concept of precalculating the nearest neighborhood information
with the help of Voronoi cells in order to support optimal worst-case query complex-
ity was first adopted and investigated in [3]. The algorithm performs nearest neighbor
queries on N points in the 2-dimensional plane in O(log N) time by slicing the data
space according to the Voronoi cell vertices and performing two binary searches on
these slices. However, it does not extend well to higher dimensionalities.

In [1][2], a technique using approximations of Voronoi cells was introduced and en-
abled the use of data sets with a higher dimensionality. With increasing dimensionality
and very large amounts of data this technique comes to its limits. Some methods pre-
sented in these papers (e.g. a limited amount of point insertions) can be facilitated for
our work.
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Multiple algorithms and data structures for computing the nearest neighbor of point q
by concentrating on the data space D have been proposed in the past. The trivial solution
is a linear scan over all points in D. The high CPU and memory bandwidth utilization
make this approach unsuitable for multimedia database applications managing a large
number of high-dimensional objects.

A variation of the simple linear scan is employed by the Vector Approximation File
[4] which uses fewer bits per dimension of the data points. Each dimension is separated
into 2r bins. Thus, only r bits are used to indicate the corresponding bin for each point.
To find the nearest neighbor, the approximated vectors are scanned sequentially and an
upper and a lower bound of the distance to the query point are computed. Only those
points for which the lower bound is smaller than the smallest upper bound are then used
to find the correct nearest neighbor.

Other approaches rely on a hierarchical, spatial division of the data space into re-
gions. The data points are each associated with a region that is not further divided,
mapping spatial proximity in the feature space to topological proximity in an index
structure. A number of these structures use hierarchically nested (minimum) bounding
rectangles (MBRs) for the inner directory nodes to manage the data points stored in
the leaf nodes. The R-Tree [5] and its variants the R∗-Tree [6], the CR-Tree [7] and
the X-Tree [8] are prime representatives of this paradigm. The CR-Tree compresses the
MBR keys which occupy a large part of the index. The X-Tree was specifically designed
to support high-dimensional searches and outperforms its predecessors in that scenario.

Nearest neighbor algorithms such as the Depth-first Traversal algorithm of [9] and
the Priority Search algorithm described in [10] use these index structures to prune whole
branches of the tree once the feature space region they represent can be guaranteed to
not include the nearest neighbor.

Due to the continuing tendency of main memory becoming significantly larger and
less expensive, research interest has been renewed on the creation and utilization of
indexes in main memory. The above mentioned CR-Tree [7] is a modification of the
R-Tree [5] which introduces cache-consciousness and holds the index in main mem-
ory. Other main memory index structures like the pkT-Tree/pkB-Tree [11] and the
CSB+-Tree [12] have been investigated but are restricted to low-dimensional data.

3 Preliminaries

3.1 Voronoi Cells

The concept of space partitioning to describe nearest neighborhood information used
in this work was developed in the early twentieth century by G. Voronoi [13] and is
an n-dimensional generalization of the 2- and 3-dimensional diagrams already used by
Dirichlet in 1850. It is still a widespread and important topic of extensive research in
the field of computational geometry [14].

A Voronoi diagram for a set of points is a covering of the space by cells that indicate
the nearest neighbor areas of the points and is thus directly tied to the problem of finding
the nearest neighbor. Figure 2a shows such a partitioning for six points in the plane. For
each point, the respective surrounding cell describes the area for which that point is
closer than any of the other points. Given a query position q in the plane, the nearest
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a) Voronoi diagram b) half space intersections

c) tight cuboid approx d) non-tight cuboid approx

Fig. 2. Voronoi cells and their approximations

neighbor can be found by determining the cell that includes that position. As long as
q remains inside the same cell, its nearest neighbor does not change. The edges and
vertices in the diagram describe positions for which more than one point is at minimal
distance.

Formally, Voronoi cells can be described using half spaces as follows:

Definition 1. Given a data space S, a metric distance function δ : S × S → R, a
finite set of data points D = {p1, ..., pN} with D ⊂ S and half spaces HS(p, p′) =
{p′′ ∈ S|δ(p′′, p) ≤ δ(p′′, p′)}, a Voronoi cell V CS,D(pi) for point pi is defined as the
intersection of S and (|D| − 1) half spaces:

V CS,D(pi) = S ∩

⎛⎝ ⋂
p ∈ (D−{pi})

HS(pi, p)

⎞⎠
Definition 2. A Voronoi diagram VS(D) is simply defined as the set of the Voronoi
cells:

VS(D) = {V CS,D(p1), ..., V CS,D(p|D|)}

Thus, a Voronoi cell is a convex polytope. Figure 2b shows the half space intersections
for a Voronoi cell where the half space separation lines are shown as dashed lines.

For the approximation approach to Voronoi cells chosen here, it is required that
S ⊂ Rd be of convex shape such as the d-dimensional unit hypercube [0, 1]d. Note
that not only all points in D but also all potential query points are located within S.
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However, in more than two dimensions (as is the case in many multimedia appli-
cations) the cells become highly complex [15][16]. Due to that observation, neither
computing nor storing or inclusion-testing is efficient for these Voronoi cells in near-
est neighbor search. Therefore, our precalculation step determines approximations of
Voronoi cells of lesser complexity without requiring the exact representations of the
latter to be known while still allowing for fast nearest neighbor searches.

To reduce the complexity of the Voronoi cells, we approximate them by bounding
shapes with fewer surfaces. To avoid false dismissals during nearest neighbor query
processing, these shapes must include the whole data space of the respective Voronoi
cells. We decided in favor of axis-aligned bounding cuboids which offer several advan-
tages: they are storable in O(dN) space for N points in d dimensions, enable inclusion
tests in O(d) time and are computable through well-studied standard algorithms like
linear optimization [17]. Other methods like non-axis-aligned projections can also be
used for determining cell approximations but are omitted here for simplicity. In linear
optimization a linear objective function is maximized or minimized over a range of
values restricted by a set of linear constraints.

In the context of Voronoi cell approximation, the required linear constraints are de-
fined by

– the set of half spaces outlining the respective cell and
– the data space boundaries.

The objective functions are used to find the outermost points in each dimension
1, ..., d of a cell V C(p) described by the linear constraints. For this purpose, functions
f1 to fd with fi(x1, ..., xd) = xi are each minimized and maximized once per Voronoi
cell. The extremal values directly represent the respective boundaries of the cuboid that
tightly bounds the approximated Voronoi cell.

The data space boundaries must be added to the set of constraints to avoid that these
extremal values extend outside the data space in certain dimensions.

To significantly speed up the calculation of the bounding cuboids, for each Voronoi
cell, only a subset of all related half spaces can be used. Redundant half spaces can
be left out without affecting the result of the cell approximation. Leaving out non-
redundant half spaces only leads to a non-minimum bounding cuboid, which intro-
duces more nearest neighbor candidates and slows down nearest neighbor searches
but never misses a possible solution. Therefore the choice of the subset of half spaces
is very important. In [1] some heuristics for the choice of an appropriate subset of
half spaces are introduced. We concentrate on a heuristic which selects a number of
nearest neighbor points for each data point p ∈ D and uses the corresponding half
spaces to approximate the original Voronoi cell V CS,D(p) since the half spaces defined
by the nearest neighbors of p are likely to actually restrict the cell. For the range of
parameters in our experiments, a value of 2,000 neighbors has proven to yield good
results.

Figure 2c shows the approximated cell belonging to object p where all half spaces
were used while in figure 2d the half space HS(p, p′) is left out, resulting in a slightly
larger cuboid.
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3.2 Dimensionality Reduction

The original data dimensionality can be high in multimedia applications. This compli-
cates the nearest neighbor search via the Voronoi approach.

First, a high dimensionality results in the data space being sparsely populated with
data points. Thus the bounding cuboids of the Voronoi cells become quite large as only
comparatively few other cells are available to restrict each cell in all possible directions.
In extreme cases, all cuboids overlap the complete data space as each cell includes
points on both the upper and lower space boundary of each dimension. These unre-
stricted dimensions are useless for nearest neighbor searches, since they never cause
any point to be dismissed as a nearest neighbor candidate for any query.

Second, computing the cell-bounding cuboids becomes more expensive as each di-
mension adds a new variable to the linear optimization process and more linear con-
straints are needed to describe the cells of points D in S as the total number of facets in
VS(D) increases.

Finally, once the Voronoi cell approximations have been computed, they are to be
indexed to answer future queries. For cuboids in a high dimensionality, hierarchical
index structures such as the R-Tree or X-Tree are bound to experience a deteriorating
efficiency caused by the effects of the “Curse of Dimensionality”.

A partial solution to these problems lies in applying dimensionality reduction tech-
niques as a special form of approximation. For the Voronoi approach, this can be per-
formed on two levels as summarized by figure 3.

Fig. 3. Two-step strategy for reducing the dimensionality

All linear dimensionality reduction techniques (including Random Projection [18],
Wavelet Transforms, Discrete Fourier Transform, etc) can be used as the first dimen-
sionality reduction step in our approach, where data points are mapped to new data
points with a lower dimensionality. We focus on the PCA due to its optimality regard-
ing the mean squared error, its predominant position in practical applications and its
beneficial two-part output (rotation matrix and variances) useful in section 5. Some of
the nearest neighborhood information is given up in this step in order to more efficiently
construct the Voronoi cell-bounding cuboids. Oftentimes, removing some dimensions
in this way only introduces minor inaccuracies due to two properties of the similarity
search framework based on feature vectors. The feature extraction process used can
result in dimensions that are insignificant to the application at hand. This is the case
when one dimension is dominated by other dimensions either due to differences in the
variance of the dimensions or due to correlation effects. Additionally, the distance func-
tions used to determine nearest neighbors only approximate a similarity concept that is
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often subjective. Introducing further minor inaccuracies through dimensionality reduc-
tion can go largely unnoticed in face of this observation and at the same time drastically
increase the efficiency of the nearest neighbor search.

In the second dimensionality reduction step described in section 5, the dimensional-
ity of the resulting cuboids can be further reduced prior to indexing.

4 The Bounding Constraints Problem

Unlike other nearest neighbor algorithms, the Voronoi approach using bounding
cuboids depends on the data space being included in a polytope whose facets are used
to define the outer constraints for the linear optimizations of the bounding cuboid com-
putation. A direct application of dimensionality reduction techniques not taking this
requirement into account is bound to fail.

We focus on normalized data where all points p = (p1, ..., pd), pi ≥ 0, share a
common sum c =

∑d
i=1 pi. These conditions are frequently met for data used in

multimedia similarity search. Two examples used for our experiments in section 7
include size-invariant image histogram representations and ratios (“1:3:2”) in context
of financial time series. For these data points, there is a suitable (d− 1)-dimensional
convex polytope with d vertices and d facets situated in a (d− 1)-dimensional sub-
space. After rotating and projecting all points to eliminate the redundant dimension
pd = c −

∑d−1
i=1 pi, the d vertices of the polytope consist of the accordingly trans-

formed unit vectors scaled by factor c. Figure 4 displays this for the case of d = 3 and
c = 1 where all points are enclosed by the three lines between the three transformed
unit vectors in the d1d2 subspace.

Fig. 4. 3-dimensional common-sum vectors bounded by three lines in a 2-dim. plane

In practical applications, the originally sum-normalized data is often linearly trans-
formed. Scaling of individual dimensions is used to compute weighted distances and
both rotations and projections are common in dimensionality reduction (PCA, DFT,
Random Projection and others). The aim is to find the transformed convex polytope
defining the data space - in particular after projections into a dimensionality d′ < d. A
linear transform of a convex polytope is another convex polytope where the vertices of
the transformed polytope are (a subset of) the transformed original vertices. Thus, one
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way to find the transformed polytope is to transform all original polytope vertices P and
then find the convex hull for those points P ′. This has a worst-case time complexity of

O(n log n + n�d
′/2�) for n points in the (possibly lower) transformed dimensionality

d′ [19]. Other approaches to find the projected polytope include the Fourier-Motzkin
elimination with extensions to reduce the number of redundant constraints [20].

The potentially high complexity of the convex hull leads to another problem. Each
facet of the resulting convex hull produces a constraint for the linear optimizations for
each Voronoi cell. Hence, that number must be low for practical purposes. Contrary to

that, a convex hull with n vertices in d′ dimensions can have in the order of O(n�d
′/2�)

facets [19]. Figure 5 shows these values computed via the QHull algorithm [21] for two
real world data sets used in section 7. While the convex hulls for the phoneme data set
remain sufficiently simple, the image histogram data set quickly goes beyond values
reasonable for a practical computation of the Voronoi cell-bounding cuboids. Due to
that fact, we introduce a number of methods to conservatively approximate the convex
hull. An approximation of a point set is called conservative in this context if all points
inside the original point set are also contained in the approximation of the set.

A bounding cuboid approximating the convex hull
A simple way to conservatively approximate the convex hull of a point set P ′ with
(d′ − 1)-dimensional planes is to find a bounding cuboid for the hull. This can be done
by determining the minimum and maximum values among the set P ′ for each dimen-
sion. The resulting 2d′ planes defined by the cuboid facets are suitable as constraints
for the Voronoi cell approximations. However, the shape of the convex hull of P ′ can
be quite removed from an axis-aligned cuboid. If a larger precomputation cost is ac-
ceptable to better the selectivity for queries, it is worth finding more complex but closer
approximations of the convex hull.

Tilted planes approximating the convex hull
A potentially closer approximation can be found by using the vertices of the bounding
cuboid. For each of the 2d′

vertices, the adjacent d vertices span a hyperplane with a
normal vector n as depicted in figure 6a for vertex v. Each such tilted hyperplane is
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a) tilted planes b) inner polytope

Fig. 6. Planes approximating a convex hull

then pushed outwards along its normal vector until all points in P ′ are located either
on the hyperplane or behind it as defined by the orientation of the normal vector. The
plane-pushing algorithm has a time complexity of O(d′ · |P ′|).

Inner polytopes approximating the convex hull
Like the bounding cuboid approach, the tilted planes method makes little use of the
geometric shape of the convex hull being approximated. The normal vectors of the hy-
perplanes are only influenced by the total extent of the convex hull. In this paragraph,
a variation is proposed that attempts to calculate more suitable normal vectors for the
fitting planes. The main idea is to define a convex polytope residing inside the convex
hull of P ′ that is less complex but still reflects its general shape. Once the facets of this
polytope have been determined, they are pushed outwards along their respective normal
vectors to include all the points in P ′.

The polytope used in this proposal is defined through its vertices which form a subset
of the vertices of the convex hull of P ′.

Definition 3. Let R = {r1, r2, ...} be a finite set of k-dimensional points. The set of
extremal points Ext(R) is defined as:

Ext(R) = Extmin(R) ∪ Extmax(R)

with

Extmin(R) = {ri ∈ R|∃k∗ ∈ {1, ..., k} : ∀rj ∈ R− {ri} :

(ri
k∗ < rj

k∗) ∨ ((ri
k∗ = rj

k∗) ∧ (i < j))}

and

Extmax(R) = {ri ∈ R|∃k∗ ∈ {1, ..., k} : ∀rj ∈ R− {ri} :

(ri
k∗ > rj

k∗) ∨ ((ri
k∗ = rj

k∗) ∧ (i < j))}
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Intuitively, these are the points that are located on an axis-aligned minimum bounding
cuboid of the set R. If more than one point is located on the same facet of the cuboid,
only the one with the lowest index is used for that facet. For each vertex v of the bound-
ing cuboid, points {p′i1 , ..., p′id′ } ⊆ Ext(P ′) are selected as illustrated by figure 6b.
These are the points that were included in Ext(P ′) due to their position on a facet of
the cuboid that has v as one of its vertices. If none of the points are duplicate for vertex
v, the d′ points define a facet of an inner polytope which can then be pushed outwards as
in the tilted plane method. In higher dimensionalities with few points, it often happens
that one point is extremal for more than one dimension and thus the maximum number
of 2d′

facets is rarely reached for the inner polytope.

Greedy point selection
Further inner polytopes can be defined by using other methods to select a subset T ⊂ P ′

and then constructing the less complex convex hull for T . The facets of the hull are then
pushed outwards along their normal vectors. In order for T to represent the general
shape of P ′, we used the following greedy heuristic for selecting points {t1, ..., t|T |}:
choose any one point in P ′ that is located on the convex hull of P ′ as t1. Then choose
ti+1 as the point p from (P ′ − {t1, ..., ti}) with the greatest accumulated distance∑i

j=1 δ(p, tj). The greedy selection algorithm runs in O(d′ · |P ′| + d′ · |T |2) time
followed by the computation of the convex hull for |T | points.

Combinations and variations
The strategies described for finding a convex polytope conservatively approximating
the space in which data points potentially reside offer some practical alternatives to the
extremes of the convex hull with its high facet count but small volume. A few more ap-
proaches can be directly derived from the prior approximations and shall be described
here. An intersection of two conservative, convex approximations yields another con-
servative, convex approximation. Thus, all approaches can be combined by using con-
straining planes from more than one approach. Adding the 2d′ axis-aligned facets of the
convex hull-bounding cuboid to other constraints hardly induces any computational ef-
fort but helps to reduce the size of the also axis-aligned Voronoi cell-bounding cuboids
and ensures that the data space is bounded in all directions. Similarly, the hyperplanes
retrieved from a greedy point selection can be augmented by both the cuboid and the
inner polytope hyperplanes.

5 Reducing the Bounding Cuboid Dimensionality

The dimensionality reduction discussed enables efficient computation of the bounding
cuboids by projecting the data points from dimensionality d to a subspace of dimension-
ality d′. However, it does so by sacrificing nearest neighborhood information. Though
justifiable to some extent, it is often not viable to reduce the dimensionality to a level
where indexing the cuboids is efficient while the data retains enough of the proximity
information. Therefore, a further reduction to a dimensionality d∗ < d′ (cf. figure 3) is
proposed which nevertheless allows the nearest neighbor in the d′-dimensional space to
be found.
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After computing the Voronoi cell-bounding cuboids for the projected data points
in dimensionality d′, those cuboids themselves are projected to dimensionality d∗ by
dropping some of the dimensions. This produces the same nearest neighbor as in the
case of the cuboids in dimensionality d′.

Definition 4. Let D ⊂ Rd and Q ⊂ Rd be finite sets of d-dimensional points and
C = {c1, ..., c|D|} the set of Voronoi cell-bounding cuboids for data points in D defined
by their respective lower and upper boundary vertices L = {l1, ..., l|D|} and U =
{u1, ..., u|D|}. Then the characteristic function

include : Q× {1, .., |D|} × P({1, ..., d})→ {0, 1}

include(q, i, E) =
{

1 : ∀e ∈ E : lie ≤ qe ≤ ui
e

0 : otherwise

determines if point q is inside all intervals defining the extent of the cuboid ci in the set
of dimensions E.

First, a query vector q is transformed and projected to q′ in dimensionality d′ by the
same method used to reduce the data dimensionality. Without the cuboid projection,
vector q′ is then tested for inclusion in the Voronoi cell-bounding cuboids ci defined by
their respective upper and lower boundary vertices ui and li. Each cuboid ci for which
include(q′, i, {1, ..., d′}) equals 1 indicates a nearest neighbor candidate. The cuboid
dimensionality is reduced via dropping (d′− d∗) of the dimensions of q′ and all ci. The
new inclusion test can then be performed as include(q′, i, E∗) with E∗ ⊂ {1, ..., d′}.
Whenever q′ is included in a cuboid, the same holds true for q∗ and the projected cuboid.

While no candidates are lost in this process, there might however be additional false
positives. This results in a worsening selectivity of the filter step (cf. figure 1) as more
dimensions are dropped. On the other hand, fewer dimensions can result in a faster filter
step execution. Consecutively, the following question arises: Which dimensions are to

be dropped and which ones are to be retained? Unfortunately, there are
∑d′

e=1

(
d′

e

)
com-

binations to consider in an exhaustive search. The search space must be vastly reduced
by excluding combinations and using heuristics to find a combination of dimensions
that produces a satisfyingly good solution.

Using empirical selectivities to find dimensions to retain
As a first simplification, average selectivity values from empirical queries are used to
find dimensions with a good individual selectivity.

Definition 5. Let D, Q, C be defined as in definition 4. The empirical selectivity ES
for a set of dimensions E ⊆ {1, ..., d} is defined as

ESD,Q(E) =
1
|Q|

∑
q∈Q

1
|D|

|D|∑
i=1

include(q, i, E).

Given a suitable query set Q, this reduces the workload considerably. For each dimen-
sion k between 1 and d′, only ESD,Q({k}) must be computed. Using the worsening
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(i.e. increasing) selectivities as the order in which dimensions are retained makes sense
if the underlying filtering events of the form “a cuboid is not dismissed as a candidate
for a nearest neighbor query on grounds of its boundaries in dimension k” are statisti-
cally independent. In that case, the empirical selectivity of two combined dimensions
is expected to be close to the product of both individual empirical selectivities. Thus,
using the dimensions with the best (empirical) individual selectivities results in a good
(empirical) combined selectivity for k dimensions.

While statistic independence cannot be expected in general, the PCA removes linear
dependencies of the data points by eliminating the covariances. For example, after PCA
reduction to a dimensionality of 10 for the 27-dimensional image histogram data set
from our experimental section the two dimensions with the highest variance exhibit an
empirical selectivity of 15% and 10.8% respectively. The expected combined selectiv-
ity would be close to 15% · 10.8% = 1.62% in case of independence. The measured
value was 1.95%. With an increasing number of dimensions, the relative gap widens
to an expected 0.0027% for 10 dimensions and 0.0596% measured. Still, the proposed
order of dropping dimensions resulted in empirical combined selectivities rarely beaten
by spot samples of the same number of dimensions, which justifies using the simplifi-
cation proposed in this section.

Using variances to find dimensions to retain
To avoid having to find a suitable query set Q and compute empirical selectivities,
another simplification can be employed when PCA has been used to reduce the data
dimensionality. As a side effect of the PCA, the variances for each dimension of the
rotated and projected data points are known. Instead of using the worsening selectivity
order to pick dimensions to retain, the descending order of the variances can be used.
While a high variance for a dimension does not necessarily imply a good selectivity
for that dimension, it is a good indicator. Dimensions with a low variance tend to pro-
duce Voronoi cells that stretch far in said dimensions. Measured correlation coefficients
for inverted variances and measured selectivities of individual dimensions were 0.957,
0.504 and 0.937 for the three real world data sets used in our experiments.

On the number of dimensions to retain
The question of how many dimensions are to be retained remains. This depends on the
index structure used. One possibility would be to produce up to d′ indexes using 1 to d′

dimensions selected via the methods proposed above and then select the one index with
the best average query performance. Without further information about the index struc-
ture, this might be the only method to pursue. Experiments in section 7 show that the
X-Tree greatly benefits from the additional projection while the evaluated bitmap-based
structure hardly does.

6 Main Memory Indexing

Data page access and read times are not the foremost cost factors of performing near-
est neighbor queries when the index structure is stored in main memory. The query-
ing time can be decomposed into a filter part (decide which points in D need further
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Fig. 7. Bitvector Index for 5 cuboids

examination) and a refinement part (compute the distances to the query point q). Both
parts vary widely for the available algorithms and index structures. While the linear
scan does not spend any time on filtering but computes the distances from q to all data
points in D, the Priority Search algorithm [10] for hierarchical index structures care-
fully considers which data points warrant a distance computation.

Since the Voronoi cell-bounding cuboids are axis-aligned, the usually secondary
memory-based R-Tree family is an obvious candidate to support the filtering step in our
approach. Due to its suitability for medium and higher dimensionalities, we chose to
adapt the X-Tree variant[8] to run on main memory (with a space complexity of O(N ))
for tests in section 7. In addition, we implemented a bitmap-based index structure de-
scribed in [22]. The authors originally used the Bitvector Index for epsilon queries in
a main memory-based similarity search system for audio samples but its design makes
it an evident option for Voronoi-based nearest neighbor queries. For each dimension
i of the space to be indexed, the Bitvector Index stores a number m of bitvectors
BVi,1, ..., BVi,m together with m + 1 delimitation values bi,0, bi,1, ..., bi,m. When
indexing N cuboids, each BVi,j has N bit entries denoting which of the cuboids cover
part of the interval [bi,j−1, bi,j ] in dimension i. In the example depicted in figure 7, only
the cuboids c2, c3 and c4 overlap the hatched interval belonging to BV1,2.

When considering the query point q in figure 7, only cuboids that overlap the crossed
area are of interest during a nearest neighbor query using Voronoi cell-approximating
cuboids. These can be found by a bit-wise ‘and’ operation for BV1,2 and BV2,1. A near-
est neighbor algorithm using this index structure and Voronoi cell-approxi-
mating cuboids goes through four steps.

1. establish in which interval the query point falls per dimension, using binary search
2. combine the respective bitvectors via bitwise ‘and’
3. retrieve a list of cuboid indices represented by the set bits in the resulting bitvector
4. scan over the data points belonging to the list of cuboids to find the nearest neighbor
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On N data points in d′ dimensions with cuboids of dimensionality d∗, the time com-
plexity for this algorithm is O(ld(m) · d∗ + d′ ·N ) while the space complexity is O(d∗ ·
m ·N + d′ ·N ). While this is not lower than the complexity of the linear scan, it has the
potential to show a significant performance boost through packing 32 bits of a bitvec-
tor each into an unsigned integer of that length. Thus, instead of computing N floating
point distances in d′ dimensions only (d∗ − 1) · !N/32" integer ‘and’ operations are
required to create a bitvector that has its bits set to 1 for a superset of the cuboids which
contain the point q. Only for the remaining cuboids the according point distances have
to be computed. In addition to the lower CPU time requirement, the amount of data to
be accessed in step 2 is limited to d∗ bits per cuboid compared to d′ ·32 or d′ ·64 bits per
data point for the single and double precision floating points used by the linear scan. That
reduction is important if the linear scan reaches the main memory throughput limits.

7 Experiments

To test the different proposed methods of producing outer constraints for the data space
from section 4, various empirical selectivities were computed using a query set Q con-
sisting of 7,510 out of 207,510 image histograms projected from d = 27 to the first
10 principal components. This left 200,000 histograms for the data point set D. Be-
fore reducing the dimensionality to d′ = 10, a linear transform was used in order to
have the Euclidean distance values equal those of a similarity matrix-induced quadratic
form as known from [23]. Figure 8a shows that the convex hull produced a total of
9,263 constraints. Using a higher dimensionality d′ significantly increased that number
(cf. figure 5). The bounding cuboid with only 20 constraints suffered a selectivity in-
crease of factor 55 compared to the convex hull that produced a selectivity of roughly
0.06%. Adding all 20 existing inner polytope planes to the cuboid helped reduce the
increase to factor 24 while the 1,024 tilted planes resulted in a factor of 15. Using all
three approaches together with 1,064 constraints brought this down further to factor 11.
Compared to that, the greedy point selection using 11, 15, 19 and 23 points from left
to right in figure 8a shows that it is a well-suited approach that allows for a favorable
trade-off between the number of constraints and the resulting selectivity. For all further
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Fig. 9. Query times at varying dimensionality d’ and cardinality N

experiments, we chose to use the box, inner polytope and greedy point selection com-
bined in such a way that the number of constraints did not exceed 2,000 (e.g. 19 points
in the 10-dimensional case).

All run-time benchmarks were performed using C++ implementations on a computer
with a 2.4GHz Pentium 4 CPU (512 kilobytes of second level cache) with one gigabyte
of 266MHz main memory hosting the respective index structure and data points for
each measurement.

Using the variance-based heuristic from section 5, the axis-aligned projection of
the Voronoi cell-bounding cuboids results in a definite advantage when indexing the
cuboids in an X-Tree. With just four out of the ten dimensions, figure 8b displays a
two-fold increase in the overall nearest neighbor querying speed. The Bitvector Index,
on the other hand, hardly benefits from said projection. This can be explained by the
relatively cheap computation of the final bitvector compared to a high computational
cost of both decoding the vector in order to find the relevant data points (where bits
are set to one) and computing their distances to the query point. The decoding part
benefits from a sparsely populated bitvector which necessitates a low selectivity in the
filtering step of the nearest neighbor search. Contrary to that, the selectivity using all
ten dimensions was at 0.25% while it was twice that for the combination of only the
five dimensions with the highest variances.

Figures 9a and 9b show average response times subject to the projected data di-
mensionality d′ and the cardinality N of D respectively. The linear scan is included as
a trivial alternative to the various indexes. Nonsurprisingly, our tests with the Vector
Approximation File [4] loaded into main memory never returned average query times
faster than those of the linear scan. This is explained by the need to compute a minimal
distance to the query point for each point in D which in the main memory scenario was
no faster than computing the exact distance itself. We thus dropped it from the diagrams
for simplicity. Aside from the two Voronoi-based indexes explained in section 6, we in-
cluded the X-Tree and a variation of the CR-Tree, which both store data points in their
leaf nodes. The Priority Search algorithm [10] for those two hierarchical indexes out-
perfomed the Depth-first Traversal algorithm of [9] in all our test runs. The latter was
thus omitted. For the 200,000 image histograms of figure 9a, all remaining indexes out-
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performed the linear scan over the whole range of examined dimensionalities. Without
exceptions, the Voronoi-based Bitvector Index has the lowest querying times followed
by the Voronoi-based X-Tree. For the latter, the indexed dimensionality was optimal at
d∗ = 4 for d′ ∈ [4, 12] and d∗ = 3 for the rest.

The same order of comparitive querying speeds was observed over the whole range
of N ∈ {50000, 100000, 150000, 200000} for a fixed d′ = 16 as depicted by figure 9b.
Here the point-based hierarchical indexes increasingly manage to outperform the linear
scan as the number of data points grows. This is also true for the Voronoi-based X-Tree.
Perhaps surprisingly at first, even the Bitvector Index with a linear time complexity
displays a seemingly sub-linear behaviour. While this is of course not true in the strict
theoretical sense, its slowing increase is explained by the decreasing selectivity that the
approximation of the Voronoi cells exhibits with an increasing number of smaller cells.
A linear behavior would be expected once that selectivity closes in on the ideal value
of 1/N at the latest. At d′ = 16 and N = 200000 the speedup factor comparing the
bitmap-based Voronoi to the next fastest competing approach was over 2.5.

To finish our series of experiments, we varied the real world data set for all described
indexes and algorithms. In addition to the 200,000 image histograms (all taken from
TV screen shots), we used as many phoneme-based histograms extracted from 12,374
spoken and transcribed [24] sentences using resolution of 10ms for a sliding window of
one second and a window-to-window overlap of 74% which resulted in a high number
of non-unique vectors (≈5%). Lastly, 60,000 ratios comparing the per-minute amount
of money spent on 10 blue chip stocks traded were calculated from a subset of the data
available in [25] and projected to the first six principal components. In order to visualize
the distribution of the resulting vectors, we also projected all data sets to their first two
respective principal components and show them together with the 2-dimensional convex
hull in figure 10. The hierarchical methods were not as efficient for the later two data
sets while the bitvector index enables a vastly increased query throughput for all three
data sets with a speedup factor in excess of five for the phoneme data.



220 C. Brochhaus, M. Wichterich, and T. Seidl

8 Conclusion and Future Work

In this paper we introduced a new technique for indexing high-dimensional data that
allows for low nearest neighbor query response times in main memory environments,
whose relevance grows steadily as prices for RAM continue to fall. The high query
throughput supported by our approach outperforms existing priority-based search meth-
ods that use index structures like the CR-Tree or X-Tree as shown in the experimental
section. We achieved this improvement by making use of the possibility to precalcu-
late the nearest neighbor information using Voronoi cells, which can be performed ef-
ficiently for data with a low number of dimensions but is not reasonable for higher
dimensionalities. A direct application of dimensionality reduction techniques fails to
consider the complex data space boundaries which are important to the Voronoi con-
cept. For high-dimensional multimedia data we additionally proposed new methods to
efficiently approximate the data space boundaries and thus enable a significant reduc-
tion of the data dimensionality based on linear dimensionality reduction techniques.
The cuboid-shaped Voronoi cell approximations are usually still not suitable for direct
indexing. Our second reduction step removes less significant dimensions of the cuboids
without sacrificing further proximity information of the data points. Our experiments
on main memory indexing for the resulting low-dimensional cuboids using variants of
the X-Tree and a bitmap-based index demonstrate a great response time speedup over
competing approaches.

We plan to investigate the possibility of using non-axis-aligned projections in the
dimensionality reduction step and accommodating our heuristics to further reflect the
skewness of the underlying data. More research is intended on expanding the applica-
tion domain beyond sum-normalized data, which we concentrated on in this paper and
by investigating hybrid index structures that utilize both main and secondary memory.
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gineering Department, University of California and Arne Theres for his work on the
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Abstract. In authorization-transparent access control, user queries are formu-
lated against the database schema rather than against authorization views that
transform and hide data. The Truman and the Non-Truman are two approaches to
authorization transparency where in a Truman model, queries that violate the ac-
cess restrictions are modified transparently by the system to only reveal accessible
data, while in a Non-Truman model, such queries are rejected. The advantage of
a Non-Truman model is that the semantics of user queries is not changed by the
access-control mechanism. This work presents an access-control mechanism for
XML, under the Non-Truman model. Security policies are specified as param-
eterized rules formulated using XPath. The rules specify relationships between
elements, that should be concealed from users. Hence, not only elements, but
also edges and paths within an XML document, can be concealed. The access-
control mechanism authorizes only valid queries, i.e., queries that do not disclose
the existence of concealed relationships. The additional expressive power, pro-
vided by these rules, over element-based authorization techniques is illustrated.
The proposed access-control mechanism can either serve as a substitute for views
or as a layer for verifying that specific relationships are concealed by a view.

1 Introduction

Access control is a fundamental part of database systems. The purpose of access control
is to protect private or secret information from unauthorized users. Given the status of
XML as a standard for storing and exchanging data, the need for XML access control
has been recognized and has received a lot of attention [3, 4, 9, 11, 14].

When an access-control model is authorization transparent, users formulate their
queries against the database schema rather than against authorization views that trans-
form and hide data [21]. Rizvi et al. [22] present two basic approaches to access control
in authorization-transparent systems. The first approach is referred to as the Truman
model and the second as the Non-Truman model [22]. In the Truman model, an access
control language (often a view language) is used for specifying what data is accessi-
ble to a user. User queries are modified by the system so that the answer includes only
accessible data. Suppose Q is a user query, D is a database and Du is the part of D
that the user is permitted to access, then Q is modified to a safe query Qs such that
Qs(D) = Q(Du).

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 222–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Authorization-Transparent Access Control for XML Under the Non-Truman Model 223

Example 1. Consider a database that contains information on courses in a university.
For each course, the system stores information about the students who are enrolled, and
the grades that they have received. Suppose that a Truman access control model is used
to specify that each student is permitted to see only her grades (not the grades of other
students). If student Alice poses a query that asks for the highest grade received in one
of the courses in which she is enrolled, say Databases 101, the system will modify the
query to return the highest grade that Alice has received in Databases 101.

As Rizvi et al. [22] point out, using a Truman access-control model, the answers to
queries may be misleading. A user may wrongly assume that an answer to a query is
correct over the entire database. In our example, Alice may be misled into thinking she
is the best in the class (after all, she asked for the highest grade over all students).

Misleading answers are prevented by the Non-Truman model, an alternative, au-
thorization-transparent model. In the Non-Truman model, a query that violates access-
control specifications is rejected, rather than modified. Only valid queries, i.e., queries
that do not violate the access specifications, are answered. Hence, query answers are
always the result of applying the user query to the entire database. The Non-Truman
model has the desirable property that the semantics of a query is independent of the
access-control specification. In Example 1, for instance, if the system uses a Non-
Truman access-control model, then the query of Alice will be rejected. Alice will
only receive answers to queries that are valid with respect to the access-control
policy.

In a Non-Truman model, a fundamental question is the definition of validity. Rizvi
et al. [22] use a mechanism in which the accessible data is defined using views. Given
a database D, a query Q is validated by checking whether it could be rewritten using
only the authorized views V . The rewritten query needs to be equivalent to Q either
for all possible database states (referred to as unconditional equivalence [22] since it
is independent of the current database state D) or for only those database states D′ for
which V (D) = V (D′) (termed conditional equivalence [22]).

Certainly, such an approach is possible for XML as well. However, results on an-
swering queries using views for small fragments of XML query languages are still
emerging [28], and may be undecidable even for the relational model [22]. Further-
more, a view is a positive statement about what data is accessible and it is up to the
designer of the view to decide what can be put in the view while still hiding the desired
private data. Regardless of the form of the view or access control mechanism, we would
like to be able to make statements about what information is concealed from a user. In
our work, we will specifically consider what it means to conceal a relationship in an
XML document.

Example 2. Consider an XML document D that contains information about depart-
ments and employees in a company. There is an edge from each department element
d to an employee element e whenever e works in d. A company may have an access
control policy that permits access to all employees and departments, but that restricts
access to the works-in relationship. That is, a user should be able to ask queries
about employees and departments, but the company may not wish to reveal who works
in which department. Perhaps this information may reveal strategic information about
the direction of the company.
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Information disclosure has been studied formally. Miklau and Suciu [20], define disclo-
sure as exposing information that increases the probability that a user can guess con-
cealed information. There are cases, however, where rejecting a query just because its
answer decreases the user’s uncertainty about the concealed data is too restrictive [29].
If we consider a set of relationships, it may be sufficient to ensure that a user cannot dis-
tinguish between the current document and other documents that differ from the current
document only in the concealed relationships.

Intuitively, a query conceals a relationship if the query answer does not reveal the
presence (or absence) of a relationship in the document. To understand our semantics,
consider the following example.

Example 3. Considering again Example 2 where the relationship between departments
and employees is secret. Consider a query Q1 that looks for all the employees in the
company, regardless of their department, and a query Q2 that looks for the employees in
a specific department d. The query Q1 conceals the relationships between departments
and employees, while Q2 does not.

In this work, we propose a precise semantics for what it means to conceal a relationship.
We propose a mechanism for testing whether an XPath query conceals a relationship
or set of relationships. In particular, we can test whether a view, specified by an XPath
query, conceals a relationship.

Our model controls access to relationships. This approach provides a finer granular-
ity than restricting access to elements. On one hand, restricting access to an element is
possible in our approach. This is done by concealing all the relationships (edges and
paths) to that element. On the other hand, in our approach it is possible to conceal a re-
lationship without restricting access to any of the elements in the document. Returning
to our example, our mechanism will permit access to employees and departments while
restricting only access to the set of works-in relationships.

The main contributions of our work are the following.

– The first authorization-transparent, Non-Truman access-control model for XML.
Our mechanism is fine-grained and enforces access control at the level of ancestor-
descendant relationships among elements.

– A new semantics for concealing relationships in an XML document, where a re-
lationship is defined by an edge or a path in the document. Our semantics uses a
variation of k-anonymity [25]. To specify relationships in our mechanism, we use
rules, each containing a pair of XPath expressions.

– We define two forms of query validity. A query is locally valid for a document
and a set of rules, if it conceals all the relationships that are specified by the rules.
Queries may be executed only if they are locally valid. For documents conforming
to a schema, we define a stronger form of validity. A query is globally valid for a set
of rules and a schema if the query is locally valid for the rules and each document
that conforms to the schema.

– Finally, we show that indeed valid queries do not reveal information about con-
cealed edges.
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2 Related Work

Many non-authorization-transparent access-control models for XML have been pro-
posed. Damiani et al. [9, 10] presented a model where restricted elements are identified
using labels. These restricted elements are pruned from the document before queries
are posed. A similar mechanism was proposed by Bertino et al. [2, 3] where the re-
stricted parts of an XML document are encrypted rather than pruned. Encrypting the
unauthorized data has also been used in the access-control model of Miklau and Su-
ciu [18]. In their model the access control specifications are defined using a language
that extends XQuery. Fan et al. [11] specified security by extending the document DTD
with annotations and publishing a modified DTD. In their model, queries are formulated
over the modified DTD and are rewritten by the system to befit the original DTD. The
optimization of secure queries has also been given some attention [6, 30].

Fundulaki and Marx [13] survey a number of approaches that permit access control
to be specified on elements within a document. Restricting access to elements has also
been used in XACML [15] and XACL [16], two proposed industrial standards. An al-
ternative approach of hiding element relationships was proposed by Finance et al. [12],
however, their model is not authorization transparent. Authorization-transparent models
have been proposed, so far, only for the relational model [21, 23, 24].

In contrast, we present the first authorization-transparent, Non-Truman model for
XML. Queries are posed on the original document, thus, we do not present a model
for publishing secure data. In our model, users simply specify the element relationships
that should be concealed. For defining concealment we use a variation of k-anonymity.
Various aspects of k-anonymity were studied in the relational model [1, 17, 25, 29]. To
our knowledge, our work is the first to apply k-anonymity to XML. In Section 4, we
define precisely the relationship of our model with k-anonymity. Our main focus is
to provide a test of query validity for ensuring that valid queries effectively conceal
secure relationships. This is important since unlike the non-authorization-transparent
approaches, in our model, queries are posed on the entire document.

3 Data Model

In this section, we introduce our data model. We assume that the reader is familiar with
the notion of a rooted labeled directed graph. We present a rooted labeled directed graph
G, over a set L of labels, by a 4-tuple (V, E, r, label-ofG), where V is a set of nodes, E
is a set of edges, r is the root of G and label-ofG is a function that maps each node to
an element of L.

Document. Let L be a finite set of labels and A be a finite set of atomic values. An XML
document is a rooted labeled directed tree over L with values of A attached to atomic
nodes (i.e., to nodes that do not have outgoing edges). Formally, a document D is a 5-
tuple (X, ED, rootD, label-ofD, value-ofD), where the tuple (X, ED, rootD, label-ofD)
is a rooted labeled directed tree over L, and value-ofD is a function that maps each
atomic node to a value of A. The nodes in X are called elements. In order to simplify
the model, we do not distinguish between elements and attributes and we assume that
all the values on atomic nodes are of type PCDATA (i.e., String).
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Fig. 1. A document that contains information on courses, students and grades in a university

Example 4. Figure 1 shows a document that contains information on courses, students
and grades. Elements are represented by circles and are numbered, for easier reference.
Atomic values appear below the atomic nodes and are written with a bold font.

XPath. In this work, we use XPath [8] for formulating queries and access control rules.
XPath is a simple language for navigating in an XML document. XPath expressions are
omnipresent in XML applications. In particular, XPath is part of both XSLT [7] and
XQuery [5], the WWW-Consortium standards for querying and transforming XML.

In XPath there are thirteen types of axes that are used for navigating in a document.
Our focus in this work is on the child axis (/) and the descendant-or-self axis (//) that
are the most commonly used axes in XPath. Our model, however, can also be applied
to queries that include the other axes.

4 Concealing Relationships

Before presenting our techniques, we first consider what it means to conceal a rela-
tionship. A relationship is a directed path between two elements. For example, in the
university database shown in Figure 1, a student element is related to a grade element
if there is an edge from the student element to the grade element.

A set of relationships is represented by a pair consisting of two sets of elements. For
example, the pair (S, G), where S is the set of all elements labeled “Student” and G is
the set of all elements labeled “Grade”, represents the set of relationships between stu-
dent and grades. Concealing the relationships (S, G) means that for every student s and
grade g in the document, the user will not be able to infer (with certainty), from query
answers, whether g is the grade for s. We will want this to be true for all authorized
queries (i.e., all valid queries). Note that we are concealing the presence or absence of
relationships, so we are concealing whether any of the set of pairs in (S, G) exists in
the document.

We also want to have some measure of the uncertainty that is gained by concealing
relationships. Thus, we use a definition that is a variation of k-anonymity [25] applied to
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relationships in an XML document. In the k-anonymity model, the goal is to provide a
guarantee that each element cannot be distinguished from at least k− 1 other elements.
In our case, suppose that we want to conceal a set of relationships (A, B). Then, given
the answer to a valid query and any element b ∈ B, the user will not be able to infer
which element among some k sized subset of A is related to b. To make this more
precise, we present a formal definition.

Definition 1 (k-Concealment). Consider a set of valid queriesQ, a document D, and
two sets A and B of elements in D. The relationships (A, B) are k-concealed if for
every b ∈ B there exist k elements a1, . . . , ak of A and k documents D1, . . . , Dk over
the element set of D, such that the following conditions hold for every 1 ≤ i ≤ k.

1. In Di, the element b is a descendant of ai. Furthermore, b is not a descendant of
any element among a1, . . . , ak, except for ai.

2. Q(D) = Q(Di), for every valid query Q ∈ Q.

Example 5. Consider a university document D, similar to the document in Figure 1,
and the set (S, G) of relationships between students and grades. Suppose that (S, G) is
k-concealed, and let Q be a set of authorized queries. Let g be some grade element in
D. Then, there are k documents that provide the answer Q(D) for every query Q in Q
and in each one of these k documents, g is below a different student. That is, there is a
set of k students such that from the information revealed by answers to queries in Q, a
user cannot tell which one among these k students received g.

We consider a relationship to be concealed as long as some uncertainty remains about
the ancestor-descendant relationships. Thus, in the rest of this paper, we will use the
phrase “concealing relationships” for 2-concealment.

Given the definition of concealing relationships, we now turn to the logistics of spec-
ifying sets of relationships over XML documents. We will use pairs of XPath expres-
sions for this purpose. Each pair will form an access-control rule. The two expressions
will define a pair of sets, i.e., a set of relationships that should be concealed.

5 Access Control Rules

Our approach to access control in XML documents is based on rules rather than views.
While views are normally “positive” in the sense that they specify what the user is
allowed to know, our rules are “negative” and specify what should be concealed from
the user. Our access-control rules specify pairs of elements in the document and by this
designate the relationships between these elements as being restricted. In this section,
we first present the syntax of rules. Then, we explain why we use rules rather than
views. We provide the semantics of rules in our model and define local and global
validity. Finally, we briefly discuss the issue of testing validity.

5.1 The Syntax of Rules

Rules are formulated using XPath expressions. Each rule consists of two expressions
specifying a set of ancestor and descendant elements. The rule specifies that the rela-
tionships between these two sets should be concealed.
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Definition 2 (Rule). An access control rule (or rule) is defined as:

for path1 exclude path2

where path1 and path2 are XPath expressions. The path path2 is a relative XPath ex-
pression with respect to path1.

Example 6. Suppose that we want to prevent queries from disclosing information about
what grades were given to which students. This restriction can be specified by the fol-
lowing rule: for //Student exclude /Grade.

Example 7. Suppose that in the CS department, relationships between students and
grades and relationships between courses and grades should be concealed. To spec-
ify this restriction, two rules are used:

for /Department[Name=’CS’]//Student exclude //Grade, and
for /Department[Name=’CS’]/Course exclude //Grade.

In many scenarios, different users have different access permissions. For example, an
institution could have a policy where a course teacher can have access to all the grades
of the course while students can only see their own grades. To support this, the access
control rules are parameterized. Parameterized variables are written with a preceding
dollar sign. Common parameters include user ids, environment variables, time parame-
ters, etc.

Example 8. Suppose that$userid is instantiated to be the current user identifier. Con-
sider a policy where a student is permitted to see her own grades, but she should not see
the student-grade relationships of other students. This policy is specified by the follow-
ing rule:

for //Student[not(SID=$userid)] exclude /Grade.

Note that when $userid is null the comparison SID=$userid is false.

5.2 Rules Versus Views

We now explain why we use rules instead of views for XML access control in the
Non-Truman model. The first reason is that there are many cases where using rules
is simpler and requires a more succinct formulation than using views. The following
example illustrates such a case.

Example 9. Suppose that we want to prevent users from knowing which student is en-
rolled in which course, but do not wish to conceal other information in the document.
We can specify this using the rule: for //Course exclude //Student. If SID is
identifying, we may also want to hide the relationship from course to a student’s SID
using the rule:

for //Course exclude //SID.

Note that these rules should not prevent evaluation of queries that “jump” over a re-
stricted edge. For example, a query that returns the grades of a specific course does not
violate the rules. Neither does a query that returns the grades of a specific student.
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It is not easy to formulate an XQuery view that preserves all the relationships in the
document except for the course-student and course-SID relationships. One example for
such a view is a query Qcut that reconstructs the whole document with the following
changes. First, student elements should be moved, with all their content, to be below
their department element. This cuts the relationship between students and courses but
keeps the relationships between departments and students. Second, grade elements may
be copied and pasted below their ancestor course elements. We need to duplicate grades,
because we need grades to be related to both courses and students. Note that Qcut would
not work if in the original document, courses have an element named “Grade” as a
child. It is cumbersome to formulate Qcut in XQuery. Hence, in many cases, defining
access-control policies by views is more error-prone than using our rules. We consider
in this example XQuery, however, the same problem occurs also in other languages for
defining “positive” views.

The second reason for choosing rules instead of views is that with views it is difficult
to verify that what we want to conceal is indeed concealed.

Example 10. Consider two views. One view contains students and their grades. The
second view contains courses and for each course the grades that were given in the
course. Do these views really conceal all the relationships between courses and stu-
dents? Apparently not. Suppose that there is a grade, say 78, that appears only once in
the document. Then, knowing who received this grade and in which course this grade
was given, it is possible to infer a relationship between a student and a course.

Later in this paper we will present the notion of a coherent set of rules and we will show
that when using a coherent set of rules, we can guarantee that restricted relationships
are indeed concealed.

The third reason for not using authorization views is that in the Non-Truman model,
when using views, testing validity is defined as the problem of answering-queries-using-
views. However, answering-queries-using-views is not always decidable and may have
a very high time complexity [22]. Note that the problem of answering-queries-using-
views is different from the simpler problem of answering queries posed on views.

5.3 Local Validity

In the Non-Truman model, queries are evaluated only if they pass a validity test. We
now define local validity for queries, given a document and a set of rules. We start by
providing some necessary definitions and notation. Our first definition, of a document
expansion, is a tool to help us define (later) the set of documents that should be indis-
tinguishable from a given document, when using valid queries.

Document Expansion. Let D = (X, ED, rootD, label-ofD, value-ofD) be a document.
An expansion of D, denoted D//, is a labeled directed graph that is created by replacing
ED with a new set of edges E′ called child edges. In addition, we add to D a sec-
ond set E //

D of edges, called descendant edges. Hence, the expansion of D is a tuple
((X, E′, rootD, label-ofD, value-ofD), E //

D), where E′ is a set of child edges and E //
D is

a set of descendant edges. Note that the expansion is not necessarily a tree and is not
even required to be connected.
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Fig. 2. A document D1, the transitive closure of D1 and a document expansion

To understand the role of the separate child and descendant edges, it is useful to con-
sider one special expansion, the transitive closure, formed by adding to D a descendant
edge between any two connected nodes in D.

Transitive Closure. The transitive closure of a document D, denoted as D̄, is a doc-
ument expansion where E′ = ED. The transitive closure is (D, E //

D), such that in E //
D

there is an edge between every two nodes that are connected by a directed path in D.
The direction of the edge is the same as the direction of the path. Also, E //

D contains
an edge from every node to itself. Note that the original edge set of D is not being
replaced. As an example, Figure 2(b) shows the transitive closure of the document in
Figure 2(a). Child edges are drawn with solid lines and descendant edges with dashed
lines.

The evaluation of an XPath expression over a document expansion is by following a
child edge whenever a child axis occurs and following a descendant edge whenever a
descendant-or-self axis occurs. We explain this in the following example.

Example 11. Consider the XPath query //Department[Name=’CS’]//Course over
a document expansion D//. This query returns course elements c that satisfy the follow-
ing. There are a department element d and a descendant edge in D// from the root to d.
There is an element n with label “Name”, with value “CS” and there is a child edge in
D from d to n. Finally, there is a descendant edge in D// from d to c. Note that to satisfy
the // axis we require the existence of a descendant edge rather than the existence of a
path between the relevant nodes.

It is easy to see that posing an XPath query Q on a document D is equivalent to evalu-
ating Q over the transitive closure of D. However, when evaluating Q over a document
expansion that is not the transitive closure of D, we may get an answer that is different
from the answer to Q over D.

Pruning of a Document Expansion. Given a set R of access control rules, a pruning
of a document expansion D// is a new document expansion, denoted pruneR(D//), that
is created by removing from D// all the edges (both child edges and descendant edges)
that connect a restricted pair of nodes. By restricted pair, we mean two nodes whose
relationship should be concealed according to R. For example, the pruning of the tran-
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sitive closure of D1 (Figure 2(b)) by the rule for //Department exclude //Name

is depicted in Figure 2(c).
We represent a rule ρ of the form for x1 exclude x2 as a pair (x1, x2). By x1x2

we denote the XPath expression that is created by the concatenation of the expressions
x1 and x2. In a document D, ρ specifies as restricted all the pairs (e1, e2) of elements of
D such that e1 ∈ x1(D) (i.e., e1 is in the answer to x1 over D) and e2 ∈ x1x2(D). For
example, the rule for //Student exclude //Grade specifies as restricted all the
pairs of a student element and a grade of the student. A set of rules specify as restricted
all the element pairs that are restricted according to at least one of the rules in the set.

Intuitively, given a rule ρ = (x1, x2) we want to conceal whether (or not) there is a
path between any two restricted elements. We can think of the existing paths in D as
defining a subset P of x1(D)×x1x2(D). We will define as valid only those queries that
do not permit a user to distinguish whether D contains the subset P or another possible
subset of x1(D)× x1x2(D). This motivates the following definition.

Universe of Expansions. Consider a document D and a set of access control rules R.
Let D̄ be the transitive closure of D and let pruneR(D̄) be the pruning of D̄ using the
rules of R. The universe of expansions (universe, for short) of D under the concealment
of R, is the set of all document expansions D// such that pruneR(D̄) = pruneR(D//).
In other words, the universe contains all the document expansions that are created by
adding to pruneR(D̄) some edges that connect restricted pairs of nodes. We denote the
universe of D by UR(D).

Definition 3 (Local Validity). Given a document D and a set of rules R, a query Q is
locally valid if Q(D) = Q(D//) for any document expansion D// in the universe UR(D).

We now explain why we need to consider, in Definition 3, all the document expan-
sions in the universe UR(D) instead of applying a simpler test, called pseudo-validity,
where we just consider the single document expansion pruneR(D̄) (the pruning of the
transitive closure of D), i.e., the document expansion that contains only edges between
non-restricted pairs.

A query Q is pseudo-valid if Q(D) = Q(pruneR(D̄)). By Definition 3, the con-
dition of pseudo-validity is necessary, but not sufficient for Q to be locally valid. The
following example demonstrates a situation where secure information may be leaked
due to authorizing pseudo-valid queries.

Example 12. Consider the university document D of Figure 1 and the rule ρ in Exam-
ple 6 that conceals relationships between students and grades. Suppose we authorize
pseudo-valid queries such as Qi : //Student[SID=’12345’ and Grade=i],
for i = 0, 1, . . . , 100. In all the 100 cases where i �= 98, the query will be autho-
rized and return an empty result. For i = 98 (i.e., the grade of the student in the DB
course), the query will not be authorized. This reveals the grade of a student in some
course.

Such information leakage does not occur when only locally valid queries are au-
thorized. To see why this is true, consider the document expansion D// constructed as
follows. Let D// be the result of removing two edges and adding two new edges to the
transitive closure D̄. The removed edges are the two Student-Grade edges that con-
nect Node 301 to 321 and Node 302 to 322. The two added edges are Student-Grade
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edges that connect Node 301 to 322 and Node 302 to 321. All these added and re-
moved edges are Student-Grade edges and thus, are removed in a pruning w.r.t. ρ. That
is, pruneρ(D̄) = pruneρ(D

//). Yet, evaluating Q93 w.r.t. D// provides a different answer
from the answer to Q93 over D. Thus, Q93 is not valid. Q78 is also not valid by a similar
construction. All the three queries Q78, Q93 and Q98 are rejected. Thus, a user could
only tell that the grade of Student ‘12345’ is one of the grades 78, 93, 98; however, this
is what she could have learned from the result of the valid query //Grade.

The definition of local validity has a number of properties that are important in practice.
For example, if two documents are equal (that is, isomorphic) except for their restricted
edges, then a locally valid query will not be able to distinguish between them.

Proposition 1. Consider a set of rules R and let D1 and D2 be two documents such
that pruneR(D̄1) = pruneR(D̄2). If a query Q is locally valid w.r.t. D1 and R then Q
is also locally valid w.r.t. D2 and R. Furthermore, Q(D1) = Q(D2).

5.4 Global Validity

For documents conforming to a schema, we define a more restrictive form of validity
called global validity. First, we formally define the notion of a schema.

Schema. In our model, a schema is represented as a rooted labeled directed graph. Our
schema representation is a simplification of common XML schema-definition languages
such as DTD [26] and XSchema [27]. A schema can be used to provide a succinct
description of a document structure, or as a constraint on the structure of documents
in a repository. Formally, a schema S, over a finite set of labels L, is a rooted labeled
directed graph (NamesS , ES , rootS , label-ofS) over L, where the nodes are uniquely
labeled. A document conforms to a schema if there exists a homomorphism from the
graph of the document to the schema. An example of a schema is given in Figure 3(c).
The document in Figure 1 conforms to this schema.

University Department Course Student

Name Teacher SID Grade
root

Fig. 3. A university schema

Definition 4 (Global Validity). A query Q is globally valid for a set of rules R and a
schema S, if, given R, Q is locally valid for every document D that conforms to S.

Example 13. Let R contain the rule given in Example 6. This rule rejects queries that
use the relationship between students and grades. Suppose a query Q that is asking for
the grades of the student with id ‘00000’ (i.e., //Student[SID=’00000’]//Grade)
is posed on the document in Figure 1. If there was a student with id ‘00000’ in the
document, then the query would not be considered locally valid and would not be au-
thorized. Since there is no student with id ‘00000’, there is no edge to prune and the
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query is locally valid. Note that the query does not reveal the grade of any existing stu-
dent. Although Q is locally valid, it is not globally valid if we consider the schema S
shown in Figure 3. It is possible to construct a document D′ that conforms to S and
contains a student with id ‘00000’. Hence, the query will not be locally valid for D′ and
R. Thus, Q is not globally valid for schema S.

In some cases, global validity could be too restrictive; however, it does have some ad-
vantages over local validity. Suppose that there is a collection of documents and all the
documents conform to the same schema. In this case, if a query is globally valid, then
we do not need to check the validity of the query over each document. Furthermore,
after a document is updated, if the new document still conforms to the schema, we do
not need to revalidate queries.

5.5 Testing Validity

Due to lack of space, presenting algorithms for efficient validity testing is beyond the
scope of this paper. However, it is important to notice that our model has the following
advantages. First, local validity is always decidable. This is because for any document
D and a set of rules R, the universe of expansions UR(D) is finite. Secondly, for large
classes of queries, local validity can be tested efficiently. Thirdly, there are important
cases where global validity can be tested efficiently.

We now discuss one important case where testing local validity can be done effi-
ciently. Consider XPath expressions that do not contain the logical operator not. Such
queries are monotone. A query Q is monotone, if for every two document expansions
D//

1 ⊆ D//
2 holds Q(D//

1) ⊆ Q(D//
2). For testing local validity of a monotone query, it is

sufficient to compute the query over two specific document expansions and compare the
answers. Given a document D and a set of rules R, the document expansions on which
the query should be computed are the following two. First, pruneR(D̄). Second, the
document expansion that is created from pruneR(D̄) when connecting every restricted
pair of elements, by both a child edge and a descendant edge.

6 A Coherent Set of Rules

Our goal is allowing users to conceal element relationships and let them be sure that
what they want to conceal is truly concealed. Unfortunately, it is impossible to guarantee
concealment for any arbitrary set of relationships. Sometimes, it is possible to infer a
concealed relationship from the relationships that are not concealed. In this section, we
characterize sets of rules whose designated relationships are indeed concealed.

We say that a set of rules is coherent if it is impossible to infer any concealed re-
lationship from the relationships that are not pruned by the rules. Before providing the
formal definition for a coherent set of rules, we give an example of two cases where a
relationship can be inferred from a pair of non-concealed relationships.

Example 14. Suppose that in the university document it is known that the CAD course
(Node 203) is given in the EE department (Node 102) and student 56789 (Node 303)
is registered in the CAD course. In this case, the relationship between Node 102 and
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Node 303 can be derived from the other two relationships, thus, there is no point in
concealing it alone.

Suppose that the following is known. Student 12345 (Node 301) studies in the CS
department (Node 101) and she is registered in the DB course (Node 211). Knowing
that the document is a tree allows a user to infer that the DB course is given in the CS
department (i.e., Node 201 and Node 301 are related).

We now define when a set of rules is coherent. Consider a document D and a set of rules
R. The set R has an incomplete concealment in a document D if one of the following
two cases occurs. (1) Lack of transitivity: D has three elements e1, e2 and e3 such that
pruneR(D̄) has an edge from e1 to e2 and an edge from e2 to e3, but pruneR(D̄) does
not have an edge from e1 to e3. (2) Lack of reverse transitivity: there are three elements
e1, e2 and e3 in D, such that pruneR(D̄) has an edge from e1 to e3 and an edge from
e2 to e3; however, pruneR(D̄) does not have an edge from e1 to e2.

Definition 5 (A Coherent Set of Rules). Given a document D, a set of rules R is
coherent if an incomplete concealment does not occur in D. Given a schema S, a set R
is coherent if R is coherent for every document that conforms to S.

6.1 Coherence for Documents

There is a simple and efficient test for verifying that a set of rules R is coherent for a
document D. The test starts by computing the pruning of the transitive closure of D
according to R, and considering the edge set of pruneR(D̄) as a relation r. There is
a lack of transitivity if and only if the algebraic expression π$1,$4(r��$2=$1r) − r is
not empty. There is a lack of reverse transitivity if and only if the algebraic expression
π$1,$3(r��$2=$2r) − r is not empty.

Next, we provide intuitive conditions for constructing coherent sets of rules. Our
conditions consider how relationships specified by different rules are related. We say
that an edge (e1, e2) in a transitive closure D̄ encapsulates an edge (e′1, e′2) if there is
a path φ in D̄ that goes through the four nodes e1, e2, e

′
1, e

′
2, and one of the following

three cases holds: (1) e1 appears on φ before e′1, and e′2 appears before e2. (2) e1 = e′1,
and e′2 appears on φ before e2. (3) e1 appears on φ before e′1, and e2 = e′2. The following
is a necessary condition for the coherency of a set of rules.

Proposition 2. Given a document D, if a set of rules R is coherent, then the follow-
ing condition holds. For every descendant edge (e1, e2) in D̄, which is removed in the
pruning of D̄ by R, there is an edge (e′1, e

′
2) in D̄ such that (e′1, e

′
2) is encapsulated by

(e1, e2) and (e′1, e
′
2) is also removed in the pruning of D̄.

Consider two edges (e1, e2) and (e1, e
′
2) that are outgoing edges of the same node. We

say that these two edges are parallel in D̄ if either there is a path from e2 to e′2 or vice-
versa. That is, these two edges do not lead to two disjointed parts of D̄. We will use this
definition in the next proposition to provide a sufficient condition for coherency.

Proposition 3. Let R be a set of rules and D be a document. If the following condition
holds, then R is coherent w.r.t D. For every edge (e1, e2) that is removed in the pruning
of D̄ w.r.t. R, all the edges (e1, e

′
2) that are parallel to (e1, e2) are also removed in the

pruning of D̄.
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6.2 Coherence for Schemas

Given a schema, we can generalize, using containment of XPath expressions, the con-
dition presented in Proposition 3 for coherency. However, testing containment of XPath
has high complexity [19]. Hence, the test is inefficient and we do not present it here.
Yet, a special case of the generalized condition is that for every document D that con-
forms to the schema, for each element e in D, either all the outgoing edges of e in D̄
are removed in the pruning or none of them is removed.

A simple way to satisfy this condition is to allow only rules that have one of the fol-
lowing two forms: for path exclude //* or for path exclude /label
[condition]//*, where path can be any XPath expression, label can be any label and
condition can be any XPath condition.

Example 15. Consider the schema S in Figure 3. Suppose that we want to conceal in
courses all the information on students. We can apply the following two rules. The rule
for //Course exclude /Student and the rule for //Course exclude
/Student//*. These rules are coherent w.r.t. the schema S.

7 Effectiveness of Concealment

In this section, we prove the effectiveness of a coherent set of rules in concealing re-
lationships. The presence of a schema and the fact that documents are trees impose
limitations on the relationships that we are able to conceal. These limitations will be
discussed in the first part of this section.

7.1 The Singleton-Source Disclosure

A singleton-source disclosure occurs when a user can infer that two elements e1 and e2
are related, from the following two pieces of information. (1) The path from the root to
e2 must go through an element of type T . (2) The only element in the document of type
T is e1. The problem is illustrated by the following two examples.

Example 16. Consider a university document that conforms to the schema in Figure 3
and that contains only a single department element. Consider the rule

for //Department exclude /Course

which presumably conceals the relationships between departments and courses. A user
that is familiar with the schema of the document and knows that the document contains
only a single department can infer that every course element in the document is below
the only department element.

Example 17. Consider the document in Figure 1 and the rule

for //Department[Name=’CS’] exclude /Course

Suppose that Q1 is a query that looks for all the courses in the document and Q2 is a
query that looks for all the courses in departments other than “CS”. Both queries are
locally valid w.r.t. the document and the rule. By applying set difference to the answers
to Q1 and to Q2, it is possible to infer the set of courses in the “CS” department.

We use k-concealment (Definition 1) to define a singleton-source disclosure.
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Definition 6 (Singleton-Source Disclosure). Consider a document D and a set of
rules R. A singleton-source disclosure occurs when there is a rule ρ = (x1, x2) in
R such that the set of relationships (x1(D), x1x2(D)) is not 2-concealed.

7.2 Verifying k-Concealment for a Coherent Set of Rules

We will describe now an algorithm that given a document D and a coherent set of
rules R, tests if a singleton-source disclosure occurs. Essentially, the algorithm com-
putes, for each rule ρ = (x1, x2) in R, the maximal k for which the relationship
(x1(D), x1x2(D)) is k-concealed. If k > 1 for all the rules of R, then a singleton-
source disclosure does not occur. Otherwise, a singleton-source disclosure does occur.
Before presenting the algorithm that computes k, we provide an example that illustrates
the algorithm.

Example 18. Consider the university document Du in Figure 1 and a coherent set of
rules R. Suppose R contains a rule ρ that hides the relationships between courses and
students. Also, we assume that R does not hide the relationships between departments
and students. We now discuss the computation of k for ρ.

There are three students and four courses that we need to consider. For each student
s, we need to count the number of courses c for which s might be related to c. The
element s might be related to c if, and only if, there exists a document Dsc for which
the following conditions hold. (1) In Dsc, the element s is a descendant of the element
c. (2) For every locally valid query Q, holds Q(Dsc) = Q(Du).

Intuitively, we can think of a document Dsc as a result of moving some subtrees of
the original document, from one part of the document to another. Thus, for Node 301,
we can either leave it below Node 201 or move it to be below Node 202. However, we
cannot move Node 301 to be below Node 203. On the conceptual level, this is because
Node 203 is a course that belongs to a different department from the department to
which Node 301 is related. This is because if we move Node 301 to be below Node
203, we will have two ancestors to Node 301 (Node 101 and Node 102) that are not on
the same path. In a tree this should not happen.

In the computation, we check for each student, how many courses it can be related
to, as was done for Node 301. In our example, each student has two such courses. Thus,
the relationships that ρ defines are 2-concealed.

We present now the algorithm—Compute-k—that for any coherent set of rules R and a
document D, computes a maximal value k such that k-concealment can be guaranteed
for the relationships that are specified by the rules of R.

Compute k (D, R)
Input: a document D and a coherent set of rules R;
Output: a maximal k such that there is a k-concealment for each rule in R;

Initially, we set k = ∞. We iterate over all the rules of R. Given a rule ρ = (x1, x2)
in R, we denote by A the set x1(D); and by B the set x1x2(D). We iterate over all the
elements of B. For each element b ∈ B we count the number of nodes a ∈ A such that
we can move b to be below a (shortly, we will explain how). Let kb be this count. Then,
if kb < k, we set k to be kb. At the end of all the iterations, k is returned.
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We now explain how we count, for a given b ∈ B, the number of nodes a ∈ A
such that we can move b to be below a. We iterate over the elements of A and try to
“attach” b below each one of these elements. The test for b and a is as follows. We start
by computing the pruning by R of the transitive closure of D—pruneR(D̄). We then
try to connect b to a using only edges between restricted pairs, i.e., we add only edges
that will be removed in the pruning by R. This produces an expansion D// of D such
that Q(D//) = Q(D) for every query Q that is locally valid w.r.t. R and D.

The following observations are important. First, for every a′ ∈ A, in pruneR(D̄)
there does not exist any edge from a′ to b. This is because of the rule ρ. Furthermore,
since R is coherent, in pruneR(D̄), there is no path from a′ to b, and no path from a′ to
any ancestor or descendant of b. Hence, there is a subtree Tb in pruneR(D̄) that contains
b and is disconnected (i.e., not reachable by a directed path) from any a′ ∈ A. What we
need to test is the possibility to connect the root of Tb to a or to a descendant of a, using
only edges that are removed in the pruning, such that (1) there is no element of A, other
than a, on the path from a to the root of Tb, and (2) the following two tests are passed.
First, a test for making sure that we will eventually produce a tree or a graph that can
be extended to be a tree. Secondly, a test for checking that by adding Tb below a, we
do not create a relationship (i.e., an ancestor-descendant pair) between two nodes that
were not related in D and do not form a restricted pair.

To ensure that we are able to extend the new graph D// to be a tree, we need to verify
that the nodes of Tb do not have two ancestors that are not on one path. To that end, we
define Xb to be the nodes x such that x is not in Tb and in D// there is a descendant edge
from x to some node in Tb. For the node a to be an ancestor of b, a must be below all
the nodes Xb (a cannot be above any one of the nodes Xb since there is no path from a
to any node in Tb; also, a must be on one path with all the nodes Xb). The test succeeds
if one of the following cases occurs. (1) In D//, a is below all the nodes Xb. (2) There is
an ancestor y of a that does not have a parent in D//, such that y can be connected to a
node below the nodes Xb, using an edge that is removed in the pruning by R, without
creating a path between a non-restricted pair.

In the second test, we simply check that for every pair of nodes connected by a
path, after moving Tb, either they are connected by an edge in pruneR(D̄) or they are a
restricted pair according to R. If this test, or the previous test, fails, we do not increase
kb. Otherwise, we increase kb by one. �
An important advantage of the algorithm Compute-k is that it has a polynomial time
complexity. The following theorem shows the correctness of the algorithm Compute-k.

Theorem 1. Given a document D and a coherent set of rules R, Algorithm Compute-k
computes a value k such that the followings hold.

1. All the relationships that are defined by rules of R are k-concealed.
2. There is a rule in R that defines a relationship which is not k + 1-concealed.

Theorem 1 shows that when a coherent set of rules is used, it can be tested for a given
document D, whether 2-concealment, or even k-concealment for some k > 2, is pro-
vided. When k-concealment is provided for D and R, the following holds. Suppose
that e1 and e2 are two elements such that the association between them should be con-
cealed, i.e., there is a rule in R that specifies the relationship (A, B), where e1 ∈ A and
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e2 ∈ B. Then, a user who sees the answers to locally valid queries will not be able to
tell with certainty if the two elements e1 and e2 are connected in D. This is because
2-concealment guarantees that there are two documents D1 and D2 such that in D1 the
two elements e1 and e2 are connected, while in D2, the two elements e1 and e2 are not
connected. Furthermore, Q(D1) = Q(D2), for any locally valid query.

8 Conclusion

We presented an authorization-transparent access-control mechanism for XML under
the Non-Truman model. Our mechanism uses rules, which are formulated using XPath
expressions, for specifying element relationships that should be concealed. We defined
the semantics of rules with respect to a document and with respect to a schema. Co-
herency of a rule set was defined and discussed. A set of rules is coherent if concealed
relationships cannot be inferred from non-concealed relationships. We showed how to
construct a coherent set of rules. Finally, we presented the notion of k-concealment,
which is a modification of k-anonymity to our model. We showed that when a coherent
set of rules is used, k-concealment can be tested efficiently.

Traditionally, access control has been performed using views. Rules can be used ei-
ther instead of views or in addition to views. There are cases where rules can be written
concisely while using view is cumbersome. For example, when only a small fraction
of the data should be concealed from users. Yet, when most of the data should be con-
cealed, defining the policy using views might be easier than using rules. Rules, however,
have the advantage that when the set is coherent, we can guarantee that concealed rela-
tionships cannot be inferred from the results of valid queries. Importantly, our solutions
can be used to verify not only queries but also views.

Future work includes showing how to integrate our access-control rules with existing
XPath query processors. Another important challenge is to adapt our mechanism to
XQuery and XSLT.
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Abstract. We study the following problem in a sovereign information-
sharing setting: How to ensure that the individual participants, driven
solely by self-interest, will behave honestly, even though they can benefit
from cheating. This benefit comes from learning more than necessary pri-
vate information of others or from preventing others from learning the
necessary information. We take a game-theoretic approach and design
a game (strategies and payoffs) that models this kind of interactions.
We show that if nobody is punished for cheating, rational participants
will not behave honestly. Observing this, our game includes an audit-
ing device that periodically checks the actions of the participants and
penalizes inappropriate behavior. In this game we give conditions un-
der which there exists a unique equilibrium (stable rational behavior)
in which every participant provides truthful information. The auditing
device preserves the privacy of the data of the individual participants.
We also quantify the relationship between the frequency of auditing and
the amount of punishment in terms of gains and losses from cheating.

1 Introduction

There is an increasing requirement for sharing information across autonomous
entities in such a way that only minimal and necessary information is disclosed.
This requirement is being driven by several trends, including end-to-end inte-
gration of global supply chains, co-existence of competition and co-operation
between enterprises, need-to-know sharing between security agencies, and the
emergence of privacy guidelines and legislations.

Sovereign information sharing [1, 3] allows autonomous entities to compute
queries across their databases such that nothing apart from the result is revealed.
For example, suppose the entity R has a set VR = {b, u, v, y} and the entity S
has a set VS = {a, u, v, x}. As the result of sovereign intersection VR∩VS , R and
S will get to know the result {u, v}, but R will not know that S also has {a, x},
and S will not know that R also has {b, y}.

Several protocols have been proposed for computing sovereign relational op-
erations, including [1, 3, 6, 8, 16]. In principle, sovereign information sharing can
be implemented using protocols for secure function evaluation (SFE) [7].Given
two parties with inputs x and y respectively, SFE computes a function f(x, y)
such that the parties learn only the result.

The above body of work relies on a crucial assumption, that the participants
in the computation are semi-honest. This assumption basically says that the par-
ticipants follow the protocol properly (with the exception that they may keep a
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record of the intermediate computations and received messages, and analyze the
messages). Specifically, it is assumed that the participants will not maliciously
alter the input data to gain additional information. This absence of malice as-
sumption is also present in work in which a trusted-third party is employed to
compute sovereign operations.

In a real imperfect world, the participants may behave dishonestly particularly
when they can benefit from such a behavior. This benefit can come from learning
more than necessary private information of others or preventing others from
learning the necessary information. In the sovereign intersection example given
in the beginning, R may maliciously add x to VR to learn whether VS contains
x. Similarly, S may exclude v from VS to prevent R from learning that it has v.

1.1 Problem Addressed

We study the following problem in a sovereign information-sharing setting: How
to ensure that the individual participants, driven solely by self-interest, will be-
have honestly, even though they can benefit from cheating.

We take a game-theoretic approach to address the problem. We design a game
(i.e. strategies and payoffs) that models interactions in sovereign information
sharing. Through this game, we show that if nobody is punished for cheating, it
is natural for the rational participants to cheat. We therefore add an auditing
device to our game that periodically checks the actions of the participants and
penalizes inappropriate behavior. We derive conditions under which a unique
equilibrium (stable rational behavior) is obtained for this game such that every
participant provides truthful information. We also quantify the relationship be-
tween the frequency of auditing and the amount of punishment in terms of gains
and losses from cheating.

The auditing device must have the following essential properties: (a) it must
not access the private data of the participants and (b) it must be space and time
efficient. The auditing device we provide has these properties.

1.2 Related Work

Notions from game theory are used widely in this paper. Game theory was
founded by von Neumann and Morgenstern as a general theory of rational be-
havior. It is a field of study of its own, with extensive literature; see [17] for an
excellent introduction.

Games related to our work include the interdependent security(IDS)
games [10, 13]. They were defined primarily to model scenarios where a large
number of players must make individual investment decisions related to a se-
curity - whether physical, financial, medical, or some other type - but in which
the ultimate safety of every participant depends on the actions of the entire
population. IDS games are closely related to summarization games [11] in which
the players’ payoff is a function of their own actions and the value of a global
summarization function that is determined by the joint play of the population.
Summarization games themselves are extensions of congestion games [15, 19] in
which players compete for some central resources and every player’s payoff is a
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decreasing function of the number of players selecting the resources. We have
adopted some notions from the IDS games and used them to model information
exchange. However, our problem is different from the one presented in [13], while
at the same time we are not exploring algorithms for computing the equilibria
of the games as in [10].

Inspection games [4, 5, 14, 21] are also related to our work. These are games
repeated for a sequence of iterations. There is an inspector responsible for dis-
tributing a given number of inspections over an inspection period. Inspections
are done so that possible illegal actions of an inspectee can be detected. The
inspectee can observe the number of inspections the inspector performs.
The question addressed is what are the optimal strategies for the inspector and
the inspectee in such a game. The main difference between these games and the
game we have designed is that in the inspection games the inspector is a player
of the game. This is not true for our game, where the inspector acts as a referee
for the players, helping them (via auditing) to achieve honest collaboration.

The modeling of private information exchange using game-theoretic concepts
has received some attention recently. In [12], different information-exchange sce-
narios are considered and the willingness of the participants to share their private
information is measured using solution concepts from coalition games. Our study
is complementary to this work. We are interested in quantifying when people
are willing to participate truthfully in a game, rather than the complementary
question of whether they are willing to participate at all.

The work presented in [20] models information exchange between a consumer
and a web site. Consumers want to interact with web sites, but they also want
to keep control of their private information. For the latter, the authors empower
the consumers with the ability to test whether a web site meets their privacy
requirements. In the proposed games, the web sites signal their privacy policies
that the consumers can test at some additional cost. The main conclusion of
the study is that such a game leads to cyclic instability. The scenario we are
modeling is completely different. Our players are all empowered with the same
set of strategies. Our games also admit multiple players.

A recent work [22] addresses the problem of an adversary maliciously changing
his input to obtain the private information from another party in a sovereign-
intersection computation. They use concepts from non-cooperative games to
derive optimal countermeasures for a defendant (and optimal attacking methods
for the adversary) that balance the loss of accuracy in the result and the loss of
privacy. These countermeasures involve the defendant also changing his input.
Our approach is entirely different. We are interested in creating mechanisms so
that the participants do not cheat and provide truthful information.

1.3 Road Map

The rest of the paper is structured as follows. In Section 2, we formally define
the problem addressed in the paper, and also review the main game-theoretic
concepts. In Section 3, we construct our initial game that captures two-party
interactions in the absence of auditing and study its equilibria. The auditing
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device is introduced in Section 4 and its influence on the equilibria of the game
is discussed. Section 5 shows how the observations from the two-player game
generalize to multiple participants. An implementation of the auditing device is
provided in Section 6. We conclude with a summary and directions for future
work in Section 7.

2 Definitions

We first formally define the problem the paper addresses. We then review some
basic concepts from game theory.

2.1 Problem Statement

First we give the classical sovereign information-sharing problem, which provided
the setting for this work. Then we define the honest version of this problem,
which is the concern of this paper. Finally, we specify the honest set-intersection
problem, which is an important instantiation of the general problem.

Problem 1 (Sovereign information sharing). Let there be n autonomous entities.
Each entity i holds a database of tuples Di. Given a function f defined on Di’s,
compute f(D1, . . . , Dn) and return it to each entity. The goal is that in the end of
the computation each entity knows f(D1, . . . , Dn) and no additional information
regarding the data of its peers.

The problem we are trying to tackle is more difficult. We want not only to
guarantee that each participant in the end knows nothing more than the result,
but also that each participant reports his true dataset. More formally:

Problem 2 (Honest sovereign information sharing). Let there be n autonomous
entities. Each party i holds a database of tuples Di. Each entity i reports a
dataset D̂i so that a function f(D̂1, . . . , D̂n) is computed. The goal in the honest
information sharing is to find a mechanism that can guarantee that all entities
report D̂i such that D̂i = Di. As in Problem 1, in the end of the computation
each entity knows only f(D̂1, . . . , D̂n) and no additional information regarding
the data of its peers.

We use game-theoretic concepts to develop a general framework that can model
different information-exchange scenarios and guarantee honest information ex-
change. For concreteness, we also consider:

Problem 3. [Honest computation of set intersection] Special case of Problem 2
in which f(D̂1, . . . , D̂n) = ∩i=1,...,nD̂i.

The problem of honest computation of other relational operations (e.g. join, set-
difference) can be defined analogously; the techniques presented in the paper
apply to them as well.
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2.2 Games and Equilibria

We mainly focus on strategic games. In each game there are n players that can
choose among a set of strategies Si, i = 1, 2, . . . , n. A function ui is associated
with each player i with ui : S1, . . . , Sn → R. This is called a payoff function since
it assigns a payoff to player i, for each combined strategy choices of the n players.
The basic question in game theory is what constitutes a rational behavior in such
a situation. The most widely-used concept of rationality is the Nash equilibrium:

Definition 1 (Nash equilibrium). A Nash equilibrium (NE) is a combination
of strategies: x1 ∈ S1 . . . xn ∈ Sn for which

ui(x1, . . . , xi, . . . xn) ≥ ui(x1, . . . , x
′
i, . . . , xn),

for all i and x′
i ∈ Si.

That is, a Nash equilibrium is a combination of strategies from which no player
has the incentive to deviate. A game can have zero, one, or more than one Nash
equilibrium and the payoffs of a player can be different in two different equilibria.

Another rationality concept is that of dominant-strategy equilibrium:

Definition 2 (Dominant-strategy equilibrium). A dominant-strategy equi-
librium (DSE) is a combination of strategies: x1 ∈ S1, . . . , xn ∈ Sn for which

ui(x′
1, . . . , xi, . . . , x

′
n) ≥ ui(x′

1, . . . , x
′′
i , . . . x′

n),

for all i and x′′
i ∈ Si and for all j �= i and x′

j ∈ Sj.

That is, the strategy of every player in a dominant-strategy equilibrium is the
most profitable one (gives the highest payoff to every player) irrespective of what
the other players’ strategies are. A game need not have a dominant-strategy equi-
librium. A dominant-strategy equilibrium is always a Nash equilibrium. The op-
posite is not true. Nash and dominant-strategy equilibria capture the behavior
of selfish players who only care about maximizing their own payoffs without car-
ing about the payoffs of the rest of the players. Nash equilibrium is widely used in
many settings. However, there is no consensus on the best concept for rationality.

3 Dishonest Information Sharing

We now describe a real-world situation, but of course simplified, and use it to
motivate the definition of a two-player game that can be used to analyze sovereign
information-sharing interactions. Our goal is to formally show that when there is
benefit from cheating that is not accompanied with any bad consequences, there
is no guarantee for honesty. In fact, rational players driven solely by self-interest
will cheat in such a situation.

Rowi and Colie are successful competitors. Though their products cover all seg-
ments of their industry, Rowi has a larger coverage in some while Colie is stronger
in others. By finding the intersection of their customer lists, they both can benefit
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by jointly marketing to their common customers. This benefit accrues from busi-
ness expansion as well as reduction in marketing costs with respect to these cus-
tomers. Rowi has estimated that the benefit he will realize is B1, whereas Colie’s
estimate is B2.1 Clearly, it is in the interest of both Rowi and Colie that they find
their common customers without revealing their private customers, and can use
sovereign set intersection for this purpose.

In practice, Rowi might be tempted to find more than just common customers.
Rowi might try to find private customers of Colie by inserting some additional
names in his customer database. By doing so, Rowi estimates that his benefit can
increase to F1. This temptation to cheat and find more holds for Colie too, and
Colie’s estimate of the increased benefit is F2. Clearly, it must be that F1 > B1
and F2 > B2. We carry this assumption throughout the paper.

However, both Rowi and Colie may also incur some loss due to cheating. For
example, from Rowi’s perspective, Colie might succeed in stealing some of his
private customers. Also, Rowi’s customer database has become noisy as it now
has some fake names. We use L21 (L12) to represent the player’s estimate of the
loss that Colie (Rowi) causes to Rowi (Colie) due to his cheating.

For now, let us consider the symmetric case: B1 = B2 = B, F1 = F2 = F , and
L12 = L21 = L, and F > B.

We model the above situation as a two-player strategic game with payoffs de-
scribed in Table 1. Both players have the same set of strategies: “Play Honestly”
(H) or “Cheat” (C). Honest playing corresponds to reporting the true set of tu-
ples, while cheating corresponds to alternating the reported dataset by adding
extra tuples or removing real tuples.

Table 1. Payoff matrix for the two-player game where there is no punishment for cheat-
ing. Each entry lists the payoff of Rowi at the left-bottom, and the payoff of Colie at
the right-top corner of the cell for the corresponding combination of strategies.

Colie Play Honestly (H) Cheat (C)
Rowi

B F
Play Honestly (H) B B − L

B − L F − L
Cheat (C) F F − L

Observation 1. For the strategic game described in Table 1 and given that there
is extra benefit from cheating (F > B), the pair of strategies (C, C) is the only
equilibrium (NE as well as DSE).

To see that (C, C) is a Nash equilibrium, note that for Rowi u(C,C) > u(H,C)
and for Colie u(C,C) > u(C,H). On the other hand, (H, H) is not a Nash equi-
librium since u(C,H) > u(H,H) for Rowi.
1 If the benefit is considered to be a function of the number of common customers,

the latter can be determined (without revealing who the common customers are) by
using the sovereign set intersection size operation.
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Similarly, (C,C) is a dominant-strategy equilibrium since for Rowi u(C,C)>
u(H,C) and u(C,H)>u(H,H) and for Colie u(C,C)>u(C,H) and u(H,C)>
u(H,H). It is easy to see that (H,H) is not a dominant-strategy equilibrium.

Note that the above observation holds irrespective of the value of L. In other
words, both Rowi and Colie will find it rational to cheat even if the loss from
cheating makes F − L less than B for both of them.

4 Enforcing Honesty

We now extend the game described in the previous section with an auditing device
that can check whether any player has cheated by altering the input. An imple-
mentation of such a device is discussed later in Section 6. Whenever the device
finds out that a player has cheated, it penalizes the player. For a fixed penalty
amount, we address the question of how often should the auditing be performed.
We find a lower bound on the auditing frequency that guarantees honesty. Such a
lower bound is important particularly in cases where auditing is expensive. Con-
versely, for fixed frequency of auditing we calculate the minimum penalty that
guarantees honest behavior.

An auditing device can be characterized as follows, depending on the degree
of honesty it can guarantee:

1. Transformative: It can induce equilibrium states where all players being hon-
est is a dominant-strategy equilibrium (DSE). Recall that every dominant-
strategy equilibrium is also a Nash equilibrium (NE), though the opposite is
not true.

2. Highly Effective: It can induce equilibrium states where all participants being
honest is the only Nash equilibrium of the game.

3. Effective: It can induce equilibria where all participants being honest is a Nash
equilibrium of the game.

4. Ineffective: Nothing can be guaranteed about the honest behavior of the play-
ers. That is, the auditing device cannot induce equilibrium states where all
players are honest.

We first study the symmetric case in which the players have identical payoffs.
We then extend the analysis to study asymmetric payoffs.

4.1 The Symmetric Case

Consider the game with the payoff matrix given in Table 2. The semantics of the
parameters B,F and L are the same as in the game described in Section 3. Two
more parameters appear here. The first one, P , represents the penalty that the
auditing device imposes on the cheating player once it detects the cheating. Pa-
rameter f , with 0 ≤ f ≤ 1, corresponds to the relative frequency of auditing,
and represents how often the device checks truthfulness of the data provided by
the players. For brevity, from now on, we will use the term frequency to refer to
relative frequency.
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Table 2. Payoff matrix for the symmetric two-player game enhanced with the auditing
device

Colie Play Honestly (H) Cheat(C)
Rowi

B (1 − f)F − fP
Play Honestly (H) B B − (1 − f)L

B − (1 − f)L (1 − f)F − fP − (1 − f)L
Cheat (C) (1 − f)F − fP (1 − f)F − fP − (1 − f)L

In Table 2, when both players play honestly they each have benefit B. Since
the auditing device checks with frequency f , the expected gain of a player that
cheats is (1 − f)F . That is, a cheating player gains amount F only when he is
not caught, which happens with probability 1−f . A player who cheats and is not
caught causes expected loss (1−f)L to the other player. Finally, a cheating player
may be caught with probability f and pays penalty P , which gives an expected
loss of fP to the cheating player.

When both players are cheating their payoff is the expected cheating benefit
(1− f)F minus the expected cost of paying a penalty fP as well as the expected
loss caused from other player cheating (1−f)L. Note that (1−f)L is the loss of a
player due to the cheating behavior of the opponent, multiplied by the probability
that the latter is not caught.

We now give some important observations from the analysis (details omitted)
of this game. Assume first that all parameters are fixed except for f . In that case
the auditing device gets as input the penalty amount P . The goal is to determine
the corresponding frequency of auditing that can guarantee honest behavior. The
following statement can be made in this case.

Observation 2. For any fixed penalty amount P , there exists a checking
frequency for which the auditing device is both transformative and highly effec-
tive. More specifically for fixed P , the equilibria of the game for different values of
frequency f ∈ [0, 1] are:

– For 0 ≤ f < F−B
P+F , (C,C) is the only DSE and NE of the game. That is, for

those frequencies the auditing device is ineffective.
– For F−B

P+F < f ≤ 1, (H,H) is the only DSE and NE of the game. That is, for
those frequencies the auditing device is transformative and highly effective.

– For f = F−B
P+F , (H,H) is among the NE of the game and therefore the auditing

device is effective.

The above observation is rather intuitive. The key quantity is f = F−B
P+F that can

be rewritten as fP = (1 − f)F − B. The left-hand side corresponds to the ex-
pected loss due to the penalty imposed by the auditing device. The right-hand
side is the net expected gain from cheating. Therefore the first case in observa-
tion 2 says that (C,C) is DSE and NE only when fP < (1 − f)F − B; that
is when the expected loss from the penalty is less than the expected gain from
cheating. In this case, the auditing device does not provide enough deterrence
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to keep off the players from cheating. However, when the expected loss due to
the penalty imposed by the device exceeds the expected gain, the players start
behaving honestly.

The landscape of the equilibria for the different values of the checking fre-
quency is shown in Figure 1. Notice that the above game for all the values of
f �= F−B

P+F has only two equilibria in which either both players are honest or both
of them are cheating.

0 1

(H,H) is the only DSE and NE

f

(C,C) is the only DSE and NE

(F−B)
P+F

Fig. 1. Equilibria of the two-player symmetric game with auditing device for the dif-
ferent values of checking frequency f and for fixed penalty amount P . Shaded region
corresponds to (H, H) being both DSE and NE.

Alternatively, we can study the penalty-for-cheating versus frequency-of-
checking trade off the other way round. What happens in the case where the
auditing device is instructed to check at the specified frequencies? What is the
minimum penalty amount it has to impose on cheating players so that honesty is
ensured?

Observation 3. For any fixed frequency f ∈ [0, 1], the auditing device can be
transformative and highly effective for wise choices of the penalty amount. Specif-
ically:

– For P > (1−f)F−B
f , (H, H) is the only DSE and NE, and therefore the audit-

ing device is both transformative and highly effective.
– For P < (1−f)F−B

f , (C,C) is the only DSE and NE, and therefore the auditing
device is ineffective.

– For P = (1−f)F−B
f ,(H, H) is among the NE of the game. That is for this

penalty amount the auditing device is effective.

The above observation is also intuitive as it says that the players will not be de-
terred by an auditing device that imposes penalties such that the expected loss
due to them is smaller than the expected additional benefit from cheating. This
is true no matter how often this device performs its checks.

On the other hand, note the following special case. When f > F−B
F , the audit-

ing device does not have to impose any penalty on the cheating participants. The
fact that the participants are aware of its existence is daunting by itself. Notice
that this happens particularly in high frequencies and for the following reason.
Due to high checking frequency, the expected gain from cheating (1 − f)F be-
comes lower than the gain from honest collaboration B. Therefore, the players
have incentive to play honestly.
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(H,H) is the only

DSE and NE

P

P

(C,C) is the only DSE and NE

0

0

f >
(F−B)

F

0 ≤ f < F−B
F

(1−f)F−B

f

(H,H) is the only

DSE and NE

Fig. 2. Equilibria of the two-player symmetric game with auditing device for the dif-
ferent values of penalty regions P for fixed checking frequency f . Shaded region corre-
sponds to (H, H) being DSE as well as NE.

The equilibria of the game as a function of the penalty amount P are given in
Figure 2.

The above observations provide the game-designer the chance to decide, based
on estimations of the players losses and gains, the minimum checking frequencies
or penalty amounts that can guarantee the desired level of honesty in the system.

4.2 The Asymmetric Case

We now turn to the study of the asymmetric case where the payoffs of the two
players are not necessarily the same. The payoff matrix of the game is given in
Table 3. The easiest way to visualize the equilibria of such a game is by fixing the
penalty amounts imposed on each player (Pi) and giving to the auditing device
the freedom to select the frequency of checking each player (fi). In this case, we
get the landscape of the equilibria shown in Figure 3.

Again the auditing device becomes transformative and highly effective when it
checks frequently enough so that the players cannot tolerate the extra losses from
being caught cheating. Similar observations can be made by studying the game
using the penalty amounts as the free parameters of the auditing device and fixing
the checking frequencies.

Note that in contrast to the symmetric case, the current game exhibits equi-
libria in which the two players do not pick the same strategy. This is the case, for
example, when the auditing device checks Colie very frequently and Rowi quite

Table 3. Payoff matrix for the asymmetric two-player game enhanced with the auditing
device

Colie Play Honestly (H) Cheat (C)
Rowi

B2 (1 − f2)F2 − f2P2

Play Honestly (H) B1 B1 − (1 − f2)L21

B2 − (1 − f1)L12 (1 − f2)F2 − f2P2 − (1 − f1)L12

Cheat (C) (1 − f1)F1 − f1P1 (1 − f1)F1 − f1P1 − (1 − f2)L21
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(C,C) is the only

(C,H) is the only

(H,C) is the only

(H,H) is the only 

DSE and NE DSE and NE 

DSE and NE DSE and NE

1

1

(F1−B1)
F1+P1

(F2−B2)
F2+P2

f2

f1

Fig. 3. Equilibria of two-player asymmetric game with auditing device for the differ-
ent values of penalties (P1, P2). Shaded region corresponds to (H,H) being both DSE
and NE.

rarely (upper left-hand corner of the figure); the Nash equilibrium has poor Colie
playing honestly while Rowi is cheating. This example brings out the need for
careful choice of penalties and frequencies; otherwise, the rational players may
be forced into unintuitive behaviors.

5 Generalization to Multiple Participants

More than two entities are often involved in an information-sharing situation. To
model such situations we extend our two-player game to n players.

Each player has again two possible strategies: to play honestly (H) or to cheat
(C). We use indicator variable hi to denote the strategy of player i:

hi =
{

1, if player i is playing honestly
0, otherwise.

We use vector h to represent the strategies of all n players. The vector h−i repre-
sents the strategies of all players except for player i. Motivated by [10], we design
the n-player game by forming a payoff function that adequately describes: (a) the
gains/losses a player has due to his own actions, and (b) the gains/losses due to
the behavior of others.

The notation is along the same lines as used in the two-player game. We again
assume the existence of an auditing device that checks on players with frequency
f and imposes penalty P for cheating. We consider the case where the values of f
and P are the same for all players. Assume that the benefit from honest collabo-
ration for each player is B. The increased benefit of player i due to his cheating is
given by function F , which is assumed to be the same for all players. The specific
form of function F depends on the application domain. However, we do assume
that it is monotonically increasing in the number of players that play honestly.
That is, the larger the number of honest players in the game, the more the dis-
honest player gains by exploiting their honesty. Finally, assume that the loss a
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player i experiences due to the cheating of another player j is given by Lji. The
payoff of player i is thus a function ui : {H,C}n → R, which can be written as:

ui(h) = hiB + (1 − hi)(1 − f)F(‖h−i‖) − (1 − hi)fP

−
n∑

j=1,j �=i

(1 − hj)(1 − f)Lji (1)

The payoff ui of player i depends on the strategies picked by the participating
players and it consists of four terms. The first two terms correspond to the gains
of the player and the last two correspond to his losses. The losses are due to either
his own choices or the choices of the rest of the participants. More specifically, the
first term is the gain player i has in isolation (irrespective of the strategies of the
rest n − 1 players) when he plays honestly. The second term is his gain when he
decides to cheat. This gain depends on the strategies of others as well. The third
term, (1−hi)fP , corresponds to his loss when he decides to cheat and he is caught.
In that case, he experiences an expected loss of fP . The last term represents his
loss due to the behavior of the other participants.

For building some intuition, consider the following special cases. When all play-
ers except player i cheat, then the payoff of player i would be:

ui(h−i = 0, hi = 1) = B −
n∑

j=1,j �=i

(1 − f)Lji.

If player i decides to cheat as well, his gain is:

ui(h = 0) = F(0) − fP −
n∑

j=1,j �=i

(1 − f)Lji.

Although it seems that the analysis of the auditing device in the presence of n
players could be more demanding, it turns out that some intuition and the results
from the two-player game carry over.

Assume we fix the checking frequency f with which the auditing device checks
the participating players.

Proposition 1. For the n-player game where the payoff of each player i is given
by ui as defined in equation 1, the following is true: For fixed frequencies f ∈ [0, 1]
an auditing device that imposes penalty P > (1−f)F(n−1)−B

f is transformative and
highly effective. That is, for those values of f and P , (H, H, ..., H) is the only
combination of strategies that is DSE and NE.

Proof. (Sketch) First we show that the auditing device is transformative. For this,
we have to show that when P > (1−f)F(n−1)−B

f each player i prefers hi = 1
irrespective of the strategies of the other n−1 players. This comes down to proving
that the inequality:

ui(h−i = 1, hi = 1) > ui(h−i = 1, hi = 0) (2)
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is true for player i (and thus for every player). If inequality 2 holds for h−i = 1,
then it would also hold for any other h−i �= 1. This means that even in the worst-
case, where all n − 1 other players are playing honestly (this is the case where
player i has the highest benefit from cheating), player i still has more benefit from
being honest than from cheating. This makes hi = 1 dominant strategy. Indeed
by solving inequality 2, we end up with a true statement.

Then we have to show that the auditing device is also highly effective. For this
we need to show that when P > (1−f)F(n−1)−B

f there does not exist an equilib-
rium other than (H,H,...,H).

The proof is by contradiction. Assume there exists another equilibrium where
x players are playing honestly and n − x players are cheating, with x �= n. Now
consider a player i with hi = 1. Since we have assumed an equilibrium state, the
following should be true:

ui(h1 = 1, . . . , hi = 1, . . . , hx = 1, hx+1 = 0, . . . , hn = 0) >

ui(h1 = 1, . . . , hi = 0, . . . , hx = 1, hx+1 = 0, . . . , hn = 0).

This would mean that

B −
n∑

j=1,j �=i

(1−hj)(1−f)Lji >(1−f)F(x − 1) − fP −
n∑

j=1,j �=i

(1−hj)(1−f)Lji,

and thus

P >
(1 − f)F(x − 1) − B

f
. (3)

Now consider a player j from the set of n − x cheating players. Due to the
equilibrium assumption, the following should also hold:

uj(h1 = 1, . . . , hx = 1, hx+1 = 0, . . . , xj = 0, . . . , hn = 0) >

uj(h1 = 1, . . . , hx = 1, hx+1 = 0, . . . , xj = 1, . . . , hn = 0).

This would mean that

(1−f)F(x)−fP −
n∑

i=1,l �=j

(1−hi)(1−f)Lij >B − (1 − f)
n∑

i=1,l �=j

(1−hi)(1−f)Lij

and thus

P <
(1 − f)F(x) − B

f
. (4)

However, inequalities 3, 4 and the constraint P > (1−f)F(n−1)−B
f cannot be satis-

fied simultaneously, due to the monotonicity property of F . Therefore the
auditing device is also highly effective. �
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In a similar manner we can show the following proposition:

Proposition 2. For the n-player game where the payoff of each player i is given
by ui as defined in equation 1, the following is true: For fixed frequencies f ∈ [0, 1]
an auditing device that imposes penalty P < (1−f)F(0)−B

f is ineffective. That is,
for those values of f and P , (C, C, ..., C) is the only combination of strategies
that is NE and DSE.

Finally we can generalize the above propositions in the following theorem:

Theorem 1. For the n-player game where the payoff of each player i is given by
ui, as defined in equation 1, the following is true: For x ∈ 1, . . . , n − 1 and for
any f ∈ [0, 1], when the auditing device imposes penalty (1−f)F(x−1)−B

f < P <
(1−f)F(x)−B

f , then the n-player game is in an equilibrium state where x players are
honest and n − x players are cheating.

Consequently, the equilibria landscape looks as in Figure 4.

(C,..,C) is the only (H,..,H) is the only 

P

...... ......
is the only NE 

n−x times

(H,..,H,C,...,C)

x times

DSE and NEDSE and NE

0
(1−f)F(0)−B

f

(1−f)F(n−1)−B

f

(1−f)F(x−1)−B

f

(1−f)F(x)−B

f

Fig. 4. Equilibria of the n-player symmetric game with auditing device for different
values of penalty P . Shaded region corresponds to (H,H) being both DSE and NE.

6 Auditing Device

We turn now to a discussion of the feasibility of realizing the auditing device. The
auditing service must be space as well as time efficient. It must also not see any
private data of any of the participants.

6.1 Incremental Multiset Hash Functions

Our proposed auditing device makes use of incremental multiset hash functions
[2], which are hash functions that map multisets of arbitrary finite size to hashes
of fixed length. They are incremental in that when new members are added to the
multiset, the hash can be quickly updated.

Definition 3 (Multiset hash function [2]). Let (H,+H,≡H) be a triple of
probabilistic polynomial time algorithms. This triple is an incremental multiset
hash function if it satisfies:

– Compression: H maps multisets of a domain D into elements of a set with
cardinality ≈ 2m, where m is some integer. Compression guarantees that
hashes can be stored in a small bounded amount of memory.
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– Comparability: Since H can be a probabilistic algorithm, a multiset need
not always hash to the same value. Therefore a means of comparison (≡H)
is needed to compare hashes. For this it should hold that H(M) ≡H H(M), for
all multisets of M of D.

– Incrementality: Finally, H(M ∪ M ′) is computed efficiently using H(M)
and H(M ′). The +H operator makes this possible:

H(M ∪ M ′) ≡H H(M) +H H(M ′),

for all multisets M and M ′ of D. In particular, knowing H(M) and an element
t ∈ D, one can easily compute H(M ∪ {t}) = H(M) +H H({t}).

Multiset hash functions are collision resistant in that it is computationally infea-
sible to find a multiset M of D and a multiset M ′ of D such that M �= M ′ and
H(M) ≡H H(M ′).

6.2 Auditing

Auditing is provided by a secure network service, built using a secure coproces-
sor [9]. For the purposes of this paper, it is sufficient to observe that a certified
application code can be securely installed into a secure coprocessor and, once
installed, the application can execute untampered. The remote attestation mech-
anism provided by the secure coprocessor can be used to prove that it is indeed ex-
ecuting a known, trusted version of the application code, running under a known,
trusted version of the OS, and loaded by a known, trusted version of the boot-
strap code. Communication between the auditing device and the participants in
the sovereign computation makes use of authenticated encryption that provides
both message privacy and message authenticity [18].

The auditing device (AD) periodically checks the integrity of the data reported
by the players, and hands over penalties if needed. As we shall see, AD accom-
plishes this check without accessing the private data of the players.

There is a tuple generator TGi, associated with each player i. In the scenario
given in Section 3, TGi may correspond to the customer registration process. TGi

provides legal tuples to the player i that should participate in sovereign compu-
tations. The player i cannot influence TGi into generating illegal tuples2 but can
himself fabricate them. Each TGi operates as follows:

1. TGi picks Hi and announces it publicly.
2. For each new tuple t entering the system and to be provided to player i:

(a) TGi computes Hi(t).
(b) TGi sends message (Hi(t), i) to AD.
(c) TGi sends t to player i.

AD maintains for each player i a hash value HVi. This is the hash value of
all the tuples that player i has received from TGi. Upon receiving (Hi(t), i), AD

2 If player i can corrupt TGi into generating illegal tuples on his behalf, it can be shown
that no automated checking device can detect this fraudulent behavior.
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updates the hash value so that HVi = HVi +Hi
Hi(t). Note that the auditing

device does not know the actual tuples that each player i has received. It only
knows the hash value of this multiset of tuples, which it incrementally updates.

Finally, each player i also maintains locally the hashed value of the set of tuples
it has received, H(Di). Therefore, upon receiving tuple t from TGi, the player i
updates the hash value so that Hi(Di) = Hi(Di) +Hi

Hi(t).
For sovereign information-sharing computation, the players follow one of the

standard protocols that guarantee correct and private computation of the result.
These protocols require that each player i reports Di (usually encrypted) to the
other players or to a trusted third party. Here, we additionally require that along
with the encrypted version of Di, each player i reports Hi(Di).

Note that reporting Hi(Di), along with the encrypted Di, does not reveal any-
thing about the actual Di. This is due to the assumption that for a given multiset
hash function Hi, it is computationally infeasible to construct multisets M and
M ′ such that Hi(M) ≡Hi

Hi(M ′). Secondly, player i will be reluctant to report
Di along with Hi(D′

i) such that Di �= D′
i because that will be a violation of the

protocol and if the entity that received the encrypted Di along with Hi(D′
i) takes

i to court, the judge will be able to decide in polynomial time whether the hash
value Hi(D′

i) ≡Hi
Hi(Di).

Given this communication model, the job of the auditing device is straightfor-
ward. If AD decides to audit player i, it requests the hash value that i reported
during the set-intersection computation. Let this hash value be Hi(Di). Then AD
can decide whether i is cheating by checking whether HVi ≡Hi

Hi(Di).

7 Summary and Future Directions

A key inhibitor in the practical deployment of sovereign information sharing has
been the inability of the technology to handle the altering of input by the partic-
ipants. We applied game-theoretic concepts to the problem and defined a multi-
party game to model the situation. The analysis of the game formally confirmed
the intuition that as long as the participants have some benefit from cheating,
honest behavior cannot be an equilibrium of the game. However, when the game
is enhanced with an auditing device that checks at an appropriate frequency the
integrity of the data submitted by the participants and penalizes by an appropri-
ate amount the cheating behaviors, honesty can be induced not only as a Nash
equilibrium but also as a dominant-strategy equilibrium. We addressed practical
issues such as what should be the frequency of checking and the penalty amount
and how the auditing device can be implemented as a secure network device that
achieves the desired outcome without accessing private data of the participants.

In the future, we would like to study if appropriately designed incentives
(rather than penalties) can also lead to honesty. We would also like to explore
the application of game theory to other privacy-preservation situations.

Acknowledgment. We thank Alexandre Evfimievski for helpful discussions.
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Abstract. Business Intelligence solutions, encompassing technologies such as
multi-dimensional data modeling and aggregate query processing, are being ap-
plied increasingly to non-traditional data. This paper extends multi-dimensional
aggregation to apply to data with associated interval values that capture when the
data hold. In temporal databases, intervals typically capture the states of reality
that the data apply to, or capture when the data are, or were, part of the current
database state.

This paper proposes a new aggregation operator that addresses several chal-
lenges posed by interval data. First, the intervals to be associated with the result
tuples may not be known in advance, but depend on the actual data. Such un-
known intervals are accommodated by allowing result groups that are specified
only partially. Second, the operator contends with the case where an interval as-
sociated with data expresses that the data holds for each point in the interval, as
well as the case where the data holds only for the entire interval, but must be
adjusted to apply to sub-intervals. The paper reports on an implementation of the
new operator and on an empirical study that indicates that the operator scales
to large data sets and is competitive with respect to other temporal aggregation
algorithms.

1 Introduction

Real-world database applications, e.g., in the financial, medical, and scientific domains,
manage temporal data, which is data with associated time intervals that capture some
temporal aspect of the data, typically when the data were or is true in the modeled reality
or when the data was or is part of the current database state. In contrast to this, current
database management systems offer precious little built-in query language support for
temporal data management.

In step with the increasing diffusion of business intelligence, aggregate computation
becomes increasingly important. An aggregate operator transforms an argument rela-
tion into a summary result relation. Traditionally this is done by first partitioning the
argument relation into groups of tuples with identical values for one or more attributes,
then applying an aggregate function, e.g., sum or average, to each group in turn. For
interval-valued databases such as temporal databases, aggregation is more complex be-
cause the interval values can also be used for defining the grouping of argument tuples.

In this paper we propose a new temporal aggregation operator, the Temporal Multi-
Dimensional Aggregation (TMDA) operator. It generalizes a variety of previously
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proposed aggregation operators and offers orthogonal support for two aspects of ag-
gregation: a) the definition of result groups for which to report one or more aggregate
values and b) the definition of aggregation groups, i.e., collections of argument tuples
that are associated with the result groups and over which the aggregate functions are
computed. Our work builds on recent advances in multi-dimensional query process-
ing [1, 2, 3] and is the first work to leverage these techniques to interval-valued data,
in this paper exemplified by temporal data. We provide an efficient implementation of
the TMDA operator with an average complexity of n log m, where n is the number of
argument tuples and m is the number of result groups. In experimental evaluations on
large data sets, the operator exhibits almost linear behavior.

Aggregation of temporal data poses new challenges. Most importantly, the time in-
tervals of result tuples can depend on the actual data and are not known in advance.
Therefore, the grouping of the result tuples can only be specified partially. Next, aggre-
gation should support what is termed constant, malleable, and atomic semantics of the
association between data and time intervals. For example, the association of a time in-
terval with an account balance is constant, meaning that the balance holds for each sub-
interval of the interval. In contrast, consider the association of a particular week with
the number of hours worked by an employee during that week, e.g., 40 hours. Here,
the association is malleable, as the 40 hours are considered an aggregate of the hours
worked by the employee during each day during that week. An association is atomic if
the data cannot be associated with modified timestamps. For example, chemotherapies
used in cancer treatment often prescribe a specific amount of a drug to be taken over a
specific time period. Neither the amount of the drug nor the time period can be modi-
fied without yielding a wrong prescription. All approaches so far support only constant
semantics. Finally, a temporal aggregation result might be larger than the argument rela-
tion. Specifically, for instantaneous temporal aggregates that are grouped into so-called
constant intervals, the result relation size can be twice that of the argument. To quantify
the result size, the paper defines the notion of an aggregation factor; and to control the
aggregation, the ability to specify fixed time intervals for the result tuples is included.

The rest of the paper is organized as follows. Section 2 studies related work and
Sect. 3 covers preliminaries. In Sect. 4, after an analysis of some aggregation queries,
we introduce the new TMDA operator. Section 5 presents the implementation of the
operator. In Sect. 6, we discuss various properties of this operator including computa-
tional complexity and expressiveness. Section 7 reports on an experimental study, and
Sect. 8 concludes and offers research directions.

2 Related Work

The notions of instantaneous and cumulative temporal aggregates have been reported
previously. The value of an instantaneous temporal aggregate at chronon t is computed
from the set of tuples that hold at t. The value of a cumulative temporal aggregate
(also called moving-window aggregate) at chronon t is computed from the set of tuples
that hold in the interval [t−w, t], w ≥ 0. Identical aggregate results with consecutive
chronons are coalesced into so-called constant intervals. Most research has been done
for instantaneous aggregates, e.g. [4, 5], and cumulative aggregates [6] and temporal
aggregates with additional range predicates [7] have received only little attention.
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An early proposal by Tuma [8] for computing temporal aggregates requires two
scans of the input relation—one for the computation of the time intervals of the result
tuples and one for the computation of the aggregates.

A proposal by Kline and Snodgrass [4] scans the input relation only once, building
an aggregation tree in main memory. Since the tree is not balanced, the worst case
time complexity is O(n2) for n tuples. An improvement, although with the same worst
case complexity, is the k-ordered aggregation tree [4]. This approach exploits partial
ordering of tuples for garbage collection of old nodes.

Moon et al. [5] use a balanced tree for aggregation in main memory that is based on
timestamp sorting. This solution works for the functions sum, avg, and cnt; for min and
max, a merge-sort like algorithm is proposed. Both algorithms have a worst case com-
plexity of O(n log n). For secondary memory, an efficient bucket algorithm is proposed
that assigns the input tuples to buckets according to a partitioning of the time line and
also affords long-lived tuples special handling. Aggregation is then performed on each
bucket in isolation. The algorithm requires access to the entire database three times.

The SB-tree of Yang and Widom [6] supports the disk-based computation and main-
tenance of instantaneous and cumulative temporal aggregates. An SB-tree contains a
hierarchy of intervals associated with partially computed aggregates. With the SB-tree,
aggregate queries are applied to an entire base relation—it is not possible to include
selection predicates. The multi-version SB-tree [7] aims to support aggregate queries
coupled with range predicates. A potential problem is that the tree might be larger than
the input relation. Tao et al. [9] propose an approximate solution that uses less space
than the multi-version SB-tree. Both approaches are restricted to range predicates over
a single attribute, and the time interval of an input tuple is deleted once it is selected;
hence the result is not a temporal relation.

The existing approaches share three properties. First, the temporal grouping process
couples the partitioning of the time line with the grouping of the input tuples. The time
line is partitioned into intervals, and an input tuple belongs to a specific partition if its
timestamp overlaps that partition. Second, the result tuples are defined for time points
and not over time intervals. Third, they allow the use of at most one non-temporal
attribute for temporal grouping.

Our TMDA operator, which extends the multi-dimensional join operator [3] to sup-
port temporal aggregation, overcomes these limitations and generalizes the aggregation
operators discussed above. It decouples the partitioning of the timeline from the group-
ing of the input tuples, thus allowing to specify result tuples over possibly overlapping
intervals and to control the size of the result relation. Furthermore, it supports multiple
attribute characteristics. For an efficient implementation we exploit the sorting of the
input relation similar to what is done in the k-ordered tree approach [4].

3 Preliminaries

3.1 Notation

We assume a discrete time domain, DT , where the elements are termed chronons (or
time points), equipped with a total order <T . Calendar months with the order < satisfy
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these requirements, and we use these as our time domain. A timestamp (or time inter-
val) is a convex set over the time domain and is represented by two chronons, [Ts,Te],
denoting its inclusive starting and ending points, respectively. We will use T as a short-
hand for [Ts,Te]. For timestamps, we introduce several relations: t ∈ T means that
chronon t is included in timestamp T . For two timestamps T and T ′, T ′ ⊆ T iff all
chronons in T ′ are also in T , and T ∩T ′ returns the set of chronons in both timestamps.
If T ∩ T ′ �= ∅, we say that the two intervals overlap (or intersect).

A relation schema is a three-tuple S = (Ω, Δ, dom), where Ω is a non-empty, fi-
nite set of attributes, Δ is a finite set of domains, and dom : Ω → Δ is a function
that associates a domain with each attribute. A temporal relation schema is a rela-
tion schema with at least one timestamp valued attribute (the domain of timestamps
belongs to Δ). For the purpose of this paper, we define temporal relation schemas
R = (A1, . . . , An,T ) and G = (B1, . . . , Bm,T ). Note that the assumption that re-
lations have a timestamp attribute T is just for convenience. There is no implicit time
attribute, and all definitions are parametrized with a timestamp attribute. As usual, the
rename operator ρ can be used to adjust schemas as appropriate.

A tuple over schema S = (Ω, Δ, dom) is a function r : Ω → ∪δ∈Δδ, such that
for every attribute A of Ω, r(A) ∈ dom(A). A tuple is temporal iff its schema is
temporal. To simplify notation we assume an ordering of attributes and represent a
tuple as r = (v1, . . . , vn, t). An relation over schema R is a finite set of tuples over R,
denoted as r. We will also use a couple of shorthands: For a tuple r and an attribute A we
write r.A to denote the value of the attribute A in r. For a set of attributes A1, . . . , Am,
m < n, we define r[A1, . . . , Am] = (r.A1, . . . , r.Am).

3.2 Attribute Characteristics

We distinguish among three semantics of the association of a non-timestamp attribute
with a timestamp attribute. For a relation with schema (A1, . . . , An,T ) the attribute
characteristics wrt. T are given as CT = (c1, . . . , cn), where ci ∈ {c, m, a}. The
values c, m, and a denote constant, malleable, and atomic characteristics, respectively.
For example, CT = (c, m) for the schema (N ,H ,T ) means that N has a constant
characteristic and H has a malleable characteristic. If several temporal attributes are
used, e.g., valid time and transaction time, a non-timestamp attribute can have different
characteristics for the two timestamps. For the rest of the paper, we use only one time
attribute T , and C refers to the characteristics wrt. T .

Definition 1. (Adjustment of Attribute Values) Let r = (v1, . . . , vn, t) be a tuple over
schema (A1, . . . , An,T ), I be a timestamp, and let C = (c1, . . . , cn) be the attribute
characteristics. The adjustment of attribute values is defined as follows:

adj (r, I, C) = (adj (r.A1, r.T , I, c1), . . . , adj (r.An, r.T , I, cn), I)

adj (v,T , I, c) =

⎧⎪⎪⎨⎪⎪⎩
v iff c = ’c’
v ∗ |I ∩ T |/|T | iff c = ’m’
v iff c = ’a’ ∧ T = I
UNDEF iff c = ’a’ ∧ T �= I
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Considering the characteristics C, the adj function adjusts each non-timestamp at-
tribute value of r to the time interval I and returns the adjusted tuple. For example,
for the tuple (Jan, 2000, [2003/01, 2003/12]), the characteristics (c, m), and the time
interval [2003/01, 2003/06] the adj function returns (Jan , 1000, [2003/01, 2003/06]).

4 The Temporal Multi-dimensional Aggregate Operator

4.1 Temporal Aggregate Examples

As a running example, consider the project database in Fig. 1. The relation EMPL cap-
tures project assignments by recording the name of an employee (N ), a contract identi-
fier (CID), the department responsi-

EMPL

N CID D P H S T
r1 Jan 140 DB P1 2400 1200 [2003/01,2004/03]
r2 Jan 163 DB P1 600 1500 [2004/07,2004/09]
r3 Ann 141 DB P2 500 700 [2003/01,2003/05]
r4 Ann 150 DB P1 1000 800 [2003/06,2004/03]
r5 Ann 157 DB P1 600 500 [2004/01,2004/12]
r6 Sue 142 DB P2 400 800 [2003/01,2003/10]
r7 Tom 143 AI P2 1200 2000 [2003/04,2003/10]
r8 Tom 153 AI P1 900 1800 [2004/01,2004/06]

Fig. 1. Relation EMPL of the Project Database

ble for an assignment (D ), the name
of a project (P ), the hours an em-
ployee is assigned to a project (H ),
a monthly salary (S ), and the valid
time (T ) over which a tuple holds
true. The attribute H is malleable,
while all other attributes are con-
stant. Figure 2 illustrates relation
EMPL together with the intended
results for the aggregation queries
considered next.

Query 1: For each department, compute the total amount of hours spent in projects
and the maximal monthly salary. This instantaneous aggregation groups the result
tuples by the non-temporal attribute D . The timestamps of the result tuples are not
specified in the query, but are derived from the relation. Hence, the size of the result
is data dependent and might exceed that of the input relation, as is the case here.

Query 2: For each department and year, compute the total hours spent in projects
and the maximal monthly salary. This query differs from the previous one in that
the result tuples are grouped according to fixed, user-specified time intervals. This
query controls the size of the result relation, which is at the heart of aggregate
functions. To the best of our knowledge, this type of query has not been studied
previously.

Query 3: Compute the moving average of hours spent for all six-month periods. This
moving-window query slides in steps of fixed duration over the time line, comput-
ing an aggregate for each six-month interval. Unlike for the traditional moving-
window operator, the result tuples are valid over time intervals rather than at single
time instants.

Query 4: For the entire lifespan of each department, compute the total hours spent in
projects and the maximal monthly salary. This query specifies a single value for the
entire lifespan of a relation.
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4.2 Definition of Result Groups and Aggregation Groups

A general temporal aggregation operator should support the specification of two or-
thogonal aspects of aggregation: definition (1) of the result groups for which to report
aggregate results and (2) of the sets of tuples, termed aggregation groups, to associate
with each result group and over which to compute the aggregates result(s) to be reported
for each group.

Each result group can be represented as a tuple in a temporal (“group”) relation
g with schema (B1, . . . , Bm,T ). Each Bi is an attribute from the relation that is the
argument of the aggregation operator, and the tuples assume values from Bi that occur
in the argument relation. For the timestamp, there are two cases: constant intervals and
fixed intervals. With constant intervals, the timestamp attribute assumes as values the
maximal, non-overlapping intervals over which the set of argument tuples is constant.

Definition 2. (Constant Intervals) Let r be a temporal relation with timestamp attribute
T . We define the constant intervals of r as

CI (r) = {T | ∀r ∈ r(r.T ⊇ T ∨ r.T ∩ T = ∅) ∧
∀T ′ ⊃ T (∃r ∈ r(r.T �⊇ T ′ ∧ r.T ∩ T ′ �= ∅))}

The first line ensures that result intervals do not cross boundaries of argument intervals.
The second ensures that the result intervals are maximal. The constant intervals for the
EMPL relation grouped by department are shown in Fig. 2 (Result of Query 1).

Theorem 1. (Cardinality of Constant Intervals) For a temporal relation r with n tuples,
n > 0, the cardinality of constant intervals is limited by the following formula:

| CI (r) | ≤ 2n− 1

query 1

Result of

Result of

query 2

Result of

(DB,150,500)(DB,750,1500)

(520)

(478.3)query 3

(AI,1200,1200)(AI,1500,1500)

(DB,1620,1200) (DB,1500,1500)

(DB,750,1200)(DB,1500,1200) (DB,150,500)(DB,520,1200)

(AI,P2,1200,2000) (AI,P1,900,1800)

(DB,1500,1200)

...
(DB,6440,1500)

(AI,2700,2000)

Result of

query 4

2003/01 2003/07 2003/10 2004/01 2004/04 2004/07 2004/102003/04

relation
Input

r8 = (Tom,153,AI,P1,900,1800)

r3 = (Ann,141,DB,P2,500,700)

r7=(Tom,143,AI,P2,1200,2000)

r4 = (Ann,150,DB,P2,1000,800) r5 = (Ann,157,DB,P1,600,500)

r6 = (Sue,142,DB,P2,400,800)

r1 = (Jan,140,DB,P1,2400,1200) r2 = (Jan,163,DB,P1,600,1500)

Fig. 2. Temporal Aggregation
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Proof. The end points of the tuple’s timestamps can be linearly ordered giving at most
2n timepoints. n timepoints produce at most n − 1 consecutive time interals.

The option fixed intervals is used when specifying fixed, possibly overlapping, time
intervals. Queries 2 and 3 in our running example use different flavors of fixed intervals
(see also Fig. 2).

Definition 3. (Fixed Intervals) Let r be a temporal relation with timestamp attribute T .
We define the fixed intervals as a user-specified set of timestamps, FI (r), that satisfies
the following condition: ∀T ∈ FI (r)(∃r ∈ r(r.T ∩ T �= ∅)).

This condition states that fixed intervals must intersect with intervals in the argument
relation. The explicit specification of result groups with fixed intervals allows control
of the cardinality of the result relation. We use the following definition for quantifying
the result size relative to the argument size.

Definition 4. (Aggregation factor) The aggregation factor of a temporal aggregation
operator is defined as the ratio between the cardinality of the result relation z and the
cardinality of the argument relation r, i.e., af = |z|/|r|.

This factor is between 0 and 1 if the result relation is smaller than the argument relation,
1 if the result relation has the same size as the argument relation, and > 1 if the result
relation is larger than the argument relation. For instance, the aggregation factor is 9/8
for Query 1 and 4/8 for Query 2.

Having defined result groups, we associate a set of tuples from the argument re-
lation, called aggregation group, with each result group. The aggregate(s) for each
group is computed over this set. The aggregation groups can be defined by a condi-
tion θ(g, r) that for each input tuple r decides whether it contributes to result group
g or not. The condition can involve non-temporal and timestamp attributes. Important
classes of conditions are conjunctions of equality conditions for non-temporal attributes
and the overlaps relationship for timestamps.

4.3 Definition of the TMDA Operator

The TMDA operator separates the specification of the result groups from the assignment
of the input tuples to these result groups, thus providing an expressive framework for
temporal aggregation.

Definition 5. (TMDA operator) Let r and g be relations with timestamp attribute T ,
F = {fAi1

, . . . , fAip
} be a set of aggregate functions over attributes in r, θ be a

condition over attributes in g and r, and let C be attribute characteristics for r. We
define the temporal multi-dimensional aggregation operator as

GT [F][θ][T ][C](g, r) = {x | g ∈ g ∧
rg = {{r′ | r ∈ r ∧ θ(g, r) ∧ r′ = adj (r, g.T , C)}} ∧
x = g ◦ (fAi1

(π[Ai1 ](rg)), . . . , fAip
(π[Aip ](rg)))}

where π is a duplicate-preserving projection.
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Relation g is the group relation that defines the result groups, or (sub-) tuples that will be
expanded into result tuples. Relation r is the (conventional) argument relation. Predicate
θ associates an aggregation group, rg ⊆ r, with each g ∈ g. Thereby, the argument
tuples are adjusted to the timestamp of the result group, which is also the timestamp of
the result tuple. The aggregation functions fAi1

, . . . , fAip
are then computed over each

aggregation group. The schema of the result relation is the schema of g augmented
with a column for each aggregate value, which for the scope of this paper are labeled
fAi1

, . . . , fAip
.

Example 1. Query 2 can be expressed as follows: z = GT [F][θ][T ][C](g, EMPL/r),
where

g : The two leftmost columns in Fig. 3
F = {sumH ,maxS}
θ = (g.D = r.D) ∧ overlaps(g.T , r.T )
C = (c, c, c, c, m, c)

The group relation g contains a tuple for each combination of department and year.
Aggregate functions sum and max on hours and salary are used. The condition θ asso-
ciates with a result group those argument tuples that have the same department value as
the result group and overlap with the group’s timestamp. For example, the aggregation
group for the DB department in 2003 consists of the tuples r1, r3, r4, and r6.

The attribute H is malleable and is adjusted z
D T sumH maxS

DB [2003/01,2003/12] 1620 1000
DB [2004/01,2004/12] 1500 900
AI [2003/01,2003/12] 1200 2000
AI [2004/01,2004/12] 900 1800

Fig. 3. Temporal Aggregation with
Fixed Interval Semantics

to the timestamp of the group specification be-
fore it is passed on to the aggregate functions.
Therefore, r1, r3, r4, and r6 contribute to the
sum of hours of the DB department in 2003 with
the values 1920, 500, 700, and 400, respectively.
Attribute S is constant, so the adjustment has no
effect.

The result relation is shown in Fig. 3. Each
result tuple is composed of a result group tuple extended by a value for each aggregate
function. To improve readability these two parts are separated by a vertical line.

4.4 Partial Specification of Result Groups

The definition of the TMDA operator requires a completely specified group relation g.
For the constant interval semantics, however, the timestamps of the result tuples are
calculated from the argument tuples and are not available in advance. To handle this
case, we pass on a relational algebra expression that computes the constant intervals,
thus reducing constant intervals to fixed intervals.

GT [F][θ ∧ overlaps(g.T , r.T )][T ][C](CI (g′, r, θ)/g, r)

Now the group relation g is given as an expression CI (g′, r, θ) that computes the con-
stant intervals over the argument relation r based on a group relation g′ that contains
the non-temporal groups. This expression basically completes the non-temporal group
relation g′ with the constant intervals, i.e., g = {g[B1, . . . , Bm] ◦ T | g ∈ g′ ∧ T ∈
CI(g′, r, θ)}.
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While this reduction of constant interval semantics to fixed interval semantics is
sound from a semantic point of view, the computation of constant intervals in advance
requires operations such as join and union that are computationally costly, as we will
illustrate in the experimental section. To improve on the computational efficiency, we
introduce partially specified result groups.

Definition 6. (Partially Specified Result Groups) A result group with schema G =
(B1, . . . , Bm,T ) is partially specified iff the value of the timestamp attribute is not
specified. We represent a partially specified result tuple as g = (v1, . . . , vm, [∗, ∗]).
With partially specified result groups in place, we push the completion of the result
groups with constant intervals into the algorithm for the evaluation of the temporal
multidimensional aggregation operator. The constant intervals are computed on the fly
while scanning the data relation for the calculation of the aggregates. The partially
specified result tuples are replicated to all constant intervals for the corresponding ag-
gregation groups. The overlaps relation from condition θ that assigns the relevant data
tuples to the constant intervals is applied implicitly by the evaluation algorithm.

Example 2. To express Query 1 we apply the constant interval semantics with a group
relation g that contains the partially specified result groups {(DB , [*,*]), (AI , [*,*])}.
The query is then expressed as z = GT [F][θ][T ][C](g, EMPL/r), where

z
D T sumH maxS

DB [2003/01,2003/05] 1500 1200
DB [2003/06,2003/10] 1500 1200
DB [2003/11,2003/12] 520 1200
DB [2004/01,2004/03] 750 1200
DB [2004/04,2004/06] 150 500
DB [2004/07,2004/09] 750 1500
DB [2004/10,2004/12] 150 500
AI [2003/04,2003/09] 1200 2000
AI [2004/01,2004/06] 900 1800

Fig. 4. Constant Interval Semantics
with Partially Specified Result Groups

F = {sumH ,maxS}
θ = (g.D = r.D)
C = (c, c, c, c, m, c)

The condition θ contains only non-temporal con-
straints. The aggregation group for department
DB contains six input tuples that induce seven
constant intervals. For department AI , we have
two input tuples and two constant intervals. The
result relation is shown in Fig. 4. Unlike in previ-
ous approaches [10, 6], we do not coalesce con-
secutive tuples with the same aggregate values,
as illustrated by the two first DB tuples; we keep
them separate since their lineage is different.

Converting the result set produced by the TMDA operator to the traditional format
of result sets produced by temporal aggregation operators, where consecutive tuples
with the same aggregate value are coalesced, can be achieved easily. Thus, the result
sets produced by the TMDA operator retains lineage information, and this additional
information is easy to eliminate.

5 Implementation of the TMDA Operator

5.1 Idea and Overview

The implementation of the TMDA operator for constant intervals is based on the follow-
ing observation: if we scan the argument relation, which is ordered by the interval start
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r1 = (Jan,140,DB,P1,2400,1200)

r8 = (Tom,153,AI,P1,900,1800)

r3 = (Ann,141,DB,P2,500,700)

r2 = (Jan,163,DB,P1,600,1500)

r5 = (Ann,157,DB,P1,600,500)

r6 = (Sue,142,DB,P2,400,800)

r4 = (Ann,150,DB,P2,1000,800)

2003/01 2003/07 2003/10 2004/01 2004/04 2004/07 2004/102003/04

(DB,1500,1200)

r7 = (Tom,143,AI,P2,1200,2000)

Fig. 5. Processing Input Tuples in TMDA-CI

values of the tuples, we can at any time point t compute the result tuples that end before
t (assuming that no tuples that start after t contribute to these result tuples). Hence, as
the argument relation is being scanned, result tuples are produced, and old tuples are
removed from main memory. Only the tuples that are valid at time point t, termed open
tuples, are kept in main memory.

Figure 5 illustrates this evaluation strategy for Query 1, showing the situation after
reading tuples r1, r3, r6, r7, and r4, in that order. Thick lines are used for open tu-
ples, dashed lines are used for closed tuples, and solid lines are used for tuples not yet
scanned. Grey rectangles indicate the advancement of time. For example, after reading
r4, the first result tuple for the DB department is computed, r3 is closed, and the cur-
rent time instant for the DB group is 2003/06; three tuples remain open, and two tuples
have not yet been processed. For the AI departement, one tuple is open and one tuple
is to be processed.

For the use with fixed intervals, the timestamps of the result tuples are specified in
the group relation. So, we do not need to maintain the data tuples in main memory, but
can process them and update the aggregate values as we scan the data relation.

In the rest of this section we describe in detail two algorithms for the evaluation of
TMDA with constant intervals and fixed intervals, respectively.

5.2 The TMDA-CI Algortihm for Constant Intervals

Figure 6 shows the algorithm, termed TMDA-CI, that evaluates GT with constant in-
tervals. The algorithm has five input parameters: the group relation g, the argument
relation r, a list of aggregate functions F = {fAi1

, . . . , fAip
}, a selection predicate θ,

and attribute characteristics C. The output is a temporal relation that is composed of g
extended by the values of the aggregate functions in F.

The algorithm uses two types of data structures. A group table gt stores each
tuple g ∈ g, together with a pointer to an end-point tree T . An end-point tree
T maintains the (potential) end points of the constant intervals together with the
relevant attribute values of the currently open tuples. The tree is organized by the
end points of the constant intervals, i.e., the end points Te of the data tuples plus
the time points immediately preceding each data tuple. A node with time instant
t stores the attribute values r.A1, . . . , r.Ap, r.Ts of all data tuples r that end at t.
For example, for Query 1 the aggregation tree for the DB department contains a
node with time instant 2004/03 that stores the attribute values of r1 and r4, i.e.,
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Algorithm:TMDA-CI(g, r,F, θ, C)

if g = π[A1, . . . , Am](r) then
gt ← empty group table with columns B1, . . . , Bm,T , T ;

else
Initialize gt with (g, empty T ), g ∈ g, and replace timestamp T by [−∞, ∗];

Create index for gt on attributes B1, . . . , Bm; z ← ∅;
foreach tuple r ∈ r in chronological order do

if g = π[A1, . . . , Am](r) and r.A1, . . . , r.Am not yet in gt then
Insert (r.A1, . . . , r.Am, [−∞, ∗], empty T ) into gt ;

foreach i ∈ LOOKUP(gt , r, θ) do
if r.Ts > gt [i].Ts then

Insert a new node with time r.Ts−1 into gt [i].T (if not already there);
foreach v ∈ gt [i].T in chronological order, where v.t < r.Ts do

gt [i].Te ← v.t;
z ← z ∪ RESULTTUPLE(gt [i], F, C);
gt [i].T ← [v.t + 1, ∗];
Remove node v from gt [i].T ;

v ← node in gt [i].T with time v.t = r.Te (insert a new node if required);
v.open ← v.open ∪ r[A1, . . . , Ap,Ts];

foreach gt [i] ∈ gt do
foreach v ∈ gt [i].T in chronological order do

Create result tuple, add it to z, and close past nodes in gt [i].T ;

return z;

Fig. 6. The Algorithm TMDA-CI for Constant Interval Semantics

(2004/03, {(2400, 1200, 2003/01), (1800, 800, 2003/06)}). A node that stores a po-
tential end point t of a constant interval, but with no tuples ending at t, has an empty
data part. For example, tuple r5 terminates a constant interval and starts a new one;
hence node (2003/12, {}) will be in the tree. In our implementation we use AVL-trees
for end-point trees.

The first step of the algorithm is to initialize the group table gt . If g is a projection
over r, the group table is initially empty and will be populated while scanning the
argument tuples. Otherwise, gt is initialized with g, with the start time of the entries set
to −∞, and an empty end-point tree is generated for each entry. Finally, an index over
the non-temporal attributes is created.

The next step is to process the argument relation r chronologically with respect to the
start times of the tuples. If the group relation is a relational algebra expression, we might
have to extend the group table with a new entry before the function LOOKUP determines
all result groups to which data tuple r contributes. For each matching result group, two
steps are performed: First, if r advances the current time (r.Ts > gt [i].Ts), one or
more constant intervals can be closed. Chronon r.Ts−1 is a potential end point of a
constant interval and is inserted into gt [i].T . Then we process all nodes v in gt [i].T with
v.t < r.Ts in chronological order. Thereby, the timestamp in the group table assumes
the constant intervals. We compose the corresponding result tuples and remove the node
from the tree. Second, we update the end-point tree with the new data tuple r.
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The function LOOKUP gets as input parameters the group table gt , a tuple r, and
the selection condition θ. It evaluates the condition θ for all pairs (g, r), g ∈ gt , and
returns the indexes of the matching result groups. For the constant interval semantics,
an AVL-tree on the non-timestamp attributes is used. For the fixed interval semantics
(see algorithm TMDA-FI in Sect. 5.3), we use two AVL-trees, one on the start time and
one on the end time of the timestamps. Fixed interval semantics allow us to combine
indexes on the timestamps and the non-timestamp attributes.

The algorithm RESULTTUPLE gets as input an entry of the group table gt [i], the set
of aggregate functions F, and the attribute characteristics C. It returns the result tuple
for the constant interval gt [i].T , or the empty set if there are no open tuples in the
interval gt [i].T . A result tuple is composed of the result group stored in gt [i] extended
by the values of the aggregate functions that are computed over all nodes in gt [i].T .
The algorithm scans all nodes in the tree, adjusts the attribute values, and computes the
aggregate values.

Example 3. We consider the evaluation of Query 1 with algorithm TMDA-CI. Having
initialized the group table gt , relation EMPL is processed in chronological order: r1, r3,
r6, r7, r4, r5, r8, r2. For r1, function LOOKUP returns the set {1}. A new node with
time 2004/03 and the attribute values of H , S , and Ts is inserted into T1, and the start
time of the next constant interval is set to 2003/01 (see Fig. 7a).

Group table gt End-point tree T1 Result relation z

(a)
D T T

1 DB [2003/01, ∗] T1
2 AI [−∞, ∗] T2

2004/03−{(2400,1200,2003/01)} D T sumH maxS

(b)
D T T

1 DB [2003/01, ∗] T1
2 AI [2003/04, ∗] T2

2003/05−{(500,700,2003/01)} 2004/03−{(2400,1200,2003/01)}

2003/10−{(400,800,2003/01)} D T sumH maxS

(c)
D T T

1 DB [2003/06, ∗] T1
2 AI [2003/01, ∗] T2

2003/10−{(400,800,2003/01)}

2004/03−{(2400,1200,2003/01),
(1000,800,2003/06)}

D T sumH maxS
DB [2003/01,2003/05] 1500 1200

(d)
D T T

1 DB [2004/01,∗] T1
2 AI [2004/01,∗] T2

2004/03−{(2400,1200,2003/01),

2004/12−{(600,500,2004/01)}

(1000,800,2003/06)}
D T sumH maxS
DB [2003/01,2003/05] 1500 1200
DB [2003/06,2003/10] 1500 1200
DB [2003/11,2003/12] 520 1200
AI [2003/04,2003/09] 1200 2000

Fig. 7. Evaluation of TMDA-CI after processing r1, r3, r6, r7, r4, r5, and r8

Figure 7b shows the situation after processing r1, r3, r6, and r7. T1 contains three
nodes, T2 contains one node, and the start time of the next constant interval for the AI
result group is set to the start time of r7.

The next input tuple is r4 for the DB department. Since its start time advances in
time, we close the currently open interval and get [2003/01, 2003/05] as the first con-
stant interval for which a result tuple is computed. The adjustment of the attribute values
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Algorithm:TMDA-FI(g, r, F, θ, C)

if g = π[A1, . . . , Am, cast(T , G)](r) then
gt ← empty group table with columns A1, . . . , Am,T , fAi1

, . . . , fAip
;

else
Initialize gt to g and extend it with columns fAi1

, . . . , fAip
initialized to NULL;

Create index for gt on attribute T ;
foreach tuple r ∈ r do

if g = π[A1, . . . , Am,T ](r) then
foreach t ∈ cast(r.T , G) do

Insert r.A1, . . . , r.Am, t into gt if not already there;

foreach i ∈ LOOKUP(gt , r, θ) do
r′ ← ADJUST(r, gt [i].T, C);
foreach fj ∈ F do gt [i].fAij

← gt [i].fAij
⊕ r′.Aij ;

return gt ;

Fig. 8. The Algorithm TMDA-FI for Fixed Interval Semantics

to the constant interval yields 800 + 500 + 200 = 1500 for the sum function (attribute
H is malleable) and max (1200, 700, 800) = 1200 for the max function (attribute S is
constant). The node with time 2003/05 is removed from T1, and the start time of the
next constant interval is set to 2003/06. Finally, the relevant data of r4 are added to the
already existing node with time 2004/03. This situation is shown in Fig. 7c.

The next input tuples are r5 and r8, of which r5 contributes to the DB group and
gives rise to two result tuples. Tuple r8 contributes to the AI group and gives rise to
the first result tuple for that group. See Fig. 7d.

5.3 The TMDA-FI Algorithm for Fixed Intervals

Figure 8 shows the TMDA-FI algorithm for the evaluation of operator GT with fixed
interval semantics. The main data structure is the group table gt that stores the group
relation g and has an additional column labeled fAij

for each aggregate function fAij
∈

F. The result groups, including their timestamps, are completely specified, so the data
tuples need not be stored in an end-point tree, but can be processed as they are read,
yielding an incremental computation of the aggregate values.

6 Properties

6.1 Complexity

For the complexity analysis of TMDA-CI, only the processing of the data relation r is
relevant, which is divided into four steps: (possibly) update of the index, lookup in the
index, production of result tuples, and insertion of the tuple in the end-point tree.

The update of the index and the lookup in the group table have complexity log ng,
where ng is the cardinality of the group table. The production of a single result tuple is
linear in the number no of open tuples. The average number of result tuples induced by



270 M. Böhlen, J. Gamper, and C.S. Jensen

a data tuple depends on the aggregation factor af = nz/nr, where nz is the cardinality
of the result relation and nr is the cardinality of the data relation, and on the number
of result groups to which r contributes, denoted as ng,r . Finally, the insertion of a tuple
in an end-point tree has complexity log no. This yields an overall time complexity for
TMDA-CI of O(nr max(log ng, ng,r af no, log no)). In general, the size of the data
relation nr might be very large, while all other parameters shall be small. The factor
ng,r depends on the selectivity of the condition θ, and is 1 for equality conditions. The
aggregation factor, which is between 0 and 2, and the number of open tuples no depend
mainly on the temporal overlapping of the data tuples. The worst-case complexity is
O(n2

r) if the start and end points of all data tuples are different and there is a time
instant where all tuples hold, hence no = nr.

The support for different attribute characteristics comes at a price. For each result
tuple, it requires a scan of the entire end-point tree and an adjustment of the attribute
values, which becomes a major bottleneck in cases with a large number of open tuples
and a high aggregation factor. If only constant attributes were used, the aggregate values
could be calculated incrementally similar to [5], as we show later in our experiments.

In the TMDA-FI algorithm, there is no need to maintain the open data tuples, and
the aggregate values can be calculated incrementally as the data relation is scanned. The
time complexity of TMDA-FI is O(nr max (log ng, ng,r)).

6.2 A Spectrum of Temporal Aggregation Operators

The TMDA operator is rather general. The group relation g is completely independent
of the data relation r and has the only objective to group the results. This arrangement
offers enormous flexibility in arranging the results according to various criteria, and it
enables the formulation of a range of different forms of temporal aggregates, including
the ones proposed previously.

Lemma 1. (Aggregation Using Temporal Group Composition [10]) Let g, r,F, θ, and
C be as in Definition 5, SP be a selection predicate over r as in [10], and let chG be
a relation with a single attribute CH that contains all chronons at granularity level G.
The operator GT [F][θ][T ][c, . . . , c](g, r) with fixed interval semantics simulates aggre-
gation using temporal group composition if g and θ are defined as follows:

g = π[CH ,CH ](r � [overlaps(T , [CH ,CH ])]chG)
θ = SP(r) ∧ overlaps(g.T , r.T )

If the partitioning of the timeline is at the smallest granularity level, temporal group
composition simulates instantaneous aggregates [4]; and by transitivity, so does GT .

Lemma 2. (Cumulative Temporal Aggregates [6]) Let g, r, F, θ, and C be as in Defi-
nition 5, let w be a window offset, and let ch be a relation with a single attribute CH
that contains the set of chronons at the lowest granularity level supported by the rela-
tion. The operator GT [F][θ][T ][c, . . . , c](g, r) with fixed interval semantics simulates
cumulative temporal aggregates if g and θ are defined as follows:

g = π[CH ,CH ](r � [overlaps([Ts,Te+w],CH )]ch)
θ = overlaps([g.Te−w,g.Te], r.T )
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All temporal aggregates developed so far assume a partitioning of the timeline and com-
pute aggregates at time instants. The TMDA operator is more expressive and allows
the computation of additional flavors of temporal aggregates. For example, Query 3 is
a kind of moving-window aggregate that computes aggregate values over overlapping
time intervals. This form of temporal aggregate can easily be expressed by an appropri-
ate group relation.

Another example is the calculation of quarter values that considers data tuples from
the corresponding quarter in the past 5 years. In this query, data tuples that contribute
to a result tuple are selected from non-contiguous intervals and from outside of the
result tuple’s timestamp. This functionality has not been addressed in previous temporal
aggregation operators. The TMDA operator can afford for such queries by an approriate
θ condition.

7 Experimental Evaluation

We carried out a number of experiments with the TMDA-CI and TMDA-FI algo-
rithms, investigating their performance for various settings. All experiments were run
on an Intel Pentium workstation with a 3.6 GHz processor and 2 GB memory.

For the experiments, we use data relations that contain from 200, 000 to 1, 000, 000
tuples. The lifespan of the data relations is [0, 225], and we experiment with the follow-
ing instances [11]:

– rseq : Sequential tuples with one open tuple at each time instant; af = 1.
– requal : All tuples have the same timestamp; af ∈ [0.000001, 0.000005].
– rrandom : Start time and duration of the tuples are uniformly distributed in

[0, 225] and [1, 4000], respectively, with 33 open tuples on average; af ∈
[1.940553, 1.987989].

– rworst : All start and end points are different, and there is a constant interval (in the
middle) where all tuples are open; af ∈ [1.999995, 1.999999].

The group relation contains one entry. This is a worst case since all timestamps end up
in the same end-point tree. A group table with more tuples would yield smaller end-
point trees and thus better performance.

7.1 Scalability of TMDA-CI and TMDA-FI

The first experiment investigates the scalability of TMDA-CI. Figure 9(a) shows how
the time complexity depends on the number of open tuples and the aggregation factor.
Relation rworst with the largest possible number of open tuples and the maximal ag-
gregation factor for constant intervals has a running time that is quadratic in the size
of the data relation. For all other data sets, the running time exhibits a linear behavior.
Relation requal has an aggregation factor close to 0 although the number of open tuples
is maximal (however, they are scanned only once). Most of the time (60% for rrandom

and 97% for rworst ) is spent in pruning the end-point tree and computing the result tu-
ples. For each constant interval, the end-point tree must be scanned to adjust malleable
attribute values and compute the aggregated value.
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Fig. 9. Evaluation of TMDA-CI and TMDA-FI

The performance of TMDA-FI is not affected by overlapping tuples since the ag-
gregate result is computed incrementally. The key parameter in terms of performance
is the number of result groups and the efficiency of the available lookup technique (for
each tuple in r, we must find all groups that satisfy the θ condition and therefore have
to be updated). Since we use AVL-trees for indexing result groups, the performance
increases along with the number of groups, as illustrated in Fig. 9(b). If we used hash-
ing, the lookup time would be constant. However, a hashing only supports equality
conditions.

Figure 10 investigates the performance impact of varying the main parameters on the
algorithms applied to data relation rrand . Figure 10(a) shows the running time when
varying the number of open tuples. The performance decreases since with malleable
attributes, all open tuples have to be stored in the end-point tree. As soon as a con-
stant interval has been found, the end-point tree is traversed, the attribute values are
adjusted, and the final aggregate is computed. We have also included the performance
of a variation of TMDA-CI, denoted TMDA-CIc, that supports constant attributes
only. TMDA-CIc incrementally computes the aggregates, and its performance is inde-
pendent of the number of open tuples.
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Figure 10(b) evaluates the performance for real-world salary data from the Univer-
sity of Arizona. The figure shows that the performance on the real-world data is much
better than the performance on most syntetic data sets.
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7.2 Constant Versus Fixed Intervals

Figure 11(a) shows the result of computing aggregates with constant interval semantics
in two different ways: (1) TMDA-CI with partially specified result groups, and (2) CI-
SQL + TMDA-FI, i.e., a priori computation of constant intervals using SQL followed
by a call to TMDA-FI. The results confirm that TMDA-CI with partially specified
result groups is indeed an efficient way of computing aggregates with constant interval
semantics.
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Fig. 11. Constant versus Fixed Interval Semantics

Figure 11(b) evaluates TMDA-CI and TMDA-FI for varying result groups. As
expected, the performance of TMDA-FI decreases as the number of groups in-
creases. However, up to an aggregation factor of almost 50% FI outperforms CI. Thus,
TMDA-FI is efficient for reasonable aggregation factors, and it permits to precisely
control the aggregation factor.

7.3 Comparison with the Balanced Tree Algorithm

The last experiment compares TMDA-CI with the balanced-tree algorithm proposed
in [5]. This is the most efficient algorithm developed so far, but note that it only handles
sum, cnt , and avg—it does not support malleable attributes. Figure 12(a) compares the
running time of the balanced-tree algorithm, TMDA-CI, and a modified version, called
TMDA-CIc, that supports only constant attributes and allows incremental computation
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of aggregate values. While TMDA-CIc has the same performance as the balanced-
tree algorithm, the experiments show that the support for multiple attribute charac-
teristics in TMDA-CI is costly and that the DBMS should identify cases when no
malleable attributes are present and TMDA-CIc can be used. The memory consump-
tion of TMDA-CI depends only on the number of open tuples and is much smaller than
for the balanced-tree algorithm (see Fig. 12(b)).

8 Conclusion

This paper presents a new aggregation operator, the Temporal Multi-Dimensional Ag-
gregation (TMDA) operator, that leverages recent advances in multi-dimensional query
processing [1, 2, 3] to apply to interval-valued data. The TMDA operator generalizes a
variety of previously proposed aggregation operators. Most importantly, it clearly sep-
arates the definition of result groups from the definition of aggregation groups, i.e., the
collections of argument tuples that are associated with the result groups and over which
the aggregate functions are computed. This leads to a very expressive framework that
allows also to control the size of the result relation. Next, the TMDA operator sup-
ports multiple attribute characteristics, including malleable attributes where an attribute
value has to be adjusted if the tuple’s timestamp changes. Finally, we provid two dif-
ferent algorithms for the evaluation of the TMDA operator with constant intervals and
fixed intervals, respectively. Detailed experimental evaluations show that the algorithms
are scalable with respect to data set size and compare well with other temporal aggre-
gation algorithms. The evaluation also reveals that the support for multiple attribute
characteristics comes at a cost.

Future work includes various optimization steps of the TMDA-CI and TMDA-FI
algorithms, including the following ones: optimization rules for relational algebra ex-
pressions that interact with the TMDA operator, the initialization of the group table on
the fly, indexes on the group table, and a variation of the end-point tree that does not
require a totally sorted data relation.
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Abstract. Similarity search in time series data is required in many
application fields. The most prominent work has focused on similarity
search considering either complete time series or similarity according
to subsequences of time series. For many domains like financial analy-
sis, medicine, environmental meteorology, or environmental observation,
the detection of temporal dependencies between different time series is
very important. In contrast to traditional approaches which consider the
course of the time series for the purpose of matching, coarse trend in-
formation about the time series could be sufficient to solve the above
mentioned problem. In particular, temporal dependencies in time se-
ries can be detected by determining the points of time at which the
time series exceeds a specific threshold. In this paper, we introduce the
novel concept of threshold queries in time series databases which report
those time series exceeding a user-defined query threshold at similar time
frames compared to the query time series. We present a new efficient ac-
cess method which uses the fact that only partial information of the
time series is required at query time. The performance of our solution
is demonstrated by an extensive experimental evaluation on real world
and artificial time series data.

1 Introduction

Similarity search in time series data is required in many application fields, includ-
ing financial analysis, medicine, meteorology, analysis of customer behavior, or
environmental observation. As a consequence, a lot of research work has focused
on similarity search in time series databases recently.

In this paper, we introduce a novel type of similarity queries on time series
databases called threshold queries. A threshold query specifies a query time series
Q and a threshold τ . The database time series as well as the query sequence Q
are decomposed into time intervals of subsequent elements where the values are
(strictly) above τ . Now, the threshold query returns these time series objects of
the database which have a similar interval sequence of values above τ . Note, that
the entire set of absolute values are irrelevant for the query. The time intervals
of a time series t only indicate that the values of t within the intervals are above
a given threshold τ .

The novel concept of threshold queries is an important technique useful in
many practical application areas.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 276–294, 2006.
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Application 1. For the pharma industry it is interesting which drugs cause
similar effects in the blood values of a patient at the same time after drug
treatment. Obviously, effects such as a certain blood parameter exceeding a
critical level τ are of particular interest. A threshold query can return for a
given patient all patients in a database who show a similar reaction to a medical
treatment w.r.t. a certain blood parameter exceeding the threshold τ .
Application 2. The analysis of environmental air pollution becomes more and
more important and has been performed by many European research projects in
the recent years. The amount of time series data derived from environmental ob-
servation centers, increases drastically with elapsed time. Furthermore, modern
sensor stations record many attributes of the observed location simultaneously.
For example, German state offices for environmental protection maintain about
127 million time series each representing the daily course of several air pollution
parameters. An effective and efficient processing of queries like ”return all ozone
time series which exceed the threshold τ1 = 50μg/m3 at a similar time as the
temperature reaches the threshold τ2 = 25◦C” may be very useful. Obviously,
the increasing amount of data to be analyzed poses a big challenge for methods
supporting threshold queries efficiently.
Application 3. In molecular biology the analysis of gene expression data is
important for understanding gene regulation and cellular mechanisms. Gene ex-
pression data contains the expression level of thousands of genes, indicating how
active one gene is over a set of time slots. The expression level of a gene can be
up (indicated by a positive value) or down (negative value). From a biologist’s
point of view, it is interesting to find genes that have a similar up and down pat-
tern because this indicates a functional relationship among the particular genes.
Since the absolute up/down-value is irrelevant, this problem can be represented
by a threshold query. Each gene provides its own interval sequence, indicating
the time slots of being up. Genes with similar interval sequence thus have a
similar up and down pattern.

Time series (sometimes also denoted as time sequences) are usually very large
containing several thousands of values per sequence. Consequently, the compar-
ison of two time series can be very expensive, particularly when considering
the entire sequence of values of the compared objects. However, the application
examples above do not need the entire course of the time series, rather ”qual-
itative” course information with respect to a certain threshold is sufficient to
determine the correct query results. Consider again the query example of the
second application. Let us assume, that we have the information when the ozone
values are above 50μg/m3 for all ozone sequences in form of time intervals. Then,
the processing of this query is reduced to compare sequences of time intervals.
Usually, the number of intervals is much less than the number of ozone values
per ozone sequence. With this aggregated information, obviously the query can
be answered more efficiently compared to the approach where the time intervals
are not given in advance.

As mentioned above, this is the first contribution to the novel concept of
threshold queries for time series databases.
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In summary, our contributions are the following:

– We introduce and formalize the novel concept of threshold queries on time
series databases.

– We present a novel data representation of time series which support such
threshold queries efficiently.

– We propose an efficient algorithm for threshold queries based on this new
representation.

– We present a broad experimental evaluation including performance tests of
our proposed algorithms and the evidence that the new type of query yields
important information and is thus required in several application fields.

The remainder is organized as follows. We give a short overview of the field
of similarity search in time series databases in Section 2. Section 3 formally
introduces the notion of threshold queries. In Section 4, we show how time series
can be represented in order to support threshold queries for arbitrary threshold
values efficiently. Section 5 describes an efficient query algorithm based on the
proposed representation. The effectiveness and efficiency of our algorithm are
evaluated in Section 6. Section 7 concludes the paper with a summary of our
findings and an outlook to future extensions.

2 Related Work

In the last decades, time series have become an increasingly prevalent type of
data. As a result, a lot of work on similarity search in time series databases has
been published. The proposed methods mainly differ in the representation of the
time series; a survey is given in [1].

A time series X can be considered as a point in n-dimensional space. This
suggests that time series could be indexed by spatial access methods such as the
R-tree and its variants [2]. However, most spatial access methods degrade rapidly
with increasing data dimensionality due to the “curse of dimensionality”. In or-
der to utilize spatial access methods, it is necessary to perform dimensionality
reduction and/or to perform multi-step query processing. Standard techniques
for dimensionality reduction have been applied successfully to similarity search
in time series databases, including Discrete Fourier Transform (DFT) (e.g. [3]),
Discrete Wavelet Transform (DWT) (e.g. [4]), Piecewise Aggregate Approxima-
tion (PAA) (e.g. [5]), Singular Value Decomposition (SVD) (e.g. [6]), Adaptive
Piecewise Constant Approximation (APCA) [1], and Chebyshev Polynomials [7].
In [8], the authors propose the GEMINI framework, that allows to incorporate
any dimensionality reduction method into efficient indexing, as long as the dis-
tance function on the reduced feature space fulfills the lower bounding property.

However, all techniques which are based on dimensionality reduction cannot
be applied to threshold queries because necessary temporal information is lost.
Usually, in a reduced feature space, the original intervals indicating that the
time series is above a given threshold cannot be generated. In addition, the
approximation generated by dimensionality reduction techniques cannot be used
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Threshold-Crossing Time Interval Sequence (TCT  )           A
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Fig. 1. Threshold-Crossing Time Intervals

for our purposes directly because they still represent the exact course of the time
series rather than intervals of values above a threshold.

For many applications, the Euclidean distance may be too sensitive to minor
distortions in the time axis. It has been shown, that Dynamic Time Warping
(DTW) can fix this problem [1]. Using DTW to measure the distance between
two time series t1 and t2, each value of t1 may be matched with any value of
t2. However, DTW is not applicable to threshold queries because it considers
the absolute values of the time series rather than the intervals of values above a
given threshold.

In [9], a novel bit level approximation of time series for similarity search and
clustering is proposed. Each value of the time series is represented by a bit.
The bit is set to 1 if the value of the time represented by the bit is strictly
above the mean value of the entire time series, otherwise it is set to 0. Then, a
distance function is defined on this bit level representation that lower bounds the
Euclidean distance and, by using a slight variant, lower bounds DTW. However,
since this representation is restricted to a certain predetermined threshold, this
approach is not applicable for threshold queries where the threshold is not known
until query time.

To the best of our knowledge, there does neither exist any access method
for time series, nor any similarity search technique which efficiently supports
threshold queries.

3 Threshold Queries on Time Series

In this section, we introduce the novel concept of threshold queries and present
techniques allowing for an efficient query processing. We define a time series
X as a sequence of pairs (xi, ti) ∈ R × T : (i = 1..N), where T denotes the
domain of time and xi denotes the measurement corresponding to time ti. Fur-
thermore, we assume that the time series entities are given in such a way that
∀i ∈ 1, .., N − 1 : ti < ti+1. Let us note, that in most applications the time series
derive from discrete measurements of continuously varying attributes. However,
commonly time series are depicted as continuous curves, where the missing curve
values (i.e. values between two measurements) are estimated by means of inter-
polation. From the large range of appropriate solutions for time series interpo-
lation, in this paper we assume that the time series curves are supplemented by
linear interpolation which is the most prevalent interpolation method. In the rest
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of this paper, if not stated otherwise, x(t) ∈ R denotes the (interpolated) time
series value of time series X at time t ∈ T .

Definition 1 (Threshold-Crossing Time Interval Sequence). Let X =
〈(xi, ti) ∈ R×T : i = 1..N〉 be a time series with N measurements and τ ∈ R be
a threshold. Then the threshold-crossing time interval sequence of X with respect
to τ is a sequence TCTτ (X) = 〈(lj , uj) ∈ T ×T : j ∈ {1, ..,M},M ≤ N〉 of time
intervals, such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj) ⇔ x(t) > τ.

An interval tctτ,j = (lj , uj) of TCTτ (X) is called threshold-crossing time inter-
val.

The example shown in Figure 1 depicts the threshold-crossing time interval se-
quence of the time series A which corresponds to threshold τA.

Definition 2 (Distance between Time Intervals). Let t1 = (t1l, t1u) ∈
T × T and t2 = (t2l, t2u) ∈ T × T be two time intervals. Then the distance
function dint : (T × T ) × (T × T ) → between two time intervals is defined as:

dint(t1, t2) =
√

(t1l − t2l)2 + (t1u − t2u)2

Intuitively, two time intervals are defined to be similar if they have ”similar”
starting and end points, i.e. they are starting at similar times and ending at
similar times.

Since for a certain threshold τ a time series object is represented by a sequence
or a set of time intervals, we need a distance/similarity measure for sets of
intervals. Let us note, that intervals correspond to points in a two-dimensional
space, where the starting point corresponds to the first dimension and the ending
point corresponds to the second dimension. This transformation is explained in
more detail in the next section. Several distance measures for point sets have
been introduced in the literature [10]. The Sum of Minimum Distances (SMD)
most adequately reflects the intuitive notion of similarity between two threshold-
crossing time interval sequences. According to the SMD we define the threshold-
distance dTS as follows:

Definition 3 (Threshold-Distance). Let X and Y be two time series and
SX = TCTτ (X) and SY = TCTτ (Y ) be the corresponding threshold-crossing
time interval sequences.

dTS(SX , SY ) =
1

|SX | ·
∑

s∈SX

min
t∈SY

dint(s, t) +
1

|SY | ·
∑

t∈SY

min
s∈SX

dint(t, s),

The idea of this distance function is to map every interval from one sequence to
the closest (most similar) interval of the other sequence and vice versa. Time se-
ries having similar shapes, i.e. showing a similar behavior, may be transformed
into threshold-crossing time interval sequences of different cardinalities. Since
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the above distance measure does not consider the cardinalities of the interval
sequences, this distance measure is quite adequate for time interval sequences.
Another advantage is that the distance measure only considers local similarity.
This means, that for each time interval only its nearest neighbor (i.e. closest
point) of the other sequence is taken into account. Other intervals of the coun-
terpart sequence have no influence on the result.

Let us note that the threshold-distance between two time series according to
a certain threshold τ is also called τ -similarity.

Definition 4 (Threshold Query). Let TS be the domain of time series ob-
jects. The threshold query consists of a query time series Q ∈ TS and a query
threshold τ ∈ R. The threshold query reports the smallest set TSQk(Q, τ) ⊆ TS
of time series objects that contains at least k objects from TS such that

∀X ∈ TSQk(Q, τ),∀Y ∈ TS − TSQk(Q, τ) :

dTS(TCTτ (X), TCTτ (Q)) < dTS(TCTτ (Y ), TCTτ (Q)).

Let us note, that if not stated otherwise we assume k = 1 throughout the rest
of this paper.

4 Efficient Management of Threshold-Crossing Time
Intervals

The simplest way to execute a threshold query TSQk(Q, τ) is to sequentially
read each time series X from the database, to compute the threshold-crossing
time interval sequence SX = TCTτ (X) and to compute the threshold-similarity
function dTS(SX , TCTτ (Q)). Finally, we report the time series which yields the
smallest distance dTS(SX , TCTτ (Q)). However, if the time series database con-
tains a large number of objects and the time series are reasonably large, then
obviously this type of performing the query becomes unacceptably expensive.
For this reason we use a convenient access method on the time series data.

In this section, we present two approaches for the management of time series
data, both of which efficiently support threshold queries. The key point is that
we do not need to access the complete time series data at query time. Instead
only partial information of the time series objects is required. At query time
we only need the information at which time frames the time series is above the
specified threshold. We can save a lot of I/O cost if we are able to access only the
relevant parts of the time series at query time. The basic idea of our approach is
to pre-compute the TCTτ (X) for each time series object X and store it on disk
in such a way it can be accessed efficiently.

For the sake of clarity, we first present a simple approach with constant thresh-
old value τ for all queries. Afterwards, we present the general approach which
supports arbitrary choice τ .
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4.1 Representing Threshold-Crossing Time Intervals with Fixed τ

Let us assume that the query threshold τ is fixed for all queries. Then, we can
compute the corresponding TCTτ (X) for each time series X. Consequently, each
time series object is represented by a sequence of intervals. There are several
methods to store intervals efficiently, e.g. the RI-Tree [11]. However, they only
support intersection queries on interval data but do not efficiently support simi-
larity queries on interval sequences. Besides, they cannot be used for the general
approach when τ is not fixed. We propose a solution which supports similarity
queries on intervals and which can be easily extended to support queries with
arbitrary τ .

Time intervals can also be considered as points in a 2-dimensional plane[12]. In
the following we will refer to this plane as time interval plane. The 1-dimensional
intervals (native space) are mapped to the time interval plane by taking their
start and end points as two dimensional coordinates. This representations has
some advantages for the efficient management of intervals. First, the distances
between intervals are preserved. Second, the position of large intervals, which
are located within the upper-left region, substantially differs from the position
of small intervals (located near the diagonal). However, the most important
advantage is that this plane preserves the similarity of intervals according to
Definition 2. Let t1 = (x1, y1) and t2 = (x2, y2) be two time intervals, then the
distance between t1 and t2 is equal to dint(t1, t2) =

√
(x1 − x2)2 + (y1 − y2)2

which corresponds to the Euclidean distance in the time interval plane.
The complete threshold-crossing time interval sequence is represented by a

set of 2-dimensional points in the time interval plane. The transformation chain
from the original time series to the point set in the time interval plane is depicted
in Figure 2. In order to efficiently manage the point sets of all time series objects,
we can use a spatial index structure as for instance the R*-tree [13]. In particular,
the R*-tree is very suitable for managing points in low-dimensional space which
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Fig. 2. Mapping of Time Intervals to the Time Interval Plane
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are not equally distributed. Additionally, it supports the nearest neighbor query
which will be required to perform the threshold queries efficiently (more details
for the query process will be presented in Section 5). Let us note, that each
object is represented by several points in the time interval plane. Consequently,
each object is referenced by the index structure multiple times.

4.2 Representing Threshold-Crossing Time Intervals for Arbitrary τ

In contrast to the first approach presented above we will now describe how to
manage threshold queries for arbitrary threshold values τ efficiently. First, we
have to extend the transformation task of the simple approach, in such a way
that the time interval plane representations of the TCTτ s of the time series
are available for all possible threshold values τ . Therefore, we extend the time
interval plane by one additional dimension which indicates the corresponding
threshold values. In the following, we will call this space parameter space. A
2-dimensional plane along the threshold axis parallel to the (lower,upper)-plane
at a certain threshold τ in the parameter space is called time interval plane of
threshold τ .
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Fig. 3. Interval Ranges in Parameter Space

In the parameter space sets of threshold-crossing time intervals can be effi-
ciently represented as follows. As shown in the example depicted in Figure 3, the
set of all possible threshold-crossing time intervals of one time series which are
left-bounded by the segment sl and right-bounded by the segment su and whose
threshold value is between τ1 and τ2 can be represented by the segment t1, t2 in
the parameter space. The management of all threshold-crossing time intervals of
a time series can be efficiently handled, as follows: We first identify all groups
of tct-intervals which start and end at the same time series segment. Then, each
group is represented by one segment in the parameter space, which can be ef-
ficiently organized by means of a spatial index structure, e.g. the R*-tree. At
query time, the time interval plane coordinates of the threshold-crossing time
intervals corresponding to the query threshold τq can be easily determined by
computing the intersection of all segments of the parameter space with the time
interval plane P of threshold τq.
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4.3 Trapezoid Decomposition of Time Series

The set of all time intervals which start and end at the same time series segment
can be described by a single trapezoid whose left and right bounds are each
congruent with one single time series segment. Let sl = ((xl1, tl1), (xl2, tl2))
denote the segment of the left bound and sr = ((xr1, tr1), (xr2, tr2)) denote
the segment of the right bound. The top-bottom bounds correspond to the two
threshold-crossing time intervals tctτtop

and tctτbottom
whose threshold values are

computed as follows:

τtop = min(max(xl1, xl2),max(xr1, xr2));

τbottom = max(min(xl1, xl2),min(xr1, xr2));

For our decomposition algorithm we can use the following property

Lemma 1. Threshold-crossing time intervals always start at increasing time se-
ries segments (positive segment slope) and end at decreasing time series segments
(negative segment slope).

Proof. Due to Definition 1, all values of X within the threshold-crossing time
interval tctτ (X) are greater than the corresponding threshold value τ . Let us
assume that the time series segment sl which lower-bounds the time interval at
time tl has a negative slope. Then, all x(t) on sl with t > tl are lower than τ
which contradicts the definition of threshold-crossing time intervals. The validity
of Lemma 1 w.r.t. the right bounding segment can be shown analogously.

Let us note that time series objects can be considered as half-open uni-monotone
polygons in the time-amplitude plane. In the area of computational geometry
there are known several sweep-line based polygon-to-trapezoid decomposition
algorithms [14] which can be processed in O(n · logn) time w.r.t. the number of
vertices. For this work we adopted one of these decomposition algorithms. Since
the time series values are chronologically ordered, our decomposition algorithm
can be processed in linear time w.r.t. the length of the sequence.

Figure 4 shows an example of how a time series is decomposed into the set of
trapezoids. This algorithm works similar to polygon-to-trapezoid decomposition
algorithms known from the area of computational geometry. As we can assume
that the time series consist of chronologically ordered pairs (x, t), our decompo-
sition algorithm can be performed in linear time (linear w.r.t. the length of the
time series).
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Fig. 4. Time Series Decomposition
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4.4 Indexing Segments in the Parameter Space

We apply the R*-tree for the efficient management of the three-dimensional
segments representing the time series objects in the parameter space. As the R*-
tree index can only manage rectangles, we represent the 3-dimensional segments
by rectangles where the segments correspond to one of the diagonals of the
rectangles.

For all trapezoids which result from the time series decomposition, the lower
bound time interval contains the upper bound time interval. Furthermore, inter-
vals which are contained in another interval are located in the lower-right area of
this interval representation in the time interval plane. Consequently, the locations
of the segments within the rectangles in the parameter space are fixed. Therefore,
in the parameter space the bounds of the rectangle which represents a segment
suffice to uniquely identify the covered segment. Let ((xl, yl, zl), (xu, yu, zu)) be
the coordinates of a rectangle in the parameter space, then the coordinates of
the corresponding segment are ((xl, yu, zl), (xu, yl, zu)).

5 Query Algorithm

Thequery consists of aquery time seriesQandaquery threshold τ (cf.Definition4).
The first step of the query process is to determine the threshold-crossing
time interval sequence TCTτ (Q). Obviously, this can be done by one single scan
through the query object Q. Next, we have to find those time series objects from
the database which are most τ -similar to Q according to Definition 3.

5.1 Preliminaries

In this section, we assume that Q denotes the query time series which is rep-
resented by its threshold-crossing time interval sequence SQ = TCTτ (Q). Fur-
thermore, SX = v1, .., vn denotes the threshold-crossing time interval sequence
TCTτ (X) from any database time series X. Since the similarity query is per-
formed in the parameter space (or time interval plane for a certain threshold τ),
SX denotes a set1 of two-dimensional points.

5.2 Computation of the τ -Similarity

At first, we will consider the computation of the τ -similarities between time
series objects in the time interval plane. As mentioned above, the threshold-
crossing time interval sequence of a time series object corresponds to a set of
points in the time interval plane. In the following, the point set of a time series
denotes the time interval plane point representation which corresponds to the
threshold-crossing time interval sequence of the time series object.

1 In our approach it does not make any difference whether SX = TCTτ (X) denotes a
sequence or a set of intervals or points, thus for simplicity we consider SX as a set
of intervals or points.
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Given a threshold-crossing time interval, the most similar threshold-crossing
time interval in the time space (native space) (w.r.t. Definition 2) corresponds
to the nearest-neighbor in the time interval plane.

Definition 5 (k-Nearest Neighbor). Let q be a point in the time interval
plane and SX = {v1, ..., vn} be a set of points in the time interval plane. The
k-nearest-neighbor NNk,SX

(q) (k < n) of q in the set SX is defined as follows:

v = NNk,SX
(q) ∈ SX ⇔

∀v′ ∈ SX − {NNl,SX
(q) : l ≤ k} : dint(q, v) ≤ dint(q, v′).

The distance dint(q,NNk,SX
(q)) is called k-nearest-neighbor distance. For k = 1,

we simply call NN1,SX
(q) ≡ NNX(q) the nearest-neighbor of q in SX . NNl,.(q)

denotes the overall k-nearest neighbor of q, i.e. NNl,.(q) = NNl,
⋃

X∈DB X(q).
The set k − NNX(q) = {NNl,SX

(q) : ∀l ≤ k} is called k-nearest-neighbors of q.

In the time interval plane, the τ -similarity between two time series objects Q
and X can be determined by computing for all points of SQ the nearest neighbor
points in SX and, vice versa, for all points in SX the nearest neighbor points
in SQ.

5.3 Efficient Query Processing

Let us assume that we are given any query threshold τ and the point set of
the query object Q in the time interval plane of τ . A straightforward approach
for the query process would be the following: First, we identify all parameter
space segments of the database objects which intersect the time interval plane of
threshold τ . Then we determine the time interval plane point sets of all database
objects by computing the intersection between the parameter space segments
and the plane of τ . For each database object, we compute the τ -similarity to the
query object. Finally, we report the object having the smallest τ -distance to Q.
Obviously, this is not a very efficient method since the respective parameter space
segments of all time series objects have to be accessed. We can achieve a better
query performance by using an R*-Tree index on the parameter space segments
to filter out those segments which cannot satisfy the query. For this purpose, we
require a lower bound criterion for the τ -distance between two objects.

Lower Distance Bound. In the following, we will introduce a lower bound
criterion for the threshold-distance dTS on the basis of partial distance compu-
tations between the query object and the database objects. This lower bound
criterion enables the detection of false candidates very early, i.e. only partial in-
formation of the false candidates suffices to prune this object from the candidate
list. The amount of information necessary for the pruning of an object depends
on the location of the query object and the other candidates.

Let SQ = {q1, ..., qn} be the point set corresponding to the query object
and SX = {v1, ..., vm} be the point set of any object X from the database.
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Furthermore, we reformulate the τ -distance dTS(SQ, SX) between SQ and SX

of Definition 3 as follows:

dTS(SQ, SX) =
1

|SQ|
· D1(SQ, SX) +

1
|SX | · D2(SQ, SX),

where D1(SQ, SX) =
∑

i=1..n dint(qi, NNX(qi))
and D2(SQ, SX) =

∑
i=1..m dint(vi, NNQ(vi)).

In the following, we use two auxiliary variables Kl(qi) and K̄l(SQ) which help
to distinguish two classes of our objects. Kl(qi) ⊆ DB denotes the set of all
objects SX which has at least one entity x ∈ SX within the set k − NNX(qi).
Furthermore, K̄l(SQ) ⊆ DB denotes the set of all objects which are not in any
set Kl(qi) i.e. K̄l(SQ) = DB − (

⋃
i=1..n Kl(qi)).

Lemma 2. The following inequality holds for any object SX ∈ K̄l(SQ):

D1(SQ, SX) ≥
∑

i=1..n

dint(qi, NNl,.(qi)).

Proof. According to Definition 5 the following statement holds:

∀i ∈ {1, .., n} : dint(qi, NNl,.(qi)) ≤ dint(qi, NNX(qi)).

Therefore,∑
i=1..n

dint(qi, NNl,.(qi)) ≤
∑

i=1..n

dint(qi, NNX(qi)) = D1(SQ, SX).

The following lemma is a generalization of Lemma 2 and defines a lower bound
of D1(SQ, SX) for all database objects SX ∈ DB for any l ∈ .

Lemma 3. Let SX ∈ DB be any database object and let SQ be the query object.
The distance D1(SQ, SX) can be estimated by the following formula:

dmin(SQ, SX) =
1
n

∑
i=1..n

{
dint(qi, NNX(qi)), if SX ∈ Kl(qi)
dint(qi, NNl,.(qi)), else

}
≤ D1(SQ, SX).

Proof. Let SX ∈ DB be any database object and SQ be the query object.
According to Definition 5 the following holds:

dint(qi, NNl,.(qi)) ≤ dint(qi, NNX(qi)) ⇔ X /∈ Kl(qi).

Consequently, dmin(Q,X) ≤ 1
n

∑
i=1..n dint(qi, NNX(qi)) = D1(SQ, SX).

Pruning Strategy. By iteratively computing the l-nearest neighbors NNl,.(q)
for all q ∈ SQ with increasing l ∈ , we can determine the lower bound distances
for all objects. The maximal lower bound distance dmin(SQ, SX) of an object
SX has been achieved as soon as SX ∈ Kl(qi) : ∀i ∈ 1, ..., n. Then, we refine the
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distance dTS(SQ, SX) by accessing the complete object SX in order to compute
the distance D2(SQ, SX). The resulting distance dTS(SQ, SX) is then used as
new pruning distance dprun for the remaining query process. All objects Y ∈
DB −{X} whose current lower bound distance dmin(SQ, SY ) exceeds dprun can
be omitted from the remaining search steps. The search proceeds by continuing
the iterative computations of the next nearest neighbors NNl+1,..

Let SX be the object with the lowest exact distance to SQ, i.e. dprun =
dTS(SQ, SX). The pruning distance can be updated as soon as the next object
SY which has to be refined is found. In doing so, we have to consider two cases:

Case 1: dTS(SQ, SY ) ≥ dprune → remove object SY from the candidate set,
Case 2: dTS(SQ, SY ) < dprune → set dprune := dTS(SQ, SY ) and remove object

SX from the candidate set.

The search algorithm terminates as soon as all object candidates, except for the
best one, have been pruned.

5.4 Query Algorithm

The query algorithm is depicted in Figure 5. The function threshold-query
(SQ,DB,τ) computes for a given query object SQ the database object objbest

threshold-query(SQ, DB, τ) {
nn := ARRAY[1..—SQ—]; /*array of current nn-objects*/
dmin − tab := LIST of point ARRAY[1..|SQ|]; /*dmin table*/
objbest := null;
dprune := +∞
k := 0;
LOOP

k := k + 1;
nn = fetch-next-nn(SQ,DB,τ ,dprune);
dmin − tab.update(nn);
if ((o := dmin − tab.object complete()) ! = null) then {

load complete object o and compute dTS(SQ, o); /*refinement-step*/
if (dTS(SQ, o) ≥ dprune) then {

objbest := o;
dprune := dTS(SQ, o);

} else { remove o from the candidate list in dmin − tab; }}
for all objects obj ∈ dmin − tab do {

if (D1(SQ, obj) ≥ dprune) then {
remove obj from the candidate list in dmin − tab; }}

if (
∑

qi∈SQ
NNk,.(qi) ≥ dprune) then {

report obest;
break; }

end LOOP; }

Fig. 5. The threshold query algorithm
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Fig. 6. Example of the query processing

having the smallest τ -distance dTS(SQ, SX). The function fetch-next-nn(SQ,DB)
is an iterator function which retrieves the next nearest neighbor for each qi ∈ SQ

in each iteration. The nearest neighbors can be efficiently computed by applying
the nearest neighbor ranking method as proposed in [15]. Thereby, we maintain
for each q ∈ SQ a priority queue, each storing the accessed R*-tree nodes in
ascending order of their distances to the corresponding query point q.

In this section, we treated the objects as sets of points in the time interval
plane. In fact, the database objects are organized within the three-dimensional
parameter space (cf. Section 4.4). For the distance computation between the
query point q = (li, ui, τ) and an R*-tree rectangle r = ((xl, yl, zl), (xu, yu, zu)),
we consider the horizontal distance at threshold τ only, i.e. dint(qi, r) =
dint((li, ui), ((xl, yl), (xu, yu))).

The basic functionality of the query algorithm can be explained by the fol-
lowing example which is depicted in Figure 6. In our example, the query consists
of three time interval plane points SQ = {q1, q2, q3}. The upper table shows
the results of the first three states of the incremental nearest-neighbor queries
NN1,.(qi), NN2,.(qi) and NN3,.(qi). The state of the corresponding dmin-table
after each iteration is shown in the table below. The first iteration retrieves the
points a3, f1 and b1 of the time series objects A, F , and B, respectively. Con-
sequently, the threshold-distance between q and all objects SX ∈ DB can be
restricted by the lower bound dmin = 1

3 (d(q1, a3) + d(q2, f1) + d(q3, b1)). Next,
we insert the actual nearest neighbor distances into the dmin-table and mark the
corresponding entries (marked entries are underlined in the figure). Let us note,
that all unmarked distance entries correspond to the currently retrieved nearest
neighbor distances, and thus, need not to be stored for each object separately.
After the third query iteration, all nearest neighbor counterparts from SQ to
SB are found. Consequently, we can update the pruning distance by computing
the exact τ -similarity dprune = dTS(SQ, SB). We can now remove the column
Dmin(B) from the dmin-table.

The runtime complexity of our threshold query algorithm is O(nq ·nk · lognp),
where nq denotes the size of the threshold-crossing time interval sequence SQ,
nk denotes the number of nearest-neighbor search iterations and np denotes
the overall number of segments in the parameter space. In the experiments (cf.
Section 6) we will show that in average nq is very very small in comparison to
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the length of the time sequences. Furthermore, we will show that the number of
required nearest-neighbor query iterations nk is very small, i.e. the query process
terminates very early. The number np of segments in the parameter space is quite
similar to the sum ns of length of all time sequences in the database, but it is
slightly smaller than ns which is also shown in the experiments.

6 Experimental Evaluation

In this section, we present the results of a large number of experiments performed
on a selection of different time series datasets. In particular, we compared the
efficiency of our proposed approach (in the following denoted by ‘RPar’) for
answering threshold queries using one of the following techniques.

The first competing approach works on native time series. At query time the
threshold-crossing time intervals (TCT) are computed for the query threshold
and afterwards the distance between the query time series and each database
object can be derived. In the following this method will be denoted by ‘SeqNat’
as it corresponds to a sequential processing of the native data.

The second competitor works on the parameter space rather than on the
native data. It stores all TCTs without using any index structures. As this
storage leads to a sequential scan over the elements of the parameter space we
will refer to this technique as the ‘SeqPar’ method.

All experiments were performed on a workstation featuring a 1.8 GHz Opteron
CPU and 8GB RAM. We used a disk with a transfer rate of 100 MB/s, a seek
time of 3 ms and a latency delay of 2 ms. Performance is presented in terms of
the elapsed time including I/O and CPU-time.

6.1 Datasets

We used several real-world and synthetic datasets for our evaluation, one audio
dataset and two scientific datasets. The audio dataset contains time sequences
expressing the temporal behavior of the energy and frequency in music sequences.
It contains up to 700000 time series objects with a length of up to 300 values
per sequence. If not otherwise stated, the database size was set to 50000 objects
and the length of the objects was set to 50. This dataset is used to evaluate the
performance of our approach (cf. Section 6.2). In Section 6.3, we will show the
effectiveness of threshold queries for the two scientific datasets. The scientific
datasets are derived from two different applications: the analysis of environmen-
tal air pollution (cf. Application 2 in Section 1) and gene expression data analysis
(cf. Application 3 in Section 1). The data on environmental air pollution is de-
rived from the Bavarian State Office for Environmental Protection, Augsburg,
Germany 2 and contains the daily measurements of 8 sensor stations distributed
in and around the city of Munich from the year 2000 to 2004. One time series
represents the measurement of one station at a given day containing 48 values
for one of 10 different parameters such as temperature, ozone concentration,
2 www.bayern.de/lfu
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etc. A typical time series of this dataset contains 48 measurements of station S
during day D of parameter P . The gene expression data from [16] contains the
expression level of approximately 6,000 genes measured at only 24 different time
slots.

6.2 Performance Results

To obtain more reliable and significant results, in the following experiments
we used 5 randomly chosen query objects. Furthermore, these query objects
were used in conjunction with 5 different thresholds, so that we obtained 25
different threshold queries. The presented results are the average results of these
queries.
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First, we performed threshold queries against database instances of different
sizes to measure the influence of the database size to the overall query time. The
elements of the databases are time series of fixed length l = 50. Figure 7 exhibits
the performance results for each database. It is shown that the performance
of both approaches SeqNat and SeqPar significantly decreases with increasing
database size, whereas our approach scales very well even for large databases.
Second, we explored the impact of the length of the query object and the time



292 J. Aßfalg et al.

series in the database. The results are shown in Figure 8. Again, our technique
outperforms the competing approaches whose cost increase very fast due to the
expensive distance computations. In contrast our approach is hardly influenced
by the size of the time series objects.

In the next experiment we present the speed-up of the query process caused by
our pruning strategy. We measured the considered number of result candidates
during the query processes and the number of finally refined objects. Figure 9
and Figure 10 show the results relatively to the database size and object size.
Only a very small portion of the candidates has to be refined to report the result.
An interesting point is that very large time series lead to lower pruning power
than smaller time series.

Furthermore, we examined the number of nearest-neighbor search iterations
which were required for the query process for varying length of the time series
and varying size of the database. We observed, that the number of iterations was
between 5 and 62. The number of iterations increases linear to the length of the
time series and remains nearly constant w.r.t. the database size. Nevertheless,
only a few iterations are required to report the result.

6.3 Results on Scientific Datasets

The results on the air pollution dataset were very useful. We performed 10-
nearest neighbor threshold queries with randomly chosen query objects. Inter-
estingly, when we choose time series as query objects, that were derived from
rural sensor stations representing particulate matter parameters (M10), we ob-
tained only time series representing the same parameters measured also at rural
stations. This confirms that the pollution by particle components in the city
differs considerably from the pollution in rural regions. A second interesting re-
sult was produced when we used M10 time series of working days as queries.
The resulting time series were also derived from working days representing M10
values.

The results on the gene expression dataset were also very interesting. The
task was to find the most similar gene with τ = 0 to a given query gene. The
intuition is to find a gene that is functionally related to the query gene. We
posed several randomized queries to this dataset with τ = 0 and evaluated the
results w.r.t. biological interestingness using the SGD database 3. Indeed, we
retrieved functionally related genes for most of the query genes. For example,
for query gene CDC25 we obtained the gene CIK3. Both genes play an impor-
tant role during the mitotic cell cycle. For the query gene DOM34 and MRPL17
we obtained two genes that are not yet labeled (ORF-names: YOR182C and
YGR220C, respectively). However all four genes are participating in the protein
biosynthesis. In particular, threshold queries can be used to predict the function
of genes whose biological role is not resolved yet.

To sum up, the results on the real-world datasets suggest the practical rele-
vance of threshold queries for important real-world applications.

3 http://www.yeastgenome.org/
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7 Conclusions

In this paper, we motivated and proposed a novel query type on time series
databases called threshold query. Given a query object Q and a threshold τ , a
threshold query returns time series in a database that exhibit the most similar
threshold-crossing time interval sequence. The threshold-crossing time interval
sequence of a time series represents the interval sequence of elements that have a
value above the threshold τ . We mentioned several practical application domains
for such a query type. In addition, we presented a novel approach for managing
time series data to efficiently support such threshold queries. Furthermore, we
developed a scalable algorithm to answer threshold queries for arbitrary thresh-
olds τ . A broad experimental evaluation demonstrates the importance of the new
query type for several applications and shows the scalability of our proposed al-
gorithms in comparison to straightforward approaches.

For future work, we plan to develop suitable approximations which represent
the novel time series data in a compressed form in order to apply efficient filter
steps during the query process. Furthermore, we plan to extend our approaches
to data mining tasks, such as clustering.

References

1. Keogh, E., Chakrabati, K., Mehrotra, S., Pazzani, M.: ”Locally Adaptive Dimen-
sionality Reduction for Indexing Large Time Series Databases”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’01), Santa Barbara, CA.
(2001)

2. Guttman, A.: “R-Trees: A Dynamic Index Structure for Spatial Searching”. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’84). (1984)

3. Agrawal, R., Faloutsos, C., Swami, A.: ”Efficient Similarity Search in Sequence
Databases”. In: Proc. 4th Conf. on Foundations of Data Organization and Algo-
rithms. (1993)

4. Chan, K., Fu, W.: ”Efficient Time Series Matching by Wavelets”. In: Proc. 15th
Int. Conf. on Data Engineering (ICDE’99), Sydney, Australia. (1999)

5. Yi, B.K., Faloutsos, C.: ”Fast Time Sequence Indexing for Arbitrary Lp Norms”.
In: Proc. 26th Int. Conf. on Very Large Databases (VLDB’00), Cairo, Egypt. (2000)

6. Korn, F., Jagadish, H., Faloutsos, C.: ”Efficiently Supporting Ad Hoc Queries
in Large Datasets of Time Sequences”. In: Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’97), Tucson, AZ. (1997)

7. Cai, Y., Ng, R.: ”Index Spatio-Temporal Trajectories with Chebyshev Polynomi-
als”. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’04),
Paris, France). (2004)

8. Faloutsos, C., Ranganathan, M., Maolopoulos, Y.: ”Fast Subsequence Matching in
Time-series Databases”. In: Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’94), Minneapolis, MN. (1994)

9. Ratanamahatana, C.A., Keogh, E., Bagnall, A.J., Lonardi, S.: ”A Novel Bit Level
Time Series Representation with Implication for Similarity Search and Clustering”.
In: Proc. 9th Pacific-Asian Int. Conf. on Knowledge Discovery and Data Mining
(PAKDD’05), Hanoi, Vietnam. (2005)



294 J. Aßfalg et al.

10. Eiter, T., Mannila, H.: ”Distance Measure for Point Sets and Their Computation”.
In: Acta Informatica, 34. (1997) 103–133

11. Kriegel, H.P., Pötke, M., Seidl, T.: ”Object-Relational Indexing for General In-
terval Relationships”. In: Proc. Symposium on Spatial and Temporal Databases
(SSTD’01), Redondo Beach, CA. (2001)

12. Gaede, V., Günther, O.: “Multidimensional Access Methods”. Computing Surveys
30 (1984)

13. Beckmann, N., Kriegel, H.P., Seeger, B., Schneider, R.: ”The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles”. In: Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’90), Atlantic City, NJ. (1990)

14. Fournier, A., Moniwno, D.Y.: ”Triangulating simple polygons and equivalent prob-
lems”. In: ACM Trans. Graph., 3, 2. (1984) 153–174

15. Hjaltason, G., Samet, H.: “Ranking in Spatial Databases”. In: Proc. Int. Symp.
on Large Spatial Databases (SSD’95), Portland, OR. (1995)

16. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P.,
Botstein, D., Futcher, B.: ”Comprehensive Identification of Cell Cycle-Regulated
Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization”. Molec-
ular Biolology of the Cell 9 (1998) 3273–3297



Supporting Temporal Slicing in XML Databases�

Federica Mandreoli, Riccardo Martoglia, and Enrico Ronchetti
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Abstract. Nowadays XML is universally accepted as the standard for
structural data representation; XML databases, providing structural
querying support, are thus becoming more and more popular. How-
ever, XML data changes over time and the task of providing efficient
support to queries which also involve temporal aspects goes through
the tricky task of time-slicing the input data. In this paper we take up
the challenge of providing a native and efficient solution in constructing
an XML query processor supporting temporal slicing, thus dealing with
non-conventional application requirements while continuing to guarantee
good performance in traditional scenarios. Our contributions include a
novel temporal indexing scheme relying on relational approaches and a
technology supporting the time-slice operator.

1 Introduction

Nowadays XML is universally accepted as the standard for structural data rep-
resentation and exchange and its well-known peculiarities make it a good choice
for an ever growing number of applications. Currently the problem of supporting
structural querying in XML databases is thus an appealing research topic for the
database community.

As data changes over time, the possibility to deal with historical information
is essential to many computer applications, such as accounting, banking, law,
medical records and customer relationship management. In the last years, re-
searchers have tried to provide answers to this need by proposing models and
languages for representing and querying the temporal aspect of XML data. Re-
cent works on this topic include [5, 9, 10, 12].

The central issue of supporting most temporal queries in any language is
time-slicing the input data while retaining period timestamping. A time-varying
XML document records a version history and temporal slicing makes the dif-
ferent states of the document available to the application needs. While a great
deal of work has been done on temporal slicing in the database field [8], the
paper [9] has the merit of having been the first to raise the temporal slicing issue
in the XML context, where it is complicated by the fact that timestamps are
distributed throughout XML documents. The solution proposed in [9] relies on a
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stratum approach whose advantage is that they can exploit existing techniques
in the underlying XML query engine, such as query optimization and query
evaluation. However, standard XML query engines are not aware of the tempo-
ral semantics and thus it makes more difficult to map temporal XML queries
into efficient “vanilla” queries and to apply query optimization and indexing
techniques particularly suited for temporal XML documents.

In this paper we propose a native solution to the temporal slicing problem.
In other words, we address the question of how to construct an XML query
processor supporting time-slicing. The underlying idea is to propose the changes
that a “conventional” XML pattern matching engine would need to be able to
slice time-varying XML documents. The advantage of this solution is that we
can benefit from the XML pattern matching techniques present in the literature,
where the focus is on the structural aspects which are intrinsic also in temporal
XML data, and that, at the same time, we can freely extend them to become
temporally aware. Our ultimate goal is not to design a temporal XML query
processor from scratch but to put at the user disposal an XML query proces-
sor which is able to support non-conventional application requirements while
continuing to guarantee good performance in traditional scenarios.

We begin by providing some background in Section 2, where the temporal
slicing problem is defined. Our main contributions are:

– We propose a novel temporal indexing scheme (Section 3.1), which adopts
the inverted list technology proposed in [14] for XML databases and changes
it in order to allow the storing of time-varying XML documents. Moreover,
we show how a time-varying XML document can be encoded in it.

– We devise a flexible technology supporting temporal slicing (Section 3.2 to
Section 3.5). It consists in alternative solutions supporting temporal slicing
on the above storing scheme, all relying on the holistic twig join approach
[2], which is one of the most popular approaches for XML pattern matching.
The proposed solutions act at the different levels of the holistic twig join
architectures with the aim of limiting main memory space requirements,
I/O and CPU costs. They include the introduction of novel algorithms and
the exploitation of different access methods.

– Finally, in Section 4 we present experimental results showing the substan-
tial performance benefits achievable by combining the proposed solutions in
different querying settings.

We describe related work and concluding remarks in Section 5.

2 Preliminaries: Notation and Temporal Slicing
Definition

A time-varying XML document records a version history, which consists of the
information in each version, along with timestamps indicating the lifetime of that
version [5]. The left part of Fig. 1 shows the tree representation of our reference
time-varying XML document taken from a legislative repository of norms. Data
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Fig. 1. Reference example

nodes are identified by capital letters. For simplicity’s sake, timestamps are de-
fined on a single time dimension and the granularity is the year. Temporal slicing
is essentially the snapshot of the time-varying XML document(s) at a given time
point but, in its broader meaning, it consists in computing simultaneously the
portion of each state of time-varying XML document(s) which is contained in a
given period and which matches with a given XML query twig pattern. Moreover,
it is often required to combine the results back into a period-stamped represen-
tation [9] in the period [1994, now] and for the query twig contents//article.
The right part of Fig. 1 shows the output of a temporal slicing example. This
section introduces a notation for time-varying XML documents and a formal
definition for the temporal slicing problem.

2.1 Document Representation

A temporal XML model is required when there is the need of managing temporal
information in XML documents and the adopted solution usually depends on the
peculiarities of the application one wants to support. For the sake of generality,
our proposal is not bound to a specific temporal XML model. On the contrary, it
is able to deal with time-varying XML documents containing timestamps defined
on an arbitrary number of temporal dimensions and represented as temporal
elements [8], i.e. disjoint union of periods, as well as single periods.

In the following, we will refer to time-varying XML documents by adopting
part of the notation introduced in [5]. A time-varying XML database is a col-
lection of XML documents, also containing time-varying documents. We denote
with DT a time-varying XML document represented as an ordered labelled tree
containing timestamped elements and attributes (in the following denoted as
nodes) related by some structural relationships (ancestor-descendant, parent-
child, preceding-following). The timestamp is a temporal element chosen from
one or more temporal dimensions and records the lifetime of a node. Not all
nodes are necessarily timestamped. We will use the notation nT to signify that
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node n has been timestamped and lifetime(nT ) to denote its lifetime. Some-
times it can be necessary to extend the lifetime of a node n[T ], which can be
either temporal or snapshot, to a temporal dimension not specified in its times-
tamp. In this case, we follow the semantics given in [6]: If no temporal semantics
is provided, for each newly added temporal dimension we set the value on this
dimension to the whole time-line, i.e. [t0, t∞).

The snapshot operator is an auxiliary operation which extracts a complete snap-
shot or state of a time-varying document at a given instant and which is partic-
ularly useful in our context. Timestamps are not represented in the snapshot. A
snapshot at time t replaces each timestamped node nT with its non-timestamped
copy x if t is in lifetime(nT ) or with the empty string, otherwise. The snapshot
operator is defined as snp(t,DT ) = D where D is the snapshot at time t of DT .

2.2 The Time-Slice Operator

The time-slice operator is applied to a time-varying XML database and is defined
as time-slice(twig,t-window). The twig parameter is a non-temporal node-
labeled twig pattern which is defined on the snapshot schema [5] of the database
through any XML query languages, e.g. XQuery, by specifying a pattern of
selection predicates on multiple elements having some specified tree structured
relationships. It defines the portion of interest in each state of the documents
contained in the database. It can also be the whole document. The t-window
parameter is the temporal window on which the time-slice operator has to be
applied. More precisely, by default temporal slicing is applied to the whole time-
lines, that is by using every single time point contained in the time-varying
documents. With t-window, it is possible to restrict the set of time points by
specifying a collection of periods chosen from one or more temporal dimensions.

Given a twig pattern twig, a temporal window t-window and a time-varying
XML database TXMLdb, a slice is a mapping from nodes in twig to nodes in
TXMLdb, such that: (i) query node predicates are satisfied by the corresponding
document nodes thus determining the tuple (n[T ]

1 , . . . , n
[T ]
k ) of the database nodes

that identify a distinct match of twig in TXMLdb, (ii) (n[T ]
1 , . . . , n

[T ]
k ) is struc-

turally consistent, i.e. the parent-child and ancestor-descendant relationships
between query nodes are satisfied by the corresponding document nodes, (iii)
(n[T ]

1 , . . . , n
[T ]
k ) is temporally consistent, i.e. its lifetime lifetime(n[T ]

1 , . . . , n
[T ]
k ) =

lifetime(n[T ]
1 )∩ . . .∩ lifetime(n[T ]

k ) is not empty and it is contained in the tem-
poral window, lifetime(n[T ]

1 , . . . , n
[T ]
k ) ⊆ t-window. For instance, in the refer-

ence example, the tuple (B,D) is structurally but not temporally consistent as
lifetime(B) ∩ lifetime(D) = ∅. In this paper, we consider the temporal slicing
problem:

Given a twig pattern twig, a temporal window t-window and a time-
varying XML database TXMLdb, for each distinct slice (n[T ]

1 , . . . , n
[T ]
k ),

time-slice(twig,t-window) computes the snapshot snp(t, (n[T ]
1 , . . . , n

[T ]
k )),

where t ∈ lifespan(n[T ]
1 , . . . , n

[T ]
k ).
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Obviously, it is possible to provide a period-timestamped representation of the
results by associating each distinct state snp(t, (n[T ]

1 , . . . , n
[T ]
k )) with its perti-

nence lifetime(n[T ]
1 , . . . , n

[T ]
k ) in t-window.

3 Providing a Native Support for Temporal Slicing

In this paper we propose a native solution to the temporal slicing problem.
To this end, we addressed two problems: The indexing of time-varying XML
databases and the definition of a technology for XML query processing rely-
ing on the above indexing scheme and efficiently implementing the time-slice
operator.

Existing work on “conventional” XML query processing (see, for example,
[14]) shows that capturing the XML document structure using traditional in-
dices is a good solution, on which it is possible to devise efficient structural or
containment join algorithms for twig pattern matching. Being timestamps dis-
tributed throughout the structure of XML documents, we decided to start from
one of the most popular approaches for XML query processing whose efficiency in
solving structural constraints is proved. In particular, our solution for temporal
slicing support consists in an extension to the indexing scheme described in [14]
such that time-varying XML databases can be implemented and in alternative
changes to the holistic twig join technology [2] in order to efficiently support the
time-slice operator in different scenarios.

3.1 The Temporal Indexing Scheme

The indexing scheme described in [14] is an extension of the classic inverted in-
dex data structure in information retrieval which maps elements and strings
to inverted lists. The position of a string occurrence in the XML database
is represented in each inverted list as a tuple (DocId, LeftPos,LevelNum)
and, analogously, the position of an element occurrence as a tuple (DocId,
LeftPos:RightPos,LevelNum) where (a) DocId is the identifier of the docu-
ment, (b) LeftPos and RightPos can be generated by counting word numbers
from the beginning of the document DocId until the start and end of the element,
respectively, and (c) LevelNum is the depth of the node in the document. In this
context, structural relationships between tree nodes can be easily determined:
(i) ancestor-descendant : A tree node n2 encoded as (D2, L2 : R2, N2) is a de-
scendent of the tree node n1 encoded as (D1, L1 : R1, N1) iff D1 = D2, L1 < L2,
and R2 < R1; (ii) parent-child : n2 is a child of n1 iff it is a descendant of n1 and
L2 = L1 + 1.

As temporal XML documents are XML documents containing time-varying
data, they can be indexed using the interval-based scheme described above and
thus by indexing timestamps as “standard” tuples. On the other hand, times-
tamped nodes have a specific semantics which should be exploited when docu-
ments are accessed and, in particular, when the time-slice operation is applied.
Our proposal adds time to the interval-based indexing scheme by substituting the
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contents (1, 2:13, 2 | 1991:1994), (1, 2:13, 2 | 1996:now)

law (1, 1:14, 1 | 1970:now)

section (1, 3:8, 3 | 1970:2003), (1, 9:12, 3 | 2004:now)

article
(1, 4:5, 4 | 1970:1990), (1, 6:7, 4 | 1995:1998),
(1, 6:7, 4 | 2001:2003), (1, 10:11, 4 | 2004:now)

Fig. 2. The temporal inverted indices for the reference example

inverted indices in [14] with temporal inverted indices. In each temporal inverted
index, besides the position of an element occurrence in the time-varying XML
database, the tuple (DocId, LeftPos:RightPos,LevelNum|TempPer) contains
an implicit temporal attribute [8], TempPer. It consists of a sequence of From:To
temporal attributes, one for each involved temporal dimension, and represents a
period. Thus, our temporal inverted indices are in 1NF and each timestamped
node nT , whose lifetime is a temporal element containing a number of periods, is
encoded through as many tuples having the same projection on the non-temporal
attributes (DocId, LeftPos:RightPos,LevelNum) but with different TempPer
values, each representing a period. All the temporal inverted indices are de-
fined on the same temporal dimensions such that tuples coming from different
inverted indices are always comparable from a temporal point of view. There-
fore, given the number h of the different temporal dimensions represented in the
time-varying XML database, TempPer is From1:To1,...,Fromh:Toh.

In this context, each time-varying XML document to be inserted in the
database undergoes a pre-processing phase where (i) the lifetime of each node
is derived from the timestamps associated with it, (ii) in case, the resulting life-
time is extended to the temporal dimensions on which it has not been defined
by following the approach described in Subsec. 2.1. Fig. 2 illustrates the struc-
ture of the four indices for the reference example. Notice that the snapshot node
A, whose label is law, is extended to the temporal dimension by setting the
pertinence of the corresponding tuple to [1970, now].

3.2 A Technology for the Time-Slice Operator

The basic four level architecture of the holistic twig join approach is depicted
in Fig. 3. The approach maintains in main-memory a chain of linked stacks to
compactly represent partial results to root-to-leaf query paths, which are then
composed to obtain matches for the twig pattern (level SOL in Figure). In partic-
ular, given a path involving the nodes q1, . . . , qn, the two stack-based algorithms
presented in [2], one for path matching and the other for twig matching, work
on the inverted indices Iq1 , . . . , Iqn

(level L0 in Figure) and build solutions from
the stacks Sq1 , . . . , Sqn

(level L2 in Figure). During the computation, thanks to
a deletion policy the set of stacks contains data nodes which are guaranteed to
lie on a root-to-leaf path in the XML database and thus represents in linear
space a compact encoding of partial and total answers to the query twig pat-
tern. The skeleton of the two holistic twig join algorithms (HTJ algorithms in



Supporting Temporal Slicing in XML Databases 301

Level
L0

...
Level

L2

Sq1 Sq2 Sqn

ID
...

{ptr}
...

ID
...

{ptr}
...

ID
...

{ptr}
...

...

Iq1 I q2 Iqn

Level
L1 Bq1 Bq2 Bqn

...

Level
SOL q1 q2 qn

...

nq1 nq2 nqn

Fig. 3. The basic holistic twig join four level architecture

While there are nodes to be processed
(1) Choose the next node nq̄

(2) Apply the deletion policy
(3) Push the node nq̄ into the pertinence stack Sq̄

(4) Output solutions

Fig. 4. Skeleton of the holistic twig join algorithms (HTJ algorithms)

the following) is presented in Fig. 4. At each iteration the algorithms identify
the next node to be processed. To this end, for each query node q, at level L1
is the node in the inverted index Iq with the smaller LeftPos value and not
yet processed. Among those, the algorithms choose the node with the smaller
value, let it be nq̄. Then, given knowledge of such node, they remove partial
answers form the stacks that cannot be extended to total answers and push
the node nq̄ into the stack Sq̄. Whenever a node associated with a leaf node
of the query path is pushed on a stack, the set of stacks contains an encod-
ing of total answers and the algorithms output these answers. The algorithms
presented in [2] have been further improved in [3, 11]. As our solutions do not
modify the core of such algorithms, we refer interested readers to the above cited
papers.

The time-slice operator can be implemented by applying minimal changes to
the holistic twig join architecture. The time-varying XML database is recorded
in the temporal inverted indices which substitute the “conventional” inverted
index at the lower level of the architecture and thus the nodes in the stacks will
be represented both by the position and the temporal attributes. Given a twig
pattern twig, a temporal window t-window, a slice is the snapshot of any answer
to twig which is temporally consistent. Thus the holistic twig join algorithms
continue to work as they are responsible for the structural consistency of the
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slices and provide the best management of the stacks from this point of view.
Temporal consistency, instead, must be checked on each answer output of the
overall process. In particular, for each potential slice ((D,L1 : R1, N1|T1), . . . ,
(D,Lk : Rk, Nk|Tk)) it is necessary to intersect the periods represented by the
values T1, . . . , Tk and then check both that such intersection is not empty and
that it is contained in the temporal window. Finally, the snapshot operation is
simply a projection of the temporally consistent answers on the non-temporal
attributes. In this way, we have described the “first step” towards the realiza-
tion of a temporal XML query processor. On the other hand, the performances
of this first solution are strictly related to the peculiarities of the underlying
database. Indeed, XML documents usually contain millions of nodes and this is
absolutely true in the temporal context where documents record the history of
the applied changes. Thus, the holistic twig join algorithms can produce a lot
of answers which are structurally consistent but which are eventually discarded
as they are not temporally consistent. This situation implies useless computa-
tions due to an uncontrolled growth of the the number of tuples put on the
stacks.

Temporal consistency considers two aspects: The intersection of the involved
lifetimes must be non-empty (non-empty intersection constraint in the following)
and it must be contained in the temporal window (containment constraint in
the following). We devised alternative solutions which rely on the two different
aspects of temporal consistency and act at the different levels of the architecture
with the aim of limiting the number of temporally useless nodes the algorithms
put in the stacks. The reference architecture is slightly different from the one
presented in Fig. 3. Indeed, in our context, any timestamped node whose lifetime
is a temporal element is encoded into more tuples (e.g. see the encoding of the
timestamped node E in the reference example). Thus, at level L1, each node nq

must be interpreted as the set of tuples encoding nq. They are stored in buffer
Bq and step 3 of the HTJ algorithms empties Bq and pushes the tuples in the
stack Sq.

3.3 Non-empty Intersection Constraint

Not all temporal tuples which enter level L1 will at the end belong to the set
of slices. In particular, some of them will be discarded due to the non-empty
intersection constraint. The following Lemma characterizes this aspect. Without
lose of generality, it only considers paths as the twig matching algorithm relies
on the path matching one.

Proposition 1. Let (D,L : R,N |T ) be a tuple belonging to the temporal in-
verted index Iq, Iq1 , . . . , Iqk

the inverted indices of the ancestors of q and TPqi
=⋃

σLeftPos<L(Iqi
)|TempPer, for i ∈ [1, k], the union of the temporal perti-

nences of all the tuples in Iqi
having LeftPos smaller than L. Then (D,L :

R,N |T ) will belong to no slice if the intersection of its temporal pertinence with
TPq1 , . . . , TPqk

is empty, i.e. T ∩ TPq1 ∩ . . . ∩ TPqk
= ∅.
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Input: Twig pattern twig, the last processed node n←−q
Output: Next node nq̄ to be processed
Algorithm Load:

(1) if all buffers are empty
(2) start=root(twig);
(3) else
(4) start=←−q ;
(5) for each query node q from start to leaf(twig)
(6) get nq;
(7) minq is the minimum between nq.LeftPos and minparent(q);
(8) if nq.LeftPos is equal to minq

(9) load nq into Bq;
(10)return the last node inserted into the buffers

Fig. 5. The buffer loading algorithm Load

Notice that, at each step of the process, the tuples having LeftPos smaller
than L can be in the stacks, in the buffers or still have to be read from the
inverted indices. However, looking for such tuples in the three levels of the ar-
chitecture would be quite computationally expensive. Thus, in the following we
introduce a new approach for buffer loading which allows us to look only at
the stack level. Moreover, we avoid accessing the temporal pertinence of the tu-
ples contained in the stacks by associating a temporal pertinence to each stack
(temporal stack). Such a temporal pertinence must therefore be updated at each
push and pop operation. At each step of the process, for efficiency purposes
both in the update and in the intersection phase, such a temporal pertinence
is the smaller multidimensional period Pq containing the union of the temporal
pertinence of the tuples in the stack Sq.

The aim of our buffer loading approach is to avoid loading the temporal tuples
encoding a node n[T ] in the pertinence buffer Bq if the inverted indices associated
with the parents of q contain tuples with LeftPos smaller than that of nq and not
yet processed. Such an approach is consistent with step 1 of the HTJ algorithms
as it chooses the node at level L1 with the smaller LeftPos value and ensures
that when n[T ] enters Bq all the tuples involved in Prop. 1 are in the stacks. The
algorithm implementing step 1 of the HTJ algorithms is shown in Fig. 5. We
associate each buffer Bq with the minimum minq among the LeftPos values of
the tuples contained in the buffer itself and those of its ancestors. Assuming that
all buffers are empty, the algorithm starts from the root of the twig (step 2) and,
for each node q up to the leaf, it updates the minimum minq and inserts nq, the
node in Iq with the smaller LeftPos value and not yet processed, if it is smaller
than minq. The same applies when some buffers are not empty. In this case, it
starts from the query node matching with the previously processed data node
and it can be easily shown that the buffers of the ancestors of such node are not
empty whereas the buffers of the subpath rooted by such node are all empty.



304 F. Mandreoli, R. Martoglia, and E. Ronchetti

Level
L2

contents

Level
L1

(1, 2:13, 2 | 1991:1994)
  STEP 3

article

[1991, now] [  ]

(1, 2:13, 2 | 1996:now)

mincontents = 2 minarticle = 2

  STEP 1

(1, 2:13, 2 | 1991:1994)

(1, 2:13, 2 | 1996:now)

Fig. 6. State of levels L1 and L2 during the first iteration

Lemma 1. Assume that step 1 of the HTJ algorithms depicted in Fig. 4 is im-
plemented by the algorithm Load. The tuple (D,L : R,N |T ) in Bq will belong
to no slice if the intersection of its temporal pertinence T with the multidimen-
sional period Pq1→qk

= Pq1 ∩ . . . ∩ Pqk
intersecting the periods of the stacks of

the ancestors q1, . . . , qk of q is empty.

For instance, at the first iteration of the HTJ algorithms applied to the reference
example, step 1 and step 3 produce the situation depicted in Fig. 6. Notice that
when the tuple (1, 4 : 5, 4|1970 : 1990) encoding node D (label article) enters
level L1 all the tuples with LeftPos smaller than 4 are already at level L2 and
due to the above Lemma we can state that it will belong to no slice.

Thus, the non-empty intersection constraint can be exploited to prevent the
insertion of useless nodes into the stacks by acting at level L1 and L2 of the ar-
chitecture. At level L2 we act at step 3 of the HTJ algorithms by simply avoiding
pushing into the stack Sq each temporal tuple (D,L : R,N |T ) encoding the next
node to be processed which satisfies Lemma 1, i.e. such that T ∩Pq1→qk

= ∅. At
level L1, instead, we act at step 9 of the algorithm Load by avoiding loading in
any buffer Bq each temporal tuple encoding nq which satisfies Lemma 1. More
precisely, given the LeftPos value of the last processed node, say CurLeftPos,
we only load each tuple (D,L : R,N |T ) such that L is the minimum value greater
than CurLeftPos and T intersects Pq1→qk

. To this purpose, our solution uses
time-key indices combining the LeftPos attribute with the attributes Fromj:Toj

in the TempPer implicit attribute representing one temporal dimension in order
to improve the performances of range-interval selection queries on the temporal
inverted indices. In particular, we considered two access methods: The B+-tree
and a temporal index, the Multiversion B-tree (MVBT) [1].

An one-dimensional index like the B+-tree, clusters data primarily on a single
attribute. Thus, we built B+-trees that cluster first on the LeftPos attribute
and than on the interval end time Toj . In this way, we can take advantage of
sequential I/O as tree leaf pages are linked and records in them are ordered. In
particular, we start with the first leaf page that contains a LeftPos value greater
than CurLeftPos and a Toj value greater than or equal to Pq1→qk

|Fromj
, i.e.
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the projection of the period Pq1→qk
on the interval start time Fromj . Then we

proceed by loading the records until the leaf page with the next LeftPos value
or with a Fromj value greater than Pq1→qk

|Toj
is met. This has the effect of

selecting each tuple (D,L : R,N |T ) where L is the smaller value greater than
CurLeftPos and its period T |Fromj:Toj

intersect the period Pq1→qk
|Fromj:Toj

,
as T |Toj

≥ Pq1→qk
|Fromj

and T |Fromj
≤ Pq1→qk

|Toj
.

The alternative approach we considered is to maintain multiple versions of a
standard B+-tree through an MVBT. An MVBT index record contains a key, a
time interval and a pointer to a page and, thus, this structure is able to directly
support our range-interval selection requirements.

3.4 Containment Constraint

The following proposition is the equivalent of Prop. 1 when the containment
constraint is considered.

Proposition 2. Let (D,L : R,N |T ) be a tuple belonging to the temporal in-
verted index Iq. Then (D,L : R,N |T ) will belong to no slice if the intersection
of its temporal pertinence with the temporal window t-window is empty.

It allows us to act at level L1 and L2, but also between level L0 and level L1.
At level L1 and L2 the approach is the same as the non-empty intersection con-
straint; it is sufficient to use the temporal window t-window, and thus Prop. 2,
instead of Lemma 1. Moreover, it is also possible to add an intermediate level
between level L0 and level L1 of the architecture, which we call “under L1”
(UL1), where the only tuples satisfying Prop. 2 are selected from each temporal
inverted index, are ordered on the basis of their (DocId,LeftPos) values and
then pushed into the buffers. Similarly to the approach explained in the previ-
ous section, to speed up the selection, we exploit B+-tree indices built on one
temporal dimension. Notice that this solution deals with buffers as streams of
tuples and thus it provides interesting efficiency improvements only when the
temporal window is quite selective.

3.5 Combining Solutions

The non-empty intersection constraint and the containment constraint are or-
thogonal thus, in principle, the solutions presented in the above subsections can
be freely combined in order to decrease the number of useless tuples we put in
the stacks. Each combination gives rise to a different scenario denoted as “X/Y”,
where “X” and “Y” are the employed solutions for the non-empty intersection
constraint and for the containment constraint, respectively (e.g. scenario L1/L2
employs solution L1 for the non-empty intersection constraint and solution L2
for the containment constraint). Some of these scenarios will be discussed in the
following. First, scenario L1/UL1 is not applicable since in solution UL1 selected
data is kept and read directly from buffers, with no chance of additional index-
ing. Instead, in scenario L1/L1 the management of the two constraints can be
easily combined by querying the indices with the intersection of the temporal
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pertinence of the ancestors (Proposition 1) and the required temporal window.
All other combinations are straightforwardly achievable, but not necessarily ad-
visable. In particular, when L1 is involved for any of the two constraints the
L1 indices have to be built and queried: Therefore, it is best to combine the
management of the two constraints as in L1/L1 discussed above. Finally, notice
that the baseline scenario is the SOL/SOL one, involving none of the solutions
discussed in this paper.

4 Experimental Evaluation

In this section we present the results of an actual implementation of our XML
query processor supporting temporal slicing showing its behavior on different
document collections and in different execution scenarios.

4.1 Experimental Setting

The document collections follow the structure of the documents used in [10],
where three temporal dimensions are involved, and have been generated by a
configurable XML generator. On average, each document contains 30-40 nodes, a
depth level of 10, 10-15 of these nodes are timestamped nodes nT , each one in 2-3
versions composed by the union of 1-2 distinct periods. We are also able to change
the length of the periods and the probability that the temporal pertinence of
the document nodes overlap. Finally, we investigate different kinds of probability
density functions generating collections with different distributions, thus directly
affecting the containment constraint.

Experiments were conducted on a reference collection (C-R), consisting of
5000 documents (120 MB) generated following a uniform distribution and char-
acterized by not much scattered nodes, and on several variations of it. We tested
the performance of the time-slice operator with different twig and t-window
parameters. Due to the lack of space, in this article we will deepen the perfor-
mance analysis by considering the same path, involving three nodes, and different
temporal windows as our focus is not on the structural aspects.

The experiments have been performed on a Pentium 4 3Ghz Windows XP
Professional workstation, equipped with 1GB RAM and an 160GB EIDE HD
with NT file system (NTFS).

4.2 Efficiency Evaluation

We evaluated the performances of the time-slice operator in terms of execution
time and number of tuples that are put in the buffers and in the stacks for each
feasible computation scenario.

Evaluation of the default setting. We started by testing the time-slice op-
erator with a default setting (denoted as TS1 in the following). Its temporal
window has a selectivity of 20%, i.e. 20% of the tuples stored in the temporal in-
verted indexes involved by the twig pattern intersect the temporal window. The
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Table 1. Evaluation of the computation scenarios with TS1

Evaluation Execution Non-Consistent Tuples (%)
scenarios: Time (ms) Solutions (%) Buffer Stack
L1/L1 1890 23.10 % 7.99 % 7.76 %
L2/L1 1953 23.10 % 9.23 % 7.76 %

SOL/L1 2000 39.13 % 9.43 % 9.17 %
L1/L2 2625 23.10 % 17.95 % 7.76 %
L2/L2 2797 23.10 % 23.37 % 7.76 %

SOL/L2 2835 39.13 % 23.80 % 9.17 %
L1/SOL 12125 95.74 % 88.92 % 88.85 %
L2/SOL 12334 95.74 % 99.33 % 88.85 %

SOL/SOL 12688 96.51 % 100.00 % 100.00 %

returned solutions are 5584. Table 1 shows the performance of each scenario when
executing TS1. In particular, from the left: The execution time, the percentage
of potential solutions at level SOL that are not temporally consistent and, in the
last two columns, the percentage of tuples that are put in the buffers and in the
stacks w.r.t. the total number of tuples involved in the evaluation. Notice that,
the temporal inverted indices exploited at level L1 are B+-trees; the comparison
of the performances between the B+-tree and MVBT implementations will be
shown in the following.

The best result is given by the computation scenario L1/L1: Its execution
time is more than 6 times faster than the execution time of the baseline scenario
SOL/SOL. Such a result clearly shows that combining solutions at a low level of
the architecture, such as L1, avoids I/O costs for reading unnecessary tuples and
their further elaboration cost at the upper levels. The decrease of read tuples
from 100% of SOL/SOL to just 7.99% of L1/L1 and the decrease of temporally
inconsistent solutions from 96.51% of SOL/SOL to 23.1% of L1/L1 represent
a remarkable result in terms of efficiency. Let us now have a look to the other
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scenarios. TS1 represents a typical querying setting where the containment con-
straint is much more selective than the non-empty intersection constraint. This
consideration induces us to analyse the obtained performances by partitioning
the scenarios in three groups, */L1, */L2 and */SOL, on the basis of the adopted
containment constraint solution. The scenarios within each group show similar
execution time and percentages of tuples. In group */L1 the low percentage of
tuples in buffers (10%) means low I/O costs and this has a good influence on
the execution time. In group */L2 the percentages of tuples in buffers are more
than double of those of group */L1, while the execution time is about 1.5 times
higher. Finally, group */SOL is characterized by percentages of tuples in buffers
and execution time approximately ten and six time higher than those in */T1,
respectively. Moreover, within each group it should be noticed that rising the
non-empty intersection constraint solution from level L1 to level SOL produces
more and more deterioration in the overall performances.

Changing the selectivity of the temporal window. We are now interested
in showing how our XML query processor responds to the execution of temporal
slicing with different selectivity levels; to this purpose we considered a second
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time-slice (TS2) having a selectivity of 31% (lower than TS1) and returning
12873 solutions. Figure 7 shows the percentage of read tuples (Figure 7-a) and
the execution time (Figure 7-b) of TS1 compared with our reference time-slice
setting (TS1). Notice that the trend of growth of the percentage of read tuples
along the different scenarios is similar. However, for TS1 the execution time
follows the same trend as the read tuples whereas for TS2 the execution time of
different scenarios are closer. In this case, the lower selectivity of the temporal
window makes the benefits achievable by the L1 solutions less appreciable. Notice
that, in the SOL/SOL scenario both queries have the same number of tuples in
the buffers because no selectivity is applied at the lower levels; this explains also
the same execution time.

Evaluation of the performance of solution UL1. In order to evaluate the
results of exploiting access methods at level UL1 we considered a third time-slice
(TS3) that is characterized by a highly selective temporal window (1%) and re-
turns 123 solutions. Figure 8-a compares the execution time of the scenarios in-
volving UL1 solutions (*/UL1) with the best and the baseline scenarios shown
above (L1/L1 and SOL/SOL). As one would expect, it shows that */UL1 scenarios
are inefficient for low-selectivity settings, while they are the best ones with high-
selectivity setting. In particular the best computation scenario for TS3 is L2/UL1.

Comparison with MVBT and purely structural techniques. In Figure
8-b we compare the execution time for scenario L1/L1 when the access method
is the B+-tree w.r.t. the MVBT. Notice that when MVBT indices are used to ac-
cess data the execution time is generally higher than the B+-tree solution. This
might be due to the implementation we used which is a beta-version included in
the XXL package [7]. The last comparison involves the holistic twig join algo-
rithms applied on the original indexing scheme proposed in [14] where temporal
attributes are added to the index structure but are considered as common at-
tributes. Notice that in this indexing scheme tuples must have different LeftPos
and RightPos values and thus each temporal XML document must be converted
into an XML document where each timestamped node gives rise to a number
of distinct nodes equal to the number of distinct periods. The results are shown
on the right of Figure 8-b where it is clear that the execution time of the purely
structural approach (STRUCT) is generally higher than our baseline scenario
and thus also than the other scenarios (13 times slower than the best scenario).
This demonstrates that the introduction of our temporal indexing scheme alone
brings significant benefits on temporal slicing performance. We refer the inter-
ested reader also to Section 5 where we provide additional discussion of state of
the art techniques w.r.t. ours.

Evaluation on differently distributed collections. We also considered the
performance of our XML query processor on another collection (C-S) of the
same size of the reference one, but that is characterized by temporally scattered
nodes. Figure 9 shows the execution time and the number of temporally incon-
sistent potential solutions of TS1 and TS2 on both collections. The execution
time of scenarios L1/L1 and SOL/L1, depicted in Figure 9-a, shows that it is
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almost unchanged for collection C-R, whereas the difference is more remark-
able for both temporal slicing settings for collection C-S. Notice also that the
percentage of temporally inconsistent potential solutions when no solution is ap-
plied under level SOL is limited in the C-R case but explodes in the C-S case
(see for instance SOL/L1 in Fig. 9-b). The non-empty intersection constraint
is mainly influenced by the temporal sparsity of the nodes in the collection:
The more the nodes are temporally scattered the more the number of tempo-
rally inconsistent potential solutions increases. Therefore, when temporal slicing
is applied to this kind of collections the best way to process it is to adopt a
solution exploiting the non-empty intersection constraint at the lowest level,
i.e. L1.

Scalability. Figure 10 (notice the logarithmic scales) reports the performance
of our XML query processor in executing TS1 for the reference collection C-
R and for two collections having the same characteristics but different sizes:
10000 and 20000 documents. The execution time grew linearly in every scenario,
with a proportion of approximately 0.75 w.r.t. the number of documents for
our best scenario L1/L1. Such tests have also been performed on the other
temporal slicing settings where we measured a similar trend, thus showing the
good scalability of the processor in every type of query context.

5 Discussion and Concluding Remarks

In the last years, there has been a growing interest in representing and querying
the temporal aspect of XML data. Recent papers on this topic include those of
Currim et al. [5], Gao and Snodgrass [9], Mendelzon et al. [12], and Grandi et
al. [10] where the history of changes XML data undergo is represented into a
single document from which versions can be extracted when needed. In [5], the
authors study the problem of consistently deriving a scheme for managing the
temporal counterpart of non-temporal XML documents, starting from the defi-
nition of their schema. The paper [9] presents a temporal XML query language,
τXQuery, with which the authors add temporal support to XQuery by extending
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its syntax and semantics to three kinds of temporal queries: Current, sequenced,
and representational. Similarly, the TXPath query language described in [12] ex-
tends XPath for supporting temporal queries. Finally, the main objective of the
work presented in [10] has been the development of a computer system for the
temporal management of multiversion norms represented as XML documents
and made available on the Web.

Closer to our definition of time-slice operator, Gao and Snodgrass [9] need
to time-slice documents in a given period and to evaluate a query in each time
slice of the documents. The authors suggest an implementation based on a stra-
tum approach to exploit the availability of XQuery implementations. Even if they
propose different optimizations of the initial time-slicing approach, this solution
results in long XQuery programs also for simple temporal queries and postpro-
cessing phases in order to coalesce the query results. Moreover, an XQuery engine
is not aware of the temporal semantics and thus it makes more difficult to ap-
ply query optimization and indexing techniques particularly suited for temporal
XML documents. Native solutions are, instead, proposed in [4, 12]. The paper
[4] introduces techniques for storing and querying multiversion XML documents.
Each time one or more updates occur on a multiversion XML document, the pro-
posed versioning scheme creates a new physical version of the document where
it stores the differences w.r.t. the previous version. This leads to large overheads
when “conventional” queries involving structural constraints and spanning over
multiple versions are submitted to the system. In [12] the authors propose an
approach for evaluating TXPath queries which integrates the temporal dimen-
sion into a path indexing scheme by taking into account the available continuous
paths from the root to the elements, i.e. paths that are valid continuously dur-
ing a certain time interval. While twig querying is not directly handled in this
approach, path query performance is enhanced w.r.t. standard path indexing,
even though the main memory representation of their indices is more than 10
times the size of the original documents. Moreover, query processing can still be
quite heavy for large documents, as it requires the full navigation of the doc-
ument collection structure, in order to access the required element tables, and
the execution of a binary join between them at each level of the query path.

Similarly to the structural join approach [14] proposed for XML query pattern
matching, the temporal slicing problem can be naturally decomposed into a set of
temporal-structural constraints. For instance solving time-slice(//contents//
section//article,[1994, now])means to find all occurrences in a temporal XML
database of the basic ancestor-descendant relationships (contents,section) and
(section,article) which are temporally consistent. In the literature, a great
deal of work has been devoted to the processing of temporal join (see e.g. [13]) also
using indices [15]. Given the temporal indexing scheme proposed in this paper, we
could have extended temporal join algorithms to the structural join problem or
vice versa. However the main drawback of the structural join approach is that the
sizes of the results of binary structural joins can get very large, even when the input
and the final result sizes obtained by stitching together the basic matches are much
more manageable.
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The native approach proposed in this paper extends one of the most efficient
approaches for XML query processing and the underlying indexing scheme in
order to support temporal slicing and overcome most of the previously discussed
problems. Starting from the holistic twig join approach [2], which directly avoids
the problem of very large intermediate results size by using a chain of linked
stacks to compactly represent partial results, we proposed new flexible technolo-
gies consisting in alternative solutions and extensively experimented them in
different settings. The resulting good efficiency is quite encouraging and induces
us to continue in this direction.
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Abstract. Modern document collections often contain groups of doc-
uments with overlapping or shared content. However, most information
retrieval systems process each document separately, causing shared con-
tent to be indexed multiple times. In this paper, we describe a new
document representation model where related documents are organized
as a tree, allowing shared content to be indexed just once. We show how
this representation model can be encoded in an inverted index and we
describe algorithms for evaluating free-text queries based on this encod-
ing. We also show how our representation model applies to web, email,
and newsgroup search. Finally, we present experimental results showing
that our methods can provide a significant reduction in the size of an
inverted index as well as in the time to build and query it.

1 Introduction

Modern document collections such as e-mail, newsgroups and Web pages, can
contain groups of documents with largely overlapping content. On the Web, for
example, studies have shown that up to 45% of the pages are duplicates – pages
with (nearly) identical content that are replicated in many different sites [6,
8, 22]. In e-mail collections, individual documents with significant amounts of
overlapping content are naturally created as people reply to (or forward) mes-
sages while keeping the original content intact. E-mail exchanges often contain
long chains or threads of replies to replies, causing early messages in the thread
to be replicated over and over. Similar threading patterns are also common in
newsgroup discussions.

Information Retrieval (IR) systems typically use an inverted text index to
evaluate free-text queries. During indexing, most IR systems process each docu-
ment separately, causing overlapping content to be indexed multiple times. This,
in turn, leads to larger indexes that take longer to build and longer to query. In
this paper, we describe a scheme where overlapping content is indexed just once
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and is logically shared among all documents that contain it. Thus, index space
and index build times are greatly reduced. This does not come at the expense
of any retrieval capabilities – queries can continue to be evaluated as if the full
text of each document was indexed separately. Query evaluation is also faster
due to the reduced index size.

Content is logically shared using a new document representation model where
related documents are organized as nodes in a tree. Each node in a document tree
can include content that it shares with all of its descendents as well as content
and meta-data that is not shared with its descendents. The former is referred
to as “shared content”, while the latter is referred to as “private content”. For
example, in an e-mail or newsgroup thread, its document tree will mirror the
history of the thread, with the root of the tree representing the first message
of the thread whose text is quoted (and shared) with subsequent messages. We
show how to encode our document representation model in a standard inverted
index, and describe algorithms for evaluating free-text queries based on this
encoding.

The basic operation of any inverted text index is the merging and intersection
of posting lists - the lists of documents associated with each of the terms. The goal
is to find the documents that contain terms appearing in a query. For efficiency,
there are data structures and algorithms that allow skipping over the portions
of the posting lists where no intersections might occur [5]. This operation is
sometimes called a zig-zag join [11] and it is most useful for conjunctive queries.
At its most basic, a zig-zag join of two lists proceeds by keeping two index cursors
(also known as posting list iterators), one for each list. At every step, the cursor
that points to a smaller document number is advanced at least as far as the
other cursor. When the cursors meet, an intersection is reported, and one cursor
is advanced to the next document in its list.

A key feature of our document representation model is that it can be easily
encoded into an inverted index in such a way that the standard algorithms for
evaluating free-text queries are still applicable. This is accomplished by defining
virtual index cursors that are aware of our representation model and its encoding.
In particular, the zig-zag join procedure uses virtual cursors as if they were
normal physical cursors, and furthermore virtual cursors are relatively simple to
implement on top of normal index cursors.

In the context of Web search, one may wonder why we opt to develop ma-
chinery for logically indexing all duplicates instead of simply retaining a single
representative of any group of duplicates and discarding the rest. Some search
engines (e.g., AltaVista as of 2000 [4]) adopted such a solution, which naturally
also implies that they avoid returning duplicate content in their result sets. How-
ever, keeping a single representative is problematic for queries that include, in
addition to some query terms, restrictions on meta-data such as URL, domain,
or last-modified-date. Such meta-data is typically different for each duplicate.
By sharing duplicate content and keeping the meta-data private, our represen-
tation model can support these queries, while at the same time indexing the
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duplicate content just once and preventing the return of multiple copies of it in
the returned set of search results.

The main contributions of this paper include:

– A new document representation model where related documents are organized
as a tree, allowing overlapping or shared content to be indexed just once.

– An encoding of our representation model that can easily support a standard
zig-zag join for evaluating free-text queries on an inverted index.

– Descriptions of our representation model as applied to web, email, and news-
group corpora, showing its usefulness in practical IR applications.

– Experimental results on large datasets showing that our representation model
can provide a significant reduction in the size of an inverted index and in the
time to build and query it.

2 Background

In this section we briefly review some basic IR concepts and terminology.

Inverted Index. Most IR systems use inverted indexes as their main data struc-
ture for full-text indexing [21]. There is a considerable body of literature on
efficient ways to build inverted indexes (See e.g. [1, 3, 10, 13, 16, 21]) and
evaluate full-text queries using them (See e.g. [5, 15, 21]).

In this paper, we assume an inverted index structure. The occurrence of a
term t within a document d is called a posting. The set of postings associated
to a term t is stored in a posting list. A posting has the form <docid, payload>,
where docid is the document ID of d and where the payload is used to store
arbitrary information about each occurrence of t within d. Here, we use part
of the payload to indicate whether the occurrences of t are shared with other
documents and also to store the offsets of each occurrence.

Each posting list is sorted in increasing order of docid. Often, a B-tree [11] is
used to index the posting lists [10, 16]. This facilitates searching for a particular
docid within a posting list, or for the smallest docid in the list greater than a
given docid. Similarly, within a posting, term occurrences are sorted by offset
thus making intra-document searches efficient.

Free-text Queries. Most IR systems support free-text queries, allowing Boolean
expressions on keywords and phrase searches. Support for mandatory and for-
bidden terms is also common, e.g. the query +apple orange -pear indicates
that apple is mandatory, orange is optional, and pear is forbidden. Most sys-
tems also support fielded search terms, i.e. terms that should appear within the
context of a specific field of a document, e.g. +title:banana -author:plum.
Note that the queried fields are most often meta-data fields of the documents.

Document at a Time Evaluation. In this paper, we assume the document-at-a-
time query evaluation model (DAAT) [20], commonly used in web search engines
[3]. In DAAT, the documents that satisfy the query are usually obtained via a
zig-zag join [11] of the posting lists of the query terms. To evaluate a free-text
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query using a zig-zag join, a cursor Ct is created for each term t in the query, and
is used to access t’s posting list. Ct.docid and Ct.payload access the docid and
payload of the posting on which Ct is currently positioned. During a zig-zag join,
the cursors are moved in a coordinated way to find the documents that satisfy
the query. Two basic methods on a cursor Ct are required to do this efficiently:

– Ct.next() advances Ct to the next posting in its posting list.
– Ct.fwdBeyond(docid d) advances Ct to the first posting in its posting list

whose docid is greater than or equal to d. Since posting lists are ordered by
docid, this operation can be done efficiently.

Scoring. Once a zig-zag join has positioned the cursors on a document that sat-
isfies the query, the document is scored. The final score for a document usually
contains a query-dependent textual component, which is based on the docu-
ment similarity to the query, and a query-independent static component, which
is based on the static rank of the document. In most IR systems, the textual
component of the score follows an additive scoring model like tf × idf for each
term, whereas the static component can be based on the connectivity of web
pages, as in PageRank [3], or on other factors such as source, length, creation
date, etc.

3 The Document Representation Model

In our document representation model each group of related documents is or-
ganized as a document tree; the corpus being indexed is therefore a forest of
document trees.

Each node in a document tree corresponds to a document that can include
shared and private content. The private content of a document d is unique to d,
whereas the shared content of d is inherited by its descendants. Sharing occurs
top-down. Therefore, the document at a particular node effectively contains the
shared and private content of that node plus the union of all its ancestors’ shared
content.

Our representation model is illustrated in Figure 1. This might correspond to
an email exchange starting with d1. It was quoted by two independent replies d2
and d4. It turn, d2 was quoted in full (including d1) by d3, while d4 was quoted
in full by d5 and d6.

In Figure 1, di corresponds to the document whose docid = i, while Si and Pi

correspond to the shared and private content of document di, respectively. The
content of d1 is S1 and P1, while the content of d3 is S3 and P3 plus S1 and S2.

We define a thread as the documents on a root-to-leaf path in a document
tree. In Figure 1, there are three threads, d1-d2-d3, d1-d4-d5, and d1-d4-d6.

Two functions on docid are needed for query evaluation:

– root(docid d) returns the root of d’s document tree.
– lastDescendant(docid d) returns the last descendant of the sub-tree rooted

at d. If d is a leaf, then d itself is returned.
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docid = 1
root = 1
lastDescendant = 6

docid = 2
root = 1
lastDescendant = 3

docid = 4
root = 1
lastDescendant = 6

docid = 3
root = 1
lastDescendant = 3

docid = 5
root = 1
lastDescendant = 5

docid = 6
root = 1
lastDescendant = 6

d2

S2 P2S2 P2S2 P2

d3

S3 P3

d3

S3 P3S3 P3S3 P3

d1

S1 P1

d1

S1 P1S1 P1S1 P1

d4

S4 P4

d4

S4 P4S4 P4S4 P4

d5

S5 P5

d5

S5 P5S5 P5S5 P5

d6

S6 P6

d6

S6 P6S6 P6S6 P6

Fig. 1. Example of a document tree

Figure 1 shows the root() and lastDescendant() values for the documents
in our example. In principle, our representation model does not impose any
restriction on the assignment of docid’s across document trees. However, the
query evaluation algorithm described is Section 5 requires the docid’s within a
document tree to be assigned sequentially using a depth first traversal. This
guarantees that all documents in the range {di+1, . . . , lastDescendant(di)} are
descendants of document di, and this is the assumption we are making from
now on.

The main limitation of our document representation model is that related
documents can only share content in a top-down, hierarchical manner. Nonethe-
less, we will show that there are many applications such as web, email, and
newsgroup search that can still benefit from our representation.

4 Index Encoding

To support our document representation model, we use a standard inverted
index with a few additions. First, each posting within the inverted index needs
to indicate whether it is shared or private. This can be done by adding one bit
to the payload. Second, the root() and lastDescendant() functions need to be
implemented, which can be done using an in-memory table or an external data
structure that allows efficient access.

Figure 2 illustrates how the posting lists might look for an email thread match-
ing d1-d2-d3 in the previous example. In the posting lists, the letter “s” indicates
a shared posting, while the letter “p” indicates a private posting. Document d1
corresponds to the original message, while d2 is a reply to d1, and d3 is a reply
to d2.

In Figure 2, the content in the header fields is treated as private, while the
content in the body is shared. For example, the posting for “andrei” is private to
d1, since it appears in the “From” field, whereas the posting for “did” is shared,
since it appears in the body. In the latter case, d1 shares the posting for “did”
with its descendants, that is, d2 and d3. More generally, a document di shares
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From: marcus
To: ronny
Subject: re:paper
not yet!

> From: ronny
> To: marcus
> Subject: re:paper
> well, did you?
>
>> From: andrei
>> To: ronny, marcus
>> Subject: paper
>> did you read it? 

Who Date Subject
andrei 2/1/2005 paper
ronny 2/1/2005 Re: paper
marcus 2/2/2005 Re: paper

Thread view

Last email in the
thread (message d3)

andrei: <1, p>
did: <1, s>
it: <1, s>
marcus: <1, p>, <2, p>, <3, p>
not: <3, s>
paper: <1, p>, <2, p>, <3, p>
read: <1, s>
ronny: <1, p>,<2, p>, <3, p>
well: <2, s>
yet: <3, s>
you: <1, s>

Posting lists

d1

d2

d3

d2

d3

d1

From: marcus
To: ronny
Subject: re:paper
not yet!

> From: ronny
> To: marcus
> Subject: re:paper
> well, did you?
>
>> From: andrei
>> To: ronny, marcus
>> Subject: paper
>> did you read it? 

Who Date Subject
andrei 2/1/2005 paper
ronny 2/1/2005 Re: paper
marcus 2/2/2005 Re: paper

Thread view

Last email in the
thread (message d3)

andrei: <1, p>
did: <1, s>
it: <1, s>
marcus: <1, p>, <2, p>, <3, p>
not: <3, s>
paper: <1, p>, <2, p>, <3, p>
read: <1, s>
ronny: <1, p>,<2, p>, <3, p>
well: <2, s>
yet: <3, s>
you: <1, s>

Posting lists

d1

d2

d3

d2

d3

d1

(a) The inverted index

P1:
andrei: <1, p>
marcus: <1, p>
paper: <1, p>
ronny: <1, p>

S1:
did: <1, s>
it: <1, s>
read: <1, s>
you: <1, s>

P1:
andrei: <1, p>
marcus: <1, p>
paper: <1, p>
ronny: <1, p>

S1:
did: <1, s>
it: <1, s>
read: <1, s>
you: <1, s>

P2:
marcus: <2, p>
paper: <2, p>
ronny: <2, p>

S2:
well: <2, s>

P2:
marcus: <2, p>
paper: <2, p>
ronny: <2, p>

S2:
well: <2, s>

P3:
marcus: <2, p>
paper: <2, p>
ronny: <2, p>

S3:
not: <3, s>
yet: <3, s>

P3:
marcus: <2, p>
paper: <2, p>
ronny: <2, p>

S3:
not: <3, s>
yet: <3, s>

d1

d2

d3

(b) The document tree

Fig. 2. An example of index encoding for a thread d1-d2-d3

a posting for a term t with document dj if the posting is marked as shared
and dj ∈ {di, . . . , lastDescendant(di)} or if the posting is marked as private and
di = dj .

One subtle point to notice in Figure 2 is that, although the terms “did” and
“you” appear in both d1 and d2, only one posting for them is indexed, namely,
the one for d1. This is because d1 already shares those postings with d2, which
in turn means it would be redundant to index them twice. The virtual cursor
algorithms that we will present later assume that these redundant postings do
not appear in the index. However, for scoring, their occurrences and an indication
of which document they belong to are reflected in the payloads. For example,
both occurrences of “did” (for d1 and d2) would appear in d1’s payload, with an
indication of the document they actually appear in. When scoring d1 the system
will ignore the occurence that is tagged with d2, whereas when scoring d2, both
occurences will be taken into account.

5 Query Evaluation

We have described how our representation model can be encoded in an inverted
index. Given this encoding, we now show how free-text queries can be evaluated
using a standard zig-zag join. We allow queries to contain required, forbidden,
and optional terms. The following high-level steps, which are described in the
remainder of this section, are repeated during query evaluation:

– Enumerate candidates, that is, identify documents containing all required
terms and none of the forbidden terms.
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– Score the candidates, taking into account all occurrences of the query terms,
including optional terms.

– Choose the next docid to resume searching for candidates.

5.1 Enumerating Candidates

A zig-zag join on required and forbidden terms is used to enumerate candidate
documents. We define virtual index cursors, which look like normal cursors to a
zig-zag join but are aware of our representation model and its encoding. A virtual
cursor for a term t enumerates the same documents that a physical cursor for
t would if shared content had been indexed multiple times. For example, in
Figure 4, a virtual cursor for “well” would enumerate d2 and d3.

We create a “positive” virtual cursor for each required term, and a “negative”
virtual cursor for each forbidden term. The latter allows a zig-zag join to treat
forbidden terms the same as required terms.

Recall that two basic cursor methods are required for a zig-zag join, namely,
next() and fwdBeyond(). The algorithms for the positive and negative versions
of these methods are shown in Figure 3 and Figure 4, respectively. In the algo-
rithms, this.docid corresponds to the virtual cursor’s current position, while Cp

corresponds to the underlying physical cursor.

Positive next() and fwdBeyond()

Turning to Figure 3, the algorithm for positive next() is relatively straightfor-
ward, except when Cp is on a shared posting. In that case, all of Cp’s descen-
dants, which inherit the term from Cp, are enumerated (lines 2–4) before Cp is
physically moved (line 7).

The algorithm for positive fwdBeyond(d) relies on the physical cursor method
fwdShare(), which will be describe shortly, to do most of its work. The call to
Cp.fwdShare(d) tries to position Cp on the next document that shares the term
with d (line 6). If there is no such document, fwdShare() returns with Cp posi-
tioned on the first document beyond d.

Negative next() and fwdBeyond()

The algorithm for negative next() is shown in Figure 4. It works by trying to keep
Cp positioned ahead of the virtual cursor. The documents d ∈ {this.docid, . . . , Cp

− 1}, which do not contain the term, are enumerated until the virtual cursor
catches up to Cp (line 4). When that happens, the virtual cursor is forwarded
past the documents that inherit the term from Cp (lines 5–9), after which Cp is
moved forward (line 10). These steps are repeated until Cp moves ahead of the
virtual cursor again.

The algorithm for negative fwdBeyond(d) calls fwdShare(d) to position Cp on
the next document that shares the term with d (line 6). Then next() is called
to position the virtual cursor on the next document that does not contain the
term (line 14).
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Physical fwdShare()

The algorithm for fwdShare(d) is shown in Figure 5. It keeps looping until the
physical cursor moves beyond d or to a posting that shares the term with d
(line 1). The movement of the physical cursor depends on whether the cursor
lies outside d’s document tree (lines 5–7), within the tree but outside d’s thread
(lines 9–11), or is on a private posting (lines 13–15).

PositiveVirtual::next()
// Forward the virtual cursor to the next
// document that contains the term.
1. last = lastDescendant(Cp.docid);
2. if (Cp.payload is shared and this.docid < last) {
3. // not done enumerating descendants of Cp
4. this.docid += 1;
5. } else {
6. // advance Cp and reset docid
7. Cp.next();
8. this.docid = Cp.docid;
9. }

PositiveVirtual::fwdBeyond(docid d)
// Forward the virtual cursor to the next document
// at or beyond document d that contains the term.
1. if (this.docid >= d) {
2. // already beyond d, so nothing to do
3. return;
4. }
5. // try to forward Cp so it shares the term with d
6. Cp.fwdShare(d);
7. // set docid to Cp if it
8. // is beyond d, else set it to d
9. this.docid = max(Cp.docid, d);

Fig. 3. positive next() and fwdBeyond()

5.2 Correctness Proof for next() and fwdBeyond()

Because of space limitations, we can only provide a sketch of the correctness
proof for virtual next() and fwdBeyond(). The proof follows from:

Theorem 1. On a posting list generated from our representation model, the vir-
tual next() and fwdBeyond() methods accurately simulate the behavior of next()
and fwdBeyond() on a standard posting list.

Proof sketch: The proof is based on proving the invariants we keep for the two
types of virtual cursors, namely, for positive ones, that all docid’s between the
current physical cursor position and its last descendant are valid return values,
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NegativeVirtual::next()
// Forward the virtual cursor to the
// next document not containing the term.
1. this.docid += 1;
2. // keep incrementing the cursor until it
3. // is on a document not containing the term
4. while (this.docid >= Cp.docid) {
5. if (Cp.payload is shared) {
6. this.docid = lastDescendant(Cp.docid) + 1;
7. } else {
8. this.docid = Cp.docid + 1;
9. }
10. Cp.next();
11. }

NegativeVirtual::fwdBeyond(docid d)
// Forward the virtual cursor to the next
// document at or beyond the document d
// that does not contain the term.
1. if (this.docid >= d) {
2. // already beyond d, so nothing to do
3. return;
4. }
5. // try to forward Cp so it shares the term with d
6. Cp.fwdShare(d);
7. this.docid = d;
8. if (Cp.docid > d) {
9. // document d does not contain the term
10. return;
11. }
12. // document d contains the term
13. // call next() to move the cursor and Cp
14. this.next();

Fig. 4. negative next() and fwdBeyond()

and that in the negated case, all docid’s between the current virtual position and
the physical cursor position are valid return values. These invariants guarantee
that our methods do not return spurious results. We further prove that we never
skip valid results, completing the proof. ��

5.3 Scoring Candidates

Our representation model does not impose any restriction on the scoring func-
tion. However, the scoring function could take thread information into account.
For example, documents toward the bottom of a document tree could be assigned
a lower score.

Candidate enumeration returns with the virtual cursors positioned on postings
for a candidate document d. Scoring usually needs to take into account all the
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Physical::fwdShare(docid d)
// Try to forward the physical cursor so it shares
// the term with document d. If there is no such
// document, return with the cursor positioned on
// the first document beyond d.
1. while (this.docid <= d and this.docid

does not share the term with d) {
2. root = root(d);
3. last = lastDescendant(this.docid);
4. if (this.docid < root) {
5. // the cursor is not in the
6. // same document tree as d
7. this.fwdBeyond(root);
8. } else if (last < d) {
9. // in the same document tree
10. // but not in the same thread
11. this.fwdBeyond(last + 1);
12. } else {
13. // in the same thread, but private
14. // posting on a different document
15. this.next();
16. }
17. }

Fig. 5. fwdShare() on a physical cursor

occurrences of each query term t in d, including optional terms. Given a virtual
cursor Ct, this can be done by iterating all the occurrences of t in the posting’s
payload. Since Ct is virtual, the physical cursor Cp associated with Ct would be
used to access the payload.

If the textual component of the scoring function is expensive to compute, we
can remember the textual score of a document d to speedup the scoring of other
candidate documents in d’s thread. For example, suppose di has been scored
and now another candidate dj on the same thread needs to be scored. We can
compute its textual score as:

Scoretext(dj) = PScore(dj) +
∑

dk∈path(di,dj)

SScore(dk)

Here, PScore() and SScore() are the private and shared parts of the textual
score, respectively, and path(di, dj) is the path from di to dj in the document
tree.

5.4 Choosing the Next Docid

After a candidate document d has been scored, the next document to resume
searching for candidates has to be chosen. This step depends on the retrieval
policy of the system, which may be tuned for performance or a particular appli-
cation’s requirements. Possible choices include:
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– Resume from the document d + 1. This allows all the qualifying documents
in a document tree to be returned.

– Resume from document lastDescendant(root(d)) + 1. This allows only the
first qualifying document in a document tree to be returned.

– Resume from document lastDescendant(d) + 1. This is a hybrid of the first
two approaches, allowing only the first qualifying document in a thread to
be returned.

6 Applications

This section describes how our document representation model can be applied
to web and email search, showing its usefulness in practical IR applications.

6.1 Web Search

Studies have shown that up to 45% of web pages are duplicates and near dupli-
cates [6, 8]. On the web scale, repeated indexing of duplicate content is a huge
waste of resources, and furthermore, users are seldom interested in seeing dupli-
cates in the search results. Hence, web search engines need some way to identify
and filter duplicates from results. To identify duplicates, a signature is typically
computed for each document by hashing its content. These signatures are then
used to identify groups of duplicate documents, that is, duplicate groups. To fil-
ter duplicates from search results, one of the following techniques is commonly
used:

– Only the master of each duplicate group is indexed and returned in searches.
The master of a duplicate group can be chosen arbitrarily or by using some
heuristic, like picking the duplicate with the highest static rank. (This tech-
nique has been used in the AltaVista search engine.)

– All documents in a duplicate group are indexed. A post-processing filter is
used to make sure that only one document per duplicate group appears in
search results. Optionally the entire group is presented to the user.

By indexing only masters, the inverted index is kept small and query evalu-
ation can ignore duplicates. However, queries that include restrictions on meta-
data become problematic. For example, suppose that for performance reasons,
IBM has mirrored its main HR web page at us.ibm.com/hr.html and
canada.ibm.com/hr.html, but the US version has been chosen by the US-centric
search engine as the master. Then the query hr domain:canada.ibm.com that
asks for web pages from IBM Canada that have the term “hr” in their content,
will not return the main page. This type of domain restriction might be explicit
in the query, or it might have been added to the query by the query interface
without the user knowledge, based, say on user’s location or IP address.

Conversely, if all the documents in a duplicate group are indexed, queries
that include restrictions on meta-data do not pose a problem, but then the same
content must be indexed multiple times and the query evaluation runtime has
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to filter duplicates from results. This filtering might be expensive, since it has
to be done in a separate post-processing step.

Using our document representation model, it becomes possible to index du-
plicate content just once, while still allowing queries to be answered as if all the
duplicates were indexed. This is done by creating a linear tree for each duplicate
group, in which the master of the group serves as the root and is thus indexed
with both its (shared) content and its private meta-data. The rest of the docu-
ments in the duplicate group follow in arbitrary order, where only the (private)
meta-data of each duplicate (such as URL, creation date, geo-location, etc) is
indexed. Note that this representation naturally applies to documents that have
no duplicates, i.e. to duplicate groups of size 1.

Since duplicates are not returned in search results, an added benefit of using
our representation is that the postings for all the remaining duplicates in a
duplicate group can be skipped during query evaluation as soon as one of them
has been returned. As our experimental results will show, this can dramatically
improve query performance.

6.2 Email and Newsgroup Search

In most email and newsgroup clients replies include the full content of the original
message. As illustrated earlier in Figure 4, our document representation model
can support email or newsgroup search by simply creating a document tree for
each message thread with a structure that mirrors the thread’s history.

Unfortunately for our aims, most email and newsgroup clients allow users to
edit the reply history, which potentially prevents any sharing between a mes-
sage and its reply. Although such editing is common, our experimental results
will show that 33% of the email messages in the Enron dataset [14] include an
unedited reply history.

Another application for our document representation model is indexing on
centralized email servers. For example, suppose an email message is sent to N
users on the same server. Rather than index the message and its attachments
N times, the message could be indexed as a two-level document tree, with the
message body and attachments appearing as the shared root of the tree, and
the meta-data of each recipient appearing as a separate, private leaf in the tree.
Presumably, security information would be stored in the private meta-data and
security meta-terms added to queries by the server to ensure that users could
only search their own email.

7 Experimental Results

In this section, we present experimental results for web and email search. We
implemented our algorithms on the Trevi search engine [10], which is currently
used to support web searches on IBM’s global intranet. Experiments were run
on a two-way SMP with dual 2.4 Ghz Intel Xeon processors running Linux. The
disk storage was configured as two physical RAID arrays, each with 6 drives.
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Table 1. Index sizes with and without duplicates

Num Pct. Meta Content Index w/o Index w/ Expected Actual
Docs (K) Dups Data (GB) Data (GB) Dups (GB) Dups (GB) Comp. Comp.

500 36% 1.2 3.7 2.5 3.6 72% 69%
1000 37% 2.3 7.9 5.1 7.4 71% 69%
1500 41% 3.5 11.1 7.1 11.0 69% 64%
2000 43% 4.8 13.9 8.8 13.0 68% 68%
2500 44% 6.0 19.9 11.0 16.0 66% 69%

7.1 Results for Web Search

For this set of experiments, we built a series of inverted indexes from snapshots
of IBM’s intranet, varying the corpus size between 500K to 2.5M documents1.
These sizes are indicative since the actual IBM intranet has about 15M doc-
uments (before duplicate elimination). We built each index with and without
duplicates, using our document representation model in the latter case, as de-
scribed in Section 6.

For each dataset, Table 1 shows the percentage of duplicates in the index,
the overall amount of meta-data, the overall amount of content data, the size of
the index without duplicates, the size of the index with duplicates, the expected
compression ratio of the index without duplicates to the index with duplicates,
and the actual measured compression ratio. The expected compression ratio can
be computed as:

ExpectedComp =
MetaData + ContentData · (1 − PctDups)

MetaData + ContentData

Table 1 shows that our representation model reduced index sizes by roughly
30% on the IBM intranet data. Note that the actual compression ratio was
better than expected in some cases. This was because content tokens, which
include payload and offset information, tended to be bigger than than meta-
data tokens, whereas our calculation of the expected compression assumes all
postings are of equal size.

The time to build an inverted index is an important metric in web search, since
a decrease in the time to build an index allows it to be refreshed more frequently
[10]. Table 2 shows the time to build each index on the IBM intranet data. Our
indexing algorithm [10] is designed for batch builds of complete indexes, and
hence a complete build was done for each experiment, rather than incrementaly
growing an existing index. The build times reported do not include the time spent
on separate analysis phase was run to identify duplicates. However, note that
this phase would be necessary to filter duplicate results, regardless of whether
our representation model was being used.

1 When selecting a subset from the IBM intranet corpus we selected complete dupli-
cate groups, so that the ratio of duplicate documents in all subsets has the same
expectation, irrespective of the subset size.
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Table 2. Index build performance

Num Index w/o Index w/ Pct.
Docs (K) Dups (sec) Dups (sec) Decrease

500 540 780 31%
1000 1020 1440 29%
1500 1500 2340 36%
2000 1800 2940 39%
2500 2160 3540 39%

Table 2 reflects the time to scan the dataset (with duplicates) and then build
the index (with or without duplicates). On average, it took about 30% to 40%
less time to build an index without duplicates because of its smaller size. This is
in keeping with the results in [10], which showed that the time to build an index
is mostly I/O bound and a linear function of its size.

To study query performance, we ran one- and two-term queries on the dataset
with 2.5M documents. We felt that this was a realistic set of experiments, since the
averagequery on the IBM intranet contains only 1.2 terms.The single-termqueries
were on syntheticaly generated terms. 5 synthetic terms were added to the docu-
ments with selectivities that ranged from 20% to 100% (i.e., for each document,
we added term t20% with probability .2, a term t40% with probability .4, etc.). We
then used these five terms in five single-term queries. Note, however, that a query
on such terms actually returned fewer documents than the expected fraction of the
corpus size, because duplicates were filtered from the final result.

Query performance is strongly correlated to the number of physical cursor
moves on the index – fewer moves translates into better query performance.
Figure 6 shows the number of physical cursor moves and the execution time for
single-term queries on a synthetic term. The results show that the number of
cursor moves decreased by roughly 30% to 45% when our representation model
was used. This is because the remaining postings in a duplicate group can be
skipped as soon as one of them is returned. The improvement in execution time
was even more pronounced, with a decrease of up to 80%. This was because of
the combined effect of fewer cursor moves along with having a smaller index,
which resulted in less CPU and I/O.

Figure 7 is provided to help understand the results in Figure 6. It illustrates
how our representation model can decrease the number of physical cursor moves.
As shown, there are two document groups d1-d2-d3-d4 and d5-d6. Using our
representation model, duplicates d2, d3, and d4 can be skipped as soon as d1 is
enumerated. In addition to decreasing I/O, this means that those documents do
not need to be filtered from the final results by the upper layers of the system,
which in turn decreases CPU requirements. Our representation model effectively
allows the filtering of duplicates to be pushed down to the physical index level,
rather than doing it in the upper layers of the system.

Figure 8 shows the number of physical cursor moves and the execution time for
two-term queries. For variety, real query terms on both content and meta-data
were used in this case. The results for two-term queries were similar to those for
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one-term queries, with improvements of up to 80% in execution time when our
representation model was used. Again, this was because of the combined effect
of fewer cursor moves on a smaller index.

7.2 Results for Email Search

We used the Enron email dataset [14] to study how well our document repre-
sentation model can be applied to email search. This dataset contains 517,431
emails that were made public in the Enron fraud investigation. Unfortunately,
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Table 3. Analysis of the Enron dataset

Size (MB)
Meta Data 430

Content Data 910
Original Data 580

we did not have an email search engine available to us that could be used for
experimentation. Consequently, we only used the Enron dataset to judge the
potential effectiveness of our method on a real email collection. As discussed
in Section 6, the effectiveness of our method in email search depends on the
percentage of email threads that include an unedited reply history.

An analysis of the Enron dataset showed that 61% of its email messages
belong to some thread, and that 33% of the messages in a thread included an
unedited reply history. In Table 3 we show the overall amount of meta-data, the
overall amount of content data, and the amount of content data that was left
when the reply history was removed (the “Original Data”). We treated anything
that appeared in email headers as meta-data.

Comparing the size of an inverted index for the Enron dataset with our rep-
resentation model to one without it, the expected compression ratio can be
computed as:

ExpectedComp =
MetaData + OriginalData
MetaData + ContentData

This works out to 75%. In other words, using our representation method, an
inverted index for the Enron data set would be roughly 25% smaller, which is
comparable to what was observed on the IBM intranet data. We believe that
the improvement in query performance would be comparable as well, due to the
combined effect of fewer cursor moves on a smaller index.

It worth noting that, for email search, Gmail [12] returns only one email
message per thread. Using our document representation model, this would allow
the remaining messages in a thread to be skipped during query evaluation as
soon as one of them was returned. As our results on the IBM intranet data
showed, this kind of skipping can dramatically improve query performance.

8 Related Work

Much of the motivation for developing our document representation model is to
save index space. In this respect, our representation model can be viewed as a
special type of an index compression that relies on explicit knowledge of the data.
Different compression methods as well as the trade offs involved in using them,
have been widely published [7, 9, 17, 18, 23]. However, we regard our scheme as
independent of those methods, and indeed it can be used in combination with
them.
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This paper focused on the problem of efficiently building and querying an
inverted index once the shared content has already been identified. How to iden-
tify the shared content is beyond the scope of this paper but is related to the
problem of identifying duplicates in a text corpus [2, 4, 6]. In the case of email or
newsgroup threads, identifying shared content may be aided by cross-reference
information in message headers.

Our representation model is particularly effective in email or newsgroup
search. Recently, email search like that provided by Gmail [12] and Bloomba [19]
has become quite popular. Unfortunately, the Gmail architecture is not public,
and although Bloomba is tailored for indexing and searching email, it does not
seem to do anything special for the shared content in email threads.

9 Conclusions

In this paper, we described a new document representation model where related
documents are organized as a tree, allowing shared content to be indexed just
once. A key feature of our representation is that it can easily support the stan-
dard zig-zag join algorithm for processing free-text queries on an inverted index.
We described how this can be accomplished by defining virtual index cursors
that are aware of our representation model and its encoding.

Our model can be applied to practical IR applications such as web, email, and
newsgroup search. Using data from the IBM intranet, we provided experimental
results showing that our method was able to reduce the size of the inverted index
by roughly 30% and improve the performance of one- and two-term queries by
up to 80%. The improvement in query performance was due to the synergistic
effect of fewer cursor moves on a smaller index.

For future research, we hope to extend this work to improving XML retrieval.
In particular, we would like to index XML documents efficiently while enabling
search at the individual tag level, i.e. to retrieve the tag within each document
that is most relevant to the query. To that effect,we can represent each document
using its DOM tree, and share the content of each node (tag) with the content of
its ancestors (enveloping tags). Note that this down-up model of content sharing
is exactly the opposite of the top-down sharing model discussed in this paper.
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Abstract. Relevance Feedback is an important way to enhance retrieval
quality by integrating relevance information provided by a user. In XML
retrieval, feedback engines usually generate an expanded query from the
content of elements marked as relevant or nonrelevant. This approach
that is inspired by text-based IR completely ignores the semistructured
nature of XML. This paper makes the important step from content-based
to structural feedback. It presents an integrated solution for expand-
ing keyword queries with new content, path, and document constraints.
An extensible framework evaluates such query conditions with existing
keyword-based XML search engines while allowing to easily integrate
new dimensions of feedback. Extensive experiments with the established
INEX benchmark show the feasibility of our approach.

1 Introduction

1.1 Motivation

With the proliferation of XML as a document format, information retrieval on
XML data has recently received great attention. XML search engines employ the
ranked retrieval paradigm for producing relevance-ordered result lists rather than
merely using XPath or XQuery for Boolean retrieval. An important subset of XML
search engines uses keyword-based queries [3, 9, 28], which is especially important
for collections of documents with unknown or highly heterogeneous schemas.

Relevance Feedback is an important way to enhance retrieval quality by in-
tegrating relevance information provided by a user. In XML retrieval, existing
feedback engines usually generate an expanded keyword query from the content
of elements marked as relevant or nonrelevant. This approach that is inspired by
text-based IR completely ignores the semistructured nature of XML. This paper
makes the important step from content-based to structural feedback. We extend
the well-established feedback approach by Rocchio [21] to expand a keyword-
based query with additional structural constraints on result elements and on
documents in which result elements reside, in addition to “standard” content-
based query expansion. The resulting expanded query has weighted structural
and content constraints and can be fed into a full-fledged XML search engine
like our own TopX engine [24].
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However, as there are many keyword-only search engines [3, 9] and some other
engines allow only unweighted structural constraints, this approach is not gen-
erally applicable. Additionally, the correct choice of weights and the way the
query is expanded depend on the underlying scoring model of the engine (like
Rocchio’s method initially requires that the vector space model is applied). To
overcome these problems, this paper presents an extensible framework to extend
existing keyword-based XML search engines with structure-based feedback. It
reranks results of keyword-only queries according to additional scores induced
by the structure of results that are marked as relevant (or nonrelevant).

This paper makes the following important contributions: (1) It presents a
formal framework to integrate different dimensions of feedback, beyond content-
based feedback, into XML retrieval, (2) it presents two structural query expan-
sion techniques as important instances of new dimensions for query expansion,
and (3) it shows how to effectively implement the framework, including structural
constraints, with keyword-based XML search engines. We show that structural
query expansion gives a huge gain in effectiveness with the established INEX
benchmark [13].

To the best of our knowledge, this is the first paper that considers user rele-
vance feedback for structural query expansion. The primary goal of this paper is
to show that structural feedback helps to enhance result quality. The paper does
not claim to present the ultimately best implementation of structural feedback,
but opens a whole design space and presents variants that give reasonably good
results.

1.2 Related Work

Relevance feedback has already been considered for document retrieval for a
long time, starting with Rocchio’s query expansion algorithm [21]. Ruthven and
Lalmas [22] give an extensive overview about relevance feedback for unstructured
data, including the assessment of relevance feedback algorithms.

Relevance feedback in XML IR is not yet that popular. Of the few papers that
have considered it, most contentrate on query expansion based on the content
of elements with known relevance [7, 15, 23, 27]. Some of these focus on blind
(“pseudo”) feedback, others on user feedback. Pan et al. [17, 18] apply user feed-
back to recompute similarities in the ontology used for query evaluation.

Even fewer papers have considered structural query expan-
sion [8, 10, 11, 16, 19, 20]. Mihajlovic̀ et al. [16, 19, 20] proposed deriving
the relevance of an element from its tag name, but could not show any signif-
icant gain in retrieval effectiveness. Additionally, they considered hand-tuned
structural features specific for the INEX benchmark (e.g., the name of the
journal to which an element’s document belongs), but again without a significant
positive effect. In contrast, we propose a general approach for feedback that can
be applied with INEX, but does not rely on any INEX-specific things.

Hlaoua and Boughanem [10] consider common prefixes of relevant elements’
paths as additional query constraints, but don’t provide any experimental
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evaluation of their approach. Our path-based feedback supports path prefixes as
one of six classes of path features.

Gonçalvez et al. [8] use relevance feedback to construct a restricted class of
structured queries (namely field-term pairs) on structured bibliographic data,
using a Bayesian network for query evaluation, but did not consider semistruc-
tured data like XML.

The work of Hsu et al. [11] is closest to our approach. They use blind feedback
to expand a keyword-based query with structural constraints derived from a
neighborhood of elements that contain the keywords in the original query. Our
approach considers the whole document instead of only a fragment, can generate
constraints with negative weight, and integrates also path- and content-based
constraints.

1.3 Formal Model and Notation

We consider a fixed corpus of XML documents. For such a document d, E(d)
denotes the set of elements of the document; for an element e, tag(e) denotes its
tag name and D(e) the document to which it belongs.

The content c(e) of an element e is the set of all terms (after stopword removal
and optional stemming) in the textual content of the element itself and all its
descendants. (Note that XML retrieval engines usually use this content model,
while boolean languages like XPath or Xquery typically only use the content of
the element itself.) For each term t and element e, we maintain a weight we(t).
This can be a binary weight (we(t) = 1 if the term occurs in e’s content and 0
otherwise), a tf-idf style [14] or a BM25-based [1, 26] weight that captures the
importance of t in e’s content.

We represent elements in the well-known vector space model. Formally, with
T = {t1, ..., t|T |} the set of all terms occuring in the contents of elements, our
vector space is V = R|T |. Each element e is assigned a vector e ∈ V where
ei = we(ti) corresponds to the weight of term ti in e. Analogously, a query
q ∈ V is also a vector with nonzero entries for the requested keywords. The
score of an element with respect to a query can then be defined as the cosine
similarity [2]

s(q, e) =
< q; e >

‖q‖ · ‖e‖
of the query and the element’s vector (or any other distance measure), and the
result to a query is then a list of elements sorted by descending score.

Note that, even though this paper uses the vector space model, the techniques
for query expansion presented here can be carried over to other retrieval models,
as long as they allow queries with structural constraints.

2 Dimensions for Query Expansion

In text-based IR and mostly also in XML IR, feedback has concentrated on
the content of relevant documents or elements only. We propose to extend this
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text-driven notion of feedback with new structural dimensions for feedback that
are more adequate to the semistructured nature of XML. Our framework for
feedback supports the following three feedback dimensions:

– content constraints that impose additional conditions on the content of rel-
evant elements,

– path constraints that restrain the path of relevant elements, and
– document constraints that characterize documents that contain relevant ele-

ments.

Another possible dimension for feedback is the quality of ontological expansions
that is considered in [18].

In the remainder of this section, we give motivating examples for each of the
dimensions and show how they can be formally expressed in the vector space
model. The evaluation of queries that are expanded along these dimensions is
presented in the following section.

For the remainder of this section, we consider a keyword query q ∈ V
for which we know a set E+ = {e+

1 , . . . , e+
r } of relevant elements and a set

E− = {e−1 , . . . , e−n } of nonrelevant elements, e.g., from user feedback. We as-
sume boolean feedback, i.e., a single element can be relevant or nonrelevant, but
not both. The models and formulae presented in the following can be extended
to support weighted feedback (to capture vague information like ‘somewhat rel-
evant’ or weighted relevance like in the different INEX quantizations), e.g. using
the notion of probabilistic sets, but this is beyond the scope of this paper.

2.1 Content Constraints

Content-based feedback is widely used in standard IR and has also made its way
into XML retrieval [15, 23]. It expands the original query with new, weighted key-
words that are derived from the content of elements with known relevance. As an
example, consider the keyword query "multimedia information" retrieval
(this is topic 178 from the INEX topic collection). From the feedback of a user,
we may derive that elements that contain the terms ‘brightness’, ‘annotation’,
or ‘rgb’ are likely to be relevant, whereas elements with ‘hypermedia’ or ‘au-
thoring’ are often irrelevant. An expanded query could include the former terms
with positive weights and the letter terms with negative weights.

Formally, to expand our keyword query q with new keywords, we apply a
straight-forward extension of the well-known Rocchio method [21] to XML: We
add new weighted keywords to the query that are taken from the contents of
result elements for which we know the relevance. The weight w(t) for a term t
is computed analogously to Rocchio with binary weights:

wc(t) = βc ·
∑

e∈E+ we(t)
|E+| − γc ·

∑
e∈E− we(t)
|E−|

with adjustable tuning parameters βc and γc between 0 and 1. We set βc = 0.5
and γc = 0.25 which gave good results in our experiments. A term has a high
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positive weight if it occurs in many relevant elements, but only a few nonrele-
vant elements, so adding it to the query may help in dropping the number of
nonrelevant results. Analogously, terms that are frequent among the nonrelevant
elements’ contents, but infrequent among the relevant elements’, get a high neg-
ative weight. The expanded query qc is then a combination of q with weighted
terms from the candidate set, i.e., qc

i = α · qi + wc(ti) for all ti ∈ T .
Among the (usually many) possible expansion terms, we choose the nc with

highest absolute weight, with nc usually less than 10. If there are too many with
the same weight, we use the mutual information of the term’s score distribution
among the elements with known relevance and the relevance distribution as a tie
breaker, which prefers terms that have high scores in relevant elements, but low
scores (or are not present at all) in nonrelevant elements, or vice versa. If E+

is empty, i.e., all elements with feedback are nonrelevant, mutual information
cannot distinguish good from bad expansion terms as it is zero for all terms. We
use the term’s element frequency (the number of elements in which this term
occurs) for tie breaking then, preferring terms that occur infrequently.

2.2 Path Constraints

Elements with certain tag names are more likely to be relevant than elements
with other tag names. As an example, a keyword query may return entries from
the index of a book or journal with high scores as they often contain exactly
the requested keywords, but such elements are usually not relevant. Additionally,
queries may prefer either large elements (such as whole articles) or small elements
(such as single paragraphs), but rarely both. However, experiments show that
tag names alone do not bear enough information to enhance retrieval quality,
but the whole path of a result element plays an important role. As an example,
the relevance of a paragraph may depend on whether it is in the body of an
article (with a path like /article/bdy/sec/p from the root element), in the
description of the vitae of the authors (with a path like /article/bm/vt/p), or
in the copyright statement of the journal (with a path like /article/fm/cr/p).

As element tag names are too limited, but complete paths may be too strict,
we consider the following seven classes of path fragments, with complete paths
and tag names being special cases:

– P1: prefixes of paths, e.g., article/#,/article/fm/#
– P2: infixes of paths, e.g., #/fm/#
– P3: subpaths of length 2, e.g., #/sec/p/#
– P4: paths with wildcards, e.g, #/bm/#/p/#
– P5: suffixes of paths, e.g., #/fig, #/article
– P6: full paths, e.g, /article/bdy/sec

Mihajlovic̀ et al. [16] used a variant of P5, namely tag names of result elements,
but did not see any improvement. In fact, only a combination of fragments from
several classes leads to enhancements in result quality.

Formally, we consider for an element e its set P (e) of path fragments that
are computed from its path. For each fragment that occurs in any such set, we
compute its weight



336 R. Schenkel and M. Theobald

wp(p) = βp · |{e ∈ E+ : p ∈ P (e)}|
|E+| − γp · |{e ∈ E− : p ∈ P (e)}|

|E−|

with adjustable tuning parameters βp and γp between 0 and 1; we currently
use βp = 1.0 and γp = 0.25. This is a straightforward application of Rocchio’s
formula to occurrences of path features in result elements.

As we created new dimensions, we cannot use our initial vector space V to
expand the initial query q. Instead, we create a new vector space Vp = R|P |

where P = {p1, . . . , p|P |} is the set of all path features of elements in the corpus.
The components of the vector ep ∈ Vp for an element e are 1 for path features
that can be computed from e’s path and 0 otherwise. The extended query qp is
then a vector in Vp with qp

i = wp(pi).

2.3 Document Constraints

Unlike standard text retrieval where the unit of retrieval is whole documents,
XML retrieval focuses on retrieving parts of documents, namely elements. In-
formation in other parts of a document with a relevant element can help to
characterize documents in which relevant elements occur. A natural kind of such
information is the content of other elements in such documents.

As an example, consider again INEX topic 178 ("multimedia information"
retrieval). We may derive from user feedback that documents with the terms
‘pattern, analysis, machine, intelligence’ in the journal title (i.e., those from
the ‘IEEE Transactions on Pattern Analysis and Machine Learing’) are likely
to contain relevant elements. The same may hold for documents that cite pa-
pers by Gorkani and Huang (who are co-authors of the central paper about the
QBIC system), whereas documents that cite papers with the term ‘interface’ in
their title probably don’t contain relevant elements (as they probably deal with
interface issues in multimedia applications).

Formally, we consider for a document d its set S(d) of structural features, i.e.,
all pairs (T(e), t) where T(e) is the tag name of an element e within d and t is
a term in the content of e. For each feature s that occurs in any such set, we
compute its weight

ws(s) = βs
|{e ∈ E+ : s ∈ S(D(e))}|

|E+|

− γs
|{e ∈ E− : s ∈ S(D(e))}|

|E−|

with adjustable tuning parameters βs and γs between 0 and 1; we currently
use βs = γs = 1.0. This is a straight-forward application of Rocchio weights
to structural features. Note that we are using binary weights for each structural
feature, i.e., a feature is counted only once per document. We experimented with
using scores here, but the results were always worse than with binary weights;
however, a more detailed study of different score functions is subject to future
work. We select the ns features with highest absolute score to expand the query.
If there are too many with the same weight, we use the mutual information of
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the feature’s score distribution among the documents with known relevance and
the relevance distribution as a tie breaker (like we did with content features). If
there are no positive exampes and mutual information is zero for all features,
we use the tag-term pair’s document frequency (the number of documents in
which this term occurs) for tie breaking then, preferring tag-term pairs that
occur infrequently.

As with path constraints, we have to consider a new vector space Vs = R|S|

where S = {s1, ..., s|S|} is the set of all structural features of documents in the
corpus1. Each element e is assigned a vector es ∈ Vs such that es

i = 1 if D(e)
contains the structural feature si and 0 otherwise. The extended query qs is
then a vector in Vs with qs

i = ws(si).
Other possible structural features include twigs, occurence of elements with

certain names in a document, or combination of path fragments with terms.
Further exploration of this diversity is subject to future work.

3 Expanding and Evaluating Queries

Once we have generated additional content, path, and document constraints, we
want to evaluate the query and retrieve better results. There are three different
ways to do this: (1) Evaluate the query in a combined vector space, (2) convert
the generated constraints to the query language used in an existing XML retrieval
engine (e.g., the engine used to compute the initial results) and evaluate the
expanded query with that engine, (3) evaluate some part of the expanded query
with an existing engine, the remaining part in the vector space model, and
combine the resulting scores.

3.1 Combined Vector Space

As we have expressed each feedback dimension in a vector space, it is straight-
forward to combine the individual vector spaces and evaluate the query in the
resulting combined vector space V ′ = V × VP × VS . The score of an element
for an expanded query is then the similarity of the element’s combined vectors
and the corresponding combined vectors of the expanded query, measured for
example with cosine similarity.

While this is an elegant solution from a theory point of view, it is not as
elegant in practise. Even though we have a probably well-tuned XML search
engine used to generate the initial set of results, we cannot use it here, but
have to reimplement a specialized search engine for the new vector space. It is
unsatisfactory to develop two independent, full-fledged search engines just to
allow user feedback.

3.2 Engine-Based Evaluation

Standard feedback algorithms for text retrieval usually generate an expanded
weighted keyword query that is evaluated with the same engine that produced
1 Note that Carmel et al. [5] introduced a similar vector space with (tag, term) features

for XML retrieval, but not for feedback.
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the initial results. XML retrieval is different as expanded queries consist of more
than simple keyword conditions. To benefit from the three dimensions of query
expansion introduced in this paper (content, path, and document constraints),
an XML search engine must support queries with weighted content and struc-
tural constraints that should be evaluated in a disjunctive mode (i.e., the more
conditions an element satisfies, the better, but not conditions have to be strictly
satisfied). Given such an engine with its query language, generating an expanded
query is almost trivial.

As an example, consider again INEX topic 178 ("multimedia information"
retrieval) already discussed in the previous section. We use INEX’s query
language NEXI [25] to explain how an expanded query is generated. NEXI ba-
sically corresponds to XPath restricted to the descendants-or-self and self
axis and extended by an IR-style about predicate to specify conditions that
relevant elements should fulfil. The initial query can be reformulated to the
semantically identical NEXI query //*[about(.,"multimedia information"
retrieval)], i.e., find any element that is “about” the keywords. Let’s assume
that the best content-based features were ‘brightness’ with weight 0.8 and ‘hy-
permedia’ with weight -0.7, and that the best document-based features (i.e., tag-
term pairs) were ‘bib[Gorkani]’ with weight 0.9 and ‘bib[interface]’ with weight
-0.85. Here ‘bib[Gorkani]’ means that the keyword ‘Gorkani’ occurs in an ele-
ment with tag name ‘bib’. Expanding the query with these features yields the
following weighted query, formulated in NEXI with extensions for weights:

//article[0.9*about(.//bib,"Gorkani")
-0.85*about(.//bib,’interface)]

//*[about(.,0.8*brightness -0.7*hypermedia "multimedia
information" retrieval)]

This query extends the initial keyword query with additional weighted con-
straints on the content of relevant elements. To specify document constraints,
we have to somewhat abuse NEXI: We add an article element that has to be
an ancestor of results; as the root of each INEX document is an article element,
this is always true. We need it to specify the document constraints within its
predicate. Such an expanded query can be submitted to any search engine that
supports NEXI, possibly without the weights as they are not part of standard
NEXI yet.

Path constraints cannot be easily mapped to a corresponding NEXI query as
we cannot easily specify components of paths to result elements in NEXI. We
evaluate path constraints therefore not with the engine, but externally; details
are shown in the following subsection.

3.3 Hybrid Evaluation

The most promising approach for evaluating an expanded query is to evaluate
as much of the expanded query with the existing search engine, evaluate the
remaining part of the query separately, and combine the partial scores of each
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element. The result of the expanded query is then a ranked list of elements,
sorted by combined score. Besides reusing the existing engine, this approach has
the additional advantage that we can use different similarity measures for the
different constraint dimensions and are not fixed to a single one (as with the
extended vector space). On top of that, we can easily integrate new constraint
dimensions.

As an example, assume we decide to evaluate the content-based part of the
expanded query (i.e., qc in the notation of Section 2.1) with the engine and the
remaining parts qp and qs in their corresponding vector spaces. The combined
score of an element e is then the sum of its score Sc(e) computed by the engine for
qc, its score Sp(e) for qp and its score Ss(e) for qs, where each of the additional
scores is normalized to the interval [−1.0, 1.0].

The score SS(e) is computed using standard cosine similarity of es and qs

in VS (the same would hold for a content-based score if we decided to evaluate
qc not with the engine, but separately). We could also use cosine similarity to
compute SP (e); however, experiments have shown that using the following score
function consistently gives better results:

SP (e) =
∑

qp
i · ep

i

|{i : qp
i · ep

i �= 0}|

In contrast to cosine similarity, this normalizes the score with the number of
dimensions where both vectors are nonzero. The rationale behind this is that
path fragments that do not occur in either the query (i.e., in elements with
known relevance) or in the current element should not modify the score.

This scoring model can easily integrate new dimensions for feedback beyond
content, path and document constraints, even if they use a completely different
model (like a probabilistic model). It only requires that the relevance of an
element to a new feedback dimension can be measured with a score between -1
and 1. It is simple to map typical score functions to this interval by normalization
and transformation. As an example, the transformation rule for a probability p,
0 ≤ p ≤ 1, is 2 · p − 1.

4 Architecture and Implementation

4.1 Architecture

Figure 1 shows the high-level architecture of our extensible feedback framework.
Each feedback dimension is implemented with a standard interface that allows
a simple integration of new dimensions. For each dimension, there are methods
to compute constraints, select the most important constraints, and compute the
score of an element with respect to these constraints.

The initial results of a query are presented to the user who gives positive or
negative feedback to some of the results. This feedback is sent together with
the query and its initial results to the feedback framework which forwards them
to the available feedback dimensions. Each dimension computes a number of
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Fig. 1. Architecture of the feedback engine

constraints from the results with feedback. If the constraints for some dimensions
are evaluated with the XML search engine, they are collected and transformed
to an expanded query which is then evaluated with the engine; the results of this
query are then the input for the remaining dimensions. For each element in the
result of the expanded query, a score in the remaining dimensions is computed;
the scores for each element are then aggregated, the list is sorted and returned to
the user. The user may now again submit feedback for some of the new results,
triggering another feedback cycle.

To facilitate an automatic assessment, the system can import queries and
results from INEX (see Section 5.1) and automatically generate feedback for the
top-k results, using the existing INEX assessments.

4.2 Implementation

We have implemented the framework in Java with content, path, and docu-
ment constraints as examples for feedback dimensions and our TopX Search En-
gine [24]. For constraint generation we implemented the approaches presented
in Section 2. Our implementation requires that important information about
elements is precomputed:

– unique identifiers for the element (eid) and its document (did),
– its tag,
– its terms (after stemming and stopword removal), together with their score

This information is stored in a database table with schema (did,eid,tag,term,
score) that contains one tuple for each distinct term of an element. We can
reuse an existing inverted file of a keyword-based search engine that captures
similar information, possibly after some transformation. On the database side,
we provide indexes on (did,tag,term,score) (to efficiently collect all tag-term
pairs of an element) and (eid,term,score) (to efficiently collect all distinct
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terms of an element). Inverse element frequency of terms and inverse document
frequency of tag-term pairs that are used for tie breaking are derived from the
base table if they are not available from the engine already.

Our current prototype reuses the TagTermFeatures table of TopX (see [24]
that already provides did, eid, tag, term, and score, together with information
on structural relationships of elements (like pre and post order) that is not used
here.

The implementations of content-based and document-based feedback first load
the content of elements with known relevance or the tag-term pairs of the corre-
sponding documents, respectively, and compute the best features with respect to
the score functions and tie breaking methods presented in the previous section.
If content feedback is evaluated with the engine, an expanded query is created;
otherwise, the implementation computes the additional content score of all can-
didate elements (i.e., the elements in the initial result list provided by the engine)
with a database query. Analogously, the implementation of document-based feed-
back either builds an expanded query or computes the scores for documents itself,
again using the database.

Unlike the others, path feedback does not require any information from the
database; features and scores are computed only from the paths of elements.
As this can be done very quickly and the scoring model for path-based feedback
cannot be easily mapped to an expanded query for the engine, we always evaluate
path-based scores within the framework.

5 Experimental Results

5.1 Settings

We use the well-known INEX [13] benchmark for XML IR that provides a set
of 12,107 XML documents (scientific articles from IEEE CS), a set of queries
with and without structural constraints together with a manually assessed set of
results for each query, and an evaluation environment to assess the effectiveness
of XML search engines. INEX provides a Relevance Feedback Track [12, 6] that
aims at assessing the quality of different feedback approaches. As this paper
concentrates on keyword-based queries (content-only topics or CO for short in
INEX), we used the set of 52 CO queries from the 2003 and 2004 evaluation
rounds with relevant results together with the strict quantization mode, i.e.,
an element was considered as relevant if it exactly answers the query. A run
is the result of the evaluation of all topics with a search engine; it consists of
1500 results for each topic that are ranked by expected relevance. The measure
of effectiveness is the mean average precision (MAP) of a run. Here, we first
compute for each topic the average precision over 100 recall points (0.01 to
1.00) and then take the macro average over these topic-wise averages. Note that
absolute MAP values are quite low for INEX (with 0.152 being the best MAP
value of any participating engine in 2004). In addition to MAP values, we also
measured precision at 10 for each run.
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Table 1. Precision at k for the baseline TopX run

k 1 3 5 8 10 13 15 18 20
prec@k 0.269 0.237 0.227 0.204 0.190 0.176 0.168 0.155 0.152

To assess the quality of feedback algorithms, we use the residual collection
technique [22] that is also used in the INEX Relevance Feedback Track. In this
technique, all XML elements that are used by the feedback algorithm, i.e., those
whose relevance is known to the algorithm, must be removed from the collection
before evaluation of the results with feedback takes place. This includes all k
elements “seen” or used in the feedback process regardless of their relevance.
Under INEX guidelines, this means not only each element used or observed in
the relevance feedback process but also all descendants of that element must
be removed from the collection (i.e., the residual collection, against which the
feedback query is evaluated, must contain no descendant of that element). All
ancestors of that element are retained in the residual collection.

For all experiments we used our TopX Search Engine [24] that fully sup-
ports the evaluation of content-and-structure queries with weighted content con-
straints. The baseline for all experiments is a TopX run for all 52 INEX topics,
with 1500 results for each topic. Table 1 shows the macro-averaged precision for
this run for the top-k ranked elements per topic, for different k.

The experiments were run on a Windows-based server with two Intel Xeon
processors@3GHz, 4 gigabytes of RAM and a four-way RAID-0 SCSI disk array,
running an Oracle 9i database on the same machine as the feedback framework.

5.2 Choice of Parameters

Choice of Path Constraints. We conducted experiments to assess the influence
of the different classes of path constraints on the result quality. To do this, we
examine how the MAP value and the precision at 10 of the baseline run change
if we rerank the results based on feedback on the top-20 results with different
combinations of path constraints enabled.

Table 2 shows the results of our experiments. It is evident that the best results
are yielded with a combination of P1,P3, and P4 (i.e., prefixes of paths, subpaths
of length 2, and paths with wildcards), while adding infixes (P2) is slightly worse.

Table 2. MAP and precision@10 values for some combinations of path fragments with
the baseline TopX run

classes MAP prec@10
none 0.0214 0.0706
P1 − P6 0.0231 0.0745
P1 − P4 0.0276 0.0824
P1,P3,P4 0.0281 0.0843
P5 0.0154 0.0569
P6 0.0157 0.0588
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The absolute gain in MAP of about 0.0067 on average is small, but significant,
as it corresponds to a relative gain of 31.3%. Using tag names alone (P5) does
not help and even hurts effectiveness (which was already shown in [16]), as does
using the complete path (P6). A similar influence of the different types of path
constraints can be seen for the precision values.

Number of content and document constraints. We made some initial experiments
to determine how many content and document constraints should be selected for
expanding queries. Varying the number of content and/or document constraints
from 1 to 10, we found that the MAP value didn’t change a lot as soon as we had
at least 3 content and 3 document constraints, even though results got slightly
better with more constraints. For our experiments we choose the top 5 content
and/or top 5 document constraints.

Tuning parameters. To calibrate the different tuning parameters introduced in
Section 2, we made some initial experiments with varying parameter values.
The best results were yielded with βc = 0.5 and γc = 0.25 for content feedback,
βp = 1.0 and γp = 0.25 for path feedback, and βs = γs = 1.0 for structural
feedback. We used these values for our main series of experiments presented in
the following subsections.

5.3 Engine-Based Feedback with TopX

We assessed the quality of document-based feedback with and without addi-
tional content-based feedback with our baseline run as input. Using relevance
information for the top-k results for each topic from this run (for varying k),
we computed the best five content-based and/or the best five document-based
features features for each topic, created the corresponding expanded queries and
evaluated them with TopX again.

Figure 2 shows the effect of content- and document-based feedback with the
baseline TopX run, with known relevance of a varying number of elements from
the top of the run. Our baseline is the TopX run on the corresponding residual
collection (light dashed line in Figure 2),i.e., the run where the elements with
known relevance and their descendants are virtually removed from the collection;
its MAP value is not constant because the residual collection get smaller when
elements are removed. Our implementation of content feedback (dark solid line)
yields an absolute gain of about 0.02 in MAP which corresponds to roughly 70%
relative gain when the relevance of at least the top-8 elements is known. Adding
document-based constraints (dark dashed line) yields similar gains, but already
with feedback for the top-ranked element. The combination of both approaches
(light solid line) is best, yielding an absolute gain of up to 0.03 (corresponding
to a relative gain of more than 100% for top-20 feedback).

The improvements for precision at 10 are less spectacular with document-
based feedback (see Figure 3), especially compared to content-based feedback.
On the other hand, this behaviour is not surprising as adding document-based
constraints to a query gives a higher score to all elements in a matching docu-
ment, regardless of their relevance to the query; hence document-based feedback
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Fig. 3. Precision@10 for document-based feedback on TopX

is better in improving recall than precision. The combination of content-based
and document-based feedback again beats the single dimensions, giving high
scores to elements with good content in good documents.

Figure 4 shows the effect of additional path-based feedback in combination
with document- and content-based feedback. The effect of path-based feedback
alone (dark solid line in Figure 2) is mixed: While it slightly increases MAP
for a medium number of elements with feedback, it downgrades results with
feedback for a few or many elements. A similar effect occurs for the combination
of path-based feedback with either content-based or document-based feedback;
we omitted the lines from the chart for readability. However, combined with both
content- and document-based feedback (dark dashed line), path constraints do
result in a small gain in MAP.
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Regarding precision at 10 (shown in Figure 5), we find that path-based feed-
back alone always slightly increases precision over the baseline. The same holds
for path feedback in combination with either document or content feedback (we
omitted the lines in the chart for the sake of readability); the combination of all
three dimensions of feedback yields the best precision if the relevance of at least
the top-8 elements is known. The peak improvement (for top-20 feedback with
all three dimensions) is about 100% over the baseline without feedback.

5.4 Hybrid Evaluation

To show that hybrid evaluation is a viable way of integrating structural feedback
with keyword-based engines, we evaluated the effectiveness of content, path and
document constraints with our hybrid evaluator and the TopX engine, using
TopX only to compute the baseline run.
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Figure 6 shows the resulting MAP values for important combinations of feed-
back dimensions and the TopX baseline without feedback, measured with dif-
ferent numbers of elements with known relevance. The general trends are the
same as with engine-based evaluation, which shows that our approach to evalu-
ate feedback separately from the engine is viable. Interestingly, content feedback
is slightly better than document-based feedback for small numbers of elements
with known relevance, and slightly worse for large numbers; with engine-based
evaluation we observed the inverse orders. Path based feedback in combination
with a single, second dimension – which is again omitted from the chart – slightly
outperformed the same dimension without path-based feedback. The combina-
tion of all feedback dimensions again outperforms all the others. The absolute
MAP values are often slightly higher with hybrid evaluation; we attribute this
to the fact that scores for each dimensions are normalized to the interval [−1; 1]
before aggregating them. The same effect could be obtained with engine-based
evaluation if weights are selected more carefully; we plan to study this in future
work. We also measured precision at 10 and got similar results that are omitted
from the paper.

Even though execution times are not the focus of this paper, we measured the
time needed for computing the best features for query expansion and reranking
the list of 1500 results. On average, this took not more than 20 seconds per
query with our preliminary, database-backed implementation, all three feedback
dimensions and feedback for the top-20 results; we expect that this time will
decrease a lot with a more performance-oriented implementation.
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6 Conclusion and Future Work

This paper has made important steps from content-based to structural feedback
in XML retrieval. It presented an integrated solution for expanding keyword
queries with new content, path, and document constraints as a part of an exten-
sible framework and showed huge performance gains with the established INEX
benchmark of up to 150% for MAP and up to 100% for precision@10 under the
evaluation method used in the INEX relevance feedback track.

Our future work will contentrate on adding new classes of document con-
straints (like paths, twigs, and the existence of elements or paths in a docu-
ment) and integrating this work with our previous work on ontological query
expansion [18]. We will also consider pseudo relevance feedback with paths and
document constraints. We plan to evaluate our approach with the INEX Rel-
evance Feedback Track where we will also examine the effect of feedback on
queries with content and structural constraints.
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Abstract. We study the expressiveness and performance of full-text search lan-
guages. Our motivation is to provide a formal basis for comparing full-text search
languages and to develop a model for full-text search that can be tightly inte-
grated with structured search. We design a model based on the positions of tokens
(words) in the input text, and develop a full-text calculus (FTC) and a full-text
algebra (FTA) with equivalent expressive power; this suggests a notion of com-
pleteness for full-text search languages. We show that existing full-text languages
are incomplete and identify a practical subset of the FTC and FTA that is more
powerful than existing languages, but which can still be evaluated efficiently.

1 Introduction

Full-text search is an important aspect of many information systems that deal with
large document collections with unknown or ill-defined structure. The common full-text
search method is to use simple keyword search queries, which are usually interpreted
as a disjunction or conjunction of query keywords. Such queries are supported by tradi-
tional full-text search systems over “flat” text documents [1], over relational data [2, 16],
and more recently over XML documents [9, 13, 25]. Many new and emerging applica-
tions, however, require full-text search capabilities that are more powerful than simple
keyword search. For instance, legal information systems (e.g., LexisNexis R©)1 and large
digital libraries (e.g., such as the Library of Congress (LoC))2 allow users to specify a
variety of full-text conditions such as the ordering between keywords and keywords
distance. For example, a user can issue a query to find LoC documents that contain the
keywords “assignment”, “district”, and “judge” in that order, where the keywords “dis-
trict” and “judge” occur right next to each other (i.e., within a distance of 0 intervening
words), and the keyword “judge” appears within 5 words of the keyword “assignment”.
In a recent panel at SIGMOD 2005,3 a librarian at the LoC mentioned that support

1 http://www.lexisnexis.com/
2 http://thomas.loc.gov/
3 http://cimic.rutgers.edu/ sigmod05/
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for such “structured” full-text queries is one of the most important requirements for
effectively querying LoC documents.

Given structured full-text queries, one of the practical problems that arises is be-
ing able to model, optimize and efficiently evaluate such queries. This problem has
been studied for simple structured full-text queries in the information retrieval com-
munity [5], and more recently, for more complex structured full-text queries using text
region algebras (TRAs) [10]. TRAs explicitly model keyword positions and pre-defined
regions such as sentences and paragraphs in a document, and develop efficient evalua-
tion algorithms for set operations between regions such as region inclusion and region
ordering. While TRAs are an excellent first step, they have a fundamental limitation:
they are not expressive enough to write certain natural structured full-text queries that
combine inclusion and ordering of multiple regions. Further, since TRAs are based on
a different algebraic model than the relational model, it is difficult to tightly integrate
structured full-text search with structured search (which is usually relational).

To address the above issues, we propose a new model for structured full-text search.
Specifically, we develop a Full-Text Calculus (FTC) based on first-order logic and an
equivalent Full-Text Algebra (FTA) based on the relational algebra, and show how scor-
ing can be incorporated into these models. Based on the FTC and FTA, we define a
notion of completeness and show that existing query languages, including those based
on TRAs, are incomplete with respect to this definition. The key difference that results
in more expressive power for the FTA when compared to TRAs, is that the FTA deals
with tuples of one or more positions, while TRAs only only keep track of the start and
end positions of a region during query evaluation, and lose information about individ-
ual keyword positions within regions. Further, since the FTA is based on the relational
algebra, it can be tightly integrated with structured query processing.

Our next focus in the paper is on efficiency: since the FTA (or equivalently, the FTC)
is based on the relational algebra, not all queries can be efficiently evaluated in time
that is linear in the size of the input database. To address this issue, we identify PPRED,
a practical subset of the FTC, which strictly subsumes TRAs. We also propose an al-
gorithm that can efficiently evaluate PPRED queries in a single pass over inverted lists,
which are a common data structure used in information retrieval.We also experimentally
evaluate the performance of the algorithm.

In summary, the main contributions of this paper are:

– We introduce a new formal model for structured full-text search and scoring based
on first-order logic (FTC) and the relational algebra (FTA), and define a notion of
completeness for full-text languages (Section 2).

– We show that existing languages are incomplete with respect to the above definition
of completeness (Section 3).

– We define a practical subset of the FTC and FTA called PPRED, which subsumes
TRAs and can be evaluated in a single pass over inverted lists (Section 4).

– We experimentally study the performance of the PPRED algorithm (Section 5).

2 Related Work

There has been extensive research in the information retrieval community on the effi-
cient evaluation of full-text queries [1, 23, 27], including structured full-text queries [5].
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However, the work on structured full-text queries only develops algorithms for specific
full-text predicates (such as window) in isolation. Specifically, existing proposals do
not develop a fully composable language for many full-text predicates, and also do not
study the expressiveness and complexity of the language. This observation also applies
to XML full-text search languages such as XQuery/IR [4], XSEarch [9], XIRQL [13],
XXL [25] and Niagara [29]. Our proposed formalism is expressive enough to capture
the full-text search aspects of these existing languages, and is in fact, more powerful
(see Section 4.1).

More recently, there has been some work on using text region algebras (TRAs) to
model structured full-text search [7, 10, 17, 20, 22, 28]. A text region is a sequence of
consecutive words in a document and is often used to represent a structural part of
a document (e.g., a chapter). It is identified by the positions of the first and the last
words in the region. TRAs operate on sets of text regions which may contain overlap-
ping regions ([7]) or strict hierarchies ([20]). Common operators are the set-theoretic
operators, inclusion between regions and ordering of regions [28] as defined below:

– A region s is represented as the ordered pair (s.l, s.r), where s.l is the left end-point
of the region, and s.r is its right end-point.

– A query operator has the form {s ∈ S | ∃d ∈ D Pred(s, d)}, where S and D are
sets of regions and Pred is a Boolean expression with the logical operators ∨ and
∧ and containing clauses of the form (x � y), where � ∈ {=, <,>,≤,≥}, x ∈
{s.l, s.r, s.l + const, s.l − const, s.r + const, s.r − const}, y ∈ {d.l, d.r}, and
const is a constant.

Efficient algorithms have been devised to evaluate TRA queries. However, while
TRAs are useful in a number of scenarios (e.g. search over semi-structured SGML and
XML documents), they have limited expressive power. Consens and Milo [10] showed
that TRAs cannot represent simultaneously inclusion and ordering constraints. For ex-
ample, the query: find a region that contains a region s from a set S and a region t from
a set T such that s comes before t, cannot be represented in TRAs. As we shall show in
Section 4.2, similar queries arise in structured full-text search, for instance, when trying
to find two windows nested inside another window.

Besides TRAs, there has also been a significant amount of work on using relational
databases to store inverted lists, and in translating keyword queries to SQL
[6, 12, 16, 18, 21, 29]; however, they do not study the completeness of languages and
do not develop specialized one-pass query evaluation algorithms for structured full-text
predicates.

3 The FTC and the FTA

Unlike SQL for querying relational data, there is no well-accepted language for ex-
pressing complex full-text search queries. In fact, many search systems use their own
syntax for expressing the subset of complex queries that they support.4 Instead of us-
ing one specific syntax, we adopt a more general approach and model full-text search

4 http://www.lexisnexis.com/, http://www.google.com, http://thomas.loc.gov, http://www.verity.
com
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queries using calculus and algebra operations. Specifically, we use a Full-Text Calculus
(FTC) based on first order logic and an equivalent Full-Text Algebra (FTA) based on
the relational algebra.

The FTC and the FTA provide additional expressive power when compared to pre-
vious work on TRAs. The increased expressive power stems from the fact that the FTC
and FTA deal with tuples of positions, instead of just start and end positions as in TRAs.
Further, since the FTA is based on the relational algebra, it can be tightly integrated with
structured relational queries.

3.1 Full-Text Search Model

We assume that full-text search queries are specified over a collection of nodes (which
could be text documents, HTML documents, XML elements, relational tuples, etc.).
Since our goal is to support structured full-text predicates such as distance and order,
which depend on the position of a token (word) in a node, we explicitly model the
notion of a position that uniquely identifies a token in a node. In Figure 1, we have
used a simple numeric position for each token, which is sufficient to answer predicates
such as distance and order. More expressive positions may enable more sophisticated
predicates on positions such as sentence- and paragraph-distance predicates.

More formally, let N be the set of nodes, P be the set of positions, and T be the
set of tokens. The function Positions : N → 2P maps a node to the set of positions
in the node. The function Token : P → T maps each position to the token at that
position. In the example in Figure 1, if the node it is denoted by n, then Positions(n) =
{410, ..., 423, ...}, Token(412) = “judge′′, Token(423) = “service′′, and so on.

We also have the following requirement for completeness: The full-text search lan-
guage should be at least as expressive as first-order logic formulas specified over
the positions of tokens in a context node. The above requirement identifies tokens
and their positions as the fundamental units in a full-text search language, and essen-
tially describes a notion of completeness similar to that of relational completeness [8]
based on first-order logic. Other notions of completeness can certainly be defined based
on higher-order logics, but as we shall soon see, defining completeness in terms of

<html> <head> ... </head>
<body>

<p>HR-212-IH (104)</p>
<p><center>109th(105) Congress (106)</center></p>
<h3><center>January(107) 4(108), 2005(109)

</center></h3>
...
<h3>SEC (404). 7(405). ASSIGNMENT(406) OF(407)

CIRCUIT(408) JUDGES(409).</h3>
<p><it> Each (410) circuit (411) judge (412) of (413)

the (414) former (415) ninth (416) circuit (417)
who (418) is (419) in (420) regular (421) active (422)
service (423) ...</it></p>

</body>

Fig. 1. Positions Example
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first-order logic allows for both efficient evaluation and tight integration with the re-
lational model. We also note that each context node is considered separately, i.e., a
full-text search condition does not span multiple context nodes. This is in keeping with
the semantics of existing full-text languages.

3.2 Full-Text Calculus (FTC)

The FTC defines the following predicates to model basic full-text primitives.

– SearchContext(node) is true iff node ∈ N
– hasPos(node, pos) is true iff pos ∈ Positions(node).
– hasAsToken(pos, tok) is true iff tok = Token(pos).

A full-text language may also wish to specify additional position-based predicates,
Preds. The FTC is general enough to support arbitrary position-based predicates.
Specifically, given a set V arPos of position variables, and a set Consts of constants,
it can support any predicate of the form: pred(p1, ..., pm, c1, ..., cr), where p1, ...pm ∈
V arPos and c1, ..., cr ∈ Consts. For example, we could define

Preds ={distance(pos1, pos2, dist), ordered(pos1, pos2), samepara(pos1, pos2)}.

Here, distance(pos1, pos2, dist) returns true iff there are at most dist intervening to-
kens between pos1 and pos2 (irrespective of the order of the positions); ordered(pos1,
pos2) is true iff pos1 occurs before pos2; samepara(pos1, pos2) is true iff pos1 is in
the same paragraph as pos2.

An FTC query is of the form: {node|SearchContext(node)∧QueryExpr(node)}.
Intuitively, the query returns nodes that are in the search context, and that satisfy
QueryExpr(node). QueryExpr(node), hereafter called the query expression, is a
first-order logic expression that specifies the full-text search condition. The query ex-
pression can contain position predicates in addition to logical operators. The only free
variable in the query expression is node.

As an illustration, the query below returns the context nodes that contain the key-
words “district”, “judge”, and “assignment”:

{node|SearchContext(node) ∧ ∃pos1, pos2, pos3
(hasPos(node, pos1) ∧ hasAsToken(pos1,

′ district′) ∧
hasPos(node, pos2) ∧ hasAsToken(pos2,

′ judge′) ∧
hasPos(node, pos3) ∧ hasAsToken(pos3,

′ assignment′))}

In subsequent examples, we only show the full-text condition since the rest of the query
is the same. The following query represents the query in the introduction (find context
nodes that contain the keywords “assignment”, “district”, and “judge” in that order,
where the keywords “district” and “judge” occur right next to each other, and the key-
word “judge” appears within 5 words of the keyword “assignment”):

∃pos1, pos2, pos3(hasPos(node, pos1) ∧ hasAsToken(pos1,
′ assignment′) ∧

hasPos(node, pos2) ∧ hasAsToken(pos2,
′ district′) ∧

hasPos(node, pos3) ∧ hasAsToken(pos3,
′ judge′) ∧

ordered(pos1, pos2) ∧ ordered(pos2, pos3) ∧
distance(pos2, pos3, 0) ∧ distance(pos1, pos3, 5))
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3.3 Full-Text Algebra (FTA)

The FTA is defined based on an underlying data model called a full-text relation, which
is of the form R[node, att1, ..., attm], m ≥ 0, where the domain of node is N (nodes)
and the domain of atti is P (positions). Each tuple of a full-text relation is of the form
(n, p1, ..., pm), where each pi ∈ Positions(n). Intuitively, each tuple represents a list
of positions p1, ..., pm that satisfy the full-text condition for node n. Since positions are
modeled explicitly, they can be queried and manipulated.

An FTA expression is defined recursively as follows:

– Rtoken(node, att1), for each token ∈ T , is an expression. Rtoken contains a tuple
for each (node,pos) pair that satisfies: node ∈ D ∧ pos ∈ Positions(node) ∧
token = Token(pos). Intuitively, Rtoken is similar to an inverted list, and has
entries for nodes that contain token along with its positions.

– If Expr1 is an expression, πnode,atti1 ,...,attij
(Expr1) is an expression. If Expr1

evaluates to the full-text relation R1, the full-text relation corresponding to the new
expression is: πnode,atti1 ,...,attij

(R1), where π is the traditional relational projec-
tion operator. Note that π always has to include node because we have to keep track
of the node being queried.

– If Expr1 and Expr2 are expressions, then (Expr1 � Expr2) is an expression,
If Expr1 and Expr2 evaluate to R1 and R2 respectively, then the full-text relation
corresponding to the new expression is: R1 �R1.node=R2.node R2, where
�R1.node=R2.node is the traditional relational equi-join operation on the node at-
tribute. The join condition ensures that positions in the same tuple are in the same
node, and hence can be processed using full-text predicates.

– If Expr1 and Expr2 are expressions, then σpred(att1,...,attm,c1,...,cq)(Expr1),
(Expr1 − Expr2), (Expr1 ∪ Expr2) are algebra expressions that have the same
semantics as in traditional relational algebra.

An FTA query is an FTA expression that produces a full-text relation with a single
attribute which, by definition, has to be node. The set of nodes in the result full-text
relation defines the result of the FTA query.

We now show how two FTC queries in Section 3.2 can be written in the FTA:

πnode(Rdistrict � Rjudge � Rassignment)

πnode(σdistance(att2,att3,5)(
σordered(att3,att1)(σordered(att1,att2)(

σdistance(att1,att2,0)(Rdistrict � Rjudge) � Rassignment)))

3.4 Equivalence of FTC and FTA and Completeness

Theorem 1. Given a set of position-based predicates Preds, the FTC and FTA are
equivalent in terms of expressive power.

The proof of equivalence is similar to that of the relational algebra and calculus and is
thus omitted (see [3]). We now formally define the notion of full-text completeness.
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Definition (Full-Text Completeness). A full-text language L is said to be full-text com-
plete with respect to a set of position-based predicates Preds iff all queries that can be
expressed in the FTC (or the FTA) using Preds can also be expressed in L.

The above definition of completeness provides a formal basis for comparing the
expressiveness of full-text search languages, as we shall do in Section 4. To the best
of our knowledge, this is the first attempt to formalize the expressive power of such
languages for flat documents, relational databases, or XML documents.

3.5 Scoring

Scoring is an important aspect of full-text search. However, there is no standard agreed-
upon method for scoring full-text search results. In fact, developing and evaluating dif-
ferent scoring methods is still an active area of research [13, 14, 15, 19, 25, 30]. Thus,
rather than hard-code a specific scoring method into our framework, we describe a gen-
eral scoring framework based on the FTC and the FTA, and show how some of the
existing scoring methods can be incorporated into this framework. Specifically, we now
show how TF-IDF [24] scoring can be incorporated, and refer the reader to [3] for how
probability-based scoring [14, 30] can be incorporated. We only describe how scoring
can be done in the context of the FTA; the extension to the FTC is similar.

Our scoring framework is based on two extensions to the FTA: (1) per-tuple scoring
information and (2) scoring transformations. Per-tuple scoring information associates
a score with each tuple in a full-text relation, similar to [14]. However, unlike [14],
the scoring information need not be only a real number (or probability); it can be any
arbitrary type associated with a tuple. Scoring transformations extend the semantics of
FTA operators to transform the scores of the input full-text relations.

We now show how TF-IDF scoring can be captured using our scoring framework.
We use the following widely-accepted TF and IDF formulas for a node n and a token
t: tf(n, t) = occurs/unique tokens and idf(t) = ln(1 + db size/df), where occurs
is the number of occurrences of t in n, unique tokens is the number of unique tokens
in n, db size is the number of nodes in the database, and df is the number of nodes
containing the token t. The TF-IDF scores are aggregated using the cosine similarity:
score(n) = Σt∈qw(t) ∗ tf(n, t) ∗ idf(t)/(||n||2 ∗ ||q||2), where q denotes query search
tokens, w(t), the weight of the search token t and || · ||2, the L2 measure.

To model TF-IDF, we associate a numeric score with each tuple. Intuitively, the
score contains the TF-IDF score for all the positions in the tuple. Initially, Rt relations
contain static scores: the idf(t) for the token t at that position divided by the product
of the normalization factors unique tokens ∗ ||n||2. This is the L2 normalized TF-IDF
score for each position containing the token t. Thus, if we sum all the scores in Rt, we
get exactly the L2-normalized TF-IDF score of t with regards to n.

We now describe the scoring transformations for some of the FTA operators. For
traditional TF-IDF, the interesting operators that change the scores are the join and
the projection. First, consider the relation R that is the result of the FTA expression
(Expr1 � Expr2), where the scored full-text relations produced by Expr1 and Expr2
are R1 and R2, respectively. Then, for each tuple t ∈ R, formed by the tuples t1 ∈
R1 and t2 ∈ R2, t.score = t1.score/|R2| + t2.score/|R1|, where |R| denotes the
cardinality of R. We need to scale down t1.score and t2.score because their relevance
decreases due to the increased number of tuples (solutions) in the resulting relation. For
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projections, the new relation should have the same total score as the original one. More
formally, let the relation R be the result of the expression πCNode,att1,...,atti(Expr1) and
let Expr1 produces the relation R1. Then, for any tuple t ∈ R which is the result of the
aggregation of the tuples t1, ..., tn ∈ R1, t.score = Σi=1,..,nti.score.

It can be shown that the above propagation of scores preserves the traditional seman-
tics of TF-IDF for conjunctive and disjunctive queries [3]. Further, this scoring method
is more powerful than traditional TF-IDF because it can be generalized to arbitrary
structured queries by defining appropriate scoring transformations for each operator.
For instance, we can define a scoring transformation for distance selection predicates
thereby extending the scope of TF-IDF scoring.

4 Incompleteness of Existing Full-Text Search Languages

We show the incompleteness of existing full-text languages, including TRAs.

4.1 Predicate-Based Languages

We first consider traditional full-text languages that have position-based predicates in
addition to Boolean operators [1, 5]. A typical syntax, which we call DIST, is:

Query := Token | Query AND Query | Query OR Query | Query AND NOT Query |
dist(Token,Token,Integer)

Token := StringLiteral | ANY

We can recursively define the semantics of DIST in terms of the FTC. If the query is a
StringLiteral ’token’, it is equivalent to the FTC query expression
∃p(hasPos(n, p) ∧ hasAsToken(p,′ token′)). If the query is ANY, it is equivalent
to the expression ∃p(hasPos(n, p)). If the query is of the form Query1 AND NOT
Query2, it is equivalent to Expr1 ∧ ¬Expr2, where Expr1 and Expr2 are the FTC
expressions for Query1 and Query2. If the query is of the form Query1 AND
Query2, it is equivalent to Expr1∧Expr2, where Expr1 and Expr2 are FTC expres-
sions for Query1 and Query2 respectively. OR is defined similarly. The
dist(Token,Token,Integer) construct is the equivalent of the distance predicate intro-
duced in the calculus (Section 3.2), and specifies that the number of intervening tokens
should be less than the specified integer. More formally, the semantics of
dist(token1,token2,d) for some tokens token1 and token2 and some integer d is given
by the calculus expression: ∃p1(hasPos(n, p1) ∧ hasAsToken(p1, token1)∧
∃p2(hasPos(n, p2)∧hasAsToken(p2, token2)∧ distance(p1, p2, d))). If token1 or
token2 is ANY instead of a string literal, then the corresponding hasAsToken predicate
is omitted in the semantics.

As an example, the query dist(’test’,’usability’,3) is equivalent to the FTC query
expression: ∃p1∃p2(hasPos(n, p1) ∧ hasAsToken(p1,

′ test′) ∧
hasPos(n, p2) ∧ hasAsToken(p2,

′ usability′) ∧ distance(p1, p2, 3)).
We now show that DIST is incomplete if T is not trivially small. We can also prove

similar incompleteness results for other position-based predicates.

Theorem 2. If | T |≥ 3, there exists a query that can be expressed in FTC with
Preds = {distance(p1, p2, d)} that cannot be expressed by DIST.
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Proof Sketch: We shall show that no query in DIST can express the following FTC
query: ∃p1, p2, p3(hasPos(n, p1) ∧ hasAsToken(p1, t1) ∧ hasPos(n, p2) ∧ hasAs-
Token(p2, t2)∧hasPos(n, p3)∧hasAsToken(p3, t3)∧distance(p1, p2, 0)∧distance
(p2, p3, 0)) (find context nodes that contains a token t1 that occurs right next to a token
t2 that in turn occurs right next to a token t3). For simplicity, we use distances with at
most 0 tokens but the example can be generalized to arbitrary distances. The proof is by
contradiction. Assume that there exists a query Q in DIST that can express the calculus
query. We now construct two context nodes CN1 and CN2 as follows. CN1 contains
the tokens t1 followed by t2 followed by t3 followed by t1. CN2 contains the tokens
t1 followed by t2 followed by t2 followed by t3 followed by t3 followed by t1. By the
construction, we can see that CN1 satisfies the calculus query, while CN2 does not. We
will now show that Q either returns both CN1 or CN2 or neither of them; since this
contradicts our assumption, this will prove the theorem.

Let CQ be the calculus expression equivalent to Q. We show that by induction on the
structure of CQ, every sub-expression of CQ (and hence CQ) returns the same Boolean
value for CN1 and CN2. If the sub-expression is of the form ∃p(hasPos(n, p) ∧
hasAsToken(p, token)), it returns the same Boolean value for both CN1 and CN2
since both documents have the same set of tokens. Similarly, if the sub-expression
is of the form ∃p(hasPos(n, p)), it returns true for both CN1 and CN2. If the sub-
expression is of the form ¬Expr, then it returns the same Boolean value for both CN1
and CN2 because Expr returns the same Boolean value (by induction). A similar ar-
gument can also be made for the ∧ and ∨ Boolean operators. If the sub-expression is
of the form ∃p1(hasPos(n, p1) ∧ hasAsToken(p1, token1) ∧ ∃p2(hasPos(n, p2) ∧
hasAsToken(p2, token2)∧distance(p1, p2, d))), there are two cases. In the first case,
token1 �∈ {t1, t2, t3} ∨ token2 �∈ {t1, t2, t3}, and it is easy to see that the sub-
expression returns false for both CN1 and CN2. In the second case, token1, token2 ∈
{t1, t2, t3}. Since distance(token1, token2, 0) is true for both CN1 and CN2, and
hence distance(token1, token2, d) is true for d ≥ 0, the sub-expression returns true
for both CN1 and CN2. Since we have considered all sub-expressions, this is a contra-
diction and proves the theorem. �

4.2 Text Region Algebras

We now show that TRAs are incomplete.

Theorem 3. There exists a query that can be expressed in FTC with Preds = {ordered
(p1, p2), samepara(p1, p2)} that cannot be expressed in TRA (as defined in [10]).

Proof Sketch: The following FTC query cannot be expressed using TRA:
∃pos1, pos2(hasPos(node, pos1)∧hasAsToken(pos1, t1)∧hasPos(node, pos2)∧
hasAsToken(pos2, t2)∧ordered(pos1, pos2)∧samepara(pos1, pos2)) (find context
nodes that contain the tokens t1 and t2 in that order within the same paragraph). The
proof is very similar to the proof by Consens and Milo [10], who have shown that TRAs
cannot represent simultaneously inclusion and ordering constraints. In particular, they
prove that the query: find documents with regions s ∈ S that contain two other regions
t ∈ T and u ∈ U such that t comes before u, cannot be represented using TRA. When
we consider S to be the regions with the same start and end positions which correspond
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to the occurrences of the keyword k1, and similarly for T for keyword k2, and set U to
be regions representing paragraphs, the theorem follows. �

5 PPRED: Language and Query Evaluation

The evaluation of FTC queries corresponds to the problem of evaluating Quantified
Boolean Formulas (QBF), which is LOGSPACE-complete for data complexity (com-
plexity in the size of the database) and PSPACE-complete for expression complexity
(complexity in the size of the query) [26]. Since whether LOGSPACE is a strict sub-
set of PTIME (polynomial time), and whether PSPACE is a strict subset of EXPTIME
(exponential time) are open questions, we can only devise a query evaluation algorithm
that is polynomial in the size of the data and exponential in the size of the query. This
evaluation complexity is clearly unacceptable for large data sets and hence motivates
the need to find efficient subsets of FTC.

In this section, we present PPRED (for Positive PREDicates), a subset of FTC which
includes most common full-text predicates, such as distance, ordered and samepara,
and is more powerful than existing languages such as DIST and TRAs. Further, PPRED
queries can be evaluated in a single pass over inverted lists.

The key observation behind PPRED is that many full-text predicates are true in a
contiguous region of the position space. For instance, distance applied to two position
variables is true in the region where the position values of those variables are within
the distance limit, and false outside this region. For ordered, a region specifies the part
of the position space where the positions are in the required order. Other common full-
text predicates such as samepara, and window also share this property. We call such
predicates positive predicates. These predicates can be efficiently evaluated by scanning
context nodes in increasing order of positions, which can be done in a single scan over
the inverted list entries because they are typically stored in increasing order of positions.

We now formally define the PPRED language, and describe efficient query evaluation
algorithms that also consider score-based pruning.

5.1 Positive Predicates

Definition (Positive Predicates). An n-ary position-based predicate pred is said to be
a positive predicate iff there exist n functions fi : Pn → P (1 ≤ i ≤ n) such that:

∀p1, ..., pn ∈ P (¬pred(p1, ..., pn) ⇒
∀i∀p′i ∈ P pi ≤ p′i < fi(p1, ..., pn) ⇒

∀p′1, ..., p
′
i−1, p

′
i+1, ..., p

′
n ∈ P

p1 ≤ p′1, ..., pi−1 ≤ p′i−1,
pi+1 ≤ p′i+1, ..., pn ≤ p′n ⇒ ¬pred(p′1, ..., p

′
n)

∧
∃j fj(p1, ..., pn) > pj)

Intuitively, the property states that for every combination of positions that do not
satisfy the predicate: (a) there exists a contiguous boundary in the position space such
that all combinations of positions in this boundary do not satisfy the predicate; this
contiguous area is specified in terms of the functions fi(p1, ..., pn), which specify the



Expressiveness and Performance of Full-Text Search Languages 359

lower bound of the boundary for the dimension corresponding to position pi, and (b)
there is at least one dimension in the position space where the boundary can be advanced
beyond the current boundary, i.e., at least one fi(p1, ..., pn) has value greater than pi;
this ensures that the boundary can be pushed forward in search of a combination of
positions that do satisfy the predicate.

For example, for distance(p1, ..., pn, d), we can define the fi functions as
follows fi(p1, ..., pn) = max(max(p1, ..., pn) − d + 1, pi). Similarly, for ordered,
fi(p1, ..., pn) = max(p1, ..., pi). For samepara, fi(p1, ..., pn) = min{p ∈ P |
para(p) = max(para(p1), ...,max(para(pn))) where para is a function that returns
the paragraph containing a position.

Language Description. We now define the PPRED language, which is a strict superset
of DIST. Thus, simple queries retain the same conventional syntax, while new con-
structs are only required for more complex queries.

Query := Token | Query AND Query | Query OR Query | Query AND NOT Query* | SOME Var
Query | Preds

Token := StringLiteral | ANY | Var HAS StringLiteral | Var HAS ANY
Preds := distance(Var,Var,Integer) | ordered(Var,Var) | ...

The main additions to DIST are the HAS construct in Token and the SOME construct
in Query. The HAS construct allows us to explicitly bind position variables (Var) to
positions where tokens occur. The semantics for ’var1 HAS tok’ in terms of the FTC,
where tok is a StringLiteral is: hasAsToken(var1, tok). The semantics for ’var1 HAS
ANY’ is: hasPos(n, var1). While the HAS construct allows us to explicitly bind posi-
tion variables to token positions, the SOME construct allows us to quantify over these
positions. The semantics of ’SOME var1 Query’ is ∃var1(hasPos(n, var1) ∧ Expr),
where Expr is the FTC expression semantics for Query. Query* refers to a Query with
no free variables.

For example, the following PPRED query expresses the second sample query from
Section 3.2 SOME p1 HAS ’assignment’ SOME p2 HAS ’district’
SOME p3 HAS ’judge’ ordered(p1,p2) AND ordered(pos2,pos3)
AND distance(p2,p3) AND distance(p1,p3,5).

Although PPRED is not complete (e.g., it does not support universal quantification
and arbitrary negation), it is still quite powerful. For instance, it can specify all of the
queries used in the incompleteness proofs in Section 4 (since ordered, distance and
samepara are all positive predicates). In fact, PPRED is a strict superset of DIST (since
it contains all of the constructs of DIST) and of TRAs (see [3] for the proof).

5.2 Query Evaluation

We describe the PPRED query evaluation model and algorithm.

Query Evaluation Model. Each Rtoken relation is represented as an inverted list asso-
ciated to token. Each inverted list contains one or more entries. Each entry in Rtoken

is of the form: (node, PosList, score), where node is the identifier of a node that con-
tains token, PosList is the list of positions of token in node, and score is the score
of node. We assume that the inverted lists are sorted on node identifiers. Note that
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they could be sorted on scores. Figure 2(a) shows example inverted lists for the words
“district”, “judge”, and “assignment”. Inverted lists are typically accessed sequentially
using a cursor. Advancing the cursor can be done in constant time.

Query Evaluation Overview. We now illustrate how positive predicates enable effi-
cient query evaluation. Consider the simple query πnode(σdistance(att1,att2,1)
(Rdistrict � Rjudge)) (return nodes that contain the words ”district” and ”judge” within
at most 1 word of each other). The naı̈ve evaluation approach over the inverted lists
shown in Figure 2(a) would compute the Cartesian product of the positions for each
node and then apply the distance predicate. For the node 1, this corresponds to com-
puting 9 pairs of positions (3 in each inverted list), and then only selecting the final
pair (139,140) that satisfies the distance predicate. However, using the property that
distance is a positive predicate, we can determine the answer by only scanning 6 pairs
of positions (3 + 3 instead of 3 * 3), as described below.

The query evaluation starts with the smallest pair of positions (80, 90) for node 1 and
check whether it satisfies the distance predicate. Since it does not, we move the smallest
position to get the pair (99, 90). Since this pair still does not satisfy the predicate, we
again move the smallest position until we find a solution: (99, 105), (139, 105), (139,
140). Note that each position is scanned exactly once, so the complexity is linear in the
size of the inverted lists. The reason the smallest position could be moved is because
the distance predicate is true in a contiguous region, and if the predicate is false for
the smallest position in the region, one can infer that it is also false for other positions
without having to explicitly enumerate them.

Let us now consider a slightly more complex example using the ordered predicate:
πnode(σordered(att1,att2,att3)(Rdistrict � Rjudge � Rassignment)) (return nodes that con-
tain the words “district”, “judge” and “assignment” in that order). For node 1, the first
combination of positions (80, 90, 85) does not satisfy ordered. However, unlike the win-
dow predicate, we cannot move the cursor corresponding to the smallest position to get
the combination (99, 90, 85); doing so will cause the solution (80, 90, 97) to be missed!
(note that we cannot move a cursor back if we want a single scan over the positions).
Rather, for ordered, we need to move the smallest position that violates the order. In
our example, we should move the third cursor to get the combination (80, 90, 97).

In the above examples depending on the full-text predicate, different strategies may
have to be employed to produce the correct results efficiently. This becomes harder with
complex full-text queries (i.e., where different predicates are combined). Furthermore,
the problem becomes even more complex when the query contains multiple predicates
over possibly overlapping sets of positions. Which cursors should be moved in this
case? Does the order in which cursors used by different predicates are moved matter?
Is there a general strategy for evaluating arbitrary combinations of FTA queries with
positive predicates? We answer these questions in the next section.

One aspect to note is that our query evaluation algorithms efficiently evaluate full-
text predicates a node at a time before moving on to the next node. An important conse-
quence of this is that our algorithms can be combined with any existing top-k evaluation
technique (e.g. [11]), which prunes nodes from consideration based on their score (our
algorithms will just not evaluate queries over the pruned nodes).
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"judge"   inverted list

n         PosList

75      81    
1        90  105 140

n         PosList

"assignment"   inv. list

1         85    97  
75       83   210    

51       56   59
89       96  102  108

"district"   inverted list

n         PosList

1         80   99  139

(a) Inverted Lists
Examples

scan ("district") scan ("judge")

R1

join (R1, R2)

R2

R

R1

join (R1, R2)

R2

R

scan ("assignment")

ordered (p1, p2)

distance(p1, p2, 0)

R

project (R, node)
R

distance (p2, p3,5)
R

ordered (p2, p3)

(b) Example Query Plan

Fig. 2. Sample Inverted Lists and Query Plan

Query Evaluation Algorithms. A query is first converted to FTA operators and is
rewritten to push down projections wherever possible so that spurious positions are not
propagated. Figure 2(b) shows a sample FTA operator plan for the query in Section 1.
Since we do not want to materialize the entire output full-text relation corresponding to
an operator, each operator exposes a new API for traversing its output. This API ensures
that successive calls can be evaluated in a single scan over the inverted list positions. We
denote the output full-text relation for an operator o, R which has n position columns.
The API, defined below, maintains the following state: node, which tracks the current
node, and p1, ..., pn, which track the current positions in node.

– advanceNode(): On the first call, it sets node to be the smallest value in πnode(R)
(if one exists; else node is set to NULL). It also sets position values, p1, ..., pn

such that: (node, p1, ..., pn) ∈ R ∧ ∀p′1, ..., p
′
n(node, p′1, ..., p

′
n) ∈ R ⇒ p′1 ≥

p1 ∧ ... ∧ p′n ≥ pn (i.e., it sets positions p1, ...pn to be the smallest positions that
appear in R for that node; we will always be able to find such positions due to the
property of positive predicates). On subsequent calls, node is updated to the next
smallest value in πnode(R) (if one exists), and p1, ..., pn are updated as before.

– getNode(): Returns the current value of node.
– advancePosition(i,pos): It sets the values of p1, ..., pn such that they satisfy:

(node, p1, ..., pn) ∈ R ∧ pi > pos ∧ ∀p′1, ..., p
′
n(node, p′1, ..., p

′
n) ∈ R ∧ p′i ≥

pos ⇒ (p′1 ≥ p1 ∧ ... ∧ p′n ≥ pn) (i.e., the smallest values of positions that appear
in R and that satisfy the condition pi > pos), and returns true. If no such positions
exist, then it sets pis to be NULL and returns false.

– getPosition(i): Returns the current value of pi.

Given the operator evaluation tree in Figure 2(b), the general evaluation scheme
proceeds as follows. To find a solution advanceNode is called on the top project
operator which simply forward this call to the distance selection operator below it. The
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Algorithm 1. Join Evaluation Algorithm
Require: inp1, inp2 are the two API inputs to the join, and have c1 and c2 position columns,

respectively
1: Node advanceNode() {
2: node1 = inp1.advanceNode(); node2 = inp2.advanceNode();
3: while node1 != NULL && node2 != NULL && node1 != node2 do
4: if node1 < node2 then node1 = inp1.advanceNode();
5: else node2 = inp2.advanceNode(); endif
6: end while
7: if node1 == NULL ‖ node2 == NULL then return NULL;
8: else [node1 == node2]
9: set pi (i < c1) to inp1.getPosition(i);

10: set pi (i ≥ c1) to inp2.getPosition(i − c1);
11: node = node1;
12: return node1; endif }
13:
14: boolean advancePosition(i,pos) {
15: if (i < c1)then
16: result = inp1.advancePosition(i,pos);
17: if (result)then pi = inp1.getPostion(i);endif
18: return result;
19: else //Similary for inp2 end if }

latter tries to find a solution by continuously calling advancePosition on the ordered
predicate below it until it finds a satisfying tuple of positions. The ordered predicates
behaves in a similar manner: it advances through the result of the underlying operator
until it finds a tuple that satisfies it. The evaluation proceeds down the tree until the
leaves (the scan operators) are reached. The latter simply advances through the entries
in the inverted lists. The entire evaluation is pipelined and no intermediate relation needs
to be materialized.

We now show how different PPRED operators can implement the above API. The
API implementation for the inverted list scan and project operators are straightforward
since they directly operate on the inverted list and input operator API, respectively.
Thus, we focus on joins and selections. The implementation for set difference and union
is similar to join, and is not discussed here.

Algorithm 1 shows how the API is implemented for the join operator. We only show
the implementation of the advanceNode and advancePos methods since the other
methods are trivial. Intuitively, advanceNode performs an equi-join on the node. It
then sets the positions pi to the corresponding positions in the input.
advancePosition(i,pos) moves the position cursor on the corresponding input.

Algorithm 2 shows how the API is implemented for selections implementing pred-
icate pred with functions fi defined in Section 5.1. Each call of advanceNode, ad-
vances node until one that satisfies the predicate is found, or there are no cnodes left.
The satisfying node is found using the helper method advancePosUntilSat, which
returns true iff it is able to advance the positions of the current node so that they satisfy
the predicate pred. advancePosition first advances the position on its input, and then
invokes advancePosUntilSat until a set of positions that satisfy pred are found.
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Algorithm 2. Predicate Evaluation Algorithm
Require: inp is API inputs to the predicate with c position columns
1: Cnode advanceCnode() {
2: cnode = inp.advanceCnode();
3: while cnode != NULL && !advancePosUntilSat() do
4: cnode = inp.advanceCnode();
5: end while
6: return cnode; }
7:
8: boolean advancePosition(i,pos) {
9: success = inp.advancePosition(i,pos);

10: if !success then return false; endif
11: pi = inp.getPos(i); return advancePosUntilSat(); }
12:
13: boolean advancePosUntilSat () {
14: while !pred(p1, ..., pc) do
15: find some i such that fi(p1, ..., pc) > pi

16: success = inp.advancePos(i, fi(p1, ..., pc);
17: if success then return false; end if
18: pi = inp.getPosition(i);
19: end while
20: return true; }

advancePosUntilSat first checks whether the current positions satisfy pred. If
not, it uses the fi functions to determine a position i to advance, and loops back until a
set of positions satisfying pred are found, or until no more positions are available. This
is the core operation in selections: scanning the input positions until a match is found.
Positive predicates enable us to do this in a single pass over the input.

Correctness and Complexity. We now present a sketch of the proof of correctness of
the above algorithm (see [3] for the full proof). First, it is not hard to see that every
answer returned by the algorithm results from evaluating the corresponding PPRED
query. The advancePosUntilSat function of the predicate operator does not return
until satisfying positions are found or the end of an inverted list is reached. The join
operator only returns a tuple if both input tuples correspond to the same node. The
union operator only returns a tuple if at least one of its inputs produces that tuple. The
set-difference operator only returns tuples that are produced by the first input only.

We prove that the algorithm does not miss any query results inductively on each
operator. The scan always moves the cursor to the first position of the node for
advanceNode or to the first position that is after pos for advancePosition(i,pos).
Therefore, it is trivially correct. Selection only moves the cursor pi for which pi <
fi(p1, ..., pn), and the definition of positive predicates guarantees that we do not miss
results. Similarly, the join operator moves the cursors only while one of the predicates is
violated by a higher-level operator. The correctness of project, union, and set-difference
can be proved similarly.

To calculate the query evaluation complexity, we define the following parameters:
entries per token is the maximum number of scanned entries in a token inverted
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list (this is either the entire inverted list in the case of regular query processing, or some
subset in the case of top-k processing); pos per entry is the maximum number of
positions in an entry in a token inverted list; toks Q is the number of search keywords
in a query Q; preds Q is the number of predicates in a query Q; ops Q is the number
of operations in a query Q. The complexity of a PPRED query is:
O(entries per token × pos per entry × toksQ × (predsQ + opsQ + 1)) In-
tuitively, every node and every position within a node is processed at most once. For
every combination of positions, we process each operator at most once.

6 Experiments

The main goal of our experiments is to study the performance of the PPRED query
evaluation algorithm. We also compare its performance with two other techniques:

1. BOOL, which is a restriction of DIST with an empty set of position-based predi-
cates; i.e. it only contains the Boolean operators and keyword matching. Such eval-
uation has been studied and optimized extensively in the IR community [27], and
serves as a baseline because it does not incur the cost of predicate evaluation.

2. REL, which is a direct implementation of FTA using regular relational operators,
such as proposed in [6, 12, 16, 18, 21, 29]. This helps illustrate the performance ben-
efits of the PPRED query evaluation algorithm.

6.1 Experimental Setup

We used the 500MB INEX 2003 dataset,5 which contains over 12000 IEEE papers
represented as XML documents. Since we are interested in full-text search, we ignored
the XML structure and indexed the collection as flat documents, i.e., each document
corresponds to a context node. We also ran experiments using synthetic data; since the
results were similar, we only report the results for the INEX collection.

We varied the data and query parameters described in Section 5.2 by appropriately
varying the number of documents and the query keywords. To study the effect of each
parameter on query performance, we varied only one parameter and fixed others at their
default values. The range of values for each parameter are: entries per token took
on the values 1000, 10000, 100000 (default 10000), pos per entry took on the val-
ues 25, 75, 125, 200 (default 125), toks Q took on the values 1, 2, 3, 4, 5 (default 3)
and preds Q took on the values 0, 1, 2, 3, 4 (default 2). We used distance as the repre-
sentative positive predicate. We only show the results for varying entries per token,
pos per entry, toks Q, and preds Q since the other results are similar.

All the algorithms were implemented in C++ and used TF-IDF scoring. We ran our
experiments on an AMD64 3000+ computer with 1GB RAM and one 200GB SATA
drive, running under Linux 2.6.9.

6.2 Experimental Results

Figures 3(a) and 3(b) show the performance of the algorithms when varying toks Q
and preds Q, respectively. The performance of BOOL and PPRED scales linearly,

5 http://www.is.informatik.uni-duisburg.de/projects/inex03/
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(a) Varying Number of Query Tokens (b) Varying Number of Query Predicates

(c) Varying Number Context Nodes (d) Varying Number of Positions Per Inverted
List Entry

Fig. 3. Experiments on the INEX collection

while the performance of REL degrades exponentially. This is explained by the fact that
REL uses traditional relational joins, which compute the entire Cartesian product of po-
sitions within a node, while PPRED and BOOL use single-pass evaluation algorithms.
Interestingly, the performance of PPRED is only slightly worse than BOOL, which sug-
gests that PPRED only introduces a slight additional overhead over the baseline.

Figures 3(c) and 3(d) show the performance of the algorithms when varying
entries per token and pos per entry, respectively. PPRED and BOOL scale
gracefully, while REL does not scale well. Again, PPRED performs only slightly worse
than BOOL, suggesting that there is little overhead to evaluating positive predicates.

7 Conclusion

We introduced the FTC and FTA as a new formalism for modeling structured full-text
search and showed that existing languages are incomplete in this formalism. We also
identified a powerful subset of the FTC and FTA that can be evaluated efficiently in a
single pass over inverted lists. As part of future work, we plan to capture more aspects
such as stemming and thesauri; we believe that these can be modeled as additional
predicates in the FTC. Since the FTA is based on the relational algebra, we also plan to
explore the joint optimization of full-text and relational queries.
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Abstract. We describe MIDST, an implementation of the model man-
agement operator ModelGen, which translates schemas from one model
to another, for example from OO to SQL or from SQL to XSD. It ex-
tends past approaches by translating database instances, not just their
schemas. The operator can be used to generate database wrappers (e.g.
OO or XML to relational), default user interfaces (e.g. relational to
forms), or default database schemas from other representations. The ap-
proach translates both schemas and data: given a source instance I of a
schema S expressed in a source model, and a target model TM, it gen-
erates a schema S′ expressed in TM that is “equivalent” to S and an
instance I ′ of S′ “equivalent” to I . A wide family of models is handled
by using a metamodel in which models can be succinctly and precisely
described. The approach expresses the translation as Datalog rules and
exposes the source and target of the translation in a generic relational
dictionary. This makes the translation transparent, easy to customize
and model-independent.

1 Introduction

1.1 The Problem

To manage heterogeneous data, many applications need to translate data and
their descriptions from one model (i.e. data model) to another. Even small vari-
ations of models are often enough to create difficulties. For example, while most
database systems are now object-relational (OR), the actual features offered by
different systems rarely coincide, so data migration requires a conversion. Every
new database technology introduces more heterogeneity and thus more need for
translations. For example, the growth of XML has led to such issues, includ-
ing (i) the need to have object-oriented (OO) wrappers for XML data, (ii) the
translation from nested XML documents into flat relational databases and vice
versa, (iii) the conversion from one company standard to another, such as using
attributes for simple values and sub-elements for nesting vs. representing all data
in sub-elements. Other popular models lead to similar issues, such as Web site
descriptions, data warehouses, and forms. In all these settings, there is the need
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to translate both schemas and data from one model to another. A requirement
of an even larger set of contexts is to be able to translate schemas only. This is
called the ModelGen operator in [7].

Given two models M1 and M2 and a schema S1 of M1, ModelGen translates
S1 into a schema S2 of M2 that properly represents S1. If data is of interest,
it should translate that as well. Given a database instance I1 of S1 we want to
produce an instance I2 of S2 that has the same information content as I1.

As there are many different models, what we need is an approach that is
generic across models, and can handle the idiosyncrasies of each model. Ide-
ally, one implementation should work for a wide range of models, rather than
implementing a custom solution for each pair of models.

We illustrate the problem with some of its major features by means of a short
example (additional ones appear in Sec. 5). Consider a simple OR model whose
tables have system-managed identifiers and tuples contain domain values as well
as identifier-based references to other tables. Fig. 1 shows a database for this
model with information about employees and departments: values for attribute
Dept in relation Employees contain a system managed identifier that refers to
tuples of Departments. For example, E#1 in Employees refers to D#1 in
Departments.

Employees
EmpNo Name Dept

E#1 134 Smith D#1
E#2 201 Jones D#2
E#3 255 Black D#1
E#4 302 Brown null

Departments
Name Address

D#1 A 5, Pine St
D#2 B 10, Walnut St

Fig. 1. A simple object-relational database

To translate OR databases into the relational model, we can follow the well
known technique that replaces explicit references by values. However, some de-
tails of this transformation depend upon the specific features in the source and
target model. For example, in the object world, keys (or visible identifiers) are
sometimes ignored; in the figure: can we be sure that employee numbers identify
employees and names identify departments? It depends on whether the model
allows for keys and on whether keys have actually been specified. If keys have
been specified on both object tables, then Fig. 2 is a plausible result. Its schema
has tables that closely correspond to the object tables in the source database.
In Fig. 2 keys are underlined and there is a referential integrity constraint from
the Dept attribute in Employees to (the key of) Departments.

If instead the OR model does not allow the specification of keys or allows them
to be omitted, then the translation has to be different: we use an additional
attribute for each table as an identifier, as shown in Fig. 3. This attribute is
visible, as opposed to the system managed ones of the OR model. We still have
the referential integrity constraint from the Dept attribute in Employees to
Departments, but it is expressed using the new attribute as a unique identifier.
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Employees
EmpNo Name Dept

134 Smith A
201 Jones B
255 Black A
302 Brown null

Departments
Name Address

A 5, Pine St
B 10, Walnut St

Fig. 2. A translation into the relational model

Employees
EmpID EmpNo Name Dept

1 134 Smith 1
2 201 Jones 2
3 255 Black 1
4 302 Brown null

Departments
DeptID Name Address

1 A 5, Pine St
2 B 10, Walnut St

Fig. 3. A translation with new key attributes

The example shows that we need to be able to deal with the specific aspects of
models, and that translations need to take them into account: we have shown two
versions of the OR model, one that has visible keys (besides the system-managed
identifiers) and one that does not. Different techniques are needed to translate
these versions into the relational model. In the second version, a specific feature
was the need for generating new values for the new key attributes.

More generally, we are interested in the problem of developing a platform that
allows the specification of the source and target models of interest (including OO,
OR, ER, UML, XSD, and so on), with all relevant details, and to generate the
translation of their schemas and instances.

1.2 The MDM Approach

Given the difficulty of this problem, there is no complete general approach avail-
able to its solution, but there have been a few partial efforts (see Sec. 6). We
use as a starting point the MDM proposal [3]. In that work a metamodel is a
set of constructs that can be used to define models, which are instances of the
metamodel. The approach is based on Hull and King’s observation [18] that
the constructs used in most known models can be expressed by a limited set of
generic (i.e. model-independent) metaconstructs: lexical, abstract, aggregation,
generalization, function. In MDM, a metamodel is defined by these generic meta-
constructs. Each model is defined by its constructs and the metaconstructs they
refer to. The models in the examples in Sec. 1.1 could be defined as follows:

– the relational model involves (i) aggregations of lexicals (the tables), with
the indication, for each component (a column), of whether it is part of the
key or whether nulls are allowed; (ii) foreign keys defined over components
of aggregations;
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– a simplified OR model has (i) abstracts (tables with system-managed iden-
tifiers); (ii) lexical attributes of abstracts (for example Name and Address),
each of which can be specified as part of the key; (iii) reference attributes
for abstracts, which are essentially functions from abstracts to abstracts (in
the example, the Dept attribute in table Employees).

A major concept in the MDM approach is the supermodel, a model that has
constructs corresponding to all the metaconstructs known to the system. Thus,
each model is a specialization of the supermodel and a schema in any model
is also a schema in the supermodel, apart from the specific names used for
constructs. The translation of a schema from one model to another is defined in
terms of translations over the metaconstructs. The supermodel acts as a “pivot”
model, so that it is sufficient to have translations from each model to and from the
supermodel, rather than translations for every pair of models. Thus, a linear and
not a quadratic number of translations is needed. Moreover, since every schema
in any model is an instance of the supermodel, the only needed translations
are those within the supermodel with the target model in mind; a translation
is performed by eliminating constructs not allowed in the target model, and
possibly introducing new constructs that are allowed.

Each translation in MDM is built from elementary transformations, which
are essentially elimination steps. So, a possible translation from the OR model
to the relational one is to have two elementary transformations (i) one that
eliminates references to abstracts by adding aggregations of abstracts (i.e., re-
placing functions with relationships), and (ii) a second that replaces abstracts
and aggregations of abstracts with aggregations of lexicals and foreign keys (the
traditional steps in translating from the ER to the relational model). Essen-
tially, MDM handles a library of elementary transformations and uses them to
implement complex transformations.

The major limitation of MDM with respect to our problem is that it considers
schema translations only and it does not address data translation at all.

1.3 Contribution

This paper proposes MIDST (Model Independent Data and Schema Translation)
a framework for the development of an effective implementation of a generic (i.e.,
model independent) platform for schema and data translation. It is among the
first approaches that include the latter. (Sec. 6 describes concurrent efforts.)
MIDST is based on the following novel ideas:

– a visible dictionary that includes three parts (i) the meta-level that contains
the description of models, (ii) the schema-level that contains the description
of schemas; (iii) the data-level that contains data for the various schemas.
The first two levels are described in detail in Atzeni et al. [2]. Instead, the
focus and the novelty here are in the relationship between the second and
third levels and in the role of the dictionary in the translation process;

– the elementary translations are also visible and independent of the engine
that executes them. They are implemented by rules in a Datalog variant
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with Skolem functions for the invention of identifiers; this enables one to
easily modify and personalize rules and reason about their correctness;

– the translations at the data level are also written in Datalog and, more
importantly, are generated almost automatically from the rules for schema
translation. This is made possible by the close correspondence between the
schema-level and the data-level in the dictionary;

– mappings between source and target schemas and data are generated as a
by-product, by the materialization of Skolem functions in the dictionary.

A demo description of a preliminary version of the tool considering only the
schema level is in Atzeni et al. [1].

1.4 Structure of the Paper

The rest of the paper is organized as follows. Sec. 2 explains the schema level of
our approach. It describes the dictionary and the Datalog rules we use for the
translation. Sec. 3 covers the major contribution: the automatic generation of the
rules for the data level translation. Sec. 4 discusses correctness at both schema
and data level. Sec. 5 presents experiments and more examples of translations.
Sec. 6 discusses related work. Sec. 7 is the conclusion.

2 Translation of Schemas

In this section we illustrate our approach to schema translation. We first explain
how schemas are described in our dictionary using a relational approach. We
then show how translations are specified by Datalog rules, which leverage the
relational organization of the dictionary. Two major features of the approach are
the unified treatment of schemas within the supermodel and the use of Skolem
functors for generating new identifiers in the dictionary. We will comment on
each of them while discussing the approach.

2.1 Description of Schemas in the Dictionary

A schema is described in the dictionary as a set of schema elements, with refer-
ences to both its specific model and the supermodel [2]. For example, an entity
of an ER schema is described both in a table, say ER Entity, referring to the
ER model and in a supermodel table SM Abstract, corresponding to the ab-
stract metaconstruct to which the entity construct refers. Similarly, a class of a
UML diagram gives rise to a tuple in a specific table UML Class and to one
in SM Abstract again, because classes also correspond to abstracts. As we
will see in Sec. 2.2, our translation process includes steps (“copy rules”) that
guarantee the alignment of the two representations.

The supermodel’s structure is relatively compact. In our relational implemen-
tation, it has a table for each construct. We currently have a dozen constructs,
which are sufficient to describe a large variety of models. Translation rules are
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SM Abstracts
OID sOID Name
101 1 Employees
102 1 Departments
... ... ...

SM AttributeOfAbstract
OID sOID Name IsKey IsNullable AbsOID Type
201 1 EmpNo T F 101 Integer
202 1 Name F F 101 String
203 1 Name T F 102 String
204 1 Address F F 102 String
... ... ... ... ... ... ...

SM RefAttributeOfAbstract
OID sOID Name IsNullable AbsOID AbsToOID
301 1 Dept T 101 102
... ... ... ... ... ...

Fig. 4. An object-relational schema represented in the dictionary

expressed using supermodel constructs. Therefore, they can translate any con-
struct that corresponds to the same metaconstruct, without having to rewrite
rules for each construct of a specific model. Therefore, we concentrate here on
the portion of the dictionary that corresponds to the supermodel, as it is the
only one really relevant for translations.

In the dictionary, each schema element has (i) a unique identifier (OID), (ii) a
reference to the schema it belongs to (sOID), (iii) values of its properties and (iv)
references to other elements of the same schema. Each schema element belongs
to only one schema.

In the schema of Fig. 1 both Employees and Departments are object-
tables with identifiers and therefore correspond to the abstract metaconstruct.
Dept is a reference attribute (its values are system-managed identifiers) and in
our terminology corresponds to reference attribute of abstract. The other at-
tributes are value based and therefore correspond to the metaconstruct attribute
of abstract. Fig. 4 shows how the description of the schema in Fig. 1 is organized
in the dictionary of MIDST. To illustrate the main points, consider the table
SM RefAttributeOfAbstract. The tuple with OID 301 belongs to schema
1. It has two properties: Name, with value “Dept” and IsNullable with value true
(it says that nulls are allowed in the database for this attribute). Finally, it has
two references AbsOID and AbsToOID, which denote the element this attribute
belongs to and the element it refers to, respectively: this attribute belongs to
Employees (the abstract with OID 101) and points to Departments (the ab-
stract with OID 102).

2.2 Rules for Schema Translation

As in the MDM approach, translations are built by combining elementary trans-
lations. The novelty here is that each elementary translation is specified by
means of a set of rules written in a Datalog variant with Skolem functors for
the generation of new identifiers. Elementary translations can be easily reused
because they refer to the constructs in supermodel terms, and so each of them
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can be applied to all constructs that correspond to the same metaconstruct. The
actual translation process includes an initial step for “copying” schemas from
the specific source model to the supermodel and a final one for going back from
the supermodel to the target model of interest. For the sake of space we omit
the discussion of these two steps, as they are straightforward.

We illustrate the major features of our rules by means of an example, which
refers to the translation from the OR to the relational models, specifically,
mapping the database of Fig.1 to that of Fig.2. The following rule translates
object references (attribute Dept in relation Employees) into value based
references:

SM AttributeOfAggregationOfLexicals(
OID:#attribute 4(refAttOid, attOid), sOID:target, Name:refAttName,
IsKey: “false”, IsNullable:isN, AggOID:#aggregation 2(absOid))

← SM RefAttributeOfAbstract(
OID:refAttOid, sOID:source, Name:refAttName, IsNullable:isN,
AbsOID:absOid, AbsToOID:absToOid),

SM AttributeOfAbstract(
OID:attOid, sOID:source, Name:attName,
IsKey:“true”, AbsOID:absToOid)

The rule replaces each reference (SM RefAttributeOfAbstract) with one
column (SM AttributeOfAggregationOfLexicals) for each key attribute
of the referenced table. The body unifies with a reference attribute and a key
attribute (note the constant true for IsKey in the body) of the abstract that is
the target of the reference (note the variable absToOid that appears twice in the
body). In our example, as Departments has only one key attribute (Name),
the rule would generate exactly one new column for the reference.

Skolem functors are used to create new OIDs for the elements the rule pro-
duces in the target schema.1 The head of the rule above has two functors: #at-
tribute 4 for the OID field and #aggregation 2 for the AggOID field. The two
play different roles. The former generates a new value, which is distinct for each
different tuple of arguments, as the function associated with the functor is in-
jective. This is the case for all the functors appearing in the OID field of the
head of a rule. The second functor correlates the element being created with an
element created by another rule, namely the rule that generates an aggregation
of lexicals (that is, a relation) for each abstract (that is, an object table). The
new SM AttributeOfAggregationOfLexicals being generated indeed be-
longs to the SM AggregationOfLexicals generated for the SM Abstract
denoted by variable absOid.

As another example, consider the rule that, in the second translation men-
tioned in the Introduction (Fig. 3), produces new key attributes when keys are
not defined in the OR-tables in the source schema.

1 A brief comment on notation: functors are denoted by the # sign, include the name
of the construct whose OIDs they generate (here often abbreviated for convenience),
and have a suffix that distinguishes the various functors associated with a construct.
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SM AttributeOfAggregationOfLexicals(
OID:#attribute 5(absOid), sOID:target, Name:name+’ID’,
IsNullable:“false”, IsKey:“true”, AggOID:#aggregation 2(absOid))

← SM Abstract(
OID:absOid, sOID:source, Name:name)

The new attribute’s name is obtained by concatenating the name of the instance
of SM Abstract with the suffix ‘ID’. We obtain EmpID and DeptID as in Fig. 3.

3 Data Translation

The main contribution of MIDST is the management of translations of actual
data, derived from the translations of schemas. This is made possible by the use
of a dictionary for the data level, built in close correspondence with the schema
level one. Therefore, we first describe the dictionary and then the rules.

3.1 Description of Data

Data are described in a portion of the dictionary whose structure is automatically
generated and is similar to the schema portion. The basic idea is that all data
elements are represented by means of internal identifiers and also have a value,
when appropriate. A portion of the representation of the instance in Fig. 1 is
shown in Fig. 5. Let us comment the main points:

– Each table has a dOID (for database OID) attribute, instead of the sOID
attribute we had at the schema level. Our dictionary can handle various
schemas for a model and various instances (or databases) for each schema.
In the example, we show only one database, with 1 as the dOID.

SM InstOfAbstract
OID dOID AbsOID
1001 1 101
1002 1 101
1003 1 101
1004 1 101
1005 1 102
1006 1 102
... ... ...

SM InstOfAttributeOfAbstract
OID dOID AttOID i-AbsOID Value
2001 1 201 1001 134
2002 1 202 1001 Smith
2003 1 201 1002 201
... ... ... ... ...

2011 1 203 1005 A
2012 1 204 1005 5, Pine St
2013 1 203 1006 B
... ... ... ... ...

SM InstOfRefAttributeOfAbstract
OID dOID RefAttOID i-AbsOID i-AbsToOID
3001 1 301 1001 1005
3002 1 301 1002 1006
... ... ... ... ...

Fig. 5. Representation of an object relational instance
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– Each data element has a reference to the schema element it instantiates. For
example, the first table in Fig. 5 has an AbsOID column, whose values are
identifiers for the abstracts in the schema. The first four rows have a value
101 for it, which is, in Fig. 4, the identifier of object-table Employees; in
fact, the database (see Fig. 1) has four elements in Employees.

– “Properties” of schema elements (such as IsKey and IsNullable) do not have
a counterpart at the data level: they only are needed as schema information.

– All identifiers appearing at the schema level are replaced by identifiers at the
data level. They include both the OID and the references to the OIDs of other
tables. In the example, table SM RefAttributeOfAbstract in Fig. 4 has
columns (i) OID, the identifier of the row, (ii) AbsOID, the identifier of the
abstract to which the attributes belong, and (iii) AbsToOID, the identifier
of the abstract to which the attributes “point”. In Fig. 5 each of them is
taken one level down: (i) each row is still identified by an OID column, but
this is the identifier of the data element; (ii) each value of i-AbsOID indicates
the instance of the abstract the attribute is associated with (1001 in the
first tuple of SM InstOfRefAttributeOfAbstract in Fig. 5 identifies
employee Smith); (iii) i-AbsToOID indicates the instance of the abstract the
attribute refers to (in the same tuple, 1005 identifies department A);

– If the construct is lexical (that is, has an associated value [18]), then the table
has a Value column. In Fig. 5, SM InstanceOfAttributeOfAbstract
is the only lexical construct, and Value contains all the values for all the
attributes of all the abstracts. Differences in type are not an issue, as we
assume the availability of serialization functions that transform values of
any type into values of a common one (for example strings).

The above representation for instances is clearly an “internal” one, into which
or from which actual database instances or documents have to be transformed.
We have developed import/export features that can upload/download instances
and schemas of a given model. This representation is somewhat onerous in terms
of space, so we are working on a compact version of it that still maintains the
close correspondence with the schema level, which is its main advantage.

3.2 Rules for Data Translation

The close correspondence between the schema and data levels in the dictionary
allows us to automatically generate rules for translating data, with minor re-
finements in some cases. The technique is based on the Down function, which
transforms schema translation rules “down to instances.” It is defined both on
Datalog rules and on literals. If r is a schema level rule with k literals in the
body, Down(r) is a rule r′, where:

– the head of r′ is obtained by applying the Down function to the head of r
(see below for the definition of Down on literals)

– the body of r′ has two parts, each with k literals:
1. literals each obtained by applying Down to a literal in the body of r;
2. a copy of the body of r.
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Let us now define Down on literals. A literal is a possibly negated atom. An
atom has the form P (n1 : a1, . . . , nh : ah), where P , the predicate, is the name of
the table for a supermodel construct (therefore beginning with the prefix SM ),
each ni (a name) is a column (property or reference) of P and each ai is an
argument, which can be a constant, a variable,2 or a Skolem functor. In turn, a
Skolem functor has the form F (p1, . . . , pm), where F is the name of a Skolem
function and each pj is a constant or a variable.

Given a schema level atom lS = P (n1 : a1, . . . , nh : ah), Down produces a
data level literal with a predicate name obtained from P by replacing SM with
SM InstanceOf3 and arguments as follows.

– Two pairs are built from the OID argument (OID: a) of lS :
• (OID: a′) where a′ is obtained from a as follows, depending on the form

of a: if a is a variable, then a′ is obtained by prefixing i- to its name; if
instead it is a Skolem functor, both the function name and its variable
parameters are prefixed with i-;

• (P -OID: a), where P -OID is the reference to the schema element in the
dictionary (built as the concatenation of the name of P and the string
OID.

– For each pair (n:a) in lS where n is a reference column in table P in the
dictionary (that is, one whose values are OIDs), Down(lS) contains a pair
of the form (n′:a′), where n′ is obtained from n by adding a “i-” prefix and
a′ is obtained from a as above with the additional case that if it is a constant
then it is left unchanged.

– If the construct associated with P is lexical (that is, its occurrences at the
data level have values), then an additional pair of the form (Value:e) is added,
where e is an expression that in most cases is just a variable v (we comment
on this issue at the end of this section).

Let us consider the first rule presented in Sec. 2.2. At the data level it is as
follows:

SM InstanceOfAttributeOfAggregationOfLexicals(
OID:#i-attribute 4(i-refAttOid, i-attOid),
AttOfAggOfLexOID:#attribute 4(refAttOid, attOid), dOID:i-target,
i-AggOID:#i-aggregation 2(i-absOid), Value:v)

← SM InstanceOfRefAttributeOfAbstract(
OID:i-refAttOid, RefAttOfAbsOID:refAttOid, dOID:i-source,
i-AbsOID:i-absOid, i-AbsToOID:i-absToOid),

SM InstanceOfAttributeOfAbstract(
OID:i-attOid, AttOfAbsOID:attOid, dOID:i-source, i-AbsOID:i-absToOid,
Value:v),

SM RefAttributeOfAbstract(

2 In general, an argument could also be an expression (for example a string concate-
nation over constants and variables), but this is not relevant here.

3 In figures and examples we abbreviate names when needed.
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OID:refAttOid, sOID:i-source, Name:refAttName, IsNullable:isN,
AbsOID:absOid, AbsToOID:absToOid),

SM AttributeOfAbstract(
OID:attOid, sOID:source, Name:attName,
IsKey:“true”, AbsOID:absToOid)

Let us comment on some of the main features of the rules generation.

1. schema level identifiers become data level identifiers: OID element;
2. data elements refer to the schema elements they instantiate;
3. references to schemas become references to databases, that is, instances of

schemas: both in the head and in the second literal in the body, we have a
dOID column instead of the sOID;

4. Skolem functors are replaced by “homologous” functors at the data level, by
transforming both the name and the arguments; in this way, they generate
new data elements, instead of schema elements;

5. “properties” do not appear in data level literals; they are present in the
schema level literals in order to maintain the same selection condition (on
schema elements) declared in the body of the schema level translation;

6. lexical constructs have a Value attribute.

The copy of the body of the schema-level rule is needed to maintain the
selection condition specified at the schema level. In this way the rule translates
only instances of the schema element selected within the schema level rule.

In the rule we just saw, all values in the target instance come from the source.
So we only need to copy them, by using a pair (Value:v) both in the body and
the head. Instead, in the second rule in Sec. 2.2, the values for the new attribute
should also be new, and a different value should be generated for each abstract
instance. To cover all cases, MIDST allows functions to be associated with the
Value field. In most cases, this is just the identity function over values in the
source instance (as in the previous rule). In others, the rule designer has to
complete the rule by specifying the function. In the example, the rule is as
follows:

SM InstanceOfAttributeOfAggregationOfLexicals(
OID:#i-attribute 5(i-absOid), AttOfAggOfLex:#attribute 5(absOid),
dOID:i-target, Value:valueGen(i-absOid),
i-AggOID:#i-aggregation 2(i-absOid) )

← SM InstanceOfAbstract(
OID:i-absOid, AbsOID:absOid, dOID:i-source),

SM Abstract(
OID:absOid, sOID:source, Name:name)

4 Correctness

In data translation (and integration) frameworks, correctness is usually modelled
in terms of information-capacity dominance and equivalence (see Hull [16, 17]
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for the fundamental notions and results and Miller et al. [19, 20] for their role
in schema integration and translation). In this context, it turns out that various
problems are undecidable if they refer to models that are sufficiently general (see
Hull [17, p.53], Miller [20, p.11-13]). Also, a lot of work has been devoted over the
years to the correctness of specific translations, with efforts still going on with
respect to recently introduced models: see for example the recent contributions
by Barbosa et al. [5, 6] on XML-to-relational mappings and by Bohannon et
al. [11] on transformations within the XML world. Undecidability results have
emerged even in discussions on translations from one specific model to another
specific one [5, 11].

Therefore, given the genericity of our approach, it seems hopeless to aim at
showing correctness in general. However, this is only a partial limitation, as we
are developing a platform to support translations, and some responsibilities can
be left to its users (specifically, rule designers, who are expert users), with system
support. We briefly elaborate on this issue.

We follow the initial method of Atzeni and Torlone [3] for schema level trans-
lations, which uses an “axiomatic” approach. It assumes the basic translations
to be correct, a reasonable assumption as they refer to well-known elementary
steps developed over the years. It is the responsibility of the rule’s designer to
specify basic translations that are indeed correct. So given a suitable description
of models and rules in terms of the involved constructs, complex translations
can be proven correct by induction.

In MIDST, we have the additional benefit of having schema level transfor-
mations expressed at a high-level, as Datalog rules. Rather than taking on faith
the correctness of the signature of each basic transformation as in [3], we can
automatically detect which constructs are used in the body and generated in the
head of a Datalog rule and then derive the signature. Since models and rules are
expressed in terms of the supermodel’s metaconstructs, by induction, the same
can be done for the model obtained by applying a complex transformation.

For correctness at the data level, we can reason in a similar way. The main
issue is the correctness of the basic transformations, as that of complex ones
would follow by induction. Again, it is the responsibility of the designer to verify
the correctness of the rules: he/she specifies rules at the schema level, the sys-
tem generates the corresponding data-level rules, and the designer tunes them
if needed and verifies their correctness. It can be seen that our data-level rules
generate syntactically correct instances (for example, with only one value for
single-valued attributes) if the corresponding schema-level rules generate syn-
tactically correct schemas.

The validity of the approach, given the unavailability of formal results has
been evaluated by means of an extensive set of test cases, which have produced
positive results. We comment on them in the next section.

5 Experimentation

The current MIDST prototype handles a metamodel with a dozen different meta-
constructs, each with a number of properties. For example, attributes with nulls
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and without nulls are just variants of the same construct. These metaconstructs,
with their variants, allow for the definition of a huge number of different models
(all the major models and many variations of each). For our experiments, we
defined a set of significant models, extended-ER, XSD, UML class diagrams,
object-relational, object-oriented and relational, each in various versions (with
and without nested attributes and generalization hierarchies).

We defined the basic translations needed to handle the set of test models.
There are more than twenty of them, the most significant being those for elimi-
nating n-ary aggregations of abstracts, eliminating many-to-many aggregations,
eliminating attributes from aggregations of abstracts, introducing an attribute
(for example to have a key for an abstract or aggregation of lexicals), replacing
aggregations of lexicals with abstracts and vice versa (and introducing or remov-
ing foreign keys as needed), unnesting attributes and eliminating generalizations.
Each basic transformation required from five to ten Datalog rules.

These basic transformations allow for the definition of translations between each
pair of test models. Each of them produced the expected target schemas, according
to known standard translations used in database literature and practice.

At the data level, we experimented with the models that handle data, hence
object-oriented, object-relational, and nested and flat relational, and families of
XML documents. Here we could verify the correctness of the Down function,
the simplicity of managing the rules at the instance level and the correctness of
data translation, which produced the expected results.

In the remainder of this section we illustrate some major points related to
two interesting translations. We first show a translation of XML documents

Fig. 6. A translation within XML: source and target
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between different company standards and then an unnesting case, from XML to
the relational model.

For the first example, consider two companies that exchange data as XML
documents. Suppose the target company doesn’t allow attributes on elements:
then, there is the need to translate the source XML conforming a source XSD
into another one conforming the target company XSD. Fig. 6 shows a source
and a target XML document.

Let us briefly comment on how the XSD model is described by means of our
metamodel. XSD-elements are represented with two metaconstructs: abstract
for elements declared as complex type and attribute of aggregation of lexicals
and abstracts for the others (simple type). XSD-groups are represented by ag-
gregation of lexicals and abstracts and XSD-attributes by attribute of abstract.
Abstract also represents XSD-Type.

The translation we are interested in has to generate: (i) a new group (specifi-
cally, a sequence group) for each complex-type with attributes, and (ii) a simple-
element belonging to such a group for each attribute of the complex-type. Let’s
see the rule for the second step (with some properties and references omitted in
the predicates for the sake of space):

SM AttributeOfAggregationOfLexAndAbs(
OID:#attAggLexAbs 6(attOid), sOID:target, Name:attName,
aggLexAbsOID:#aggLexAbs 8(abstractOid))

← SM AttributeOfAbstact(
OID:attOid, sOID:source, Name:attName, abstractOID:abstractOid)

Each new element is associated with the group generated by the Skolem func-
tor #aggLexAbs 8(abstractOid). The same functor is used in the first step of
the translation and so here it is used to insert, as reference, OIDs generated in
the first step. The data level rule for this step has essentially the same features
as the rule we showed in Sec. 3.2: both constructs are lexical, so a Value field
is included in both the body and the head. The final result is that values are
copied.

As a second example, suppose the target company stores the data in a re-
lational database. This raises the need to translate schema and data. With the
relational model as the target, the translation has to generate: (a) a table (ag-
gregation of lexicals) for each complex-type defined in the source schema, (b) a
column (attribute of aggregation of lexicals) for each simple-element and (c) a
foreign key for each complex element. In our approach we represent foreign keys
with two metaconstructs: (i) foreign key to handle the relation between the from
table and the to table and (ii) components of foreign keys to describe columns
involved in the foreign key.

Step (i) of the translation can be implemented using the following rule:

SM ForeignKey(
OID:#foreignKey 2(abstractOid), sOID:target,
aggregationToOID:#aggregationOfLexicals 3(abstractTypeOid),
aggregationFromOID:#aggregationOfLexicals 3(abstractTypeParentOid))
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← SM Abstract(
OID:abstractTypeOid, sOID:source, isType:“true”),

SM Abstract(
OID:abstractOid, sOID:source, typeAbstractOID:abstractTypeOid,
isType:“false”, isTop:“false”),

SM AbstractComponentOfAggregationOfLexAndAbs(
OID:absCompAggLexAbsOid, sOID:source,
aggregationOID:aggregationOid, abstractOID:abstractOid),

SM AggregationOfLexAndAbs(
OID:aggregationOid, sOID:source, isTop:“false”,
abstractTypeParentOID:abstractTypeParentOid)

In the body of the rule, the first two literals select the non-global complex-
element (isTop=false) and its type (isType=true). The other two literals select
the group the complex-element belongs to and the parent type through the
reference abstractTypeParentOID.

Note that this rule does not involve any lexical construct. As a consequence,
the corresponding data-level rule (not shown) does not involve actual values.
However, it includes references that are used to maintain connections between
values.

Fig. 7 shows the final result of the translation. We assumed that no keys were
defined on the document and therefore the translation introduces a new key
attribute in each table.

Employees
eID EmpName Address Company
E1 Cappellari A1 C1
E2 Russo A2 C1
E3 Santarelli A3 C2

Address
aID Street City
A1 52, Ciclamini St Rome
A2 31, Rose St Rome
A3 21, Margherita St Rome
A4 84, Vasca Navale St Rome

Company
cID CompName Address
C1 University “Roma Tre” A4
C2 Quadrifoglio s.p.a A4

Fig. 7. A relational database for the second document in Fig. 6

6 Related Work

Many proposals exist that address schema and data translation. However, most
of them only consider specific data models. In this section we present related
pieces of work that address the problem of model-independent translations.

The term ModelGen was coined in [7] which, along with [8], argues for the
development of model management systems consisting of generic operators for
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solving many schema mapping problems. An example of using ModelGen to help
solve a schema evolution problem appears in [7].

An early approach to ModelGen was proposed by Atzeni and Torlone [3, 4]
who developed the MDM tool, which we have discussed in the introduction.
The basic idea behind MDM and the similar approaches (Claypool and Runden-
steiner et al. [13, 14] Song et al. [25], and Bézivin et al [10]) is useful but offers
only a partial solution to our problem. The main limitation is that they refer
only to the schema level. In addition, their representation of the models and
transformations is hidden within the tool’s imperative source code, not exposed
as more declarative, user-comprehensible rules. This leads to several other diffi-
culties. First, only the designers of the tool can extend the models and define the
transformations. Thus, instance level transformations would have to be recoded
in a similar way. Moreover, correctness of the rules has to be accepted by users
as a dogma, since their only expression is in complex imperative code. And any
customization would require changes in the tool’s source code. The above prob-
lems are significant even for a tool that only does schema translation, without
instance translation. All of these problems are overcome by our approach.

There are two concurrent projects to develop ModelGen with instance transla-
tions [9, 22]. The approach of Papotti and Torlone [22] is not rule-based. Rather,
their transformations are imperative programs, which have the weaknesses de-
scribed above. Their instance translation is done by translating the source data
into XML, performing an XML-to-XML translation expressed in XQuery to re-
shape it to be compatible with the target schema, and then translating the XML
into the target model. This is similar to our use of a relational database as the
“pivot” between the source and target databases.

The approach of Bernstein, Melnik, and Mork [9] is rule-based, like ours. How-
ever, unlike ours, it is not driven by a relational dictionary of schemas, models
and translation rules. Instead, they focus on flexible mapping of inheritance hi-
erarchies and the incremental regeneration of mappings after the source schema
is modified. A detailed description of their approach has not yet appeared.

Bowers and Delcambre [12] present Uni-Level Description (UDL) as a meta-
model in which models and translations can be described and managed, with
a uniform treatment of models, schemas, and instances. They use it to express
specific model-to-model translations of both schemas and instances. Like our
approach, their rules are expressed in Datalog. Unlike ours, they are expressed
for particular pairs of models.

Data exchange is a different but related problem, the development of user-
defined custom translations from a given source schema to a given target, not the
automated translation of a source schema to a target model. It is an old database
problem, going back at least to the 1970’s [24]. Some recent approaches are in
Cluet et al. [15], Milo and Zohar [21], and Popa et al. [23].

7 Conclusions

In this paper we showed MIDST, an implementation of the ModelGen operator
that supports model-generic translations of schemas and their instances within
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a large family of models. The experiments we conducted confirmed that trans-
lations can be effectively performed with our approach.

There are many areas where we believe additional work would be worthwhile.
First, as we mentioned earlier, there is a need for more compact and efficient
representations of translated instances. Second, despite the obstacles explained in
Sec. 4, it would be valuable to produce a practical way to validate the correctness
of a set of complex transformations. Third, there is a need to support all of the
idiosyncrasies of rich models and exotic models, and to support more complex
mappings, such as the many variations of inheritance hierarchies. Fourth, it
would be helpful for users to be able to customize the mappings.
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Abstract. Physical database design tools rely on a DBA-provided work-
load to pick an “optimal” set of indexes and materialized views. Such an
approach fails to capture scenarios where DBAs are unable to produce a
succinct workload for an automated tool but still able to suggest an ideal
physical design based on their broad knowledge of the database usage.
Unfortunately, in many cases such an ideal design violates important
constraints (e.g., space) and needs to be refined. In this paper, we focus
on the important problem of physical design refinement, which addresses
the above and other related scenarios. We propose to solve the physi-
cal refinement problem by using a transformational architecture that is
based upon two novel primitive operations, called merging and reduction.
These operators help refine a configuration, treating indexes and materi-
alized views in a unified way, as well as succinctly explain the refinement
process to DBAs.

1 Introduction

Physical design tuning recently became an important research direction in the
database community. In the last decade, several research groups addressed this
problem and nowadays database vendors offer automated tools to tune the phys-
ical design of a database (e.g., [1, 7, 11]). After DBAs gather a representative
workload, these tools recommend indexes and materialized views that fit in the
available storage and would make the input workload execute as fast as possible.
Unfortunately, the above paradigm of physical database design does not address
the following two key scenarios:

– Significant Manual Design Input: Many database installations do not have
an obviously identifiable workload to drive entirely the physical database
design. This is in fact common in database installations of moderate to high
complexity. In simpler cases, while a defining workload may exist, the re-
sulting design may be inappropriate due to several reasons: some important
query patterns might have been unfortunately ignored by the automated
tool, or the proposed design might violate constraints not captured by the
automated tool (such as those arising out of replication architectures). In
such cases, the DBAs manually design what they believe is a good con-
figuration (even if partially assisted by automated tools), and then try to
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deploy it. However, due to the complexity of this task, this manual config-
uration usually has some implicit redundancy, which increases the storage
(and update) requirements. DBAs are thus interested in refining this ini-
tial configuration into a similar one that is smaller but not significantly less
efficient.

– Responding to Incremental Changes: Gradual changes in data statistics or
usage patterns may make the existing physical design inappropriate. At the
same time, physical design changes are disruptive (as query plans can drasti-
cally change) and for incremental changes in the data statistics or workload,
DBAs desire changes in physical design that are as few as possible and yet
meet the constraints on the physical design (such as storage, update cost, or
limited degradation with respect to the optimal physical design). Unfortu-
nately, an altogether new design (driven by automated tools) might be very
different from the original one as these tools have very limited support for
such “incremental tuning”. As a consequence, many execution plans would
drastically change. In contrast, DBAs are then interested in combining the
original and incremental configuration as compactly as possible without sac-
rificing efficiency.

These examples show the need of additional tools that go beyond statically
recommending a configuration for a given workload. Specifically, we believe that
it is important to automatically refine a configuration by eliminating implicit
redundancy without compromising efficiency (we call this the Physical Design
Refinement problem). Intuitively, our idea is to start from the initial, possibly re-
dundant configuration, and progressively refine it until some property is satisfied
(e.g., the configuration size or its performance degradation meets a pre-specified
threshold).

We can think of a refinement session as composed of a series of basic trans-
formations, which locally change the current configuration by trading space and
efficiency. In this paper, we identify two atomic operations, merging and reduc-
tion, which provide this basic functionality. Merging and reduction unify different
techniques proposed earlier in the literature that apply to indexes and materi-
alized views. Intuitively (see Figure 1), merging combines two views and avoids
storing their common information twice, but requires compensating actions to
retrieve the original views (f1 and f2 in the figure). Reduction, in turn, keeps a
smaller sub-expression of a view, but requires additional work (possibly touching
base tables) to recreate the original view. We can see merging and reduction as
the analogous to union and subset operators for sets. It is well known that by ap-
plying union and subset operations over a family of sets, we can eventually obtain
every possible combination of elements in the family. Analogously, we suggest
that merging and reduction are the fundamental building blocks to manipulate
designs for indexes and materialized views in a database system. Thus, by using
a simple architecture based on merging and reduction transformations, we can
easily explain how we obtained the resulting refined configuration. This ensures
not only incremental changes but also clear explanations for the recommended
refinement, which are crucial for DBAs. We additionally believe that these
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(a) Merging Operation

(b) Reduction Operation

Fig. 1. Merging and reduction as primitive operators for physical design tuning

operators have the potential of becoming the foundation of next-generation phys-
ical design tuning tools, by unifying seemingly disparate and ad-hoc techniques
into a common framework.

The rest of the paper is structured as follows. In Sections 2 and 3 we introduce
the primitive operations of merging and reduction. In Section 4 we address the
physical design refinement problem. In Section 5 we report experimental results
and in Section 6 we review related work.

2 Merging Operation

In this section we describe the merging operation between materialized views.
Merging two materialized views V1 and V2 results in a new materialized view VM

that reduces the amount of redundancy between V1 and V2. The resulting view
VM is usually smaller than the combined sizes of V1 and V2 at the expense of
longer execution times for queries that exploit VM instead of the original ones.
As a simple example, consider the following scenario:

V1 = SELECT a,b FROM R WHERE a<10

V2 = SELECT b,c FROM R WHERE b<10

Suppose that the space required to materialize both V1 and V2 is too large. In
this case, we can replace both V1 and V2 by the alternative VM defined as:

VM = SELECT a,b,c FROM R WHERE a<10 OR b<10

The main property of this alternative view is that every query that can be
answered using either V1 or V2 can also be answered by VM . The reason is that
we can rewrite both V1 and V2 in terms of VM as follows:

V1 ≡ SELECT a,b FROM VM WHERE a<10

V2 ≡ SELECT b,c FROM VM WHERE b<10
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If the tuples that satisfy both R.a < 10 and R.b < 10 are a significant
fraction of R, the size of VM might be much smaller than the sum of the sizes
of the original views V1 and V2. Even if no overlap occurs, in this example
VM would still be smaller than the combined sizes of V1 and V2 due to the
overlapping column b. In fact, VM is the smallest view that can be used to
generate both V1 and V2. It is also important to note that queries that are
answered using V1 or V2 are less efficiently answered by VM . The reason is that
VM is a generalization of both V1 and V2 and contains additional, non relevant
tuples with respect to the original views. In other words, by merging V1 and V2
into VM we are effectively trading space for efficiency. We now formally define
the merging operation between views.

2.1 Formal Model

To formalize the view merging problem, we consider three query languages. Let
LI be the language that defines input views, LM the language that defines
merged views, and LC the language that defines compensating actions to re-
create the original views in terms of the merged view.

Definition 1. Given V1 and V2 from LI , we denote VM = V1 ⊕ V2 the merging
of V1 and V2 when the following properties hold:

1. VM belongs to LM .
2. C1(VM ) ≡ V1 and C2(VM ) ≡ V2 for some C1(VM ) and C2(VM ) in LC .
3. If the view matching algorithm matches V1 or V2 for a sub-query q, it also

matches VM for q (a view matching algorithm matches a view V for a sub-
query q if q can be answered from V ).

4. VM cannot be further restricted with additional predicates and continue to
satisfy the previous properties.

View merging and view matching are indeed related problems. The idea of view
merging is to obtain, for a given pair of views, some sort of minimal view that
can be matched to a sub-query whenever the original ones do. Although both
problems are different, some of the technical details that are introduced below
are related to those in the view matching literature.

As an example, suppose that both LI and LM are the subset of SQL that only
allows simple conjunctions over single tables, and LC is the full SQL language.
Consider the following views:

V1 = SELECT a,b FROM R WHERE 10<d<20

V2 = SELECT b,c FROM R WHERE 30<d<40

In this situation, V1⊕V2= SELECT a,b,c FROM R WHERE 10<d<40. The merged V1⊕
V2 is not necessarily smaller than the combined sizes of the input views, as this
depends on the number of tuples that satisfy 20 ≤ d ≤ 30 (and therefore would
be additionally included in V1 ⊕ V2). In contrast, suppose that we relax LM

to also include disjunctions. In this case, V1 ⊕ V2= SELECT a,b,c FROM R WHERE

10<d<20 OR 30<d<40. Now V1⊕V2 is always smaller than V1 and V2 put together,
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because V1 ⊕ V2 contains no additional rows and references only one instance
of column b. In general, merged views can be larger than their combined inputs
even when there is redundancy, as this depends on the expressive power of LM .

2.2 The LMV Language

In this section we focus on specific query languages and address the view merging
operation in detail. Specifically, we set LI and LM as the subset of SQL that can
be used in a database system for materialized view matching (we denote this
language as LMV). A view is then given by the following expression:

SELECT S1, S2, . . . – project columns (see below)
FROM T1, T2, . . . – tables in the database
WHERE J1 AND J2 AND . . . – equi-join predicates

R1 AND R2 AND . . . – range predicates (see below)
Z1 AND Z2 AND . . . – residual predicates (see below)

GROUP BY G1, G2, . . . – grouping columns

where:

- Si are either base-table columns, column expressions, or aggregates. If the
group by clause is present, then every Si that is not an aggregate must be
either equal to one of the Gj columns or be an expression in terms of them.

- Ri are range predicates. The general form of a range predicate is a disjunction
of open or closed intervals over the same column (point selections are special
cases of intervals). An example of a range predicate is (1<a<10 OR 20<a<30).

- Zi are residual predicates, that is, the set of predicates in the query definition
that cannot be classified as either equi-join or range predicates.

In other words, we can express in LMV the class of SPJ queries with aggrega-
tion. The reason that predicates are split into three disjoint groups (join, range,
and residual) is pragmatic. During query optimization, it is easier to perform
subsumption tests for view matching if both the view and the candidate sub-
query are written in this structured way. Specifically, we can then perform simple
subsumption tests component by component and fail whenever any of the sim-
ple tests fails. For instance, we check that the join predicates in the query are a
superset of the join predicates in the view, and the range predicates (column by
column) in the query are subsumed by the corresponding ones in the view. Some
subsumption tests are more complex than others, notably when group-by clauses
are present. We note that this procedure focuses on simplicity and efficiency and
therefore can miss some valid matchings due to complex logical rewritings that
are not considered by the optimizer. Specifically, consider the case of residual
predicates. The problem of determining whether two arbitrary predicates are
equivalent can be arbitrarily complex1. For that reason, the matching procedure
1 Consider a table with four integer columns (x, y, z, n). Checking that the predicate

x + 1 = x is equivalent to xn + yn = zn ∧ n > 2 is the same as proving Fermat’s
last theorem. It took over three hundred years to prove that specific conjecture;
expecting such capabilities from a view matching algorithm is unrealistic.
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that we consider just checks that every conjunct in the residual predicate of the
view appears (syntactically) in the candidate query. Otherwise, although the
view can still subsume the query, no match is produced.

We simplify the notation of a view in LMV as (S, T, J, R, Z, G) where S is the
set of columns in the select clause, T is the set of tables, J , R, and Z are the sets
of join, range, and residual predicates, respectively, and G is the set of grouping
columns. In this work we restrict the merging operation so that the input views
agree on the set of tables T . The reason is twofold. On one hand, many top-down
optimizers restrict the view matching operation to queries and views that agree
on the input tables (presumably, if a candidate view contains fewer tables than
the input query q, it should have matched a sub-query of q earlier during opti-
mization). On the other hand, merging views with different input tables can be
done by combining the reduce operator of Section 3 and the merging operation as
defined in this section. We next define the merging operator in LMV.

Case 1: No grouping columns
Consider merging V1 = (S1, T, J1, R1, Z1, ∅) and V2 = (S2, T, J2, R2, Z2, ∅). If
the merging language were expressive enough, we could define V1 ⊕ V2 as:

SELECT S1 ∪ S2

FROM T

WHERE (J1 AND R1 AND Z1) OR (J2 AND R2 AND Z2)

which satisfies properties 2 and 4 in Definition 1. To satisfy property 1 (i.e.,
rewriting V1 ⊕ V2 in LMV), we have no option but consider the whole predicate
in the WHERE clause as a single conjunctive residual predicate Z. The problem is
that now the merged view would not be matched whenever V1 or V2 are matched
(property 3) because of the simple procedures used during view matching in gen-
eral and with respect to residual predicates in particular. We need to obtain the
smallest view VM that is in LMV and satisfies property 3. For that purpose, we
rewrite the above “minimal” predicate as follows:

(J1 ∧ R1 ∧ Z1) ∨ (J2 ∧ R2 ∧ Z2) ≡ (J1 ∨ J2) ∧ (R1 ∨ R2) ∧ (Z1 ∨ Z2) ∧ C

where C is the conjunction of all crossed disjuncts ((J1 ∨ R2) ∧ (R1 ∨ Z2) ∧ . . .).
Our strategy is to relax this expression until we obtain a predicate that can
be written in LMV and matches any candidate query that is matched by the
original views. Although this procedure seems in general to introduce a lot of
redundancy and result in larger views, we experimentally determined that in
real-world scenarios this is not the case.

We first relax the expression above by removing the conjunct C. The reason
is that it leaves us with three conjuncts (J1 ∨ J2, R1 ∨ R2, and Z1 ∨ Z2), which we
next map into the three groups of predicates in LMV. First consider J1 ∨ J2 and
recall that each Ji is a conjunct of equi-join predicates. We cannot simply use
J1 ∨ J2 in the resulting view because the language specifies that this must be a
conjunction of simple equi-joins (i.e., no disjunctions are allowed). We rewrite:

J1 ∨ J2 ≡ (J11 ∧ J21 ∧ J31 ∧ . . .) ∨ (J12 ∧ J22 ∧ J32 ∧ . . .) ≡
∧
i,j

(Ji1 ∨ Jj2)
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and relax this predicate as follows: we keep each (i, j) conjunct for which J i
1 ≡ Jj

2
and discard (i.e., relax) the remaining ones. We obtain then

∧
Jk∈J1∩J2

Jk as the
set of join predicates in the merged view. Note that this predicate can be much
more general than the original J1 ∨ J2, but the view matching procedure would
match Vm with respect to the join subsumption test in this case. We use the same
idea for Z1 ∨ Z2 and therefore the residual predicate for Vm is

∧
Zk∈Z1∩Z2

Zk.
It turns out that we can do better for range predicates R1∨R2 due to their spe-

cific structure. Using the same argument, we first rewrite R1∨R2 as
∧

i,j(R
i
1 ∨ Rj2)

where each Ri
1 and Rj

2 are disjunctions of open or closed intervals over some col-
umn. As before, if Ri

1 and Rj
2 are defined over different columns, we discard

that conjunct. However, if they are defined over the same column, we keep the
predicate even when Ri

1 and Rj
2 are not the same, by taking the union of the

corresponding intervals (we denote this operation with the symbol
⊔

). To avoid
missing some predicates, we first add conjuncts −∞ < x < ∞ to one of the
range predicates if column x is only present in the other range predicate (it does
not change the semantics of the input predicates but restricts further the re-
sult). Also, if after taking the union the predicate over some column x becomes
−∞ < x < ∞, we discard this conjunct from the result. As an example, consider:

R1 = (10<a<20 ∨ 30<a<40) ∧ (20<b<30) ∧ (c<40)
R2 = (15<a<35) ∧ (10<b<25) ∧ (c>30) ∧ (10<d<20)

R1
⊔

R2 = (10<a<40) ∧ (10<b<30) ∧ (10<d<20)

After obtaining join, range, and residual predicates as described above, we
assemble the set of columns in the merged view. At a minimum, this set must
contain the union of columns present in both input views. However, this is not
enough in general, as illustrated next. Consider for instance:

V1 = SELECT a FROM R WHERE 10<c<20

V2 = SELECT b FROM R WHERE 15<c<30

The candidate merged view V =SELECT a,b FROM R WHERE 10<c<30 does not sat-
isfy property 2 in Definition 1 because V1 and V2 cannot be obtained from V .
The reason is that we need to apply additional predicates to V (c<20 to obtain
V1 and 15<c to obtain V2), but V does not expose column c. For that reason, we
need to add to the set of columns in the merged view all the columns that are
used in join, range, and residual predicates that are eliminated in the merged
view. Similarly, if some range predicate changed from the input to the merged
view, we need to add the range column as an output column, or otherwise we
would not be able to reconstruct the original views. To summarize, the merging
of two views as described in this section is as follows:

V1 = ( S1 , T , J1 , R1 , Z1 , ∅ )
⊕ V2 = ( S2 , T , J2 , R2 , Z2 , ∅ )

V1 ⊕ V2 = ( S1 ∪ S2 ∪ required columns , T , J1 ∩ J2 , R1
⊔

R2 , Z1 ∩ Z2 , ∅ )

We note that all the transformations mentioned above take into account col-
umn equivalence. If both input views contain a join predicate R.x = S.y, then
the range predicates R.x < 10 and S.y < 10 are considered to be the same.
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Example 1. The following example illustrates the ideas described in this section:

V1= V2= V1 ⊕ V2=
SELECT x,y SELECT y,z SELECT x,y,z,a,b,c,d
FROM R,S WHERE FROM R,S WHERE FROM R,S WHERE

R.x=S.y AND R.x=S.y AND R.x=S.y AND
10<R.a<20 AND 15<R.a<50 AND 10<R.a<50 AND
R.b<10 AND R.b>5 AND R.c>5 AND R.x+S.d<8
R.x+S.d<8 S.y+S.d<8 AND R.d*R.d=2

Case 2: Grouping columns
We now consider the case of merging views that involve group-by clauses. Group-
ing operators partition the input relation into disjoint subsets and return a rep-
resentative tuple and some aggregates from each group. Conceptually, we see
a group-by operator as a post-processing step after the evaluation of the SPJ
sub-query. Consider the merged view obtained when the grouping columns are
eliminated from the input views. If the group-by columns in the input views
are different, each view partitions the input relation in different ways. We then
need to partition the merged view in the coarsest way that still allows us to
recreate each input view. For that purpose, the set of group-by columns in the
merged view must be the union of the group-by columns of the input views.
Additionally, each column that is added to the select clause due to predicate
relaxation in the input views must also be added as a grouping column. Note
that we need to handle a special case properly. If one of the input views contains
no group-by clause, the merged view should not contain any group-by clause
either, or else we would compromise correctness (i.e., we implicitly define the
union of a set of columns and the empty set as the empty set). In these situ-
ations, we additionally unfold all original aggregates into base-table columns
so that the original aggregates can be computed from the resulting merged
view. To summarize, we define (S1, T, J1, R1, Z1, G1)⊕ (S2, T, J2, R2, Z2, G2) as
(SM , T, J1 ∩ J2, R1

⊔
R2, Z1 ∩ Z2, GM ) where:

- SM is the set of columns obtained in the no group-by case, plus the group-by

columns if they are not the same as the input views. If the resulting GM = ∅,
all aggregates are unfolded into base-table columns.

- GM = G1 ∪ G2 ∪ columns added to SM (note that G ∪ ∅ = ∅).

Example 2. The following example illustrates the ideas in this section:

V1= V2= V3=
SELECT R.x,SUM(S.y) SELECT R.x,R.z SELECT S.y,SUM(S.z)
FROM R,S WHERE FROM R,S WHERE FROM R,S WHERE

R.x=S.y AND R.x=S.y AND R.x=S.z AND
10<R.a<20 15<R.a<50 10<R.a<25

GROUP BY R.x GROUP BY S.y
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V1 ⊕ V2= V1 ⊕ V3=
SELECT R.x,R.a,S.y,R.z SELECT R.x,S.y,R.a,SUM(S.y),SUM(S.z) 2

FROM R,S WHERE FROM R,S WHERE
R.x=S.y AND R.x=S.y AND
10<R.a<50 10<R.a<25

GROUP BY R.a,R.x,S.y

2.3 Indexes over Materialized Views

So far we have discussed the merging operation applied to materialized views,
without paying attention to indexes over those materialized views. In reality,
each materialized view is associated with a set of indexes, and those indexes
are used during query processing. Previous work in the literature has considered
index merging and view merging as separate operations. We know describe how
we can handle both structures in a unified manner. For this purpose, we consider
all indexes as defined over some view (base tables are also trivial views, so this
definition includes regular indexes as well). Specifically, for a sequence of columns
I and a view V that contains all I columns in its SELECT clause, we denote I | V
the index with columns I over the materialized view V . For the special case
I = ∅, we define ∅ | V to be the unordered heap containing all the tuples in V
(for simplicity, we use V and ∅ | V interchangeably).

Unified Merging Operator

We now define the merging of two arbitrary indexes over views. Consider the
simplest case of merging two indexes defined over the same view. In this case3:

(I1 | V ) ⊕ (I2 | V ) = (I1 ⊕ I2) | V

where I1⊕I2 is the traditional index-merging operation as defined in [4, 6]. That
is, I1 ⊕ I2 = IM where IM contains all columns in I1 followed by all columns in
I2−I1. As an example, we have that ([a, b, c] | V )⊕ ([b, a, d] | V ) = [a, b, c, d] | V .

To address the general case, we need to first introduce the notion of index
promotion. Consider an index I | V and suppose that VM = V ⊕ V ′ for some
view V ′. Promoting I over V to VM (denoted I ↑ VM ) results in an index over
VM that can be used (with some compensating action) whenever I | V is used.
This promoted index contains all columns in the original index followed by every
column that was added to the select clause in VM

4. For instance, consider:

V1 = SELECT x,y FROM R WHERE 10<a<20

V2 = SELECT y,z FROM R WHERE 15<a<30

V1 ⊕ V2 = SELECT a,x,y,z FROM R WHERE 10<a<30

2 To recreate the original views in the presence of general algebraic aggregates, we
sometimes need to add additional columns in the merged view, such as SUM(c) and
COUNT(*) for an original aggregate AVG(c).

3 We overload the operator ⊕ to operate over indexes, views, or indexes over views.
We explicitly state which case we are referring to when this is not clear from the
context.

4 Other column orderings are possible, but we omit these details for simplicity.
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We then have that [x] ↑ (V1 ⊕ V2)=[x, a]. Using index promotion, we now define
the merging of two indexes over views as follows:

(I1 | V1) ⊕ (I2 | V2) =
(
(I1 ⊕ I2) ↑ (V1 ⊕ V2)

)
| (V1 ⊕ V2)

That is, we first obtain the merged index I1 ⊕ I2, then the view V1 ⊕ V2, and
finally we promote the merged index to the merged view.

3 Reduction Operation

In the previous section we described a mechanism to decrease the amount of
redundancy between a pair of indexes over views. The idea was to merge them
into a new index that might be smaller than the combined inputs, but at the
same time less efficient to answer queries. In this section we present a second
operator that follows the same principle, but operates over a single input index.

Specifically, we exploit the fact that associated to each index I | V there is
a supporting primary index or heap that contains all rows and columns of the
view V . Therefore, we can transform an index over a view into another one that
is smaller but requires a compensating action involving the corresponding sup-
porting structures. Consider for instance an index I = [a, b, c] over a base table
R. We can transform I into I ′ = [a, b] which is smaller and requires compensat-
ing actions to produce the results that I produces by itself (in this case, fetches
to R’s primary index or heap to retrieve the missing column c). As another
example, consider the following view:

V = SELECT R.a,R.b,S.c FROM R,S WHERE R.x=S.y AND R.a=15

and the following reduced version of V (which omits table S):

V ′= SELECT R.a,R.b,R.x FROM R WHERE R.a=15

In this case, we can recreate V from V ′ by performing a join with the primary
index or heap of table S. Note that V ′ must contain column R.x so that the
compensating join can be applied. The resulting V ′ is not necessarily smaller
than V because the join predicate can eliminate many tuples from R.

The two previous examples illustrate that we can change the definition of
an index over a view, possibly reducing its size, and then apply compensat-
ing actions to recreate the original structure. We call this operation reduction
and denote it with the symbol ρ. Conceptually, the reduction operation elimi-
nates redundancy just like the merging operation, but it requires a single input
structure.

Formally, the reduction operation takes an index IV (we use the language LMV

as in the previous section), a set of tables T ′ and a set of columns K ′ as inputs,
and returns a new index ρ(IV, T ′, K ′). For an index V = I | (S, T, J, R, Z, G),
the operational semantics of ρ((I | V ), T ′, K ′) are given in three steps as follows:

1. If T ′ �⊂ T , the reduction is ill-defined and we stop. Otherwise, we obtain
the reduced version of V that only references tables T ′, defined as V ′ =
(S′, T ′, J ′, R′, Z ′, G′), where:
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– J ′ ⊆ J , R′ ⊆ R, and Z ′ ⊆ Z, where each base-table column referenced
in J ′, R′ and Z ′ refers exclusively to tables in T ′.

– S′ contains the subset of columns in S that belong to tables in T ′ plus
all columns in T ′ referenced in J − J ′, R − R′ and Z − Z ′.

– If G �= ∅, G′ contains all the columns in G that belong to tables in T ′

plus all columns in S′-S. Otherwise, G′=G=∅.
If V ′ contains cartesian products we consider the reduction invalid and we
stop (a cartesian product does not provide any efficiency advantage and it
is always much larger than the input relations).

2. We obtain I ′ from I by first removing all columns that do not belong to tables
in T ′, and then adding all columns in S′ (this step is similar to I ↑ V ′).

3. If K ′ �⊆ I ′, the reduction is ill-defined and we stop. Otherwise, we define
ρ((I | V ), T ′, K ′) = K ′ | V ′.

Example 3. The following example illustrates the ideas described in this section:
V = SELECT R.c, S.c ρ [R.c, S.c] | V, {R}, {R.c, R.x} =

FROM R, S WHERE ({R.c, R.x}, SELECT R.c, R.b, R.x
R.x=S.y AND FROM R
10<R.a<50 AND WHERE 10<R.a<50
20<S.a<30 AND GROUP BY R.c, R.b, R.x )
R.b+S.b<10

GROUP BY R.c, S.c

4 Physical Design Refinement

We now formally define the physical design refinement problem motivated in the
introduction, using merging and reduction as the basic building blocks. Consider
a physical database configuration C = {I1 | V1, . . . , In | Vn} composed of indexes
over views (recall that all base-table indexes are defined over trivial views). We
assume that C was obtained by tuning the database system for a typical workload
by either a skilled DBA or some automated tool (e.g., [1, 7, 11]). The size of a
configuration C is the combined size of all indexes in C plus the size of heaps
for indexes on views that do not have a primary index in C (we need a primary
index or heap for each view):

size(C) =
∑

j

size(Ij | Vj) +
∑

Vk without primary index in C

size(∅ | Vk)

Now suppose that after some time the database grows –or any other moti-
vating example in the introduction happens– and size(C) becomes larger than
the allocated space. We would like to obtain a configuration that fits in the
storage constraint without compromising the quality of the original C. Instead
of considering every possible index for the new configuration, we restrict our
search to those that are either in the initial configuration or can be derived from
it via a series of merging and reduction operations. The rationale is that every
original execution plan can be in principle adapted with local compensating ac-
tions so that it uses the views in the new configuration (or, alternatively, we can
re-optimize the query and obtain the new optimal plan).
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Comparing Configurations: During refinement, we need a way to measure
the quality of each candidate configuration that we consider. As we stated above,
the current configuration resulted from a tuning session either by a DBA or an
automated tool. It is then expected that all indexes over views in the current
configuration are somehow useful in answering queries in the actual workload.
We then propose to infer a hypothetical workload with queries that mimic the
functionality of each index present in the current configuration. We assume that
if a new configuration can efficiently process such hypothetical workload, the
benefits of the original indexes would be preserved. Specifically, we associate
each index IV =I | (S, T, R, J, Z, G) with a set of queries, called queries(IV ),
which stress every kind of index usage:

Scan Ordered Scan Seek5

SELECT I SELECT I SELECT I
FROM T FROM T FROM T
WHERE R AND J AND Z WHERE R AND J AND Z WHERE R AND J AND Z
GROUP BY G GROUP BY G [ AND “σ(prefix I)” ]

ORDER BY I GROUP BY G
[ HAVING “σ(prefix I)” ]

In absence of additional information, we give some predefined weight to each
query (to balance different index usages). However, if we tracked the execution
of queries in the system, we could have accurate measurements of the relative
importance of each index usage and use those relative weights in the refinement
process.

4.1 Problem Statement

To define the physical design refinement problem, we first introduce the closure
of a configuration under the merging and reduction operations:

Definition 2. Let C be a configuration and let Ci (i ≥ 0) be defined as follows6:

– C0 = C
– Ci+1 = Ci ∪ {IV1 ⊕ IV2 for each compatible IV1, IV2 ∈ Ci}

∪ {ρ(IV, T, K) for each IV ∈ Ci and valid choices of T and K}

We define closure(C)=Ck, where k is the smallest integer that satisfies Ck=Ck+1.

Definition 3 (Physical Design Refinement (PDR) Problem7). Given a
configuration C = {I1 | V1, . . . , In | Vn} and a storage constraint B, we define
PDR(C, B) as the refined configuration C′ such that:

5 We use a HAVING clause if G �= ∅, and a WHERE clause otherwise. In both cases, the
expression “σ(prefix I)” refers to a sarg-able predicate over a prefix of the index
columns.

6 See Sections 2 and 3 for the formal definition of operators ⊕ and ρ.
7 The dual problem can be similarly defined as minimizing the size of a configuration

under a given degradation constraint (i.e., cost(C′) ≤ α · cost(C)).
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1. C′ ⊆ closure(C).
2. size(C′) ≤ B.
3.
∑

(I | V )∈C

∑
qi∈queries (I | V )

(
wi ·cost(qi, C

′)
)

is minimized, where wi is the
weight associated with query qi, and cost(q, C) is the optimizer estimated cost
of query qi under configuration C.

Theorem 1. The PDR problem is NP-hard.

Proof: We provide a reduction from knapsack. The knapsack problem takes as
inputs an integer capacity B and a set of objects oi, each one with value ai and
volume bi. The output is a subset of oi whose combined volume fits in B and sum
of values is maximized. Consider an arbitrary knapsack problem with capacity B
and elements {o1, . . . , on}. We create a PDR instance by associating each oi with
a view Vi = SELECT x FROM Ti WHERE x=0, where Ti is a single column table that
contains bi tuples with value zero and ai tuples with value one. Since all views
refer to different tables, there is no possibility of merging views. Additionally,
each index is defined over a single column, so no reduction is possible either. The
PDR problem then reduces to finding the best subset of the original indexes over
views. Now, If Vi is not present in the final configuration, we have to scan the
base table Ti to obtain the zero-valued tuples. Base table Ti is ai + bi units of
size, which is ai units larger than the view size (there are only bi tuples in Ti

that satisfy x = 0). Assuming that scan costs are linear, the value of having Vi

in the result (i.e., the time we save by having such an index) is ai and its size is
bi. After solving this PDR problem with storage constraint B, we generate the
knapsack solution by mapping the subset of views in the result to the original
objects oi.

4.2 Pruning the Search Space

We now present some properties that are useful in defining heuristics for tra-
versing the search space and approximating PDR. For a configuration C and an
index IV ∈closure(C), we define base(IV ) to be the set of original indexes in C
which are part of a derivation that uses merging and reduction to produce IV .

Property 1. Let C be a configuration, IV1 and IV2 be indexes in closure(C),
and IVM=IV1 ⊕ IV2. If IVM �∈ closure(C − base(IV 1)), PDR(C, B) cannot in-
clude both IV1 and IVM .

Proof [Sketch]: Suppose that both IV1 and IVM belong to PDR(C, B). Con-
sider the indexes in C whose inferred queries are evaluated using IVM (we call
this set CM in Figure 2). For each index IV ∈ CM , it must be the case that
IVM matches either IV or some reduction of it. Let us define the set C′

M as
composed of the indexes in CM that are matched by IVM or their corresponding
reductions. Now consider replacing IVM in PDR(C, B) by IV ′

M = ⊕IV ∈C′
M

IV .
We next show that this alternative configuration, denoted PDR’(C, B), is better
than PDR(C, B). We first show that PDR’(C, B) is not larger than PDR(C, B).
For that purpose, we note that IV ′

M is obtained by merging elements in C′
M ,

which are all subsumed by IVM . Therefore, IVM ⊕ IV ′
M = IVM (the merged
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IVM cannot incorporate anything that is not already captured by IVM ). Addi-
tionally, by our hypothesis, IV ′

M �= IVM . The reason is that indexes in base(IV1)
do not belong to CM (the optimizer should have found better execution plans
by replacing usages of IVM with better alternatives that use IV1). Therefore,
IV ′

M ∈ closure(CM ) ⊆ closure(C − base(IV1)) and cannot be equal to IVM . We
then have that IV ′

M ⊕ IVM = IVM and IV ′
M �= IVM . Consequently, IV ′

M is
strictly smaller than IVM and thus PDR’(C, B) is smaller than PDR(C, B). All
queries inferred from indexes in C − CM cannot execute slower in PDR’(C, B)
because all supporting indexes are present. Queries inferred from indexes in CM

would execute faster in PDR’(C, B) because the optimizer would replace us-
ages of IVM in the execution plans with more efficient alternatives that use the
smaller IV ′

M . PDR’(C, B) is also more efficient than PDR(C, B), which proves
the property.

Property 1 shows that if we merge two indexes IV1 and IV2, in some cases the
optimal solution cannot contain both the merged index and any of its inputs.
We next show that sometimes certain indexes cannot be part of the optimal
solution.

Property 2. Let C be a configuration, let IV1 and IV2 be indexes in closure(C),
and let IVM=IV1 ⊕ IV2. If (i) size(IVM ) > size(IV1)+size(IV2), and (ii) for
each IVk ∈ closure(C) such that IVM=IVM ⊕ IVk it holds that size(IVM ) >
size(IV1)+size(IV2)+size(IVk), then IVM �∈ PDR(C, B).

Proof [Sketch]: Suppose that IVM belongs to PDR(C, B) configuration but
both (i) and (ii) do not hold. Since (i) does not hold, replacing IVM by both
IV1 and IV2 results in a smaller configuration. Additionally, every query inferred
from an index in base(IV1)∪base(IV2) can be answered more efficiently by either
IV1 or IV2 than it is by IVM . There might be, however, some query inferred
from an index IVk that is not in base(IV1)∪base(IV2), and IVk might greatly
benefit from IVM (see Figure 2). If that is the case, there is an IV ′

k reduced
from IVk such that IVM ⊕ IV ′

k = IVM . Since (ii) does not hold, we have that
the combined size of IV1, IV2 and IVk is smaller than that of IVM , so we can

Fig. 2. Pruning indexes over views from the PDR search space
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replace IVM by all IVi and obtain a better configuration. In conclusion, IVM

cannot belong to PDR(C, B) if (i) and (ii) do not hold.

There are analogous properties for the reduction operator, but we omit those
due to space constraints.

4.3 Heuristic Approach to Approximate PDR

In this section we introduce a heuristic approach to solve PDR that is derived
from the greedy solution to the fractional knapsack problem [3]. In the frac-
tional knapsack problem, we first sort the input objects oi in ascending order by
the value-volume ratio a(oi)/b(oi) and then remove objects from this sequence
until either the remaining objects fill completely the capacity B, or the last
removed object ok exceeds B. In the latter case, we add back a fraction of ok

so that the total volume is exactly B8. This assignment is optimal if fractions
of objects are allowed in the answer. Even in the 0/1 case (i.e., no fractional
objects are allowed), this heuristic performs very well in many practical cases
and a very simple refinement guarantees a factor-2 approximation to the optimal
solution [3].

A straightforward adaptation of the greedy solution described above would
first generate the closure of the input configuration C, and then iteratively re-
move from the current configuration the index with the smallest value-volume
ratio until the remaining ones satisfy the storage constraint. This approach has
the following problems:

– The size of closure(C) can be in the worst case exponential in the number of
original indexes. At the same time, intuitively the best views are either the
original ones, or obtained via a short sequence of operations (recall that each
operation degrades the performance of the workload). Most of the indexes
in closure(C) are not present in the optimal configuration.

– The size of an index is not constant but depends on the configuration it
belongs to. The reason is that we need to account for a primary index or
heap associated with each different view definition. If many indexes share
their view definition, we consider a single primary index or heap for them.

– The impact that each index has on the workload cost also depends on the
configuration. We cannot assign a constant “value” to each index because
of complex interactions inside the optimizer. An index that is not used to
answer some query might become useful in conjunction with another index.

– The greedy solution to the fractional knapsack problem does not exploit the
domain-specific Properties 1 and 2 for pruning the search space.

To address these issues, we propose a progressive variation of the fractional
knapsack solution and present its simplified pseudo-code in Figure 3. Essentially,
we start with the original configuration (line 1) and progressively refine it into
new configurations that are smaller and slightly more expensive (lines 2-4). When

8 In reality, we sort objects in reverse order and keep a prefix of the sequence. This is
equivalent to the solution described above, which leads more easily to our adaptation.
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GreedyPDR (C:configuration, B:storage bound)
01 CF = C
02 while (size(CF) > B) // or any other ending condition
03 select transformation T with smallest benefit (=largest penalty)

// T is valid merge or reduction, or deletion of an index
04 CF = CF - "T’s antecedents" ∪ "T’s consequent"

// Merge: antecedent are input views, consequent is merged view
// Reduction: antecedent is input view, consequent is reduced view
// Deletion: antecedent is view, consequent is empty

05 return CF

Fig. 3. Progressive knapsack for the physical design refinement problem

we obtain a configuration that is within the storage constraint (or any other
stopping criteria), we return it in line 5. One class of transformations in line 3 is
the same as in the greedy solution to the fractional knapsack problem (i.e., we
remove indexes). However, other transformations explore the augmented search
space on demand by replacing one or two indexes with either a merged or reduced
index.

In the remainder of this section we discuss some details of the algorithm:

– We consider the following transformations in line 3: (i) deletion of each index
in the current configuration CF , (ii) merging of each pair of compatible in-
dexes in CF , and (iii) reductions of each index in CF . Specifically, for (iii) we
consider reductions ρ(IV, T, K) so that K are prefixes of the columns in the
resulting index, and T are subsets of tables that match another view in CF .

– We use a heuristic derived from Property 1 in line 4 by removing the in-
put indexes whenever we introduce a transformed index in CF . Note that
we do not check whether the transformed index can be generated by other
derivations (see Property 1) so there might be some false negatives.

– We use a heuristic derived from Property 2 in line 3 by not considering
transformations (merges and reductions) whose result is (1+α) times larger
than the combined sizes of their inputs, for a small value of α. As before,
this heuristic might result in false negatives.

– Rather than assigning a constant “value” and “volume” to each index, we
use a dynamic approach that considers the interactions with the optimizer.
For a given configuration C, we define the penalty of a transformation (i.e.,
deletion, merging, reduction) as Δcost/Δspace, where Δcost is an estimate of
the degradation in cost that we would expect if we applied the transforma-
tion, and Δspace is the amount of space that we would save by applying the
transformation. Penalty values are then a measure of units of time that we
lose per unit of space that we gain for a given transformation. We obtain
Δspace and Δtime values as in [4], and use penalties as the dynamic version
of the value-volume ratio in the original knapsack formulation.

– To avoid incremental errors in estimation, after each transformation we
re-optimize the inferred workload under the new configuration CF . We
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minimize optimization calls by only re-optimizing the queries in the workload
that used an index that got removed from CF . The rationale is that we keep
replacing indexes with coarser alternatives, so any query that did not use,
say, IV1 in a given configuration, should not use IV1 ⊕ IV2 or ρ(IV1, T, K) if
they became additionally available. This heuristic saves significant time and
almost never degrades the quality of the final configurations.

5 Experimental Results

In this section we report preliminary results obtained with the techniques de-
scribed in this paper. The goal is to compare our algorithm of Section 4 against
state-of-the-art physical design tools regarding the quality of refined configura-
tions and the time it takes to obtain them. We implemented the PDR algorithm
of Section 4 as a client application and used Microsoft SQL Server as the data-
base engine. For the experiments in this section, we proceeded using the following
setup. First, we took a workload W and tuned it with a physical database de-
sign tool for B maximum storage, obtaining a configuration CTool

B . Second, we
refined CTool

B using our PDR implementation with a stricter storage constraint
of B′<B, obtaining configuration CPDR

B′ . Third, we re-tuned W from scratch
using B′ as the new storage constraint, obtaining configuration CTool

B′ . Finally,
we evaluated the cost of the original workload W under both CPDR

B′ and CTool
B′ ,

and also the time it took to produce each alternative configuration.
Figure 4 shows the results for a 22-query TPC-H [9] workload W on a 1GB

database and an initial storage constraint of B = 2.8 GB. We used several values
of B′ ranging from 2.8 GB (no refinement) down to 1.3 GB (very little additional
storage). In the figure we measure the cost of W under a given configuration as
a fraction of its cost under the initial configuration that only contains primary
indexes. We see in Figure 4(a) that in all cases, the refined configuration ob-
tained by PDR is only of slightly less quality than the alternative obtained from
scratch with the tuning tool. In fact, the cost difference for the original workload
between both configurations is below 10% in all cases. Additionally, Figure 4(b)
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shows that the time it takes to refine a configuration can be orders of magnitude
smaller than that to produce a new configuration from scratch for a different
storage constraint (note the logarithmic scale in Figure 4(b)). We note that
when using PDR, the resulting configuration is based on the original one, and
we can also explain how we arrived to the refined configuration by presenting
the transformations used from the original to the final indexes.

6 Related Work

In recent years there has been considerable research on automated physical de-
sign in database systems. Several pieces of work (e.g., [2, 5, 6, 10, 12]) detail so-
lutions that consider different physical structures, and some of these ideas were
later transferred to commercial products (e.g., [1, 7, 11]). This line of work, while
successful, fails to address the common scenarios discussed in the introduction
(which we collectively refer to as physical design refinement). In contrast to previ-
ous work, this paper presents a new and complementary paradigm that considers
the current physical database design and evolves it to meet new requirements.

Previous work in the literature adopted an ad-hoc approach regarding the
transformations that can be exploited for physical database design. Reference [6]
introduces a concept of index merging that is similar to what we define in this
paper, but does not generalize this notion to indexes over views. Similarly, ref-
erence [2] exploits a few transformations to combine the information in mate-
rialized views without giving a formal and complete framework. Reference [8]
presents an overview of related work on view matching, which shares some of
the technical details with our work, specifically with respect to view merging.
We believe our work is the first to consider a unified approach of primitive op-
erations over indexes and materialized views that can form the basis of physical
design tools.

Some of the ideas in this work are inspired by [4], which presents a relaxation-
based approach for physical design tuning. This reference introduces the concept
of relaxation to transform an optimal configuration obtained by intercepting op-
timization calls to another one that fits in the available storage. Unlike this work,
the main focus in [4] is to obtain an optimal design from scratch for a given work-
load and therefore the notion of transformations was of secondary importance.
Specifically, reference [4] considers transformations for indexes and materialized
views as different entities, and does not provide a unifying framework.

7 Conclusions

In this paper we introduce the physical design refinement problem, which fills
an important gap in the functionality of known physical design tools. Rather
than building new configurations from scratch when some requirements change,
we enable the progressive transformation of the current configuration into a
new one that satisfies the new constraints by means of local transformations.
Specifically, we introduce two operators, merging and reduction, that balance
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space and efficiency in a database system. The operators are designed to unify
previous attempts in the literature that consider indexes, materialized views, and
indexes over materialized views as different entities. We believe that this new
functionality is an important addition to the repertoire of automated physical
design tools.
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Abstract. A database schema should be able to evolve to reflect changes to the
universe it represents. In existing systems, user transactions get blocked during
complex schema transformations. Blocking user transactions is not an option in
systems with very high availability requirements, like operational telecom data-
bases. A non-blocking transformation framework is therefore needed.

A method for performing non-blocking full outer join and split transforma-
tions, suitable for highly available databases, is presented in this paper. Only the
log is used for change propagation, and this makes the method easy to integrate
into existing DBMSs. Because the involved tables are not locked, the transforma-
tion may run as a low priority background process. As a result, the transformation
has little impact on concurrent user transactions.

1 Introduction

Database schemas are typically designed to model the world as understood at design
time. At this point in time, the schema design may be excellent for the intended usage.
Many applications change over time, however. In a study of seven applications, Marche
[18] reports of significant changes to relational database schemas over time. Only one of
the studied schemas had less than 50% of their attributes changed. Furthermore, 16%
of all changes were due to changes in the degree of normalization. The evolution of
the schemas continued after the development period had ended. A similar study of a
health management system [25] came to the same conclusion. This indicates the need
for non-trivial schema transformations.

A schema transformation can easily be made if the involved tables can be locked
while the transformation is performed. Most databases can do this by issuing an insert
into select command, where the select statement can be any valid SQL select statement,
e.g. join or union.

Databases with very high availability requirements should not be unavailable for
long periods of time. For tables with large amounts of data, the insert into select method
could easily take tens of minutes or more. Such databases, often found in e.g. the tele-
com industry, would clearly benefit from a mechanism to change the schema without
being blocked.

In this paper we suggest schema transformation methods for the full outer join (FOJ)
and split relational operators. The methods are non-blocking and are based on log redo.
FOJ and split are considered important operators by the authors because they are used
to change the normalization degree of the schema.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 405–422, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We assume that both redo and undo log records are produced, and that undo opera-
tions produce Compensating Log Records (CLR) [6] as described in the ARIES method
[20]. It is also assumed that a log sequence number (LSN) is associated with each record
[12].

The paper is organized as follows: Section 2 describes other methods and research
areas related to non-blocking transformations. An overview of our transformation frame-
work is presented in 3. Details for how to apply the framework to FOJ and split
transformations are presented in Sections 4 and 5, respectively. The framework has
been implemented in a prototype and test results from this prototype are discussed in
Section 6. Finally, in Section 7, we conclude and suggest further work.

2 Related Work

Little research has been published on non-blocking schema transformations in rela-
tional databases. Our method does, however, use techniques from both fuzzy copy and
materialized views (MVs), as described in the following sections.

2.1 Ronströms’ Method

Ronström [23] presents a framework that uses both a reorganizer and triggers within
user transactions to perform schema transformations. Sagas [7] are used to organize
the transformation. New tables, constraints, indices, and triggers are first added to the
schema. The reorganizer then scans the old tables, while triggers make sure that up-
dates to the old tables are executed immediately to the transformed table. When the
scan is complete, the old and transformed tables are consistent due to the triggered
updates.

No implementation or test results have been published on Ronströms method. Trig-
gers are, however, used in a similar way to keep immediate Materialized Views (MVs)
up to date. The extra workload incurred with using triggers to update MVs is sig-
nificant, and deferred MVs are therefore recommended whenever possible (see e.g.
[5, 16]).

With our method, there is no need for the transformed table to be consistent with
the old table before the very end of the transformation. Updates can therefore be prop-
agated to the transformed tables during low workloads.We also expect our method to
be much more efficient in a distributed DBMS where user transactions have to wait
for triggers to access other nodes. Finally, our method does not require the use of
Sagas.

2.2 Fuzzy Copy

Our transformation framework has to make a copy of the source tables without setting
locks to satisfy the non-blocking requirement. To do this, we use a modified fuzzy copy
technique.

Hvasshovd et al. [4, 13] presents fuzzy copy as a way to copy a table to another node
in a cluster without blocking. A begin-fuzzy mark is first written to the log. The records
in the source table are then read without setting locks, resulting in a fuzzy copy where
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some of the updates that were made during the scan may not be reflected. The log is
then redone to the copy in a similar way as ARIES [20] to make it up to date. LSNs on
records ensure that the log propagation is idempotent. When all log records have been
redone to the copy in ascending order, it is in the same state as the source table. An
end-fuzzy mark is then written to the log, and the copy process is complete. The method
requires CLR to be used for undo processing.

2.3 Materialized Views

Materialized views (MVs) store the result of a query. They are used to speed up query
processing and must therefore be consistent with the source tables. Methods to prop-
agate changes from the source tables to an MV is an area of extensive research (e.g.
[3, 5, 8, 9, 10, 11, 16, 21, 24, 27]). All these propagation methods require the MVs to be
consistent with a previous state of the source tables. This incurs that an MV must ini-
tially be consistent, i.e. populated with the result of a blocking read.

At first glance, MVs have much in common with our schema transformation frame-
work. Blocking read operations are, however, not allowed in the transformation
framework, so fuzzy copies of the source tables are used to create the initial images of
transformed tables. Since a fuzzy copy is not consistent with the source table, the MV
update methods are not applicable. Further more, schema transformations only require
the transformed tables to converge to the source tables (i.e. to be consistent when all
operations are propagated [27]), whereas MVs require consistency for all intermediate
states as well.

2.4 Existing Transformations

Existing database systems, including IBM DB2 v8 [14, 15], Microsoft SQL Server 2000
[19], MySQL 4.0 [26] and Oracle 9i [1], offer some simple transformation functional-
ity. These include removal of and adding one or more attributes to a table, renaming
attributes and the like. Removal of an attribute can be performed by changing the table
description only, thus leaving the physical records unchanged for an unspecified period
of time. Complex tranformations like join are not supported.

3 General Framework

The goal of the transformation framework is to provide methods that transform the
schema without blocking other transactions. The transformations are based on relational
operators for two reasons: the effect of the transformation is easy to understand for the
database administrator (DBA) that initiates it, and it enables us to make use of existing,
optimized code (like join algorithms) for parts of the process.

The framework operates in four steps that are common to both the FOJ and split
transformations. These steps are briefly explained below.

3.1 Preparation Step

Before the transformation starts, the new tables that are to be used after the transfor-
mation have to be created. They may include any subset of attributes from the source
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tables, but must include at least one candidate key from each. The reason for this is that
the transformation method needs a way to uniquely identify which records are affected
by an operation on a source table record. In the case that the included candidate key
attributes are not wanted in the transformed tables, they must be deleted after the FOJ
or split transformation completes.

Constraints, both new and from the source tables, may be added to the new tables.
This should, however, be done with great care since constraint violations may force the
transformation to abort.

Any indices that are needed on the new tables should also be created before the trans-
formation starts. These indices will be up to date when the transformation is
complete.

3.2 Initial Population Step

The newly created transformed tables have to be populated with records from the source
tables. The first step of populating the new table is to write a fuzzy mark in the log. This
log record must include the transaction identifiers of all transactions that are active on
the source tables, i.e. a subset of the active transaction table. The source tables are
then read fuzzily, returning an inconsistent result since locks are ignored [13]. Once
the source tables have been read, the transformation operator is applied and the result,
called the initial image, is inserted into the transformed tables.

3.3 Log Propagation

When the initial image(s) have been inserted into the transformed table(s), another fuzzy
mark is written to the log. This log record marks the end of the current log propagation
cycle and the beginning of the next one.

Log records of operations that may not be reflected in the transformed tables are now
inspected. In the first iteration, the oldest log record that may contain such an operation
is the oldest log record of any transaction that was active when the first fuzzy mark was
written. Later log propagation iterations only have to read the log after the previous
fuzzy mark.

Propagation rules for update, insert and delete of records in a source table differ for
each transformation type, and are explained in detail in Sections 4 and 5.

To speed up the synchronization step, locks are maintained on records in the trans-
formed tables during the entire transformation. The locks are likely to conflict during the
transformation. Since they are only needed when user transactions access both source
and transformed tables, i.e. during synchronization, they are ignored for now.

The synchronization step should not be started if a significant portion of the log re-
mains to be propagated because it involves latching of tables. Each log propagation it-
eration therefore ends with an analysis of the remaining work. Based on the analysis,
either another log propagation iteration or the synchronization step is started. The analy-
sis could be based on, e.g. the time used to complete the current iteration, a count of the
remaining log records to be propagated, or an estimated remaining propagation time.

If more log records are produced than the propagator is able to process, the synchro-
nization is never started. If this is the case, the transformation should either be aborted
or get higher priority.
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The transformed tables of both FOJ and split of consistent data are self-maintainable
[22], i.e does not need more information than the log and the transformed tables them-
selves. This makes them highly suitable for distributed databases as well.

3.4 Synchronization

When synchronization is initiated, the state of the transformed tables should be very
close to the state of the source tables. This is because the source tables have to be latched
during one final log propagation iteration that makes the transformed table consistent
with the source tables.

We suggest three ways to synchronize the transformed tables to the source tables
and thereby complete the transformation process. These are called blocking commit,
non-blocking abort and non-blocking commit synchronization.

Blocking commit synchronization starts by blocking all new transactions that try to
access any of the tables involved in the transformation. Transactions that already have
locks on the source tables are then allowed to complete before a final log propagation
iteration is performed. The transformed tables are now consistent with the source tables.
New transactions are then given access to the new tables only. This method does not
follow the non-blocking requirement.

The non-blocking abort strategy begins by placing table latches on the source tables
for the duration of one final log propagation. Latching these tables effectively pauses
ongoing transactions that work on them, but since there are only a few log records to
propagate, the pause should be very brief (less than 1 ms in our current implementa-
tion). Once the log propagation is complete, the transformed tables are in the same state
as the source tables. Recall from Section 3.3 that locks have been maintained on the
transformed tables since the first fuzzy log mark. Records that are locked in the source
tables are therefore also locked in the transformed tables. New transactions are now
allowed to access the unlocked parts of the transformed table while transactions that
were active on the source tables are forced to abort. The log propagation continues as a
background process as long as old transactions are alive. Source table locks held in the
transformed tables are released as soon as the propagator has processed the abort log
record of the lock owner transaction.

Non-blocking commit synchronization works much like the previous strategy in that
latches are placed on the source tables during one final log propagation. But in contrast to
the previous strategy, transactions on the source tables are allowed to continue processing
once the tables have been synchronized. This is called a soft transformation in [23]. The
drawback of this method is that as long as any of the old transactions are alive, all locks
on source tables have to be acquired on the corresponding records in the transformed
tables. However, nonconflicting transactions are not aborted due to the transformation.

Finally, the source tables are dropped from the schema, and the transformation is
complete.

4 Full Outer Join Transformations

The method for FOJ transforms two source tables, R and S, into one table T by ap-
plying the FOJ operator. An example transformation is shown in Figure 1. The general
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Fig. 1. Example full outer join transformation

transformation steps explained in Section 3 are discussed for FOJ below. For readability
it is assumed that the join attribute of table S (attribute c in Figure 1) is unique, i.e. there
is a one-to-many relation between the source tables. A solution for the many-to-many
case is sketched in Section 4.2.

4.1 Preparation and Initial Population Steps

In the preparation step, the transformed table T is created. As a minimum, T must
contain an identifying attribute set from both tables in addition to the join attributes.
Constraints may be added, but unique constraints on attributes in S should be avoided
since a record in S is likely to occur multiple times in T.

Without lack of generality, we assume that the key attributes of R are also the key
attributes of T. As long as there is a unique way to identify the T records to update, the
method will work without this assumption.

To improve transformation performance, an index should be created on the join at-
tributes of T. If the join attributes of S are not the same attributes as the primary key, an
index should also be created on the primary key attributes of S in the transformed table.
These indexes provide fast lookup on all T−records that are affected by an operation
on an S−record.

During the initial population step, the source tables are first read fuzzily. The FOJ
of the results are then inserted into T . Special R− and S− NULL records, denoted
rnull and snull, are joined with records that otherwise would not have a join match, as
illustrated in Figure 1.

4.2 Log Propagation

The fuzzy copy method of Hvasshovd et al. [13] use a record state identifier, typically
the Log Sequence Number (LSN), to make logged operations idempotent. Logged op-
erations are applied to records only if the LSN of the log record is greater than the LSN
of the record.

In our framework, there are no valid state identifiers for the records in the newly
created T . This is because records in T consist of two records, one from each source
table. The records from the source tables have an LSN each, while the resulting record
may only have one LSN. The LSN of a record in T is therefore not a correct state
identifier.
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The rest of this section describes how to apply the log to the initial image, i.e. the
join of the fuzzy read source tables, without using state identifiers. It works under the
assumption that all write operations on the source tables use exclusive locks; i.e. delta
updates [17] are not allowed.

When fuzzy read starts, the two source tables are in state 0, denoted R0 and S0. After
the initial image has been inserted, T is in an inconsistent state i, denoted Ti, where all
records are in the same or newer state than they had in R0 and S0. All operations on
the source tables that happened after state 0 are now applied sequentially to T . At some
future point in time, during synchronization, all operations in the log have been redone
to T , making T up to date with R and S. The states of the tables at that point in time is
called c, denoted Rc, Sc and Tc. c is an action consistent state since both R and S are
latched for the final synchronization.

At any point in time during log propagation, R and S have the same or newer state
than T for all records. This is a consequence of the fact that all operations reflected in
T are simply redoes of operations on R and S. In addition, the current state t (denoted
Rt and St) of the source tables precedes the state c for all records. Thus, 0 ≤ i ≤ t ≤ c,
where a ≤ b means that b contains at least all operations reflected in a, but may also
reflect newer operations.

A Basic Property. Without valid state identifiers, the log propagator does not know if
a log record is already reflected in T . The rules are idempotent, i.e., a log record may
be redone multiple times. The rules can not handle lost updates, but as shown in the
following theorem lost updates never appear:

Theorem 1. (Records in Ti are up to date)
Assume that the log propagator is currently processing a log record describing an op-
eration to a source table record. The appropriate records in the transformed tables are
then either in the same state as the source table record was in when the operation was
originally executed, or in a newer state.

Assuming that the concurrency controller enforces serializability, the record must have
been up to date when the operation was originally executed in the source table [2]. The
original sequence of operations on that record is in the same order in the log because
the log is sequential and the operations are serializable.

A fuzzy read of a table catches all updates that happened before the read started.
As a consequence of the fact that fuzzy read ignores locks, it may also include some
updates that happened during the read.

Since all updates that happened before the fuzzy read started are guaranteed to be
reflected in the initial image, a lost update must have been introduced after that point in
the log. The log propagator starts with the first log record of any active transaction at
the time of the first fuzzy mark. This is the first operation that may not be reflected in
the initial image of the transformed table.

Assume that the log propagation rules are correct, i.e. all records in the transformed
table that should be affected by a logged operation on a source table record, are updated
correctly by the propagator. Then, since no lost updates existed in the initial image and
because the log is propagated sequentially, no lost updates can exist after the first log
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record has been applied. By induction, the transformed table has no lost updates when
the current log record is encountered.

In other words: as long as the log is applied in sequential order to the initial fuzzy
copy, all records in Ti are in the same or a newer state than the source table records
were in when the operation was originally executed.

Insert Operations. The log propagator may encounter log records describing insert,
update and delete operations on records in the base tables. In what follows, rules for
how to propagate insert log records are described.

The notation ry
x means a record from table R where y is the primary key value and

x is the join attribute value. By tyx, we refer to the record in T resulting from the join
of ry

x and sx
x (abbreviated sx). As previously assumed, the join attribute of S is unique.

Records with no join match in the opposite source table are joined with the R− or S−
null record (rnull and snull), as described in Section 4.1. A and B are the sets of all
primary key and join attribute values allowed, respectively.

Rule 1 (Insert ry
x into R)

Check if a record with the key y, tyx, exists in Ti. If so, ignore the log record. Otherwise,
use the join attribute index of T to find a record with the join attribute value x. There
are three possible results: If tnull

x is found, it is updated with the attribute values of ry
x

to form tyx. If tvx is found (v ∈ A, v �= y), a new tyx−record is inserted after joining ry
x

with the sx−part of tvx. If no record with this join attribute exists in Ti, tynull is inserted
after joining ry

x with snull .

Theorem 1 states that all records in Ti are up to date with or in a newer state than the
log record. For this reason, if tyx is found, the log record is already reflected in Ti and
can safely be ignored. If this was not the case, two records with the same key y existed
in R at the same time.

The other cases are straightforward; by searching the index, the log propagator finds
all information necessary to insert tyx.

Even if tyw (w ∈ B) is not found in Ti, it is possible that Ti has a newer state for
tyw than that of the log. This can only be the case if tyw is later deleted, leaving no trace
of its existence. If so, the insertion of tyx will be corrected when the log record of the
delete is encountered later.

Rule 2 (Insert sx into S)
Use the S−key index to find all records with the join attribute value x in Ti. If any of
these records are joined with snull, they are updated with the new sx values. T -records
joined with an S−record other than snull are not updated. Otherwise, if no records
have x as the join attribute, tnull

x is inserted after joining rnull with sx.

sx−records found in Ti are not modified since Theorem 1 guarantees that they are up to
date. For both insert rules, FOJ requires that records with no join match are still present
in the result.

Delete Operations

Rule 3 (Delete ry from R)
Check if ty exists in Ti, and ignore the log record if not. If tynull is found, it is simply
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deleted. If tyx is found, the index is used to see if tyx is the only record in Ti containing
sx. If so, tnull

x is inserted after joining sx with tnull. tyx is then deleted.

Rule 4 (Delete sx from S)
Use the join attribute index to identify all records with x as join attribute value. If tnull

x

is found, it is deleted. All other records tvx (v ∈ A) that are found are joined with snull.

These rules are simply delete operations that guarantee the continued existence of their
joined counterparts.

Update Operations. Insert and delete log records contain all the information needed to
propagate the log. For insert log records, this information includes all attribute values.
For delete log records, the primary key of the record to delete is all the information
needed.

Update log records are less informative since they typically contain the primary key
and updated attribute values only. The information not found in the log record is, how-
ever, available in Ti as described next.

Rule 5 (Update join attribute of ry
x to z)

The record with key attribute value y, tyw (w ∈ B), is first read from Ti. If tyw is not
found in Ti, or if w �= x, the log record is ignored. Assuming that tyx is found, the join
attribute index of Ti is searched to find if sx is represented in at least one more record.
If not, tnull

x is inserted by joining rnull with sx.
Next, the join attribute index is searched for a record with z as the join attribute. If

tnull
z is found, it is updated with the attribute values of ry

z to form tyz . If tvz (v ∈ A, v �=
y) is found, a new tyz−record is inserted after joining ry

z with the sz− part of tvz . If no
record with this join attribute exists in Ti, tynull is inserted after joining ry

z with snull .

Again, Theorem 1 guarantees that the record tyw found in Ti is at least up to date with
the log. If w �= x, an operation representing a newer state than that of the log record is
already reflected in tyw. Applying the logged update would not lead to inconsistency in
the future state Tc since the log record leading to that newer state will be found in the
log before c is reached. Doing so does, however, incur extra work.

Even though the join attribute is guaranteed to be unique in S, it is not necessarily
the primary key. It may therefore be updated:

Rule 6 (Update join attribute of sx to z)
All records in Ti that have x as the join attribute value, are first identified. If no record
is found, the log record is ignored. If tnull

x is found, it is deleted. If found, all records tvx
(v ∈ A) in Ti are joined with snull to form tvnull.

Next, all records in Ti that have the new join attribute value, z, are identified. If tvnull

is found, it is updated with sz to form tvz . Any tvz record already joined with an sz record
stays unmodified. If no other T−record is joined with sz, rnull is joined with sz to form
tnull
z .

This rule operates like delete of sx followed by insert of sz . Like in propagation rule 5,
sx is used to extract the attribute values of sz since the log does not include this infor-
mation.
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Rule 7 (Update other attribute of ry or sx)
If an update of ry is described, the record ty with the same primary key is updated with
the new attribute values. Similarly, if sx is updated, the index of Ti is used to identify
all records tvx (v ∈ A) with x as the join attribute value. All records found are updated
as described in the log. If no records are found, the log record is ignored.

The rule should be intuitive: all records in Ti that partly consist of the updated record
must be updated with the new values. If no records match the key, the log record can
safely be ignored since Theorem 1 guarantees that Ti has a newer state for that record
when this happens.

Sketch of Log Propagation for Many-to-Many Relationships. The described log
propagation rules work under the assumption that the join attribute of S is unique. In
this section, we sketch what needs to be done when this assumption does not hold.

In many-to-many relationships, each R−record can be joined with multiple S−rec-
ords. Because of this, the primary key of R cannot be used as the primary key in T
alone. Instead, one or more identifying attributes from both source tables, e.g. their
primary keys, should be used together to form the primary key of T . In what follows,
tyx
z means a record in Ti that consists of a record ry

z joined on attribute value z with sx
z .

The one-to-many rules for operations on S−records does not need modification to
work in many-to-many transformations. Operations on R−records, however, need to be
modified so that all records in Ti that consist of the described R−part are affected. An
index should be created to speed up the search for these.

For update and deletion of a record ry
z , the modified rules simply has to identify

all T−records consisting of ry
z and apply the operation described for the one-to-many

case. For every deletion of a T−record, the existence of other S−records with the same
primary key has to be checked to ensure full outer join.

When a log record describes an insert of ry
z , a tyv

z −record (v ∈ A) has to be inserted
for every matching record sv

x. When the join attribute of an ry
z is updated, all existing

T−records that the ry
z contributed to must be deleted. The continued existence of the

deleted records‘ S−counterparts must be enshured as well. New join-matches are then
inserted into T .

4.3 Synchronization

Synchronization of FOJ transformations are performed as described in Section 3.4.
Lock propagation between the old and new tables must, however, be described in more
detail for the non-blocking strategies.

Since locks from two source tables R and S are transferred to one new table T, the
source table locks may conflict in T . This is, however, only a consequence of the lock
granularity being record as opposed to attribute. Clearly, operations on R and S do not
modify the same attributes. New lock compatibility rules for T are needed to avoid the
conflict. Note that this is only needed for the non-blocking strategies.

Lock Compatibility. A transaction being aborted cannot aquire new locks, so the non-
blocking abort strategy only needs lock releases to be transferred from the source tables
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Fig. 2. Lock compatibility matrix for locks in
T for the non-blocking strategies.

Fig. 3. Example Split transformation

to T . When a transaction aborted log record is encountered in the log, the propagator
releases the locks of that transaction in T.

With non-blocking commit, transactions are active on both the source tables and the
transformed table at the same time. All transactions may acquire new locks, but to
prevent inconsistencies, locks must be transferred both from T to R and S and vice
versa. If a transaction cannot get a lock on all implicated records in all tables, it is not
allowed to go forward with the operation.

Because locks from two non-conflicting operations in R and S could conflict in T ,
new lock compatibility rules have been developed for locks that are transferred from
the source tables to T . As can be seen in Figure 2, the new rules ensure that locks from
operations executed by transactions on the source tables do not conflict in T , whereas
they conflict with operations executed by transactions in T. The compatibility matrix
can easily be extended to multigranularity locking [2].

As for the non-blocking abort case, locks are released when the propagator encoun-
ters a transaction aborted or commited log record.

5 Split Transformation

The (vertical) split transformation takes one source table, T, and transforms it into
two tables R and S. This is the reverse of the FOJ transformation described in the
previous section, as illustrated by Figure 3. It follows the four steps described in
Section 3.

When a table T is split, multiple records may have equal S−parts. These records
should be represented by only one record in S. Further more, a record in S should only
be deleted when there are no more records in T with that S−part. To be able to decide
if this is the case, a counter, similar to that of Gupta et al. [10], is associated with each
S record. When an S record is first inserted, it has a counter of 1. After that, the counter
is increased every time a record with the same primary key is inserted, and decreased
every time one is deleted. If the counter of a record reaches zero, the record is removed
from S.

The notation is the same as in Section 4: each record tyx in T is split into two records,
ry
x and sx where y ∈ A and x ∈ B. A and B are the sets of valid primary key

values in R and valid values for the attribute used to split, respectively. As for join,
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the states Rc and Sc is reached at some future point in time when the log propaga-
tor has applied the entire log to the transformed tables and the synchronization step is
complete.

For readability, we assume that the split attribute is also the primary key in S, al-
though this is not required for the method to work. The method does, however, require
that the split attribute is a candidate key in S, i.e. can be used to identify S−records.

5.1 Data Consistency

Before the split method is described in detail, we show that inconsistencies that make
it impossible to process the transformation may be found in T . Consider the following
example:

Example 1. A company maintains a database of customer contact information, as shown
in the table:

Customer ID Name Postal Code City
001 Peter 7050 Trondheim
002 Mark 5020 Bergen
003 Gary 0050 Oslo
. . . . . . . . . . . .
134 Jen 7050 Trnodheim

Customer ID is used as the primary key of this table. There is also a functional depen-
dency in that postal code determines city.

Notice that there is an inconsistency between customers 001 and 134 since the postal
codes are the same, whereas the city names differ. Nothing prevents such inconsisten-
cies from occuring in this table, and the schema transformation framework has no means
to decide whether “Trondheim” or “Trnodheim” is correct if we were to split this table
on postal code. �

If inconsistencies like the one in Example 1 exist in T, we are not able to perform a split
transformation without fixing them.

The log propagation rules are divided into two parts. Section 5.2 describes rules
working under the assumption that inconsistencies does not appear in T . Section 5.3
describes additional rules needed when such assumptions are not made.

5.2 Split of Consistent Data

In this scenario, it is assumed that the DBMS applies measures that guarantee consis-
tency. The method provides an easy-to-understand basis for the scenario where incon-
sistencies may occur.

During the preparation and initial population steps, S and R are simply created and
populated as described in Section 3.

An alternative strategy is to create and populate the S−table only. Since all attributes
needed in R are already present in T, T can be renamed to R during synchronization if
attributes that are not part of R are removed first. By utilizing this, the transformation
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would require less space, and updates that would not affect attributes in S could be
ignored. Unfortunately, the log propagator needs information on both the LSN and the
split attribute value of each R−record in the current intermediate state. A temporary
table P would be needed to keep track of this information during propagation.

Although P may potentially be much smaller than R, this section describes how
the method works when R is created as a separate table. Only minor adjustments are
needed for the temporary table method to work.

The synchronization step works as described in Section 3.4.

Insert
After the initial images have been inserted into R and S, log propagation can start.
When a log record for an insert into T is found in the log, R and S are updated using
the following rule:

Rule 8 (Insert tyx into T ) The existence of a record with the primary key value y, ry ,
in Ri is first checked. There are two scenarios: if ry is found, the log record is ignored.
If ry is not found, the R−part of tyx, ry

x, is inserted into Ri.
Assuming that ry did not previously exist in Ri, the S−part of tyx, sx, is now inserted

into Si. First, the existence of a record with the same primary key x is checked. If found,
the counter of that record is increased by one. The LSN is then updated if the LSN of
the log record is higher than that of sx. If sx does not exist in Si, sx is inserted with a
counter of one and the LSN of the log record.

By Theorem 1, if a record with the key y is found in Ri, the log record is guaranteed
to be reflected in the transformed tables. Both insertion into Ri and Si are therefore
ignored. With guaranteed consistency, the inserted sx record is either equal to an ex-
isting record in Si, or the transaction that generated this log record also updated all
other T−records contributing to sx consistently. Changing nothing but the counter and
possibly the LSN is therefore correct.

Delete

Rule 9 (Delete ty from T ) If no record with the primary key value y, ry , exists in R, or
if one exists that has a higher LSN than that of the log record, the log record is ignored.

If a record ry
v (v ∈ B) exists and has a lower LSN, it is deleted from Ri. The counter

of sv is then decreased, and the LSN is changed if the log record has a higher LSN. If
the counter reaches zero, the record is completely removed from S.

Using the LSN of the delete operation appears erroneous since it represents the state
of a record that does not exist in T anymore. This is not a problem for the transforma-
tion framework because the log is propagated sequentially. Changing the LSN of the
S−record has therefore no consequence on whether future log records will we applied
to the table.

We could have chosen not to update the LSN. The same problem would, however,
occur in related situations: Assume that the records tac and tbc are the only records in T
that contribute to the record sc. Also assume that tac is updated and later deleted. Even
if the LSN of the S−record is not changed by the delete, it still has the LSN value of
the update of the record tac that no longer exists.
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Update
Updating the R−part of a record in T is straightforward:

Rule 10 (Update ty: the R−part) The existence of a record with the same primary key
y, ry, in Ri is first checked. If ry is not found, or if it has a higher LSN than the logged
operation, the log record is ignored.

Assuming that ry is found and that it has an LSN lower than the log record, the
record and its LSN is simply updated. The LSN is changed even if no attribute values in
ry
x are updated.

There are two cases of updates propagated to Si that must be considered: the split
attribute is either updated or not. Note that updates are only applied to Si if ry was
updated in Rule 10. The reason for this is that the LSN values in Ri uniquely identifies
which operations in T are already reflected on existing records in the transformed tables.
If a logged operation is reflected in Ri, it must also be reflected in Si.

Rule 11 (Update tyx: the S−part) The record sx with the split attribute value x, read
from ry

x, is first identified. If the LSN of that record is lower than the log record’s, the
update is propagated as follows: assuming that only non-split attributes are updated,
sx is simply updated with the new attribute values. Otherwise, if the split attribute is
updated, the update is treated as a deletion of sx, followed by the insertion of sv (v
being the new split attribute). Following the argument for insert of S−records, only the
counter and possibly the LSN of the record with the new key is updated.

5.3 Split of Possibly Inconsistent Data

If consistency is not guaranteed by the DBMS, the transformation framework has to
make sure that errors like the one in Example 1 are corrected. Performing this check
comes with an overhead to the log propagator. The overhead is, however, not present
within user transactions since the log propagation, and therefore the overhead, runs as a
low priority background process.

A flag is associated with each record in S. Two values are allowed: Consistent (C)
and Unknown (U ). A C flag is used when an S−record is known to be consistent, and
the U flag is used when an S−record is known to be inconsistent or has an unknown
consistency state.

Every S−record that was consistent in the fuzzy read gets a C−flag. All other records
get a U−flag. During log propagation, inserting a record sx that is not equal to an existing
record with the same split value changes a C−flag into U. The same happens when an
update is applied to an S−record with a counter greater than 1. A U−flag is changed to
C only if the operation updates all non-key attributes of a record with a counter of 1.

A “concistency checker” (CC) is run regularly. A U−flagged record, say sv, is first
chosen. The CC then writes a “Begin CC on v” record to the log. All records in T con-
tributing to sv are then read without using locks. If they are consistent in T, a “CC: v is
ok” record is written to the log together with the correct image of sv. The log propagator
keeps track of the records being checked: if sv is not changed in any way between the
two log records, sv is guaranteed to be consistent and is changed accordingly. Note that
all records in S should have a C−flag before synchronization is started. Because T has
to be read during CC, the split of tables with inconsistent data is not self-maintainable.
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Fig. 4. Test results of Split Transformation

6 Prototype Implementation

A prototype that performs the described non-blocking transformations has been imple-
mented in Java. It is simplified in that it keeps all data in main memory. This is realistic
for databases requiring very fast response time (e.g. [12]), but not for most traditional
databases. The costs of the changes are still relevant because we measure relative per-
formance, i.e. performance before the change vs. performance during the change.

Four client nodes, one server node and one admin node, all running Linux kernel
2.6, have been used. Each node had 2 AMD Athlon 1600+ CPUs (the prototype has
only used one on each node) and 1GB RAM. The nodes were connected with a 100
Mb/s ethernet.

Hundreds of tests have been executed to find the cost of the described schema changes.
The cost is measured in reduction in throughput and increased response time of normal
transactions run both alone and concurrently with the schema changes.

Each transaction updated 10 records using record locks. 100% workload was defined
as the number of concurrent transactions that produced the highest possible throughput.
Lower workloads were achieved by reducing the number of concurrent transactions.

The tests for the FOJ transformation were done with 50000 records in R and 20000
records in S. For the split transformation, 50000 records were inserted into T . These
were split into approximately 50000 records in R and 20000 records in S.
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Some important test results for split transformations are shown in Figure 4. As can
be seen in Figures 4(a) and 4(b), the interference incured on user transactions heav-
ily depends on the workload on the server, ranging from approximately 2% to 6% for
throughput and 5% to 30% for response time. In these plots, 20% of all updates are
on records in the source table. Little variation is observed for throughput tests while
the response time tends to vary more with increasing server workload. Tests on concis-
tency checking during split transformations and initial population of FOJ transforma-
tions show very similar results to those presented in Figures 4(a) and 4(b).

For log propagation to finish, more log records have to be propagated than gener-
ated. Because of this, the propagator needs a higher priority if many log records are
generated than it needs if few are generated. Figure 4(c) illustrates this point. Two
plots are shown: the lower plot is for tests where 20% of all generated updates are
on records in T. The upper plot is for 80% updates on T, thus 4 times more relevant
log records are generated during the same time interval. The operations that are not
on T update records in a dummy table to keep the workload constant. The priority of
the transformation could be kept lower in the 20% case, resulting in less interference.
Again, the same effect is observed on log propagation for FOJ on both throughput and
response time.

As discussed, a reduction in the priority of the transformation process reduces inter-
ference. Unfortunately, this also increases the completion time of the transformation.
Figure 4(d) shows how both the time needed to propagate log and the interference to
throughput responds to the same changes in priority. The plot is for log propagation of
split transformations with 75% workload on the server. FOJ tests show similar results.
The transformation will never finish if the priority is set too low, in this case at about
0.5%. Clearly, the priority of the transformation must be chosen with care.

Transformations should for obvious reasons be executed when the workload on the
server is as low as possible. If executed during off-hours, say at 50% workload, the ob-
served interference should be acceptable on both throughput (< 2%) and response time
(< 9%). During normal usage, say at 70% workload, the interference on throughput is
still acceptable at approximately 2.5%. The interference to response time may, how-
ever, be too high. The cost should be carefully considered before the transformation is
started. If too much interference is observed, the transformation should be aborted im-
mediately. Aborting the transformation simply means that log propagation is stopped,
and that the transformed tables are deleted.

Transactions that operate on the source tables could potentially be long lived. The
completion time of the synchronization step is therefore much more predictable if the
non-blocking abort strategy is used than if non-blocking commit is used. Synchroniza-
tion takes less than 1 ms in the prototype tests with non-blocking abort. Interference
plots for this step is therefore of little interest.

7 Conclusion and Further Work

A method to perform non-blocking full outer join (FOJ) and split schema transfor-
mations has been developed for relational databases. A prototype able to perform the
transformations with approximately 2% interference on throughput and 5% on response
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time has also been developed. The results also show that interference increases with in-
creasing workload. Because of this, database schemas should be transformed during
periods with as low workload as possible.

FOJ and split are considered the most important nontrivial operators in a transforma-
tion framework because the normalization degree can be changed using these. Methods
for other relational operators should, however, also be developed.

Even though it is not discussed in this paper, the split framework is able to split one
source table into a many-to-many relashionship by repeating splits.

Non-blocking population of tables may have other important usages than schema
changes. Using the technique to create other types of derrived tables like Materialized
Views is an obvious example.
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Abstract. Random sampling is a well-known technique for approximate
processing of large datasets. We introduce a set of algorithms for incre-
mental maintenance of large random samples on secondary storage. We
show that the sample maintenance cost can be reduced by refreshing the
sample in a deferred manner. We introduce a novel type of log file which
follows the intuition that only a “sample” of the operations on the base
data has to be considered to maintain a random sample in a statistically
correct way. Additionally, we develop a deferred refresh algorithm which
updates the sample by using fast sequential disk access only, and which
does not require any main memory. We conducted an extensive set of
experiments and found, that our algorithms reduce maintenance cost by
several orders of magnitude.

1 Introduction

Random samples are widely used as versatile synopses for large datasets. Such
synopses are a must or at least desirable in most real-world scenarios. On the
one hand, the complete dataset may not be accessible. For example, the dataset
produced by a data stream is unbounded in size, and it is often too expensive
to keep track of all the data elements which ever entered the system. Thus, a
synopsis with a bounded size, i.e., independent of the dataset size, allows for
inference of statistical properties of the dataset at the cost of some precision. On
the other hand, the effort to process the complete dataset may be unacceptably
high, e.g., when the dataset is very large or when the complexity of the algorithms
exceeds the available resources. The latter case is ubiquitous in data warehouse
systems which typically contain a huge amount of data subject to complex data
mining algorithms.

Within the last decade, random sampling has been proposed as an adequate
technique to summarize large datasets. Most applications require uniform sam-
ples to derive precise results and error bounds, i.e., each sample of the same size
is equally likely to be produced. There exists a variety of alternative synopses
for certain scenarios, but uniform random sampling bears the advantage of ap-
plication neutrality. Whenever it is not known in advance which estimates will
be computed on the synopsis, a uniform random sample is a good choice.

Random samples may be computed on-the-fly in certain scenarios. However,
this is typically expensive—if not impossible—to perform [1]. Alternatively, one
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may materialize the sample and update it if the underlying dataset changes. Since
synopsis maintenance is no “free” operation, i.e., it has a performance impact on
the processing of updates to the dataset, the cost for maintenance should be as
small as possible. In the database community, research has shown that it is more
efficient to decouple the update of a materialized view from operations on the
underlying dataset [2]. This approach is typically referred to as deferred refresh.
Contributions. In this paper, we propose deferred maintenance strategies for
disk-based random samples with a bounded size. Our approach is based on the
well-known reservoir sampling scheme. We introduce a novel type of log file and
show that it is sufficient to keep track of only a “sample” of the operations on
the dataset to maintain a statistically correct random sample. Furthermore, we
develop an algorithm for deferred refresh, which performs only fast sequential
I/O operations, minimizes the number of reads and writes to the sample, and
does not require any main memory. Our experiments indicate, that deferred
maintenance reduces the maintenance cost by several orders of magnitude.
Assumptions. We assume that the random sample is too large to fit into the
main memory and thereby resides on secondary storage. In fact, many estimators
based on samples require the sample to be sufficiently large, e.g., even “simple”
statistics estimators like the estimation of the number of distinct values do not
perform well on undersized samples. The situation gets worse if more complex
algorithms are executed on the sample, e.g., association rule mining or cluster-
ing algorithms. Moreover, the overall memory consumption increases with the
number of samples maintained in-memory.

Concerning the storage system, we assume that sequential access is faster than
random access, and that the storage system tries to store data in a sequential
sequence of blocks.1 For example, if the data is stored on a hard disk, sequential
access is indeed faster than random access. Most file systems try to arrange data
in sequential blocks to make use of this fact, and file system caches allow for
“conversion” of random (write) accesses to sequential ones. Again, we assume
that the sample is large, and therefore, the effectiveness of the cache is limited.

Throughout the paper, we assume that access to the base data is disallowed at
any time. The sample maintenance algorithms “see” only the insertions, updates
and deletions executed on the underlying dataset. The internal structure of the
dataset is of no interest to the sampling algorithm, so that our approach natively
extends to arbitrary settings, e.g., data streams, SQL views or XML reposi-
tories. We subsequently assume that the random sample is computed from a
dataset R.

Paper Organization. The remainder of the paper is structured as follows: In
Section 2, we discuss related work from the sampling, database and data stream
community. Section 3 introduces a novel logging scheme which minimizes storage
consumption and logging overhead. In Section 4, we propose efficient algorithms

1 Even if sequential and random access perform similarly, our algorithms reduce the
total number of accesses to the storage system. Moreover, if the storage system does
not align data in blocks, the performance of our algorithms increases.
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to refresh the sample by accessing the log file only. In Section 5 we discuss the
applicability of our algorithms in the environment of a DBMS. An extensive set
of experiments is presented in Section 6. We conclude the paper with Section 7.

2 Related Work

We first present general techniques for bounded-size random sampling, and then
discuss specific methods for sampling in a data stream system as well as in a
database system.

Uniform sampling. Bounded-size sampling schemes produce uniform samples
of a given size M . Sequential sampling [3] is one of the most efficient sampling
schemes which fall into this category. It accesses exactly M elements of R to
compute the sample. Unfortunately, sequential sampling has to know the dataset
size in advance, thus, it is not applicable to sample maintenance. However, the
well-known reservoir sampling scheme [4] is able to maintain a sample of a
dataset of unknown size, as long as there are only insertions. The basic idea is
to insert the first M elements into the sample. Afterwards, each newly arriving
element replaces a random element of the sample with probability M/(|R|+1), or
is rejected otherwise. Vitter [4] developed some techniques to efficiently compute
the next element to be inserted into the sample. All the algorithms presented in
this paper are based on reservoir sampling.

Sampling data streams. Sampling is ubiquitous in data stream management
systems for the following two reasons: On the one hand, sampling is used to
cope with high system load. If the number of arriving elements is too high to
be processed completely, one may “simply” throw away some of the stream
elements. This approach often appears in the context of load shedding [5, 6]. On
the other hand, inference of statistical properties for the whole data stream seen
so far is challenging since complete materialization of the stream is not feasible.
One solution to this problem is the maintenance of a random sample of the
complete data stream, potentially with some bias towards newer elements [7].
The maintenance algorithm has to be efficient, so that it can deal with the high
arrival rates found in typical data stream scenarios.

Jermaine et al. introduced the geometric file (GF) [7], a technique for disk-
based maintenance of samples from a data stream. The technique is based on
reservoir sampling and minimizes I/O efforts by decreasing the number of ac-
cessed blocks. In fact, the major part of the GF is never read, most updates have
block-level granularity and are written sequentially. However, the GF makes use
of an in-memory buffer, and its performance depends strongly on the size of this
buffer. Since each maintained sample requires its own buffer, the GF does not
scale well with the number of samples. The GF is a deferred refresh algorithm
since the sample is updated only if the buffer is completely filled. We compare
the GF with our algorithms in Section 6.5.
Sampling in databases. Database samples are often tailored to their appli-
cation, e.g., to represent a given workload [8], to handle data skew [9] or to
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support joins [10] and groupings [11, 12]. Most of these techniques make use of
random sampling and extend it by some means or other [7, 8, 9, 10, 11, 12, 13]. In
fact, there are lots of sampling schemes which rely on reservoir sampling. These
algorithms can be natively extended to support fast deferred refresh using the
techniques presented in this paper. We discuss issues specific to database systems
in Section 5.

3 Logging and Refresh

In this paper, we consider the maintenance of a random sample computed from
a dataset R. In the following, we assume that a uniform random sample of size
M has been computed already (e.g., using reservoir sampling), and that this
sample is maintained as the underlying data changes. We distinguish immediate
refresh strategies, which always keep the sample up-to-date, and deferred refresh
strategies, which refresh the sample from time to time (e.g., lazily or periodically,
see [2]). We say that a maintenance strategy is incremental if it never accesses
the base data directly, but only the elements which are inserted.2

Incremental maintenance strategies consist of two phases: A log phase cap-
tures the insertions into the dataset, and a refresh phase updates the sample
using the logged data. This holds for both immediate and deferred refresh strate-
gies. In fact, immediate refresh can be seen as a deferred maintenance strategy
which refreshes the sample every time the log has changed. In this section, we
introduce several strategies for realizing the log phase in the case of random
sampling. We assume that the log file resides on secondary storage, so that no
memory is consumed. Additionally, we present naive refresh algorithms which
update the sample using the log file.

3.1 Full Logging

The most basic logging strategy is to write all the insertions into the log file. We
refer to this approach as full logging. Probably the simplest way to refresh the
sample using the full log is to apply reservoir sampling subsequently to each of
its elements. We denote this approach naive full refresh. Clearly, this strategy
does not make use of the fact that the log file may contain more information
than needed to update a sample, since the sample itself reflects only a portion
of the underlying dataset. As will become evident in Section 5, there are more
efficient refresh strategies with full logs.

The example in Figure 1 depicts a sample consisting of five elements and
the full log file after 45 elements have been inserted. The reservoir sampling
algorithm decides for every element whether it is included in the sample or not.
In the former case, the element is called a candidate and replaces a random
element of the sample. In the latter case, the element is ignored. As we proceed
through the log, there are more and more candidates selected, and each of these
2 We preliminarily assume that the dataset is subject to insertions only, and extend

our results to updates and deletions in Section 5.
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Fig. 1. Deferred sample maintenance using a full log

candidates can potentially overwrite a candidate (within the sample) which has
been written earlier during the refresh phase. We say that a candidate is final if
it is not overwritten within the current refresh operation.

Clearly, the above approach has serious disadvantages:

1. Obviously, most of the elements in the full log are not accepted into the
sample and therefore logged unnecessarily. In the example, 11 out of 45
elements are made candidates, while only 4 of them remain in the final
sample.

2. Updating the sample relies on random I/O (though the logfile is read se-
quentially). This property is directly inherited from the reservoir sampling
algorithm.

3. The algorithm performs unnecessary I/O operations since the non-final can-
didates are overwritten by later candidates.

We propose an alternative refresh strategy for full logs in Section 5 which
eliminates (2) and (3) above.

3.2 Candidate Logging

The elimination of (1) above is straightforward. The basic idea is that the ele-
ments which are ignored by the refresh operation do not have to be included in
the log file. Therefore, we push the acceptance test of the reservoir sampling al-
gorithm to the log phase.3 Instead of logging every element added to the dataset,
we decide on-the-fly whether the element is made a candidate or not. Thus, we
write an arriving element to the log file with probability M/(|R|+1) or ignore it
otherwise. We refer to this logging strategy as candidate logging and denote the
log file C = {c1, . . . , cl}. Note that the order of the elements within the log is
important since each candidate has been accepted with a different probability.

For example, instead of writing all 45 elements of Figure 1 to the full log,
we only need to log the 11 candidates shown in Figure 2. In fact, the smaller
the sample size with respect to the current dataset size, the more elements are
skipped between two candidates on average. If we insert n elements into R, the
expected log file size is given by
3 We are free to use any other acceptance test. For example, the biased reservoir

sampling scheme in [7] is more suitable for data stream sampling.
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Fig. 2. Deferred sample maintenance using a candidate log

E(|C|) =
n∑

i=1

M

|R| + i
≈ M ln

|R| + n

|R| .

Here, we used the logarithmic approximation for harmonic numbers. Note
that E(|C|) decreases as |R| increases. The refresh algorithm has to be modified
to make sure that every element of the candidate log is inserted into the sample.
We scan the candidate log sequentially and write each candidate to a random
position in the sample. We refer to this algorithm as naive candidate refresh. It
sequentially reads |C| elements of the log file and randomly writes |C| elements
to the sample.

Within the next section, we develop algorithms which reduce the number of
read and written elements, and access both the log file and the sample sequen-
tially (thereby eliminating (2) and (3) above).

4 Algorithms for Candidate Refresh

The naive candidate refresh algorithm has the undesirable property that access
to the sample is non-sequential. Additionally, candidates written to the sample
may be overwritten by subsequent candidates. This is clearly inefficient since
it suffices to write out only the last candidate assigned to each element of the
sample. The easiest way to circumvent these drawbacks is to precompute the
changes to the sample and to write out the final candidates afterwards. Thus, all
the algorithms presented in this section consist of a precomputation phase and
a write phase. Using this approach, we can avoid random I/O completely while
at the same time reducing the total number of disk accesses. We will present
three different algorithms for precomputation, one using an in-memory array,
one using an in-memory LIFO-stack, and one using no memory at all.

4.1 Array Refresh

Let A be an integer array of size M with all of its elements set to empty. We can
use A to determine which elements of the candidate log are going to be included
in the final sample. We modify the naive refresh algorithm as follows: Instead of
physically reading the candidate log C = {c1, . . . , cl}, we operate on the indexes
1, . . . , l of the candidates within the log and thereby preliminarily avoid access
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Fig. 3. Array Refresh

Algorithm 1. Array Refresh
Require: sample size M , candidate log C
1: create an in-memory array A with M empty elements
2: for i = 1 to |C| do // indexes of the candidates
3: write i to a random element of A
4: end for
5: sort non-empty fields of A // optional
6: for j = 1 to M do // indexes of the sample
7: if A[j] is not empty then
8: read candidate A[j]
9: write candidate to the jth element of the sample

10: end if
11: end for

to the log file. Furthermore, instead of writing the candidates to the sample,
we store their indexes in the respective element of the in-memory array A. This
prevents the random I/O of the naive algorithm.

Array A is shown for the example data in Figure 3. For clarity, empty fields
are striped and indexes are written in italic and bold letters. The array consists
of some empty elements and some elements containing indexes. This informa-
tion is sufficient to refresh the sample in a sequential scan. Let j = 1, . . . , M
denote the current position within the sample. We look up the jth value in A
(denoted A[j]) and check whether it contains an index or not. In the former
case, we write the candidate with the index A[j] to the current element of the
sample. We refer to sample elements which are overwritten during the refresh
as displaced elements. In the latter case, A[j] is empty and we leave the cur-
rent element of the sample as it is (we do not read it actually). These elements
are denoted stable. Note that we do not know which elements of the sample
are stable and which are displaced until we have finished the precomputation
phase.

The Array Refresh algorithm is summarized in Algorithm 1, and an example
is shown in Figure 3. Access to the sample is now sequential, but access to the
log file is not. However, since the order of the elements within the sample is
of no interest, we may sort array A right after the preprocessing phase. Care
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must be taken that the sort algorithm does not move empty elements to another
position. These elements are linked with stable elements which in turn should be
distributed randomly. Using the sorted array, access to the log file is sequential.

To analyze the I/O effort of the Array Refresh algorithm, we define a random
variable Ψj which evaluates to 1 if the jth element of the sample is displaced and
to 0 otherwise (1 ≤ j ≤ M). Clearly, the probability that an element is displaced
is independent of its position within the sample:

P (Ψj = 1) = 1 −
(

1 − 1
M

)|C|

In the example, each element is displaced with a probability of roughly 91%.
Let Ψ =

∑
Ψj describe the total number of displaced elements, which corre-

sponds to the number of elements read from the candidate log and subsequently
written to the sample. By linearity of the expected value we get

E(Ψ) = M

(
1 −

(
1 − 1

M

)|C|
)

This evaluates to 4.57 in the example (Ψ itself equals 4). The Array Refresh
algorithm performs Ψ sequential reads from the log file and Ψ sequential writes
to the sample with Ψ ≤ min(M, |C|). Therefore, Array Refresh performs better
than the naive refresh algorithm. However, array A consumes a lot of memory
and sorting A is an expensive operation. The next algorithm reduces the memory
consumption from M to Ψ indexes and does not require a sort operation.

4.2 Stack Refresh

The Stack Refresh algorithm is based on the observation that the probability
of overwriting a candidate by subsequent candidates is decreasing during the
processing of the candidate log. For example, the first candidate may be over-
written by all the other candidates, while the last one is never overwritten.
Again, we precompute the indexes of the candidates which are going to be writ-
ten to the sample. A stack is used as internal data structure in order to avoid
sorting.

The candidate indexes are processed in reverse order, that is, from |C| to 1.
For each index i, we decide whether it is part of the sample or overwritten by one
of the indexes already processed. The latter is the case if i falls onto a position
in the sample which is already occupied by one of the candidates. For example,
suppose we process the candidate log as shown in Figure 3 but in reverse order.
Candidate index 11 occupies sample position 1. Therefore, candidate indexes
9 and 3 – which also try to occupy position 1 – are both overwritten by 11.
Therefore, only 11, 10, 8 and 6 are final in the example.

During the precomputation phase, each index i is selected with probability
pk = (M−k)/M with k being the number of indexes selected already. Obviously,
pk remains constant as long as no index selected. The random variable Xk
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Fig. 4. Stack Refresh

describes how many indexes we have to skip until the next one is selected. Xk

is geometrically distributed:

P (Xk = x) = P (skip x elements, select (x + 1)th element)

= (1 − pk)xpk =
(

k

M

)x(
M − k

M

)
To summarize: We select the first index |C|. Afterwards, we generate X1, skip

X1 indexes, and select the next one. This process is repeated using X2, X3, and
so on. The algorithm stops as soon as M indexes have been selected or if there
are no more candidates (i < 1). As can be seen in Figure 4, the indexes are
selected in descending order. Therefore, we use a LIFO-stack to keep track of
the selected indexes and to reverse their order.

In contrast to the Array Refresh algorithm, we do not maintain the infor-
mation on which index falls onto which position. In other words, we do not
precompute the set of stable and displaced elements. After the precomputation
phase has finished, the stack only contains the indexes of the candidates which
have to be written to the sample. We have to decide which of the correspond-
ing candidates have to be written to which position of the sample, and which
elements of the sample remain stable.

If the stack contains k indexes and the sample has size M , there are M − k
stable elements. In the example, the 4 selected indexes have to be distributed
among the 5 elements of the sample. Therefore, only a single element remains
stable. To refresh the sample, we scan it sequentially and decide for each position
whether it remains stable or is overwritten by a candidate from the stack.4 Let
j = 1, ...,M be the current position within the sample and k be the current stack
size. Then, position j is overwritten with probability:

qj,k =
k

M − j + 1
=

remaining indexes
remaining sample elements

In summary, with probability qj,k we pop the uppermost index from the stack,
read the corresponding candidate from the log file, and write it to the current
4 This can be done efficiently using the sequential sampling scheme introduced in [3].
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Algorithm 2. Stack Refresh
Require: sample size M , candidate log C
1: k ← 0; i ← |C| // no. of selected indexes; current index
2: repeat
3: Push(i); k ← k + 1 // select the current index
4: pk ← M−k

M
// selection probability for the next index

5: Xk ← NextGeometric(pk) // generate Xk

6: i ← i − Xk − 1 // skip Xk indexes
7: until i < 1 ∨ k = M
8: for j = 1 to M do // indexes of the sample
9: qj,k ← k

M−j+1 // probability that current element is displaced
10: with probability qj,k do
11: i ←Pop()
12: read the candidate with index i
13: write the candidate to the jth element of the sample
14: k ← k − 1 // decrease no. of remaining candidates
15: end
16: end for

position of the sample. In the case of Figure 4, this happens for the first, second,
third and fifth element of the sample. The fourth element is stable and therefore
not overwritten by a candidate. In this case, we advance to the next position
without touching the stack. Algorithm 2 summarizes the complete process.

The Stack Refresh algorithm processes the sample as well as the candidate log
sequentially. It needs less memory than Array Refresh since only Ψ indexes are
stored in memory. The sort operation is avoided by using a stack as the central
data structure. Again, the Stack Refresh algorithm performs Ψ sequential reads
from the log file and Ψ sequential writes to the sample. The next algorithm
improves Stack Refresh by avoiding any memory consumption.

4.3 Nomem Refresh

The Stack Refresh algorithm needs to store the selected indexes in memory for
two reasons: First, the order of the generated indexes is descending. If we had not
used the stack, access to the candidate log would be in reverse order and therefore
less efficient. Second and more important, even if we accepted reverse scanning,
we cannot avoid using the stack in general. In order to determine whether the
current element of the sample is stable or not, we have to know the number
of remaining indexes (see qj,k) which is equal to the stack size. Unfortunately,
we do not get this information before the precomputation phase has finished,
but then we do not know which candidate indexes have been selected unless
we store them in memory or are able to compute exactly the same indexes
again. We show how to modify the precomputation approach in such a way that
in-memory data structures are avoided if a pseudo-random number generator
(PRNG) is used.

PRNGs are ubiquitous in current computer systems, e.g., each call to
NextGeometric() in Algorithm 2 is implemented by using such a PRNG.
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Algorithm 3. Nomem Refresh
Require: sample size M , candidate log C
1: store state of the geometric PRNG
2: compute X =

∑
(Xk + 1) with k = M − 1, . . . , 1

3: restore state of the geometric PRNG
4: i ← |C| − X // determine first index
5: k ← M − 1
6: while i < 1 do // ignore negative indexes
7: i ← i + Xk + 1
8: k ← k − 1
9: end while

10: for j = 1 to M do // indexes of the sample (k + 1 candidates left)
11: with probability qj,k+1 = k+1

M−j+1 do // current element is displaced
12: read the candidate with index i
13: write the candidate to the jth element of the sample
14: i ← i + Xk + 1
15: k ← k − 1
16: end
17: end for

A PRNG computes a sequence of numbers which appears to be random. How-
ever, the generated numbers depend only on an internal state. After a random
number has been computed, the PRNG advances to the next state by using a
certain algorithm. This state transition is deterministic. The central idea of the
Nomem Refresh algorithm is to store the state of the PRNG before generating
the sequence of selected indexes and to reset it afterwards to allow the genera-
tion of the same sequence again. Therefore, there is no need to buffer the indexes
in memory. The memory consumption of the PRNG state is negligible ranging
from 1 to 1000 words for common generators [14].

Reconsider the random variable Xk of the Stack Refresh algorithm. It denotes
how many elements of the candidate log are skipped before the next one is
selected. Since the Xk are independent of each other, it does not matter in which
order they are generated. The Stack Refresh algorithm selects the candidate
indexes in the following order (ignoring indexes smaller than 1):

|C|, |C| −
1∑

k=1

(Xk + 1), |C| −
2∑

k=1

(Xk + 1), . . . , |C| −
M−1∑
k=1

(Xk + 1)

To generate this sequence in reverse order, we have to compute the quantity
X =

∑M−1
k=1 (Xk +1) to determine the first index (with k = M −1, . . . , 1). Then,

we subsequently add Xk + 1 to determine the next index. Therefore, each of the
Xk is accessed twice. As already stated, we avoid buffering of the Xk by resetting
the PRNG after the computation of X. The whole procedure is summarized in
Algorithm 3. For brevity, we omit details of the generation of Xk since it is
identical to Algorithm 2.

As illustrated in Figure 5, the Nomem Refresh algorithm selects the indexes
in the following order (ignoring indexes smaller than 1):
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|C| − X, |C| − X +
M−1∑

k=M−1

(Xk + 1), |C| − X +
M−1∑

k=M−2

(Xk + 1), . . . , |C|

Since this sequence is strictly increasing, the candidate log is accessed se-
quentially. There is no need for any in-memory data structure any longer. The
algorithm requires slightly more processing power than Stack Refresh, since twice
as many samples from the geometric distribution are computed.

Fig. 5. Nomem Refresh

5 Deferred Sample Maintenance in a DBMS

Even though the candidate log file is smaller than the full log, there are situations
in which full logging is the preferred technique. For example, the transaction log
of a database system may already contain all the information we need. Alterna-
tively, if we maintain a materialized view on the very same dataset the sample
is built on, and if this view is refreshed using deferred maintenance too, the full
log is typically maintained by the database system to incrementally refresh the
materialized view, e.g., IBM DB2 makes use of a staging table and the Oracle
RDBMS uses a materialized view log. Fortunately, we can apply the candidate
refresh algorithms on a full log by using the same idea as used for the Nomem
Refresh algorithm.

Each of the candidate refresh algorithms requires the size of the candidate log
as its input for precomputing the final sample. If a full log is maintained, one
does not know in advance how many tuples will be candidates and how many
will be skipped. However, Vitter [4] defined a random variable describing the
number of tuples skipped between two subsequent candidates. Thus, we store
the state of the PRNG and compute the indexes of the candidates in advance
(without actually storing them). Using this procedure, we can precalculate how
many tuples of the full log are candidates. Then, we reset the random number
generator and run an arbitrary candidate refresh algorithm. Every time the
candidate log is accessed, we calculate the index of the respective candidate by
computing Vitter’s skips again and access the respective tuple of the full log.
This procedure is nearly as efficient as if a candidate log were used. The only
difference is that the tuples selected for the sample are further apart from each
other, so that the number of blocks read from disk increases.
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Another problem arising in the context of a DBMS is that there are updates
and deletions. We show how our refresh algorithms can be extended to support
these operations as well. First, we store all updates in a separate log file and
apply all these updates after each refresh of the sample. The situation becomes
more difficult if some elements are removed from the dataset. In this case, it is not
possible to maintain a candidate log since insertions after a deletion are included
in the sample with a different probability than assumed during candidate logging.
Thus, we use a full log file if there are deletions. If we assume (or make sure)
that the insertions and deletions are disjunctive, we first conduct all the deletions
and afterwards process the full log using the techniques presented in this paper
(using a potentially smaller sample size). We currently investigate how a reservoir
sample can be maintained so that deletions are supported as well.

6 Experiments

We implemented the various refresh algorithms and conducted a set of experi-
ments to evaluate their performance. We distinguish between online, offline and
total cost of maintaining the sample. The online cost is the processing cost of ar-
riving insertions. The offline cost mirrors the cost for refreshing the sample. The
total cost is the sum of online and offline cost. This distinction is helpful since
it captures different application areas. For example, in a streaming system, the
online cost is important since it expresses the processing time for each operation
within the sample operator. The refresh may be conducted by an independent
system which has access to the log file, thereby not affecting online processing.
In a DBMS, both logging and refresh are typically conducted by the very same
system, so that the total cost is more important than the online cost. For clarity,
we arrange the figures for online and total cost side by side so that they can be
compared easily. Note that most of the plots have logarithmic axes.
Experimental results. We found that using a candidate log is significantly
faster than refreshing the sample immediately or using a full log. When it comes
to sample refresh, we found that the refresh algorithms using precomputation
outperform the naive ones, and that the computational overhead of Nomem Re-
fresh is negligible. The more operations occur between two consecutive refresh
operations, the more is gained by using advanced refresh techniques. Our algo-
rithms scale well, since the sample size has only a linear effect on the refresh
costs. In comparison to the geometric file, our techniques are more efficient if the
GF is not allowed to consume large amounts of memory for its internal buffer.

6.1 Experimental Setup

The experiments were conducted on an Athlon AMD XP 3000+ system running
Linux with 2GB of main memory and an IDE hard drive with 7,200 RPM. We
first measured the access times per block using a 1.6GB on-disk sample (with a
cache of 100MB). Our hard disk is formatted with the ext3 filesystem. It has a
block size of 4096 bytes, and we assumed that each element occupies 32 bytes,
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i.e., each block contains 128 elements. We found that a sequential read/write
takes about 0.094ms per block, a random read 8.45ms, and a random write
5.50ms (due to asynchronous writes). Now, for each algorithm, we counted the
number of sequential/random reads and writes on a block-level basis. We then
weighted these numbers with the access times above. This strategy allows for
quantifying the cost of the single phases independently, while at the same time
enabling us to run a large variety of different experiments.

All the algorithms have been implemented using the Java programming lan-
guage and Sun’s JDK version 1.5.0 03. For full refresh, we used the techniques
described in Section 5. Unless stated otherwise, each experiment was run at least
one hundred times and results were averaged. We assumed that the sample is
refreshed periodically.

6.2 Online Cost

We first evaluated the online I/O cost of sample maintenance. We used a sample
size of one 1M and inserted 100M elements into a dataset with initial size 1M .
Figure 6 shows the cumulated cost over time without any intermediate refreshes.
Obviously, immediate refresh is far more expensive than writing to a log file.
However, if the dataset size gets really large, immediate refresh is cheaper than
writing to the full log, since the fraction of the candidate elements decreases over
time. Candidate logging is the most efficient technique and is by several orders
of magnitude faster than immediate refresh.

Next, we measured the online impact induced by different sample sizes
(Figure 8). We used the same setting as in the former experiment, but plot-
ted the cumulated cost after 100M operations. Clearly, the maintenance cost
of the full log is independent of the actual sample size, while the cost for im-
mediate refresh and candidate logging increases with an increasing sample size,
since more candidates are generated if the sample is larger. However, candidate
logging is always faster than full logging. In fact, the cost of writing the full log
is an upper bound to the cost of writing the candidate log.
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Furthermore, we compared the online cost for different refresh periods
(Figure 10). We used the same experimental setting as in the former experiments.
The cost for maintaining the sample directly is independent of the refresh period
(always 1). However, both candidate logging and full logging re-use the log file
after a refresh so that one random I/O is performed to move from the current
position to the beginning of the log file (otherwise, the costs are independent of
the refresh period, too). Thus, with an increasing refresh period, these random
I/Os occur less frequently and the cost drops. Again, candidate logging is faster
than full logging. Note that if the refresh period is less than 10k, the candidate
log often consists of only a single block, which is the minimum.

6.3 Total Cost

We ran the same experiments as above again but now measured the total I/O
cost (including refresh). Note that Array, Stack and Nomem Refresh have equal
I/O cost. We refreshed the sample after every 1M insertions. As can be seen in
Figure 7, deferred refresh is significantly faster than immediate refresh. The costs
for full and candidate refresh are almost the same since we used the algorithm
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described in Section 5 for full refresh. However, the costs for writing the log file
are different, so that the candidate techniques are faster than the techniques
using a full log. The I/O cost of the first few refreshes is magnified due to the
log-log-plot.

Figure 9 illustrates that the total costs for maintaining the sample are increas-
ing as the sample size increases. Again, deferred refresh significantly outperforms
immediate refresh. The costs of full maintenance and candidate maintenance are
almost equal if the sample is really large. However, we performed 100 million op-
erations in every case. If the number of operations were larger, this effect would
vanish.

As can be seen in Figure 11, deferred refresh is faster than immediate refresh
if refreshes are not extremely frequent. Since the total costs are governed by the
refresh cost, full and candidate maintenance strategies perform equally if the
refresh period is short. However, the larger the refresh period gets, the more
effort is saved by using a candidate log. Thus, the candidate strategies become
more efficient than full refresh in this case.

6.4 Memory Consumption and Computational Cost

In this experiment, we measured CPU cost and memory consumption for the dif-
ferent implementations of deferred refresh. Even though the disk access pattern
is the same for Array, Stack and Nomem Refresh, their CPU and memory costs
are different. For the experiments, we used a sample size of 1M elements. We
inserted elements until the number of candidates reached a certain size. Then,
we refreshed the sample and measured the memory consumption and CPU cost.
Note that computation and I/O are typically performed in parallel.

Figure 12 plots the consumed memory in dependency of the number of can-
didates. Array Refresh always maintains an array that has as many elements
as the sample. However, the elements of the array are only 4 bytes long (index
size), while the sample elements are usually larger. The Stack Refresh algorithm
requires more and more memory as the number of candidates in the log file in-
creases. Note that the figure includes extreme cases, e.g., in which the number of
candidates is more than twice the sample size. Thus, the memory consumption
of Stack Refresh is small in most cases. However, Nomem Refresh does not con-
sume any memory. We plotted the size of the in-memory buffer of the geometric
file for expository reasons. The number of candidates in a geometric file can only
grow as large as its internal buffer. Thus, if we want to delay the refresh to, say,
100, 000 (final) candidates, the buffer of the geometric file has to be as large as
10% of the sample.

In Figure 13, we plot the CPU time for a refresh in the same experimental
setting. Clearly, Stack Refresh is the fastest method. For small candidate logs,
Array Refresh is more efficient than Nomem Refresh, while the opposite is true
for large log files (due to the sort operation of Array Refresh). Nomem Refresh
has to compute 2M random numbers to select the final candidates. To minimize
the total CPU time, we propose the following strategy: If the expected number of
final candidates (E(Ψ)) is small (say, < 4k), we use the Stack Refresh algorithm.
Otherwise, we use Nomem Refresh to save main memory.
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6.5 Comparison to the Geometric File

The GF [7] is the only algorithm known to the authors which targets deferred
maintenance of a disk-based sample. In this section, we briefly point out the
differences between our algorithms presented and the GF. First, the GF buffers
arriving insertions in main memory. In contrast to our algorithms, the buffer
is accessed randomly and therefore cannot be serialized to disk without losing
performance. Additionally, the GF keeps a part of the sample in memory to
optimize the I/O cost, i.e., the on-disk part of the sample is not uniform. This
may be problematic in the case of system failures.

Using the GF, one is not able to conduct a refresh at an arbitrary time. In fact,
the sample is only refreshed if the buffer reaches its full size. Consequently, one
may either control the desired buffer size or the frequency of refresh operations,
but not both. To compare our refresh algorithms to the GF,5 we proceeded as
follows: First, we refreshed the sample every time the GF issued a refresh. Thus,
the number of refreshes conducted by the GF and by our techniques is equal.
Second, we assumed that our algorithms may use the same amount of in-memory
buffer as the GF. We used this buffer to store a part of the sample in memory,
thereby reducing the number of disk accesses. In fact, if we store 5% of the
sample in memory, we expect that the refresh cost drops by 5%.

Again, we set the sample size to 1M elements and inserted 100M elements.
We measured the total cost for different buffer sizes. The results are shown
in Figure 14. Clearly, the larger the buffer, the less cost is incurred by the
algorithms, since the cumulative number of refreshes is decreasing. If the buffer
is less than 3% of the sample size, both full and candidate refresh are faster
than the GF. If we increase the buffer to up to 4% of the sample size, the GF is
faster than full refresh but slower than candidate refresh. If the buffer is larger
than 4% of the sample size, the geometric file is the most efficient algorithm.
Thus, the optimal strategy depends on the amount of memory we are willing to
sacrifice, and on the desired flexibility of deciding on refresh periods.

5 We used block-aligned segments and set β = 32k.
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7 Summary

We developed a set of algorithms which allow for deferred maintenance of ran-
dom samples of an arbitrary dataset. We introduced a novel type of log file
which minimizes the amount of data used to track changes on the underlying
dataset. We showed that such a log file imposes far less overhead in processing
arriving operations than traditional log files and immediate sample maintenance.
Furthermore, we developed different strategies to efficiently process the log file
in order to update the sample. We optimized our algorithms so that they rely
on fast sequential disk access only, while the number of read and write oper-
ations is minimized. Additionally, we showed how main memory consumption
can be avoided at the cost of some CPU time. Finally, we conducted a set of
experiments indicating that our algorithms are more efficient than any known
algorithm using a small amount of in-memory data structures only.
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Abstract. Density-based clusterization techniques are investigated as a basis for
constructing histograms in multi-dimensional scenarios, where traditional tech-
niques fail in providing effective data synopses. The main idea is that locating
dense and sparse regions can be exploited to partition the data into homogeneous
buckets, preventing dense and sparse regions from being summarized into the
same aggregate data. The use of clustering techniques to support the histogram
construction is investigated in the context of either static and dynamic data, where
the use of incremental clustering strategies is mandatory due to the inefficiency
of performing the clusterization task from scratch at each data update.

1 Introduction

The need to compress data into synopses of summarized information often arises in
many scenarios, where the aim is to retrieve aggregate data efficiently, possibly trading
off the computational efficiency with the accuracy of query answers. Selectivity esti-
mation for query optimization in RDBMSs [4, 16], range query answering in OLAP
services [17], statistical and scientific data analysis [14], window query answering in
spatial databases [1, 15], are examples of application contexts where efficiently aggre-
gating data within specified ranges of the domain is such a crucial issue, that high
accuracy in query answers becomes a secondary requirement.

For instance, query optimizers in RDBMSs can build an effective query evalua-
tion plan by estimating the selectivity of intermediate query results: this can be ac-
complished by retrieving aggregate information on the frequencies of attribute values.
In particular, given a relation R(A1, . . . , Ad), the selectivity of a query of the form
q = v′1 < R.A1 < v′′1 ∧ . . . ∧ v′d < R.Ad < v′′d (representing the intermediate
result of more complex queries) is evaluated by accessing the joint frequency distri-
bution [16] associated to R. The latter can be viewed as a d-dimensional array F
whose dimensions represent the attribute domains, and whose cell with coordinates
< v1, . . . , vd > stores the number of tuples of R where A1 = v1, . . . , Ad = vd.
The selectivity of the query q defined above is the answer of the range-sum query
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Q=sum(〈[v′1..v′′1 ], . . . , [v′d..v
′′
d ]〉) posed on F , which returns the sum of the frequen-

cies contained in the multi-dimensional range 〈[v′1..v′′1 ], . . . , [v′d..v
′′
d ]〉 of F . As the size

of F is generally very large, evaluating the exact selectivity of q (i.e. the exact answer
of Q) can be inefficient.

A widely accepted approach to the problem of providing fast estimates of query
selectivities consists in compressing F into a lossy synopsis F̃ , and then evaluating the
selectivity of queries by accessing F̃ rather than F . Histograms [16] are a well-known
approach for compressing the joint frequency distribution. A histogram over F is built
by partitioning F into a number of blocks (called buckets), and then storing for each
bucket b the number of tuples in R whose attributes have values belonging to the range
of b. The selectivity of q is estimated on the histogram by summing the values stored
in the buckets whose boundaries are completely contained inside the range-sum query
Q corresponding to q, and then by estimating the “contributions” of the buckets which
partially overlap the range of Q. These contributions are evaluated by performing linear
interpolation, under the assumption that the data distribution inside each bucket is “ho-
mogeneous” (that is, the joint distribution of attribute values underlying b is uniform).

As expected, on the one hand, querying the histogram rather than F reduces the
cost of evaluating selectivities (as the histogram size is much less than the original data
size); on the other hand, the loss of information due to summarization introduces some
approximation. Therefore, a crucial issue when dealing with histograms is finding the
partition which provides the “best” accuracy in reconstructing query selectivities.

Existing approaches, such as MHIST [16], MinSkew [1], STHoles [3] and GEN-
HIST [12], provide reasonable error rates at low-dimensionality scenarios, but worsen
dramatically for higher-dimensionality data. On the one hand, this is somewhat in-
evitable, since, as dimensionality increases, the size of the data domain grows much
more than the number of data points. That is, high-dimensionality data are likely to be
much sparser than low-dimensionality ones. This implies that the number of buckets
which should be used to effectively approximate data tends to explode as dimension-
ality increases. For instance, consider two data distributions D2 (of size n2) and D10

(of size n10), where the same number of data points are distributed, respectively, on a
two-dimensional and ten-dimensional domain. If we use the same number of buckets to
partition D2 and D10, buckets of D10 are likely to be much larger in volume than those
of D2. Therefore, the aggregate information associated to buckets of D10 is less local-
ized than buckets of D2 (as the aggregate value associated to each bucket is spread onto
a larger volume), thus providing a poorer description of the actual data distribution.

On the other hand, the low accuracy in query estimates provided by traditional his-
tograms is also due to the ineffectiveness of the adopted heuristics guiding the his-
togram construction. That is, traditional techniques for constructing histograms often
result in partitions where dense and sparse regions are put together in the same bucket
which yields poor accuracy in describing data. For instance consider the bucket shown
in Fig. 1, where a dense cluster is put together with a sparse region. As the bucket is
summarized by the sum of its values, estimating either Q1 and Q2 by performing linear
interpolation yields a high error rate, since the total sum is assumed to be homoge-
neously distributed inside b. In fact this assumption is far from being true: most of the
sum of b is concentrated in the dense cluster on the right-hand side of b.
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Fig. 1. Queries posed into a non-homogeneous bucket

Therefore, it is our belief that improving the ability of distinguishing dense regions
can result in more accurate partitions, as this prevents buckets like that of Fig. 1 from
being constructed. The problem of searching homogeneous regions is very close to the
data clustering problem, i.e. the problem of grouping database objects into a set of
meaningful classes. This issue has been widely studied in the data mining context, and
several algorithms accomplishing data clustering have been proposed. For the sake of
brevity we do not provide a classification of existing clustering techniques. The inter-
ested reader can find a detailed survey in [13].

This paper stems from our preliminary work [8], where we studied how histogram
construction could be supported by density-based cluster analysis. In this work we pro-
pose an extension of our clustering-based compression technique to the case that data to
be summarized is dynamic. In this context, the issue of maintaining data synopses has
received growing attention from the research community in the last few years [5, 10, 11].
In this scenario, re-executing the clustering step at each data update is not feasible, due to
the inefficiency of this task. Thus we introduce a strategy for exploiting an incremental
clustering approach (where the clusterization is updated at each bulk of updates without
re-processing the whole data) to efficiently propagate data updates to the histogram.

2 CHist: Clustering-Based Histogram

In this section, we recall our clustering-based technique (namely, CHist) for construct-
ing histograms on multi-dimensional static data. Its extension to the case of dynamic
data (which is the main contribution of this paper) will be introduced in Section 3.

Our technique works in three steps. At the first step clusters of data and outliers
(i.e. points which do not belong to any cluster) are located. At the second step, these
clusters and the set of outliers are treated as distinct layers, and each layer is summarized
by partitioning it according to a grid-based paradigm. At the last step the histogram is
constructed by “assembling” all the buckets obtained at the previous step.

The three phases of our approach are described in detail in the following sections.
The description of the algorithm is provided by assuming a d-dimensional data distrib-
ution D. D will be treated as a multi-dimensional array of integers of size nd (without
loss of generality the edges of D are assumed to be of the same size). That is, values
of data points of the input distribution are represented into cells of D. The cells of D
which do not correspond to any data point contain the value 0. A query Q on D is spec-
ified by a multi-dimensional range of the domain of D and its answer is the sum of the
values of the cells of D inside this range.
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Any sub-array of D will be referred to as a bucket. The volume of a bucket b (i.e.
the number of cells of the sub-array) will be denoted as vol(b), the sum of data point
values inside b as sum(b). In order to measure the homogeneity of the data inside a
bucket we adopt the SSE (namely Sum Square Error), defined as follows:

SSE(b) =
∑

i∈b (b[i] − avg(b))2,

where: avg(b) is the average of cell values inside b; the expression i ∈ b means that i
denotes the coordinates of a cell inside b; b[i] denotes the value of the cell of b with coor-
dinates i. The amount of available storage space for the representation of the histogram
will be denoted as B.

2.1 Step I: Clustering Data

In our prototype, we have embedded the clustering algorithm DBSCAN [6] in order to
group input data into dense clusters. Indeed, our approach can be viewed as orthogonal
to any clustering technique: we have chosen DBSCAN as it is representative of density-
based clustering algorithms.

The idea underlying DBSCAN is that points belonging to a dense cluster (except
those points lying on the border of the cluster) have a dense neighborhood. A point p
is said to have a dense neighborhood if there are at least MinPts distinct points whose
distance from p is less than Eps (both Eps and MinPts are parameters crucial for the
definition of clusters). Points with a dense neighborhood are said to be core points.
DBSCAN scans input data searching for core points. Once a core point p is found, a
new cluster C is created, and both p and all of its neighbors are grouped into C. Then C
is recursively expanded by including the neighbors of all core points put in C at the last
step. When C cannot be further expanded, DBSCAN searches for other core points to
start new clusters, until no more core points can be found. At the end of the clustering,
points which do not belong to any cluster are classified as outliers.

2.2 Step II: Summarizing Data into Buckets

At this step the input data distribution is viewed as a superposition of layers. Each layer
is either a cluster or the set of outliers. In the following we will denote the layer consist-
ing of outliers as L0, and the layers corresponding to dense clusters as L1, . . . , Lc. L0
will be said to be the outlier layer, whereas L1, . . . , Lc will be said to be cluster layers.
Each layer is represented by means of its MBR (Minimum Bounding Rectangle, i.e. the
minimum hyper-rectangle containing all non-null points of the layer).

The different layers are summarized separately by partitioning their MBRs into
buckets. This aims at preventing the construction of buckets where dense and sparse
regions are put together, which, as explained before (see Fig. 1), can yield poor accu-
racy. In more detail, our approach works as follows.

Layers are summarized independently of each other, and the summary of the whole
data distribution will be the superimposition of the summaries of all layers. The sum-
marization of layers is accomplished by a multi-step algorithm which, at each step,
summarizes a single layer by partitioning it according to a grid and storing, for each
bucket defined by this grid, both its MBR and the sum of its values (obviously, the cells
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of this grid which do not contain any data point result in an empty MBR which is not
stored). The MBRs of buckets obtained from the summarization of cluster layers will
be said to be c-buckets, whereas the MBRs of the buckets constructed by partitioning
L0 will be said to be o-buckets.

Indeed, layer L0 is processed after the summarization of all the cluster layers. In
particular, before summarizing the outlier layer, we scan all outliers to locate those
lying onto the range of some c-bucket. Each outlier o which lies onto some c-bucket is
removed from L0 and “added” to one c-bucket whose range contains the coordinates of
o 1. This allows us to view c-buckets as “holes” of L0, in the sense that, after performing
this task, there are no points lying onto the range of some c-bucket which belong to L0.
As it will be clear in the following, this will be exploited in the physical representation
of the histogram to improve its accuracy.

We now describe how the available storage space is used to summarize layers. Let
Bi be the amount of memory which is left from the i− 1 previous summarization steps
(at the first step, B1 coincides with the initial amount of storage space B). The portion
of Bi which is invested to summarize Li is denoted as B(Li) and is computed by com-
paring the need of being partitioned of Li with all remaining layers Li+1, . . . , Lc, L0.
The need of being partitioned of a layer L is estimated by computing its SSE (denoted
as SSE(L)), thus B(Li) = Bi · SSE(Li)

SSE(L0)+ c
j=i SSE(Lj)

.

We now show how B(Li) is exploited to store a partition of Li into buckets. The
idea is to partition Li according to a grid and store, for each cell of the grid containing
at least one point, the coordinates of its MBR and the sum of the values occurring in it.
The grid on a layer Li is constructed as follows.

If we denote as W the amount of storage space needed to store a bucket2, the number
of buckets produced by the grid on Li can be no more than nb = #B(Li)

W $. Thus, if tj is
the number of divisions of the grid along the j-th dimension of Li, it should hold that∏d

j=1 tj = nb.
We partition each edge of the MBR of the layer to be summarized into a number of

portions which is proportional to the length of the edge itself. See [8] for further details
on the technique used for defining such a “uniform” grid for each layer partition. The
cells of the grid which correspond to null regions of the data domain are not stored
explicitly. In the following, nb′ will denote the number of buckets generated by the grid
partitioning which are stored explicitly (i.e. the number of buckets containing at least
one non-null point). Therefore, after a layer Li is summarized, the residual amount of
storage space which will be available at step i + 1 is given by Bi+1 = Bi − nb′ · W
(that is, if some space which was assigned to the summarization of Li has not been
consumed, it is re-invested at the following steps).

Fig. 2 shows the execution of Step I and Step II on a two-dimensional data
distribution.

1 If more than one c-bucket contains o, one of these c-buckets is randomly selected to incorpo-
rate o. Adding an outlier o to a c-bucket b means removing o from L0 and adding the value of
o to sum(b).

2 We use 2 ·d 32-bit words for storing bucket boundaries, and one 32-bit word for storing the
sum-aggregate.
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Remark. Observe that adopting the grid-based scheme allows us to partition a layer L in
linear time (each data point inside L is accessed once and summarized in the cell of the
grid where it lies into): this feature will be particularly well-suited for the incremental
approach where an efficient partitioning strategy is needed to propagate data changes to
the histogram (see Section 3).

Fig. 2. Detection of layers, data partitioning, and bucket definition

2.3 Step III: Representation of the Histogram

The strategy adopted to partition layers can yield overlapping buckets. In particular,
buckets aggregating points of L0 (the layer consisting of outliers) are likely to be larger
than buckets describing clusters. Therefore, several c-buckets b1, . . . , bk can lie onto
the range of an o-bucket b. In this scenario b1, . . . , bk can be viewed as “holes” of b,
as the aggregate information associated to b does not refer to points contained inside
b1, . . . , bk. We now show how this observation can be exploited to make query estima-
tion more accurate. In the following, given an o-bucket b, the set of c-buckets completely
contained into b will be denoted as Holes(b).

Consider the scenario depicted in Fig. 3(a), where the query Q1 intersects one half
of the range associated to the bucket b. Adopting linear interpolation to estimate Q1

returns: Q̃1 = vol(Q1∩b)
vol(b) · sum(b), where Q1 ∩ b refers to the intersection between

the query range and the range of b. In fact points belonging to the ranges of b1, . . . , b9
give no contribution to the value of sum(b). Therefore, a more precise estimate for
Q1 is: Q̃1 = vol(Q1∩b)

vol(b)−vol(b1,...,b9)
· sum(b), where vol(b1, . . . , b9) denotes the volume

of the range underlying the buckets b1, . . . , b9. Likewise, the bucket b should give no
contribution to the estimate of the query Q2 in Fig. 3(b), which lies completely on the
range underlying the buckets b1, . . . , b9.

In the following the number of cells of an o-bucket b which are not contained in
any hole of b will be said to be the actual volume of b. In the case depicted in Fig. 3(a)
evaluating the actual volume of b can be accomplished efficiently, as b1, . . . , b9 do not
overlap. Indeed also c-buckets inside an o-bucket b can intersect one another 3. For
instance, in Fig. 3(c) the three buckets b1, b2, b3 inside b overlap. In this case computing

3 Although no pair of clusters C1, C2 can overlap (otherwise C1, C2 would be a unique cluster),
MBRs of clusters can overlap (see Fig. 3(c)). Thus partitioning overlapping MBRs can result
in overlapping c-buckets.
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Fig. 3. O-buckets with holes

the actual volume of b requires vol(b1), vol(b2), vol(b3), vol(b1 ∩ b2), vol(b2 ∩ b3) and
vol(b1 ∩ b2 ∩ b3) to be computed. This computation becomes more and more complex
when more buckets intersect in the same region: we need to compute the volumes of all
the intersections between 2 holes, 3 holes, and so on. Obviously, this slows down query
estimations. Due to this reason, we prefer to estimate the actual volume of an o-bucket b
involved in a query instead of evaluating its exact value: To this end we consider only a
maximal subset of Holes(b) (denoted as NOHoles(b)) consisting of non-overlapping c-
buckets, thus avoiding intersections between holes to be computed. For instance, in the
case depicted in Fig. 3(c) we can choose NOHoles(b) = {b3}, thus we can estimate the
actual volume of b as vol(b)−vol(b3). However we point out that from our experiments
on real-life data it turned out that intersections between c-buckets are unlikely to occur.

The adopted representation model partitions buckets into two levels. The buckets at
the second level are those belonging to NOHoles(b) for some b. The first level consists
of all the other buckets. In [8] we present an efficient physical representation scheme,
that is based on the possibility to linearize the two bucket levels and allows range query
answers to be estimated by accessing each bucket at most once.

3 Incremental Maintenance of CHIST on Evolving Data-Sets

The computational complexity of the histogram construction is dominated by the cost
of executing DBSCAN. DBSCAN runs in O(N ·log N) if a multi-dimensional indexing
technique is adopted to support the efficient location of neighbors. Indeed its complex-
ity degrades to O(N2) on high-dimensional data sets, where no indexing technique is
known to be efficient in searching the neighbors of data points. This is likely to limit the
applicability of CHIST to static data sets, such as non-evolving historical data, where
the construction of the histogram is performed only once. Otherwise, in the case of
evolving data sets, any change of the data would require the re-execution of the algo-
rithm from scratch. In order to reduce the overhead due to this task, the re-computation
of the histogram could be scheduled to be run periodically (e.g. every night) or when the
system managing data is unloaded. But this could make the histogram out-of-date, thus
compromising the estimation accuracy, especially in the case that data change much
more frequently w.r.t. histogram re-computation. Observe that the adoption of a clus-
tering technique more efficient than DBSCAN does not suffice to solve this problem, as
no technique is known to accomplish the (from-scratch) clusterization fast enough.

A possible solution to this problem is to adopt an incremental clustering technique
to propagate efficiently data changes to the clusterization. An incremental clustering
algorithm computes the clusterization of the updated data starting from the pre-existing
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clusterization and modifying it according to the data updates, aiming at reducing as
much as possible the amount of data to be accessed. However, replacing the non-
incremental clustering step with an incremental one at Step I may not suffice to make
the whole technique well-suited for reacting to frequent updates. In fact, Step II requires
a linear scanning of data to compute the bucketization of all layers. In order to exploit
the advantage of incremental clustering, Step II needs to be changed too, so that lay-
ers which are not affected by the data updates are not re-partitioned, thus exploiting as
much as possible the pre-existing bucketization.

Motivated by these observations, in this section we propose an incremental algo-
rithm for maintaining the histogram up-to-date w.r.t. data changes. In more detail, our
strategy works in three steps, which will be described in the following sections:

I Incremental clustering;
II Storage space distribution among layers and partitioning;

III Re-arrangement of buckets.

Throughout the following sections we assume that each point p of the data distribu-
tion is marked with two labels Flag(p) and Layer(p) 4. The former has a boolean value,
specifying whether p is an outlier or belongs to a cluster. Layer(p) is the identifier of
the layer where p is summarized: thus, if p is an outlier summarized in a o-bucket then
Layer(p) = 0, else if p is a point summarized in a c-bucket obtained by partitioning
the layer Li then Layer(p) is the identifier of Li. Basically, the values of Flag(p) and
Layer(p) describe the current composition of layers before executing a bulk of updates,
and are changed accordingly to the data updates during steps I,II. In particular, during
the execution of these steps, Layer(p) can be also assigned −1, meaning that p has not
been assigned to any layer yet.

3.1 Step I: Incremental Clustering

The task performed at this step consists in propagating data updates to the clusterization.
There are several techniques in literature which accomplish this task in an incremental
fashion, that is they compute the clusterization of updated data without re-executing
the clustering algorithm from scratch on all the data. In our prototype we adopted In-
cremental DBScan [7]. According to this technique, data updates may have different
effects on the clusterization, and thus on the corresponding layers. When a new point p
is added to the data distribution, one of the following cases may occur:

I1- no new cluster is created, and no old cluster is affected: this happens if p is an
outlier; in this case, the layer of outliers must be augmented, whereas the other
layers need no change; Flag(p) is assigned 0 (meaning that p is classified as an
outlier) and Layer(p) is assigned −1 (meaning that p is an outlier which has not
been summarized in any bucket yet);

I2- a new cluster including p is created, and no old cluster is affected: in this case,
a new layer is created (corresponding to the new cluster), and the layer of outliers
may need to be reduced (in the case that some pre-existing outliers are absorbed into

4 Apart from further labels possibly associated to the points by the adopted clustering algorithm.
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the new cluster). Layers corresponding to pre-existing clusters need no change. In
this case, for each point p′ included in the new cluster, Flag(p′) is assigned 1 and
Layer(p′) is assigned the id of the new cluster.

I3- no new cluster is created, and some old clusters are affected: this can arise from
one of the following cases:
• p is adsorbed by exactly one of the pre-existing clusters: in this case, the layer

of the involved cluster must be augmented; Flag(p) is assigned 1 and Layer(p)
is assigned the id of the cluster adsorbing p;

• p is adsorbed by two or more clusters, and these clusters are merged in a
single one: in this case, the layers of the merged clusters must be deleted, and a
new layer corresponding to the new cluster must be created. For each point p′

adsorbed by the new cluster Flag(p′) is assigned 1 and Layer(p′) is assigned
the id of the new cluster.

Moreover, in both cases the layer of outliers must be reduced if some pre-existing
outliers are absorbed into a cluster together with p. For each of these points p′,
Flag(p′) changes from 0 to 1 and Layer(p′) is assigned the id of the adsorbing
cluster.

Analogously, when a point p is deleted from the data distribution it can be one of the
following cases:

D1- no old cluster is affected: this happens if p was an outlier; in this case, the layer of
outliers must be reduced and no other layer need updates;

D2- exactly one old cluster is affected: this happens if p belonged to a cluster C. In
particular, one of the following cases can occur:

a. C is reduced: this happens when after the removal of p some points of C be-
come outliers; in this case the layer of C must be reduced and the outlier layer
must be augmented. In particular, for each p′ which is no more a cluster point,
Flag(p′) is assigned 0 and Layer(p′) is assigned −1;

b. C is deleted: this happens when the removal of p results in making no point
of C have a dense neighborhood, thus all points of C become outliers; in this
case the layer corresponding to C is deleted and the layer of outliers must be
augmented. For each point p′ which belonged to C Flag(p′) is assigned 0 and
Layer(p′) are assigned −1;

c. C is split into two or more clusters: this happens when, after the removal of p,
two or more core points are no more density-reachable from one another; thus
they define distinct clusters. In this case the layer corresponding to C is split
into two layers (i.e. the layer of C is deleted and two new layers are created).
Moreover the layer of outliers may need to be augmented (in the case that some
points belonging to C become outliers). For each point p′ involved in the split,
the values of Flag(p′) and Layer(p′) are changed consistently.

The above-reported list summarizes the operations performed on layers for a single
update. Indeed an incremental clustering step consists of processing a bulk of updates,
which is processed as a sequence of single updates. See [7] for further details and graph-
ical examples on how inserting/deleting points can change clusterization.
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The histogram maintenance is supported by an auxiliary (main-memory resident)
data structure consisting of two sets Lnew and Lold , whose items are of the form
< L, MBR(L), sum(L), sum2(L), count(L), B(L) >, where L is a layer identifier
and B(L) denotes the amount of storage space which was invested to partition L dur-
ing the construction of the old histogram (obviously B(L) = 0 if L is a newly detected
layer). The aggregate data sum(L), sum2(L) and count(L), as well as MBR(L), will
be used at Step 2 to evaluate the SSE of L, whereas B(L) will be used to decide whether
old layers need to be re-partitioned or not. Basically, at the end of the incremental clus-
tering step, Lnew and Lold contain the up-to-date clusterization (w.r.t. the processed bulk
of insertions and deletions). In particular, Lold contains the list of the layers which ex-
isted before the bulk of updates and which have not been affected by the updates; on the
contrary, Lnew consists of the layers which were not in the pre-existing clusterization.
Neither Lold nor Lnew contain any tuple corresponding to the layer of outliers: aggregate
data of L0 are stored separately from these lists.

At the beginning of the incremental clustering step, Lnew is empty while Lold con-
tains the list of the pre-existing layer identifiers and their aggregate data (except from
L0). During the execution of the incremental clustering step, both Lnew and Lold are
maintained up-to-date as follows. Consider an update operation u (i.e. insertion or dele-
tion) in the processed bulk of updates. Let Affected(u) be the set of layers affected by
u and Created(u) the set of layers created after performing u. Basically, Affected(u)
contains layers in Lold ∪Lnew which need either augmentation or reduction or deletion,
whereas Created(u) contains layers which need to be created (i.e. layers in Created(u)
can result from either splitting clusters, merging clusters, or creating new clusters). For
each layer L in Created(u) the tuple < L, MBR(L), sum(L), sum2(L), count(L), 0 >
is inserted into Lnew. For each layer L in Affected(u) the following operations are per-
formed. If L has to be deleted, then the corresponding tuple is removed from the list it
belongs to (either Lnew or Lold). Otherwise, if L needs either augmentation or reduction,
the attributes MBR(L), sum(L), sum2(L), count(L) in the corresponding tuple are
updated. Moreover, if L was in Lold the corresponding tuple is moved to Lnew (after
assigning 0 to B(L)). Finally, for each outlier p which had been summarized into the
buckets of some layer in Affected(u) the value of Layer(p) is changed to −1.

Therefore, at the end of the incremental clustering, every point p classified as a
cluster point is assigned Flag(p) = 1 and Layer(p) = id(L), where L is the layer
corresponding to the cluster containing p. For each outlier p, Flag(p) is assigned 0; as
regards Layer(p) one of the following cases can occur:

– Layer(p) = i ≥ 0: this means that p is currently summarized into a bucket associ-
ated to the layer Li;

– Layer(p) = −1: this means that p is not currently summarized into any bucket (this
can be due to two reasons: either p is a newly created outlier, or p was an outlier
summarized into a layer affected by the data update).

As we will show in the following section, every outlier whose Layer value is −1
will be assigned to exactly one layer and summarized into one of its buckets. That is, if
the outlier p happens to be summarized into an o-bucket, then Layer(p) will be assigned
0, else if p happens to be adsorbed by a c-bucket b, then Layer(p) will be assigned the
id of the layer which b refers to.
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Lists Lnew and Lold will be used at Step II to detect layers which need to be
partitioned.

3.2 Step II: Storage Space Distribution Among Layers and Partitioning

The incremental clustering step results in a new clusterization, where new layers may
be added and some pre-existing layers may be either deleted or modified w.r.t. the pre-
vious clusterization. The overall amount of storage space B must be now re-distributed
among the layers in L = Lnew ∪Lold ∪ {L0}. Adopting the same criterion as the non-
incremental approach (see Section 2.2) is likely to result in changing the amount of
storage space assigned to layers in Lold, thus requiring also all layers non-affected by
data updates to be re-partitioned. This should be avoided, as it would imply to re-scan
all data points. Thus, in the incremental approach, we adopt a different strategy to dis-
tribute the available storage space B among layers. This strategy aims at being fair and
restricting as much as possible the set of pre-existing layers to be re-partitioned.

Layers in Lold and Lnew and the layer of outliers L0 will be considered into three
distinct phases, to be executed in the following order.

Partitioning layers in Lold. We denote as B̂(Lold) the portion of B which we want to
assign on the whole to layers in Lold. According to a fair distribution of the available
storage space B between Lold and Lnew, we choose:

B̂(Lold) =
SSE(Lold)
SSE(L)

· B,

where: SSE(Lold) =
∑

L∈Lold
SSE(L) is an estimate of the overall inhomogeneity of

layers in Lold, and: SSE(L) =
∑

L∈L SSE(L) measures the overall inhomogeneity of
all the layers resulting from the clusterization. Notice that the SSE of each layer L is
computed by accessing the aggregate data sum(L), sum2(L), count(L), MBR(L),
stored in the tuple in L corresponding to L: SSE(L) = sum2(L) − (sum(L))2

Vol(L) .
Let B(Lold) =

∑
L∈Lold

B(L) be the amount of storage space consumed by the

summarization of all the layers in Lold . First B̂(Lold) is compared to B(Lold). The idea
is that if B(Lold) is pretty “close” to B̂(Lold) we do not re-partition layers in Lold.
In particular in order to decide whether B(Lold) is close to B̂(Lold), we introduce a
threshold parameter t. Thus if |B̂(Lold) − B(Lold)| < t · B̂(Lold), the pre-existing
partition of layers in Lold will not be changed.

Otherwise layers in Lold are re-partitioned depending on which of the following
cases occurs:

– B(Lold) > (1 + t) · B̂(Lold): this means that the amount of storage space cur-
rently invested to summarize layers in Lold is on the whole too large (according to
the adopted fair-distribution criterion); thus we re-partition some layers in Lold by
means of a coarser-grain grid in order to release some storage space;

– B(Lold) < (1 − t) · B̂(Lold): in this case we augment the storage space currently
invested to summarize Lold, by re-partitioning by means of a finer-grain grid the
layers in Lold which are the most in need of a finer partition.
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In order to choose the layers to be re-partitioned, for each layer L in Lold we evaluate
B̂(L) = SSE(L)

SSE(L) · B. The value of B̂(L) is a fair portion of the available storage space
to be assigned to L.

A layer L in Lold such that B(L) > B̂(L) is said to be indebted, in the sense that it
is assigned an amount of storage space larger than the amount it would be assigned in
a fair space distribution based on its relative inhomogeneity. So it is “in debt” of some
storage space to other layers. On the contrary, a layer L such that B(L) < B̂(L) is said
to be creditor, in the sense that it is assigned an amount of storage space smaller than
the one it would need according to its SSE. That is, it is creditor of some storage space.

Consider the case that B(Lold) > (1+ t) · B̂(Lold) holds. Then, it is straightforward
to see that there is at least one indebted layer in Lold such that B(L) > (1 + t) · B̂(L).
Let L∗ be the most indebted layer in Lold. The idea is to deprive L∗ of some storage
space in order to make the overall space consumed by layers in Lold closer to B̂(Lold).
In particular, we steal from B(L∗) a portion of storage space which makes L∗ creditor
of t

2 · B̂(L∗). Therefore, the amount of storage space stolen from L∗ is:

B−(L∗) = B(L∗)−
(

1− t

2

)
·B̂(L∗).

Then we re-partition L∗ by investing the amount of storage space B(L∗)−B−(L∗).
If at the end of this step B(Lold) > B̂(Lold) still holds, then we choose the layer in
Lold which is the most in debt and deprive it of some storage space, using the same
strategy as above. This process goes on until B(Lold) ≤ B̂(Lold). That is, we take
layers which are “very much indebted” and make them “pretty” in credit (we use the
threshold value t/2 to estimate that a layer is creditor in a small extent): this strategy
aims at reaching rapidly the condition B(Lold) ≤ B̂(Lold), by reducing the number of
layers to be re-partitioned, which is mandatory for the efficiency requirements of the
incremental approach.

In the case that B(Lold) < (1 − t) · B̂(Lold) an analogous approach is adopted: we
choose the layer L∗ which is creditor of the largest amount of storage space, and we
augment its storage space by adding to it:

B+(L∗) =
(

1+
t

2

)
·B̂(L∗)−B(L∗),

which means making L∗ indebted of at most t
2 · B(L∗). Then we re-partition L∗, and

re-iterate this procedure on the other creditors in Lold until B̂(Lold) ≥ B(Lold).
By means of experiments, we found that the threshold value t = 20% preserves the

accuracy of the updated histogram and it effectively limits the number of layers to be
re-partitioned.

If a layer L ∈ Lold is chosen to be re-partitioned (as it is creditor or indebted in too
large extent), the Layer value of the outliers which were summarized in the buckets of
L at some previous step is assigned the value −1. These outliers will be considered for
summarization into some bucket at the following step.

In the following, outliers whose Layer value is −1 will be said to be new outliers,
whereas outliers whose Layer value is greater than or equal to 0 will be said to be old
outliers.
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Partitioning layers in Lnew. Layers L1, . . . , Lα in Lnew are partitioned sequentially
according to the same scheme adopted in the non-incremental approach. The amount of
storage space invested to partition layers in Lnew is B(Lnew) = SSE(Lnew)

SSE(L) · B. Then for
each i ∈ [1..α], the layer Li is summarized according to the grid-partitioning scheme
described in Section 2.2 by investing the amount of storage space:
B(Li) = Bi · SSE(Li)

SSE(L0)+ α
j=i SSE(Lj)

,

where B1 = B(Lnew) and Bi is the portion of B(Lnew) which is left from the summa-
rization of L1, . . . , Li−1.

Partitioning L0. Let B′ = B − B(Lnew) − B(Lold) be the amount of storage space
which can be invested to summarize L0, i.e. the portion of B which is left from summa-
rizing layers in Lnew and Lold. L0 is re-partitioned if one of the following cases occurs:

1. B(L0) ≥ B′: this means that the current bucketization of L0 makes the overall stor-
age space consumption of the histogram exceed B, thus L0 must be re-partitioned
using a coarser-grain grid;

2. B(L0) ≤ (1 − t) · B′: this means that the space currently invested to partition L0
is too small (according to the threshold t), thus L0 must be re-partitioned using a
finer-grain grid.

If either case 1 or case 2 occurs, L0 must be re-partitioned, thus a new grid is defined
on L0 (by investing the amount of storage space B − B(Lnew) − B(Lold)). In this case
both new and old outliers are scanned, and each outlier is summarized either into a c-
bucket or into an o-bucket, depending on whether it lies into the range of some c-bucket
or not.

Otherwise, if neither case 1 nor case 2 occurs, the existing grid-partitioning of L0
is kept and the current summarization is updated as follows. First, the new outliers are
scanned and summarized into either a c-bucket or an o-bucket, as for the previous case.
Then, the buckets of L0 are deprived of the outliers which lie into the range of some
newly created c-bucket.

Details on how these tasks are accomplished in the implementation are given in
Section 4.

3.3 Step III: Re-arrangement of Buckets

The task accomplished at this step consists of applying the same physical representa-
tion scheme as the non-incremental approach to the set of buckets resulting from Step II.
The up-to-date histogram consists of buckets of four types: 1) c-buckets resulting from
partitioning layers in Lnew, 2) c-buckets resulting from re-partitioning selected layers in
Lold, 3) c-buckets inherited from the previous histogram which refer to layers in Lold

which have not been re-partitioned, 4) o-buckets partitioning L0 (these buckets can re-
sult either from updating the o-buckets of the previous histogram or from re-partitioning
L0). The pre-existing arrangement of buckets is not exploited to re-arrange new buck-
ets, as this does not result in a relevant overhead. In fact all the operations needed to
accomplish this task are performed in main memory (where the new bucketization is
stored), without accessing disk-resident data.

The algorithm implementing steps I to III is shown on the next page.
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Algorithm. Incremental CHIST
INPUT : D: a multi-dimensional data distribution; B: 32bit words used to store the histogram;

H : the histogram currently built on D; u: the bulk of updates to be propagated to H ;
OUTPUT : H ′: an up-to-date histogram on D within B;

Step I
< Lold, Lnew, L0 >:= Incremental DBSCAN(H,D, u); // the new layerization reflecting updates;

Step II
Partitioned=∅; NewBuckets=∅; B(Lold) = SSE(Lold)

SSE(L) · B; B(Lold) = L∈Lold
B(L);

if B(Lold) ≥ (1 + t) · B(Lold) then
while B(Lold) ≥ (1 + t) · B(Lold) do

L = SelectMostIndebted(Lold); Partitioned=Partitioned ∪ L; B(L) = (1−t
2 )·SSE(L)

SSE(L)·B;
NewBuckets= NewBuckets ∪ GridPartition(L, B(L)); // L is re-partitioned and all the outliers

// which were summarized in it are

// assigned to L0;
end while

elsif B(Lold) ≤ (1 − t) · B(Lold) then
while B(Lold) ≤ (1 − t) · B(Lold) do

L = SelectMostCreditor(Lold); Partitioned=Partitioned ∪ L ; B(L) = (1+t
2 )·SSE(L)

SSE(L)·B;
NewBuckets= NewBuckets ∪ GridPartition(L, B(L));

end while
end if;
Lold = Lold \ Partitioned; // Lold contains now all the non re-partitioned pre-existing layers;

for each L in Lnew do
B(L) = L.SSE

L0.SSE+SSE(Lnew) ·(B−size(Partitioned)−size(Lold)); // the amount of memory invested

// to summarize L;
NewBuckets= NewBuckets ∪ GridPartition(L, B(L)); // L is partitioned and resulting buckets

// are added to NewBuckets;

Partitioned=Partitioned ∪ L;
end for;
B′ = B − size(Partitioned) − size(Lold); // function size returns the amount of memory

// needed to store the buckets taken as input;

if B(L0) ≤ B′ and B(L0) ≥ (1−t) · B′ then
O-Buckets= H.O-Buckets; // H′ inherits the set of o-buckets of H;

DistributeNewOutliers(NewBuckets, O-Buckets); // New outliers are distributed among

// new c-buckets and old o-buckets;

MoveOutliers(NewBuckets, O-Buckets); // O-buckets are deprived of old outliers

// lying into some new c-bucket;

else
O-Buckets= PartitionAndDistribute(L0, B − size(Partitioned) − size(Lold), NewBuckets);

end;

Step III
H ′ =Assemble(NewBuckets, UnchangedBuckets(H, Lold), O-Buckets);
return H ′;
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4 Costs of the Non-incremental and Incremental Approaches

The difference in the number of disk accesses between the two approaches is due to
two reasons. First, the adoption of the incremental clustering, which is likely to re-
sult in much fewer disk accesses w.r.t. the non-incremental one. Secondly, the strategy
adopted at Step II, which aims at limiting the number of layers to be re-partitioned,
avoiding re-scanning the whole data. As regards the former aspect, the extent of the
benefit introduced by the use of an incremental clustering approach strictly depends
on the particular clustering algorithm invoked. In the case of DBSCAN, no simple for-
mula is known to provide the speedup factor corresponding to the use of its incremental
version, thus the speedup must be determined experimentally.

As regards the second aspect, we can compare the number of disk accesses as fol-
lows. In the non incremental approach, after accomplishing the clusterization, a region
query must be posed corresponding to the MBR of each detected dense cluster to parti-
tion it according to the grid; then, the list of outliers must be scanned to distribute them
among c-buckets and o-buckets. Thus, denoting the number of dense clusters as c, the
number of data points as N and the number of pages containing outliers as Out, the num-
ber of disk accesses is O(c · log N + Out) (we assume that a multi-dimensional index
enabling region queries to be answered with log N accesses is maintained, as well as an
inverted index of the pages containing outliers). As regards the incremental approach, let
c′ be the number of clusters which need to be partitioned, OldOut the number of pages
containing the old outliers and NewOut the number of pages containing the new out-
liers. We must pose c′ region queries to partition the dense clusters and we have to scan
NewOut pages to distribute the new outliers among c-buckets and o-buckets. Moreover,
if it is the case that L0 must be re-partitioned, we must also scan OldOut pages to repar-
tition it and possibly adsorb old outliers into new c-buckets. Otherwise, if L0 does not
need re-partitioning, we must only pose bnew region queries on the set of old outliers to
possibly adsorb some of them into new c-buckets (bnew denotes the number of the new c-
buckets). Therefore, the overall number of disk accesses is O(c′ · log N +NewOut+X),
where X is either bnew · log OldOut (if L0 is not re-partitioned) or OldOut (if L0 must
be re-partitioned). Observe that in order to support the incremental approach we also
maintain an inverted index on the newly detected outliers (which allows us to scan all
the new outliers by means of NewOut accesses) as well as a multi-dimensional index
to answer region queries on old outliers with log Out accesses. Notice that in the worst
case NewOut + X = Out (in the non-incremental approach there is no distinction be-
tween new and old outliers, thus Out = NewOut + OldOut), but in the case that the
outlier layer is not repartitioned NewOut+X can be reasonably assumed much smaller
than Out. Moreover we can assume c′ much smaller than c. Therefore if the number
of outliers is “small” w.r.t. the whole data size, then the adoption of the incremental
strategy always results in a relevant benefit, otherwise the extent of this benefit depends
on the probability that L0 must be repartitioned.

The latter issue cannot be investigated but experimentally, as well as the speedup
due to the adoption of the incremental clustering strategy. Therefore in the following
section we will provide an experimental analysis of the overall benefit of the incremen-
tal approach, which both the incremental clusterization and the partitioning strategy
contribute to.
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5 Experimental Results

Experimental results showing the higher accuracy provided by CHIST w.r.t state-of-
the-art techniques on static data have been shown in [8]. Here we present experiments
testing the effectiveness of the incremental approach, comparing it with the from-
scratch execution of CHIST. Synthetic data sets were generated according to a multi-
dimensional zipf distribution law. Basically a data set consists of a number of dense
regions randomly distributed in the data domain. Randomly generated points are added
to simulate noise (for further details see [8]).

To generate a bulk of insertions on a distribution D, we first generated a distribu-
tion D′ on the same domain and using the same data generator as D. Then a bulk of
insertions on D is created by randomly extracting some points from D′. The idea of
extracting points from D′ to be inserted into D is that this allows us to simulate both
the creation of new dense clusters and new outliers in D. Deletions on D consist of
randomly selected points of D. Thus a bulk of updates is a set of insertions and dele-
tions, generated as explained above. For a bulk of updates u, we will denote as pu the
percentage of insertions in u.

Diagrams in Fig. 4(a,b,c) refer to a 4D data distribution where n (the edge size of
the domain) is 1000, while diagrams in Fig. 4 (d,e,f) refer to an 8D data distribution
with n = 1000.

Fig. 4 (a,d) show the speedup due to the use of Incremental CHIST versus the
size of updates (expressed as percentage of the data size) on a 4D and a 8D syn-
thetic data distribution, respectively. For a bulk of updates u, the speedup is the ratio

N. of pages accessed by CHIST
N. of pages accessed by Incremental CHIST . Fig. 4 (a,d) show that the benefit of using the incremen-
tal approach is very relevant (in both cases we obtained a speedup value of about 200
for update size of 1%). As expected, the speedup decreases as the size of the updates
gets larger. Observe that the speedup depends also on the type of updates: the larger the
percentage of insertions, the higher the speedup. This is in accordance with [7], where
it was observed that deletions on the average result in more complex changes of the
clusterization, as they involve a larger number of pre-existing clusters than insertions.

Diagrams in Fig. 4 (b,e) study the accuracy of the incremental approach, compared
with that of the non-incremental one. They depict the ratio e = eni

ei
between the relative

errors provided by the non-incremental approach (i.e. eni) and the incremental one (i.e.
ei) versus the size of updates. Experiments were conducted investing 2000 buckets to
represent the histogram. Two query workloads (one for the 4D case and the other one
for the 8D case) were used to evaluate estimation accuracy. Each of them consists of
50000 queries whose selectivity is between 0.4% and 0.5% . Fig. 4 (b,e) show that the
ratio eni

ei
is close to 1 and is almost unaffected by the size of updates. This means that

the adoption of the incremental approach does not result in degrading accuracy w.r.t.
the non-incremental one.

Observe that the diagrams in Fig. 4 (b,e) do not say that the accuracy provided by
the histograms computed after each bulk of updates is constant as data changes. In fact,
if the bulk of updates consists mainly of insertions the size of the whole data distribu-
tion increases, thus if the size of the histogram is kept constant the accuracy obviously
decreases as new data are inserted. Analogously, if the bulk of updates consists mainly
of deletions the size of the whole data distribution decreases, a new histogram within
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Fig. 4. Speedup synthetic data (a,d); ratio e = eni
ei

for fixed histogram size (b,e); relative error for

fixed compression ratio (c,f)

the same storage space bound provides higher accuracy. Thus we performed other ex-
periments keeping the compression ratio constant (i.e. the ratio between the size of the
data and that of the histogram): that is, instead of keeping B constant, at each invocation
of the incremental algorithm, we re-computed B according to the size of the updated
data. Fig. 4(c,f) depict how error rates change w.r.t. update size (compression ratio was
kept equal to 50). In these experiments the same query workloads of Fig. 4(b,e) were
used. They show that error rates are almost unaffected by changes in update size.

6 Conclusions

We have proposed a new technique for constructing multi-dimensional histograms pro-
viding high accuracy for selectivity estimation. Our technique invokes a density-based
clustering algorithm to partition data into dense and sparse regions which are further
partitioned according to a grid-based scheme. We have extended this approach to the
case of dynamic data. In this context we have designed a technique exploiting an in-
cremental cluster analysis strategy to propagate data updates to the histogram which
aims at limiting the amount of data to be re-processed. We have tested the effectiveness
of the incremental approach showing that it yields a relevant speedup factor (w.r.t. the
non-incremental one) and that its adoption preserves accuracy as data changes.
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Future work will aim at considering different clustering techniques to be embed-
ded into our approach, in order to study how they can be exploited to improve the
histogram construction cost while preserving its accuracy. Moreover the effectiveness
of combining our approach with techniques for reducing data dimensionality (such as
SPARTAN [2]) will be investigated.

Acknowledgements. The authors are grateful to Giuseppe Manco for fruitful discus-
sions and valuable comments on several issues related to cluster analysis.
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Abstract. Current methods for selectivity estimation fall into two
broad categories, synopsis-based and sampling-based. Synopsis-based
methods, such as histograms, incur minimal overhead at query opti-
mization time and thus are widely used in commercial database sys-
tems. Sampling-based methods are more suited for ad-hoc queries, but
often involve high I/O cost because of random access to the underly-
ing data. Though both methods serve the same purpose of selectivity
estimation, their interaction in the case of selectivity estimation for con-
juncts of predicates on multiple attributes is largely unexplored. Our
work aims at taking the best of both worlds, by making consistent use
of synopses and sample information when they are both present. To
achieve this goal, we propose HASE, a novel estimation scheme based
on a powerful mechanism called generalized raking. We formalize selec-
tivity estimation in the presence of single attribute synopses and sam-
ple information as a constrained optimization problem. By solving this
problem, we obtain a new set of weights associated with the sampled tu-
ples, which has the nice property of reproducing the known selectivities
when applied to individual predicates. We discuss different variants of
the optimization problem and provide algorithms for solving it. We also
provide asymptotic error bounds on the estimate. Extensive experiments
are performed on both synthetic and real data, and the results show that
HASE significantly outperforms both synopsis-based and sampling-based
methods.

1 Introduction

Query optimizers in most relational database systems rely on cost estimation
of various candidate query execution plans to select a good one. Accurate plan
costing can help avoid intolerably slow plans. A key ingredient in cost estima-
tion is to estimate the selectivity of various predicates. In this paper, we are
mainly concerned with selectivity estimation for conjunctive predicates of the
form Q = P1 ∧ P2 . . . Pm where each component Pi is a simple predicate on a
single attribute, taking the form of (attribute op constant) with op being one of
the comparison operators <,≤, =, �=,≥, or > (e.g., R.a = 100 or R.a ≤ 200).

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 460–477, 2006.
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In terms of methodology, existing work on selectivity estimation takes two fun-
damentally different approaches: one is based on synopsis data structures and
the other is based on sampling. Synopsis-based approaches seek to pre-compute
summary data structures which capture statistics on the data (attribute value
distributions). Such synopses are stored in the database catalogs, and subse-
quently used for estimation when required. A prominent example in this class of
approaches is histograms, which have received heavy attention; numerous types
of histograms [1, 2] have been proposed in recent years aiming to improve the
accuracy of histogram-based selectivity estimation. Almost all major commer-
cial database management systems (e.g., IBM R© DB2 R© Universal DatabaseTM

product(DB2 UDB), Oracle, SQL Server) keep some form of histograms in their
catalogs and use them for selectivity estimation.

Sampling-based approaches are more query-driven in nature, in the sense
that data is not accessed until optimization time. Given a query, a sample is
derived from the database, and selectivities are estimated based on this sample.
There exists an extensive literature on sampling-based methods for selectivity
estimation; see [3] for a comprehensive survey. In recent years, all of the major
commercial database system vendors have incorporated sampling capabilities
into their engines [4].

Both approaches have their advantages and disadvantages. Synopsis struc-
tures, such as histograms, only need to be computed once and can be used many
times while incurring minimal overhead at selectivity estimation time. However,
it is difficult to capture all useful information in the limited space. For example,
the one-dimensional histograms commonly used in the commercial DBMS’s do
not provide correlation information between attributes. Although it is possible
to compute multi-dimensional histograms for some attribute combinations, it is
generally not feasible to compute and store the multi-dimensional histograms
for all attribute combinations, because the number of combinations is exponen-
tial in the number of attributes [5]. Without knowing of the query workload,
deciding which combinations of attributes to choose in order to construct multi-
dimensional histograms can be very difficult. Sampling approaches, on the other
hand, are able to provide such crucial information through a representative sam-
ple of the data. The downside, however, is that sampling at selectivity estimation
time incurs non-trivial cost, because in order to obtain a fairly accurate estimate,
sometimes a significant portion of the data might have to be accessed. Since sam-
pling requires random access, which is much slower than sequential access, it is
possible that the cost of sampling exceeds that of a sequential scan of the data
when the sample size is relatively large. (Haas et al. [4] show that under certain
assumptions, the cost of sampling is greater than that of sequential scan when
the sample rate is greater than 2% and tuple-level sampling is used.)

To the best of our knowledge, there is no previous work exploring the inter-
action of these two approaches in order to make consistent use of both sources
of information. This paper represents a first step in this direction. In particu-
lar, we propose HASE (A Hybrid Approach to Selectivity Estimation), a novel
method based on the powerful generalized raking procedure originally deployed
in the context of survey sampling. Sampling-based methods usually associate
with each sampled tuple a sampling weight reflecting its inclusion probability
(i.e., the probability of being selected to the sample), which is used to produce
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a selectivity estimate. Given selectivities of individual predicates Pi (which can
be easily obtained from attribute synopses) in addition to the sample, we aim to
obtain better estimates by adjusting sampling weights, in a way that is consis-
tent with the information on individual selectivities obtained from the synopses.
In particular, we adjust the weights of the tuples in the sample, while maintain-
ing the new weights as close as possible to the original weights. We formalize
this problem as a constrained optimization problem. Its solution derives the new
weights that can then be used to obtain improved selectivity estimates.

We present a general numerical solution to this optimization problem, as
well as an iterative solution based on the intrinsic structure of the problem.
We consider two different measures of “closeness” between the new weights and
the original weights, namely the linear distance function and the multiplicative
distance function, and compare them in terms of computational efficiency and
interpretability. We also provide asymptotic bounds on the estimation errors.

The rest of this paper is organized as follows. In Section 2, we formally define
the problem of selectivity estimation for conjunctive predicates, and describe
how selectivity estimates are obtained in existing approaches. Section 3 presents
HASE, our proposed approach based on generalized raking. Experimental results
on both synthetic and real data sets are presented in Section 4. We briefly review
existing approaches to selectivity estimation in Section 5. Section 6 concludes
this paper and discusses directions for future work.

2 Background

In this section, we formally define the problem of selectivity estimation for con-
junctive predicates and discuss two existing ways of conducting the estimation,
one based on synopses and one on sampling.

2.1 Problem Definition

We are interested in predicates taking the form of Q = P1 ∧P2 ∧· · ·∧Pm, where
each Pi(1 ≤ i ≤ m) is a simple predicate of the form (attribute op constant) with
op being one of the comparison operators <,≤, =, �=,≥, or >. The selectivity
si(∈ [0, 1]) is defined as the fraction of tuples on which predicate Pi evaluates
to true, i.e., si = Ni/N , where N is the number of tuples in the table, and
Ni is the number of tuples satisfying Pi. The selectivity of the conjuncts of
predicates Q, denoted by sQ(∈ [0, 1]), is the fraction of tuples satisfying all the
Pi’s simultaneously. sQ is the quantity we would like to estimate. When there is
no ambiguity, we use s as a shorthand for sQ.

We measure the error of an estimate ŝ by the absolute relative error

E(ŝ) =
|ŝ − s|

s
. (1)

Throughout the paper, we use the following scenario as a running example.
Consider a table R with N = 10, 000 tuples and three attributes Ai(i = 1, 2, 3).
Let P1 = (A1 = 1), and P2 = (A2 = 1). Suppose we need to estimate the
selectivity of the following query: Q = P1 ∧P2. If there are 500 tuples satisfying
Q, then the true selectivity of Q is s = 500/10000 = 0.05.
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2.2 Synopsis-Based Estimation

Assume that we have access to synopsis structures for all individual attributes
involved such that selectivity estimates si(1 ≤ i ≤ m) can be obtained. Without
any information regarding the correlation between attributes, optimizers in cur-
rent database systems estimate sQ based on the assumption that the values in
distinct attributes are independently distributed. In other words, knowing that
a tuple satisfies a predicate on one attribute does not give any information as to
whether it satisfies a predicate on another. Therefore, s is estimated by taking a
product of the selectivity estimates of individual predicates, i.e., ŝhis =

∏m
i=1 si.

In the running example, suppose we have access to single-attribute histograms
on A1 and A2, and therefore we can derive the selectivities of the two predicates,
namely s1 and s2, from the histograms. Suppose s1 = 0.6, and s2 = 0.3. If we
assume A1 and A2 are independent, then the selectivity of Q is estimated to be
ŝhis = s1 · s2 = 0.18, and the error is E(ŝhis) = |0.18 − 0.05|/0.05 = 260%.

This simple estimation scheme gives accurate estimates when the attributes
are indeed independent. Real-life data sets, however, almost always demon-
strate a certain degree of correlation between attributes; therefore, making the
attribute-value independence assumption often leads to erroneous estimates.
In the above example, treating the attributes A1 and A2 as independent in-
curs a large error (260%). As another example, suppose we have the follow-
ing query on a CAR table in a vehicle information database: Q = (MAKE
= “BMW”)∧(MODEL = “M3”), and we know through one-dimensional his-
tograms that the selectivity of the predicate (MAKE = “BMW”) is 0.1, and that
the predicate (MODEL = “M3”) has a selectivity of 0.01. The optimizer then
would estimate the selectivity of Q as 0.1 × 0.01 = 0.001, as per the attribute-
value independence assumption. Note, however, that there is strong correlation
between the attributes MAKE and MODEL. Because M3 is exclusively made
by BMW, all tuples satisfying the predicate MODEL=“M3” would also satisfy
the predicate MAKE=“BMW”. Therefore, the selectivity of Q is actually 0.01,
10 times that of the estimated selectivity.

2.3 Sampling-Based Estimation

Now let us look at how to obtain an estimate of the selectivity based on a sample
of the data. Suppose a random sample S of size n is taken from the queried table
R of size N , where the inclusion probability (the probability of being selected
into the sample) of the j-th tuple is πj . The Horvitz-Thompson (HT) estimator
[6] for the selectivity of the query Q, given the sample S, is

ŝspl =
1
N

∑
j∈S

yj

πj
(2)

where yj is an indicator variable such that yj = 1 if tuple j satisfies Q, and yj = 0
otherwise. In the case of simple random sampling (SRS), where the inclusion
probabilities are all equal to n/N , Eq. (2) simplifies to ŝspl = 1

n

∑
j∈S yj.
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In our running example, suppose we take an SRS S of size n = 100 from
table R. Clearly, the inclusion probabilities for tuples in R are all equal to
100/10000 = 0.01. If 9 tuples in the sample satisfy Q, then the HT estimator is
ŝspl = 9/100 = 0.09, and the error is E(ŝspl) = 80%.

A major problem with the use of sampling is the I/O overhead incurred.
Since sampling requires random access to data, it is often the case that even if
a very small sample is taken, the associated I/O cost is comparable to that of
a full sequential scan of the data. For example, if each page contains 50 tuples,
and the sample rate is higher than 2%, essentially all pages have to be accessed
because 50×2% = 1 (See [4] and [7] for a detailed analysis of this issue). Recently,
there has been work on using page-level sampling in conjunction with tuple-level
sampling to reduce the sampling cost [4, 7]. We take a complementary approach
to this problem and attempt to decrease the sampling cost by utilizing existing
synopsis information on the data. Haas et al. [4] show that the expected fraction
f of pages to be accessed for a sample rate of q is given by f = 1 − (1 − q)c,
where c is the number of tuples on each page. It is evident that f decreases very
fast as the sample rate drops, which means that if we can achieve the same level
of accuracy with a lower sample rate, the I/O savings can be significant.

3 HASE

Our objective is to use the sample information in conjunction with the synopses
to obtain better estimates. To this end, we develop a hybrid approach, HASE,
by applying generalized raking [8, 9], a procedure originally utilized in survey
sampling, to the problem of selectivity estimation.

3.1 Calibration

Suppose we have obtained a sample of the data, and we also know the selectivities
of individual predicates Pi. We begin with an estimator constructed based on
the sample only, without reference to any additional information, such as the HT
estimator (Eq. (2)). For each tuple j in table R, in addition to the variable of
interest yj, we also associate with it an auxiliary vector xj to reflect the results
of evaluating Pi on j. Suppose each predicate Pi divides tuples in R into two
disjoint subsets, Di and D̄i, according to whether they satisfy the predicate or
not. We further define Dm+1 = R, i.e., j ∈ Dm+1 for all j. Let xj be a column
vector of length m+1: xT

j = (xj1, . . . , xjm, xj,m+1), with the i-th (1 ≤ i ≤ m+1)
element being 1 if j ∈ Di, and 0 otherwise. For instance, in the running example,
xT

j = (1, 0, 1) indicates that tuple j satisfies P1, but not P2.
Let tT

x = (tx1, . . . , txm, tx,m+1) = 1
N

∑
j∈R xj . Clearly, txi = 1

N

∑
j∈S xji = si

(1 ≤ i ≤ m), the selectivity of predicate Pi, and tx,m+1 = 1. Therefore,

tT
x = (s1, s2, . . . , sm, 1) (3)

Suppose si can be obtained based on synopsis structures, and xj are observed
for each tuple j ∈ S. This allows construction of a new estimator (which we call
the calibration estimator)
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ŝcal =
1
N

∑
j∈S

wjyj , (4)

where the weights wj are as close to the weights dj = 1/πj as possible according
to some distance metric (recall that πj is the inclusion probability of j), and
where

1
N

∑
j∈S

wjxj = tx, (5)

meaning that the weighted average of the observed xj has to reproduce the
known selectivities si.

In light of the definition of xj and Eq. (3), Eq. (5) can be rewritten as

1
N

∑
j∈S∩Di

wj = si, i = 1, 2, . . . , m + 1. (6)

where sm+1 = s. Now wj has a natural representation interpretation: it is the
number of tuples “represented” by the sampled tuple j.

In our running example, Eq. (6) becomes

1
10000

∑
j∈S∩D1

wj = 0.6,
1

10000

∑
j∈S∩D2

wj = 0.3, and
1

10000

∑
j∈S

wj = 1. (7)

Although in general, there can be many possible choices for the sets of weights
{wj} satisfying the constraints in Eq. (6), our goal is to select a set of new
weights that are as close as possible to the original weights di = 1/πi, which
enjoy the desirable property of producing unbiased estimates. By keeping the
distance between the new weights and the original weights as small as possible,
we expect the new weights to remain nearly unbiased. We formulate this idea as
a constrained optimization problem as described below.

3.2 The Constrained Optimization Problem

Let D(x) be a distance function (with x = wj/dj) that measures the distance
between the new weights wj and the original weights dj . We assure that D(x)
satisfies the following requirements (for reasons that will become clear later): (i)
D is positive and strictly convex, (ii) D(1) = D′(1) = 0, and (iii) D′′(1) = 1.
The optimization problem we have to solve is:

Minimize ∑
j∈S

djD(wj/dj) (8)

subject to
1
N

∑
j∈S

wjxj = tx. (9)

Here, both xj and tx are defined as in Section 3.1. Since D(wj/dj) can have
a large response to even a slight change in wj when dj is small, we minimize
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j∈S djD(wj/dj) instead of

∑
j∈S D(wj/dj) in order to dampen this effect.

Also note that different distance functions can be used to measure the distance
between {wj} and {dj}, as long as the distance function complies with condi-
tions (i) to (iii). In this paper, we consider the following two distance functions
because of the computational efficiency and interpretability. Both distance func-
tions exhibit properties (i) to (iii). We discuss the choice of distance functions
in Section 3.5.

1. The linear distance function: Dlin(wj/dj) = 1
2 (wj

dj
− 1)2, and

2. The multiplicative distance function: Dmul(wj/dj) = wj

dj
log wj

dj
− wj

dj
+ 1

3.3 An Algorithm Based on Newton’s Method

We now present algorithms to solve the constrained optimization problem. A
classical technique for solving constrained optimization problems is the method
of Lagrange multipliers [10]. Note that the optimization problem can be rewritten
as follows:

Minimize ∑
j∈S

djD(wj/dj) − λT (
∑
j∈S

wjxj − Ntx) (10)

with respect to wj(j ∈ S),
where λ = (λ1, . . . , λm, λm+1) is a Lagrange multiplier. Differentiating Eq. (10)
with respect to wj , we have

D′(wj/dj) − xT
j λ = 0 (11)

Then we can solve the system formed by Eq. (11) and (9) for wj . To do this, we
obtain from (11) that

wj = djF (xT
j λ), (12)

where F (x) is the inverse function of D′(x). Conditions (i)-(iii) dictate that the
inverse function always exists, and F (0) = F ′(0) = 1. Substituting (12) into Eq.
(9), we have the calibration equations∑

j∈S

djF (xT
j λ)xj = Ntx, (13)

which can be solved numerically using Newton’s method.
Let φ(λ) =

∑
j∈S djF (xT

j λ)xj − Ntx. Then

φ′(λ) = ∂φ(λ)/∂λ =
∑
j∈S

djF
′(xT

j λ)xjxT
j .

We obtain successive estimates of λ, denoted by λk (k = 0, 1, . . .), through the
following iteration:

λk+1 = λk + [φ′(λk)]−1φ(λk) (14)
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We take λ0 = 0. Since we have

φ(0) =
∑
j∈S

djF (0)xj − Ntx =
∑
j∈S

djxj − Ntx,

and
φ′(0) =

∑
j∈S

djF
′(0)xjxT

j =
∑
j∈S

djxjxT
j ,

the first iteration yields λ1 = (
∑

j∈S djxjxT
j )−1(

∑
j∈S djxj − Ntx). The subse-

quent values of λk can be obtained following Eq. (14) until convergence.
In summary, the procedure to estimate the selectivity of Q is presented in

Algorithm 1.

Algorithm 1. An algorithm for computing the calibration estimator based on
Newton’s method
1: INPUT: Q, D, S, N , Ni(i = 1, . . . , m), dj(j ∈ S), stopping threshold ε.
2: OUTPUT: ŝcal

3: for all j ∈ S do
4: Set the values of yj , xj according to the rules in Section 3.1;
5: end for
6: /*Solving the calibration equations using Newton’s method*/
7: λ0 := 0; k := 0;
8: repeat
9: λk+1 := λk + [φ′(λk)]−1φ(λk);

10: k := k + 1;
11: until ||λk − λk−1|| < ε
12: for all j ∈ S do
13: wj := djF (xT

j λ);
14: end for
15: /*Obtaining the selectivity estimate based on the new weights*/
16: ŝcal := 1

N j∈S wjyj ;

Continuing the running example, the true frequencies obtained by evaluating
the query Q on table R, and the observed frequency information based on a sim-
ple random sample S are given in Fig. 1 (both normalized so that all frequencies
sum up to 1). The last row and column in each table correspond to the marginal
frequencies.

From Fig. 1, we know that the true selectivity of Q is 0.05 (the cell correspond-
ing to P1 = true ∧ P2 = true in Fig. 1(a)), and the sampling-based selectivity

P2 = true P2 = false –
P1 = true 0.05 0.55 0.60
P1 = false 0.25 0.15 0.40

– 0.30 0.70
(a) True frequencies

P2 = true P2 = false –
P1 = true 0.09 0.56 0.65
P1 = false 0.24 0.11 0.35

– 0.33 0.67
(b) Observed frequencies

Fig. 1. Example: True frequencies and observed frequencies from the sample
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estimate is 0.09 (the cell corresponding to P1 = true ∧ P2 = true in Fig. 1(b)).
Clearly, the marginal frequencies obtained from the sample do not agree with
the true marginal frequencies; therefore, calibration is needed. Applying Algo-
rithm 1 to solve the calibration equations as shown in Eq. (7), we obtain the
following calibrated weights (using the multiplicative distance function):

wj % 60 for j ∈ S ∩D1 ∩ D2, wj % 102 for j ∈ S ∩ D1 ∩ D̄2

wj % 97 for j ∈ S ∩ D̄1 ∩ D2, wj % 140 for j ∈ S ∩ D̄1 ∩ D̄2.

The selectivity estimate can then be computed:

ŝcal =
1
N

∑
j∈S

wjyj =
1
N

∑
j∈S∩D1∩D2

wj = 60 × 9/10000 = 0.054.

The estimation error is E(ŝcal) = |0.054 − 0.05|/0.05 = 8%. Compared with
the error of the synopsis-based estimate E(ŝhis) = 260% and the error of the
sampling-based estimate E(ŝspl) = 80%, this represents a significant improve-
ment in the estimation accuracy.

3.4 An Alternative Algorithm

Although Newton’s method works well, it is not the only option to conduct the
optimization. Now we present an alternative algorithm for solving the calibration
equations, which takes advantage of the intrinsic structure of the equations in
(6) and does not require matrix inversion.

Since wj = djF (xT
j λ), Eq. (6) becomes

1
N

∑
j∈S∩Di

djF (xT
j λ) = si, i = 1, . . . , m + 1. (15)

Observe that the i-th Eq. (2 ≤ i ≤ m) can be solved for λi assuming all other
λl(l �= i) are known, and the first and last equations can be solved for λ1 and
λm+1 assuming all other λl(l �= 1, l �= m + 1) are known. Hence we have the
algorithm shown in Algorithm 2. It is well known that such an iterative procedure
converges to a proper solution [9], and in the case of multiplicative distance
functions, this algorithm yields a variant of the classical iterative proportional
fitting algorithm [11].

Replacing lines 6 to 11 in Algorithm 1 with Algorithm 2 results in a complete
alternative estimation algorithm.

3.5 Distance Measures

We now study the implications of the choice of distance functions D. In general,
different distance functions result in different calibration estimators. However, it
is well known [8] that regardless of the distance functions used (as long as the func-
tions comply with conditions (i)-(iii)), the estimates obtained using the
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outcome of our specific optimization problem will converge asymptotically. There-
fore, for medium to large sized samples (empirically, with sample size greater than
30), the choice of distance function does not have a heavy impact on the properties
of the estimator; one can expect only slight difference in the estimates produced
by using different functions. The main difference between the distance functions
is thus their computational efficiency as well as interpretability.

Algorithm 2. An alternative algorithm for solving the calibration equations
1: INPUT: D, S, Ni(i = 1, . . . , m + 1), dj(j ∈ S), stopping threshold ε.
2: OUTPUT: λ
3: λ(0) := 0;
4: k := 0;
5: repeat
6: Solve 1

N j∈S∩D1
djF (xT

j λ) = s1,

and 1
N j∈S djF (xT

j λ) = 1 for λ
(k+1)
1 and λ

(k+1)
m+1

using values of λ
(k)
l (l = 2, . . . , m);

7: for i = 2 to m do
8: Solve j∈S∩Di

djF (xT
j λ) = si for λ

(k+1)
i ,

using values of λ
(k)
l (l = 1, . . . , m + 1, l �= i);

9: end for
10: k := k + 1;
11: MaxChange := max{|λ(k)

l − λ
(k−1)
l |}, l = 1, . . . , m + 1

12: until MaxChange < ε

For the linear function, Dlin, D′(x) = x − 1; therefore, the inverse func-
tion is F (z) = z + 1. In Algorithm 1, it is easy to verify that λ converges at
λ1 = (

∑
j∈S djxjxT

j )−1(
∑

j∈S djxj − tx). Therefore, when the linear function is
used, only one iteration is required, which makes the linear method the faster of
the two distance functions considered here. A major drawback of this function
is that the weights can be negative. This can lead to negative selectivity esti-
mates. For instance, in the running example, we take a sample of size 10 from
R, and the observed frequencies are the following: P1 = true ∩ P2 = true: 2;
P1 = true, P2 = false: 5; P1 = false∩P2 = true: 3; P1 = false∩P2 = false: 0.
Solving the calibration equation, we have wj = −500 for j ∈ S∩D1∩D2. There-
fore, the selectivity estimate ŝcal = 2 × (−500)/10000 = −0.1. Negative weights
and selectivity estimates do not have a natural interpretation and thus are un-
desirable. Note that, however, this usually only occurs for small-sized samples.
When the sample size gets large, all estimators with distance functions satisfying
conditions (i)-(iii) are asymptotically equivalent and give positive weights and
selectivity estimates.

For the multiplicative function, Dmul, D′(x) = log x; the inverse function is
therefore F (z) = ez. When the multiplicative function is used, it may require
more than one iteration, but our experience indicates that it often converges
after only a few iterations (typically two in our experiments). An advantage
of using this function is that it always leads to positive weights because wj =
djF (xT

j λ) = dj exp{xT
j λ} > 0. We will contrast the effects of both functions on

the estimation accuracy in Section 4.
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3.6 Probabilistic Bounds on the Estimation Error

Let πjl be the probability that both j and l are included in the sample, and
πjj = πj . We assume that the sampling scheme is such that the πjl’s are strictly
positive. Let β be a vector satisfying the equation∑

j∈R

djxj(yj − xT
j β) = 0

and let Δjl = πjl − πjπl, εj = yj − xT
j β. We have the following result on the

error bounds of the estimation error.

Theorem 1. When the sample size is sufficiently large, for a given constant α ∈
(0, 1), the selectivity sQ is bounded by (ŝcal − zα/2

√
V (ŝcal), ŝcal + zα/2

√
V (ŝcal)

with probability 1−α, where zα/2 is the upper α/2 point of the standard normal
distribution, and V (ŝcal) =

∑
j∈R

∑
j∈R(Δjl/πjl)(wjεj)(wlεl).

Proof Sketch: When the linear distance function is used, wj = dj(1 + xT
j λ).

We know from Section 3.5 that the solution of the calibration equation con-
verges at λ = (

∑
j∈S djxjxT

j )−1(
∑

j∈S djxj − tx). Therefore, wj = dj [1 +
xT

j (
∑

j∈S djxjxT
j )−1 (

∑
j∈S djxj − tx)]. Let β̂S be the solution to the equation∑

j∈S

djxj(yj − xT
j β̂S) = 0.

Then the estimator ŝcal can be written as

ŝcal =
1
N

∑
j∈S

wjyj = ŝspl +
1
N

(tx −
∑
j∈S

djxj)T β̂S ,

which takes the form of a generalized regression estimator (GREG) [12]. Apply-
ing results on the asymptotic variance of GREG [12], we obtain the asymptotic
variance of the estimator ŝcal:

V (ŝcal) =
∑
j∈R

∑
j∈R

(Δjl/πjl)(wjεj)(wlεl).

Since it has been shown that all estimators with distance functions satisfying
conditions (i)-(iii) are asymptotically equivalent [8], all estimators have the same
asymptotic variance V (ŝcal). When the sample S is large enough, the Central
Limit Theorem applies. Therefore, for a given constant α ∈ (0, 1), sQ is bounded
by (ŝcal − zα/2

√
V (ŝcal), ŝcal + zα/2

√
V (ŝcal) with probability 1 − α. �

3.7 Utilizing Multi-attribute Synopses

In our discussion, we have assumed that we have knowledge of the selectivities
si of individual predicates Pi based on single-attribute synopsis structures. In
fact, the estimation procedure can be easily extended so that multi-attribute
synopsis structures can also be utilized when they are present. Suppose that a
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multi-dimensional synopsis [13, 2] exists on a set of attributes A. It is relatively
easy to derive lower-dimensional synopses from higher-dimensional synopses, i.e.,
synopses on any subset(s) of A can be obtained from the synopsis on A. Let AQ

be the set of attributes involved in query Q. If A ∩ AQ �= ∅, the synopsis on
A can be utilized. Let U = A ∩ AQ, and let PU be the conjuncts of predicates
in which attributes in U are involved. Then the selectivity sU of PU can be
estimated based on the synopsis on U . We augment the auxiliary vector xj by
an additional element reflecting whether j satisfies PU . Changes are also made
accordingly to tx, with the addition of an element with value sU . The algorithms
for solving the calibration equations presented above can then be applied in order
to obtain ŝcal.

4 Experimental Evaluation

In this section, we report the results of an experimental evaluation of the pro-
posed estimation procedure.

4.1 Experiment Setup

We compare the accuracy of HASE with that of the synopsis-based and sampling-
based approaches using synthetic as well as a real data set. The real data set we
use is the Census Income data obtained from the UCI KDD Archive [14].

– Synthetic data are used to study the properties of the HASE in a controlled
manner. We generate a large number of synthetic data sets by varying the
following parameters:

Data skew: The data in each attribute are generated from a Zipfian distri-
bution with parameter z ranging from 0 (uniform distribution) to 3 (highly-
skewed distribution). The number of distinct values in each attribute is fixed
to 10.
Correlation: By default, the data are independently generated for each
attribute. We introduce correlation between a pair of attributes by trans-
forming the data such that the correlation coefficient between the two at-
tributes is approximately ρ. The parameter ρ ranges from 0 to 1, representing
an increasing degree of correlation. In particular, ρ = 0 corresponds to the
case where there is no correlation between the two attributes; ρ = 1 indicates
that the two attributes are fully dependent, i.e., knowing the value of one at-
tribute enables one to perfectly predict the value of the other attribute. This
is achieved by first independently generating the data for both attributes
(say, A1 and A2) and then performing the following transformation. For each
tuple with A1 = a1 and A2 = a2, we replace a2 by a1 × ρ + a2 ×

√
1 − ρ2,

suitably rounded. For three or more attributes, we create data such that the
correlation coefficient between any pair of attributes is approximately ρ.

The real data set Census Income contains weighted census data extracted
from the 1994 and 1995 population surveys conducted by the U.S. Census
Bureau. It has 199,523 tuples and 40 attributes representing demographic
and employment related information. Out of the 40 attributes, 7 are contin-
uous, and 33 are nominal.
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– We evaluate HASE on two different query workloads. The first set of queries
consist of 100 range queries where each predicate in the query takes the form
of (attribute <= constant) with randomly chosen constant. The second set
of queries consist of 100 equality queries where each predicate takes the form
of (attribute = constant) where constant is randomly chosen.

– We use simple random sampling as the sampling scheme in our experiments
for both the sampling-based approach and HASE. All numbers reported are
averages of 30 repetitions.

– We use the exact frequency distributions of individual attributes as the
synopses.

– The absolute relative error defined in Eq. (1) is used as the error metric.

4.2 Results on Synthetic Data

In all experiments, similar trends are observed for both range and equality
queries; we only report the results on range queries because of space limitations.
We first study the effects of various parameters in the case of two attributes
(i.e., only two predicates on two different attributes are involved in the query),
and then show the effect of the number of attributes on the estimation accuracy.
The individual selectivities are obtained based on the frequencies of values in
each attribute. Since our results indicate that the number of tuples T in the
table does not have a significant effect on the accuracy of the estimators, only
the results for T = 100, 000 are shown here.

Correlation. We study the effect of the correlation between attributes on the
estimation accuracy by varying the correlation coefficient ρ from 0 to 1, repre-
senting an increasing degree of correlation. Fig. 2(a) presents a typical result.

When the two attributes are totally uncorrelated (ρ = 0), the accuracy of
the synopsis-based approach is very high, with an error close to zero, better
than the other two methods. This is because in such cases, the attribute-value
independence assumption holds true, and the selectivity estimate for the query
is indeed the product of the individual selectivities of the two predicates. The
accuracy of this approach deteriorates when the degree of correlation increases
and the actual relationship between the two attributes deviates further from the
independence assumption.

The accuracy of the sampling-based approach actually improves when the two
attributes become more correlated. The reason is as follows. When the degree
of correlation increases, the number of distinct value combinations1 in the two
attributes decreases, as the data become more “concentrated”. Therefore, the
sample space (containing all distinct value combinations) becomes smaller, and
thus sampling becomes more efficient (i.e., for a given sample rate, it is more
likely to include in the sample a tuple satisfying the query).

The accuracy of HASE also increases with the degree of correlation. Since
HASE utilizes sample information, the preceding argument for the sampling-
based approach also applies. Besides, as the degree of correlation increases, the
benefit of adjusting the weights in accordance with known single-attribute syn-
opses becomes more evident. In the extreme case where the two attributes are
1 (a, b) is considered a value combination if ∃j ∈ R such that A1 = a and A2 = b.
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Fig. 2. The effects of correlation and data skew

fully dependent (ρ = 1), it essentially produces the exact selectivity, provided
that there is at least one tuple in the sample satisfying the query. To see why
this is the case, consider the following query Q = P1∩P2 = (A1 = a)∩ (A2 = b).
Full dependency dictates that if there is at least one tuple in the table satisfy-
ing this query, then for any other value c (c �= a)in A1 and d (d �= b) in A2,
both (A1 = a) ∩ (A2 = d) and (A1 = c) ∩ (A2 = b) evaluate to false. This
implies that s = s1 = s2. Therefore, if in the auxiliary vector xj for tuple j, we
have xj1 = 1 (which corresponds to A1 = a), then yj (the variable indicating
whether j satisfies Q) must also be 1, and vice versa. Since we know s1, we have
1
N

∑
j∈S wjxj1 = s1 as a constraint in the optimization problem. If we can find a

set of wj that satisfy this constraint, then the calibration estimator 1
N

∑
j∈S wjyj

must also yield s1, which means we have a perfect selectivity estimate. One ex-
ception to this analysis is that when there is no tuple j ∈ S satisfying Q, we may
no longer be able to produce the exact estimate. In such cases, all yj(j ∈ S) are
0; therefore, regardless of the weights, the calibration estimator 1

N

∑
j∈S wjyj

will also be zero, which may be different from the exact selectivity.
In all cases, HASE produces significantly more accurate estimates than the

sampling-based method, with a 50%-100% reduction in error. Both distance func-
tions give very close estimates, verifying the claim that estimators using different
distance functions are asymptotically equivalent. In the following discussion, we
only show the results for the case of the linear distance function.

Data skew. We study the effect of data skew by varying the Zipfian parameter
z from 0 (uniform) to 3 (highly-skewed), a typical result is shown in Fig. 2(b).
The errors of both HASE and the sampling approach increase as the data be-
comes increasingly more skewed. The reason is that when the data skew in each
attribute increases, the frequencies of some value combinations decrease. As a re-
sult, when we query on those value combinations with low occurrence frequencies,
it becomes increasingly possible that no sampled tuple can satisfy the query. This
gives rise to more errors, because with no sampled tuple satisfying the query, the
estimate has to be zero, whereas the actual selectivities are not. Note that this
situation is different from the case of increasing correlation as discussed above.
The main effect of increasing the skew is a decrease in the frequencies of some
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value combinations, not necessarily reducing the number of value combinations
present in the table. Increasing correlation, on the other hand, generally results
in a reduction in the number of value combinations. Therefore, increasing skew
and increasing correlation have different effects on the accuracy of HASE as well
as the sampling-based approach.

Another interesting observation from Fig. 2(b) is that the accuracy of the
synopsis-based approach remains virtually the same regardless of the data skew.
The reason is as follows. Assuming independence between attributes, the
synopsis-based approach estimates the selectivity by ŝhis = s1 ∗ s2. In Fig. 2(b),
the two attributes are fully dependent, which implies that the actual selectivity
s = s1 = s2. Thus, E(ŝhis) = (s−s1s2)/s1 = 1−s1. The average error over a large
number of (uniformly) randomly selected equality queries is therefore 1−avg(s1).
In our case, since there are 10 distinct values in each attribute, avg(s1) = 1/10 =
0.1. the average error of the estimate is thus 1−0.1 = 0.9. Therefore, the accuracy
of this approach does not change with data skew in this case.

Sample rate. Fig. 3(a) shows a typical result on how the three approaches
behave as we increase the sample rate. The number of attributes in the data set
is 2. The accuracy of the synopsis-based approach remains unchanged across the
range of sample rates, because it does not depend on sampling. The accuracy of
both HASE and the sampling-based approach improves with increasing sample
rate, as one would expect. For all sample rates, HASE outperforms both the
synopsis-based and the sampling-based approaches. It is also worth noting that
using HASE, we can achieve the same level of accuracy with a much smaller
sample rate than that required by the sampling-based approach. For example,
in Fig. 3(a), the sampling-based approach has an error of 0.07 when the sample
rate is 0.005. HASE achieves approximately the same level of accuracy with a
sample rate of 0.001, resulting in a reduction by a factor of 5. This translates
into more significant I/O savings because of the non-linear relationship between
the I/O cost and the sample rate as discussed in Section 2.3.

Number of attributes. We vary the number of attributes involved in the query
from 2 to 5 to study the impact of the number of attributes on the estimation
accuracy. A typical result is shown in Fig. 3(b). Clearly, the accuracy of all three

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1

0.15

0.2

0.25

Sample rate

A
bs

ol
ut

e 
re

la
tiv

e 
er

ro
r

z = 0, correlation coefficient = 0.25

Sampling
Synopsis
HASE

(a) Accuracy vs. sample rate

2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of attributes

Ab
so

lu
at

e 
re

la
tiv

e 
er

ro
r

z = 0, correlation = 0.85, sample rate = 0.01

HASE
Sampling
Synopsis

(b) Accuracy vs. number of attributes

Fig. 3. The effects of the sample rate and the number of attributes
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approaches decreases as the number of attributes increases. This is not surpris-
ing, because having more attributes would introduce more sources of errors. A
space of higher dimensionality requires a much larger sample to cover a fixed
portion of the space, in comparison with a space of lower dimensionality. Note
from Fig. 3(b), however, that HASE outperforms the other two approaches for
all number of attributes, and has a lower rate of decrease in accuracy.

4.3 Results on Real Data

Since the Census Income data has 40 attributes, there are 40 × 39 = 1560
attribute pairs. We randomly choose 100 attribute pairs and record the accuracy
of the three approaches as the sample rate increases. The result is shown in Fig. 4.
The trends are similar to those for the synthetic data, with HASE significantly
outperforming both the synopsis-based and the sampling-based approaches. The
error response to the number of attributes is also similar to that for the synthetic
data, and is therefore omitted here.
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Fig. 4. Accuracy vs. sample rate on the Census Income data

5 Related Work

The issue of selectivity estimation has been extensively studied in the literature
and a large variety of methods have been proposed [15, 1, 16, 17].

Histograms are probably the most widely used form of synopses in commercial
database systems (e.g., DB2 UDB, Oracle, SQL Server, etc.). See [18] for an
excellent survey on this topic. Aside from histograms, other types of synopses
have also been proposed in the literature, such as wavelet-based synopses (e.g.,
[16]) and parametric synopses (e.g., [19]).

Markl et al. [20] propose a method to consistently utilize various multi-
dimensional synopsis structures for selectivity estimation of conjunctive pred-
icates. This work is close in spirit to ours in that both of them address the issue
of consistent utilization of various sources of information for selectivity estima-
tion. However, their focus is on reconciling the estimates obtained from different
synopsis structures, whereas we attack the problem of utilizing both synopses
and sample information.

Olken [3] provides a survey of techniques on sampling from databases. Lipton
et al. [15] propose an adaptive sampling (a.k.a. sequential sampling) approach to
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selectivity estimation. Haas and Swami [21] improve the sequential sampling ap-
proach by establishing tighter termination conditions. There has also been work
on estimating the number of distinct values via sampling [22, 23, 24]. Recently,
Haas et al. [4] and Chaudhuri et al. [7] address the efficiency of sampling and
propose techniques to utilize page-level sampling in conjunction with tuple-level
sampling. Techniques have also been developed to use sampling to construct
synopsis structures [25, 24, 7]. Note that sampling is used here only for fast con-
struction of data synopses, which are then used for selectivity estimation; they
do not consider the issue of direct utilization of both sampling and synopses for
selectivity estimation.

6 Conclusions and Future Work

Existing work on selectivity estimation can be classified as either synopsis-based
or sampling-based, depending on whether the basis for estimation is the synopsis
structures stored in the database or sample information. The presence of both
sources of information presents a unique challenge, as it is nontrivial to make
consistent use of them in order to obtain better estimation. To the best of our
knowledge, we are the first to tackle this challenge. We proposed HASE, a new
estimation procedure based on generalized raking, and the problem is formulated
as a constrained optimization problem. We then presented two algorithms to
solve it. We also discussed the implications of different distance functions, and
provided asymptotic error bounds on the selectivity estimate thus obtained. The
experiments demonstrated the effectiveness of the proposed approach.

For future work, we would like to consider extending HASE to handle the
selectivity estimation of more complex queries, such as joins and aggregations.
We also plan to extend HASE to handle the case where multi-attribute synopses
(e.g., multi-dimensional histograms) are available. It would also be interesting
to study in our framework how to best divide the efforts between constructing
histograms and sampling for a given query workload.
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Abstract. In many decision-making applications, the skyline query is frequently
used to find a set of dominating data points (called skyline points) in a multi-
dimensional dataset. In a high-dimensional space skyline points no longer offer
any interesting insights as there are too many of them. In this paper, we introduce
a novel metric, called skyline frequency that compares and ranks the interesting-
ness of data points based on how often they are returned in the skyline when dif-
ferent number of dimensions (i.e., subspaces) are considered. Intuitively, a point
with a high skyline frequency is more interesting as it can be dominated on fewer
combinations of the dimensions. Thus, the problem becomes one of finding top-k
frequent skyline points. But the algorithms thus far proposed for skyline compu-
tation typically do not scale well with dimensionality. Moreover, frequent skyline
computation requires that skylines be computed for each of an exponential num-
ber of subsets of the dimensions. We present efficient approximate algorithms to
address these twin difficulties. Our extensive performance study shows that our
approximate algorithm can run fast and compute the correct result on large data
sets in high-dimensional spaces.

1 Introduction

Consider a tourist who is looking for hotels, in some city, that are cheap and close to
the beach. For this skyline query, a hotel H is in the answer set (i.e., the skyline) if
there does not exist any hotel in that city that dominates H ; i.e., that is both cheaper
as well as closer to the beach than H . Our tourist can then tradeoff price with distance
from the beach from among the points in this answer set (called skyline points). Skyline
queries are useful as they define an interesting subset of data points with respect to the
dimensions considered, and the problem of efficiently computing skylines has attracted
a lot of recent interest (e.g., [2, 3, 13, 9, 18]).

A major drawback of skylines is that, in data sets with many dimensions, the number
of skyline points becomes large and no longer offer any interesting insights. The reason
is that as the number of dimensions increases, for any point p, it is more likely there
exists another point q where p and q are better than each other over different subsets
of dimensions. If our tourist, from the example in the preceding paragraph, cared not
just about price and distance to beach, but also about the size of room, the star rating,
the friendliness of staff, the availability of restaurants etc., then most hotels in the city
may have to be included in the skyline answer set since for each hotel there may be no
one hotel that beats it on all criteria, even if it beats it on many. Correlations between

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 478–495, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On High Dimensional Skylines 479

Table 1. Top-10 frequent skyline points in NBA data set

Top-10 Frequent Skyline Point, p Dominating Frequency
Player Name Season d(p)

Wilt Chamberlain 1961 1791
Michael Jordan 1986 2266
Michael Jordan 1987 3162
George Mcginnis 1974 4468
Michael Jordan 1988 5854
Bob Mcadoo 1974 6472
Julius Erving 1975 6781
Charles Barkley 1987 8578
Kobe Bryant 2002 9271
Kareem Abdul-Jabbar 1975 9400

dimensions ameliorates this problem somewhat, but does not eliminate it. For example,
for the NBA statistics data set [1], which is fairly correlated, a skyline query with respect
to all 17 dimensions returns over 1000 points.

To deal with this dimensionality curse, one possibility is to reduce the number of
dimensions considered. However, which dimensions to retain is not easy to determine,
and at the very least requires intimate knowledge of the application domain. In fact,
dimensionality reduction of this sort is a desirable goal in many data management and
data mining scenarios, and there has been a great deal of effort expended on trying to do
this well, with only limited success. Moreover, choosing different subsets of attributes
will result in different points being found in the skyline.

In this paper, we introduce a novel metric, called skyline frequency, to compare and
rank the interestingness of data points based on how often they are returned in the sky-
line when different subsets of dimensions are considered. Given a set of n-dimensional
data points, the skyline frequency of a data point is determined by the 2n − 1 distinct
skyline queries, one for each possible non-empty subset of the attributes. Intuitively, a
point with a high skyline frequency is more interesting since it can be dominated on
fewer combinations of the dimensions. Thus, the problem becomes one of finding top-k
frequent skyline points.

Referring once more to the 17-dimension NBA statistics data set that records the
performance of all players who have played in the NBA from 1946 to 2003. Each di-
mension represents a certain “skill”, e.g., number of 3-pointers, number of rebounds,
number of blocks, number of fouls, and so on. There are over 17000 tuples, each re-
flecting a player’s “performance” for a certain year. Note that every player has a tuple
for every year he played, so it is possible to have several tuples for one player with
different year numbers, like “Michael Jordan in 1986” and “Michael Jordan in 1999”.
Table 1 lists the top-10 frequent skyline points (represented by a player and season).
The skyline frequency of each point p is given by 217 − d(p) − 1; where d(p), which
is the dominating frequency, represents the number of subspaces for which p is domi-
nated by some other point. Readers who follow basketball will agree that this is a very



480 C.-Y. Chan et al.

Table 2. Bottom-10 frequent skyline points in NBA data set

Bottom-10 Frequent Skyline Point, p Dominating Frequency
Player Name Season d(p)

Terrell Brandon 2000 130559
John Starks 1991 130304
Allen Leavell 1982 130303
Rich Kelley 1981 130047
Rodney Mccray 1984 129823
Reggie Theus 1990 129727
Jamaal Wilkes 1979 129535
John Williams 1988 129151
Purvis Short 1983 129151
Rasheed Wallace 1999 128863

reasonable set of top basketball players of all time. Clearly, our top-k frequent skyline
query has the notion of picking “the best of the best”, and is superior to the simpler
skyline points (which in this example will mark as equally interesting all 1051 skyline
points!).

To further examine this notion of skyline frequency, we selected the least skyline
frequency entries among the 1051 entries in the full skyline. The results are shown in
Table 2. These players, particularly in the years specified, can hardly be considered all-
time greats. Of course, each is a talented player, as one would expect given that these
were all in the top 1051 chosen from among all NBA players by the ordinary skyline
algorithm.

Unfortunately, skyline computations are not cheap. Given a data set with n dimen-
sions, skyline frequency computation requires 2n−1 skyline queries to be executed. To
address this problem, we propose an efficient approximate algorithm that is based on
counting the number of dominating subspaces (i.e., the number of subspaces in which a
point is not a skyline point). Our scheme is tunable in that we can tradeoff the accuracy
of the top-k answers for speed. We have implemented our scheme, and our extensive
performance study shows that our method with approximate counting can run fast in
very high dimensional data set without sacrificing much on the accuracy.

We make two key contributions in this paper:

– We introduce skyline frequency as a novel and meaningful measure for comparing
and ranking skylines.

– We present efficient approximate algorithms for computing top-k frequent skylines,
which are the top-k data points whose skyline frequencies are the highest.

The rest of this paper is organized as follows. In Section 2 we formally define the
key concepts, including frequent skylines and maximal dominating subspaces. Related
work is presented in Section 3. In Section 4, we present our proposed algorithms for
computing frequent skylines efficiently. We report on the results of an experimental
evaluation in Section 5. Finally, we conclude with a discussion of our findings in Sec-
tion 6. Due to space limitation, proofs of results are omitted.



On High Dimensional Skylines 481

2 Preliminaries

Given a space S defined by a set of n dimensions {d1, d2, . . . , dn} and a data set D on
S, a point p ∈ D can be represented as p = (p1, p2, . . . , pn) where every pi is a value
on dimension di. Each non-empty subset of S is referred to as a subspace. A point
p ∈ D is said to dominate another point q ∈ D on subspace S′ ⊆ S if (1) on every
dimension di ∈ S′, pi ≤ qi; and (2) on at least one dimension dj ∈ S′, pj < qj . The
skyline of a space S′ ⊆ S is a set of points D′ ⊆ D which can not be dominated by any
other point on space S′. That is, D′ = {p ∈ D :� ∃q ∈ D, q dominates p on space S′}.
The points in D′ are called skyline points on space S′.

Based on the definition of skyline points on a subspace, we define the skyline fre-
quency of a point p ∈ D, denoted by f(p), as the number of subspaces in which p is
a skyline point. Given S and D, the top-k frequent skyline points are the k points in D
that no other point in D can have larger skyline frequency than them. A top-k frequent
skyline query is a query that computes top-k skyline points for a given data set D and
space S. A subspace S′ ⊆ S is said to be a dominating subspace for a data point p if
there exists another data point that dominates p on subspace S′. We define the dominat-
ing frequency of p, denoted by d(p), as the number of dominating subspaces for p. It
is easy to see that the skyline frequency f(p) = 2n − d(p) − 1. So, the top-k skyline
frequency query can be computed by finding the k points with the smallest dominating
frequencies.

Let DS(q, p) denote the set of all subspaces for which a point q dominates another
point p. We call DS(q, p) the set of dominating subspaces of q over p. This set can
frequently be quite large, and so is unwieldy to enumerate explicitly. Just as a rectan-
gle in cartesian geometry can be represented succinctly by a pair of corner points, we
show below in Lemma 1 that the set DS(q, p) can be described succinctly by a pair of
subspaces (U, V ) where (1) U ⊆ S is the set of dimensions such that qi < pi on every
dimension di ∈ U ; and (2) V ⊆ S is the set of dimensions such that qi = pi on every
dimension di ∈ V . It follows that DS(p, q) = (S − U − V, V ).

Lemma 1. Let DS(q, p) = (U, V ). Then S′ ∈ DS(q, p) if and only if ∃U ′ ⊆ U ,
V ′ ⊆ V , such that S′ = U ′ ∪ V ′, and U ′ �= ∅.

It is easy to verify that |DS(q, p)| = (2|U| − 1)2|V |.
Given two collections of subspaces S1, S2 ⊆ S, we say that S1 covers S2 if S1 ⊇

S2. The following result provides a very simple way to determine if DS(q, p) covers
DS(r, p) given three points p, q, and r.

Lemma 2. Let DS(q, p) = (Uq, Vq) and DS(r, p) = (Ur, Vr), where Uq �= ∅ and
Ur �= ∅. Then DS(q, p) covers DS(r, p) if and only if (1) Ur ∪ Vr ⊆ Uq ∪ Vq and (2)
Ur ⊆ Uq.

DS(q, p) is said to be a maximal dominating subspace set for a point p if there does not
exist another point r such that DS(r, p) covers DS(q, p). Therefore, d(p) =
|
⋃

Mi∈M Mi|, where M = {DS(q, p) | q ∈ S, DS(q, p) is a maximal dominating
subspace set for p}.
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3 Related Work

Computing the skyline of a set of points is also known as the maximum vector problem
[10]. Early works on solving the maximum vector problem typically assume that the
points fit into the main memory. Algorithms devised include divide-and-conquer para-
digm [10], parallel algorithms [17] and those that are specifically designed to target at
2 or very large number of dimensions [12]. Other related problems include top k [4],
nearest neighbor search [16], convex hull [16], and multi-objective optimization [14].
These related problems and their relationship to skyline queries have been discussed
in [3].

Börzsönyi et al. [3] first introduced the skyline operator into relational database sys-
tems by extending the SQL SELECT statement with an optional SKYLINE OF clause.
A large number of algorithms have been developed to compute skyline queries. These
can be categorized into non-index-based (e.g., block nested loop [3], Sort-Filter-Skyline
[6, 7], divide and conquer [3]), and index-based (e.g., B-tree [3], bitmap [18], index [18],
nearest neighbor [9], BBS [13]). As expected, the non-index-based strategies are typi-
cally inferior to the index-based strategies. It also turns out the index-based schemes can
progressively return answers without having to scan the entire data input. The nearest
neighbour scheme, which applies the divide and conquer framework on datasets indexed
by R-trees, was shown to be superior over earlier schemes in terms of overall perfor-
mance [9]. There have also been work on processing skyline queries over distributed
sources [2], over streaming data [11], and for data with partially-ordered domains [5].
All these algorithms are developed for computing skylines for a specific subspace.

The recent papers on skyline computation in subspaces [19, 15] is more closely re-
lated to our work. Yuan et al. [19] proposed two methods to compute skylines in all the
subspaces by traversing the lattice of subspaces either in a top-down or bottom-up man-
ner. In the bottom-up approach, the skylines in a subspace are partly derived by merging
the skylines from its “child” subspaces at the lower level. In the top-down approach, the
sharing-partition-and-merge and sharing-parent property of the DC algorithm [3] is ex-
ploited to recursively enumerate the subspaces and compute their skylines from the top
to bottom level, which turns out to be much more efficient than the bottom-up approach.
Since we can get the skyline frequencies if the skylines in every subspace is available,
we compare their top-down approach with our top-k method in the performance study.
Another study on computing skylines in subspaces is by Pei et al. [15]. They introduced
a new concept called skyline group, every entry of which contains the skyline points
sharing the same values in a corresponding subspace collection. They also proposed an
algorithm skyey, which visits all the subspaces along an enumeration tree, finds the sky-
lines by sorting and creates a new skyline group if some new skyline points are inserted
into an old group. The skyline groups found are maintained in a quotient cube struc-
ture for queries on subspace skyline. Their study tries to answer where and why a point
is part of skyline without any accompanying coincident points. However, their scheme
can not help to solve the skyline frequency problem since a point can be in exponential
number of skyline groups in high dimensional space.

The approximate counting technique used in our work is related to the problem
of counting the number of assignments that satisfies a given disjunctive normal
form(DNF). In [8], Karp et. al. proposed a monte-carlo algorithm which takes 2n ln 2

δ /ε2
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samples to give an approximate count of the assignments, whose error rate is smaller
than ε with probability 1 − δ. Since the sample size is irrelevant to the size of the sets,
this method is much more efficient than the conventional iteration method, especially
when the size of valid assignment set is much larger than sample number.

4 Top-k Frequent Skyline Computation

The most straightforward approach to compute top-k frequent skylines is the following
two-phase approach. First, compute the skyline points for each subspace by using an
existing algorithm (e.g., skycube algorithm [19]). Next, compute the skyline frequency
of each point p by summing up the number of subspaces for which p is a skyline. We
called this technique a subspace-based approach since it essentially enumerates each
subspace to compute skylines. A number of recent approaches have been proposed for
computing precise skylines for the complete collection of subspaces [19, 15].

However, computing skylines over all subspaces can be costly. In this paper, we pro-
pose a novel approach to compute top-k frequent skylines based on computing maximal
dominating subspace sets. This approach comprises of two key steps. The first step
computes the maximal dominating subspace sets for each data point. Based on these,
the second step then computes each point’s dominating frequency either precisely or
approximately. Thus, our approach actually computes the top-k skyline frequencies by
computing the bottom-k dominating frequencies.

In the rest of this section, we first give an overview of our approach in Section 4.1,
and then present the details of the two phases, maximal dominating subspace set compu-
tation and dominating subspace counting, in Sections 4.2 and 4.3, respectively. Finally,
we present two optimization techniques to improve the efficiency of our approach in
Section 4.4.

4.1 Overview

The intuition for our approach is based on the result in Section 2 that each dominating
subspace of a point p is covered by some maximal dominating subspace set of p. Since
the dominating frequency of a point is the dual of its skyline frequency, we can compute
the skyline frequency of a point p by computing its dominating frequency in two stages.
First, find all the maximal dominating subspace sets of p, and then count the number
of subspaces covered by them. The top-k frequent skyline points is then obtained by
taking the bottom-k points with the lowest dominating frequencies.

The main procedure of our approach is shown in Algorithm 1 which takes a set of
data points D, a set of dimensions S, and an integer value k as inputs and computes the
top-k frequent skylines in D w.r.t. S. To avoid the complexity of explicitly sorting the
points by their dominating frequencies, we maintain a frequency threshold (denoted by
θ) that keeps track of the kth smallest dominating frequency among all the processed
points. This frequency threshold is initialized in step 1 to 2|S|−1, which is the maximum
possible dominating frequency value. The top-k frequent skylines are maintained in a
set R which is initialized to empty in step 2. For each data point p ∈ D (steps 3-11), the
procedure ComputeMaxSubspaceSets is first invoked to compute the set M of all
the maximal dominating subspace sets of point p by comparing every other point with



484 C.-Y. Chan et al.

Algorithm 1. Top-k Frequent Skyline Algorithm (D, S, k)

1: initialize frequency threshold θ = 2|S| − 1
2: initialize R, the set of top-k frequent skylines, to be empty
3: for every point p ∈ D do
4: M = ComputeMaxSubspaceSets (D, S, p, k, θ, |R|)
5: d(p) = CountDominatingSubspaces (M)
6: if (|R| < k) or (d(p) < θ) then
7: remove the point with the highest dominating frequency in R if |R| = k
8: insert p into R
9: update θ to be the highest dominating frequency in R

10: end if
11: end for
12: return R

point p on all the dimensions. Next, the procedure CountDominatingSubspaces
is called to compute the dominating frequency d(p) of p, which is the total number of
subspaces in S that are covered by the maximal dominating subspace sets in M. If R
has fewer than k skylines or if the dominating frequency of p (i.e., d(p)) is smaller than
the frequency threshold θ, then p is inserted into R and the value of θ updated. Note
that if R already has k skylines before a new point is to be inserted, than a point q in R
with the largest dominating frequency (i.e., d(q) = θ) is removed from R.

Example 1. Consider the computation of the top-2 frequent skylines for a set of 4-
dimensional data points D = {a, b, c, e} shown below:

Point d1 d2 d3 d4

a 2 3 4 5
b 1 5 2 6
c 3 4 4 4
e 4 3 4 3

To compute the set of maximal dominating subspace sets of point a, we need to deter-
mine DS(q, a) for each q ∈ D − {a}. We have DS(b, a) = ({d1, d3}, ∅), DS(c, a) =
({d4}, {d3}), and DS(e, a) = ({d4}, {d2, d3}). By Lemma 2, DS(e, a) covers
DS(c, a), and so DS(c, a) is not a maximal dominating subspace set of a. However,
since neither DS(b, a) nor DS(e, a) covers each other, they are both maximal dominat-
ing subspace sets of a. The number of dominating subspaces covered by each of them is
given by: |DS(b, a)| = 3 and |DS(e, a)| = 4. Since there are no common dominating
subspaces that are covered by both DS(b, a) and DS(e, a), the number of dominating
subspaces of a is d(a) = |DS(b, a)| + |DS(e, a)| = 7. Similarly, we have d(b) = 3,
d(c) = 11, and d(e) = 5. Thus, the top-2 frequent skylines are b and e. �

4.2 Maximal Dominating Subspace Computation

Algorithm 2 shows the ComputeMaxSubspaceSets procedure to compute the col-
lection of maximal dominating subspace sets of an input point p ∈ D (w.r.t. a set of
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Algorithm 2. ComputeMaxSubspaceSets (D, S, p, k, θ, r)
1: initialize M, the set of maximal dominating subspace sets of p, to be empty
2: for every point q in D − {p} do
3: let U ⊆ S such that on every dimension di ∈ U , qi < pi

4: let V ⊆ S such that on every dimension di ∈ V , qi = pi

5: if (r = k) and ((2|U| − 1)2|V | ≥ θ) then
6: return {(U, V )}
7: end if
8: initialize isMaximal = true
9: for every maximal dominating subspace set (P, Q) ∈ M do

10: if (U ∪ V ⊆ P ∪ Q) and (U ⊆ P ) then
11: isMaximal = false
12: break out of for loop
13: else if (P ∪ Q ⊆ U ∪ V ) and (P ⊆ U ) then
14: remove (P, Q) from M
15: end if
16: end for
17: if isMaximal then
18: insert (U, V ) into M
19: end if
20: end for
21: return M

dimensions S). The remaining three input parameters (k, θ, and r), where θ is the high-
est dominating frequency among all the r frequent skylines processed so far, are used
to optimize the computation when p is determined to be not among the top-k frequent
skylines. The output collection of maximal dominating subspace sets is maintained in
a set M which is initialized to be empty in step 1. Each maximal dominating subspace
set in M is represented in the form of a subspace pair; i.e., M = {(U1, V2), (U2, V2),
· · · , (Un, Vn)}, where each (Ui, Vi) corresponds to DS(qi, p) for some point qi ∈ D.

To compute the maximal dominating subspace sets of p, the algorithm compares p
against each other point q in D (steps 2-20). First, DS(q, p) = (U, V ) is determined
in steps 3-4. Steps 5-7 is an optimization (to be explained at the end of the discussion)
that can be ignored for now. Steps 8-19 compare (U, V ) against each of the maximal
dominating subspace sets computed so far in M to determine if (U, V ) is also a maxi-
mal dominating subspace set and update M accordingly. Specifically, if there is some
subspace set (P, Q) ∈ M that covers (U, V ), then by Lemma 2, we can conclude that
(U, V ) is not a maximal dominating subspace set (steps 11-12). On the other hand, if
subspace set (P, Q) ∈ M is covered by (U, V ), then (P, Q) is not a maximal dominat-
ing subspace set and is removed from M (step 14). Finally, if (U, V ) is not covered by
any of the maximal dominating subspace sets in M, then (U, V ) is a maximal dominat-
ing subspace set and it is added to M (step 18).

We now explain the optimization performed in steps 5-7 that makes use of the ad-
ditional input parameters k, θ, and r. The main idea is to avoid computing the precise
collection of maximal dominating subspace sets of p if p is determined to be not among
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Algorithm 3. CountDominatingSubspaces (M)
1: let M = {M1, M2, · · · , Mn}
2: initialize counter C = 0
3: for i = 1 to n do
4: for every dominating subspace (P, Q) that is covered by Mi do
5: if (P, Q) is not covered by any Mj , j ∈ [1, i) then
6: C = C + 1
7: end if
8: end for
9: end for

10: return C

the top-k frequent skylines. Specifically, if there are already k intermediate frequent
skylines (i.e., r = k) and |DS(q, p)|, which is given by (2|U| − 1)2|V |, already ex-
ceeds θ, then p clearly can not be among the top-k frequent skylines. In this case, it is
not necessary to know the precise maximal dominating subspace sets of p; instead, the
algorithm simply returns the single subspace set (U, V ) (in step 6) since this is suffi-
cient for the main algorithm to conclude that p is not a top-k frequent skyline. With this
optimization, ComputeMaxSubspaceSets computes the precise collection of max-
imal dominating subspace sets of p only when p could potentially be a top-k frequent
skyline.

Our implementation of ComputeMaxSubspaceSets uses a bitmap representa-
tion for subspaces to enable efficient manipulations. If S has n dimensions, then a sub-
space of S is represented by a n-bit bitmap with the ith bit corresponding to dimension
di such that a bit is set to 1 iff its corresponding dimension is in the subspace. As an
example, in an 8-dimensional space S, the subspace {d1, d3, d5, d6} is represented by
the bitmap “10101100”. Given two bitmaps B1 and B2 (corresponding to subspaces
S1 and S2, respectively), S1 covers S2 if and only if the logical-AND of B1 and B2
is equal to B1. Furthermore, by exploiting arithmetic bit-operation, |DS(U, V )| for a
given subspace set (U, V ) can be efficiently computed with a left shift operation in O(1)
time.

4.3 Dominating Subspace Counting

In this section, we discuss how to derive the number of dominating subspaces for a
point p based on the collection M of maximal dominating subspace sets for p returned
by ComputeMaxSubspaceSets for p. Since there is usually more than one maximal
dominating subspace set in M and the subspaces covered by them generally overlap,
the challenge is to efficiently compute the number of dominating subspace sets taking
into account of the overlapping covered subspaces.

As an example, considerM = {M1, M2}, where M1 = ({d1, d2}, {d3}) and M2 =
({d1, d3}, {d4}). Note that there are a total of eight dominating subspaces covered by
M: {d2}, {d2, d3}, {d1, d2}, {d1, d2, d3}, {d1}, {d1, d3}, {d1, d4} and {d1, d3, d4}.
Among these, the first six are covered by M1 while the last four are covered by M2;
hence, there are two dominating subspaces (i.e., {d1} and {d1, d3}) that are covered by
both M1 and M2.
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One direct approach to derive the number of dominating subspaces is to apply the
Inclusion-Exclusion principle to obtain the union of all the subspaces covered by the
maximal dominating subspaces. However, this method is non-trivial as it requires enu-
merating all the subspaces covered by each maximal dominating subspace and checking
if the enumerated subspace has already been previously generated. In the following, we
propose two alternative methods based on precise counting and approximate counting,
respectively, for counting the number of dominating subspaces covered by M.

Precise Counting. Our improved approach for computing the exact number of dom-
inating subspaces is shown in Algorithm 3. For each maximal dominating subspace
set Mi ∈ M, let Si denote the collection of dominating subspaces that are covered
by Mi. We define for each Si, a new subspace collection (denoted by S′

i) as follows:
S′

i = Si −
⋃

j∈[1,i) Sj . It is easy to verify that (1)
⋃

Mi∈M Si =
⋃

Mi∈M S′
i; and (2)

S′
i ∩ S′

j = ∅ for any distinct pair S′
i and S′

j . In this way, we transform the problem
of counting the union of a collection of sets to a subset counting problem without any
intersection among the subsets. For every maximal dominating subspace set Mi ∈ M,
we enumerate over each of the subspaces covered by Mi and check whether it is also
covered by an earlier maximal dominating subspace set Mj , j ∈ [1, i). Referring to
the preceding example with M = {M1, M2}, we have S′

1 = {{d1}, {d1, d3}, {d2},
{d2, d3}, {d1, d2}, {d1, d2, d3}}, and S′

2 = {{d1, d4}, {d1, d3, d4}}.
However, the simple precise counting method can not scale efficiently to handle

high-dimensional spaces because we still need to enumerate all the (2|U| − 1)2|V | sub-
spaces for a maximal dominating subspace (U, V ). For example, with |U | = 20, over
one million of subspaces need to be compared against with every previous maximal
dominating subspace.

Approximate Counting. To avoid the high complexity of the precise counting ap-
proach, we present an effective approximate counting method that is based on extend-
ing a Monte-Carlo counting algorithm [8] originally proposed for counting the number
of assignments that satisfy a specified DNF formula, which is a #P-complete problem.

Our approach is shown in Algorithm 4 which takes three input parameters (M, ε, and
δ) and returns an approximate count of the number of dominating subspaces covered
by a collection M of maximal dominating subspace sets for some point. The approx-
imate answer is within an error of ε with a confidence level of at least 1 − δ. Steps
1-6 first compute the number of subspaces (denoted by Ni) covered by each maximal
dominating subspace set Mi ∈ M, and the total number of these (possibly overlapping)
subspaces denoted by N . To obtain the desired error bound, a random repeatable sample
of T = 2n ln(2/δ)/ε2 number of maximal dominating subspace sets is selected from
M, where the probability of sampling Mi is proportional to the number of subspaces
covered by Mi. For each generated maximal dominating subspace set Mi, a dominating
subspace set (U, V ) that is covered by Mi is randomly selected and checked if it is also
covered by any maximal dominating subspace sets Mj, j ∈ [1, i). A counter, denoted
by C, is used to keep track of the number of distinct dominating subspaces determined
from this sampling process. The approximate count output by the algorithm is given
(N × C)/T ; the proof of the error bound follows from [8].
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Algorithm 4. ApproxCountDominatingSubspaces (M, ε, δ)
1: let M = {M1, M2, · · · , Mn}
2: for i = 1 to n do
3: let Mi = (Ui, Vi)
4: Ni = (2|Ui| − 1)2|Vi|

5: end for
6: N = Mi∈M Ni

7: T = 2n ln(2/δ)/ε2

8: initialize C = 0
9: for i = 1 to T do

10: choose a maximal dominating subspace set Mi with probability Ni/N
11: choose a subspace set (U, V ) that is covered by Mi with equal probability
12: if (U, V ) is not covered by any Mj , j ∈ [1, i) then
13: C = C + 1
14: end if
15: end for
16: return N · C/T

Complexity Analysis. Let M = {(U1, V1), (U2, V2), . . . , (Un, Vn))}. We use Um,
Vm, Ua and Va to denote max1≤i≤n{|Ui|}, max1≤i≤n{|Vi|},

∑n
i=1 |Ui|/n, and∑n

i=1 |Vi|/n, respectively.
In the exact counting algorithm, since each covered subspace for a maximal domi-

nating subspace set (Ui, Vi) must be compared with the previous maximal dominating
subspace sets, the computation complexity for (Ui, Vi) is (i − 1)(2|Ui|−1)2|Vi|. There-
fore, the total time complexity of the exact counting algorithm is

∑
(i−1)(2|Ui|−1)2|Vi|

= O(n22Um+Vm). Note that by Jensen’s Inequality,
∑

(i − 1)(2|Ui|−1)2|Vi| =
Ω(n2Ua+Va−1).

In the approximate counting algorithm, the sampling process is independent of |Ui|
and |Vi|. Since there are a total of 2n ln(2/δ)/ε2 subspace sets sampled, the upper and
lower bounds on the computation complexity of the approximate counting approach are
O(2n2 ln(2/δ)/ε2) and Ω(2n ln(2/δ)/ε2), respectively.

With the above analysis, it is not difficult to verify that the exact counting method can
not be slower than approximate counting method in constant factor when Um + Vm ≤
ln ln(2/δ) + 2 ln(1/ε) − lnn + 1, while the approximate counting method can not be
slower than exact counting method when Ua + Va ≥ ln ln(2/δ)+ 2 ln(1/ε)+ lnn +2.

4.4 Optimizations

In this section, we present two optimizations to further improve the performance of
the ComputeMaxSubspaceSets algorithm presented in Section 4.2. In the current
ComputeMaxSubspaceSets algorithm, the main optimization relies on using the
frequency threshold θ (steps 5-7) as a quick filtering test to check whether a point is
guaranteed to be not among the top-k frequent skylines. Clearly, it is desirable to prune
out points that are not top-k frequent skylines as early as possible using this efficient
checking to reduce the unnecessary elaborate enumeration and comparison performed
in steps 8-19.
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Pre-Sorting. Our first optimization is based on the observation that the effectiveness of
the pruning test is dependent on the order in which the data points are processed. For ex-
ample, no early pruning would be possible if the points are processed in non-descending
order of their skyline frequencies. One idea to maximize the pruning effectiveness is to
first sort the data points based on some simple criterion such that points that have higher
potential to be top-k frequent skylines appear earlier. Our optimization simply sorts the
points in non-descending order of the sum of their dimension values. The intuition be-
hind this heuristic is that a point with a smaller sum is likely to have smaller values on
more dimensions and is therefore likely to have a higher skyline frequency. A similar
idea was previously used in [6, 15, 19].

Checkpoint. Our second optimization aims to generalize the pruning test to improve
its effectiveness. Currently, the pruning test for a point p is applied in the context of
a single maximal dominating subspace set (i.e., DS(q, p) for some q ∈ D). However,
when the number of maximal dominating subspace sets is large, it is possible that each
maximal dominating subspace set in M on its own does not cover too many dominating
subspaces (to cause p to be pruned) even though the collection of dominating subspaces
covered by M as a whole is large.

To overcome this limitation, we extend the pruning test to be done at several “check-
points” by invoking CountDominatingSubspaces to count the number of
dominating subspaces at intermediate stages and performing the pruning tests using
intermediate collections of M each of which generally consists of more than one max-
imal dominating subspace set. Thus, by counting the coverage for multiple maximal
dominating subspace sets rather than a single maximal dominating subspace set, the
opportunity for pruning is increased.

In the implementation of this optimization, we set checkpoints at exponential sizes;
i.e., when the number of maximal dominating subspace sets reaches 2t (for some t > 0),
the counting process is invoked to check whether the current number of subspaces cov-
ered has already exceeded the threshold. This exponential checkpoint setup turns out
to perform better than any “linear” checkpoint setup since the number of subspaces
covered is usually proportional to the number of maximal dominating subspace sets.

5 Performance Study

In this section, we present an experimental evaluation of our proposed algorithms for
computing top-k frequent skylines using both synthetic as well as real data sets.

5.1 Experimental Setup

We generated synthetic data sets by varying the number of dimensions, the size of the
data set and the distributions of the data set; in particular, we considered the three com-
monly used types of data distributions: independent, correlated, and anti-correlated. In
addition, we also conducted experiments on the NBA real data set [1] that is mentioned
throughout this paper. The characteristics of this real data set most closely resembles a
correlated data distribution.
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We compare the performance of the following four algorithm variants:

1. Exact Count (EC): This scheme adopts exact counting, and employs the Pre-
Sorting and Checkpoint optimizations.

2. Approx Count without Sorting (ACWS): This scheme uses approximate counting
and only the Checkpoint optimization.

3. Approx Count without Checkpoint (ACWC): This scheme employs approximate
counting with only the Pre-Sorting optimization.

4. Approx Count(AC): This scheme adopts approximate counting together with both
Pre-Sorting and Checkpoint optimizations.

All experiments were carried out on a PC with a 2 GHz AMD Athlon processor and
2 GB of main memory running the Linux operating system. Unless otherwise stated,
we use the following default setting in our study: 15-dimensional data set with 100K
records, ε = 0.2, k = 10, and δ = 0.05. The default algorithm for all experiments is
AC, which we expect to show is the algorithm of choice.

5.2 Tuning the Approximate Counting Scheme

There are several tunable parameters in the approximate counting scheme: ε, δ and
k. We study the relationship between the effect of these parameters on efficiency and
precision. The efficiency result is shown in Fig. 1, while the precison result is shown in
Fig. 2.

We first discuss the efficiency results which compare the computation time as a func-
tion of different parameters. When we vary ε from 0.1 to 0.4 in AC, the processing time
decreases greatly since the number of samples is quadratic to 1/ε in approximate count-
ing. When we vary δ from 0.025 to 0.1 in AC, the processing time is very stable since
the number of samples in approximate counting is linear to ln(2/δ), which does not
change much with δ. From Fig. 1(c), which shows the result when k is varied from 10
to 70, we can see that the increase trend of the processing time is almost linear to the
result size k, which indicates that AC is scalable to various values of k.

The effectiveness of the method is measured by precision, which is the ratio between
the number of true top-k frequent skylines and the result size k. Looking at Fig. 2, we
note that the precision on correlated data set is always close to 1. Even on independent
and anti-correlated data sets, the AC algorithm can achieve precision over 90% with a
large range of different parameters. The figure also indicates that ε is the most important
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Fig. 2. Precision comparison as a function of different parameters

factor affecting the precision of the result. The precision decreases monotonically with
the increase of ε, while the other two parameters, δ and k, do not have too much impact
on the precision.

From this experiment, we can conclude that even setting ε = 0.2 and δ = 0.05 is
enough to provide very good results for top-k frequent skyline queries. As such, we use
these as the default setting.

5.3 Effect of Number of Dimensions

We study the impact of dimensionality on the efficiency of the algorithms. We compare
all the four algorithms EC, AC, ACWS and ACWC on data sets ranging from 10-25
dimensions. The results on the three synthetic data sets are shown in Fig. 3.

First, we look at the three approximate counting schemes. In the figure, the “bars”
that are beyond the maximum time plotted are truncated (in other words, all “bars” with
the maximum value have much larger value than the maximum value plotted). From the
poor performance of ACWS and ACWC, we can see the effect of the pre-sorting and
checkpoint optimizations. It is clear that pre-sorting is an important optimization. With-
out pre-sorting, the efficiency decreases by at least one order of magnitude. The check-
point optimization is useful when the dimensions are independent or anti-correlated
since it can prune many points. The combined effect of both optimizations contributes
to the superior performance of AC.

Now, comparing AC and EC, we observe that EC slightly outperforms AC at low
dimensionality (< 15). This is because when the dimensionality is low, the subspaces
covered by those maximal subspace sets are fewer than the number of samples needed
by AC. However, when the dimensionality is high, AC shows its strength since the
number of samples is irrelevant to the dimensionality, while EC must enumerate all the
covered subspaces whose number is exponential to the dimensionality.

Third, looking at the figure, we see that the relative performance of the schemes
remain largely unchanged under different distributions. As expected, the computation
time is higher for all schemes when the data becomes more anti-correlated.

Since ACWS and ACWC perform poorly relative to AC, we shall not discuss them
further.
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5.4 Effect of Data Set Cardinality

In this experiment, we evaluate the impact of data size on the computation efficiency
for 15-dimensional data. The data size is varied from 50K to 300K. We study two vari-
ants of AC: δ = 0.05 and δ = 0.1. The results in Fig. 4 show that although the time
complexity of Algorithm 1 is theoretically quadratic to the data size in the worst case,
the actual efficiency of these methods is almost linear in the data size. On the corre-
lated data set, EC always outperforms the algorithms with approximate counting. This
is because the dominating frequencies of the top-k points are all very small when the
data is correlated. For the data set with independent dimensions, EC outperforms AC
(δ = 0.05) but only outperforms AC (δ = 0.1) when the data size is smaller than 200K.
For the anti-correlated data set, both AC (δ = 0.05) and AC (δ = 0.1) are faster than
EC since the dominating frequency is large enough.

5.5 Results on Real Data Set

We use the NBA player statistics data set as our real data set for this experiment. As
noted, there are 17266 tuples over 17 dimensions.

Fig. 5 comparies the efficiency of the four algorithms, AC, EC, ACWS and ACWC.
From the figure, we can see that ACWC outperforms all the other methods on the real
data set; this is due to the fact that the NBA data set is fairly correlated. Although AC
is slower than ACWC by a little (due to the cost of the unnecessary checkpoints), its
performance is still much better than that of the exact counting algorithm.
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5.6 Comparison of Number of Maximal Dominating Subspaces

Table 3 compares the number of maximal dominating subspaces that are maintained by
the various algorithms for different number of data dimensions and data distributions
(i.e., correlated, independent, and anti-correlated). The last column in the table lists
the upper bounds on the number of maximal dominating subspace sets. Note that for a
data set with D dimensions, the upper bound is given by

(
D

D/2�
)
, where each maximal

dominating subspace consists of &D/2' dimensions.
As expected, the points in the anti-correlated data set has the maximum number of

maximal dominating subspaces. However, the number of maximal dominating subspace
is still much smaller than the theoretical upper bound listed in the last column. This in-
dicates that our method does not suffer from the exponential increase of dimensionality
in practice.

Table 3. Comparison of number of maximal dominating subspaces

Dimensionality Correlated Independent Anti-Correlated Upper Bound

10 17 64 62 252
15 72 483 565 6435
20 188 1897 2477 184756
25 587 5119 7617 5200300

5.7 Comparative Study

We also compared our EC and AC schemes against the Skycube algorithm [19]. Al-
though the Skycube algorithm (denoted as SC) can find the precise top-k frequent sky-
lines, it does not scale beyond 15 dimensions. Our results show that it takes more than
10 hours for SC to run on the independent data set with 100K 15-dimensional points.
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This is because SC focuses on conventional skyline query in any specified subspace,
and thus spends most of its computation time on points which cannot be top frequent
skyline points. As such, we only present the results for 100K 10-dimensional data sets
in Fig. 7.

From the figure, it is clear that both EC and AC are superior to SC in all the three
types of data sets. SC is not scalable as it may need to compute all the subspaces which
is exponential in the number of dimensions. We note that for small number of dimen-
sions (10 in this case), our AC scheme returns the exact answers, i.e., it has 100%
precision. That is, we do not give up any precision loss to obtain performance gain in
this case.
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6 Conclusions

Skyline queries have been lauded for their ability to find the most interesting points in
a data set. However, in high dimensional data sets, there are too many skyline points
for them to be of practical value. In this paper, we introduced skyline frequency as a
measure of interestingness for points in the data set. The skyline frequency of a point
measures the number of subspaces in which the point is a skyline. We developed an
efficient approximation algorithm to compute the top-k frequent skyline query. Our
experimental study demonstrated the performance and the effectiveness of the proposed
algorithm.

We plan to extend this work in several directions. First, we would like to explore
precomputation techniques (e.g., indexes) to further speed up the computation of top-k
frequent skyline query. Second, our current work assumes a static data set. We would
like to study techniques to facilitate incremental updates. Finally, exploring other inter-
estingness measures of skyline points is also part of our future work.

Acknowledgement. We thank the authors of [19] for sharing their implementation of
the Skycube algorithm.
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Abstract. We present a novel framework for comprehensive exploration
of OLAP data by means of user-defined dynamic hierarchical visualiza-
tions. The multidimensional data model behind the OLAP architecture
is particularly suitable for sophisticated analysis of large data volumes.
However, the ultimate benefit of applying OLAP technology depends on
the “intelligence” and usability of visual tools available to end-users.

The explorative framework of our proposed interface consists of the
navigation structure, a selection of hierarchical visualization techniques,
and a set of interaction features. The navigation interface allows users
to pursue arbitrary disaggregation paths within single data cubes and,
more importantly, across multiple cubes. In the course of interaction, the
navigation view adapts itself to display the chosen path and the options
valid in the current context. Special effort has been invested in handling
non-trivial relationships (e.g., mixed granularity) within hierarchical di-
mensions in a way transparent to the user.

We propose a visual structure called Enhanced Decomposition Tree to
to be used along with popular “state-of-the-art” hierarchical visualiza-
tion techniques. Each level of the tree is produced by a disaggregation
step, whereas the nodes display the specified subset of measures, either as
plain numbers or as an embedded chart. The proposed technique enables
a stepwise descent towards the desired level of detail while preserving the
history of the interaction. Aesthetic hierarchical layout of the node-link
tree ensures clear structural separation between the analyzed values em-
bedded in the nodes and their dimensional characteristics which label
the links. Our framework provides an intuitive and powerful interface for
exploring complex multidimensional data sets.

1 Introduction

With rapid evolvement of data warehouse technology in the last decade huge
volumes of data have become available for analysis and exploration. Data ware-
houses integrate data from heterogeneous sources into a single repository for
comprehensive analytical processing. Apart from generating standard reports,
the users are able to gain deeper insights into the data by means of dynamically
formulating and verifying their hypotheses about it. Arranging the data into a
multidimensional space is especially beneficial for decision support due to the
potential of retrieving the data subsets of interest in the form exactly satisfying

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 496–514, 2006.
Springer-Verlag Berlin Heidelberg 2006
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the users’ information needs. Furthermore, multiple coordinated views of the
same data set help to dynamically explore it and uncover the ”hidden gems”,
such as outliers, peculiar patterns, trends or clusters.

Data warehouses increasingly adopt the multidimensional data model which
was designed to meet the challenges of the online analytical processing (OLAP)
[5] by providing efficient execution of queries that aggregate over large amounts of
detailed data [14]. This model uses numerical measures as its analytical objects,
with each measure uniquely determined by its dimensions and therefore treated
as a point in a multidimensional space [3]. Depending on the expected type of
queries the data can be organized into hypercubes with a measure (or multiple
measures) as the value under analysis stored in the cube’s cells, the measure’s
determining dimensions as the cube’s axes and the dimensions’ values as the
coordinates of respective measure cells.

The desired data view can be retrieved from the cubes by applying OLAP
operations, such as slice-and-dice to reduce the cube, drill-down and roll-up
to perform aggregation and disaggregation, respectively, along a hierarchical
dimension, drill-across to combine multiple cubes, ranking to find the outlier
values, and rotating to see the data grouped by other dimensions [14].

The standard interface for exploring OLAP data is a Pivot Table, or Cross Tab
[10], which is a 2-dimensional spreadsheet with associated totals and subtotals.
Pivot Tables allow nesting of multiple dimensions within the same axis. This
technique is adequate for displaying the query results in a straightforward fashion
but it fails to show the selected values in a larger context and is thus a rather poor
option for complex data exploration. Advanced OLAP tools overcome the limits
of the cross tab interface by offering a multitude of powerful visual alternatives
for retrieving, displaying, and interactively exploring the data. Continuous efforts
are put into providing new approaches to visual exploration of the hypercube
data, such as hierarchical visualizations (decomposition trees, chart trees, tree-
maps etc.), multiscale views, interactive scatter-plots, etc. described in the next
section.

2 Related Work

The work related to ours in one way or another can be sub-divided into three
major groups, namely, multidimensional data modeling, visualization techniques,
and explorative interfaces.

2.1 Multidimensional Modeling and Data Warehouse Design

Modeling challenges arise whenever dimensional hierarchies contain irregulari-
ties preventing their straightforward mapping to balanced dimensional trees as
required for OLAP operations. A proposal to transforming such data into sum-
marizable structures, transparent to the user, can be found in [15]. Implications
of unbalanced hierarchies on the logical data warehouse design are explained in
[12]. Most of the data warehouse research, however, is concerned with perfor-
mance issues and is orthogonal to the scope of this paper.
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2.2 Visualizing OLAP Data

Besides the classical visualization techniques, such as Pivot Tables [10] and 2-
dimensional plots and charts, familiar to any OLAP analyst, a wide variety of
more comprehensive visual frameworks for incremental exploration and navi-
gation in large multidimensional data volumes have emerged. Hierarchy-aware
visualization techniques applicable in the OLAP context can be grouped into
the following categories:

– Geometric (Scatterplots, Landscapes, Hyperslice, Parallel Coordinates)
– Icon-based (Chernoff Faces, Stick Figures, Color Icons, TileBars)
– Pixel-oriented (Recursive Pattern, Circle Segments)
– Hierarchical (Dimensional Stacking, Worlds-within-Worlds, Treemap, Cone

Trees, InfoCube)
– Graph-Based (Straight-, Poly- and Curved-Line, DAG, Symmetric, Cluster)
– Hybrid techniques which arbitrarily combine any of the above.

Applicability of any particular technique or their combination depends largely
on the analysis needs and the level of user expertise. An overview of the above
techniques with respect to OLAP data can be found in [13].

Conventional node-link trees in a classical aesthetical view [17] and in a va-
riety of more compact layouts (hyperbolic, balloon, radial, etc. presented in [8])
which are rather familiar and intuitive to interpret can be used to increase the
user’s awareness of the hierarchical relationships within the data or allow users
to define their own hierarchies. More comprehensive and specialized techniques
are appreciated for complex analysis, scientific visualization and data mining.
[18] presents some advances in hierarchy visualization and its use for exploring
user-defined hierarchies. A well structured classification of the ”state-of-the-art”
visualization and interaction techniques with respect to the type and the dimen-
sionality of the data is produced in [9].

2.3 Exploration Tools

There is an abundance of tools and interfaces for exploring multidimensional
data. We limit ourselves to naming a few products which offer distinguished
features relevant for our work. One developed system called Polaris [20] extends
the Pivot Table interface by offering a combination of a variety of displays and
tools for visual specification of analysis tasks. Polaris is a predecessor of a recently
released business intelligence product called Tableau Software [2]. ProClarity
was the first to enhance business intelligence with Decomposition Trees [16] for
visual node-by-node disaggregation of data cubes. XMLA enriches the idea of
hierarchical disaggregation by arranging the decomposed subtotals of each parent
value into a nested chart (Bar- and Pie-Chart Trees) in its Report Portal OLAP
client [21]. Visual Insights has developed a family of tools, called ADVIZOR,
with an intuitive framework for parallel exploration of multiple measures [7].

Our interface differs from the standard OLAP tools in the way data navigation
is built (attribute hierarchies with data on-demand) and the way the data is
presented (hierarchical visualizations instead of spreadsheets and charts).
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3 Handling Complex Multidimensional Data

OLAP architecture performs well on the facts that are summarizable along each
dimension, i.e. where all dimensions are balanced hierarchies, however, it fails to
adequately support irregular dimension hierarchies [14]. Our ambition is to tackle
some of the frequently observed irregularity patterns in complex dimensions.

Throughout the remainder of the paper we will refer to the following fragment
of a (simplified) university data warehouse consisting of two OLAP cubes:

1. Orders with the facts about the university’s expenditures.
Measure: total amount in e. Dimensions: Interval, Category, Institution,
Project, and Funds.

2. Students with the facts about the number of enrolled students.
Measures: number of cases, number of heads1. Dimensions: Semester, Term,
Nationality, TeachingUnit, Degree, Gender, Eligibility (certificate type).

The logical design of the above database roughly corresponds to the snowflake
schema [3] which explicitly decomposes hierarchical dimensions into per-level
subdimensional tables. Fact tables contain measure attribute(s) and their di-
mensional characteristics. The latter are the foreign keys referencing the respec-
tive dimension table. In case of a hierarchical dimension, each subdimensional
table is connected to the next level table(s) by means of foreign keys. Thereby,
a snowflake shape is produced by the fact table in the center, surrounded by
the directly referenced bottom-level dimensions with all their referenced upper
levels at periphery. The data schema described above is depicted in Fig. 1.

We have deliberately chosen a rather complex data warehouse fragment in
order to examine various patterns in hierarchical dimensions as well as the ability
of our navigational framework to handle them in a way intuitive for the user.

3.1 Classification of Dimensional Hierarchies

The OLAP cube has a relation schema D1 ∪ D2 ∪ ...Dn, where each Di is a
dimensional attribute with its corresponding relation di referred to as a dimen-
sion. Hierarchical dimensions consist of subdimensions, or nodes, for each of its
levels. The tuples in a relation are the members, or entities, of the respective
dimension, a tuple of di is denoted t[di].

We extend the notion of dimension to include abstract nodes, i.e. without
associated relations and entities. Abstract nodes are used simply as an upper
class for uniting multiple child categories or as a root node at the top of the entire
underlying hierarchy: Di is abstract if its di = ∅. The next-level subdimension
Dk of any Di is called its child, Dk = child(Di), and the set of all children of
node Di is given by the function children(Di). The cardinality of node Di equals
the number of its children: |Di| = |children(Di)|.
1 Head statistics counts physical persons, assigning each “head” to the supervising

faculty of his/her major. Case statistics splits single enrollment into separate cases,
one for each major/minor, to register a student as a “case” at each involved faculty.
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Fig. 1. Logical schema of the university data warehouse fragment

The hierarchical behavior of a dimensional node can be described based on 1)
its relation (or members), 2) cardinality, and 3) its relationship w.r.t. its chil-
dren. Notice, that the type characterizes solely the node itself, and not its entire
subtree (the descendants may be of various types). Based on the logical schema
in Fig. 1, one can identify at least the following five distinct behaviors:

- Simple: a non-hierarchical dimension (e.g., Gender, Project);
Di is simple → |Di| = 0 ∧ di �= ∅.

- Single Hierarchy: a strict hierarchy (e.g., Interval, Category) has just a
single decomposition path; Di is single → |Di| = 1 ∧ di �= ∅.

- Multiple Hierarchy: a dimension is subdivided in multiple ways. For in-
stance, Intervals can be aggregated along semester → academic year, or
along quarter → semi-annual → calendar year. Multiple paths are placed
into the same abstract parent node; Di is multiple → |Di| > 1 ∧ di = ∅.

- Composite Hierarchy: an ”umbrella” dimension uniting heterogeneous
members from multiple relations in a single superclass (e.g., the members of
Institution may refer to StaffUnit, AdminUnit, or TeachingUnit):
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Di is composite → |Di| > 1 ∧ di �= ∅ ∧ ∀ Dk ∈ children(Di) : dk ⊂ di. Since
InstituionID in Orders may point to the entry from any of the three tables,
a composite Institution dimension is built by extracting the primary keys of
original dimensional tables, along with the table’s name, into a new table.

- Mixed-Level Hierarchy: the entities from upper hierarchy levels do not
merely serve for aggregating (as in single hierarchy), but also participate as
end-entities in the fact table. Therefore, an additional relation is built on
the top of the respective hierarchy by denormalizing the latter into a single
table (as in AdminUnit or TeachingUnit). To separate its twofold role, the
dimension’s node has to contain its own level’s relation as a simple child
subdimension (see section 5 for further details);
Di is mixed-level → |Di| ≥ 1 ∧ di �= ∅ ∧ ∃Dk ∈ children(Di) : dk = di

The two cubes do not have any directly shared dimensions within their schemata,
and, therefore, cannot be drilled-across for parallel exploration by means of a
natural join. However, a closer inspection reveals two linking options:

- Semester in Students and Intervals in Orders are summarizable by semester,
- TeachingUnit in Students is a subclass of Institution in Orders.

These linkages encourage the anticipation that both fact tables can be joined for
cross-cube exploration at their shared aggregation levels.

4 OLAP Cube as a Decomposition Tree

OLAP operations, such as drill-down, roll-up, and cube, transform the data from
a fact table into a hierarchy by aggregating or disaggregating the measure along
specified dimensions. A series of successive disaggregation steps can be presented
as a Decomposition Tree. Notice that decomposition is a process contrary to
aggregation. The measure’s total, aggregated along all selected attributes, forms
the root node of the tree. The next level emerges by computing the subtotals
of a disaggregation along any specified dimension. Each subsequent k -th level
will contain the subtotals disaggregated by k specified dimensions2. Back to our
example, the measures of cube Students may be decomposed along the following
sequence of dimensional attributes (see Fig. 2):

AcademY ear → Semester → Gender → Degree → ...

Unlike standard spreadsheet views, the hierarchical presentation in Fig. 2 by its
very nature has an advantage of supporting arbitrary number of split dimen-
sions in arbitrary order while preserving this order in its levels. All nodes at the
same level correspond to the same granularity whereas nested charts accelerate
identification of interesting values and directions for further expansion. Interac-
tive filtering can be applied to eliminate or temporarily hide irrelevant subtrees.

2 In terms of a SQL statement, decomposition adds the chosen dimension’s attribute
to the GROUP BY clause.
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Fig. 2. A user-driven hierarchical decomposition of cube Students

Further perceptional improvement is achieved by clearly separating the struc-
tural information from the actual data: the split dimensions are used as titles
for their respective tree levels, the dimension entities label the edges and the
measure values are displayed within the nodes. The contents of the nodes can
be heterogeneous, such as text, numbers, charts or a combination thereof.

Since there are as many disaggregation operations possible within a cube as
the total number of its dimensions including all subdimensions, and since the
order of splitting can be arbitrary, OLAP cubes offer a huge exploration poten-
tial (n! disaggregation paths in case of n dimensions) by means of hierarchical
decompositions. However, it is rather challenging to incorporate the required
framework for interactive construction of user-defined hierarchical visualizations
into OLAP interfaces in a fast, intuitive and user-friendly way. In the remaining
sections we describe our proposed solution to empowering an OLAP tool with
the above exploration technique.

5 Designing the Navigational Framework

Probably the most popular paradigm underlying the OLAP navigation structure
is that of a file browser, with each cube as a folder containing the list of top-level
dimensions and the list of available measures, as found in Cognos PowerPlay [6],
BusinessObjects [1], CNS DataWarehouse Explorer [4], and many other com-
mercial OLAP tools. Each hierarchical dimension is itself a folder containing
its child entities. Hierarchical entities can be recursively expanded to show the
subtrees of their descendants. The entities of the highest granularity (i.e. the leaf
nodes) are represented as files and are non-expandable.



From Analysis to Interactive Exploration 503

Fig. 3. Navigating in the hierarchical dimension Nationality. a) “show-data”-approach
b) “show-structure”-approach c) on-demand preview in the “show-structure”-approach.

Standard OLAP interfaces allow users to navigate directly in the dimensional
data rather than in a dimensional hierarchy. Our approach, however, pursues a
clear distinction between the dimension’s structure and its instances. Therefore,
expansion of a dimension folder reveals solely the nested folders of its subdi-
mensions, contrary to the standard OLAP navigation displaying the child-level
data. The instances of any subdimension can be retrieved on-demand. Fig. 3
a)-b) demonstrates the differences between the standard ”show-data” and our
proposed “show-structure” interfaces, respectively, at the example of a hier-
archical dimension Nationality. Notice that expanding the top-level dimension
Nationality in Fig. 3 b) reveals its entire descendant hierarchy, enabling the
user to “jump over” right to the desired granularity level. The data view is
available on explicit demand by clicking the preview button of the respective
category. Fig. 3 c) shows the activated preview of Subcontinents with the op-
tion to drill-down into any subcontinent’s descendant subtree. The advantages
of our proposed navigation structure for building hierarchies can be summarized
as follows:

– clear distinction between the dimension’s structure and its contents
– immediate overview of all granularity levels in a hierarchical dimension
– the ability to drill-through directly to any descendant subdimension
– on-demand preview of the data as well as any data node’s descendant entities
– compactness on the display due to moderate expansion at most steps
– the entire navigation is built from a single meta table of the kind

title table parent root hierarchy
Nationality NULL NULL NULL single

Subcontinents dim subcontinent Continents Nationality single
Countries dim country Subcontinents Nationality simple

... ... ... ... ...
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containing, for each dimension entry, its title and table, references to its
parent (NULL for top-level) and root3 dimensions, and its hierarchy type (as
classified in section 3)

– the actual data is retrieved only if explicitly requested
– it is easier to find the entries of interest even somewhere deep in the hier-

archy without knowing the data (e.g. any country can be accessed directly
through the preview of Countries without searching for and drilling through
its ancestors in Continents and Subcontinents).

Fig. 4. A mixed-level hier-
archy navigation node

As for various hierarchy types defined in section 3,
our approach can handle each of them accordingly,
using solely the above meta table4, as pseudo-coded
in Algorithm 1. The basic rule is to discontinue re-
cursive expansion whenever mutually exclusive child
paths arise since at those points the user is called
upon to stick to just one of them. The case of a
mixed-level hierarchy deserves a closer inspection.
To reflect the twofold role of its subdimensions (i.e.
both as leaf nodes and as aggregation levels), each
of such subdimension contains, apart from its child
level, its own self as a simple, i.e. non-hierarchical, subdimension, as can be seen
in Fig. 4 at the example of expanding TeachingUnit in the cube Orders. De-
composing along by Faculty computes the subtotals for each faculty including all
its subordinate institutions, whereas choosing its child Faculties computes the
subtotal only for the faculties themselves as end-entities.

5.1 Parallel Exploration of Multiple Cubes

OLAP Join, or drill-across, allows linking multiple OLAP cubes to compare
their measures or derive new ones under the condition that the cubes share at
least one dimension. We define a dimension to be partially shared if the cubes
impose different hierarchies upon it which share at least one aggregation level.
Apparently, the cubes can also be joined on partially shared dimensions, as long
as each cube is pre-aggregated to the shared level. Let us extend the proposed
navigation framework to support parallel exploration of multiple cubes for each
shared subdimension. For any number of cubes, pre-selected for a drill-across,
the navigation structure can be built in the following steps:

1. Unnest the top-level dimensions and the measures from their respective fact
table folders into a common navigational hierarchy.

2. Identify all partially or fully shared dimensions and the actually shared sub-
dimensions therein (this phase is critical since sharing is not always obvious,
e.g. implied by foreign key or other constraints).

3 Root reference helps to identify top-level nodes and to avoid recursive SQL queries
when retrieving descendant dimensions.

4 Implementation of the data display routines behind the Preview buttons involves
more complicated algorithms and is not considered at this stage.
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Algorithm 1. Expanding a Dimension’s Navigation Node
input : dimension name D, nesting counter level, recursion propagate
result: the dimension’s sub-tree is displayed

procedure expandNode (Node D, int level)
begin

type ← SQL: SELECT type FROM meta WHERE title=’ D’;
if type = simple then return; // cannot be expanded, so no action
else

Array children ← SQL: SELECT title FROM meta WHERE parent=’ D’;
switch type do

case single hierarchy
drawNode (children[0], ++level, TRUE);// expand recursively
break;

case mixed-level hierarchy
foreach child in children do

drawNode (child, ++level, TRUE);// expand recursively

break;
case composite
case multiple hierarchy

foreach child in children do
drawNode (child, ++level, FALSE);// no recursion

break;
case ... // define further cases

end

procedure drawNode (Node D, int level, boolean propagate)
begin

Array info ← SQL: SELECT type, table FROM meta WHERE title=’ D’;
icon ← getIcon ( info[type]);
indent according to level, display icon and D’s title
if info[table] is not NULL then

display preview icon // there is data to preview

if propagate then
expandNode (D, level); // propagate expansion

end

3. For each group of partially shared dimensions, create a new upper-level di-
mension to serve as their parent and place the former ones underneath the
new parent as a multiple hierarchy.

4. Single paths within the created multiple hierarchy might need to be adjusted
to contain newly enabled additional aggregation opportunities.

The process of merging the Interval dimension of Orders and the Semester
dimension of Students is shown in Fig. 5, with their shared levels highlighted.

Visual distinction between shared and non-shared navigation paths can be
done by assigning each cube a unique color. The same colors are then used for



506 S. Vinnik and F. Mansmann

Interval Semester

by year (calendar)

by semi-annual

by quarter

by month

by year (academic)

by semester

Periods

by year (calendar)

by semi-annual

by quarter

by month

by year (academic)

by semester

by month

Fig. 5. Unifying partially shared dimensions
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Fig. 6. Navigating in multiple cubes

marking each cube’s measures and dimensions. All partially and fully shared
top-level dimensions have the color marks of all involved cubes thus giving user
a hint about the linking potential. Subdimensions, on the contrary, carry the
marks of exclusively those cubes actually sharing that aggregation level. Fig. 6
demonstrates the above idea of using color marks.

6 Interactive Generation of Visual Hierarchies

The purpose of the navigational framework is to enable interactive retrieval of
the data to be displayed in the visualization window according to the specified
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layout (e.g., Pivot Table, Decomposition Tree, etc.). In case of a hierarchical
visualization the only supported direction of retrieval is disaggregation: each
level of the hierarchy is produced by adding a new dimension or drilling down
any already added hierarchical dimension. In what follows we explain the basic
steps of generating a tree-like visualization at the example of a bar-chart tree
built from the Orders cube:

– Measure selection: Selecting / de-selecting measures in the navigation panel
causes them to be added to / removed from the visualization, whereas the
following modalities can be distinguished:
• Displaying multiple measures per node: when more than one measure is

dragged, a dialog window will pop up prompting the user to specify the
measures’ display options (plain numbers, nested charts, or both)

• Specifying no measure: with no measure chosen, one can display the
structure of a hierarchical dimension without associated subtotals

• Adjusting the measure’s format : via the Options menu, the measure’s
display options, such as rounding, range, units etc., can be specified

• Defining a new measure: advanced users can use this option (see bottom
of Fig. 6) to define a new measure by combining existing ones through
arithmetic operations or functions.

Back to our scenario, dragging the measure Order Amount, e into an empty
plane displays its total value as a root node, as shown in Fig. 7 a).

– Decomposition: Dragging any dimension into the visualization window is
interpreted as disaggregation along that dimension. The dragged dimension
along with all its ancestor hierarchy up to the root are added to the list of
split dimensions and are made undraggable in order to disable upward steps
(roll-up) invalid in this context. Decomposition causes the new level with
decomposed subtotals to be added to the visual hierarchy, except in the case
of a nested-chart-tree where the following options need to be distinguished:
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Fig. 7. Generating a bar-chart tree visualization a) initialization b) creating the root
node c) adding a new level
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• Initializing: the first chosen dimension is used for decomposing the root
node value into a nested chart, thus defining the chart’s granularity
within the node, and is denoted Diminner. Fig. 7 b) shows the results of
choosing Cost Category to be Diminner .

• Outer Decomposition: Splitting along any dimension which is not a de-
scendant of Diminner produces a new level with unchanged entities in
the nested charts but with the respectively decomposed values in them,
as depicted in Fig. 7 c) where the root node was split along Year.

• Inner Decomposition / Drill-down: Drilling down into a descendant of
Diminner turns the split dimension to be the new Diminner changing the
nested chart’s granularity to the new level. The entities of the previous
Diminner serve as the outer split dimension, as shown in Fig. 8 a).

– Global Filtering: Any dimension can be applied as a global filter if dragged
into the filter panel. Filtering results in the measure being aggregated only
for the explicitly selected entities of the filter dimension. Filtering along an
unsplit dimension does not reduce the number of nodes, but rather influences
the measure values in the nodes. For example, filtering the tree in Fig. 7 c)
by Project would simply recompute the subtotals in the nested charts based
on the selected projects. Filtering along an already split dimension will not
only recompute the subtotals at each level, but will actually remove the
subtrees of deselected entities (or, in case of Diminner or its ancestor, the
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Fig. 8. Interacting with a bar-chart tree a) Performing an inner decomposition b)
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Fig. 9. Inline filtering of the nodes to display

entries within the charts) from the visualization. Fig. 8 b) shows the effect
of eliminating two entities in the filter dimension Cost Categories.

– Local Filtering: By default, dragging a dimension into the visualization would
create a child node for each of its entities. Alternatively, the user can explic-
itly specify the subset of entities in the current to-be-split dimension directly
in the dimension’s preview. Such inline filtering is interpreted as local, i.e.
it affects only the current tree level leaving the upper levels unchanged. For
example, inline elimination of the entry 2001 when performing a decom-
position shown in Fig. 9 would cause that year’s node in Fig. 7 c) to be
withdrawn. Local filtering is equivalent to simply deleting irrelevant nodes
from the visualization.

6.1 Interaction-Preserving Navigation

In the process of constructing complex hierarchies the user may lose the orien-
tation as more navigational nodes at various levels become expanded and used
as inline or global filters. Manageability of the navigation can be improved by
forcing the displayed navigational hierarchy to adapt to the course of interaction.
The core idea is to visually separate the expired paths (i.e. those already used
as decomposition axes) from the still available ones. This is achieved by parti-
tioning the background behind the list of dimensions vertically into the expired
(dark background) and the active areas. Initially, all dimensions are placed into
the active area. Two lists are managed in the course of interaction:

- ActiveList: contains the top-level nodes of all unsplit paths
- ExpiredList: contains the nodes of all dimensions already split

Each time a decomposition step is performed, the split dimension along with
all its ancestors are shifted into the expired area. The entire navigation gets
adjusted according to the rules described in Algorithm 2.

Fig. 10 demonstrates the presented adaptation procedure at the example of de-
composing the Orders cube, with the navigation structure prior to the first split
operation, its adjustment after performing it, and its state after multiple inter-
actions, as subfigures a), b), and c), respectively. Furthermore, we suggest that
the entire expired area should be hidden from the display by putting the naviga-
tion structure into a horizontally scrollable window, as shown in Fig. 10 c). The
advantages of the adaptive display can be summarized as follows:
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Algorithm 2. Adjusting the Navigation after a Decomposition Step
input : Split dimension D
result: re-arranged display of the navigation hierarchy

procedure shiftDimension (Node D)
begin

offsets = 1; // offset = horizontal space between 2 adjacent nodes
if D in ActiveList then

activeRoot ← D // only this node must be re-displayed

else
activeRoot ← find D’s ancestor in ActiveList;
offsets += number of D’s ancestors up to activeRoot; // the number

of shifts must correspond to the length of the expired path

foreach node in ExpiredList do
// shift all previously expired entities
shift node’s segment backwards by 1 offset;

Redisplay the segment [ActiveRoot, D] moved backwards by offsets shifts;
Change D’s icon to split, its ancestors to expired ;
ExpiredList → add(D);
ActiveList → remove(activeRoot);
expandNode (D, 0); // replace the expired node with its subtree
Array children ← SQL: SELECT title FROM meta WHERE parent=’ D’;
foreach child in children do

ActiveList → add(child);

end

– the expired segments are removed from the active area thus preventing the
user from erroneous attempts to access them

– all valid decomposition paths and their still available granularity levels are
clearly displayed in the active area

– the split dimensions in the expired area are horizontally ordered to preserve
the order of splitting, with more recent steps being closer to the active area

– any expired split step can be undone, causing the corresponding tree level
to be removed from the visualization. The navigation structure accounts for
the undone split by re-activating the respective path.

7 Enhanced Decomposition Trees

Any particular visualization technique has its pros and cons depending on the type
of task to be solved. In case of a dynamic disaggregation of OLAP cubes, the most
common tasks are to ”drill” into an aggregate in order to trace its behavior along
certain dimensional axes and to compare the subtotals within the same granularity
level against each other. Standard decomposition tree patented by Proclarity [16]
are used to decompose an aggregate along multiple dimension axes. The measure’s
subtotals as numbers andpercentage, aswell as the corresponding split dimension’s
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entity are placed inside the nodes. Only one node per interaction can be expand-
able. Our proposed enhancement of the standard decomposition tree technique is
multi-directional and comprises the categories presented below.
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Fig. 11. Using area-aware
chart bars

Layout. Decomposition trees adopt the classical
aesthetic layout due to its visual support of both
vertical (parent - children) and horizontal (same
level nodes) comparison: children are placed be-
low their parent and each tree level is aligned.
Both the top-down and the left-to-right layouts
are supported. Directing the nested bar-charts or-
thogonal to the tree layout (i.e., horizontal bars in
case of a top-down tree) puts the charts in each
level onto the same axis and is therefore optimal for perceiving the entire level
as a single chart (as in Fig. 2). The inherent wastefulness in terms of display
area (scarcely populated upper levels consume as much area the bottom ones)
can be minimized by adding space awareness to its nodes, as exemplified in Fig.
11. Feasibility of distinct display optimization measures depends on the type
and behavior of the value(s) in the nodes. For instance, when decomposing a
single measure, the children of each parent can be arranged into “Slice&Dice”
treemaps [19], as shown in Fig. 12.

Node contents. The node contents may be heterogeneous, such as a single
value or a set of values with their dimensional characteristics. Multiple values
per node arise whenever the user has chosen multiple measures to display or a
nested-chart technique for a single measure. Our intention in this respect is to
migrate from a plain value display towards a value visualization within and across
the nodes. Nested bar-charts appear to be a rather suitable way of presenting
nested decomposition or comparing multiple measures by putting them onto the
same scale (see Fig. 2). Visual enhancements in part of parent-child or child-

Fig. 10. Adaptive navigation structure a) initial state b) after the first decomposition
c) after multiple decompositions
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child relationships are best achieved by applying enclosure mechanisms, such as
bounding boxes, subtree area division [11], or recursive partitioning of the node
region as in treemaps [19].

Fig. 12. “Slice&Dice”
treemaps as nodes

Visual elements. We suggest that the dimensional char-
acteristics are used for labeling the node’s links instead of
putting them inside the nodes. This approach contributes
to display optimization by reducing the node’s inner area
and filling the sparsely filled link areas. Another benefit is
an improved logical structuring of the data: the aggregate
is inside the node whereas its dimensional coordinate is
attached to the link, connecting the node to its parent.

Generating the visualization. Unlike with the stan-
dard node-by-node expansion approach, our navigational
framework empowers fast generation of arbitrarily large
trees. A single drag&drop interaction is required for gen-
erating the entire tree level. The navigational hierarchy
adapts itself every time the visualization is re-rendered to hide no longer valid
navigation paths from the display and thus leaving the user very little space to
lose the orientation or attempt an erroneous operation.

Interaction Features. Interaction serves for exploring the visual hierarchy as
well as for its dynamic modification. Dragging the nodes is straightforward and
is used to deliberately re-arrange the nodes on the dispay. Single nodes can
be minimized to icons (temporary elimination) by closing them to be reopened
later. Deleting marked nodes or regions is equivalent to local filtering. Zooming
is available in a form of a slider for resizing the entire visualization and as
a dynamic zoom cursor for zooming on a single node. Power options, such as
sorting, changing the display options, re-scaling the inner charts, etc. are accessed
via an ”Options” box placed next to each tree level.

8 Conclusion and Future Work

We have presented a navigation framework for advanced exploration and analysis
of multidimensional data in a data warehouse context. The underlying OLAP
technology empowers the decision support by allowing users to intuitively re-
trieve the desired data in a layout and granularity exactly matching the user’s
needs. We enhanced a standard OLAP interface by enabling user-defined dy-
namic decompositions of OLAP cubes using hierarchical visualization techniques.
Since explorative analysis is driven by the insights acquired in the course of
interaction, hierarchical visualization is especially appreciated for its natural
preservation of the interaction history and for enabling gradual ”descent” from
a heavily aggregated overview to the desired level of detail.

The core component of our interface is the introduced navigation structure
optimized for fast and easy generation of hierarchical visualizations from OLAP
cube data by exploiting the logical data warehouse design. Our framework en-
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ables convenient navigation within a single OLAP cube as well as pursuing any
valid drill-across paths for joined exploration of multiple facts. The visualization
toolkit consists of the popular ”state-of-the-art” hierarchical layouts. We also
extended the classical node-link tree technique into an OLAP-aware Enhanced
Decomposition Tree. The displayed data can be clearly structured by placing the
aggregates inside the nodes, using their dimensional characteristics for labeling
the nodes and the dimension titles for naming the tree levels. The values within
the nodes can be arranged into nested charts to facilitate their visual perception.

The directions of our future activities are manifold: 1) to further explore
challenging data patterns and new application domains with respect to their
adequate mapping in the OLAP model, 2) to examine various visualization tech-
niques as to what extent they qualify or can be adjusted for exploring OLAP
data, 3) to refine our implementation to make it more generic and extendable
to incorporate new data patterns and visualization techniques, and, 4) to obtain
user feedback in order to evaluate and to revise our framework accordingly.
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Abstract. Partial-match queries return data items that contain a sub-
set of the query keywords and order the results based on the statistical
properties of the matched keywords. They are essential for information
retrieval on large document repositories. However, most current peer-to-
peer networks for information retrieval are based on distributed hash-
ing and as such cannot support partial-match queries efficiently. In this
paper, we describe an efficient and scalable technique to support partial-
match queries on peer-to-peer networks. We observe that the combina-
tions of keywords in the queries are only a small subset of all possible
combinations of the keywords in the documents. Therefore, we propose a
distributed index structure, called a distributed pattern tree (DPTree),
to record frequent query patterns, i.e., combinations of keywords, learnt
from the query history at each node in the network. Using this index, a
query can identify its best matching patterns quickly and data lookup
can be done in logarithmic time with respect to the network size. Our
simulation studies on the TREC data sets have shown promising results
in comparison with other previous approaches.

1 Introduction

While the decentralized nature of peer-to-peer file sharing systems enables ro-
bustness and scalability, it also poses great challenges for resource lookup in these
systems. Most existing peer-to-peer approaches do not support complex queries
efficiently. Unstructured peer-to-peer systems maintain no forward knowledge
for remote computers. As a result they are essentially in the dilemma between
network coverage and bandwidth cost while searching, whether using simple or
complex queries. Structured peer-to-peer systems, such as Chord [6] and Pas-
try [2], are mostly based on distributed hash tables (DHT). They determine
the hosting peer(s) of a data item by applying hash functions on the descriptors
(e.g., the keys) of the data item. Therefore, they can quickly route a query to the
destination where matching data items can be found, but they only allow exact
match, i.e., the query and the descriptors of the data items must be identical.
Exact match does not meet the needs of full-text keyword queries. It is difficult
for such structured peer-to-peer systems to support more complex queries such
as partial-match queries efficiently.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 515–532, 2006.
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Generally speaking, a partial-match query returns data items that contain
the query keywords and ranks the results according to the matched keywords.
For example, a full-text retrieval system accepts keywords as the query, and
retrieves and ranks documents containing the keywords. There are many ranking
functions. In this paper, we adopt the inner product similarity because it ranks
documents purely based on the matched keywords without considering other
non-matching keywords in the documents. Inner product is not only simple but
also suitable for users who are looking for some relevant documents (i.e., most
web search users). For example, assessors for TREC relevance judgments consider
a document to be relevant to a query if any slice of the document is relevant to
the query [21].

We note that most existing peer-to-peer networks for information retrieval are
based on distributed hashing and as such cannot support partial-match queries
efficiently. In this paper, we propose to develop a distributed index called DP-
Tree which supports full-text partial-match queries efficiently on peer-to-peer
networks. The idea is that each node manages a list of relevant documents
for popular queries, and organizes the document lists to be searchable within
O(log N) time where N is the total number of participating nodes. In this pa-
per, we use the term pattern to represent the (unordered) set of keywords that a
query contains. While the number of possible patterns is astronomical, given the
large and ever-growing document repositories nowadays, we observe that only a
small portion of the patterns are frequently used in the queries. This observation
motivates us to focus on frequent patterns mined from the query history. In fact,
query history has been utilized successfully in many peer-to-peer search systems
to improve the performance [8, 11, 22].

To support the organization of patterns and pattern mining, we developed the
distributed pattern trees (DPTree). By definition, a DPTree is a tree structure
that can be implemented on one or more computers: a node can be implemented
on more than one computer, or alternatively, the whole tree can be implemented
on one computer. Each DPTree node corresponds to a pattern. In particular, the
root of a DPTree represents a single-word pattern, its children are responsible
for 2-word patterns, and its grand children correspond to 3-word patterns, etc.
Each node maintains an index to the list of documents matching the pattern
that the node maintains. For clarity, we hereafter use the terms DPTree node to
refer to the node itself, the pattern it maintains or the machine (or machines)
that implement the node when no ambiguity arise.

A DPTree node is capable of initiating, forwarding and responding to queries.
During the search procedure, a DPTree node selectively records a query history,
from which frequent patterns can be mined periodically. A DPTree starts with
a single-word pattern (i.e., the root node) and is expanded and adapted dynam-
ically based on the frequent patterns found. The roots of the DPTree’s form
an addressable network using distributed hash tables. By applying mining tech-
nique on query history, our approach is able to answer most queries quickly and
precisely by managing a suitable number of frequent patterns. In addition, we
employ random access sequence on patterns to establish strict mapping between
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a pattern and the DPTree that it resides. This eliminates redundant patterns
across DPTree’s without breaking the storage and network load balance among
the peers. Another data structure called sub-tree summary enables a DPTree
node to estimate its entire sub-tree in an economical way, which spares overlay
maintenance cost.

We conducted simulation over TREC data and compared our system with
other two systems [3, 17] which are to be introduced in the next section. The
experimental results show that our approach achieves significant gain on search
effectiveness and efficiency.

The remainder of this paper is organized as follows: Section 2 introduces
some related works. Section 3 describes the basic DPTree approach in detail.
We discuss some improvements for the basic approach in section 4 concerning
redundancy and maintenance. Section 5 presents our experimental results and
Section 6 summarizes our work.

2 Related Work

To our current knowledge, no authoritative peer-to-peer approaches were found
for partial-match full-text queries. However, concerning the larger domain of
similarity search, there are some impressive works [3, 4, 13].

pSearch [3][4] and SSW [13] use Latent Semantic Indexing (LSI) to map doc-
uments into a semantic vector space and perform search based on the Euclidian
distance between the query point and the document points. In especial, pSearch
is developed on top of CAN. In addition to the use of LSI, pSearch applies
rolling index and register a document to p places in the CAN using p separate
partial semantic spaces. This reduces the dimensionality and therefore enables
CAN to manage full-text documents. In SSW, computers form clusters, each of
which manages non-overlapping regions of the semantic vector space. A clus-
ter is split into two at a certain cluster size when new nodes join the network.
Every computer in a cluster knows its region and splitting history, which are
used to compute a unique ID for the cluster. All the clusters form a circle with
clockwise ascending cluster ID’s. A query message computes a partial cluster ID
using available splitting history and hops along the circle in a greedy manner
until it reaches the cluster with the complete ID. Query routing is efficient in
both pSearch and SSW. pSearch and SSW split successively the vector space
into cells and position data points according to the cells that they reside in.
These approaches work well with similarity metrics such as cosine or Euclidian
distance. They are, however, inherently not applicable to partial match. This is
because although various document ranking metrics (e.g., inner product) can be
applied to process partial-match queries, none of the metrics follow the triangle
rule (i.e., dAC ≤ dAB + dBC for any three points A, B,and C, where dXY is the
distance between point X and point Y .). This indicates that documents relevant
to a query are not guaranteed to be similar to each other. As a result, the basic
assumption of pSearch and SSW does not hold that data points relevant to a
query reside in a small number of adjacent cells.
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Efforts were made to address the particular issue of partial-match query [5, 10,
15, 17, 18]. One approach [15] assigns every keyword set that appears in the net-
work a computer which indexes a list of relevant documents for the keyword set.
A document is said to be relevant to a keyword set if all of its keywords co-exist in
at least one slice (or a window) of the document. While this method does partial-
match search quickly, it bears large storage and maintenance overhead since, with
no selectivity, it will possibly supervise a huge number of keyword sets.

Another approach [17] applies joins in distributed database to work with
partial-match search. It maintains a list of documents for each single keyword.
To compute the result set for a multi-keyword query consisting of more than one
keywords, it starts with the first keyword and locates quickly a list of relevant
documents. A bloom filter is computed based on the document list retrieved
which is much smaller in size compared to the list of relevant documents. The
bloom filter is sent to the next keyword along with the query. Upon receiving
the query and the bloom filter, the computer responsible for the next keyword
will integrate the bloom filter and its document indices into a new relevant list.
This method is efficient for small data sets. However, it is shown [9] that the
bloom filter consumes significant bandwidth cost in large-scale networks.

3 Partial-Match Search Using Distributed Pattern Trees

Our observation is that compared to the huge number of possible keyword sets,
only a very small portion of them are frequently used as queries. Therefore, it
is unnecessary as well as infeasible to create a document list for every possible
pattern. This motivates us to use distributed pattern trees that extend them-
selves from query history. The DPTree’s manage a tree hierarchy of popular
query patterns. Every node for a DPTree is associated with a pattern and is rep-
resented by a cluster of strongly connected computers responsible for a pattern.
The parent-child relationship between two DPTree nodes indicates the contain-
ment relationship between their patterns. A pattern P2 is said to contain another
pattern P1 if and only if all keywords that appear in P1 also exist in P2. The
root of a DPTree is a pattern of a single keyword. The root nodes are positioned
using distributed hash table while the single-word patterns that they manage
serve as the key. Among a few applicable DHT’s [1, 2, 6], we choose Chord [6]
for placement of pattern tree roots.

During a series of query sessions, every DPTree node selectively collects its
query history and mines the frequent patterns periodically. The DPTree’s, ini-
tially consisting of only roots, are then expanded dynamically as new frequent
patterns are discovered. A keyword based search starts from one single word
clusters and is propagated along the pattern trees until the patterns that best
match the query are reached.

3.1 Overlay Formation

We now discuss the construction of the overlay network. In essence, our approach
uses distributed pattern trees on top of the Chord protocol. Figure 1 displays a
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Fig. 1. Distributed pattern trees positioned along a Chord ring

simple example of the network containing five DPTree’s, rooted at A, B, C, D,
and E, respectively. Each node is labelled with the pattern that it manages.

In the initial state, a DPTree contains only the root, which corresponds to a
single-word pattern. The DPTree’s are generated dynamically. When a DPTree
node Ni receives a query, it checks if it fully matches the query. If so, it answers
the query. If not, it checks if any of its child nodes matches the query. If a match
is found, the query is forwarded to the corresponding child node for processing.
Otherwise, Ni is considered the best matching node and the answers are returned
from Ni. Since Ni does not fully match the query, it records the query in its query
history. Algorithm 1. describes this query logging procedure.

Algorithm 1. Query logging during a search session
Input:

N is a node of a DPTree
Q is a query message
P is the peer that initiates a query

Procedure: query(N,Q, P )
1: if N fully matches Q then
2: retrieve(N,Q, P )
3: else
4: if ∃N ′, N ′ is a child of N and N ′ matches Q then
5: query(N ′, Q, P );
6: else
7: retrieve(N,Q, P );
8: log Q in the local query history

Procedure: retrieve(N,Q, P )
9: flood Q within the cluster of computers for N ;

10: return the highest-ranked documents to P ;

A DPTree node, say node N0, monitors its own query history. It mines peri-
odically the frequent query patterns using any pattern mining methods such as
Apriori [19] and Eclat [14]. If N0 contains t words, the pattern mining process
mines all frequent patterns containing t + 1. A new node is created for each of
the mined frequent patterns and becomes the child of N0.
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In the DPTree, the parent and child nodes can communicate with each other
and know each other’s patterns. Suppose N0 manages pattern P0. To create a
child node, N1, whose pattern is P1 (P0 ⊂ P1), the list of documents maintained
by N0 is split such that documents that match N1 are moved to N1. In addition,
queries in N0’s query history that are longer than P0 are moved N1.

Recall that DPTree nodes are distributed on a set of machines and that a
DPTree node can be implemented on more than one machine. To minimize the
network cost for DPTree node splitting and to balance the overlay maintenance
overhead among the peers, we use a splitting strategy as follows,

1. for every machine involved, count the number of its indexed documents that
match P1 and rank the machines using their counts;

2. assign machines to the new node N1 in descending order of the machines’
ranks;

3. stop splitting when the storage for the document indices are roughly balanced
between the machines managing node N0 and those managing node N1.

Node N0 notifies the creation of the new node N1 to its parent. The parent
is responsible for two tasks:

1. it checks if the same pattern exists by polling all of its children with pattern
P1; if the same pattern is found, it asks the two corresponding tree nodes to
merge into one;

2. if P1 does not exist in the children, the parent continues to look for chil-
dren that match a sub-pattern of P1 and build unidirectional links from the
matching children to N1.

The unidirectional links (shown as dotted curves in Figure 1) are used to
ensure that every pattern of the pattern tree can be reached from the root in
a greedy manner. These links lower the search cost by relaxing the strict tree
structure of DPTree.

At the initial stage, there may be insufficient query history available for pat-
tern tree generation. As an alternative, a pattern tree can extend itself by mining
the frequent patterns based on the label of its indexed documents.

3.2 Maintenance and Search

A machine or a peer in our peer-to-peer network is capable of initiating two
classes of operations: the maintenance operation when a peer joins or leaves the
network and the search operation when a peer submits a query. In this section,
we discuss how these operations are performed in the order that they appear
during the lifetime of a peer.

The maintenance and search operations involve four types of messages. Table 1
lists the information that the four types of messages carry, where foreign index
means the index for a document on a remote peer.

Among these messages, peer join and document registration messages are for
the peer joining operation; query and peer leave messages are for search and
peer leaving operations, respectively.
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Table 1. Description of messages used in the system

Message Name Message Information

peer join peer label, peer address
document registration document label, registration key,

peer address
query keyword list, peer address

peer leave foreign indices, query history, peer address

Peer Joining. When a peer Pnew joins a network, it first computes the label
for itself and generates a peer join message. While a peer label can be defined in
various ways, we use the centroid of the peer’s local document set as the peer’s
label. This method takes advantage of data locality and query locality, and hence
helps to reduce maintenance and search costs.

Pnew sends its peer join message to an existing peer P0 randomly selected in
the network. The message is then directed to a DPTree root Nr which matches
the most frequent word in Pnew ’s local repository. Nr can be located by following
the tree edges from P0 to P0’s tree root, Nr0, and along the Chord ring from
Nr0 to Nr. This operation is efficient because:

1. the height of a DPTree is small, since DPTree height is bounded by the
lengths of the user queries which are typically short [23];

2. searching on the Chord ring takes only logarithmic time with respect to the
number of pattern trees, and only the tree roots are positioned along the
Chord ring.

Upon receiving Pnew ’s join message, Nr computes its recruiting priority with
respect to Pnew . The recruiting priority of all of Nr’s child nodes are also com-
puted. The recruiting priority between a tree node N and Pnew indicates how
likely Pnew is going to join N . Formally, N ’s recruiting priority is defined as
follows.

rp(Pnew , N) = LN ∗ Sim(Pnew, N), LN = ARN ∗ (FIN/CapN),

where Sim(Pnew, N) denotes the similarity between Pnew and C. The label of
a DPTree node is the pattern that it manages. The factor LN in the equation
evaluates N ’s workload for maintaining foreign indices and for processing query
requests. To compute LN we use N ’s recent access rate ARN (i.e., the number of
messages received/forwarded/returned during a time unit) and the consumption
ratio (i.e., the percentage of storage that’s already consumed) of N ’s local stor-
age which is represented by N ’s current storage for foreign indices, FIN , over
N ’s capacity, CapN . This indicates that the possibility of a new peer joining a
DPTree node is subject to two factors: the peer’s relevance to the tree node and
the maintenance overhead of the node. Therefore, the use of recruiting priority
helps balance the load among the tree nodes.
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If Nr gets the highest recruiting priority, Pnew joins the cluster responsible for
Nr. Otherwise, the peer join message is forwarded to the child of Nr which has
the highest recruiting priority and the join process continues in a similar way.
After the peer joins a tree node, it prepares the document registration messages
for each of its local documents. The registration key in a document registration
message is a word appearing in the document and is used to find a pattern tree
root. Pnew ’s documents are then published to all of the relevant tree nodes using
the document registration messages.

Search. The search consists of two steps. In the first step, when a peer P
initiates a query, the query message is propagated to the DPTree roots that
match one of the query keywords. A query is routed from the starting peer to
the relevant roots in the same way as a peer join message is routed. Note that it
is possible that a query word does not match any of the DPTree’s on the Chord
ring. In this case, a failure message is returned since the query word is obviously
beyond the global vocabulary.

In the second step, a separate search process is executed on each of the relevant
DPTree’s. Upon receiving a query message, a DPTree node (or, more precisely, a
peer responsible for the DPTree node) first checks whether it is the most similar
node to the query, and responds to the query if it is. Otherwise, the query is
propagated to a randomly selected child node that is more similar to the query.
The detailed procedure is described in Algorithm 1. in Section 3.1.

When the second step completes, we are able to identify the tree nodes that
best satisfy the query, although they may not be perfect matches. When a tree
node decides to answer a query, it uses the document labels of its foreign indices
to compute the relevance score and returns the top M results, where M is a
pre-defined number. If multiple DPTree’s are contacted during a search process,
the query initiator will do a local re-ranking after all query results are returned.

Peer Leaving. When a peer leaves the network, it hands its foreign indices
and query history to one of its neighbors in the cluster. If a leaving peer is the
last peer in the cluster, it contacts a neighboring cluster which bears the lowest
maintenance overhead and asks the neighbor to take over its task.

In addition to the activities mentioned previously, a peer may fail unexpect-
edly. Our system is insensitive to single peer failure due to the use of clusters.
As an alternative, the foreign indices can be replicated within a cluster. Should
a peer fail, the peers within the same cluster will seamlessly take over its job.

4 Improvements

After we describe the basic model, we are now able to estimate theoretically the
performance of our DPTree approach. The network costs can be formulated as
follows.

CSearch = O(log N ′ + QLength + 2 ∗ M); (1)
CJoin = O(log N ′ + (log N ′ + TSize) ∗ D ∗ W ). (2)
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We use N ′ to denote the number of clusters that manage DPTree roots, and
use N to denote the number of peers in the overlay network. N ′/N is about 1/3
in our experiments. Equation (1) summarizes the search cost for a query with
QLength query words if M query results are to be returned. Equation (2) shows
the join cost for a new peer with D documents and on average W words per
document. TSize is the average number of nodes contained in a DPTree. The
first item in the equation is the overlay maintenance cost, while the second item
is the document registration cost.

The above equations for cost estimation suggest DPTree’s superiority in
searching. However, they also reveal the non-trivial cost for peer joining or
leaving. In this section, we propose two methods, random access sequence and
sub-tree summary, to cope with the considerable maintenance cost.

4.1 Random Access Sequence

The DPTree-based network contains a certain degree of redundancy. For exam-
ple, a query with three words A, B and D may be directed to DPTree(A) as
well as DPTree(B). In a network as shown in Figure 1, both node AD under
DPTree(A) and node BD under DPTree(B) will have query ABD in their query
history. Therefore, it is possible that the pattern ABD will appear in more than
one DPTree, as shown in blue in Figure 2.
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ABC

ACD
Chord Ring

ABE

B

C

BC CD

BCE

D

BD

EBEBDE

 root

A tree node is managed
by a cluster of computers.

ABD

ABD

ABD

Fig. 2. Redundancy in the network

To eliminate redundant patterns, we generate a random access sequence
(RAS) for every multi-keyword query. RAS determines the order that the query
keywords are processed. When a query is initiated, the search process generates
the random access sequence of the query, and contact DPTree’s according to
the order of the single keywords listed in RAS. Similarly, when a new frequent
pattern is mined, RAS is used to determine which DPTree is going to create a
node for the new pattern. Given a multi-keyword query Q, the random access
sequence is generated as described in Algorithm 2.

The use of random access sequence avoids redundant patterns across DP-
Tree’s. As a result, the cost for document registration and search is decreased.
In addition, applying RAS does not break the balance of the storage and
network workload because the access sequence of a query is random. Therefore,
although the search process favors some DPTree’s over others with respect to
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Algorithm 2. Random access sequence
Input:

Q is a query message
Output:

Q whose keywords are re-ordered
Procedure: RAS(Q)
1: order the keywords in Q alphabetically;
2: srandom(Q)
3: s = number of keywords in Q;
4: for i=s to 2 do
5: p = [random() mod (i − 1)] + 1;
6: swap the i th keyword and the (i − p)th keyword in Q;
7: return Q;

a single query, globally the storage and network overheads of the DPTree’s are
not biased.

4.2 Sub-tree Summary

It is shown that the bulk of the peer joining cost comes from document reg-
istration. The reason is that in the document registration procedure, when a
document tries to find relevant patterns in a DPTree, it has to explore every
node of the DPTree, which involves a large amount of data transmission among
the peers. We use a data structure called sub-tree summary to avoid unneces-
sary DPTree node access and as such to reduce the document registration cost
by avoiding unnecessary DPTree node access.

In essential, every DPTree node keeps a summary of the sub-tree under it.
The summary of a sub-tree contains the following information:

– the location of the sub-tree root;
– for every node N in the sub-tree, a < PN , RN > pair, where PN is the pattern

for node N and RN is the minimum relevance score that N permits.

A document is forwarded to node N if the relevance score between the docu-
ment and PN is greater than RN . Using the sub-tree summaries, a new document
will have to access only the DPTree nodes along the path to a relevant node.

To estimate the relevance score threshold RN for a pattern tree node N , the
following information is used:

– The relevance score of every foreign index that N contains.
– The maximum number of foreign indices that N will maintain, denoted as

M ′
N . N is set to be proportional to the number of queries that N does not

perfectly match but answered.
– An amplification factor γ(γ > 1) which is universal for all nodes.

We assume that with respect to a pattern PN , the relevance score distribution
of all its relevant documents follows the Zipf’s law. We use the current set of
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foreign index to approximate the distribution curve. We set the maximum foreign
index number with two values: M ′

N and MN = γ ∗M ′
N . We use M ′

N and MN to
compute two relevance score thresholds, R′

N and RN , respectively (R′
N > RN ).

RN is sent to N ’s parent node for sub-tree summarizing. We will explain later
in this section why we use two thresholds.

The sub-tree summaries are built as follows:

– DPTree node creation. When a DPTree node N0 creates a new child
N , it creates a summary for the resulting sub-tree containing only N . The
summary contains the location of node N and < PN , 0 >. When the sub-tree
summary for any DPTree is updated, the node propagates the update to its
parent, whose sub-tree summary is updated consequently.

– Foreign index update. A node N knows its relevance score threshold RN

which is used for sub-tree summarizing.
• When a foreign index is deleted from node N , N uses the resulting new

list of foreign indices to compute the new values for its two relevance score
thresholds R′

N new and RN new (R′
N new > RN new , RN > RN new). If

R′
N new < RN , we update the pair < PN , RN > with < PN , RN new >

for all nodes along the path from N to the pattern tree root.
• When a foreign index is inserted into node N , nothing is done. However,

when a document reaches a node N but is rejected, N will compute
the updated value for its relevance score thresholds RN new and replace
< PN , RN > with < PN , RN new > if RN new > RN .

This method greatly reduces the number of peers accessed for document regis-
tration, and thus reducing the registration cost. However, it introduces overheads
for sub-tree summary update. We minimize the sub-tree summary update cost
by setting a looser relevance score threshold than the actual estimation. This
allows the sub-tree summaries to be updated only after a number of successive
index deletions have been done. It should be noted that the value of the ampli-
fying factor γ is a trade off between the redundant peer access cost and sub-tree
summary update cost.

5 Experiments

To evaluate the proposed distributed index, we compare our method to the
Bloom filter approach [17] which is specifically for partial-match queries and
pSearch [3] which is a well-studied peer-to-peer search method.

We apply the vector space model and label a document as a term vector.
“Term frequency inverse document frequency” (TFIDF) is used to compute the
weight of a term in a document. Since it is impractical to obtain the global doc-
ument frequency in a dynamic peer-to-peer system, we use the local document
frequency instead. Both our DPTree and the bloom filter method are built on
top of the Chord protocol.

Given a keyword based query, the goal of search is to find a specified number
of documents that are most relevant to the query.
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5.1 Simulation Setup

The document set consists of about 500,000 documents taken from Volumes 41

and 52of the TREC collection, consisting of about 500,000 documents. The query
keywords were generated from the global keyword database according to their
document frequencies in the Web repository maintained by the UC Berkeley and
Stanford Dig- ital Library projects (See http://elib.cs.berkeley.edu/docfreq/),
which consists of 49,602,191 pages.

All programs were written in Java (JDK 1.2.0) and run on a PC with 2.5G
Pentium 4 processor and 512M memory.

We used the following metrics in the simulation:

1. Effectiveness is measured by the average precision and recall. We define
the hit list for a query as a list of all available documents on the network
that match the query. Let the hit list be H and the returned result list be R

for any query. Precision is defined as |R∩H|
|R| , and recall is defined as |R∩H|

|H| .
2. Search Path Length is defined as the average number of logical hops

traversed by a query message before it reaches the destination.
3. Search cost is defined as the average number of messages that a query

incurs in the search process.
4. Maintenance cost is defined as the average number of messages used to

handle peer activities including peer joining and leaving.
5. Storage cost is defined as the average number of foreign indices that a peer

maintains.

The simulation parameters, their range of values and default settings are
specified in Table 2.

Table 2. Simulation parameters

Description Range Default

N Number of peers in the network 1k - 20k 10k
n Number of document per peer 1 - 20 5
L Length of queries 1 - 5
M Number of document returned 20
λ Number of operations per round 100
w Number of warm-up queries used 0 - 5k 1k

We used a large number of peers in the simulation to evaluate the scalability of
the three methods. The number of keywords in a query ranges from 1 to 5 with a
1 TREC Volume 4, May 1996 Collection includes material from the Financial Times

Limited (1991, 1992, 1993, 1994), the Congressional Record of the 103rd Congress
(1993), and the Federal Register (1994).

2 TREC Volume 5, April 1997 Collection includes material from the Foreign Broadcast
Information Service (1996) and the Los Angeles Times (1989, 1990).
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uniform distribution. This was to approximate the real-word query lengths [16].
We set the number of returned documents to 20, which is the typical number
of documents that most web users are willing to examine. To generate a new
peer, we varied the number of documents per peer from 1 to 20 and assigned
documents randomly selected from the TREC collection. As a result, duplicated
documents may exist in our simulation. Since our method applies mining tech-
niques in building up the distributed index, a longer warm-up period would
likely yield better search performance. To examine the effect of the mining tech-
niques, experiments with no warm-up queries and with a rich query history
were run.

5.2 Comparison

We conducted extensive experiments to compare our work with two other ap-
proaches: the Bloom filter approach and pSearch. According to the configuration
in [3], we let pSearch take 4 partial semantic spaces, and the dimension of each
partial semantic space was 2.3logN where N was the network size. Considering
the unavailability of a global document set, we randomly picked a subset of 5,000
documents from the TREC collection and LSI via singular value decomposition
(SVD) was applied to to the subset to generate the semantic space. For simplic-
ity, we denote our DPTree method by DPTree and the Bloom filter approach by
BLF (BLF for bloom filter) in the later experiments.

First, we compared the search effectiveness of the three methods. Figure 3
presents the precision-recall curve for networks with 1,000 to 20,000 nodes. Our
method (DPTree) yields a much higher search quality especially when the num-
ber of peers in the network is large. Its retrieval precision is about 35% better
than both of the other methods when the network size N = 20k. This was due
to the use of the distributed pattern trees. By mining the frequent patterns dy-
namically, our approach adapts user needs and is insensitive to network size. It
should be noted, however, that inner-product was used as the similarity measure
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in the experiments and that since pSearch was not designed for partial-match,
it is expected to yield poor performance.

In Figures 4, 5, and 6 we examined the scalability of the three methods in
terms of the search cost, search path length and system maintenance cost, re-
spectively.

Search path length is an important performance measure since it affects the
query response time. shows that the search path in our method is shortest. To
identify the destination for a query, our system takes almost only half of the
number of hops compared to the other two approaches. The search path length
was logarithmic with respect to the network size for all of the three methods,
but our method carried a smaller constant term since DHT was applied to the
tree roots instead of the entire set of peer computers in our system.

Figure 5 depicts the search cost in terms of the total number of messages
transferred for a query. Our methods outperformed the other two especially
when sufficient query history was available. With our default setting (N = 10k,
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w = 1k), DPTree on average spent about 70% less messages than pSearch and
about12% less than BLF. pSearch incurred a much higher cost during search
since it performed four separate searches over the entire network for every
query.

We evaluate the average maintenance cost of each method by setting the
rates that peers joined and left the network to be the same and varying the
network size from 1k to 20k nodes. No query was performed during this round of
experiments so that the system maintenance cost was isolated from the search
cost. Figure 6 presents the maintenance cost of the three methods. The effect of
sub-tree summary for DPTree was also measured, with the amplification factor
γ set to 1, 1.2 and 2. It can be observed that when the γ is at 1.2, applying sub-
tree summary can reduce the maintenance cost by 25% compared to our basic
approach (see Figure 6). Thus the effectiveness of sub-tree summary is justified.
However, Figure 6 also shows that except for pSearch, both our approach and
the bloom filter approach incur a considerable maintenance overhead when peer
membership changes very frequently.
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Fig. 8. Distribution of storage and network load among peers

To further analyze the network maintenance cost, we varied the number of
documents that a peer held from 1 to 20, and displayed in Figure 7 the over-
lay maintenance cost and the document registration cost separately. The y-axis
of Figure 7 is displayed in logarithmic scale. The experimental result indicates
that the vast majority of the maintenance cost for peer membership changes
comes from foreign document registration. Therefore, although our method in-
curs non-trivial network cost in a highly dynamic environment, we can apply
various techniques to reduce the cost. For example, lazy update can greatly re-
duce document registration cost when some peers keep joining and leaving the
network frequently. Moreover, document registration can even be suspended dur-
ing a period of heavy network traffic since it does not affect the correctness of
the overlay. As a result, we believe that our approach could scale in terms of
query efficiency, search cost as well as maintenance cost.

To estimate the workload distribution among all the peers, we plotted the
network and storage loads with respect to the peer ID’s in Figure 8. Figure 8(a)
displays the number of foreign indices that each peer maintains, and it shows
that the storage load for most peers was close to the average load. In addition,
the maximum number of foreign indices per peer does not exceed 1,500 while the
average number is 514. Figure 8(b) displays the number of messages processed
during a certain time period for 10,000 peers. It shows that the distribution of
network load is balanced among peers.

6 Conclusion

In this paper we proposed a distributed index that supports partial-match search.
We developed the distributed pattern trees that record query history in a selec-
tive way and extend themselves by mining frequent patterns from the query
history. The roots of the pattern trees are positioned on the overlay network us-
ing any distributed hash table method. We proposed the random access sequence
and sub-tree summary techniques to decrease the maintenance cost.

Experiments showed that our approach yields high precision for keyword-
based partial-match queries. Our method was also proven to be efficient in query
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routing. The performance of data look-up improves after a certain warm-up pe-
riod. It was also shown that our approach achieves good load balance. Although
peer membership changes incur a considerable maintenance overhead, the ma-
jority of the costs comes from foreign-index publishing, and the network cost for
the peer join operation was small. We argue that foreign-index publishing can
be suspended in a heavy traffic period and that peer join and data lookup are
not affected by this suspended operation. Moreover, applying lazy update can
further reduce the maintenance cost. As a result, our approach is scalable.
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Abstract. In this paper we present a novel approach for estimating the selectiv-
ity of XML twig queries. Such a technique is useful for answering approximate
queries as well as for determining an optimal query plan for complex queries
based on said estimates. Our approach relies on a summary structure that con-
tains the occurrence statistics of small twigs. We rely on a novel probabilistic
approach for decomposing larger twig queries into smaller ones. We then show
how it can be used to estimate the selectivity of the larger query in conjunction
with the summary information. We present and evaluate different strategies for
decomposition and compare this work against a state-of-the-art selectivity esti-
mation approach on synthetic and real datasets. The experimental results show
that our proposed approach is very effective in estimating the selectivity of XML
twig queries.

1 Introduction

XML is gaining acceptance as a standard for data representation and exchange over the
World Wide Web. However, for wide-spread deployment and use it is becoming increas-
ingly clear that the design of an efficient high-level querying mechanism is necessary.
Since XML documents may be represented as a rooted and labeled tree, this necessity
has led to the development of tree-based (twig) querying mechanisms. Twig queries
describe a complex traversal of the document graph and retrieve document elements
through an intertwined (i.e., joint) evaluation of multiple path expressions.

Given the importance of twig queries as a basic selection mechanism in XML
[1, 2, 3], efficient support for accurately estimating their selectivity is crucial for the op-
timization of complex queries. This is analogous to selectivity estimation in relational
databases [4, 5, 6, 7]. Accurate selectivity estimation is also desirable in interactive set-
tings and for approximate queries. For instance, an end-user can interactively refine
their query if they know it will return an overwhelmingly large result set. Similarly, the
estimated value can be returned as an approximate answer to aggregate queries using
the COUNT primitive.

The early work in this area has focused on determining the selectivity of path
expressions (a special case of twig queries) [8, 9, 10, 11, 12, 13]. The Lore system [8]
adopts a Markov model-based approach for this purpose. The Markov table method [10]
improves on the Lore system through the use of intelligent pruning and aggregation to
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reduce space requirements. Recently, Lim and Wang proposed XPathLearner [9], an
on-line, tunable Markov table method which has been shown to be effective for path
expression selectivity. A key limitation of these methods is that they do not adapt well
to twig queries because they do not account for path correlations.

More recently, researchers have focused on selectivity estimation for twig queries
[14, 3, 15, 2, 1]. Examples include Correlated Sub-Trees [3], XSketches [15, 1] and
Tree- Sketches [2]. Among these it has been shown that TreeSketches is the most accu-
rate and efficient method [2]. TreeSketches [2], a successor of XSketches, clusters the
similar fragments of XML data together to generate its synopsis. The granularity of the
clustering depends on the memory budget.

To estimate the selectivity of XML twig queries, the above approaches, as well as
the approach presented in this paper, define a summary data structure that houses im-
portant statistics about the data from which the selectivity may be estimated. Important
issues at hand include: the quality of estimation from the given summary; the time to
construct the summary; and finally, the time to estimate the selectivity of queries from
the summary. To address these issues we present a new approach to selectivity estima-
tion. The key contributions of our approach are highlighted below.

First, we present a framework under which the selectivity of a query (represented
as a rooted tree) can be estimated from its subtrees. We present and evaluate different
strategies for decomposing the query into subtrees. These subtrees can then be used
to arrive at a selectivity estimate. We present a theoretical basis for this approach and
furthermore show that it subsumes the Markov model-based XML path selectivity esti-
mation as a special case.

Second, to summarize an XML dataset we leverage the use of frequent tree mining.
A dynamically-determined subset1 of all the discovered subtrees up to a certain size
(number of nodes), coupled with associated occurrence statistics, forms the basis of
our summary structure. More specifically, the dynamic subset we store is based on the
notion of (non)-derivable patterns. We also rely on fast searching mechanisms to locate
the subtrees of a given twig query within our summary structure.

Third, we conducted an extensive experimental study to examine the benefits of
our approach and compare it against TreeSketches2. Empirical results show that our
approach takes less time to construct the summary, and is usually much faster when
computing the selectivity estimates. In our qualitative assessment we also find that our
approach compares favorably with TreeSketches. We also offer a detailed explanation
as to why the new approach (called TreeLattice) outperforms TreeSketches [2] under
certain conditions.

The rest of the paper is organized as follows. We formally define our problem and
give an overview of TreeLattice in Section 2. In Section 3, we detail our proposed sum-
mary structure and twig decomposition-based XML twig selectivity estimation frame-
work. We present experimental results in Section 4 and related work in Section 5. Fi-
nally we discuss the future work and conclude in Section 6.

1 Due to storage costs, the complete lattice (all frequent patterns) cannot be held in memory,
thus we only store a portion of it, which is dynamic and data dependent.

2 We are grateful to Neoklis Polyzotis for providing us with the TreeSketches executable and
also for helping us tune the algorithm for a fair comparison.
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2 Problem Definition and TreeLattice Overview

In the following section, we formally define the problem of estimating XML twig se-
lectivity (Subsection 2.1). We follow with a discussion of the basic ideas and key chal-
lenges in our new approach, TreeLattice (Subsection 2.2).

2.1 Problem Definition

An XML document can be structurally modeled as a tree where each node is typically
associated with a tag or a value. In practice, values are almost always associated with
leaf nodes and tags with interior nodes. As with prior work by Polyzotis and Garofalakis
[16], we do not model value elements.

A twig query TQ is defined as a node-labeled tree TQ(VQ, EQ), where each node
ti ∈ VQ is labeled with a path expression Pi. At an abstract level, each node ti corre-
sponds to a subset of elements, while the path Pi describes the structural relationship
that must be satisfied between the elements in ti and the elements in its parent node.
In particular, we only consider the parent/child relationship between different elements.
Research on the more general ancestor/descendant relationship is underway. We next
present the definition of a twig match as given by Chen et al. [3].

Definition 1. A match of a twig query TQ = (VQ, EQ) in a node-labeled data tree
T = (VT , ET ) is defined by a 1 − 1 mapping: f : VQ (→ VT such that if f(u) = v
for u ∈ VQ and v ∈ VT , then (i) Label(u) = Label(v) and (ii) if (u, u′) ∈ EQ, then
(f(u), f(u′)) ∈ ET .

The selectivity σ(TQ) of twig query TQ is defined as the number of matches of TQ in
the data tree. Our objective is to accurately estimate the selectivity of an XML twig
query TQ as efficiently as possible given constraints in space (summary storage) and
time (summary construction and estimation time).

2.2 Basic Ideas and Key Challenges of TreeLattice

The first basic idea in TreeLattice comes from the observation that in many cases, the
selectivity of a given twig query σ(TQ) can be reasonably estimated from the selectiv-
ity information of its sub-twig queries. For example, suppose twig TQ is the union of
two sub-twigs T1 and T2, which differ by only one edge and share a common part T
(Figure 1a). We can expect σ(T1), σ(T2) and σ(T ) to provide good clues for estimating
σ(TQ) in many real datasets. Furthermore, if the twig TQ is the union of a set of sub-
twigs, the selectivity of all these sub-twigs can be used to estimate σ(TQ). Therefore,
the first problem we face is can we develop a reasonable selectivity estimate for a given
twig query TQ by utilizing the selectivity of its sub-twigs? This problem is answered in
Subsection 3.1, where we construct such an estimator based on the conditional inde-
pendence assumption for growing a tree. Note that in order to systematically estimate
the selectivity of twig queries with this approach, we need to pre-compute a group of
small twigs as the basis.

However, we can also expect that our assumption will likely be violated for some
twig queries on a given XML dataset. To deal with this issue, we use another basic idea
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from the observation that the selectivity information of different twigs can be of differ-
ing importance in terms of capturing the underlying twig distribution. For example, if
the selectivity of T1, T2, and T are available and TQ can be precisely estimated from
them, then the selectivity of TQ should not be pre-computed. Here, we face another key
challenge in TreeLattice: how can we select a group of twigs as the basis for selectiv-
ity estimation in order to minimize the estimation error? In particular, such selection
needs to be performed under the budget of user-defined memory cost. Another problem
closely related to this challenge is how can we decompose a large twig query into basic
twigs and perform estimations if different decompositions exist? The solution to the lat-
ter actually helps us determine a solution for the former. In Subsection 3.2, we discuss
the decomposition problem and in Subsection 3.3, we introduce our method to select
basis for selectivity estimation.

Given the above discussion, we can see that our TreeLattice has three basic compo-
nents: Basis Building, Twig Decomposition, Augmenting Estimation. The basis building
is off-line and the other two components are computed at runtime while processing a
query. When a new query arrives, we first decompose it into the small twigs in the basis
and use the pre-computed selectivity of these basic twigs to infer the selectivity of the
complex (larger) one.

3 An Estimation Framework Based on Twig Decomposition

In this section, we will answer the three questions posed in the previous section. The
twig decomposition-based selectivity estimation framework will be formulated during
the course of this discussion.

3.1 Augmenting Twigs

Suppose we have two basic twigs T1 and T2, and they differ by only one edge
(Figure 1(a)). If T is common to both, then we can express T1 as T ∪ {e1} and T2
as T ∪ {e2}, where e1 and e2 are two distinct edges. The edges are distinct in that they
either attach to different nodes of T , or the two additional nodes x and y introduced by
these two edges are different. The two twigs can be augmented together to generate a

Fig. 1. (a) Augmented twigs T1 ∪ T2; (b) Growing T1 from T
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larger twig, denoted as T1 ∪ T2 = T ∪ {e1} ∪ {e2}. Assuming the counts of T1, T2 and
their common part T are available and denoted as σ(T1), σ(T2) and σ(T ), respectively,
we are interested in estimating the count of the augmented twig, T1 ∪ T2, based on this
information.

A complication arises when the occurrence of T is coupled with one or more in-
stances of edge e1, as shown in Figure 1(b). Let T i

1 denote the occurrence of T with i
edges of type e1. Then it is easy to see that the selectivity of T1 is given by the decom-
position formula3:

σ(T1) = σ(T 1
1 ) + 2 × σ(T 2

1 ) + · · ·n × σ(T n
1 )

and similarly the selectivity of T2 is given by:

σ(T2) = σ(T 1
2 ) + 2 × σ(T 2

2 ) + · · ·m × σ(T m
2 )

In order to derive our formula for estimating the augmented twig T1∪T2, we assume
that the event of growing T1 from T is conditionally independent from the event of
growing T2 from T (called the tree-growing independence assumption). More formally
we have:

Pr(T i
1 ∪ T j

2 |T ) = Pr(T i
1 |T ) × Pr(T j

2 |T )

where:
Pr(T i

1|T ) = σ(T i
1)/σ(T )

and:
Pr(T i

2|T ) = σ(T i
2)/σ(T )

Theorem 1. Given two non-trivial rooted and labeled twigs T1 and T2, which differ by
only one edge, let T be the common part between T1 and T2. Under the tree-growing in-
dependence assumption, the expected count of T1∪T2 is given by σ(T1)×σ(T2)/σ(T ).

Proof: Given the tree-growing independence assumption, we can treat the count of T1∪
T2 as a random variable. The expected value of this random variable, E(σ(T1 ∪ T2)),
is as follows: �

(From the decomposition formula)

E(σ(T1 ∪ T2)) =
n∑

i=1

m∑
j=1

E(σ(T i
1 ∪ T j

2 ))

=
n∑

i=1

m∑
j=1

(i × j × Pr(T i
1 ∪ T j

2 |T ) × σ(T ))

(By the conditional independence assumption)

=
n∑

i=1

m∑
j=1

i × j × Pr(T i
1 |T ) × Pr(T j

2 |T )× σ(T )

3 The coefficients in front of each term represents the number of choices one has to grow from T
to T1. n is the maximal number of e1 edges under T . Similarly, m is the maximal number
of e2 edges under T .
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= σ(T ) ×
n∑

i=1

i × Pr(T i
1 |T )× (

m∑
j=1

j × Pr(T j
2 |T ))

= σ(T ) ×
n∑

i=1

i × Pr(T i
1 |T ) × (

m∑
j=1

j × σ(T j
2 )

σ(T )
)

= σ(T ) ×
n∑

i=1

i × Pr(T i
1 |T ) × 1

σ(T )
× (

m∑
j=1

j × σ(T j
2 ))

(The decomposition of count of T2, σ(T2))

= σ(T ) ×
n∑

i=1

i × Pr(T i
1|T ) × σ(T2)

σ(T )

(The decomposition of count of T1, σ(T1))

= σ(T ) × σ(T1)
σ(T )

× σ(T2)
σ(T )

= σ(T1) × σ(T2)/σ(T ) �
In our approach, we will use the expected count of T1 ∪ T2 as the estimate of the true
count of T1 ∪ T2, denoted as σ̂(T1 ∪ T2) = σ(T1) × σ(T2)/σ(T ).

An important lemma that follows from this theorem is stated next and its proof can
be found in the full version of this paper [17].

Lemma 1. Given two subtrees T1 and T2 that share a common subtree T , where

|T | = min(|T1|, |T2|) − 1

then σ(T1 ∪ T2) can be estimated as follows:

σ(T1 ∪ T2) =
σ(T1) × σ(T2)

σ(T )

3.2 Twig Decomposition

In this section, we discuss how to decompose a large twig query into basic twigs and
also how to estimate its selectivity.

Recursive Decomposition Scheme. This decomposition is obtained directly from
Lemma 1. Since each tree has at least two leaf nodes(if the root node has degree 1,
it can also be considered a leaf node for our purposes), we can always obtain two
subtrees of the original tree by removing one leaf node or the other. These subtrees
are labeled T1 and T2, respectively. If the size of T is k, then the size of T1 and T2
will be (k − 1). Suppose the common part between T1 and T2 is T3, then we can ap-
ply the above formula to estimate the selectivity of T , given the selectivity of T1, T2
and T3.
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Fig. 2. (a) Recursive decomposition scheme; (b) Fixed-sized decomposition scheme

This decomposition scheme ensures that the overlap between T1 and T2 is maximal
and thus ensures that the correlation of occurrence is well captured. If T1 and T2 are
too large to fit in the lattice summary, then we execute the above decomposition process
recursively, until we reach the brim of the lattice summary. We present an example of
this recursive decomposition in Figure 2a. Here a twig of size 7 is decomposed into a
set of sub-twigs of size 4. The bold nodes are chosen to be eliminated at each step in
the recursion. Figure 3 presents the formal algorithm of the estimator.

Voting Scheme Extension. We note that a twig may have more than two leaves. In
this case the choice of leaf nodes for decomposition may result in different estimates.

Algorithm: Estimate (T , L)
Input: T , an XML twig;

L, the lattice summary;
Output: σ̂, selectivity estimation for T ;
1. if T is in L

return the associated count;
2. else

pick a pair of T ’s nodes(v1, v2) having degree of 1;
remove v1 from T to get T1,
remove v2 from T to get T2;
evaluate T3 = T1 ∩ T2;
σ̂ = Estimate(T1,L)∗Estimate(T2,L)

Estimate(T3,L)

Fig. 3. Algorithm for recursive decomposition estimator
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Algorithm: FSD(T , k)
Input: T , an XML twig of size n; k, a fixed size;
Output: D, a set of k-subtrees satisfying the condition

in Theorem 2;
1. Order all nodes of T according to pre-order:

i.e., v1, v2, v3, . . . , vn;
2. Choose the subtree t1 consisting of the first k nodes

from the node list and label them as covered;
//t1 must be a valid subtree;
Initialize Tc by t1, add t1 to D;

3. for each remaining uncovered node vi:
4. pick a subtree ti containing vi as the

rightmost node, all other nodes are from Tc;
5. add vi to Tc, label vi as covered

and add ti to D;
6. return D;

Fig. 4. Fixed-sized decomposition algorithm

Correspondingly, we can have multiple estimations at each recursive step. As an opti-
mization, we record all the estimations at a given level and average them to obtain a
resulting estimate to be used in the next step. Intuitively, we expect to avoid skewed
estimates resulting from poor initial choices and that this optimization will prevent the
propagation of errors during the course of the decomposition. Different voting schemes
can be applied here. We will demonstrate the effect of this optimization in Section 4.

Fast Fixed-Sized Decomposition Scheme. Assuming we can keep the information of
all subtrees no larger than k in the lattice summary, we can decompose a large query
T in the following way: We use small fixed-sized subtrees to progressively cover T .
First, we sort all nodes in the twig in pre-order fashion. Then we choose a k-subtree
of T to cover the first k nodes. Let the covered portion of T be denoted as Tc. At each
following step we cover a new node v using Tnew, where all the nodes of Tnew is a
subset of Tc except v. Correspondingly, we update Tc as the union of the previous Tc

and Tnew. Thus, Tc will progressively grow until it covers all the nodes in T . Also, it
holds that the part common between Tc and Tnew is a (k−1)-subtree. Clearly, T can be
covered by exactly (size(T )− k + 1) k-subtrees. The correlation between two subtree
patterns is captured by their common part. In Figure 2b, we present an example of this
decomposition. Newly covered nodes are highlighted at each step. Figure 4 presents the
formal algorithm of the fixed-sized decomposition scheme.

The correctness of the above algorithm is formally stated as Lemma 2. Furthermore,
Lemma 3 describes the corresponding selectivity estimator using such a decomposition
scheme. Again, the detailed proofs of Lemma 2 and 3 can be found in the full version
of this paper.

Lemma 2. Given a rooted ordered labeled tree T of size n, it can be covered by n −
k + 1 of its subtrees of size k (n > k), i.e., T1, T2, . . . , Ti, . . . , Tn−k+1, such that
Ti ∩ (

⋃i−1
j=1 Tj) is a (k − 1)-subtree.
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Lemma 3. Assume we have a twig query T decomposed into k-subtrees, i.e., T1, T2,
. . . , Ti, . . . , Tn−k+1, and, Ci−1 = Ti ∩ (

⋃i−1
j=1 Tj), 2 < i ≤ n − k + 1. Then the

selectivity of T may be estimated as follows:

σ̂(T ) =
∏n−k+1

i=1 σ(Ti)∏n−k
j=1 σ(Cj)

The advantage of this scheme is that it is very simple and the decomposition is very
fast. In reality however, the lattice summary does not necessarily store all patterns up
to some size. Thus, the above decomposition can not be applied directly. To overcome
this problem, we devise a hybrid version of this scheme and the recursive decompo-
sition scheme with voting. The hybrid scheme works as follows: For a large twig, we
first decompose it into fixed-sized sub-twigs and then use the recursive decomposition
scheme with voting to estimate the selectivity of all of these sub-twigs. Finally, we use
Lemma 3 to obtain the estimation for the original query. The advantage of this scheme
is that it is much faster than the recursive decomposition scheme with voting. Addition-
ally, it utilizes the summary information more effectively through voting, compared to
the recursive decomposition scheme without voting. We call this hybrid version the fast
fixed-sized decomposition scheme and refer it as fast decomposition in Section 4.

3.3 Building Basis Statistics

The summary records the occurrence statistics of basic twigs. There exists redundancy
in the summary that can be pruned to reduce its size. With this in mind, we formally
define the notion of a δ-derivable pattern.

Definition 2. A twig pattern is δ-derivable if and only if its true selectivity is within an
error tolerance of δ to its expected selectivity (according to TreeLattice).

By Definition 2, 0-derivable (δ-derivable with δ = 0) patterns have the exact true se-
lectivity as their expected selectivity. It is therefore safe to prune away the 0-derivable
patterns from the lattice summary without sacrificing the quality of the estimations.
This observation is formally stated as Lemma 4. As a result, we have more space to
store more non-derivable patterns in the lattice summary.

Lemma 4. The estimation given by TreeLattice with a lattice summary L is exactly the
same as that when 0-derivable patterns are removed from L.

Proof: The proof is trivial and is omitted. �

The above idea can be generalized by varying δ, thereby controlling the trade-off be-
tween accuracy and memory utilization. We build the basis statistics in a bottom-up
fashion. We collect the selectivity information of small twigs first, followed by the
larger twigs. Essentially, we give more priority to smaller twigs, since they are more
basic building blocks. Furthermore, at each level, we give priority to the more frequent
twigs, as they are more important in capturing the overall twig distribution. Note that
we only keep the information of non-derivable patterns in the lattice summary. Figure 5
presents the formal algorithm of building the basis statistics.
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Algorithm: TreeLattice-Build (D, S, δ)
Input: XML document D; space budget S; error tolerance δ;
Output: TreeLattice summary L of size ≤ S;
1. Obtain all 1-subtree and 2-subtree patterns in D

and their counts; Use them to initialize L;
2. k = 3;
3.While k < MAX LEV EL
4. Obtain all k-subtree patterns in D and their counts;
5. Sort these patterns in decreasing order of their counts;
6. For each k-subtree pattern p:
7. Estimate σ(p) and compute the estimation

error e;
8. if e > δ then add p to L;
9. if size(L) ≥ S exit;
7. k + +;
8. return L;

Fig. 5. Algorithm TreeLattice-Build

4 Experiments

In this section, we examine the performance of our proposed approach for XML twig
selectivity estimation on synthetic and real-life datasets. We compare our approach with
TreeSketches, a state-of-the-art scheme [2].

4.1 Experimental Setup

All the experiments were conducted on a Pentium 4 2.66GHz machine with 1GB RAM
running Linux 2.6.8. Below we detail the datasets, workloads and error metric consid-
ered in our evaluation.

Datasets. We use four publicly available datasets in our experiments: Nasa, a real-
life dataset converted from legacy flat-file format into XML and made available to the
public; PSD (Protein Sequence Database), a real-life dataset of integrated collection
of functionally annotated protein sequences; XMark, a synthetic dataset that models
transactions in an on-line auction site and IMDB, a real-life dataset from the Internet
Movie Database Project. We would like to note that for the PSD dataset, both algorithms
take a long time to process, so we present results on a sample. The main characteristics
of the datasets are summarized in Table 1.

Query Workloads. In our experiments, we consider three different kinds of workloads:
random, frequent-twig and negative-query. Regardless of workload, the first step is to
enumerate all possible queries for a given dataset. This set of queries is further parti-
tioned, where each partition corresponds to twig queries of a certain size. For the ran-
dom workload, we sample a fixed amount from each partition under a uniform random
distribution to yield a total of 1000 queries. This level-wise partitioning and sampling
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Table 1. Dataset characteristics

Dataset Elements File Size(MB)

Nasa 476646 24
PSD 335193 12

XMark 167864 12
IMDB 155898 7

Table 2. Workload characteristics (average no. of binding tuples)

Dataset Nasa PSD XMark IMDB
Query Size Frequent Random Frequent Random Frequent Random Frequent Random

4 5377 4073 6601 3321 2774 1722 3519 784
5 8282 3742 11563 2827 5995 2058 40703 985
6 21334 3978 28160 2398 6347 3251 11815 1982
7 58920 4004 68877 2383 169993 6641 17193 2937
8 29558 2855 129892 2920 288944 10394 29962 3559
9 18814 2608 148993 2464 281808 5748 37963 5825

also enables us to evaluate the performance of our strategies, in particular their error
propagation, in a controlled manner.

For the frequent-twig workload, we pick the most frequent 1000 twig queries as
the workload. An alternative strategy would be to sample twigs as a function of the
frequency of occurrence (a stratified sampling model). However, we observed little dif-
ference in the performance of these two frequency-based strategies and thus limit our
discussion to the frequent-twig workload. Twig queries in the frequent-twig workload
will have large selectivity rates, as expected.

We also generate and evaluate various negative-query workloads (workloads ex-
clusively consisting of queries with zero selectivity). To generate these workloads,
we followed the initial step of enumerating all possible queries. For each twig we
then replaced node labels in accordance with their frequency of occurrence. More
frequent labels are used for replacement more often so there is a greater chance for
erroneous predictions (since sub-twigs are more likely to occur frequently). We then
filter those queries whose selectivity is above 0. Once again we limit the workloads
to be of size 1000. Experimental results show that TreeSketches is always accu-
rate (100% of the time), and that TreeLattice is almost always as accurate (99%
of the time), and returns the correct answer (zero). There is little difference between
these two strategies for negative workloads, so we do not consider this workload
further.

Error Metric. We quantify the accuracy of estimations using the average absolute rel-
ative error over all queries in the workload. The absolute relative error is defined as
|σ − σ̂| / max(s, σ), where the sanity bound s is used to avoid the artificially high per-
centages of low selectivity queries. Following common practice [2, 1], we set s to be the
10-percentile of true query counts. We use a lower bound of 10 if s should fall below
that value.
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4.2 Accuracy of Estimators

Here we examine the accuracy of the estimators on our workloads. For both TreeLat-
tice and TreeSketches, we limit the summary size to 50KB. Figures 6a-d show the
average selectivity estimation error on various frequent-twig workloads for all four
datasets.

An obvious trend that stands out is that as the size of the twig query increases,
the quality of the estimation decreases. This is not surprising, since the estimation er-
rors grow for larger-sized queries for both strategies. Specifically for TreeLattice, the
smaller sized queries are closer to the lattice boundary (exact information maintained
in the summary) and thus subject to less estimation error. In contrast, for larger queries,
depending on the number of decomposition and estimation steps, the error will accumu-
late, finally affecting the quality of the estimations. On the Nasa dataset, for example,
the recursive decomposition estimator yields very accurate estimations on frequent-twig
workloads of size 5 and 6, with error 0.0% and 4.2%, respectively. In contrast, on the
frequent-twig workloads of size 8 and 9, the error increases to 11.6% and 17.8%, re-
spectively. The effect of error accumulation can be clearly seen from the results. The
other two estimators have a similar trend when working on various workloads for all
datasets.

We would like to note that the voting scheme refines the estimations effectively by
mitigating the error propagation. The recursive decomposition estimator with voting
usually yields the most accurate estimations. Additionally, one should note that the
estimations returned by the fast decomposition estimator is very similar to that returned
by recursive decomposition estimator with voting.

When comparing the two strategies, it can be observed that TreeLattice significantly
outperforms TreeSketches for both the Nasa and PSD workload on all query sizes. On
the XMark dataset, TreeLattice is near perfect and TreeSketches is marginally worse
(note the Y-axis scale). On the IMDB workload, TreeSketches outperforms TreeLattice
significantly on larger query sizes. On smaller query sizes, the difference is not as sig-
nificant. Note that on Nasa, PSD and XMark, in most cases, even the weakest estimation
strategy in TreeLattice, recursive decomposition estimator without voting, does better
than TreeSketches.

Figures 7a-d show the average selectivity estimation error on the random work-
loads for all four datasets. The trends are very similar to the ones observed for the
frequent-twig workloads. Two differences are that TreeLattice is closer in performance
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Fig. 8. Average estimation error distribution on frequent-twig workload: (a)Nasa (b)PSD
(c)XMark (d)IMDB
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Fig. 9. Average estimation error when varying summary size: (a)Nasa (b)PSD (c)XMark
(d)IMDB

to TreeSketches on the IMDB dataset and on the XMark dataset TreeSketches performs
poorly (the errors are well above 100% in some cases).

To examine a possible outlier effect, we plotted the cumulative distribution function
of the errors. Figures 8a-d present the results for frequent-twig workloads. The results
are consistent with Figure 6, showing that TreeLattice outperforms TreeSketches con-
sistently on all datasets except IMDB. The results on random workloads are similar and
are omitted in the interest of space. The complete results can be found in the full version
of this paper [17].

In conclusion, these results demonstrate that TreeLattice is effective in summariz-
ing the distribution of the underlying twigs. Furthermore, we show that TreeLattice is
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effective in processing both frequent and infrequent twig queries. When the query size
is increased, the quality of the estimation is reduced (due to the error propagation).
Specifically among the strategies evaluated, the recursive decomposition with voting
estimator usually yields the best estimations. Finally, the fast decomposition estimator
yields close estimations to the recursive decomposition estimator with voting.

4.3 Impact of Varying Summary Size

In this experiment, we measure the estimation error while varying the summary size.
We use a frequent-twig workload containing frequent 8-twig queries. Figures 9a-d show
the average selectivity estimation error when varying the summary size for Nasa, PSD,
XMark and IMDB, respectively. As expected, we observe that an increase in the size of
the summary yields more accurate estimations. As before, TreeLattice works extremely
well for Nasa, PSD and XMark. An important point here is that the estimation error for
these datasets is well below 10% when we use at least a 40KB summary. For the IMDB
dataset, TreeSketches is better than TreeLattice.

4.4 Implications on Estimation Time

In this experiment, we compare TreeLattice against TreeSketches in terms of selectivity-
estimation time. Figures 10a-d present the response times of the different approaches on
frequent-twig workloads for Nasa, IMDB, PSD and XMark, respectively. The results on
random workloads are similar and are omitted in the interest of space, though the com-
plete results can be found in the full version of the paper. As seen in the figures, in most
cases, all TreeLattice estimators are much more efficient than TreeSketches. Specifi-
cally, TreeLattice runs extremely fast when processing relatively small twig queries. As
we increase the query size of the workload, the recursive decomposition estimator with
voting becomes much slower. The degradation of response time becomes more signifi-
cant as we increase the size of the twig queries. This is not surprising, since the number
of all possible decompositions increases exponentially with the number of recursion
levels. The recursive decomposition without voting is fastest. However in terms of ac-
curacy, this strategy is the weakest among the three. The overall performance of the
fast decomposition estimator is clearly the best since it is close to recursive decomposi-
tion estimator in terms of response time, and it is close to the recursive decomposition
estimator with voting in terms of estimation quality.
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4.5 Impact of δ-Derivable Pruning

The pruning strategy we describe earlier allows us to replace δ-derivable patterns with
non-derivable patterns in the lattice summary. Here we examine the potential benefits
of this strategy on the IMDB dataset. We use the frequent-twig workload for this exper-
iment. Figure 11 presents the estimation quality at the different δ-levels. All summary
sizes are fixed at 50KB. As can be seen in the figure, when we increase δ, the esti-
mations become more accurate for large twig queries. This comes at a small sacrifice
in the estimation accuracy for small twig queries. If the estimation error for the small
twig queries is tolerable, we can continue to increase δ for the benefit of improved es-
timations for large twig queries. If we consider a single large workload consisting of a
uniform number of different-sized queries (4 to 9), δ = 20% gives the lowest average
error (17.9%).
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4.6 Comparison of Summary Construction Times

In this experiment, we evaluate the cost of constructing the summary. In TreeSketches,
this is a very expensive operation as it involves a bottom-up clustering of similar sub-
structures in the XML data tree. In contrast, our approach relies on fast off-the-shelf
efficient tree-mining algorithms to build the summary. Table 3 presents the time re-
quired by both approaches to construct a 50KB summary on each of the four datasets.
The advantage of our approach over TreeSketches is quite telling–with an improvement
of about one order of magnitude.

4.7 Result Summary and Rationale

The experimental results have shown that TreeLattice is very effective and efficient
in estimating selectivity of the XML twig queries. In most cases, TreeLattice outper-
forms TreeSketches in terms of both accuracy and response time. In addition, pruning δ-
derivable patterns can further refine the selectivity estimation for large queries. We also
notice that TreeLattice is outperformed by TreeSketches on IMDB, though it still yields
reasonable estimations. Here we attempt to explain the rationale behind these results.

We know that TreeLattice is based on the conditional independence assumption of
twig growing. If real XML data satisfy this assumption well, then TreeLattice will per-
form well. On the other hand, if the assumption does not hold, it will not. From the
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Table 3. Summary construction time (in minutes)

Dataset TreeLattice TreeSketches

Nasa 10 80
PSD 21 102

XMark 15 78
IMDB 1 8

experimental results, it would appear that Nasa, PSD and XMark satisfy the assump-
tion well and IMDB does not. Our expectation is supported by Table 4, which lists
the number of patterns satisfying the assumption at different lattice levels on the four
datasets. From the table, we see for the Nasa, PSD and XMark datasets, the ratio of
0-derivable patterns to total patterns is quite high, meaning they satisfy the assumption
well. In contrast, the ratio on IMDB is much lower, which is reflected in the results.

Now let us take a closer look at TreeSketches. The TreeSketches synopsis is con-
structed by a bottom-up clustering of the similar substructures in the XML data tree. In
it, an edge (x, y) with weight α represents that on average, each node in set x has α
children in set y. Assume we have n nodes in set x, and the nodes have α1, · · · , αn, chil-
dren in set y, respectively. If there are many similar substructures in the XML data tree
found by bottom-up clustering, then TreeSketches should work very well (e.g., IMDB).
On a detailed examination of IMDB, we find this to be the case. However, if this does
not hold, then one is forced to cluster substructures that are not very similar in order
to compress the XML data tree. This results in a large variance of αi which leads to
larger errors that propagate rapidly. We believe this explains the poor performance of
TreeSketches on the other three datasets.

Table 4. Number of total and 0-derivable patterns on four datasets

Dataset Nasa PSD XMark IMDB
Lattice Level# total# 0-derivable# total# 0-derivable# total# 0-derivable# total# 0-derivable

3 213 174 282 201 365 302 877 156
4 668 434 1284 1016 1283 1138 9839 3625
5 2296 1866 6728 5778 4378 3948 - -
6 8274 7768 34976 31580 14492 13251 - -
7 30492 29232 - - 46628 43373 - -

5 Related Work

Chen et al. [3] were among the first to study the problem of estimating twig counts.
They propose the Correlated Sub-path Tree (CST) method for estimating the selectivity
of XML twig queries. A CST is a suffix tree-based data structure used to store all the
paths up to certain length. To estimate the selectivity of a given twig query, this ap-
proach needs to decompose a twig into a set of paths stored in the CST. Note that even
though both the CST and our TreeLattice approach depend on decomposing a large twig
into basic twigs, they are quite different in several respects. First, our approach utilizes
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the subtrees instead of paths as the summary of an XML document. Our results have
shown that these subtrees capture the structure of an XML document very effectively.
In contrast, in order to perform selectivity estimation, CST has to store additional infor-
mation, called set hashing signature, in order to capture the correlation among paths.
Our approach is essentially a generalization of the Markov model-based approach for
XML path selectivity estimation. When dealing with XML path queries, TreeLattice
yields the same selectivity estimation as the Markov model-based approaches, which
have been shown to be more effective than the CST-based approach [10].

XSketches [16] exploits localized graph stability in a graph-synopsis model to ap-
proximate path and branching distribution in an XML data graph. Its successor inte-
grates support for value constraints as well, by using a multidimensional synopsis to
capture value correlations [15]. They augment the XSketches model with new distri-
bution information [1] to estimate the selectivity of XML twig queries and show that
XSketches performs better than CST, yielding estimates with significantly lower esti-
mation error.

TreeSketches [2], a successor of XSketches, clusters similar fragments of XML
data together to generate its synopsis. The granularity of the clustering depends on the
memory budget. Also, it outperforms its predecessors in terms of both accuracy and
construction time. We note that the scope of TreeSketches is much broader than that of
TreeLattice, since they are able to handle more general twigs (containing // operator).

A particular case of the twig query is the XML path query. The wide use of XML
path queries has motivated many researches on estimating their selectivity. The Lore
system [8] is one of the earliest works in this direction. It stores statistics of all distinct
paths up to length m, with m being a tunable parameter. Selectivity of paths longer than
m are estimated assuming the Markov property. Aboulnaga et al. [10], extends the idea
used by Lore system in their Markov table method. It consists of a set of pruning and
aggregation techniques on the statistics used in the Lore system and therefore offers an
improvement by reducing the space requirements. Aboulnaga et al. [10], also propose a
tree-based method known as the path tree, for estimating the selectivity of XML paths
without data values. A path tree is a summarized form of the XML data tree. Compared
with the Markov table method, this approach is inferior in terms of estimation accuracy
for real datasets [10].

XPathLearner [9], is an on-line, self-tuning, Markov table-based approach used to
estimate the selectivity of XML paths. The statistics of the data are collected in an on-
line fashion, thus it is workload-aware. By design, our approach is also incremental
in nature and can maintain summaries on-line, though we do not evaluate this aspect
here. Our method is a generalization of these Markov model-based approaches for more
complex twig queries. Recently, Wang et al. [12] propose the use of Bloom Histograms
to estimate XML path selectivity. It is the first approach that gives a theoretical bound
on the estimation error. However, it does not handle twig queries.

6 Conclusions and Future Work

In this paper, we have described a new approach, TreeLattice, to estimate the selectivity
of XML twig queries with branching predicates. TreeLattice is shown to be comparable
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or better than TreeSketches in terms of estimation accuracy. Moreover, our technique
is significantly faster both in terms of summary construction and in terms of selectivity
estimation. Furthermore, we have provided theoretical foundations for the estimation
process and have shown that TreeLattice subsumes the successful Markov model-based
XML path selectivity estimation approach as a special case.

In the future, we will study the following issues: First, we would like to extend
TreeLattice to handle more complex twig queries with recursion predicates (// operator).
In this case, we are allowed to grow the twig in a more relaxed fashion. We conjecture
that the conditional independence assumption of tree growing will still hold even for
this case. Second, an error bound associated with the estimation would be very useful
and we have made some initial progress towards this end. Third, we would like to
adapt TreeLattice in a manner similar to XPathLearner, where information learned from
an on-line workload can dynamically guide what is to be maintained in the summary
structure.
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Abstract. There has been growing interest in the addition of update
operations to languages that operate on XML data, for example, XQuery
and XJ. These update operations support efficient and declarative spec-
ification of transformations of XML data. The presence of update oper-
ations raises the question of detecting data dependencies between reads
and updates of XML documents. The ability to optimize the execution
of update operations depends on the ability to detect such conflicts.
In this paper, we formalize the notions of updates on XML data and
conflicts between update operations. We show that conflict detection is
NP-complete when the update operations are specified using XPath ex-
pressions that support the use of the child and descendant axis, wildcard
symbols, and branching. We also provide efficient polynomial algorithms
for update conflict detection when the patterns do not use branching.

1 Introduction

The proliferation of XML data in domains such as databases, messaging systems,
Web Services, etc. has led to an increased interest in the support of updates on
XML data. For example, efforts are underway [9, 12] to extend XQuery [11] with
update operations, and programming languages for operating on XML data, such
as XJ [5] and Cω [3], offer mechanisms for specifying updates on XML data.

When a query language supports update operations, a classical and funda-
mental problem is the detection of conflicts between operations, that is, when
reads and writes may operate on the same data. This question has relevance in
many situations:
– Query optimization: The ability to detect that reads and writes do not

conflict allows a query compiler to reorder operations to improve efficiency.
Consider the following program fragment written in a language that
supports elementary updates (such a language could be the target language
for an XQuery compiler):

1 x = ...
2 y = read $x//A
3 z = read $x//C
4 insert $x/B, <C/>
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The first assignment to y returns all A descendants of the tree referred to by
x. A “read” operation returns references to nodes in x that are in the result of
the evaluation of the XPath expression on x. The “insert” operation adds a
C child to all nodes labeled B that are children of the root of the tree referred
to by x (if there are no B children in the tree, then no nodes are added). x
is changed in place. Clearly, the read of Line 2 cannot be interchanged with
the insertion of Line 4. If they were to be interchanged, then if x has a B
child, the read $x//C would “see” the C children added by the insertion
operation. Suppose, however, the read operation of Line 3 were z = read
$x//D. Then, it could safely be interchanged with the insertion of Line 4.
This could enable many optimizations. For example, in searching the tree
referred to by x for A descendants in Line 2, the query compiler could perform
the insertions and retrieve all the D descendants as well.

– Concurrency: The ability to detect whether reads and writes conflict is useful
in determining whether two or more concurrent operations may execute in
parallel, without explicit synchronization.

– XML Processing Languages: In languages such as XJ and Cω that are de-
signed to process XML robustly and efficiently, the ability to detect conflicts
between operations is essential for compiler optimizations. For example, it
can be used to unify loops so as to avoid extraneous tree traversals.

The subject of this paper is the detection of conflicts between update opera-
tions on XML data. We consider three operations — read, insertion, and deletion
— the semantics of which are formalized in Section 3. A read R and an insert
operation I conflict if the result of executing R(I(t)) is different from that of exe-
cuting R(t) for some XML tree t. We focus on a reference-based semantics based
on that proposed by the XQuery update standard [9, 12] and XJ [5]. We discuss
alternate semantics as well and how results can be applied in a straightforward
manner to these semantics. The operations we define use a restricted subset of
XPath expressions — only the child and descendant axes will be allowed (along
with wildcards and branching). We show that even for this simple subset (and
even when the inserted tree is constant), all conflict detection problems are NP-
complete. We provide polynomial-time algorithms for the subset that does not
allow the use of branching. The contributions of this paper are the following:

– A formalization of the update conflict problem for XML data. We present
formalizations of two different reference-based semantics (node conflicts and
tree conflicts). To the best of our knowledge, this paper is the first to draw
the distinction between these forms of conflicts. We focus on node conflict
semantics, but discuss how to modify results to apply them to the other
semantics.

– We show that the read-insert conflict problem and the read-delete conflict
problem are NP-complete for XPath expressions that use only the child and
descendant axes, and have branching and wildcard symbols. Read-Insert
conflict detection is NP-complete even if the inserted tree is constant and is
known statically.
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– We provide polynomial-time algorithms for the read-insert conflict problem
and the read-delete conflict problem for XPath expressions that use only
the child and descendant axes, and wildcard symbols (no branching). We
consider both the case where an insertion operation inserts a constant tree
that is known statically as well as when the inserted tree is variable (no
information about the inserted tree is available statically).

Section 2 formalizes the abstractions we use for XML and XPath expressions.
Section 3 defines the semantics of reads, insertions, and deletions and provides
the formal statement of update conflict detection. Section 4 provides polyno-
mial time algorithms for read-insert and read-delete detection, when the XPath
expressions used do not contain branching. Section 5 demonstrates that the de-
tection problem is NP-complete for the general XPath expressions we consider
in the paper. In Section 6, we discuss extending our results to other domains
(for example, schema-based conflict detection). In Section 7, we review related
work, and we conclude in Section 8.

2 Preliminaries

We present mostly conventional abstractions for XML documents and XPath
expressions (adapted from Miklau and Suciu [6]). In the next section, we define
the syntax and semantics of reads, insertions, and deletions which will lead to
the formal statement of the conflict problem.

XML Trees. An XML document is modeled as a labeled tree, where each node
of a tree is labeled with a symbol from an infinite alphabet Σ. The set of all trees
over Σ will be denoted TΣ . Since the fragment of XPath expressions we consider
in this paper does not depend on the order between children, the trees in TΣ

are unordered, and as is standard with XML, unranked (that is, the symbols in
Σ do not specify an arity). The subset of Σ that is used as labels of nodes of a
tree t ∈ TΣ will be denoted Σt.

For a tree t ∈ TΣ , we will use nodest and edgest to refer to the sets of
nodes and edges of the tree, respectively; root(t) will refer to the root node of
the tree t, and for a node n ∈ nodest, labelt(n) will refer to the label on n
(labelt(n) ∈ Σ). The size of a tree, |t|, is the number of nodes in nodest. We
assume relations child(t) ⊆ nodest ×nodest and desc(t) ⊆ nodest ×nodest

that are defined in the obvious manner.
A path from n1 to nk in a tree is a sequence of edges (n1, n2), (n2, n3), . . . ,

(nk−1, nk) such that (ni, ni+1) ∈ edgesp, 1 ≤ i ≤ k − 1.
A subtree t′ of a tree t rooted at a node n ∈ nodest, Subtreen(t), is defined

as the tree where nodest′ is the set of nodes consisting of n and all descendants
of n in t. The edges of t′ are all edges (u, v) ∈ edgest such that u and v are
both in nodest′ .

Tree Patterns. Rather than working with XPath expressions directly, we use
a more convenient formalism, tree pattern [6], that corresponds (roughly) to the
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Fig. 1. Example of an XML tree t, a tree pattern p, and an embedding from p into t.
Double-lined edges in the figure depict edges in edges//(p). The node corresponding
to O(p) is marked with a thick border.

XPath grammar below. The symbol ∗ �∈ Σ denotes a wildcard label (it will
match any label), and σ ∈ Σ:

e → e/e | e//e | e[e] | e[.//e] | σ | ∗

A tree pattern p is a tree over the alphabet Σ ∪ {∗}. The set of edges of p is
partitioned into two disjoint sets, edges/(p) and edges//(p), which represent
child constraints and descendant constraints, respectively. We will depict descen-
dant edges with double lines, and child edges with single lines in figures. Each
pattern contains a distinguished node O(p) ∈ nodesp. We depict output nodes
by using a thicker border for them than for other nodes. The size of a pattern,
|p|, is defined as the number of nodes in nodesp. The subset of Σ that is used
as labels of nodes of a pattern p will be denoted Σp.

The set of all tree patterns will be denoted P //,[],∗. We will also be interested
in the class of linear patterns, P //,∗, which is defined as the subset of P //,[],∗

where each node has a single outgoing edge, and the output node is the leaf
node of the tree. The translation of XPath expressions into tree patterns is
straightforward, and is omitted. In Figure 1, the tree pattern p is derived from
the XPath expression a[.//c]/b[d][∗//f ].

The subpattern p′ of a pattern p rooted at a node n ∈ nodesp,
Subpatternn(p), is defined as the subtree of p rooted at n. For our purposes,
it will be sufficient to assume that an arbitrary node in p′ is marked as the out-
put node. Given a pattern p and n, n′ ∈ nodesp, seqn′

n is the linear pattern p′

derived from p, where nodesp′ = {ω ∈ nodesp|ω is in the path from n to n′},
and edgesp′ consists of the edges used in the path from n to n′.

Embeddings. The semantics of the evaluation of an XPath expression is given
in terms of embeddings [6] of a tree pattern p into a tree t. An embedding is
a function E : nodesp → nodest such that all of the following conditions are
satisfied (Figure 1 depicts the embedding of a tree pattern p into a tree t) :
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– (root-preserving) E(root(p)) = root(t)
– (label-preserving) ∀n ∈ nodesp, labelp(n) = ∗ ∨ labelp(n) =

labelt(E(n))
– (edges/(p)-satisfied) ∀(u, v) ∈ edges/(p), (E(u), E(v)) ∈ child(t)
– (edges//(p)-satisfied) ∀(u, v) ∈ edges//(p), (E(u), E(v)) ∈ desc(t)

Given the definition of embeddings, the evaluation of a tree pattern p on a
tree t, �p�(t), is defined as the subset of nodest such that:

�p�(t) = {E(O(p))|E is an embedding from p into t}

We will sometimes use an alternative (non-standard) semantics of XPath ex-
pressions, �p�T (t), that returns a set of trees rather than a set of nodes:

�p�T (t) = {t′ ∈ TΣ|t′ = Subtreen(t), n ∈ �p�(t)}

The tree patterns in P //,[],∗ are always satisfiable, that is, there is always
at least one tree t ∈ TΣ such that �p�(t) �= ∅. For any pattern p, consider the
tree W , where nodesW = nodesp and edgesW = edgesp. If labelp(n) �= ∗,
labelW (n) = labelp(n); otherwise, labelW (n) = σ, for some arbitrary σ ∈ Σ.
It is straightforward to see that there is an embedding of p into W . We shall
refer to W as a model for p, denoted Mp. For example, the tree t in Figure 1 is
a model for the tree pattern p in the figure.

3 Defining Conflicts

We present the semantics for read, insertion, and deletion operations and two
different reference-based semantics for determining when conflicts occur.

Definition 1. Trees t, t′ are equivalent if nodest = nodest′ and edgest =
edgest′ . Equivalence of sets of trees is based on this notion of equivalence.

We now define the operations supported on trees:

– readp(t) where p ∈ P //,[],∗ and t ∈ TΣ projects a set of nodes from a tree.
It is defined as �p�(t).

– insertp,X(t), where p ∈ P //,[],∗ and t, X ∈ TΣ : The insertion operation
evaluates p on t and inserts a fresh copy of X as a subtree of each node in
the result of the evaluation.

Let R = �p�(t). Let X1, X2, . . . , X|R| be a set of trees such that each Xi

is a copy of X and nodesXi ∩ nodesXj = ∅, 1 ≤ i, j ≤ |R|. Furthermore,
the set of nodes of each Xi is disjoint from nodest. For each ni ∈ R, 1 ≤
i ≤ |R| add Xi as a child of ni. In other words, construct a tree t′, such that
nodest′ = nodest∪

⋃|R|
i=1 nodesXi and edgest′ = edgest∪

⋃|R|
i=1(edgesXi∪

{(ni,root(Xi))}).
We will refer to the nodes in R as insertion points. Observe that if the

result of evaluation of p on t is the empty set, t is unchanged.
In the definition of an insertion, X is a constant tree that is specified

statically. We will also consider the case where X is variable (that is, the
value of X is not known until the execution of the statement).



Conflicting XML Updates 557

– deletep(t), where p ∈ P //,[],∗, t ∈ TΣ: The delete operation evaluates p on
t and deletes the subtree rooted at any node in the result of the evaluation.
Let R = �p�(t). Let D be the set consisting of all n and descendants of n
in t, where n ∈ R. The result of the delete operation is a tree t′, where
nodest′ = nodest − D, and edgest′ consists of the edges (u, v) in edgest

where both u and v are in nodest′ .
We will refer to the nodes in R as deletion points. We require that O(p) �=

root(p), which ensures that the result of the deletion is a tree.

For notational convenience, we will often conflate the tree pattern associated
with an operation with the tree pattern itself. For example, O(R) will stand for
O(p) in the read operation R = readp(t).

The read, insertion, and deletion operations can be executed on a tree t in
time polynomial in the size of their inputs (that is, |t|,|p|, and |X |). The patterns
we consider are a subset of Core XPath, which can be evaluated in time linear
in the size of the tree and the pattern [4]. Given the result of the evaluation of
a pattern, the insertion and deletion operations can be executed easily in time
linear in the size of t (technically, the insertion operation can be performed in
time |t| · |X |, since copies of X must be made) in standard tree representations.
We now define what it means for two operations to conflict.

Definition 2 (read-insert conflict). A read R = readp(t) has a node conflict
with an insertion I = insertp′,X(t) if there exists t ∈ TΣ, R(I(t)) �= R(t). If
such a t exists, we call t a witness to the conflict.

A read R = readp(t) has a tree conflict with an insertion I = insertp′,X(t)
if there exists t ∈ TΣ, �p�T (I(t)) �= �p�T (t).

If X is not constant (that is, it is variable), R and I have a node (tree) conflict
if there exists an assignment of a tree in TΣ to X that would cause a read-insert
node (tree)conflict.

Intuitively, the difference between node and tree conflicts is that the node conflict
definition only verifies that the nodes returned by R(t) and R(I(t)) are the same.
The tree conflict definition verifies that no node conflict exists and none of the
trees rooted at a node in R(I(t)) contains a modified subtree. For example,
consider the read operation R that returns the root node of a tree, and an
insertion operation I that adds a subtree X to a child labeled B of the root node.
According to the node conflict definition, the two operations do not conflict —
R(t) and R(I(t)) both return the root node of the document. The tree conflict
definition, however, would signal a conflict since the subtree of I(t) rooted at
root(I(t)) is not the same as the subtree of t rooted at root(t). Observe that
the absence of a tree conflict implies that no node conflict exists, but the converse
is not true.

Both definitions are useful in practice. Suppose one had a query of the form
I;...; R (where I is executed before R), and I and R have a node conflict. A
query compiler could choose to perform the read R before the insert I as long it
ensures that any operation that depends on the result of R, and that observes
the modification made by I, executes after I. The tree semantics of conflict is
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useful to determine when the subtree of a node accessed by R may conflict with
an insertion or deletion, which may be useful in concurrency applications. We
now present a parallel definition for read-delete conflicts.

Definition 3 (read-delete conflict). A read R = readp(t) has a node con-
flict with a deletion D = deletep′(t) if there exists t ∈ TΣ, R(D(t)) �= R(t).

A read R = readp(t) has a tree conflict with a deletion D = deletep′(t) if
there exists t ∈ TΣ, �p�T (D(t)) �= �p�T (t).

Evidently, other kinds of conflicts can arise, for example, delete-insert conflicts.
In this paper, we mostly focus on read-insert and read-delete conflicts and defer
discussion of other update conflicts to Section 6.

Given a tree t, whether t is a witness to a read-insert or read-delete conflict
can be decided in polynomial time for both semantics of conflicts.

Lemma 1. Given a tree t ∈ TΣ, a read R and an insertion I (resp. a deletion
D), it can be determined in polynomial time whether t is a witness to a node or
tree conflict between R and I (resp. R and D).

Proof. The case for node conflict is trivial since it involves evaluating R(t) and
R(I(t)) (which can be performed in polynomial time, as stated previously) and
verifying that the resulting sets are identical.

For tree conflicts, one can associate with each node in t a flag marking whether
the subtree under it has been modified. In an appropriate tree representation,
an insertion or deletion operation can update this information in time linear in
the size of t. Checking for a conflict requires verifying set equality of the results
of R(t) and R(I(t)) and ensuring that none of the nodes in R(I(t)) have been
marked.

The proof for read-delete conflicts is similar.

In this paper, based on the proposed semantics for XQuery and XJ, we focus
mainly on node conflicts with reference-based semantics (all future references to
“conflict” should be interpreted as such, unless stated otherwise explicitly). All
results can be extended to tree conflicts as well, and where appropriate, we will
discuss the modifications necessary.

4 Efficient Algorithms for P //,∗

We provide polynomial-time algorithms for detecting read-delete and read-insert
conflicts when the patterns are linear. What is perhaps surprising is that only
the read pattern need be linear — the pattern for the insert and delete can be
any pattern in P //,[],∗. This is surprising because as we show in the next section,
when both patterns are in P //,[],∗, read-insert and read-delete conflict detection
is NP-complete.

4.1 Read-Delete Node Conflicts

We start with examining the read-delete case, because it is more straightforward
than the read-insert case. Consider an example of a conflict when the deletion
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Fig. 2. Structure of a read-delete node conflict

and the read are linear patterns. Figure 2 shows the structure that any conflict
must have. The figure depicts a deletion D and a read R and the tree that is
the result of applying D to a tree W (the shaded subtree rooted at u is deleted
from W ).

The existence of a node conflict implies that there is an embedding of R into
W that maps O(R) to some node v that is deleted in D(W ). There is a node u
in nodesW that is either an ancestor of v or v itself (there must be at least one
for v to have been deleted), where u is a node in �D�(W ).

Consider the edge (n, n′) in Figure 2. The nodes in the path from root(R) to
n are mapped to nodes in W in the path from root(W ) to node u. The nodes in
D from root(D) to O(D) can be embedded into nodes in W in the path from
root(W ) to u as well (since u ∈ �D�(W )). Since portions of both R and D are
mapped to the nodes in the path root(W ) to u, the nodes in R from root(R)
to the node n must “match” the nodes in D from root(D) to O(D). In other
words, the sequence of nodes in W from root(W ) to u supports embeddings
E1 from D, and E2 from seqn

root(R). We formalize this notion of matching and
show how we can use it to detect read-delete node conflicts.

Definition 4. Linear patterns l and l′ match weakly if there exists a tree t ∈ TΣ

such that there is an embedding E1 from l into t and an embedding E2 from l′

into t, and E1(O(l)) = E2(O(l′)) or E1(O(l)) is a descendant of E2(O(l′)).
Two linear patterns l and l′ match strongly if they match weakly and

E1(O(l)) = E2(O(l′)).

We will use this notion of matching as the basis of our algorithm for read-delete
conflict detection. The following theorem is useful for this purpose.

Theorem 1. Consider a read R = readp and a deletion D = deletep′ . There
is a read-delete node conflict between R and D if and only if there exists an edge
(n, n′) in edgesR such that:

– (n, n′) ∈ edges//(p), D and seqn
root(R) match weakly, or

– (n, n′) ∈ edges/(p), D and seqn′
root(R) match strongly.
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Theorem 1 suggests a mechanism for detecting read-delete conflicts — find an
edge (n, n′) ∈ edgesR such that D matches the subpattern of R induced by the
edge strongly or weakly as appropriate. We sketch an algorithm for determining
whether two patterns match.

Given linear patterns l and l′, we construct regular expressions from the pat-
terns and use language intersection to check whether l and l′ match strongly or
weakly. First, some technicalities. Since Σ is infinite, we assert that we can
restrict the alphabet to the symbols used in l and l′, that is Σl ∪ Σl′ . Let
Σl,l′ = Σl ∪ Σl′ . If there is a witness tree W to a matching that uses sym-
bols other than those in Σl,l′ , observe that we can replace those symbols with
ones from Σl,l′ ; only nodes labeled ∗ in l and l′ could have mapped to them.
Secondly, note that the size of Σl,l′ depends solely on the sizes of l and l′.

We now describe the construction of regular expressions from linear patterns.
Let (.) be stand for any symbol in Σl,l′ , that is, it is equivalent to σ1|σ2| . . . for
each σi ∈ Σl,l′ . For a node n in a pattern l, let sym(n) be defined as labell(n)
if labell(n) �= ∗, and (.), otherwise.

We define a function R : nodes → regexp as follows (for a pattern l):

– R(root(l)) = sym(n),
– R(n �= root(l)): Let n′ be the parent of n in l. If (n′, n) is a descendant edge,

R(n) = R(n′)·(.)∗ ·sym(n). If (n′, n) is a child edge, R(n) = R(n′)·sym(n).

Let r1 = R(O(l)) and r2 = R(O(l′)). We state (the proof is omitted for space)
that the linear patterns l and l′ match strongly if and only if L(r1)∩L(r2) �= ∅,
where L(r1) and L(r2) are the languages denoted by r1 and r2, respectively. l
and l′ match weakly if and only if L(r1)∩L(r2 ·(.)∗) �= ∅. As is customary, we can
construct non-deterministic finite state automata from the regular expressions,
and verify in time polynomial in the size of l and l′ whether the intersection is
non-empty.

Since we can detect whether a linear pattern matches another (weakly or
strongly) in polynomial time, for each edge (n, n′) in edgesR in a read R, we can
verify whether a deletion D matches seqn

root(R) or seqn′
root(R) (as appropriate).

By Theorem 1, if we find any such (n, n′), a read-delete conflict exists. In practice,
rather than verifying each edge in R separately, one can use an algorithm based
on dynamic programming to determine whether a match exists. With respect to
alternate semantics of updates, observe that a tree conflict occurs if and only if
either there is a node conflict or D is weakly matched by R. Therefore, we can use
a slight modification of the mechanism for node conflicts to handle tree conflicts.

We show now that the deletion operation need not be linear. As long as the
read operation is in P //,∗, we can detect read-delete conflicts in polynomial time.

Theorem 2. A read R = readp and a deletion D = deletep′ , where p is
a linear pattern and p′ ∈ P //,[],∗, have a node conflict if and only if R and
D′ = seqO(D)

root(D) have a node conflict. Note D is not necessarily a linear pattern.

Proof. (Only if) If R and D have a conflict, there is a tree W that is a witness
to the conflict. W is also a witness to a read-delete conflict between D′ and R.
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Fig. 3. Structure of a read-insert node conflict

�D�(W ) ⊆ �D′�(W ), because any embedding of D into W defines an embedding
of D′ into W . Since the set of deletion points in the evaluation of D′ on W
contains all the deletion points of D on W , any node whose deletion is necessary
to show the conflict in R(D(W )) will also be deleted in R(D′(W )).

(If) If D′ and R have a conflict, let W be a witness to the conflict. We construct
a tree W ′ from W as follows. Consider any node n ∈ nodesD′ . Let c be a child
of n in D that is not in D′, and let Mc be a model for Subpatternc(D). Add
Mc as a child of each node in W . This will ensure that any embedding of D′

into W can be extended easily into an embedding of D into W ′.
Given an embedding E of D′ into W , let n be a node in nodesD′ and let

c �∈ nodesD′ be a child of n in D. The extension of E maps the subpattern of
D rooted at c to the child of E(n) in W ′ that corresponds to Mc. Since any
embedding of D′ into W can be extended into one of D into W ′, �D′�(W ) ⊆
�D�(W ′). Moreover, since W ′ only adds nodes to W , �R�(W ) ⊆ �R�(W ′). Let
v be a node in R(W ) that is deleted in R(D′(W )). v will be a node in R(W ′)
and the deletion point that causes v to be deleted will be present in �D�(W ′).
Therefore, there is a read-delete conflict between R and D.

Corollary 1. For a read R = readp and a deletion D = deletep′ , where p ∈
P //,∗ and p′ ∈ P //,[],∗, a read-delete node conflict can be detected in polynomial
time.

4.2 Read-Insert Node Conflicts

Consider an example of a node conflict when the insert I and the read R are
linear patterns. Figure 3 shows the structure that any such node conflict must
have. The figure depicts I and R and the tree that is the result of applying I to
a tree W (a subtree X is inserted as a child of a node u).

While the structure is similar to the read-delete case, the read-insert case
is somewhat more complicated. Unlike the read-delete case, where the subtree
rooted at u can be any tree, in the read-insert case, the nodes in R from n′ to
O(R) should be mappable to X for a conflict to occur. The existence of a conflict



562 M. Raghavachari and O. Shmueli

implies that there is an embedding that maps O(R) to some node v in X and
maps the nodes in R in the path from root(R) to O(R) to nodes in the path
from root(W ) to v in I(W ). Since v is in X , it must be the descendant of an
insertion point u ∈ nodesW (the insertion point where X is inserted). For u to
have been selected as an insertion point, there must have been an embedding of
I to the nodes in the path from root(W ) to u.

We consider two cases for read-insert conflicts. First, the tree X that is in-
serted is variable and not known statically, that is, it can be bound to any tree
at runtime. A conservative compiler must ensure that for all trees t that can
be bound to X , a read-insert conflict would not occur. In the second case, the
tree X is a constant tree C and the compiler can use this information to detect
whether a read-insert conflict would occur.

We show that if X is variable, read-insert conflict detection reduces to the
problem of read-delete conflict detection. A query compiler could use the tech-
niques described previously for the read-delete case to efficiently detect conflicts.

Theorem 3. Consider a read R and an insertion I = insertp,X , where both
R and I use linear patterns and X is a variable that can be bound to any tree
in TΣ. There is a read-insert conflict between R and I if and only if there is a
read-delete conflict between R and D = deletep′ , where p′ is derived from p by
adding a node labeled ∗ as a child of the output node of p (connected by a child
edge), and marking this node labeled ∗ as the output node of p′.

Proof. [Sketch] Let t be a witness to a read-delete conflict between R and D.
Let n be a node in t that is not deleted in D(t) and has a child u that is deleted
in D(t) such that R(t) contains a node in the subtree of t rooted at u. By the
definition of read-delete conflicts, there must be such a node n. Let t′ be the
subtree of t rooted at u. We claim that W = D(t) is a witness to a read-insert
conflict between R and I, when X is bound to t′. Observe that if the pattern p′

used in D selects u as a deletion point, the pattern p used in I would select n
in W , and the insertion of t′ as a child of n would cause R(I(W )) to contain a
node in t′, which would not be in R(W ). The case of proving that a read-insert
conflict implies a read-delete conflict is similar and is omitted.
In the other case, where X is a constant tree C, a query compiler has more
information about the insertion operation. We show how this information may
be used to detect read-insert conflicts. Consider the edge (n, n′) in Figure 3. It
is the edge in R in the path from root(R) to O(R) that straddles W and X in
the sense that n is mapped to a node in W and n′ is mapped to a node in X . In
any witness to a conflict, there must always be such an edge because root(R)
is always mapped to root(W ) and O(R) is mapped to v which is a node in X .

Definition 5. Given a read R and an insert I, let (n, n′) be an edge in edgesR.
(n, n′) is the cut edge for R and I if there exists a tree W ∈ TΣ and an embedding
E of R into I(W ) such that E(n) ∈ nodesW and E(n′) �∈ nodesW .

Lemma 2. There is a read-insert conflict between R and I if and only if there
is a cut edge for R and I.
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Since any embedding of R into I(W ) that causes a conflict must have a cut
edge (n, n′), we can use a similar strategy as for the read-delete case to detect
conflicts:

– Choose an edge (n, n′) in edgesR.
– Construct a witness tree W such that (n, n′) is a cut edge for an embedding

of R into I(W ). If such a tree can be constructed, a conflict exists.
– If no such tree can be constructed, choose another edge until all edges have

been tried.
– If no edge can be found, R and I do not have a read-insert conflict.

From Figure 3, it should be clear that for an edge (n, n′) ∈ edgesR to be a
cut edge, it must satisfy two constraints. The insert I must match seqn

root(R),

and there should be an embedding of seqO(R)
root(n′) into X . We formalize these

requirements below.

Lemma 3. Consider a read R = readp and an insert I = insertp′,X . Let
(n, n′) be an edge in edgesp. (n, n′) is a cut edge for R and I if and only if:

– If (n, n′) ∈ edges/(p), I and seqn
root(R) match strongly. If (n, n′) ∈

edges//(p), I and seqn
root(R) match weakly, and

– If (n, n′) ∈ edges/(p), there is an embedding from seqO(R)
n′ to X. If

(n, n′) ∈ edges//(p), there is an embedding from seqO(R)
n′ to X or some

subtree of X.

Using the mechanisms described in the previous section for detecting matches,
we can identify cut edges in polynomial time. As a result, we can conclude that
read-insert conflicts can be detected in polynomial time.

Theorem 4. For a read R and an insertion I, a read-insert node conflict can
be detected in polynomial time if R and I use patterns in P //,∗, and the tree X
inserted by I is constant.

Proof. Given R and (n, n′), we can verify whether I and seqn
root(R) match weakly

or strongly as appropriate in polynomial time. We can also verify whether there is
an embedding of seqO(R)

n′ into X or a subtree of X as appropriate. By Lemma 3,
these facts are sufficient to determine whether (n, n′) is a cut edge for R and I.
By Lemma 2, identification of cut edges is necessary and sufficient for read-insert
conflict detection.

remarks: As in the read-delete case, I and R have a tree conflict if and only if
I and R have a node conflict or I and R match weakly. We conclude, therefore,
that the theorem above applies to tree conflicts as well.

Similar to the read-delete case, even when the insert is not a linear pattern,
conflict detection is in polynomial time as long as the read pattern is linear.
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Theorem 5. A read R = readp and an insertion I = insertp′,X , where p is a
linear pattern and p′ ∈ P //,[],∗ and X is a constant tree, have a node conflict if
and only if R and I ′ = seqO(I)

root(I) have a node conflict. Note I is not necessarily
a linear pattern.

Corollary 2. For a read R = readp and an insertion I = insertp′,X , where
p ∈ P //,∗ and p′ ∈ P //,[],∗, a read-insert node conflict can be detected in polyno-
mial time.

5 NP-Completeness of P //,[],∗

We show that the read-insert and read-delete node conflict problems are NP-
complete when the patterns used are from P //,[],∗. In fact, in the read-insert
case, conflict detection is NP-complete even when the tree X in the insertion is
constant and consists of a single node.

5.1 Read-Insert Node Conflicts

Suppose a read operation R = readp(t) conflicts with an insertion I =
insertp′,X(t), there is an XML tree W that witnesses the conflict, where the
size of W is polynomial in the size of R and I. This fact allows one to present a
non-deterministic polynomial time algorithm for deciding whether a read-insert
conflict exists. One can guess a tree W of size polynomial in the inputs, and
execute R(W ) and R(I(W )) to verify whether W acts as a witness. For the NP-
hardness result, we reduce the problem of containment of XPath expressions [6]
to the read-insert conflict problem (actually, we reduce the dual non-containment
problem).

Theorem 6. Read-insert node conflict detection for P //,[],∗ is in NP.

Proof. [Sketch] The proof depends on non-deterministically guessing a tree of size
polynomial in the inputs and verifying that the tree is a witness to the conflict.
It relies on the fact that if a witness exists, “inessential” nodes can be pruned
away so that a tree polynomial in the size of the inputs can be constructed. By
Lemma 1, we can verify in polynomial time whether a tree t is a witness to the
read-insert conflict.

For the NP-hardness result, we reduce the non-containment problem for XPath
expressions:

Definition 6. A pattern p is contained in another pattern p′, denoted p ⊆ p′,
if ∀t ∈ TΣ , �p�(t) �= ∅ =⇒ �p′�(t) �= ∅. In other words, the existence of an
embedding of p into t implies the existence of an embedding of p′ into t.

Let p, p′ be two patterns in P //,[],∗. Miklau and Suciu [6] have shown that the
decision problem of whether p �⊆ p′ is NP-hard. We reduce the non-containment
problem to that of determining whether a read-insert conflict exists.
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Fig. 4. (a) Query qI used in insertion operation (b) Tree added in insertion operation
(c) query qR used in read operation (d) Structure of witness tree

Theorem 7. Read-insert node conflict detection for P //,[],∗ is NP-hard.

Proof. Given an instance of the non-containment problem, that is, two patterns
p, p′ ∈ P //,[],∗, we construct an instance of the read-insert conflict problem. We
construct an insertion operation I = insertqI ,X and a read operation, R =
readqR , where qI , X , and qR are constructed from p and p′ as depicted in
Figure 4a-c; qI is the pattern equivalent to the XPath expression α[β[p][γ]]/β[p′],
qR is equivalent to α[β[p′][γ]], and X is the tree consisting of a single node labeled
γ, where α, β, γ are symbols not used in p and p′. Observe that the construction
can be performed in polynomial time.

There is a read-insert node conflict between R and I if and only if p �⊆ p′. if
p �⊆ p′, then there is a witness tree W as shown in Figure 4d, where the root node,
which is labeled α, has two distinct children labeled β. One β child contains a
subtree tp for which there is an embedding of p into t, but no embedding of p′

into tp. Since p �⊆ p′, the existence of such a tp is guaranteed. This β child also
contains a node labeled γ. The other β child contains a tree tp′ for which there
is an embedding of p′ into tp′ , but no γ child. R has no embedding in W because
the β child of root(W ) that matches p′ does not have a γ child. R does have an
embedding after the execution of the insertion operation, which inserts a γ node
into the appropriate point. As a result, R(W ) = ∅, but R(I(W )) = {root(W )},
which implies a read-insert conflict.

If there is a read-insert conflict, there is a tree W that is a witness to the
conflict. Observe that for all t ∈ TΣ , R(t) returns at the most a single node
(root(t)). Since R(W ) �= R(I(W )), R(W ) must be empty and R(I(W )) must
be {root(W )}. Since R(I(W )) and R(W ) are different, the insert operation
modifies the tree W . There must be, therefore, an embedding of I into W . Con-
sider the subtree of W , tp, to which an embedding maps the subpattern of I
corresponding to p. There can be no embedding from p′ into this subtree; this
would imply that there is an embedding of R into W where the subpattern cor-
responding to p′ is mapped to tp. As a result, tp is a tree that has an embedding
from p but not from p′, proving the assertion that p �⊆ p′.

Since R and I conflict if and only if p �⊆ p′, the read-insert node conflict
problem is NP-hard.
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p p’

(a) Delete qD

*

p’

(b) Read qR

tp tp’

(c) Witness W

Fig. 5. (a) Query qD used in deletion operation (b) query qR used in read operation
(c) Witness W to read-delete conflict

Corollary 3. Read-insert node conflict detection for patterns in P //,[],∗is NP-
complete.

Remarks: Observe that the reduction shown for node conflicts cannot be used
directly to show NP-hardness of tree conflict detection. The patterns in Figure 4
are such that every tree that causes an insertion to occur would be a witness
to a tree conflict. We modify R slightly, where we add a child node labeled δ to
root(R) and mark this child node as the output node. Since the subtree under
a node matching δ is never modified by I, there will be a tree conflict between
the modified R and I if and only if there is a node conflict between the modified
R and I.

5.2 Read-Delete Node Conflicts

The characteristics of the read-delete conflict detection problem for P //,[],∗ are
similar to that of the read-insert problem. We, therefore, omit the proof of mem-
bership in NP and only sketch the proof of NP-hardness.

Theorem 8. Read-delete node conflict detection for P //,[],∗ is in NP.

Theorem 9. Read-delete node conflict detection for P //,[],∗ is NP-hard.

Proof. As in the read-insert case, we provide a reduction from the non-
containment problem. Given an instance of the non-containment problem, that
is, two patterns p, p′ ∈ P //,[],∗, we construct an instance of the read-delete con-
flict problem. We construct a deletion operation D = deleteqD and a read
operation, R = readqR , where qD, qR are constructed from p and p′ as depicted
in Figure 5a-b; q is the pattern equivalent (roughly) to the XPath expression
qD = α[β[p]]/γ[p′], and qR is equivalent to α[∗[p′]], where α, β, γ are arbitrary
symbols. Observe that the construction can be performed in polynomial time.

We show that p �⊆ p′ if and only if D and R have a read-delete conflict. If
p �⊆ p′, there must be a tree tp such that there is no embedding from p′ into tp,
but for which there is an embedding from p. We use the witness tree in Figure 5c
to show a read-delete node conflict. In W , tp′ is some tree for which there is an
embedding of p′ into tp′ . Clearly �R�(W ) contains root(W ) since root(W )
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contains a grandchild that has an embedding from p′. The delete operation, D,
will remove the subtree of W rooted at the node labeled γ. Therefore, R(D(W ))
will not contain root(W ) since D(W ) does not contain any child of root(W )
into which p′ can be embedded (by assumption, p′ cannot be embedded into tp).
As a result W is a witness to a read-delete conflict.

If there is a read-delete conflict, let W be a witness to the conflict. Since
R(D(W )) �= R(W ) and R(t) for any tree in TΣ contains at most one node (the
root of t), R(D(W )) = ∅. Suppose p ⊆ p′. Since the deletion operation modifies
W , there must be an embedding of D into W . Therefore, root(W ) must contain
a child u labeled β such that there is an embedding of p into a subtree under u,
tp, where the root of p is mapped to the root of tp. This tree is not deleted by D
— only children of root(W ) labeled γ are affected by the delete operation. As
a result, since p ⊆ p′, there must be an embedding of R into D(W ), where the
node labeled ∗ in R is mapped to u and p′ in R is mapped to tp. The existence
of an embedding contradicts the fact that R(D(W )) = ∅. Therefore, p �⊆ p′.

Since p �⊆ p′ if and only if D and R have a read-delete conflict, we conclude
that the read-delete problem for patterns in P //,[],∗ is NP-hard.

Corollary 4. Read-delete conflict detection for patterns in P //,[],∗is NP-
complete.

remarks: As in the read-insert case, a slight modification to R (adding a child
labeled δ of root(R) as the output node) will ensure that p �⊆ p′ if and only if
the modified R and D do not have a tree conflict. The details are omitted.

6 Discussion

Complex Updates. While we have focused on read-delete and read-insert con-
flicts, the other conflicts (delete-insert, delete-delete, and insert-insert) are of
interest as well. Informally, we can define conflicts in these situations as two
operations o1, o2 conflict if there is a tree t ∈ TΣ such that o1(o2(t)) is not equal
to o2(o1(t)), where o1 and o2 can be either an insert or a delete.

In the reference-based semantics, the definition of these conflicts is not com-
pletely straightforward. Two insertions I1 and I2 ought not to have an insert-
insert conflict if I1 and I2 are identical; in this case, for any t ∈ TΣ, I1(I2(t))
ought to be considered equivalent to I2(I1(t)). In the reference semantics, the
problem is with the clones of X (in insertp,X) that are inserted into any tree
— they do not preserve node equality. A suitable reference-based semantics of
conflicts would have to distinguish these nodes appropriately.

The reductions from XPath containment provided in Section 5 can be modified
in a straightforward manner to show that each of these conflicts is NP-hard.

Schema Information. The complexity of conflicts when schema information
(for example, DTDs) is available is an open problem. In general, the addition
of DTDs appears to raise the complexity of problems related to XPath. For
example, as mentioned before, containment of P //,[] in in ptime. When the
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problem of containment is constrained to detect whether for all trees conforming
to a DTD, one XPath is contained in another, the problem is coNP-complete [7].

7 Related Work

The subject of updates in XML has only recently started getting attention.
Efforts have been focused on the syntax and semantics of update operations [9,
10, 12] and incremental validation of XML [1, 8]. Benedikt et al [2] consider the
snapshot semantics for XQuery and two optimizations — (1) reordering updates
and, (2) mixing evaluation of XQuery sub-expressions and concrete updates.
They state that the determination of whether mixing updates and evaluation is
safe is undecidable when a schema (represented as an automaton) is present.

In their system, a program is non-interfering if none of its generated con-
crete updates can affect the result of any of its query evaluations. Interference
of programs is similar to our notion of conflicts. In order to detect when this
reordering optimization is safe, Benedikt et al provide a conservative, approx-
imate algorithm for generating a system of equations from an update program
such that the unsatisfiability of the set of equations allows one to conclude that
the program is non-interfering [2]. Unsatisfiability detection for their system of
equations is claimed to be coNP-complete. Only a reduction from an update
program to a system of equations is provided and no reduction from the un-
satisfiability problem to the non-interference problem. Therefore, only an upper
bound of the complexity of non-interference is obtained.

We address the more focused problem of conflicts between two operations,
a read and an insertion (or deletion), and show that exact conflict detection is
NP-complete (thus providing a tight classification). We show that even when
the inserted tree is a constant tree of a single node (and there is no schema infor-
mation, which typically raises the general complexity of such problems), conflict
detection is NP-complete. Furthermore, we provide efficient polynomial algo-
rithms for conflict detection for linear patterns, which are common in practice.

8 Conclusion

We believe that update operations will be an important component of XML
query and processing languages. The presence of update operations leads to the
natural question of when modifications to data cause two operations to conflict.
We have provided two formulations of semantics for conflicts. For linear XPath
expressions that do not support branching, but allow child and descendant axes,
and the wildcard operator, we have shown that polynomial-time algorithms exist.
For read-insert conflicts, we have provide polynomial algorithms for detecting
conflicts when the tree that is inserted in constant and known statically, and for
detecting potential conflicts when the inserted tree is variable. If the branching
operator is also allowed, the problem becomes NP-complete. The development of
an understanding of updates can lead to more efficient compilers for languages
such as XQuery and XJ.
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9. G. Sur, J. Hammer, and J. Siméon. UpdateX - an XQuery-based language for
processing updates. In PLAN-X, January 2004.

10. I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, June 2001.

11. World Wide Web Consortium. XQuery 1.0: An XML Query Language, April 2005.
W3C Working draft.

12. World Wide Web Consortium. XQuery Update Facility Requirements, June 2005.



Y. Ioannidis et al. (Eds.): EDBT 2006,  LNCS 3896, pp. 570 – 587, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Improving the Efficiency of XPath Execution on 
Relational Systems 

Haris Georgiadis and Vasilis Vassalos 

Department of Informatics, 
Athens University of Economics and Business Athens, Greece 

{harisgeo, vassalos}@aueb.gr 

Abstract. This work describes a method for processing XPath on a relational 
back-end that significantly limits the number of SQL joins required, takes 
advantage of the strengths of modern SQL query processors, exploits XML 
schema information and has low implementation complexity. The method is 
based on the splitting of XPath expressions into Primary Path Fragments (PPFs) 
and their subsequent combination using an efficient structural join method, and 
is applicable to all XPath axes. A detailed description of the method is followed 
by an experimental study that shows our technique yields significant efficiency 
improvements over other XPath processing techniques and systems. 

1   Introduction 

In the past few years the adoption of XML for a variety of roles in e-business applica-
tions has increased significantly and continues to increase. XML is increasingly used 
as a data exchange/messaging format between applications or Web services [22], as a 
data model for middleware-based data integration [23] and as a data model for storing 
and querying application data [24]. Given the growing importance and presence of 
XML data, the need to query and maintain them arises in most of the above cases. At 
the same time, business applications as always rely heavily on agreed-upon schemas 
and descriptions for data modeling (in the case of XML, XML Schema [25] or DTD). 
XML storage and query systems fall into three main categories: 

− Native XML systems [29,30] that use storage models indexing and querying 
mechanisms specially designed for XML data. Storage models are based on path 
sequences, flat files [31], tree-based node clustering [29] or other techniques.     

− XML-shredding systems [2,3,4,5,18] that decompose XML documents into rela-
tions, store them in RDBMSs and process them using RDBMS machinery. 

− Hybrid approaches that store XML as CLOBs/BLOBs into relational tables, ei-
ther exclusively or in combination with shredding [26]. 

XML shredding techniques can be schema-oblivious, where the relations into 
which XML is translated are fixed irrespective of the XML document structure, as in 
the Edge mapping [1]. There, all element nodes are stored as tuples in a single central 
relation. Alternatively, shredding can be schema-aware [4,5], where the relational 
schema constructed is adapted to the XML schema information available. 
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Because of the wide availability, robustness and manageability of RDBMSs, the 
shredding and hybrid solutions have received a lot of attention. Several techniques 
and systems have been proposed [2,3,11,12] for SQL-based XML processing, sup-
porting large subsets of well-known XML query languages, namely XQuery[7] or 
XPath[6]. These systems and techniques translate expressions of these languages into 
SQL equivalents and execute them on relational back ends. In earlier attempts, e.g., 
[4], the SQL translations had a large number of foreign-key joins, usually propor-
tional to the number of steps in paths. This technique was unable or inefficient to 
handle a series of XPath features, such as the descendant ‘//’ and several other axes, 
recursion and wildcards (‘*’).  Several techniques have been proposed to tackle the 
above problems. For schema-oblivious mappings, efficient methods such as region 
encoding [2] and dewey encoding [9] have been proposed to encode both structural 
relationships among elements and ordering information, and to transform structural 
relationships such as “descendant” into range comparisons. These techniques, by 
themselves, do not accelerate simple path traversals: again the number of joins is 
proportional to the number of steps. Regarding schema-aware mapping, for example, 
schema information can has been used to eliminate redundant joins [11], whereas 
recursive queries can be handled using the recursion capabilities of SQL99 [12]. 

This work describes a novel XPath processing approach that yields significant per-
formance benefits while being quite easy to implement and combine with existing 
techniques. A key novel concept of our approach is the Primitive Path Fragment 
(PPF), which is a syntactic unit of an XPath expression. PPFs can be efficiently evalu-
ated in a holistic fashion using a root-to-node path index and regular expression 
matching, to eliminate the need for structural joins. We describe Primitive Path Frag-
ments and their processing in Section 4.3. The second important part of our approach 
is a method based on the properties of Dewey encoding [9] for efficiently performing 
the necessary structural joins between PPFs. Our implementation of Dewey encoding, 
its properties and its use for joining PPFs are described in Section 4.2. The complete 
XPath to SQL translation algorithm is presented in Section 4.3.  

PPF-based XPath processing can be applied both to schema-oblivious and schema 
aware XML shredding. In schema-aware shredding, data are apportioned into several 
relations. The existence of schema information and its utilization in the translation, 
allows for optimizations, such as avoiding redundant root-to-node path filtering, as 
discussed in Section 4.5. The experimental evaluation in Section 5.1 confirms the 
benefits of applying the PPF-based processing in conjunction with schema-aware 
XML shredding. Hence this work focuses on such a translation scheme, describing it 
briefly in Section 3. Our implementation of PPF-based processing is built on top of an 
Oracle 10g-based XML management system using schema-aware XML shredding. In 
our experimental study, which is in Section 5, we are comparing our technique to the 
latest version of MonetDB/XQuery, our implementation of XPath accelerator on top 
of Oracle 10g, and the built-in XPath processor of a major commercial RDBMS, on a 
large number of representative XPath queries on different data sets. We discuss re-
lated work in Section 6 and present our conclusions in Section 7. 

In summary, we show how PPF-based XPath processing can handle efficiently a 
large subset of XPath 2.0 that includes all XPath axes, path union, nested expressions, 
and logical, arithmetic and position predicates. PPF-based XPath processing offers a 
comprehensive solution to the problem of XPath processing that exploits the strengths 
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of relational query processing and optimization with minimal tuning and gives sig-
nificant performance gains over existing techniques with much less implementation 
complexity. 

2   Background 

2.1   XML Data Model, XML Schema and XPath 

An XML document can be represented as a rooted, ordered, labeled tree, where each 
node corresponds to an element or a text value. The edges represent (direct) element-
subelement or element-value relationships. Tags, IDs, IDREFs and other attributes are 
modeled by node labels consisting of a set of attribute-value pairs. The ordering of 
sibling nodes implicitly defines a total order on the nodes in a tree, obtained by a 
preorder traversal of the tree nodes. Figure 1(b) shows the tree representation of an 
XML document, where the numbers outside the nodes represent node identifiers.  
  

 
   

(a).              (b).                                                        (c).     

Graph representation     Sample XML document XML element descriptors 
of an XML Schema         conforming to Schema 

Fig. 1. 
 
The structure of an XML document can be described by an XML Schema. An 

XML Schema can be represented as a directed graph [12], where vertices correspond 
to element definitions and edges represent nesting relationships. A simple XML 
Schema graph is illustrated in Figure 1(a). An element node in a document described 
by an XML Schema instantiates a particular type defined in the schema. 

XPath [6] is a language for locating XML nodes. The main construct of XPath is 
the path expression which consists of a sequence of steps, separated with the ‘/’ char-
acter, to address nodes within the tree representation of an XML document. Each step 
has three parts: an axis, such as child, parent and descendant, which defines the struc-
tural relationship of nodes to be selected with respect to those selected by the preced-
ing step, a node test which defines the name or the kind of nodes to be selected and, 
optionally, one or more predicates which set further restrictions to the nodes to be 
selected. Wildcards (‘*’) can be used as node tests that select nodes regardless of their 
name. For example, the XPath expression ‘/A/*[C//F=2]’ returns elements that are 

id par dewey position XML schema Type 
1  1 A 
2 1 1.1 B 
3 2 1.1.1 C 
4 3 1.1.1.1 D 
5 2 1.1.2 C 
6 5 1.1.2.1 E 
7 6 1.1.2.1.1 F 
8 6 1.1.2.1.2 F 
9 2 1.1.3 G 
10 1 1.2 B 
11 10 1.2.1 G 
12 11 1.2.1.1 G 
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children of element ‘A’, and have at least a child element ‘C’, which has at least one 
descendant element named ‘F’ with text value equal to 2.  

2.2   XML Element Position Representation 

A key issue for efficient XML processing is an appropriate representation of the posi-
tions of XML elements. In order to preserve the document order of elements and also 
to test more directly the structural relationship among nodes, we use dewey encoding 
[9]. Dewey encoding assigns to each node a vector that represents the path from the 
document’s root to the node. Each component of the path represents the local order of 
an ancestor node. The dewey encoding for each element of Figure 1(a) is shown in 
Figure 1(c). Dewey encoding, like other positional encodings such as region encoding 
[9] and ORDPATH [19], allows the transformation of structural relationships, such as 
descendant or sibling, into a number or string comparisons of the encodings. For 
example, a tree node n encoded as n1.n2….nk is a descendant of tree node m encoded 
as m1.m2…mf iff k>f and n1. n1.n2….nf = m1.m2…mf.   

3   XML Schema-to-Relational Mapping 

In order to represent XML elements in relational structures, we have defined 4 de-
scriptors that characterize all element nodes, as shown in Figure 1(c). Apart from 
node id and Dewey position, mentioned earlier, we also keep a node’s parent id. 
Moreover, we associate with each element a root-to-node path id.  Path ids and their 
use as an index are described in the next Section. We describe below how these de-
scriptors as well as text and attribute values are stored in relational structures. 

Even though PPF-based processing can be used effectively with schema-oblivious 
XML shredding, as we will see in Section 5, it yields greater benefits used on top of a 
schema-aware XML to relational translation, and this is what we focus on. 

Our system takes as input the XML Schema’s graph representation and creates the 
respective relational structures according to a fixed set of mapping rules, where:  

− each complex type is mapped into a separate relation,  
− each element definition is also mapped into a separate relation, unless it is of a 

globally defined, already mapped complex type,  
− text and attribute nodes of an element are mapped into columns of the appropriate 

type in the element’s corresponding relation 

Each relation has a primary key ‘id’ column that stores the element id, and one or 
more foreign key columns referring to all possible parent relations, for storing ele-
ment nesting relationships. Note that, in case of recursive schemata where a complex 
type contains elements of the same complex type, the corresponding relation main-
tains a foreign key relationship to itself. Relations that correspond to document ele-
ments have an additional column, named ‘doc_id’, to distinguish documents from one 
another. Finally, Dewey position is stored in the ‘dewey_pos’ column as a binary 
string. The specific encoding and its properties are discussed in Section 4.2.   

Note that our mapping scheme does not use inlining [5], namely, the mapping of 
certain element definitions into columns instead of separate relations. This technique 
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is mainly used to reduce the total number of relations and, subsequently, the number 
of structural joins in the SQL translations. As we discuss in section 4, PPF-based 
processing eliminates many of these joins in a different effective fashion.  

3.1   Root-to-Node Path Index and Other Relational Indices 

We store for each element node its root-to-node path and use it as an index. Since, for 
a typical set of XML documents conforming to an XML schema, the total number of 
distinct paths is expected to be much smaller than the total number of nodes, all paths 
are stored in a separate relation, named ‘Paths’. All mapping relations maintain a 
foreign key reference to this relation, in a column named ‘path_id’. The ‘Paths’ rela-
tion is filled gradually during insertions: when an element is to be inserted, its path 
will be inserted in the ‘Paths’ relation, as long as it hasn’t been already inserted dur-
ing a previous element insertion. As we discuss further in Section 4.1, Primitive Path 
Fragments of an XPath query can be handled by applying simple regular expression 
filtering over root-to-node paths, which significantly reduces the number of structural 
joins in the final SQL statement. 

For each relation, the following relational indexes are also created and maintained: 
an index for the ‘id’ column, one index for each parent foreign-key column and one 
concatenated (composite) index on columns dewey_pos and path_id. In our current 
implementation, all indices are created as standard B-trees.  

4   XPath-to-SQL Translation 

This section describes PPF-based XPath processing. A key novel concept of our ap-
proach is the Primitive Path Fragment (PPF), which is a syntactic unit of an XPath 
expression. PPFs can be efficiently evaluated in a holistic fashion using a root-to-node 
path index and regular expression matching, to eliminate the need for structural joins. 
In particular, a PPF can be handled by a natural join of a single relation with the 
‘Paths’ relation, followed by an appropriate restriction in the ‘where’ clause of the 
SQL statement. This restriction filters the root-to-node paths against a regular expres-
sion derived from the step sequence of the fragment. We describe Primitive Path 
Fragments and their processing in the next section.  

The hierarchical relationship of each consecutive pair of such fragments is handled 
by theta-joining the two relations with appropriate lexicographic comparison between 
their dewey_pos columns. We describe the method for combining PPFs in Section 
4.2. The complete XPath to SQL translation algorithm is presented in Section 4.3, 
while additional optimizations are described in Sections 4.4 and 4.5.  

4.1   Identifying and Processing Primitive Path Fragments 

Let’s suppose we want to translate the XPath expression ‘/A/B/C/*/F’ into an equiva-
lent SQL statement for documents conforming to the XML schema shown in Figure 
1(a). Taking into account the graph representation of the schema and its relational 
mapping, it is easy to conclude that F is the only relation that could potentially store 
the ‘F’ elements defined by the given XPath expression. Each tuple in ‘F’ is assigned 
a path-id number referring to a certain root-to-node path in the ‘Paths’ relation.  
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Therefore, the tuples corresponding to the required ‘F’ elements can be retrieved with 
a single SQL select statement that joins relations ‘F’ and ‘Paths’ and adds a restriction 
to the ‘path’ column of the ‘Paths’ relation so as to match the path ‘/A/B/C/*/F’. 
SQL’s LIKE operator, in combination with string manipulation functions, could han-
dle such simple pattern matching. To deal with more complex patterns, as are many 
XPath expressions, we translate the path into a simple regular expression and then use 
a regular expression filtering function, within the SQL statement, to perform the 
matching. Several commercial RDBMSs (e.g., mySQL, Oracle 10g) have incorpo-
rated such functions into their function library. We use the REGEXP_LIKE function 
of Oracle 10g which follows the exact Extended Regular Expression (ERE) syntax 
and semantics defined in the POSIX [17].  

Path id filtering helps us handle certain sequences of steps in an XPath expression. 
The steps of such a sequence must  

• all have only forward axes or only backward axes and,  
• they must not have predicates, except for the last step.  

We call such paths Forward Simple Paths and Backward Simple Paths respec-
tively. Table 1 illustrates several forward and backward simple paths and their corre-
sponding regular expression equivalents. 

Table 1. Examples of mapping forward or backward paths into regular expressions 

Forward or Backward Path Regular expression 
//B/C ‘^.*/B/C$’ 
/A/B//F ‘^A/B/(.+/ )?F$’ 
//C/*/F ‘^.*/C/[^/]+/F$’ 
/parent::F/ancestror::B/parent::A ‘^.*/A/B/(.+/ )?F$’ 

 

More specifically, we divide the main path of an XPath expression which we call 
‘Backbone Path’, as well as the paths included in predicates, into fragments, named 
‘Primitive Path Fragments’ (PPFs). 

Definition: We call ‘Primitive Path Fragment’, a sequence of one or more consecu-
tive steps of an XPath expression for which one of the following is true: 

a) It is a forward simple path  
b) It is a backward simple path 
c) It is a single step whose axis is one of the following: following, following-

sibling, preceding or preceding-sibling  

Recall that a forward or backward simple path can have predicate(s) only in the last 
step, thus a predicate in an intermediate step of a forward or backward path always 
separates the path into two PPFs. Our PPF-processing system parses the XPath ex-
pression and creates a corresponding syntax tree. It navigates through the tree repre-
sentation of the XPath expression, by traversing the Backbone Path. During this tra-
versal, the system identifies PPFs and assigns a schema relation to the last step of 
each PPF (using the graph representation of the schema). We call the last step of a 
PPF the Prominent Step and the respective relation Prominent Relation of the PPF.  
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The detailed algorithm for gradually building the SQL equivalent of the XPath ex-
pression is presented in Section 4.3 and examples are shown in Table 3. The case 
where we need to assign multiple relations to the last step of a PPF (e.g., if the last 
step has a wildcard) is addressed in Section 4.4.   

4.2   Joining PPFs 

Let’s suppose that we want to translate the XPath expression ‘/A[@x=4]//C’. It is 
obvious that, in addition to ‘C’,  the ‘A’ relation must also be involved in the SQL 
statement, since we need to set a restriction on the ‘x’ column of this relation (x=4). 
Dewey encoding is used in order to join the two relations in such a way so as to sat-
isfy the ‘//’ axis. In particular, in order for two elements to have an ancestor-
descendant relationship, the Dewey vector of the former must be a prefix of the 
Dewey vector of the later [9], and similar conditions hold for the structural relation-
ships corresponding to the other XPath axes.   

We implement the Dewey position of a node as a binary string consisting of one or 
more components of 3 bytes each. So, if d(n) denotes the Dewey position of node n 
and k is its level, we have d(n)=C1||C2||…||Ck, where ‘||’ is the binary string concate-
nation operator and Ci a component of the dewey vector.  

Each component has its first bit equal to zero, thus ranging from 0 up to 7FFFFF 
(in hex notation).  Using this representation, we can use simple lexicographical com-
parisons between the Dewey positions of two nodes in order to perform a structural 
join over any XPath axis, as shown by the lemmas below.   

Let ‘ ’, ‘ ’ be the operators for lexicographically ‘greater’ and ‘smaller’ respec-
tively. In what follows, we use the hexadecimal notation for Dewey positions.  
 
Lemma 1:Node n2 is a descendant of node n1 if and only if  

d(n2)  d(n1) ∧ d(n2)  d(n1) || ‘F’  
 
Lemma 2: Node n2 is a following node of n1 if and only if: d(n2)   d(n1) || ‘F’     

Proofs of the two lemmas can be found in the extended version of the paper in 
[32]. In a similar manner, we can use lexicographical comparisons over dewey posi-
tions to handle all XPath axes. Table 2 (1-6) lists the XPath axes and the respective 
conditions in SQL, assuming that relations R2 and R1 correspond to two consecutive 
steps of a path, the second of which having the axis shown in the left column. 

Table 2. Axes handled using Dewey encoding 

Axis SQL Condition  
descendant/             
descendant-or-self 

R2.dewey_pos BETWEEN R1.dewey_pos AND 
R1.dewey_pos||‘F’ 

(1) 

ancestor/                 
ancestor-or-self 

R1.dewey_pos BETWEEN R2.dewey_pos  AND 
R2.dewey_pos||‘F’   

(2) 

following R2.dewey_pos > R1.dewey_pos || ‘f’ (3) 
following-sibling R2.dewey_pos > R1.dewey_pos  AND R1.par_id = R2.par_id (4) 
preceding R1.dewey_pos > R2.dewey_pos || ‘f’ (5) 
preceding-sibling R1.dewey_pos > R2.dewey_pos  AND R1.par_id = R2.par_id (6) 
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Notice that parent and child axes can be handled either with Dewey order compari-
son or with foreign key referencing, with a join between the same two relations in 
both cases, but on different columns. In particular, the join conditions for these two 
axes (following the notation of Table 2) are: for child, R2.par_id = R1.id, and for 
parent, R2.id = R1.par_id. Our algorithm uses the second way, because it is expected 
to be faster: foreign key and primary key columns, which are integers, are much 
smaller than dewey_pos columns, which are binary strings of variable length, and 
moreover equijoins perform generally better than theta-joins on an RDBMS. For 
examples, see Table 3 (2) in the next Section.   

4.3   PPF-Based XPath Processing Algorithm 

Each time a Primitive Path Fragment is parsed, the procedure presented in Algorithm 
1 is executed to gradually build the SQL equivalent of the XPath expression.   

The algorithm adds the name of the prominent relation in the ‘from’ clause (line 1) 
and the appropriate restrictions in the ‘where’ clause of the SQL statement (lines 2-
14). The restrictions depend on the type of the PPF and whether it is the first in the 
backbone path or not.  If the last step of the PPF has predicate(s), then one or more 
sub-selects are created and added in the main SQL statement (lines 15-16).   

If it is a forward PPF, the prominent relation is joined with the ‘Paths’ relation, to 
which, in turn, a restriction is set filtering the root-to-node path column (lines 2-3) so 
as to match the regular expression derived from the PPF. If there are one or more 
consecutive forward PPFs just before the current PPF, then the regular expression 
includes the entire forward path.   

For a backward PPF, the prominent relation of the previous PPF is joined with the 
‘Paths’ relation with the restriction that the path column matches the regular expres-
sion derived from the path of the current PPF (lines 4-5). For a single-step PPF whose 
axis is one of the subsequent: following-sibling, following, preceding-sibling or pro-
ceeding, the prominent relation is joined with the ‘Paths’ relation, with the restriction 
that the path column ends with the step’s name test (lines 6-7). Table 4 shows 2 ex-
amples with PPFs that have the following-sibling and preceding axes. 

If the PPF is not the first of the backbone path, then its prominent relation is also 
joined (structural join, using Dewey encoding) with the prominent relation of the 
previous PPF (lines 8-14). Particularly, if the current PPF is a multiple-step PPF or a 
single-step PPF whose axis is not child or parent, like those shown in Table 3 (1) and 
(3) (grey parts of SQL statements) and Table 5, then this join occurs over the-
dewey_pos columns of the two relations (lines 13-14), according to Table 1. Other-
wise, if the PPF has only one step with the child or parent axes, the join is a natural 
join on the foreign-key reference (lines 9-12), as illustrated in Table 3 (2). 

Logical predicates are handled as follows: We assume that a predicate consists of 
one or more predicate clauses, combined with logical operators (or, and, not()). Each 
predicate clause can be a path, a comparison between a path and an atomic value, or a 
comparison between paths (predicate join-clause). The logical structure of an XPath 
predicate is translated into a corresponding logical structure in the ‘where’ clause of 
the SQL statement (with the same combination of logical operators and parentheses), 
where each predicate clause is translated into an ‘exists()’ clause, incorporating a sub-
select statement. In what follows, a step of the XPath expression on which a predicate 
is attached is called a predicated step. 
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Algorithm 1  SQL Gradual Building per PPF parsing  
parsePPF(PPF curPPF){ 
1

D2
3

d4
5

SQLStmt.getFromClause().AddRelation(
  curPPF.getPromintentRelation()); 
if (curPPF.isForward()){ 
 SQLStmt.JoinWithPaths(curPPF.getProminentRelation(),  

   curPPF.getMaxFarwardPath().createRegularExpr()); 
 } 
else if (currentPPF.isBackward(){ 

  SQLStmt.JoinWithPaths(  
   curPPF.getPrevPPF().getProminentRelation(),  

D6
7

D8
d9
10

11
d
12

d
13
14

15
16

   curPPF.getBackwardPath().createRegularExpr()); 
}
else{

  SQLStmt.JoinWithPaths(curPPF.getProminentRelation(),  
   “^./” + curPPF.getLastStepName() + “$”)
}
if (PPF.notFirst()){ 
if (PPF.isSingleStep()&&

  PPF.getLastStep().getAxis() == “parent”)
   SQLStmt.FKStructuralJoin( 
   curPPF.getProminentRelation(), 
   curPPF.getPrevPPF().getProminentRelation()); 
else if (PPF.isSingleStep()&&

  PPF.getLastStep().getAxis() == “child”)
   SQLStmt.FKStructuralJoin( 
   curPPF.getPrevPPF().getProminentRelation(),  
 urPPF.getProminentRelation());   c
else

   SQLStmt.DeweyStructuralJoin( 
   curPPF.getPrevPPF().getProminentRelation(),  
   curPPF.getProminentRelation(), 
   curPPF.getStructuralRelationship()); 

 } 
if (curPPF.getPredicates()!=NULL)

  SQLStmt.getWhereClause().AddPredicates(  
   curPPF.getPredicates());  

}  

If the predicate clause is a (relative) path or a comparison between a path and an 
atomic value, the respective sub-select statement is created similarly to the main SQL 
statement for a given backbone path (as in lines 1-14). The difference is that the 
prominent relation of the first PPF of the path inside the predicate clause, (which is 
included in the ‘from’ clause of the sub-select statement) is joined appropriately in the 
outer SQL select statement to the relation corresponding to the predicated step. An 
example is shown in Table 5 (1). 

If a predicate clause consists only of a Backward Simple Path, instead of joining 
the prominent relation of this path to the relation corresponding to the predicated step, 
we can once again exploit path id filtering. Particularly, we add an additional restric-
tion to the root-to-node path of the predicated step so as to match the regular expres-
sion equivalent of the backward path within the predicate clause. Table 5 (2) shows an 
example with a predicate which consists of two backward path predicate clauses. 
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Table 3. Forward (1,2) and Backward (3)  PPFs translation examples 

XPath SQL Translation  
/A[@x=3]/B/C//F  select distinct F.id, F.dewey_pos, F.text  

from A, F, Paths F_Paths 
where F.path_id = F_paths.id   
and REGEXP_LIKE(F_Paths.path, ‘/A/B/C/.*/F’) 
and C.dewey_pos between A.dewey_pos and A.dewey_pos||’f’  
and A.x=3 order by F.dewey_pos 

(1) 

/A[@x=3]/B … select … from A, B, Paths B_Paths 
where B.path_id = B_Paths.id and B_paths.path = ‘/A/B’ 
and B.A_id = A.id  and A.x=3 … 

(2) 

//F/parent::D/ 
ancestor::B… 

select … from F, Paths F_Paths, B, … 
where F.dewey_pos between  B.dewey_pos and B.dewey_pos ||‘f’  
and F.path_id = F_Paths.id and REGEXP_LIKE(F_Paths.path, 
‘.*/B/.*/D/F’) 

(3) 

Table 4. Translation examples of steps with following-sibling (1) and preceding axes (2) 

XPath SQL Translation  
//D[@x=4]/ 
following-sibling::E … 

select … from …D, E, … 
where  E.dewey_pos > D.dewey_pos   
and D.C_id = E.C_id and D.x=4 ... 

(1) 

//D[@x=4]/  
preceding::H…  

select … from …D, H, … 
where  D.dewey_pos > H.dewey_pos  || ‘f’ and D.x=4 ... 

(2) 

Table 5. Translation examples of XPath expressions containing predicates 

Axis SQL Condition  
/A/B[C/*/F=2].. select … from B, Paths B_paths, … 

where B.path_id = B_paths.id and B_paths.path = ‘/A/B’ 
and exists (  
select null from F, Paths F_paths 
where F.path_id = F_paths.id and REGEXP_LIKE(F_Paths.path, 
‘/A/B/C/.*(/)?F’) 
and F.dewey_pos between B.dewey_pos and  B.dewey_pos || ‘f’  and 
F.text = 2) … 

(1) 

//F[parent::D or 
ancestor::G] … 

select … from F, Paths F_paths, …where F.path_id = F_paths.id and 
REGEXP_LIKE(F_Paths.path, ‘^.*/G/.*(/)?F’) 
or  REGEXP_LIKE(F_Paths.path, ‘^.*/D/F$’’) … 

(2) 

 

Finally, if the predicate clause is a comparison between two relative paths, the re-
spective sub-select includes all the prominent relations of the PPFs of the first path, 
joined properly, all the prominent relations of the PPFs of the second path, also joined 
properly, and an additional theta-join between the relations corresponding to the last 
PPF of each path.1 
                                                           
1  The condition of the theta-join is a comparison between the appropriate columns. The SQL 

comparison operator is derived from the XPath comparison operator of the predicate clause. 
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After all PPFs have been parsed, the SQL statement is completed by adding the 
‘distinct’ SQL keyword before the projection, so as to avoid duplicates in results, and 
also the ‘order by’ clause, at the end of the statement, applied on the dewey_pos col-
umn of the prominent relation of the last PPF, so that the tuples of the results are 
retrieved in document order.  

4.4   Eliminating SQL Splitting 

As we saw in the previous sections, the prominent step of each PPF causes a relation 
to be added in the final SQL statement. If the prominent step of a PPF corresponds to 
more than one relation, the SQL statement needs to be split into multiple statements 
combined by UNION. For example, the XPath expression ‘A/B/*[//F]’ contains two 
PPFs: the ‘A/B/*’ and ‘//F’, the first of which, evaluated over the XML Schema of 
Figure 1(a), corresponds to two relations. The SQL translation of the expression has 
two SQL statements, with different FROM clauses. We call this SQL splitting.  

Prominent steps of PPFs that appear in predicates do not cause SQL splitting. If 
such a PPF corresponds to multiple relations, then, instead of splitting the entire SQL 
statement, only the sub-select corresponding to the predicate clause is split into multi-
ple sub-selects, one for each relation, separated with the ‘OR’ operator.  An example 
is illustrated in Table 6.  

Table 6. SQL translation of XPath query which contains a predicate with an ambiguous path 

Axis SQL Condition 
/A/B[C/*]… select … from B, Paths B_paths, …  

where B.path_id = B_paths.id and B_paths.path = ‘/A/B’ 
and exists ( select null from D, Paths D_paths where D.path_id = D_paths.id     
     and REGEXP_LIKE(D_Paths.path, ‘/A/B/C/.*(/)?’)  

and D.dewey_pos between D.dewey_pos and D.dewey_pos|| ‘f’) 
or exists ( select null from E, Paths E_paths where E.path_id = E_paths.id 

and REGEXP_LIKE(E_Paths.path, ‘/A/B/C/.*(/)?’)  
and E.dewey_pos  between E.dewey_pos and E.dewey_pos || ‘f’) … 

SQL splitting is a significant issue for existing schema-aware XPath to SQL trans-
lateon techniques [11]. Consider the XPath expression ‘/A/B[@x=4]/C/*/F’. If we use 
existing methods for schema-aware SQL translation, we must first find all possible 
relation sequences corresponding to the path ‘/A/B/C/*/F’, which are A-B-C-D-F and 
A-B-C-E-F, and then create a separate SQL statement for each such sequence, where 
the relations would be joined (natural joins) per consecutive pair. A more advanced 
algorithm, such as the one presented in [11], detects that elements B can be nested 
only to elements A, which means that the join between relations A and B is redundant 
and could be omitted. In contrast, using PPF-based processing, only relations B and F 
need to be joined, whereas the wildcard is incorporated into an appropriate regular 
expression filtering on the root-to-node path values, without the need of using two 
SQL statements. 

The combination of root-to-node path filtering, Dewey encoding and schema-
aware mapping can reduce the incidence of SQL splitting, and the concomitant prob-
lems of multiple query optimization faced in that case by an RDBMS. 
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4.5   Omitting Unnecessary Root-to-Node Path Filtering 

Combining schema knowledge with root-to-node path ids gives an optimization op-
portunity not present in schema-oblivious systems: under certain circumstances path 
id filtering is redundant and can be omitted. For example, consider the XPath query 
‘/A/B/C/D’. According to the XML Schema (Figure 1), the only possible root-to-node 
path of elements ‘D’ coincides with the path of the XPath query. Therefore, there is 
no need to join relations ‘D’ and ‘Paths’.  

We avoid the unnecessary path index lookup (which results in an SQL join) in the 
following way: After the corresponding graph for an XML Schema has been created, 
we mark all nodes of the graph that have a unique path towards the root node of the 
graph with a ‘U-P’ (Unique Path) tag, all nodes of the graph that have at least one 
cycle in a path towards the root with a ‘I-P’ (Infinite Paths) tag and, finally, the re-
maining graph nodes with a ‘F-P’ (Finite Paths) tag. ‘F-P’ nodes are also assigned a 
list of all possible root-to-node paths. An example is shown in Figure 2.  

 

 
        (a)        (b) 

Fig. 2. Marking the XML Schema graph 

Relations corresponding to ‘U-P’ graph nodes are never joined to the Path relation. 
When an ‘F-P’ relation is involved in an SQL statement, after translating the PPF path 
into a regular expression, we test the root-to-node paths of the respective node graph 
against the regular expression. The relation is joined to the Paths relation and the 
regular expression restriction is added only if there is at least one such path that 
doesn’t match. Finally, a ‘I-P’ relation is always joined to the Paths relation with the 
‘path’ column filtered by the regular expression. 

5   Experimental Evaluation 

In this section we present the results of the experimental testing of the performance of 
PPF-based processing. We use Oracle 10g (release 10.1 for Windows) as our RDBMS 
backend. First, we compare PPF-based processing on a schema-aware XML-to-
relational system against a schema-oblivious version of same. Moreover, we compare 
the performance of PPF-based processing with the MonetDB/XQuery [18], which is 
an XQuery implementation on the MonetDB server backend, the XPath Accelerator 
mapping scheme [2], which we implemented over Oracle 10g, and a major commer-
cial RDMS with a built-in XML shredding mechanism. 

We experiment with both synthetic and real data. For synthetic data we use the 
XMark [20] benchmark variation for XPath, called XPathMark [21]. Using the  
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Table 7. The XPath queries used for DBLP XML document  

QD1 //inproceedings/title[preceding-sibling::author = 'Harold G. Longbotham'] 
QD2 /dblp/inproceedings[year>=1994]//sup 
QD3 /dblp/inproceedings/title/sup 
QD4 //i[parent::*/parent::sub/ancestor::article] 
QD5 /dblp/inproceedings[author=/dblp/book/author]/title 

 

XMark XML generator, we created two XML documents of 12 and 113 MBs. From 
the query set of the benchmark we chose a subset of 16 queries (Q1- Q7, Q9-Q13, 
Q21-Q24), that are compatible with the XPath subset supported by our system. The 
list of queries can be found in the full version of the paper [32] as well as in [21]. We 
also added query Q-A: /site/open_auctions/open_auction[bidder/date = interval/start] 
which contains a join predicate clause. We also use the 130MB DBLP XML data-
base.2 The query set for this database is shown in Table 7.  

Experiments were performed on a Pentium 4 PC at 3GHz with 1 GB RAM, run-
ning Windows XP. All the queries were executed against a cold cache. For each query 
we recorded the average time for 5 repetitions.   

5.1   Schema-Aware vs. Schema Oblivious Storage 

PPF-based processing can be applied both in a schema-aware and a schema-oblivious 
setting. Moreover, some of the individual techniques we use, notably exploiting 
Dewey encoding for structural join, have been employed in the context of schema-
oblivious systems. We implemented a variation of PPF-based processing tailored to 
an Edge-like mapping and compared its performance with the PPF-based processing 
algorithm described in the previous Section. The results confirm our intuition, that 
apportioning  XML content into several relations leads to better query execution per-
formance, and support our decision to focus on implementing and improving PPF-
based processing on a schema-aware system (our schema-based optimizations are 
described in Section 4.5). 

The results of the experiments are shown in figure 3. The most remarkable differ-
ences are observed in queries involving structural joins, such as Q6, Q7, Q-A, DQ2 
and DQ5. This is due to the fact that, in the schema-oblivious version, these joins are 
self-joins that join a large relation to itself, in contrast with schema-aware structural 
joins that join much smaller relations. Even when a concatenated (composite) index is 
used in the dewey_pos and path_id columns, which is the case, this is larger in the 
schema-oblivious mapping, compared to all such indices for each mapping relation in 
the schema-aware mapping, thus the number of I/O is much bigger. Q12 and Q13 also 
perform remarkably worse in the schema-oblivious version of PPF-based processing.  
Another factor is that an extra join must take place, since in Edge-like mapping 
schemes attributes cannot be inlined as columns in the central element relation. There-
fore, they are mapped either as separate tuples in the central relation or as tuples in a 
separate relation exclusively dedicated for attribute storage3. 

                                                           
2  Available from http://www.cs.washington.edu/research/xmldatasets/ 
3  We used the second option. 
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Fig. 3. Schema-aware vs schema-oblivious PPF-based Processing performance 

5.2   Performance Evaluation of PPF-Based Processing 

The comparison among PPF-based processing, MonetDB/XQuery and XPath Accel-
erator scheme is indicative and does not allow us to draw absolute conclusions. We 
should take into account that the two systems are implemented over different DBMS 
back-ends, the comparison of which is beyond of the scope of this paper. Moreover, 
MonetDB/XQuery employs a number of optimizations, most notably the use of stair-
case joins for structural join. Combining PPF-based processing with join techniques 
specifically designed for XML data, such as staircase join, is the topic of future work.  
The comparison between PPF-based processing and our implementation of XPath 
Accelerator is more direct and allows us to draw more concrete conclusions about the 
benefits of PPF-based processing. Notice that the translation of the test queries into 
SQL was made manually following strictly the ‘Staked Out Query Window Sizes’ 
algorithm presented in [2]. As for the commercial RDBMS, the built-in shred-
ding/XPath processing mechanism supports only three of the XPathMark queries, and 
hence it is not shown in the Figures below (the numbers are available in [32]).  

The two major reasons why PPF-based processing outperforms the other systems 
in almost all queries are the following:  

• the joins performed in PPF-based processing occur between much smaller re-
lations, and  

• the number of joins in an average SQL translation is much smaller due to the 
handling of PPFs using regular expression filtering.  

These two factors do not affect all queries. For example, queries Q6, Q7 and QD2 
involve structural joins that cannot be removed with root-to-node path filtering. Q6 on 
the large XMark document and DQ2 are faster in MonetDB possibly because of other 
optimizations applied by MonetDB, the staircase join being one of these. We will  
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Fig. 4. Comparison of PPF-based processing to other systems/techniques 
 

explore combining such optimizations with our techniques as part of future work. 
Notice especially the performance gains of PPF-based processing on Q5 and QD4. 
Our technique achieves this level of performance because these queries involve predi-
cate clauses consisting only of backward simple paths, a case which our algorithm 
handles completely by exploiting path id filtering (see Table 5-2) instead of using 
structural joins. 

6   Related Work 

Numerous systems and techniques have been developed in the last few years [4,5] 
that map XML structures to relations using schema information. Shrex [4] is a system 
for shredding, loading and querying XML documents using relational systems. The 
mapping mechanism is flexible, allowing the user to define mapping practices. The 
XPath-To-XML translation mechanism is rather conventional, since it handles paths 
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with sequential foreign key joins, in contrast to our proposal which involves root-to-
node path filtering. Shrex also suffers from the problem of SQL splitting, which we 
tackle, as described in section 3.4. In [11] an algorithm is presented which, under 
certain circumstances, alleviates the SQL splitting problem removing at the same time 
joins which are implied by the schema as redundant. Our proposal alleviates the SQL 
splitting problem and reduces the number of joins by using PPF-based processing, and 
uses schema information in order to reduce redundant root-to-node path filtering, as 
described in Section 3.5. The evaluation of recursive paths is handled in [12], where 
an algorithm is presented exploiting recursion capabilities of SQL99. In our approach, 
recursive queries are not considered as a separate problem: a recursive path will be 
translated into an appropriate regular expression which will be used to detect all 
matching root-to-node paths.  

For schema-oblivious mappings, one of the most comprehensive proposals is 
XPath Accelerator [2], based on region encoding. XQuery/MonetDB [18] is an 
XQuery implementation based on the XPath Accelerator on top of the MonetDB 
DBMS. It supports a large portion of the XQuery recommendation achieving, at the 
same time, remarkably good performances due to several optimizations and advanced 
query processing techniques, such as the staircase joins. A detailed comparison of 
PPF-based encoding to XPath Accelarator and MonetDB/XQuery can be found in 
Section 5.2. Other Edge-oriented proposals exploit also region encoding, such as [8] 
and XRel[3]. In [3], region encoding is combined with root-to-node path storage in 
order to reduce the number of structural joins. Instead of region encoding, [16] uses 
an update-friendly variation of dewey encoding, called ORDPATH [19], in combina-
tion to root-to-node path storage. However both [3] and [16] support only forward 
axes and moreover their root-to-node path testing cannot discriminate between wild-
cards and ‘//’. In particular, XRel does not handle wildcards, whereas [16] handles ‘//’ 
with structural join.   

7   Conclusions and Future Work 

In this paper, we describe a framework based on identifying, processing and combin-
ing Primitive Path Fragments for processing XPath expressions on a relational back-
end. Our technique significantly limits the number of SQL joins required, takes ad-
vantage of the strengths of modern SQL query processors and exploits XML schema 
information to achieve big performance gains with low implementation complexity. 
Based on our work and the experimental results so far, we can conclude that PPF-
based processing is an efficient and easy to implement technique for handling a large 
XPath subset, including all axes, on top of a relational back end. Root-to-node path 
indexing is very beneficial for PPF processing when combined with regular expres-
sion matching, and is used to holistically process a PPF without any structural joins. 
We believe that PPF-based processing can be easily adapted to native XML process-
ing systems, and can be combined with native XML join techniques such as twig join 
[28], yielding performance benefits simply by reducing the number of joins required 
for a specific XPath expression. We are currently exploring this issue.  

Schema-aware mapping can benefit query performance as long as it is combined 
with proper XML structural encoding techniques, such as presented in this paper. 
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Furthermore, by exploiting XML Schema information, in some cases even root-to-
node path filtering is redundant and, thus can be omitted.   

Our PPF-based XPath to SQL translation algorithm leads to SQL queries that in-
volve only the necessary relations, with the minimum number of structural joins and 
the maximum exploitation of root-to-node path ids. Our technique also deals with the 
problem of SQL splitting, which is common for schema aware mapping systems.   

We are currently investigating techniques for increasing the efficiency of XPath 
processing by exploiting special features of commercial RDBMSs. An interesting 
question for our technique, explored also in [27] (though with a focus on XML pub-
lishing), is how to teach the RDBMS optimizer to produce more efficient query plans. 
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Abstract. Advances of sensor and RFID technology provide significant new
power for humans to sense, understand and manage the world. RFID provides
fast data collection with precise identification of objects with unique IDs without
line of sight, thus it can be used for identifying, locating, tracking and moni-
toring physical objects. Despite these benefits, RFID poses many challenges for
data processing and management: i) RFID observations contain duplicates, which
have to be filtered; ii) RFID observations have implicit meanings, which have to
be transformed and aggregated into semantic data represented in their data mod-
els; and iii) RFID data are temporal, streaming, and in high volume, and have
to be processed on the fly. Thus, a general RFID data processing framework is
needed to automate the transformation of physical RFID observations into the
virtual counterparts in the virtual world linked to business applications. In this pa-
per, we take an event-oriented approach to process RFID data, by devising RFID
application logic into complex events. We then formalize the specification and
semantics of RFID events and rules. We demonstrate that traditional ECA event
engine cannot be used to support highly temporally constrained RFID events,
and develop an RFID event detection engine that can effectively process com-
plex RFID events. The declarative event-based approach greatly simplifies the
work of RFID data processing, and significantly reduces the cost of RFID data
integration.

1 Introduction and Motivation

Background

An RFID (radio frequency identification) system consists of a host computer, RFID
reader, antenna (which is often integrated into readers), transponders or RF tags. An
RFID tag is always uniquely identified by a tag ID stored in its memory, and can be
attached to almost anything. The EPC (electronic product code) standard [1] defines
such unique IDs around the world. Readers can be mounted at entrance/exit, point of
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sale, warehouse, and so on. When a tag is in the vicinity of a reader, the reader sends
energy through RF signal to the tag for power, and the tag sends back modulated signal
with ID and data. The reader then decodes and sends the data to the host computer.

With RFID technology, it is possible to create a physically linked world in which
every object is numbered, identified, cataloged, and tracked. RFID is automatic and
fast, and does not require line of sight or contact between readers and tagged objects.
With the significant advantages of RFID technology, RFID is being gradually adopted
and deployed in a wide area of applications, such as access control, library checkin
and checkout, document tracking, smart box, highway tolls, logistics and supply chain,
security and healthcare.

To achieve these, the first task for RFID applications is to map objects and their
behaviors in the physical world into the virtual counterparts and their virtual behaviors
in the applications by semantically interpreting and transforming RFID data.

RFID Data Transformation and Aggregation

There are generally two types of RFID applications: i) history-oriented object tracking
and ii) real-time oriented monitoring. Both need to transform RFID observations into
logic data.

History-oriented object tracking. In this type of RFID applications, RFID data streams
are collected from multiple RFID readers at distributed locations, and transformed into
semantic data stored in RFID data store. The semantics of the data include:

– Location, which can be either a geographic location or a symbolic location such
as a warehouse, a shipping route, a surgery room, or a smart box. A change of
location of an EPC-tagged object is often signaled by certain RFID readers. The
location histories of RFID objects are then transformed automatically from these
RFID readings, and stored in a location history relation in an RFID data store [2];

– Aggregation, i.e., formation of relationship among objects. A common case is the
containment relationship, e.g., containment relationship as shown next in Example
1. How to associate relationship among RFID objects in an Auto-ID environment
has been identified as a difficult issue for RFID applications [3]. To our best knowl-
edge, no work has been published on solving this problem.
Example 1: Data Aggregation. In Fig. 1a, on a packing conveyer, a sequence of
tagged items move through Reader A and are observed by the reader as a sequence
of observations, and then a tagged case is read by Reader B as another observation.
After that, all items of this sequence are packed into the case.

– Temporal. RFID observations and their collected data are highly temporal, as stud-
ied in [2]. The RFID data store essentially preserves the history of the movement
and behaviors of objects.

Real-time Monitoring. RFID is also widely used for real-time applications, where pat-
terns of RFID observations implying special application logic can trigger real-time re-
sponse. An example is discussed as follows.

Example 2. A company uses RFID tags to identify asset items and employees in the
building, and only authorized users (superusers) can move the asset items out of the
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Fig. 1. Sample aggregation in RFID. a) Packing of items into its container case; b) Complex
events used for aggregation.

building. When an unauthorized employee or a criminal takes a laptop (with an embed-
ded RFID tag) out of the building, the system will send an alert to the security personnel
for response.

Event-Oriented Processing of RFID Data Streams

Indeed, automatic RFID data transformation can be achieved by first devising applica-
tion logic as complex events, and then detecting such complex events (Fig. 2). After
the detection of these complex events, the semantics are interpreted and can be easily
integrated into business applications. RFID reader observations are the only primitive
events, which then form complex events. Next we show how to devise complex events
for data transformation.

– Data Aggregation Event. For Example 1, indeed, the items in the conveyer can be
arranged as a sequence of events TSEQA with certain temporal constraint (Fig.
1). Then the packing step becomes a sequence event from Reader A, followed by a
primitive event OB , an observation of case B from Reader B. Then, the containment
relationship is detected and transformed into a containment relation inside the RFID
data store.

– Real-time Monitoring Event. Example 2 can be simplified by a complex event: the
system detects an event A – observation of an object of type “laptop”, and within
certain interval τ , e.g., 5 seconds, it does not detect any occurrence of event B –
observation of a superuser, i.e., a negated event, then the event triggers an alert
action.
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RFID events, however, have their own characteristics and cannot be supported by
traditional event systems. The two examples above show that RFID events are temporal
constrained: both the temporal distance between two events and the interval of a single
event are critical for event detection. Such temporal constraints, however, are not well
supported by traditional ECA rules detection systems. In addition, non-spontaneous
events, including negated events and temporal constrained events, are important for
many RFID applications but difficult to support in past event detection engines. More-
over, the actions from RFID events are quite different: they neither trigger new primitive
events for the system, nor lead to a cascade of rule firings as in active databases. Thus,
there is an opportunity to build a scalable rule-based system to process complex RFID
events.

Our Contribution

In this paper, we formulate a declarative rule based approach to provide powerful sup-
port of automatic RFID data transformation between the physical world and the virtual
world. We develop a graph-based RFID complex event detection engine – RCEDA,
where temporal constraint is taken as a first class object in event detection. We intro-
duce pseudo events in event detection to process non-spontaneous events, which are
difficult to support in traditional event detection systems. We show that our approach
can support RFID applications effectively, and the performance of our event detection
engine is quite scalable as well.

The paper is organized as follows. We first give a formal definition of RFID events
in Section 2, and then discuss the declarative RFID rules language in Section 3. Event
detection engine is discussed in Section 4, and performance is studied in Section 5.
Related work is discussed in Section 6, followed by conclusions.

2 RFID Events

In this section, we will formalize the semantics and specification for RFID events. In
particular, we will discuss temporal RFID events, which are highly temporally con-
strained and cannot be well supported by traditional ECA (Event-Condition-Action)
rule systems.

An event is defined to be an occurrence of interest in time, which could be either
a primitive event or a complex event. Primitive events occur at a point in time, while
complex events are patterns of primitive events and happen over a period of time.

In the following discussion, we use E to represent an event type, and e to represent
an event instance.

We first define several functions used in our event expressions (Fig. 3).
t begin(e) returns the starting time of an event instance e, and t end(e) returns
the ending time. interval(e) returns the interval of an event instance: t end(e)
- t begin(e); dist(e1, e2) returns the distance between two event instances
e1 and e2, which is equal to t end(e2) - t end(e1); interval(e1, e2)
returns the interval between two event instances e1 and e2, which is equal to
max{t end(e2), t end(e1)} - min{t begin(e2), t begin(e1)}.
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t_begin(e1) t_end(e1)

dist(e1, e2)

interval(e1, e2)

t_begin(e2) t_end(e2)

time

Fig. 3. An illustration of functions used in event expressions

2.1 Primitive Event

Primitive events in RFID applications are events generated during the interaction be-
tween readers and tagged objects. That is, a primitive event is a reader observation,
in the format of observation(r, o, t), where r represents the reader EPC,
o represents the object EPC and t represents the timestamp when the observation
is made. For example, observation(’r1’, o, t) represents events generated
from a reader with EPC ’r1’. Primitive events are instantaneous. That is, given any
primitive event instance e, t begin(e) = t end(e). Primitive events are also
atomic: a primitive event either happens completely or does not happen at all.

Definition of Primitive Event Types. While primitive events are all from observations,
they can be of different types, according to the reader EPC, or tag EPC. We first present
two user-defined functions on primitive event attributes used to define primitive event
types.

– group(r) – the group which the reader r belongs to. Readers are often deployed
into groups in which readers perform the same functionality.

– type(o) –the type of the object with EPC o. The type can be extracted from its
EPC value with a user-defined extraction function, or specified by a user with a map-
ping function. For example, type(’8E5YUK691I0J60KDN’)=’laptop’
while type (’UH7JEFU63MAW6I610’) = ’pallet’.

With above functions, we can define primitive event types. For example, the primi-
tive event type E is defined as:
E = observation(r, o, t), group(r)=’g1’, type(o) =’case’
That is, observations of ’case’ by readers in group ’g1’ are of type E.
If group() and type() functions are not explicitly specified, the default primitive

event type is a group with the reader itself.
E = observation(’r’, o, t)⇐⇒
E = observation(’r’, o, t), group(r)=’r’

2.2 Complex Event

A complex event is usually defined by applying event constructors to its constituent
events, which are either primitive events or other complex events. There are two types
of RFID event constructors: non-temporal and temporal, and the latter contains order,
temporal constraints, or both. While complex events defined with non-temporal event
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constructors can be detected without considering the orders among constituent events,
complex events defined with temporal event constructors cannot be detected without
checking the orders and/or other temporal constraints (e.g., distance or interval) among
constituent events.

Basic Non-Temporal Complex Event Constructors

– OR (∨): Disjunction of two events E1 and E2, E1 ∨ E2, occurs when either E1 or
E2 occurs.

– AND (∧): Conjunction of two events E1 and E2, E1 ∧ E2, occurs when both E1
and E2 occur disregarding their occurrence orders.

– NOT(¬): Negation of an eventE, ¬E, occurs if no instance of E ever occurs. Negated
events themselves are non-spontaneous and they are usually combined with other
events and/or with some temporal constraints.

In this paper, we only consider the above three basic non-temporal complex event
constructors, which are in fact sufficient for expressing any complex event patterns
without temporal constraints. For example, a complex event E = ALL(E1, E2,
..., En), which occurs if all E1, E2, ..., En occur irrespective of their orders, is
equivalent to E = E1 ∧ E2 ∧ ... ∧ En.

Temporal Complex Event Constructors

– SEQ(;): Sequence of two events E1 and E2, denoted by E1;E2, occurs when E2
occurs given that E1 has already occurred. (Here we assume that E1 ends before E2
starts.)

– TSEQ(:): Distance-constrained sequence of two events E1 and E2,
TSEQ(E1;E2, τl, τu), occurs when E2 occurs given that E1 has already
occurred and that the temporal distance between the occurrences of E1 and E2 is
bounded by [τl, τu]. That is, τl ≤ dist(TE1, E2) ≤ τu.

– SEQ+(;+): The aperiodic sequence operator, SEQ+(E), allows one to express
one or more occurrences of an event E.

– TSEQ+(:+): The distance-constrained aperiodic sequence operator, TSEQ+(E,
τl, τu), allows one to express one or more occurrences of an event E such that
the temporal distance between any two adjacent occurrences of E are bounded by
[τl, τu].

– WITHIN: An interval-constrained event, WITHIN(E, τ), occurs if an instance
of E, e.g., e, occurs and interval(e) ≤ τ .

Temporal Constraints. While non-temporal event constructors above were discussed
in the past [4, 5], the new temporal event constructors that we propose are essential
for RFID applications. As shown above, most temporal event constructors use tempo-
ral constraints to specify temporal complex events. These include distance constraint:
minimal distance (τl) between two events in a temporal sequence TSEQ and maximal
distance (τu) between two events in a temporal sequence TSEQ; and interval constraint:
maximal interval size (τ ) of a complex event as in the WITHIN constructor. These tem-
poral constraints are not supported in past event systems.
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Examples of Complex Events. In Example 1, the complex event is:
TSEQ( TSEQ+(E1, τl1, τu2); E2, τl2, τu2 ),

where event types E1 = observation(r1, o1, t1), group(r1) = ’r1’
and E2 = observation(r2, o2, t2), group(r2) = ’r2’.

In Example 2, the complex event is:
WITHIN(E1 ∧ ¬ E2, 5sec),

where E1 = observation(’r2’, o1, t1), type(o1) = ’laptop’ and
E2 = observation(’r2’, o2, t2), type(o2) = ’superuser’.

3 RFID Rules

Based on event specification described above, we now define RFID rules. We first in-
troduce the syntax of RFID rules as follows:

CREATE RULE rule id, rule name
ON event

IF condition
DO action1; action2; ...; actionn

where rule id and rule name stand for the unique id and name for a rule; event is the
event part of the rule, condition is a boolean combination of user-defined boolean func-
tions and SQL queries; and action1; action2; ...; actionn is an ordered list of actions,
where each action is either a SQL statement or a user-defined procedure, e.g., to send
out alarms.

An alias of an event can be defined for reuse in the following form:

DEFINE event name = event specification

Next, we show that with declarative RFID rules, we can provide powerful support
for RFID data processing, including data filtering, data transformation and aggregation,
and real-time monitoring.

3.1 RFID Data Filtering

Before RFID data are further processed, they need to be filtered first. There are two
types of data filtering for RFID data: low level data filtering, and semantic data filtering.
The low level data filtering cleans raw RFID data, and semantic data filtering extracts
data on demand or interprets semantics from RFID data.

Low Level Data Filtering: Duplicate Detection
Duplicate observations are common in RFID applications. This can be caused by several
reasons: i) tags in the scope of a reader for a long time (in multiple reading frames)
are read by the reader multiple times; ii) multiple readers are installed to cover larger
area or distance, and tags in the overlapped areas are read by multiple readers; and iii)
to enhance reading accuracy, multiple tags with same EPCs are attached to the same
object.
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Rule 1. If the same reader observes the same object multiple times within a short
interval, e.g., 5 seconds, then mark the previous event as a duplicate.

CREATE RULE r2, duplicate detection rule
ON WITHIN(observation(r, o, t1); observation(r, o, t2), 5sec)
IF true
DO

send duplicate msg(observation(r, o, t1))

Similarly, we can filter duplicates from multiple readers (e.g., r1 and r2), by defin-
ing a reader group containing these readers.

Semantic Data Filtering: Infield/Outfield Filtering
RFID rules can also be used to perform effective semantical data filtering. For example,
infield and outfield events are used in smart shelf applications [6]. Although tagged ob-
jects on a smart shelf are read all the times, applications may only be interested in when
an object is put on the shelf (infield) and when an object is taken off the shelf (outfield)
in order to update inventory automatically. The following example illustrates how to
use an RFID rule to express infield events and perform the corresponding actions.

Rule 2. If an object is observed by a reader r on a smart shelf for the first time, then
the rule will insert the observation into the OBSERVATION table. (We assume that the
reader is scheduled to bulk-read all objects every 30 seconds in the following example.)

CREATE RULE r2, infield filtering
ON WITHIN(¬observation(r, o, t1); observation(r, o, t2), 30sec)
IF true
DO

INSERT INTO OBSERVATION
VALUES (r, o, t2)

Outfield filtering can be defined similarly by switching the order of the negated event.

3.2 Data Transformation and Aggregation

One significant benefit of RFID rules is that data transformation and aggregation is
simplified in a declarative way. With a set of data transformation and aggregation rules,
RFID observations are automatically interpreted and mapped into their data models and
stored in RFID data store.

In the following, we show two examples of how to devise data transformation and
aggregation rules, and detect such rules to generate semantic data in a fully automatic
environment. We assume that object containment relationships are stored in table OB-
JECTCONTAINMENT(object epc, parent epc, tstart, tend), where object epc stands for
the EPC of the object being contained, parent epc stands for the EPC of the container
object, and [tstart, tend] stands for the period of the containment relationship.

Location Transformation
RFID observations may imply location changes and business movements. For example,
an observation by a reader r of an object o at time t implies that the object has entered
the location where the reader resides in starting from time t.
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In the following, we assume that object location information is stored in table OB-
JECTLOCATION (object epc, loc id, tstart, tend), with the EPC of an object, location ID
of the object, and the period during which the object stayed.

Rule 3. Any observation by a reader rwill change the location of the observed object
o: updating the object’s current location by changing its tend from “Until Changed”
(UC) to t and inserting a new location for this object, i.e., the reader’s new location
with its starting timestamp t and ending timestamp “UC.”

CREATE RULE r3, location change rule
ON observation(r, o, t)
IF true
DO

UPDATE OBJECTLOCATION
SET tend = t
WHERE object epc = o and tend = “UC”;
INSERT INTO OBJECTLOCATION VALUES(o, “loc2”, t, “UC”);

Containment Relationship Aggregation
Automatic data aggregation, a difficult task for RFID applications [3], can now be
greatly simplified with RFID rules. (RFID applications need to be engineered accord-
ingly to generate proper patterns.)

Rule 4. If a distance-constrained aperiodic sequence of readings from reader “r1”
is observed followed by a distinct reading from a reader “r2,” it implies that ob-
jects observed by “r1” are being packed in the object observed by “r2.” Then the
rule will insert new containment relationships into the OBJECTCONTAINMENT table
(Fig. 1).

DEFINE E1 = observation(“r1”, o1, t1)
DEFINE E2 = observation(“r2”, o2, t2)
CREATE RULE r4, containment rule
ON TSEQ(TSEQ+(E1, 0.1sec, 1sec); E2, 10sec, 20sec)
IF true
DO

BULK INSERT INTO CONTAINMENT
VALUES (o2, o1, t2, “UC”)

The keyword “BULK” will enforce a bulk insertion of all contained objects into the
container.

3.3 Real-Time Monitoring

RFID rules can also provide effective support of real-time monitoring, as shown in the
following asset monitoring example.

Rule 5. As shown in Example 2, if the reader mounted at a building exit, "r4,"
detects a tagged laptop but does not detect any tagged superuser (who is authorized to
move asset items out of the building) within certain time threshold, e.g., 5 seconds, then
it implies that the laptop is being taken out illegally, and an alert is sent to a security
personnel.
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DEFINE E4 = observation(“r4”, o4, t4), type(o4) = “laptop”
DEFINE E5 = observation(“r4”, o5, t5), type(o5) = “superuser”
CREATE RULE r5, asset monitoring rule
ON WITHIN(E4 ∧ ¬E5, 5sec)
IF true
DO send alarm

4 RCEDA: RFID Complex Event Detection

While RFID rules provide powerful support for data transformation and monitoring, the
detection of complex RFID events is quite challenging. We next discuss the differences
between RFID event detection and traditional ECA event detection.

4.1 RFID Event Detection Versus Traditional ECA Event Detection

First, many RFID events (e.g., events containing constructors of TSEQ, TSEQ+ and
WITHIN) contain temporal constraints at instance level, which are not supported by
traditional ECA rules. In traditional ECA rule systems [7, 8, 4, 9], event detection is
performed at type level, but instance level constraints (such as temporal constraints)
are not supported. (Snoop supports interval for periodic events, which have to be be-
tween two events.) Thus, in such systems, instance-level constraint checking has to be
performed as condition checking. In RFID events, temporal constraints, however, are
inherent to the events and highly essential to the correctness of event detection. Thus,
RFID temporal constraints cannot be simply taken as conditions. Next we show an ex-
ample that traditional ECA event detection will not work properly for temporal RFID
events. Suppose that we have the following complex event to detect the packing of items
into cases in an assembly line (Fig. 1):

E = TSEQ(TSEQ+(E1, 0sec, 1sec); E2, 5sec, 10sec)

where E1 represents an observation of an item and E2 represents an observation of a
case.

If the event detection is done through ECA systems, where instance level temporal
constraints are checked as conditions, we will first detect the following instances for
complex event E, given the event history in Fig. 4.

{e1
1, e2

1, e3
1, e5

1, e6
1, e7

1}; e12
2

where ej
i denotes an instance of event type Ei at time j. The instances {e1

1, e2
1, e3

1,
e5
1, e6

1, e7
1}, however, do not satisfy the temporal constraints in TSEQ+(E1, 0sec,

1sec) because the distance between e3
1 and e5

1 is larger than the upper bound, 1sec.
With such an event processing approach, no instances for complex event E will be gen-
erated, which, however, is not correct. Therefore, for proper processing of RFID events,
we must consider temporal constraints as an integral part of the event detection step.
Thus, existing ECA-based event systems cannot be used for detecting RFID events.

Second, RFID events by constructors such as SEQ+ and NOT are non-spontaneous
or induced: they cannot detect their occurrences by themselves unless they either get
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time e1
1 e1

2 e1
3 e1

5 e1
6 e1

7 e2
12 e2

15time e1
1e1
1 e1

2e1
2 e1

3e1
3 e1

5e1
5 e1

6e1
6 e1

7e1
7 e2

12e2
12 e2

15e2
15

Fig. 4. Sample event history for complex event E = TSEQ(TSEQ+(E1, 0sec, 1sec);
E2, 5sec, 10sec)

expired or are explicitly queried. Most existing event systems, however, only detect
spontaneous events, i.e., events that can detect their occurrences by themselves. For ex-
ample, while Snoop [4] supports aperiodic sequence and negation constructors, these
constructors, however, must always start with an initiator event and end with a termi-
nator event, which is not general enough. The non-spontaneous nature of many RFID
event constructors demands a new approach for RFID event processing and detection.

To this end, in this paper, we develop a general RFID Complex Event Detection
Algorithm (RCEDA). In our approach, temporal constraints become the first class ob-
jects in the event detection phase. To support detection of non-spontaneous events, the
system automatically generates pseudo events to actively trigger the querying of the
occurrences of these non-spontaneous events.

Next, we first discuss the parameter context applicable to RFID applications, then
present in detail how to effectively detect RFID complex events under such parameter
context.

4.2 Parameter Context for RFID Event Detection

Parameter contexts define which instances of a complex event are actually pulled out
of a history of multiple constituent events. Events can always be detected using unre-
stricted (or general) context, in which all combinations of instances of constituent events
are returned as instances of a complex event. The unrestricted parameter context usually
produces a large number of event instances. Only some of these combinations, however,
are meaningful for an application. Thus, four different restricted parameter contexts
have been proposed in [4], including recent, continuous, cumulative and chronicle.

Among the four types of contexts, only the chronicle context will work for RFID
events. This is because that complex RFID events often overlap with each other (e.g.,
Fig. 1b), since multiple readers (often deployed in a sequence of locations) produce ob-
servations simultaneously and these observations are collected and processed together.
Under the other three types of contexts, there are often events matched from overlapped
events which lead to incorrect detection. The chronicle context detects complex events
in chronicle order of occurrence: the oldest initiator is paired with the oldest terminator.
Thus it works properly even when instances for a complex event overlaps. For exam-
ple, instances for event E in Fig. 4 under chronicle context will include {e1

1, e2
1, e3

1,
e12
2 }, {e5

1, e6
1, e7

1, e15
2 }, which are as intended. Thus, we use chronicle context

for detecting complex events in RFID applications.

4.3 Graphical Representation of Complex Events

Our event detection uses a graph-based computation model. We first introduce the
graphical representation for each complex event constructor and then present how to
construct event graphs for complex events in RFID rules.
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Fig. 5. Graphical representations of complex event constructors: (a) E = E1∨E2, (b) E
= E1∧E2, (c) E = ¬E1, (d) E = E1;E2, (e) E = TSEQ(E1;E2, τl, τu), (f) E =
SEQ+(E1) and (g) E = TSEQ+(E1, τl, τu)

Fig. 5 illustrates the graphical representation of each event constructor discussed in
Section 2.2, where constituent events are represented as child nodes, and the constructed
events are represented as parent nodes. We denote a node that represents an event E
as vE . Note that the temporal sequence events are also associated with their distance
constraints.

An exception is the WITHIN constructor, which is represented as an interval con-
straint of the constituent node. For example, Fig. 6a shows the graphical representation
of an interval-constrained event E = WITHIN(E1 ∧ E2, 10sec). As another ex-
ample, Fig. 6b shows the graphical representation of a complex event with both interval-
constraint and distance-constraint: E = WITHIN(TSEQ+(E1, 0.1sec,
1sec), 100sec).

∧

E1 E2

[10sec]∧

E1 E2

∧

E1 E2

[10sec] :+

E1

[0.1sec, 1sec] [100sec ]:+

E1

[0.1sec, 1sec] [100sec ]

(a) (b)

Fig. 6. Graphical representations of interval-constrained complex events: (a) WITHIN(E1 ∧
E2, 10sec) and (b) WITHIN( TSEQ+(E1, 0.1sec, 1sec), 100sec)

Given a set of RFID rules R = {r1, r2, ..., rn}, we construct a graph rep-
resenting the events for these rules in the following steps.

– First, build an event graph for each rule’s event. For each rule ri in R, we build an
event graph Ti with leaf nodes representing primitive events, internal nodes repre-
senting complex events and edges linking constituent events with parent complex
events. The root node of Ti represents the event part of the rule ri.

– Second, propagate interval constraints. For each event graphTi, if there is any inter-
val constraint defined on an event node vE ∈ Ti, propagate vE’s interval constraint
to all the descendant nodes of vE . This is because that a complex event always
has a longer interval than its constituent events. Interval constraints are propagated
top-down in the event graph: given any event node vE , its interval constraint is set
to be the minimum of the current interval constraint of E (if any) and that of its
parent event node, if any. For example, Fig. 7b illustrates the graphical representa-
tion of a complex event E = WITHIN(TSEQ+(E1 ∨ E2, 0.1sec, 1sec)
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Fig. 7. Graphical representations of an interval-constrained complex event E =
WITHIN(TSEQ+(E1 ∨ E2, 0.1sec, 1sec) ; E3, 10min): (a) before propagating
the interval constraint; and (b) after propagating the interval constraint.

; E3, 10min) after interval propagating from Fig. 7a. We use vE.within to
represent the interval constraint on event E.

– Finally, merge common sub-graphs. We can combine any common sub-graphs in
{T1, T2, ..., Tn} to form an event graph G, thus avoid detecting common
sub-events multiple times to improve efficiency and reduce space requirements.
For convenience, we use p(vE) to represent the set of nodes that are parents of
vE in G; and we use r(vE) to represent a rule whose event part is represented by
vE .

By integrating temporal constraints into event graphs, temporal constraints become
first class constructs in event detection, and are checked during the detection process,
as discussed later.

4.4 RFID Event Detection Mode

Traditional graph-based event processing systems detect complex events in a bottom-up
fashion: occurrences of primitive events are injected at the leaves and flow upwards to
trigger parent complex events. Such a bottom-up event detection approach, however,
is inapplicable to detecting RFID events. In fact, many RFID events (such as those
generated from SEQ+ and NOT constructors) are non-spontaneous: they cannot detect
their occurrences by themselves unless they either get expired – if they are associated
with interval constraints – or are explicitly queried about their occurrences from their
parent nodes.

Next, we generalize three RFID event detection modes for each node vE in G.

– Push(↑): An event node vE’s detection mode is push if E is a spontaneous event
such that any occurrence of E will trigger vE to automatically detect the occur-
rences and propagate them to their parents. For example, primitive events will al-
ways automatically propagate their instances to their parents, thus are always in
push mode.

– Pull(↓): An event node vE’s detection mode is pull if E is a non-spontaneous event
such that vE cannot determine whether instances of E have occurred or not unless
being explicitly queried by vE’s parent node. For example, the detection mode for
a NOT event is always pull.
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– Mixed(+): An event node vE’s detection mode is mixed if its detection mode is
neither push nor pull. Such event nodes are usually associated with temporal con-
straints. For example, the detection mode for a complex event E = TSEQ+(E1,
τl, τu) is mixed if E1 is a spontaneous event. When an instance of E1 arrives at
time timestamp,vE cannot determine whether the sequence has ended or not un-
less there is no arrival of other instance of E1 during the period of [timestamp,
timestamp + τu].

We can compute the event detection modes for the nodes in an event graph G re-
cursively by starting from primitive event nodes on the leaf level. While the detection
mode for a primitive event node is always push, the detection mode for a complex event
depends on the event constructor type and the modes of its constituent sub-events.

An RFID rule r is valid only if the detection mode for its event E is in either push
mode or mixed mode. In this paper, we propose a method to detect mixed mode events
by the introduction of pseudo events. (If the detection mode for r’s event E is pull, then
occurrences of E can never be detected and thus r will never be triggered. We call such
events invalid events, and corresponding rules invalid rules.)

4.5 Pseudo Events

Existence of non-spontaneous RFID events causes mixed detection mode. Mixed mode
RFID event nodes cannot be supported in traditional graph-based event detection sys-
tems, which propagate event occurrences bottom up. To address this challenge, we pro-
pose to generate pseudo events when necessary to trigger explicit queries about the
occurrences of these non-spontaneous events, i.e., in a top-down way.

A pseudo event is a special artificial event used for querying the occurrences of non-
spontaneous events during a specific period, and is scheduled to happen at an event
node’s expiration time. We represent a pseudo event instance as e

′[tc,te]
i , with its target

event id i, creation time tc and execution time te. A pseudo event e
′[tc,te]
i will query

the occurrences of event i during the period [tc, te], or non-occurrences of event i
during the period [tc, te] if the constructor for event i is NOT.

For a rule r with a push mode event r.E, there is no need to generate pseudo events
even though r.E contains non-spontaneous sub-events.

For example, suppose that the event of rule r is WITHIN(¬E1; E2, τ ) where E1 and
E2 are primitive events, any occurrence of E2 ( e.g., e2) will trigger the querying about
the non-occurrences of E1 during the period [t end(e2) - τ, t end(e2)].
Thus, there is no need to generate pseudo events in this case.

For a mixed mode event r.E, however, we need to generate pseudo events to trigger
the querying about the occurrences of non-spontaneous sub-events. For example, for an
interval-constrained complex event E = WITHIN(E1 ∧ ¬E2, τ) where E1 and E2
are primitive events; if E1 happens first, we need to make sure that there is no occurrence
of E2 within τ . Therefore, if there is no occurrence of E2 during the interval of E1’s
instance, occurrence of an E1 instance e1 will create a pseudo event with the target event
¬E2, creation time t end(e1) and execution time t begin(e1) + τ . This pseudo
event will query about the non-occurrence of event E2 during the period [t end(e1),
t begin(e1) + τ].
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Fig. 8. An example of detecting a complex event E = WITHIN(E1 ∧ ¬ E2, 10sec) with
event history {e2

2, e10
1 , e20

1 }: (a) graphical representation for E; (b) on arrival of e2
2; (c) on

arrival of e10
1 ; (d) after processing of (c); (e) on arrival of e20

1 ; (f) after processing of (e); (g) after
arrival of pseudo event e′[20,30]

3 , where the event id for ¬ E2 is 3; and (h) after processing of (g).

For a mixed mode event, we can determine whether a node v in the event graph G
needs to generate pseudo events in a top-down way.

The notations used here include: i) vE.mode: the detection mode for vE ; ii)
vE.pseudo: vE’s pseudo event generation flag; and iii) vE.pseudo target: the
target event of a pseudo event from vE .

Implementation of Pseudo Events. When pseudo events are created, they are put into a
sorted pseudo queue (pseudo queue) according to their scheduled execution times-
tamps. The incoming RFID event queue (event queue) is ordered by their observa-
tion timestamps. When the event engine fetches an event, it always fetches the earliest
event from the two queues.

An Example of Detecting Complex Events Using Pseudo Events
Fig. 8 illustrates an example of detecting a complex event E = WITHIN(E1 ∧ ¬E2,
10sec) with pseudo events. We assume an event history {e2

2, e10
1 , e20

1 }, where ej
i

represents an occurrence of event Ei at time j. The steps are described as follows:

1. On arrival of e2
2, vE2 propagates e2

2 to its parent node. Since the parent node is
non-spontaneous, it will not further propagate the occurrence (Fig. 8b);

2. On the arrival of e10
1 , vE1 propagates its occurrence to vE , which triggers the

querying about the non-occurrence of E2 during the period [t end(e10
1 ) -

10sec, t end(e10
1 )], i.e., [0sec, 10sec] (Fig. 8c);

3. Since there is an occurrence e2
2 of E2 during the period of [0sec, 10sec], e10

1
cannot be a constituent instance of an E’s occurrence. Thus, e10

1 is deleted (Fig.
8d);

4. Similarly, on the arrival of e20
1 , vE1 propagates its occurrence to vE , which triggers

the querying about the non-occurrence of E2 during the period [t end(e20
1 ) -

10sec, t end(e20
1 )], i.e., [10sec, 20sec] (Fig. 8e);

5. Since there is no occurrence of E2, vE cannot detect its occurrence unless there
is no occurrence of E2 during the period [t end(e20

1 ), t begin(e20
1 ) +
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10sec]), i.e., [20sec, 30sec] (Fig. 8f). Thus, a pseudo event e′[20,30]
3 is

scheduled to be generated at time 30sec to query the event node v¬E2 . We assume
that the event id for ¬E2 is 3;

6. The arrival of e′[20,30]
3 will trigger the querying about the non-occurrence of event

E2 during the period [20sec, 30sec] (Fig. 8g). Since there is no occurrence
of E2 during that period, occurrence of E is detected (Fig. 8h).

4.6 RFID Complex Event Detection Algorithm (RCEDA)

In this subsection, we discuss how to efficiently detect RFID complex events under
chronicle parameter context (Algorithm RFID COMPLEX EVENT DETECTION).

RFID COMPLEX EVENT DETECTION(R = {r1, r2, ..., rn})
1 Construct an event graph G representing the rules in R (Section 4.3)
2 //begin of initializing event graph
3 Propagate interval constraints starting from the root node of G
4 Assign an event detection mode for each node in G
5 Assign pseudo event flag and target for each node in G
6 //end of initializing event graph
7 for each incoming event e1

8 do if e1 is an instance of a primitive event E1

9 then for each parent node vE of vE1

10 do ACTIVATE PARENT NODE(vE, e1)
11 if vE1 .pseudo
12 then GENERATE PSEUDO EVENT(vE1 , vE, e1)
13 for each rule r whose event part is represented by vE1

14 do trigger the rule r
15 if e1 is a pseudo event
16 then let E be the target event of e1

17 let tstart be the creation timestamp of e1

18 let tend be the execution timestamp of e1

19 EList ← QUERY INTERVAL NODE(vE , tstart, tend)
20 for each event instance e in EList
21 do for each parent node, v, of vE

22 do ACTIVATE PARENT NODE(v, e)

Given an event graph G, we first initialize G by: i) propagating interval constraints
in a top-down way (Algorithm PROPAGATE INTERVAL CONSTRAINT); ii) assigning
event detection modes bottom-up based on event constructors and interval constraints
(Section 4.4); and iii) assigning pseudo event generation flags top-down based on the
event detection modes (Algorithm ASSIGN PSEUDO EVENT FLAG). Then, we can use
this event graph to monitor the occurrences of events based on the algorithm RCEDA.
The algorithm has three main functions:

– ACTIVATE PARENT NODE(vE, e1): This recursive function propagates an event
instance e1 from one sub-event E1 of E to vE and detects whether any instance
of E has occurred or not. If yes, vE will recursively propagate its occurrence to
its parent node (if any), i.e. call the ACTIVATE PARENT NODE function again, or
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trigger a rule r whose event part is represented by vE . If the pseudo flag of vE1
is set to true during the event graph initialization, this function will also generate a
pseudo event from vE1, e

′[ts,te]
i , where i is the id of vE’s pseudo event target, i.e.,

vE.pseudo target, ts and te are set based on t begin(e1), t end(e1)
and the temporal constraints on E.

– QUERY INTERVAL NODE(vE, tstart, tend): This function queries about oc-
currences of the event E during the period [tstart, tend] and outputs such
occurrences if any.

– GENERATE PSEUDO EVENT(vE1, vE, e2): This function will generate a
pseudo event for the target event vE1 on the occurrence of an event instance e2,
where e2 is an instance of one of vE’s sub-events; vE1 is either the same as vE or
a child node of vE . The creation time and execution time for the pseudo event will
depend on the temporal constraints on vE , t begin(e2) and t end(e2).

The algorithm RCEDA works as follows:

– On each occurrence of a primitive event e1 (of type E1) attached to a leaf node
vE1, the algorithm will propagate e1 to all the internal event nodes vE where
E1 is a sub-event of E. That is, the occurrence of e1 will call the function ACTI-
VATE PARENT NODE(vE, e1). Also, the occurrence of e1 will also trigger all the
rules whose events are represented by vE1 .

– On each occurrence of a pseudo event e
′[ts,te]
i , the algorithm will query about the

occurrences of the target event with id i during the period [ts, te], with the
function query internal node(vEi, ts, te). The algorithm will recursively prop-
agate each occurrence, ei, in the query results to event i’s parent node v, with the
function ACTIVATE PARENT NODE(v, ei).

– On each occurrence e of an event E, either primitive or complex, if the pseudo
flag of vE is set to true during the event graph initialization, the algorithm will
generate a pseudo event for vE.pseudo target. The creation and execution
timestamps of the pseudo event are set based on the t begin(e), t end(e)
and the temporal constraints between E and the target event. This is done with the
function generate pseudo event(vE, v, e), where v is the common parent node
between vE and vE’s pseudo target event node.

5 Performance Study

To evaluate the performance of our approach, we developed a simulator of an RFID-
enabled supply chain system with warehouses, shipping, retail stores and sale to cus-
tomers. Rules are defined for the system to automatically transform and aggregate data.
The machine used is a Dell Latitude D610, with 2GHz Pentium M CPU and 1GB mem-
ory, installed with Windows XP. We implemented our event detection algorithm RCEDA
in C#.

We tested the total event processing time versus the number of primitive events and
versus the number of rules, with event arrival rate of 1000 events per second. (To sim-
plify the test, action cost such as database update cost is not counted in the processing
time.) The experiment result shown in Fig. 9 demonstrates that the cost increases almost
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Fig. 9. Event processing time versus number of events and number of rules

linearly versus the number of events, and that the performance versus number of rules
is also quite scalable.

6 Related Work

RFID technology has emerged for years and poses new challenges for data processing
and management. The importance of event processing is pointed out in [10], but
methodology is not provided. In [2], a temporal-based data model is developed for
RFID data, and how to use rules to transform RFID data from observations into the data
model is also discussed; however, it lacks a complete framework and implementation.

Recently, major IT vendors are providing sophisticated RFID platforms, including
the Sun EPC Network [11], SAP Auto-ID Infrastructure [12], Oracle Sensor Edge
Server [13], IBM WebSphere RFID Premises Server [14], Sybase RFID Solutions [15],
and UCLA’s WinRFID Middleware[16]. These platforms provide a general interface
to collect RFID data from readers, and then forward the data to applications. These
systems, however, only support limited RFID rules: in fact they only support primi-
tive events or their simple combinations. Thus it is up to users’ applications to detect
complex events. RFID event processing is also discussed in [17, 18], where no formal
method is proposed.

Event processing has been studied extensively in the past [19, 9, 7], in the context of
active databases. These systems normally use Event-Condition-Action (ECA) rules for
event processing. RFID events differ from traditional events in several ways, including
the high temporal nature and existence of non-spontaneous events. Thus it is difficult
for traditional event detection systems to support RFID event detection.

Temporal constraints are considered in [20, 21], which, however, cannot be used to
support the special RFID events such as temporal sequence and temporal negation.
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Event negation is discussed in [7], where a negated event must have an initiator event
and a terminate event. Motakis et al [5] provide a formal discussion of active rules
including negated events, but the implementation approach is not provided.

7 Conclusions

One of the major challenges for RFID applications is to bridge the physical world rep-
resented with EPC tags, and the virtual world represented with application logic. To
address this challenge, we develop an event-oriented framework that can effectively
transform and aggregate raw RFID data into semantic data, by i) declarative event spec-
ification with temporal constraints; ii) declarative rules definition to support data trans-
formation and real-time monitoring; and iii) an RFID complex event detection engine
that supports temporal constraints by integrating instance level constraint checking into
the detection process, and uses pseudo events to actively detect non-spontaneous events.
The event framework provides comprehensive support of RFID applications, including
object tracking and real-time monitoring. For the latter, the difficulty of data aggrega-
tion can now be solved soundly through complex event generation and detection. The
performance study shows that our system is efficient and scalable. The technology de-
veloped in this paper is now integrated into Siemens RFID Middleware [2] to provide
integrated RFID solutions for RFID-enabled business applications.
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Abstract. Data stream systems execute a dynamic workload of long-
running and one-time queries, with the streaming inputs typically
bounded by sliding windows. For efficiency, windows may be advanced
periodically by replacing the oldest part of the window with a batch of
new data. Existing work on stream processing assumes that a window
cannot be advanced while it is being accessed by a query. In this paper,
we argue that concurrent processing of queries (reads) and window-slides
(writes) is required by data stream systems in order to allow prioritized
query scheduling and improve the freshness of answers. We prove that the
traditional notion of conflict serializability is insufficient in this context
and define stronger isolation levels that restrict the allowed serializa-
tion orders. We also design and experimentally evaluate a transaction
scheduler that efficiently enforces the new isolation levels.

1 Introduction

A Data Stream Management System (DSMS) executes two types of queries—
long-running and snapshot—whose input streams are typically bounded by slid-
ing windows. Long-running queries return updated answers periodically and of-
ten involve complex aggregation for monitoring purposes. Snapshot queries are
analogous to traditional database queries in that they can be submitted to the
DSMS at any time, are executed once, and return an answer over the current
state of the inputs. Snapshot queries may be used to obtain further details in
response to a change in the result of a long-running query.

Previous work on sliding window query processing [1-5] and stream query
languages [6-8] assumes that windows slide periodically by replacing the oldest
part of the window with a batch of fresh data. A periodically-sliding window
can be modeled as a circular array of sub-windows, each spanning an equal time
interval for time-based windows (e.g., a ten-minute window that slides every
minute) or an equal number of tuples for tuple-based windows (e.g., a 100-tuple
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window that slides every ten tuples). We define a window update as the process
of replacing the oldest sub-window with newly arrived data, thereby sliding the
window forward by one sub-window. We will use the terms window update,
window movement, and window-slide interchangeably.

As the windows slide forward, a DSMS executes a dynamic workload of long-
running and snapshot queries. Suppose that query execution involves accessing a
window, one sub-window at a time (we will discuss this in more detail in Sect. 2).
Combined with periodic window movements, we can model DSMS data access
in terms of two atomic operations: sub-window scan (read) and replacement of
the oldest sub-window with new data (write). Thus, a window update is a single
write operation, whereas a query is a sequence of sub-window read operations
such that each sub-window is read exactly once.

A window may slide while being accessed by a query, resulting in a read-write
conflict. Consider a sequence of operations illustrated in Fig. 1 (a), where the
processing times of window updates (U) and queries (Q1, Q2, and Q3) are shown
on a time axis. This represents an ideal scenario, where it is possible to execute all
three queries between every pair of window updates, thereby avoiding read-write
conflicts. However, the system environment, such as the query workload, stream
arrival rates, and availability of system resources, can change greatly during the
lifetime of a long-running query. Thus, a more realistic sequence is shown in
Fig. 1 (b), where Q2 takes longer to execute than expected. Q3 is still running
when the second update is ready to be applied, causing a delay in performing the
update, and, in turn, causing another read-write conflict when Q3 is re-executed
and the third update is about to take place.

It may appear that read-write conflicts can be prevented by increasing the
time interval between window updates, i.e., the sub-window size. However, all
sub-windows must have the same size so that the overall window size is fixed
at all times. Therefore, either the system must be taken off-line to re-partition
the entire window, or two sets of sub-windows must be maintained during the
transition period until the window “rolls over” and all the sub-windows have the

Fig. 1. Examples of query and window update sequences in a DSMS
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new size. The first case is inappropriate for an on-line DSMS, whereas the second
solution does not immediately eliminate read-write conflicts until the transition
period is over.

Existing data stream solutions avoid read-write conflicts by serially executing
queries and window movements. In other words, a query locks the window that
it is scanning in order to prevent concurrent window movements. Interleaved
execution of updates while a window is being scanned by a query is advantageous,
provided that the following issue is resolved. Consider suspending the processing
of Q3 in order to perform a window update, as in Fig. 1 (c). Recall that each
query is assumed to perform a sequence of atomic sub-window reads, therefore
it may be interrupted after it has read one or more sub-windows. It must be
ensured that when resumed, Q3 can correctly read the updated window state. If
so, then the answer of Q3 is slightly delayed (by the time taken to perform the
update), but it is more up-to-date because it reflects the second update as well
as the first. Otherwise, we are worse off than in Fig. 1 (b), because the answer
of Q3 is delayed, but it is still not up-to-date. Another example is illustrated
in Fig. 1 (d), where Q3 is suspended not only to perform a window update, but
also to run Q1 immediately afterwards. This is desirable if Q1 is an important
query that requires an immediate and up-to-date answer.

This paper studies concurrency control issues in a DSMS with periodic window
movements, periodic executions of long-running queries, and on-demand snap-
shot querying. Our goal is to provide query scheduling flexibility and guarantee
up-to-date results. The particular contributions of this paper are as follows.

– By modeling window movements and queries as transactions consisting of
atomic sub-window reads and writes, we extend concurrency theory to cover
queries over periodically-advancing windows. We show that conflict serial-
izability is not sufficient in the presence of interleaved queries and window
movements because some serialization orders produce incorrect answers.

– We propose two isolation levels that are stronger than conflict serializability
in that they restrict the permissible serialization orders.

– We design a transaction scheduler that efficiently enforces the desired iso-
lation levels. The main idea is to exploit the access patterns of queries and
window updates. The scheduler is proven to be optimal in the sense that it
aborts the smallest possible number of transactions while allowing immediate
(optimistic) scheduling of window updates.

– We perform an experimental evaluation of the transaction scheduler under
various query workloads and system parameters, showing improved query
freshness and response times with a minimal drop in throughput.

The remainder of this paper is organized as follows. Section 2 explains our
system model and assumptions. Section 3 defines new isolation levels for DSMS
transactions, and Sect. 4 presents a transaction scheduler for enforcing them.
Section 5 presents experimental results, Sect. 6 compares the contributions of
this paper to previous work, and Sect. 7 concludes the paper.
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2 System Model and Assumptions

2.1 Data and Query Model

A data stream is assumed to consist of relational tuples with a fixed schema.
Without loss of generality, we assume that each stream is bounded by a time-
based window. A window of time-length nt is stored as a circular array of n
sub-windows, each spanning a time-length of t (each window may have different
values for n and t). Every t time units, the oldest sub-window is replaced with
a buffer containing incoming tuples that have arrived in the last t time units.
Additionally, the DSMS may materialize intermediate results of selected queries
or sub-queries, e.g., sliding window joins [2], which may also be stored as arrays
of sub-windows [9]. We assume that t is significantly larger than the time taken
to perform a window update (otherwise, the system would spend all of its time
advancing the windows rather than executing queries).

Given that long-running queries are used for monitoring purposes, they typ-
ically compute aggregates over a single window or a join of several windows;
a selection predicate may precede the aggregate and a group-by condition may
follow it. Each long-running query Q also specifies its desired re-execution fre-
quency. The frequency must be a multiple of t, i.e., Q will be scheduled for
re-execution every m window updates, where 1 ≤ m < n. The DSMS attempts
to execute all the queries with the desired frequencies, but it cannot guarantee
that this will be the case at all times due to unpredictable system conditions.

Queries are executed using one of two techniques (a discussion of other pos-
sible evaluation methods and justification of our choice may be found in the
extended version of this paper [10]). First, a default access plan scans the entire
window (or windows), one sub-window at a time, and computes the query from
scratch. Second, aggregates may be computed by accessing a summary, which
contains pre-aggregated values for each sub-window. An example is illustrated
in Fig. 2, showing a summary that stores the maximum of all the values in each
sub-window. A single scan of the summary, from youngest sub-window to old-
est, may be used to compute the maximum over windows of different lengths.
As illustrated, max1 is the maximum over a window of size 6t, which is re-used
to compute the maximum over a window of size 10t (max2 ). The size of a sum-
mary depends on the type of aggregate. Associative aggregates, such as MAX and
MIN, require one value per sub-window (in case of group-by, a separate value is
stored for each group). Non-associative aggregates, such as median, top-k, and
COUNT DISTINCT, need access to the frequency counts of all the distinct values

Fig. 2. Window summary for computing the maximum
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on each sub-window. Alternatively, approximate answers to complex aggregates
may be computed by storing summaries that contain estimates of the distribu-
tion of values in each sub-window. Examples include Count-Min sketch [11] and
Flajolet-Martin sketch [12]. In all cases, query evaluation involves scanning and
merging each sub-window summary, from youngest sub-window to oldest.

2.2 System Architecture

The assumed system architecture is illustrated in Fig. 3. Let w[i] denote the re-
placement of the ith sub-window with newly arrived data, for 0 ≤ i ≤ n−1. Each
data stream generates periodic write-only transactions Tj in subscript order, de-
fined as Tj = {wj [j mod n]}. They are processed by the transaction manager,
which immediately propagates updates to all the summaries and materialized
results that reference this window (e.g., new tuples are passed to the join oper-
ator, which probes the other window and generates new join results). For each
stream, the transaction manager initially executes T0 through Tn−1 to fill up the
windows. Thereafter, each Tj has the effect of moving the window forward by
one sub-window. In order to ensure that queries have access to the latest data,
the transaction scheduler executes each Tj as soon as a buffer is full.

Snapshot queries are executed by scanning a suitable summary, if available, or
accessing the underlying window(s). Answers are returned in the form of a table.
Long-running queries are re-executed periodically throughout their lifetimes and
generate a stream of updated answers. A new long-running query is inserted
into the query manager, or may be rejected if the system is overloaded. The
query manager then determines an appropriate execution strategy for the new
query, e.g., whether an existing summary may be used or a new summary should
be built, and whether the new query may be merged into a group of similar
queries for shared processing. The design of the query manager is an orthogonal
topic, which we pursue in separate work. In this paper, we define an interface
between the query manager and the transaction scheduler, which consists of
read-only transactions corresponding to re-execution of one or several similar

Fig. 3. Assumed system architecture
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queries. We define r[i] be a scan (read) of the ith sub-window, or its summary,
for 0 ≤ i ≤ n − 1 (without loss of generality, in the rest of the paper, we will
refer to either of these as a sub-window). A snapshot query or a particular re-
execution of one or more long-running queries is a read-only transaction TQk,
defined as TQk = {rQk[0], rQk[1], . . . , rQk[n − 1]}. That is, each TQk performs a
scan of a window, sub-result, or summary, by reading each sub-window exactly
once (queries over windows shorter than nt may be defined similarly). We assume
that sub-windows may be read in arbitrary order.

3 Conflict Serializability in the Context of Sliding
Window Queries

3.1 Serializability and Serialization Orders

We begin by analyzing the isolation level requirements of queries over periodically-
sliding windows. Due to space constraints, we assume that queries access a single
windowanddealwithmaterialized sub-results in the extendedversion of this paper
[10]. First, we define the possible types of conflicts arising from concurrent execu-
tion of transactions.A conflict occurswhen two interleaved transactions operate on
the same sub-window and at least one of the operations is a write. Clearly, a read-
write conflict occurs whenever Tj interrupts TQk, as in Fig. 1 (c) and (d). This is
because each TQk reads every sub-window, including the sub-window overwritten
by Tj. Since we assumed that window movements are executed immediately, we
can ignore write-write conflicts. The traditional method for dealing with conflicts
requires an execution history H to be serializable. We show that serializability is
insufficient in our context using the following example.

Assume a sliding window partitioned into five sub-windows, numbered zero
through four, with sub-window zero being the oldest at the current time. Con-
sider the following four histories—Ha, Hb, Hc, and Hd—with cj or cQk denoting
that transaction Tj or TQk, respectively, has committed (we omit the initial
transactions T0 through T4 that fill up the window).

Ha = rQ1[0] w5[0] c5 w6[1] c6 rQ1[1] rQ1[2] rQ1[3] rQ1[4] cQ1
Hb = rQ1[0] w5[0] c5 rQ1[1] w6[1] c6 rQ1[2] rQ1[3] rQ1[4] cQ1
Hc = rQ1[4] w5[0] c5 rQ1[3] rQ1[2] rQ1[1] w6[1] c6 rQ1[0] cQ1
Hd = rQ1[4] w5[0] c5 rQ1[0] rQ1[3] rQ1[2] w6[1] c6 rQ1[1] cQ1

Each history represents interleaved execution of a read-only transaction TQ1
and two window movements, T5 and T6. Note that Hc and Hd reorder the read
operations within TQ1; we will say more about ordering atomic operations in
Sect. 4. The associated serialization graphs are drawn in Fig. 4. The direction of
the edges corresponds to the order in which conflicting operations are serialized.
In particular, there are two pairs of conflicting operations in each schedule: rQ1[0]
and w5[0], and rQ1[1] and w6[1]. Note that all four graphs are acyclic, therefore
all four histories are serializable, but their serialization orders are different.

Let us analyze the data read by TQ1. For each history, consider the state
of the sliding window shown in Fig. 5, where the first sub-windows on the left
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Fig. 4. Serialization graphs for Ha, Hb, Hc, and Hd

Fig. 5. Differences in the results returned by TQ1 in Ha, Hb, Hc, and Hd

(s0 through s4) correspond to the initial state of the window after T0 through T4
were executed. Next, T5 advances the window forward by one sub-window, which
may be thought of as overwriting the old copy of sub-window s0 (on the far left)
with a new copy, appended after s4. Thus, the state of the window after T5 com-
mits is represented by the contiguous sequence of sub-windows {s1, s2, s3, s4, s0}.
Then, T6 advances the window again by appending a new copy of s1 on the far
right and implicitly deleting the old copy of s1 on the left. Hence, the state of
the window after T6 commits is equivalent to the contiguous sequence of sub-
windows {s2, s3, s4, s0, s1}. Shaded sub-windows represent those which were read
by TQ1 in each of the four histories, as explained next.

First, consider SG(Ha) and note that Ha serializes T6 before TQ1, meaning
that the window movement caused by T6 (creation of a new version of sub-
window s1) is reflected in the query. However, Ha serializes an earlier window
update T5 after TQ1, therefore the prior window movement caused by T5 (creation
of a new version of s0) is hidden from the query. Hence, Ha causes TQ1 to read
an old copy of s0 and a new copy of s1, as illustrated in Fig. 5 (a), which does not
correspond to a window state at any point in time. This is because the shaded
rectangles do not form a contiguous sequence of five sub-windows. Next, recall
that Hb serializes both window movements after TQ1, therefore the query reads
old versions of s0 and s1, as illustrated in Fig. 5 (b). This corresponds to the
state of the window after T4 commits. By similar reasoning, Hc allows TQ1 to
read the state of the window after T5 commits (Fig. 5 (c)), and only Hd ensures
that TQ1 reads the most up-to-date state of the window that reflects both T5
and T6 (Fig. 5 (d)). Again, this is because only SG(Hd) serializes both window
movements before TQk, meaning that TQk sees both updates.
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3.2 Isolation Levels for Sliding Window Queries

Having shown that the serialization order affects the semantics of read-only
transactions, we propose two stronger isolation levels that restrict the allowed
serialization orders.

Definition 1. A serializable history H is said to be window-serializable (WS) if
all of its committed TQk transactions read a true state of the sliding window as
of some point in the past or present (i.e., a contiguous sequence of sub-windows
is read, as in Fig. 5 (b), (c), and (d)).

Definition 2. A window-serializable history H is said to be latest-window-
serializable (LWS) if all of its committed TQk transactions read the state of
the sliding window that reflects all the window update transactions that have
committed before TQk commits.

Note that only LWS guarantees that queries read the most up-to-date state of
the window Motivated by Fig. 4, we prove the following results.

Theorem 1. A history H is window-serializable iff SG(H) has the following
property: for any TQk, if any Ti is serialized before TQk, then for all Tj serialized
after TQk, i < j.

Proof. Suppose that H is WS. If all transactions TQk contained in H incur
at most one concurrent window movement, then clearly, SG(H) satisfies the
desired property. Otherwise, note that for TQk to read a sliding window state
from some point in the past or present, it must be the case that either TQk

is isolated from all the concurrent window updates, or it only reads the least
recent update, or it only reads the two oldest updates, and so on. In all cases,
SG(H) contains less recent updates serialized before the query and more recent
updates serialized after the query, as wanted. Now suppose that SG(H) sat-
isfies the property that all Tj serialized after any TQk have higher subscripts
than those serialized before TQk. Let m be the maximum subscript of any
transaction Ti serialized before TQk. It follows that TQk reads a sliding window
state that resulted from applying all the updates up to Tm and therefore H is
WS. �

Theorem 2. A history H is latest-window-serializable iff SG(H) has the fol-
lowing property: for any TQk, all concurrent Ti transactions must be serialized
before TQk.

Proof. Suppose that H is LWS and let TQk be any query that incurs at least one
concurrent window movement. It follows that TQk reads a state of the window
that results from applying all the concurrent updates. Hence, concurrent window
updates must be serialized before queries, as wanted. Now suppose that SG(H)
does not contain any links pointing from any TQk to any Ti. This means that
there are no queries that have been interrupted by window updates which the
queries then did not see. Hence, H is LWS. �
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4 Transaction Scheduler Design

4.1 Producing LWS Histories

We now present the design of a DSMS transaction scheduler that produces LWS
histories. Recall from Sect. 2 that write-only transactions Tj must be executed
with highest priority so that queries have access to an up-to-date version of
the window. Given this assumption, our scheduler executes window movements
optimistically and uses serialization graph testing (SGT) to abort any read-
only transaction that causes a read-write conflict. In general, SGT may suffer
from high space usage and long running time if many conflicts among many
transactions must be tracked over time [13]. Fortunately, in our context, the
serialization graph is simple and can be pruned dynamically. In particular, for
each currently running TQk, it suffices to monitor concurrent window movements
Tj and ensure that all interleaved Tj are serialized before TQk (recall Fig. 4).
Once TQk commits, it is guaranteed not to cause LWS violations at any point
in the future, and therefore its node can be safely deleted from the serialization
graph.

The scheduler is summarized as Algorithm1. Lines 3 and 4 serially execute
window movements immediately (technically, line 4 must wait for an acknowl-
edgement that the write operation has been performed). Lines 8 through 11
initialize a bit array BQk for each newly arrived TQk, where bit i is set if TQk

has already read sub-window i. Lines 12 through 18 execute read-only trans-
actions, one sub-window scan at a time, and set the corresponding bit in BQk

to true. Again, before committing TQl in line 17, the algorithm must wait for
an acknowledgement of performing the read operation from line 14. Note that
Algorithm1 allows multiple read-only transactions to be executed at the same
time in any order (line 13) because they do not conflict with one another. Lines
5 through 7 resolve LWS conflicts, as proven below.

Theorem 3. Algorithm 1 produces LWS histories.

Proof. As per Definition 2, we need to show that all committed read-only trans-
actions TQk have the property that any window movements Tj that were executed
at the same time as TQk are serialized before TQk. First, note that the only time
that a new LWS violation may possibly appear is after a window update Tj com-
mits while one or more TQk transactions are still running. Furthermore, a LWS
conflict appears only if any Tj has updated a sub-window (an older copy of)
which has already been read by any of the currently running TQk transactions,
in which case Tj would be serialized before TQk. This occurs if BQk[j mod n] is
set for any currently running TQk. In this case, Algorithm 1 aborts TQk (line 7),
ensuring that all TQk committed in line 17 satisfy Definition 2. �

Algorithm1 supports read-only transactions with different priorities, such as
snapshot queries or “important” long-running queries (as in Q1 from Fig. 1 (d)).
To do this, we assume that the query manager embeds a priority p within each
TQk and we change line 13 in Algorithm1 to read: “let TQl be the transaction in L
with the highest value of p”. Consequently, if a low-priority TQk is currently being
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Algorithm 1. DSMS Transaction Scheduler

1 let L be the list of currently running TQk transactions
2 loop
3 if new transaction Tj arrives for scheduling then
4 execute wj [j mod n], cj

5 for each TQk in L
6 if BQk[j mod n] = true then
7 execute aQk (abort TQk)
8 elseif new transaction TQk arrives for scheduling then
9 add TQk to L

10 for i = 0 to n − 1
11 set BQk[i] = false
12 if L is not empty then
13 choose any TQl from L
14 execute next operation of TQl, call it rQl[m]
15 set BQl[m] = true
16 if no more read operations left in TQl then
17 execute cQl

18 remove TQl and BQl from L

executed, then a higher-priority TQm transaction has the effect of suspending
TQk. This extension does not impact the correctness of Algorithm1 as it does
not introduce any new LWS conflicts.

4.2 Optimal Ordering of Read Operations

Given that Algorithm 1 may abort read-only transactions in order to guarantee
LWS, we want to minimize the required number of aborts. The idea is to shuffle
the read operations within TQk given the following insight. Since aborts occur
when a sub-window is being updated but an older version of it has already been
read by a concurrent TQk transaction, we should execute TQk by first reading
the sub-window which is scheduled to be updated the farthest out into the fu-
ture. More precisely, we define the time-to-update (TTU) of a sub-window as
the number of window-movement transactions Tj that must be applied until
this sub-window is updated. When the scheduler chooses a read-only transac-
tion TQk to process, it always executes the remaining read operation of TQk

whose sub-window has the highest TTU value at the given time. The revised
scheduler is shown below as Algorithm2 (again, adding support for multiple
priority levels can be done by changing line 17 to process the highest-priority
transaction). There are two main changes. First, lines 6 through 8 update the
TTU values of each sub-window after every window movement. The newly up-
dated sub-window receives a value of n (it will take n write-only transaction until
this sub-window is updated again), whereas the TTU values of the remaining
sub-windows are decremented. Furthermore, line 18 selects m to be the index
of the sub-window which has the highest TTU value and has not been read
by TQl.
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Algorithm 2. DSMS Transaction Scheduler with TTU

1 let L be the list of currently running TQk transactions
2 let TTU [n] be an array of sub-window TTU values
3 loop
4 if new transaction Tj arrives for scheduling then
5 execute wj [j mod n], cj

6 for i = 0 to n − 1
7 set TTU [i] = TTU [i] − 1
8 set TTU [j mod n] = n
9 for each TQk in L

10 if BQk[j mod n] = true then
11 execute aQk (abort TQk)
12 elseif new transaction TQk arrives for scheduling then
13 add TQk to L
14 for i = 0 to n − 1
15 set BQk[i] = false
16 if L is not empty then
17 choose any TQl from L
18 let m =argmax

BQl[i]=falseTTU [i]
19 execute rQl[m]
20 set BQl[m] = true
21 if no more read operations left in TQl then
22 execute cQl

23 remove TQl and BQl from L

The idea in Algorithm 2 is similar to the Longest Forward Distance (LFD)
cache replacement algorithm [14], which always evicts the page whose next access
is latest. LFD is optimal in the off-line case in terms of the number of page faults,
given that the system knows the entire page request sequence and that all page
faults have the same cost.

Theorem 4. Algorithm 2 is optimal for ensuring LWS in the sense that it per-
forms the fewest possible aborts for any history H .

Proof. Let A be the scheduler in Algorithm 2 and let S be any other transac-
tion scheduler that serializes transactions in the same way as A, but only differs
in the ordering of read operations inside one or more read-only transactions.
That is, S corresponds to Algorithm 1 with some arbitrary implementation of
the meaning of “next operation” in line 14. We need to prove that S performs
no fewer aborts than A for any history H . Let Hi be the prefix of H contain-
ing the first i read operations (interleaved with zero or more write operations,
and zero or more commit or abort operations). The proof proceeds by induc-
tively transforming the sequence of read operations produced by S into that
produced by A, one read operation at a time. To accomplish this, we let S0 = S
and define a transaction scheduler Si+1 that, given Si, has the following two
properties.
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1. Both Si and Si+1 order all the read operations in Hi in the same way as A.
2. Si+1 orders all the read operations in Hi+1 in the same way as A and per-

forms no more aborts than Si in Hi+1.

Let rk[y] be the (i+1)st read operation executed by Si and rk[z] be the (i+1)st
read operation executed by Si+1. Due to our assumption that A and S only differ
in the ordering of read operations inside read-only transactions, the (i+1)st read
operations done by Si and Si+1 both belong to the same transaction, call it TQk.
Thus, sub-window z (mod n) has the highest TTU value at this time. Now, if
z = y then Si+1 = Si and we are done (property 2 holds). Otherwise, Si+1 and
Si differ in the (i+1)st read operation. First, suppose that TQk is not interrupted
by any write-only transactions before the next read operation. Then, TQk is not
aborted by Si or by Si+1 in Hi+1 and we are done (property 2 holds). Next,
suppose that TQk is interrupted by at least one write-only transaction before
the next read operation. The remainder of the proof is broken into the following
three cases, which collectively prove property 2.

In the first case, suppose that the set of interrupting transactions contains Ty,
but not Tz. Given that sub-window z (mod n) has the highest TTU value at
this time, and that write-only transactions are generated and serially executed
in increasing order of their subscripts, the most recent write-only transaction
can have a subscript no higher than z − 1. Then, Si aborts TQk in Hi+1. This
is because TQk has already read an old version of sub-window y (mod n) and
therefore Ty would have been serialized after TQk. However, Si+1 does not abort
TQk in Hi+1. To see this, observe that TQk could not have possibly read any
of the sub-windows that have just been updated. This is due to the fact that
those sub-windows must have lower TTU values than sub-window z (mod n)
and must necessarily be scheduled after sub-window z (mod n) by Si+1.

In the second case, suppose that the set of interrupting transactions does not
contain Ty or Tz. By the same reasoning, the most recent write-only transaction
can have a subscript no higher than y − 1. Again, Si+1 does not abort TQk in
Hi+1 because TQk could not have possibly read any of the sub-windows updated
by or before Ty−1 (they all have lower TTU values than sub-window z ( mod n).
In terms of satisfying property 2, it does not matter what Si does in this case.

Finally, in the third case, suppose that the set of interrupting transactions
contains both Ty and Tz. Then, both Si and Si+1 abort TQk in Hi+1 because
both schedulers allow TQk to read a sub-window that has now been updated. �

5 Experiments

5.1 Implementation Details and Experimental Procedure

We implemented the following transaction schedulers: Algorithm2 (abbreviated
TTU ), Algorithm1 (which does not re-order the read operations within transac-
tions, abbreviated LWS ), a scheduler similar to Algorithm 2 that only enforces
window-serializability (abbreviated WS ), and a scheduler that executes trans-
actions serially (as in current DSMSs, abbreviated Serial). The implementation
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was done in Java 1.4.2, while the experiments were performed on a Pentium-IV
PC with a 3 GHz CPU and 1 Gb of RAM, running Linux. The input stream
is a sequence of simulated IP packet headers with randomly generated values,
e.g., the source and destination addresses have one of one thousand random val-
ues, whereas the packet length is a random integer between one and 100. The
average data rate is one packet per millisecond, but the specific rate over a par-
ticular sub-window is allowed to deviate from the average rate by a factor of up
to ten.

We use a long-running query workload representative of an on-line network
traffic analysis application (see, e.g., [15, 16]), consisting of top-k queries over
the source or destination IP addresses, and percentiles over the total bandwidth
consumed by (or directed to) distinct IP addresses. The window sizes referenced
by queries are generated randomly between one and n, where n is the total num-
ber of sub-windows. Similar aggregates over different window sizes are evaluated
together. For simplicity of implementation, long-running queries are executed
by scanning the window and building a hash table on the required attribute.
Snapshot queries are chosen from a set of simple aggregates over a random sub-
set of the source and destination IP addresses. Each query references the same
time-based window, which is stored in main memory.

After initializing the sliding window using a randomly generated input stream,
we test each of the four transaction schedulers over an identical query workload.
The tests proceed for a time equal to the window length. We then repeat each
test five times using different input streams and calculate the average of each
measurement being reported. The parameters being varied in (and across) the
experiments are the query workload, the window size (controlled via the number
of sub-windows), and the length of each sub-window (which controls the fre-
quency of window movements). The following performance metrics are used to
evaluate the four transaction schedulers (as illustrated on a time line in Fig. 6).

Fig. 6. Freshness, response time, and inter-execution time of query Q2

– Query freshness is the difference between the time that a query reports an
answer and the time of the last window update reflected in the answer.

– Response time is the difference between the query execution start time and
end time. This metric is particularly important for snapshot queries, which
are usually time-sensitive.

– Inter-execution time of a long-running query is the length of the interval
between its re-executions. A DSMS is expected to tolerate slightly longer
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inter-execution times if the returned answers are more up-to-date. The mo-
tivation for this is that even if we return an older answer earlier, we would
have to re-execute the query soon in order to produce an answer that reflects
the new state of the window.

5.2 Experiments with Long-Running Queries

We begin by executing Serial, WS, LWS, and TTU on a workload consisting
of long-running queries and interleaved window movements. We test two sub-
window sizes: t = 1 sec. and t = 5 sec., with the number of sub-windows varied
from ten to 100. The number of queries is set to 40 for t = 1 sec. and 100 for
t = 5 sec. For now, we assume that snapshot queries are not posed. We measure
the average freshness, inter-execution time, and throughput.

The average query freshness is shown in Fig. 7 (the lower the value, the bet-
ter). TTU and LWS clearly outperform WS and Serial because the first two
guarantee latest-window-serializable schedules, where queries have access to an
up-to-date state of the window. Freshness deteriorates for all four schedulers as
the sub-window size grows to t = 5 sec. and window movements become less
frequent. Moreover, increasing the number of sub-windows (or equivalently, in-
creasing the window length) generally has an adverse effect on freshness because
the query execution times increase. Note that Serial performs slightly better
than WS because WS adds to the query execution time by performing concur-
rent window movements, yet the answer does not reflect any of the updates.
Overall, TTU provides the best query freshness in all tested scenarios.

The average query inter-execution times are illustrated in Fig. 8. Each cluster
of eight bars corresponds, in order, to Serial, WS, LWS, and TTU for t = 1 sec.,
followed by Serial, WS, LWS, and TTU for t = 5 sec. Serial has the best (lowest)
inter-execution times because it does not incur the overhead of serialization graph
testing, therefore its total query execution time is slightly lower. Notably, LWS
(corresponding to the third and seventh bars in each cluster) performs the worst
because it aborts a significant percentage of transactions (see [10] for full details).

Fig. 7. Comparison of query freshness for Serial, WS, LWS, and TTU
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Fig. 8. Comparison of query inter-execution times for Serial, WS, LWS, and TTU

For instance, aborting every second re-execution of a long-running query means
that its inter-execution time doubles. In general, increasing the sub-window size
to t = 5 sec. (and hence, increasing the total window size) leads to longer inter-
execution times for all four schedulers as the queries take longer to process.
Similarly, increasing the number of sub-windows increases the query evaluation
times and therefore negatively affects the inter-execution times. Overall, Serial
yields the best query inter-execution times, with WS and TTU following closely
behind, whereas LWS performs badly due to aborted transactions.

We briefly mention that throughput measurements revealed a very small
penalty incurred by TTU versus Serial—typically below two percent and at
most four percent. This is because the serialization graph testing done by TTU
consists of simple bit operations after each window movement and causes neg-
ligible overhead. Furthermore, TTU did not abort any transactions in any of
the tests. This is because during normal execution, a long-running query does
not incur more than one concurrent window update, unless suspended for a long
time in order to run a heavy workload of snapshot queries. Since Algorithm2
ensures that read-only transactions postpone reading the sub-window that is
about to be updated until the end, aborts can be easily avoided if the number
of concurrent window updates is small. On the other hand, we found that the
throughput of LWS was always lower than the other techniques because of a
high proportion of aborted transactions. Full details may be found in [10].

5.3 Experiments with Long-Running and Snapshot Queries

Next, we report the results of experiments with a mixed workload of long-running
and snapshot queries (and concurrent window movements). We fix the sub-
window size at five seconds, the number of long-running queries at 100, and
the number of snapshot queries per sub-window length at five. Snapshot queries
are scheduled at random times with an average time between requests set to one
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(a) (b)

Fig. 9. Comparison of snapshot query response time (a) and freshness (b) for Serial,
WS, LWS, and TTU

second. We report the average snapshot query response time, and we separately
measure the average freshness of snapshot and long-running queries.

Average snapshot query response times are illustrated in Fig. 9 (a). TTU and
WS perform best and yield nearly identical response times. The response times
of LWS are noticeably longer because it is forced to abort and restart some
queries. Serial exhibits the worst results because it is unable to suspend a long-
running query and execute a snapshot query immediately; in general, Serial is
inappropriate for any situation involving prioritized scheduling. As the number of
sub-windows increases, the response time achieved by each of the four schedulers
worsens because it is now more costly to execute each query.

Figure 9 (b) plots the average snapshot query freshness. TTU outperforms
the other schedulers because it guarantees latest-window serializability and did
not abort any read transactions. The performance of LWS is somewhat worse
because some of the transactions corresponding to snapshot queries are aborted
and restarted at a later time. WS and Serial do not guarantee latest-window
serializability and therefore exhibit the worst performance. Overall, TTU yields
the best results in terms of snapshot query freshness and is tied for best in terms
of the response time.

Finally, we separately examine the average freshness of long-running queries
in order to verify that the performance edge of TTU in the context of snapshot
query freshness does not come at a cost of poor long-running query freshness.
We found that TTU maintains its superiority in producing the most up-to-date
results of long-running queries (see [10] for full details).

6 Comparison with Related Work

The concurrency control mechanisms presented in this paper are compatible with
any DSMS that employs periodic updates of sliding windows and query results,
e.g., [2-8]. Our techniques are also applicable to a system such as PSoup [17],
where mobile users connect to a DSMS intermittently and retrieve the latest
results of sliding window queries. In our context, these asynchronous requests
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may be modeled as snapshot queries posed at various times. Given that mobile
users may have low connectivity with the system (e.g., via a wireless channel), it
is particularly important to guarantee low response times and up-to-date query
answers. Our transaction scheduler fulfills both of these requirements.

As discussed in Sect. 2, we assumed an evaluation model in which queries are
re-executed by scanning one or more windows or summaries, or a materialized
sub-result. Similar techniques were used in [1, 3, 5]. Our procedure for incre-
mental maintenance of materialized join results—using a batch of newly arrived
tuples from one window to probe the other window and generate new results—is
similar to the lazy multi-way join from [18]. In general, our query model of a
final aggregation function applied on a window or materialized sub-result is sim-
ilar to NiagaraCQ [2], but less expressive than, e.g., Aurora [6] and STREAM
[7]. However, we believe that our model is sufficiently expressive for many appli-
cations that require long-running queries for monitoring purposes, while at the
same time being simple enough to allow straightforward solutions of concurrency
control issues.

Our transaction model resembles multi-level concurrency control and multi-
granularity locking as it considers a sub-window, rather than an entire window,
to be an atomic data object. The novelty of our solution is that the order in
which read operations are performed is chosen in such a way as to minimize the
number of aborted transactions.

Our transaction scheduler employed serialization graph testing. Other schedul-
ing techniques include two-phase locking and timestamping [13]. However, two-
phase locking may not be appropriate in our context because it is not clear how
to force a particular serialization order using locks. Moreover, the possible prob-
lem with using timestamping for DSMS concurrency control is the difficulty of
ensuring latest-window serializability. Suppose that each transaction receives a
timestamp when it is passed to the transaction scheduler and that serialization
order is determined by timestamps. In this case, any concurrent window update
transaction is assigned a higher timestamp than a read-only transaction and is
therefore serialized before the read-only transaction. Hence, Algorithm2 would
be forced to abort every read-only transaction that is interrupted by a window
movement. A similar issue appears if we want to adapt multi-versioning con-
currency control techniques to enforce latest-window serializability, among them
snapshot isolation and commit-order preserving serializability [19].

7 Conclusions and Future Work

This paper presented DSMS concurrency control mechanisms that allow a win-
dow to slide forward while it, or an associated summary structure, is being
scanned by a query. Our solution is based upon a model that views DSMS data
access as a mix of concurrent read-only and write-only transactions. We proved
that conflict serializability is insufficiently strong to guarantee correct and up-
to-date query results, and defined more appropriate isolation levels. We also
implemented a transaction scheduler for enforcing the new isolation levels that
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is provably optimal in reducing the number of aborted transactions. Our sched-
uler was experimentally shown to improve query freshness and response times
while maintaining high transaction throughput.

We are interested in the following two directions for future work. First, we
want to extend our query execution model and investigate concurrency control
issues in query plans containing an arbitrary number of pipelined window op-
erators. One issue in this context is synchronization among the levels in the
pipeline, e.g., updates to the individual windows may take some time as they
are propagated up the pipeline to the final query operator. Another problem
appears when the same sub-query occurs more than once within a query, in
which case our current assumption of queries scanning each window once may
not hold (unless the sub-query can be flattened). Second, we want to extend our
treatment of DSMS concurrency control to include the semantics of data loss
and crash recovery, e.g., loss of data for a particular time interval, which might
make it impossible for queries to read a full window.
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Abstract. Traditional content based publish/subscribe (pub/sub) systems allow
users to express stateless subscriptions evaluated on individual events. However,
many applications such as monitoring RSS streams, stock tickers, or manage-
ment of RFID data streams require the ability to handle stateful subscriptions.
In this paper, we introduce Cayuga, a stateful pub/sub system based on non-
deterministic finite state automata (NFA). Cayuga allows users to express sub-
scriptions that span multiple events, and it supports powerful language features
such as parameterization and aggregation, which significantly extend the ex-
pressive power of standard pub/sub systems. Based on a set of formally
defined language operators, the subscription language of Cayuga provides non-
ambiguous subscription semantics as well as unique opportunities for optimiza-
tions. We experimentally demonstrate that common optimization techniques used
in NFA-based systems such as state merging have only limited effectiveness,
and we propose novel efficient indexing methods to speed up subscription pro-
cessing. In a thorough experimental evaluation we show the efficacy of our
approach.

1 Introduction

Publish/Subscribe is a popular paradigm for users to express their interests (“subscrip-
tions”) in certain kinds of events (“publications”). Traditional publish/subscribe
(pub/sub) systems such as topic-based and content-based pub/sub systems allow users
to express stateless subscriptions that are evaluated over each event that arrives at the
system; and there has been much work on efficient implementations [14]. However,
many applications require the ability to handle stateful subscriptions that involve more
than a single event, and users want to be notified with customized witness events as
soon as one of their stateful subscriptions is satisfied. Let us give two example appli-
cations that motivate the types of stateful subscriptions that a stateful pub/sub system
needs to handle.

Example 1: Stock Ticker Event Monitoring. Consider a system that permits financial
analysts to compose subscriptions over a stream of stock ticks [1]. Some sample sub-
scriptions are shown in Table 1. Subscription S1 is a traditional pub/sub subscription,
and it can be evaluated on each incoming event individually. However, an important ca-
pability of event processing systems is to detect specific sequences of events, as shown
in the next four subscriptions. To detect sequences, the system has to maintain state
about events that have previously entered the system. For example, to process Sub-
scription S2, the system has to “remember” whether an event with a stock price of IBM
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Table 1. Sample Subscriptions

Subscription Description
S1 Notify me when the price of IBM is above $100.
S2 Notify me when the price of IBM is above $100, and the first MSFT price

afterwards is below $25.
S3 Notify me when there is a sale of some stock at some price (say p), and the next

transaction is a sale of the same stock at a price above 1.05 · p.
S4 Notify me when the price of any stock increases monotonically for ≥ 30 minutes.
S5 Notify me when the next IBM stock is above its 52-week average.

S6 Once military.blog.com posts an article on US troop morale, send me the first post
referencing (i.e., containing a link to) this article from the blogs to which I subscribe.

S7 Send postings from all blogs to which I subscribe, in which the first posting is a
reference to a sensitive site XYZ, and each later posting is a reference to the previous.

above $100 has happened since the most recent MSFT event; only then are we inter-
ested in learning about future MSFT prices. Subscriptions S3 and S4 illustrate another
important component: We need to support parameterized subscriptions, i.e., subscrip-
tions that contain parameters that are bound at run-time to values seen in events. As an
example, in Subscription S3, we are looking for some stock that exhibits a 5% jump in
price; instead of having to register a subscription for each possible stock symbol, we
register a single subscription with a parameter that is set at run time. Subscription S4
requires support for aggregation, and Subscription S5 is an example that combines both
parameterization and aggregation.

Example 2: RSS Feed Monitoring. Our second motivating application is online RSS
Feed Message Brokering. RSS feeds have become increasingly important for online
exchange of news and opinions. With a stateful pub/sub system, users can monitor
RSS Feeds and register complex subscriptions that notify the users as soon as their
requested RSS message sequences have occured. Subscriptions S6 and S7 in Figure 1
are examples in this domain.

To reiterate: Traditional pub/sub systems scale to millions of registered subscriptions
and very high event rates, but have limited expressive power. In these systems, users
can only submit subscriptions that are predicates to be evaluated on single events. Any
operation across multiple events must be handled externally. In our proposed stateful
pub/sub system, however, subscriptions can span multiple events, involving parameter-
ization and aggregation, while maintaining scalability in the number of subscriptions
and event rate. In comparison, full-fledged Data Stream Management Systems (DSMS)
[2, 25, 11] have powerful query languages that allow them to express much more pow-
erful subscriptions than stateful pub/sub systems; however, this limits their scalability
with the number of subscriptions, and existing DSMSs only do limited query optimiza-
tion. Figure 1 illustrates these tradeoffs.

Another area very closely related to stateful pub/sub is work on event systems.
Event systems can be programmed in languages (called event algebras) that can
compose complex events from either basic or complex events arriving online. How-
ever, we have observed an unfortunate dichotomy between theoretical and systems-
oriented approaches in this area. Theoretical approaches, based on formal languages and
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well-defined semantics, generally lack efficient, scalable implementations. Systems ap-
proaches usually lack a precise formal specification, limiting the opportunities for query
optimization and query rewrites. Indeed, previous work has shown that the lack of clean
operator semantics can lead to unexpected and undesirable behavior of complex alge-
bra expressions [15, 31]. Our approach was informed by this dichotomy, and we have
taken great care to define a language that can express very powerful subscriptions, has
a precise formal semantics, and can be implemented efficiently.

Our Contributions. In this paper, we propose Cayuga, a stateful publish/subscribe sys-
tem based on a nondeterministic finite state automata (NFA) model. We start by intro-
ducing the Cayuga event algebra, which can express all example subscriptions shown
in Table 1, and we illustrate how algebra expressions map to linear finite sate automata
with self-loops and buffers (Section 2). To the best of our knowledge, this is the first
work that combines a formal event language definition with a methodology to effi-
ciently implement the language. We then overview the implementation of our system
which leverages techniques from traditional pub/sub systems as well as novel Multi-
Query Optimization (MQO) techniques to achieve scalability (Section 3). In a thorough
experimental study, we evaluate the scalability of our system both with the number of
subscriptions and their complexity, we evaluate the efficacy of our MQO techniques,
and we show the performance of our system with real data from our two example ap-
plication domains (Section 4). We discuss related work in Section 5, and conclude in
Section 6.

In closing this introduction, we would like to emphasize two important aspects of
our approach. First, instead of adding features to a pub/sub system in an ad-hoc fash-
ion, our system is based on formal language operators and therefore provides unam-
biguous query semantics that are necessary for query optimization. Second, compared
to similar approaches that use NFAs for scalability such as YFilter [13], Cayuga sup-
ports novel powerful language features such as parameterization and aggregation. One
interesting result from our experimental study is that common optimization techniques
used in NFA-based systems, such as state merging, have only limited effectiveness for
the workloads that we consider. On the other hand, some of our novel MQO techniques
can potentially be applied to other NFA-based systems.

2 Cayuga Algebra and Automaton

2.1 Data Model

Our event algebra consists of a data model for event streams plus operators for produc-
ing new events from existing events. An event stream, denoted as S or Si, is a (possibly
infinite) set of event tuples 〈a; t0, t1〉. As in the relational model, a = (a1, . . . , an)
are data values with corresponding attributes (symbolic names). The ti’s are temporal
values representing the start (t0) and end timestamps (t1) of the event. For example,
in the stock monitoring application, assume the stream of stock sales published by the
data source has fields (name,price,vol;timestamp). An event from that stream
then could be the tuple 〈IBM, 90, 15000; 9:10, 9:10〉. The timestamps are identical, be-
cause each sale is an instantaneous event. We assume each event stream has a fixed
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Table 2. Algebraic Expressions

Algebraic Expressions
S1: σθ(S1), where θ = S1.name = IBM ∧ S1.price > 100
S2: σθ2(σθ(S1);θ1 S2), where θ same as in Subscription S1, θ1 = S2.name = MSFT, θ2 = S2.price < 25
S3: σθ2(S1;θ1 S2), where θ1 = S2.name = S1.name, θ2 = S2.price > 1.05 ∗ S1.price
S4: σθ3(μσθ2 ,θ1(S1, S2)), where
θ1 = S2.name = S1.name, θ2 = S2.price >= S2.price.last, θ3 = DUR >= 30min

S5: σθ2(E;θ1 S3), where E = σDUR=52 weeks
`
μαg2 ,TRUE(αg1 ◦ σθ(S1), σθ(S2))

´
,

θ = name = IBM, θ1 = S3.name = IBM, θ2 = S3.price > AVG

S6: σθ1(S1);θ2 σθ3(S2)), where
θ1 = S1.website = ‘military.blog.com′ ∧ S1.category = ‘US troop morale′,
θ2 = contains(S2.description, S1.link), θ3 = (S2.website = site1 ∨ . . . S2.website = siten)
S7: μID,θ1(σθ3∧θ2(S1), σθ3(S2)), where θ1 = contains(S2.description, S2.link.last),
θ2 = contains(S1.description, ‘XY Z′), θ3 same as in Subscription S6

schema, and events arrive in temporal order. That is, event e1 is processed before e2
iff e1.t1 ≤ e2.t1. However, a stream may contain events with non-zero duration, over-
lapping events and simultaneous events (events with identical time stamp values). Our
operator definitions depend on the timestamp values, so we do not allow users to query
or modify them directly. However, we do allow constraints on the duration of an event,
defined as t1 − t0 + 1 (we treat time as discrete, so the duration of an event is the
number of clock ticks it spans). We store starting as well as ending timestamps and
use interval-based semantics to avoid well-known problems involving concatenation of
complex events [15].

2.2 Operators

Our algebra has four unary and three binary operators. Due to space constraints, we
give here only a brief description of them here; a formal definition and more examples
can be found in our technical report [12].

The first three unary operators, the projection operator πX, the selection operator
σθ, and the renaming operator ρf are well known from relational algebra. Projection
and renaming can only affect data values; temporal values are always preserved. As
the renaming operator only affects the schema of a stream and not its contents, we will
often ignore this operator for ease of exposition. Instead, we will denote attributes of an
event using the input stream and a dot notation, making renaming implicit. For example,
the name attribute of events from stream S1 will be referred to as S1.name. A selec-
tion formula is any boolean combination of atomic predicates of the form τ1 relop τ2,
where the τi are arithmetic combinations of attributes and constants, and relop can
be one of =,≤, <,≥, >, or string matching. We also allow predicates of the form
DUR relop c where the special attribute DUR denotes event duration and c is a con-
stant. The unary operators above enable filtering of single events and attributes, equiv-
alent to a classical pub/sub system. Subscription S1 is an example of such a stateless
subscription.

The added expressive power of our algebra lies in the binary operators, which sup-
port subscriptions over multiple events. All of these operators are motivated by a cor-
responding operator in regular expressions. The first binary operator is the standard
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union operator ∪, where S1 ∪ S2 is defined as { e | e ∈ S1 or e ∈ S2 }. Our second
operator is the conditional sequence operator S1;θ S2. For streams S1 and S2, and
selection formula θ (a predicate), S1;θ S2 computes sequences of two consecutive and
non-overlapping events, filtering out those events from S2 that do not satisfy θ. Adding
this feature is essential for parameterization, because θ can refer to attributes of both S1
and S2. This enables us to express “group-by” operations, e.g., to group stock quotes
by name via S1;θ S2, with θ being S1.name = S2.name. S1;θ S2 essentially works as
a join, combining each event in S1 with the event immediately after it in S2. However,
θ works as a filter, removing uninteresting intervening events. Subscriptions S2 and S3
are examples of such subscriptions.

Our third binary operator is the iteration operator μF,θ(S1, S2), motivated by the
Kleene-+ operator. Informally, we can think of μF,θ(S1, S2) as a repeated application of
conditional sequencing: (S1;θ S2)∪(S1;θ S2;θ S2)∪· · · . Each clause separated by the
∪ operator corresponds to an iteration of processing an event from S2 which satisfies
θ. The additional parameter F, a composition of selection, projection and renaming
operators, enables us to modify the result of each iteration. Thus μ acts as a fixed point
operator, applying the operator;θ on each incoming event repeatedly until it produces
an empty result. To avoid unbounded storage, at each interation, it will only remember
the attribute values from stream S1 and the values from the most recent iteration of S2.
For any attribute ATTi in S2, we refer to the value from the most recent iteration via
ATTi.last. Initially, this value is equivalent to the corresponding attribute in S1, but it
will be overwritten by each iteration.

At first it might seem surprising that our algebra needs μF,θ(S1, S2) to express the
equivalent of something as simple as (S2)+ in regular languages. The reason, like for
the;θ operator, is that we want to support parameterization efficiently. In fact, θ serves
the same purpose as in;θ: during each iteration it filters irrelevant events from S2 when
the next event from S2 is selected. In Subscription S5, it was used to make sure that no
quotes for other companies would be selected for a sequence of IBM prices, and vice
versa. Similarly, F removes irrelevant events during each iteration, like non-increasing
sequences in the example. Another interesting feature is that μ is a binary operator,
while Kleene-+ is unary. One reason, as can be seen in the definition of μ, is that we
need a way to initialize our attributes ATTi.last. The other reason is that, by adding
S1 to μ, both F and θ can refer to S1’s attributes. This enables us to support powerful
parameterized subscriptions such as S4.

Aggregates fit naturally into our algebra, where aggregation occurs over a se-
quence of events. Our aggregate operator is αg , where g is a function used to in-
troduce a new attribute to the output. Together with μ, we get a natural aggregate
of the form αg3

(
μαg2◦F,θ(αg1(E1), E2)

)
. In this expression, αg1 functions as an ini-

tializer, αg2 is an accumulator, and αg3 is a finalizer. For example, suppose we want
the average of IBM stock over the past 52 weeks, as referenced in Subscription S5.
If we let S1, S2, S3 all refer to our stream of stock quotes, S, this is expressed as
E = σDUR=52 weeks

(
μαg2 ,TRUE(αg1 ◦ σθ(S1), σθ(S2))

)
, where θ is name = IBM,

g1 is defined as AVG (→ price, COUNT (→ 1, and g2 is defined as AVG (→
COUNT.last×AVG.last+price

COUNT.last+1 , COUNT (→ COUNT.last+1. Notice that we use the last
feature of μ to compute our aggregate recursively. The average is now a value attached
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to an attribute and can be used by the remaining part of Subscription S5. Therefore
Subscription S5 can be expressed as σθ2(E;θ1 S3) where E is defined above, θ1 is
S3.name = IBM, and θ2 is S3.price > AVG.

For completeness, Table 2 also contains the two RSS subscriptions listed in Table 1.
Here we assume all the blogs the user subscribes to consist of site1, · · · , siten, and
contains(T, P ) is the substring match operator that tries to find substring pattern P in
text T ; ID is the identity function that has no effect on the input.

2.3 Automaton Description

Given the algebra’s similarity to regular expressions, finite automata would appear to
be a natural implementation choice. Similar to the classic NFA model, for an incoming
event, an automaton instance in one state can explore all the out-going edges, and non-
deterministically traverse any number of them. If it cannot traverse any edge, however,
this instance will be dropped.

We extend standard finite automata [19] in two ways. First, attributes of events can
have infinite domains, e.g., text attributes, and therefore the input alphabet of our au-
tomaton, which is the set of all possible events, can be infinite as well. To handle this
case, we associate each automaton edge with a predicate, and for an incoming event,
this edge is traversed iff the predicate is satisfied by this event. Second, to be able to
generate customized notification and to handle parameterized predicates over infinite
domains, we need to store in each automaton instance the attributes and values of those
events that have contributed to the state transition of this instance. These attributes and
values are called bindings. To avoid overwriting the bindings of earlier events with that
of latter events, we also need an attribute renaming function for each edge so that when
an event makes an automaton instance traverse that edge, the bindings in that event are
properly renamed before being stored in the instance.

We have developed a mechanical way to translate algebra expressions into automata.
Details of this mechanism as well as the proof of correctness can be found in our technical
report [12]. Intuitively, for a given algebra expression, we first construct a parse tree,
and then translate each tree node corresponding to a binary operator into an automaton
node. In our mechanism any left-deep parse tree can be translated into a single automaton,
referred to as a left-deep automaton. In the following sections, we focus only on left-deep
expressions and automata, and we leave general algebra expressions to future work.

We use an example to illustrate a left-deep automaton. Let subscription AutQ
be “Notify me when for any stock s, there is a monotonic decrease in price for
at least 10 minutes, which starts at a large trade (vol > 10, 000). The imme-
diately next quote on the same stock after this monotonic sequence should have
a price 5% above the previously seen (bottom) price.” Its algebra expression is
σθ5(σθ4(μσθ3 ,θ2(S1, S2));θ2 S3). The Si are shorthand notation for appropriately re-
named and projected versions of S: S1 ≡ ρf1 ◦ πname,price ◦ σθ1(S), S2 ≡ ρf2 ◦
πname,price(S), S3 ≡ ρf3 ◦ πname,price(S). The corresponding predicates and renam-
ing functions are: θ1 ≡ vol > 10, 000, θ2 ≡ company = company.last, θ3 ≡
θ2 ∧ minP < minP.last, θ4 ≡ θ3 ∧ DUR ≥ 10min, θ5 ≡ θ2 ∧ price >
1.05minP, f1 ≡ (name,price) (→ (company,maxP), f2 ≡ (name,price) (→
(company,minP), f3 ≡ (name,price) (→ (company,finalP). The explicit use
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of renaming is necessary for this example to make the schemas of the intermediate re-
sults at the different automaton nodes clear. The corresponding automaton is shown in
Figure 2.

Number of
concurrent subscriptions

few many

Complexity
low (trivial) pub/sub

of subscriptions high DSMS stateful pub/sub

Fig. 1. Tradeoffs between pub/sub and
Data Stream Management Systems

Fig. 2. Automaton for query AutQ

As opposed to NFA’s with arbitrary structures, certain regularity is enforced by the
translation from Cayuga algebra expressions. Now we describe some important proper-
ties of the structure of a left-deep automaton. Note that our MQO techniques described
in Section 3 have a crucial dependence on these properties.

Each left-deep automaton is acyclic, except for self-loops. There are three types of
edges, described as follows. Forward edges are those edges whose destination node is
different from the source node, e.g., the edge from A to B in the example. Each node
has at least one forward edge, except for the end node. Also on each node other than the
start node, there will be two self-loop edges called filter and rebind edge, respectively.
We draw a filter edge on top of the node, a rebind edge below the node (see node A in
Fig. 2). The predicate on a filter edge (or filter predicate) corresponds to the negation of
the filter formula θ in;θ or μF,θ. Nodes A and B in Figure 2 are two examples of nodes
containing filter edges that are translated from operators μF,θ and;θ respectively. Also,
by construction θ will appear in the forward and rebind edges of the same node as a
conjunction to the remaining predicate there. Predicate θ4 on the forward edge between
node A and B in Figure 2 illustrates this. The reason for this automaton construction
from algebra operators is that on the algebra side, an event is filtered when θ is not
satisfied (or ¬θ is satisfied), and on the automaton side, this happens if it traverses the
filter edge (and therefore cannot traverse any forward/rebind edge). Filter edges are
unique among the three types of edges in that the traversal of a filter edge does not
modify the bindings of the instance. If a node is not translated from;θ or μF,θ, the filter
predicate will be FALSE, and we omit drawing the edge. A rebind predicate corresponds
to the selection formula in F of μF,θ. Similarly, if a node is not translated from μF,θ, the
rebind predicate is FALSE, and we omit drawing the edge. The construction of rebind
edge is illustrated in Figure 2 by node A, translated from μσθ3 ,θ2 . Node B is shown
without rebind edge since it is translated from operator;θ2 .

3 Implementation and MQO Techniques

Our algebra and automaton model are designed to be amenable to multi-query opti-
mization. An obvious optimization is to merge equivalent states that occur in several
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automata. This is the approach taken by YFilter; details can be found in the paper by
Diao et al. [13]. The result of the merging process is a DAG with a single start node.
In the following we focus on implementation challenges that are unique to Cayuga. For
this discussion we need some additional notation.

3.1 Notation

A static predicate is a conjunction of atomic predicates that compare attribute values
of the incoming event to constants, e.g., name = IBM ∧ price > 10. A dynamic
predicate (or parameterized predicate) is a conjunction of atomic predicates of the form
ATT1 relop ATT2, which compares an attribute value of the incoming event with an
attribute of an earlier event. An example is θ2 in Subscription S3.

For ease of exposition, in the following discussion we assume that each predicate is a
conjunction of atomic predicates. Our techniques can be easily generalized to arbitrary
boolean combinations of atomic predicates by requiring that predicates be supplied in
disjunctive normal form (DNF), a disjunction of conjunctions of atomic predicates.
Each conjunction P can be rewritten as P =

∧
i ATTi relop CONSTi ∧

∧
j ATTj relop

ATTkj
. We refer to

∧
i ATTi relop CONSTi and

∧
j ATTj relop ATTkj

as the static and
dynamic parts of P , respectively. If either part is empty, it is equivalent to TRUE.

A node of an automaton is active if there are automaton instances at the node. For
each incoming event, an automaton instance is unaffected if that event makes the in-
stance traverse its filter edge; otherwise it is affected. For example, in Subscription S2
the filter condition θ1 ensures that after matching the high-price IBM quote, the cor-
responding instance of the automaton will be affected only by MSFT quotes and can
safely ignore quotes for other companies.

3.2 Design Challenges

Effective multi-query optimization for Cayuga’s stateful parameterized subscriptions
must meet three crucial challenges. Evaluating Static Predicates. Evaluation of
Cayuga’s subscriptions is driven by edge predicates being satisfied (or not) for an in-
coming event. The number of active automaton instances and the number of edges that
each instance could potentially traverse can be very large. Hence, evaluating all these
edge predicates for each incoming event is not feasible. So we need to index the pred-
icates, which is the classic pub/sub matching problem. Evaluating Dynamic Pred-
icates. Besides the static predicates handled by traditional pub/sub systems, Cayuga
also needs to deal with dynamic predicates. This problem has not been studied in tra-
ditional pub/sub systems. Identifying Affected Instances. Although the total number
of automaton instances can be very large at any time, the number of instances affected
by an event is typically orders of magnitude lower. In the stock monitoring application,
for example, a subscription that matches a sequence of IBM prices can ignore events
for any other company. So we need an index that enables us to identify the affected
instances quickly.

Observe that an instance is affected iff it cannot traverse the filter edge of its state
(i.e., its filter predicate is satisfied). Therefore the problem of identifying affected in-
stances is the same as the problem of efficiently evaluating predicates.
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While we can use standard data structures from the pub/sub literature for indexing
static predicates, it is not obvious how to index dynamic predicates. We propose two
general approaches: (1) dynamic predicates are handled like static predicates once the
parameter values are known, and (2) dynamic predicates are not indexed. The first ap-
proach is based on the observation that for an instance in automaton state X , all the
parameters on the outgoing edges of state X are already bound by that instance. For
example, in Subscription S3, assume the automaton advances to the first state on an
incoming stock quote for IBM. Now the name parameter (S1.name in θ1) is bound to
IBM, and hence θ1 will check if the name attribute of later stock quotes is equal to
IBM. At this time the corresponding predicate S2.name = IBM can be inserted into
a (pub/sub) index. There is an obvious tradeoff with this approach: if we index the dy-
namic predicates, index maintenance becomes much more expensive compared to not
indexing dynamic predicates. On the other hand, if we index only the static predicates,
the index will be less selective and require evaluating the dynamic parts of those predi-
cates whose static part is satisfied.

In the following sections, we describe our solutions to handling dynamic predicates
for the case of indexing filter predicates and FR predicates (predicates on forward or
rebind edges) respectively.

3.3 AN-Index and AI-Index

The goal of these indexes is to efficiently identify the instances that are affected by an
incoming event. To do so, we index each instance by the filter predicate of its current
state. More precisely, the index takes the filter predicate as the key and the correspond-
ing instance as the value. We implement this index with a two-level scheme. The first
level index only works on the static part of filter predicates. We refer to it as the Active
Node Index (AN-Index), since it essentially returns all the automaton instances of those
active nodes on which the static parts of filter predicates are satisfied. Then, for each
such node, the second level index, called the Active Instance Index (AI-Index), is used
to further prune the candidate set of affected instances by indexing the dynamic part of
the filter predicates.

One reason for this separation is that it enables us to leverage existing data struc-
tures. For the fairly static AN-index, we can use a pub/sub index like Le Subscribe [14].
However, to keep index maintenance costs in the second level low, the AI-indexes
are simple hash tables. Hence only equality predicates are indexed. This nevertheless
proves to be a very useful feature for supporting parameterized atomic predicates like
name = Si.name, which simulates a grouping by name and essentially has the same
effect as the frequently-used “partition-by” window feature in CQL [25]. The two-level
approach also simplifies data structure optimizations. If the system determines that for
one of the AI-indexes the maintenance overhead exceeds the savings from improved
selectivity, this AI-index can be disabled without affecting the use of the first level
index.

3.4 FR-Index

Knowing the instances affected by an incoming event is not sufficient. We also have
to determine, which forward and rebind edges these instances will traverse. Traversing
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an FR edge modifies instance bindings, affecting the instance content; if no edge can
be traversed, the instance is affected by being deleted. A second pub/sub-style index,
called the FR-Index, is used in Cayuga to index the static part of the FR predicates. Since
all FR predicates are conjunctions, after using the FR-Index, we still need to eliminate
false hits by post-processing those instances whose static predicates are satisfied by
evaluating their dynamic predicates.

Here we do not index the dynamic part of each FR predicate, because for each in-
coming event, only the affected instances will need to have their FR predicates further
evaluated. This leads to a much lower benefit-cost ratio compared to the problem of
finding affected instances.

Figure 3 illustrates the relationship between the different indices with respect to how
the search space of instances is pruned. The AN-Index and AI-Index identify affected
instances efficiently, while the FR-Index evaluates the static part of FR predicates of
each instance so that a decision of whether to advance or drop the instance can be made
quickly.

3.5 System Architecture and Data Flow

The overall system architecture of Cayuga is shown in Figure 4. Its core component is
the State Machine Manager, which manages the merged query DAG and the automaton
instances at the nodes. It also maintains the AN-Index and AI-Index. Outside the State
Machine Manager, there is the FR-Index.

Cayuga needs to handle two types of updates—insertion/deletion of subscriptions
and arrival of input events. A new query is inserted by first merging it into the query
DAG in the State Machine Manager. Then, for each forward and each rebind edge, an
entry is added into the FR-index for the static part of the edge predicate. When the query
is deleted, the insertion process is simply reversed.

The diagram in Figure 5 summarizes the Cayuga event processing steps. On arrival
of an event, the following happens. First, the FR-index generates the set of IDs of the
satisfied static predicates on FR edges, and the AN-index returns the set of AI-Index
instances. Then, for each AI-Index instance in the set, we do the following. We first
obtain from this AI-index the set of relevant instances for which the dynamic equality
predicate of the filter condition is satisfied. For each of these instances the remaining dy-
namic atomic predicates of the filter edge are evaluated. This gives us the set of affected

Fig. 3. InstanceSearchSpace
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Fig. 5. Event Processing Diagram

instances. Then we determine for each affected instance the candidates of satisfied FR
edges by intersecting the output of FR-index with the set of IDs of the static FR predi-
cates associated with the current node, followed by an evaluation of the dynamic parts
of FR predicates whose static parts are satisfied.

Simultaneous event arrivals pose no serious problems for our implementation. We
compute new instances for each arriving event as discussed above, but do not install
them into the NFA. When we see an incoming event with end timestamp strictly greater
than all previous events, we install all new instances atomically.

We use a garbage collection mechanism to manage the memory resource consumed
by storing bindings in events and automaton instances. Details are omitted due to space
constraint.

4 Performance Evaluation

We built an initial prototype of Cayuga in C++. All experiments were run on a 3 GHz
Pentium 4 PC with 1 GB of RAM and 512 KB cache. The operating system is Red
Hat Linux 9. We loaded the input stream into memory before starting the experiment
to make sure that the input tuples are delivered as fast as our system can process them.
We measured the total runtime for matching all incoming events with all subscriptions
in the system. For each experiment we perform several runs. The standard deviation in
all experimental runs was well below 1%; we therefore only report averages and omit
error bars from the graphs.

4.1 Technical Benchmark

To test the overall efficiency of Cayuga and measure the evaluation cost of the different
operators of our algebra, we designed a synthetic technical benchmark motivated by the
stock application, but more complex to provide flexibility in subjecting our system to a
stress test.

Event and Subscription Generation. We use an event stream with eight data at-
tributes: four discrete attributes (e.g., company name) and four continuous attributes
(e.g., stock price). The parameters for generating the stream and the associated sub-
scriptions are shown in Table 3.

We generated subscriptions according to five different templates: LinearStat,
LinearDyn, Filter, NonDeterministic, and NonDeterministicAgg. All
subscriptions are over a single input stream S. We use Si to refer to an appropriately
renamed occurrence of S in the algebraic expression.
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Table 3. Parameters (default values)

Variable Value Variable Value

Number of events 100,000 Number of attributes per event 8
Number of discrete attributes 4 Number of continuous attributes 4
Number of subscriptions 200,000 Domain size of discrete attribute 100
Number of atomic predicates 2 + 2 Number of distinct ranges that can be 25
(discrete + continuous) selected for inequality predicates
Selectivity of atomic inequality predicate 0.7 Number of steps per sequence query 3
Zipf parameter, first step (zipf1 ) 1 Zipf parameter, second step (zipf2 ) 1
Zipf parameter, third step (zipf3 ) 0.8 Duration constant (t) 20

LinearStat subscriptions define simple sequential patterns of three consecutive
events, expressed as σθ3(σθ2(σθ1(S1);S2);S3) in our algebra. Essentially, this query
looks at any three consecutive events in the stream, and outputs the concatenated re-
sult if all of the three selections are satisfied. If such a template were applied to our
stock stream example, then our template might generate the following subscription
Q: “Notify me when there are three consecutive stock quotes representing IBM be-
low $10, followed by IBM above $15, and finally IBM below $15.” The θi are con-
juncts of four static atomic predicates: two equality predicates on two of the discrete
attributes, and two inequality predicates on two of the continuous attributes. One of
the discrete attributes, ATT, is designated as the primary attribute of the query. This
attribute is guaranteed to appear in all three of the θi, and to select exactly the same
value for each formula. The name attribute in Subscription Q is an example of such
an attribute, as it is assigned to IBM in each case. As all of the formula select the
same value, we refer to the predicate ATT = CONST as the primary predicate of
the query.

Attributes and their values are selected independently, using zipf1 to select attributes
and zipfi to select the value for θi. This setup is motivated by practical scenarios where
user preferences typically follow a skewed (often Zipf) distribution. By adjusting the
Zipf parameter, we can control the similarity of the different subscriptions.

To test the overhead of evaluating parameterized predicates in Cayuga, we designed
the LinearDyn based on LinearStat. The difference between it and Linear-
Stat is that θ2 and θ3 now have an additional parameterized atomic predicate. An
example of such a predicate from our stock stream would be the requirement that the
stock price from the second quote is 1% above the price of the original quote.

The overhead of evaluating filter predicates is measured with the Filter template
σθ3(σθ2(σθ1(S1);θ4 S2);θ5 S3). In this template, θ1, θ2, θ3 are all selected in the same
way as for LinearStat. On the other hand, θ4 is a filter formula of the form DUR ≤
t ∧ S2.ATT = CONST, where the default value of t is shown in Table 3 and S2.ATT =
CONST is the primary predicate of the query in LinearStat. θ4 relaxes the selectivity
of the original LinearStat query by allowing intermediate non-matching events to
be filtered out. The second filter formula θ5 is similar to θ4; we merely replace S2.ATT

with S3.ATT. To illustrate this idea with our stock stream example, suppose we took
Subscription Q and made θ4 the filter predicate DUR ≤ 10min ∧ S2.name = IBM. In
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this case, stock quotes of other companies that arrive between the first two IBM quotes
would not lead to a failure of the pattern, as long as consecutive IBM quotes arrive
within 10 minutes of each other.

The effect of non-determinism in our automata is measured by the NonDeter-
ministic template σθ3 ◦ μID,θ5(σθ2 ◦ μID,θ4(σθ1(S1), S2), S3). This query is much
more powerful than the previous queries. An analogy based on Subscription Q would
be a query that not only searches for patterns of consecutive IBM stock quotes, but one
that finds any n-tuple of IBM stock quotes (n ≥ 3) that satisfies the duration constraints
and selection criteria θ4 and θ5, ignoring all stock quotes in between. Hence the output
of this query will be a superset of the Filter query with exactly the same formulas θi.

Finally, template NonDeterministicAgg implements aggregation. It extends
NonDeterministic by computing the sum of the values of the continuous
attributes, for the n events that satisfy the query pattern.

In processing these subscriptions, events were generated by uniformly selecting val-
ues for each of the eight attributes of the stream schema. We also examined skewed
event distributions, but observed the same trends.

Experimental Results. Figure 6 illustrates the results of various throughput experi-
ments. Figure 6(a) shows how the system throughput changes with the number of sub-
scriptions. Even for 400K concurrently active subscriptions, throughput is well above
1000 events per second. As expected, the more complex the query workload, the lower
the throughput, except for LinearStat and LinearDyn, which are almost identical
because the cost of checking parameterized predicates is negligible compared to the
other matching costs and the cost of maintaining the index structures.

Cayuga’s high throughput is achieved for a challenging workload. Each event on
average matches about 100 static predicates in the FR index. Furthermore, at any time,
an average of 6000 to 16,000 nodes are active in the State Machine Manager, indicating
that events satisfied a high percentage of the edge predicates. The high throughput was
achieved because the index structures ensured that only about 40 to 120 of these active
nodes had to be accessed per incoming event.

Note also that, despite the skewed query distribution, the merged query DAG is very
large. For instance, before merging states the DAG for 100K subscriptions would have
300K nodes and edges. Our merged DAG still has about 215K nodes: 48K at level 1,
71K at level 2, and 96K at level 3.
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In Figure 6(b), we compare the effect of parameter zipf1 on system performance.
Less skew makes the subscriptions less similar, hence reduces the possibilities for state
merging. This can be observed in the graph. Most of the performance difference is
caused by the number of level 1 nodes in the query DAG, because that is where most
activity takes place. For Zipf parameter 0.8, there are 101K nodes, while for Zipf param-
eter 1.4, there are 36K nodes. The overall number of matched subscriptions is virtually
unaffected by the Zipf parameter, because there is no correlation between event values
and query constants. This shows that state merging is effective when subscriptions fol-
low a very skew distribution. However, by looking at the trend of curves in Figure 6(b),
state merging becomes less important when the query distribution is less skew (e.g.
zipfian value no greater than 1).

Finally, we examined the effect of edge predicate selectivity on the performance.
Figure 6(c) shows how the throughput decreases when the inequality predicates on the
continuous attributes select more values. Notice that the curve’s slope is inverse quadratic,
which is to be expected, as we are varying the selectivity of two predicates simultaneously.

Multi-query Optimization. In order to see the benefits of our MQO techniques, we
run our system with different optimizations being turned on/off against the technical
benchmark. Due to limited space, we report only the result on Filterworkload. Other
results are similar.

Figure 7 shows the performance of Cayuga compared to four other system modes ex-
plained in Table 4. “Instance Index” corresponds to AN-Index + AI-Index. To keep the
runtime of the naive system manageable, we reduced the number of concurrently active
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Table 4. Meaning of the curves

Mode Name StateMerge FR-Index Instance Index

Cayuga on on on
No State Merging off on on
No FR-Index on off on
No Instance Index on on off
No MQO off off off



Towards Expressive Publish/Subscribe Systems 641

subscriptions to 10K-40K, compared to 100K-400K in other experiments. Note that the
y-axis is a log scale; hence with multi-query optimization the system is faster by a few
orders of magnitude compared to that of a system without any of our MQO techniques.

It is clear from the graph that most of the performance gain comes from the indexing
of FR predicates and instances, and not from merging automata states. This is true
especially when the query workload is generated with a medium zipfian value, such as
the default value 1.0 in our setup.

4.2 Experiments with Real Data

Full-fledged DSMSs are expressive enough to support extended pub/sub subscriptions,
although the have only limited support for MQO and the query language based on
SQL is not suitable for online event detection, as will be elaborated in Section 5. We
used real stock data to compare Cayuga with the Stanford STREAM system, a general
stream processing system with a relatively mature implementation. The result confirms
our expectation that Cayuga is more suitable to extended pub/sub applications. Due to
space constraints, we refer to the interested readers to our technical report for a full
description of this experiment [12].

Subscriptions on RSS Feeds. We obtained RSS V2.0 feeds from 415 websites. Since
our current prototype cannot handle string comparison, we preprocessed the feeds by
converting each RSS feed item into a Cayuga event by hashing the string values of the
RSS fields to integers. Some RSS fields such as <title> and <link> occur in each item,
while others such as <author> are optional. To be able to pose interesting subscriptions,
we augment the event schema with three additional attributes: website, channel, and
popularity. The information of the first two attributes can be obtained directly from
the feeds, while that of the last attribute is obtained through an external source that
maintains the hit counts of these feeds. We sort the feed items by their publication
date (<pubDate> field) and form an event stream of 26,623 events. The number of
attribute/value pairs in each event varies from 6 to 11.

We composed four query templates shown in Table 5. To generate 10K to 40K sub-
scriptions for each template, we randomly pick integer values to instantiate W and X .
The domain sizes of W and X are respectively 415 and 100. The duration constraint of
each query is fixed to be no more than 100 events.

The result is shown in Figure 8. The trade-off between query expressiveness and sys-
tem throughput is well exhibited. However, even when processing 40K subscriptions of
Iteration template, where thousands of witnesses are found and output, the system
can still maintain a throughput of more than 100 events per second.

Table 5. Template Name and Description

Stateless: return all articles from website W with popularity > X .
Concatenation: return a series of 3 articles from website W with popularity > X .
Parameterization: return a series of 3 articles from website W on the same channel

with increasing popularity.
Iteration: return a series of N articles from website W on the same channel

with increasing popularity. N unbounded.
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5 Related Work

There has been much interest in event processing systems with a wide variety of ex-
pressiveness of the subscriptio language. At one end of the spectrum lie pub/sub sys-
tems [4, 30, 14]. These systems sacrifice expressiveness to achieve high performance.
Work on large-scale filtering of streaming XML documents handles query languages
that are fragments of XPath, which is more expressive than pub/sub [13, 10, 18, 17].
However, XML filtering systems do not address parameterization, and they cannot han-
dle subscriptions across multiple XML documents. Automata are also a popular choice
for many systems in this category [13, 18]. Our FR-Index can be potentially useful to
YFilter, given that currently YFilter will have to sequentially evaluate all the structure
predicates (usually equality comparison on string tags) on out-going edges for each
active node to make non-deterministic state transitions [13].

Somewhat higher in the expressiveness spectrum is work from the Active Database
community [29] on languages for specifying more complex event-condition-action
rules. The composite event definition languages of SNOOP [9, 3] and ODE [16] are
important representatives of this class. Both systems describe composite events in a
formalism related to regular expressions, allowing events to be recognized using a
nondeterministic finite automaton model. The automaton construction of [16] supports
a limited form of parameterized composite events defined by equality constraints
between attributes of primitive events. However, the semantics of some of the more
expressive event languages is not well-defined [15, 31], and it is not clear how the dif-
ferent languages compare to each other in terms of expressiveness. In addition, the
performance of event processing systems with very expressive query languages has
not been explored in depth, especially in terms of scalability with the number of
subscriptions. Our work can be viewed as extending this style of system with full
support for parameterized composite events and support for aggregate subscriptions, fo-
cusing on multi-query optimization using a combination of state merging and indexing
techniques.

Still higher in the spectrum, several groups are building systems with very expressive
query languages [8, 25, 11, 2]. Sistla and Wolfson [27] describe an event definition and
aggregation language based on Past Temporal Logic. The TREPLE language [24] is a
Datalog-based system with a precise formal specification; it extends the parameterized
composite event specification language of EPL [23] with a powerful aggregation mech-
anism that is capable of explicit recursion. Perhaps the most powerful formal approach
is STREAM’s CQL query language [25], which extends SQL with support for window
queries. Like SQL itself, CQL is declarative and admits of a formal specification [6];
and there are some initial results characterizing a sub-class of queries that can be com-
puted with bounded memory [28, 5]. However, as we pointed out in the introduction,
it is not clear whether SQL based languages with set semantics are suitable for real-
time event detection and composition. Similar to SQL, the data model underlying these
stream query languages is unordered, and so in order to pin-point the i-th tuple (in terms
of temporal order) within a set of N tuples returned by a window operator, an N -way
self-join with temporal constraints on these N tuples is required. A similarly powerful
approach is represented by Aurora and Borealis [8, 2]. These two systems, however,
use a procedural boxes-and-arrows paradigm which is much less amenable to formal
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specification in our style. Without formal semantics, it is hard to prove the correctness
of query formulations, and opportunities for query rewrite/optimization in such systems
are limited since many operator boxes are treated as black boxes.

There has also been some work in extending the expressiveness of pub/sub sys-
tems [22, 21]. However, [22] focuses on a distributed setting, and the degree of ex-
pressive power achieved by its query language is not as high as our algebra (e.g. no
parameterization), and its implementation does not have MQO techniques other than
state merging. There is no query language defined in [21], and the notion of a “state-
ful” subscription there is based on ”state transition”; that is, when a regular (stateless)
pub/sub subscription starts to be satisfied, or ceases to be satisfied.

Related to our implementation, Sellis [26] is one of the first to address general multi-
query optimization in databases. Traditionally this is performed by sharing operators
and query results [7, 8, 11, 20]. Our multi-query optimization is fundamentally different
and aggressively exploits the relationship of our event algebra to automata.

6 Conclusions and Future Work

We presented Cayuga, a novel solution for extended pub/sub applications. Cayuga ex-
tends previous work on event processing by adding built-in support for parameteri-
zation, aggregatation, and it supports simultaneous events and events with non-trivial
duration. We plan to extend this work by developing a complete optimization frame-
work, including query rewrite rules and more effective MQO strategies. It would also
be interesting to investigate how to adapt Cayuga to a distributed setting.
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Abstract. A data object is broad if it is one of the k-Nearest Neighbors (k-NN)
of many data objects. We introduce a new database primitive called General-
ized Nearest Neighbor (GNN) to express data broadness. We also develop three
strategies to answer GNN queries efficiently for large datasets of multidimen-
sional objects. The R*-Tree based search algorithm generates candidate pages
and ranks them based on their distances. Our first algorithm, Fetch All (FA),
fetches as many candidate pages as possible. Our second algorithm, Fetch One
(FO), fetches one candidate page at a time. Our third algorithm, Fetch Dynamic
(FD), dynamically decides on the number of pages that needs to be fetched. We
also propose three optimizations, Column Filter, Row Filter and Adaptive Filter,
to eliminate pages from each dataset. Column Filter prunes the pages that are
guaranteed to be non-broad. Row Filter prunes the pages whose removal do not
change the broadness of any data point. Adaptive Filter prunes the search space
dynamically along each dimension to eliminate unpromising objects. Our experi-
ments show that FA is the fastest when the buffer size is large and FO is the fastest
when the buffer size is small. FD is always either fastest or very close to the faster
of FA and FO. FD is significantly faster than the existing methods adapted to the
GNN problem.

1 Motivation

Given two datasets R and S, an object in S is called broad if it is one of the k Near-
est Neighbors (k-NN) of many objects in R. A k-NN query seeks the k closest ob-
jects in a dataset S to a given query object q with respect to a predefined distance
function, where k is a given positive integer. Finding the broadness of data is needed
in many applications such as life sciences (e.g., detecting repeat regions in biological
sequences [10] or protein classification [6]), distributed systems (e.g., resource alloca-
tion), Spatial databases (e.g.,Decision Support Systems or Continuous Referral Systems
[12]), profile-based marketing, etc.

In this paper, we define a new database primitive, called the Generalized Nearest
Neighbor (GNN) which naturally detects data broadness. Given two datasets R and S,
the GNN query finds all the objects in S′ ⊆ S that appear in the k-NN set of at least
t objects of R, where t is a cutoff threshold. The objects in the result set of a GNN
query are broad. Here, S′ is the set of objects that the user focuses on for broadness

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 645–663, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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property. If R = S, then it is called mono-chromatic query. Otherwise, it is called bi-
chromatic query. Following examples present GNN queries in two different problem
domains.

Example 1. (Bioinformatics) Functional relations among families of genes are usually
found through similarity of their features (e.g., sequences, structures). If a gene from
family S is one of the top closest genes to many of the genes from family R, then that
gene is considered too broad (or useless) for classification. Such genes are filtered to
obtain better efficiency and classification quality since they mask the results from other
genes [8]. In this example, R = first family of genes, S = S′ = second family of
genes. ��

Example 2. (Spatial databases) Suppose that people usually dine at one of the three
closest restaurants to their houses. An entrepreneur who wants to invest in Mexican
restaurant business would want to know the Mexican restaurants that potentially have
many customers. In this example R = set of houses, S = set of restaurants, and S′ =
set of Mexican restaurants. ��

The trivial solution to a GNN query is to run a k-NN query for each object in R one
by one, and accumulate the results for each object in S. Currently, biologists are using
this approach for the queries in Example 1. However, this approach suffers from both
excessive amount of disk I/Os and CPU computations. When the datasets do not fit into
the available buffer, a page that will be needed again might be removed from buffer
while processing a single k-NN query. CPU cost also accounts for a significant portion
of the total cost.

In this paper, we assume datasets to be larger than the available buffer. We propose
three solutions. Our methods arrange the data objects into pages. Each page contains
a set of objects and is represented by their minimum bounding rectangle (MBR). Two
R*-trees [2] are built on objects in R and S. The candidate pages from S that may
contain k-NNs for the MBRs of R are predicted. Each candidate page s ∈ S is as-
signed a priority based on its proximity to a MBR r ∈ R and is stored in a Priority
Table (PT). Our first algorithm, pessimistic approach, fetches as many candidate pages
as possible from S for each r. Our second algorithm, optimistic approach, fetches one
s at a time for each r. Our third algorithm dynamically decides the number of pages
that needs to be fetched for each r by analyzing query history. We reduce the CPU
and I/O cost significantly through three optimizations by dynamically pruning 1) pages
of S that are not in the k-NN set of sufficiently many objects in R, and 2) pages
of R whose nearest neighbors do not contribute to the result 3) objects in candidate
MBRs of S that are too far from the MBRs of R. We further reduce these costs by
pre-processing the input datasets using a packing technique called Sort-Tile-Recursive
(STR) [16].

Experiments show that our optimistic strategy works best when the buffer size is
small and pessimistic strategy when the buffer size is large. On the other hand, dynamic
strategy is always either the best of the three or very close to the better of the two
other strategies. Our methods are significantly faster than sequential scan, R-tree–based
branch-and-bound method [15], GORDER [21], MuX index [5] and RkNN [20] .
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Data broadness is a new problem that requires new approaches. To our best knowl-
edge, all of the following ideas are introduced first time in this paper and has not been
discussed elsewhere before:

• The GNN problem.
• Use of PT to obtain global-coarse-grain view.
• Three search strategies: FA, FO and FD.
• Column, Row and Adaptive Filters.

The rest of the paper is organized as follows. Section 2 presents background on
well known NN query types. Section 3 introduces the problem. Section 4 explains how
the candidate pages are determined. Section 5 discusses our pessimistic and optimistic
strategies. Section 6 discusses our dynamic strategy. Section 7 presents an optimization
strategy for reducing the CPU and I/O costs. Section 8 presents our experimental results.
We end with a brief discussion in Section 9.

2 Related Work

A number of index-based methods have been developed for k-NN queries. Hjaltson and
Samet [9] used PMR quadtree to index the search space. They search this tree in a depth-
first manner until the k nearest neighbors are found. Roussopoulos et. al., [15] employed
a branch-and-bound R-Tree traversal algorithm. The two-phase method [13] determines
k closest objects based on feature distance. It then runs a range query using the actual
distance to the kth closest object found in the first phase as the query range. Seidl and
Kriegel [18] proposed a method that runs in multiple phases iteratively updating the
upper and lower bounds of kth NN. It stops when these bounds coincide. Berchtold
et. al., [3] divide the search space using Voronoi cells. Beyer et. al., [4] show that for
a broad set of data distributions most of the known k-NN algorithms run slower than
sequential scan. Thus, despite its simplicity, sequential scan still remains a formidable
competitor to index-based k-NN methods.

Korn et. al., [12] introduced the Reverse Nearest Neighbor (RNN) problem. They
precompute the NN of all the objects in the dataset. Yang and Lin introduced the Rdnn-
tree for RNN queries [22]. Stanoi et. al., proposed to compute a region of influence with
the help of a Voronoi Diagram [19]. It then performs a range search with radius equal
to the radius of the influence region. Tao et. al., [20] generalize the RNN problem to
arbitrary number of NNs using a filter-and-refine approach.

Despite its wide use in many areas, All Nearest Neighbor (ANN) is the least studied
NN query type. MuX uses a two-level index structure called MuX index [5]. At the
top level, MuX index contains large pages (or MBRs). At the next level, these pages
contain much smaller buckets. For each bucket from R, it computes a pruning distance
as it scans the candidate points from S. It prunes the pages, buckets, and points of S
beyond this distance for each bucket of R. GORDER [21] is a block nested loop join
method. It first reduces the dimensionality of R and S by using Principal Component
Analysis (PCA). It then places a grid on the space defined by PCA and hashes data
objects into grid cells. Later, it reads blocks of data objects from grid cells by traversing
the cells in grid order and compares all the objects in pairs of grid cells whose MINDIST
is less than the pruning distance defined by the kth NN.
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3 Problem Definition

Let R and S be two datasets. The GNN query is defined by a 5-tuple GNN(R, S, S′, k,
t), where S′ ⊆ S, and k and t are positive integers. This query returns the set of tuples
(s, Rs), where s ∈ S′, Rs ⊆ R is the set of objects that have s as one of their k-NN, and
|Rs| ≥ t. We use the Euclidean distance as the distance measure in this paper unless
otherwise stated.

r1

r2

r3
r4

s1

s2

s3

s4
s5

r5

Fig. 1. The white and black points are the locations of the 2-D objects in datasets R = {r1, · · ·,
r5} and S = {s1, · · ·, s5} respectively. The circles show the 2-NNs of the objects of R in S.

Assume that the white and black points in Figure 1 show the layout of 2-D datasets
R = {r1, · · ·, r5} and S ={s1, · · ·, s5} respectively. Consider the following query:

GNN(R, S, S′ = {s1, s2, s5}, 2, 3).

This translates as: “Find the objects in S′ that are in the 2-NN set of at least three objects
in R”. In Figure 1, the circles centered at each ri ∈ R covers the 2-NN of ri, ∀i. Only
s2 and s4 are covered by at least three circles. We ignore s4 since s4 /∈ S′. The set {r1,
r2, r3} has s2 in their 2-NN. Therefore, the output of this query is {(s2, {r1, r2, r3})}.
Note that we cannot ignore the data points in S−S′ prior to GNN query. In other words
GNN(R, S, S′, k, t) �= GNN(R, S′, S′, k, t). For example, in Figure 1, removal of s3
and s4 prior to GNN query changes the 2-NNs of r2, r3 and r4. As a result s1 becomes
one of the 2NNs of r2 and r3. Hence s1 is incorrectly classified as broad.

A nice property of the GNN query is that both mono-chromatic and bi-chromatic
versions of the standard k-NN, ANN and RNN queries are its special cases. Following
observations state these cases. One can prove these from the definition of the GNN
query. Note that the goal of this paper is not to find different solutions to each of these
special cases. Our goal is to solve a broader problem which can not be solved trivially
using these special cases.

Observation 1. GNN({r}, S, S, k, 1) returns the k-NN of the object r in S. If r ∈ S,
then it corresponds to the mono-chromatic k-NN query. Otherwise, it corresponds to
the bi-chromatic k-NN query.

Observation 2. GNN(R, S, S, 1, 1) returns the ANN of R in S. If R = S, then it is the
mono-chromatic case, otherwise bi-chromatic case.
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Observation 3. GNN(R, S, {s}, 1, 1), where s ∈ S, returns the RNN of the object s in
R. If R = S, then it is the mono-chromatic case, otherwise bi-chromatic case.

4 Predicting the Solution: Priority Table Construction

Let R and S be two given datasets, and A and B be the sets of MBRs that contain the
objects in these datasets. We discuss the computation of the candidate set of MBR pairs
one from A and the other from B that needs to be inspected to calculate a given GNN
query. We assume that the datasets are packed and indexed prior to the GNN query.
We discuss packing of the dataset in more detail in Section 7. This is a one time cost
per dataset; the same index will be used for all the queries. We use STR [16] for a
total ordering of the data. Throughout this paper R*-Tree is used to index the datasets.
Other index structures can be used to replace the R*-tree. For simplicity, we choose the
capacity of each MBR of the R*-tree as one disk page and use leaf level MBRs to prune
the solution space.

Given two MBRs B1 and B2, we define MAXDIST(B1, B2) and MINDIST(B1,
B2) as the maximum and minimum distance between B1 and B2. The following lemma
establishes an upper bound to the k-NN distance to the objects in a set of MBRs.

Lemma 1. Let A be the MBR of a set of objects and a ∈ A be an object. Let B =
{B1, · · · , B|B|} be the set of leaf level MBRs of an index structure built on a dataset.
Assume that the MBRs in B′,where B′ ⊆ B, contain at least K objects. Let ε denote the
distance of object a to its kth NN in B, then

ε ≤ max
B∈B′

{MAXDIST(A, B)}, ∀k, 1 ≤ k ≤ K.

Proof follows from the observation that all objects in B′ appear in B too.For a given
positive integer k, let m be the integer, 1 ≤ m < |B|, for which

m−1∑
i=1

| Bi |< k ≤
m∑

i=1

| Bi |,

where |Bi| is the number of objects in Bi. Let MAXDIST(A, Bi) ≤ MAXDIST(A,
Bi+1), ∀i 1 ≤ i <|B|, where |B| is the cardinality of B.

From Lemma 1, we know that the k-NN distance of the objects in A to the objects
in B is at most MAXDIST(A, Bm). Hence, if MAXDIST(A, Bm) < MINDIST(A,
B), B ∈ B, then B does not contain any object from the k-NN set of any object in
A. Therefore, B can be pruned away from B without any false dismissals during the
computation of the k-NNs of the objects in A. From these observations, given a GNN
query, GNN(R, S, S′ ⊆ S, k, t), for each A ∈ A, we compute a priority list of the
candidate boxes in B as follows:

– For each A ∈ A,
Step 1: Compute MAXDIST(A, Bm) for the given value of k as discussed above.
Step 2: Find the MBRs, B ∈ B for which MINDIST(A, B) ≤ MAXDIST(A, Bm).
Step 3: Assign priorities to these MBRs in increasing MINDIST(A, B) order.
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s1 s2 s3 s4 s5 s6 s7 s8

r1

r2

r3

r4

r5

r6

r7

r8

213

12 3

1 2

1

14

1

32

23

2

21

1

Fig. 2. A sample Priority Table for two
datasets R and S. Each row/column corre-
sponds to a page of R/S on disk. Numbers
in cells show the priority of pages in S for
that row.

s1

s2
s3

s4

s5

s6

s7

r1

m1

MAXDIST

Fig. 3. First row of the Priority Table. Here
r1 ∈ R and S = {s1, · · ·, s7}. Objects in
m1 are within MAXDIST distance from r1.

The algorithm for Step 1 takes an MBR A, the root node of an R*-tree, and an
integer k as input. The root node is stored using a min-heap. The node with the smallest
MAXDIST to A is extracted from this heap. If the MINDIST of this node to A is
more than the threshold, then it is omitted. Otherwise it is inspected. If it is an internal
node, then its children are inserted into the min-heap. Otherwise, it is inserted into the
candidate set, which is maintained using a max-heap. If the candidate set contains more
objects than necessary, then the MBR with the largest MINDIST value is removed from
the candidate set. Although the worst case time complexity of this step is O(| B |) (i.e.,
the entire index is traversed) with an amortized complexity of O(log(| B |). Step 2 is
computed using the classic range search algorithm on R-trees having a complexity of
O(log(| B |). This step eliminates all the leaf level MBRs that only contain irrelevant
points. Naturally, if an MBR contains at least one relevant point, it will be processed by
the strategies proposed in Section 5. Step 3 takes O(C log C) time where C is number
of candidate MBRs found at Step 2.

The candidates for all MBRs in A are stored in a Priority Table (PT). Figure 2 de-
picts the PT constructed for the GNN(R, S, S′, k, t) query. Here, ri and si correspond
to MBRs for R and S. We assume that S′ = {s1, s3, s4, s5, s7} in this example. In this
figure, each row and column corresponds to ri and si respectively. For simplicity, we
make two assumptions without affecting the generality: 1) The objects in R and S are
located sequentially on disk. 2) Each row and column of the PT (i.e., each MBR) cor-
responds to one disk page. The numbers at each row show the priority of the candidate
MBRs in S for the corresponding MBR in R. For example in row 1, the MBRs s1, s3
and s7 are in the candidate set of r1, such that s3 has the highest priority and s1 has the
lowest priority. This is depicted in Figure 3. If an MBR of S is not in the candidate set
of an MBR in R, then the corresponding cell is unnumbered.

Given a query, GNN(R, S, S′ ⊆ S, k, t), our search methods reduce the solution
space by pruning the PT. Following two optimizations can be made to reduce search
space by inspecting the PT:
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Optimization 1. (Column Filter) Let si correspond to an MBR in S′. If the total num-
ber of objects in the MBRs in R which have si in their candidate set is less than t, then
that column can be removed from S′.

For example, in Figure 2, s5 is in the candidate set of only r4. If the total number of
objects in r4 is less than t, then s5 can be removed from S′ safely. The correctness of
Column Filter can be proven from the fact that an object in a column, si can be in the
k-NN set of the objects in the rows only that have si in the candidate set.

Optimization 2. (Row Filter) If a row does not contain any candidate MBRs in S′,
then it can be removed from PT.

For example, in Figure 2, rows r3 and r8 do not have any candidates in S′. Therefore,
these rows can be omitted safely. If s5 is pruned from S′ due to Column Filter, then the
row, r4, can also be ignored.

5 Static Search Strategies

PT defines the MBR pairs that (potentially) need to be compared to answer a given GNN
query. In this section, we develop two methods to compute a GNN query, GNN(R, S,
S′ ⊆ S, k, t), given the PT of the datasets R and S. We name these methods Fetch All
(FA) and Fetch One (FO). We assume a limited buffer space B throughout this section.
That is, the sizes of both R and S are larger than B.

5.1 Fetch All

Our first method uses a pessimistic strategy: to process each page (i.e., MBR) of R,
(i.e., one row in PT), it reads as many candidate pages from S as possible into buffer at
once starting from the one with the highest priority. For example, for r1, FA reads s1,
s3, and s7. FA runs in 3 phases: (1) find maximal clusters that fit into buffer, (2) reorder
the clusters to maximize the overlap and (3) read the pages for each cluster and process
the contents. Next, we elaborate on each phase.

Phase 1. We create clusters by iteratively adding rows into the current cluster, starting
from the first row, until its size becomes B. When the cluster becomes large enough, we
start a new cluster. For example, if B = 6 pages, then the clusters for the PT in Figure 2
are C1 = {r1, r2, s1, s3, s4, s7}, C2 = {r3, r4, s2, s5, s6, s8}, C3 = {r5, s1, s2, s4,
s8}, and C4 = {r6, r7, r8, s1, s2, s6}. The total cost of this step is linear in the number
of candidate pages since each candidate page is visited only once.

Phase 2. The order for reading the clusters affects the total amount of disk I/O. This
is because, if consecutive clusters have common pages, these pages will be reused and
they do not need to be read again. For example, if C3 is read after C1, then s1 and s4
will be reused, saving two disk reads. Given a read schedule of clusters, the total amount
of disk reads saved by reusing buffer is equal to the sum of the common pages between
consecutive clusters. For example, if the clusters are read in the order of C1, C3, C2,
C4, then total savings adds up to 6 pages (i.e., |C1 ∩C3| + |C3 ∩C2| + |C2 ∩C4|= 6).

One can show that the Traveling Salesman Problem (TSP) can be reduced to the prob-
lem of finding the best schedule for reading clusters. Intuitively, the proof is as follows.
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Procedure ProcessBuffer(k) /* Let k be a positive integer. */
For each row ri in the buffer do

– while row ri has more uninspected candidate MBRs in the buffer do
1. Let sri be the next unprocessed candidate MBR with the highest priority.
2. Find the k-NN of each object in ri in sri . Store the maximum of these k-NN distances

in dmax.
3. Remove all candidates, s, of r in PT for which MINDIST(r, s) > dmax.

Fig. 4. The procedure to process a Buffer

Each vertex of TSP maps to a cluster. Each edge weight wi,j between clusters Ci and Cj

is computed as the number of overlapping pages between Ci and Cj . The best schedule
on this graph is the Hamiltonian Path that maximizes the sum of edge weights. Since
TSP minimizes the sum of edge weights, we update the weight of each edge wi,j as
w′

i,j = wmax − wi,j , where wmax is the largest edge weight. This guarantees that the
new edge weights are non-negative. Then we create a new node v and is connected to all
nodes by zero-weight edges. The optimal schedule is the path with the smallest sum of
edge weights which begins at vertex v and visits all nodes once. We use a greedy heuristic
to find a good schedule as follows: We start with an empty path. While there are unvis-
ited vertices, we insert the next edge with the smallest weight into the path if it does not
destroy the path. Finally, we attach the disconnected paths randomly if there are any.

Phase 3. Once the cluster schedule is determined, the contents of each cluster are itera-
tively read into buffer using optimal disk scheduling [17]. Figure 4 shows the procedure
used to process each cluster after it is fetched into buffer. For each row in the cluster,
the algorithm searches the k-NN of each object starting from the box with the highest
priority (Steps 1 and 2). The results obtained at this step are used to prune the candidate
set (Step 3). After the candidate set is pruned, Optimizations 1 and 2 are applied to PT
in order to further reduce the solution space.

5.2 Fetch One

FA reads many redundant pages if only a small percentage of the candidate pages con-
tain actual k-NNs. FO uses optimistic approach to avoid this problem. FO iteratively
reads one page per row as long as there are more candidates.

Figure 5 presents the pseudocode for FO. The algorithm splits buffer equally for each
of the datasets. This is because, one candidate page is read per row starting from the
highest priority (Step 1). Therefore, the number of pages from each dataset in the buffer
will be equal at all times if all the candidate pages are distinct. After searching each
candidate page (Step 2), PT is further pruned by eliminating the pages that are farther
than the kth NN found so fa (Step 3)r, and using Optimizations 1 and 2 (Step 4).

For example, for the PT in Figure 2, let buffer size be 6 pages, then FO reads {r1, r2,
r3} and {s3, s4, s6} into buffer. Assume that the third candidate of r1 is pruned at the
end of this step. Next, {s7, s8} are read to replace {s4, s6}. Although it is the second
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/*Let k be a integer.*/

Procedure FO(k)
While there are unprocessed rows do

1. Fill half of buffer with the MBRs,ri,
from R and one page from S (sri ) for
each ri.

2. ProcessBuffer(k).
3. Remove all the rows, ri, from the

buffer that has no other uninspected
candidate MBRs.

4. Apply Optimizations 1 and 2 on PT.

Fig. 5. The Fetch One procedure

/*Let k be an integer.*/
/*Let B be buffer size.*/

Procedure FD(k)

1. Initialize f .
2. while there are unprocessed rows do

(a) Fill buffer with � B
f+1� pages (ri)

from R and f pages from S (sri )
for each ri.

(b) ProcessBuffer(k).
(c) Remove all rows ri, from buffer

that has no other uninspected can-
didate MBRs.

(d) Apply Optimization 1 and 2 on
PT.

(e) Update value of f.

Fig. 6. The Fetch Dynamic procedure

candidate of r2, we do not read s3 at this step since it is already in buffer. Assume that
the third candidate of r2 is pruned at the end of this step. Since none of the rows {r1, r2,
r3} have any remaining candidates FO does not need to read any more pages for these
rows. Therefore, {r1, r2, r3} is replaced with {r4, r5, r6}, and the search continues
recursively.

6 Dynamic Strategy

FO reads only the necessary pages (i.e., MBRs) to compute a given GNN(R, S, S′, k,
t) query since it reads one page at a time starting from the highest priority and stops
when the distance to the next MBR is more than the distance to the kth NN found
so far. However, this does not guarantee that the total I/O cost is minimized. This is
because FO incurs a random seek cost every time a new page is fetched from disk.
Since a random seek is significantly more costly than a page transfer, reading a few
redundant pages sequentially at once may be faster than FO. Thus, neither FO nor
FA ensures the optimal I/O cost. The number of pages read at each iteration, f , that
minimizes the I/O cost depends on the query parameters and the distribution of the
database. A good approximation to this number can be obtained by sampling the MBRs
of R.

Our third method, Fetch Dynamic (FD) adaptively determines the value of f as fol-
lows. It starts by guessing the value of f . It then reads the first cluster using this value.
As it finds the k-NNs of all the objects in the first cluster, it computes the optimal value
of f for that cluster. It then uses this value of f to choose the next cluster. After process-
ing each cluster, it iteratively updates f as the median of the number of pages needed
for all of the rows processed so far. Note that, the choice of the initial value of f has
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no impact in the performance after the first step, since f is updated immediately after
every iteration. As more rows are processed in each iteration, f adapts to the query
parameters and data distribution.

Figure 6 presents the pseudocode of FD. The algorithm first assigns an initial value
for f (1 ≤ f ≤ candidate size). We use 20 % of the average number of candidates of R
as our initial guess. Let B denote the buffer size. While there are unprocessed rows, FD
reads # B

f+1$ pages (ri) from R and f pages (sri) from S with the highest priority for
each R page in buffer (Step 2.a). Thus, if all the candidates are distinct, buffer is filled
with pages from R and S. Steps 2.b processes each candidate page sri . The processed
pages (ris) are removed from buffer at Step 2.c. The algorithm continues with Steps
2.a to 2.c until all the rows in buffer are exhausted. Then Optimizations 1 and 2 are
applied (Step 2.d). The value of f is updated at Step 2.e as the median of the number of
candidates of the processed pages in R.

7 Further Improvements for GNN Queries

So far we have discussed two optimizations, row filter and column filter to trim both
I/O and CPU costs. In this section, we will discuss further optimizations to cut down
both CPU and I/O costs of FA, FO, and FD.

Adaptive Filter. Our third optimization follows from the following observation. For a
given MBR r we expand it by dmax in all dimensions. If a candidate MBR s overlaps
with this expanded MBR, then we compute the distance between all pairs of points from
r and s. (Steps 2 and 3 of Figure 4) This incurs O(t2) comparisons if each MBR contain
O(t) points. We reduce this cost in two ways. First, instead of expanding by dmax, we
can adaptively expand by different amounts along different dimensions. Second, we
avoid t2 comparisons by pruning unpromising points from S in a single pass. More
formally, we first find all points in a candidate MBR s that are contained in the expanded
MBR of r. Next, we compute the distances between all those points and all points of r.
Let t′, t′ ≤ t, be the number of points in s that are contained in the expanded MBR of
r. The CPU cost for the comparison of MBR pairs drops from O(t2) to O(t + t · t′).
This is summarized as our third optimization, Adaptive Filter.

Optimization 3. (Adaptive Filter) Let p be a point in MBR r. Let d be the kNN distance
of p to the points in MBR s. Let kNN-sphere of p denote the sphere with radius d,
centered at p. Let M denote the MBR that tightly covers the kNN-spheres of all the
points in r. A point can not be a kNN of a point in r if it is not contained in M .

In Figure 7, the expanded MBR of r in the worst case is given by m1. When adaptive
bounds are used, the expanded MBR m2 is obtained. In the former case, two MBRs s1
and s2 intersect with m1. Thus, 3 disk I/Os (r, s1, s2) and 32 comparisons are made.
However, only s1 intersects with m2 in the latter case. Hence MBR s2, which do not
have any point inside m2, can be pruned. This reduces the I/O cost to 2 page reads
(r, s1) and the CPU cost to 16 comparisons. However, Optimization 3 states that a point
in S is considered only if it is inside m2. Therefore, we scan each point in s1 once to
find such points. These points are then compared to the points in r to update k-NNs.
Thus the CPU cost reduces to 12 comparisons (4 for scanning s and 8 for comparison
of the points in r with q1 and q2).
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Partitioning. Optimization 3 is improved further by partitioning the MBR r along se-
lected dimensions. Dimensions with high variances are selected for the partitioning.
We start from the dimension with the highest variance. We split the MBR along this
dimension into two MBRs, such that each resulting MBR contains the same number of
objects. Each of these MBRs are then recursively partitioned along the dimension with
the next highest variance recursively.

Partitioning improves the performance in two ways. First, since each of the partitions
is smaller than the original MBR, the pruning distance (dmax) along each dimension is
reduced. This reduces the I/O cost. Second, without partitioning, an object in MBR s
is compared to all the objects in r if the extended MBR of r contains it. However, with
partitioning, an object in s is not compared to the objects in partitions whose extended
MBR does not contain it. Thus, CPU cost is reduced by avoiding unnecessary com-
parisons. Note that as the number of partitions increases, the number of point-MBR
comparisons increases. When the number of partitions becomes O(t) (i.e., the number
of objects per MBR), the number of such comparisons becomes O(t2). Thus, partition-
ing becomes useless. In our experiments, we partitioned along at most eight dimensions
for the best performance.

s1

s2

r

q1

q2

    m1

m2

Fig. 7. m1, m2 are the expanded MBRs for
the r without using and using the Adaptive
Filter respectively. s1, s2 ⊆ S, s1 is the
MBR of the points {q1, q2, q3, q4}.

q1

s1

q2

   m3

   m4

    v2

    v1

r

Fig. 8. v1 and v2 are two partitions of MBR
r and m3 and m4 are their extended MBRs.
s1 ⊆ S is the MBR of the points {q1, q2, q3,
q4}.

In Figure 8, horizontal dimension is used to partition the MBR r into two partitions.
v1 and v2 are the MBRs of these partitions having m3 and m4 as extended MBRs. MBR
s2, which do not have any points inside m2, can be pruned. We scan each point in s1
once to find the candidate points for the partitions v1 and v2. Only q1 is present in the
extended MBR of v2, reducing the CPU cost to 10 (8 for comparing points in s1 with
v1 and v2 and 2 for comparing the points in v2 with q1).

Packing. The performance of R-Tree based methods can be improved by using packing
algorithms which group similar objects (objects within a close neighborhood) together.
we employ the Sort-Tile-Recursive (STR) method [16] for packing the R*-Tree, built
on the datasets. Let N be the number of d-dimensional objects in a dataset, B be the
capacity of a node in R-Tree and let P = &N

B '. STR sorts objects according to the first

dimension. Then the data is divided into S = &P 1
d ' slabs, where a slab consists of a

run of n.&P d−1
d ' consecutive objects from the sorted list. Now each slab is processed
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recursively using the remaining d − 1 coordinates. It has been shown in [16] that for
most types of data distributions STR-Ordering performs better than space-filling-curve
based Hilbert-Ordering [11].

8 Experimental Evaluation

We use two classes of datasets in our experiments.

Image datasets. Each of Image1 and Image2 contains 60-dimensional feature vectors
of 34,433 satellite images. We have created two datasets from Image1 and Image2 by
splitting each 60-dimensional vector into 30 two-dimensional vectors. Each of the re-
sulting datasets contains 1,032,990 data points.

Protein structure datasets. Each of Protein1 and Protein2 contains 288,156 three-
dimensional feature vectors for secondary structures of proteins from Protein Data Bank
(ftp://ftp.rcsb.org/pub/pdb) as discussed in [6].

In addition to FA, FO, and FD, we have implemented three existing methods: se-
quential search (SS) and the R-tree-based NN method of Roussopoulos et. al., (RT)
[15] and Mux-Join [5]. To implement the buffer restrictions into RT, we use half of the
available buffer for R and the other half for S. In order to adapt these methods GNN(R,
S, S′, k, t), we performed a k-NN search for each object in R. We included SS in our
experiments, as SS is better than many complicated NN methods for a broad set of data
distributions [4]. We also obtained the source codes of GORDER [21] and RkNN [20],
from their authors. However, at its current state, we found it impossible to restrict mem-
ory usage of GORDER to a desired amount. Therefore, we used GORDER in only one
of our experiments where it was possible.

In all our experiments, we use S′ = S unless otherwise stated. We use 4 kB as
the page size in all our experiments. We ran our experiments on an Intel Pentium 4
processor with 2.8 GHz clock speed.

8.1 Evaluation of Optimizations

In this section, we inspect the performance gain due to Optimizations 1, 2 and 3 and
the improvements in Section 7. We perform GNN query by varying the size of S′ from
0.5 % to 8 % of S, by selecting pages of S randomly. In this experiment, we use FD for
k = 10, t = 3,000, and buffer size = 10 % of the dataset size. The queries are run on
the two dimensional image dataset.

Figure 9 displays the I/O and the running times for Optimizations 1, 2 and 3 on
an unpacked dataset. According to our results, the main performance gain is obtained
from Optimizations 2 and 3, yet there is a slight performance gain from Optimiza-
tion 1. The reason that the Optimization 1 has a smaller impact can be explained as
follows. t is only 0.3 % of the total number of objects in R. Thus, Optimization 1 can
eliminate a page of S only if it is in the candidate set of less than 3 pages of R. The
impact of Optimization 1 is larger when the ratio of the average number of candidate
pages to t is lower. This happens when t is large or k is small. Optimization 2 has a
high impact when S′ is smaller. This is because fewer rows in PT have candidates in
S′ for small S′. Another way to obtain high filtering rate from Optimization 2 is to
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Fig. 9. The CPU and I/O time of FD with
four different settings of Optimizations 1
and 2 (obtained by turning these optimiza-
tions on and off) on two-dimensional image
datasets for different sizes of S′. Buffer size
is 10 % of R + S, k = 10, and t = 3,000.

Fig. 10. The CPU and I/O time of FD with
three different settings Unpartitioned, Parti-
tioned, and Packed (along with partition) on
two-dimensional image datasets for differ-
ent sizes of S′. Buffer size is 10 % of R+S,
k = 10, and t = 3,000.

reduce the average number of candidate pages per row by choosing a small value for
k. Optimization 3 effectively reduces the CPU and I/O cost for different sizes of S′.
We can also see that for higher percentages of S, the impact of this optimization re-
mains constant and is independent of the size of S′. This can be understood from the
fact that for a fixed value of k and at higher percentages of S, every MBR r ∈ R has
same number of candidate MBRs from S. This results in constant reduction in CPU and
I/O costs.

Figure 10 compares the performance gains on top of Optimizations 1, 2, and 3 (Un-
partitioned algorithm) by partitioning the MBRs and by using the STR-method based
packing algorithm. Here, packing is applied along with partitioning. Partitioning re-
duces the I/O cost up to factor of 3 and CPU costs by orders of magnitude. The tighter
bounds of the extended MBRs of the partitions resulted in a reduction of the pruning
distance. This explains the I/O and CPU performance gains from the partitioned al-
gorithm. Packing utilizes the distribution of data and groups similar objects in MBRs
that have common parent and a better organization of the R*-Tree index structure. This
results in a lower value for the parameter f in FD and hence has better performance
gains. Packing reduces the I/O cost up to 10 times and CPU cost by orders of magni-
tude faster than an unpartitioned algorithm. It outperforms partitioned algorithm by up
to a factor of 2 and 6 in I/O and CPU costs respectively. From here on we will use all
the optimizations in all of our methods.

Scheduling pages is known as paging problem [14]. Chan [7] proposed heuristic
based O((Rp + Sp)2) algorithms (Rp and Sp are the number of pages in two datasets)
for Index-based Joins. For large datasets, however, these heuristics are not efficient. An
online scheduling algorithm is evaluated using competitive analysis [1]. In competitive
analysis, an online algorithm is compared with an optimal off-line algorithm which
knows all candidate pages in advance. An algorithm is c-Competitive if for all sequences
of page requests, CA ≤ c.C̄ + b, where CA is the cost of the given algorithm, C̄ is the
cost of the off-line algorithm, b is a constant, and c is the competitive ratio.
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Table 1. Number of Page Reads from FA, FD and FO and Optimal Page Reads on two-
dimensional image datasets. k = 10, and t = 100

Buffer Size (%) 5 10 20 40
Oracle 11245 10980 10244 10252

FO 14601 13425 12710 12393
FD 16706 13825 11702 10789
FA 155727 73238 23885 10328

We compared the performance of our online methods with its off-line version, named
Oracle. For each MBR r ∈ R, we provide Oracle, the set of MBRs from S such that
every MBR in this set contains at least one k-NN of at least one object in r. We then
optimize the number of I/Os of Oracle using the heuristic discussed in Section 5. We
also compute a lower bound to the optimal number of I/Os as the total number of pages
in R and S. The purpose of this experiment is to observe how the I/O cost of our online
methods compare to that of an off-line method and the minimum possible I/O cost.
Table 1 compares the performance of Oracle with our methods.

Since each dataset has 5064 pages, we compute the lower bound to the number of
disk I/Os as 10128 (5064+5064). The competitive ratio of FA is smallest for large buffer
sizes (1.008 for 40% buffer) and for FO it is smallest for small buffer sizes (1.3 for 5%
buffer). FD has a smaller competitive ratio (1.5 for 5% buffer to 1.05 for 40% buffer).
We conclude that our methods perform very close to the off-line method.

8.2 Comparison of Our Methods

In this section, we compare FA, FO, and FD to each other for different parameter settings.

Evaluation of buffer size. Here, we compare the performance of FA, FO, and FD
when the buffer size varies from 5 to 40 % of the total size of R and S. We use two-
dimensional image dataset with k = 10 and t = 500.

Figure 11 shows the I/O time and the running time of our methods. For lower buffer
sizes, FA retrieves all the candidate MBRs for every row and hence I/O cost takes up
most of the total time. We can observe this from the performance of FA at buffer size

Fig. 11. The CPU and I/O time of FA, FO,
and FD on two-dimensional image for dif-
ferent buffer sizes with k = 10 and t = 500

Fig. 12. The CPU and I/O time of FA,
FO, and FD on the two-dimensional image,
dataset for different values of k
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5 % and is dominated by the I/O cost. As buffer size increases, the cost of all three
strategies drop since more pages can be kept in buffer at a time. For small buffer sizes
FO has the lowest cost since it does not load unnecessary candidates. As buffer size
increases, FA has the lowest cost since it keeps almost entire S in buffer. However, in
all these experiments, the cost of FD is either the lowest or very close to the lower of
FA and FO. This means that FD can adapt to the available buffer size.

Evaluation of the number of NN. Our next experiment compares the performance of
FA, FO, and FD for different values of k. We use 10 % buffer size and t = 500 for the
two-dimensional image dataset.

Figure 12 presents the I/O and the running times. The costs of all these methods
increase as k increases. For different values of k FO has the lowest cost and FA has the
highest cost, since we use a small buffer size (10%). Even when it does not have the
lowest cost, FD is very close to FO. This means that FD can adapt to the parameter k.

8.3 Comparison to Existing Methods

In this section, we compared FD to five existing methods SS, RT, Mux-Index, RkNN,
and GORDER for different parameter settings. We used two-dimensional image and
protein datasets in our experiments. Due to space limitations, we do not include theo-
retical comparison of FD to existing k-NN, RNN and ANN methods as the main intent
of this paper is not to solve these problems. We present experimental results comparing
FD with well known methods for these special cases.

Evaluation of buffer size. In this experiment set, we fixed the values of k and t, and
vary the buffer size. We used the two-dimensional image dataset and k = 10. The run-
ning times of GORDER with different amounts of memory usage and that of FD with
1.6 MB memory were computed. We measured the actual memory usage of the methods
using the top command of Linux. Although we set the buffer size (an input parameter
to GORDER) to 20 % of the total dataset size, we observed that GORDER uses signif-
icant amount of memory (up to 175 % of the dataset size) for additional book keeping.
In order to reduce the actual memory usage we ran GORDER with grid numbers 1000,
500, 200, and 100. However the actual memory usage of GORDER was always much
larger than 20 % of the total dataset size (i.e., 8 MB). For different memory settings, the
running time of GORDER varied from 300 to 4000 seconds while for the same query,
FD running times varied from 10 to 13 seconds (see Table 2. According to these exper-
iments, FD runs an order of magnitude faster than GORDER even when it uses much
smaller buffer. We found it impossible to reduce the actual memory usage of GORDER

Table 2. Memory Usage and Running times
(seconds) of GORDER on image dataset
with varying grid sizes. FD runs in only
11.03 seconds for the same dataset using
20% buffer.

Grid Size 1000 500 200 100
Buffer Size (%) 175 108 88 85
Time (seconds) 305 535 1519 4259

Table 3. Running times (seconds) of FD
and RkNn on image dataset with k = 10,
20, 30 , 40 and 50 using 10% buffer for 100
queries

k 10 20 30 40
RkNN 2620 11750 84145 175495

FD 101 101.76 101.3 101.83
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Fig. 13. The CPU and I/O time of SS, RT, Mux and FD on (a) two-dimensional image, and (b)
protein datasets for different buffer sizes. The CPU and I/O time of SS, RT, and Mux FD on (c)
two-dimensional image and (d) protein datasets for different values of k.

to 20 % at its current implementation. Therefore, in order to be fair, we do not include
it in our remaining experiments.

Figures 13(a) and 13(b) show the I/O and the running times of SS, RT, Mux-index [5]
and FD for different buffer sizes on two-dimensional image and protein datasets. We use
k = 10 and t =100. FD is the fastest of the three methods in all settings. We can see that
for small buffer sizes RT is dominated by I/O cost. As buffer size increases, CPU cost
of RT dominates. Sequential scan is dominated by the CPU cost in all the experiments.
The I/O cost of FD is a fraction of that of RT. FD also reduces CPU cost aggressively
through Optimizations 1 to 3 and partitioning. In all the experiments, the total time of
FD is less than the I/O time of RT or SS alone. Mux-Index is dominated by I/O costs
in all experiments. This is because for each block in R it fills the buffer with blocks
from S. Because of the nature of GNN queries, one needs to load pages multiple times
while working with limited amount of memory, independent of the method used, naive
(sequential scan) or more sophisticated (RT and Mux-Index). FD performs only the
necessary leaf comparisons and uses the near optimal buffering schedule, thus reduces
both the CPU and I/O cost effectively.

Evaluation of the number NN. Here, we compare the performance of FD, SS, Mux,
RkNN and RT for different values of k. We use 10 % buffer size and t = 500 for two-
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Fig. 14. The CPU and I/O time of SS, RT,
Mux and FD on two-dimensional image
datasets for varying database sizes. Buffer
size is 10 % of the original image database,
k = 10, and t = 500.

Fig. 15. The CPU and I/O time of SS, RT,
and FD on two-dimensional image datasets
for varying dimensionalities. Buffer size is
10 % of the database, k = 10, and t = 500.

dimensional image and protein datasets. We evaluated the RkNN by querying for 100
random query points for different values of k.

Figures 13(c) and 13(d) present the I/O and the running times. The cost of SS is
almost the same for all values of k. It increases slightly as k increases due to maintaining
cost of the top k closest objects. The costs of RT, Mux and FD increase as k increases
since their pruning power drops for large values of k. The running times of RT, Mux and
FD do not exceed SS as k increases. FD runs significantly faster than others. Depending
on the value of k, FD runs orders of magnitude faster than RT, SS and Mux. The I/O cost
increases much slower for FD. This is because FD adapts to different parameter settings
quickly to minimize the amount of disk reads. Table 3 present the running times of FD
and RkNN for 100 query points. While the running time of RkNN increases at faster
rate and is not scalable for higher values of k, the running times of FD, including the
time taken for the creation of priority table for each k, for the same query set is almost
constant and is order of magnitude faster than RkNN.

Evaluation of dataset size. In this experiment, we observe the performance of FD, SS,
Mux, and RT for increasing dataset sizes. We create smaller datasets from the original
two-dimensional image datasets by randomly choosing 50, 25, and 12.5 % of all the vec-
tors. We fix the buffer size to 10 % of the original image dataset, k = 10, and t = 500.

Figure 14 shows the I/O and the running times. As R and S grows, the running time
of FD increases almost linearly. This is because when both datasets are doubled, the
average number of candidate pages per row in the PT stays almost the same. On the
other hand, the total running time of SS increases quadratically since it has to compare
all pairs of data points. The running time of RT is dominated by I/O cost and increases
faster than that of FD and slower than that of SS. Like SS, the running time Mux in-
creases quadratically since it fills the buffer with blocks from S and is dominated by I/O
costs. Thus, the speedup of FD over SS, Mux and RT increases as dataset size increases.
This means that our method scales better with increasing dataset size.

Evaluation of the number of dimensions. In this experiment, we observe the perfor-
mance of FD, SS, Mux, and RT for increasing number of dimensions. We create datasets
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of d = 2, 4, 8, 16 dimensions by choosing the first d values of the feature vectors from
the original 60-dimensional image datasets. We fix the buffer size to 10 % of the total
size of R and S, k = 10, and t = 500. Figure 15 shows the I/O and the running times.
As the number of dimensions increases, the running time of SS increases linearly. On
the other hand, the running times of RT and Mux increases faster. This is also known as
the dimensionality curse. For all the methods CPU time increases with the increase in
dimension and is significantly larger for 16 dimensions. However even at 16 dimensions
FD is 1.3 times faster than the sequential scan, up to 3.5 times faster than RT and up to
1.2 times faster than Mux-Index.

9 Discussion

We considered the problem of detecting data broadness. We introduced a new database
primitive called Generalized Nearest Neighbor (GNN) that expresses data broadness.
We showed that the GNN queries can answer a much broader range of problems than
the k-Nearest Neighbor query and its variants Reverse Nearest Neighbor query and All
Nearest Neighbor query. Based on the available memory and the number of nearest-
neighbors, either CPU or I/O time can dominate the computations. Thus, one has to
optimize both I/O and CPU cost for this problem.

We proposed three methods to solve GNN queries. Our methods arrange two datasets
into pages and compute a Priority Table for each page. Priority Table ranks the candi-
date pages based on their distance. Our first algorithm, FA, uses pessimistic approach.
It fetches as many candidate pages as possible into available buffer. Our second algo-
rithm, FO, uses optimistic approach. It fetches one candidate page at a time. Our third
algorithm, FD, dynamically computes the number of pages that needs to be fetched
by analyzing past experience. We also proposed three optimizations, Column Filter,
Row Filter and Adaptive Filter to reduce the solution space of the priority table. We
used packing and partitioning strategies which provided significant performance gains.
These optimizations reduce the CPU cost of the k-NN searches and eliminates addi-
tional I/O costs by pruning the MBRs which do not have a k-NN.

According to our experiments, FA is best when the buffer size is large and FO is best
when the buffer size is small. FD is the fastest method in most of the parameter settings.
Even when it is not the fastest, the running time of FD is very close to that of the faster
of FA and FO. FD is significantly faster compared to sequential scan and the standard
R-tree based branch-and-bound k-NN solution to the GNN problem.
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Abstract. Mobile objects have become ubiquitous in our everyday lives, rang-
ing from cellular phones to sensors, therefore, analyzing and mining mobile data
becomes an interesting problem with great practical importance. For instance, by
finding trajectory patterns of the mobile clients, the mobile communication net-
work can allocate resources more efficiently. However, due to the limited power
of the mobile devices, we are only able to obtain the imprecise location of a mo-
bile object at a given time. Sequential patterns are a popular data mining model.
By applying the sequential pattern model on the set of imprecise trajectories of
the mobile objects, we may uncover important information or further our under-
standing of the inherent characteristics of the mobile objects, e.g., constructing
a classifier based on the discovered patterns or using the patterns to improve the
accuracy of location prediction. Since the input data is highly imprecise, it may
not be possible to directly apply any existing sequential pattern discovery algo-
rithm to the problem in this paper. Thus, we propose the model of the trajectory
patterns and a novel measure to represent the expected occurrences of a pattern
in a set of imprecise trajectories. The concept of pattern groups is introduced to
present the trajectory patterns in a concise manner. Since the Apriori property no
longer holds on the trajectory patterns, a new min-max property is identified and
a novel TrajPattern algorithm is devised based on the newly discovered property.
Last but not least, we apply the TrajPattern algorithm on a wide range of real
and synthetic data sets to demonstrate the usefulness, efficiency, and scalability
of this approach.

1 Introduction

Mobile devices have been widely used in our everyday life, from handheld devices,
e.g., PDA, to embedded devices, e.g., sensors. The trend is expected to intensify in the
coming years. It is projected that in the next few years, all Hertz rental cars will be
equipped with global positioning systems (GPS). One may infer important information
from the trajectories of mobile objects. Most of the recent research effort has been
concentrated in modeling the trajectory of mobile objects [2, 10, 11, 12] and indexing
mobile objects [7, 9]. However, mining mobile data has received little attention so far.
In this paper, we investigate the problem of mining and analyzing trajectories of moving
objects. The following is a list of applications of analyzing the mobile trajectory data.

– Due to the limited power on the mobile devices and the unreliable communication
links, we may want to infer the location of a mobile object based on its previous

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 664–681, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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locations. If we can find some moving patterns that are common to a large set
of mobile objects, then these moving patterns may be useful for predicting the
locations of an object in the future.

– In location-based commerce advertisement, if customers are willing to receive ad-
vertisements, retail stores will distribute e-Flyers to potential customers’ mobile
devices based on their locations. In this setting, finding common moving patterns
of mobile devices is valuable for inferring potential movement of mobile device
users, and thus helps to efficiently distribute the advertisement.

– Using a remote sensing system, the animals in a large farming area can be tracked.
The sensors are limited in power and may fail from time to time. By mining the
imprecise trajectories of animals, it is possible to determine migration patterns of
certain animal or groups of animals. These patterns could be useful to analyze the
migration behavior of different species of animals.

The energy in a mobile device is very limited, so it is impossible for a mobile object
to continuously send out its location information. To reduce the energy consumption,
many methods [2, 11, 12] are developed for obtaining (predicting) the approximate lo-
cation of a mobile object. At a high level, all of these methods share the same principle.
These methods first use some predictive model, e.g., Kalman Filter, linear model, etc.,
to predict an expected location of a mobile object at a given time t. If the actual loca-
tion of the mobile object differs too much from the predicted location, then the mobile
object reports the new location. Otherwise, it does not report the new location.

In this paper, our aim is not to develop a data mining approach which depends on
a particular prediction model, but rather develop a general data mining framework that
can be applied to a large number of existing location prediction methods. In the data
mining field, there exist a large number of different models, from association to classi-
fication. Among these models, frequent patterns are one of the most basic and widely
employed models. In addition, most of the previous proposed location prediction mod-
els for mobile objects assume one type of movement, e.g., linear, quadratic, etc. How-
ever, the type of movement for a mobile object may not be known ahead. Moreover, a
mobile object may change the type of movement at any time. Therefore, the accuracy
of these models might not be high. The frequent patterns may help to improve the ac-
curacy of the prediction module. If an object follows some moving patterns, e.g., an
object always changes its velocity or directions after it moves in a certain manner, then
this knowledge can be integrated into the location prediction module and the location
prediction can be adjusted accordingly. Looking ahead, we will show the usefulness
of the frequent patterns of the imprecise trajectories on real data sets via the location
prediction.

The traditional frequent pattern models and approaches could not be directly applied
to the trajectories due to their imprecise nature. In the traditional frequent sequential
pattern setting, the sequences are synchronized and we know exactly the occurrences
of the symbol or values at every synchronized point. In this paper, a series of synchro-
nization points can be superimposed on the trajectories. The interpolated values (at syn-
chronization points) can be taken as the input for the frequent pattern mining process.
In many applications, it is more useful to find patterns on the velocities rather than the
locations. In such a case, we can transform the location trajectories (sequences) into
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velocity trajectories (sequences). Thus, our frequent pattern model can be constructed
on a set of either location or velocity trajectories.

A sequential pattern is an ordered list of symbols. It is intuitive and easy for a user
to comprehend, thus we also use the sequential pattern model in this paper. A trajectory
pattern is an ordered list of positions. For instance, a pattern (p1, p2, . . . , pm) can be
considered as the possible positions of an object at m consecutive snapshots. The support
model is usually used to measure the importance of a pattern, i.e., if a pattern occurs a
large number of times, then it is an important pattern. However, in the context of the
imprecise trajectories, at any given moment, the location of an object in a trajectory is
not precise, but rather a distribution of possible locations. Thus, we do not know for sure
whether a pattern occurs or not. This could be a very challenging issue for formulating
the frequent sequential pattern model. In this paper, we propose the normalized match
(NM) measure to capture the importance of a trajectory pattern. We show the benefits of
the NM measure over other measures in the experimental results section.

Most previous frequent sequential pattern algorithms utilize the Apriori property.
However, the Apriori property does not hold for our NM measure. Fortunately, we are
able to identify another property, called min-max property, which is weaker than the
Apriori property. Thus it is necessary for us to devise a new algorithm for mining the
NM patterns. Based on the min-max property, we develop a trajectory pattern mining
algorithm called TrajPattern. The user will specify k, the number of trajectory pat-
terns that he wants. Our goal is to mine the k patterns with the most NM. Due to the
presence of noise in the trajectories, many similar patterns may be found in the mining
process. The concept of pattern groups is introduced to compactly represent a large
number of similar trajectory patterns via a small number of groups. The TrajPattern al-
gorithm mines the patterns by a growing process. We first identify short patterns with
high NM value, and then try to extend these short patterns to find longer patterns with
high NM via the min-max property. With the min-max property, a novel pruning method
is devised to reduce the number of candidate patterns, thus the efficiency of the mining
algorithm can be greatly improved. In addition, the TrajPattern algorithm can be used
for mining any type of patterns satisfying the min-max property.

The remainder of this paper is organized as follows. We briefly describe some related
work at Section 2. The problem model is presented in Section 3. The TrajPattern algo-
rithm is discussed in Section 4. Additional issues of the trajectory pattern model and
algorithm are discussed in Section 5. The experimental results are shown in Section 6.
Finally, we draw our conclusions in Section 7.

2 Related Work

There is a large amount of work in location modeling and prediction. In [2] the Kalman
Filter is used to predict the location of a mobile object at a given time while in [11], the
authors used not only a single previous location, but rather multiple locations to predict
the current location. Authors in [12] assumed that the object moves in a piece-wise
linear manner. Thus the location of an object can be predicted by its previous locations
and velocities.

Data mining has been an active research area in the past decade. Many data min-
ing models and approaches have been proposed. However, there is limited work on
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spatiotemporal data mining. In [5], the proposed algorithm treated spatiotemporal data
as a generalization of pattern mining in time-series data to capture the frequent mov-
ing patterns of users from a set of log data in a mobile environment. Authors in [6]
processed moving nearest-neighbor queries in R-trees by employing sampling. In [9]
the TPR-tree is presented as an extension of the R-tree to answer prediction queries
on dynamic objects. Very recently, researchers began to study the problem of mining
the trajectories of mobile objects. In [3] the authors proposed a method on clustering
the locations of mobile objects continuously. It groups nearby objects into small micro-
clusters and each micro-cluster is treated as an entity so that the computation time can
be saved. The authors of [4] proposed a method to find periodic patterns for trajec-
tories of mobile objects. This work aims to find the periodic moving patterns in the
history of one object. In addition, all above works also assume that the input data is
a sequence of precise locations, which is quite different from our assumption that the
locations of objects are imprecise. Therefore the support measure can be used to qual-
ify the importance of patterns in [4], but it could not be applied to our problem. To
the best of our knowledge, we are the first to tackle the problem of mining imprecise
trajectories.

Sequential patterns has been an active research topic in recent years, and many se-
quential pattern mining models and approaches have been proposed. One category of
sequential patterns is the periodic patterns [1, 4] which repeat themselves over the time.
Another category is the frequent sequential patterns [8, 13, 14, 15], which is more re-
lated to the problem in this paper. A frequent sequential pattern is a pattern which occurs
at a large number of sequences. Several models and approaches have been proposed for
this problem. In [8] the authors used the prefix-tree to maintain the set of prefixes of fre-
quent patterns and later grow the set of patterns. The author of [15] designed an efficient
algorithm for mining frequent subsequences in a long sequence. Both above approaches
assume that the symbol in each position is accurate and the Apriori Property is used for
devising efficient algorithms.

In [14] the authors studied the problem that symbols in a set of sequences are not
accurate and may mutate due to noise. There is a mutation matrix which shows the
probability that a symbol a may mutate to b in the input data sequence. The match
model is invented for representing the true (or expected) occurrences of a pattern. The
match of a pattern within a sequence is the joint probability of the occurrence of the
symbols in the pattern. The match value of a pattern is not normalized according to
its length. As a result, the non-normalized match of a longer pattern is smaller. This
property is not desirable in many applications where longer patterns are needed since
longer patterns usually consist of more information. Since the Apriori property holds
for the match measure, the authors in [14] devised an algorithm based on the Apriori
property, which could not be directly applied to the problem in this paper.

3 Preliminaries and Problem Statement

In this paper, we study the problem of identifying sequential patterns of imprecise tra-
jectories of mobile devices. We assume that there is a server and a set of mobile devices.
The mobile devices have the capability to know their own locations (e.g. via GPS) and
they asynchronously report their locations to the server via some wireless network.
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3.1 Location Reporting Scheme

A mobile object may choose not to notify the server its current location for a long
time when the location can be derived from its previous locations, speed, directions,
etc. There are many methods (e.g., [2, 11, 12], etc.) for a server to predict the location
of a mobile device. Our aim is to develop a general pattern mining framework that
can be used with various different location inference models, so we only require that
the location prediction method has the following property. At any given time t, each
mobile object has a predicted location. The actual location of the mobile object follows
a certain distribution around the predicted location.

Most of the proposed location inference techniques satisfy the above property. With-
out loss of generality, we choose the method proposed in [12] as an example to demon-
strate our problem model and solution. For a given device o, let last loc be the last
known location of the object and v be the velocity vector of the object. The predicted
position of o (predict loc) is defined as follows:

predict loc = last loc + v × t (1)

Here, t is the number of time units that have elapsed since the last known position of o.
Since this is only a prediction, the actual position of o may vary from the predicted po-
sition. It is assumed that the actual position of o follows the k-dimensional multivariate
normal distribution Nk(μ, Σ) where k is equal to the dimension of the space, the mean
μ = predict loc, and Σ is the variance-covariance matrix. The variance-covariance
matrix is a symmetric k × k matrix with diagonal elements σ2 equal to the variance
of the marginal distributions. σ is defined as 1

cU where U is the tolerable uncertainty
distance of the object and c is a constant. A mobile object may choose to report its
actual location only if it is more than U away from the predicted position μ. There are
several ways to assess the parameters U and c. U can be either a constant, a function
of the elapse time t, or the expected traversed distance d. In this paper, we assume that
U is a constant so that all objects in the database have the same uncertainty. This as-
sumption has been practically used since it is difficult to find the uncertainty for each
object. c is a constant which may depend on the network reliability, etc. With the greater
c, the probability that the actual location close to the predicted location is higher. For
instance, a mobile device is within U distance from μ with probability 0.68, 0.95 and
0.997 for c = 1, 2, 3, respectively. Since there may be an error during the communi-
cation between the mobile object and the server, the location information may be lost
during the transmission. If there exists a 5% chance that the message will be lost during
the location notification, then c should be set to 2 so that the probability that the actual
location is more than U away from μ is equal to 5%.

3.2 Location and Velocity Trajectories

To provide a consistent view of all objects, a set of synchronous snapshots are generated
on the server. A series of synchronization points can be superimposed on the asynchro-
nous data. The interpolated values (at synchronization points) can be taken as the input
to the data mining modules. Let’s assume that we generate a snapshot at time point
t. For every object we could calculate its locations at t via some prediction method.
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Object A

Object B

Snapshot 2Snapshot 1 Snapshot 3

Fig. 1. Location Trajectories

For instance, we can apply Equation 1 to compute the expected location of an object
based on the last reported location before t. Based on this model, at each snapshot,
every object will have an expected location and a distribution of errors. The frequency
of the snapshots may vary in different applications. We will discuss how to choose this
parameter in a later section.

The locations of a mobile object o at each snapshot can form a sequence T . We call
T the location trajectory of object o. Here T = (l1, σ1), (l2, σ2), . . . where li and σi

are the mean and standard deviation of the distribution of the true location of o at ith
snapshot, respectively. li and σi can be calculated via Equation 1. Figure 1 shows two
location trajectories.

In many applications, two mobile objects may travel in different regions of space.
Thus these two location trajectories could not be compared directly. On the other hand,
the velocities may be more important. In these applications, we need to transform the
location trajectories to a sequence of velocities, or velocity trajectories. This can be
achieved by taking the difference between two consecutive snapshots. For example, let
T = (l1, σ1), (l2, σ2), (l3, σ3), . . . be a location trajectory where li and σi are the ex-
pected location and the standard deviation of the mobile object at the ith snapshot. The
velocity trajectory is generated as follows. We consider the location of a mobile object at
ith and i+1th snapshot as two random variables of normal distribution with mean li and
li+1 and standard deviation σi and σi+1. The difference of these two random variables
can be considered as the velocity of the mobile object at ith snapshot. The difference is
also a normal distribution random variable where the mean is li+1 − li and the standard

deviation is
√

σ2
i + σ2

i+1. (A slightly more complicated formula can be used to com-

pute the standard deviation if the two random variables are not independent.) Thus the
new velocity trajectory T ′ is in the following form: T ′ = (l′1, σ

′
1), (l

′
2, σ

′
2), (l

′
3, σ

′
3), . . .

where l′i = li+1 − li and σ′
i =

√
σ2

i + σ2
i+1. It is obvious that the transformed veloc-

ity trajectories are in the same form as the original location trajectories. Thus, we call
both the velocity trajectories and location trajectories as trajectories. In this paper, we
assume that the input data is a set of trajectories, each of which is in the form of T .

3.3 Model of Trajectory Pattern

A trajectory pattern P can be represented as P = (p1, p2, . . . , pm) where pi is a lo-
cation. P can be interpreted as the following: the mobile object is located at p1, p2,
. . . , and pm at m consecutive snapshots. The length of a pattern P is the number of
positions in P , which is m in this example. We call a pattern of length 1 as a singular
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pattern. In theory, the space in which the objects travel is continuous, which means that
there are infinite possible choices for a position in a pattern. To expedite the mining
process, we discretize the space into small regions and only the centers of these regions
may serve as the positions in a pattern. Let Gx, Gy be the grid size on a 2-dimensional
space. As long as Gx, Gy are sufficiently small, our model will provide a very good
approximation.

The support model has been used to measure the importance of a pattern in many
applications [8, 15]. According to the traditional support model, we may define the sup-
port of a trajectory pattern as follows. A trajectory sequence T supports a pattern if there
exists a consecutive segment ((lk, σk), (lk+1, σk+1), . . . , (lk+m−1, σk+m−1)) such that
lk+i−1 is equal to pi for 1 ≤ i ≤ m. However, in the context of this problem, the sup-
port model may not work well due to the presence of noises. The degradation of quality
of the data may conceal the real frequent patterns. The spirit of the support model is
to find frequently occurred patterns. Due to the uncertainty (which is described as a
probabilistic function), we have to find expected frequently occurred patterns instead.
In [14] the match model is proposed to measure the expected number of occurrences of
a pattern. Intuitively, the match model computes the expectation on how likely a pat-
tern occurs in a trajectory or the degree that a trajectory confirms (supports) a trajectory
pattern.

Let δ be the indifferent parameter such that for any coordinate (x, y), if an object o is
at most δ away from (x, y), then the location of o is considered indifferent from (x, y).
With the indifferent parameter, we can define the match of a trajectory pattern as the
following. If at a snapshot the expected location of an object is l with standard deviation
σ, the probability that the true location of the object is within δ away from another
location p is denoted as Prob(l, σ, p, δ), which represents how likely the object is truly
very close to a position p. Let T ′ = ((lk, σk), (lk+1, σk+1), . . . , (lk+m−1, σk+m−1)) be
a contiguous segment of a trajectory sequence and P = (p1, p2, . . . , pm) be a trajectory
pattern, the probability that for every 1 ≤ i ≤ m, the true location of the mobile object
is located within at most δ away from pi is1

M(P, T ′) = Prob(P, T ′) = Πm
i=1Prob(lk+i−1, σk+i−1, pi, δ) (2)

We call M(P, T ′) the match between a pattern P and a trajectory T ′ of the same length.
This is essentially the same measure as in [14].

Based on the definition of match, the value of match monotonously decreases with
the growth of pattern length m. For example, if the probabilities of observing symbol
a, b, and c at position 1, 2, and 3 are all 0.9, then the joint probability of (a, b) is 0.81
while the joint probability of (a, b, c) is 0.729. In this case, only short patterns can be
found and the measurement can not be compared between patterns of different lengths.
To normalize this effect, we choose the geometric mean to denote the match between

T ′ and P , which is (M(P, T ′))
1
m . To speed up the computation we use the logarithmic

value to present the match between a trajectory and a pattern with the same length, i.e.,

NM(P, T ′) = log M1/m(P, T ′) =
log M(P, T ′)

m
. (3)

1 We assume that the error in location prediction in T ′ is independent, but the locations of the
mobile objects in T ′ are not assumed independent.
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We call NM(P, T ′) the normalized match (NM) of a pattern P with a trajectory T ′

of the same length. In reality, the length of a trajectory T is usually much longer than
that of a pattern P (with m locations). Thus, we use the maximum NM between any
continuous segment of m locations in T and P as the NM between T and P . Formally,
the NM between T and P is defined as follows.

NM(P, T ) = max
∀T ′⊆T,|T ′|=|P |

NM(P, T ′) (4)

In a data set D, the NM of a pattern P is equal to
∑

T∈D NM(T, P ), i.e., the sum
of NM between P and each trajectory in D. Here, the NM between P and a trajectory
actually represents how likely the pattern occurs in the trajectory. The sum of NM mea-
sures the expected occurrence of the pattern in a trajectory set. This is essentially based
on the same intuition that, in traditional frequent patterns, the support of a pattern is
defined as the total number of exact occurrences in a data set. The match measure can
be defined similarly. The Apriori property holds on the match measure, but not on the
NM measure, because the NM is normalized according to the pattern length. Thus,
the algorithm proposed in [14] can only be applied for mining patterns according to the
match measure. We need to develop algorithms to mine the patterns according to
the NM measure.

3.4 Definition of Pattern Group

Since the trajectories are imprecise, many mined trajectory patterns are very similar.
At each snapshot of trajectory, the true location of the moving object follows a normal
distribution where the mean is the expected location of the object. Therefore, due to
the bell shape of the normal distribution, the probabilities that the true location of the
object falls into two adjacent grids could be similar. As a result, the NM of two patterns
consisting of nearby grids could be similar.

The pattern group is a concept which helps to compactly present the results of im-
precise trajectory mining, in which many patterns are similar to each other. The similar
patterns can be clustered into a small number of groups. Intuitively, similar patterns
should be close to each other at any snapshot. The similar relation of patterns and the
concept of pattern group are formally defined as below:

Definition 1. Given two patterns of the same length, if at every snapshot of the patterns,
the distance between the two patterns is no larger than a pre-defined value γ, we say
that these two patterns are similar patterns.

γ is called the maximum similar pattern distance. How to set this parameter is discussed
in a later section.

Definition 2. A pattern group is a set of patterns, which contains the maximum num-
ber of patterns that are similar to each other.

Problem Statement

In this paper, we try to solve the following problem. For a given set of imprecise tra-
jectories, we want to find k patterns with the most normalized match. These qualified
patterns are represented via the concept of pattern groups.
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3.5 Properties of Trajectory Patterns

As discussed above, the NM measure does not possess the Apriori property. As a result,
many algorithms that utilize the Apriori property could not be applied here. However,
the NM of trajectory patterns exhibit the following property which can be used to fa-
cilitate the mining process. Before stating the property, we first define some terms that
will be used in the remainder of this paper.

Definition 3. Let P = (p1, p2, . . . , pm) and P ′ = (p′1, p
′
2, . . . , p′n) be two trajectory

patterns. P is a super-pattern of P ′ iff there exists an integer i ≥ 0 such that for all
1 ≤ j ≤ n, pi+j = p′j . In addition, P is called a proper super-pattern of P ′ if m > n.

For example, let P = (p1, p2, p3) and P ′ = (p2, p3). We call P a super-pattern or
proper super-pattern of P ′. On the other hand, we also call P ′ a sub-pattern or proper
sub-pattern of P .

Definition 4. A trajectory pattern P is called an i-trajectory pattern (or i − pattern
for short) if there are i positions specified in P , i.e., P = (p1, p2, . . . , pi).

Property 1. Given two trajectory patterns P ′ = (p′1, p
′
2, . . . , p

′
i) and P ′′ = (p′′1 , p′′2 , . . . ,

p′′j ). Let P = (p′1, p
′
2, . . . , p

′
i, p

′′
1 , . . . , p′′j ) be the trajectory pattern by appending P ′′

to the end of P ′. Within a given set of trajectories D, NM(P ) ≤ max(NM(P ′),
NM(P ′′)). We call it the min-max property.

Proof. For each trajectory T ∈ D, there exists a sub-trajectory T ′, where |T ′| = |P |
and NM(P, T ) = NM(P, T ′). By definition, we have (i + j) × NM(P, T ′) ≤
i × NM(P ′, T ′) +j × NM(P ′′, T ′) ≤ i × NM(P ′, T ) +j × NM(P ′′, T ). Thus,
(i + j) × NM(P ) =

∑
T∈D(i + j) × NM(P, T ) ≤

∑
T∈D i × NM(P ′, T ) +∑

T∈D j × NM(P ′′, T ) = i × NM(P ′) + j × NM(P ′′). As a result, NM(P ) ≤
max(NM(P ′), NM(P ′′)).

Note that the above min-max property is very different from the Apriori property. The
Apriori property states that the support of a pattern is less than or equal to any of its
sub-patterns, while the min-max property is much looser. For each partition of a pat-
tern P , we have two portions (sub-patterns) Pleft and Pright. The min-max property
requires that the NM of P is less than or equal to either Pleft or Pright. The algorithms
developed for mining the patterns satisfying the Apriori property may not be directly
applied to the trajectory patterns with NM. As a result, it is necessary to develop a new
algorithm for mining NM patterns.

4 TrajPattern Algorithm

In this section, we present the TrajPattern algorithm to mine the k trajectory patterns
with the most normalized match (NM), and cluster these patterns into pattern groups.
The following observations are used for the mining process.

1. The length of the discovered trajectory patterns is usually much shorter than the
length of the trajectory. A trajectory could contain thousands of snapshots while a
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qualified trajectory pattern often has much less positions, e.g., tens. Based on this
observation, it is reasonable to start the search process from the short patterns, and
grow to longer patterns.

2. Our goal is to find the k patterns with the most NM. If we know the NM threshold
ω, then this threshold can be used for pruning the search space. Unfortunately, we
do not know ω. However, if we find a set of patterns Q, then the NM threshold
ω should be greater than or equal to the kth maximum NM of the patterns in Q.
Based on this observation, we can dynamically maintain a set of patterns Q, and
the NM threshold ω should be the kth maximum NM of the patterns in Q. With
more patterns discovered, we can update the threshold ω, which could increase the
pruning power.

3. Based on the min-max property, if a pattern P1 is below a NM threshold ω, then in
order to find a super-pattern P = (P1, P2) such that NM(P ) ≥ ω, the NM of the
pattern P2 has to be greater than or equal to ω. As a result, if the NM of a pattern
P is below ω, then P will only be combined with patterns whose NM is at least ω
to generate the candidate patterns. Thus, we may consider the set of patterns with
NM at least ω as the seeds for generating the candidate patterns.

Based on the previous observations, we devise an algorithm called TrajPattern to
mine the set of k trajectories with the most NM. We first partition the space into grids,
and the grid centers serve as the singular patterns. Then we initialize the set Q to in-
clude all these singular patterns and set the NM threshold ω to be the kth maximum
NM of patterns in Q. The set of patterns in Q with NM lower than ω is marked as
low patterns and denoted as L while the set of patterns in Q with NM greater than or
equal to ω is labeled as high patterns and denoted as H. We can generate the candi-
date patterns from the set of high patterns as follows. For each high pattern P ∈ H,
we extend P by adding each pattern P ′ ∈ Q. Note that P ′ may be a high pattern
or a low pattern. Let P = (p1, p2, . . . , pm) and P ′ = (p′1, p′2, . . . , p′l). Two candi-
date patterns (p1, . . . , pm, p′1, . . . , p

′
l) and (p′1, . . . , p

′
l, p1, . . . , pm) will be generated.

The NM of these candidate patterns are computed and these newly generated patterns
are inserted into Q. Based on these patterns, we can update the threshold ω and mark
all patterns as high or low according to the new threshold ω. Then, patterns in Q are
pruned to reduce the cardinality and improve the efficiency (The detail is explain of
the pruning step later.) The mining process terminates when the set of high patterns
does not change during the last iteration. Lastly, pattern groups are discovered from the
set of high patterns. The formal description of the TrajPattern algorithm can be found
in [17].

4.1 Pruning

In the TrajPattern algorithm, the main problem is the size of Q. If it is too large, then
the algorithm would be very inefficient. During an iteration, the size of Q increases by
2k fold. Without any pruning, Q would grow to 2kiG after ith iteration where G is the
number of grids in the space. This could be too large. In order to provide an efficient
algorithm, it is necessary to reduce the size of Q. Fortunately, we can prune Q based on
the following observation. We only need to keep the set of low patterns satisfying the
following 1-extension property.
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Fig. 2. 1-extension patterns

Definition 5. (1) For a j-pattern(j > 1) P , if there exists a (j − 1)-pattern P ′ which
is the proper sub-pattern of P and P ′ is a high pattern, then we say that P satisfies the
1-extension property. (2) Any 1-pattern satisfies the 1-extension property.

For example, the pattern in Figure 2(a) can be viewed as a pattern satisfying the 1-
extension property while the pattern in Figure 2(b) does not satisfy the 1-extension
property. The reason that we only need to retain the set of low patterns satisfying the
1-extension property is due to the following lemma.

Lemma 1. Any high pattern P can be obtained by extending a high pattern P ′ with
either a high pattern or a low pattern P ′′ satisfying the 1-extension property.

Proof. Let’s consider the high pattern P = (p1, p2, . . . , pm) shown in Figure 2(c). A
”cut” partitions P into two non-overlapping complementary patterns Pleft and Pright

where Pleft and Pright contains the sub-patterns left and right to the cut respectively.
Assume the cut is made at the end of the first position of P , then Pleft = (p1) and
Pright = (p2, . . . , pm). There are three cases. (1) Both Pleft and Pright are high pat-
terns, then the lemma holds. (2) Pleft is low while Pright is high. Since Pleft is a
1-pattern (i.e., 1-extension pattern), then the lemma also holds. (3) Pleft is high and
Pright is low. In this case, we move the cut from the left to the right one position at a
time. If Pleft is always high with respect to all cuts, then this lemma also holds because
when the cut is at the (m − 1)th position, Pright is of length 1 (a 1-extension pattern).
Let’s assume that there exists a position 1 < i ≤ m − 1, such that (p1, p2, . . . , pi) is
high and (p1, p2, . . . , pi, pi+1) is low. This means that (pi+2, . . . , pm) is a high pattern
by the min-max property. In addition, (p1, p2, . . . , pi+1) is a 1-extension pattern by the
definition. Thus the lemma holds.

Armed with the above lemma, we can remove all low patterns that do not satisfy the
1-extension property. In the Prune procedure, for each low pattern P , we examine
whether P is an 1-extension pattern. This can be achieved by removing either the first
or the last position in P and search whether the resulting pattern exists in Hnew . If it
exists, then P is an 1-extension pattern and it will remain in Q, otherwise, it is removed.

4.2 Pattern Groups Discovery

After obtaining the top k patterns, we first group these qualified patterns by their
lengths, then cluster the patterns of the same length into pattern groups. The cluster-
ing process can be conducted in the following way. First, the patterns are clustered at
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each snapshot based on their distances. We refer to these clusters as snapshot groups.
If any pattern is clustered into a single snapshot group at certain snapshot, according
to the definition of pattern group, this pattern should be in a single pattern group. Then
this pattern is removed from all remaining snapshot groups. Next, we start from the
smallest snapshot group at all snapshots, denoted as G, to check whether G exists at
other snapshots. If so, patterns in G are qualified as a pattern group at all snapshots,
and should be removed from all remaining snapshot groups. If G does not exist at other
snapshots, we find the snapshot group at other snapshots G′, which makes G ∩ G′ has
the minimum number of patterns. We continue to check whether G∩ G′ exists at other
snapshots, until we find a proper pattern group. This process continues until all patterns
are grouped.

For example, assume we have six patterns of length two: P1 = (p1, p
′
1), P2 = (p2, p

′
2),

P3 = (p3, p
′
3), P4 = (p4, p

′
4), P5 = (p5, p

′
5) and P6 = (p6, p

′
6). We cluster these six

patterns according to their locations at the two snapshots. Assume that at the first snap-
shot we have snapshot groups (p1, p3, p4, p5) and (p2, p6); at the second snapshot we
have snapshot groups (p′1, p′3, p′6), (p′2, p′4) and (p′5). We start with the snapshot group
containing only one pattern, which is (p′5) at the second snapshot. Then P5 is assigned
into a single pattern group and we remove P5 from all remaining snapshot groups. After
this step, (p1, p3, p4) and (p2, p6) remain for the first snapshot, while (p′1, p′3, p′6) and
(p′2, p

′
4) remain for the second snapshot. Now the smallest snapshot group is (p2, p6).

Since this snapshot group does not exist at the second snapshot, we find the smallest
subset of (p2, p6) contained in any snapshot groups at the second snapshot, which is ei-
ther P2 or P6. For the same reason as P5, P2 and P6 are assigned into single pattern
groups separately. After removing P2 and P6, P4 is also assigned into a single pattern
group. Now (p1, p3) and (p′1, p

′
3) remain for both snapshots, and (P1, P3) is qualified as

a pattern group. Thus the final pattern groups are (P2), (P4), (P5), (P6), and (P1, P3).

4.3 Correctness Analysis

In this subsection we show the correctness of the TrajPattern algorithm.

Theorem 1. Let Hnew be the set of high patterns in Q when the TrajPattern algorithm
terminates and K be the set of k patterns with the highest NM. Then Q = K.

Proof. Since the cardinality of Hnew and K is the same, ie., k, we only need to prove
K ⊆ Hnew. Let Pi ∈ K be the pattern of length i. We prove via induction that Pi is
also in Hnew. First, when i = 1, Pi is a singular pattern. This pattern will be generated
in Q at the beginning and thus P1 ∈ Hnew . Assume that for each i ≤ m, any pattern
Pi is in Hnew where m is a positive integer. For a pattern Pm+1 there exists a proper
subpattern Pm of Pm+1 and M(Pm) ≥ M(Pm+1) by the min-max property. Pm+1
can be obtained via extending the high pattern Pm by adding an 1-extension pattern (a
singular pattern). Thus at the latest Pm+1 will be inserted into Hnew after Pm is inserted
into Hnew. Therefore Pm+1 will be in Hnew by the end of the TrajPattern algorithm.

4.4 Complexity Analysis

To analyze the complexity of the algorithm we need to determine the number of itera-
tions executed by TrajPattern. For the same reason as in the previous proof, by the ith
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iteration, all high patterns with length less than or equal to i is inserted in H. Therefore
the max number of iterations is O(M) where M is the maximum length of the pattern
with top k NM.

Second, we need to analyze the number of patterns in Q. Q consists of two types of
patterns: high patterns and low patterns. The low patterns are the 1-extension patterns.
Let G be the number of grids in the space. Each high pattern P can generate at most 2G
low 1-extension patterns by extending one position before the first or after the last po-
sition. Therefore, we have at most (2G|H|+ G) low patterns, which is O(kG). During
the candidate pattern generation phase there are a total of O(k2G) candidate patterns.
The time complexity to compute the NM of a pattern is O(MN) where M is the max-
imum length of a pattern and N is the size of the input trajectory data set, i.e., |D|.
Thus, during one iteration, the total time spent in computing the NM of all candidate
patterns is O(k2MNG). All other operations, e.g., choosing top k patterns, extending
high patterns, pruning, etc. have lower complexity than the computation of NM. As a
result, the total time complexity of the TrajPattern algorithm is O(k2M2NG).

The largest data structure to maintain is Q, which has the space complexity
O(kMG). Although the input data set size N could be larger than that of Q, it is not
necessary to load the entire input data set at once since we only need a portion of the
data set at a time for computing the NM. Thus the space complexity of our algorithm
can be considered as O(kMG).

5 Discussion

In this section we will further discuss some additional issues in the TrajPattern ap-
proach. First, in the context of the problem studied in this paper, it is desirable to find
patterns with some wild card positions or gaps. A wild card position represented by the
”*” symbol can be considered as a ”don’t care” position and any location can match
this position. An additional parameter d can be used to limit the number of consecu-
tive ”don’t care” symbols in a pattern. For each pattern P in Q, we can add between 0
and d ”*” symbols either in the left side or right side of P . A gap can be viewed as a
variant number of consecutive ”*”s. When computing the NM of a pattern, the dynamic
programming technique can be used in this case.

In our current problem statement, the discovered pattern may contain any number of
positions. In many applications, it may be desirable to find longer patterns, i.e., patterns
longer than a certain threshold d, since longer patterns usually contain more informa-
tion. This additional constraint poses a significant challenge due to the fact that we no
longer know how large of a set of Q we need to track. To adapt the TrajPattern algo-
rithm to this new problem, we only need to perform the following modification. The
NM threshold ω is set to the minimum NM of the set of k patterns with the most NM
of length at least d. In Q, the set of patterns with NM more than ω are labeled as high
patterns. The set of high patterns may be more than k. When more patterns of at least
length d are inserted into H, ω will be updated. This modification enables us to find
patterns with the highest NM and at least length d.

In the TrajPattern algorithm, there are several parameters: the time interval between
two consecutive snapshots t, the indifference threshold δ, the size of a grid gx and gy ,
and the maximum similar pattern distance γ. For the snapshot interval, we can use a
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small time unit, e.g., seconds or minutes. It can be specified by a domain expert. δ can
be set to a small distance unit, which can be considered as ignorable by the domain
experts. The unit length of a grid along the x and y directions gx and gy can be set
to δ. The larger grid will reduce the computation complexity but provide inaccurate
results, while the finer grid would increase the computation complexity but provide
more accurate results. The sensitivity of our algorithm to δ and the computation cost
of various grid size are analyzed in the experimental results section. For the maximum
similar pattern distance γ, we can decide its value based on the probabilistic distribution
of the location prediction model. Here due to the property of normal distribution, that
is, the probability within the range between −3 × σ and 3 × σ is approximately 0.97,
we can set γ equal to 3 × σ.

6 Experimental Results

In this paper we implemented the TrajPattern algorithm in the C++ programming lan-
guage. All experiments are running on a PC with a 3.2 GHz Pentium-4 processor and
1GB main memory. The PC is running Windows XP. It is also equipped with 160 GB
disk of 7200 RPM rotation speed. We use both real and synthetical data to analyze the
performance of the TrajPattern algorithm.

To illustrate the usefulness of the NM model, we compare it with the match model.
The border collapsing algorithm in [14] is used to mine patterns according to match
(since the Apriori property holds on the match). In addition, to show the scalability of
the TrajPattern algorithm, we compare it with the PB approach [13] (used for mining
the same set of NM patterns).

6.1 Effectiveness of the NM Model

We use two real data sets for demonstrating the usefulness of the trajectory patterns.
One is a bus route data set, and the other is a human posture data set. Due to the space
limitations, we only present the first one in this paper. The second has similar results.

In the bus data set, we have the locations of 50 buses belonging to 5 routes. Each bus
is equipped with a small sensor and is able to obtain its locations via GPS. It transmits
its location reading every minute. We obtain the traces of these 50 buses for 10 week-
days. Thus we have a total number of 500 traces. Each reading consists of the longitude
and latitude of the bus’ location. Although this data set does not use any predictive
model, we can transform it to the predictive model M as follows. For a location read-
ing at time t, if the location can be predicted with sufficient accuracy by the previous
location(s) according to M, then the location reading is omitted. As a result, we only
retain these readings that can not be predicted by M accurately, which is the same as
using the predictive model M. Next we transform the location trajectories into velocity
trajectories and align all 500 trajectories on a set of 100 snapshots.

For mining the trajectory patterns, we assume that the objects are traveling in a square,
gx, gy , and δ are set to 1

1000 of the side of the space. In the bus route data set, it takes
TrajPattern a couple minutes to mine 1000 NM patterns. The average length of top-1000
match patterns with length at least 3 is about 3.18, while the average length of top-1000
NM patterns with length at least 3 is 4.2, which is much longer than that of match patterns.
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(b) Kalman Filter Model
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Fig. 3. Location Predictions for Bus Traces

To analyze the usefulness of the trajectory pattern model, we study the effects of
employing trajectory patterns in the location prediction module. We assume that a par-
ticular module is used to predict the locations and integrate the trajectory patterns into
the location prediction module. We first mine a set of k patterns of length at least 4
with the most match on the 450 velocity trajectories. Then we apply the discovered
patterns to the location prediction module for the remaining 50 trajectories. When an
object needs to decide whether to report a location, it first checks whether the previous
portion of the trajectory confirms2 with a discovered pattern. If so, we will use the pat-
tern for the prediction. Otherwise, the location calculated according to the prediction
module will be used. We chose three prediction modules, i.e., the linear model (LM)
[12], linear Kalman Filter (LMF) [2], and the recursive motion function (RMF) [11]
for the comparison. If the predicted location is too far away from the actual location
such that a message has to be sent from the mobile object to the server, this is called a
mis-prediction. Figure 3 shows the ratio of reduced mis-predictions by each approach.
By employing the top-k NM patterns, the mis-predictions can be reduced by 20% to
40% for the three prediction methods, while with the top-k match patterns we only can
reduce the mis-predictions by around 10% to 20%. This also demonstrates the effec-
tiveness of the NM model and the trajectory patterns.

6.2 Scalability and Sensitivity

To further analyze the performance and sensitivity of our TrajPattern algorithm, we
utilize a large set of synthetic data. A projection based (PB) approach [13] to mine
the normalized match is presented as a baseline algorithm. We apply the TrajPattern
algorithm and the PB algorithm on the synthetic data and analyze their scalability with
respect to the growth of the number of patterns wanted, the number of grids in the space,
the number of trajectories and the average length of the trajectories.

Synthetic data is generated according to the following parameters: the average length
of a trajectory L, the number of trajectories S and the number of grids G. We generate
the synthetic data in two different ways. The first data set is generated based on a similar
data generation method as in [9]. The second data set is generated based on the ZebraNet
data [16]. In the ZebraNet project, traces of wild zebras are recorded by deploying
wireless devices on zebras in Kenya. We first extract the movement of zebras from the
real traces, including the moving distance in a unit time and moving directions. There

2 Here, we assume that a segment of trajectory confirms with a pattern if the probability that the
trajectory segment is generated by the pattern (based on Equation 2) is above 90%.
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are a certain number of zebra groups, within which zebras move together. For each time
snapshot, each group is randomly assigned a moving distance and a moving direction
that are extracted from the real traces. A randomness is added to every individual zebra
to simulate noise in trajectories. Meanwhile, at each time snapshot, a certain small
number of zebras will leave the group and move individually. In this paper, we only
present the experimental results of the ZebraNet data set.

The projection based (PB) algorithm [13] suffers from the fact that a large set of
prefixes need to be maintained. At each unspecified position, the maximum match of
a position p is used as the up-bound of the possible match. However, this bound could
be very loose. As a result, it could be true that every prefix up to length c could be
extensible where c is a small positive integer. In this case, we need to keep Gc prefixes,
which may be too large when c is larger than 3 or 4. This could render the projection
based algorithm inefficient.

We compare the performance (efficiency) of the TrajPattern algorithm against the
baseline projection based (PB) approach. The experimental results show that the Traj-
Pattern algorithms outperforms the PB approach with a wide margin.

First we evaluate the performance with respect to the number of patterns needed, k.
Figure 4(a) shows the average execution time of two algorithms with respect to k. Al-
though the response time of the TrajPattern algorithm and the PB algorithm grow super-
linearly with the increase of k, the response time of the TrajPattern algorithm grows at a
much slower pace than that of the PB approach due to the following reason. In the pre-
vious section, we have shown that the time complexity of TrajPattern is quadratical to k,
while in the PB approach the thresholds ω is lower and M is larger with larger k. As a
result, the number of extensible prefixes in PB approach could increase at an exponential
pace. Thus the TrajPattern is much more scalable than the PB algorithm as k increases.

The second aspect that we investigate is the scalability with the number of sequences
S. The empirical results from Figure 4(b) have confirmed that the time complexity of
the TrajPattern algorithm is linearly proportional to S. On the other hand, the response
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time of the PB approach increases super-linearly with respect to S due to the follow-
ing reason. When the number of trajectories increases, the NM of singular patterns
increases and in turn the number of extendible prefixes increases exponentially. As a
result, the response time of the PB algorithm increases at a much faster pace than those
of the two TrajPattern algorithms.

Third, we study the effects of the average length of a sequence L. From Figure 4(c), L
has similar effects on two algorithms since the time to scan a data set increases linearly
with L.

Lastly, we examine the response time with various number of grids G. The TrajPat-
tern algorithm is more scalable than the PB algorithm since the time complexity of the
TrajPattern algorithm is linear with respect to G. On the other hand, in the PB approach,
there are more candidate locations for each unspecified position, and in turn the number
of extensible prefixes increases exponentially. Our empirical results in Figure 4(d) also
confirm the theoretical analysis. The response time of the PB approach grows exponen-
tially while the response time of the TrajPattern algorithm increases linearly.

The last experiment is performed to study the effect of the indifferent threshold δ
on the mining results. Figure 4(e) shows that the number of discovered pattern groups
decreases with the growth of the indifferent threshold δ. As analyzed in Section 3, the
larger the indifferent threshold δ, the more grids will be considered indifferent from
the expected location of the object, thus the more similar patterns will be found from
the same set of trajectories. Because the number of patterns to mine is determined, the
number of pattern groups becomes smaller when δ becomes larger, thus the discovered
patterns represent a smaller amount of ”useful information”.

7 Conclusion

In this paper, we study a new problem, mining trajectory patterns from a set of imprecise
trajectories. A novel measure is devised to represent the importance of a trajectory
pattern. The min-max property is identified for the trajectory patterns. Based on this
property, we develop the TrajPattern algorithm to mine the trajectory patterns, which
first finds short patterns and then extends them in a systematic manner. The concept of
pattern group is defined to present the trajectory patterns. Both real and synthetic data
sets are used to demonstrate the usefulness of the trajectory patterns and the efficiency
of the TrajPattern algorithm.
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Abstract. We identify and explore in this paper an important pheno-
menon which points out that the power-law relationship appears in the
distribution of itemset supports. Characterizing such a relationship will
benefitmany applications such as providing the direction of tuning the per-
formance of the frequent-itemsetmining.Nevertheless, due to the explosive
number of itemsets, it will be prohibitively expensive to retrieve character-
istics of the power-law relationship in the distribution of itemset supports.
As such, we also propose in this paper a valid and cost-effective algorithm,
called algorithm PPL, to extract characteristics of the distribution with-
out the need of discovering all itemsets in advance. Experimental results
demonstrate that algorithm PPL is able to efficiently extract the charac-
teristics of the power-law relationship with high accuracy.

1 Introduction

The importance of mining frequent itemsets has been recognized in various ap-
plications, including web log mining, DNA sequence mining, frequent episodes
mining, periodic patterns, to name a few [8]. Due to the data-driven nature of
mining algorithms, it is believed in the literature that the parameter tuning of
the designed algorithm is usually requested in order to achieve the better result
on the targeted applications. It is beyond dispute that the deeper knowledge
about the characteristics of your data will lead to the better execution efficiency
and the better interpretation of the mining result. As such, a mechanism to
precisely estimate the data characteristics is usually deemed as an important
pre-processing means for mining applications.

Recent research advances in frequent-itemset mining algorithms are thus in
the direction of discovering characteristics of real datasets. For example, the
works in [7] and [11] both seek the relationship between different itemset lengths
in the targeted dataset. Such relationships can be further utilized to control the
mining process [7], or to generate the realistic synthetic datasets for the system
parameter tuning [11].

To provide better understanding on real datasets, we in this paper investigate
the more important characteristic in real datasets, named the itemset support

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 682–699, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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distribution. The itemset support distribution refers to the distribution of the
count of itemsets versus the itemset support, where an itemset complies with
the definition in [1]. Explicitly, we shall study the relationship between the value
of support, say 0.01, and the number of itemsets having the support 0.01 in the
dataset. The itemset support distribution, which is indeed a kind of the prob-
ability density function, will state the degree of the cohesion between different
items in the dataset. To the best of our knowledge, this fundamental question
has not been formally addressed.

Inspired by the power-law relationship observed in many distributions of single
words (users, web pages) [3][17], it is important to examine whether the itemset
support distribution also follows the power-law relationship. From observations on
various retail datasets and as validated by our empirical studies later, it is amaz-
ingly found that the power-law relationship indeed also appears in the itemset sup-
port distribution and we can characterize that by the Zipf distribution [17].

However, to find the parameters characterizing the itemset support distribution
will be more challenging than to find the parameters in the distribution of single
items since all itemsets need to be retrieved. The extremely large time and memory
consumption cannot be avoided due to the itemset combinational explosion. Note
that the costly process will drastically decrease the practicability of knowing the
characteristics of the itemset support distribution. To remedy this, we also propose
in this paper a valid and cost-effective algorithm, called algorithm PPL (standing
for Predict the Power-Law relationship), to correctly estimate the parameters of
the itemset support distribution from a sample dataset while avoiding the need of
generating all itemsets. As shown in our empirical studies, algorithm PPL is able
to efficiently and precisely extract the characteristics of the power-law relation-
ship. Hence algorithm PPL can be utilized as an excellent pre-processing step for
extensive applications of mining frequent patterns.

Our contributions are to solidly study issues related to the power-law rela-
tionship in the itemset support distribution. More precisely:
(1) We first formalize the problem of the itemset support distribution and explore
the important phenomenon that the distribution follows the Zipf distribution.
(2) We present a valid and cost-effective algorithm, called algorithm PPL, to
identify characteristics of the itemset support distribution without the need of
discovering all itemsets in advance.
(3) We complement our analytical and algorithmic results by a thorough em-
pirical study on real data and demonstrate that the PPL algorithm is able to
accurately the characterization of the itemset support distribution.

We then individually present these issues in the following sections.

2 Identify the Power-Law Relationship in the Itemset
Support Distribution

2.1 Review of the Power-Law Relationship

Since the first observation of the power-law relationship in [17], which dis-
covered the frequency of the nth most-frequently-used word in the natural
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language is approximately inversely proportional to n, the power-law relation-
ship has been successively discovered in many real world data, including WWW
characteristics, Internet topology, to name a few1. Specifically, the power-law
relationship can be characterized by several mathematical models, including
the well-known Zipf distribution and its variations such as the DGX distri-
bution [2]. Among them, the Zipf distribution is the most widely used form
due to its simplicity, as shown by fi ∝

(
1/rφ

i

)
, where fi denotes the fre-

quency of words (users, events, ...) that are ranked as the rth
i most frequent

words (users, events, ...) in the dataset, and φ is the parameter characteriz-
ing the skewness of the distribution. In practice, the Zipf distribution can be
further extended to characterize the ”count-frequency” relationship, which is
stated as fi ∝

(
1/cφ

i

)
, where fi is the count of distinct words that appear ci

times in the dataset [2]. Without loss of generality, we will discuss the ”count-
frequency” relationship in the sequel because the ”count-frequency” relation-
ship can be deemed as a kind of the probability density function, which is more
desirable.

In essence, the Zipf distribution is often demonstrated by scatterplotting the
data with the x axis being log(ci) and the y axis being log(fi). The distribution
will be deemed following the power-law relationship if the points in the log-log
plot are close to a single straight line, as shown by

log(fi) = θ log(ci) + Ω. (1)

In particular, the slope θ and the Y -intercept Ω in Eq. 1 can be estimated by
the linear regression2:

θ =
∑k

i=1 log(ci) log(fi) − ( k
i=1 log(ci))×( k

i=1 log(fi))
k∑k

i=1 log2(ci) − ( k
i=1 log(ci))2

k

, (2)

Ω =
∑k

i=1 log(fi)
k

− θ ×
∑k

i=1 log(ci)
k

, (3)

where k denotes the number of points in the log-log plot. Note that the linear
regression technique is a method based on the least-square errors. The correlation
coefficient3 (or said the goodness of fit of the regression line) can be utilized to
examine whether those points in the log-log plot exactly lie in the line log(fi) =
θ log(ci) + Ω or not [12]. Due to space limitations, we only describe the Zipf

1 See http://www.nslij-genetics.org/wli/zipf/ for the power-law references from differ-
ent domains.

2 Other measurements to estimate the parameters of the power-law distribution in-
clude the non-linear regression and the maximum likelihood estimation. Among
them, the linear regression is the most widely utilized approach due to its feasi-
bility and simplicity.

3 For convenience of discussion, we will postpone the formula of the correlation coef-
ficient to Eq. 5 in Section 3.3.
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distribution here. For details of the regression technique, which will be out of
scope for this paper, the reader is asked to follow the pointers in some well-known
materials such as [12].

Note that previous observations mostly concentrate on the power-law rela-
tionship in the distribution consisting of single events, e.g., single words or sin-
gle items [3][17]. Naturally, it is important to investigate whether the prevalent
power-law relationship also appears in the support distribution of units consist-
ing of a set of words or items. Such cases were first investigated in the computa-
tional linguistics literature [6], where the power-law relationship of N-grams had
been demonstrated (N-grams denote phrases consisting of N consecutive words).
Their studies show that the ”count-frequency” relationship of N-grams (with a
fixed N) follows the Zipf distribution.

2.2 Observations on the Itemset Support Distribution

In this paper, our first goal is to investigate whether the power-law relationship
appears in the distribution of itemset supports in real datasets, where an itemset
complies with the definition in [1]. Specifically, let I = {x1, x2, ..., xm} be a set
of distinct items in the dataset. A set X ⊆ I with k = |X | is called a k-itemset
or simply an itemset. Let the support of an itemset X in the database D be
the fraction of transactions in D that contain X4. We would like to investigate
whether the support distribution of itemsets follows the Zipf distribution, as the
form shown by

log(fi) = θ log(si) + Ω, (4)

where si denotes the support of itemsets and fi denotes the frequency of itemsets
whose supports are si. Note that the ”support-frequency” relationship in Eq. 4
is physically equivalent to the ”count-frequency” relationship since the ”count”
presents the absolute support count. For interest of space, we in this paper
concentrate on the investigation of retail datasets, which are skewed and sparse,
and most association-rule discovery algorithms were designed for such types of
data [16] (interested readers can find observations on other types of real datasets
in http://arbor.ee.ntu.edu.tw/˜doug/paper/PPL/index.html).

Table 1. Parameters of real datasets

Dataset Is |D| Tmax Tavg

BMS-POS 1,657 515,596 164 6.5
Retail 16,470 88,162 76 10.3

3C chain 130,108 8,000,000 87 5.4
Book 12,082 100,000 13 2.3

To examine whether the support distribution of itemsets in retail datasets
follows the Zipf distribution, four real datasets are investigated in this paper, in-

4 The support is considered as the relative occurrence frequency. Note that it is defined
in some literature as the absolute one, i.e., the occurrence frequency in the database.
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cluding two well-known retail benchmark datasets5, and two transaction datasets
from a 3C chain store and a large book store in Taiwan. Those datasets are sum-
marized in Table 1, where Is denotes the distinct items in the dataset, |D| de-
notes the number of transactions, Tmax denotes the maximum itemset length and
Tavg denotes the average itemset length. Furthermore, we execute algorithm FP-
growth downloaded from Christian Borgelt’s website6 to obtain itemsets with
their supports. Since the number of all itemsets is extremely large (there are
2Is − 1 possible itemsets at most), it is very difficult to discover all itemsets in
a reasonable execution time. For efficiency reasons, we did not retrieve all item-
sets in the BMS-POS and the 3C chain datasets, but instead retrieve itemsets
whose support counts exceed 30, where 30 is a sufficient number in the statistical
sense [12].

(a) BMS-POS (b) Retail

(c) 3C_chain (d) Book
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Fig. 1. The support distribution of four real datasets

The observations are shown in Figure 1, where the curve of the original support
distribution presents the log-log relationship of the itemset support versus the
number of itemsets with the corresponding support (the curve of the quantized
support distribution will be discussed in the next section). As can be seen, the log-
log plot is very Zipf-like, meaning that the power-law relationship indeed appears
in the distribution of the itemset support. In addition, the ”top-concavity”7

phenomenon, which is prevalent in the distribution of single items [2][17], is

5 Downloaded from the website, http://fimi.cs.helsinki.fi/data/, of the ICDM work-
shop on Frequent Itemset Mining, 2003.

6 The URL is http://fuzzy.cs.uni-magdeburg.de/˜borgelt/fpgrowth.html
7 The ”top concavity” phenomenon refers to that the top part of the log-log curve

tilts vertically (with relatively concave shapes).
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insignificant in the distribution of itemset supports. As such, the Zipf distribution
is enough to correctly characterize the power-law relationship in the itemset
support distribution. We accordingly demonstrate the fact that the power-law
relationship appears in the itemset support distribution.

3 Design of Algorithm PPL

As mentioned above, recognizing characteristics of the support distribution will
benefit the proper mining system design. However, although we have demon-
strated in Section 2 that the power-law relationship appears in the support dis-
tribution, it is prohibitively expensive to find all itemsets and further estimate
the characteristics of the Zipf distribution, i.e., the slope θ and the Y -intercept
Ω in Eqs. 2 and 3. The extremely large time consumption results from the ex-
pensive process to retrieve all itemsets without the support pruning. An efficient
approach is still demanded to correctly estimate those parameters.

(a) The itemset support distribution (in BMS-POS) (b) The quantized support distributino (in BMS-POS)

10-4 10-3 10-2 10-1 10010
0

102

104

106

10
8

The itemset support

Th
e 

nu
m

be
r 

of
 it

em
se

ts Quantized support distribution (w=10)
Quantized support distribution
(w=10, in a sample with |S|=20000)

10-4 10-3 10-2 10-1 10010
0

102

104

106

10
8

The itemset support

Th
e 

nu
m

be
r 

of
 it

em
se

ts Original support distribution
Original support distribution
(in a sample with |S|=20000)

Fig. 2. The support distribution after sampling (the BMS-POS dataset)

As a consequence, we propose in this paper a valid and cost-effective solution,
named PPL (standing for Predict the Power-Law relationship), to estimate the
parameters of the power-law relationship in the itemset support distribution.
Since the time consumption is dominated by the process of retrieving all item-
sets in the large database, algorithm PPL utilizes two approaches to improve
the efficiency. The first one is to utilize sampling techniques to retrieve item-
sets [13]. The other approach is to retrieve only the set of high-support itemsets
with the help of the support pruning techniques [10] so as to efficiently discover
the parameters of the power-law relationship from the partial set of itemsets.
Specifically, to fully utilize the capability of these two approaches, algorithm
PPL is devised as a three-phase approach: (1) sampling; (2) obtaining high-
support itemsets; (3) estimating the parameters of the power-law relationship
by the linear regression from the high-support itemsets discovered in the sample.

However, while pursuing the efficiency, algorithm PPL will face three
challenges:

(1) The support distribution obtained in a sample will deviate from the sup-
port distribution in the original database. Note that after sampling, the supports
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Fig. 3. Estimating the power-law relationship from high-support itemsets

of many low-support itemsets will become higher, and vice versa [15]. Unfor-
tunately, as pointed out in [15], the number of itemsets with a specified sup-
port is likely to increase after sampling due to the large amount of transfers
from low-support itemsets (the number of low-support itemsets is larger than
the number of high-support itemsets). As shown in our empirical studies in
Figure 2(a), where the support distributions obtained in the original dataset
and in a random sample with 20,000 tuples are included, it can be apparently
observed that the support distribution in the sample deviates from that in the
original dataset. Indeed, due to randomness, we cannot estimate the deviation
between the support distribution in a sample and that in the original dataset.
Thus after sampling, it will be difficult to correctly predict the characteristics of
the support distribution in the original dataset.
(2) It is very difficult to determine the appropriate minimum support without
prior knowledge. Note that PPL will only discover high-support itemsets. How-
ever, we will not know how to determine the subtle minimum support. A large
minimum support will result in too few itemsets to provide the sufficient infor-
mation to correctly estimate the parameters of the Zipf distribution. Oppositely,
the small minimum support will generate a lot of itemsets, thus resulting in
inefficiency.
(3) It is difficult to obtain the desired regression line due to the support fluctuation
on high-support itemsets. Note that the Zipf distribution can be characterized by
the regression line. However, consider the observation in Figure 3, where a solid
straight line represents the regression line over all points with respect to high
supports, and the dotted lines show the envelope of the support fluctuation. As
can be seen, points with respect to high supports do not exactly follow the Zipf
distribution, and the support distribution of these points has the large support
fluctuation. It will incur the large least-square errors, and the regression line
over points with respect to high supports may deviate from the desired reg-
ression line8.

8 In [3], the slope of the log-log plot is obtained by using the linear regression, excluding
the rightmost 100 points to avoid the serious effect of the fluctuation. However, such
an approach will fail in our cases since we may only have the rightmost 100 points
which are summarized from high support itemsets.
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To overcome those challenges, several novel mechanisms will be devised in
algorithm PPL. In the following, we perform step-by-step analysis to discuss
the details.

3.1 Phase I: Sampling

The goal of Phase I is to select a sample from the original dataset. Note that
as mentioned in the first challenge described above, the support distribution
in a sample will deviate from that in the original dataset, and the deviation
is unpredictable. In fact, this phenomenon can be significantly reduced in the
quantized support distribution, which will be obtained by the histogram technique
[9]. Explicitly, all itemsets can be aggregated by means of the traditional equi-
width histogram and then obtain the quantized support distribution. We give the
formal definition of the quantized support distribution below.
Definition 1 (The Quantized Support Distribution). Given all points
(si, fi) in the original support distribution, where si denotes the support of item-
sets and fi denotes the count of itemsets whose supports are si. After aggregating
those points by means of the equi-width histogram, a set of new points (ŝj , f̂j)
will be obtained, where ŝj denotes the representative value (the default is the me-
dian value) of the support range corresponding to the jth bucket of the histogram,
and f̂j denotes the count of itemsets with supports falling in the jth bucket. The
quantized support distribution is the distribution consisting of all points (ŝj , f̂j).

Bucket j Bucket j+1

support

Sampling distribution of 
the support of  an itemset 
with support si

(a) The support-deviation in the 
original support distribution

(b) The support-deviation in the 
quantized support distribution

si si+1

support

si si+1

Error 
probabilityError

probability

Sampling distribution of the support of  an 
itemset with support falling in bucket j

Fig. 4. Influence of the support-deviation

The argument that the quantized support distribution is able to reduce the in-
fluence of support-deviation follows the observation below:
Observation. Suppose that we repeatedly generate a lot of samples of the
same sample size. The distribution of the support of X among these samples,
i.e., the sampling distribution of the support of X , will approximately follow a
normal distribution with mean equal to the support of X in the entire dataset
[5]. In addition, the variance of the sampling distribution depends on the sample
size [13]. As shown in Figure 4(a), the sampling distribution of an itemset with
support equal to si in the entire database indicates that the support will be likely
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larger than si with the probability equal to the shadow region. As a result, a
percentage of itemsets in the sample will have supports inconsistent with the
corresponding support in the entire dataset. Accordingly, the itemset support
distribution after sampling will deviate from the itemset support distribution in
the entire dataset. This argument is demonstrated in Figure 2(a).

On the other hand, consider the case of the quantized support distribution. As
shown in Figure 4(b), the error probability, i.e., the probability of itemsets with
supports in bucket j changing to bucket j + 1 after sampling, will be relatively
small as compared to the error probability illustrated in Figure 4(a). The reason
lies in that the supports of most itemsets are likely to remain in the same support
bucket after sampling. In other words, only itemsets with supports in the margin
of a bucket are likely to have the support not falling in the same bucket after
sampling. This argument is demonstrated in Figure 2(b), where the quantized
support distributions obtained in the original dataset and in the sample with
20,000 tuples are shown and the parameter w denotes the number of aggregated
points. It is clear to see that the quantized support distribution in a sample will
be close to the quantized support distribution in the original dataset. �
Following the observation, we comment that the quantized support distribution
will be insensitive to the support-deviation, meaning that the quantized support
distribution in the sample will be close to the quantized support distribution in
the entire dataset. As a result, we will aim to obtain the quantized support dis-
tribution in the sample.

Another problem, as shown in Figure 1, is that the quantized support distribu-
tion still deviates from the original support distribution. Importantly, assuming
that the original support distribution approximately follows the Zipf distribu-
tion, Proposition 1 below indicates that the quantized support distribution also
has the same slope as the slope in the original support distribution and has a
”predictable” drift of the Y-intercept.

Proposition 1. Suppose that the itemset support distribution follows the Zipf
distribution so that we have log(fi) ≈ θ log(si) + Ω. Assuming that there are w
distinct points in the original support distribution being aggregated as a point in
the quantized support distribution, we will have an approximate Zipf distribution
as the form

log(f̂k) ≈ θ log(ŝk) + Ω + log (w) ,

in the quantized support distribution, where ŝk denotes the representative of the
quantized support in the k th bucket and f̂k denotes the count of itemsets whose
supports fall in the k th bucket. As such, the log-log plot in the quantized support
distribution has the slop θ and the Y-intercept Ω + log (w).

Proof. Note that we have eΩ × sθ
i,j ≈ fi,j for the point (si,j ,fi,j) in the original

support distribution since it follows the Zipf distribution. Suppose that |D| is the
database size. Let points (sk,1,fk,1), (sk,2,fk,2), ..., (sk,w,fk,w) be summarized
as the kth point (ŝk,f̂k) in the quantized support distribution. We have f̂k =∑w

j=1 fk,j , and
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ŝk =
sk,1 + sk,w

2
=

sk,1 +
(
sk,1 + w

|D|

)
2

= sk,1 +
w

2 × |D| .

Since w
|D| is in general much weak as compared to sk,1, we have

sθ
k,j

ŝθ
k

=

(
sk,1 + j

|D|
sk,1 + w

2×|D|

)θ

≈ 1.

Therefore sθ
k,j , for 1 ≤ j ≤ w, will be approximately equal to ŝθ

k, which yields
that

f̂k =
∑w

j=1
fk,j ≈ eΩ ×

∑w

j=1
ŝθ

k = eΩ × w × ŝθ
k,

log(f̂k) ≈ θ log(ŝk) + Ω + log (w) . �

Proposition 1 indicates that the slope θ remains in the quantized support distri-
bution, and the Y-intercept will be changed to Ω+log (w). Figure 1 demonstrates
Proposition 1, where we can see that, for high-support points, the slope of the
quantized support distribution (w = 10 or 100) is equal to that of the quantized
support distribution without sampling. As a result, the side-effect of sampling
is overcome.

0

  ,    of the itemset support 
distribution in the whole dataset

Unpredictable drift   ,    of the itemset support 
distribution in the sample

  ,    of the quantized support 
distribution in the whole dataset

  ,    remain the same

Predictable drift 
according to 
Proposition 1Our Goal

Start12

3

  ,    of the quantized support 
distribution in the sample

Fig. 5. The flow to overcome problems incurred by sampling

Based on the foregoing, the process to overcome problems incurred by sam-
pling, as shown in Figure 5, will be summarized as:

(1) Obtain the characteristics of the quantized support distribution in the sample.
(2) The characteristics of the quantized support distribution in the whole dataset
are expected equal to that in the sample.
(3) In light of Proposition 1, obtain the characteristics of the original itemset
support distribution.

Note that while step 1 is completed, steps 2 and 3 can be straightforwardly ex-
ecuted with the mathematical manipulation mentioned above. How to precisely
achieve step 1 will be discussed in Section 3.2 and Section 3.3.

The remaining issue in this phase is, what is the appropriate sample size to
obtain the quantized support distribution in the sample which is consistent with
that in the entire database. Formally, the level of consistency depends on the
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variance of the sampling distribution of the support, and the variance relies on
the sample size [13]. A small sample size will lead to a large variance as com-
pared to the variance in a large sample size. As pointed out in previous works
of sampling for mining association rules, a sample size equal to 20,000 [13] or
a sample rate equal to 10% [15], will be sufficient to generate the accurate set
of frequent itemsets. We argue that the sample size 20,000 or 10% is also suffi-
cient to generate the accurate quantized support distribution by following several
points: (1) the complexity to generate the accurate quantized support distribu-
tion is analogous to the complexity to generate accurate frequent itemsets; (2)
in Phase II only high-support itemsets will be generated, whose supports, as
indicated in [13], can be easily preserved in samples as compared to supports of
low-support itemsets; (3) the discrepancy between counts of itemsets within a
bucket in the sample and in the entire dataset will be unapparent in the log-log
scale (the characteristics of the power-law relationship is estimated in the log-log
scale); (4) the technique in Phase III is specifically designed to be robust to the
inconsistency between quantized support distributions in the sample and in the
entire dataset.

As simultaneously considering execution efficiency and above points, we there-
fore set the sample size as 20,000 in default since the sample can be easily ex-
ecuted and maintained in main memory. The discreet users can set the size as
10% of the entire size, as the suggestion in [15]. We will also investigate the issue
of the sample size in our empirical studies later.

3.2 Phase II: Discover High-Support Itemsets in the Sample

In this phase, the high-support itemsets in the sample will be discovered. With-
out prior knowledge to determine the appropriate minimum support, we resort
to the technique of ”discover top-k itemsets” [4][14] instead of ”discover itemsets
with the specified minimum support,” where top-k itemsets refer to the k most
frequent itemsets in the dataset. In practice, the size of k can be easily specified
a priori. As will be shown in our experimental results, k equal to 5,000 will suffice
to correctly estimate the parameters of the power-law relationship in most cases.
As such we set k as 5,000 in default, where top 5,000 itemsets can be efficiently
retrieved by the state-of-the-art algorithm for mining top-k frequent itemsets.

3.3 Phase III: Characterize the Power-Law Relationship

The parameters of the Zipf distribution will be estimated in this phase. Suppose
that {X1, ..., Xk} is the set of top-k itemsets which are obtained in Phase II.
At the beginning of this phase, we will aggregate these itemsets by means of
histogram with the support bucket width equal to w

|S| , where |S| is the size of
the sample dataset and w is the number of distinct and consecutive support
counts which will be aggregated into the same bucket. Note that the default of
w is 10 in this paper since empirically w = 10 is able to preserve the slope of
the itemset support distribution, as shown in Figure 1. As such, top-k itemsets
will be aggregated into a set of points Hk ={

(
ŝ1, f̂1

)
,
(
ŝ2, f̂2

)
, ...,

(
ŝz, f̂z

)
}
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sorted by ŝi, where ŝi < ŝj iff i < j. We therefore can characterize the power-
law relationship by performing the regression analysis over the partial quan-
tized support distribution which is summarized from top-k itemsets discovered in
the sample.

However, as pointed out as the third challenge described in the beginning of
Section 3, directly executing the regression analysis over all points in Hk will
result in the incorrect estimation due to the support fluctuation on high support
itemsets. Therefore the problem arises: ”how to select an appropriate subset of
points from Hk to correctly estimate the parameters of the Zipf distribution?”
Recall the observation in Figure 3. Points with respect to very high-supports
usually do not accurately follow the Zipf distribution. On the other hand, without
loss of generality, points with respect to low supports usually follow the Zipf
distribution. As such, one may intuitively claim a naive approach as follows.

Naive Approach. It is intuitive to suggest the regression line over first several
points in Hk since they are sufficient to correctly fit the power-law relationship.
For example, we may estimate the power-law relationship by performing the
regression analysis over the first five points in Hk, i.e., {

(
ŝ1, f̂1

)
, ...,

(
ŝ5, f̂5

)
}.

Nevertheless, we indeed did not know how many points are sufficient to obtain
the desired regression line. Thus we have to examine all possible regression lines,
and then select the one with the best correlation coefficient since it will have the
best power to explain the log-log relationship in the Zipf distribution. �
However, such an approach suffers from the problem that the best correlation
coefficient does not imply the best fit of the Zipf distribution. In particular,
sometimes few points will result in the best correlation coefficient, but the re-
gression line could be bias to outlier points [12]. In addition, sampling in Phase
I may incur noise, which will also affect the result of the linear regression. As a
result, we devise a novel solution, which is inspired from the training and testing
scenario in supervised learning [8], to correctly estimate the parameters of the
Zipf distribution from Hk.

Minimizing Testing Error Approach. Suppose that Hk is divided into two
distinct and consecutive subsets of points, i.e., the training set Tr and the testing
set Te, where Te =

{(
ŝ1, f̂1

)
, ...,

(
ŝm, f̂m

)}
and Tr =

{(
ŝm+1, f̂m+1

)
,...,
(
ŝz, f̂z

)}
.

Here m is the parameter to adjust the size of the testing set and m < z. Consider
the illustration in Figure 6, where each point in Te is called a testing point. Our
goal is to find the best fit regression line from Tr so that all testing points in Te

can well lie in the line. Formally, we give the definition of the best fit regression
line in the following.

Definition 2 (Best Fit Regression Line). Given the training set Tr and the
testing set Te. The best fit regression line, denoted by Rg(ŝi) = θ̂g log(ŝi) + Ω̂g,
will satisfy:

(1) Rg(ŝi) = θ̂g log(ŝi) + Ω̂g is the regression line over the first g points in Tr,

i.e.,
{(

ŝm+1, f̂m+1

)
, ...,

(
ŝg, f̂g

)}
, where m + 1 ≤ g ≤ z.
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(a) Procedure Best_fit (b) Overall flow of algorithm PPL

Procedure: Best_fit

Input:

Top-k itemsets, Xi, where i 1, ..., k.
The number of aggregated support counts w.
The number of points in Te, i.e., |Te|.
The correlation coefficient threshold .

Output:

The best fit slope g, and the best fit Y-intercept g

1. Let f i 0, where i 0, ..., 1 ;
2. for i 1 to k;

3. f f 1, where sup Xi and sup Xi denotes the support of Xi;

4. find , where f mini f i 0 ;
5. for f |Te| 1 to 1 begin
6. [ f , f, rf] linear_reg log sm , log fm , where |Te| 1 m f;

7. Varf j 1

m
f log sj log f j f

2
;

8. end
9. find g, where g arg minu Varu , subject to ru ;

10. return g, g with respect to g;

Fig. 7. The implementation of algorithm PPL

(2) The correlation coefficient, rg, over the data points
{(

ŝm+1, f̂m+1

)
, ...,(

ŝg, f̂g

)}
is smaller than a pre-defined threshold δ. Note that,

rg =

∑g
i=m+1

∑g
j=m+1 (log(ŝi) − us)

(
log(f̂j) − uf

)
√∑g

i=m+1 (log(ŝi) − us)
2
√∑g

j=m+1

(
log(f̂j) − uf

)2
, (5)

where us and uf are the mean of log(ŝi) and log(f̂j), respectively.

(3) g = argminu

{∑m
j=1

(
Ru(ŝj) − log(f̂j)

)2
}

, subject to the correlation coef-

ficient rf ≤ δ and m + 1 ≤ u ≤ z.
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The whole procedure to find the best fit regression line is outlined in Procedure
Best fit inFigure 7(a),where the function linear reg()will return three parameters,
the intercept Ω (see Eq. 3), the slope θ (see Eq. 2) and the correlation coefficient
r. Specifically, the correlation coefficient rg (a value between -1 and 1) can repre-
sent the level how those points are explained by the regression line. The regression
line will fit points better when rg → −1 since without loss of generality, f̂i and ŝi

are negatively correlated. Statistically, it is believed that rg ≤ −0.8 is sufficient to
claim the regression line can explain these points [12]. Thus δ is set as −0.8 in de-
fault. Note that criterion 3 in Definition 2 states that we desire the regression line
with the minimum testing error. It is worth mentioning that, algorithm PPL will
degenerate to the naive approach if there is no testing point inTe and simply choose
the regression line with the best correlation coefficient. For comparison purposes,
we will also show the result of the naive approach in our experimental results. Note
that the best fit regression line will be discovered in the quantized support distri-
bution generated from top-k itemsets in the sample. In light of Proposition 1, the
slope and the Y-intercept in the original itemset support distribution will be equal
to θ̂g and Ω̂g − log(w), respectively.

We finally summarize the overall flow of algorithm PPL, as shown in
Figure 7(b): (1) sampling; (2) discover top-k frequent itemsets in the sample; (3)
aggregate the support of top-k itemsets by means of the equi-width histogram so as
to obtain the partial quantized support distribution; (4) perform ProcedureBest fit
to obtain the characteristics of the quantized support distribution in the sample;
(5) identify the characteristics of the power-law relationship in the itemset support
distribution in the entire database according to Proposition 1.

4 Experimental Studies

The four real skewed datasets described in Table 1 are utilized in our experi-
mental studies. Since the goal to show the support distribution follows the Zipf
distribution has been demonstrated in Section 2, we in this section investigate
whether algorithm PPL can efficiently and correctly estimate the parameters of
the power-law relationship in the itemset support distribution. The simulation
is coded by C++ and performed on Windows XP in a 1.7GHz IBM compatible
PC with 512MB of memory. The default parameters in the experiments are:
(1) k = 5, 000 (top-k itemsets); (2) the number of aggregated support counts
w = 10; (3) the number of points in the training set |Te| = 5; (4) the correlation
coefficient threshold δ = −0.8; (5) the sample size |S| = 20, 000.

We investigate whether algorithm PPL with the default parameters is able
to correctly characterize the power-law relationship in four real datasets. The
results are presented in Figure 8(a)˜Figure 8(d), where the original support
distributions and the best fit regression lines obtained by algorithm PPL (with
their slopes θ and Y-intercepts Ω) are shown. Note that the best fit regression
line is discovered in the quantized support distribution in the sample. As can be
seen, the best fit regression line can perfectly characterize the Zipf distribution
in the four real datasets, showing the effectiveness of PPL.
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Fig. 8. The results of algorithm PPL
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Fig. 9. The qqplot results in BMS-POS with various δ

Furthermore, the execution time is shown in Figure 10, where the execution
time of ”Brute force approach” indicates the time to retrieve the original sup-
port distribution in Figure 1 by algorithm FP-growth. Indeed, the brute force
approach can correctly determine the parameters of the Zipf distribution by find-
ing most of itemsets, but it will pay for the extremely large time consumption.
On the other hand, PPL can efficiently estimate the parameters of the power-
law relationship by avoiding the expensive process to obtain all itemsets. It is
worth mentioning that the efficiency gain in Figure 10, which is calculated as
the execution time of the brute force approach divided by the execution time of
algorithm PPL, shows that algorithm PPL is in orders of magnitude faster than
the brute force approach.

Same as the experiments in [2], the quantitative analysis of algorithm PPL
will be evaluated by the traditional method of quantile-quantile plot (qqplot), as
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Dataset Brute force approach Algorithm PPL Efficiency Gain
BMS-POS 632 sec 8 sec 79

Retail 1248 sec 5 sec 249.6
3C_chain 2547 sec 10 sec 254.7

Book 492 sec 3 sec 164

Fig. 10. The execution time of different approaches

Variant Parameters Corr. Coef. Slope Corr. Coef. Slope Corr. Coef. Slope Corr. Coef. Slope
Default 0.99 1.02 0.99 0.99 0.99 1.01 0.98 1.02
    =0 (naive) 0.89 0.73 0.83 0.82 0.91 0.83 0.87 0.93
    =10 0.99 0.98 0.98 0.96 0.98 1.01 0.99 1.02
  =-0.5 0.84 0.86 0.91 1.08 0.92 0.94 0.87 1.11
  =-0.9 0.99 1.01 0.99 1.02 0.97 1.06 0.98 1.03
    =0;   =-0.5 0.81 1.21 0.77 1.11 0.73 1.18 0.84 1.13
k=10,000 0.98 1.02 0.99 0.97 0.97 1.08 0.98 1.07
k=50,000 0.99 0.99 0.99 1.02 0.98 0.97 0.98 0.94
|S|=10,000 0.93 1.09 0.98 0.97 0.95 1.09 0.98 0.97
|S|=50,000 0.99 0.99 0.99 1.03 0.98 0.99 0.99 1.03
|S|=0.1|D| 0.99 1.03 0.93 1.13 0.99 0.98 0.91 0.94
|S|=0.2|D| 0.99 1.01 0.94 1.04 0.98 0.96 0.94 1.03
w=50 0.98 1.03 0.91 0.94 0.94 1.02 0.96 1.08
w=100 0.93 1.14 0.88 1.13 0.98 1.01 0.92 0.94

BMS-POS Retail 3C_chain Book

|Te |

|Te |
|Te |

Fig. 11. The qqplot results of four real datasets

the one shown in Figure 9. The qqplot is used to compare the quantiles of two
datasets. If the distributions of these two datasets are similar, the qqplot will be
linear and the slope will be close to one. As such, we generate a synthetic sup-
port distribution according to the parameters estimated by algorithm PPL, and
then make a qqplot between the original support distribution and the synthetic
support distribution. Afterward, two important factors can be calculated: (1)
the slope of the qqplot; (2) the correlation coefficient of points in the qqplot. If
both are close to one, we can claim that the real distribution and the synthetic
distribution are from the same distribution [2], meaning that the regression line
can perfectly represent the data distribution.

The qqplots on various correlation coefficient thresholds δ are shown in Fig-
ure 9, where Figure 9(a) is the qqplot corresponding to the result of Figure 8(a).
We can find that the qqplot in Figure 9(a) is close to linear, except points with
respect to very low supports and very high supports. Note that points with re-
spect to high supports have been observed not exactly following the power-law
relationship and points with respect to low supports in the BMS-POS dataset
upwardly vary from the Zipf distribution, thus causing the deviation of a few
points. However, the slope and the correlation coefficient are very close to unity,
indicating that the synthetic distribution can mostly correctly fit the real distri-
bution. Furthermore, when we increase the threshold δ, as shown in Figure 9(b),
the estimated quality degrades, showing the importance of the criterion 2 of the
best fit regression line. Indeed, a regression line with the low correlation coeffi-
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cient loses its effectiveness to estimate the power-law relationship, even though
it satisfies criterion 3, i.e., having the minimum testing error.

Due to space limitations, other qqplot results of four real datasets are sum-
marized in Figure 11. At first, we observe results with various |Te|. Note that
the case |Te| = 0 can be deemed as the naive approach discussed in Section
3.3. As can be seen, the naive approach cannot correctly model the distribution
since the correlation coefficient and the slope deviate a lot from unity. On the
other hand, |Te| = 5 (default cases) and |Te| = 10 both lead to the desirable
result. Moreover, the studies of various δ are also shown, and we can find that
δ = −0.8 (default cases) or −0.9 will result in the correlation coefficient and the
slope close to one. Note that without loss of generality, the results of |Te| = 0
and δ = −0.5 can be deemed as the case to obtain the regression line over all
points from top-k itemsets. It can be seen that the regression line over all points
loses of its power to explain the real data distribution. The above observations
all demonstrate the effectiveness of algorithm PPL.

In addition, with the result of various k, we can conclude that the default k =
5, 000 is sufficient to obtain high quality results. Note that top-5000 itemsets can
be efficiently retrieved in the sample, indicating the efficiency and effectiveness of
algorithm PPL. We also investigate the influence of the sample size. Clearly, the
result obtained in the sample with the default size 20,000 is close to the result ob-
tained in the large sample with size equal to 0.2 × |D|, showing that the resulting
quality is insensitive to the sample size if the sample size is not arbitrarily small.
Finally, we observe the result of various w. Note that Proposition 1 will not hold
when w is large. Thus it can be seen that w = 100 slightly degrades the estimated
quality of algorithm PPL. Since the goal of histogram in this paper is to diminish
the side-effect of sampling, we conclude that w = 10 is sufficient to achieve this,
and will give the excellent fit of the itemset support distribution.

5 Conclusions

In this paper, we demonstrated that the power-law relationship appears in the
distribution of itemset supports in the real datasets. Discovering such a relation-
ship is useful for many applications. To avoid the costly process of retrieving all
itemsets, we proposed algorithm PPL to efficiently extract characteristics of the
power-law relationship. As shown in the experimental results, algorithm PPL is
able to efficiently extract the characteristics of the power-law relationship with
high accuracy.
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Abstract. Target search in content-based image retrieval (CBIR)
systems refers to finding a specific (target) image such as a particular
registered logo or a specific historical photograph. Existing techniques
were designed around query refinement based on relevance feedback, suf-
fer from slow convergence, and do not even guarantee to find intended
targets. To address those limitations, we propose several efficient query
point movement methods. We theoretically prove that our approach
is able to reach any given target image with fewer iterations in the
worst and average cases. Extensive experiments in simulated and realistic
environments show that our approach significantly reduces the number of
iterations and improves overall retrieval performance. The experiments
also confirm that our approach can always retrieve intended targets
even with poor selection of initial query points and can be employed to
improve the effectiveness and efficiency of existing CBIR systems.

1 Introduction

Content-based image retrieval (CBIR) has received much research attention in
the last decade, motivated by the immensely growing amount of multimedia data.
Many CBIR systems have recently been developed, including QBIC [5], MARS
[11, 14], Blobworld [2], PicHunter [4], and others [15, 18, 20, 21]. In a typical
CBIR system, low-level visual image features (e.g., color, texture and shape)
are automatically extracted for image descriptions and indexing purposes. To
search for desirable images, a user presents an image as an example of similarity.
The system then returns a set of similar images based on the extracted features.
In CBIR systems with relevance feedback, the user can mark returned images
as positive or negative, which are fed back into the system as a new, refined
query for the next round of retrieval. The process is repeated until the user is
satisfied with the query result. Relevance feedback helps bridge the semantic
gap between the descriptive limitations of low-level features and human percep-
tion of similarity [16]. Such systems achieve high effectiveness for many practical
applications [6].

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 700–717, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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There are two general types of search: target search and category search [4, 6].
The goal of target search is to find a specific (target) image (e.g., a registered
logo, a historical photograph or a painting), which can be determined based
on low-level features. The goal of category search is to retrieve a particular
semantic class or genre of images (e.g. scenery images or skyscrapers). Target
search corresponds to known-item search in information retrieval; category search
corresponds to high-precision search. Due to semantic gaps, images in a semantic
category might scatter in several clusters in low-level feature space. To retrieve
a semantic class, category search is normally decomposed into several target
searches, in which representatives of the clusters are located. The representatives
are then used to retrieve the members of the clusters. Efficient target search
techniques are therefore essential for both target search and category search.
Hence, we focus on target search in this paper.

Existing target search techniques allow the re-retrieval of checked images when
they fall in the search range. This leads to a host of major disadvantages:

– Local maximum traps. Since query points in relevance feedback systems
have to move through many regions before reaching a target, it is possible
that they get trapped in one of these regions. Figure 1 illustrates a possible
scenario. As a result of a 3-NN search at ps, the system returns points p1 and
p2, in addition to query point ps (s and t respectively denote the starting
query point ps and the target point pt). Since both p1 and p2 are relevant,
the refined query point pr is their centroid and the anchor of the next 3-NN
search. However, the system will retrieve exactly the same set, from which
points p1 and p2 are again selected. In other words, the system can never
get out because the retrieval set is saturated with the k checked images.
Although, the system can escape with a larger k, it is difficult to guess a
proper threshold (up to k = 14 in this example). Consequently, we might
not even know a local maximum trap is occurring.

– No guarantee that returned images are the most relevant. This is due to
local maximum traps and thereby no guarantee to find the target image.

– Slow convergence. The centroid of the relevant points is typically selected as
the anchor of refined queries. This, coupling with possible retrieval of already
visited images, prevents aggressive movement of search (see Figure 2, where
k = 3). Slow convergence also implies that users must spend more time with
the system, refining intermediate queries.

– High resource requirements. These overheads are the results of slow conver-
gence, local maximum traps and larger intermediate results.

To address the above limitations, we propose four target search methods:
näıve random scan (NRS), local neighboring movement (LNM), neighboring di-
vide and conquer (NDC), and global divide and conquer (GDC) methods. All
these methods are built around a common strategy: they do not retrieve checked
images (i.e., shrink the search space). Furthermore, NDC and GDC exploit
Voronoi diagrams to aggressively prune the search space and move towards
target images. We theoretically prove that the convergence speeds of GDC and
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NDC are much faster than those of NRS and recent methods. Results of exten-
sive experiments confirm our complexity analysis and show the superiority of
our techniques in both the simulated and realistic environments. A preliminary
design based on heuristics was presented in [10]. This paper introduces theo-
ries and formal proofs to support the proposed techniques, and presents more
extensive experiments.

The remaining of the paper is organized as follows. In Section 2, we survey
recent works on target search. Section 3 presents in detail our proposed methods
for target search. Section 4 describes our performance experiments and discusses
the results. Finally, we conclude the paper and highlight our future research
directions in Section 5.

2

s

1

t

r

Cluster 1 Cluster 2

Fig. 1. Local maximum trap

t

s

t

Fig. 2. Slow convergence

2 Related Work

In this section, we survey existing techniques for target search. We also review
category search techniques because they are closely related. Category search
techniques can be used for target search if we assume the desired category has
only one target image.

Two well-known techniques for target search were proposed in QBIC [5] and
PicHunter [4]. IBM’s QBIC system allows users to compose queries based on
visual image features such as color percentage, color layout, and texture present
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in the target image, and ranks retrieved images according to those criteria. To
achieve good results, users are required to compose queries with an adequate
knowledge of the targets’ properties, which is normally a difficult and time-
consuming process for unskilled users. To lessen the burden on users, PicHunter
proposes to predict query’s intents using a Bayesian-based relevance feedback
technique to guide query refinement and target search. PicHunter’s performance,
however, depends on the consistency of users’ behavior and the accuracy of the
prediction algorithm. In addition, both QBIC and PicHunter do not guarantee
to find target images and suffer local maximum traps.

Techniques for category search can be divided into two groups: single-point
and multipoint movement techniques. A technique is classified as a single-point
movement technique if the refined query Qr at each iteration consists of only
one query point. Otherwise, it is a multi-point movement technique. Typical
query shapes of single-point movement and multi-point movement techniques
are shown in Figures 3 and 4 where the contours represent equi-similarity sur-
faces. Single-point movement techniques, such as MARS [11, 14] and MindReader
[8], construct a single query point, which is close to relevant images and away
from irrelevant ones. MARS uses a weighted distance (producing shapes as
shown in Figure 3.2), where each dimension weight is inversely proportional
to the standard deviation of the relevant images’ feature values in that dimen-
sion. The rationale is that a small variation among the values is more likely to
express restrictions on the feature, and thereby should carry a higher weight.
On the other hand, a large variation indicates this dimension is not signif-
icant in the query, thus should assume a low weight. MindReader achieves
better results by using a generalized weighted distance, see Figure 3.3 for its
shape.

1. Original 2. Dimension Weighting 3. Generalized Weighting

Fig. 3. Single-points movement query shapes

In multipoint movement techniques such as Query expansion [3], Qcluster [9],
and Query Decomposition [7], multiple query points are used to define the ideal
space that is most likely to contain relevant results. Query expansion groups
query points into clusters and chooses their centroids as Qr’s representatives ,
see Figure 4.1. The distance of a point to Qr is defined as a weighted sum of
individual distances to those representatives. The weights are proportional to the
number of relevant objects in the clusters. Thus, Query expansion treats local
clusters differently, compared to the equal treatment in single-points movement
techniques.
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1. Convex Shape 2. Concave Shape

Fig. 4. Multiple point movement query shapes

In some queries, clusters are too far apart for a unified, all-encompassing con-
tour to be effective; separate contours can yield more selective retrieval. This
observation motivated Qcluster to employ an adaptive classification and cluster-
merging method to determine optimal contour shapes for complex queries. Qclus-
ter supports disjunctive queries, where similarity to any of the query points is
considered as good, see Figure 4.2. To handle disjunctive queries both in vector
space and in arbitrary metric space, a technique was proposed in FALCON [22].
It uses an aggregate distance function to estimate the (dis)similarity of an ob-
ject to a set of desirable images. To handle semantic gaps better, we recently
proposed a query decomposition technique [7]. In general, the above category
search techniques do not guarantee to find target images and still suffer slow
convergence, local maximum traps and high computation overhead.

To avoid local maximum traps and their problems, our methods will ignore all
checked images. They will be discussed in the order of their sophistication in the
next section. The most complex, GDC, is based on the single-point movement
method, which proves to converge faster than multipoint movement mehthods.
It employs Voronoi diagrams to prune irrelevant images, assisting users in query
refinement and enabling fast convergence.

3 Target Search Methods

In this section, we present the four proposed target search methods. Again, the
goals of our target search methods are avoiding local maximum traps, achieving
fast convergence, reducing resource requirements, and guaranteeing to find target
images. Reconsidering already checked images is one of the several shortcomings
of existing techniques that causes local maximum trap and slow convergence. The
idea of leaving out checked images is our motivation for a new design principle.
We assume that users are able to accurately identify the most relevant image out
of the returned images, and the most relevant image is the closest image to the
target image among the returned ones. We will also discuss the steps to ensure
our target search system less sensitive to users’ inaccurate relevance feedback in
Section 4.

The ultimate goal of target search is to find target images. Thus if target
images were not found, the final precision and recall would be zero. In CBIR
with relevance feedback, the traditional recall and precision can be computed
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for individual iteration. For target search, we can use the so-called ‘aggregate’
recall and precision: if after several, say i, iterations the target image is found,
the average precision and recall are 1/(i · k) and 1/i, where k is the number
of images retrieved at each iteration. In short, the number of iterations to find
target images is not only the most significant measure of efficiency but also the
most significant indicator of precision and recall. Therefore, we use the number
of iterations as the major measure for theoretical analysis and experimental
evaluation of the four proposed target search methods.

Initial Random Images
or Query Result Images

Relevance Feedback
Refined Query Qr

Terminate
Find Target

Not Find Target
Target Search

Methods

Evaluate Qr

User Evaluate

Fig. 5. Overview of the target search systems

A query is defined as Q = 〈nQ, PQ, WQ, DQ, S, k〉, where nQ denotes the
number of query points in Q, PQ the set of nQ query points in the search space
S, WQ the set of weights associated with PQ, DQ the distance function, and
k the number of points to be retrieved in each iteration (see Figure 5). For
single point movement techniques, nQ = 1; for multipoint movement techniques,
nQ > 1; and nQ = 0 signifies that the query is to randomly retrieve k points in
S. This definition is a generalized version of Q = 〈nQ, PQ, WQ, DQ〉 defined in
[3], where the search space is assumed to be the whole database for every search.
In our generalized definition, S is included to account for the dynamic change
of search space, which is usually reduced after each iteration. Let Qs denote the
starting query, Qr a refined query at a feedback iteration, Qt a target query
which results in the retrieval of the intended target, and Sk the query result set.

3.1 Näıve Random Scan Method

The NRS method randomly retrieves k different images at a time until the user
finds the target image or the remaining set is exhausted, see Figure 6. Specifically,
at each iteration, a set of k random images are retrieved from the candidate (i.e.
unchecked) set S′ for relevance feedback (lines 2 and 6), and S′ is then reduced
by k (lines 3 and 7). Clearly, the näıve scan algorithm does not suffer local
maximum traps and is able to locate the target image after some finite number of
iterations. In the best case, NRS takes one iteration, while the worst case requires⌈
|S|
k

⌉
. On average NRS can find the target in

⌈∑& |S|
k '

i=1 i/
⌈
|S|
k

⌉⌉
=
⌈
(
⌈
|S|
k

⌉
+ 1)/2

⌉
iterations. In other words, NRS takes O(|S|) to reach the target point. Therefore,
NRS is only suitable for a small database set.
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NAIVERANDOMSCAN(S, k)

Input:
set of images S
number of retrieved images at each iteration k
Output:
target image pt

01 Qs ← 〈0, PQ, WQ, DQ, S, k〉
02 Sk ← EVALUATEQUERY(Qs) /* randomly retrieve k points in S */
03 S′ ← S − Sk

04 while user does not find pt in Sk do
05 Qr ← 〈0, PQ, WQ, DQ, S′, k〉
06 Sk ← EVALUATEQUERY(Qr) /* randomly retrieve k points in S′ */
07 S′ ← S′ − Sk

08 enddo
09 return pt

Fig. 6. Näıve Random Scan Method

3.2 Local Neighboring Movement Method

Existing techniques allow already checked images to be reconsidered, which leads
to several major drawbacks as mentioned in Section 1. We apply our non-
re-retrieval strategy to one such method, such as MindReader [8], to produce
the LNM method. LNM is similar to NRS except lines 5 and 6 as follows:

05 Qr ← 〈nQ, PQ, WQ, DQ, S′, k〉 based on the user’s relevance feedback
06 Sk ← EVALUATEQUERY(Qr) /* perform a k-NN query in S′ */

Specifically, Qr is constructed such that it moves towards neighboring relevant
points and away from irrelevant ones, and k-NN query is now evaluated against
S′ instead of S (lines 5 and 6). When LNM encounters a local maximum trap,
it enumerates neighboring points of the query, and selects the one closest to the
target. Therefore, LNM can overcome local maximum traps, although it could
take many iterations to do so.

Again, one iteration is required in the best case. To simplify the following
worst-case and average-case complexity analysis, we assume that S is uniformly
distributed in the n-dimensional hypercube and the distance between two nearest
points is a unit.

Theorem 1. For LNM, the worst and average cases are
⌈√

n n
√

|S|/&log2n k'
⌉

and
⌈
(
√

n n
√

|S|
log2n k� + 1)/2

⌉
, respectively, assuming S is uniformly distributed.

Proof. The hypercube’s edge length is n
√
|S|−1, and the diagonal’s

√
n( n
√
|S|−1).

Let the distance between the initial query point and the target point be l, then
l ≤

√
n( n
√
|S| − 1) <

√
n n
√
|S|. Note that the expected radius for k-NN search
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in S is r = &log2n k'. Since S′ ⊂ S, k-NN search in LNM requires a radius
larger than r, but less than 2r. In other words, at each iteration, LNM moves
towards the target image at an average speed of cr where 1 ≤ c < 2. It follows
that the number of iterations needed to reach the target is &l/(c&log2n k')',
which is bounded by

⌈√
n n
√
|S|/&log2n k'

⌉
. Then, the worst and average cases

are
⌈√

n n
√
|S|/&log2n k'

⌉
and

⌈
(
√

n n
√

|S|
log2n k� + 1)/2

⌉
, respectively.

If data were arbitrarily distributed, then the worst case could be as high as
NRS’s, i.e.

⌈
|S|
k

⌉
iterations (e.g., when all points are on a line). In summary, in

the worst case LNM could take anywhere from O( n
√
|S|) to O(|S|).

3.3 Neighboring Divide and Conquer Method

Although LNM can overcome local maximum traps, it does so inefficiently,
taking many iterations and in the process returning numerous false hits. To
speed up convergence, we propose to use Voronoi diagrams [13] in NDC to
reduce search space. The Voronoi diagram approach finds the nearest neigh-
bors of a given query point by locating the Voronoi cell containing the query
point. Specifically, NDC searches for the target as follows, see Figure 7. From
the starting query Qs, k points are randomly retrieved (line 2). Then the Voronoi
region V Ri is initially set to the minimum bounding box of S (line 3). In the
while loop, NDC first determines the Voronoi seed set Sk+1 (lines 6 to 10)
and pi, the most relevant point in Sk+1 according to the user’s relevance feed-
back (line 11). Next, it constructs a Voronoi diagram V D inside V Ri using
Sk+1 (line 12). The Voronoi cell region containing pi in V D is now the new V Ri

(line 13). Because only V Ri can contain the target (as proved in Theorem 2),
we can safely prune out the other Voronoi cell regions. To continue the search
in V Ri, NDC constructs a k-NN query using pi as the anchor point (line 15),
and evaluates it (line 16). The procedure is repeated until the target pt is found.
When NDC encounters a local maximum trap, it employs Voronoi diagrams
to aggressively prune the search space and move towards the target image,
thus significantly speeding up the convergence. Therefore, NDC can overcome
local maximum traps and achieve fast convergence. We prove the following
invariant.

Theorem 2. The target point is always contained inside or on an edge (surface)
of V Ri, the Voronoi cell region enclosing the most relevant point pi.

Proof. Theorem 2 can be proved by contradiction. First, note that according to
the properties of the Voronoi cell construction, if V Ri contains the most relevant
point (i.e. the closest point) pi to the target point pt, its seed pi is the nearest
neighbor of pt among Sk+1. Suppose pt is inside V Rj , i �= j. Then there exits
another point in Sk+1 closer to pt than pi, a contradiction.
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NEIGHBORINGDIVIDECONQUER(S, k)

Input:
set of images S
number of retrieved images at each iteration k
Output:
target image pt

01 Qs ← 〈0, PQ, WQ, DQ, S, k〉
02 Sk ← EVALUATEQUERY(Qs) /* randomly retrieve k points in S */
03 V Ri ← the minimum bounding box of S
04 iter ← 1
05 while user does not find pt in Sk do
06 if iter �= 1 then
07 Sk+1 ← Sk + {pi}
08 else
09 Sk+1 ← Sk

10 endif
11 pi ← the most relevant point ∈ Sk+1

12 construct a Voronoi diagram V D inside V Ri using points in Sk+1 as
Voronoi seeds

13 V Ri ← the Voronoi cell region associated with the Voronoi seed pi

in V D
14 S′ ← such points ∈ S that are inside V Ri except pi

15 Qr ← 〈1, {pi}, WQ, DQ, S′, k〉
16 Sk ← EVALUATEQUERY(Qr) /* perform a k-NN query in S′ */
17 iter ← iter + 1
18 enddo
19 return pt

Fig. 7. Neighboring Divide and Conquer Method

Figure 8 explains how NDC approaches the target. In the first iteration, Sk =
{p1, p2, ps} is randomly picked by the system, assuming k = 3. The user iden-
tifies ps as pi (the most relevant point in Sk). NDC then constructs a Voronoi
diagram based on those three points in Sk+1 = Sk, partitioning the search space
into three regions. According to Theorem 2, the target must be in V Ri. NDC
thus ignoring the other two regions, performs a k-NN query anchored at ps and
retrieves Sk = {p3, p4, p5}, the three closest points inside V Ri. Again, the user
correctly identifies p5 as the most relevant point in Sk+1 = {ps, p3, p4, p5}. The
system constructs a Voronoi diagram and searches only the Voronoi cell associ-
ated with p5. The search continues and, finally, at the fourth iteration, the target
point is reached as the result of a k-NN query of p6, the most relevant point in
{p5, p6, p7, p8} retrieved in the third iteration. We now determine the worst-case
complexity for NDC, assuming that S is uniformly distributed.

Theorem 3. Starting from any point in S, NDC can reach any target point in
O(logk |S|) iterations.
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Proof. At the first iteration, S is divided into k Voronoi cells. Since the points
are uniformly distributed from which k points are randomly sampled, each V R

is expected to contain
⌈
|S|
k

⌉
points. According to Theorem 2, we only need to

search one V R, which contains about
⌈
|S|
k

⌉
points. In the second iteration, the

searched V R contains
⌈
( |S|k − 1)/k

⌉
%
⌈
|S|/k2

⌉
points. In the ith iteration, each

V R contains about
⌈
|S|
ki

⌉
points. Since |S|

ki ≥ 1, NDC will stop by i ≤ logk |S|.
Hence, NDC reaches the target point in no more than O(logk |S|) iterations.

When S is arbitrarily distributed, the worst case could take up to
⌈

S

k

⌉
iterations

(e.g., all points are on a line), the same as that of NRS. In other words, NDC
could still require O(|S|) iterations to reach the target point in the worst case.
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t
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Fig. 8. Example of NDC

3.4 Global Divide and Conquer Method

To reduce the number of iterations in the worst case in NDC, we propose the
GDC method. Instead of using a query point and its neighboring points to
construct a Voronoi diagram, GDC uses the query point and k points randomly
sampled from V Ri. Specifically, GDC replaces lines 15 and 16 in NDC with:

15 Qr ← 〈0, PQ, WQ, DQ, S′, k〉
16 Sk ← EVALUATEQUERY(Qr) /* randomly retrieve k points in S′ */

Similar to NDC, when encountering a local maximum trap, GDC employs
Voronoi diagrams as well to aggressively prune the search space and move to-
wards the target image, thus significantly speeding up the convergence. There-
fore, GDC can overcome local maximum traps and achieve fast convergence.

Figure 9 shows how the target could be located according to GDC. In the first
iteration, Sk = {p1, p2, ps} is the result of k = 3 randomly sampled points, of
which ps is picked as pi. Next, GDC constructs a Voronoi diagram and searches
the V R enclosing ps. At the second iteration, Sk+1 = {ps, p4, p5, p6} and p5 is
the most relevant point pi. In the third and final iteration, the target point is
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Fig. 9. Example of GDC

located; GDC takes 3 iterations to reach the target point. We prove that the
worst case for GDC is bounded by O(logk |S|).

Theorem 4. Starting from an initial point in S, GDC can reach any target
point in O(logk |S|) iterations.

Proof. We will focus our attention on the size of V R at each iteration, keeping in
mind that points are randomly sampled for Voronoi diagram construction. Thus,
at the first iteration, the searchedV R contains

⌈
|S|
k

⌉
points; at the second iteration,

it contains
⌈

|S|
k·(k+1)

⌉
points; and so on. At the ith iteration, it contains

⌈
|S|

k·(k+1)i−1

⌉
points. Because |S|

k·(k+1)i−1 > 1, that is, it requires that i < logk |S|. In other words,
GDC can reach any target point in no more than O(logk |S|) iterations.

Theorem 4 implies that for arbitrarily distributed datasets, GDC converges faster
than NDC in general, although NDC might be as fast as GDC in certain queries,
e.g., if the starting query point is close to the target point. In the previous
example (Figure 8), NDC could also take three iterations, instead of four, to
reach the target point if the initial k points were the same as in Figure 9, as
opposed to Figure 8.

For simplicity, we assume that users accurately pick the most relevant image
out of the returned images for each iteration in the above discussion. In practice,
however, this cannot be easily achieved by users, and typically users can pick
several relevant images instead of one in target search systems. Therefore, we can
construct, in each iteration, a single query point that is the weighted centroid of
all the picked relevant images as in MARS and MindReader.

4 Experiments

In this section, we present the experimental results in both simulated and realistic
environments. Our dataset consists of more than 68,040 images from the COREL
library. There are a total of 37 visual image features in three main groups: colors
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(9 features) [19], texture (10 features) [17], and edge structure (18 features) [23].
Our experiments were run on Sun UltraSPARC with 2GB memory. All the data
resided in memory.

4.1 Simulated Experiments

In these experiments, we evaluated the performances of MARS [11, 14],
MindReader [8], and Qcluster [9] against our techniques (NRS’s results are
omitted since its performance can be statistically predicted). The performance
metrics of interest are average total visited images, precision, recall, computa-
tion time and the number of iterations (average, maximum, minimum, and their
variance) needed for each method to retrieve an intended target. These were
measured as k takes different values in {5, 15, 30, 50, 75, 100}. There were 100
pairs of starting points-target points selected randomly for the experiments.

In order to avoid the effects of user’s subjective and inconsistent behaviors,
relevance feedback was simulated; the point in the retrieval set that is closest
to the target point is automatically selected as the most relevant point. To save
computation overhead for NDC and GDC, we constructed the Voronoi region
V Ri containing the most relevant point instead of the whole Voronoi diagram,
and approximated V Ri by its minimum boundary box if V Ri contains too many
surfaces.

To illustrate common problems (slow convergence, local maximum traps, etc.)
with existing approaches, we demonstrate that MARS, MindReader and Qcluster
have poor false hit ratios for small k. Figure 10 shows that when k is small, their
performance is affected by local maximum traps, i.e., their false hit ratios are
very high. Even for a fairly large k, false hits remain very high. For example,
when k = 100, MARS’s false hit ratio is about 20% and Qcluster’s exceeds 40%,
while the best performer MindReader is just below the 20% mark. As a result,
users of these techniques have to examine a large number of returned images,
but might not find their intended targets.

In the experiments that produced the number of iterations, we had to make
sure that the compared techniques could successfully reach the intended targets.
We thus used LNM in place of MindReader (LNM is an improved version of
MindReader, see Section 3). The experimental results for LNM, NDC and GDC
are shown in Figures 11 to 18. They show that NDC and GDC perform more ef-
ficiently when k is small, with GDC being slightly better than NDC. Specifically,
when k = 5, the average numbers of iterations for LNM, NDC and GDC (see
Figure 11) are roughly 21, 10 and 7, respectively (compared to 68040

5 = 13608
iterations in NRS); the maximum numbers are 58, 20 and 11, respectively (see
Figure 12); and the minimum numbers are 7, 4 and 4, respectively (see Fig-
ure 13). The results also confirm our analysis of GDC complexity (see Figure 11):
GDC can reach the target point in O(logk |S|) = (log5 68040) = 6.9141 % 7
iterations.

The standard deviations of the iterations are shown in Figure 14. GDC and
NDC are much more stable than LNM, with GDC’s slightly more uniform than
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Fig. 18. CPU Time

NDC’s. This indicates that GDC and NDC can achieve fast convergence even
with a poor selection of initial query points.

The average ‘aggregate’ recalls and precisions, defined in Section 3, are shown
in Figures 15 and 16 respectively. Again, experimental results show that NDC
and GDC achieve better retrieval effectiveness (precision and recall) when k is
small compared to LNM, with GDC being slightly better than NDC.

The average total checked images for LNM, NDC, and GDC in the experi-
ments are plotted in Figure 17. The figure shows that GDC and NDC examine
fewer than half of the total checked images of LNM (compared to 68040

2 = 34020
images need to be checked in NRS). In terms of CPU time, GDC is the most
efficient, although the difference is smaller as k increases (see Figure 18). This
is because NDC and GDC take some computation overhead to construct V Ri,
while LNM requires more iterations and associated computation time for ad-
justing the generalized distance function. Overall, GDC and NDC significantly
outperform LNM, with GDC slightly outdoing NDC.

4.2 Realistic Experiments

In simulated experiments, the most relevant points were assumed to be
accurately selected among the returned points. In practice, however, this cannot
be easily achieved by human evaluators, unless the most relevant images are
distinctly stood out. To evaluate our methods’ performance in realistic envi-
ronments, we have developed an image retrieval system based on ImageGrouper
[12]. Our prototype, shown in Figure 19, allows users to pose queries by dragging
and grouping multiple relevant images on the work space, choose discriminative
visual features, and select one of the three retrieval methods (LNM, NDC and
GDC). It also allows users to rollback inaccurate relevance feedback in the pre-
vious iteration. Thus, for instance, if there are several relevant images, the user
can group them together to form a query, and if he reaches a dead-end without
finding the target image, he can rollback.

We trained 20 graduate students how to use the target search system and
asked them to find 36 given target images from different semantic categories.
In Figure 20, we show the results for the given 36 target images with k = 50.
Two images, race cars and an ancient building, averagely took more iterations
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Fig. 19. Target Search GUI Interface

than the others to retrieve, mainly because many similar images exist in the
collection. Even so, only 7 iterations on average were needed to locate them.

Users’ inaccurate relevance feedback is a major issue for almost all CBIR
systems with relevant feedback. We have taken steps to ensure our system is
less sensitive to users’ inaccurate relevance feedback, in design and in imple-
mentation. In the experimental study, our system monitored users’ feedback
and was capable of detecting inconsistent behavior (in the NDC and GDC
algorithms, query points are selected following a general direction toward the
target, i.e. in the active Vonoroi cell). Our prototype (see Figure 19) allows
users to backtrack their selections if missteps are made. The results were excel-
lent overall, indicated by the successful finding of the intended targets. Of course
users’ inaccurate relevance feedback is a difficult problem but our results are
encouraging.

5 Conclusions

In this paper, we proposed four target search methods using relevance feedback
for content-based image retrieval systems. Our research was motivated by the
observation that revisiting of checked images can cause many drawbacks includ-
ing local maximum traps and slow convergence. Our methods outperform existing
techniques including MARS (employing feature weighting), MindReader (employ-
ing better feature weighting), and Qcluster (employing probabilistic models). All
our methods are able to find the target images, with NDC and GDC converging
faster than NRS and LNM (which represents an improved version of MindReader).
Again, the number of iterations to find target images is not only the most signifi-
cant measure of efficiency but also the most significant indicator of precision and
recall. Simulated experiments have shown that NDC and GDC work more effi-
ciently and effectively when k is smaller, and GDC achievingO(logk |S|) iterations
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Fig. 20. GUI results with k=50

is slightly better than NDC. Experiments with our prototype show that our
approach can achieve fast convergence (i.e. O(logk |S|) iterations) even in the
realistic environments.

We outline below some ongoing research to improve the system’s performance:

– Evaluating different visual features and deducting rules for identifying the
most discriminative features of image queries so that higher accuracy of
relevance feedback can be achieved.

– Adopting the idea of ostensive relevance feedback [1], where the checked
images are used to refine the query, and the length of time since an image
was checked is used in a decay function to modulate the impact of those
already checked images.

– Extending our methods to support category search. Recall that, due to
semantic gaps, images in a semantic class might scatter in several clusters
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in the feature space. Category search can then be executed in the form of
multiple target searches. Each target search is to find a representative image
of a cluster, which will be the anchor of a k-NN query to find other images
in the respective cluster.

– Extending our methods to support video target search. Efficient video target
search technique (i.e. finding specific scenes in videos) is also an essential tool
for video retrieval applications.

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive
comments and suggestions on a previous draft.

References

1. P. Browne and A. F. Smeaton. Video Information Retrieval Using Objects and
Ostensive Relevance Feedback. In Proceedings of the ACM Symposium on Applied
Computing (SAC), pages 1084–1090, 2004.

2. C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: image segmenta-
tion using expectation-maximization and its application to image querying. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(8):1026–1038, 2002.

3. K. Chakrabarti, O.-B. Michael, S. Mehrotra, and K. Porkaew. Evaluating refined
queries in top-k retrieval systems. IEEE Transactions on Knowledge and Data
Engineering, 16(2):256–270, 2004.

4. I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N. Yianilos.
The Bayesian image retrieval system, PicHunter: theory, implementation, and psy-
chophysical experiments. IEEE Transactions on Image Processing, 9(1):20–37,
2000.

5. M. Flickner, H. S. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content:
The QBIC system. IEEE Computer, 28(9):23–32, 1995.

6. T. Gevers and A. Smeulders. Content-based image retrieval: An overview. In
G. Medioni and S. B. Kang, editors, Emerging Topics in Computer Vision. Prentice
Hall, 2004.

7. K. A. Hua, N. Yu, and D. Liu. Query Decomposition: A Multiple Neighborhood
Approach to Relevance Feedback Processing in Content-based Image Retrieval. In
Proceedings of the IEEE ICDE Conference, 2006.

8. Y. Ishikawa, R. Subramanya, and C. Faloutsos. MindReader: Querying databases
through multiple examples. In Proceedings of the 24th VLDB Conference, pages
218–227, 1998.

9. D.-H. Kim and C.-W. Chung. Qcluster: relevance feedback using adaptive clus-
tering for content-based image retrieval. In Proceedings of the ACM SIGMOD
Conference, pages 599–610, 2003.

10. D. Liu, K. A. Hua, K. Vu, and N. Yu. Efficient Target Search with Relevance Feed-
back for Large CBIR Systems. In Proceedings of the 21st Annual ACM Symposium
on Applied Computing, 2006.

11. O.-B. Michael and S. Mehrotra. Relevance feedback techniques in the MARS image
retrieval systems. Multimedia Systems, (9):535–547, 2004.



Fast Query Point Movement Techniques 717

12. M. Nakazato, L. Manola, and T. S. Huang. ImageGrouper: a group-oriented user
interface for content-based image retrieval and digital image arrangement. Journal
of Visual Languages and Computing, 14(4):363–386, 2003.

13. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York Inc., 1985.

14. Y. Rui, T. Huang, M. Ortega, and S. Mehrotra. Relevance feedback: A power tool
for interactive content-based image retrieval. IEEE Transactions on Circuits and
Systems for Video Technology, 8(5):644–655, 1998.

15. H. T. Shen, B. C. Ooi, and X. Zhou. Towards effective indexing for very large
video sequence database. In Proceedings of the ACM SIGMOD Conference, pages
730–741, 2005.

16. A. W. M. Smeulders, M. Worring, A. G. S. Santini, and R. Jain. Content-based im-
age retrieval at the end of the early years. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(12):1349–1380, 2000.

17. J. R. Smith and S.-F. Chang. Transform features for texture classification and
discrimination in large image databases. In Proceedings of the International Con-
ference on Image Processing, pages 407–411, 1994.

18. J. R. Smith and S.-F. Chang. VisualSEEk: A fully automated content-based image
query system. In Proceedings of the 4th ACM Multimedia Conference, pages 87–98,
1996.

19. M. A. Stricker and M. Orengo. Similarity of color images. In Proceedings of Storage
and Retrieval for Image and Video Databases (SPIE), pages 381–392, 1995.

20. K. Vu, K. A. Hua, and W. Tavanapong. Image retrieval based on regions of interest.
IEEE Transactions on Knowledge and Data Engineering, 15(4):1045–1049, 2003.

21. J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 23(9):947–963, 2001.

22. L. Wu, C. Faloutsos, K. Sycara, and T. R. Payne. FALCON: feedback adaptive
loop for content-based retrieval. In Proceedings of the 26th VLDB Conference,
pages 297–306, 2000.

23. X. S. Zhou and T. S. Huang. Edge-based structural features for content-based
image retrieval. Pattern Recognition Letters, 22(5):457–468, 2001.



On Fast Non-metric Similarity Search
by Metric Access Methods
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Abstract. The retrieval of objects from a multimedia database em-
ploys a measure which defines a similarity score for every pair of objects.
The measure should effectively follow the nature of similarity, hence, it
should not be limited by the triangular inequality, regarded as a restric-
tion in similarity modeling. On the other hand, the retrieval should be as
efficient (or fast) as possible. The measure is thus often restricted to a
metric, because then the search can be handled by metric access methods
(MAMs). In this paper we propose a general method of non-metric search
by MAMs. We show the triangular inequality can be enforced for any
semimetric (reflexive, non-negative and symmetric measure), resulting
in a metric that preserves the original similarity orderings (retrieval ef-
fectiveness). We propose the TriGen algorithm for turning any black-box
semimetric into (approximated) metric, just by use of distance distribu-
tion in a fraction of the database. The algorithm finds such a metric for
which the retrieval efficiency is maximized, considering any MAM.

1 Introduction

In multimedia databases the semantics of data objects is defined loosely, while for
querying such objects we usually need a similarity measure standing for a judging
mechanism of how much are two objects similar. We can observe two particular
research directions in the area of content-based multimedia retrieval, however,
both are essential. The first one follows the subject of retrieval effectiveness,
where the goal is to achieve query results complying with the user’s expectations
(measured by the precision and recall scores). As the effectiveness is obviously
dependent on the semantics of similarity measure, we require the possibilities of
similarity measuring as rich as possible, thus, the measure should not be limited
by properties regarded as restrictive for similarity modeling.

Following the second direction, the retrieval should be as efficient (or fast) as
possible, because the number of objects in a database can be large and the simi-
larity scores are often expensive to compute. Therefore, the similarity measure is
often restricted by metric properties, so that retrieval can be realized by metric
access methods. Here we have reached the point. The “effectiveness researchers”
claim the metric properties, especially the triangular inequality, are too restric-
tive. However, the “efficiency researchers” reply the triangular inequality is the
most powerful tool to keep the search in a database efficient.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 718–736, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper we show the triangular inequality is not restrictive for similarity
search, since every semimetric can be modified into a suitable metric and used
for the search instead. Such a metric can be constructed even automatically, just
with a partial information about distance distribution in the database.

1.1 Preliminaries

Let a multimedia object O be modeled by a model object O ∈ U, where U is a
model universe. A multimedia database is then represented by a dataset S ⊂ U.

Definition 1 (similarity & dissimilarity measure)
Let s : U × U (→ R be a similarity measure, where s(Oi, Oj) is considered as a
similarity score of objects Oi and Oj . In many cases it is more suitable to use
a dissimilarity measure d : U × U (→ R equivalent to a similarity measure s as
s(Q, Oi) > s(Q, Oj) ⇔ d(Q, Oi) < d(Q, Oj). A dissimilarity measure assigns a
higher score (or distance) to less similar objects, and vice versa.

The measures often satisfy some of the metric properties. The reflexivity
(d(Oi, Oj) = 0 ⇔ Oi = Oj) permits the zero distance just for identical objects.
Both reflexivity and non-negativity (d(Oi, Oj) ≥ 0) guarantee every two distinct
objects are somehow positively dissimilar. If d satisfies reflexivity, non-negativity
and symmetry (d(Oi, Oj) = d(Oj , Oi)), we call d a semimetric. Finally, if a
semimetric d satisfies also the triangular inequality (d(Oi, Oj) + d(Oj , Ok) ≥
d(Oi, Ok)), we call d a metric (or metric distance). This inequality is a kind of
transitivity property; it says if Oi, Oj and Oj , Ok are similar, then also Oi, Ok

are similar. If there is an upper bound d+ such that d : U×U (→ 〈0, d+〉, we call
d a bounded metric. The pair M = (U, d) is called a (bounded) metric space. �

Definition 2 (triangular triplet)
A triplet (a, b, c), a, b, c ≥ 0, a + b ≥ c, b + c ≥ a, a + c ≥ b, is called a triangular
triplet. Let (a, b, c) be ordered as a ≤ b ≤ c, then (a, b, c) is an ordered triplet. If
a ≤ b ≤ c and a + b ≥ c, then (a, b, c) is called an ordered triangular triplet. �

A metric d generates just the (ordered) triangular triplets, i.e. ∀Oi, Oj , Ok ∈ U,
(d(Oi, Oj), d(Oj , Ok), d(Oi, Ok)) is triangular triplet. Conversely, if a measure
generates just the triangular triplets, then it satisfies the triangular inequality.

1.2 Similarity Queries

In the following we consider the query-by-example concept; we look for objects
similar to a query object Q ∈ U (Q is derived from an example object). Necessary
to the query-by-example retrieval is a notion of similarity ordering, where the
objects Oi ∈ S are ordered according to the distances to Q. For a particular
query there is specified a portion of the ordering returned as the query result.
The range query and the k nearest neighbors (k-NN) query are the most popular
ones. A range query (Q, rQ) selects objects from the similarity ordering for which
d(Q, Oi) ≤ rQ, where rQ ≥ 0 is a distance threshold (or query radius). A k-NN
query (Q, k) selects the k most similar objects (first k objects in the ordering).
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1.3 Metric Access Methods

Once we have to search according to a metric d, we can use the metric ac-
cess methods (MAMs) [5], which organize (or index) a given dataset S in a
way that similarity queries can be processed efficiently by use of a metric in-
dex, hence, without the need of searching the entire dataset S. The main prin-
ciple behind all MAMs is a utilization of the triangular inequality (satisfied
by any metric), due to which MAMs can organize the objects of S in distinct
classes. When a query is processed, only the candidate classes are searched (such
classes which overlap the query), so the searching becomes more efficient (see
Figure 1a).

In addition to the number of distance computations d(·, ·) needed (the com-
putation costs), the retrieval efficiency is affected also by the I/O costs. To mini-
mize the search costs, i.e. to increase the retrieval efficiency, there were developed
many MAMs for different scenarios (e.g. designed to secondary storage or main
memory management). Besides others we name M-tree, vp-tree, LAESA (we refer
to a survey [5]), or more recent ones, D-index [9] and PM-tree [27].

Fig. 1. Search by MAMs (a), DDHs indicating low (b) and high (c) intrinsic dim

1.4 Intrinsic Dimensionality

The metric access methods are not successful for all datasets and all met-
rics; the retrieval efficiency is heavily affected by distance distribution in the
dataset. Given a dataset S and a metric d, the efficiency limits of any MAM
are indicated by the intrinsic dimensionality, defined as ρ(S, d) = μ2

2σ2 , where
μ and σ2 are the mean and the variance of the distance distribution in S
(proposed in [4]). In Figures 1b,c see an example of distance distribution his-
tograms (DDHs) indicating low (ρ = 3.61) and high (ρ = 42.35) intrinsic
dimensionalities.

The intrinsic dimensionality is low if there exist tight clusters of objects.
Conversely, if all the indexed objects are almost equally distant, then intrinsic
dimensionality is high, which means the dataset is poorly intrinsically structured.
A high ρ value says that many (even all) of MAM’s classes created on S are
overlapped by every possible query, so that processing deteriorates to sequential
search in all the classes. The problem of high intrinsic dimensionality is, in fact,
a generalization of the curse of dimensionality [31, 4] into metric spaces.
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1.5 Theories of Similarity Modeling

The metric properties have been argued against as restrictive in similarity mod-
eling [25, 28]. In particular, the reflexivity and non-negativity have been refuted
[21, 28] by claiming that different objects could be differently self-similar. Never-
theless, these are the less problematic properties. The symmetry was questioned
by showing that a prototypical object can be less similar to an indistinct one
than vice versa [23, 24]. The triangular inequality is the most attacked property
[2, 29]. Some theories point out the similarity has not to be transitive. Demon-
strated by the well-known example, a man is similar to a centaur, the centaur is
similar to a horse, but the man is completely dissimilar to the horse.

1.6 Examples of Non-metric Measures

In the following we name several dissimilarity measures of two kinds, proved to
be effective in similarity search, but which violate the triangular inequality.

Robust Measures. A robust measure is resistant to outliers – anomalous or
“noisy” objects. For example, various k-median distances measure the kth most
similar portion of the compared objects. Generally, a k-median distance d is of
form d(O1, O2) = k–med(δ1(O1, O2), δ2(O1, O2), . . . , δn(O1, O2)), where δi(O1, O2)
is a distance between O1 and O2, considering the ith portion of the objects.
Among the partial distances δi the k–med operator returns the kth smallest
value. As a special k-median distance derived from the Hausdorff metric, the
partial Hausdorff distance (pHD) has been proposed for shape-based image re-
trieval [17]. Given two sets S1,S2 of points (e.g. two polygons), the partial Haus-
dorff distance uses δi(S1,S2) = dNP(Si

1,S2), where dNP is the Euclidean (L2)
distance of the ith point in S1 to the nearest point in S2. To keep the distance
symmetric, pHD is the maximum, i.e. pHD(S1,S2) = max(d(S1,S2), d(S2,S1)).
Similar to pHD is another modification of Hausdorff metric, used for face detec-
tion [20], where the average of dNP distances is considered, instead of k-median.

The time warping distance for sequence aligning has been used in time series
retrieval [33], and even in shape retrieval [3]. The fractional Lp distances [1] have
been suggested for robust image matching [10] and retrieval [16]. Unlike classic
Lp metrics (Lp(u, v) = (

∑n
i=1 |ui−vi|p)

1
p , p ≥ 1), the fractional Lp distances use

0 < p < 1, which allows us to inhibit extreme differences in coordinate values.

Complex Measures. In the real world, the algorithms for similarity measuring
are often complex, even adaptive or learning. Moreover, they are often imple-
mented by heuristic algorithms which combine several measuring strategies. Ob-
viously, an analytic enforcement of triangular inequality for such measures can
be simply too difficult. The COSIMIR method [22] uses a back-propagation neu-
ral network for supervised similarity modeling and retrieval. Given two vectors
u, v ∈ S, the distance between u and v is computed by activation of three-
layer network. This approach allows to train the similarity measure by means
of user-assessed pairs of objects. Another example of complex measure can be
the matching by deformable templates [19], utilized in handwritten digits recog-
nition. Two digits are compared by deforming the contour of one to fit the edges
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of the other. The distance is derived from the amount of deformation needed,
the goodness of edges fit, and the interior overlap between the deformed shapes.

1.7 Paper Contributions

In this paper we present a general approach to efficient and effective non-metric
search by metric access methods. First, we show that every semimetric can be
non-trivially turned into metric and used for similarity search by MAMs. To
achieve this goal, we modify the semimetric by a suitable triangle-generating
modifier. In consequence, we also claim the triangular inequality is completely
unrestrictive with respect to the effectiveness of similarity search. Second, we
propose the TriGen algorithm for automatic conversion of any ”black-box” semi-
metric (i.e. semimetric given in a non-analytic form) into (approximated) metric,
such that intrinsic dimensionality of the indexed dataset is kept as low as possi-
ble. The optimal triangle-generating modifier is found by use of predefined base
modifiers and by use of distance distribution in a (small) portion of the dataset.

2 Related Work

The simplest approach to non-metric similarity search is the sequential search
of the entire dataset. The query object is compared against every object in the
dataset, resulting in a similarity ordering which is used for the query evaluation.
The sequential search often provides a baseline for other retrieval methods.

2.1 Mapping Methods

The non-metric search can be indirectly carried out by various mapping methods
[11, 15] (e.g. MDS, FastMap, MetricMap, SparseMap). The dataset S is em-
bedded into a vector space (Rk, δ) by a mapping F : S (→ Rk, where the dis-
tances d(·, ·) are (approximately) preserved by a cheap vector metric δ (often
the L2 distance). Sometimes the mapping F is required to be contractive, i.e.
δ(F (Oi), F (Oj)) ≤ d(Oi, Oj), which allows to filter out some irrelevant objects
using δ, but some other irrelevant objects, called false hits, must be re-filtered
by d (see e.g. [12]). The mapped vectors can be indexed/retrieved by any MAM.

To say the drawbacks, the mapping methods are expensive, while the dis-
tances are preserved only approximately, which leads to false dismissals (i.e.
to relevant objects being not retrieved). The contractive methods eliminate the
false dismissals but suffer from a great number of false hits (especially when k
is low), which leads to lower retrieval efficiency. In most cases the methods need
to process the dataset in a batch, so they are suitable for static MAMs only.

2.2 Lower-Bounding Metrics

To support similarity search by a non-metric distance dQ, the QIC-M-tree [6] has
been proposed as an extension of the M-tree (the key idea is applicable also to
other MAMs). The M-tree index is built by use of an index distance dI , which is
a metric lower-bounding the query distance dQ (up to a scaling constant SI→Q),
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i.e. dI(Oi, Oj) ≤ SI→Q dQ(Oi, Oj), ∀Oi, Oj ∈ U. As dI lower-bounds dQ, a query
can be partially processed by dI (which, moreover, could be much cheaper than
dQ), such that many irrelevant classes of objects (subtrees in M-tree) are filtered
out. All objects in the non-filtered classes are compared against Q using dQ.
Actually, this approach is similar to the usage of contractive mapping methods
(dI is an analogy to δ), but here the objects generally need not to be mapped
into a vector space. However, this approach has two major limitations. First, for
a given non-metric distance dQ there was not proposed a general way how to find
the metric dI . Although dI could be found ”manually” for a particular dQ (as
in [3]), this is not easy for dQ given as a black box (an algorithmically described
one). Second, the lower-bounding metric should be as tight approximation of dQ

as possible, because this ”tightness” heavily affects the intrinsic dimensionality,
the number of MAMs’ filtered classes, and so the retrieval efficiency.

2.3 Classification

Quite many attempts to non-metric nearest neighbor (NN) search have been
tried out in the classification area. Let us recall the basic three steps of clas-
sification. First, the dataset is organized in classes of similar objects (by user
annotation or clustering). Then, for each class a description consisting of the
most representative object(s) is created; this is achieved by condensing [14] or
editing [32] algorithms. Third, the NN search is accomplished as a classification of
the query object. Such a class is searched, to which the query object is ”nearest”,
since there is an assumption the nearest neighbor is located in the ”nearest class”.
For non-metric classification there have been proposed methods enhancing the
description of classes (step 2). In particular, condensing algorithms producing
atypical points [13] or correlated points [18] have been successfully applied.

The drawbacks of classification-based methods reside in static indexing and
limited scalability, while the querying is restricted just to approximate (k-)NN.

3 Turning Semimetric into Metric

In our approach, a given dissimilarity measure is turned into a metric, so that
MAMs can be directly used for the search. This idea could seem to disclaim the
results of similarity theories (mentioned in Section 1.5), however, we must realize
the task of similarity search employs only a limited modality of similarity
modeling. In fact, in similarity search we just need to order the dataset objects
according to a single query object and pick the most similar ones. Clearly, if we
find a metric for which such similarity orderings are the same as for the original
dissimilarity measure, we can safely use the metric instead of the measure.

3.1 Assumptions

We assume d satisfies reflexivity and non-negativity but, as we have mentioned in
Section 1.5, these are the less restrictive properties and can be handled easily; e.g.
the non-negativity is satisfied by a shift of the distances, while for the reflexivity
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property we require every two non-identical objects are at least d−-distant (d− is
some positive distance lower bound). Furthermore, searching by an asymmetric
measure δ could be partially provided by a symmetric measure d, e.g. d(Oi, Oj) =
min{δ(Oi, Oj), δ(Oj , Oi)}. Using the symmetric measure some irrelevant objects
can be filtered out, while the original asymmetric measure δ is then used to rank
the remaining non-filtered objects. In the following we assume the measure d is a
bounded semimetric, nevertheless, this assumption is introduced just for clarity
of the following presentation. Finally, as d is bounded by d+, we can further
simplify the semimetric such that it assigns distances from 〈0, 1〉. This can be
achieved simply by scaling the original value d(Oi, Oj) to d(Oi, Oj)/d+. The
same way a range query radius rQ must be scaled to rQ/d+, when searching.

3.2 Similarity-Preserving Modifications

Based on the assumptions, the only property we have to solve is the triangular
inequality. To do so, we apply some special modifying function on the semimetric,
such that the original similarity orderings are preserved.

Definition 3 (similarity-preserving modification)
Given a measure d, we call df (Oi, Oj) = f(d(Oi, Oj)) a similarity-preserving
modification of d (or SP-modification), where f , called the similarity-preserving
modifier (or SP-modifier), is a strictly increasing function for which f(0) = 0.
Again, for clarity reasons we assume f is bounded, i.e. f : 〈0, 1〉 (→ 〈0, 1〉. �

Definition 4 (similarity ordering)
We define SimOrderd : U (→2U×U, ∀Oi, Oj , Q ∈ U as 〈Oi, Oj〉 ∈ SimOrderd(Q) ⇔
d(Q, Oi) < d(Q, Oj), i.e. SimOrderd orders objects by their distances to Q. �

Lemma 1
Given a metric d and any df , then SimOrderd(Q) = SimOrderdf (Q), ∀Q ∈ U.

Proof. As f is increasing, then ∀Q, Oi, Oj ∈ U it follows that
d(Q, Oi) > d(Q, Oj) ⇔ f(d(Q, Oi)) > f(d(Q, Oj)). �

In other words, every SP-modification df preserves the similarity orderings gen-
erated by d. Consequently, if a query is processed sequentially (by comparing all
objects in S to the query object Q), then it does not matter if we use either d or
any df , because both ways induce the same similarity orderings. Naturally, the
radius rQ of a range query must be modified to f(rQ), when searching by df .

3.3 Triangle-Generating Modifiers

To obtain a modification forcing a semimetric to satisfy the triangular inequality,
we have to use some special SP-modifiers based on metric-preserving functions.

Definition 5 (metric-preserving SP-modifier)
A SP-modifier f is metric-preserving if for every metric d the SP-modification
df preserves the triangular inequality, i.e. df is also metric. Such a SP-modifier
must be additionally subadditive (f(x) + f(y) ≥ f(x + y), ∀x, y). �
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Fig. 2. (a) Several TG-modifiers. Regions Ω, Ωf ; (b) f(x) = x
3
4 (c) f(x) = sin(π

2 x).

Lemma 2
(a) Every concave SP-modifier f is metric-preserving.
(b) Let (a, b, c) be a triangular triplet and f be metric-preserving,
then (f(a), f(b), f(c)) is a triangular triplet as well.

Proof. For the proof and for more about metric-preserving functions see [8]. �
To modify a semimetric into metric, we have utilized a class of metric-preserving
SP-modifiers, denoted as the triangle-generating modifiers.

Definition 6 (triangle-generating modifier)
Let a strictly concave SP-modifier f be called a triangle-generating modifier (or
TG-modifier). Having a TG-modifier f , let a df be called a TG-modification. �

The TG-modifiers (see examples in Figure 2a) not only preserve the triangular
inequality, they can even enforce it, as follows.

Theorem 1
Given a semimetric d, then there always exists a TG-modifier f , such that the
SP-modification df is a metric.

Proof. We show that every ordered triplet (a, b, c) generated by d can be turned
by a single TG-modifier f into an ordered triangular triplet.
1. As every semimetric is reflexive and non-negative, it generates ordered triplets
just of forms (0, 0, 0), (0, c, c), and (a, b, c), where a, b, c > 0. Among these, just
the triplets (a, b, c), 0 < a ≤ b < c, can be non-triangular. Hence, it is sufficient
to show how to turn such triplets by a TG-modifier into triangular ones.
2. Suppose an arbitrary TG-modifier f1. From TG-modifiers’ properties it follows
that f1(a)

f1(c) > a
c , f1(b)

f1(c)
> b

c , hence f1(a)+f1(b)
f1(c)

> a+b
c (theory of concave functions).

If (f1(a) + f1(b))/f1(c) ≥ 1, the triplet (f1(a), f1(b), f1(c)) becomes triangular
(i.e. f1(a) + f1(b) ≥ f1(c) is true). In case there still exist triplets which have
not become triangular after application of f1, we take another TG-modifier f2
and compose f1 and f2 into f∗(x) = f2(f1(x)). The compositions (or nestings)
f∗(x) = fi(. . . f2(f1(x)) . . .) are repeated until f∗ turns all triplets generated by d
into triangular ones – then f∗ is the single TG-modifier f we are looking for. �
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The proof shows the more concave TG-modifier we apply, the more triplets
become triangular. This effect can be visualized by 3D regions in the space
〈0, 1〉3 of all possible distance triplets, where the three dimensions represent the
distance values a,b,c, respectively. In Figures 2b,c see examples of region1 Ω of
all triangular triplets as the dotted-line area. The super-region Ωf (the solid-line
area) represents all the triplets which become (or remain) triangular after the
application of TG-modifier f(x) = x

3
4 and f(x) = sin(π

2 x), respectively.

3.4 TG-Modifiers Suitable for Metric Search

Although there exist infinitely many TG-modifiers which turn a semimetric d
into a metric df , their properties can be quite different with respect to the
efficiency of search by MAMs. For example, f(x) = 0 (for x = 0)

x+d+
2 (otherwise)

turns every

d+-bounded semimetric d into a metric df . However, such a metric is useless for
searching, since all classes of objects maintained by a MAM are overlapped by
every query, so the retrieval deteriorates to sequential search. This behavior is
also reflected in high intrinsic dimensionality of S with respect to df .

In fact, we look for an optimal TG-modifier, i.e. a TG-modifier which turns
only such non-triangular triplets into triangular ones, which are generated by d.
The non-triangular triplets which are not generated by d should remain non-
triangular (the white areas in Figures 2b,c), since such triplets represent the
“decisions” used by MAMs for filtering of irrelevant objects or classes. The more
often such decisions occur, the more efficient the search is (and the lower the
intrinsic dimensionality of S is). As an example, given two vectors u, v of dimen-
sionality n, the optimal TG-modifier for semimetric d(u, v) =

∑n
i=1 |ui − vi|2 is

f(x) =
√

x, turning d into the Euclidean (L2) distance.
From another point of view, the concavity of f determines how much the

object clusters (MAMs’ classes respectively) become indistinct (overlapped by
other clusters/classes). This can be observed indirectly in Figure 2a, where the
concave modifiers make the small distances greater, while the great distances
remain great; i.e. the mean of distances increases, whereas the variance decreases.
To illustrate this fact, we can reuse the example back in Figures 1b,c, where the
first DDH was sampled for d1 = L2, while the second one was sampled for a
modification d2 = Lf

2 , f(x) = x
1
4 .

In summary, given a dataset S, a semimetric d, and a TG-modifier f , the
intrinsic dimensionality is always higher for the modification df than for d, i.e.
ρ(S, df ) > ρ(S, d). Therefore, an optimal TG-modifier should minimize the in-
crease of intrinsic dimensionality, yet generate the necessary triangular triplets.

4 The TriGen Algorithm

The question is how to find the optimal TG-modifier f . Had we known an an-
alytical form of d, we could find the TG-modifier “manually”. However, if d is

1 The 2D representations of Ω and Ωf regions are c-cuts of the real 3D regions.
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implemented by an algorithm, or if the analytical form of d is too complex (e.g.
the neural network representation used by COSIMIR), it could be very hard to
determine f analytically. Instead, our intention is to find f automatically, re-
gardless of analytical form of d. In other words, we consider a given semimetric
d generally as a black box that returns a distance value from a two-object input.

The idea of automatic determination of f makes use of the distance distri-
bution in a sample S∗ of the dataset S. We take m ordered triplets, where each
triplet (a, b, c) stores distances between some objects Oi, Oj , Ok ∈ S∗ ⊆ S, i.e.
(a=d(Oi, Oj), b=d(Oj , Ok), c=d(Oi, Ok)). Some predefined base TG-modifiers fi

(or TG-bases) are then applied on the triplets; for each triplet (a, b, c) a modified
triplet (fi(a), fi(b), fi(c)) is obtained. The triangle-generating error εΔ (or TG-
error) is computed as the fraction of triplets remaining non-triangular, εΔ =
mnt

m , where mnt is the number of modified triplets remaining non-triangular. Fi-
nally, such fi are selected as candidates for the optimal TG-modifier, for which
εΔ = 0 or, possibly, εΔ ≤ θ (where θ is a TG-error tolerance). To control the
degree of concavity, the TG-bases fi are parameterizable by a concavity weight
w ≥ 0, where w = 0 makes every fi the identity, i.e. fi(x, 0) = x, while with
increasing w the concavity of fi increases as well (a more concave fi decreases
mnt; it turns more triplets into triangular ones). In such a way any TG-base can
be forced by an increase of w to minimize the TG-error εΔ (possibly to zero).

Among the TG-base candidates the optimal TG-modifier (fi, w) is chosen such
that ρ(S∗, df∗(x,w∗)) is as low as possible. The TriGen algorithm (see Listing 1)
takes advantage of halving the concavity interval 〈wLB, wUB〉 or doubling the
upper bound wUB, in order to quickly find the optimal concavity weight w for
a TG-base f∗. To keep the computation scalable, the number of iterations (in
each iteration w is improved) is limited to e.g. 24 (the iterLimit constant).

Listing 1. (The TriGen algorithm)

Input: semimetric d, set F of TG-bases, sample S
∗, TG-error tolerance θ, iteration limit iterLimit

Output: optimal f , w

f = w = null; minIDim = ∞ 1
sample m distance triplets into a set T (from S

∗ using d) 2
for each f∗ in F 3

wLB = 0; wUB = ∞; w∗ = 1; wbest = -1; i = 0 4
while i < iterLimit 5

if TGError(f∗,w∗,T ) ≤ θ then wUB = wbest = w∗ else wLB = w∗ 6
if wUB �= ∞ then w∗ = (wLB + wUB)/2 else w∗ = 2 * w∗ 7
i = i + 1; 8

end while 9
if wbest ≥ 0 then 10

idim = IDim(f∗,wbest,T ) 11
if idim < minIDim then f = f∗; w = wbest ; minIDim = idim 12

end if 13
end for 14

In Listing 2 the TGError function is described. The TG-error εΔ is computed by
taking m distance triplets from the dataset sample S∗ onto which the examined
TG-base f∗ together with the current weight w∗ is applied. The distance triplets
are sampled only once – at the beginning of the TriGen’s run – whereas the
modified triplets are recomputed for each particular f∗, w∗.
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The not-listed function IDim (computing ρ(S∗, df∗(x,w∗)) makes use of the
previously obtained modified triplets as well, however, the values in the triplets
are used independently; just for evaluation of the intrinsic dimensionality.

Listing 2. (The TGError function)

Input: TG-base f∗, concavity weight w∗, set T of m sampled distance triplets
Output: TG-error εΔ

mnt = 0 1
for each ot in T // ”ot” stands for ”ordered triplet” 2

if f∗(ot.a, w∗) + f∗(ot.b, w∗) < f∗(ot.c, w∗) then mnt = mnt + 1 3
end for 4
εΔ = mnt / m 5

4.1 Sampling the Distance Triplets

Initially, we have n objects in the dataset sample S∗. Then we create an n × n
distance matrix for storage of pairwise distances dij = d(Oi, Oj) between the
sampled objects. In such a way we are able to obtain up to m =

(
n
3

)
distance

triplets for at most n(n−1)
2 distance computations. Thus, to obtain a sufficiently

large number of distance triplets, the dataset sample S∗ needs to be quite small.
Each of the m distance triplets is sampled by a random choice of three among the
n objects, while the respective distances are retrieved from the matrix. Naturally,
the values in the matrix could be computed ”on-demand”, just in the moment
a distance retrieval is requested. Since d is symmetric, the sub-diagonal half of
the matrix can be used for storage of the modified distances df

ji = f∗(dij , w
∗),

however, these are recomputed for each particular f∗, w∗. As in case of distances,
also the modified distances can be computed “on-demand”.

4.2 Time Complexity Analysis (Simplified)

Let |S∗| be the number of objects in the sample S∗, m be the number of sampled
triplets, and O(d) be the complexity of single distance computation. The com-
plexity of f(·) computation is supposed O(1). The overall complexity of TriGen
is then O(|S∗|2 ∗ O(d)+iterLimit∗|F| ∗ m), i.e. the distance matrix computation
plus the main algorithm. The number of TG-bases |F| as well as the number
of iterations (variable iterLimit) are assumed as (small) constants, hence we get
O(|S∗|2 ∗ O(d) + m). The size of S∗ and the number m affect the precision of
TGError and IDim values, so we can trade off the TriGen’s complexity and the
precision by choosing |S∗| = O(1), O(|S|) and m = O(1), O(|S∗|), or e.g. O(|S∗|2).

4.3 Default TG-Bases

We propose two general-purpose TG-bases for the TriGen algorithm. The simpler
one, the Fractional-Power TG-base (or FP-base), is defined as FP(x, w) = x

1
1+w ,

see Figure 3a. The advantage of FP-base is there always exists a concavity weight
w for which the modified semimetric becomes metric, i.e. the TriGen will al-
ways find a solution (after a number of iterations). Furthermore, when using the
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FP-base, the semimetric d needs not to be bounded. A particular disadvantage
of the FP-base is that its concavity is controlled globally, just by the weight w.

As a more flexible TG-base, we have utilized the Rational Bézier Quadratic
curve. To derive a proper TG-base from the curve, the three Bézier points are
specified as (0, 0), (a, b), (1, 1), where 0 ≤ a < b ≤ 1, see Figure 3b. The Rational
Bézier Quadratic TG-base (simply RBQ-base) is defined as RBQ(a,b)(x, w) =
−(Ψ − x + wx − aw) · (−2bwx + 2bw2x − 2abw2 + 2bw − x + wx − aw + Ψ(1 −
2bw))/(−1 + 2aw − 4awx− 4a2w2 + 2aw2 + 4aw2x + 2wx− 2w2x + 2Ψ(1−w)),
where Ψ =

√
−x2 + x2w2 − 2aw2x + a2w2 + x. The additional RBQ parameters

a, b (the second Bézier point) are treated as constants, i.e. for various a, b values
(see the dots in Figure 3b) we get multiple RBQ-bases, which are all individually
inserted into the set F of TriGen’s input. To keep the RBQ evaluation correct,
a possible division by zero or Ψ2 < 0 is prevented by a slight shift of a or w.
The advantage of RBQ-bases is the place of maximal concavity can be controlled
locally by a choice of (a, b), hence, for a given concavity weight w∗ we can achieve
lower value of either ρ(S∗, df∗(x,w∗)) or εΔ just by choosing different a, b.

Fig. 3. (a) FP-base (b) RBQ(a,b)-base

As a particular limitation, for usage of RBQ-bases the semimetric d must be
bounded (due to the third Bézier point (1,1)). Furthermore, for an RBQ-base
with (a, b) �= (0, 1) the TG-error εΔ could be generally greater than the TG-error
tolerance θ, even in case w → ∞. Nevertheless, having the FP-base or the
RBQ(0,1)-base in F , the TriGen will always find a TG-modifier such that εΔ ≤ θ.

4.4 Notes on the Triangular Inequality

As we have shown, the TriGen algorithm produces a TG-modifier which gener-
ates the triangular inequality property for a particular semimetric d. However, we
have to realize the triangular inequality is generated just according to the dataset
sample S∗ (to the sampled distance triplets, actually). A TG-modification df be-
ing metric according to S∗ has not to be a “full metric” according to the entire
dataset S (or even to U), so that searching in S by a MAM could become only
approximate, even in case θ = 0. Nevertheless, in most applications a (random)
dataset sample S∗ is supposed to have the distance distribution similar to that of
S∪{Q}, and also the sampled distance triplets are expected to be representative.
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Moreover, the construction of such a TG-modifier f , for which (S, df ) is metric
space but (U, df ) is not, can be beneficial for the efficiency of search, since the
intrinsic dimensionality of (S, df ) can be significantly lower than that of (U, df ).
The above claims are verified experimentally in the following section, where
the retrieval error (besides pure εΔ) and the retrieval efficiency (besides pure
ρ(S, df )) are evaluated. Nonetheless, to keep the terminology correct let us read
a metric df created by the TriGen as a TriGen-approximated metric.

5 Experimental Results

To examine the proposed method, we have performed extensive testing of the
TriGen algorithm as well as evaluation of the generated distances with respect to
the effectiveness and efficiency of retrieval by two MAMs (M-tree and PM-tree).

5.1 The Testbed

We have examined 10 non-metric distance measures (all described in Section 1.6)
on two datasets (images and polygons). The dataset of images consisted of 10,000
web-crawled images [30] transformed into 64-level gray-scale histograms. We have
tested 6 semimetrics on the images: the COSIMIR measure (denoted COSIMIR),
the 5-median L2 distance (5-medL2), the squared L2 distance (L2square), and three
fractional Lp distances (p = 0.25, 0.5, 0.75, denoted FracLpp). The COSIMIR net-
work was trained by 28 user-assessed pairs of images.

The synthetic dataset of polygons consisted of 1,000,000 2D polygons, each
consisting of 5 to 10 vertices. We have tested 4 semimetrics on the polygons: the
3-median and 5-median Hausdorff distances (denoted 3-medHausdorff,
5-medHausdorff), and the time warping distance with δ chosen as L2 and L∞, re-
spectively (denoted TimeWarpL2, TimeWarpLmax). The COSIMIR, 5-medL2 and
k-medHausdorff measures were adjusted to be semimetrics, as described in Sec-
tion 3.1. All the semimetrics were normed to return distances from 〈0, 1〉.

5.2 The TriGen Setup

The TriGen algorithm was used to generate the optimal TG-modifier for each
semimetric (considering the respective dataset). To examine the relation be-
tween retrieval error of MAMs and the TG-error, we have constructed several
TG-modifiers for each semimetric, considering different values of TG-error toler-
ance θ ≥ 0. The TriGen’s set of bases F was populated by the FP-base and 116
RBQ-bases parametrized by all such pairs (a, b) that a ∈ {0, 0.005, 0.015, 0.035,
0.075, 0.155}, where for a value of a the values of b were multiples of 0.05 lim-
ited by a < b ≤ 1. The dataset sample S∗ used by TriGen consisted of n = 1000
randomly selected objects in case of images (10% of the dataset), and n = 5000
in case of polygons (0.5% of the dataset). The distance matrix built from the
respective dataset sample S∗ was used to form m = 106 distance triplets.

In Table 1 see the optimal TG-modifiers found for the semimetrics by TriGen,
considering θ = 0 and θ = 0.05, respectively. In the first column, best RBQ
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Table 1. TG-modifiers found by TriGen

θ = 0.00 θ = 0.05
best RBQ-base FP-base best RBQ-base FP-base

semimetric (a, b) ρ ρ w (a, b) ρ ρ w
L2square (0, 0.15) 3.74 4.22 0.99 (0, 0.05) 2.82 3.02 0.59
COSIMIR (0, 0.45) 12.2 27.2 4.33 (0.005, 0.15) 3.19 3.80 0.63
5-medL2 (0, 0.1) 37.7 19.8 16.5 (0, 0.05) 4.28 3.17 3.88

FracLp0.25 (0, 0.45) 12.7 15.2 2.29 (0.035, 0.05) 3.50 3.30 0.30
FracLp0.5 (0, 0.05) 7.57 8.37 0.87 (0, 0.2) 3.28 3.34 0.06

FracLp0.75 (0, 0.75) 5.13 5.69 0.30 any 3.77 3.77 0
3-medHausdorff (0, 0.05) 3.77 5.11 0.60 any 2.28 2.28 0
5-medHausdorff (0, 0.05) 3.42 4.12 0.35 any 2.45 2.45 0

TimeWarpL2 (0, 0.55) 10.0 9.48 1.48 (0.035, 0.1) 2.72 2.76 0.23
TimeWarpLmax (0.005, 0.3) 8.75 9.69 1.52 (0, 0.1) 2.83 2.86 0.26

modifier parameters (best in sense of lowest ρ depending on a, b) are presented.
In the second column, the achieved ρ for a concavity weight w of the FP-base is
presented, in order to make a comparison with the best RBQ modifier. Among
RBQ- and FP-bases, the winning modifier (with respect to lowest ρ) is printed
in bold. When considering θ = 0.05, FracLp0.5, 3-medHausdorff, 5-medHausdorff
even need not to be modified (see the zero weights by the FP-base), since the
TG-error is already below θ. Also note that for L2square and θ = 0 the weight
of FP-base modifier is w = 0.99, instead of w = 1.0 (which would turn L2square
into L2 distance). That is because the intrinsic dimensionality of the dataset
sample S∗ is lower than that of the universe U (64-dimensional vector space).

In Figure 4 see the intrinsic dimensionalities ρ(S∗, df ) with respect to the
growing TG-error tolerance θ (f is the optimal TG-modifier found by TriGen).

Fig. 4. Intrinsic dimensionality of images and polygons

The rightmost point [θ, ρ] of a particular curve in each figure means θ is the
maximum εΔ value that can be reached; for such a value (and all greater) the
concavity weight w becomes zero. Similar ”endpoints” on curves appear also in
other following curves that depend on the TG-error tolerance.

The Figure 5a shows the impact of m sampled triplets (used by TGError) on
the intrinsic dimensionality, considering θ = 0 and only the FP-base in F . The
more triplets, the more accurate value of εΔ and the more concave TG-modifier is
needed to keep εΔ = 0, so the concavity weight and the intrinsic dimensionality
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grow. However, except for 5-medHausdorff, the growth of intrinsic dimensionality
is quite slow for m > 106 (and even slower if we set θ > 0).

For the future we plan to improve the simple random selection of triplets
from the distance matrix, in order to obtain more representative triplets, and
thus more accurate values of εΔ together with keeping m low.

5.3 Indexing and Querying

In order to evaluate the efficiency and effectiveness of search when using TriGen-
approximated metrics, we have utilized the M-tree [7] and the PM-tree [27].

For either of the datasets several M-tree and PM-tree indices were built,
differed in the metric df employed – for each semimetric and each θ value a df

was found by TriGen, and an index created. The setup of (P)M-tree indices is
summarized in Table 2 (for technical details see [7, 26, 27]).

Table 2. M-tree and PM-tree setup

disk page size: 4 kB avg. page utilization: 41%–68%
PM-tree pivots: 64 inner node pivots, 0 leaf pivots

image indices size: 1–2 MB (M-tree) 1.2–2.2 MB (PM-tree)
polygon indices size: 140–150 MB (both M-tree and PM-tree)

construction method: MinMax + SingleWay (+ slim-down)

To achieve more compact MAM classes, the indices (both M-tree and PM-tree)
built on the image dataset were post-processed by the generalized slim-down al-
gorithm [26]. The 64 global pivot objects used by PM-tree indices were sampled
among the n objects already used for the TriGen’s distance matrix construction.

Fig. 5. Impact of triplet count; 20-NN queries on images (costs)

All the (P)M-tree indices were used to process k-NN queries. Since the TriGen-
generated modifications are generally metric approximations (especially when
θ > 0), the filtration of (P)M-tree branches was affected by a retrieval error
(the relative error in precision and recall). The retrieval error was computed as
the Jaccard distance ENO (or normed overlap distance) between the query result
QRMAM returned by a (P)M-tree index and the correct query result QRSEQ

(obtained by sequential search of the dataset), i.e. ENO = 1− |QRMAM∩QRSEQ|
|QRMAM∪QRSEQ| .
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Fig. 6. 20-NN queries on images and polygons (retrieval error, costs)

Fig. 7. 20-NN queries on polygons (retrieval error); k-NN queries (costs, retrieval error)

To examine retrieval efficiency, the computation costs needed for query eval-
uation were compared to the costs spent by sequential search. Every query was
repeated for 200 randomly selected query objects, and the results were averaged.

In Figures 5b,c see the costs of 20-NN queries processed on image indices,
depending on growing θ. The intrinsic dimensionalities decrease, and so the
searching becomes more efficient (e.g. down to 2% of costs spent by sequential
search for θ = 0.4 and the TG-modification of L2square). On the other hand,
for θ = 0 the TG-modifications of COSIMIR and FracLp0.25 imply high intrinsic
dimensionality, so the retrieval deteriorates to almost sequential search.

In Figures 6a,b the retrieval error ENO is presented for growing θ. In
Figures 6c and 7a see the retrieval efficiency and error for 20-NN querying on
the polygon indices. As supposed, the error grows with growing TG-error toler-
ance θ. Interestingly, the values of θ tend to be the upper bounds to the values
of ENO, so we could utilize θ in an error model for prediction of ENO.

In case of 5-medL2, 3-medHausdorff (and partly COSIMIR, 5-medHausdorff)
indices, the retrieval error was non-zero even for θ = 0. This was caused by
neglecting some ”pathological” distance triplets when computing the TGError
function (see Section 4), so the triangular inequality was not preserved for all
triplets, and the filtering performed by (P)M-tree was sometimes (but rarely)
incorrect. In other cases (where θ = 0) the retrieval error was zero.

The costs and the error for k-NN querying are presented in Figures 7b,c –
with respect to the increasing number of nearest neighbors k.
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Summary. Based on the above presented experimental results, we can observe
that non-metric searching by MAMs, together with usage of the TriGen algo-
rithm as the first step of the indexing, can successfully merge both aspects, the
retrieval efficiency as well as the effectiveness. The efficiency achieved is by far
higher than simple sequential search (even for θ = 0), whereas the retrieval
error is kept very low for reasonable values of θ. Moreover, by choosing differ-
ent values of θ we get a trade-off between the effectiveness and efficiency thus,
the TriGen algorithm provides a scalability mechanism for non-metric search by
MAMs.

On the other hand, some non-metric measures are very hard to use for efficient
exact search by MAMs (i.e. keeping ENO = 0), in particular the COSIMIR and
the FracLp0.25 measures. Nevertheless, for approximate search (ENO > 0) also
these measures can be utilized efficiently.

6 Conclusions

In this paper we have proposed a general approach to non-metric similarity
search in multimedia databases by use of metric access methods (MAMs). We
have shown the triangular inequality property is not restrictive for similarity
search and can be enforced for every semimetric (modifying it to a metric).
Furthermore, we have introduced the TriGen algorithm for automatic turning
of any black-box semimetric into metric (or at least approximation of a met-
ric) just by use of distance distribution in a fraction of the database. Such a
“TriGen-approximated metric” can be safely used to search the database by
any MAM, while the similarity orderings with respect to a query object (the
retrieval effectiveness) are correctly preserved. The main result of the paper is
a fact that we can quickly search a multimedia database when using unknown
non-metric similarity measures, while the retrieval error achieved can be very
low.

Acknowledgements. This research has been supported by grants 201/05/P036
of the Czech Science Foundation (GAČR) and ”Information Society”
1ET100300419 – National Research Programme of the Czech Republic. I also
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Abstract. We describe the construction of a generic natural language query in-
terface to an XML database. Our interface can accept an arbitrary English sen-
tence as a query, which can be quite complex and include aggregation, nesting,
and value joins, among other things. This query is translated, potentially after
reformulation, into an XQuery expression. The translation is based on mapping
grammatical proximity of natural language parsed tokens in the parse tree of the
query sentence to proximity of corresponding elements in the XML data to be
retrieved. Our experimental assessment, through a user study, demonstrates that
this type of natural language interface is good enough to be usable now, with no
restrictions on the application domain.

1 Introduction

In the real world we obtain information by asking questions in a natural language, such
as English. Supporting arbitrary natural language queries is regarded by many as the
ultimate goal for a database query interface, and there have been numerous attempts
towards this goal. However, two major obstacles lie in the way of reaching the ultimate
goal of support for arbitrary natural language queries: first, automatically understand-
ing natural language is itself still an open research problem, not just semantically but
even syntactically; second, even if we could fully understand any arbitrary natural lan-
guage query, translating this parsed natural language query into a correct formal query
remains an issue since this translation requires mapping the understanding of intent into
a specific database schema.

In this paper, we propose a framework for building a generic interactive natural lan-
guage interface to database systems. Our focus is on the second challenge: given a
parsed natural language query, how to translate it into a correct structured query against
the database. The issues we deal with include those of attribute name confusion (e.g.
asked “Who is the president of YMCA,” we do not know whether YMCA is a country,
a corporation, or a club) and of query structure confusion (e.g. the query “Return the
lowest price for each book” is totally different from the query “Return the book with the
lowest price,” even though the words used in the two are almost the same). We address
these issues in this paper through the introduction of the notions of token attachment
and token relationship in natural language parse trees. We also propose the concept
of core token as an effective mechanism to perform semantic grouping and hence de-
termine both query nesting and structural relationships between result elements when
mapping tokens to queries. Details of these notions can be found in Sec. 3.

� Supported in part by NSF 0219513 and 0438909, and NIH 1-U54-DA021519-01A1.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 737–754, 2006.
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Of course, the first challenge of understanding arbitrary natural language cannot be
ignored. But a novel solution to this problem per se is out of the scope of this paper.
Instead, we leverage existing natural language processing techniques, and use an off-
the-shelf natural language parser in our system. We then extract semantics expressible
by XQuery from the output of the parser, and whenever needed, interactively guide the
user to pose queries that our system can understand by providing meaningful feedback
and helpful rephrasing suggestions. Sec. 4 discusses how the system interacts with a
user and facilitates query formulation during the query translation process.

We have incorporated our ideas into a working software system called NaLIX1,
which we evaluated by means of a user study. Our experimental results in Sec. 5 demon-
strate the feasibility of such an interactive natural language interface to database sys-
tems. In most cases no more than two iterations appears to suffice for the user to submit
a natural language query that the system can parse. Previous studies [4, 25] show that
even casual users frequently revise queries to meet their information needs. Therefore,
our system can be considered to be usable in practice. In NaLIX, a correctly parsed
query is almost always translated into a structured query that correctly retrieves the
desired answer (average precision = 95.1%, average recall = 97.6%).

Finally, we discuss related work in Sec. 6 and conclude in Sec. 7. We begin with
some necessary background material in Sec. 2.

In summary, we have been able to produce a natural language query interface for
a database that, while far from being able to pass the Turing test, is perfectly usable
in practice, and able to handle even quite complex queries, e.g. involving nesting and
aggregation, in a variety of application domains.

2 Background

Keyword search interfaces to databases have begun to receive increasing attention
[6, 10, 11, 12, 16, 18], and can be considered a first step towards addressing the chal-
lenge of natural language querying. Our work builds upon this stream of research, so
we present some essential background material here. Additional efforts at constructing
natural language interfaces are described in Sec. 6.

There are two main ideas in using keyword search for databases. First, sets of key-
words expressed together in a query must match objects that are “close together” in the
database (using some appropriate notions of “close together”). Second, there is a recog-
nition that pure keyword queries are rather blunt – too many things of interest are hard
to specify. So somewhat richer query mechanisms are folded in along with the basic
keyword search. A recent effort in this stream of work is Schema-Free XQuery [16, 18].

The central idea in Schema-Free XQuery is that of a meaningful query focus (MQF)
of a set of nodes. Beginning with a given collection of keywords, each of which iden-
tifies a candidate XML element to relate to, the MQF of these elements, if one exists,
automatically finds relationships between these elements, if any, including additional
related elements as appropriate. For example, for the query “Find the director of Gone
with the Wind,” there may be title of movie, and title of book with value “Gone with
the Wind” in the database. However, we do not need advanced semantic reasoning ca-
pability to know that only movies can have a director and hence “Gone with the Wind”
should be the title of a movie instead of a book. Rather, the computation of mqf(director,
title) will automatically choose only title of movie, as this title has a structurally mean-
ingful relationship with director. Furthermore, it does not matter whether the schema

1 NaLIX was demonstrated at SIGMOD 2005, and voted the Best Demo [17].
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movies(1)

year(2) year(9)

2000

movie (3) movie(6)

title(4)
director(5)

title(7) director(15)

movie(10) movie(13)

title(11)
director(12)

title(14)

2001

How the
Grinch Stole 
Christmas 

Traffic

A Beautiful 
Mind Ron 

Howard 

Tribute
Steven 

Soderbergh

director(8)

movie(16)

title(17)

director(18)

The Lord of 
the Rings Peter 

Jackson

Steven 
Soderbergh

Ron 
Howard 

Query 1: Return every director who has directed as many movies as has Ron Howard.
Query 2: Return every director, where the number of movies directed by the director is the same
as the number of movies directed by Ron Howard.
Query 3: Return the directors of movies, where the title of each movie is the same as the title of
a book.

Fig. 1. Querying XML database with natural language queries

has director under movie or vice versa (for example, movies could have been classi-
fied based on their directors). In either case, the correct structural relationships will be
found, with the correct director elements be returned.

Schema-Free XQuery greatly eases our burden in translating natural language queries
in that it is no longer necessary to map the query to the precise underlying schema. We
will use it as the target language of our translation process. From now on, we will refer
to Schema-Free XQuery as XQuery for simplicity, unless noted otherwise.

3 From Natural Language Query to XQuery

The relationships between words in the natural language query must decide how the
corresponding components in XQuery will be related to each other and thus the seman-
tic meaning of the resulting query. We obtain such relationship information between
parsed tokens from a dependency parser, which is based on the relationship between
words rather than hierarchical constituents (group of words) [20, 28]. The parser cur-
rently used in NaLIX is Minipar [19]. The reason we chose Minipar is two-fold: (i) it
is a state-of-art dependency parser; (ii) it is free off-the-shelf software, and thus allows
easier replication of our system.

There are three main steps in translating queries from natural language queries into
corresponding XQuery expressions. Sec. 3.1 presents the method to identify and clas-
sify terms in a parse tree output of a natural language parser. This parse tree is then
validated, but we defer the discussion of this second step until Sec. 4. Sec. 3.2 demon-
strates how a validated parse tree is translated into an XQuery expression. These three
key steps are independent of one another; improvements can be made to any one with-
out impacting the other two. The software architecture of NaLIX has been described
in [17], but not the query transformation algorithms. Figure 1 is used as our running
example to illustrate the query transformation process.

3.1 Token Classification

To translate a natural language query into an XQuery expression, we first need to
identify words/phrases in the original sentence that can be mapped into corresponding
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Table 1. Different Types of Tokens

Type of Token Query Component Description
Command Token(CMT) Return Clause Top main verb or wh-phrase [24] of parse tree, from an enum set of words and phrases
Order by Token(OBT) Order By Clause A phrase from an enum set of phrases

Function token(FT) Function A word or phrase from an enum set of adjectives and noun phrases
Operator Token(OT) Operator A phrase from an enum set of preposition phrases

Value Token(VT) Value A noun or noun phrase in quotation marks, a proper noun or noun phrase, or a number
Name token(NT) Basic Variable A non-VT noun or noun phrase
Negation (NEG) function not() Adjective “not”

Quantifier Token(QT) Quantifier A word from an enum set of adjectives serving as determiners

Table 2. Different Types of Markers

Type of Marker Semantic Contribution Description
Connection Marker(CM) Connect two related tokens A preposition from an enumerated set, or non-token main verb
Modifier Marker(MM) Distinguish two NTs An adjective as determiner or a numeral as predeterminer or postdeterminer
Pronoun Marker(PM) None due to parser’s limitation Pronouns
General Marker(GM) None Auxiliary verbs, articles

components of XQuery. We call each such word/phrase a token, and one that does not
match any component of XQuery a marker. Tokens can be further divided into differ-
ent types shown in Table 1 according to the type of query components they match.2

Enumerated sets of phrases (enum sets) are the real-world “knowledge base” for the
system. In NaLIX, we have kept these small - each set has about a dozen elements.
Markers can be divided into different types depending on their semantic contribu-
tion to the translation. A unique id is assigned to each token or marker. The parse
tree after token identification for Query 2 in Figure 1 is shown in Figure 2. Note
that node 11 is not in the query, nor in the output of the parser. Rather, it is an im-
plicit node (formally defined in Sec. 4) that has been inserted by the token validation
process.

Note that because of the vocabulary restriction of the system, some terms in a query
may not be classified into one of the categories of token or marker. Obviously, such
unclassified terms cannot be properly mapped into XQuery. Sec. 4 describes how these
are reported to the user during parse tree validation, when the relationship of the “un-
known” terms with other tokens (markers) can be better identified.

3.2 Translation into XQuery

Given a valid parse tree (discussion on parse tree validation is deferred until Sec. 4), we
show here how to translate it into XQuery. XML documents are designed with the goal
to be “human-legible and reasonably clear.” [32] Therefore, any reasonably designed
XML document should reflect certain semantic structure isomorphous to human con-
ceptual structure, and hence expressible by human natural language. The challenge is to
utilize the structure of the natural language constructions, as reflected in the parse tree,
to generate appropriate structure in the XQuery expression (If we do not establish this
structure, then we may as well just issue a simple keyword query!!). For simplicity of
presentation, we use the symbol for each type of token (resp. marker) to refer to tokens
(markers) of that type, and use subscripts to distinguish different tokens (markers) of
the same type if needed. For instance, we will write, “Given NT 1, NT 2, ...” as a short
hand for “Given name tokens u and v, ...”

2 When a noun/noun phrase matches certain XQuery keywords, such as “string”, special han-
dling is required. Such special cases are not listed in the table, and will not be discussed in the
paper due to space limitation.
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Return (CMT)
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directed by(CM)

Ron Howard
(VT)
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(FT)

director(NT)
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Fig. 2. Parse tree for Query 2 in Figure 1
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director (NT)

of (CM)

movie (NT)

be the same as (OT)

movie(NT)

title (NT)

(1)

(2)
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(4)

(5)

(6)

(7)

(9)

(10)

title (NT)

book (NT)

of (CM) of (CM)

(8)
(11)

Fig. 3. Parse tree for Query 3 in Figure 1

3.2.1 Concepts and Definitions
A natural language query may contain multiple name tokens (NTs), each correspond-
ing to an element or attribute in the database. NTs “related” to each other should be
mapped into the same mqf function in Schema-Free XQuery and hence found in struc-
turally related elements in the database. However, this relationship among the NTs is
not straightforward. Consider the example in Figure 3, nodes 2 (director) and 4 (movie)
should be considered as related to nodes 6 (title) and 8 (movie), since the two movie
nodes (4, 8) are semantically equivalent. However, they are not related to nodes 9 (title)
or 11 (book), although the structural relationship between nodes 9, 11 and nodes 2, 4
is exactly the same as that between nodes 6, 8 and nodes 2, 4. An intuitive explanation
for this distinction is that the two sets of NTs (director, movie) and (title, movie) are
related to each other semantically because they share NTs representing the same movie
elements in the database, whereas the (title, book) pair does not. We now capture this
intuition formally.

Definition 1 (Name Token Equivalence). NT 1 and NT 2 are said to be equivalent if
they are (i) both not implicit 3 and composed of the same noun phrase with equivalent
modifiers4; OR (ii) both implicit and correspond to VTs of the same value.

In consequence of the above definition, if a query has two occurrences of book, the
corresponding name tokens will be considered equivalent, if they are not qualified in
any way. However, we distinguish first book from second book: even though both cor-
respond to book nodes, the corresponding name tokens are not equivalent, since they
have different modifiers.

Definition 2 (Sub-Parse Tree). A subtree rooted at an operator token node that has at
least two children is called a sub-parse tree.

Definition 3 (Core Token). A name token is called a core token if (i) it occurs in a
sub-parse tree and has no descendant name tokens; OR (ii) it is equivalent to a core
token.

3 An implicit NT is a NT not explicitly included in the query. It is formally defined in Defini-
tion 11, Sec. 4.

4 Two modifiers are obviously equivalent if they are the same. But some pairs of distinct modi-
fiers may also be equivalent. We do not discuss modifier equivalence further in this paper for
lack of space.
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Definition 4 (Directly Related Name Tokens). NT1 and NT2 are said to be directly
related to each other, if and only if they have a parent-child relationship (ignoring any
intervening markers, and FT and OT nodes with a single child).

Definition 5 (Related by Core Token). NT1 and NT2 are said to be related by core
token, if and only if they are directly related to the same or equivalent core tokens.

Definition 6 (Related Name Tokens). NT1 and NT2 are said to be related, if they are
directly related, or related by core token, or related to the same NT.
For Query 3 in Figure 3, only one operator token (OT), node 5 exists in the parse tree.
The lowest NTs of the OT’s sub-parse trees, nodes 8 (movie) and 11 (book), are the core
tokens in the query. Nodes 2, 6 and 9 are directly related to nodes 4, 8 and 11 respec-
tively, by Definition 4. Node 4 is equivalent to node 8. Hence, according to Definition 6,
two sets of related nodes {2, 4, 6, 8} and {9, 11} can be obtained.

All NTs related to each other should be mapped to the same mqf function since we
seek elements (and attributes) matching these NTs in the database that are structurally
related.

Additional relationships between tokens (not just name tokens) needed for query
translation are captured by the following definition of attachment.

Definition 7 (Attachment). Given any two tokens Ta and Tb, where Ta is the parent of
Tb in the parse tree (ignoring all intervening markers), if Tb follows Ta in the original
sentence, then Ta is said to attach to Tb; otherwise, Tb is said to attach to Tb.

3.2.2 Token Translation.
Given the conceptual framework established above, we describe in this section how
each token in the parse tree is mapped into an XQuery fragment. The mapping process
has several steps. We illustrate each step with our running example.

Identify Core Token. Core tokens in the parse tree are identified according to Defini-
tion 3. Two different core tokens can be found in Query 2 in Figure 1. One is director,
represented by nodes 2 and 7. The other is a different director, represented by node
11. Note although node 11 and nodes 2, 7 are composed of the same word, they are
regarded as different core tokens, as node 11 is an implicit NT, while nodes 2, 7 are not.

Variable Binding. Each NT in the parse tree should be bound to a basic variable in
Schema-Free XQuery. We denote such variable binding as: 〈var〉 → NT

Two name tokens should be bound to different basic variables, unless they are re-
garded as the same core token, or identical by the following definition:

Definition 8 (Identical Name Tokens). NT1 and NT2 are identical, if and only if (i)
they are equivalent, and indirectly related; AND (ii) the NTs directly related with them,
if any are identical; AND (iii) no FT or QT attaching to either of them.

We then define the relationships between two basic variables based on the relationships
of their corresponding NTs as follows:
Definition 9 (Directly Related Variables). Two basic variables 〈var1〉 and 〈var2〉 are
said to be directly related, if and only if for any NT 1 corresponding to 〈var1〉, there
exists a NT 2 corresponding to 〈var2〉 such that NT 1 and NT 2 are directly related,
and vice versa.

Definition 10 (Related Variables). Two basic variables 〈var1〉 and 〈var2〉 are said to
be related, if and only if any NTs corresponding to them are related or there is no core
token in the query parse tree.
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Table 3. Variable Bindings for Query 2

Variable Associated Content Nodes Related To
$v∗

1 director 2,7 $v2
$v2 movie 5 $v1
$v3 movie 9 $v4
$v∗

4 director 11 $v3
$cv1 count($v2) 4+5 N/A
$cv2 count($v4) 8+9 N/A

Table 4. Direct Mapping for Query 2

Pattern Query Fragment
$v1 for $v1 in 〈doc〉//director
$v2 for $v2 in 〈doc〉//movie
$v3 for $v3 in 〈doc〉//movie
$v4 for $v4 in 〈doc〉//director

$cv1+〈eq〉+$cv2 where $cv1 = $cv2
$v4+〈constant〉 where $v4 = “Ron Howard”
〈return〉 + $v1 return $v1

– FOR clause:
Let basic() be the function that returns the name token corresponding to basic variable in 〈var〉 or 〈cmpvar〉
〈var〉 � for 〈var〉 in 〈doc〉//basic(〈var〉)

– WHERE clause:
〈variable〉 → 〈var〉|〈cmpvar〉
〈constant〉 → V T
〈arg〉 → 〈variable〉|〈constant〉
〈opr〉 → OT
〈neg〉 → NEG
〈quantifier〉 → QT
〈var〉+〈constant〉 � where 〈var〉 = 〈constant〉
(〈variable〉+〈opr〉+〈arg〉)|(〈opr〉+〈var〉+〈constant〉) � where 〈variable〉+〈opr〉+〈arg〉
〈variable〉+〈neg〉+〈opr〉+〈arg〉 � where not (〈variable〉+〈opr〉+〈arg〉)
〈opr〉+〈constant〉+〈variable〉 � 〈cmpvar〉 → count(〈variable〉)

where 〈cmpvar〉 + 〈opr〉 + 〈constant〉
〈neg〉+〈opr〉+〈constant〉+〈variable〉 � 〈cmpvar〉 → count(〈variable〉)

where not (〈cmpvar〉 + 〈opr〉 + 〈constant〉)– ORDERBY clause:
〈sort〉 → OBT
〈sort〉 + 〈variable〉 � orderby 〈variable〉

– RETURN clause:
〈cmd〉 → CMT
〈cmd〉 + 〈variable〉 � return 〈variable〉

Fig. 4. Mapping from token patterns to query fragments

Patterns 〈FT + NT 〉|〈FT 1 + FT 2 + NT 〉 should also be bound to variables. Variables
bound with such patterns are called composed variables, denoted as 〈cmpvar〉, to dis-
tinguish them from the basic variables bound to NTs. We denote such variable binding
as:

〈function〉 → FT
〈cmpvar〉 → (〈function〉 + 〈var〉)|(〈function〉 + 〈cmpvar〉)

Table 3 shows the variable bindings5 for Query 2 in Figure 1. The nodes referred to
in the table are from the parse tree of Query 2 in Figure 2.

Mapping. Certain patterns of tokens can be mapped directly into clauses in XQuery.
A complete list of patterns and their corresponding clauses in XQuery can be found in
Figure 4. Table 4 shows a list of direct mappings from token patterns to query fragments
for Query 2 in Figure 1 (� is used to abbreviate ‘translates into’).

3.2.3 Grouping and Nesting
The grouping and nesting of the XQuery fragments obtained in the mapping process has
to be considered when there are function tokens in the natural language query, which
correspond to aggregate functions in XQuery, or when there are quantifier tokens, which
correspond to quantifiers in XQuery. Determining grouping and nesting for aggregate
functions is difficult, because the scope of the aggregate function is not always obvious

5 The ∗ mark next to $v1, $v4 indicates that the corresponding NTs are core tokens.
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Let innerFT() be function returning innermost FT in 〈cmpvar〉
〈connector〉 → CM
〈cmpvar〉 → FT + 〈var2〉
〈var1〉 + 〈connector〉 + 〈cmpvar〉 � 〈var2〉new → basic(〈cmpvar〉)

if innerFT(〈cmpvar〉) �= null, then
where 〈innerFT(〈cmpvar〉)〉 + 〈var2〉new = 〈cmpvar〉

else
where 〈var2〉new = 〈cmpvar〉

Record 〈var2〉new as related to 〈var1〉, 〈var2〉 as unrelated to 〈var1〉

Fig. 5. Semantic contribution of connection marker in query translation

from the token it directly attaches to. Determining grouping and nesting for quantifiers
is comparatively easier.

Consider the following two queries: “Return the lowest price for each book,” and
“Return each book with the lowest price.” For the first query, the scope of function
min() corresponding to “lowest” is within each book, but for the second query, the
scope of function min() corresponding to “lowest” is among all the books. We observe
that price, the NT the aggregate function attaching to, is related to book in different
ways in the two queries. We also notice that the CM “with” in the second query implies
that a price node related to book has the same value as the lowest price of all the books.
Based on the above observation, we propose the transformation rules shown in Figure 5
to take the semantic contribution of connection markers into consideration.

We then propose the mapping rules shown in Figure 6 to determine the nesting
scope for aggregate functions. Specifically, we identify two different nesting scopes
that result from using an aggregate function - inner and outer, with respect to the
basic variable 〈var〉 that the function directly attaches to. The nesting scope of the
LET clause corresponding to an aggregate function depends on the basic variable that
it attaches to. The idea is that if an aggregate function attaches to a basic variable
that represents a core token, then all the clauses containing variables related to the
core token should be put inside the LET clause of this function; otherwise, the rela-
tionships between name tokens (represented by variables) via the core token will be
lost. For example, given the query “Return the total number of movies, where the di-
rector of each movie is Ron Howard,” the only core token is movie. Clearly, the con-
dition clause “where $dir = ‘Ron Howard’” should be bound with each movie inside the
LET clause. Therefore, the nesting scope of a LET clause corresponding to the core
token is marked as inner with respect to 〈var〉 (in this case $movie). On the other
hand, if an aggregate function attaches to a basic variable 〈var〉 representing non-core
token, only clauses containing variables directly related to 〈var〉 should be put inside
of the LET clause, since 〈var〉 is only associated with other variables related to it via
a core token. The nesting scope of the LET clause should be marked as outer, with re-
spect to 〈var〉. Similarly, when there is no core token, 〈var〉 may only be associated
with other variables indirectly related to it via value joins. The nesting scope of the
LET clause should also be marked as outer with respect to 〈var〉. In such a case, the
nesting scope determination for Query 2 can be found in Figure 8. The updated vari-
able bindings and relationships between basic variables for the query can be found in
Table 5.

The nesting scope determination for a quantifier (Figure 7) is similar to that for
an aggregate function, except that the nesting scope is now associated with a quantifier
inside a WHERE clause. The nesting scope of a quantifier is marked as inner with respect
to 〈var〉 the quantifier attaching to, when the variable 〈var〉 is a core token. Otherwise,
it is marked as outer with respect to 〈var〉. The meanings of inner and outer are the



Constructing a Generic Natural Language Interface for an XML Database 745

Denote 〈core〉 as the core token related to 〈var〉, if any; else as a variable 〈var〉
attaching to and directly related to, if any; else as a randomly chosen variable
indirectly related to 〈var〉.
Denote 〈v〉 as variables directly related to 〈var〉.

if 〈cmpvar〉 → 〈function〉+〈var〉
then 〈cmpvar〉 �

– if 〈var〉 is not a core token itself, or there is no core token, then

let 〈vars〉 := {
for 〈core1〉 in 〈doc〉//basic(〈core〉)
where 〈core1〉 = 〈core〉
return 〈var〉}

Replace 〈cmpvar〉 with 〈function〉 + 〈vars〉.
Mark 〈var〉 and 〈core〉, 〈v〉 and 〈core〉 as unrelated.
Mark 〈var〉 and 〈core1〉, 〈v〉 and 〈core1〉 as related.
Mark nesting scope for the LET clause as outer with respect to 〈var〉.

– else if 〈var〉 is a core token itself, or no 〈core〉 exists, then
let 〈vars〉 := { return 〈var〉}

Replace 〈cmpvar〉 with 〈function〉 + 〈vars〉.
Mark nesting scope for the LET clause as inner with respect to 〈var〉.

else if 〈cmpvar〉 → 〈function〉+〈cmpvar1〉
then 〈function〉+〈cmpvar1〉 �

let 〈vars〉 := {〈cmpvar1〉}
Recursively rewrite 〈cmpvar1〉.
Replace 〈cmpvar〉 with 〈function〉 + 〈vars〉.

Fig. 6. Grouping and nesting scope determination for aggregate functions

/*〈core〉 is the same as that defined in Figure 6*/

if 〈cmpvar〉 → 〈quantifier〉+〈var〉
then 〈cmpvar〉 �

– if 〈var〉 is not a core token itself, or there is no core token, then

let 〈vars〉 := {
for 〈core1〉 in 〈doc〉//basic(〈core〉)
where 〈core1〉 = 〈core〉
return 〈var〉}

where 〈quantifier〉 〈var1〉 in 〈vars〉 satisfies { }
Mark 〈var〉 and 〈core, 〉, 〈core1〉 as unrelated.
Replace 〈var〉 elsewhere with 〈var1〉, except in FOR clause.
Mark nesting scope for the WHERE clause with the quantifier as outer with
respect to 〈var〉.

– else if 〈var〉 is a core token itself, or no 〈core〉 exists, then
let 〈vars〉 := { return 〈var〉}
where 〈quantifier〉 〈var1〉 in 〈vars〉 satisfies { }

Mark nesting scope for the WHERE clause with the quantifier as inner with
respect to 〈var〉.
Replace 〈var〉 elsewhere with 〈var1〉, except in FOR clause.

Fig. 7. Grouping and nesting scope determination for quantifier

same as those for aggregate functions, except that now only WHERE clauses may be put
inside of a quantifier.

MQF Function. As we have previously discussed in Sec. 3.2, all name tokens related
to each other should be mapped into the same mqf function. Hence, basic variables
corresponding to such name tokens should be put into the same mqf function. One
WHERE clause containing mqf function can be obtained for each set of related basic
variables:

〈vars〉 → the union of all 〈var〉s related to each other
〈vars〉 � where mqf(〈vars〉)
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(1) $cv1→count($v2)
$v2 is not a core token, and the core

token related to it is $v1, therefore
$cv1 �

let $vars1 := {
for $v5 in 〈doc〉//director
where mqf($v2,$v5)

and $v5 = $v1
return $v2}

Replace all $cv1 with count($vars1).
Mark $v2, $v1 as unrelated.
Mark $v2, $v5 as related.
Mark nesting scope for the LET

clause as outer with respect to $v2.

(2) $cv2→count($v3)
$v3 is not a core token, and the core

token related to it is $v4, therefore
$cv1 �

let $vars2 := {
for $v6 in 〈doc〉//director
where mqf($v3,$v6)

and $v6 = $v4
return $v3}

Replace all $cv2 with count($vars2).
Mark $v3, $v4 as unrelated.
Mark $v3, $v6 as related.
Mark nesting scope for the LET

clause as outer with respect to $v3.

Fig. 8. Grouping and nesting scope determination in Query 2

for $v1 in doc(“movie.xml”)//director,
$v4 in doc(“movie.xml”)//director

let $vars1 := {
for $v5 in doc(“movie.xml”)//director,

$v2 in doc(“movie.xml”)//movie
where mqf($v2 ,$v5)

and $v5 = $v1
return $v2}

let $vars2 := {
for $v6 in doc(“movie.xml”)//director,

$v3 in doc(“movie.xml”)//movie
where mqf($v3 ,$v6)

and $v6 = $v4
return $v3}

where count($vars1) = count($vars2)
and $v4 = “Ron Howard”

return $v1

Fig. 9. Full translation for Query 2

Return (CMT)

Director(NT)

directed by
(CM)

Movie(NT)

as

Ron Howard (VT)

Director(NT)

Fig. 10. Parse tree for Query 1 in Figure 1

Table 5. Updated variable bindings for Query 2

Variable Associated Content Nodes Related To
$v∗

1 director 2,7 null
$v2 movie 5 $v5
$v3 movie 9 $v6
$v∗

4 director 11 null
$v∗

5 director N/A $v2
$v∗

6 director N/A $v3
$cv1 count($vars1) 4+5 N/A
$cv2 count($vars2) 8+9 N/A

Table 6. Grammar supported by NaLIX∗

1. Q → RETURN PREDICATE* ORDER BY?
2. RETURN → CMT+(RNP|GVT|PREDICATE)
3. PREDICATE → QT?+((RNP1|GVT1)+GOT+(RNP2|GVT2)
4. |(GOT?+RNP+GVT)
5. |(GOT?+GVT+RNP)
6. |(GOT?+[NT]+GVT)
7. |RNP
8. ORDER BY → OBT+RNP
9. RNP → NT |(QT+RNP)|(FT+RNP)|(RNP∧RNP)
10. GOT → OT|(NEG+OT)|(GOT∧GOT)
11. GVT → VT |(GVT∧GVT)
12. CM → (CM+CM)

∗Symbol “+” represents attachment relation between two

tokens; “[]” indicates implicit token, as defined in Def. 11.

As can be seen from Table 5, two sets of related variables can be found for Query 2
in Figure 1: {$v5,$v2} and {$v3,$v6}. The corresponding WHERE clauses containing
mqf function are: where mqf($v5,$v2) and where mqf($v3,$v6).

3.2.4 Full Query Construction
Multiple XQuery fragments may be obtained from token translation. These fragments
alone do not constitute a meaningful query. We need to construct a semantically mean-
ingful Schema-Free XQuery by putting these fragments together with appropriate
nestings and groupings.
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Following the defined nesting scopes (Figure 6,7), we construct the query starting
from innermost clauses and work outwards. If the scope defined is inner with respect to
〈var〉, then all the other query fragments containing 〈var〉 or basic variables related to
〈var〉 are put within an inner query following the FLOWR convention (e.g., conditions
in WHERE clauses are connected by and) as part of the query at outer level. If the scope
defined is outer with respect to 〈var〉, then only queries fragments containing 〈var〉,
and clauses (in case of quantifier, only WHERE clauses) containing basic variables di-
rectly related to 〈var〉 are put inside the inner query, while query fragments of other
basic variables indirectly related to 〈var〉 are put outside of the clause at the same level
of nesting. The remaining clauses are put in the appropriate places at the outmost level
of the query following the FLOWR convention. Full translation for Query 2 in Figure 1
can be found in Figure 9.

4 Interactive Query Formulation

The mapping process from natural language to XQuery requires our system to be able
to map words to query components based on token classification. Due to the limited vo-
cabulary understood by the system, certain terms cannot be properly classified. Clever
natural language understanding systems attempt to apply reasoning to interpret these
terms, with partial success. We make no attempt at superior understanding of natural
language. Rather, our approach is to get the user to rephrase the query into terms that
we can understand. By doing so, we shift some burden of semantic disambiguation from
the system to the user, to whom such task is usually trivial. In return, the user obtains
better accessibility to information via precise querying.

To ensure that this process proceeds smoothly for the user, we provide the user with
specific feedback on how to rephrase. In this section we describe the validation process
we use to determine whether we can translate a user specified query. We also discuss
the informative error messages we produce when validation fails.

NaLIX is designed to be a query interface for XML by translating natural language
queries into Schema-Free XQuery. As such, the linguistic capability of our system is
essentially restricted by the expressiveness of XQuery. This is to say, a natural language
query that may be understood and thus meaningfully mapped into XQuery by NaLIX is
one whose semantics is expressible in XQuery. Furthermore, for the purpose of evaluat-
ing the query, only the semantics that can be expressed by XQuery need to be extracted
and mapped into XQuery.

Consider the following query: “Find all the movies directed by director Ron Howard.”
The meaning of “directed by” cannot be directly expressed in XQuery. It is neither
possible nor necessary for NaLIX to understand such semantics. Instead based on the
dependency parse tree, we can determine that “movie” and “director” are related and
should be mapped into the same mqf function. Then the structural relationship be-
tween movie and director nodes in the database, which corresponds to “directed by,”
will be properly captured by Schema-Free XQuery. Generally, the semantics extracted
by NaLIX from a given natural langauge query comprise two parts: (i) tokens that can
be directly mapped into XQuery; (ii) semantic relationships between tokens, which
are inexpressible in XQuery, but are reflected by database schema, such as the at-
tachment relation between “movie” and “director” via “directed by” in the above
example.

The grammar for natural language corresponding to the XQuery grammar supported
by NaLIX is shown in Table 6 (ignoring all markers).We call a normalized parse tree
that satisfies the above grammar a valid parse tree.
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A valid parse tree can be translated to an XQuery expression as described in Sec 3.2.
An invalid parse tree, however, will be rejected by the system, with error message(s).6

Each error message is dynamically generated, tailored to the actual query causing the
error. Inside each message, possible ways to revise the query are also suggested. For ex-
ample, Query 1 in Figure 1 is found to be an invalid query, since it contains an unknown
term “as” as highlighted in the parse tree in Figure 10. An error message will be returned
to the user, and suggest “the same as” as a possible replacement for “as.” Query 3 in
Figure 3 is likely to be the new query written by the user by using the suggested term
“the same as.” Screenshots of the above iteration can be found in [17]. By providing
such meaningful feedback tailored to each particular query instance, we eliminate the
need to require users to study and remember tedious instructions on the system’s lin-
guistic coverage. Instead, through such interactive query formulation process, a user
will gradually learn the linguistic coverage of the system. Note that we assume user
queries are written in correct English, and thus do not specify any rules to deal with
incorrect English.

For some queries, the system successfully parses and translates the queries, yet
may not be able to correctly interpret the user’s intent. These queries will be accepted
by the system, but with warnings. For example, determining pronoun references (the
“anaphora” resolution problem) remains an issue in natural language processing. When-
ever there exists a pronoun in a user query, we include a warning message in the feed-
back and let the user be aware of the potential misunderstanding.

During the validation process, we also perform the following additional tasks con-
cerned with database specific situations.

Term Expansion. A user may not be familiar with the specific attributes and element
names in the database. Therefore, a name token specified in the user query may be
different from the actual name(s) of element or attribute in the database matching this
particular name token. The task of finding the name(s) of element or attribute in the
database that matches with a given name token is accomplished by ontology-based
term expansion using generic thesaurus WordNet [36] and domain-specific ontology
whenever one is available.

Implicit Name Token. In a natural language query, we may find value tokens where
the name tokens attaching to them are implicit in the query. For example, in Query 1 of
Figure 10, element director in the database is related to value token “Ron Howard,” but
is not explicitly included in the query. We call such name tokens implicit name token as
defined below. See Table 6 for the definitions of GVT, GOT and RNP.

Definition 11 (Implicit Name Token). For any GVT, if it is not attached by a CMT, nor
adjacent to a RNP, nor attached by a GOT that is attached by a RNP or GVT, then each
VT within the GVT is said to be related to an implicit NT (denoted as [NT]). An implicit
NT related to a VT is the name(s) of element or attribute with the value of VT in the
database.
If no name matching a name token or the value of a value token can be found in the data-
base, an error message will be returned. If multiple element or attribute with different
names matching the name token or value token are found in the database, the disjunc-
tive form of the names is regarded as the corresponding name for the given name token,
or implicit name token for the given value token. Users may also change the query by
choosing one or more of the actual names.

6 More details on the generation of error and warning messages in NaLIX can be found on the
Web at http://www.umich.edu/ yunyaol/NaLIX/index.html
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5 Experimental Evaluation

We implemented NaLIX as a stand-alone interface to the Timber native XML data-
base [13, 33] that supports Schema-Free XQuery. We used Minipar [19] as our natural
language parser. To evaluate the relative strength of NaLIX, we experimentally com-
pared it with a keyword search interface that supports search over XML documents
based on Meet [26]. We would have liked to compare NaLIX with an existing NLP
system. Unfortunately, existing NLP systems are mainly designed for textual content,
not for structured data. As such, NLP question answering system cannot handle queries
as complex as NaLIX and we believe no meaningful comparison is possible.

5.1 Methods

Participants were recruited with flyers posted on a university campus. Eighteen of them
completed the full experiment. Their age ranged from 19 to 55 with an average of 27. A
questionnaire indicated that all participants were familiar with some form of keyword
search (e.g. Google) but had little knowledge of any formal query language.

Procedures. The experiment was a within-subject design, with each participant using
either NaLIX or keyword search interface in one experimental block. The order of the
two blocks was randomly assigned for each participant. Within each block, each partic-
ipant was asked to accomplish 9 search tasks in a random order determined by a pair of
orthogonal 9 by 9 Latin Squares.

The search tasks were adapted from the “XMP” set in the XQuery Use Cases [31].
Each search task was described with the elaborated form of an “XMP” query7 taken
from XQuery Use Cases [31]. Participants received no training at all on how to formu-
late a query, except being instructed to use either an English sentence or some keywords
as the query depending on which experiment block the participant was in.

We noted that in an experimental setting, a participant could be easily satisfied with
poor search quality and go on to the next search task. In order to obtain objective
measurement of interactive query performance, a search quality criteria was adopted.
Specifically, the results of a participant’s query were compared against a standard re-
sults set, upon which precision and recall were automatically calculated. A harmonic
mean of precision and recall [27] greater than 0.5 was set as passing criteria, beyond
which the participant may move on to the next task. To alleviate participants’ frustration
and fatigue from repeated passing failures, a time limit of 5 minutes was set for each
task. If a participant reached the criteria before the time limit, he or she was given the
choice to move on or to revise the query to get better results.

Measurement. We evaluated our system on two objective metrics: how hard it was for
the users to specify a query (ease of use); and how good was the query produced in
terms of retrieving correct results (search quality).

Ease of Use. For each search task, we recorded the number of iterations and the actual
time (from the moment the participant started a search task by clicking on a button)
it took for a participant to formulate a system-acceptable query that returned the best

7 Q12 is not included, as set comparison is not yet supported in Timber. Q5 is not included,
as NaLIX current only supports queries over a single document. Q11 contains two separate
search tasks: the second task was used as Q11 in our experiment; the first task, along with Q2,
is the same as Q3, and thus is not included, as they only differ in the form of result display,
which is not the focus of NaLIX.
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results (i.e., highest harmonic mean of precision and recall) within the time limit for
the task. We also evaluated NaLIX subjectively by asking each participant to fill out a
post-experiment questionnaire.

Search Quality. The quality of a query was measured in terms of accuracy and com-
prehensiveness using standard precision and recall metrics. The correct results for each
search task is easy to obtain given the corresponding correct schema-aware XQuery.
Since the expected results were sometimes complex, with multiple elements (attributes)
of interest, we considered each element and attribute value as an independent value for
the purposes of precision and recall computation. Thus, a query that returned all the
right elements, but only 3 out of 4 attributes requested for each element, would have a
recall score of 75%. Ordering of results was not considered when computing precision
and recall, unless the task specifically asked the results be sorted.

Finally, we measured the time NaLIX took for query translation and the time Timber
took for query evaluation for each query. Both numbers were consistently very small
(less than one second), and so not of sufficient interest to be worth reporting here. The
fast query translation is expected, given that query sentences were themselves not very
large. The fast evaluation time is an artifact of the miniscule data set that was used.
The data set we used was a sub-collection of DBLP, which included all the elements on
books in DBLP and twice as many elements on articles. The total size of the data set
is 1.44MB, with 73142 nodes when loaded into Timber. We chose DBLP because it is
semantically close to the data set for the XMP use case such that the “XMP” queries
can be applied with only minor changes (e.g., tag name year is used to replace price,
which is not in the data set but has similar characteristics). A pilot study showed that
slow system response times (likely with very large data sets) resulted in frustration and
fatigue for the participants. Since query evaluation time is not a focus of this paper,
we felt that it is most appropriate to use this data set to balance the trade-off between
performance and realism: we minimized the overhead resulting from the use of a larger
data set both in terms of query evaluation and precision/recall computation time; at the
same time, the correct results obtained for any “XMP” query from our data set were the
same as those would have been obtained by using the whole DBLP, as correct answers
for each query included elements related to book elements only.

5.2 Results and Discussion

Ease of Use. The time and the number of iterations needed for participants to formulate
a valid natural language query with the best search results is shown in Figure 11. As
can be seen, the average total time needed for each search task is usually less than 90
seconds, including the time used to read, understand the task description, mentally for-
mulate a query, type in the query, read the feedback message, revise the query, browse
the results and decide to accept the results. In consequence, there seems to be a floor of
about 50 seconds, which is the average minimum time required for any query. The av-
erage number of iterations needed for formulating a query acceptable by NaLIX is less
than 2, with an average of 3.8 iterations needed for the worst query. For about half of
the search tasks (not the same tasks for each participant), all the participants were able
to formulate a natural language query acceptable by NaLIX on the first attempt (i.e.,
with zero iterations). Also, for each task, there was at least one user (not the same one
each time) who had an acceptable phrasing right off the bat (i.e. the minimum number
of iterations was zero for each task).

It is worth noting that there was no instance where a participant became frustrated
with the natural language interface and abandoned his/her query attempt. However, two
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Search Task Number

Fig. 11. Average time (in sec.) and average
number of iterations needed for each “XMP”
search task. Error bars show standard errors of
means.

Search Task Number

Fig. 12. Average precision and recall for each
“XMP” search task

participants decided to stop the experiment due to frustration during the keyword search
block.

According to the questionnaire results, the users felt that simple keyword search
would not have sufficed for the query tasks they had to do. They welcomed the idea of
a natural language query interface, and found NaLIX easy to use. The average partici-
pants’ levels of satisfaction with NaLIX was 4.11 on a scale of 1 to 5, where 5 denotes
“extremely easy to use.”

Search quality. Figure 12 compares the average precision and recall of NaLIX with
that of a keyword search interface in the experiment. As can be seen, the search quality
of natural language queries was consistently better than that of keyword search queries.
The precision of NaLIX is 83.0% on average, with an average precision of 70.9% for
the worst query; for 2 out of the 9 search tasks, NaLIX achieved perfect recall, with
an average recall of 90.1% for all the queries and an average recall of 79.4% for the
worst query. In contrast, keyword search performed poorly on most of the search tasks8,
especially on those requiring complex manipulations such as aggregation or sorting
(e.g. Q7, Q10). Even for queries with simple constant search conditions and requiring
no further manipulation (e.g. Q4, Q11), keyword searches produced results that were
less than desirable.

In our experiments, we found two major factors contributing to search quality loss
for NaLIX. First, the participants sometimes failed to write a natural language query
that matched the exact task description. For instance, one of the users expressed Q6
as “List books with title and authors” (rather than only list the title and authors of the
book), resulting in a loss of precision. The second had to do with parsing error. Given

8 Each search task corresponds to an “XMP” query in [31] with the same task number.
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Table 7. Average Precision and Recall

avg.precision avg.recall total queries
all queries 83.0% 90.1% 162

all queries specified correctly 91.4% 97.8% 120
all queries specified parsed correctly 95.1% 97.6% 112

a generic natural language query, it is sometimes difficult to determine what exactly
should be returned, and the parse tree obtained may be incorrect.9 For example, one
of the users formulated Q1 as “List books published by Addison-Wesley after 1991,
including their year and title.” Minipar wrongly determined that only “book” and “title”
depended on “List,” and failed to recognize the conjunctive relationship between “year”
and “title.” Consequently, NaLIX failed to return year elements in the result, resulting
in a loss of both precision and recall. Table 7 presents summary statistics to tease out
the contributions of these two factors. If one considers only the 112 of 162 queries that
were specified and parsed correctly, then the error rate (how much less than perfect
are the precision and recall) is roughly reduced by 75%, and NaLIX achieved average
precision and recall of 95.1% and 97.6%, respectively, in the experiments.

6 Related Work

In the information retrieval field, research efforts have long been made on natural lan-
guage interfaces that take keyword search query as the target language [5, 8]. In recent
years, keyword search interfaces to databases have begun to receive increasing atten-
tion [6, 10, 11, 12, 16, 18], and have been considered a first step towards addressing the
challenge of natural language querying. Our work builds upon this stream of research.
However, our system is not a simple imitation of those in information retrieval field in
that it supports a richer query mechanism that allow us to convey much more complex
semantic meaning than pure keyword search.

Extensive research has been done on developing natural language interfaces to data-
bases (NLIDB), especially during the 1980’s [2]. The architecture of our system bears
most similarity to syntax-based NLIDBs, where the resulting parse tree of a user query
is directly mapped into a database query expression. However, previous syntax-based
NLIDBs, such as LUNAR [35], interface to application-specific database systems, and
depend on the database query languages specially designed to facilitate the mapping
from the parse tree to the database query [2]. Our system, in contrast, uses a generic
query language, XQuery, as our target language. In addition, unlike previous systems
such as the one reported in [29], our system does not rely on extensive domain-specific
knowledge.

The idea of interactive NLIDB has been discussed in some early NLIDB litera-
ture [2, 15]. The majority of these focus on generating cooperative responses using
query results obtained from a database with respect to a user’s task(s). In contrast, the
focus of the interactive process of our system is purely query formulation: only one
query is actually evaluated against the database. There has also been work to build in-
teractive query interfaces to facilitate query formulation [14, 34]. These works depend
on domain-specific knowledge. Also, they assist the construction of structured queries
rather than natural language queries.

9 Minipar achieves about 88% precision and 80% recall with respect to dependency relations
with the SUSANNE Corpus [19].
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There are a few notable recent works on NLIDB ([21, 22, 23, 30]). A learning
approach as a combination of learning methods is presented in [30]. We view such
learning approaches and our approach as complimentary to each other - while learning
techniques may help NaLIX to expand its linguistic coverage, NaLIX can provide train-
ing sources for a learning system. A NLIDB based on a query formulator is described
in [21]. A statistical approach is applied to determine the meaning of a keyword. The
keywords can then be categorized into query topics, selection list, and query constraints
as the input of query formulator. No experimental evaluation on the effectiveness of
the system has been reported. PRECISION [22, 23] is a NLIDB that translates seman-
tically tractable NL questions into corresponding SQL queries. While PRECISION ex-
tensively depends on database schema for query mapping, NaLIX does not rely on the
availability of a schema for query translation. In addition, PRECISION requires each
database attribute be manually assigned with a compatible wh-value, while NaLIX does
not. Finally, NaLIX covers a much broader range of natural language questions than
PRECISION with promising quality.

In NaLIX, we obtain the semantic relationships between words via a dependency
parser. Recent work in question answering [3, 7, 9] has pointed out the value of utilizing
the dependency relation between words in English sentence to improve the precision of
question answering. Such dependency relations are obtained either from dependency
parsers such as Minipar [3, 7] or through statistic training [9]. These works all focus on
full text retrieval, and thus cannot directly apply to XML databases. Nevertheless, they
inspired us to use a dependency parser to obtain semantic relationship between words,
as we have done in NaLIX.

7 Conclusion and Future Work

We have described a natural language query interface for a database. A large class of
natural language queries can be translated into XQuery expressions that can then be
evaluated against an XML database. Where natural language queries outside this class
are posed, an interactive feedback mechanism is described to lead the user to pose an
acceptable query. The ideas described in this paper have been implemented, and actual
user experience gathered. Our system as it stands supports comparison predicates, con-
junctions, simple negation, quantification, nesting, aggregation, value joins, and sort-
ing. In the future, we plan to add support for disjunction, for multi-sentence queries, for
complex negation, and for composite result construction. Our current system is oriented
at structured XML databases: we intend to incorporate support for phrase matching by
incorporating full-text techniques in XQuery such as TeXQuery [1], thereby extending
our applicability to databases primarily comprising text stored as XML.

The system as we have it, even without all these planned extensions, is already very
useful in practice. We already have a request for production deployment by a group
outside computer science. We expect the work described in this paper to lead to a whole
new generation of query interfaces for databases.
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Abstract. This paper describes the design and implementation of an
XML storage manager for fast and interactive XPath expressions evalu-
ation. This storage manager has two main parts: the XML data storage
structure and the index over this data. The system is designed in such a
way that it minimizes the number of page reads for retrieving any XPath
expression results while avoiding the shortcomings of previous work on
storing XML data where the index must adapt to the most frequent
queries. Hence, the main advantage of our index is that it can handle
any new XPath expression without any need for adaptation. We show
comparable performance of our design by presenting path evaluation re-
sults of our index against those of the currently most known index on
documents of different sizes.

1 Introduction

This paper presents a new storage manager and its indexing scheme for XML
data. XML is becoming widely used for data exchange and manipulation in local
but mostly distributed environments. It is becoming the foundation of the semi-
structured and labeled graph data model where this data can be irregular and/or
incomplete and consisting of atomic or composite elements that are nested in a
hierarchical manner. This storage manager is part of the AlX emist [1] project
that we are designing and implementing for processing XQuery queries on stored
and streaming XML data.

There have been many proposals for native XML storage managers and in-
dexing schemes (e.g. [2, 3]). Contrary to the widely used approach in these sys-
tems where the storage keeps subtree nodes physically close to each other, our
scheme only considers the depth and the element name for physical proximity.
The logical structure information is preserved by a now classic element number-
ing scheme. We store XML elements through a breadth-first data layout instead
of depth-first; this last approach is mostly adopted for storing and retrieving
document subtrees in the same data pages, and this is probably the main rea-
son for its adoption by most previous data layouts. However, we show that our
breadth-first design does not have the subtree reconstruction performance hit
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that one may imagine for the most typical queries. We use a layered approach
for storing XML documents and building indexes on them, and this approach
demonstrates comparable performances to those of the currently most known
approaches for retrieving both document subtrees and elements only as results
for XPath expressions. Our approach, however, does not need to force an adap-
tation of the index to the most frequent XPath expressions, but is most general
and can handle any new expression.

XQuery is fast becoming the de-facto querying language for XML data. It is
based on XPath querying and matching. A path expression matches a node in the
XML tree if the path from the root to the node has the same sequence of labels
as the path expression. Paths also might have ancestor-descendant (i.e. //),
wildcard elements (i.e. /*) and branches. A naive evaluation of path expressions
may require a complete scan of the document; this is too expensive for large
documents where these documents do not fit in memory (the same also can be
said about memory-resident documents). For this reason, we propose a structural
summary index that has a tree structure, summarizing the nodes of the indexed
XML document. The size of the index tree remains much smaller than the size of
the document (more on that to come). Evaluating an XPath expression on the
index and retrieving the resultant elements from the data pages prevent the scan
of the whole document tree. Unlike other structural summary indexes (e.g. [4–7])
that require being adapted to the most frequent path expressions (FUP’s), our
index is a general one that can be used to evaluate any path expression without
any pre-processing.

The rest of the paper is organized as follows: In Section 2 we mention some
related work. We then describe in Section 3 our data layout design for XML
documents and then in Section 4 the design of our index. In Section 5, our
XPath expression matching algorithm is presented and then in Section 6 the
results of some experiments are presented. We conclude in Section 7.

2 Related Work

Several mapping techniques have been proposed [8–11] for storing XML doc-
uments in flat tables of relational databases. [8–10] consider XML documents
as graphs, and store these graph nodes with their edges in relational database
tables. [11] presents a mapping that explores the XML data and creates a map-
ping to a relational database, separating the objects by their types. The rationale
behind this mapping is to use the mature RDBMS technology in indexing and
querying XML documents. For this purpose, [9] proposes algorithms for trans-
lating XPath expressions to SQL. [8] also proposes a similar conversion from
Quilt to SQL.

XML database systems like [2, 3] store XML documents in native storage
managers. These systems relieve the processing from additional layers for map-
ping the logical data to the physical layout, which eventually slows down query
processing [12]. [2] stores subtrees in clustered physical pages, and [3] stores XML
documents in pre-order traversal in order to cluster sub-elements together.
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We also store the XML documents natively, but we store them in breadth-
first order, without clustering the elements with their subelements. We cluster
only elements of the same name and depth together.

A number of structural indexes for XML have been proposed (e.g. [4–7, 13]).
These indexes are structural summaries of the target XML documents and are
based on the notion of bisimilarity. Two nodes are bisimilar if they have identical
label paths. Bisimilar nodes are grouped together in one index node. The 1-Index
[14] was the first to propose the idea of bisimilarity. It can answer path expressions
of any size without referring to the data nodes. The drawback of the 1-Index is that
the size of the index depends upon the regularity of the data graph. For irregular
data graphs, the size may become quite large, and the path evaluation time, being
proportional to the size of the index node, may also become too high. In many cases
where long path expressions are not used, the 1-index may not be necessary. The
A(k)-Index was proposed to overcome these shortcomings and is based on the no-
tion of k-bisimilarity. A(k)-Index can answer, without referring to the data graph,
path expressions of lengths at most k, where this last value controls the resolution
of the index and influences its size in a proportional manner. For large k values, the
size of the index may grow to large sizes, and have the same problem as the 1-Index.
For small values of k, the size of the index can be substantially smaller, but cannot
handle long path expressions.

To accommodate path expressions of various lengths, without unnecessarily
increasing the size of the whole index, D(k)-Index [5] was proposed. This index
can assign different k values for different index nodes. These k values are as-
signed to be in conformance with a given set of frequently used path expressions
(FUP’s). For parts of the index corresponding to parts of the data graph targeted
by long path expressions, large values of k are assigned, and small values of k are
assigned for parts corresponding to data targeted by short path expressions. To
facilitate the evaluation of path expressions with branching, UD(k, l)-Index [6]
was proposed. It is similar to A(k)-Index, but also imposes downwards similarity.

A D(k)-Index builds a coarser index than an A(k)-Index, but has the problem
of over-refinement. [7] identifies four types of over-refinements, and proposes
the M(k)-Index as a solution for all of them. M*(k)-Index (again in [7]) is an
extension to the M(k)-Index and is in fact the combination of several M(k)-
Indexes in such a way that each one of these has a different resolution. This design
solves the problem of large scan space in the index, while the path coverage is
not affected. The drawback of this design is inherited from the D(k)-Index and
is the requirement to adapt to a given list of FUP’s.

Our proposed U(∗)-Index (for Universal-generic) also uses the notion of
bisimilarity in a relatively similar way to the 1-Index. However, and in order
to overcome the problem of large search space for XPath evaluation on the in-
dex, we use a special labeling scheme of index nodes that enables the pruning
of the search space. More importantly, our index does not need to be adapted
to any particular list of FUP’s; it has a uniform resolution and hence is more
generic.
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3 Data Layout

We describe in this section how an XML document is shredded in stored data
pages. As we mentioned earlier, and contrary to previous approaches, we store
XML elements (and their related attributes and text) according to their depths
and names. We came in fact to this design after designing, implementing and
testing several other approaches. We show in the experimental results section,
and contrary to previously believed common sense, that the reconstruction of
a result subtree is not as expensive as it was thought to be for the most com-
mon queries. This is mainly justified by the relatively few levels in most XML
schemas (and hence documents). Moreover, as XPath expressions get longer, the
height of their resulting trees get smaller, which reduces even more the cost of
subtree reconstruction. For queries with large result sizes, subtree reconstruction
is always quite expensive.

3.1 Data Shredding

To store an XML document in disk pages, we partition it by element depth and
name. All elements named e at depth i belong to the same partition (called
“extent” on the storage device). All elements belonging to the same extent are
stored in a chain of contiguously clustered pages. With this scheme, all elements
in a chain have the same depth and element name. The algorithm that builds
these chains is not mentioned here due to space limits but is simple to explain.
While scanning an original XML document, pages in memory are created and
filled according to the conditions mentioned above (i.e. names and levels). When
a page is filled, it is saved at its designated disk page in the extent dedicated to
that chain of pages.

3.2 Enumeration

In order to preserve the structural information of the XML document in the
stored pages, two position numbers are assigned to and stored with each element
in the data pages: the start index (sIndex) and the end index (eIndex) [15]. The
sIndex of element e is the depth-first order of e in the document tree (starting
with 0 for the root). An sIndex is unique in a document. The eIndex of element
e is the greatest sIndex in the subtree of e. If e is a leaf, then sIndex = eIndex.
More than one element can have the same eIndex. The eIndex, sIndex and
the depth of an element are necessary and sufficient to reconstruct the XML
document tree from the stored structure. The depth of an element does not need
to be stored with an element since it is retrieved from the storage structure.
Fig. 1 shows how a sample XMark [16] XML document fragment is numbered.

3.3 Internal Representation

Fig. 2 shows the internal page representation of the document shown in Fig. 1.
A page holds variable sized elements, and is filled until the next element does
not fit in. Each rectangle in Fig. 2 represents a disk page (other details of this
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Fig. 1. A sample XMark-fragment document tree

Depth
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1 open_auctions : 1(1) description : 19(11)
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annotation : 18(10)

8
: 23(15) 24(15) 25(15) 26(15)

bold : 29(18)
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Fig. 2. The stored pages of the data in Fig. 1

figure are presented in the following section). For clarity, it is assumed that each
page can hold a maximum of 3 elements. An element is stored with its name,
sIndex, eIndex (these are the numbers to the left and to the right of nodes in
Fig. 1), and eventually its attribute names and values, and its text() value. A
crucial point to notice here is that elements are stored in page chains ordered
by sIndex. The index tree for our running example is shown in Fig. 3 and is
explained in the next Section.

4 Structural Index

Our main contribution in this paper is a disk resident structural summary index
for XML documents that we call U(∗)-Index. This index is constructed on an
XML document independent of path expressions and how the XML data is
stored in data pages. Hence, it evaluates path expressions without requiring any
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Fig. 3. The structure index of the document in Fig. 1

adaptation or index structure modification to specific path expressions and is
detached from how the XML data is clustered in data pages.

Each index node points to a group of elements in data pages. All elements
pointed to by an index node i have the same name, depth, subtree label (SL)
and path label sequence from the document root. The depth of i is equal to the
depth of the elements pointed to by i.

Definition 1 (Subtree Label (SL)). The Subtree Label of a node i is the
sorted list of all distinct element names in the subtree of i. E.g. the SL of index
node corresponding to root “a” in document: < a >< c >< b/ >< b/ >< a/ ><
/c >< /a > is “abc”. The SL of a leaf node is the empty string ε.

For an index node i, the path label sequence from the root of the index tree to
i is the same as the path label sequence of all elements pointed to by i from the
root of the XML document. The parent of an element e pointed to by index node
i is pointed to by the parent node of i. Similarly, the children of e are pointed
to by index node(s) that are the children of i in the index tree. Algorithm 1.
is a trivial algorithm that shows how the skeleton of an index is constructed
and Algorithm 2. shows how an index node is labeled. These two algorithms are
quite simple and clear. Algorithm 3. compresses the index by grouping the nodes
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Algorithm 1. Index Construction
ConstructIndex (DocumentRoot, indexRoot)
1: indexRoot.elementName = DocumentRoot.elementName
2: indexRoot.SL = ε
3: for all child ∈ indexRoot.children do
4: indexRoot.addChild(e)
5: ConstructIndex (child, e)
6: end for
7: LabelIndex (indexRoot)
8: Compress (indexRoot)

Algorithm 2. Index Labeling
LabelIndex (root)
1: for all child ∈ root.children do
2: LabelIndex (child)
3: root.SL = child.elementName ∪ root.SL
4: root.SL = child.SL ∪ root.SL
5: end for

Algorithm 3. Index Compression
Compress (root)
1: for all e ∈ root.children do
2: for all e′ ∈ root.children do
3: if e.elementName == e′.elementName & e.SL == e′.SL then
4: e.extent = e.extent ∪ e′.extent
5: e.children = e.children ∪ e′.children
6: Delete e′

7: end if
8: end for
9: end for

10: for all child ∈ root.children do
11: Compress (child)
12: end for

based on the criteria mentioned above (i.e. element name, depth, SL, and path
label from root).

Fig. 3 shows the index tree for the XML document in Fig. 1. The names in
the ovals are the name of the index node, followed by the SL. The numbers to
the left of the nodes in Fig. 3 are fictitious and added only for clarity. These
are the same numbers between parenthesis in Fig. 2 and are shown in this pa-
per for the reader to make the connection between the index nodes and the
data pages. E.g. the elements pointed to by the index node 4 have sIndex 4, 8,
and 12.
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4.1 Index Node

An index node i in U(∗)-Index is identified by its name, depth and SL. The
name of an index node is the name e of the elements it points to (they all have
the same name e). The depth is equal to the depth of these element(s), and
the SL of that index node corresponds to the SL of the data nodes pointed
to by i. No more than one index node can exist having the same name, SL
and parent. Every index node has at least one pointer to an element in the
data pages. With every pointer, i also contains the sIndex and eIndex of the
pointed element. E.g. the node 4 of the index in Fig. 3 is of depth 3 and of
name “bidder”; All elements pointed to by it are also necessarily and exclu-
sively in the pages of elements of depth 3 and name “bidder” (Fig. 2). How-
ever, it is not necessarily true that all elements in element pages of the same
depth and the same name be pointed to by the same index node (e.g. ele-
ments “listitem” of depth 6 in Fig 2). Fig. 4 shows in a more visual man-
ner how the nodes of an XML document are mapped to the nodes of their
index.
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Fig. 4. Sample XML document mapping to its index

4.2 Index Disk Pages

At the implementation level, there are two different internal page structures
that make an index. Each one of these page types makes a chain of contiguously
clustered disk pages. These two page types are respectively shown on the left and
right in Fig. 5. The first chain contains for each index node the name, SL, the
pointers to its children index nodes, a count of the number of instances for that
element, and a pointer to the location in the second chain holding the pointers to
the element(s) in the XML document storage. The order of index nodes stored
in this chain is the depth-first ordering of the index tree. In the second chain, we
store the pointers to elements in the XML document storage (i.e. data pages).
With each pointer P , we store the sIndex and eIndex of the element pointed
to by P .
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CI Nam e SL Children PC SPL
0 s it e open_auct ions ... 1 1 0
1 open_auct ions open_auct ion init ial ... 2 1 1
2 open_auct ion init ial bidder current ... 3, 4, 8, 9, 10 1 2
3 init ial 1 3
4 bidder dat e t im e increas e 5, 6, 7 3 4
5 dat e 3 7
6 t im e 3 10

7 increas e 3 13
8 current 1 16
9 privacy 1 17

10 annot at ion des cript ion parlis t ... 11 1 18
11 des cript ion parlis t lis t it em t ext ... 12 1 19
12 parlis t parlis t lis t it em t ext ... 13, 16 1 20

13 lis t it em parlis t lis t it em 14 1 21
14 parlis t lis t it em 15 1 22
15 lis t it em 3 23
16 lis t it em t ext bold 17 1 27
17 t ext bold 18 1 28
18 bold 1 29

CI s Index eIndex P
0 0 29
1 1 29
2 2 29
3 3 3
4 12 15
5 4 7
6 8 11
7 5 5
8 9 9
9 13 13

CI s Index eIndex P
20 20 29
21 21 26
22 22 26
23 24 24
24 25 25
25 26 26
26 23 23
27 27 29
28 28 29
29 29 29

CI s Index eIndex P
10 14 14
11 10 10
12 6 6
13 15 15
14 11 11
15 7 7
16 16 16
17 17 17
18 18 29
19 19 29

Fig. 5. Sample index layout

Within this second chain of pages, entries are logically grouped together
according to the pointers from the first type of pages and their counters; each
group belongs to an index node. Physically the pages in the second chain contain
entries where each one of these makes a sequence of four integers. Fig. 5 shows in
fact how the conceptual index tree is stored in disk pages. Each block represents
a physical disk page. The three wide blocks belong to the first chain, and the
three other blocks belong to the second chain. Columns “CI” in both page types
denote a logical address for that tuple. Column “Children” shows the “CI’s” of
the children nodes, “PC” the number of pointers in the group associated with
the index node in the second chain. “SPL” shows the position of the group of
pointers in the second chain. The small arrows in the last column of the second
chain stand for the pointers pointing to the XML data. The groups are ordered
in the same order as the index nodes in the first chain. Each group constitutes
the extent of its index node.

4.3 Index Size

The cost of path expression evaluation is directly proportional to the size of the
index tree. The limit size of the index tree depends upon the number of distinct
element names and the maximum depth of a specific XML document. An index
node i can have a maximum of n2n children (n if children are leafs), where n
is the number of distinct element names in the subtree rooted by i. This limit
is reached when for every distinct element name “m” in the subtree of i, there
are 2n subtrees, rooted by 2n “m”’s, all children of i, with each “m” having a
distinct SL. This limit is unlikely to be reached for the following reasons: first,
it is unlikely for a node to have a big number of children with distinct names;
and second, it is unlikely for elements, with parents of the same name and of the
same depth, to have a big number of distinct SL.
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5 Path Expression Evaluation

The semantics of XPath makes it necessary to fetch as the result of an XPath
expression the subtree rooted at the target element from the queried XML docu-
ment. However, for XQuery several XPath expressions may exist in the “For-Let-
Where” parts of the query and only predicates on the target elements (and/or
on their attributes and text()) in these expressions are applied; hence, there is
no need to fetch the whole subtrees for these expressions. Only expressions in
the “Return” clause of an XQuery need the resulting subtrees if what is required
is not explicitly stated as an element name and/or its text() value, or attributes
for some elements. Our storage manager and U(∗)-Index return both types of
required results.

Path expressions requiring only target elements are evaluated using the index
only, without accessing the document data pages. Attributes and text()’s of these
target elements are fetched from data pages. U(∗)-Index returns pointers to the
locations of these elements in data pages and, for an element, it costs an average
of one disk access to fetch its attributes and text(). Since elements at the same
document level and with the same name are clustered together in data pages,
we have here a high cache hit ratio. This is the main advantage of our data
shredding layout.

The result of a path expression evaluation on the index contains exactly all
the matches in the document. Consider an XML document D. Let I be the
U(∗)-Index built on D. For any index node i ∈ I, the path label sequence from
the root of I to i is the same as the path label sequence of all elements e in D
that are pointed to by i. Also, all elements e ∈ D satisfying a path expression
p are pointed to by index nodes i’s that satisfy p. Thus all i’s with path label
sequence from root of I to i satisfying a path expression p contain exactly all
the matches of p in D (the statement is made in both directions to stress the
point that it is equivalent to the if and only if condition). We explain next how
our U(∗)-Index is used in matching simple and branching expressions.

5.1 Evaluating Simple Expressions

Algorithm 4. is called recursively to evaluate an XPath expression. We next
explain how this matching process is done on a sample XPath expression. Con-
sider the path expression /site//open auction/∗/time to be evaluated on the
index in Fig. 3. Line 1 of the algorithm parses the path to get separator1=“/”,
label=“site”, separator2=“//” and remainingPath= “open auction/∗/time”.

First, the algorithm checks if the index node under consideration (indexRoot
in Algorithm 4.) has the same label as the head of path (line 3). After the check
passes for “site”, it proceeds to check for branches in path (lines 4–10). If no
branches are found in the path expression, it proceeds to line 11; otherwise, it
pushes these branches on a stack. If the label is the leaf of path, it adds the
extent (calling Algorithm 5.) of the node indexRoot to the results (lines 11–12).
While the remainingPath is not empty, it prepares to evaluate remainingPath
on indexRoot’s children.
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Algorithm 4. XPath Evaluation
Evaluate (path, indexRoot)
1: separator1.label.separator2.remainingPath = path
2: branchAdded = 0
3: if indexRoot.elementName == label then
4: while separator2 = ‘[’ do
5: branch=getBranch(remainingPath)
6: ‘[’...‘]’.remainingPath = remainingPath
7: pushBranchToStack(branch, indexRoot)
8: branchAdded = branchAdded + 1
9: separator2.remainingPath = remainingPath

10: end while
11: if remainingPath = ε then
12: result = result ∪ returnExtent(indexRoot)
13: else
14: if subtreeContains(indexRoot, remainingPath) then
15: for all child ∈ indexRoot.children do
16: result = result ∪ Evaluate (separator2.remainingPath, child)
17: end for
18: end if
19: end if
20: end if
21: if separator1 == ‘//’ then
22: if subtreeContains(indexRoot, path) then
23: for all child ∈ indexRoot.children do
24: result = result ∪ Evaluate (path, child)
25: end for
26: end if
27: end if
28: while branchAdded ≥ 0 do
29: popBranchFromStack()
30: branchAdded = branchAdded − 1
31: end while
32: return result

Since every index node has a list of element names in its subtree (SL), Algo-
rithm 6. is called in line 14 to check for anypossibility ofmatches for the remaining
Path in the subtree of indexRoot. Algorithm 6. checks for every label in path its
availability in the index subtree rooted by indexRoot. This check is done by sim-
ply scanning the SL of indexRoot. This algorithm helps in pruning unpromising
branches in the index and hence speeds up a lot the matching process.

On our running example, the remainingPath has labels “open auction” and
“time”, and both are found in the SL “open auctions . . .” of node 0 in Fig. 3,
so we recursively call Evaluate on the children of indexRoot with separator2.
remainingPath which is currently “//open auction/∗/time”. In this recursive
call, separator1= “//”, label= “open auction”, separator2= “/” and remaining
− Path= “∗/time”. The condition in line 3 fails, because indexRoot.element
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Algorithm 5. Return Extent
returnExtent (indexNode)
1: for all (branch, stackIndexNode) in stack do
2: if ¬ Evaluated(branchExtent[branch]) then
3: branchExtent[branch]=Evaluate (branch, stackIndexNode)
4: end if
5: end for
6: for all e ∈ indexNode.extent do
7: matched = true
8: for all (branch, stackIndexNode) in stack do
9: if � b ∈ branchExtent[branch] | ∃ p ∈ stackIndexNode.extent and

e.sIndex ≥ p.sIndex and e.eIndex ≤ p.eIndex and b.sIndex ≥ p.sIndex
and b.eIndex ≤ p.eIndex then

10: matched = false
11: end if
12: end for
13: if matched = true then
14: result = result ∪ e
15: end if
16: end for
17: return result

Algorithm 6. Subtree Contains Elements
subtreeContains (indexRoot, path)
1: for all label ∈ path do
2: if label /∈ indexRoot.SL then
3: return false
4: end if
5: end for
6: return true

Name = “open auctions” and label = “open auction”. Since separator1=“//”,
the label “open auction” is to be evaluated for all descendants of indexRoot.
Line 24 recursively calls Evaluate on the children of indexRoot to evaluate
“//open auction/∗/time” after checking for the possible availability of “open
auction” and “time” in SL of indexRoot which is “open auction . . .” (node 1 in
Fig. 3) in line 22. indexRoot “open auctions” has only one child “open auction”
that matches the label in the following recursive call. The condition in line 14
is satisfied, and Evaluate is called with separator2.remainingPath “/∗/time”
for the children of index node named “open auction”. For all calls of Evaluate
on the children of “open auction” with path = “/ ∗ /time”, the condition in
line 3 would evaluate to true, since label is a wildcard, but the condition in
line 14 will fail for all but “bidder”, since only index node “bidder” has “time”
in its SL. The recursive call of Evaluate will continue for index nodes “date”,
“time” and “increase” with path expression “/time”. The condition in line 3
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will fail for “date” and “increase” and only “time” will jump to line 12 because
remainingPath = ε. Algorithm 5. is then called and it simply returns the extents
of “time”.

5.2 Evaluating Branching Expressions

Evaluating branches in an XPath expression happens only when the target index
node for that expression (i.e. the index node corresponding to the leaf element in
the expression) has been reached. This evaluation is cached until the depth-first
scan of the index tree backtracks the branching index node. Again, running an
example here may be the most appropriate way to explain how branches are eval-
uated. Let’s consider a simpler version of our previous example and add a branch-
ing expression to it so it becomes /site//open auction/bidder[./date]/time.

After encountering the “/date” branching in line 4 of Algorithm 4., it is
pushed onto a global stack along with the branching index node “bidder”. The
matching process proceeds as it was explained in the previous section, up until a
“time” element matches. At that time, and while fetching the extent of “time”
in Algorithm 5., the “/date” branching is evaluated on the subtree rooted by
“bidder”, if it hasn’t been evaluated previously. For each extent of “time”, Al-
gorithm 5. checks in line 9 if it matches a “date” extent with the same parent
“bidder”; if so, it adds that “time” extent to the results. When the recursive
call that pushed that branch onto the stack reaches line 28 (i.e. backtracks the
branching node), it pops up that branch from the stack and deletes it.

5.3 Analysis

We present in this subsection some analysis on the average size of a U(∗)-Index
for a certain XML document and on the average evaluation cost for an XPath
expression relative to its characteristics.

Index Size: Consider a schema for an XML document of depth d and let μ be
the average schema child count, and ν be the average schema optional descen-
dant count. Let α ∈ [0..1] be a parameter associated with the presence of the
optional descendants; when α = 1 then the appearance of the optional elements
in subtrees makes all possible combinations (i.e. 2ν), and when α = 0 then the
appearance of optional elements in subtrees makes a single combination. α is
almost always very close to 0. Let X be the average number of nodes in the
index tree; then

X =
d∑

i=0

(μ2αν)i (1)

Evaluation Cost: Let β be the number of nodes visited to evaluate a sub-path
expression pj of the format “separator label” from an expression p = p1p2 . . . pn

on an index node i, where separator can be “/” or “//”, and “label” can be an
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element name or a wildcard. Let di be the depth of that index node i and de be
the depth of the deepest occurrence of element named label; then

β(pj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2αν if label �= ∗ AND separator = /
μ2αν if label = ∗ AND separator = /

de∑
x=di

(2αν)x−di if label �= ∗ AND separator = //

de∑
x=di

(μ2αν)x−di if label = ∗ AND separator = //

The overall cost of evaluating a path expression of depth de is:

n∏
j=1

β(pj) (2)

For path expressions with branching, the additional cost for a branch is:∑
∀x

β(pj)β(pb) (3)

where pj is the separator and branching node label, pb is the separator and the
branch leaf label and x is the number of index nodes matching the branching
node.

Although one can see that these formulae have exponential complexities, they
are rarely exponential in reality because in most cases α → 0 and both μ and ν
tend to 1 as the processing goes down the index tree.

6 Experimental Results

We present in this Section the performance results of our proposed data shred-
ding scheme and its U(∗)-Index. The implementation of these two components
went through several refinements, and we also implemented the D(k)-Index in
order to compare its execution times against those of U(∗)-Index and to cross-
check the correctness of our implementation by making sure that both indexes
returned the same results for about 70 queries. The codes for the data page
manager, U(∗)-Index and D(k)-Index were all implemented in Java and made
about 15,000 lines of code. Both data loading and index building were performed
from and into normal disk files. We conducted our experiments on a Pentium 4
machine with 3.2GHz processor and 512MB RAM, running Linux Fedora. The
set of path expressions that were used in our experiments were always evaluated
with an initially empty buffer. We ran in fact a large set of experiments where
different parameters were varied. For lack of space, we only show here some rep-
resentative results, but we would like to mention that with all the variations in
the experiments, most results went in the same direction. For all performance
results, the average of 5 runs for a query is reported here.
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Datasets: We used as our data and path expressions the XMark benchmark [16]
that is becoming widely used for its typical and representative data and queries.
We generated documents of sizes 200, 400, 600, 800 and 1000 MB and loaded
them into the storage manager and then built their indexes. The D(k) index was
also built on the same data layout as U(∗), so that this data layout does not
affect the performance comparison of the two indexes. For both U(∗)-Index and
D(k)-Index, their sizes were about 25% of the XML document sizes.

Path expressions: We extracted a list of path expressions from XMark [16], and
modified some of them to have path expressions with single, double and triple //
along with their normal /; we also introduced path queries with wildcards and
branches. The list of these expressions is shown in the technical report of this
paper [1]. We also divided these expressions into six different classes according
to the count of //, ∗, and branching present in an expression. Although we ran
our experiments with about 70 XPath expressions, we report the results here of
only 22 expressions for lack of space and similarity in the results.

Performance comparison of U(∗) versus D(k): Fig. 6 shows the results of both
D(k) and U(∗) when evaluating the different queries on the five different data
sizes. From this figure we can state that when the expressions are relatively sim-
ple (e.g. query classes 1, 2, and 3) the performance of both D(k) and U(∗) are
comparable, with a slight advantage for U(∗). However, when the queries become
complex (e.g. query classes 4, 5, and 6) U(∗) largely beats D(K) up to an order of
magnitude on some queries. The technical report shows next to each XPath ex-
pression the number of elements returned by that expression on the 200 MB data
size; these numbers justify some high execution times for some expressions. We
must mention here that we ran all the reported queries on D(k) in advance and
it took several minutes of processing every time to adapt to a query. The results
reported here for D(k) are those after the adaptation pre-processing took place.
For U(∗), and as we mentioned earlier, no adaptation is needed.

Subtree reconstruction: Fig. 7(a) shows a comparison for the execution times of
sample queries from the six different classes when the required results are only
the target elements in the XPath expressions versus the subtree reconstruction
for these elements. The figure plots the execution times for only two data sizes
since for higher sizes an extrapolation can easily be made by the reader. For these
expressions, the subtree reconstruction times are quite high, but when the sizes
of these subtrees are carefully looked at (see Table 1), one can understand these
costs. These result sizes are very large and not typical, and are to a certain extent
extreme cases. For Q18, for example, where the returned element is a leaf element
in the original XML document and hence does not have a subtree, the cost of
accessing the data pages is almost negligible.

Top 500 results: Another set of results that we show here are related to the cost
of fetching the first 500 matching elements for different expressions from the six
query classes. Fig. 7(b) compares for six different expressions the execution times
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Fig. 6. Performance of both D(k) and U(∗) on the different data sizes of XMark

when the whole results are returned versus the times needed to return the first 500
matching elements for each expression. From that graph, we can observe how the
response times remained within the realm of few tens to few hundreds of millisec-
onds when only the top 500 elements for all the queries were returned and when
the data set was scaled up to 1GB. This shows that the scalability of U(∗)-Index
is not greatly affected by the size of the XML data, but mostly by its number of
levels and the variations in element names and their relative positions.
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Fig. 7. Performance of U(∗) for subtree reconstruction and top 500 results

Table 1. Number of Returned Elements on 200 MB

Elements Only Element with Subtree
Q3 4400 113768
Q7 121537 635919
Q11 33287 100243
Q14 51000 662212
Q18 3600 3600
Q19 26401 21596140

7 Conclusion

We presented in this paper the design, implementation and performance results
of a native storage manager for XML data. A tightly coupled structural index
to that layout was also presented. Our experimental results validate this design
and show the comparable performances of U(∗)-Index relative to the D(k)-index.
The major advantage of U(∗)-Index relative to the D(k)-index is its generality
and non-need for adaptation to frequent queries.

Although not mentioned in this paper, we already augmented our structural
index with an inverted index—that is quite similar to a B-tree—to fetch results of
XPath expressions having value predicates on element texts and attribute values.
We intend in a coming paper to publish results on the performance of this inverted
index when used with our structural index. We are currently in the process of
implementing another structural index that has been recently published and plan
to compare its performance against our U(∗)-Index.
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Abstract. Detecting duplicates is a problem with a long tradition in
many domains, such as customer relationship management and data
warehousing. The problem is twofold: First define a suitable similarity
measure, and second efficiently apply the measure to all pairs of objects.
With the advent and pervasion of the XML data model, it is necessary to
find new similarity measures and to develop efficient methods to detect
duplicate elements in nested XML data.

A classical approach to duplicate detection in flat relational data is
the sorted neighborhood method, which draws its efficiency from slid-
ing a window over the relation and comparing only tuples within that
window. We extend the algorithm to cover not only a single relation but
nested XML elements. To compare objects we make use of XML parent
and child relationships. For efficiency, we apply the windowing technique
in a bottom-up fashion, detecting duplicates at each level of the XML hi-
erarchy. Experiments show a speedup comparable to the original method
data and they show the high effectiveness of our algorithm in detecting
XML duplicates.

1 Introduction

The problem of duplicate detection has been considered under many different
names, such as record linkage[1], merge/purge[2], entity identification [3], and
object matching [4]. It generally addresses the problem of finding different rep-
resentations of a same real-world object, which we refer to as duplicates. Various
representations are due to errors, such as typographical errors, inconsistent rep-
resentations, synonyms, and missing data. Examples for applications where data
cleansing and hence duplicate detection are a necessary (pre)processing step are
data mining, data warehouses, and customer relationship management. Another
scenario where duplicates naturally occur and need to be identified is data inte-
gration, where data from distributed and heterogeneous data sources are com-
bined into a unique, complete, and correct representation for every real-world
object.

Most approaches address the problem for data stored in a single relation,
where a tuple represents an object and duplicate detection is performed by com-
paring tuples. In most cases however, data is stored in more complex schemas,
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e.g., in a relational database tables are related through foreign key constraints,
or, in the case of XML data, elements are related through nesting. Only recently
has duplicate detection been considered for data other than data stored in a
single relation [5, 6, 7, 8].

The work presented in this paper focuses on duplicate detection in XML.
More specifically, we present an approach that adapts the sorted neighborhood
method (SNM), a very efficient approach for duplicate detection in a single re-
lation, to complex XML data consisting of several types of objects related to
each other through nesting. We compare XML elements describing the same
type of object similarly to the relational SNM. First, our XML adaptation to
SNM, called SXNM, generates a key for every element subject to comparisons in
the XML data source. This phase is referred to as key generation. In the second
phase, namely the duplicate detection phase, the elements are sorted using these
keys and a sliding window is applied over the sorted elements. Assuming that
the order sorts duplicates close to each other, we drastically improve efficiency
while maintaining good effectiveness by comparing elements within the window.
Relationships between different types of objects are exploited by our similarity
measure, which considers duplicates among descendants, in addition to the in-
formation defined manually to describe the particular object (a so called object
description). Therefore, we compare XML elements in a bottom-up fashion. Ex-
periments show that SXNM is an effective and efficient algorithm for duplicate
detection in XML data.

The remainder of this paper is structured as follows. In Sec. 2, we describe
related work with a special focus on the relational sorted neighborhood method.
Sec. 3 describes how sorted neighborhoods are used in XML. In Sec. 4, we show
results of evaluating our algorithm. To conclude, we provide a summary of the
paper and directions for further research in Sec. 5.

2 Related Work

2.1 Duplicate Detection

The problem of duplicate detection, originally defined by Newcombe [9] and and
formalized in the Fellegi-Sunter ][10] model for record linkage has received much
attention in the relational world and has concentrated on efficiently and effec-
tively finding duplicate records. Some approaches are specifically geared towards
a particular domain, including census, medical, and genealogical data [1, 11, 12],
and require the help of a human expert for calibration [13]. Other algorithms
are domain-independent, e.g., those presented in [3, 14].

Recent projects consider detecting duplicates in hierarchical and XML data.
This includes DELPHI [5], which identifies duplicates in hierarchically organized
tables of a data warehouse using a top-down approach along a single data ware-
house dimension. The algorithm is efficient because it compares only children
with same or similar ancestors. This top-down approach, however, is not well-
suited for 1:N parent-child relationships. As an example, let us consider <movie>
elements nesting <actor> elements. The top-down approach prunes comparisons
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of children not having the same ancestors, an assumption that misses duplicates
for an M:N relationship between parent and child such as movie and actor, be-
cause an actor can play in several different movies. Our bottom-up approach
overcomes these issues. In the example of movies nesting actors, we first com-
pare actors independently of movies, and then compare movies also considering
duplicates found in actors. Consequently, duplicate actors can play in different
movies whereas duplicate movies are detected through co-occurring actors. We
compensate the additional comparisons by using sorted neighborhoods.

Work presented in [6, 15] describes efficient identification of similar hierar-
chical data, but it does not describe how effective the approaches are for XML
duplicate detection. At the other end of the spectrum, we have approaches that
consider effectiveness (in terms of recall and precision) [16, 7, 17]. For exam-
ple, Dong et al. present duplicate detection for complex data in the context of
personal information management [7], where different kinds of entities such as
conferences, authors, and publications are related to each other, giving a graph-
like structure. The algorithm propagates similarities of entity pairs through the
graph. Any similarity score above a given threshold can trigger a new prop-
agation of similarities, meaning that similarities for pairs of entities may be
computed more than once. Although this improves effectiveness, efficiency is
compromised. In [8], we presented the domain-independent DogmatiX algorithm,
which considers both effectiveness by defining a suited domain-independent sim-
ilarity measure using information in ancestors and descendants of an XML ele-
ment, and efficiency by defining a filter to prune comparisons. However, in the
worst case, all pairs of elements need to be compared, unlike the sorted neigh-
borhood method that has a lower complexity.

2.2 The Sorted Neighborhood Method

The Sorted Neighborhood Method (SNM) is a well known algorithm for the
efficient detection of duplicates in relational data [13]. We describe it in detail,
as the method introduced in this paper is based on SNM. Given a relation with
duplicate tuples, the algorithm consists of three main steps:

1. Key Generation: For each tuple in the relation a key is extracted according
to a given key definition specified by an expert. Normally a generated key is
a string consisting of concatenated parts of the tuple’s contents. Each key is
linked with a reference to its tuple. Consider a relation MOVIE(TITLE, YEAR)
and let a tuple of the relation be Mask of Zorro, 1998. The key is defined
as the first four consonants of the title and the third and fourth digit of the
year. Then, the key value for the sample tuple movie is MSKF98 (underlined
characters).

2. Sorting: The keys generated in Step 1 are sorted lexicographically.
3. Duplicate Detection: A window of fixed size slides over the sorted keys and

searches duplicates only in the tuples referenced in the window, thus lim-
iting the number of comparisons. The size of the window is crucial for the
effectiveness of the algorithm and the quality of the result. With a small
window only a small set of elements are compared, leading to a relatively
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fast duplicate detection, though with possibly poor recall. A large window
results in a slower algorithm, but the chance to find duplicates is better as
more comparisons are performed.

To compare tuples referenced by keys in the window SNM uses an equational
theory combined with a similarity measure. The equational theory defines under
which circumstances two tuples are considered duplicates (e.g., if a person’s
name and address are sufficiently similar).

Using the transitive closure on the duplicates detected increases the number
of duplicates found. Moreover the multi-pass method, which executes SNM sev-
eral times using different keys each time, significantly increases the recall [13].
For large amounts of data as well as for repeatedly updated data there exists
an incremental version of the method dealing with how to combine data that
have already been deduplicated with new data packets. The basic SNM is very
effective for duplicate detection in relational data and achieves high recall and
precision values. We adapt the method to XML as described next.

3 SXNM – The Sorted XML Neighborhood Method

We apply the idea of the SNM to nested XML data and call our algorithm the
Sorted XML Neighborhood Method (SXNM). SXNM consists of two independent
phases: The key generation and the duplicate detection phase. Figure 1 shows
the basic workflow of SXNM with its two phases. The key generation algorithm
uses the XML data source and some configuration as its input and returns the
generated keys. Note that our algorithm assumes that the XML data has a
common schema. That is, elements having the same XPath represent the same
type of object, and elements with different XPath have different object types
and are not compared. This assumption can be satisfied by applying schema
matching and data integration into a target schema prior to SXNM. During
the duplicate detection phase, elements are sorted according to their generated
keys and a sliding window is applied over the elements, possibly using multiple
passes if multiple keys have been defined. To detect duplicates for every element
in the document—that is traversed in a bottom-up fashion—information about
previously detected duplicates, i.e., duplicates in descendants, is used. Details
about each step are provided in separate subsections as indicated in Fig. 1, but
first, we illustrate our approach with an example.

Fig. 1. The SXNM workflow
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3.1 Example

As input, SXNM requires some configuration in addition to the XML data on
which duplicate detection is applied. The configuration includes (i) the defin-
ition of what object types are subject to deduplication, so called candidates,
(ii) the definition of what data describes an object, that is, its object descrip-
tion (OD), and (iii) the definition of keys. To illustrate the configuration, we
consider the <movie> element in Fig. 2(a). The ellipses, rectangles, and dashed
ellipses depict XML elements, text nodes, and attributes respectively. Matrix,
the <title> content of the <movie> element, is referenced by the relative path
title/text(), the text node of the <title> child. Further relative paths might
include people/person[1]/text() and @year.

(a) A single movie element. (b) Two movies with children.

Fig. 2. Two examples for XML data

In the configuration, which is provided itself as an XML document, we define
all candidates using relative paths. For the bottom-up traversal, the algorithm
considers only the subtrees consisting of candidates. Consider a simplified struc-
ture of an XML data source depicted in Fig. 3(a). Candidates are shaded, and
for these keys and ODs are defined, as we will see shortly. The numbers and
ranges at the elements indicate the possible number of children. Note that for
the XML elements <actor>, <title>, and <person> only the object descriptions
can be used for comparisons, whereas for the XML elements <screenplay> and
<movie> information about duplicates in descendants can be used additionally.

(a) XML tree structure (b) Candidate trees

Fig. 3. XML candidates in an XML data source (a) and extracted subtrees (b)
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Table 1. Relations defining the keys and object descriptions for <movie> elements

(a) PATHmovie

id relPath
1 title/text()
2 @ID
3 @year

(b) ODmovie

pid relevance
1 0.8
3 0.2

(c) KEYmovie,1

pid order pattern
1 1 K1,K2
3 2 D3,D4

(d) KEYmovie,2

pid order pattern
2 1 D1
1 2 C1,C2

Fig. 3(b) shows the subtrees consisting of candidates extracted only from the
XML structure in Fig. 3(a). The numbers at the elements indicate the order in
which the duplicate detection is executed.

For every candidate, the object description and key are defined as shown in
Tab. 1 for the particular candidate <movie>. The tables hold the definition for
two keys for <movie> elements (relations KEYmovie,1 and KEYmovie,2) and the
object descriptions definition (in ODmovie). In the pattern attribute of the key
relations, K, C, and D stand for the character types consonants, characters, and
digits respectively. The number after the character type indicates its position in
the text value of the relative path referenced by the pid attribute and stored in
relPath. For example, the first key for <movie> elements uses relative paths 1
and 3, which are title/text() and @year. From the text value of path 1, the
key definition defines a key consisting of the first two consonants from path 1
concatenated with the third and fourth digit from path 3. Applying both key
definitions to the <movie> element of Fig. 2(a), we obtain the keys MT99 and 5MA.

Using all these definitions provided in the configuration, we begin key genera-
tion. To save an extra pass of the XML data, we extract the object descriptions
that are necessary for the second phase from the XML document simultaneously.
The result of the first phase is a temporary relation GK for every candidate storing
the generated keys as well as the corresponding object descriptions. For example,
using the definitions for the movie candidate in Tab. 1, we obtain GKmovie shown
in Tab. 2(a). The sample tuple describes the movie of Fig. 2(a). Further tuples
represent other movies stored in the XML document.

Table 2. Temporary tables used by SXNM

(a) Subset of the GKmovie relation

elID key1 key2 od1 od2

1 MTR99 KNRMAT Matrix 1999
... ... ... ... ...

(b) Several clusters in CSperson

cluster ID <person> elements
1 {te1,1, te1,3, te2,2}
4 {te1,2, te2,1}
8 {te2,3}

During each pass of the duplicate detection phase (there is one pass for every
defined key), GK is sorted according to a key. A sliding window is then applied
over the sorted table, and pairs of tuples within the same window are compared
using a similarity measure. The similarity measure is a combination of the simi-
larity of object descriptions and the similarity of children sets, if applicable. The
similarity measure is defined in Sec. 3.4. By applying the transitive closure over
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duplicate pairs over all passes, we obtain clusters of duplicates. For every candi-
date, cluster sets are stored in a temporary table CS together with information
that can be used for computing similarities of ancestors. As an example, con-
sider the <movie> elements e1 and e2 in Fig. 2(b). Information about duplicates
in <person> elements helps to detect duplicates in <movie> elements. As the
result of duplicate detection in <person> elements, Tab. 2(b) shows clusters in
CSperson. We observe that e1 and e2 have two actors in common, namely Keanu
Reeves and Don Davis. Consequently, we conclude that e1 and e2 are similar
enough based on children data to be duplicates.

For every candidate, the result of duplicate detection can be retrieved from
the corresponding CS table for further processing. The following sections provide
formal definitions and descriptions for every phase of Fig. 1.

3.2 Configuration

In addition to the XML data to be deduplicated, our algorithm requires some
configuration. The configuration contains information about

– Candidates : the XML elements for which duplicates should be detected, and
which therefore need a generated key.

– Object description: which information (text elements) of candidates is used
for comparisons.

– Key definition: which information (text elements) of candidates is used to
generate keys.

– Key patterns : which parts of this information comprise the keys.

As we need to distinguish specific XML elements and their corresponding
XML schema elements in the following, we use s as an element in an XML
schema and e as an instance of s.

Candidates are specified by their absolute XPath and are given a unique
name, which is required to associate configuration tables with temporary tables.
For example, the <movie> candidate of Fig. 3(a) is specified with the XPath
movie database/movies/movie and is assigned the name name =movie. To
specify information necessary for key generation and duplicate detection for a
single candidate, we use relative paths (relPath), i.e., XPath structures relative to
the candidate. Relative paths identify text nodes or attribute values that belong
to either the key or the object description of the candidate.

We construct separate relations for paths, keys, and object descriptions rele-
vant for comparisons of instances of an XML schema element s. We show exam-
ples in Tables 1.

– PATHs(id, relPath) is the path relation containing all relative paths that
refer to information of an XML element, used for key definitions and object
descriptions. The id attribute contains a unique id of the relative path.

– The relation KEYs,i(pid, order, pattern) defines the ith key of s. The pid
attribute is a foreign key to id in PATHs and refers to the relative path of
the information that build parts of the key. The order attribute indicates the
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position of the information in the key, and pattern describes what characters
to extract from a description referenced by the relative path. Note that we
allow an arbitrary number of keys for each relevant XML element, enabling
the use of the multi-pass variant of SNM [13].

– ODs(pid, relevance) is the object description relation (OD relation) indi-
cating the information that is compared between two instances of s. The
relevance attribute constitutes the relevancy (weighting) of the information,
which is used by our similarity measure, and pid references the id of PATHs.

Parameters are needed in conjunction with the XML data source to provide
input for the key generation algorithm. For an XML schema element s, its pa-
rameters Ps = {PATHs, ODs, KEYs,1, . . . , KEYs,n} (where n is the number of
keys defined for s) contain all relations needed for the key generation algorithm.
For the set S of all XML schema elements for which definitions are made, the
parameter set P =

⋃
s∈S{Ps} denotes the complete set of parameters.

3.3 Key Generation

P provides the input for the key generation algorithm. Whilst this task for the
original SNM was to extract only the keys, the key generation algorithm of
SXNM extracts the keys as well as the object descriptions needed for compar-
isons, reading the given XML data in a single pass. The result of the key gener-
ation algorithm is GK, the set of generated keys, again stored in a relation. Let
S be the set of all XML schema elements, for whose instances duplicates should
be detected, and s ∈ S. The relation GKs = (eid, key1, . . . , keyn, od1, . . . , odn)
denotes the result of the key generation. The attribute eid contains the ID of the
respective XML element—for instance the position of the element in the data
source; key1, . . . , keyn and od1, . . . , odn contain the keys generated for this XML
element and the extracted object descriptions respectively. GK =

⋃
s∈S{GKs}

denotes the combination of all generated keys.

3.4 Duplicate Detection

In the duplicate detection step the generated keys in GK are processed. Along
with GK, the duplicate detection process takes several parameters:

– The parameter set P containing object description and their relevancies,
– the window sizes to use for the XML elements,
– thresholds needed to classify XML elements as duplicates and non-duplicates,
– information about when not to use descendants for duplicate detection.

As the main idea of SXNM is to use information about duplicates in descendants,
the order in which candidates are processed hast to be defined accordingly. In the
following, we start with a description of how duplicates for a single candidate are
detected. Thereafter we describe the order in which candidates are processed.
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The general duplicate detection process. For each key attribute in GKs,
e.g., key1, the GKs relation is sorted according to the appropriate key attribute.
A sliding window of a specified size ws slides over the tuples in the sorted re-
lation, in analogy to the window in the relational SNM. For each pair of tuples
in the window, a similarity is computed based on their object description and
descendants, if available. If the similarity exceeds a given threshold, the corre-
sponding XML elements are classified as duplicates. The result of this multi-pass
method executed for s is a set of element ID pairs that represent duplicates. A
transitive closure algorithm is applied to the duplicates, resulting in the cluster
set CSs.

Definition 1 (Cluster Set). Let s be an element of an XML schema. CSs =
{C1, . . . , Cm}, m ≤ n is a cluster set where each cluster represents a real-world
object o, holds a unique cluster ID, and contains references to all XML data
instances of s represented by o. Each instance of s belongs to exactly one cluster
of the cluster set.

A cluster set is created for every candidate XML schema element. The clus-
ter sets can then be used to create a de-duplicated version of the XML data
source. Moreover, cluster sets help to detect and verify duplicates in other XML
elements, using a bottom-up duplicate detection process.

Bottom-up duplicate detection. In SXNM, the similarity of two XML ele-
ments can consist of (i) the similarity of their object descriptions (Def. 2) and
(ii) the similarity of their descendants (Def. 3).

Using information about key elements stored in P , the tree structure of the
entire XML document can be split into a set of trees by extracting all elements
s (Ps ∈ P ) from the XML document and preserving the ancestor-descendant
relationships. This was demonstrated in Figure 3. We need this tree set structure
to execute duplicate detection in a bottom-up fashion. The duplicate detection
process as described above can be executed on an extracted tree independently
from other extracted trees. For each tree, the process starts with the nodes
having the largest distance δ to the root node. It continues with the nodes
having distance δ − 1 etc. up to the root node.

Lacking descendants of their own, the similarity of elements that are instances
of the XML schema elements (represented by the leaf nodes of the extracted
tree structures) is based on the similarity of their object descriptions alone.
This is true also for other schema elements, for which the expert decided that
descendants should not be taken into account during duplicate detection.

Definition 2 (OD Similarity). Let e1 and e2 be two instances of schema
element s occurring together in a sliding window. Let ODs contain n entries
odej ,1, . . . , odej ,n; ri indicates the relevancy of path i as defined in the ODs rela-
tion. With φOD

i being a similarity function for the ith entry in ODs, the similar-
ity of the object descriptions of e1 and e2 is simOD

e1,e2
=
∑n

i=1 riφ
OD
i (ode1,i, ode2,i).

An example for a φOD function is the edit distance [18], with computes the
minimum number of operations needed to convert one string into another. Using



782 S. Puhlmann, M. Weis, and F. Naumann

domain-knowledge, more accurate φOD functions can be used, e.g., a numeric
distance function for numerical values.

Except for XML elements that are leaf nodes where only the object description
is available, duplicate detection for XML elements can be performed using the
similarity of their object descriptions and their descendants. As an XML element
can have descendants of several types, we start with the similarity of individual
descendants and combine the similarities of all descendants of this XML element
thereafter.

For two instances e1 and e2 of an XML schema element s having a descendant
schema element t, tej ,i denotes the i-th instance of t descendant of ej (j ∈ {1, 2}).
As our duplicate detection is a bottom-up process, duplicates in the instances
of t have already been detected, leading to the cluster set CSt, which helps to
detect whether e1 and e2 are duplicates. The function cid returns the unique
cluster ID of a cluster in a cluster set (cf. Def. 1), given a cluster set and an
instance of an element in the cluster set. Using cid we define lists of cluster IDs
for e1 and e2 and with them the descendant-based similarity of two elements:

le1 = (cid(te1,1, CSt), . . . , cid(te1,i, CSt)) = (id1, . . . , idi)
le2 = (cid(te2,1, CSt), . . . , cid(te2,j , CSt)) = (id1, . . . , idj)

Definition 3 (Descendants Similarity). The similarity of two instances e1
and e2 of an XML schema element s regarding a single descendant schema ele-
ment t is calculated using the φdesc

t function: simdesc
e1,e2,t = φdesc

t (le1 , le2).
Let t1, . . . , tn be the n descendant schema elements of s. We use agg() to

obtain the combined similarity simDesc
e1,e2

for all instances of the descendants of e1

and e2: simDesc
e1,e2

= agg(simdesc
e1,e2,t1 , . . . , sim

desc
e1,e2,tn

)

There are numerous possibilities for the φdesc and agg() functions. One exam-
ple for the first would be to calculate the ratio between the cardinalities of the
intersection and the union of le1 and le2—this is implemented in our current
implementation. The agg() function could simply calculate the average of its ar-
guments, or it could weigh the importance of different descendants. Currently, we
calculate the average; future implementations will have declarations of different
weights in the configuration.

Consider the <movie> elements e1 and e2 in Fig. 2(b). Information about du-
plicates in <person> elements helps to detect duplicates in <movie> elements. As
the result of duplicate detection in <person> elements, Tab. 2(b) shows clusters
in CSt, t = person. This leads to le1 = (cid(te1,1, CSt), cid(te1,2, CSt), cid(te1,3,
CSt)) = (1, 4, 1) and le2 = (4, 1, 8). Using the similarity function proposed above
we have simdesc

e1,e2,t = |le1∩le2 |
|le1∪le2 |

= 2
3 .

Finally, to gain the resulting similarity for the XML elements e1 and e2 of the
same schema element s we combine simOD

e1,e2
and simDesc

e1,e2
. The result is simcomb

e1,e2
,

reflecting the final combined similarity of both XML elements. An example for
calculating the combined similarity is to weigh simOD

e1,e2
and simDesc

e1,e2
to gain

simcomb
e1,e2

. Our current implementation calculates the average of the two values.
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Having executed the duplicate detection process for all instances of the defined
XML schema elements, we have a resulting cluster set for each of these schema
elements. What to do with this information remains up to the domain specific
application. A typical approach selects a prime representative for each cluster
and discards the others. More sophisticated approaches perform data fusion by
resolving conflicts among the different representations.

4 Evaluation

In this section we present various experimental results of SXNM and show that
this method is ready to detect duplicates in complex, large, and nested XML
data structures.

4.1 Data Sets

We use three different data sets for our experiments—both artificial and real-
world XML data. To generate artificial data, we use two tools consecutively:
The first is ToXGene1, which, using a template similar to an XML schema,
generates clean XML data sets. We assign an unique ID to the data objects
for identification. The second tool is the Dirty XML Data Generator2. It uses
the clean XML data and some parameters, e.g., the duplication probability,
the number of duplicates, and the errors to introduce into the duplicates, as its
input and generates dirty XML data according to the parameters. To observe the
recall, precision, and f-measure values the unique IDs of the clean data objects
are used. Of course these IDs are not made available to SXNM. The data sets
are further described below. When not specified, the OD of a candidate is its
text node with relative path text() and relevance 1. Key definitions used in our
experiments are provided in Tab. 3.

Dataset 1: Artificial movie data. We generate various data sets of different
sizes consisting of artificially generated <movie> data using ToXGene and
the Dirty XML Data Generator. The resulting <movie> elements in the data
sets contain several <title>, <person>, and <review> descendants. The
<person> elements can contain one <lastname> and several <firstname>
elements. A <movie> element has two attributes, namely year and length.
As a candidate, we consider the movie schema element only. As its object
description, we use title/text() and @length with respective relevancies
0.8 and 0.2.

Dataset 2: Real-world CD data, artificially polluted. Here we use real-
world CD data consisting of 500 clean CD objects extracted from the FreeDB
dataset3 and 500 artificially generated duplicates (one duplicate for each
CD; using the Dirty XML Data Generator) as a test data set. Each <disc>

1 http://www.cs.toronto.edu/tox/toxgene/
2 http://www.informatik.hu-berlin.de/mac/dirtyxml/
3 http://www.freedb.de
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element contains several <title> descendants nested under a <tracks> ele-
ment and at least one <artist> and <dtitle>. Optional children of <disc>
are <year>, <did>, a disc id that FreeDB provides and <genre>. As candi-
dates, we use disc schema elements and their descendant /tracks/title.
The object description of a disc consists of did/text(), artist/text() and
dtitle/text() with respective relevancies of 0.4, 0.3, and 0.3.

Dataset 3: Real-world movie data. For precision tests of larger bodies of
XML data we use real-world movie data consisting of 10,000 CDs selected
from FreeDB. Having the same schema as Dataset 2, the candidates are
disc, disc/title, disc/artist and disc/tracks/title.

Table 3. Configuration

(a) Dataset 1
candidate key relPath pattern
movie title/text() K1-K5

@year D3,D4
@length D1,D2
title/text() K1,K2
@genre C1,C2
title/text() K1-K4

(b) Dataset 2
candidate key relPath pattern
disc artist[1]/text() K1-K4

year/text() D3,D4
did/text() C1-C4
dtitle[1]/text() C1-C4
genre/text() C1,C2
year/text() D3,D4
artist[1]/text() K1,K2
did/text() C1,C2

disc/tracks/title text() C1-C6

(c) Dataset 3
candidate key relPath pattern
disc dtitle[1]/text() K1-K6

artist[1]/text() K1-K4
did/text() C1-C4
dtitle[1]/text() C1-C4

disc/dtitle text() C1-C6
disc/artist text() C1-C6
disc/tracks/title text() C1-C6

4.2 Experimental Results

We now show the results of a variety of experiments. In the first set of experi-
ments we examine SXNM in terms of recall, precision, and f-measure. The second
set of experiments deals with the scalability of our duplicate detection method.
Finally, in the third set of experiments we show how and when duplicates in
descendants help to detect duplicates in higher levels of the hierarchy. For all
experiments we only show a selection of the result graphs.

Experiment set 1: Single- vs. Multi-Pass with varying window sizes
Purpose: In these experiments we show the overall effectiveness of our method
by examining recall, precision, and f-measure results on different data sets. We
use varying window sizes and different keys. Moreover, the advantage of the
multi-pass vs. the single-pass method is shown.

Methodology: We use Datasets 1, 2, and 3 for this experiment. For Datasets 1
and 2, we can evaluate recall and precision and therefore calculate the f-measure,
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because we know the true duplicates in these data sets. This is not the case for
Dataset 3, which we can evaluate only in terms of precision. For all experiments
in this subsection, we used threshold values that we consider sensible based on
our experience. Results are shown in Figure 4. Each line represents the use of a
different key in single-pass SXNM (SP), or the combination of all keys for the
multi-pass SXNM (MP).
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Fig. 4. Results for Experiment set 1 on effectiveness

Discussion Dataset 1: The results for this experiment on artificial movies can
be seen in Fig. 4 (top). We used the three different keys shown in Tab. 3(a). As
an example of how to read the table, consider the first key defined for the relative
path “title/text()” as “K1-K5”. The relative path of the key definition points
to the movie’s title, from which the first five consonants are used as key.

We can see in Fig. 4(b) that for the single keys as well as for the multi-pass
method the recall increases with increasing window size after a certain point. The
single keys lead to very different results. In terms of recall, Key 2 leads to the
worst results. This is explained by the fact that the first part of this key consists
of the year of the movie, which results in poorly sorted keys when the year is
missing or contains severe errors. With increasing window size, more pairs are
compared and more duplicates are found, which increases the recall of Key 2,
while precision is not considerably compromised. The same argument can be
used to explain the results of Key 3, however, the development with increasing
window size is not as pronounced as for Key 2.
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Key 1 performs best and almost as good as the multi-pass method which
uses all keys. This is because the first five consonants of a movie’s title are very
distinguishing and lead to a very good order after sorting. The precision curve of
Key 1 (and consequently of MP) shows an at first surprising decrease in precision
for small window-sizes (2-6) and increases afterwards to converge to a precision
around 0.95. This can be explained as follows: Because we introduced artificial
errors in titles that constitute the key, the good order is compromised. Indeed,
5% of the titles were polluted in such a way that their keys are sorted far apart.
These duplicates are not detected for small window sizes but can be found with
larger windows. The convergence to a precision of 0.95 is due to the fact that
the similarity measure limits the number of false duplicates. In terms of recall,
the multi-pass method performs best (as already shown in [13]) but not much
better SP for Key 1, because Keys 2 and 3 do not increase the number of detected
duplicates much (low recall values). However, in terms of precision the multi-pass
method performs worst (although overall the values are still high between 0.93
and 0.96). This is because the multi-pass method executes the largest number
of comparisons and there is an increased probability of false positives.

Discussion Dataset 2: We discuss the results on Dataset 2 for the disc candi-
date only, using three different keys shown in Tab. 3(b). Figure 4(c) shows the
result of this experiment in terms of f-measure. The single keys perform in a
similar range between 0.75 and 0.87. Key 3 leads to the worst results because
genre and year are not very distinctive attributes (same reason as for Key 2
in Dataset 1). Key 1 yields better results than Key 3 because an artist’s name
is more distinctive than the genre. Key 2 consists of the first characters of the
CD’s ID, which in only some cases is incorrect and missing and therefore leads
altogether to the best results. The multi-pass method results show that even
the smallest window size (2) leads to much better results in terms of f-measure
than the largest tested window size of 12 for the single keys. Larger windows
give only slight improvement, so in this case window size 4 is sufficient. For all
keys (single-pass and multi-pass) we observe that the f-measure increases with
increasing window size and converges to an f-measure. This is explained by the
fact that with increasing window size, the recall increases because more pairs are
compared. At the same time, the precision settles at large window sizes because
its degradation is limited by the similarity measure.

Discussion Dataset 3: In Fig. 4(d), we show the f-measure for different window
sizes obtained using SXNM on 10,000 disc candidates and the keys of Tab. 3(c).
Recall could not be measured, because we do not know all duplicates in this data
set. We observe that Key 2, which is the same as Key 2 used on Dataset 2 again
yields the highest precision. At window size 5, we detect 48 duplicates. Key 1
results in a lower precision but detects far more duplicates, e.g., at window size
5, it finds 289 duplicates. Using multi-pass SXNM with both Key 1 and Key 2
results in the worst precision, because the false positives of both keys are cumu-
lated. In this real-world data set, we observe that most duplicate clusters consist
of two elements only, and that our algorithm detects false duplicates mainly due
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to two reasons. Between 54% and 77% (decreasing with increasing window size)
of false duplicates are pairs of CDs that are part of a series and differ in a sin-
gle number only, e.g., Christmas Songs (CD1) and Christmas Songs (CD2)
or that feature various artists (the two cases being often correlated). Between
19% and 36% (increasing with increasing window size) of false duplicates are
CDs whose text is provided in a format that failed to enter the database (e.g.,
Japanese or Russian). Comparisons were then only performed on “readable” at-
tributes (year and genre). For any window size, less that 10% of false duplicates
are due to other reasons.

To summarize the experiments for all three datasets, SXNM achieves overall
high precision and recall, comparable or exceeding related approaches. Also as
expected, the multipass method outperforms the single-pass method. Finally,
the choice of good keys is of course very decisive to achieve good results.

Experiment set 2: Scalability
Purpose: In the second series of experiments, we show how the individual phases
of SXNM scale with the amount of data and the number of duplicates. The
distinguished phases are key generation (KG), sliding window (SW), transitive
closure (TC) as currently provided in our implementation, and overall duplicate
detection (DD), which is the sum of the SW and TC.

Methodology: We use artificially generated movie data so we can generate
data sets with different sizes and numbers of duplicates. With ToXgene we gen-
erated 9 XML files containing from 100 to 2000 movies. Each movie has one
to three title- and three to ten person-descendants. Using the Dirty XML Data
Generator, we polluted the clean movie data using two configurations with dif-
ferent duplication probabilities (dupProb) and different numbers of duplicates
for <movie> and <person> elements to obtain two different pollution degrees:

– few duplicates : 20% dupProb for <movie>, <title>, and <person> elements
each producing exactly one duplicate

– many duplicates : 100% dupProb for <movie> and <person>, each generating
up to two duplicates, and 20% dupProb for <title> elements each generat-
ing exactly one duplicate object.

We polluted the text nodes of the duplicate elements by deleting, inserting,
or swapping characters as described for the Dirty XML Data Generator. The
window size used in these experiments is 3.

Discussion: Figure 5 shows the results for this series of experiments. To enable a
comparison to the clean XML data resulting from ToXGene, we executed SXNM
over the set of clean movie data to show the difference to the least possible time
needed to detect duplicates in a specific data set (Fig. 5(a)). In all graphs, the
duplicate detection time DD is the sum of the transitive closure TC and the
sliding window SW time. SXNM’s comparisons are made in the sliding window.

The overall time (duplicate detection) needed for the largest clean data set
is 129 s. Although there are no duplicates and the transitive closure algorithm
is expected to need almost no time, there is an increasing possibility for false
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Fig. 5. Results for experiment set 2 on scalability

duplicates when the file size increases, leading to some pairs of duplicates for
which the transitive closure algorithm is executed. Altogether, the key generation
is a linear process, compared to the comparisons in the sliding window, which is
polynomial.

We can also see from both figures that the duplicate detection for the file with
“few duplicates” performs almost as well as for the clean data. Looking on Fig. 5(d),
which shows the time overhead of the sum of key generation and sliding window
for both few and many duplicates, compared to the time needed on clean data, we
observe a time overhead of below 20% for few duplicates. For the file with “many
duplicates” the time needed for the transitive closure exceeds the time needed for
key generation, as the transitive closure algorithm has to process many duplicate
pairs. Additionally, for the largest file size, this file needs almost 20 minutes for
duplicate detection (the dirty data is about four times the size of the clean data)
and represents a considerable time overhead compared on clean data.

Experiment set 3: Threshold impact
Purpose: In our third experiment we evaluate the effect of different thresholds
on recall, precision and f-measure. The two thresholds are the OD threshold that
is used for comparisons of two element’s object description, and the descendants
threshold that is used for the similarity measurement of children. It shows how
descendants help duplicate detection, depending on thresholds.
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Methodology: We use Dataset 2 for this experiment. First, we detect dupli-
cates in <disc> elements using only the object descriptions of the CDs, namely
the disc ID, the artist and the CD title. We vary the OD threshold from 0.5
to 1. Afterwards, we use a fixed threshold for the OD and take the descendants
<title> elements of the <disc> elements into account for duplicate detection.
For these, we vary the descendants threshold from 0.1 to 0.9. Figure 6 shows the
results of our experiments.
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Fig. 6. Results for experiment set 3 on threshold impact

Discussion: Figure 6(a) shows the results for different object description thresh-
olds. Using a low threshold of 0.5 results in a large amount of detected dupli-
cates, leading to high recall but also to low precision, as many false positives
occur. When the threshold increases, precision increases and recall decreases as
expected. The f-measure peaks at a threshold of 0.65.

For the varying descendants threshold we use the OD threshold of 0.65 deter-
mined as optimal from the last experiment. We vary the descendants threshold
from 0.1 to 0.9 and observe two things. First, Figure 6(b) shows that the best
f-measure obtained using descendants is higher than the best f-measure obtained
when only considering the object description. Thus, we can conclude that it is
worthwhile to take into account descendant information when detecting dupli-
cates. Second, we observe that a very high descendants threshold downgrades
the results, whereas the low descendants threshold of 0.3 leads to the best re-
sult of almost 0.96 in terms of f-measure. Choosing a low descendants threshold
yields better results because it implies that a small overlap in children is al-
ready sufficient to consider children sets as similar. This compensates the effect
of non-overlapping children, which drastically reduces similarity in our similarity
measure (Def. 3).

5 Conclusions and Outlook

The Sorted Neighborhood Method is a very efficient method to detect duplicates
in relational data. We have shown that our extension of this method to XML
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data, combined with new approaches in duplicate detection, is a reasonable al-
ternative for XML duplicate detection for large amounts of data. However, there
remain several open issues to further improve our method both in efficiency and
in effectiveness.

Efficiency. In previous work we have shown that filters are quite effective to
avoid comparisons, especially with the edit distance operations [17]. The work
presented in the paper at hand also performs filtering but based on the gen-
erated keys and the sliding window. It will be interesting to see how the two
filters interact. Moreover it could be useful to include the ideas of the Duplicate
Elimination Sorted Neighborhood Method (DE-SNM) of [19] in our algorithm.

Effectiveness. In our current algorithm we use a simple approach of similar-
ity function and threshold to determine whether two elements are duplicates.
However, our algorithm is ready for the usage of equational theory, which was
used for the relational SNM. We believe that the domain knowledge considered
using the equational theory will yield even better results. Also, the choice of the
thresholds yet remains an open issue. In [5] the authors propose a corresponding
learning technique, which we plan to adapt to our problem of more than one
type of descendant. Another knob to turn is the window size. In [20], a method
to dynamically adapt the window size using distance measures on the keys is
proposed. We plan to examine how sampling techniques can help determine an
appropriate window size for each data set.

Acknowledgment. This research was supported by the German Research So-
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Abstract. XML instances are not necessarily self-contained but may
have links to remote XML data residing on other servers. Links between
(autonomous) XML instances can be expressed by the XLink language;
although, querying such interlinked sources is not yet actually supported.

We describe a model of such linked XML instances where the links are
not seen as explicit links (where the users must be aware of the links and
traverse them explicitly in their queries), but where the links define views
that combine into a logical, transparent (XML) model that then can be
queried by XPath/XQuery. We motivate the underlying modeling and
give a concise and declarative specification as an XML-to-XML mapping.
We also describe the implementation of the model as an extension of the
eXist [exi] XML database system and point out some perspectives and
combinations with related research aspects.

1 Introduction

XML is increasingly used for providing data sources on the Web and for exchang-
ing data. XML instances are not necessarily self-contained but rather may refer
to information on other, autonomous servers. Such references can be expressed
by the XLink language [XLi01], based on the XPointer Framework [XPt03] and
the XPointer addressing scheme [XPt02]: An XPointer expression of the form
url#xpointer(xpointer-expr) identifies a document fragment inside the XML doc-
ument located at url . In the following, we consider only XPath expressions in
place of the xpointer-expr . We use excerpts of the distributed Mondial XML
database [Mon] for illustration: the document countries.xml in Figure 1 contains
basic data about all countries, and for each country, cities-XX.xml (where XX is
the country’s car code) contains information about the cities in this country.
The XPointer http://www.foo.de/countries.xml#xpointer(/countries/
country[@car code="D"]) addresses the node that represents Germany in
http://www.foo.de/countries.xml. XPointer in turn provides the foundation for
XLink [XLi01] that allows to define XML elements that express links to other
XML documents. In this paper, the focus of our interest is on simple XLinks,
where one XLink element with one XPointer references one or more nodes in
a remote document. XLink extends HTML’s <a href=”url#anchor”> referenc-
ing mechanism from using simple anchors to use full XPointer expressions as
fragment identifiers.

Query Support for References. How can data that is linked in this way be
queried – e.g., for finding out how many inhabitants the capital of Belgium

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 792–810, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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<!-- http://www.foo.de/countries.xml -->

<countries>

<country car code=”B” area=”30510”>

<name>Belgium</name>

<population>10170241</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#
xpointer(/cities/city[name=’Brussels’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’D’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#xpointer(//city)” />

:
</country>

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#
xpointer(/cities/city[name=’Berlin’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’B’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#xpointer(//city)” />

:
</country>

:
</countries>

<!-- http://www.bar.de/cities-B.xml -->

<cities>

<city>

<name>Brussels</name>

<population>951580</population>

:
</city>

<city>

<name>Antwerp</name>

<population>459072</population>

:
</city>

:
</cities>

<!-- http://www.bar.de/cities-D.xml -->

<cities>

<city>

<name>Berlin</name>

<population>3472009</population>

:
</city>

<city>

<name>Hamburg</name>

<population>1705872</population>

:
</city>

:
</cities>

Fig. 1. Excerpt of the Distributed Mondial XML Database [Mon]

has? Although the XML Query Requirements [XMQ03, Sec. 3.3.4] explic-
itly state that querying along references, both within an XML document
and between documents, must be supported, there is currently no way to
query inter-document links in the general case. While for intra-document
references, the id(...) function does this task, and the doc(...) function al-
lows for accessing remote documents, there is not yet complete support
for XPointer in XPath/XQuery: even if the user knows about the schema
and the semantics of XLink, he can select the pointer with let $pointer :=
doc(”http://www.foo.de/countries.xml”)//country[@car code=”B”]/capital/@href
but XQuery cannot be told to resolve it. Simple XPointers (“shorthand pointers”
in [XPt03]), actually consisting of ID references, e.g., http://.../country.xml#D or
url#xpointer(id(id)) can be resolved by combining the doc() and id() functions.
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The general case following the xpointer scheme [XPt02] like http://www.bar.de/
cities-B.xml#xpointer(/cities/city[name=”Brussels”]) that includes an XPath ex-
pression to specify the referenced node(s) cannot be resolved in this way:
resolving such pointers requires to read a data item (the XPointer given
in the href attribute of the XLink element), and then to evaluate it. Such
functionality is not yet available in XQuery (and can also not be pro-
grammed by the current XQuery 1.0 and XPath 2.0 Functions and Operators
[XPQ01]), but is e.g. proposed in Saxon [Kay99] as an XSLT extension func-
tion saxon:evaluate(), or recently in [RBHS04] as an extension of XQuery as
“execute at url xquery { xquery }”.

Still, the above proposals for querying in the presence of XLink elements re-
quire that the query expressions explicitly include the dereferencing operation.
Going one step further, we follow an approach for handling distributed XML
data where the links are transparent, i.e., we define a logical, transparent model
for mapping distributed, XLinked XML documents to one virtual, integrated
XML instance: The XLink elements are seen as view definitions that integrate
the referenced XML data within the referencing XML instance (where the XLink
element specifies the referenced nodes, and how they are mapped into the sur-
rounding instance). This virtual instance can then be processed by standard
languages like XPath, XQuery, or XSLT.

Applications: Data Integration and Splitting Documents. The usage of linked
XML information occurs mainly in two situations:
– Data integration: building (virtual) XML documents by combining au-

tonomous sources. In the integrated view, the “combining” links may be
desired as subelement or IDREF attribute relationships.

– Building a distributed database by splitting an XML document over different
servers. In this case, it is intended to keep the external schema unchanged, i.e.,
the virtual model of the linked documents should be valid wrt. the original
DTD, and all queries against the root document still yield the same answers as
before. This requires that the “cutting edges” – that can be between elements
and their subtrees, or at (reference) attributes – can be reassembled flexibly.

For providing flexibility in fine-tuning the logical model of the linked data, we
propose to extend XLink elements with modeling switches for designing an ex-
ternal schema by combining fragments of the documents in different ways.

Structure of the Paper. An early sketch of the virtual model has been presented
in [May02]. The model has now been refined into a formal specification, and an
implementation as an extension to the XML database system “eXist” [exi] has
been done. In this paper, we focus on simple links. We start with an abstract
and intuitive analysis of transparently querying distributed data sources in Sec-
tion 2, and give the formal specification of the logical model as an XML-to-XML
transformation in Section 3. Section 4 discusses the evaluation of queries in this
model. The implementation based on the eXist XML database system and some
special issues are described in Section 5. A comparison with related work is given
in Section 6, and Section 7 concludes the paper.
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2 A Model for Querying Along XLinks

In [May02], we proposed to use a logical model that transparently resolves
XLinks into one virtual XML instance by extending the XLink specification
with attributes in the dbxlink namespace for specifying the database-specific se-
mantics and the behavior of XLink elements wrt. querying:
– dbxlink:transparent: mapping of the linked resources to a logical model,
– dbxlink:actuate: timepoint when the XLinks are evaluated to generate the

view (materialization at parse time, or on-demand for answering a query),
– dbxlink:eval: location where the XPointers and query expressions are evalu-

ated (locally at the referencing server, or remotely at the referenced one),
– dbxlink:cache: caching strategies for views and intermediate results.

We first consider the dbxlink:transparent attribute and extend the non-formal
description given in [May02] in a precise way as an XML-to-XML mapping.
The other dbxlink attributes are dealt with in Section 4 when discussing query
evaluation. In our approach, linked XML resources are seen as one virtual XML
instance where for all link elements, the result set defined by the XPointers in
their xlink:href attributes is silently mapped into the referencing XML structure.
In order to get an intuition of this model, see Figure 2.
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xpath-expr1
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xpath-exprx

xpath-expr2
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xpath-expr1

xpath-expr2

(transparent DM)

Fig. 2. Left: Data Model with XLink Elements; Right: Query

Although the first intuition of the above idea would be simply to “copy” the
target of the XPointer into the XLink element (as XInclude [XIn04] does), there
are several possibilities how the mapping exactly takes place – e.g., to “plug in”
the referenced fragments as subelements or via reference attributes, depending
on the intended target DTD. A possible mapping from the fragments shown in
Figure 1 could e.g. result in a model that allows for the following XPath queries:
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– model the capital as an attribute: doc(”http://.../countries.xml”)//
country[@car code=”B”]/id(@capital)/population

– model cities as subelements, dropping the “auxiliary” cities element:
doc(”http://www.foo.de/countries.xml”)//country[@car code=”B”]/city/name

– model neighbors as subelements that contain the referenced
country data and the link’s borderlength attribute: doc(”...”)//
country[@car code=”B”]/neighbor[name=”Germany”]/@borderlength (note
that the virtual substructure that matches the latter part is obtained from
combining the country element with its name subelement “Germany”, and the
neighbor subelement of Belgium with its attribute borderlength).

Modeling Parameters. We first identify the components of the modeling, and
present the formal specification in Section 3. Consider the following abstract
XML/XLink fragment:

<linkelement xlink:href=”xpointer” dbxlink:transparent=”to be described”
non-xlink-attributes> content </linkelement>

The virtual model of this fragment is defined as a combination of parts of the
linkelement (its “hull” – i.e., its tags; and its “body”, i.e., its attributes and
contents), and of parts of the nodes referenced by xpointer (which consist also of
a “hull” and a “body”). This fine-tuning of the mapping is declaratively specified
by the dbxlink:transparent directive that describes (i) the mapping of the result
set of xpointer , and (ii) the mapping of the XLink element itself. The directives
have been chosen under consideration of application for data integration and
document splitting.

i) Consider a result set containing (for simplicity only) one element (and im-
plicitly its child elements, text and attribute nodes). The result element can
be inserted “as a whole” (“insert-nodes”), or only its body (“insert-bodies”),
namely its element and text children and attributes are used (for text and
attribute nodes, “body” is considered empty). Analogously, if the result set
contains multiple nodes.

ii) The treatment of the XLink element itself influences the structure of the
virtual instance. Here, the following options exist:
• drop the XLink element and replace it with the result set (“drop-element”),
• drop its hull and use only the information of its body (non-XLink at-

tributes and content) for enriching the referenced nodes (“keep-body”),
• keep it and “wrap it around” the referenced nodes (around all of them;

“group-in-element”), or duplicate it and wrap it around each of them
(“duplicate-element”), or

• replace it with an IDREF attribute with the same name as the link element
(“make-attribute”).

To put it all together, mapping an XLink element consists of three steps that
determine the formal specification given in Section 3: (i) mapping the result set
(yielding a set of nodes (“insert-nodes”), or a set of bodies (“insert-bodies”)),
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(ii) mapping the XLink element itself, and (iii) mapping the result to a nodeset
which is then added to the parent element as new children and/or attributes.
The mapping in the two first steps is chosen by the user amongst the above
alternatives; the step (iii) is then solely a transformation into well-formed XML.

The dbxlink:transparency directive thus consists of two keywords: (i) one deter-
mining the mapping of the result set (“right-hand directive”; duplicate-element,
group-in-element, drop-element, keep-body, or make-attribute), and (ii) one deter-
mining the mapping of the link element itself (“left-hand directive”; insert-nodes
or insert-bodies).

Example. Figure 3 shows an excerpt of doc(”http://www.foo.de/countries.xml”)
where the cities XLink element has been extended with a dbxlink:transparent
specification. The logical model of the fragment is obtained by dropping the
cities link elements and inserting the referenced nodes instead.

<countries>

<country car code=”B”> <name>Belgium</name> . . .
<cities xlink:type=”simple”

xlink:href=”http://www.bar.de/cities-B.xml#xpointer(/cities/city)”

dbxlink:transparent=”drop-element insert-nodes” />

</country>

<country car code=”D”> ... </country>

</countries>

countries

country @car code
=”B”

name

Belgium

cities

country @car code
=”D”

name

Germany

cities

http://www.bar.de/
cities-B.xml
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Fig. 3. Illustration of the Semantics: Above: Fragment Extended with
dbxlink:transparent – Left: Document Trees with XLink References – Right: In-
duced Logical Model

Default Mapping. In case that no dbxlink:transparent directive is given (i.e., for
XML documents on the Web that have been created without using dbxlink),
dbxlink:transparent=”drop-element insert-nodes” is used as default directive. This
is compliant with the specification of XInclude [XIn04] (see Section 6).
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3 Formal Specification

For the scope of this specification, we use an abstract XML data model, only
distinguishing the notions of nodes (text, attribute and element nodes), nodelists,
and fragments. A fragment is a node or a nodelist. Lists are written as usual
as [a, b, c] where concatenation is denoted by the “◦” operator. The following
constructors and accessors for XML fragments are used, similar to the DOM
and XQuery Data Model:

– Elem : QNAME × NODELIST → ELEM constructs an element with name,
attributes and children, similar to the XQuery element {name} {expr∗} con-
structor. Note: the result of expr∗ contains element, attribute and text nodes.

– Attr : QNAME × STRING → ATTR constructs a new attribute node.
– Name : NODE → QNAME returns the name of an element or attribute node.
– Attrs, Children: NODE → NODELIST return the list of attributes or children.
– AttrsX : NODE → NODELIST returns the list of the non-XLink attributes.

3.1 Phi: The XML-to-XML Mapping

The definition of the logical model as an XML-to-XML mapping is based on an
operator φ that recursively traverses an XML tree, with an auxiliary operator
φ∗ (for lists). Each occurrence of an XLink element is expanded by γ, using
the sub-operators γL (mapping the XLink element), γR (mapping the XPointer
result set) and γLR (combining both γL and γR); L stands for “Link” or “Left-
hand-directive”, R stands for “Result” or “Right-hand-directive”.

φ(countries) = φ(Elem(”countries”, [country B, country D, . . .])) =
= [Elem(”countries”, φ∗([country B, country D, . . .])] =

= [Elem(”countries”, φ(country B) ◦ φ(country D) ◦ . . .)]

where φ(country B) =
= [φ(Elem(”country”, [Attr(”car code”, ”B”), Attr(”area”, ”30510”),

Elem(”name”, [”Belgium”]), Elem(”population”, [”10170241”]),
Elem(”cities”, [Attr(”xlink:type”, ”simple”), . . .]), . . .]))]

= [Elem(”country”, φ∗([Attr(”car code”, ”B”), Attr(”area”, ”30510”),
Elem(”name”, [”Belgium”]), Elem(”population”, [”10170241”]),
Elem(”cities”, [Attr(”xlink:type”, ”simple”), . . .]), . . .]))]

= [Elem(”country”, φ(Attr(”car code”, ”B”)) ◦ φ(Attr(”area”, ”30510”)) ◦
φ(Elem(”name”, [”Belgium”])) ◦ φ(Elem(”population”, [”10170241”])) ◦
φ(Elem(”cities”, [Attr(”xlink:type”, ”simple”), . . .])) ◦ . . .)]

= [Elem(”country”, [Attr(”car code”, ”B”)] ◦ [Attr(”area”, ”30510”)] ◦
[Elem(”name”, [”Belgium”])] ◦ [Elem(”population”, [”10170241”])] ◦

φ∗( γ(Elem(”cities”, [Attr(”xlink:type”, ”simple”), . . .])) ), . . .)]

where the cities XLink element is mapped/expanded by the γ operator, see Sec. 3.2

= . . .

Fig. 4. Expansion by φ
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Signature and Definition of φ.
Signature: φ : NODE → NODELIST ; φ∗ : NODELIST → NODELIST

For non-XLink elements, the list φ(X) will contain a single element; in case
that a document does not contain any XLink elements, for its root element R,
φ(R) = [R] holds.

Definition:
– application of φ to a non-XLink element contains the recursion together

with φ∗: φ(elem) = [Elem(Name(elem), φ∗(Attrs(elem) ◦ Children(elem)))] ,
φ∗([n1, . . . , nk]) = φ(n1) ◦ . . . ◦ φ(nk) ,

– for text nodes and attribute nodes, φ maps the nodes into a unary list:
φ(text-node) = [text-node] and φ(attr-node) = [attr-node] ,

– application of φ to an XLink element means to expand the XLink element
with γ (see Section 3.2) and mapping the result recursively by φ:
φ(xlink-element) = φ∗(γ(xlink-element)).

For the example depicted in Figure 3, the transformation starts with applying
φ to the countries element, which means to apply φ recursively to the countries
element’s attributes and children as shown in Figure 4. The φ expansion of
country B (shown in the inner box) applies φ again recursively to country B’s
attributes and children. The attributes and the name and population subelements
remain unmodified. The cities subelement is an XLink element and is therefore
mapped by the γ operator as depicted in Figure 5.

3.2 Gamma: Expanding Individual XLink Elements

The γ operator describes the XLink expansion itself according to the XLink ele-
ment’s xlink:href pointer and its dbxlink:transparent transparency directives. The
operator γR returns a fragment list obtained by mapping the nodes referenced
by the XPointer according to the right-hand directive. The operator γL (left-
hand directive) modifies the returned fragment list by mapping the XLink itself.
The main part of γ then maps this fragment list into a nodelist, using auxiliary
operators attr union : NODELIST×NODELIST → NODELIST and accessors Attrs
and Children that are defined as expected. Consider an XLink element

<linkelement xlink:href=”xpointer”
dbxlink:transparent=”left-hand-directive right-hand-directive” attributes>

content
</linkelement>

or, in our example, as shown in Figure 5, cities B :=
<cities xlink:type=”simple” dbxlink:transparent=”drop-element insert-nodes”

xlink:href=”http://www.bar.de/cities-B.xml#xpointer(/cities/city)”>

Signature and Definition of γR. The arguments of the operator γR (right-
hand directive) are an XLink element xlink and the nodes that are ad-
dressed by the pure XPointer. In our example, we have γR(cities B, referenced)
where referenced is the result from evaluating http://www.bar.de/cities-
B.xml#xpointer(/cities/city).
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φ(countries) = φ(Elem(”countries”, [country B, country D, . . .]))

= [Elem(”countries”, φ(country B) ◦ φ(country D) ◦ . . .)]

where φ(country B) = . . . see Figure 4 . . .
= [Elem(”country”, [Attr(”car code”, ”B”)] ◦ [Attr(”area”, ”30510”)] ◦

[Elem(”name”, [”Belgium”])] ◦ [Elem(”population”, [”10170241”])] ◦

φ∗( γ(Elem(”cities”, [Attr(”xlink:type”, ”simple”), . . .])) ) ◦ . . .)]

// let cities B denote the ”cities” link element of Belgium
where γ(cities B) = flatten(γLR(cities B)) =

= flatten( γL(cities B, γR(cities B, Eval(”http://www.bar.de/cities-B.xml#xpointer(/cities/city)”)) ) )

where γR(cities B, Eval(”http://www.bar.de/cities-B.xml#xpointer(/cities/city)”)) =
= <city> <name>Brussels</name> <population>951580</population> . . . </city>

<city> <name>Antwerp</name> <population>459072</population> . . . </city>

// let ΓR denote γR(cities B, Eval(. . .))

γL(cities B, ΓR) = ΓR

= <city> <name>Brussels</name> <population>951580</population> . . . </city>

<city> <name>Antwerp</name> <population>459072</population> . . . </city>

... this nodelist does not contain XLink elements, thus φ∗(this list) = this list and we obtain
φ(country B) = [ <country car code=”B” area=”30510”>

<name>Belgium</name><population>10170241</population>

<city> <name>Brussels</name> <population>951580</population> . . . </city>

<city> <name>Antwerp</name> <population>459072</population> . . . </city>

</country> ] as depicted in Figure 3.

= . . .

Fig. 5. Expansion by γ

Signature: γR : ELEM × NODELIST → FRAGMENTLIST
(xlink, result) (→ fragment list

Definition:
– if the R-directive specifies insert-nodes: γR(xlink, result) = result.
– if the R-directive specifies insert-bodies: γR(xlink, [u1, . . . , un]) =

[fr1, . . . , frn] where fri is Attrs(ui) ◦ Children(ui) (intention: this content
is later “packed” into the XLink element’s “hull” by γL or added to a sur-
rounding element).

Note that in either case, there is no recursive mapping of the nodes with φ – the
result of γ is expanded afterwards (see the definition of φ).

In our example, the right-hand-side directive of cities B is insert-nodes,
thus the complete nodes in referenced are selected: γR(cities B, referenced) =
referenced.

Signature and Definition of γL. The operator γL combines the list of fragments
returned by γR with the information of the XLink element according to the
left-hand-directive.
Signature: γL : ELEM × FRAGMENTLIST → FRAGMENTLIST

(xlink, frags) (→ fragment list
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Definition:
– if the L-directive specifies drop-element, then the XLink element is actually

replaced by frags: γL(xlink, frags) = frags
– if the L-directive specifies group-in-element, then the XLink ele-

ment is basically kept (note that the original XLink element may
also have non-XLink attributes and children elements that are also
kept in the result), all attribute nodes and element nodes of all
of the frags is added to the XLink element: γL(xlink, frags) =
Elem(Name(xlink), attr union(AttrsX(xlink), Attrs(frags)) ◦

Children(xlink) ◦ Children(frags))
– if the L-directive specifies duplicate-element, then fragment fri in frags is

mapped to a separate instance of the XLink element where all attribute nodes
and element nodes of fri are added: γL(xlink, [fr1, . . . , frn]) = [e1, . . . , en]
where ei = Elem(Name(xlink), attr union(AttrsX(xlink), Attrs(fri)) ◦

Children(xlink) ◦ Children(fri))
– if the L-directive specifies keep-body, then the XLink element “hull” is

dropped, but its “information”, i.e., non-XLink attributes and children, are
added to each element node in frags (all other nodes in frags are dropped in
this case):
γL(xlink, frags) = [n1, . . . , nk] where for each ei which is an element node
in one of the frags, ni = Elem(Name(ei), attr union(AttrsX(xlink),

Attrs(ei)) ◦ Children(xlink) ◦ Children(ei))
– if the L-directive specifies make-attribute, then a single attribute node is cre-

ated as γL(xlink, frags) = Attr(Name(xlink), u1 ◦ . . . ◦ un),
with the name of the link element where for each node n in frags,
• if n is an attribute or text node then ui = value(n),
• if n is an element node, extend n with an attribute node Attr(dbxlink:ID, id)

where id is a new id and put it in a bucket, and set ui = id.
The content of the bucket is a separate part of the virtual instance which
is reachable by the id() function.

In any meaningful application for make-attribute, frags will be either a set of
elements (e.g., capital in our example), a set of attribute and/or text nodes,
or a single attribute or text node.

Returning to the running example, γL(cities B, referenced) = referenced since
drop-element is specified.

Signature and Definition of γLR. The operator γLR combines the application
of the functions γL and γR, yielding a fragment as result:

γLR : NODE → FRAGMENTLIST : xlink �→ γL(xlink, γR(xlink,Eval(xpointer)))

where xpointer is the value of the href attribute of xlink and Eval(xpointer) is
the set of nodes addressed by xpointer.

For the running example, not surprisingly, γLR(cities B) = referenced – which
mirrors the fact that (i) the XLink element is dropped, and (ii) the referenced
nodes are inserted instead.
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Note that in case that make-attribute is specified, γLR may yield an attribute
node which is then inserted into the surrounding element. The insertion of the
result from calling γLR is finally done by γ, as shown below.

Signature and Definition of γ. We now get back to the outer operator γ. It
maps the result from γLR (that is formally a fragment) to a nodelist (in all cases
of reasonable applications, the fragment is not nested):

γ : NODE → NODELIST ; xlink (→ flatten(γLR(xlink))

where flatten flattens a possibly nested fragment list into a nodelist.
Note again that the resolving of XLinks can not only result in nodes that just

replace the XLink element, but can also add attribute nodes to the surrounding
element. According to the semantics of XQuery’s computed element construc-
tor, the resulting attribute nodes are seamlessly appended to the surrounding
element. In our semantics, this happens in the recursive application of the φ
operator (first item) where the result is constructed as

φ(elem) = Elem(Name(elem), φ∗(Attrs(elem) ◦ Children(elem)))

and all elements, text, and attribute nodes in φ∗(...) are added to the surrounding
element.

Summary. The logical model is defined as the result of mapping an XML tree
by φ and γ as described above. Note that the logical model is a possibly infinite
tree (e.g. for the neighbor relationship in our example in Figure 1 – Belgium is a
neighbor of France which is a neighbor of Germany which is again a neighbor of
Belgium ...), but as long as only a finite set of Web sources is involved, it has a
finite representation as a graph. For the abstract definition of the logical model,
this is no problem – only the actual query evaluation wrt. this (abstract) model
must then care for detecting cycles.

4 Query Evaluation

Given the above formal definition and a query Q whose entry point to a linked
network of XML documents is the document at url, the answer to Q is defined
as the answer to Q against φ(doc(url)). For evaluation of a query, it is in general
not necessary to create the whole virtual model, but to expand links on demand,
inducing a simple, “naive” evaluation strategy. In contrast to Active XML, e.g.,
[ABC+04], where the potentially relevant links are identified and evaluated be-
fore the actual query evaluation, the strategy evaluates only those views that
are actually needed (we assume views in general to be larger than the mostly
small Web Service answers that are considered in the Active XML framework).

4.1 Example: Naive Evaluation

The following simple XPath expression that returns all names of Belgian cities
illustrates how a query against the virtual instance of the above example is eval-
uated: doc(”countries.xml”)/countries/country[@car code=”B”]/city/name. When
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starting with the first two location steps, doc(”countries.xml”) and its countries
root element are accessed. The subsequent step, country[@car code=”B”], actu-
ally consists of (i) an axis step country and (ii) the evaluation of the predicate.
For (i), all subelements of the countries element have to be considered. These
are only the country elements, and there are no direct XLink subelements whose
evaluation results in additional subelements.

Thus, the axis step results in all country elements (here, Belgium and Ger-
many). For evaluation of the predicate, all attributes of these elements in the
virtual model have to be checked, searching for an attribute with name car code
and value “B”. From this step, only the country element for Belgium quali-
fies. The next step, city, now searches for city subelements of Belgium. Here,
all subelements of Belgium that are city elements (none), and additionally,
the cities subelement is resolved – according to its dbxlink:transparent specifi-
cation as “drop-element insert-nodes”. Its XPointer points to the city elements in
http://www.bar.de/cities-B.xml that are inserted as they are; the cities XLink ele-
ment is replaced by them as shown in Fig. 3. The city step then results in the two
city elements. The next step (name) then results in “Brussels” and “Antwerp”.

4.2 Evaluation Strategies

For evaluating queries that navigate through link elements, there are several
possibilities, concerning the issues, when and where parts of the query are eval-
uated. Any XPath expression that “passes” through an XLink element can be
decomposed into three parts (cf. the right part of Figure 2): (i) the “upper”
part xpath-expr1 that traverses the local data, (ii) the XPointer expression xpath-
exprx that defines the view, and (iii) the remaining part xpath-expr2 of the query
that is evaluated against the view. The dbxlink:eval attribute specifies where the
evaluation of these parts actually takes place, according to the classification in
[FJK96]:
– dblink:eval=”local”: access the whole contents of url and evaluate xpath-

exprx/xpath-expr2 locally (data-shipping).
– dblink:eval=”distributed”: submit the query xpath-exprx to the server at url

and receive the result. Then, evaluate xpath-expr2 against it (hybrid shipping).
– dblink:eval=”remote”: submit the query xpath-exprx/xpath-expr2 (in an

adapted rewriting that encodes the “inverse” of the dbxlink:transparent map-
ping) to the server at url . In this case, the views defined by the link remain
completely virtual also during evaluation (complete query-shipping). Note
that this requires the remote service to be XML/XPath-aware which is e.g.
not the case in Active XML where the remote service can be any kind of Web
Service.

Links that do not have a dbxlink:eval directive are by default evaluated according
to the dbxlink:eval=”distributed” strategy. If the target of the link resides on a
remote server, the actually applicable strategies depend on the provided services
(i.e., whether the whole XML document is accessible, and/or what queries can
be answered). If the remote server returns an error message (e.g., because it
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is not capable of answering XPath queries), then dbxlink:eval=”local” is used
as fallback, trying to access the whole referenced document and evaluating the
query locally.

4.3 Evaluation Timepoints/Activating Event

XLink defines several attributes for link elements that specify the behavior of the
link element, i.e., when it should become “activated” and what happens then.
This behavior is tailored to the use of links when browsing; it does not cover
the requirements of querying XML instances. The activating event of links is
considered in XLink with the dbxlink:actuate attribute: In the browsing context,
auto means that the XPointer is evaluated when the node containing it is parsed
(i.e., when the HTML page is accessed, or when XML content is processed by
a stylesheet), whereas user states that it is activated by the user (HTML: click-
ing). In the database context, dbxlink:actuate=”parse” means that the XLink
is evaluated when the document is added to the database (or when the XLink
element is created) – thus, the view is materialized in this case. The keyword
“user” denotes that it is evaluated on-demand when it is used by a query, which
guarantees that always the current state of the referenced resource is queried.
The default setting is dbxlink:actuate=”user”.

Whereas for browsing, the difference between “parse” and “user” is rather
small, in the context of persistent data in databases and queries against it, there
is a wide area of materializing, i.e., caching, and reusing intermediate results.

4.4 Caching Strategies

As stated above, when accessing a remote server and answering queries, the
obtained data may be cached for reuse in subsequent queries. Caching can be
specified by the dbxlink:cache attribute of XLink elements:

– dbxlink:cache=”complete” (in combination with dbxlink:eval=”local”, where
the referenced document is accessed completely) stores the referenced doc-
ument in the local XML database. When later another query traverses the
link, it can be evaluated against the cached document;

– dbxlink:cache=”pointer” (in combination with dbxlink:eval=”local” and
dbxlink:eval=”distributed”) caches the result of evaluating the XPointer;

– dbxlink:cache=”answer” caches the answer to a query against an XLink view;
– dbxlink:cache=”none” caches nothing (which is also the default setting, since

then always the current state of resources is accessed).

5 Implementation

As a proof-of-concept, the approach has been implemented as an extension of the
open source XML database eXist [exi], a native XML database system. For en-
abling navigation along XLinks according to the proposed semantics, the XPath
evaluation engine has beenmodified. Link elements are replaced on-demandduring
query evaluation.
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Starting with the root element of an XML document (or with an element bound
to a variable), XPath steps are evaluated recursively. Each step defines a new set of
nodes, the context to which the next step is applied. In order to implicitly replace
all relevant link elements during navigation in an XML tree, thus making the nav-
igation transparent, all subelements of every node belonging to the context have
to be analyzed: any XLink subelement of the current context node can potentially
be replaced by one or more nodes that are relevant for the next step. Note that
XLink elements with left-hand-directives “duplicate-element”, “group-in-element”,
and “make-attribute” are only relevant if their name matches the next step. Thus, a
kind of forward evaluation in order tomake the requirednodes available for the next
step has been implemented according to the specification presented in Section 3,
temporarily materializing fragments of the virtual instance on-demand. Basically,
γR and γL are implemented as two independent modules, dealing with the right-
hand-directive and the left-hand-directive, respectively.

Distributed Evaluation. For illustration, consider the dbxlink:eval=”distributed”
strategy (whose evaluation is closest to the formal definition of the operators)
when answering a query as discussed in Section 4.2:

1. For applying the right-hand directive, the XPath expression
xlink:href=”xpath-exprx” of the current XLink element is sent to the
remote server by using the XML-RPC protocol,

2. γR: The returned result is mapped by γR according to the right-hand-
directive,

3. γL: The intermediate fragments are then temporarily added to the virtual
instance by γL according to the left-hand-directive,

4. the remaining query is then evaluated against the temporarily extended vir-
tual instance.

Caching is –according to dbxlink:cache– optionally applied to the returned result
after step (1) and to the result of step (4). Analogously, cache-lookup is applied
first for the result of the query, and then for the result of the XPointer.

Local Evaluation. Alternatively, if dbxlink:eval=”local” is specified, or the remote
source does not support XPath queries (including XLink resolving), the whole
remote document is accessed, and the referenced nodes are computed locally;
then it continues as above. Caching and cache-lookup can be applied for the
referenced document, and for the answer to the query.

Remote Evaluation: Query Shipping. In case that dbxlink:eval=”remote” is
specified, the remaining query expression xpath-exprx/xpath-expr2 that will be
shipped to the remote server must be adapted according to the (inverse of the)
mappings γL and γR, concerning the final step of xpath-exprx and the first step of
xpath-expr2; depending on the left-hand-directive, one more step is done locally.

Example. Consider the query “population of the city ’Antwerp’ in Belgium”
against the example shown in Figure 3,

//country[name=”Belgium”]/city[name=”Antwerp”]/population.
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After navigating to Belgium, the database engine must resolve its XLink subele-
ments in order to check if there are some city elements in the virtual model. The
remaining query part is xpath-expr2 = city[name=”Antwerp”]/population. In this
situation, there is only the cities XLink element with an XPointer xpath-exprx

= #xpointer(/cities/city) and the directives “drop-element insert-nodes”. Since
“drop-element” is specified, we do not have to care for the XLink element itself.
The city step occurs twice: once in the XPointer xpath-exprx for selecting the
nodes, and once at the beginning of xpath-expr2 for traversing them. Thus, the
last step of xpath-exprx and the first step of xpath-expr2 must be merged, keep-
ing the stricter nodetest and the predicates. This leads to shipping the combined
query /cities/city[name=”Antwerp”]/population to the remote node.
In the general case, the inverse mappings of γL and γR combine as follows:

– XLink elements with (L) “duplicate-element”, “group-in-element”, and “make-
attribute” are only relevant if their name and resulting axis matches the next
step in xpath-expr2, which is then removed from xpath-expr2.

– for (L) “drop-element”, and “keep-body”, xpath-expr2 is not changed.
– for (L) “keep-body”, xpath-expr2 must also be evaluated locally against the

contents and attributes of the XLink element,
– for (R) “insert-nodes”, the last step of xpath-exprx and the first step of xpath-

expr2 are merged as described in the above example.
– for (R) “insert-bodies”, xpath-exprx/xpath-expr2 are just concatenated.

Remote evaluation: Non-downward Axes. The user’s queries are stated against
the virtual model. Thus, if the xpath-expr2 part uses an absolute path in a filter
(semijoin) or a non-downward axis like ancestor, siblings, or preceding/following
that potentially leaves the embedded view part, the query must not be shipped.
In this case, only local and distributed evaluation lead to correct results.

Search Space and Cycles

Descendant Axis: Search Space. For evaluating queries that use the descendant
axis, in general all XLink elements (except those with “make-attribute”) must
(recursively) be resolved (which can lead to searching the whole Web). Since this
is necessarily the case for guaranteeing completeness, this problem is not special
to our approach, but applies to any approach that allows for including views on
distributed XML resources. We propose the following handling:

– Design: use (L) “make-attribute” in all cases where the resulting structure is
not inherently nested – here, the descendant axis ends.

– Metadata about the element and attribute names and paths contained in a
document (including recursive views) can help not only for detecting cycles,
but also for pruning the search space (see Related Work).

Descendant Axis: Cycles. As discussed at the end of Section 3, even with only
a finite set of Web sources involved, there can be infinite chains in the descendant
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axis due to cyclic links. Depending on the chosen shipping strategies, appro-
priate auxiliary information must be generated or provided for controlling the
evaluation process:

– remote evaluation: in case of a cycle, the same query is shipped around this
cycle. Keeping a “shipping history” allows for detecting such cycles and re-
turning an empty answer.

– local and distributed: in case of a cycle, the same remaining query (in the
above terminology, xpath-expr2) is evaluated twice against the result of the
same XPointer (xpath-exprx). Here, bookkeeping which pairs (xpath-exprx,
xpath-expr2) have already been processed allows to detect cycles and to return
an empty answer.

Testbed and Demonstrator. For testing the functionality and experiment-
ing with different strategies, a network of dbxlink-enabled eXist servers on
different hosts is used. The main demonstrator is based on a distributed
version of the Mondial database [Mon]. The “central” server contains all
countries (countries.xml) and serves usually as the entry point for queries.
The remaining servers host documents concerning geographic information, or-
ganizations and memberships, as well as cities and provinces (by country):

memberships

dbis03

orgs countries

dbis06 dbis42

cities-B cities-D waters
mountains

dbis05 dbis02

member-of is-member

headq capital
cities

located in

located at

neighbor

– countries.xml (all coun-
tries)

– cities-XX.xml (cities for
each country, where XX is
the car code of the respec-
tive country)

– organizations.xml (organi-
zations)

– memberships.xml (coun-
tries ↔ organizations)

– geo.xml (mountains, wa-
ters etc.)

The distributed scenario
can be queried via a public
XPath/XQuery interface at
[Lin].

6 Related Approaches

XLink Browsing and XInclude. Up to now, the XLink approach is primar-
ily interpreted for browsing, as it is mirrored by the W3C XLink Recom-
mendation [XLi01] where several attributes for link elements are defined that
specify the behavior of the link element during browsing. The show=”embed”
behavior of XLink can be seen as one special case of our approach, featuring
dbxlink:transparent=”group-by-element insert-nodes”.
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XInclude [XIn04] is a restricted approach for including documents: it defines
a fixed XML-to-XML transformation where the <xi:include href=”xpointer”> ele-
ments are replaced by the corresponding included items (cf. dbxlink:transparent=
”drop-element insert-nodes”), evaluating the references at parse time.

In contrast to the XLink and XInclude models, our approach allows for fine-
tuning the logical model, e.g., adhering to a common, integrating target DTD.

The XInclude handling of references is also not suitable for database environ-
ments: The XInclude parse-time evaluation in fact materializes the referenced
contents which is reasonable for lightweight tools such as Saxon; whereas in a
database environment, this would mean to evaluate the references once when
storing the document. In contrast to that, dbxlink allows to keep the links in the
database, only evaluating them on-demand, always using the current contents
of the referenced sources.

Active XML. A general approach for integrating remote access functionality
into XML documents is proposed by Active XML [ABM+02]: <axml:call> el-
ements allow for embedding service calls into XML documents. Active XML
and dbxlink differ significantly wrt. generality (Active XML) and specialization
(dbxlink) and in the degree of integration with the database functionality. While
the dbxlink approach is an incremental extension to the existing concepts of
XLink and XPointer, targeting to provide a transparent data model and sup-
port XPath/XQuery for them from the database point of view, Active XML is a
generic extension of functionality towards Web Services. Instantiating a dbxlink
service with Active XML could only provide the “remote” γR part of the model
(which would e.g. be sufficient for implementing XInclude). Tasks that need close
interaction with the query evaluation algorithms, like integrating the result into
the model according to γL (in case of data or hybrid shipping) or accessing
xpath-expr2 (in case of query shipping) cannot be supported in Active XML. On
the other hand, since arbitrary URLs can be used in XPointers (where we here
considered only XPath expressions), Web Service calls can also be handled by
an XLink-based framework, here also extended with dbxlink flexibility.

Decomposing Queries on Distributed XML Data. Several approaches dealing
with strategies for decomposing queries on distributed XML data have been
investigated whose results can also be used for the implementation of the dbxlink
specification. In [Suc02], distributed query evaluation for general semistructured
data graphs is investigated. The approach assumes that a fixed community of
sites agrees on sharing their data and answering queries. They split the query into
a decomposed query, evaluate its parts independently at each site, and assemble
the result fragments. In contrast to this, the scenario of our approach considers
XLink references between arbitrary sources, and the specification for mapping
the linked fragments to a virtual instance and querying it. The logical modeling of
[Suc02] is similar to XInclude. In [BG03], the distribution of XML repositories is
investigated, focussing on index structures. The above approaches are orthogonal
to ours (where the focus is on the modeling and handling of the interplay of links
seen as views) and could probably be applied for a more efficient implementation.
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7 Conclusion and Perspectives

We have presented an approach that allows for querying networks of XLink-ed
XML documents, using a logical model for such documents. With this, XPath
(and thus also XQuery, XSLT etc.) constructs can be used to operate transpar-
ently on linked documents. The reference implementation is done as a modifica-
tion of eXist [exi]. In general, the approach can be implemented as an extension
to any XPath/XQuery engine.

The contribution of the paper is to provide a database-oriented interpretation
of XLink, together with a proof-of-concept implementation. The implementation
does not deal with the evaluation of distributed queries in the most elaborate and
efficient way. These issues pose a lot of questions that call for combinations with
results of other work, e.g., parallel evaluation of remote queries and strategies
for the case that a remote source does not answer, refined caching strategies,
query containment and rewriting, optimization strategies for local evaluation
of XPath queries and stream processing of the results of XPointers, as well as
strategies based on metadata, schema reasoning, and path indexes for finding
which XLinks will contribute to the result of a given query. In a global scale,
such strategies require a sophisticated P2P-based infrastructure with appropriate
communication. In these aspects, more specialized research results, some of which
are mentioned above, can be applied.

Acknowledgements. This work is supported by the German Research Foundation
(DFG) within the LinXIS project.
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Abstract. Navigational queries on Web-accessible life science sources
pose unique query optimization challenges. The objects in these sources
are interconnected to objects in other sources, forming a large and com-
plex graph, and there is an overlap of objects in the sources. Answering
a query requires the traversal of multiple alternate paths through these
sources. Each path can be associated with the benefit or the cardinality
of the target object set (TOS) of objects reached in the result. There is
also an evaluation cost of reaching the TOS.

We present dual problems in selecting the best set of paths. The first
problem is to select a set of paths that satisfy a constraint on the eval-
uation cost while maximizing the benefit (number of distinct objects in
the TOS). The dual problem is to select a set of paths that satisfies
a threshold of the TOS benefit with minimal evaluation cost. The two
problems can be mapped to the budgeted maximum coverage problem
and the maximal set cover with a threshold. To solve these problems,
we explore several solutions including greedy heuristics, a randomized
search, and a traditional IP/LP formulation with bounds. We perform
experiments on a real-world graph of life sciences objects from NCBI
and report on the computational overhead of our solutions and their
performance compared to the optimal solution.

1 Introduction

The last few years have seen an explosion in the number of public life science
data sources, as well as the volume of data entries about scientific entities, such
as genes, proteins, sequences, etc. Consequently, biologists spend a considerable
amount of time navigating through the contents of these sources to obtain use-
ful information. Life sciences sources, and the navigational queries that are of
interest to scientists, pose some unique challenges. First, information about a
certain scientific entity, e.g., a protein, may be available in a large number of
autonomous sources, each possibly providing a different characterization of the
entity. While the contents of these sources overlap, they are not replicas. Second,
the links between scientific entities (links between data objects) in the different
sources are unique in this domain in that they capture significant knowledge
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about the relationship and interactions between these entities. These links are
uncovered in the process of navigation. Third, users are usually interested in
navigational queries.

We consider a given set of sources and assume that the data objects in any of
these sources have links to data objects in the other sources. We further assume
that a (simple) navigational query identifies an origin class, e.g., protein, and
possibly a (set of) origin sources that are of interest, e.g., UniProt. The query
also identifies a target class of interest, e.g., publications, as well as an optional
list of intermediate sources. Answering such queries involves exploring the data
sources and classes, and the links between data sources. Our goal is to find
paths at the logical level (among classes) and paths at the physical level (among
sources implementing these classes). While we note that the query language can
be extended to other query types, for our study we use a simple query.

Each path is associated with a benefit, namely the number of distinct ob-
jects reached in the target object set (TOS) in the target class. Each path is
also associated with a cost of evaluating the query on the sources to compute
the TOS. Given the overlap between sources and the highly interconnected na-
ture of the object graph, each m-way combination of TOSs of paths is also
associated with a TOS overlap. This overlap represents same objects reached in
the TOS using different paths, and reduces the combined benefit of this path
combination.

We present dual problems in this context of selecting the best set of paths.
The first problem is to select a set of paths that satisfy a constraint on the eval-
uation cost while maximizing the benefit or the number of distinct objects in
the TOS of these paths. This problem maps to the budgeted maximum coverage
(BMC) problem [1]. We expect that in many cases, a user is more interested in
reaching some desired minimal number of objects and may not set a constraint
on the budget. To explore this situation, we consider the dual problem, which
selects a set of paths that satisfies a threshold of the TOS benefit with mini-
mal evaluation cost. The dual can be mapped to the maximal set cover with a
threshold (MSCT).

The problems we address apply to many other scenarios. Consider a general
problem - find a best set of paths to the data sources - and a simpler subproblem
- find the best set of sources, ignoring that there might be multiple heterogeneous
paths to reach these sources. This subproblem arises in many data integration
situations, namely whenever (i) the integrated system has access to multiple
sources that overlap in the data they store, (ii) it is not necessarily required
to retrieve all answers to a query (some are enough), and (iii) some per-source
cost is incurred to find and retrieve answers. Applications include metasearch
engines and search engines for intranets, stock information systems (queries cost
money), shopping agents, and digital libraries. For each of these systems it is
worthwhile to access only some data sources and still find satisfying results.

Life science data sources are distributed web accessible sources. Consider the
NCBI that is a portal providing access to all public NIH funded sources. For our
research we created a warehouse of a subset of the links between 5 sources. We
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note that creating a warehouse of links for all web access sources á la Google
and providing the statistics needed to solve our problems is a difficult problem
and is discussed in the experiment section.

Contributions. We identify a path overlap problem faced by life scientists in
navigating paths among multiple interconnected and overlapping sources and we
model it as a BMC problem and a dual MSCT problem. We propose an exact
solution (IP), a randomized approximate solution with bounds (LP), unbounded
greedy heuristics, and unbounded randomized solutions. Finally, we present em-
pirical results of our strategies on a sampled real world data graph from the
NCBI. The graph is stored in a database and we discuss the computational
overhead supporting our solutions.

Outline. Sec. 2 first introduces our model of sources, objects, links, queries,
and paths, and next formally states the two optimization problems. To solve the
problems, Sec. 3 presents algorithms to compute exact solutions, an algorithm
with known optimality bounds, and efficient but unbounded algorithms. Sec. 4
describes our experimental data of linked NCBI sources and their source-metrics,
such as cardinality and overlap. In Sec. 5 we report on our experimental results
showing good performance and solution quality for both problems. Finally, Sec. 6
reviews related work and Sec. 7 concludes.

2 Modeling Life Science Data Sources

We introduce a model for life science data sources and queries, and then define
the problem of selecting sources and source paths to answer queries. Further and
more detailed definitions are in [2].

2.1 Data Model and Queries

A scientific entity or class represents instances of a logical class of objects, e.g.,
Disease, Sequence, etc. A logical link is a directed relationship between two logical
classes. The set of logical classes and logical links between them form the directed
logical graph LG. A logical graph LG is an abstraction (or schema) of the source
graph SG with data sources as nodes. A source S is a real-world accessible
data source. Each logical class can be implemented by several sources. In turn,
the object graph OG is an instance of SG containing representations of real-
world objects and links between them. Finally, a result graph RG is a subset of
OG and contains the data objects and links specific to a particular query. LG,
OG, and RG are analogous to the schema, database instance, and result of a
query.

Figure 1 shows an example of a world with four logical classes, Disease, Protein,
Sequence, and Publication, and five sources. Omim is the source that stores data
on genetic knowledge on Disease, and Publications are stored in two sources Pub-
Med and Books. Each source has some objects stored within, each having zero
or more links to objects in other sources.
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Disease

Protein Sequence

Publication

OMIM

NCBI Protein NCBI Nucleotide

PubMed Books

a c d e fb

q r s t u v w x

l m n o pg h i k

Fig. 1. A simple model with classes,
sources, objects, and links

A source path p is a path from an origin
source in the source graph SG to a target
source of SG. Figure 2 lists the five source
paths connecting origin source Omim and
target source PubMed or Books in our
example SG.

An object link is a directed edge be-
tween two data objects in two different
sources. Given a source graph, the object
graph OG is a directed graph in which the
set O of all data objects stored by the
sources are the nodes, and the set L of
object links between these objects are the
edges. The object graph represents our
world model of all the objects and links that we consider. We note that ob-
ject t in the OG of Fig. 1 occurs in the path overlap of two paths from Omim
to PubMed, and in the path overlap of two paths from Omim to Books.

(P1) Omim → PubMed
(P2) Omim → NCBI Protein → PubMed
(P3) Omim → NCBI Nucleotide → PubMed
(P4) Omim → NCBI Protein → Books
(P5) Omim → NCBI Nucleotide → Books

Fig. 2. Five paths from Omim to PubMed or
Books through the source graph of Fig. 1

Consider the following query:
“Return all Publications of Pub-
Med that are linked to an Omim
entry about Diseases related to the
keyword tumor.” To answer this
query, a set of source paths in SG
from Omim to PubMed are iden-
tified. A keyword search on tumor
is used to retrieve relevant entries
from Omim. Then, for each source
path, starting from the selected
Omim objects, all paths in OG that
reach PubMed entries are traversed. We define a result graph as representing
the answers of a query against the OG. A result graph is a subset of the object
graph. The target object set (TOS) is the set of objects in the RG reached in the
target source of a particular source path. In the example the objects reached in
PubMed. Either the RG or the TOS for each of the source paths can be con-
sidered to be answers to the query. For the purposes of this paper, we consider
simple queries that start with a set of objects in an origin source and traverse
paths in OG to reach a set of objects (TOS) in each target source. More complex
navigational queries are described in [3].

A source path p in SG can be characterized by a number of metrics, including
the following:

– Length of the path
– Cardinality of attributes of all sources visited by p

– Cardinality of objects in the target source (TOS) - also called the benefit
– Cost of evaluating this source path on OG

– User’s preference for objects in the TOS reached by traversing p
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In related work we consider a multi-criteria optimization problem to generate
the best K source paths or skyline paths [4].

2.2 Problem Statement

We formulate dual problems with respect to maximizing benefit given some
starting object(s) and a cost constraint. The dual is to find a set of paths with
benefit above a threshold that has the least cost.

Consider the TOSs of two paths. We assume that the benefit of an object is 1. An
important observation when counting target objects is that there is no additional
benefit when the same object occurs in both TOS. We describe this as TOS over-
lap. TOS overlap can occur at different degrees, i.e., it can be disjoint, contained,
equivalent, or have some concrete value. A discussion of overlap and methods to
estimate overlap under certain assumptions is given in [2]. We note that while
our problem definition assumes that there is no benefit of finding objects multi-
ple times in overlapping paths, there are other contexts in which semantic knowl-
edge is associated with overlap. For example, the fact that an object was reached
by traversing two specific alternate paths may convey some knowledge about the
characteristics of this object, or the sources involved in the paths.

We assume that there is a cost (or delay) associated with traversing the paths.
This is realistic since accessing multiple sources may both delay the scientists as
they wait for answers to be computed and delivered. It may also have a negative
impact on all other users of these sources. Finally, the commercialization of
certain data products means that actual payments may also be involved. A
simple cost model would be to assign each path a unit cost (1). This turns the
problem into choosing a combination of the best k paths among all possible
paths. A more realistic way of assigning costs to the paths is to follow a cost
model for query evaluation. In a later section, we discuss computing the metrics
of paths in detail.

Assuming non-uniform costs, benefits, and TOS overlap, the problem is for-
mally defined as follows:

Problem 1 (BMC). Consider a collection of paths P = {p1, p2, . . . pm}, a world
of objects Z = {z1, z2, . . . zn} and a mapping to indicate if element zj occurs
in the TOS of path pi. There is an associated cost for picking each path and
an associated benefit for covering each element. Consider a collection of paths
P ′ ⊆ P ; the distinct objects in the corresponding union of the TOS for P ′ is
labeled UnionTOS. The goal of our first problem is to find a set P ′ such that
the total (adjusted) benefit of UnionTOS gained by picking P ′ is maximized, and
the total cost of P ′ does not exceed a given budget B. The problem is known
as the Budgeted Maximum Coverage (BMC) problem in the literature and is
NP-hard [1]. Note that while the overall cost is the sum of the individual costs,
the overall benefit is not the sum of individual benefits but must be adjusted
(reduced) by any existing overlap.

Problem 2 (MSCT). The dual of this problem is the Maximal Set Coverage
(with Threshold) or MSCT problem. The goal is to find a collection of paths
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Disease

Protein Sequence

Publication

OMIM

NCBI Protein NCBI Nucleotide

PubMed

DB AC E

Fig. 3. An example graph with five overlapping paths from Omim to PubMed and
their benefit and cost

P ′ ⊆ P such that the (adjusted) benefit of UnionTOS gained by picking P ′ is at
least T while minimizing the total cost of P ′.

2.3 An Example

To illustrate how to choose combinations of paths we present an example. Fig-
ure 3 shows four data sources Omim, PubMed, NCBI Protein, and NCBI -
Sequence. There are five possible paths from Omim to PubMed (labeled A to
E). Each path starts with a set of Omim objects and terminates in a set of Pub-
Med objects. This results in the path benefit is also shown. The intermediate ob-
jects are not shown in Fig. 3 to not confuse the reader. The table of Fig. 3 shows
cost and benefit/cost ratio.

Assume a cost limit of 20, which must be met and overlap as given in Fig. 3
(overlap(CD)=1 and overlap(CE)=2). We cannot follow all paths given the cost
limit. We use this example in the following section to explain the different algo-
rithms of finding the best subset of paths.

3 Algorithms

To solve BMC and MSCT, we implemented several algorithms to find a combina-
tion of best paths. After stating how to determine exact solutions for comparison
purposes, we model the problem as an IP/LP, and then present some unbounded
solutions including greedy algorithms and a random search algorithm. While the
algorithms are applied to our small example here, we show how they perform on
real-world data sets in Sec. 5.

3.1 Computing Exact Solutions

BMC: Determining an exact solution for BMC requires looking at all combi-
nations of paths and their TOS, and choosing the one with the highest overlap-
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adjusted benefit. The overlap-adjusted benefit simply eliminates duplicate
objects in UnionTOS and then determines the cardinality. As the number of
paths is exponential in the number of sources and the number of possible com-
binations is also exponential (2n, n being the number of paths) we are dealing
with a “doubly exponential” problem in the number of sources. However, due
to the given cost limit, we may not need to consider all combinations. In our
example only the combinations A, BE, CD, CE, and DE are below the cost limit
of 20, the adjusted benefit results are 11, 14, 13, 10, and 10 respectively. We can
see that the solution BE provides the best adjusted benefit of 14.

MSCT: Determining an exact solution for MSCT requires looking at all possible
combinations of paths and their combined cost. The combination with the least
cost is chosen, given that the overlap-adjusted benefit exceeds some threshold.
In the example the maximum benefit one can gain is 36. If we want to find
the cheapest solution with a guaranteed benefit of 29 (roughly 80%) only the
combinations ABCDE (36), ABCD (34), ABCE (31), ABDE (31), and ABC (29)
need to be considered (overlap adjusted benefit in parentheses). Among these
ABC is cheapest with a cost of 43, still meeting the threshold.

Both problems can be modeled as IntegerProgramming to get an exact solution.
In summary, in both cases (BMC and MSCT) we are able to apply some

pruning technique so that we do not need to consider all combinations and are
able to speed up computation.

3.2 Formulation as an IP/LP

We solve BMC and MSCT using a standard LP relaxation and rounding ap-
proach. We show that the expected cost does not exceed the budget in BMC,
and the expected benefit is within a factor of the optimal solution. We show
that the expected benefit meets the threshold of the MSCT problem and the
expected cost is at least within some factor of optimal. Interestingly, an almost
identical randomized rounding approach is suitable for both problems as we
show in [5].

BMC Problem: Let S be a family of sets (paths). Let S = {S1, S2, . . . Sm} and
let Z be the set of all objects, Z = {z1, z2, . . . zn}. Let B be the budget allowed
to choose the subset of paths. We set integer variables xi = 1 iff set Si is picked
and yj = 1 iff zj is covered. Let c(Si) be the cost of picking set Si. wj is the
benefit of covering element zj . In our problem, we consider a uniform benefit for
all objects; that is, wj = 1 for each object zj. The IP formulation is as follows:

maximize
∑n

j=1 yj · wj subject to
∑m

i=1 c(Si) · xi ≤ B

yj ≤
∑

{l|zj∈Sl} xl for all j

xi ∈ {0, 1} for all i
yj ∈ {0, 1} for all j

Although the IP gives an optimal solution to the problem, it is impractical to
compute exact solutions; the IP problem is NP-complete. By relaxing the con-
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straints that xi and yj must be integers, we have the following Linear Program
(LP) formulation. Note that only the two last constraints of the IP formulation
have been modified as follows: xi ≤ 1, yj ≤ 1.

We solve the LP (using the LP solver CPLEX) thus obtaining an optimal
fractional solution, (x∗, y∗). We then choose a collection of sets S′ such that
Pr[ Set Si is chosen in the set S′] = x∗

i by using a standard technique known as
randomized rounding [6].

Algorithm. BMC LP
– Solve the LP relaxation.
– Obtain fractional solution (x∗, y∗).
– Round x∗ values to pick a subset of paths S′.

This algorithm produces solutions whose expected costs do not exceed B
and have an expected weight of the covered elements (TOS benefit) at least
(1 − 1

e ) times the LP benefit [5]. Since the LP benefit is an upper bound
on the optimal integral solution, this would be another way of deriving the
bound developed earlier using a greedy algorithm combined with an enumeration
approach [1].

MSCT Problem: The notation is the same as in the BMC problem, except
that we want to choose a subset of paths that meet the threshold T while mini-
mizing the cost. The IP formulation is as follows:

minimize
∑m

i=1 c(Si) · xi subject to
∑n

j=1 yj · wj ≥ T

yj ≤
∑

{l|zj∈Sl} xl for all j

xi ∈ {0, 1} for all i
yj ∈ {0, 1} for all j

We relax the last two constraints in IP to obtain the LP formulation: xi ≥ 0,
yj ≥ 0.

Let (x∗, y∗) be the fractional solution obtained by CPLEX. We choose a col-
lection of sets S′ such that Pr[ Set Si is chosen in S′] = min(1, αx∗

i ), where α is
a boosting factor to ensure that we reach the threshold. This algorithm produces
solutions with expected benefit at least (1 − 1

eα ) · T and expected cost at most
α· OPT [5].

3.3 Greedy Algorithms

We implemented several variants of a greedy heuristic and describe their evalu-
ation in our experiments. Tab. 1 summarizes the results of all greedy algorithms
for the example of Fig. 3. The choice of paths of each algorithm is indicated with
a ∗ in Tab. 1.

Overlap-adjusted Greedy for BMC: Simple greedy variants (choosing paths
in descending order of benefit or benefit/cost ratio) are not optimal, because the
benefit considered does not take into account the overlap. In our example C and
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E overlap by 2 so choosing C and E would give a benefit of only 10 instead of
a benefit of 12. So the overlap-adjusted benefit should be taken into account in
computing benefit to cost ratio. This strategy has been suggested in [1]. This
requires some more computation as all benefits need to be adjusted in each step.

Algorithm. BMC Greedy
– Rank paths by benefit/cost ratio, in descending order.
– Pick paths with largest benefit/cost ratio, adjust benefit/cost ratio of the

remaining paths.
– Continue as long as the cost constraint (budget) is not exceeded.

In our example, path C is chosen first, as the benefit/cost ratio is highest. After
choosing C the benefit/cost ratios are adjusted. As A and B cannot be chosen,
because of exceeding cost limit, the algorithm chooses D next. This results in a
solution of 93% (13/14) of the optimal solution.

Overlap-adjusted Greedy for MSCT: Similar to BMC Greedy the greedy
algorithm for MSCT also ranks the paths, but now by their cost/benefit ra-
tio and the lowest ranked path at a time is chosen. The cost/benefit ratios
of the other paths are adjusted. A solution is found as soon as the adjusted
benefit of the combination meets the threshold. This threshold is equivalent
to some fraction (e.g., 90%) of the maximum benefit possible, i.e., the over-
lap adjusted benefit if one chooses all possible paths. The algorithm finds a
low cost solution guaranteeing a certain benefit (e.g., 90% of maximum benefit
possible).

Algorithm. MSCT Greedy
– Rank paths by cost/benefit ratio, in ascending order.
– Pick paths with smallest cost/benefit ratio, adjust cost/benefit ratio

of the remaining paths.
– Continue as long as the benefit constraint is not met.

Assuming a benefit threshold of 29 (roughly 80%), path C is chosen first, as
the cost/benefit ratio is lowest. Next, the ratios are adjusted and B and D are
chosen, resulting in a partial solution with a cost of 33 and an adjusted benefit
of 23. In a last step, the algorithm chooses A and reaches an adjusted benefit
of 34 at a cost of 53. As the threshold of 29 is met, the algorithm stops with a
solution of 123% (53/43) of the optimal.

Overlap-adjusted Greedy for MSCT with pruning:As one looks closer at
the solution of MSCT Greedy one finds that having chosen path D was a bad
choice as even without it the benefit threshold also would have been met. There-
fore we devised an improved version of the greedy algorithm, MSCT Pruning,
which, having chosen a combination of paths, reexamines all paths chosen and
deletes one single redundant path, if one exists. If there is more than one redun-
dant path, the path with the highest cost is deleted.
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Table 1. Results of all greedy algorithms compared to the optimal solutions

path benefit/cost BMC - BMC - cost/benefit MSCT - MSCT MSCT
ratio optimal Greedy ratio optimal Greedy Pruning

A 0.55 (0.55) 1.81 * *(1.81) *
B 0.77 * (0.62) 1.3 * *(1.3) *
C 0.8 * (n/a) 1.25 * * *
D 0.6 * (0.5) 1.67 * (1.43) (*)
E 0.67 * (0.33) 1.5 (3)

achieved benefit 14 13 29 34 29
achieved cost 19 20 43 53 43

Algorithm. MSCT Pruning
– Perform MSCT Greedy.
– Pick each path of the combination, delete it; determine cost and benefit.
– Choose among these combinations the one with the smallest cost which

also meets the threshold.

In our example, after having found the combination CBDA with a benefit
of 34 and a cost of 53, the four combinations BDA (benefit 27, cost 43), CDA
(benefit 24, cost 40), CBA (benefit 29, cost 43) and CBD (benefit 23, cost 33) are
examined additionally. Combination CBA is chosen, as it meets the threshold at
lowest cost.

3.4 Applying Randomized Optimization

We also applied a randomized technique to the BMC problem. Randomized
approaches find solutions by searching guided by an utility function. The search
through the search space involves random steps, in most cases resulting in faster
convergence to a solution by leaving out unpromising parts of the search space.

Base algorithm. Goos describes different approaches to randomized optimiza-
tion [7]. We use one specific specialization of the base algorithm, which is known
as Simulated Annealing. Starting from an initial configuration K0, new config-
urations are created involving the old configuration and some random decision.
A new configuration is accepted if it is better than the old one, but it is also
accepted with a certain probability if it is worse. The acceptance probability
depends on the current temperature, lower temperature meaning lower accep-
tance probability. This enables the algorithm to escape local minima; escaping
is likely in the beginning and becomes more and more unlikely. The temperature
decreases over time, and the algorithm ends if the temperature drops below a
predefined temperature, when it has “cooled down”.

Modeling and implementation. We applied this random algorithm by mod-
eling and changing configurations and minimizing an utility function. A con-
figuration K to our problem consists of a set of paths, new configurations are
created as follows:
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1. Choose randomly among all available paths and combine them to a path set.
This is done when initializing the start configuration K0.

2. Add or delete a path. First, a path is chosen with a fixed probability out of
all available paths and added to the set of paths if it is not already part of
the set. Second, a path is randomly chosen out of all paths in the set and
deleted from the set. This allows for inserting, deleting, and changing paths
in the set. Creating a new configuration given an old one is done this way.

When changing a configuration (adding, deleting path), updating cost and
benefit information could be done in O(1), when using a bitset representation.
When designing the utility function for BMC, overlap-adjusted benefit plays an
important role, but also cost and other information could be used. Already a
simple utility function consisting only of the overlap-adjusted benefit (OAB)
and a penalty term for not complying with the cost limit yielded good results.
The penalty term (MAX COST ) is set to a fixed number, exceeding the highest
single path cost. The chosen utility function for BMC is shown in Equation 1.

UFBMC(K) =
−OAB + MAX COST limit exceeded,

−OAB otherwise
(1)

3.5 Computational Complexity

LP: LP problem can be solved by Simplex algorithm in linear time “in practice”.
That is, the number of iterations is linear in the number of constraints, which
is the total number of paths and objects. LP can also be solved in polynomial
time by using Karmarkar’s interior point method.
Greedy Algorithms: Given n paths and bitset representations of the paths and
their objects, adjusting the benefit/cost ratio of a remaining path after having
chosen a path could be done in constant time. Then all greedy variants have a
computational complexity of O(n2).
Randomized Algorithm: The random approach has a computational com-
plexity of c∗O(1). Here, c is a constant given by c ≤ a∗b where a is the maximum
number of configurations tested for acceptability per temperature and b is the
number of distinct temperatures tried.

4 NCBI Data

4.1 NCBI Data Sources

NCBI/NIH is the gatekeeper for all biological data produced using federal funds
in the US1. For the purpose of our experiments, we consider a source graph
SG of five NCBI data sources (Omim, PubMed, NCBI Protein, NCBI -
Nucleotide, and SNP), and the 10 links between these sources. We used the
EFetch utility to sample all objects from these five sources that matched against

1 www.ncbi.nlm.nih.gov
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a set of several hundred keywords of interest. We then used the ELink utility
to obtain all the links from these objects, along the 10 links, to the four other
sources. We obtained an OG of approx. 28 million objects and 10 million links.

For simplicity, a query identified an origin source and a target source, and an
optional keyword. A query is satisfied by up to sixteen source paths in the SG
and is evaluated against the database of the sampled OG. For each of the source
paths (and optional keyword), we determine the TOS; this is the set of objects
reached in the target source. We also determine the cost of evaluating the TOS
and the benefit (cardinality of the TOS).

4.2 Metrics for the NCBI Graph

We use a bitset data structure to store the TOS for each path and to compute
the overlap of a set of TOS, and to store UnionTOS. UnionTOS is the union of a
set of TOS(without duplicates). If an object (some position in the UnionTOS) is
present in the path, the corresponding bit in the bitset vector for that path is
set to 1. The bitset is used to efficiently compute the overlap adjusted benefit of
a set of paths. We use DB2 union operator to help us to compute UnionTOS.

The IP/LP requires that the bitset for all paths must be computed a priori in
order to set up the constraints of the IP/LP formulation. The greedy algorithm
requires that some of the overlap adjusted benefits be pre-computed. While it
does not require that the bitset be computed a priori, computing the bitset assists
the algorithm. The random algorithm also computes the overlap adjusted benefit
in an incremental manner and can benefit from the a priori computation of the
bitset.

In general, the overhead of maintaining the desired metrics can be expensive.
We briefly discuss some of the challenges. Consider computing the TOS or com-
puting the benefit (cardinality of the TOS). Since we created a local database
(warehouse) of all the objects that matched the keywords of interest, we could
directly compute the TOS or its benefit. If the objects corresponding to the key-
word were not sampled and stored in the relational database, we would have
to estimate the TOS and its benefit. In prior work we have developed a model
to make such estimations [2]. That model has the strong assumption of link
independence, which may not hold for real sources.

Determining the cost associated with evaluating each search path on OG to
compute the TOS is also straightforward in our case, because we consider only
simple queries with a keyword of interest and we assume that the links of OG are
stored in our relational database. In general, determining the cost of evaluating
each source path involves estimating the cost of submitting EFetch queries to
the NCBI servers to determine the objects that satisfied some complex search
criterion, and possibly calls to ELink to find all objects that have links to an
object of interest. It may also include some local join processing costs. The
EFetch and ELink access cost depends on the workload on the NCBI servers
and the network workload between the client and the NCBI servers. In our
experiments, the cost associated with a path is the cost of computing the TOS
of the path on the locally stored OG.
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Table 2. Benefit of TOS and pair-wise overlap of 6
paths from PubMed to NCBI Protein

P0 P1 P2 P3 P4 P5
P0 30735 22729 2876 26 1560 166
P1 23916 1857 25 1573 108
P2 3261 24 1046 175
P3 40 37 21
P4 2848 80
P5 175

Consider for instance a
query where the start source
is PubMed and the target
source is NCBI Protein. As
mentioned there are 16 source
paths P0 through P15 be-
tween these two sources in
this NCBI source graph; they
visit the intermediate nodes
NCBI Nucleotide, SNP, or
Omim. Note that the source
paths do not have cycles and
we do not visit a node or an edge more than once.

Table 2 reports on the TOS benefit for each path in the diagonal as well as
the pair-wise TOS overlap between pairs of paths. For lack of space we report
on only 6 of the 16 paths. As can be seen in Tab. 2, the TOS benefit for each
individual path varies widely from 40 to 30735. We also note that the pair-wise
TOS overlap between pairs of source paths has a wide variance of values and
ranges from a low of 21 to a high of 22729.

Table 3. Running Time to Compute Metrics for a Large Object
Graph and Result Graph

size of Time to Compute Time to Compute
Query UnionTOS UnionTOS(msec) bitset (msec)

NU to OM 8047 258095 609
NU to PU 122615 217412 7993
NU to PR 561358 164905 34689
PU to NU 1484403 282613 92329
NU to SN 1995918 502012 130765

We also il-
lustrate the
time to com-
pute the Union-
TOS and the
time to com-
pute the bit-
sets for a set
of paths. We
study 5 dif-
ferent queries,
which induce
different size
of result graph. Thanks to DB2’s union operator, we are able to compute Union-
TOS for result graph of size hundreds of millions efficiently. Note that the time
to compute UnionTOS is not proportional to the cardinality of the union, but de-
pends on the inherent join complexity, that is cardinality of intermediate sources
involved in the join. For example, consider the query from the origin source
NCBI Nucleotide to the target source Omim, even the cardinality of Union-
TOS is relatively small, the join complexity is still comparable to rest queries.

The time to create bitsets for result graph is proportional to cardinality of
UnionTOS as we expected. In the source graph we are interested in, where there
are 5 sources and 10 links, the result graph can be computed efficiently. Comput-
ing these metrics for a large source graph could introduce scalability challenges
and in the future work we will consider both specialized data structures and
methods to estimate these metrics.



824 J. Bleiholder et al.

5 Experiments on NCBI Data

To demonstrate the effectiveness and efficiency of the different algorithms for
the dual problems, we performed extensive experiments on different sampled
real-world datasets. These are characterized by different start/end sources. For
both BMC and MSCT we used a variety of budgets for cost and thresholds for
benefit and compared the greedy, the random, and the LP solution to the exact
solution. We first describe results for BMC, then for MSCT, and conclude with
some remarks on their runtime.

We used a total of 20 different start/end source combinations, but show re-
sults for only 2 characteristic ones; values are averaged over 10 samples. First we
describe the experimental results, then we analyze them. The following figures
all show relative solution quality compared to the optimal solution at varying
budgets (BMC) and varying benefit thresholds (MSCT). Because BMC maxi-
mizes benefit, the algorithms do not reach 100% whereas MSCT minimizes cost
and therefore the values are above 100%.

Results for BMC: Figure 4(a) shows results of experiments with all paths
between sources SNP and PubMed with different cost limits. Algorithm Greedy
is between 75% and 97% of the optimal solution, being worse at small budgets
but with better relative results at higher budgets. The LP solution also lies
between 75% and 95%, not showing improved performance with higher budgets,
whereas the Random algorithm performs well for all budgets. The chosen path
combinations (not shown here) consists of only a few paths. This leads to the
difference in solution quality, as benefit may differ substantially if one single
path is added/removed to/from the optimal solution.

The results of experiments with all paths between source NCBI Protein and
PubMed are shown in Fig. 4(b). Here, all approaches perform exceptionally well,
occasionally not finding the optimal solution but one at approximately 99.9% of
it. Regarding the same path with smaller budgets in Fig. 4(c) shows something
different: The same algorithms perform worse than with larger budgets (except
Random). The reason for this behavior is that the budgets in the former case are
so large that (almost) all paths are part of the solution. So the solution quality
is influenced by the given budget.

Results for MSCT: Figure 4(d) shows results of experiments with all paths be-
tween source SNP and PubMed, with different benefit thresholds (0.7 meaning
that the benefit of the solution is guaranteed to be at least 70% of the maximum
possible benefit). Both algorithms perform well, Pruning being at least equal,
but in most cases better than Greedy. At a threshold of 1.0 all paths must be cho-
sen, except redundant paths. Greedy sometimes chooses these redundant paths
and Pruning does not remove all, but only one. Therefore, both variants do not
always find the optimal solution.

Discussion: Greedy seems to be the most unreliable algorithm among all. If the
optimal solution is unambiguous (one path, all paths) it mostly finds it, but it
has weaknesses in between. There is also a difference in solution quality, if two
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(a) BMC Algorithm Results for datasets
from SNP to PubMed, large budgets.
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(b) BMC Algorithm Results for datasets
from NCBI Protein to PubMed, large
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(c) BMC Algorithm Results for datasets
from NCBI Protein to PubMed, small
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(d) MSCT Algorithm Results for datasets
from SNP to PubMed with different
threshold.

Fig. 4. Selected experimental results

different datasets are compared. This seems to be accountable to the particular
characteristics of the datasets. Comparing the solution quality of Greedy on
the datasets SNP → PubMed (Fig. 4(a)) and NCBI Protein → PubMed
(Fig. 4(b)), Greedy performs better on the former. The difference in these two
datasets lies in the cardinality and the spread of the overlap. In the sets where
Greedy performs better, there is much more variation in the amount of overlap,
ranging from just a few objects to paths that consist of 80% of all objects,
including several fully contained other paths.

LP performance is comparable to that of Greedy. The differences in solution
quality in different budgets may be explained by the randomized rounding ap-
proach: If LP happens to choose paths with a fractional value close to 1, and
we set the budget as cut-off line, we have a good solution; but if LP chooses
several paths with more or less equal probability around 0.5 (e.g., p1 with 0.51
and p2 with 0.52), then rounding favors p2 to p1. This may not be good in
general.

In all tested samples Random performed very well. This is due to the inher-
ent nature of randomized optimization: the randomness in considering different
combinations of paths. Whereas Greedy deterministically determines a combi-
nation of paths, and may be misguided, Random chooses randomly, keeps good
combinations and throws away poor ones. Performance also depends on a good
utility function, which is very simple in our case but does a good job. It is
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important to remark that we use one more or less straight forward parameter
setting for all experiments. There is currently no need to adjust parameters to
the characteristics of different data sets.

The fact that BMC and MSCT are coupled can also be seen in the results. In
settings where Greedy performs better on BMC, it generally gives better results
on MSCT, too. In that sense, characteristics of the data set in question influence
the solution of both problems in a similar way.

One important decision in solving BMC is the choice of budget. From Fig-
ures 4(a) and 4(b) one can see that equal budgets result in different solution
qualities, given different data sets. As different data sets result from different
queries, we do not know in advance what quality the solution will preserve. In
this sense, the MSCT problem is in fact the more interesting problem, as we can
require a certain solution quality, as desired by scientists. By solving MSCT we
gain information about the datasets, then we could make use of this knowledge
and determine a budget for BMC if we have limited budget. This way the two
problems interact and assist each other.

Runtime: Concerning average running time, the Greedy algorithms are the
fastest among all algorithms, as expected. For all samples and all different bud-
gets a solution is found within a few milliseconds on a state-of-the-art desktop
computer. The runtime of Random is a few seconds on average whereas comput-
ing an optimal solution depends on the number of paths present in the data. In
the real-world samples we tested, there are only 16 paths leading to an average
runtime of a little less than a second, using the pruning technique mentioned in
Sec. 3.1. However, determining exact solutions for worlds with more paths soon
becomes infeasible. LP usually takes half a minute. However, since LP was run
on a different platform, the runtimes are not directly comparable.

All algorithms would have longer running time if the computation of UnionTOS
and the bitset were not completed a priori. The most significant performance
impact is the LP formulation, which requires the complete computation of the
bitset since it is needed to set up the constraints.

In summary, when an optimal solution is infeasible to compute, Greedy is the
fastest while still returning good results. If one is able to invest some time, one
should employ Random, as it gives nearly optimal objective values at reasonable
runtimes. The advantage of LP is the guarantee (bounds) on the solution quality,
albeit at a higher cost (higher runtime).

6 Related Work

Research in [8] and for Bibfinder [9] addresses the task of learning and maintain-
ing statistics for distributed wide area applications. Bibfinder learns statistics for
a variety of popular bibliographic data sources. Using a combination of machine
learning and data mining techniques, it learns both coverage statistics of a source
with respect to a query term (keyword) as well as the overlap among sources.
We note that our task is more difficult, because we must consider the overlap
of source paths, and the contents of all the sources occurring in the source path
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may be associated (indexed) based on some query terms or keywords. Properties
of links and paths have been studied in the context of XML document processing
in the XSketch project [10], but the authors also do not consider overlap as a
part of their framework.

While the optimization goal of conventional DBMS optimizers—find the com-
plete and correct query result with minimal cost—is certainly different from the
goal of this paper—find the most complete answer within a fixed budget—there
are several aspects that carry over to our problem.

The first is selectivity estimation of query predicates, for instance as intro-
duced in [11]. In our case, predicates are query keywords, which amounts to “=”-
predicates, and links between sources, which amounts to foreign key predicates.
Based on certain assumptions, such as independence and uniform distribution of
data values, selectivity estimators use table cardinalities and selectivity factors
to estimate the result of joins and other operations. In our case, even the car-
dinality of base tables is difficult to assess. Currently we assume to simply have
that information. Compounding the problem is the overlap of sources, which
in effect reduces the cardinality-contribution of sources in some unknown way.
The basics of selectivity estimation are used in our system, and future work will
extend the metadata with histograms and will drop many of the underlying as-
sumptions. Also, the advanced technique of learning statistics [12] is particularly
useful in our scenario, as we are not merely dealing with approximate statistics
but often with wholly unknown statistics of foreign sources.

A second similarity of conventional optimization lies in the cost model. Con-
ventional optimizers usually model cost as processing time or throughput. In our
scenario, the dominant cost is network traffic and the fetching of objects in other
sources. Currently, we do not support different access paths, thus modeling the
cost for us is straightforward. Again, future work can adopt a more sophisticated
cost model making use of different ways to access data in sources, such as Web
Services, JDBC, HTML forms, etc.

Finally, there is of course much to learn from distributed query processing [13].
As the query model presented in this paper is fairly simple and we focus on
the logical aspects rather than the physical aspects of query execution, we do
not discuss the relevance here. Our first priority is to provide functionality to
biologists, our second is to provide it efficiently.

7 Conclusions and Future Work

Originally motivated by the problem of finding good paths and sets of paths
through NCBI life sciences sources we have generalized the problem to data in-
tegration in the presence of overlapping sources, which applies to many different
kinds of information systems. We presented a broad range of algorithms to solve
this problem, from exact algorithms to bounded algorithms to greedy algorithms
and simulated annealing. Each of these algorithms has different properties that
we analyze and verify experimentally. To summarize, life sciences data sources
are an excellent field to test new query models (paths through sources) and op-
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timization problems (overlap-adjusted benefit), all the while solving problems
that are relevant to biologists.

Possible future work is abundant. In a direct continuation of the work pre-
sented here we plan to expand on the types of queries to find out how our
algorithms fare under different applications. Further strands of research are in
the field of path query languages, efficient enumeration of all possible paths,
and finally optimization techniques on the actual web-accessible NCBI sources
rather than on large sampled sets stored in a local database.
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Abstract. Scientific data in the life sciences is distributed over various
independent multi-format databases and is constantly expanding. We
discuss a scenario where a life science research lab monitors over time
the results of queries to remote databases beyond their control. Queries
are registered at a local system and get executed on a daily basis in batch
mode. The goal of the paper is to study evaluation strategies minimizing
the total number of accesses to databases when evaluating all queries in
bulk. We use an abstraction based on the relational model with fan-out
constraints and conjunctive queries. We show that the above problem
remains np-hard in two restricted settings: queries of bounded depth
and the scenario with a fixed schema. We further show that both re-
strictions taken together results in a tractable problem. As the constant
for the latter algorithm is too high to be feasible in practice, we present
four heuristic methods that are experimentally compared on randomly
generated and biologically motivated schemas. Our algorithms are based
on a greedy method and approximations for the shortest common super
sequence problem.

1 Introduction

In the field of the life sciences, scientific data is distributed over various web sites
and data is mostly accessible via browsers or in some cases through primitive web
services [13]. A characteristic of biological data is that it is abundantly available
and rapidly growing. For instance, the daily updates to Genbank [5] alone range
in size from 40 till 200 Megabytes. Therefore, the answers to searches may vary
over time as more data becomes available. However, due to the limited access to
the distributed sources it is cumbersome to repeat searches over time especially
if they combine information from several web sites. In this paper, we consider
the setting of a light-weight monitoring system that runs at a research lab where
users can register queries which are executed periodically. Users are then notified
when new answers to their queries arrive.

We give an example of the kind of queries biologists would like to monitor over
time: a certain biological experiment on a rare organism results in a set of genes.

� Contact author.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 829–846, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A search of the available data reveals a set of related genes in other organisms.
However, only for a very small fraction of those genes their function is known.
The researcher therefore would like to be notified when more information on the
function of these genes becomes available. As shown in Example 2, such a query
combines information from three sites: Genbank [5] containing gene related info
and references to corresponding proteins, SwissProt [3] containing protein related
info and some links to GO-entries, and GO [2] containing functional descriptions
of proteins.

Although most popular biological websites and web services can be freely
accessed, there are restrictions on the number of accesses and the amount of data
that can be transferred per request. Furthermore, most data is transmitted using
the HTTP-protocol, which makes the connection setup cost much higher than the
data transfer cost. One single connection that transfers a lot of data is preferable
to several smaller connections each transferring small amounts of data [18]. It
is therefore of prime concern to combine queries and minimize the number of
different communications. The goal of the paper is to study the latter problem.

We model a situation where a limited number of sites is available: rather
twenty than hundreds or thousands as for instance is the case for peer-to-peer
computing. Further, we consider a light-weight system and assume at most a few
thousands of registered queries. Queries also have to be re-executed from scratch
as there usually is no access to the updates the web sites receive. Although in
practice most data is stored as flat files, we assume a relational view on this data
and use conjunctive queries as a query language. This means that the actual
queries should then be translated to appropriate calls to the web services or into
HTTP-requests. We choose for this kind of abstraction rather than, for instance,
going through an XML query language, as the focus of the paper is on minimizing
communication not on the actual form of queries. Furthermore, the formalism
of the relational model and conjunctive queries is sufficiently general to capture
large parts of the available data and path-like search queries as described in
the above scenario. On the other hand, the approach is specific enough to be
translated into any reasonable query language or model.

We only allow an evaluation protocol for a set of queries to send a constant
number of messages, where every message is a query or the transfer of a bounded
number of tuples. We refer to these as bounded protocols. In Section 3, we require
that messages are of size logarithmic in the size of the data which amounts to
the same requirement. To allow queries to satisfy this requirement, schemas
impose fan-out constraints which are for instance determined by domain experts
(cf. Section 2).

We summarize the main results of the paper:

1. Not every conjunctive query can be evaluated by a bounded protocol. We
show in Section 3 that deciding whether a set of queries can be evaluated by
a bounded protocol is in polynomial time.

2. Minimizing the number of communications to simultaneously evaluate a set
of queries is np-complete. In Section 4, we show hardness for two restricted
cases: (1) queries of bounded depth (cf. Section 3); and, (2), queries over
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a fixed database schema. We use reductions from the Feedback Vertex Set
(FVS) [8] and the Shortest Common supersequence problem (SCS) [15] which
are known to be np-hard. Furthermore, we show that both restrictions taken
together results in a tractable problem which, unfortunately, is not practi-
cally useful due to the large constant.

3. We present four heuristic methods in Section 5. The first method is greedy-
based. The other methods are based on approximations for SCS. Our ex-
periments show that over random database schemas the Pairwise SCS per-
forms best, while over a concrete biologically motivated database schema the
greedy-method outperforms the rest in finding the best evaluation strategy.
Finally, we remark that our experiments show that using our heuristics for
1000 random queries (consisting of 10 atoms each) on average only around
50 accesses to websites are necessary.

Due to space constraints, some proofs are omitted.

Related Work. The above described monitoring system is different from the
usual publish/subscribe systems where users can specify by means of patterns
what type of messages they are interested in. Such systems usually focus on new
data only and can account for millions of subscribers [1]. A well known pub-
lish/subscribe system for biological researchers is PubCrawler [9] which scans
daily updates to PubMed and Genbank, it keeps researchers informed on the cur-
rent contents of PubMed and Genbank. Our setting allows for more advanced
querying rather than keyword searching. A distributed database system con-
sists of a single distributed DBMS. This DBMS manages multiple databases. A
number of classes of distributed query optimization problems are known to be
np-complete [22]. They do not consider the setting of bounded communication.
Heuristic methods were therefore developed to deal with these problems. An
example of such an heuristic method is the query optimizer of SDD-1, which
uses a greedy approach to find the semijoin order [4]. A multi database system
supports operations on multiple heterogeneous local databases [17]. The most
distinctive features of multi database systems are site autonomy and heteroge-
ity [14]. Distributed query optimization and multi database query optimization
are distinctively different problems [14]. Our problem shows the strongest re-
semblance to the multi database query optimization. However, in our situation
we have to evaluate multiple queries while using a minimal number of commu-
nications and a bounded number of tuples. In multi-query optimization the aim
is to optimize in parallel a set of queries [16]. In contrast with our setting they
do not consider minimizing the number of communications, also the number of
considered queries is small (e.g., 5).

2 Definitions

In this section, we present the necessary background and definitions. To keep our
exposition simple, we model every biological website or source by one relation (as
opposed to several relations which would be more realistic). It is straightforward
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to adapt our results to that setting. The distributed sources are hence modeled
by a set of relation names in the understanding that every relation resides at a
different site.

We assume an infinite set of relation names R and attribute names A with
R∩A = ∅. Every relation name has an associated finite set of attributes, denoted
by Att(R). Let D = {d1,d2, . . .} be an infinite domain of data values. An R-
tuple t is a function from Att(R) to D. An R-relation RD is a finite set of R-
tuples. The cardinality of a relation R, denoted by |R|, is the number of tuples
in R. The size of a relation, denoted by ||R||, is k × |R| where k is the number
of attributes of R.

A distributed schema (S,Δ) is a set of relation names S with associated
attributes together with a set of fan-out constraints Δ defined below. A database
D over S assigns an R-relation to every relation name R in S. In the sequel we
do not distinguish between the relation name R and the R-relation itself: we
denote both of them by R. Denote by DB(S) the class of all databases over S.
To emphasize that the various relations in S are distributed we refer to them as
sites or sources.

A fan-out constraint is a rule of the form R : X →k Y , where X,Y ⊆ Att(R).
A database D satisfies a set of fan-out constraints Δ, denoted D |= Δ, iff for every
rule R : X →k Y ∈ Δ and every tuple t, |πY (σX=t(X)(R))| ≤ k. Here, π and
σ are the relational operators denoting projection and selection. By X = t(X),
we abuse notation and mean

∧�
i=1 Ai = t(Ai) for X = {A1, . . . , A�}. Intuitively,

the constraint says that in R for every fixed value for the attributes in X there
are at most k different values for the attributes in Y . In the sequel, we do not
care about the actual value of k and simply write R : X → Y rather than
R : X →k Y to denote that there is some bound.

Example 1. Consider the following relational schema constituting four sites:

Genbank(gene id,protein id, organism),
SwissProt(protein id, go id, organism),
Go(go id,name), and
Kegg(pathway id,protein id).

A tuple in Genbank contains a gene id representing the id of the gene at hand.
Every gene corresponds to one or more proteins which are listed in the SwissProt
database by protein id. The third component is the organism from which the
gene originates, e.g., human, mouse, rat, . . . . Go is a database/ontology that
contains function descriptions of proteins, e.g., serine protease. Only for a very
limited number of proteins a functional description is actually known. Kegg
contains information on pathways where special proteins are involved. We have
the following fan-out constraints:

Genbank : gene id → protein id, organism
Genbank : protein id → gene id
SwissProt : protein id → go id, organism
Go : go id → name
Kegg : pathway id → protein id
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Note that these are not necessarily keys. For instance, a gene id can correspond
to several protein ids. The above relations are crude abstractions of existing
sites [5, 3, 2, 11]. In [20] a more elaborate abstraction is given which we used for
our experiments. �

As a query language, we employ the well-known formalism of conjunctive queries.
An atom L is an expression R(A1 : x1, . . . , An : xn), where R is a relation symbol,
Ai ∈ Att(R) and xi is a variable or a data value for i = 1, . . . , n. We require
that Ai �= Aj for all i �= j. Note that {A1, . . . , An} need not be equal to Att(R).
A variable assignment ρ for L is a mapping that assigns to each variable in L
a data value in D. The atom L = R(A1 : x1, . . . , An : xn) holds in D under ρ,
denoted D |= L[ρ], iff there is a tuple t ∈ R such that for every i, t(Ai) = ρ(xi).

A conjunctive query is then an expressions of the form

Q(X1 : x1, . . . , Xk : xk) ← L1, . . . , Ln,

where each Li is an atom and each xi occurs in at least one atom. The se-
mantics is the usual one: Q defines the relation Q(D) = {(X1 : ρ(x1), . . . , Xn :
ρ(xn)) | ρ is an assignment s.t. ∀i,D |= Li(ρ)}. The relational schema associated
to Q(D) consists of the single relation symbol Q where Att(Q) := {X1, . . . , Xn}.

The size of an atom is equal to the number of variables appearing in the
atom. The size of a query is the sum of the sizes of its atoms.

Example 2. Consider the query

Q ← Genbank(gene id : ’AC04654’,protein id : x),
SwissProt(protein id : x, go id : y),
Go(go id : y,name : z).

which is Boolean and asks whether the function of the gene AC04654 is known.
As there is no direct link from Genbank to Go, the query has to access SwissProt
in between.

The following query asks for all the gene ids from proteins wich are involved
in pathway 0052 and have as function “catalytic activity”:

Q′(y) ← Kegg(pathway id : ’0052’,protein id : x),
SwissProt(protein id : x, go id : z),
Go(go id : z,name : ’catalytic activity’),
Genbank(gene id : y,protein id : x). �

We conclude this section, by introducing the Shortest Common Supersequence
(scs) problem which is used in Section 4 and 5. For a finite alphabet Σ, a string
s = a1 · · · an is a finite sequence of Σ-symbols. We denote the empty string by
ε and the set of all strings by Σ∗. A string s′ is a supersequence of s iff s′ is of
the form w1a1w2a2 · · ·wnanwn+1 where each wi ∈ Σ∗. A string s = a1 · · · an is
non-repeating when for all i < n, ai �= ai+1.
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The Shortest Common Supersequence problem (scs) is defined as follows.
Given strings s1, . . . , sn and a natural number K. Is there a string of length at
most K that is a supersequence of every si? scs is known to be np-complete for
strings over a binary alphabet [15].

3 Distributed Evaluation

In the following, a communication is the sending of a set of queries to a specific
source together with the receiving of the query results. We adapt the approach
of Suciu [18] to our setting in defining what constitutes an efficient distributed
evaluation algorithm:

(*) In evaluating a query on a distributed database, only a constant number
of messages (independent of the data at the sources) should be send and
received, and the size of each message is at most logarithmic in the size of
the data.

The above means that for every set of queries a fixed number of communications
should suffice and that every communication transfers a constant number of
tuples.1 This constant is independent of the distributed database, but depends on
the actual queries and the distributed schema. The constant will be determined
by the fan-out constraints. However, in the present paper we are not interested
in the actual size of this constant: only in the knowledge that a certain constant
exists.

Rather than discussing general evaluation algorithms, we employ a scheme
where conjunctive queries and answers to those are transmitted. In brief, the
source sends out queries and builds up a local database. Here the transmitted
values can depend on received values. In the following definitions, fix a dis-
tributed schema S = ({R1, . . . , R�},Δ).

Definition 1. An evaluation protocol is a pair P = (Q; ξ̄) where Q := Q1, . . . ,
Qn is a finite sequence of conjunctive queries such that each query Qi is over the
relational schema {Rk}∪

⋃
j<i Qj for some k; ξ̄ is a finite sequence of conjunctive

queries over the relational schema Q.

Intuitively, a protocol issues queries one at a time to a source (Rk) thereby
possibly reusing results of previous queries (

⋃
j≤i Qj). We refer to the latter as

the local repository. Finally, the answer to every query Qi is computed locally
by evaluating the query ξi on the local repository. The size of a protocol is the
sum of the sizes of the queries.

Remark 1. Apart from in the examples, we assume in the following that all
attributes at the various sites are disjoint. We further assume that all variables
occurring in different queries are disjoint.

We denote by Q(D) the relational database
⋃

i≤n Qi(D).

1 We assume a reasonable binary encoding here.
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Definition 2. An evaluation protocol P = (Q; ξ̄) is bounded if there is a natural
number N , such that for every database D over (S,Δ), |Qi(D∪

⋃
j≤i Qj)| ≤ N .

Definition 3. An evaluation protocol (Q; ξ̄) evaluates a sequence of conjunctive
queries γ1, . . . , γn iff for every database D, γi(D) = ξi(Q(D)) for all i ≤ n.

Example 3. We refer to the conjunctive queries Q and Q′ of Example 2. A pro-
tocol that evaluates Q is the following: P1 = (Q1, Q2, Q3; ξ) where

Q1(protein id : x1) ← Genbank(gene id : ’AC04654’,protein id : x1)
Q2(go id : y1) ← SwissProt(protein id : x1, go id : y1),

Q1(protein id : x1)
Q3 ← Go(go id : y1,name : z1), Q2(go id : y1)

ξ ← Q3

The intuition of the above protocol is as follows:

1. first we fetch all protein ids related to AC04654 in Genbank.
2. Next, for every such protein id, we fetch all related go ids.
3. Finally, we check whether the function of any of these go ids is known.

Note that every query Qi only uses atoms that refer to one site or to the local
repository. Further, the protocol is bounded as we have the constraints Genbank :
gene id → protein id, organism and SwissProt : protein id → go id, organism.

An evaluation protocol for Q′ is given next. Formally, we have P2 = (Q4, Q5,
Q6, Q7; ξ′) with

Q4(protein id : x2) ← Kegg(pathway id : ’0052’,protein id : x2),
Q5(protein id : x2, go id : z2) ← SwissProt(protein id : x2, go id : z2),

Q4(protein id : x2)
Q6(go id : z2) ← Go(go id : z2,name : ’catalytic activity’),

Q5(go id : z2)
Q7(gene id : y2,protein id : x2) ← Genbank(gene id : y2,protein id : x2),

Q4(protein id : x2)
ξ′(gene id : y2) ← Q5(protein id : x2, go id : z2),

Q6(go id : z2),
Q7(gene id : y2,protein id : x2)

An evaluation protocol for the sequence of queries (Q,Q′) is P3 = (Q1, Q4, Q2,
Q5, Q7, Q3, Q6; ξ, ξ′). Note that the two last evaluation protocols are bounded
and that the protocol for (Q,Q′) evaluates (Q,Q′). �

Note that the notion of bounded evaluation protocol corresponds to the require-
ments presented in (*) at the beginning of this section. Of course, queries of the
form

Q5(protein id : x2, go id : z2) ←
SwissProt(protein id : x2, go id : z2), Q4(protein id : x2)



836 F. Neven and D. Van de Craen

as in the above example use atoms referring both to a distributed site and
the local repository. However, as the size of the local repository will always be
bounded, the local relation can be shipped together with the query to the remote
site or can be hard coded in the query.

It remains to discuss how to decide that for a given query a bounded protocol
exists. The previous two examples are rather simple as for every separate query
only one communication is needed for every atom to determine the tuples that
make this atom true. In general, there can be atoms

R(A1 : c, A2 : x2, A3 : x3, A4 : x4), S(B2 : x2, B3 : x3, B3 : x4)

with a constant c and fan-out constraints R : A1 → A2, R : A3 → A4, and
S : B2 → B3. A protocol then first needs to access R to get all possible values
for x2. We refer to the latter set as the domain of x2. Then S can be accessed
to determine the domain of x3. Finally, R should be accessed again to compute
the domain of x4. At the same time, the set of tuples that hold in R can be
obtained. One final communication is then needed to determine the tuples that
hold in S. In the next proposition, we show that this strategy of limiting the
domain of variables suffices to check whether a query can be evaluated by a
bounded protocol.

First, we introduce the following notion.

Definition 4. Given a sequence of queries Q̄. Let TQ̄ be the set of pairs (A, x),
where A is an attribute and x is a variable such that A : x occurs in some atom
of a query in Q̄. Define the following sets: Bound0 contains all pairs (A, x) ∈ TQ̄

where x is a constant. Further, Boundi+1 contains all pairs (A, x) ∈ TQ̄ such
that

1. (A, x) ∈ Boundi,
2. there is a (B, x) ∈ Boundi for some B �= A; or,
3. there is an atom R(. . . , A1 : x1, . . . , An : xn, A : x, . . .) such that each

(Aj , xj) ∈ Boundi and there is a constraint R : {A1, . . . , An} → Y where
A ∈ Y .

Since Boundi ⊆ TQ̄ for every i, there is an n such that Boundn = Boundn+1.
Let Bound equal Boundn for the smallest such n. We refer to n as the depth of
Q̄. We call all pairs in Bound bounded.

Note that the above definition induces a polynomial time algorithm to decide
whether a pair is bounded.

A variable x is local if it only occurs in atoms that correspond to the same
site and it does not occur in any of the heads.

Theorem 1. Given a sequence Q̄ of queries over (S,Δ). There is a bounded
protocol P that evaluates Q̄ iff every pair (A, x) in TQ̄ where x is not local is
bounded. Moreover, the size of P is at most linear in the size of Q̄ and (S,Δ).

Proof. Suppose that every pair (A, x) in Q̄ where x is not local is bounded.
The protocol that evaluates Q̄ proceeds by computing for every such variable
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its domain. In the worst case, it needs one communication for every pair in TQ̄.
Then it needs to check which assignments of values to the variables makes each
of the queries true. To this end, it needs to contact each site at most once. In this
last step, the local variables can be evaluated. Hence, the size of the protocol
is at most linear in the size of Q̄ and (S,Δ). The protocol is described more
formally in the appendix.

For the other direction, suppose there is a non-local variable x such that no
pair (A, x) is bounded. Let (A, x) and (A′, x) be two pairs in TQ̄ occurring in two
atoms L and L′, respectively. Then it is easy to show by a fooling set technique
from communication complexity that no protocol sending a logarithmic number
of bits can check whether there is an assignment to the variables of L and L′

that satisfies them both [12]. �

Corollary 1. For a sequence of queries, it is decidable in polynomial time
whether there is a bounded protocol that evaluates it.

As we are interested in minimizing the number of different communications to
the various sites, we define the following notion. Let P = (Q1, . . . , Qn; ξ̄) be an
evaluation protocol. An ordered partition of P is an ordered sequence 1 = i0
< · · · < ik = n of integers such that all Qij

, . . . , Qij+1−1 are queries over the
same relational schema. The size of the partition is k.

Definition 5. The communication size of an evaluation protocol P , denoted by
cs(P ), is the minimal size of all its ordered partitions.

Example 4. We refer to the protocols of Example 3. The communication sizes
of P1 and P2 are 3 and 4, respectively, while that of P3 is 5. For the latter, the
ordered partition is {1}, {4}, {2, 5}, {7}, {3, 6}. Here, the queries are to the sites
Genbank, Kegg, SwissProt,Genbank, and Go, respectively. �

Definition 6. A bounded protocol is minimal for a sequence of conjunctive
queries if there is no bounded protocol with a smaller communication size.

Proposition 1. Given a sequence of queries Q̄. If there is a bounded protocol
that evaluates Q̄, then its communication size is always less than or equal to the
sum of the sizes of the queries in Q̄.

Proof. It suffices to note that the bounded protocol sketched in the proof of
Theorem 1 has the required size. �

4 Decision Problems

We define the decision problem central to the paper:

Definition 7. Given a natural number K, a distributed schema (S,Δ), and, a
sequence of conjunctive queries Q̄ over (S,Δ), min-com is the problem to decide
whether there is a bounded evaluation protocol for Q̄ of communication size at
most K.
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By Proposition 1 it does not matter whether K is given in unary or binary as
the size of a minimal protocol is at most linear in the size of the input. It is easy
to see that min-com is in np.

Proposition 2. min-com is in np.

4.1 Lower Bounds

It is hardly surprising that min-com is in fact np-complete. However, we prove
the latter for two restricted cases. In the following, a fan-out constraint R : X →
Y is unary, when |X| = |Y | = 1.

Consider the following decision problems:

1. min-comdepth k is the problem min-com where in addition all fan-out con-
straints are unary and every input sequence of queries has depth at most k;

2. min-comS,Δ is the problem min-com where in addition all fan-out con-
straints are unary and the queries are over the fixed distributed schema
(S,Δ).

The first problem gravely restricts the way in which the domain of every variable
can be determined: in a constant number of steps. Intractability can then be
encoded by allowing an unbounded number of relations. The second problem
corresponds to the more realistic situation where the database schema is fixed
in advance. In this case, intractability can be encoded by allowing arbitrarily
entangled input queries. In Section 4.2, we show that when both restrictions are
enforced, we get a tractable problem. Our results, hence, provide a complete
picture of the worst-case complexity of the problem.

Theorem 2

1. min-comdepth 2 is np-hard.
2. min-comS,Δ is np-hard.

Proof. (1) We use a reduction from Feedback Vertex Set (FVS) [8] which is
known to be np-complete. The problem is defined as follows. Given a directed
graph G = (V,E), with V a set of vertices and E ⊆ V × V a set of edges, and a
natural number K. Is there a feedback vertex set of size at most K, i.e., a subset
V ′ ⊆ V such that V ′ contains at least one vertex from every directed cycle in
G? Here, only cycles of length greater than one are considered.
Let G = (V = {v1, . . . , vn}, E) be a graph and K a natural number. Then define
S = {R1, . . . , Rn}, where each relation Ri corresponds to the node vi. The
relation Ri has the attributes Ai, Ai

i, and for every j such that (vj , vi) ∈ E, an
attribute Ai

j . We have the following fan-out constraints, for every i, Ri : {Ai} →
{Ai

i}. Let c be a constant. Then Q̄ consists of the single query containing the
following atoms: for all i,

Ri(Ai : c, Ai
i : vi, A

i
i1 : vi1 , . . . , A

i
in

: vin
)
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where vi1 , . . . , vin
are all nodes for which (vij

, vi) ∈ E. Note that the depth of
Q̄ is two. Indeed, every Ai : c is of depth zero, every Ai

i : vi is of depth one and
all other pairs are of depth two.

It can be argued that G has a feedback vertex set of size at most K iff there
is a bounded evaluation protocol for Q̄ of communication size at most K + |V |.

(2) Define scs-nr as the problem scs where every input string is non-repea-
ting (cf. Section 2).

Lemma 1. For a fixed alphabet of arity at least four, scs-nr is np-complete.

Fix the alphabet Σ = {σ1, . . . , σk}. We now reduce scs-nr to min-com. Let
s1, . . . , sn be a sequence of non-repeating strings and K be a natural number.
Define the binary relations σi with attributes A and B. For every i, we have the
fan-out constraint σi : {A} → {B}.

Let si = si1 · · · sini
. For i ≤ n and 2 ≤ j ≤ ni, let Lij be the atom sij(A :

xij , B : xi(j+1)). Define Li1 as the atom si1(A : c,B : xi2) for a constant c. Then
define Q as the query consisting of all atoms Lij .

We show that s1, . . . , sn has a supersequence of length at most K iff there is
a bounded protocol of communication size at most K that evaluates Q.

Let s be a supersequence of length at most K. Clearly, the protocol that
accesses the relations in the order induced by s is bounded and determines the
domain of all variables. A query over the local repository then evaluates Q.

Conversely, let P be a protocol of communication size at most K that evalu-
ates Q. Let s = si11 · · · si�� be the order in which the different sites are addressed.
As the si’s are non-repeating, P cannot evaluate two successive sij , si(j+1) with
a single communication. Hence, � ≤ K. As P evaluates Q and hence determines
all the variables, every string si has to be a subsequence of s. �

4.2 A Tractable Case

Define min-comdepth k
S as the problem min-com where every input sequence of

queries has depth at most k and the queries are over the distributed schema S.
So, S is given but not Δ.

Theorem 3. min-comdepth k
S is in p.

Proof. Let S = {R1, . . . , Rm}. We first argue that the minimal protocol is at
most of communication size mk + m. Indeed, following the construction in the
proof of Proposition 1, the protocol first determines the domain of all variables.
As the depth of every input sequence of queries Q̄ is k, for every pair (A, x) ∈ TQ̄,
k communications suffice to bound the value of x in the atom it appears in. So,
when executing all communication sequences of length k one after another, the
domain of every variable is known. This needs mk communications in total.
Then, at every site it needs to be checked which assignments of variables make
the atoms true. This needs another m communications as there are m sites. So,
mk + m is an upper bound for the communication size of the minimal protocol
evaluating Q̄.
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To find the minimal protocol, we only need to consider protocols of communica-
tion size at most mk + m. The minimal one can be found by exploring a search
tree of depth mk +m and width m. At every step there is the choice to access one
of the m sites. An access to relation Ri determines as many values of variables
as possible in atoms referring to Ri or when all variables are known for an atom,
fetches all tuples that make that atom true. In the end, the protocol with the
least communication size is taken. �

5 Heuristics

Although the algorithm described in the proof of Theorem 3 is in polynomial
time, the degree of the polynomial is too high to be useful in practice. Therefore,
we present in this section four heuristic algorithms to approximate min-com.
They are experimentally evaluated in the next section.

5.1 Greedy

The Greedy method proceeds by bounding the domains of variables. When for
a certain site, only one more access is necessary to bound the domain of every
variable in every atom that refers to that site, we call that site fully determined.
We can then bound the domain of these last variables together with evaluating
every such atom by one communication to the site. The latter is also the final
access to that site. Therefore, the algorithm gives priority in accessing fully
determined relations. If no site is fully determined, the protocol chooses to access
that site which maximizes the number of variables that become bounded. This
is the greedy step. We formally describe the algorithm and illustrate it by means
of an example.

We introduce some terminology. Assume given a sequence of queries Q̄ =
Q1, . . . , Q�. Let {R1, . . . , Rn} be the relational schema. We define the set of
bound variables w.r.t. to the sequence of accesses to the different sites. Therefore,
let s ∈ {1, . . . , n}∗, where s = 123 means that we first access site R1, then R2
and finally R3. Define Boundε as the set containing all pairs (A, x) ∈ TQ̄ for x a
constant. Further, Bounds·i contains Bounds and all pairs (A, x) such that

– x is non-local,
– no (B, x) ∈ Bounds·i with B �= A; and
– there is an atom Ri(. . . , A1 : x1, . . . , An : xn, A : x, . . .) such that each

(Aj , xj) ∈ Bounds and there is a constraint Ri : {A1, . . . , An} → Y where
A ∈ Y .

A relation R is fully determined at step s when every pair (A, x) in every atom
in Q̄ referring to R is in Bounds.
We describe the Greedy method. To start let s = ε.

1. Let j be such that Rj is fully determined at step s · j and Rj is unmarked.
Otherwise choose j be such that |Bounds·j | ≥ |Bounds·i|, for all i �= j and
Rj is unmarked. Otherwise if all relations are marked stop.
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2. We first add for every pair (A, x) ∈ Bounds·j \ Bounds the query Qx that
defines the set of possible values of x to the protocol: Qx(Ax : x) ← R(A1 :
x1, . . . , An : xn, A : x), Qxi1

(Axi1
: xi1), . . . , Qxim

(Axim
: xim

). Here, {xi1 ,
. . . , xim

} are the variables in {x1, . . . , xn}. The remainder are constants.
3. If Rj is fully determined, mark Rj and add Qi,Rj

for every i ≤ �, defined
as follows. For every query Qi and site R, let L1, . . . , Lk be the atoms in Qi

referring to R. Let x1, . . . , xn be the set of non-local variables that appear
in Qi.Define the query Qi,R(Ax1 : x1, . . . , Axn

: xn) ← L1, . . . , Lk, Qx1(Ax1 :
x1), . . . , Qxn

(Axn
: xn). The latter query evaluates the part of every query

in Q̄ that refers to R.
4. Set s to s · j. Go to (1).

For every i ≤ �, define ξi as the conjunction of all Qi,R.

Example 5. We illustrate the approach by means of an example. Consider the
distributed schema R1(A1, A2, A3, A4), R2(A5, A6, A7, A8), and R3(A9, A10,
A11), with fan-out constraints R1 : A1 → A2, A3, R2 : A5 → A6, and R3 :
A9 → A10, A11. We evaluate the following two queries:

Q1 ← R1(A1 : ’a’, A2 : x1, A3 : x2, A4 : x3),
R2(A5 : ’a’, A6 : x4, A7 : x2, A8 : x3),
R3(A9 : x4, A10 : x1, A11 : x3).

Q2 ← R1(A1 : ’b’, A2 : x′
1, A3 : x′

2, A4 : x′
3),

R2(A5 : ’b’, A6 : x′
4, A7 : x′

2, A8 : x′
5),

Denote by Bound′
s·i the set Bounds·i \ Bounds. Now, Bound′

1 = {A2 : x1, A3 :
x2, A3 : x′

2}, Bound′
2 = {A6 : x4}, and Bound′

3 = ∅. Note that x′
1 and x′

4 are
excluded as they are local. Further, none of the relations are fully determined at
this point. Set s = 1 and add the queries

Qx1(Ax1 : x1) ← R1(A1 : ’a’, A2 : x1)
Qx2(Ax2 : x2) ← R1(A1 : ’a’, A3 : x2)
Qx′

2
(Ax′

2
: x′

2) ← R1(A1 : ’b’, A3 : x′
2)

computing the domain of the variables x1, x2, x
′
2. Then, Bound′

12 = {A6 : x4}
and Bound′

11 = Bound′
13 = ∅. Furthermore, R2 is not fully determined as x3 is

an unbounded non-local variable. Set s = 12 and add

Qx4(Ax4 : x4) ← R2(A5 : ’a’, A6 : x4)

Note that Bound′
123 = {A11 : x3} and that R3 is fully determined. Therefore,

set s = 123, mark R3 and add2

Qx3(Ax3 : x3) ← R3(A9 : x4, A11 : x3), Qx4(Ax4 : x4)
Q1,R3(x1, x3, x4) ← R3(A9 : x4, A10 : x1, A11 : x3), Qx1(Ax1 : x1),

Qx3(Ax3 : x3), Qx4(Ax4 : x4)

2 To keep queries readable we omit the attributes in the heads of each Qi,Rj .
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At this point, all non-local variables are bounded and thus all sites are fully
determined. Now set s = 1231, mark R1, and add

Q1,R1(x1, x2, x3) ← R1(A1 : ’a’, A2 : x1, A3 : x2, A4 : x3),
Qx1(Ax1 : x1), Qx2(Ax2 : x2), Qx3(Ax3 : x3)

Q2,R1(x
′
2) ← R1(A1 : ’b’, A2 : x′

1, A3 : x′
2, A4 : x′

3), Qx′
2
(Ax′

2
: x′

2)

Next, set s = 12312, mark R2, and add

Q1,R2(x4, x2, x3) ← R2(A5 : ’a’, A6 : x4, A7 : x2, A8 : x3), Qx4(Ax4 : x4),
, Qx2(Ax2 : x2), Qx3(Ax3 : x3)

Q2,R2(x
′
2) ← R2(A5 : ’b’, A6 : x′

4, A7 : x′
2, A8 : x′

5), Qx′
2
(Ax′

2
: x′

2)

Finally, add to ξ

ξ1 ← Q1,R1(x1, x2, x3), Q1,R2(x2, x3), Q1,R3(x1, x3, x4)
ξ2 ← Q2,R1(x

′
2), Q2,R2(x

′
2)

Note that the constructed protocol is not minimal. The minimal protocol can
be constructed from the sequence 2312. �

5.2 SCS Majority-Merge (MM)

We now compute for every separate query in Q̄ a minimal protocol by exhaustive
search. All the obtained minimal protocols for the separate queries are then
combined in an overall protocol by using the Majority-Merge algorithm [7, 10]
which is an approximation of scs. The latter is illustrated in Example 6.

First, we explain how a minimal protocol is computed for every query. We
consider all possible sequences of accesses to the sites. At every access we de-
termine the domains of as many variables as possible. Whenever the domain of
every variable in an atom is determined, that atom is evaluated. For simplicity,
in the sequel, we only talk about the order in which we access the sites and
do not give the concrete queries. It should be understood that they follow the
strategy outlined above. The latter brute-force approach is feasible as the size of
each separate query is expected to be small, say consisting of around 10 atoms.

Example 6. Assume we have three queries Q1, Q2 and Q3 whose respective min-
imal protocols access the sites in the following order: R1R2R3R2R1, R1R3R1R2
and R2R3R1. The next step is to find an overall protocol which is a superse-
quence of every single protocol. The Majority-Merge algorithm iteratively adds
the symbol that occurs the most among the leftmost symbols of the remaining
sequences and removes it from those sequences. The following overview shows
the respective iterations for the given sequences:

1 2 3 4 5 6
R1 R2 R3 R2 R1
R1 R3 R1 R2

R2 R3 R1

The obtained supersequence then is R1R2R3R1R2R1.
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Improvement. As explained above, every generated protocol has two kind of
queries: those that get the domain of bounded variables and those that evaluate
atoms. At a certain point, a protocol only contains queries of the second kind.
We refer to this as phase two. Clearly, the order of the calls in the second phase
is irrelevant. This means that every permutation of the sites in the second phase
leads to another minimal protocol. We exploit this fact by aligning only the first
phases of the protocols and then checking which sites still have to be added to
the protocol. We denote this heuristic method with iMM.

Example 7. We take the same queries as in Example 6. Suppose the first phases
for the three queries are R1R2R3R2, R1R3 and R2R3. The Majority-Merge
algorithm returns the sequence R1R2R3R2. The next step is to check for ev-
ery query which of the relations in the second phase still have to be added to the
sequence. For the first query R1 has to be added and the sequence now becomes
R1R2R3R2R1. For the second and third query nothing has to be added, as the
sequence formed by their first phase and a permutation of their second phase
is a subsequence of the overall protocol.We, hence, obtain a shorter overall
protocol. �

5.3 Pairwise SCS (PSCS)

Even excluding permutations of calls in the second phase, some queries have
more than one minimal protocol. The choice of which minimal protocol to use to
construct the overall protocol can therefore strongly affect the overall protocol.
In the PSCS-approach we consider all minimal protocols for every separate query
(rather than just one), but construct the overall protocol by pairwise alignment
as it is known that the SCS problem for two sequences is solvable in polynomial
time [21].

We outline the PSCS algorithm:

1. Compute for every separate query the set of all minimal protocols by exhaus-
tive search. For a query Q, denote by SQ the set of sequences corresponding
to the first phases of the minimal protocols.

2. Take two arbitrary queries Q1 and Q2 in Q̄. Compute for every pair of
sequences in SQ1 × SQ2 its shortest common supersequence. Let s be the
shortest among all of these.

3. For every remaining query Q, compute the shortest common supersequence
of s and each sQ ∈ SQ. Set s to be the shortest among them.

4. Add second phases to s as long as necessary like in the iMM-approach.

6 Experiments

Next, we experimentally validate our four algorithms. We randomly generate
1000 queries of varying length. To be precise, the number of atoms for each
query is drawn from a Poisson-distribution with average size 10. Relations for
atoms are randomly selected. Variables and data values are randomly assigned to
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Fig. 2. Box plot of protocol size for 10 ex-
periments with 1000 queries over the bio-
logical schema

the attributes of these relations. The experiments were performed on a Pentium
IV (3.0 GHz) architecture with 1 GB of internal memory running under Linux
2.6. All programs are written in Java.

We considered two kinds of schemas: (1) randomly generated schemas with 10
relations and random fan-out constraints allowing for queries of at least depth
five; (2) a fixed biologically motivated schema given in [20] created by examining
popular life science web sites.

Figures 1 and 2 present a box plot of the sizes of the protocols produced by the
four algorithms over random schemas and the biological schema, respectively. In
brief, the lower and upper ends of the box indicate the 25th and 75th percentiles,
respectively, while the line inside the box indicates the 50th percentile. The
top and bottom lines of the tails indicate the 10th and 90th percentile (cf.,
e.g., [19].). A circle indicates an outlier. The box plots visualize data from 20
and 10 experiments, respectively. It is immediate that iMM provides a serious
improvement over MM. In the case of random schemas, Figure 1 already indicates
that PSCS performs better than the other methods. Further, a T-test on the data
generated by the experiments establishes that the average length of protocols
generated by PSCS is significantly smaller than those generated by the other
methods. In the case of the biological schema, the visualization in Figure 2 alone
already shows that the Greedy method outperforms all the others. The reason is
that the complexity of the structure of the fan-out constraints for the biological
schema is far less complicated than those of the randomly generated schemas. It
appears that the Greedy method has a better performance in such a situation.
Furthermore, PSCS performs better than iMM.

Figure 3 shows that for small numbers of queries, our three heuristics Greedy,
iMM, and PSCS, generate a protocol whose length is close to the length of the
optimal protocol (computed by exhaustive search). For larger numbers of queries
it was not possible to obtain a solution by brute-force search.

Finally, we compare running times in Figure 4. While the SCS-based methods
iMM and PSCS are very fast, the Greedy method is several orders of magnitude
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slower. The bottleneck of the algorithm is in the computation of the sets Bounds·j
for which every atom in every query has to be accessed in every iteration of the
algorithm.

7 Conclusion

We proved min-com to be an intractable problem (even under severe restrictions)
and provided four heuristics. When to use which heuristic depends on the setting.
Our experiments show that in a setting with a schema with a low complexity
structure of fan-out constraints, as is the case in our biological scenario, the
Greedy method performs best. In a random scenario PSCS outperforms the
other methods. The latter method has the additional advantage that it is much
faster than the Greedy method: 2.7 hours (Greedy) versus 10 seconds (PSCS) for
2000 random queries. The main drawback of the present approach is that only
the number of accesses to sites is minimized, the overall amount of transmitted
data remains the same. In future work we plan to address that issue.
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Abstract. Database Management Systems (DBMS) perform query plan selec-
tion by mathematically modeling the execution cost of candidate execution 
plans and choosing the cheapest query execution plan (QEP) according to that 
cost model. The cost model requires accurate estimates of the sizes of interme-
diate results of all steps in the QEP. Outdated or incomplete statistics, parame-
ter markers and complex skewed data frequently cause the selection of a  
suboptimal query plan, which in turn results in bad query performance. Feder-
ated queries are regular relational queries accessing data on one or more remote 
relational or non-relational data sources, possibly combining them with tables 
stored in the federated DBMS server. Their execution is typically divided be-
tween the federated server and the remote data sources. Outdated and incom-
plete statistics have a bigger impact on federated DBMS than on regular 
DBMS, as maintenance of federated statistics is unequally more complicated 
and expensive than the maintenance of the local statistics; consequently bad 
performance commonly occurs for federated queries due to the selection of a 
suboptimal query plan. We present an extension of the mid-query reoptimiza-
tion technique "Progressive Query Optimization" (POP), which adds robustness 
to query processing by dynamically detecting if an access plan is suboptimal 
and by triggering a reoptimization in that case. Our extensions enable efficient 
reoptimization of federated queries. Our contributions are (a) an opportunistic, 
but risk controlled, reoptimization technique for federated DBMS (b) a tech-
nique for multiple reoptimizations during federated query processing, with a 
strategy to discover redundant and eliminate partial results and (c) a mechanism 
to eagerly procure statistics in a federated environment. We have implemented 
these techniques in a prototype version of WebSphere Information Integrator 
for DB2. Our enhancements enable robust and acceptable performance for fed-
erated queries, even if the remote data sources provided almost no statistical in-
formation about the data. An extensive case study on real world data shows 
POP has negligible runtime overhead and improves the performance of com-
plex federated queries by up to a full order of magnitude. 

1   Introduction 

Traditionally, modern Database Management Systems (DBMSs) translate declarative 
SQL statements into an executable plan prior to the actual execution of the query, 
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hence strictly separating the plan selection and execution phases. To achieve optimal 
performance, the translation phase employs an optimizer component, which searches 
the space of all possible query execution plans (QEPs) for the optimal plan with re-
spect to expected query execution cost [8, 18]. This cost model requires the accurate 
estimation of the intermediate result sizes (cardinalities) of each processing step. The 
estimation error in these intermediate cardinalities usually increases exponentially in 
the plan [5], as estimates are computed by multiplication of selectivities obtained 
from statistics in the system catalog [1, 9, 21].  

For complex queries with a high number of tables and predicates, this can easily 
lead to a situation, where the estimation is very far off and the optimizer picks a 
highly suboptimal execution plan, resulting in unnecessarily long query execution 
time. Even for only moderately complex queries, this situation occurs frequently 
when either parameter markers are used, or the optimizer's estimation process makes 
assumptions about the underlying data that do not hold. Prominent examples are the 
independence- and uniformity assumption that the optimizer employs, as long as no 
statistics are available that indicate the contrary. 

Cost based optimization of federated queries transparently extends optimization 
across data sources [11], by introducing communication cost, but otherwise treating 
remote tables similar to local tables and by introducing a source- or server property 
that describes where the processing of the current plan operator happens. A special 
operator (SHIP) describes the point in the QEP where intermediate results are com-
municated between a remote datasource and the federated DBMS. The statistics that 
are used to estimate cardinalities for remote base tables are in most cases obtained 
from the remote datasource, since the gathering of statistics on remote data is very 
expensive for the federated DBMS. The variety of relational DBMSs, which can be a 
remote source, employ different optimizers and utilize different forms of statistics. 
Often, the federated server can only exploit very basic statistics about the number of 
rows in a table. The federated DBMS's optimizer is hence not able to model data 
distribution and correlation in detail, as this would require distribution and multivari-
ate statistics. The worst cases are federated queries that access non-relational remote 
datasources or remote DBMSs that do not employ a cost based optimizer. In those 
cases, there are no statistics on the remote data available at all and the optimizer is 
forced to derive its cardinality estimates from default values. 

Federated queries therefore quite frequently execute using a suboptimal QEP. For 
local parts of a federated query, the overall model of the data is in most cases fairly 
accurate and the cardinality misestimates are caused by isolated predicates. For the 
federated part of the worst case queries, however, misestimates occur at virtually 
every point in the plan. In comparison to purely local queries, the performance degra-
dation, by means of absolute execution time, through a suboptimal QEP is higher for 
federated queries, because the remote data cannot be accessed natively, but only 
through a declarative relational interface, which adds its own overhead. 

In this paper, we describe how the technique of Progressive Optimization [15] 
(POP) can be extended for federated queries to recover from suboptimal QEPs. POP 
is a mid query reoptimization technique that introduces special checkpoint operators 
(CHECK) that detect plan suboptimality during execution and trigger a repeated op-
timization to improve the plan. POP ensures that when a plan is determined to be 
suboptimal, it is not executed to the end; instead, a different plan to continue from the 
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point where the query execution was aborted, is developed and executed. That way, it 
acts like an insurance against suboptimally performing queries. We employ POP to 
check federated queries at the SHIP operator, which is a very suitable spot, as here the 
quality of the cardinality estimates and the cost regime change gravely and it marks 
the lowest possible point of intervention by the federated DBMS. Beyond the changes 
that are done for local plans, federated queries gain performance by changing the 
remote query represented by a SHIP operator and hence pushing work to the remote 
datasource or pulling processing to the local side. This way, performance cannot only 
be gained on the federated DBMS, but also on the remote datasource. Further more, 
we perform a reordering of the subplan executions in a way that does not influence 
the overall execution time, but does expose critical knowledge earlier and allows for 
faster detection of plan suboptimality and more effective reoptimization. 

The contributions of this paper are strategies to increase opportunity for reoptimi-
zation of federated queries, considerations about multiple reoptimizations and a 
method to reorder subplans to reoptimize more efficiently. The reordering provides 
knowledge for efficient reoptimization earlier, without impacting the query perform-
ance. We give a detailed analysis of POP's behavior and examine opportunity, risk 
and behavioral stability in different federated environments. 

The remainder of this section describes the prototype of POP for local queries in 
serial processing and performs a survey on related work. Section 2 describes the op-
timization and processing of federated queries with different strategies to access re-
mote data, and section 3 discusses how POP can be extended to add robustness to 
those queries. The necessity for multiple reoptimizations and special issues associated 
with this are discussed in section 4, whereas section 5 discusses the subplan reorder-
ing for more efficient reoptimization. Section 6 performs a detailed analysis of the 
performance benefits and the behavior of POP in different environments. We give our 
conclusions in section 7. 

1.1   POP for Serial Local Queries 

Progressive Optimization (POP) [15] is a compromise between static optimization 
and continuous dynamic optimization. It acts as an insurance policy against bad per-
formance degradation. POP combines a plan optimality criterion with checkpoints, 
runtime monitoring and a sophisticated matching of intermediate results. It can this 
way catch badly performing queries and improve them, while still imposing only a 
negligible overhead on well performing queries. 

During access plan selection, POP determines criterions for estimated parameters 
that are required to hold if the plan is to be the optimal one. The current prototype 
uses only the estimated cardinality, which is the most important parameter and also 
the one subject to the gravest estimation error. It computes the validity range around 
it, an interval that describes for which cardinality range the current plan is truly the 
optimal one. It then places CHECK operators at strategic points, which in turn vali-
date during plan execution that the actual cardinality, obtained from the runtime 
monitor, is within the validity range. If this is not the case, all intermediate results 
from fully materialized points are retained and the optimizer is called again. The  
actual cardinalities from the aborted query execution are made available to the opti-
mizer so that it is able to develop a better plan, which is not subject to the estimation 
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error that caused the reoptimization. Note that this makes POP suitable for any source 
of cardinality estimation error, be it bad statistics, wrong assumptions, or parameter 
markers. The retained intermediate results are treated as materialized views, also 
called materialized query tables (MQT) or automatic summary tables in DB2 [23]. 
The optimizer has the cost-based choice to match them back into the plan, enabling 
the query to basically continue from the point it was aborted for reoptimization, 
avoiding the re-execution of previously executed parts. 

 

Fig. 1. POP reoptimizing a suboptimal nested-loop-join QEP. The intermediate result after 
scanning the car table and applying its local predicates is reused as a temporary table in the 
re-optimized plan (note that the build side of the hash-join is considered the right leg). 

Figure 1 shows an example of this process. The left side shows a simple initial plan 
that uses a nested-loop-join. During optimization, POP computes the validity ranges 
around the edges of the plan and places CHECK operators at places that are suitable or 
performance critical. The CHECK operator, in this case with artificial materialization, 
takes the validity range of its child edge as parameter. During runtime, it identifies 
whether the actual cardinality is within validity ranges, and triggers reoptimization if 
not. The optimizer uses knowledge about the actual cardinality to develop the new plan; 
the intermediate result is matched into the plan as a temporary table (right side). 

[15] introduces different flavors of check operators for eager checking (tuple pipe-
lines) and lazy checking (full materialization points in a QEP). The extremely high 
communication and mediation costs for federated queries strongly suggest using the 
lazy variants, as they solely support the re-use of intermediate results. Our heuristics 
ensure that pipelines are not wildly broken, but in a very risk-controlled manner.. In 
addition, so far no research has proposed a good way to determine the validity range 
for eager checkpoints, which has to consider the cost inherent to partial re-execution; 
this implies a high risk of unnecessary reoptimization and -execution. 

1.2   Related Work 

The inadequacy of traditional query optimization for federated systems has been rec-
ognized for a long time. In Mariposa [20], sites were autonomous and could move 
data fragments independently, hence no site has good global knowledge of data sizes 
or layouts. So Mariposa adopted a hierarchical query optimization approach where 
sites sub-contract out query fragments to other sites via a bidding process that is done 
just before query execution begins. Other Federated DBMSs (e.g., [6, 7, 11, 24]) also 
provide calibration functions to help wrappers update their statistics periodically. 
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However all of these approaches are compile-time or just-before-execution ap-
proaches, and are hence vulnerable to bad cardinality estimates. 

More run-time solutions to adaptive query processing have been proposed for tra-
ditional (non-federated) DBMSs. Among the earliest was the work on choose-plan 
operators [10] which pick one among multiple pre-chosen plans during query execu-
tion based on the value of run-time parameters. The disadvantage of this approach is 
that pre-choosing all possibly optimal plans leads to combinatorial explosion; whereas 
in POP we only need to maintain one optimal plan at any given time. In the DEC 
RDB system [2], multiple access methods are run competitively before one is picked. 
The Redbrick DBMS from IBM/Informix performs star-joins by first computing the 
intermediate results of all dimension table accesses, and uses the cardinality of these 
intermediate results to decide the join method for the star-join. Such intra-operator 
adaptation is complementary to POP. 

POP and extensions ([15, 4]) belongs to a family of mid-query re-optimization 
techniques beginning with the work of [13]. [13] re-optimizes after hash join opera-
tors by materializing their result, rewriting the SQL query to use this result, and in-
voking the optimizer again. The Query Scrambling project [22] also re-optimizes 
queries, but its focus was on handling delayed sources as opposed to incorrect cardi-
nalities.  POP is a more general solution that can re-optimize at a much larger number 
of points during query execution (for example, above federated SHIP operators), and 
is more careful about cost-based reuse of intermediate results. In Adaptive Data Parti-
tioning [12] each re-optimization phase works on a separate partition of the input and 
a final cleanup phase combines results from previous phases. 

To the best of our knowledge, the early materialization idea (reordering plans so 
that wildly uncertain cardinalities are resolved with actual values early during execu-
tion) has not been proposed or implemented before. 

The LEO project at IBM Almaden [19] uses query feedback to optimize future 
queries based on cardinality estimation errors observed during previous query execu-
tions. POP complements LEO by providing a methodology for fixing the currently 
running query.  

A completely different approach to adaptive query processing is to view query 
processing as tuple routing, and optimize routing of each tuple separately. In Tele-
graph, a separate Eddy operator is used to continually adapt the tuple routing between 
other operators [3]. As shown in [3, 16, 17] this mechanism is powerful and can be 
used to adapt join orders, access paths and join algorithms, especially for wide area 
and Internet data sources. However per-tuple routing does impose an overhead which 
can lead to performance regression when the initial plan does not change. Moreover, 
currently proposed Eddy routing policies are greedy policies – these are fine for Tele-
graph’s interactive and continuous processing metrics, but it is not clear if any policy 
simpler than regular dynamic programming optimization would work for completion 
time or total work metrics. 

2   Federated Query Processing 

Federated query compilation and execution is invoked by WebSphere Information 
Integrator whenever a query references at least one view over a remote table. Feder-
ated processing techniques are various; we will deal with the techniques of WebSphere 
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Information Integrator, which are based on the work of [11]. Here, the optimizer is 
augmented by a component called pushdown analyzer, which ensures that no plan can-
didates are generated containing an operation that the remote source is not capable of 
performing. A SHIP operator is placed during candidate plan generation whenever one 
of the following circumstances is met: An operation is required to be local (such as 
RETURN); the pushdown analysis determines that the remote datasource is not capable 
of this operation; an n-ary operator has data streams from different remote sources and 
needs to bring them to the same server before processing them. An example for the 
latter one is a join of data from two different servers, which need to be carried out lo-
cally. In addition to this, different operations generate alternatives where the operation 
is done locally and remotely. 

 

Fig. 2. Alternative strategies for federated queries. On the left side, local joining vs. a pushed 
down join; on the right side, uncorrelated SHIP vs. correlated SHIP (right legs). 

The placement of a SHIP for the latest of the three mentioned reasons has the impli-
cation that for different join orders, the amount of processing done on the remote and 
local sever changes. Figure 2 shows how that happens. If tables from the same remote 
server are neighbors during joining, the join is performed on the remote server, other-
wise it is performed locally. Further more, for nested-loop-joins (NLJNs) or subqueries, 
a SHIP can become correlated to another stream (Figure 2, right). In this case, the re-
mote datasource is queried multiple times for the rows that match the current join- or 
subquery predicate. Again, the portion of work performed by the remote source as well 
as the number of tuples that are communicated between the data sources vary greatly. 

After completion of the optimizer phase, a component called statement generator 
translates the remote parts of the plan below a SHIP operator back into an SQL state-
ment in the dialect of the targeted remote datasource. When runtime encounters a SHIP, 
it invokes the SHIP’s translated statement on the remote datasource through a custom 
wrapper, which acts as a client to the datasource and mediates the request with respect 
to formats and commands. In the case of a correlated SHIP, the statement is prepared 
once with a parameter marker and then invoked repeatedly, having the parameter 
marker bound to the current value of the correlated predicate. 

3   Reoptimizing Federated Queries 

Performance degradation is mainly caused by incorrectly chosen table access strate-
gies (index scan instead of table scan) and wrong join considerations. Since table 
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access strategies fall into the remote query part and can hence not be targeted, we 
restrain our effort to SHIPs below joins. Other locations of SHIPs, such as below 
UNION or RETURN offer little opportunity for performance gain through POP. Fur-
ther more, we target only SHIPs that bring data from a remote source to the local side. 

As outlined earlier, reoptimization with the possibility to reuse all of the aborted 
execution phase can only occur at full materialization points in the QEP, such as the 
construction of a temporary table (TEMP), sorting (SORT), or when building hash 
tables for a hash-join (HSJN). Eager reoptimization is unattractive for federated que-
ries, because it is highly desirable to spare the remote datasources the overhead of 
repeated executions. Consequently, to effectively enable reoptimization at SHIP op-
erators, we need to make sure that materialization occurs above them. For SHIPs 
below joins, materialization occurs naturally at the SORTs for a merge-join and at the 
build side of a hash-join. All other ones are artificially materialized in our prototype 
by inserting a TEMP operator above them, which creates a temporary table at this 
point. Correlated SHIPs have to be excluded from this strategy, as they are repeatedly 
executed and their correlated results allow hardly any conclusion about cardinality 
estimation errors and cannot be reused after reoptimization. While this approach is 
very opportunistic and allows for reoptimization at every SHIP, it implies a signifi-
cant risk, because materialization, especially of larger intermediate results, imposes 
commonly an overhead on the execution compared to the pipelined plan. Reduction of 
this risk is done by employing three heuristics to exclude certain points. 

The first heuristic excludes SHIPs where the intermediate result is already ex-
pected to be large and the current plan to be a robust candidate and perform well even 
in case of underestimation. A simple, yet confident means of prediction for this is 
POP's validity range, which defines the cardinality range for an edge e for which the 
operator o that this edge flows into, roots the optimal subplan p with respect to the 
optimizer's cost model. If e has a validity range with an undetermined upper bound u, 
then an underestimation of the intermediate cardinality at e can never contribute to the 
suboptimality of o, and we can exclude e it from being checked and materialized. The 
case of overestimation is not caught by this heuristic, but is commonly considered 
rather uncritical. This heuristic reduces risk greatly while still maintaining high op-
portunity. 

The second heuristic performs materialization based on the sensitivity of the SHIP 
operators plan context. This heuristic excludes robust locations in the QEP from mate-
rialization to reduce overhead. Let e be an edge and o the operator this edge flows 
into. Then e is considered to be robust if the performance of o is largely independent 
of the cardinality of e. Examples are presorted streams feeding into a merge-join or 
the stream into the probe side of the hash-join. In the later case, the build side, which 
largely determines the optimality of the join, has already been processed by the time 
the probe stream is produced. Taking into account the naturally occurring materializa-
tion and excluding the robust spots, materialization becomes in most cases limited to 
nested-loop-join outer legs. This second heuristic runs practically risk free and still 
with considerable opportunity. 

A third, complementary heuristic considers GROUP BY operations that are pushed 
through join operators and occur directly adjacent to a SHIP. In the case of aggrega-
tion through sorting, the SORT already provides the opportunity for reoptimization. 
For aggregation on pre-sorted streams or hashed group-by, the aggregation result can 
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be materialized risk free, as it is expected to be very small when an aggregation oc-
curs below a join. If it is in fact large and the materialization imposes significant 
overhead, we will most likely have a reoptimization, which justifies the imposed 
overhead. 

 

Fig. 3. Materialization of SHIP operators depending on their plan context. The GROUP-BY 
(GrpBy) on the right is risk free materialized, even though its context is robust. 

Additional suitable points for checking would be RID lists or key lists for semi-
joins, as both mark small, but significant intermediate results. Since WebSphere II 
supports currently only the shipping of scalar values to remote datasources, we cannot 
target these cases. 

4   Multiple Reoptimizations 

A reoptimization is able to compensate for a single point of cardinality misestimation 
in a plan. For local queries, this yields astonishing performance speedups, because 
their optimization happens commonly with good overall statistics and cardinality 
estimation. Hence, estimation errors, caused by a small set of predicates on correlated 
or non uniform data columns, occur isolated and can be perfectly compensated for by 
POP. For the set of federated queries that are optimized in a comparable environment 
of knowledge, this naturally holds as well. However, for federated queries that are 
optimized with virtually no available statistics and consequently use default values for 
table cardinalities and predicate selectivities, virtually every point marks a grave car-
dinality misestimation. The plans are however in many cases acceptable, especially on 
databases that are centered on one or two fact tables. This is due to the fact that the 
number of applied predicates becomes implicitly a heuristic for the join order of the 
tables and bushy join trees become favored, resulting not in optimal plans but ac-
ceptably robust plans. 

A single reoptimization results mostly in a worse access plan and performance re-
gression. Reoptimization occurs for these plans basically at the very first CHECK at 
the lowest join. Perfect actual knowledge about the single remote result (SHIP opera-
tor) causes it in many cases to become part of a later join, because the actual cardinal-
ity is often higher than the comparatively low default estimates. This problem is 
caused by the fact that the optimizer cannot treat perfect actual knowledge with dif-
ferent confidence than the default estimate values. In the cases where actual cardinal-
ities are a lot higher than the estimates derived from the sparse statistics or default 
values, the optimizer will favor plans where the actual cardinalities affect the plan at 
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the latest possible point. We call this phenomenon of heavy bias “fleeing from knowl-
edge to ignorance”. It is discussed in more detail in [14]. 

Consider the example from figure 4 and let | (p6)T| > | (p4,5)S| > | (p1,2,3)R|. The ini-
tial plan chooses wrong physical join operators, but a correct join order. Assuming 
that | (p1,2,3)R| is larger than the default estimates for the accesses to S and T, a reopti-
mization would place the partial result from the access to table R in the last join. Even 
though the reoptimized plan uses a more efficient join operator for the second join, 
the order becomes highly suboptimal, resulting in many cases in a worse overall 
query performance. Compensation for this is possible by introducing several rounds 
of reoptimization. Here, each round adds knowledge about additional parts of the plan 
until finally the whole plan is covered with actual knowledge and a good final access 
plan is developed (Figure 4). The number of reoptimizations is commonly as high as 
the number of uncorrelated SHIP operators in the federated query plan, possibly 
higher if correlation on join predicates that span several SHIPs occurs. 

 

Fig. 4. Multiple reoptimizations of a query with little initial knowledge about the data. Each 
reoptimization adds actual knowledge about a single table only. 

A problem associated with multiple rounds of reoptimization is the stockpiling of 
partial results, as each iteration introduces new temporary tables. POP is not forced to 
reuse partial results but rather performs the decision to reuse them on a cost base. 
Through this mechanism, it occurs that POP ignores partial results but reconsiders 
them after another round of reoptimization or decides to fall back to another partial 
result; this happens especially when new knowledge that was added in the course of 
another reoptimization compensated for correlation on join predicates. It is conse-
quently dangerous and regressive to throw away partial results as soon as POP does 
not consider them during a reoptimization. A more commonly occurring situation is 
however that the query continues from a partial result and creates another partial re-
sult. An example for this is when during a reoptimization, the general join order re-
mains constant and only the physical join operator is changed (see Fig. 5), or a join 
becomes pushed down to the remote datasource. In those cases, the prior partial re-
sults are redundant and need to be dropped in order to free temporary storage space 
from the DBMS. 

The rule after which to decide whether to declare a partial result redundant can be 
formulated the following way: Let o1 and o2 be operators producing the partial results 
t1 and t2 respectively. Further more let R be a subplan rooting at o2 and taking o1 as an 
input. The partial result t2 is then considered to subsume t1. In means of relational 
properties this implies that the properties of o1 are a subset of the properties of o2. 
Further more, t2 has to be matched in the reoptimized QEP and t1 has to be discarded. 
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In this case, t1 can be declared redundant and be dropped without risk. The intuitive 
sense behind this is that when t2 is derived from t1 by processing R and during reopti-
mization the optimizer matches t2 knowing its actual cardinality, then it declares the 
decision to process R correct and will not fall back to a state prior to processing R, 
such as t1. The ideal point to perform this analysis and the dropping of the temporary 
results is in the transition between the query compiler and the plan execution. At this 
point, the QEP has been developed and it is known which partial results have been 
picked to be reused, but the query has not begun to be processed. Dropping redundant 
partial results here ensures that the DBMS processes the query, and also other concur-
rently running queries, with the maximum possible temporary storage space. 

 

Fig. 5. Iteratively changing the physical join operator. The partial result Temp (P1) is redundant 
after the first reoptimization. 

5   Early Materialization 

Running a reoptimization for every remote access imposes a high optimization over-
head on the query, and can in some cases cause so many oscillations between bad 
plans that the overall performance has already degraded before finally picking the cor-
rect plan. The reason for this is that a single reoptimization adds knowledge only to the 
point where it was triggered. As outlined earlier, comparing unreliable estimates with 
hard facts leads the optimizer into a heavy plan bias. To our best knowledge, the prob-
lem of optimizing for a best plan with knowledge of different quality has not yet been 
solved. We therefore suggest an approach that gathers more knowledge per reoptimiza-
tion, also more evenly distributed over the plan, by materializing the partial results from 
the SHIP operators a priori. After this, reoptimization is considered based on the viola-
tion of at least one validity range. 

Through this mechanism, the first reoptimization is aware of the actual cardinalities 
of all uncorrelated SHIP operators and can directly come up with a very good plan, 
reducing the required reoptimizations due to missing statistics a single one. As in 
figure 6, traditional reoptimization requires three reoptimizations to add the knowl-
edge about the gray shaded remote accesses; early materialization reduces this to a 
single one. Subsequent reoptimizations occur to compensate for correlations that 
involve a join predicate for a local join. As an additional impact, this approach adds 
the knowledge evenly to multiple parts of the plan rather than to an isolated point 
only, consequently preventing the optimizer to fall into a plan bias, because compari-
son between result sizes is done for all SHIP operators equally on base of either  
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estimates or actual knowledge. The only side effect of performing the materialization 
up front is that the temporary storage space, which is used for temporary tables, sorted 
results and hash-tables, is occupied for a longer time. 

 

Fig. 6. Early Materialization realized through Do-At-Open (DAO) plan maps. The SHIPs are 
materialized in the plan map of the dummy FILTER and accessed like common-sub-expression 
(CSE) clients. Correlated SHIPs are excluded from the materialization. 

Realizing early materialization is straightforward using Do-At-Open (DAO) plans. 
DAO plans map to an operator with a special predicate and are evaluated prior to the 
subplan that roots at this operator. If the DAO plan evaluates to true, the subplan of the 
operator that it maps to is executed, otherwise it is skipped. Ships are early materialized 
by inserting a dummy operator (e.g. a FILTER) with a dummy predicate, which always 
evaluates to true, at the top of the QEP and creating a DAO map for every SHIP opera-
tor. The materialized result is then accessed in the same way as the client of a common 
sub expression. Figure 6 illustrates this principle. 

A second strategy for realizing early materialization is to directly modify the execu-
table plan, if it is available in the form of executable or interpretable code. The code 
consists of a series of threads, each of which describes a pipeline. Reordering the series 
in which the threads are invoked, such that the threads that read from the SHIPs and 
write into the next TEMP, SORT or Hash Table are executed first, would model the 
reordering of the subplans very naturally, can however cause problems with the com-
plex environment of code optimization and processing. The reordering is conceptually 
transferable to nested iterators. 

For gravely underestimated cardinalities, commonly left deep join trees of nested-
loop-joins are chosen, resulting in all except one SHIP operator to be correlated. This 
scenario voids the benefits of the early materialization strategy, as only a single uncor-
related SHIP remains. Materialization of correlated SHIP operators is very expensive 
and impracticable. In practice however, the majority of the correlated SHIPs contain a 
series of uncorrelated predicates, so that their uncorrelated part can be practically mate-
rialized. This is applicable, when the reoptimization is expected to turn the correlated 
SHIP operators into uncorrelated ones, which frequently occurs when the uncorrelated 
SHIPs were underestimated and exceed their upper validity range. Therefore violation 
of all upper validity range bounds can be employed as a trigger to materialize partially 
correlated SHIPs, as indicated in figure 7. 
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Fig. 7. Materializing partly correlated SHIP operators dependent on violation of the uncorre-
lated SHIPs' validity range. The Check causes the DAO plan to evaluate to true, if the SHIPs' 
validity ranges are violated. The subplan of the DAO-Filer is then invoked and materializes the 
uncorrelated portion of the partially correlated SHIP. The right NLJN does not access the mate-
rialized result, because if it is materialized, we are guaranteed to have a reoptimization. 

Please note that early materialization does not directly imply any additional mate-
rialization, only performing the materialization that POP performs anyways a priori. 
To reduce overhead, a staging between sensitive and robust spots (see section 3) is 
easily introduced in a similar fashion as for correlated SHIPs (figure 7). 

In the presence of certain constructs, early materialization runs the risk of executing 
overeagerly accessing rows. Do-At-Open plans, Early Out conditions and Fetch-First-
N-Rows clauses need to be treated wih special care to prevent early materialization from 
voiding the benefits of these constructs. 

The concept of early materialization is not limited to federated query plans, but can 
as well be applied to local queries to obtain actual knowledge about cardinalities ear-
lier, and support more efficient reoptimization. Eager materialization, as is beneficial 
for federated queries, might not be desirable for local queries, but any naturally occur-
ring materialization can be executed a priori. For local queries, this would result in 
early hash-table building, early sorting, etc. Because the cost for obtaining the knowl-
edge earlier is only a longer occupation of the DBMS's temporary storage space and 
not impacting the query's performance, we believe this is a useful piece for any mid-
query reoptimization technique. 

6   Case Study 

We study the performance and behavior of POP in several environments using a pro-
totype implementation in a leading commercial federated DBMS. We perform test 
workloads on a large real world database, a smaller synthetic database derived from 
the large database, and the TPC-H standard benchmark. The data was in all cases held 
completely in remote relational databases and accessed through two different virtual 
servers in the same instance. This setup ensures that the tests require some local proc-
essing and are not biased by differences in the performance of the remote backends. 

All experiments were conducted with the federated instance on a P615 server, 2-
way Power4 1.4 GHz CPU with 1.5MB L2 cache, 4GB real memory, and 8 GB 
swapping space running a 64 bit AIX 5.2. The standard TPC-H benchmark test uses a 
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4GB database backend hosted on a 6-way 32 bit AIX 5.1 system. The real world da-
tabase is from a department of motor vehicles (DMV) and is hosted on an 8-way 64 
bit AIX 5.2 system and is about 8GB in size. The major tables are the CAR and 
OWNER table storing 8 million and 6 million records respectively. Both tables con-
tain major local correlation (e.g. car.make and car.model); correlation occurs also 
across columns from both tables (owner.age and car.model). The synthetic database is 
a small model of the DMV database with 4 tables and 2 million owners and 2.2 cars. 
It is co-located with the federated instance. The workload used to test POP on these 
databases contains the actual queries used by the DMV. 

The first section analyzes the performance impact of POP in different scenarios, 
whereas the second section deals with the qualitative behavior and describes which 
changes are prevalently occurring. 
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Fig. 8. Execution time plot for a workload on a synthetic database, comparing execution time 
without POP and with POP respectively. Only a single reoptimization is permitted. 

6.1   Performance 

We use the smaller synthetic database to evaluate the opportunity of POP with a sin-
gle round of reoptimization. Our current prototype implementation does not support 
reusing Hash-Tables. The statistics about the remote data that are available to the 
federated instance for optimization are as good as federated statistics get; they com-
prise complete table, column and index statistics, lack however distribution and mul-
tivariate statistics. Data correlation and non-uniform distribution can consequently not 
be modeled. Figure 8 compares the query execution times of the workload with the 
query runtime of the same queries using the POP prototype. Speedup of up to a factor 
of two is achieved in this workload with a single round of reoptimization. The rather 
low complexity of the queries and further choice narrowing conditions, such as table 
co-locations, offer only small opportunity for POP, especially when only a single 
reoptimization is permitted. This workload illustrates, however, the stability of POP 
for skewed data. Only one slight regression occurs, caused by an inconsistent plan 
choice by the optimizer. 
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Having understood the opportunity for a single reoptimization, we studied a far 
more complex workload on the real world (DMV) database, allowing for an arbitrary 
number of reoptimizations. The workload has again correct federated statistics, so that 
cardinality misestimation occurs only based on missing correlation statistics and not 
through lack of knowledge about base table cardinalities. Figure 9 shows the results 
from this workload, impressively illustrating how POP adds robustness to this  
complex federated workload. The speedup factor increases with the number of reop-
timizations to a maximum of an order of magnitude. The absolute query runtime im-
provements for the queries were in the range of several hours. 

Federated query runtime with POP
DDMV

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Th
o

us
an

d
s

Thousands

Runtime without POP (in sec)

R
un

tim
e 

w
ith

 P
O

P
  

(in
 s

ec
)

1 Reoptimization 2 Reoptimizations 3 Reoptimizations

Regression

Improvement

(56.9, 5.1)

Federated query runtime with POP
Multiple Rounds of Reoptimization

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

1 2 3 4 5 6 7 8 9 10 11 12

Query Number

S
pe

ed
up

 F
ac

to
r

1 Reopt 2 Reopts 3 Reopts

 
Fig. 9. Query performance for a large real world workload with multiple reoptimizations. The 
left shows a comparison of query execution time with POP disabled and enabled, the right the 
speedup factor of the individual queries, associated with their number of reoptimizations.  

Note that we have virtually no regression in the query execution for this workload. 
This indicates that POP is very stable in this environment, also for multiple reoptimi-
zations, and is in this environment not subject to the phenomenon of thrashing, which 
is described in [3]. Whenever a reoptimization is done over-aggressively, the sophisti-
cated matching of partial results enables POP to continue the query right were it was 
aborted. The overhead of calling the optimizer again is absolutely negligible for long 
running queries like these. 

It is interesting to observe where the savings in execution time take place. For this 
reason, we study local and remote processing time separately. Figure 10 breaks the 
normalized query execution time down into the portions processed on the federated 
instance and on the remote datasources for regular query processing and query proc-
essing with POP. The graph shows that POP is able to reduce the processing on the 
federated instance to a minimum by picking the best possible local strategies. Note 
that POP also reduces in some cases the work performed by the remote datasources 
considerably. This happens primarily through changing correlated SHIP operators 
into uncorrelated ones and is in more detail described in section 6.2. 
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Fig. 10. Normalized query execution times, divided by local and remote query processing. 
Original execution times (left) and execution times and savings with POP (right). 

Finally, we studied the impact of the early materialization technique. We set up the 
standard TPC-H workload and erased all statistics to simulate federated query proc-
essing against non-relational datasources or other datasources with no exploitable 
statistics. The optimization of the queries happened purely on the basis of default 
values for base table cardinalities and predicate selectivities. The tests were realized 
through automatic generation of materialized views from the query plan and recom-
pilation of the query. For the workload, all uncorrelated SHIPs were materialized up 
front and then a single reoptimization was triggered, exploiting these partial results. 
This very conservative application of early materialization is already providing good 
results, as can be concluded from the execution times plotted in figure 11.  
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Fig. 11. Performance comparison between regular query processing and reoptimization with 
early materialization. The optimizer had no statistics about the underlying data. 
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A single regression can be observed, which is due to the inconsistency described 
by the "fleeing from knowledge to ignorance" phenomenon. Note that this conserva-
tive usage of early materialization still leaves default values for the cardinality esti-
mates of the correlated and partially correlated SHIP operators. 

6.2   Qualitative Behavior 

Besides the net performance impact of POP, we study the changes POP actually per-
forms when reoptimization occurs. Among the possible changes are changes that 
affect purely the local processing, such as join order, join leg switching and physical 
join operator (hash-join vs. merge-join), as well as changes that affect the access to 
the remote datasources, like join pushdown or pull-up, correlating and un-correlating 
SHIP operators. 

 

Fig. 12. Typical plan change for a federated QEP through reoptimization. All correlated SHIPs 
are turned into uncorrelated SHIPs. 

Analyzing queries from the workload shows, how performance is gained mainly 
through changing correlated pipelined SHIPs into either dams or uncorrelated pipe-
lines. This usually causes a change in the join operator, but does not necessarily imply 
avoiding nested-loop-joins, as figure 12 demonstrates. Reverse change, from an un-
correlated SHIP to a correlated happens rarely, which is due to the fact that most 
estimation errors are underestimates. The lowest join stays in most cases the same, the 
order of later joins is subject to reordering. Join pushdown and pull-up occur rarely, 
when most statistics are available, and more frequently, when the knowledge used 
during optimization is very sparse. Thus, we can state that the pushdown analysis 
works accurately when basic cardinalities are available. 

It is obvious how changes between correlated and uncorrelated SHIPs affect not 
only the local processing, but also the remote processing. Uncorrelated SHIPs submit 
a single query that returns comparatively many rows, while correlates SHIPs submit a 
series of queries, with the sum of all rows returned being lower. The remote process-
ing cost per row is higher for the correlated SHIPs, resulting in more remote process-
ing if the difference in the number of returned rows is not high enough. 

For early materialization, observations like these are possible only in a limited 
way, because the first optimizer plan is mainly used to discover the uncorrelated  
and partly SHIPs and materialize them. The actual optimization happens after the 
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materialization. An obvious tendency is however again the avoidance of correlated 
SHIPs and long pipelines. 

7   Conclusions 

POP is a powerful technique to add robustness to queries, based on optimality checks 
during runtime and possible reoptimization with rematching of partial results. We 
have pointed out that federated queries have generally more problems to come up 
with the optimal QEP due to the different environment and the frequently bad  
statistics with which they are optimized. POP makes federated query processing very 
robust by judiciously materializing remote results and verifying their cardinality 
estimates, triggering a reoptimization upon violation of their validity range. Savings 
in processing time occur both on the federated instance and on the remote 
datasources. POP reoptimizes queries for an arbitrary number of times and avoids 
wasting storage space by analyzing partial results for redundancy and cleaning up 
after each reoptimization. 

For federated queries that were optimized with little knowledge, early materializa-
tion reorders the subplans in a way that data access, in the federated case access to the 
remote results, is done prior to the actual plan execution. It provides knowledge about 
actual cardinalities earlier and reduces number of reoptimizations. Through a more 
evenly provided knowledge, the optimizer runs less risk of getting into a plan bias. 

In a case study, performed with an implementation into a leading commercial  
federated DBMS, we verify that for well running federated queries the overhead is 
negligible, while for complex queries with estimation errors, POP speeds up query 
execution time, increasing with the number of reoptimizations, up to an order of 
magnitude. Early materialization is able to greatly improve the execution time of 
federated queries that were optimized without statistics. 
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Abstract. Comparison of images requires a distance metric that is sen-
sitive to the spatial location of objects and features. Such sensitive dis-
tance measures can, however, be computationally infeasible due to the
high dimensionality of feature spaces coupled with the need to model the
spatial structure of the images.

We present a novel multi-resolution approach to indexing spatially
sensitive distance measures. We derive practical lower bounds for the
earth mover’s distance (EMD). Multiple levels of lower bounds, one for
each resolution of the index structure, are incorporated into algorithms
for answering range queries and k-NN queries, both by sequential scan
and using an M-tree index structure. Experiments show that using the
lower bounds reduces the running time of similarity queries by a fac-
tor of up to 36 compared to a sequential scan without lower bounds.
Computing separately for each dimension of the feature vector yields a
speedup of ∼14. By combining the two techniques, similarity queries can
be answered more than 500 times faster.

1 Introduction

Any image database, whether a newspaper photo archive, a repository for bio-
medical images, or a surveillance system, must be able to compare images in
order to be more than an expensive file cabinet. Content-based access is key
to making use of large image databases, such as a collection of decades’ worth
of diverse photographs or the torrent of images from new, high-throughput mi-
croscopes [1]. Having a notion of distance is also necessary for global analyses
of image collections, ranging from general-purpose techniques such as clustering
and outlier detection to specialized machine learning applications that attempt
to model biological processes.

Comparing two images requires a feature extraction method and a distance
metric. A feature is a compact representation of the contents of an image. The
MPEG-7 standard [2] specifies a number of image features for visual browsing. A
distance metric computes a scalar distance between two features: examples are
the Euclidean (L2) distance, the Manhattan (L1) distance, and the Mahalanobis
distance [3]. The choice of image feature and distance metric depends on the
nature of the images, as well as the kind of similarity one hopes to capture.

For many classes of images, the spatial location is important for whether two
images should be considered similar. For instance, two photographs with a large

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 865–883, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Biologists consider images A and B more similar than images A and C, so if
image A is a query on a database consisting of images B and C, a 1-NN query should
return image B, not image C. To capture this, a distance metric must take the spatial
location into account.

blue region (the sky) in the upper half and a large green region (a field) in the
lower half might be similar to each other, but different from an image with a
large green region (a tree) in the upper half and a large blue region (a lake) in
the lower half. As a second example, Figure 1 contains three fluorescent confocal
microscopy images of retinas, collected for studying how the mammalian retina
responds to injury.1 The isolectin B4-labeled objects (shown in blue) in the
subretinal space (near the top of the image) are macrophages and the basement
membrane of the RPE, whereas the isolectin B4-labeled tissue in the inner retina
(lower half of the image) consists of microglial cells and blood vessels [4]. Other
examples can be constructed from photographs or surveillance images where one
wishes to discount small rotations or translations in defining image similarity.

The earth mover’s distance (EMD),2 first proposed by Werman et al. [6],
captures the spatial aspect of the different features extracted from the images.
The distance between two images measures both the distance in the feature
space and the spatial distance. As an example, suppose we extract a very simple
feature, the number of blue pixels, from each tile of the images in Figure 1. The
EMD considers each feature a mass located at the position of the tile it came
from, and measures the distance between two images by computing the amount
of work required to transform one image into the other. In the example, the EMD
from query image A to database images B and C are 23 and 37, respectively, so
A is more similar to B than to C. In contrast, the L2-norm yields a distance of
8.7 from A to B and 7.5 from A to C. A biologist would agree with the EMD:
The retina in image C is normal, whereas the two others have been detached
(lifted from their normal position in the eye) for 1 day.

Rubner et al. [5] successfully use the EMD for image retrieval by similar-
ity from large databases and show that it generally outperforms other distance
measures like the Lp-norm, Jeffrey divergence, χ2 statistics, and quadratic-form
distance in terms of precision and recall. Stricker and Orengo [9] show that for

1 See color images in the electronic version of the paper. More images can be found
in the UCSB Bioimage database, http://www.bioimage.ucsb.edu.

2 The name was first used by Rubner et al. [5]. Earlier works (e.g., [6, 7]) call it the
match distance, and statistics literature uses Mallows or Wasserstein distance [8].
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image retrieval, the L1 distance results in many false negatives because neigh-
boring bins are not considered. The EMD has strong theoretical foundations [7]
and is robust to small translations and rotations in an image. It is general and
flexible, and can be tuned to behave like any Lp-norm with appropriate pa-
rameters. The EMD has also been successfully applied to image retrieval based
on contours [10] and texture [11], as well as similarity search on melodies [12],
graphs [13], and vector fields [14].

Computing the EMD is a linear programming (LP) problem, and therefore
computationally expensive. For instance, computing the EMD for 12-dimensional
features extracted from images partitioned into 8 × 12 tiles takes 41 s, so a
similarity search on a database of 4,000 images can take 46 h. (See Section 5.)

In this paper, we propose the LB-index, a multi-resolution approach to index-
ing the EMD. The representation of an image in feature space is condensed into
progressively coarser summaries. We develop lower bounds for the EMD that
can be computed from the summaries at various resolutions, and apply these
lower bounds to the problem of similarity search in an image database. This
paper makes the following contributions:

– We formulate the EMD to work directly with feature vectors of any dimen-
sionality without requiring the feature values of the images to add up to the
same number. The formulation extends to concatenation of different feature
vectors, as weights can be added to each dimension of the feature vector.

– We show that the distance can be computed separately for each dimension
of the feature vector. This leads to a speedup of ∼14.

– We derive a lower bound for the EMD. The bound is reasonably tight, much
faster to compute than the actual distance, and can be computed from a low-
resolution summary of the features representing an image. Different levels of
lower bounds can be computed: Higher-level bounds are less tight, but less
expensive to compute.

– We show how sequential scan and variants of the M-tree algorithms can
use the lower bounds to speed up similarity search. Experiments show that
the lower bounds increase the speed of range and k-NN queries by factors of
∼36 and ∼7, respectively. With the two techniques (decomposition and lower
bounds) combined, similarity queries can be answered ∼500 times faster.

The rest of the paper is organized as follows. Section 2 formally defines our
distance measure and shows that it can be computed separately for each dimen-
sion of the feature vector. Section 3 introduces our multi-resolution lower-bound
approach. Section 4 explains how the lower bounds can be used for similarity
search, both by sequential scan and using an M-tree. Section 5 evaluates the
multi-resolution approach experimentally. Finally, Section 6 discusses related
work, before Section 7 concludes the paper.

2 The Earth Mover’s Distance

In this section, we formally define the EMD between images, extending Werman
et al.’s [6] formulation for grayscale images. The definition applies to feature
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vectors extracted from image regions. The image feature can be of any dimen-
sionality; in Section 2.1, we show that the distance can be computed indepen-
dently for each dimension of the feature vector and added up to get the total
distance. All feature values must be non-negative, but this is not an important
restriction, as they can be made positive by adding the same large number to
all feature values of all images. This will not affect the value of the EMD.

Suppose that the images A and B are composed of n and m regions, respec-
tively. For any two regions i ∈ A and j ∈ B, the ground distance cij is the spatial
distance between the two regions. A common choice is to use the L2-distance
between the centroids of the two regions as the ground distance.

Feature vectors are extracted from each region of each image. The feature
vectors of image A are {a0, . . . ,an−1}, and those of B are {b0, . . . , bm−1}. If
the feature vectors are d-dimensional, then each ai and bi is a column vector of
d values. A weight vector w = [w1 . . . wd]T specifies a weight for each dimension
of the feature vector. For simple features, w = [1 . . . 1]T. However, a different w
may be useful, for instance when several different features are concatenated into
one vector and one would like to assign them different weights.

Computing the EMD involves finding a flow matrix F = {fij}, where each
flow fij denotes mass to be moved from each region i in image A to each region
j in image B such that image A is transformed into image B. Note that each
fij is a column vector of d elements. Also note that both F and C = {cij} are
matrices of size n × m.

The cost of moving mass fij from region i to region j is the ground distance
from i to j multiplied by the mass to be moved, or cijw

Tfij , where the weight
vector w is used to combine the d elements of fij into a scalar. The EMD, which
is the minimum cost of transforming A into B, can then be defined as

min
F

n−1∑
i=0

m−1∑
j=0

cijw
Tfij (1)

subject to fij ≥ 0,
m−1∑
j=0

fij = ai, and
n−1∑
i=0

fij = bj ,

element-wise and ∀i ∈ {0, . . . , n − 1}, ∀j ∈ {0, . . . , m − 1}.

Finding the optimal flow matrix F is a linear programming problem. It can be
solved with the simplex method [15], but in the worst case, its running time is
exponential in the number of regions [16].

An important assumption so far is that
∑n−1

i=0 ai =
∑m−1

j=0 bj , i.e., the images
have the same total mass. This is not generally the case. For instance, if the
image feature is the intensity, a generally dark image will have a total mass
that is lower than that of a generally light image. Werman et al. [6] suggest
normalizing the images so that their intensities add up to the same value, but
this causes problems, as the distinction between a dark image and a light image
will be lost. Instead, we introduce flows to and from a special “region” called
the bank. The effect of these flows is to allow the total mass of one image to be
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Fig. 2. An example computation of the EMD between two images A and B with arbi-
trary regions. The “banks” are initialized with values such that the sum of the feature
values for A and B become equal. The ground distance matrix c is shown on the left
while the optimal flow matrix F is shown on the right. The cost to the bank, α = 1.0.
The flows are shown by arrows with the corresponding mass. The EMD is 4.6.

increased in order to match the total mass of the other, but at a cost proportional
to the increase. We add this extra bank region to each image. The bank region
has the same ground distance to all other regions, denoted by the parameter α.
The ground distance from the bank to itself is, of course, 0. The banks of the
images A and B are initialized with element-wise non-negative feature values
an =

∑m−1
j=0 bj and bm =

∑n−1
i=0 ai. The EMD can now be reformulated to

include flows to and from the banks (the n-th and m-th region of the two images,
respectively):

ρAB = min
F

n∑
i=0

m∑
j=0

cijw
Tfij (2)

subject to fij ≥ 0,

m∑
j=0

fij = ai, and
n∑

i=0

fij = bj ,

element-wise and ∀i ∈ {0, . . . , n}, ∀j ∈ {0, . . . , m}.

Notice that when α is no more than half the minimum ground distance, the
EMD is the same as the L1 distance (scaled by 2α) because a flow from region
i to the bank and back to region j is never more expensive than a flow directly
from i to j. The EMD is a metric, provided the ground distance is a metric [6].
Introducing the banks can make the ground distance non-metric, but the EMD
remains metric as the solution to the LP problem never uses the ground distances
that violate the triangle inequality. (Proof omitted due to lack of space.)

An example EMD computation is shown in Figure 2. Image A is composed of
regions a0, a1, a2 (and bank a3). Image B is composed of regions b0, b1 (and bank
b2). The example assumes α = 1.0. The EMD is

∑3
i=0

∑2
j=0 cij1Tfij = 4.6.

2.1 Decomposing the EMD for Quicker Computation

The EMD, as defined in Eq. (2), is a large linear programming problem because
the flows are vectors of the same dimensionality as the image features. Notice,
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however, that there is no “cross-talk” among the dimensions of the feature vec-
tors, i.e., there are no direct flows from one dimension to another. Thus, the
flows can be decomposed by considering only one dimension at a time, and we
can solve d smaller LP problems (where d is the dimensionality of the feature
vector) and combine the solutions. Eq. (2) can be written as

ρAB = min
F

n∑
i=0

m∑
j=0

cijw
Tfij = min

F

n∑
i=0

m∑
j=0

cij

d∑
k=1

wkfijk. (3)

Theorem 1 shows that Eq. (3) reduces to

ρAB =
d∑

k=1

min
Fk

n∑
i=0

m∑
j=0

cijwkfijk. (4)

Theorem 1 (decomposition). The minimum cost when all dimensions of the
feature vector are considered simultaneously is the same as the sum of minimum
costs when each dimension of the feature vector is considered separately, i.e.,

min
F

n∑
i=0

m∑
j=0

cij

d∑
k=1

wkfijk =
d∑

k=1

min
Fk

n∑
i=0

m∑
j=0

cijwkfijk. (5)

Proof (sketch). Since the constraints in the definition of the EMD in Eq. (2)
are all element-wise, they can be separated and solved as separate problems and
then added up to get the actual solution. (Full proof omitted.) ��

The EMD formulation in Eq. (2) is directly applicable when the dimensions of
the feature vectors are independent. This is the case, for instance, for the Color
Layout Descriptor (CLD) [2]. Other feature vectors, like the Color Structure
Descriptor or the Homogeneous Texture Descriptor, can be subjected to princi-
pal component analysis (PCA) in order to find their orthogonal bases. The LP
problems for these independent bases can then be solved separately. Another
way to deal with dependence between dimensions is to cluster the dimensions so
that there is no crosstalk between clusters, and then compute separately for each
cluster. This approach is applicable, for instance, to biomedical images showing
protein localization, where features are extracted independently for each protein.

Experiments (see Section 5) show that Theorem 1 can reduce the running
time and main memory requirements of EMD computations by factors of up to
14 and 7,600, respectively.

3 Multi-resolution Lower Bounds for the EMD

Theorem 1 makes the time complexity of computing the earth mover’s distance
(EMD) linear in the dimensionality of the feature vector, but the running time
is still high for large number of regions because the number of variables in the
LP problem increases quadratically with the number of regions. Unfortunately,
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a relatively large number of regions is necessary in order to capture the essential
traits of some classes of images, so working with a small number of regions is
not always an option. We found that increasing the number of regions from 6
to 24 increased the accuracy of classification of confocal images of feline retinas
from 90 % to 96 %. This, however, increased the running time for each distance
computation from 4 ms to 62 ms. With 96 regions, the accuracy was 98 %, but
the running time went up to 2.9 s.

In this section, we show how a lower bound for the distance using a large
number of regions can be computed using a smaller number of regions. This
allows us to combine the high accuracy of many regions with the high speed of
few regions. As we will see in Section 4, this is key to indexing the EMD.

Suppose image A is divided into n non-bank regions Zn = {0, 1, . . . , n − 1},
and ai is the feature vector of region i. Given an integer n′ < n, we partition
Zn into n′ non-empty sets A′

0, . . . , A
′
n′−1. We write A′ for the set of sets thus

obtained, and add to it a special set A′
n′ containing only the bank region, n.

Given m′ < m, B′ is defined for image B in the same way.
Recall that the ground distance c is defined on Zn+1 ×Zm+1. A new distance

function c′ is defined on Zn′+1 × Zm′+1. The distance between partitions is the
minimum pairwise ground distance between the partitions’ respective members:

c′ij = min
r∈A′

i,s∈B′
j

crs (6)

The feature vector a′
i of a partition A′

i is the sum of feature vectors of the
partition’s member regions:

a′
i =

∑
j∈A′

i

aj (7)

We can now solve the linear programming problem

ρ′AB = min
F′

n′∑
i=0

m′∑
j=0

c′ijw
Tf ′

ij (8)

subject to f ′
ij ≥ 0,

m′∑
j=0

f ′
ij = a′

i, and
n′∑

i=0

f ′
ij = b′

j ,

element-wise and ∀i ∈ {0, . . . , n′}, ∀j ∈ {0, . . . , m′}.

This is less computationally demanding because the number of variables in the
LP problem is reduced by a factor of (n/n′)(m/m′). For instance, if 4 and 4
regions are combined in both images, the number of variables is reduced by a
factor of 16. The following theorem proves that ρ′AB is a lower bound for ρAB .

Theorem 2 (lower bound). The distance ρ′AB, defined in Eq. (8), computed
from the coarse representations A′ and B′ using the modified ground distance c′

of Eq. (6), is a lower bound for the EMD ρAB, defined in Eq. (2).
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Proof. We construct a flow matrix F′ for the coarse representations A′ and B′

from the corresponding optimal flow matrix F for A and B as follows:

f ′
ij =

∑
r∈A′

i

∑
s∈B′

j

frs. (9)

Note that F′ may not be the optimal flow matrix for A′ and B′.
Eq. (2) can be expressed as sums over the partitions A′ and B′ of the images

and then over the regions r and s in each partition, i.e.,

ρAB = min
F

n∑
i=0

m∑
j=0

cijw
Tfij = min

F

n′∑
i=0

∑
r∈A′

i

m′∑
j=0

∑
s∈B′

j

crsw
Tfrs (10)

By Eq. (6), this is at least

min
F

n′∑
i=0

∑
r∈A′

i

m′∑
j=0

∑
s∈B′

j

c′ijw
Tfrs.

Therefore,

ρAB ≥ min
F

n′∑
i=0

∑
r∈A′

i

m′∑
j=0

∑
s∈B′

j

c′ijw
Tfrs = min

F

n′∑
i=0

m′∑
j=0

c′ijw
T

⎛⎝∑
r∈A′

i

∑
s∈B′
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frs

⎞⎠ ,

which, by Eq. (9), is equal to

min
F′

n′∑
i=0

m′∑
j=0

c′ijw
Tf ′

ij = ρ′AB . (11)

Finally, by Eq. (7), the constraints of ρAB and ρ′AB are equivalent. ��

Theorem 2 can easily be generalized to apply even when there is crosstalk be-
tween different dimensions of the feature vector, i.e., when there are flows directly
from one dimension of one region to another dimension in another region. (The
definition in Eq. (2) allows for such flows only indirectly, through the bank.) The
generalized proof has been omitted because of space constraints.

Although Theorem 2 is formulated in terms of the EMD definition in Eq. (2),
with feature values as mass, it can easily be adapted to work with an alternative
definition of EMD, used by Rubner et al. [5], where the image is clustered into
regions of similar feature values and the mass is the number of pixels in each
region. The only changes needed are: (1) remove the bank region, (2) make the
ground distance the distance between centroids of the sets (i.e., the weighted
mean of the members’ centroids), and (3) combine the weights of each set’s
members rather than their feature values.
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Multi-resolution Lower Bounds. So far, we have obtained a coarser sum-
mary of an image by combining n level-0 regions into n′ level-1 regions. It is
possible to repeat this process, combining the n′ level-1 regions into even fewer
n′′ level-2 regions, and so on. The ground distance between regions at level i
(i > 0) is the minimum pairwise distance between the corresponding regions at
level (i − 1). Multiple levels of lower bounds are key to building efficient index
structures for computationally costly distances such as the EMD: Large num-
bers of higher-level distances can be computed quickly while searching a tree or
scanning a list of objects. Most objects can be disregarded based on the lower
bound, and the time-consuming lower-level distances need only be computed
for the remaining objects. This is the principle behind the search algorithms in
Section 4.

4 Using Lower Bounds to Speed Up Similarity Search

This section presents LB-index algorithms that use the lower bounds derived
in Section 3 to search a large database quickly. We consider range queries and
k-NN queries. In the context of image similarity search, a range query (A, τ)
asks for all images that have a distance of no more than τ from a query image
A. (Rather than give the threshold τ explicitly, a user may derive it from a third
image B as τ = ρAB .) A k-NN query (A, k) asks for the k images that have the
lowest distance from a query image A.

For each class of queries, two algorithms are presented: sequential scan and
M-tree. The algorithms are applicable not only to the EMD, but to any distance
measure for which a reasonable lower bound can be computed much more quickly
than the actual distance. For clarity, we present the algorithms with exactly two
levels of lower bounds. It should be obvious how to extend them to work with
any number of lower-bound levels.

4.1 Sequential-Scan Algorithms

Weber et al. [17] showed that for high-dimensional vector spaces, sequential scan
outperforms any index structure. It has the additional benefits of being simple
and not requiring a priori construction of any index structure. Hence, making
sequential scan faster is important. In this section, we describe sequential-scan
algorithms for range and k-NN queries. For further reference and for brevity, we
name the algorithms seq-range-lb2 and seq-knn-lb2, respectively.

The range-query algorithm seq-range-lb2 takes two arguments, a query
object Oq and a query radius r(Oq), and returns all objects in the database
whose distance to Oq is less than or equal to r(Oq). For each object Oj in the
database, seq-range-lb2 computes dLB2(Oq, Oj), the second-level lower bound
on the distance from the query object to the database object. If dLB2(Oq, Oj)
exceeds r(Oq), then the actual distance d(Oq, Oj) must also exceed r(Oq), so
Oj can be safely pruned. Otherwise, the first-level lower bound, dLB(Oq, Oj),
is computed and the same test repeated: if dLB(Oq, Oj) exceeds r(Oq), then
the object can be pruned. Finally, if both dLB2(Oq, Oj) and dLB(Oq, Oj) were
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within the query radius, then the exact distance, d(Oq, Oj), is computed, and if
d(Oq, Oj) ≤ r(Q), Oj is added to the answer set.

The k-NN-query algorithm seq-knn-lb2 takes as arguments a query object
Oq and the number of nearest neighbors to retrieve k, and returns the k objects
in the database that are nearest to Oq (ranked according to their distances). A
list L (initially empty) of up to k nearest neighbors seen so far is maintained,
sorted by actual distance to the query. The variable dk keeps track of the actual
distance to the k-th nearest object seen so far, and is ∞ if fewer than k actual
distances have been computed.

The algorithm starts by computing dLB2 to all objects in the database and
sorting them by dLB2. The sorted list L is then traversed in order. For each object
Oj , the second-level lower bound on its distance to the query is compared to dk.
If dLB2(Oj , Oq) > dk, the algorithm halts and returns L. If not, the first-level
lower bound, dLB(Oj , Oq), is computed. If dLB(Oj , Oq) > dk, the object Oj is
not considered any more. Otherwise, the object could be one of Oq’s k nearest
neighbors, so the actual distance d(Oj , Oq) is computed. If d(Oj , Oq) ≤ dk, Oj is
inserted at the proper place in L, dk is updated, and objects in L whose actual
distance to Oq exceeds dk are removed.

4.2 Algorithm for Range Queries Using M-Tree

Ciaccia et al.’s M-tree [18] is perhaps the most well-known metric tree, and
organizes objects in a metric space into a tree structure so that the triangle
inequality can be used to prune subtrees during search. We present the algo-
rithm m-range-lb2, which performs a range search in an M-tree using lower
bounds. The algorithm is based on Ciaccia et al.’s original M-tree range query
algorithm [18], which we refer to as m-range.

Let N be a node, Op the parent node of N , Q the query object, Or a child
node of N (if N is an internal node), and Oj an object of N (if N is a leaf node).

If N is an internal node, m-range decides not to search the subtree rooted
at Or if |d(Op, Q)−d(Or, Op)| > r(Q)+ r(Or). In m-range-lb2, we replace the
condition with one that will prune fewer subtrees, but which can be calculated
much more quickly from dLB2(Op, Q):

dLB2(Op, Q) − d(Or, Op) > r(Q) + r(Or) (12)

Note that the modulus (absolute value) sign cannot be applied as it violates
the correctness of the algorithm: if dLB2(Op, Q) − d(Or, Op) > r(Q) + r(Or),
then d(Op, Q)− d(Or, Op) > r(Q) + r(Or), so we can prune; but, if d(Or, Op)−
dLB2(Op, Q) > r(Q)+r(Or), then it is not necessary that d(Or, Op)−d(Op, Q) >
r(Q) + r(Or), so pruning the subtree would be incorrect.

If N is a leaf node, m-range discards Oj without computing d(Oj , Q) if
|d(Op, Q) − d(Oj , Op)| > r(Q). In m-range-lb2, we replace the condition with

dLB2(Op, Q) − d(Oj , Op) > r(Q), (13)

which again prunes fewer subtrees but is faster to calculate. Once more, we
cannot consider the absolute value as that would violate the correctness of the
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algorithm. If condition (13) fails to prune an object Oj , approximations to the
distance from Oj to the query Q are computed—first the second-level lower
bound, then the first-level lower bound, and finally the exact distance. The
algorithm proceeds to the next level only if the object cannot be pruned based
on the previous level. The rest of the algorithm and the data structures remain
unchanged from m-range.

4.3 Algorithm for k-NN Queries Using M-Tree

Our algorithm for answering k-NN queries, which uses the lower bounds, is called
m-knn-lb2. It is based on the original k-NN algorithm for M-trees [18], which
we refer to as m-knn. We only describe the procedure m-knn-nodesearch-lb2,
since the rest of the algorithm and the data structures are identical.

Let N be a node, Op the parent node of N , Q the query object, Or a child
node of N (if N is an internal node), and Oj an object of N (if N is a leaf node).
We maintain dmin for the tree T (Or) rooted at Or as

dmin(T (Or)) = max {dLB2(Or, Q) − r(Or), 0} . (14)

If N is an internal node, m-knn decides not to search the subtree rooted at
Or if |d(Op, Q) − d(Or, Op)| > dk + r(Or) where dk is maintained as the actual
distance to the kth nearest object. In m-knn-lb2, we replace this condition with
one that is faster to calculate but has less pruning power:

dLB2(Op, Q) − d(Or, Op) > dk + r(Or) (15)

If N is a leaf node, m-knn prunes Oj without computing d(Oj , Q) if |d(Op, Q)−
d(Oj , Op)| > dk. In m-knn-lb2, we replace this condition with

dLB2(Op, Q) − d(Oj , Op) > dk, (16)

which again has less pruning capacity, but can be calculated much faster. If an
object cannot be pruned based on condition (16), the second-level lower bound
dLB2(Oj , Q) is computed and compared to dk. If this test fails to prune the
object, the first-level lower bound dLB(Oj , Q) is computed. The actual distance
d(Oj , Q) is computed only if the first-level lower bound fails to prune the object.

Finally, we have removed the part of the algorithm that computes an upper
bound dmax(T (Or)) on the distance from Q to any object in the tree rooted at
Or. This is because the upper bound would require the computation of d(Or, Q);
using dLB2(Or, Q) would invalidate the bound.

4.4 Discussion

The M-tree range query algorithm never computes more actual distances than
does the sequential scan. It may, however, compute more lower bounds and
therefore take more time. To see this, recollect that the actual distances are never
computed for internal nodes. For child nodes, the actual distance is computed
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Fig. 3. Example where the M-tree performs worse than sequential scan for k-NN query.
The M-tree shown on the left is built on the database {n1, n2, n3, n4}. The distance
matrix of the objects is shown on the right together with the actual and lower bound
distances from the query Q to all database objects. A 2-NN query for Q returns {n1,
n2}. Sequential scan performs 2 actual computations while M-tree performs 4 actual
computations. For details, see text.

only if the lower bound is within the range of the query, in which case the
sequential-scan algorithm must compute it as well. The number of lower bound
computations may be higher, as that depends on the order of traversal.

The M-tree k-NN query algorithm can end up computing more actual dis-
tances than the sequential scan (leading to higher running time) when using the
lower bounds. Figure 3 gives an example. There are 4 objects in the database:
n1, n2, n3 and n4. The actual distances among them are shown in the distance
matrix on the right. The M-tree on the left is built on these objects. For the
2-NN query of an object Q, the actual distances and the lower bound distances
are (10, 11, 16, 28) and (5, 10, 15, 20), respectively. Sequential scan computes
actual distances to n1 and n2, and since the lower bound to n3 is greater than
the actual distance to n2, it stops. The M-tree, on the other hand, first tries to
search the right subtree rooted at n3 instead of the left subtree rooted at n1
since dLB(n3, q)−r(n3) < dLB(n1, q)−r(n1). As a result, it computes the actual
distances to n3 and n4. Finally, when the left subtree is searched, it computes
actual distances for n1 and n2 and ends up with 4 actual distance computations.

We chose to use the M-tree because it is the most well-known metric index
structure; other index structures could also have been used. We do not focus on
the dynamic aspects of the index structure, and merely note that good insert
and split decisions can usually be made based on the lower bounds.

5 Experimental Results

We used two sets of confocal micrographs of cat retinas: (1) a set of 218 images
of retinal tissue labeled with anti-rhodopsin, anti-glial fibrillary acidic protein
(anti-GFAP), and isolectin B4; and (2) a set of 3932 images of retinal tissue
labeled with various antibodies and other labels. Querying a dataset of only a
few thousand images is challenging because of the EMD’s high computational
cost, so even though the second dataset may appear small, its size is sufficient
to demonstrate the benefits of our techniques. The experiments were run on
computers with Intel Xeon 3 GHz CPUs, Linux 2.6.9, and GLPK 4.8.
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Except where noted, images were partitioned into 8 × 12 = 96 tiles. All
images were 512 × 768 pixels, so each tile was 64 pixels square. We used the
12-dimensional MPEG-7 color layout descriptor (CLD) [2] as our image feature.

In order to assess the tightness of our lower bounds, we compared the actual
EMD with the first- and second-level lower bounds. We also compared to a lower
bound proposed by Rubner et al. [5], using the L1 ground distance. One image
was chosen at random from the 218 dataset, and the exact distances from that
image to each of the 217 other images were computed, along with the three lower
bounds. Figure 4 shows the result, ordered by the actual distance. We see that
all three lower bounds are tight enough to be of use, but our first- and second-
level lower bounds are tighter than that of Rubner et al. This is not surprising,
since the latter uses the center of mass for all regions, and therefore loses all
spatial information. Using random images as queries, on average, the first-level,
second-level, and Rubner et al. lower bounds were 25 %, 44 %, and 68 % below
the actual distances, respectively. Also, none of the three lower bounds were
monotonic with respect to the actual distance.

Our second experiment measures the impact of Theorem 1 (decomposition).
All pairs of distances were computed between the color layout descriptors of
10 random images. The CLD has 12 dimensions, and computing for all dimen-
sions at once (i.e., without applying Theorem 1), took 41 s and used 37 MB of
main memory. Applying the theorem and computing the distances by solving 12
smaller LP problems reduced this to 2.9 s and 5 kB, respectively.

Our third experiment measures how the time to compute the EMD increases
with the number of regions. Ten images were chosen at random from the 218 data
set and tiled with four different tile sizes: 256, 128, 64, and 32 pixels square. This
corresponds to 6, 24, 96, and 384 tiles per image, respectively. All 100 distances
between the 10 images were computed for the four tile sizes using the simplex
method. The running times were 4 ms, 62 ms, 2.89 s, and 319 s, respectively. In
comparison, the Rubner et al. lower bound took 1.4 ms to compute. We see that
reducing the number of tiles from 96 to 24 reduces the running time by a factor
of 47, so our lower bound has a great potential for speeding up queries, provided
that it is tight enough. As pointed out in Section 2.1, the distance is computed
independently for each dimension of the feature vector, so the running time is
linear in the number of dimensions. Thus, speedup achieved by computing for a
lower number of bins is independent of the dimensionality of the feature vector.

5.1 Sequential-Scan Experiments

The next set of experiments measures how lower bounds reduce the cost of
answering range and k-NN queries on the 3932 dataset using sequential-scan
algorithms. All results are averages over 50 queries. Each query is a random
image from the dataset. We measure range query running times with a range
of 3.7 % of the maximum distance between any two images in the database. On
average, this returns 25 images. For k-NN queries, we measure times for k = 25.

Figure 5 compares the impacts of decomposition (Theorem 1) and lower
bounds (Theorem 2). We see that the two techniques separately reduce the
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running time from over 40 h to 3.2 h and 1.5 h, respectively. Together, they
answer the query in 9 min. Adding a second level of lower bounds reduces this
further to 5 min, for a total speedup of more than 500.

The running times for range queries are shown in Figure 6. (The figure also
contains M-tree results, which will be discussed in Section 5.2.) The first-level
lower bounds result in a speedup of 22. Using both the first- and second-level
lower bounds increases the speedup to 36. In comparison, the Rubner et al. lower
bound led to a speedup of 5.7. For large ranges, the speedup diminishes, and the
algorithm computes all lower bounds as well as all exact distances.

The running times for k-NN queries are shown in Figure 7. For k = 25, the
first-level lower bound achieves a speedup of 6, and adding the second-level lower
bound makes 25-NN queries run 7 times faster than a sequential scan without
lower bounds. The Rubner et al. lower bound led to a speedup of 1.6.

Figure 8 shows how the total computation time for queries is divided be-
tween actual distances, first-level lower bounds, and second-level lower bounds.
Without lower bounds, the average query takes 3.2 h (not shown). With the first-
level lower bound, this is reduced to 9 min. The first bar in the figure shows that
about 50 % of this time is spent computing first-level lower bounds. Introduc-
ing a second-level lower bound reduces the number of first-level computations.
It adds 3932 second-level computations, but these are comparatively cheap, so
the running time is reduced by another factor of two. We see from the second
bar that only a small portion of the total time is spent computing second-level
lower bounds, so adding another level (or the Rubner et al. lower bound) would
not reduce the total time much. Obviously, if the first-level lower bound cannot
prune an object, the second-level lower bound cannot prune it either, so adding
the second level does not impact the time spent computing exact distances.

For 25-NN queries, the first-level lower bounds reduce the running time from
3.2 h to 30 min. Adding the second-level lower bounds increases the number of
actual computations slightly because pruning based on second-level bounds is
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Fig. 6. Running time for range queries. Figure (b) is a magnified view of the portion of
Figure (a) near the origin. For queries with a range of 3.7 % (returning on average 25
images), sequential scan runs 22 times faster when the first-level lower bound is used
and 36 times faster when both the first- and second-level lower bounds are used. The
M-tree by itself speeds up the search for small ranges, but very quickly becomes worse
than sequential scan. M-tree using the first level of lower bound achieves a speedup of
24. When using 2 levels, M-tree is not much better than sequential scan.

less effective than pruning based on first-level bounds. It saves many first-level
distance computations, however, yielding a net reduction in running time.

5.2 M-Tree Experiments

An M-tree index structure [18] was constructed on the 3932 dataset using the
bulk-loading algorithm of Ciaccia and Patella [19]. Color layout feature vectors
are 12 bytes for each tile, which amounts to 1.1 kB for each image. Because
the distance computations are so expensive, disk access times are negligible:
With a recent-model 15,000 rpm disk drive, a seek takes 3.6 ms, transfer of
1.1 kB takes 0.02 ms, and the latency of the disk drive is 2 ms. This adds up to
5.6 ms, compared to 4 ms for computing a single second-level lower bound. As
shown in Figure 8, computing second-level lower bounds is only a small part of
the total running time, so disk access times are also low. Consequently, saving
distance computations is much more important than saving disk accesses, and
we choose a page size of 2.5 kB, which yields a branching factor of two. The
M-tree had 1968 internal nodes (each with one centroid) and 1966 leaf nodes
(each with two objects). Therefore, the total size of the M-tree index structure
was (1968 + 1966 × 2) × 1.1 kB = 6.3 MB. In comparison, each image is about
1.1 MB, and so the index structure was only 0.15 % of the database size. For
each query, we counted the number of distance computations of each type and
computed total running times using the times reported in Section 5.

Figure 6 shows that the M-tree range search always outperforms sequential
scan with the same lower bounds. With a query range of 3.7 %, the speedup
is 9 % over sequential scan with the first-level lower bound. Adding the second
level yields only a negligible improvement, however. M-tree range search with
Rubner et al.’s lower bound is 7 times slower than that with our lower bounds.
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3.2 h (not shown) to 9 min. Introducing a second-level lower bound reduces the total
running time to 5 min. The time to answer a 25-NN query is reduced from 3.2 h (not
shown) to 30 min, and further to 27 min.

Without lower bounds, the cost of an M-tree is extremely high because an
exact distance must be computed for every internal node considered in the search.
The pruning achieved by the index structure was not enough to offset this huge
cost. Caching of distances might help, as the centroid of an internal node will
reappear at least once in its subtree, but this is outside the scope of this paper.

We see from Figure 7 that the M-tree k-NN algorithm with lower bounds does
not perform as well as its sequential scan counterpart. The reason is that the
algorithm must decide on an order in which to search the subtrees without full
knowledge of their contents. In contrast, sequential scan has full access to all the
lower bounds. An exact distance computation is more than 700 times costlier
than a second-level lower bound computation, so the sequential scan algorithm’s
strategy to compute 3932 lower bounds up front pays off if it saves 6 or more
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exact distance computations. For comparison, M-tree k-NN search performs 3
times slower with Rubner et al.’s lower bound than that with ours.

6 Related Work

Werman et al. [6] define the match distance for multidimensional histograms and
suggest its application to texture features, shape matching, and image compar-
ison. For the latter, the intensity of pixels is used as the mass. Peleg et al. [7]
formulate the match distance as an LP problem. Rubner et al. [5] introduce the
name earth mover’s distance, and study image retrieval using color distributions
and texture features. Their LP problem is substantially the same, but the input
slightly different: Pixels with similar feature values are clustered, and the num-
ber of pixels in each cluster is used as the mass. We are not aware of any study
that compares the two definitions experimentally. Our lower bounds and index
structures can be used with either definition. We use the name EMD for both.

Rubner et al. [5] also derive a lower bound—the distance between the cen-
ters of mass (in feature space) of the two images—for the EMD. Their bound
disregards position information, as the center of mass of each image lies at the
physical center of the image and contributes zero to the bound. We implemented
their lower bound, compared it with ours, and found (Section 5) that our lower
bounds were consistently tighter. As a consequence, our lower bounds resulted
in significantly faster querying, even though they were not as quick to compute.

Indyk and Thaper [20] embed the EMD in Euclidean space, and then use
locality-sensitive hashing to find nearest neighbors. VA-files [17] use a notion of
approximation similar to ours, and use lower and upper bounds on distances to
speed up searches.

The MPEG-7 color layout descriptor (CLD) [2] is resolution invariant and
uses the YCbCr color space. The image is divided into 64 blocks, and one repre-
sentative color is chosen from each block. The discrete cosine transform (DCT)
of each color component is then computed, resulting in three sets of 64 coeffi-
cients. The coefficients are finally zigzag scanned and non-linearly quantized to
retain 12 coefficients: 6 for luminance and 3 for each chrominance.

7 Conclusion

This article considered the problem of speeding up the computation of spatially-
sensitive distance measures between images. Adopting the earth mover’s dis-
tance, we showed how it can be decomposed, leading to a 14-fold speedup. We
then developed a novel multi-resolution index structure, LB-index, which con-
sists of progressively coarser summaries of the representation of an image. We
derived lower bounds that can be computed at multiple levels, corresponding to
the various resolutions of the index structure.

We developed a suite of similarity search algorithms that use the multiple lev-
els of lower bounds to speed up queries. The sequential scan algorithms achieved
speedups of up to 36 and 7 for range queries and k-NN queries, respectively.
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We also incorporated the lower bounds into the range search and k-NN search
algorithms for the M-tree index structure. These algorithms reduced the running
times of range queries and k-NN queries by factors of up to 36 and 5, respectively.

Possible avenues of future work are considering other spatially sensitive
distance measures and extending our approach to other tasks, such as classi-
fication and data mining.
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Abstract. Incomplete databases, that is, databases that are missing
data, are present in many research domains. It is important to derive
techniques to access these databases efficiently. We first show that known
indexing techniques for multi-dimensional data search break down in
terms of performance when indexed attributes contain missing data. This
paper utilizes two popularly employed indexing techniques, bitmaps and
quantization, to correctly and efficiently answer queries in the presence
of missing data. Query execution and interval evaluation are formalized
for the indexing structures based on whether missing data is considered
to be a query match or not. The performance of Bitmap indexes and
quantization based indexes is evaluated and compared over a variety of
analysis parameters for real and synthetic data sets. Insights into the
conditions for which to use each technique are provided.

1 Introduction

Real world applications using databases with missing data are common. Databases
with missing data occur in a wide range of research and industry domains. Some
examples of these are:

1. A census database that allow null values for some attributes
2. A survey database where answers to one question cause other questions to

be skipped
3. A medical database that relates human body analyte (a substance that can

be measured in the blood or urine) measurements to a number of diseases,
or patient risk factors to a specific disease

The goal of this paper is to provide techniques that access databases efficiently
in the presence of missing data.

There are a variety of reasons why databases may be missing data. The data
may not be available at the time the record was populated or it was not recorded
because of equipment malfunction or adverse conditions. Data may have been
unintentionally omitted or the data is not relevant to the record at hand. The
allowance for and use of missing data may be intentionally designed into the
database. In some cases, the missingness of data is random, i.e. the missingness
of some value does not depend on the value of another variable. In that case, the
missingness is ignorable and the way of dealing with it is to “complete” the value

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 884–901, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Indexing Incomplete Databases 885

using regression or other statistical model and treat the data as if it was never
missing. However, if the data are missing as a function of some other variable, a
complete treatment of missing data would have to include a model that accounts
for missing data. Consider the example of the analyte-disease database where
diseases are the records and analyte ranges are the attributes. This database
would contain values for analyte ranges if they are relevant for a specific disease,
or null values if the analyte readings are not important in the diagnosis of that
disease. We may query such a database with a patient’s analyte readings to get
a list of potential diagnoses. We do not want to discount diseases that do not
have a value for an analyte included in the query, because the act of taking
an analyte’s measurement has no bearing on if a patient has a disease that is
not relevant to that particular analyte. So in this case, missing data should be
interpreted as a query match for that attribute. Alternatively, the intent of a
query may not be to return records that could match query criteria, but to only
return records that definitely match query criteria. In this case any missing data
for a record that occurs in an attribute specified by the query search key means
that the record does not match the query. An example of this could be a survey
results query where the query asks for a count of respondents that answered
question 5 with answer “A” and question 8 with answer “C”.

This paper deals with data where missingness is not ignorable, in other words
whether a data value is missing or not is important and we want to be able
to distinguish between the real values and the absence of such values. In order
to achieve this, we could assign a specific value for missing fields that is not in
the domain of that particular attribute. For example, if the domain of an at-
tribute is the positive integers, a value of -1 may be used to denote missing data.
Then the transformed, complete multi-dimensional database could be indexed
using traditional hierarchical multi-dimensional indexing techniques. However,
this solution for indexing databases with missing data experiences significant
performance issues when applied to hierarchical indexing techniques. To illus-
trate this point, we performed a set of experiments on two-dimensional data
sets that are identical except that they vary with respect to their percentage of
missing data. We built an R-tree index on the different datasets and executed
2-dimensional queries with a global selectivity of 25%. Figure 1 shows the effect
on query execution time as missing data probability varies.

The graph shows time performance of a query using an R-tree built on the
different data sets, normalized to the time to perform the query on a complete
data set. This graph shows that even for a data set and index that is only two
dimensions, we get far worse performance when the database contains missing
data. Even when there is only 10% missing data for each attribute, the time
performance is 23 times worse than if the data set were complete.

Multi-dimensional indexing techniques work best when records are mapped to
non-overlapping hypercubes. When missing data are mapped to a single value,
the overlaps associated with the index structure increase.

One technique to deal with this issue is to somehow randomize the values
assigned to missing data so pruning potential results when traversing the index
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Fig. 1. Normalized Query Execution Time versus Percent Missing Data, Query Selec-
tivity = 25%, 2-D Data Set

structure is not compromised. However, it becomes necessary to transform the
initial query involving k attributes into 2k subqueries. This is because there are
2k possible combinations of missing and non-missing values among the k at-
tributes in the search key. Therefore there are 2k subspaces where query match-
ing data can reside, and all of them must be searched. This fact causes query
execution performance to become exponentially worse with respect to query di-
mensionality. Lastly, as described in [15] all hierarchical multi-dimensional index
structures break down after a certain number of dimensions indexed.

Space partitioning multi-dimensional indexing techniques would also suffer
from the same weaknesses in the presence of missing data. Records with missing
data values would get mapped to lesser-dimensioned spaces, and the full ben-
efit of data space partitioning would not be realized. Again, partitioning the
data space beyond a certain number of dimensions has limitations as discussed
in [15].

Data repositories need techniques for indexing multi-dimensional data that
work well in the presence of missing data. Further benefit is derived if the tech-
niques also work for databases with higher dimensionality than can be achieved
effectively using hierarchical or data partitioning indexes. The objective of this
paper is to facilitate efficient access to and define query execution for databases
with missing data in a way that even works well when the database dimension-
ality is high. The techniques introduced are evaluated in terms of performance
against a number of parameters including database dimensionality, missing data
frequency, query selectivity, and query semantics (whether missing data indicates
a query match or not).

Contributions of this paper include the following:

1. Efficiently indexing databases with missing data using variations of bitmaps
and VA-Files.

2. Demonstrating that missing data not only causes semantic problems but also
degradation in the performance of queries.

3. Formalization of query processing operations for the proposed techniques in
the presence of missing data.
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4. Insights into the environments appropriate for each technique. Although
bitmaps and quantization (VA-Files) have been extensively studied, and their
applications are similar, we know of no work that compares and contrasts
them.

5. Empirical study and evaluation of results over several analysis parameters.

The rest of this paper is organized as follows: Section 2 discusses related work,
Section 3 defines the problem addressed in this paper, Section 4 describes the
proposed solutions and Section 5 presents the experimental results. Finally, we
conclude in Section 6 and provide directions for future work.

2 Related Work

Missing Data. Although databases commonly deal with or contain missing
data, relatively little work has been performed for this topic. Formal definitions
for imperfect databases, of which databases with missing data is a subset, and
database operations are provided in [21]. Two techniques for indexing databases
with missing data are introduced and evaluated in [12]. This is the only paper
we are aware of that focuses on indexing missing data. These are the bitstring
augmented method and the multiple one-dimensional one-attribute indexes tech-
nique, called MOSAIC.

For the bitstring-augmented index, the average of the non-missing values is
used as a mapping function for the missing values. The goal is to avoid skew-
ing the data by assigning missing values to several distinct values. However, by
applying this method it becomes necessary to transform the initial query involv-
ing k attributes into 2k subqueries, making the technique infeasible for large k.
MOSAIC is a set of B+-Trees where missing data is mapped to a distinguished
value. Similarly to the previous method, it becomes necessary to transform the
initial query involving k attributes into 2k subqueries, one for each attribute.

What makes MOSAIC perform better than the Bitstring-Augmented index
for point queries is that it uses independent indices for each dimension. However,
by using several B+-Trees the query has to be decomposed and intersection and
union operations need to be performed to obtain the final result. Queries that
could gain a greater performance benefit by utilizing multiple-dimension indexes
would not achieve it using this technique. Therefore, this method may not be
useful for multiple-dimension range queries, or other queries where the number
of matches associated with a single dimension is high.

Our work differs from [12] in that we introduce and evaluate techniques that
do not suffer the same weaknesses as their techniques. In our approach the query
need not be transformed into exponential number of queries and no extra ex-
pensive computation, such as set operations, needs to be performed in order to
obtain the final result set. Moreover, even though VA-File is not a hierarchi-
cal index it benefits from pruning multiple dimensions in one pass through the
structure. In addition, our solution using bitmaps and VA-Files is also scalable
with respect to the data dimensionality.
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Bitmaps. The topic of bitmap indexes was introduced in [10]. Several bitmap en-
coding schemes have been developed, such as equality [10], range [5],
interval [5], and workload and attribute distribution oriented [9]. Several com-
mercial database management systems use bitmaps [11, 3, 7]. Numerous perfor-
mance evaluations and improvements have been performed over bitmaps
[4, 17, 13, 8, 18, 19, 5, 20]. While the fast bitwise operations afforded by bitmaps
are perhaps their biggest advantage, a limitation of bitmaps is the index size.
Several compression techniques have been proposed [2, 16, 1, 13] to reduce the
bitmap index size. Some of the most popular compression techniques such as
Byte-Aligned Bitmap Code (BBC) [2] and Word Aligned Hybrid (WAH) code
[16], use a hybrid between the run-length encoding and the literal scheme to
compress the bitmap.

VA-Files. The motivation for VA-files is introduced in [15]. This paper showed
theoretical limitations for the classes of data and space partitioning indexing
techniques with respect to dimensionality. Since reading all database pages be-
comes unavoidable when the number of indexed dimensions is high, the authors
suggest reading a much smaller approximate version, or vector approximation
(VA), of each record in the database. An initial read approximately answers
queries, and actual database pages are read to determine the exact query an-
swer. VA-files are more thoroughly described in [14].

To the best of our knowledge this is the first paper that compares and con-
trasts bitmaps and VA-files and discusses them together and the first paper in
which these techniques are used to index incomplete databases.

3 Problem Definition

Let D be a database with a schema of the form (A1, A2, . . . , Ad). D is said to be
incomplete if tuples in it are allowed to have missing attribute values. Without
loss of generality, assume the domain of the attribute values is the integers from
1 to Ci, where Ci is the cardinality of attribute Ai. We assume that data retrieval
is based on a k-dimensional search key, where k is less than or equal to d.

In range queries, a lower- and upper-bound is specified for each attribute in
the search key. Each interval in the query is represented as v1 ≤ Ai ≤ v2, where
v1 and v2 are between 1 and Ci. The query is said to be a point query if all
lower bounds are equal to the corresponding upper bound for each attribute in
the search key.

Given a range query Q with a k-dimensional search key, we have two ways
to compute the results for Q. When missing data is considered to be a query
match, a tuple t in the database is said to be an answer for Q if every attribute
of t which appears in the search key that is not a missing value falls in the
corresponding range defined in the query or is a missing value. When missing
is not a match, a tuple t in the database is said to be an answer for Q if every
attribute of t which appears in the search key is not missing and falls in the
corresponding range defined in the query.
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The performance of a query can be characterized by the time it takes to
perform the query and the accuracy of the result. For this work we only consider
techniques that provide accurate query results. The time it takes to perform a
query when an index is used is made up of the time to read the index (if the
index does not already reside in memory), the time to execute the query over the
index, and the time to read the database pages indicated by the index. The goal
of this work is to propose indexing techniques that exhibit better performance
than existing techniques and sequential scan when the database attributes that
are specified in a search key have missing data.

When measuring query performance we consider two metrics: index size and
query execution time. Index size is simply measured as the size of the requisite
index files on disk. It is indicative of the time required to initially load the index
structures. Although this metric is not as critical for static read-only databases
with ample disk-space available, it becomes important as database updates be-
come more frequent or available disk space becomes limited. Query execution
time is measured in milliseconds for a query set. Given that the indexes are in
memory, this measurement indicates the time required to process a set of queries
and arrive at a set of pointers to records in the database that could match the
query criteria.

4 Proposed Solutions

Our proposed solutions are to apply the techniques of bitmap indexes and vector-
approximation (VA) files modified appropriately to account for missing data and
to execute the query according to the query’s semantics. The reason is that
we want to independently index each dimension and execute queries efficiently
without needing to perform expensive operations to obtain the final result. Bit
operations for bitmaps provide fast computation and VA-Files provide pruning
in multiple dimensions at the same time using cheap comparisons.

4.1 Bitmap Indexes

We base one solution for the efficient access of incomplete databases on bitmap
indexes. In the bitmap index context, records are represented by a bit string.
Each attribute Ai would be represented by at most Ci bits of the string where
Ci is the cardinality of Ai, i.e. the number of distinct non-null values among
all records for attribute Ai. A bitmap is a column wise representation of each
position of the bit string. Each bitmap would have n bits where n is the number
of records in the dataset. Given a dataset D = (A1, A2, . . ., Ad) for each Ai

attribute we build a certain number of bitmaps depending on Ci. To handle
missing data using bitmaps, we map missing values to a distinct value, i.e. 0.
By doing this we are increasing the number of bitmaps for each attribute with
missing data by 1. While mapping missing data to a distinct value fails for
multi-dimensional indexes, it is acceptable for bitmaps because the attributes
are indexed independently and we are not creating an exponential number of
subspaces that must be searched to answer a query.
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Let’s denote the bitvectors or bitmap vectors for attribute Ai by Bi,j where
0 ≤ j ≤ Ci if Ai has missing values and 1 ≤ j ≤ Ci otherwise. Bi,0 represents
the bitvector for missing values.

Let’s denote by Bi,j [x] where 1 ≤ x ≤ n the bit value for record x in the
bitmap for attribute Ai and value j.

Using bitmap indices, queries are executed by performing bit operations over
the relevant bitmaps. OR, XOR, AND and NOT are commonly used.

An important aspect of a bitmap index is the type of encoding of the records.
We explore two alternatives: equality and range encoding.

4.2 Bitmap Equality Encoding (BEE)

Using equality encoded bitmaps, bit Bi,j [x] is 1 if record x has value j for at-
tribute Ai and 0 otherwise. Using this encoding, if Bi,j [x] = 1 then Bi,k[x] = 0
for all k �= j. If attribute Ai has missing values, we add the bitmap Bi,0 that
behaves in the same manner explained above.

Adding an extra bitmap for each attribute with missing data is not a major
burden with few records or few dimensions, but when we consider 1,000,000
records with 100 dimensions we are effectively adding 100,000,000 bits to our
index which correspond to approximately 12 MB in size.

An intuitive solution that could be used to encode missing data without adding
an extra bitmap would be to use different encodings depending on whether miss-
ing data is a match or not. In this alternative, when missing is a match we make
Bi,j [x] = 1 for all j if record x has missing data in attribute Ai; and when miss-
ing is not a match, we make Bi,j [x] = 0 for all j if record x has missing data in
attribute Ai.

However, there are some problems with this approach. We will need to perform
more bitmap operations when we use the NOT operator. The reason is that when
we negate a bitmap when missing data is considered to be a query match, the
resulting bitmap would have 0’s for the missing records. In order to recover the
records with missing data we will need to AND together two bit columns. We
then need to OR that result with the original negated bitmap to arrive at a
correct final result. When missing data does not imply a query match, we would
need to OR together two bit columns to ensure we are eliminating the records
with missing values and then AND this result with the negated bitmap to get
correct results. Using this approach, it would also be impossible to distinguish
between missing values and a real value when the cardinality of the attribute is
1. In addition, by making all bits 1 for the attribute when missing is a match we
interrupt the runs of 0s and compression decreases dramatically for the attribute
bitmaps.

Empirically, we realized that after compression using WAH, the addition of an
extra bitmap to handle missing data did not introduce much overhead. For the
same example of 1,000,000 records with 100 dimensions, and assuming 10,000
records with missing data, each bitmap for missing values would have approx-
imately a compression ratio of 0.47 and overall the compression ratio for the
dataset would also improve.
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Table 1. Equality encoded with missing data

Record Value B1,0 B1,1 B1,2 B1,3 B1,4 B1,5

1 5 0 0 0 0 0 1
2 2 0 0 1 0 0 0
3 3 0 0 0 1 0 0
4 missing 1 0 0 0 0 0
5 4 0 0 0 0 1 0
6 5 0 0 0 0 0 1
7 1 0 1 0 0 0 0
8 3 0 0 0 1 0 0
9 missing 1 0 0 0 0 0
10 2 0 0 1 0 0 0

Table 2. Bitmap indices

Bitmap
Vector Value

B1,0 0001000010
B1,1 0000001000
B1,2 0100000001
B1,3 0010000100
B1,4 0000100000
B1,5 1000010000

v1 ≤ Ai ≤ v2 =

(a) Missing Data is a Match (b) Missing Data is not a Match

Fig. 2. Interval Evaluation for Bitmap Equality Encoding

Query Execution With equality encoded bitmaps a point query is executed
by ANDing together the bit vectors corresponding to the values specified in the
search key. Bitmap Equality Encoded are optimal for point queries [5]. However,
with missing data when missing data means a query match we need to use two
bitmaps instead of one to answer the query, i.e. the bitmap corresponding to the
value queried and the one for missing values.

Range queries are executed by first ORing together all bit vectors specified
by each range in the search key and then ANDing the answers together. If the
query range for an attribute queried includes more than half of the cardinality
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then we execute the query by taking the complement of the ORed bitmaps that
are not included in the range query.

With our approach we execute the query differently depending on whether
missing data is a query match or not. Figure 2(a) shows how a query interval
for one attribute is evaluated when missing data implies a query match. Figure
2(b) shows the same evaluation when missing data is not a match. The query
execution time is a function of the number of bitvectors used to answer the query.
The number of bitvectors used in the worst case to evaluate a single interval in
the query is equal to min(ASi, 1 − ASi) ∗ Ci + 1 where ASi is the attribute
selectivity of attribute Ai for this query.

4.3 Bitmap Range Encoding (BRE)

For range encoded bitmaps, bit Bi,j [x] is 1 if record x has a value that is less than
or equal to j for attribute Ai and 0 otherwise. Using this encoding if Bi,j [x] = 1
then Bi,k[x] = 1 for all k > j. In this case the last bitmap Bi,Ci

for each attribute
Ai is all 1s. Thus, we drop this bitmap and only keep Ci−1 bitmaps to represent
each attribute. If attribute Ai has missing values we add the bitmap Bi,0 which
has Bi,0[x] = 1 if record x has a missing value for attribute Ai. Also in this case
Bi,j [x] = 1 for all j. We are treating missing data as the next smallest possible
value outside the lower bound of the domain, in our case, the value 0. In total
the set of bitmaps required to represent attribute Ai with missing values is Ci.

We also tried another kind of encoding in which instead of making missing
data the smallest value we consider the extra bitmap to be a flag indicating
whether the data is missing. In this alternative, if record x has a missing value
for attribute Ai, Bi,0[x] = 1 and Bi,j [x] = 0 for all j > 0. However, by making
Bi,Ci

[x] = 0 when x has a missing value for attribute Ai, we can no longer drop
it. This will effectively increase the number of bitmaps for attribute Ai to Ci +1,
and will not provide any advantage to the query evaluation logic.

Query Execution. With range encoded bitmaps the bitmaps used and the
operations performed to execute a query depend on the range being queried. We
identify three scenarios, depending on whether the range includes the minimum

v1 ≤ Ai ≤ v2 =

(a) Missing Data is a Match (b) Missing Data is not a Match

Fig. 3. Interval Evaluation for Bitmap Range Encoding
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Table 3. Sample data using Range encoding

Record Value B1,0 B1,1 B1,2 B1,3 B1,4 B1,5

1 5 0 0 0 0 0 1
2 2 0 0 1 1 1 1
3 3 0 0 0 1 1 1
4 missing 1 1 1 1 1 1
5 4 0 0 0 0 1 1
6 5 0 0 0 0 0 1
7 1 0 1 1 1 1 1
8 3 0 0 0 1 1 1
9 missing 1 1 1 1 1 1
10 2 0 0 1 1 1 1

Table 4. Range Encoded Bitmap indices

Bitmap
Vector Value

B1,0 0001000010
B1,1 0001001010
B1,2 0101001011
B1,3 0111001111
B1,4 0111101111

value, or includes the maximum value, or is within the domain and includes
neither the minimum or maximum.

Figures 3(a) and 3(b) show how the interval is evaluated for a single query
attribute when missing data implies a match or does not imply a match respec-
tively.

The first three conditions in Figures 3(a) and 3(b) refer to point queries. The
other three refer to range queries.

In the presence of missing data, range encoded bitmaps are more efficient for
range queries than equality encoded bitmaps in all but extreme cases.

In the case where missing data is a query match, we will need to access
between 1 and 3 bitvectors per query dimension. In databases without missing
data, we would need to access between 1 and 2 bitvectors per query dimension.
We introduce some overhead to deal with the missing data case.

In the case where missing data is not a match, we need to access between 1 and
2 bitvectors per query dimension. This is also true for databases without missing
data, but there are two conditions, specifically the conditions where the query
range includes the minimum domain value, that require 1 extra bitvector access.
This is due to the fact that missing values are encoded as 1’s in all bitmaps and
a XOR operation is required to eliminate missing data from the result set.
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4.4 Bitmap Compression

One of the biggest disadvantages of bitmap indices is the amount of space they
require. Several compression techniques have been developed in order to reduce
bitmap size and at the same time maintain the advantage of fast operations
[2, 16, 1, 13].

The two most popular compression techniques are the Byte-aligned Bitmap
Code (BBC) [2] and the Word-Aligned Hybrid (WAH) code [16]. BBC stores the
compressed data in Bytes while WAH stores it in words. WAH is simpler because
it only has two types of words: literal words and fill words. In our implementation
it is the most significant bit that indicates the type of word we are dealing with.
Let w denote the number of bits in a word, the lower (w-1) bits of a literal word
contain the bit values from the bitmap. If the word is a fill, then the second most
significant bit is the fill bit, and the remaining (w-2) bits store the fill length.
WAH imposes the word-alignment requirement on the fills. This requirement is
key to ensure that logical operations only access words.

We chose WAH over BBC because the bit operations over the compressed
WAH bitmap file are faster than BBC (2-20 times) [16]. However, we do sacrifice
space since BBC gives better compression ratio.

Logical operations are performed over the compressed bitmaps resulting in
another compressed bitmap.

4.5 VA-Files

For traditional VA-files, data values are approximated by one of 2b strings of
length b bits. A lookup table provides value ranges for each of the 2bpossible
representations. For each attribute Ai in the database we use bi bits to represent
2bi bins that enclose the entire attribute domain. In general bi 0 lg Ci when
the cardinality is high. We made bi = &lg(Ci + 1)'. For our purposes, we use
2b − 1 possible representations for data values and we use a string of b 0’s to
represent missing data values. A VA-file lookup table relates attribute values to
the appropriate bin number. For VA-files we make a modification to the query
based on the query semantics. For a range query where missing data is not a
query match, we look for matches over the range of bins returned by the lookup
table. In the case where missing data means a query match, we also include those
records in the all 0’s bin as a query match.

Tables 5 and 6 show a simple example of a VA-file using our missing data
modification. If we perform a query “return all records where value is 4 or 5”,

Table 5. Database and VA-File representations

Record Data VA-File
Number Value Representation

1 6 11
2 1 01
3 3 10
4 missing 00
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Table 6. VA-file representations and data ranges

VA-File
Representation Range

00 missing
01 1-2
10 3-4
11 5-6

Table 7. Synthetic and Census Datasets Distribution

Synthetic Dataset Census Dataset
% of Missing Data Total % of Missing Data Total

Card 10 20 30 40 50 Columns Card 0 ≤10 ≤50 ≤90 >90 Columns
2 10 10 10 10 10 50 <10 11 0 2 2 0 15
5 10 10 10 10 10 50 10-50 7 2 3 5 4 21

10 20 20 20 20 20 100 51-100 2 0 1 2 2 7
20 20 20 20 20 20 100 >100 0 0 1 2 2 5
50 20 20 20 20 20 100 Total 20 2 7 11 8 48

100 10 10 10 10 10 50
Total 90 90 90 90 90 450

our VA-file technique will return the records in bins 00, 10, 11 as approximate
answers in the case where missing data is a match. A filtering step would verify
that record 1 does not answer the query. In the case where missing data is not
a match, only the records in bins 10 and 11 would be returned in the first step.

Query translation is simple. When missing data implies a match, a range
query in the form v1 ≤ Ai ≤ v2 is converted to (V A(v1) ≤ V A(Ai) ≤ V A(v2))∨
(V A(Ai) = 0b), where V A(x) is a function that converts values to their repre-
sentative VA-file bit representation and b is the number of bits used to define an
attribute.

These techniques are easy to apply and require little or no modification of
the queries or query processing. As shown using empirical experiments, they are
also scalable in terms of the number of data dimensions.

5 Experiments and Results

5.1 Experimental Framework

We performed experiments using both synthetic and real datasets. By using the
synthetic data set we could control analysis parameters individually and gain
insights into the behavior of the indexing techniques. We applied the techniques
to a real data set to verify the effectiveness of the techniques on real scenarios.

For the synthetic data, we generated a uniformly distributed random dataset
set with 450 attributes and 100,000 records. For the set of attributes we varied the
cardinality and percent of missing data. Cardinality varied among 2, 5, 10, 20, 50,
and 100 values and percent of missing data among 10, 20, 30, 40, and 50 percent.
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The real data is census data with 48 attributes and 463,733 records. The
attribute cardinalities widely vary from 2 to 165 (average of 37) and percent
of missing data varies from 0% to 98.5% (average of 41%). Table 7 details the
distribution for the synthetic and the real dataset.

We implemented query executors for both bitmaps and VA-Files in Java.
We ran 100 queries for each type of experiment. Queries were executed in both
scenarios when missing data is a query match and when missing data is not a
query match. Since the graphs look very similar in both scenarios we present
only results for queries executed where missing data is a match.

Given that we used the same precision (100%) for our implementations we
compared bitmap indices and VA-Files in terms of:

– Index Size. Index Size is an important factor in any indexing technique.
We are interested in indices that can fit into memory to ensure fast query
execution without the overhead introduced when reading from disk.

– Query Execution Time. Query Execution Time is the time required to
produce a query result set.

5.2 Index Size

In this section we evaluate how the attribute cardinality and the percentage of
missing data affects index size.

Attribute Cardinality. For cardinality less than 10 there is not much room
for compression and the index size is equal for both types of bitmap encod-
ing and is not sensitive to the percent of missing data. For equality encoded
bitmaps, as the attribute cardinality increases the compression ratio improves
considerably, however, at the same time, bitmaps index size increases linearly
with cardinality. For VA-Files the index grows very slowly with cardinality given
our current quantization strategy. Index sizes are presented for attributes with
10% missing data in Figure 4(a). As can be seen, BRE does not benefit from
WAH compression.

With real data, compression rate is highly variable with respect to attribute
cardinality. Since real data can be far from uniform, an attribute that has low
cardinality but frequently has one value can acheive high compression ratios.
With our set of real data, those attributes which have cardinalities of between
1 and 10 and are not missing any data have a compression ratio between 0.002
and 1.03 using equality encoding and between 0.001 and 0.82 using bitmap range
encoding. The wide range is attributable to the bit density (ratio of 1’s) in the bit
columns. As the bit density approaches 1 or 0, the compression ratio improves.
Therefore, if one particular value is frequent, then the bit density for that value’s
column is close to 1 yielding good compression ratio for that column and the bit
density for all other bit columns is close to 0, which results in good compression
ratio for them.

Percent of Missing Data. For equality encoded bitmaps, as the percent of
missing data increases the compression ratio decreases making the index smaller.
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(a) (b)

Fig. 4. Index Size Versus (a) Cardinality and (b) Percent of Missing Data

Range encoding does not get significant compression using WAH code. VA-File
is not sensitive to the presence of missing data and its size is independent of it.
In any case the index size for VA-Files is much smaller than bitmaps. Index sizes
are presented for cardinality 50 in Figure 4(b).

Good compression is also obtained on the real dataset when an attribute
has a high occurrence of missing data. The missing data bit column has a bit
density close to 1 and all other columns are close to 0. This leads to very good
compression ratios for equality encoded bitmaps (between 0.01 and 0.09 for each
of the 8 attributes in our real data set which have more than 90% missing data)
and decent compresison ratios for range encoded bitmaps (between 0.11 and
0.44). Overall, this real data set had an equality encoded bitmap compression
ratio of 0.17 and a range encoded bitmap compression ratio of 0.70.

5.3 Query Execution Time

To measure the effect of the various parameters over the query execution time
of the 100 queries we needed to have control over the global query selectivity,
i.e. the number of records that match the given query. The following formula
relates Global Selectivity (GS), Attribute Selectivity (AS = (v2 − v1 + 1)/Ci)
and Percent of Missing Data (Pmi

) of all the attributes involved in the queries:

GS =
k∏

i=1

((1 − Pmi
)ASi + Pmi

),

where k is the number of dimensions involved in the query. In order to simplify
this formula we assume equal attribute selectivity on all the attributes in the
query. By doing this, individual attribute selectivities are easy to compute but we
lose some precision on the global query selectivity. To measure query execution
time we fixed the global query selectivity to 1 percent. Plugging in different
values for the parameters into GS = [(1 − Pm)AS + Pm]k we compute the
attribute selectivity for each attribute in the query. Note that the granularity
of attribute selectivity is limited by Ci. In general, our estimate was very close
to 1 percent but sometimes the actual global query selectivity went up to 3
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(a) (b) (c)

Fig. 5. Query Execution Time Versus (a) Cardinality, (b) Percent of Missing Data,
and (c) Query Dimensionality

percent. Note that when we make the global selectivity constant and increase
the percent of missing data, the attribute selectivity decreases. We tested the
effect of attribute selectivity, percent of missing data, and query dimensionality
against query execution time.

Attribute Cardinality. Figure 5(a) shows the query execution time of 100
queries over attributes with 10 percent missing data and various cardinalities.
Also in this case the execution time for BRE and VA-Files remains somewhat
constant with BRE being faster than VA-Files. For BEE, the execution time is
linear since the number of bitmaps used to answer the queries depends on the
cardinality of the attribute and its selectivity.

Percent of Missing Data. Figure 5(b) shows the results of these experiments
for attributes with cardinality 10. For equality encoded bitmaps, the execution
time decreases when the percent of missing data increases. This is because when
we make the global selectivity constant and increase the percent of missing data,
the attribute selectivity decreases and the number of bitmaps used in the query
execution depends on the attribute selectivity for this kind of encoding. For
range encoded bitmaps, the execution time remains somewhat constant. The
small variations are due to the possibility of using between 1 and 3 bitmaps per
dimension over the query execution. It turns out that as the percent of missing
data increases the number of bitmaps used per dimension gets closer to 3. For
VA-Files, the execution time is also somewhat constant. The variations are due
to the actual global selectivity for cardinality 10 and 8 dimensions in the query.
For cardinality 10 and 50 % missing data the global selectivity is 0.84%, for 30
and 40 is 1.28%, but for 20 is 1.7%. In general, BRE executes range queries faster
than the other two. The only case in which BEE performs better than BRE is at
50% missing when the attribute selectivity is 10% and the range query becomes
a point query.

Query Dimensionality. Figure 5(c) shows the query execution of 100 queries
over attributes with cardinality 10 and 30 percent of missing data. For all indices
the execution is linear in the number of query dimensions. BRE grows very slowly
since we are only using between 1 and 3 bitmaps per query dimension. BEE grows
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much faster since as we increase the number of dimensions with this percent of
missing data the attribute selectivity get closer to 50 %. For smaller percents of
missing data and same cardinality the attribute selectivity is greater than 50 %,
around 70 % so effectively we only access the 30 % of the bitmaps and therefore
the execution time does not increase linearly. For VA-Files the execution time
also increases with the query dimensionality.

Results on Real Data. Experiments using this real data set yielded several
conclusions. For this data set, the bitmap solutions were significantly faster than
the VA-File solution (3 to 10 times faster). This was because the skewness of this
particular data set allowed for very good compression of the bitmaps and while
the VA-file implementation had to operate over about 500,000 vector approxima-
tions of the records, the bitmap implementations performed bit operations over
substantially fewer words. The average compression ratio for the equality encod-
ing bitmaps was 0.17 (with 23 attributes compressing to less than 0.1 times their
original size). The average compression ratio for the range encoding bitmaps was
0.7 (with 18 attributes compressing to less than 0.5 times their original size and
only 3 attributes not compressing at all).

Also of note is that whereas the presence of missing data can introduce a
degradation of a couple of orders of magnitude in hierachical multiple-dimension
indexes as shown in the motivating example, there is not a large degradation
asociated with the presence of missing data using these techniques. Performance
can be as high as two times slower with our techniques, and this is attributable
to extra bit operations required to handle the missing data.

In our experiments with real data, the range encoded bitmaps performed
faster than the equality encoded bitmaps. In these experiments we used range
queries over 20% of the queried attribute possible values and would expect this
result since range encoded bitmaps are tailored for range queries.

6 Conclusions

The techniques presented in this paper are easy to apply and allow the effective
indexing of missing data. As opposed to traditional hierarchical indexing struc-
tures and previously proposed missing data indexing techniques, these techniques
exhibit linear performance for query execution time with respect to database and
query dimensionality. This is done by essentially indexing attributes indepen-
dently. Our solutions take advantage of this independence by handling missing
data for each attribute, and still maintain the linear performance associated with
respect to dimensionality that bitmaps and VA-files have been known for.

These techniques exhibit a tradeoff between execution time and indexing
space. The bit operations used to evaluate queries for bitmaps are fast, but
the space required to represent an exact bitmap can be much higher than a
corresponding exact VA-file.

The range encoded bitmaps typically offer the best time performance but, at
least using the techniques we used, can not be compressed as much as equality
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encoded bitmaps. They typically perform faster because there is a limit on the
number of bit operations that must be performed to evaluate a query for each
dimension.

Equality encoded bitmaps perform a maximum of C/2+1 bit operations per
query dimension and can perform faster than range encoded bitmaps for point
queries or range queries with small ranges. Equality encoded bitmaps can be
compressed much more than range encoded bitmaps.

VA-files offer the least size to represent the same information offered by
bitmaps, but the operations performed are not bit operations, they usually do
not operate as fast as the range encoded bitmaps.

There are several areas in which the techniques proposed here could be im-
proved. The biggest weakness of the range encoded bitmaps is the inability to
compress them. We would like to explore techniques such as BBC compression
and row reordering in order to achieve more compression of these bitmaps. The
same modifications made to the basic VA-file to account for missing data could
also be applied to the VA-plus file, a technique to quantize skewed data sets
described in [6].
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Abstract. In wireless data broadcast systems, popular information is repet-
itively disseminated through possibly multiple communication channels to
mobile clients using various types of battery-operated devices. Access latency and
tuning time are two conflicting performance metrics used in such systems to mea-
sure their efficiency. In practice, different application and usage scenarios may
require different performance trade-offs between the two metrics: some may tol-
erate slightly longer access latencies to benefit from lower energy requirements,
while others may favor shorter access latencies at the cost of higher energy ex-
penditures. To provide data broadcast service providers with the freedom to trade-
off between both metrics in an adjustable way, we propose a new flexible and
parameterizable air-indexing scheme, called FlexInd. FlexInd is a hybrid indexing
method that takes advantage of three separate air-indexing approaches, namely
(a) no-indexing, (b) exponential indexing, and (c) flexible distributed indexing,
to optimize either access latency or tuning time with certain performance guar-
antees on the other metric. Based on the access latency or energy conservation
requirements imposed on the system, FlexInd chooses among the three index-
ing schemes the one which yields the best performance results with the access
latency or tuning time bounded by a given limit. A performance study confirms
that FlexInd is able to achieve lower average access latencies and tuning times
than existing indexing schemes since it provides greater flexibility in trading-off
access efficiency for power expenditure and vice versa.

1 Introduction

Wireless data broadcasting is a powerful and efficient way to deliver popular informa-
tion to a large number of clients, anytime, anywhere, and anyhow. Wireless data broad-
cast service providers such as Ambient [1], Microsoft [11], or SkyTel [15] try to benefit
from the widespread deployment of wireless networks and the proliferation of feature-
rich mobile devices by continuously disseminating interesting private and public infor-
mation to mobile clients subscribed to their broadcast channels. Since available mobile
client and network bandwidth resources are scarce and network service subscribers ex-
pect the best possible service, the broadcast service providers need to be concerned with
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two critical issues when generating broadcast programs, namely (a) access latency and
(b) power expenditure. Unfortunately, none of the two performance metrics can be opti-
mized without adversely impacting the other one, i.e., data broadcast service providers
are doomed to trade-off between minimum access latency and minimum power expen-
diture. This adversarial relationship between both metrics is straightforward to explain:
To access a desired data item in the broadcast channel, the mobile client has to stay
tuned to it until the data arrives. Obviously, this approach will maximize the energy
consumption of the mobile client since it has to remain active monitoring the broadcast
channel in order not to miss any requested data item when it passes by. A solution to the
energy problem is to interleave indexes with the data broadcast to the mobile clients.
The basic idea of air-indexing is to include index information about the arrival times
of the data items into the broadcast program. Then, by accessing the air-index, mobile
clients are able to predict the arrival times of the data items disseminated, which, in
turn, allows them to switch their devices into doze mode during waiting time and even-
tually helps them to reduce their devices’ power expenditure [17]. The major drawback
of this solution, however, is that the length of the broadcast program increases due to
the additional index information. This clearly illustrates that we cannot optimize either
of the two performance metrics without adversely affecting the other metric.

The existing trade-off between access and energy efficiency emphasizes the benefit
and necessity of providing system builders and designers with a tunable air-indexing
scheme that is adjustable in a flexible manner such that a variety of performance guar-
antees are possible. More specifically, a good tunable air-index should be able to cater
for different application scenarios by facilitating both latency bounded and tuning time
bounded performance tuning. In order to provide system architects with the necessary
flexibility in tuning the performance along the latency and tuning time dimensions,
we propose a new hybrid air-indexing method, called FlexInd, that takes advantage
of the virtues of the no-indexing or NoInd, exponential indexing or ExpInd [18] and
flexible distributed indexing or FlexDistInd schemes. We opted to build FlexInd upon
these three indexing methods since (a) we are not aware of any existing air-indexing
method which is able to outperform the others for every realistically conceivable la-
tency bounded and tuning time bounded tuning problem and (b) any of these three
indexing schemes may be superior to the others given some performance requirements.

Contributions. In particular, the paper makes the following contributions:

– We address the issue of designing a highly adjustable air-indexing scheme that pro-
vides great flexibility in trading-off among access latency and tuning time. While
the idea of making air-indexes flexible in adjusting access latency and tuning time
is not new to the database community [7, 18], the approach to combine various (pa-
rameterizable) indexing methods into a hybrid scheme to benefit from the merits of
each of them and to achieve a much higher degree of tuning flexibility than any of
them alone is capable of, is one of the paper’s main contributions.

– We propose a new tree-structured parameterizable indexing method, called
FlexDistInd, which is one of the three cornerstones of FlexInd. FlexDistInd is able
to cut down on the long tuning times of the NoInd and ExpInd schemes, while also
being straightforward to implement and efficient in terms of access latency.
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– We analyze FlexInd’s access efficiency and energy conservation in terms of two
performance metrics, namely average access latency and worst case tuning time,
and derive formulae upon which FlexInd is able to select the indexing method
that achieves the best solution for a given access latency bounded or tuning time
bounded tuning problem.

– We perform an extensive experimental evaluation of FlexInd and show its inher-
ent flexibility in trading-off among access latency and tuning time by judiciously
selecting and parameterizing its underlying indexing methods.

Organization. The remainder of the paper is organized as follows: In the next section
related work will be reviewed, followed by the definition of some notations and termi-
nologies used throughout the paper in Section 3. Section 4 describes the three indexing
schemes upon which FlexInd is built with particular emphasis on the newly proposed
FlexDistInd scheme. This section also analyzes the access latency and tuning time of
the three indexing methods and explains how FlexInd finds the best indexing scheme for
a given latency bounded or tuning time bounded optimization problem. Experimental
results are presented in Section 5 and the paper is concluded in Section 6.

2 Related Work

The issue of air-indexing has received much attention lately and was first discussed in the
seminal papers by Imielinski et al. [6, 7, 8]. Existing indexing methods can roughly to cat-
egorized into the following four classes: (a) signature-based [10], (b) hashing-based [7],
(c) tree-based [3, 6, 8, 14, 16], and (d) table-based indexing techniques [7, 16, 18]. Signa-
ture and hashing schemes have been proposed to support exact-match queries [7, 10] and
the signature method has been identified as particular attractive for multi-attribute index-
ing [4, 5]. The majority of the proposed indexing methods, however, adopts a tree-based
structure based on that of the B+-tree.

The most prominent tree-based indexing techniques for flat broadcast schedules, de-
fined as those in which each data item is broadcast only once per broadcast cycle or,
as we call it, major broadcast cycle (MBC), are the (1, m) indexing and the distributed
indexing schemes [6, 8]. The (1, m) indexing method generates a “full” index of the
broadcast program, i.e., the index contains entries for each scheduled data item, and
it broadcasts the full index m times during an MBC. The distributed indexing scheme
improves on the access efficiency of the (1, m) indexing method by generating several
distinct “partial” indexes with each of them indexing a different portion of the broadcast
program. Tan et al. [16] addressed the issue of indexing skewed broadcast schedules,
defined as those in which some data items are broadcast multiple times per MBC, by
adapting and extending the (1, m) and flexible indexing schemes [6, 7, 8]. In the same
vein, Chen et al. and Shivakumar et al. proposed to use unbalanced tree structures to
optimize the tuning time for non-uniform distributions of index accesses [3, 14].

What all the above indexing techniques have in common is that they are not flexible
in trading-off between access latency and tuning time. To resolve this problem, two
parameterized table-based indexing schemes were proposed. One of them is the flexible
indexing method [7] which provides the tuning parameters p and m in order to achieve
either a good access latency or a good tuning time. By the tuning parameter p, the
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flexible indexing scheme splits a sorted list of data items into p equal-sized segments.
At the beginning of each segment, there is a two-columned control index consisting
of a global index that maps key values to the respective segment containing that key,
and a local index (being an m-entry index) that maps key values to the bucket in the
current data segment where the respective key resides. The other one is the ExpInd
method [18], which enhances the flexible indexing scheme by (a) allowing the indexing
space to be exponentially partitioned at any base value, (b) allowing each data segment
to index into the next data segment, and (c) providing the mathematical foundations
behind exhibiting different trade-offs between access latency and tuning time.

Despite all of these enhancements, the tuning flexibility of the ExpInd method is still
quite limited and depends largely on the data organization of the broadcast program.
Like the flexible indexing method, ExpInd requires the data items to be sorted on the
indexed attribute. While such a requirement does not constrain its tuning flexibility for
flat broadcast schedules, it, however, does so for skewed ones. In non-uniform broadcast
schedules, the broadcast program is partitioned into a number of segments, called minor
broadcast cycles (MIBC), each of which consists of a sequence of data items which are
ordered according to the indexed attribute. As the values of the search keys may overlap
between MIBCs, multiple MIBCs may need to be searched in order to find the data item
to be accessed. As a result, the tuning time of ExpInd is directly proportional to the
number of MIBCs of the broadcast program, and thus cannot be freely adjusted to suit
all application and usage scenarios. To compensate for this shortfall, we propose to use
the FlexDistInd scheme in at least those cases where the given limit on the tuning time
cannot be achieved by ExpInd.

3 Preliminaries: Assumptions and Notations

Apart from indexing, data scheduling is a major factor impacting the access latency and
tuning time of mobile clients. The broadcast scheduling policy determines the contents
of the broadcast program and the broadcast frequency of the data items. We assume that
the FlexSched scheduling scheme is used to construct the broadcast schedule [13]. We
opted for the FlexSched algorithm since it produces perfectly periodic schedules which
are cost-efficient to generate and allow mobile clients to save significantly on energy. On
top of that, it is able to outperform other state-of-the-art scheduling algorithms [2, 9, 12],
and is therefore preferable to them.

In order to become more technically, let an ordered set D = {d1, d2, . . . , dn} of
N data items represent (a pre-selected subset of) a database to be broadcast over some
broadcast channel c. Each data item di has a demand probability pi to be accessed by
mobile clients and the demand probability of the data items is used as sorting criterion
for D. More precisely, let di and dj be two data items with di, dj ∈ D. Then, if di <

dj , then pi ≥ pj . Clearly,
∑N

i=1 pi = 1. In order to generate the broadcast schedule
for broadcast channel c, FlexSched partitions the ordered set D of data items into an
ordered set G = {g1, g2, . . . , gm} of M data groups and assigns each data group gk ∈
G an integer-valued broadcast frequency bfk representing the number of instances of
data items belonging to group gk that are broadcast per MIBC. The scheduled data
items themselves are collected in and transferred as buckets with each split up into a
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fixed number of packets — the basic unit of message transfer in wireless networks.
We distinguish between three types of buckets: (a) data buckets which hold data items
only, (b) index buckets which contain index information only, and (c) hybrid buckets
which include both data and index information. To allow mobile clients to interpret the
data instantly as they fly by and to enable them to orientate themselves in the broadcast
program, buckets are designed to be self-explanatory by including header information
in each bucket similar to [8].

4 The FlexInd Indexing Scheme

In what follows, we will show, by means of a running example, the fundamental char-
acteristics and general structure of the three index schemes upon which FlexInd is built
and also present a performance analysis of each of them. The description of the running
example is as follows:

Example 1. Consider a broadcast server that maintains 33 data items which were par-
titioned by the FlexSched scheduling algorithm into a set G = {g1, g2, g3, and g4}
of 4 data groups, where groups g1 = {1 − 2}, g2 = {3 − 8}, g3 = {9 − 17}, and
g4 = {18− 33} comprise 2, 6, 9, and 16 data items, respectively. Suppose that the data
items of data groups g1, g2, g3, and g4 are broadcast with frequencies 2, 3, 3, and 4,
respectively, i.e., it takes max∀gj∈G|gj |/bfj = 16/4 = 4 MIBCs until all data items
belonging to the data groups of G are disseminated at least once. Each data bucket, in-
dex bucket, and hybrid bucket is assumed to accommodate up to 3 data items, an index
table with up to 18 entries (rows), and 2 data items and an index table with up to 6
entries (rows), respectively.

4.1 No-Indexing Scheme

The first indexing method contained under the “umbrella” of the FlexInd indexing
method is the NoInd scheme. As its name implies, the NoInd scheme does not inter-
leave any index information with the data broadcast and as such, it generates broadcast
schedules that ensure the lowest possible access time, while at the same time incurring
the longest tuning time among the three indexing schemes.

Example 2. Figure 1 shows the broadcast program produced by FlexSched/NoInd ac-
cording to the specifications of the running example. It is easy to see that it consists of
a sequence of 16 buckets which are partitioned into 4 MIBCs, each containing 4 data
buckets. Obviously, the worst case tuning time of the broadcast program is 16 buckets
and the average access time for data item 1, for example, is 2 buckets, which is half of
its average inter-arrival time.

To facilitate a quantitative comparison of the three indexing schemes, in what follows,
we will analyze the average access time and worst case tuning time of each of them
once their main properties have been explained. We opted for the worst case tuning
time, rather than its average, as a means for comparison since we believe that the former
metric is more appropriate for this purpose and it also eases the process of specifying
tuning time boundaries. To start with, we analyze the performance of the NoInd scheme.
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Fig. 1. Illustration of the no-indexing scheme

Average Access Time. The overall average access time of a broadcast schedule when
using NoInd for “air-indexing”, denoted ATno−ind, is defined as the average waiting
time encountered by a client averaged over all data items. More precisely,

ATno−ind =
N∑

i=1

pi · wi, (1)

where N denotes the number of distinct data items disseminated in the broadcast chan-
nel, pi represents the probability of a data item di ∈ D being requested by a client,
and wi denotes the average wait time encountered by a client needing to inspect di. The
average wait time wi for a data item di is half the average inter-arrival time ti between
two consecutive instances of di. Since FlexSched enforces the equal-spacing assump-
tion for each data item in D [13] and its average wait time is given by wi = ti/2, the
overall average access time can be computed by:

ATno−ind =
1
2
·

N∑
i=1

pi · ti. (2)

Worst Case Tuning Time. Next, we derive the worst case tuning time. As no index
information is provided with the broadcast program, the worst case tuning time is the
maximum value of the set of spacings between two consecutive instances of the same
data item of all data items transmitted in the broadcast channel. More formally, the
worst case tuning time to locate and download a data item from the broadcast channel,
denoted TTno−ind, is given by:

TTno−ind = max
∀di∈D

ti. (3)

4.2 Exponential Indexing Scheme

The second indexing method supported by FlexInd is the ExpInd scheme [18]. To cut
down on the long tuning times of NoInd, the ExpInd scheme splits the broadcast pro-
gram into equal-sized data chunks and disseminates at the beginning of each data chunk
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an exponential index. In brief, the ExpInd scheme provides system designers with two
tuning knobs, namely (a) data chunk size I and (b) index base r, to trade-off access
latency against tuning time and vice versa.

To enable system designers to reduce the indexing overhead and tuning time, ExpInd
allows to group I consecutive data buckets together into a data chunk and to build the
exponential index on a per data chunk rather than per bucket basis. Each data chunk
itself begins with a hybrid bucket which contains, besides a set of data items, the ex-
ponential index. The exponential index is organized as an index table consisting of two
components: (a) a global index and (b) a local index. While the global index is used to
determine the range of data chunks in which the desired data item may be located, the
local index provides the offset to the bucket of the local data chunk where the data item
may be found.

To allow system designers to specify the number of index entries contained in the
global index, ExpInd provides the index base r which can be set to any value r ≥ 1
(with r ∈ R) and causes the size of the indexed sequence of data chunks to grow expo-
nentially. While the first entry of any global index describes the next data chunk, each
following i-th index entry indexes a sequence of data chunks that are #

∑i−2
j=0 rj + 1$ to

#
∑i−1

j=0 rj$ away from the current data chunk. In the global index, entries are ordered
pairs of the form (indRange,mKey), where indRange represents the distance range
(in units of data chunks) from the current data chunk to the beginning and to the end of
the sequence of data chunks indexed by this entry and mKey is the maximum key value
of this sequence. An exception to this rule occurs when an entry indexes into the next
MIBC. In such a case, mKey represents the maximum key value of the bucket of the
next MIBC that is the farthest bucket in this sequence of buckets whose attribute value
is less than that of the current bucket. Local index entries are of the same type as those
of the global index, but with a slightly different meaning. Here indRange denotes the
distance of the indexed bucket from the current bucket and mKey is the maximum key
value of this bucket.

Example 3. Figure 2 illustrates the basic working principle of the ExpInd scheme for
our running example. In the broadcast program shown in Figure 2, the data chunk size
I and the index base r are both set to 2. As a result of I = 2, each data chuck consists
of two buckets: (a) a hybrid bucket at the beginning and (b) a data bucket at the end
of it. Since the broadcast program is skewed, the exponential index is built upon a per
MIBC rather than per MBC basis. Consider the index entries of hybrid bucket b11 of
data chunk 6 as an example of an exponential index. There are 2 entries in the global
index of b11. The first entry, (1–1 chunk, 29), implies that data items that are larger than
4, but equal to or less than 29 can be found in data chunk 7. The second entry, (2–3
chunks, 2), means that data items that are larger than 29 and equal to or less than 33 can
be found in data chunks 8–9. It also indicates that data items whose values fall within
the interval [1, 2] can be found here. The local index of b11 contains 1 entry. The entry,
(1 bucket, 16), implies that data items that are larger than 4 and equal to or less than 16
can be found 1 bucket away from bucket b11, i.e., in bucket b12.

Average Access Time. Let Bd and Bh denote the number of data items that a data
bucket and hybrid bucket, respectively, can hold and let nMIBC

items represent the total
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Fig. 2. Illustration of the exponential indexing scheme

number of data items broadcast per MIBC, i.e., nMIBC
items =

∑|G|
k=1 bfk. Given the data

chunk size I , the number of data buckets and hybrid buckets of an MIBC, denoted by
nMIBC

data and nMIBC
hybrid , respectively, is given by

nMIBC
data = (I − 1)

⌈
nMIBC

items /(Bd(I − 1) + Bh)
⌉

(4)

and
nMIBC

hybrid =
⌈
nMIBC

items /(Bd(I − 1) + Bh)
⌉
, (5)

respectively. The overall average access time of a broadcast program when using the
ExpInd method for air-indexing, denoted ATexp, can then simply be obtained by adding
half the length of an MBC (≡ avg. broadcast wait time) to the average amount of time
between the initial probe of the broadcast channel and the dissemination of the nearest
exponential index (≡ avg. index probe wait time), i.e.,

ATexp =
I

2︸︷︷︸
avg. index probe

wait time

+
1
2

|G|∑
k=1

pk · sk ·
(
nMIBC

data + nMIBC
hybrid

)
︸ ︷︷ ︸

avg. broadcast wait time

, (6)

where pk denotes the sum of the demand access probabilities of the data items belonging
to data group gk and sk represents the spacing (in the unit of MIBCs) between two
consecutive instances of a data item belonging to data group gk, i.e., sk = |gk|/bfk.

Worst Case Tuning Time. To derive the worst case tuning time of the ExpInd scheme,
additional notations are required. Similar to [18], let C denote the number of data
chunks in an MIBC which is given by C = (nMIBC

data + nMIBC
hybrid )/I and let nc denote

the number of global index entries in an index table of a hybrid bucket. To get more
insight into the matter of deriving the worst case tuning time, the following example is
provided.
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Example 4. Consider again the broadcast program as illustrated in Figure 2 and suppose
a mobile client tunes into data chunk 5 at bucket b10 and is interested in data item 32
located in bucket b19 (what is obviously not known yet). Since the first bucket accessed
is not a hybrid bucket, it obviously takes the client one bucket to probe the first index
bucket b11. After examining the information in the index table of bucket b11, the client
is then guided to data chunks 8–9 to continue the search. The client examines the first
bucket of the refined search space (i.e., bucket b15) and trims the search space again.
Since data item 32 obviously falls into the value range covered by bucket b15, there
is no need to examine other buckets indexed by the current MIBC. However, as data
item 32 is not found in bucket b15, the client needs to continue the refinement-based
search procedure by examining the index tables of the next MIBC. By doing so, it will
eventually find the desired data item in bucket b19.

As this example shows, the exponential index directs the mobile client to a consecu-
tive sequence of data chunks whose size is at most rnc−1 data chunks. Since the initial
search space is C or about (rnc − 1)/(r − 1) data chunks, the search space is reduced
by approx. r/(r−1) in each refinement step. Thus, the worst case tuning time amounts
to &logr/(r−1)(C − 1)'+1 buckets per MIBC. If the number of buckets per data chunk
is larger than 1, i.e., I > 1, the mobile client might need one more bucket access to
probe the first hybrid bucket and another one to get to the candidate bucket in which the
desired data item may be located. Thus, the worst case tuning time is bounded by:

TTexp =

{
nMBC

MIBC · (&log r
r−1

(C − 1)' + 1) , if I = 1
nMBC

MIBC · (&log r
r−1

(C − 1)' + 2) + 1, if I > 1,
(7)

where nMBC
MIBC denotes the total number of MIBCs in an MBC.

4.3 Flexible Distributed Indexing Scheme

The FlexDistInd scheme is the third and last indexing method considered by FlexInd
when searching for an indexing method that best meets the specified performance re-
quirements of the broadcast system. The inclusion of an additional, yet novel, indexing
method into FlexInd is motivated by the observation that NoInd and ExpInd alone can-
not achieve the highest possible degree of flexibility in adjusting the trade-off between
access latency and tuning time. Their greatest drawback by far is their limitation in tun-
ing the system performance along the tuning time dimension. While NoInd provides no
means to cut down on the tuning time at all, the trade-off potential of ExpInd is quite
limited here too (see Section 2). To remedy this problem, we propose the FlexDistInd
scheme which significantly enhances FlexInd’s flexibility in adjusting the tuning time,
at the expense of slightly higher access time. This gain in flexibility is achieved by (a)
partitioning the broadcast program into a number of equal-sized data segments such that
a given limit on the tuning time will not be exceeded and (b) building a dense rather
than a sparse index on the data broadcast.

Similar to (1, m) indexing [6], FlexDistInd adopts a tree structure based on the B+-
tree for air-indexing and it uses an index allocation method in which index information
is broadcast multiple times during an MBC. However, and contrary to (1, m) indexing,
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FlexDistInd does not necessarily index the whole broadcast program. Rather, it parti-
tions the broadcast program into a set P = {p1, p2, . . . , pt} of T data segments and
each index tree describes the data of the data segment which immediately follows it.
The only exception to this rule may occur when an index tree needs to be replicated
multiple times in the broadcast program so as to minimize the access latency of it with
the tuning time bounded by a given limit (see the example below). Then, index tree
entries may also refer to data items which are contained in subsequent data segments of
the immediately following data segment.

Entries of index buckets which represent a leaf node of the index tree are arranged
as a sequence of ([key values], dist) pairs, where dist specifies the distance from
the current bucket to the data bucket that contains the data items identified by the at-
tribute values included in the sorted list [key values]. Entries of index buckets repre-
senting non-leaf index nodes of a (multi-level) index tree are organized as a sequence
of (sep value, dist) pairs. Here, however, dist does not represent the offset to a data
bucket, but rather the distance to another index bucket which itself either guides the user
to another (lower) node in the index tree or to the data bucket containing the requested
data item and sep value is the separation value that splits the tree into two subtrees.

Example 5. Figure 3 illustrates the application of the FlexDistInd scheme to our run-
ning example where both the limit of the worst case tuning time, denoted Ltun, and the
tuning parameter T are set to 4 (see Equation 11 on how to compute the optimal value
of T ). As Ltun = 4 and a client typically needs an initial bucket probe to get to the
nearest index bucket and another probe to eventually download the desired data item,
only 2 index bucket probes remain to find out about the position of the desired data
item in the program. In order not to exceed the limit Ltun = 4 while still being able
to partition the data schedule into 4 data segments and to disseminate 4 index trees per
MBC, FlexDistInd departs from the general rule that an index tree may only describe
the data of an immediately following data segment. Since each index bucket is assumed
to maintain up to 18 index entries and those index slots are sufficient to represent half of
the broadcast program, each flexible distributed index needs to cover two consecutive
data segments, i.e., 2 rather than 4 index trees (consisting of one node only) are used
in Figure 3 to describe the entire broadcast program. Besides, each flexible distributed
index Indi is replicated once within the broadcast program to satisfy the constraint of
broadcasting 4 index trees per MBC.

In this respect it is important to note that a replica Repi of a flexible distributed index
Indi is not a one-to-one copy of the latter, but rather a modify version of it with the
offset values associated to the original key values being adjusted to the actual broadcast
position of the replica in the broadcast program.

Example 6. As an example illustrating how index entries of a replicated index may
deviate from their original entries, consider the index entry ([1, 2, 3], 1) of the index
tree Ind2 in Figure 3. Since the replica Rep2 of the index Ind2 is disseminated after
bucket b12 and data item 3 is not contained in data bucket b17, it is obvious that the
index entry’s content needs to be modified in Rep2. Therefore, Rep2 contains the index
entries ([1, 2], 1) and ([3], 6) rather than ([1, 2, 3], 1).
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Fig. 3. Illustration of the flexible distributed indexing scheme

Average Access Time. Let t represent the number of distinct index trees interleaved
with the data in an MBC and let r denote the number of times each distinct flexible
distributed index tree is replicated per MBC. Given t and nMBC

MIBC , i.e., the number of
MIBCs in an MBC, the number of data items upon which a distinct index tree is built,
denoted by ntree

items, is given by:

ntree
items =

|G|∑
k=1

min

(
nMBC

MIBC · bfk

t
, |gk|

)
. (8)

An upper bound on the number of levels in a distinct flexible distributed index tree,
denoted by ntree

levels, can be computed by ntree
levels = &logBi

(ntree
items)', where Bi denotes

the maximum number of index entries that an index bucket can hold. Given ntree
levels,

the maximum number of index buckets required to hold the respective tree, denoted by
ntree

index, can be derived as follows:

ntree
index =

ntree
levels∑
k=1

⌈
ntree

items

(Bi)
k

⌉
. (9)

An upper bound on the average access time, denoted ATflex, is thus given by:

ATflex =
1
2

(
nMBC

data

t · r + ntree
index

)
︸ ︷︷ ︸

avg. index probe wait time

+

ntree
index +

1
2

|G|∑
k=1

((
(t · r − 1) · ntree

index + nMBC
data

)
· pk · sk

nMBC
MIBC

)
︸ ︷︷ ︸

avg. broadcast wait time

,

(10)
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where pk denotes the sum of the access probabilities of the data items belonging to data
group gk, sk represents the spacing between two consecutive instances of a data item
belonging to data group gk, and nMBC

data denotes the number of data buckets accommo-
dated in an MBC, i.e., nMBC

data = nMBC
MIBC · &nMIBC

items /Bd'.
Given Equation 10 and knowing the optimal number t∗ of distinct flexible distributed

index trees to be disseminated per MBC (see Equation 14 on how to compute t∗), we
are able to derive a formula by which the optimal index tree replication factor, denoted
by r∗, can be computed so as to minimize the access latency of the broadcast schedule.
To do so, we differentiate Equation 10 w.r.t. r, equate it to zero and solve the equation
for r. The optimal index tree replication factor is thus given by:

r∗ = round

⎛⎝ 1
t∗

√√√√ nMBC
data

ntree
index ·

∑|G|
k=1

pk·sk

nMBC
MIBC

⎞⎠ . (11)

In order to achieve the minimal average expected access latency of a broadcast pro-
gram which contains t∗ distinct index trees, we need to divide the broadcast program
into a set P = {p1, p2, . . . , pt∗} of T equal-sized data segments, where T is given by
T = r∗ · t∗ and broadcast every r∗-th data segment preceded by a distinct index tree;
all other r∗ · t∗ − t∗ data segments are prefixed by a replica of the nearest preceding
distinct index tree and the first data segment is always prepended with a distinct index
tree.

Worst Case Tuning Time. Similar to NoInd, the worst case tuning time is straightfor-
ward to calculate. In the worst possible scenario, a mobile client would need to traverse
all t distinct index trees of an MBC in order to locate the desired data item. In addition
to the tuning time required for inspecting the t index trees, a mobile client might need
one more bucket access to find the nearest index tree and another one to retrieve the
desired data item after locating the target bucket. Therefore, the worst case tuning time
of FlexDistInd, denoted TTflex, is bounded by:

TTflex = t · ntree
levels + 2. (12)

4.4 Selection of the Appropriate Indexing Method

To enable system designers to effectively trade-off access latency for tuning time and
vice versa, FlexInd allows them to specify an upper boundary on either the average
access latency or the worst case tuning time. As a result, two separate optimization
problems arise, which will be briefly discussed next:

– Tuning time bounded tuning: Given a limit Ltun on the worst case tuning time,
which indexing scheme should be used, and how to set the parameters of the index-
ing scheme to obtain the shortest average access time?

– Access time bounded tuning: Given a limit Lacc on the average access time, which
indexing scheme should be used, and how to set the tuning parameters of the par-
ticular indexing scheme to obtain the shortest worst case tuning time?
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Case 1: Tuning time bounded tuning. Since the NoInd scheme does not interleave
index information with the data disseminated, it is easy to see that it generates broadcast
schedules that ensure the lowest access latency and the longest worst case tuning time
among all three indexing schemes. The NoInd scheme will therefore only be applied by
FlexInd when the specified value for Ltun is larger than the method’s worst case tuning
time, i.e., the number of data buckets belonging to an MBC; otherwise, either ExpInd
or FlexDistInd is to be used since both methods are able to cut down on the tuning time
(in contrast to NoInd). Based on the results of the performance analysis presented in
Sections 4.2 and 4.3, the optimal solution to the tuning time bounded tuning problem
can be obtained by first searching for the optimal values of the tuning parameters of
both methods and then comparing the average access times that are achieved by setting
the tuning parameters to their optimal values.

For the ExpInd scheme, the tuning time bounded tuning problem is an issue of find-
ing optimal values for Bh and I , denoted by B∗

h and I∗, respectively, and these values
can be obtained as follows:

ATexp(I∗, B∗
h) = min

I={1,2,...,&nMIBC
items /Bd'+1},

Bh={0,1,...,�Bd−((I−1)·si)/sd�}

ATexp(I,Bh)

s. t. TTexp(I,Bh) ≤ Ltun, (13)

where si and sd are the sizes of an index entry and a data item, respectively. It is easy
to observe that the time complexity of the search problem is bounded by O(nMIBC

items ),
i.e., it is proportional to the number of data items disseminated per MIBC.

For the FlexDistInd scheme, the limit Ltun on the worst case tuning time is related
to the tuning parameter t according to the inequality ntree

levels · t ≤ Ltun − 2. Since
the smallest possible value of the number of levels in a flexible distributed index tree
is 1, the maximum possible value of t is Ltun − 2. Thus, the tuning time bounded
optimization problem can be stated as follows:

ATflex(t∗) = min
t={1,2,...,Ltun−2}

ATflex(t)

s. t. ntree
levels · t ≤ Ltun − 2, (14)

where t∗ denotes the optimal number of distinct index trees to be included in an MBC so
as to minimize the average access time. Again, it is easy to see that the time complexity
for solving the tuning time bounded tuning problem is O(Ltun). Since multiple index-
ing methods may be able to remain itself within a given limit Ltun, FlexInd obviously
chooses among those schemes (that are able to satisfy Ltun) the one which achieves the
lowest average access latency.

Case 2: Access time bounded tuning. The access time bounded tuning problem can be
defined analogous to the tuning time bounded optimization problem. Since the NoInd
scheme provides the shortest access time along with the longest worst case tuning time,
FlexInd deploys it only when the value of Lacc is smaller than the lowest average ac-
cess time that ExpInd and FlexDistInd are able to achieve; otherwise, either ExpInd or
FlexDistInd will be adopted.
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For the ExpInd scheme, the access time bounded tuning problem involves the search
for the optimal values of the tuning parameters I and Bh. This time, however, their
values need to be chosen such that the access time limit is not exceeded and the tuning
time is minimized. More specifically, the access time bounded optimization problem
can be stated as follows:

TTexp(I∗, B∗
h) = min

I={1,2,...,&nMIBC
items /Bd'+1},

Bh={0,1,...,�Bd−((I−1)·si)/sd�}

TTexp(I,Bh)

s. t. ATexp(I,Bh) ≤ Lacc. (15)

Again, the time complexity for finding the optimal values of I and Bh is bounded by
O(nMIBC

items ).
Analogous to the above definition, we can define the access time bounded tuning

problem of the FlexDistInd method as follows:

TTflex(t∗) = min
t={1,2,...,nMBC

data }
TTflex(t)

s. t. ATflex(t) ≤ Lacc. (16)

It is again straightforward to observe that the worst case time complexity of the search
problem is bounded by O(nMBC

data ), i.e., the complexity of finding the optimal solution
is proportional to the number of data buckets in an MBC. As for the previous tuning
problem, once we have determined the optimal solutions for the access time bounded
tuning problem for each of the three indexing methods, FlexInd selects among the in-
dexing methods (that are able to satisfy Lacc) the one which achieves the lowest tuning
time.

5 Performance Evaluation

This section presents results of a simulation study conducted to evaluate the perfor-
mance of FlexInd and to show its flexibility in trading-off between access latency and
tuning time. In order to investigate FlexInd’s performance in comparison to the state-of-
the-art indexes (including its own underlying indexing schemes), we also examined the
following indexing schemes: (a) (1, m) indexing [6], (b) ExpInd [18], (c) FlexDistInd,
and (d) NoInd. We compare the indexing schemes in terms of the access latency and
tuning time metrics which are measured in the unit of buckets. If not otherwise stated,
in each simulation run the number of data items disseminated by the broadcast server
amounts to 100,000. Similar to other researchers [3, 14, 16], we assume that the demand
probability of data items follows a Zipf distribution [19] with the parameter θ set to 0.8,
meaning that approximately 75% of all requests apply to 25% of the data items. For
the ExpInd scheme, an index entry contains only a key value (as indRange values can
be inferred from the position of the entry in the index table) and its size si is set to 4
bytes. For the (1, m) indexing and FlexDistInd schemes, the index entry size si is set to
a lower bound of 8 bytes since each entry contains at least one key value of 4 bytes as
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well as the offset of 4 bytes to the data bucket containing the key value. We have run ex-
periments with different combinations of data item sizes sd and data bucket capacities
Bd. In what follows, we report results for one informative setting only, i.e., sd = 100
bytes and Bd = 40.

5.1 Experiment 1. Effectiveness in Optimizing the Access Latency

In the first experiment, we studied the effectiveness of the investigated indexing
schemes in optimizing the access latency when the tuning time is bounded. To do this,
we varied the value of the worst case tuning time Ltun in the range of 4 to 10,000. Note
that Ltun = 4 is the lowest worst case tuning time that any of the examined index-
ing schemes can achieve and has therefore been chosen as lower boundary for Ltun.
Figure 4(a) summarizes the results of the experiment. From the figure, we observe that,
with the exception of the (1, m) indexing and NoInd schemes, the average access time
of the indexing methods decreases as Ltun increases. It can also be seen that both
ExpInd and FlexDistInd are able to significantly cut down on the average access time
in contrast to the (1, m) indexing scheme. The average access time of FlexDistInd and
ExpInd is, on average, about 40% and 50%, respectively, lower than that of the (1, m)
indexing scheme. We also observe from the figure that the performance behavior of
FlexInd is exactly what we would have expected. FlexInd always performs as well as
the best air-indexing method available. It achieves this by adopting the indexing method
which yields the best performance results given the respective constraint on the worst
case tuning time. For example, if Ltun is restricted to a value smaller than 60, FlexInd
chooses FlexDistInd for air-indexing, whereas for a value of Ltun in the range between
60 and 6,177, it applies the ExpInd scheme. If even larger values for Ltun were allowed,
FlexInd would adopt the NoInd scheme.

5.2 Experiment 2. Effectiveness in Optimizing the Tuning Time

Next, we examined the effectiveness of the indexing schemes in optimizing the tuning
time when the average access time is bounded. To obtained the results, we varied the
value of Lacc in the range of 790 to 2,000. Note that the average access latency of
the broadcast program amounts to 790 if no index information is interleaved with the
data broadcast and has therefore been selected as a lower boundary for Lacc. Note
further that the average access latency of any of the investigate indexing schemes is
upper-bounded by 1,700. So setting the upper boundary of Lacc to 2,000 is completely
sufficient to fully evaluate the indexes’ ability to optimize the tuning time. Figure 4(b)
shows the worst case tuning time of the investigated indexing schemes as a function of
Lacc. According to the figure, we observe that if Lacc is smaller than 980, the worst case
tuning time of ExpInd is lower than that of FlexDistInd. However, if Lacc is assigned
a larger value, the situation reverses and FlexDistInd becomes superior to ExpInd. The
reason why FlexDistInd performs better than ExpInd when allowing longer access times
is that ExpInd is not as flexible as FlexDistInd in trading-off tuning time for access time.
More specifically, in this particular experiment, it is impossible for ExpInd to achieve a
worst case tuning time shorter than 60. As a result, if Lacc is set to a value larger than
880, the worst case tuning time remains constant. The FlexDistInd scheme, however, is
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Fig. 4. Average access time (a) and worst case tuning time (b) of various indexing methods as a
function of Ltun and Lacc, respectively

more flexible in this respect and is able to achieve a worst case tuning time of only 4
bucket probes if Lacc is set to 1700 or a larger value. In this situation, FlexDistInd
disseminates only one index tree per MBC and achieves the same performance results
as the (1, m) indexing scheme. Again, Figure 4(b) confirms FlexInd’s ability to choose
among its underlying indexing schemes exactly the right one which provides the lowest
worst case tuning time with the average access time bounded by the specified limit.

5.3 Experiment 3. The Effect of the Access Skew Coefficient θ

In order to investigate the effect of the skewness in the distribution of the demand prob-
abilities of the data items on the performance characteristics of the indexing schemes,
we varied the value of the access skew coefficient θ from 0.1 to 1.0. First, we look at the
tuning time bounded tuning problem. Figure 5(a) shows the average access time of the
investigated indexing schemes given that Ltun is set to a value equal to 5 times the worst
case tuning time of the (1, m) indexing scheme. Notice that the NoInd scheme fails to
meet this limit on the worst case tuning time; however, we nevertheless included the
results of the NoInd scheme into Figure 5(a) so as to provide information on the lower
bound of the average access time in this experiment. As shown by Figure 5(a), as θ in-
creases, the average access time of the indexing schemes decreases, because more and
more data requests are directed towards a relatively small group of data items that are
broadcast relatively frequently. As a result, a large portion of the issued data requests
can be answered relatively quickly and the average access time decreases. A second ob-
servation from Figure 5(a) is that ExpInd can only generate valid broadcast schedules
in the sense that they fulfill the specified tuning time requirement if θ ≤ 0.5. The reason
is that the worst case tuning time of ExpInd is proportional to the number of MIBCs in
an MBC. As θ increases, the number of MIBCs in an MBC increases too, leading (at
the point of θ ≤ 0.5) to the problem that ExpInd fails to meet Ltun.

Finally, the access latency bounded tuning problem is examined. Figure 5(b) shows
the worst case tuning time of the indexing schemes with Lacc set to 1.5 times the av-
erage access time of the NoInd scheme. This time, the (1, m) indexing scheme fails
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to meet the specified limit on the average access time; but, again, its performance re-
sults are included in Figure 5(b) for reasons of comparison. According to the figure,
the worst case tuning time of the NoInd, ExpInd, and FlexDistInd schemes increases as
the degree of skewness in the data access distribution increases. However, the reason
for the increase is different in each of the three cases. By knowing that the worst case
tuning time of the NoInd scheme is equal to the length of the broadcast program and its
length increases as the data access skewness increases (as data items with higher access
probabilities will be broadcast more frequently), the observed performance behavior of
the NoInd scheme should become plausible. The reason for the increase in the worst
case tuning time of the ExpInd scheme is again related to the fact that its tuning time
grows in proportion to the number of MIBCs in an MBC. When θ gets larger, the num-
ber of MIBCs per MBC enlarges too, resulting in an increase in the worst case tuning
time of ExpInd. The increase in the worst case tuning time of FlexDistInd can best be
explained by looking back at Figure 5(a). Here, we observe that as θ increases, the per-
formance gap between NoInd and FlexDistInd increases too. For example, if θ is equal
to 0.5, the relative performance difference between both schemes is only 23%, but if θ
is increased to 1, the relative performance disadvantage of FlexDistInd increases to as
much as 77%. In order to counteract the performance degradation of FlexDistInd as θ
increases, FlexDistInd tends to interleave more index trees with the data disseminated
to the mobile clients, and thus the worst case tuning time increases.
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Fig. 5. Average access time (a) and worst case tuning time (b) of various indexing methods under
different values of the access skew coefficient θ

6 Summary

Access latency and tuning time are the most critical issues for mobile users in wire-
less data broadcast systems. Unfortunately, optimizing one of these two metrics always
conflicts with optimizing the other one. To be able to meet different performance re-
quirements of different applications, we need a flexible and tunable air-indexing scheme
that is able to optimize the system performance with certain guarantees on either of the
two performance metrics. In this paper, we proposed a new hybrid indexing scheme
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which incorporates and builds upon three different air-indexing schemes, namely (a)
the NoInd, (b) ExpInd, and (c) FlexDistInd schemes. We presented the reasons for inte-
grating each of the three indexing methods into FlexInd, discussed their main character-
istics, exemplified their key concepts through a running example, provided formulae to
determine their access latency and tuning time, and analyzed how to optimize the access
latency (tuning time) with a bounded tuning time (access time) by searching the opti-
mal values of the tuning parameters of the schemes. Through extensive experiments,
we demonstrated that:

– Each of the three indexing methods of FlexInd has its performance limitations that
render it inappropriate to be used alone,

– FlexInd is able to determine among its three indexing schemes the one which
achieves the best performance with the access latency or tuning time bounded by a
given limit, and

– FlexInd achieves a much greater flexibility in trading-off between access latency
and tuning time than state-of-the-art indexing schemes.
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Abstract. Recently, progress indicators have been proposed for SQL queries in 
RDBMSs. All previously proposed progress indicators consider each query in 
isolation, ignoring the impact simultaneously running queries have on each 
other’s performance. In this paper, we explore a multi-query progress indicator, 
which explicitly considers concurrently running queries and even queries 
predicted to arrive in the future when producing its estimates. We demonstrate 
that multi-query progress indicators can provide more accurate estimates than 
single-query progress indicators. Moreover, we extend the use of progress 
indicators beyond being a GUI tool and show how to apply multi-query progress 
indicators to workload management. We report on an initial implementation of a 
multi-query progress indicator in PostgreSQL and experiments with its use both 
for estimating remaining query execution time and for workload management. 

1   Introduction 

Recently, [4, 6, 11, 12] proposed progress indicators (PIs) for SQL queries in 
RDBMSs. For a SQL query, a PI keeps track of the work completed and continuously 
estimates the remaining query execution time. [4, 6, 11, 12] proposed a set of 
techniques to implement single-query PIs. By single-query, we mean that in 
estimating the progress of a SQL query Q, these estimators only consider the current 
load and the progress of query Q itself, ignoring the effect of concurrently running 
queries and future queries. The main contributions of this paper are the first proposal 
of a multi-query PI, the exploration of its performance as compared to single-query 
PIs, and an application of the multi-query PI to problems arising in workload 
management. 

Clearly there are cases where a single-query PI gives bad estimates. For example, if 
one query is substantially impeding the progress of another, but the first query is 
about to finish, a single-query PI will grossly overestimate the remaining execution 
time of the second query. Avoiding such behavior was our original motivation for 
developing multi-query PIs.  

When estimating the remaining execution time for a query Q, a multi-query PI 
considers Q, other concurrently running queries, and, if available, predictions about 
new queries that can be expected to arrive while Q is running. As multi-query PIs 
consider more information than single-query PIs, they can provide more accurate 
estimates. A reasonable concern is whether we are depending on accurate predictions 
of the future. The answer is no – our multi-query PIs continuously monitor the system 
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and adjust their predictions as time progresses. The closer the predictions about future 
queries are to reality, the better the initial estimates – but eventually the PIs will detect 
and correct their estimates even in situations in which their initial estimates were 
based on highly inaccurate information about the future. 

In the published literature, SQL PIs have been proposed as a graphical user interface 
(GUI) tool [6, 11]. In this paper, we also present a new motivation for considering 
multi-query PIs: workload management. We formulate several workload management 
problems and show how to solve them by using information provided by multi-query 
PIs. Traditionally, workload management is static in that once workload management 
decisions are made, they are not changed. In this paper, we exploit multi-query PIs to 
facilitate more dynamic workload management. PIs are used to continuously monitor 
the system status. If the system status differs significantly from what was predicted, the 
original workload management decisions are revised accordingly. That is, our 
workload management methods are adaptive, hence they are consistent with the 
industry trend of autonomic computing [8] and automatic administration [13]. 

The rest of the paper is organized as follows. Section 2 describes our multi-query 
PI. Section 3 discusses three workload management problems, and describes our 
solution to each workload management problem by using the information provided by 
our multi-query PIs. Section 4 discusses some practical considerations for building 
multi-query PIs. Section 5 presents results from an initial implementation of our 
techniques in PostgreSQL. We discuss related work in Section 6 and conclude in 
Section 7. 

2   Multi-query Progress Indicator 

In this section, we describe our multi-query PI. The single-query PIs in [11, 12] (the 
PIs described in [4, 6] predict only percentage of completion, not remaining query 
execution time) work roughly as follows. For a query Q, the PI initially takes the 
optimizer’s estimated cost for Q measured in some unit we call U’s. The choice of U 
can be somewhat arbitrary, so for concreteness we let U represent the amount of work 
required to process one page of bytes. At any time during Q’s execution, based on the 
statistics collected so far, the PI refines the estimated remaining query cost c. The PI 
also continuously monitors the current query execution speed s, and the remaining 
query execution time is estimated as t=c/s.  

Although monitoring the current query’s execution speed means that the single-
query PI implicitly considers the impact of other queries running in the system (since 
the measured speed will be slower if other queries are running), the single-query PI 
does not explicitly consider other queries in that it has no idea how long they will run. 
In the following, we show how to build a multi-query PI that explicitly considers 
other queries. The main idea in multi-query PIs is that they should predict future 
execution speeds by considering the expected remaining execution time for 
concurrently running queries, and, if statistics are available, they should even attempt 
to predict the impact of queries that might arrive while the current query is running. 
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2.1   Initial Simplifying Assumptions 

We first describe some simplifying assumptions that enable a framework for 
describing and analyzing multi-query PIs. This framework is useful even when they 
only roughly approximate true system behavior. Section 4 gives our rationale for 
these assumptions and discusses how our PI is affected when they are relaxed. 

Assumption 1: The RDBMS processes work units at a constant rate C (work units 
per second) that is independent of the number of running queries.  

Assumption 2: The PI has perfect knowledge about the remaining cost ci of each 
running query Qi. 

Assumption 3: Queries execute at speed proportional to the weights associated with 
their priorities. In more detail, suppose n queries Q1, Q2, …, and Qn are running in the 
RDBMS concurrently. Qi (1≤i≤n) has priority pi. The corresponding weight for 
priority pi is wi. Then each Qi (1≤i≤n) is executed at speed WwCs ii /×= , where 

=
=

n

j
jwW

1

. 

2.2   Multi-query Progress Estimation 

We first consider the simple case where no new queries arrive while the current 
queries are executing. Although this is an artificial case, it is useful in providing 
insight for the more general case we discuss in Section 2.4. Also, as we will see, this 
case turns out to be important in its own right in the context of workload management. 

Suppose n queries Q1, Q2, …, and Qn are running in the RDBMS, where Qi (1≤i≤n) 
has priority pi and weight wi. The current time is time 0. To estimate the remaining 
query execution time, the n queries Q1, Q2, …, and Qn are first sorted in the ascending 
order of ci/si. That is, after sorting, we have 

nn scscsc /// 2211 ≤≤≤ L  (or equivalently,  

nn wcwcwc /// 2211 ≤≤≤ L   (1) 

This order will be useful in the discussion below. 
The execution of the n queries is divided into n stages. At the end of each stage, a 

query finishes execution. Stage i (1≤i≤n) lasts for time ti. We call this the standard 
case in the remainder of this paper. 

Q1

Q4

Q2

Q3

t1 t2 t3 t4

stage 1 stage 2 stage 3 stage 4 

 

Fig. 1. Sample execution of n=4 queries 

 
To give the reader a feeling of 

how the n queries will behave, 
Figure 1 shows a sample execution 
of n=4 queries. All these queries 
have the same priority. At the end 
of stage i (1≤i≤n), query Qi 
finishes execution. During each 
stage i, the  amount of work 
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completed for Qj (i≤j≤n) is re-presented as a rectangle, where the height of the rectangle 
represents the execution speed of Qj. 

Now we describe our algorithm in detail. We first discuss stage 1. Recall that 

nn scscsc /// 2211 ≤≤≤ L . Hence,  among all the n queries Q1, Q2, …, and Qn, Q1 will 

be the first one to finish, and it will finish at time 
111 / sct = .  

During stage 1, for each i (2≤i≤n), the amount of work completed for query Qi is 

111
)1( / scstsa iii ×=×= 11 / wwc i×= . Hence, at the end of stage 1, the remaining cost of Qi 

(2≤i≤n) is 
11

)1()1( / wwccacc iiiii ×−=−= . 

Now we discuss stage 2. During this stage, there are n-1 queries running: Q2, Q3, …, 
and Qn. Each Qi (2≤i≤n) executes at speed )1()1( /WwCs ii ×= , where 

1
2

)1( wWwW
n

j
j −==

=

. 

For each i (2≤i≤n), 
1

)1(
1

)1()1()1( /)/(/)/(/ wWCcCWwcsc iiii ×−×= . According to (1), 

nn wcwcwc /// 3322 ≤≤≤ L . Hence, )1()1()1(
3

)1(
3

)1(
2

)1(
2 /// nn scscsc ≤≤≤ L . That is, among the queries 

Q2, Q3, …, Qn, Q2 will finish first, and it will take time t2, where )1(
2

)1(
22 / sct = . 

During stage 2, for each i (3≤i≤n), the amount of work completed for query Qi is 
)1(

2
)1(

2
)1(

2
)1()2( / scstsa iii ×=×=  

2
)1(

2 / wwc i×= . Hence, at the end of stage 2, the remaining cost 

of Qi (3≤i≤n) is 
2

)1(
2

)1()2()1()2( / wwccacc iiiii ×−=−= 2121211 /)/(/ wwwwccwwcc iii ××−−×−=  

22 / wwcc ii ×−= . 

This procedure is repeated for all the n stages to compute all the ti’s (1≤i≤n). By 
induction, we find that Q1, Q2, …, and Qn will finish in the order Q1, Q2, …, and Qn. 
That is, at the end of each stage i, Qi finishes execution. At time 0, the remaining 
execution time of Qi is 

=

=
i

j
ji tr

1

. 

The time complexity of the above algorithm is )ln( nnO × , and the space 
complexity is O(n). (The derivation details are omitted due to space constraints.) 

2.3   Non-empty Query Admission Queues 

An RDBMS typically contains a query admission queue. If the RDBMS is 
overloaded, newly arrived queries will be put into the query admission queue rather 
than starting execution immediately. Since queries already in the query admission 
queue are also “known” queries, a multi-query PI can extend its visibility into the 
future by examining this queue. An example of this is given in our experimental 
evaluation in Section 5. 

2.4   Considering Future Queries 

The above discussion assumed that no new queries arrive while the queries currently 
in the RDBMS are running. In general, new queries will keep arriving, hence they 
will influence the load on the RDBMS, and a PI must somehow account for these 
queries. These queries are different from those in the admission queue – they have not 
yet arrived and predictions about them necessarily involve speculation. 
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If nothing at all is known about the future, then one guess about future loads is as 
good as another, and there is no point in trying to do any forecasting. However, in 
practice we think it is rare that absolutely nothing can be predicted about the future, 
and that rough approximate information is likely to be available. The goal of the PI 
then is to use such approximate information to improve its guesses about the future. 

In our approach, we assume that we know the average query priority p , the 

average cost c , and the average arrival rate λ. (The average inter-arrival time is then 
λ/1=t .) Of course such predictions are only approximate, and as will be shown in 

our experimental section, they need not be very accurate for the multi-query PI to 
outperform a single-query PI. In many applications, the overall load on the system 
over time is at least partially predictable, and these numbers can be obtained from past 
statistics. Then we proceed in a way similar to that in Section 2.2. The only difference 
is that every t  seconds, we predict that a new query with priority p  and cost c  will 

arrive at the RDBMS, and it is considered in the PI’s estimates.  

3   Workload Management 

Workload management for RDBMS has been extensively studied (e.g., [3, 7, 14, 19, 
23]), and major commercial RDBMSs come with workload management tools [8, 10, 
13, 15]. However, due to a lack of information about the progress of queries running 
in the RDBMS, these tools cannot always make intelligent decisions. 

For example, consider the following scheduled maintenance problem. Suppose at 
time 0, we need to schedule maintenance (e.g., we need to install some new software, 
or add several new data server nodes to a parallel RDBMS), and that the maintenance 
is scheduled to begin at time t. A common practice is to perform two operations [22]: 

O1: Starting from time 0, no new queries are allowed to enter the RDBMS. 
O2: The existing queries are allowed to run until time t, when any queries that have 

not completed are aborted.  

The challenge is how to choose the maintenance time t so as to minimize the amount 
of lost work without over-delaying the maintenance. In general, workload 
management tools do not know which queries can finish by time t, so the DBA needs 
to guess an arbitrary time that he/she thinks is appropriate. However, if we can 
estimate query running times, then more intelligent decisions can be made. For 
example, operation O2 can then be replaced with the following two operations: 

O2 : Predict which queries cannot finish by time t and abort them at time 0. (Note: 
aborting queries will reduce the load on the RDBMS and hence change the 
estimate about which queries cannot finish by time t.) 

O3: Let other queries in the RDBMS keep running. Suppose at time t, some of these 
queries have not finished execution (this is possible if our estimation has errors). 
Then they are either aborted or allowed to run to completion – the appropriate 
action depends on both the application requirement and the estimate of how soon 
those queries are going to finish. 
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Compared to operation O2, operations O2  and O3 have the following advantages. 
First, even for the same maintenance time t, by aborting some “hopeless” queries, 
more queries can finish. Second, the amount of lost work can be controlled by 
adjusting the maintenance time t. 

As a second example, suppose that for some reason, the DBA needs to speed up the 
execution of a target query Q. The DBA decides to do this by choosing one running 
query (the victim query) and blocking its execution. In this case, a common approach 
is to choose the victim query to be the heaviest resource consumer. However, if it 
happens that this victim query will finish quickly, then blocking the execution of this 
query will not speed up the execution of Q as much as blocking some other query that 
has a longer remaining execution time. If the remaining execution time of the running 
queries can be estimated, we can avoid choosing a victim query that is about to finish.  

From the above discussion, we can see that it is desirable to give the workload 
management tool more information about the remaining execution time of running 
queries, and to use this information to make more intelligent decisions.  

In this section, we discuss how to do this for three workload management 
problems. Variants of these workload management problems are frequently 
encountered in practice. Our goal is not to give an exhaustive account of all ways that 
PIs could be useful for workload management; rather, it is to demonstrate by example 
that the information provided by multi-query PIs can improve the quality of decisions 
made by workload management tools. 

In our discussion, for ease of description, we assume that the n queries Q1, Q2, …, 
and Qn are numbered so that 

nn scscsc /// 2211 ≤≤≤ L . Furthermore, we present our 

techniques for making workload management decisions based on the current system 
status (the n queries Q1, Q2, …, and Qn).  

3.1   Single-Query Speed Up Problem 

Suppose we want to speed up the execution of a target query Qi (1≤i≤n). A natural 
choice is to increase the priority of Qi. However, if Qi is already of highest priority, 
then we must either block one or more other queries, or lower the priority of one or 
more other queries. In this paper, the first alternative is considered. 

Assume that at time 0, we want to speed up the execution of query Qi by blocking 
h≥1 victim queries. Which h queries should be blocked? This is our single-query 
speed up problem. We first consider the simple case where h=1, and then discuss h≥1. 
Intuitively, the optimal victim query Qv should satisfy the following two conditions: 

C1: Qv should be the heaviest resource consumer. 
C2: If not blocked, Qv should run for the longest time (at least longer than Qi). 

In other words,  

C1: The weight of Qv, wv, should be the largest. 
C2: cv/sv, or v (since all queries are sorted in the ascending order of cj/sj), should be 

the largest.  
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It is not always possible to find a victim query that satisfies both conditions. 
Rather, the optimal victim query should be chosen based on a tradeoff between these 
two conditions. This tradeoff leads to a mathematical optimization problem. 

The sketch of our method is as follows. The n-1 queries Q1, Q2, …, Qi-1, Qi+1, Qi+2, 
…, and Qn are divided into two sets: S1={Q1, Q2, …, Qi-1} and S2={Qi+1, Qi+2, …, Qn}. 
In either set Sj (j=1, 2), the best candidate victim query 

jvQ  is picked. This is achieved 

by quantifying the “benefit” of speeding up the execution of the target query Qi that is 
gained by blocking the execution of the victim query. Then the optimal victim query 
Qv is the better one of 

1vQ  and 
2vQ . 

Our algorithm contains three steps. 
Step 1: The queries in set S2 are examined first. In this case, condition C2 does not 
matter, as each Qj (i+1≤j≤n) runs longer than Qi. To satisfy condition C1 as much as 
possible, a natural choice is to choose query 

2vQ  to be the query with the highest 

weight. That is, }1|max{
2

njiww jv ≤≤+= . 

Q1

1t

Q2

Q3

Q4

t4

stage 1 stage 2 stage 3 stage 4

2t 3t  

Fig. 2. Sample execution of n=4 queries 
(the execution of Q3 is blocked at time 0) 

We justify this choice formally. Suppose Qm 
(i+1≤m≤n) is chosen as the victim query. To 
compute the “benefit” of blocking Qm, the follow-
ing key technique is used. The entire period of 
executing the n-1 queries Q1, Q2, …, Qm-1, Qm+1, 
…, and Qn is divided into n stages. During each 
stage j (1≤j≤n), except for Qm, the amount of 
work completed for Qk (1≤k≤ n, k ≠ m) remains 
the same as that in the standard case (recall that 
the standard case is defined in Section 2.2).  

It is easy to see that except for stage m, at the end of each stage j (1≤j≤n, j≠m), a 
query (Qj) finishes execution. Also, at stage j (1≤j≤i), compared to the standard case, 
the execution of each Qk (j≤k≤n, k≠m) is sped up by a factor of 

)/(
==

−
n

jp
mp

n

jp
p www

. As a 

result, the duration of stage j is shortened from tj to 
==

−×=′
n

jp
p

n

jp
mpjj wwwtt /)(

. In other 

words, the duration of stage j is shortened by 
=

×=′−=Δ
n

jp
pmjjjj wwtttt / . 

Hence, the remaining execution time of query Qi is shortened by 

= ==

×=Δ=
i

j
m

n

jp
pj

i

j
jm wwttT

11

)/( . In order to maximize Tm, wm needs to be maximized.  

Step 2: Now the queries in set S1 are examined. Suppose Qm (1≤m≤i-1) is chosen as the 
victim query. To compute the “benefit” of blocking Qm, the technique of Step 1 is used 
again. The entire period of executing the n-1 queries Q1, Q2, …, Qm-1, Qm+1, …, and Qn 
is divided into n stages. During each stage j (1≤j≤n), except for Qm, the amount of work 
completed for Qk (1≤k≤n, k≠m) remains the same as that in the standard case.  

The remaining execution time of query Qi is shortened by Tm=cm/C. This is 
because in the first i stages, by blocking the execution of Qm at time 0, cm’s work is 
saved. To maximize 

1vT , we should choose 
1vQ  such that }11|max{

1
−≤≤= imcc mv

. 
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Step 3: The optimal victim query Qv is the better one of 
1vQ  and 

2vQ . That is, 

},max{
21 vvv TTT = . 

From the above analysis, it can be seen that at time 0, by blocking a query Qm 
(1≤m≤n) whose remaining execution time is rm, no more than rm can be saved from 
the execution of other queries. This agrees with our assertion at the beginning of 
Section 3 that if the victim query will finish soon, blocking its execution will not help 
much. The time complexity of the above algorithm is )ln( nnO × , while the space 
complexity is O(n).  

We now consider the special case where all n queries Q1, Q2, …, and Qn have the 
same priority. In this case, the solution to the problem is greatly simplified: 

(1)  If i<n, the optimal victim query is any Qj (i+1≤j≤n).  
(2)  If i=n, the optimal victim query is Qn-1. 

The time complexity of this solution algorithm is O(n). This is because in this case, 
there is no need to either sort the n queries Q1, Q2, …, and Qn in ascending order of 
cj/sj or compute all the tj’s. Rather, given the target query Qi whose remaining cost is 
c, to find the optimal victim query, all the other queries need to be scanned (at most) 
once. If we find a query whose remaining cost is no less than c, we are done. 
Otherwise the query with the largest remaining cost is picked.  

Now we return to the general case of our single-query speed up problem, where 
h≥1. Suppose the h victim queries are chosen to be 

1gQ , 
2gQ , …, and 

hgQ , where 

}{}...,,2,1{}...,,,{ 21 inggg h −⊆ . Assume by blocking 
jgQ  (1≤j≤h) at time 0, the 

remaining execution time of Qi is shortened by 
jgT . Then from an analysis similar to 

that above, it can be shown that by blocking the h victim queries 
1gQ , 

2gQ , …, and 

hgQ  at time 0, the remaining execution time of Qi is shortened by 
=

h

j
g j

T
1

. 

Based on this observation, the following greedy method can be used to deal with the 
general case of our single-query speed up problem. First, the optimal victim query is 
chosen according to the algorithm presented previously. Then, among the remaining 
queries, the next optimal victim query is chosen. This procedure is repeated h times to 
get h victim queries. These h victim queries are the optimal h victim queries. 

3.2   Multiple-Query Speed Up Problem 

Suppose now that we want to block a single query to speed up the execution of the 
other n-1 queries. Which query should be blocked? This is the multiple-query speed 
up problem. 

Suppose Qm (1≤m≤n) is chosen as the victim query. From an analysis similar to 
that in Section 3.1, we know that for each j (1≤j≤m), compared to the standard case, 
the duration of stage j is shortened by 

=

×=Δ
n

jp
pmjj wwtt / . Also, each stage j 

(m+1≤j≤n) is the same as that in the standard case. 
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At each stage j (1≤j≤m), n-j queries Qj, Qj+1, …, Qm-1, Qm+1, …, and Qn are 
running, and their total response time is improved by 

jtjn Δ×− )( . Hence, by blocking 

Qm at time 0, the total response time of all the other n-1 queries Q1, Q2, …, Qm-1, Qm+1, 
…, and Qn is improved by 

=

Δ×−=
m

j
jm tjnR

1

)(
==

××−=
n

jp
pm

m

j
j wwtjn /)(

1

. To maximize Rm, 

we should choose the optimal victim query Qv such that }1|max{ nmRR mv ≤≤= . The 

time complexity of the above algorithm is )ln( nnO × . Also, the space complexity of 

the above algorithm is O(n). 

3.3   Scheduled Maintenance Problem 

In this section, we discuss the problem mentioned at the beginning of Section 3: how 
can we choose the maintenance time t and the queries to abort so that the amount of 
lost work can be minimized without over-delaying the maintenance? In practice, the 
amount of lost work Lw can be defined in multiple ways. Due to space constraints, in 
this paper, only the following two cases are discussed: 

Case 1: Lw is the total amount of work that has been completed for the queries that 
will be aborted. 

Case 2: Lw is the total cost of the queries that will be aborted. In this case, it is 
more appropriate to call Lw the amount of unfinished work, since the aborted queries 
need to be rerun after the RDBMS is restarted.  

For each i (1≤i≤n), let ei denote the amount of work that has been completed for 
query Qi at time 0. We only describe the solution to Case 1. For Case 2, the solution is 
the same except that for each i (1≤i≤n), ei needs to be replaced with ei+ci. Recall that 
ci is the remaining cost of query Qi at time 0. 

In our discussion, we assume that the overhead of aborting queries is negligible 
compared to the query execution cost. This will be true in a primarily read-only 
environment. In general, aborting jobs may introduce non-negligible overhead. How 
to handle this case is left as an interesting area for future work. 

We define the system quiescent time to be the time when all the n queries Q1, Q2, 
…, and Qn (except for those queries that are aborted, if any) finish execution. The 
estimated system quiescent time is our estimation of the earliest time when  
the system maintenance can start. Suppose for each i (1≤i≤n), by aborting Qi at time 0, 
the system quiescent time is shortened by Vi. It is easy to see that Vi=ci/C. Also,  
by aborting h queries 

1gQ , 
2gQ , …, and 

hgQ  at time 0, where 1≤h≤n and 

}...,,2,1{}...,,,{ 21 nggg h ⊆ , the system quiescent time is shortened by 
=

h

j
g j

V
1

.  

Our goal is to maximize 
=

h

j
g j

V
1

while minimizing 
=

h

j
g j

e
1

. This is the standard 

knapsack problem [5]. Consequently, we use a greedy method to solve it. First the n 
queries Q1, Q2, …, and Qn are re-sorted in ascending order of ei/Vi (recall that we 
assume that originally, the n queries Q1, Q2, …, and Qn are sorted in ascending order 
of ci/si). After re-sorting, we have 

nn ffffff VeVeVe ///
2211

≤≤≤ L  (or equivalently, 
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nn ffffff cecece ///
2211

≤≤≤ L ), where }...,,,{ 21 nfff  is a permutation of }...,,2,1{ n . 

Then we keep aborting 
1f

Q , 
2f

Q , …, until the system quiescent time becomes 

satisfactory. 

4   Revisiting the Assumptions 

Sections 2 and 3 are based on the three assumptions in Section 2.1. Although we 
believe that these assumptions approximate reasonable system behavior, in practice, 
the system behavior will deviate from that predicted by these assumptions. Overall, 
the impact of relaxing these assumptions is that the multi-query PI now gives only 
approximate estimates, and for this reason the “advice” it gives for workload 
management becomes heuristic rather than provably optimal. As mentioned in the 
introduction, our method is adaptive and can make dynamic adjustments to ameliorate 
previous errors. This can mitigate the effect of imprecise estimates. We discuss this in 
more detail in the following subsections. 

4.1   Assumptions 1 and 2 

Assumption 1 says that for all the running queries, the RDBMS processes C units of 
work per second in total. When Assumption 1 is not valid, the PI may either 
underestimate the speedup that will occur when a query terminates (if, for example, 
the system was thrashing until that query finished), or overestimate the speedup that 
will occur when a query terminates (if, for example, a CPU-intensive query terminates 
and the other queries are all I/O-intensive). While this will hurt the accuracy of the 
multi-query PI, it is still likely to be superior to that of a single-query PI, which pays 
no attention whatsoever to other queries. 

Assumption 2 says that for each running query, the exact remaining cost is known. 
If these estimates turn out to be far off, the accuracy of the multi-query PI will again 
be harmed, although again it is likely to be better than that of a PI that completely 
ignores these other queries. These scenarios could be dealt with in a number of ways, 
including augmenting the PI to have a more accurate performance model (including 
better modeling of a lightly loaded system), being willing to tolerate inaccuracies in 
the PI’s estimates, or even revisiting the workload management decisions periodically 
if the inaccuracies of the model have resulted in suboptimal decisions. Which 
approach is best under which circumstances is an interesting question for future 
research. We suspect that because the PI adjusts its estimates “on the fly” as it 
discovers that they are inaccurate, it may not be worth the effort to improve the 
precision of these estimates – but this is still an open question and also scope for 
interesting future research. 

4.2   Assumption 3 

Assumption 3 says that each query’s execution speed is proportional to the weight 
associated with its priority. This assumption is mainly for concreteness, for to discuss 
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workload management problems in the context of queries with priorities, some policy 
needs to be specified for how priority affects execution speed. If a system implements 
a different approach to priorities, a priority model for the multi-query PI would need 
to be developed for that approach. Even if the system attempts to implement a policy 
where execution speed is proportional to priority, the true behavior may be different 
for a variety of reasons – one example is the details of query interactions (e.g., a high-
priority I/O-intensive query might not substantially block a low-priority CPU-
intensive query, or two queries compete for/share buffer pool pages and thus slow 
down/speed up each other’s execution). As was the case in Section 4.1, these factors 
will harm the accuracy of the multi-query PI, and ways to deal with this include 
building a more accurate model, tolerating errors, or periodically revising decisions.  

4.3   Other Practical Considerations 

The time complexity of most algorithms described in this paper is )ln( nnO × , where 
n is the number of queries in the RDBMS. This is a cause for some concern if n is 
large. However, in general, we would expect that the majority of queries are short 
(i.e., queries that can finish in a few seconds) and not really candidates for progress 
estimation or relevant individually for workload management. For this reason we 
think it is reasonable for the purposes of workload management and progress 
estimation to ignore these short queries and focus on long-running queries. Thus the 
effective n in the preceding formula is likely to be small and the computational cost 
will be small. 

5   Performance Evaluation 

In this section, we present results from a prototype implementation of our techniques 
in PostgreSQL Version 7.3.4 [17].  

5.1   Experiment Environment 

Our measurements were performed with the PostgreSQL client application and server 
running on a Dell Inspiron 8500 PC with one 2.2GHz processor, 512MB main 
memory, one 40GB disk, and running the Microsoft Windows XP operating system. 
The relations used for the experiments followed the schema of the standard TPC-R 
Benchmark relations [21]: 

lineitem (partkey, quantity, extendedprice, …), 
part_i (partkey, retailprice, …) (i≥1). 

Table 1. Test data set 

 number of tuples total size 
lineitem 24M 3.02GB 
part_i (i≥1) 10×Ni 1.4×Ni KB 
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In our experiments, each part_i relation (i≥1) contains 10×Ni tuples. (How the Ni’s 
are chosen is discussed later.) The partkey attribute values in the part_i relations are 
randomly distributed between the minimal partkey attribute value and the maximal 
partkey attribute value in the lineitem relation. In a given part_i relation, all the tuples 
have different partkey attribute values. On average, each part_i tuple matches with 30 
lineitem tuples on the attribute partkey. We built an index on the partkey attribute of 
the lineitem relation. 

The following queries were tested, which find parts that are on average selling for 
25% below suggested retail price: 

Query Qi (i≥1): select * from part_i p where p.retailprice×0.75> 
(select sum(l.extendedprice)/sum(l.quantity) from lineitem l where l.partkey=p.partkey); 

Each query is a nested query that contains a correlated sub-query. The query plan 
chosen by PostgreSQL for the correlated sub-query is an index-scan on the lineitem 
relation. We repeated our experiments with other kinds of queries. The results were 
similar and thus not presented here. 

Before we ran queries, we ran the PostgreSQL statistics collection program on all 
the relations. PostgreSQL does not support priorities for queries. Hence, all the 
queries Qi (i≥1) have the same priority. In all experiments, the outputs from each PI 
were stored into a separate file. 

5.2   Multi-query Progress Indicator 

Three experiments were performed to compare single-query PIs with multi-query PIs. 
In the first two experiments, we ensure that no new queries arrive at the RDBMS 
while the queries under consideration are running. In the third experiment, we explore 
the situation in which new queries keep arriving at the RDBMS.  

5.2.1. Multiple Concurrent Query (MCQ) Experiment  
In this experiment, ten queries were used: Qi (1≤i≤10). Their Ni’s followed a Zipfian 
distribution with parameter a=1.2. At time 0, each of these ten queries was at a 
random point of its execution. 

This experiment was performed multiple times. A typical run is examined here. 
In this run, among the n =10 queries Qi (1≤i≤10), we focus on a typical large query Q.  
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Fig. 3. Remaining query execut-
ion time estimated over time for 
Q (MCQ experiment) 

Fig. 4. Query execution speed 
monitored over time for Q 
(MCQ experiment) 

For this Q, Figure 3 
shows the remaining 
query execution time 
estimated by the PI 
over time. Figure 4 
shows the query execut-
ion speed monitored by 
the PI over time. In 
Figure 3, the actual re-
maining query execut-
ion time is represented 
by  the dashed line, the 



 Multi-query SQL Progress Indicators 933 

single-query estimate is provided by the single-query PI, and the multi-query estimate 
is provided by the multi-query PI. 

From time 0 to the completion time of query Q, due to the completion of other 
concurrent queries, the execution speed of Q gradually increases by almost a factor of 
five. The multi-query PI is able to predict the change in the load on the RDBMS while 
the single-query PI cannot. As a result, the multi-query estimate is fairly close to the 
actual remaining query execution time, while the single-query estimate differs from 
the actual remaining query execution time by almost a factor of three at the beginning. 

5.2.2. Non-empty Admission Queue (NAQ) Experiment  
In this experiment, three queries were used: Q1, Q2, and Q3, with N1=50. N2=10. 
N3=20. The query admission policy was that at any time, at most two queries could 
run concurrently in the RDBMS. At time 0, Q1, Q2, and Q3 entered the RDBMS 
admission queue. Q1 and Q2 started execution first, with Q3 blocked until Q2 finishes.  

The purpose of this experiment is to show that when the admission queue is not 
empty, multi-query PIs that consider the admission queue can provide more accurate 
estimates than either single-query PIs or multi-query PIs that do not consider the 
admission queue. In effect, examining the admission queue lets the PI see farther into 
the future. 
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Fig. 5. Remaining query execution time esti-
mated over time for Q1 (NAQ experiment) 

For query Q1, Figure 5 shows the 
remaining query execution time 
estimated by the PIs over time. There, 
the actual remaining query execution 
time is represented by the dashed line. 
Two vertical dashed-dotted lines are 
used, one representing the start time of 
Q3, and another representing the finish 
time of Q3. 

The execution time of query Q1 is 
longer than the sum of the execution 
time of Q2 and the execution time of Q3.  

Before Q2 finishes, without considering Q3 that is waiting in the admission queue, 
neither the single-query PI nor the multi-query PI can accurately predict the load on 
the RDBMS after the completion of Q2. Hence, the multi-query estimate considering 
the admission queue is more precise than the other approaches.  

At the 97th second, query Q2 finishes and Q3 starts. The query admission queue 
becomes empty. The multi-query PI is able to predict that Q3 will finish before Q1 and 
then the execution speed of Q1 will increase, while the single-query PI incorrectly 
assumes that the execution speed of Q1 will remain the same during the execution of 
Q1. As a result, the multi-query estimate becomes more precise than the single-query 
estimate until Q3 finishes at the 291st second. 

5.2.3. Stream Concurrent Query (SCQ) Experiment  
In this experiment, at time 0, ten queries Qi (1≤i≤10) were running in the RDBMS and 
each of them was at a random point of its execution. New queries kept arriving at the 
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RDBMS according to a Poisson process with parameter λ. (The unit of λ is second-1.) 
For both Qi’s (1≤i≤10) and new queries, their Ni’s followed a Zipfian distribution with 
parameter a=2.2. (We also tested other values of a. The results are similar and thus 
omitted.) 

Consider any Qi (1≤i≤10). Suppose the actual remaining query execution time is 
tactual. At time 0, the multi-query PI estimates the remaining query execution time to 
be tmulti. The relative error of the multi-query estimate is defined as 

%100/|| ×− actualactualmulti ttt . The relative error of the single-query estimate is defined in 

a similar way.  
Among all Qi’s (1≤i≤10), the one with the largest remaining cost at time 0 will 

finish last and is thus called the last finishing query. The test was repeated one 
hundred times (one hundred runs). Unless otherwise specified, all the reported 
numbers are averaged over these one hundred runs.  
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Fig. 6. Relative error of estimated re-
maining execution time for the last 
finishing query (a=2.2) 

Fig. 7. Average relative error of esti-
mated remaining execution time for 
al l ten queries (a=2.2) 

We first 
discuss the 
case where 
the multi-
query PI 
knows the 
exact aver-
age arrival 
rate λ and 
the exact 
average cost  

c of future queries. For the last finishing query, Figure 6 shows the relative error of 
the estimated remaining execution time. For all Qi’s (1≤i≤10), Figure 7 shows the 
average relative error of the estimated remaining execution time. 

When producing estimates, the multi-query PI considers both concurrently running 
queries and future queries. In contrast, the single-query PI incorrectly assumes that the 
load will remain stable in the future. As a result, the relative error of the multi-query 
estimate is always smaller than that of the single-query estimate. 

When the system is stable, the relative error of the single-query estimate decreases 
as λ increases. This is because the larger the λ, the closer to reality the assumption 
made by the single-query PI. In contrast, the relative error of the multi-query estimate 
increases with λ, as the faster new queries arrive, the larger and the more random their 
influence on existing queries. Note that the stable system case is the most common 
case encountered in practice. In this case, the relative error of the multi-query estimate 
is much smaller than that of the single-query estimate. 

When λ>0.07, new queries come faster than the RDBMS can process them and 
thus the system becomes unstable. In this case, the influence of new queries on 
existing queries becomes fairly large and random. Hence, single-query and multi-
query estimates have roughly the same (large) relative error. 

Among all Qi’s (1≤i≤10), the last finishing query gets the largest and most random 
influence from new queries. Consequently, PIs provide the least precise estimate for 
the last finishing query. This leads to the effect that for both single-query and  
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multi-query estimates, the average relative error for the ten queries is smaller than the 
relative error for the last finishing query. 
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Fig. 8. Relative error of estimated 
remaining execution time for the last 
finishing query (a=2.2 , lambda=0.03 )  

Fig. 9. Average relative error of 
estimated remaining execution time for 
all ten queries (a=2.2 , lambda=0.03 ) 

Now we 
discuss the 
case where 
the multi-
query PI 
cannot esti-
mate λ, the 
average arri-
val rate of 
future queries, 
precisely. We 
include  this 
experiment 
to illustrate 

one example of the multi-query PI detecting when its estimates were wrong and then 
adapting and correcting its estimates. This is not the only way it does so; like single-
query PIs, multi-query PIs also react to incorrect cost estimates (due perhaps to bad 
cardinality estimates or an inaccurate hardware cost model) and incorrect assumptions 
about how concurrently executing queries affect the performance of a given query 
(even single-query PIs notice, e.g., that they have slowed down when another query 
starts, even though they do not know why, or how long the slowdown might last, or if 
a similar slowdown might occur again in the future from a yet-to-arrive query.) 
Because we have explored this sort of adaptivity in our prior work [11, 12], we do not 
explore it here. Instead, we focus on a kind of adaptivity unique to multi-query PIs, 
i.e., adapting to errors in expected query arrival rate. 

Let λ=0.03. The multi-query PI makes its estimate based on λ' while λ'≠λ. For the 
last finishing query, Figure 8 shows the relative error of the estimated remaining 
execution time. For all Qi’s (1≤i≤10), Figure 9 shows the average relative error of the 
estimated remaining execution time. 
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Fig. 10. Remaining query execution time 
estimated by multi -query PI over time 
(lambda=0.03) 

The bigger the difference between λ' and λ, 
the more inaccurate the multi-query estimate. 
However, unless λ' is more than five times 
larger than λ, the relative error of the multi-
query estimate is always smaller than that of 
the single-query estimate. This shows that, at 
least in these tests, even somewhat inaccurate 
information about the future is better than no 
information about the future. 

We pick a typical run among the one 
hundred runs. In this run, for the last finishing 
query, Figure 10 shows the remaining query 
execution time estimated by the multi-query 

PI over time. There, the actual remaining query execution time is represented by 
the dashed line. At the beginning, due to the incorrectly estimated arrival rate λ', the 
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multi-query estimate is quite different from the actual remaining query execution 
time. The bigger the difference between λ' and λ, the more inaccurate the multi-query 
estimate. However, the multi-query PI is adaptive and can correct its own errors. The 
closer to query completion time, the more precise the multi-query estimate is. 

In summary, as long as there is some reasonable (approximate) information about 
the future load, the multi-query PI can provide (often much) more accurate estimate of 
remaining query execution time than the single-query PI. This information need not 
be extremely accurate - the multi-query PI is adaptive and can correct its own errors 
over time. 

5.3   Workload Management  

Section 3 discussed three workload management problems. The experiment results for 
these three workload management problems were similar, since similar techniques 
were used for each problem. Accordingly, in this section, only the experiment results 
for Case 2 of the scheduled maintenance problem are presented, where the amount of 
unfinished work is defined as the total cost of all queries that will be aborted. 

5.3.1. Experiment Description  
We wanted to simulate a typical situation in practice, where the number of small 
queries submitted to the RDBMS is much larger than the number of large queries 
submitted to the RDBMS. To achieve this, a large number of queries Qi (i 1) are 
used. We let all the Ni’s follow a Zipfian distribution with parameter a=2.2. (We also 
tested other values of a. The results were similar and thus are omitted.) Note that Ni 
“represents” the cost of Qi. Each Qi (i≥1) has the same probability to be submitted to 
the RDBMS. 

We evaluated the performance of our workload management techniques in the 
following way. At any time, n=10 queries 

jfQ  (fj≥1, 1≤j≤10) are running in the 

RDBMS. At the time that a query 
jfQ  finishes execution, a random k (k≥1) is picked 

and query Qk is submitted to the RDBMS for execution. Hence, for all the queries Qk 
submitted to the RDBMS, the Nk’s follow a Zipfian distribution with parameter a.  

A random time rt is chosen. At time rt, the RDBMS is inspected and decisions are 
made to prepare for system maintenance scheduled for t seconds later. By a simple 
mathematical derivation, it can be shown that for the n=10 queries 

jgQ  (gj≥1, 1≤j≤10) 

running at time rt, their 
jgN ’s follow a Zipfian distribution with parameter a-1. Due  

to space constraints, we only describe the main ideas in the derivation while  
omitting the details. For a particular Qk (k≥1), the probability that Qk is running  
at time rt is proportional to both the probability that Qk is submitted and the  
cost of Qk (larger queries will run longer and hence are easier to be “seen”). Thus, 

1/1)/1()( −=×∝= aa
g mmmmNyprobabilit

j

. 

We compare the following three methods: 

No PI method: No PI was used. Rather, we performed operations O1 and O2 
described in Section 3. 
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Single-query PI method: We used the single-query PI and performed operations O1, 
O2 , and O3. When operation O2  was performed, the query with the largest estimated 
remaining cost was first aborted. Then if necessary, we further aborted the query with 
the second largest estimated remaining cost, and so on. 
Multi-query PI method: We used the multi-query PI and performed operations O1, 
O2 , and O3. When operation O2  was performed, the algorithm described in Section 
3.3 was used. 

In all three methods, at the scheduled maintenance time rt+t, the queries that had 
not finished execution were aborted. The test was repeated ten times (ten runs). 
Unless otherwise specified, all the reported numbers are averaged over these ten runs.  

For the n=10 queries 
jgQ  (gj≥1, 1≤j≤10) running at time rt, the total work TW is 

defined to be their total cost. The unfinished work UW is defined to be the total cost 
of those queries that are aborted between time rt and the scheduled maintenance time 
rt+t. (Recall that unfinished queries are aborted at time rt+t.) Finally, tfinish is defined 
to be their remaining execution time under the no interruption condition. That is, 
under the condition that no new queries enter the RDBMS for execution and there is 
no scheduled maintenance so that none of the existing n=10 queries is aborted, all the 
existing n=10 queries can finish by time rt+tfinish. 
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Fig. 11. Unfinished work of the three methods 
(a=2.2) 

Figure 11 shows the unfinished work 
of the three methods. Note that the x-axis 
is t/tfinish. The y-axis is UW/TW. That is, 
both the x-axis and the y-axis have been 
“normalized,” as the specific values of 
tfinish and TW vary from one run to 
another. In the rest of Section 5.3, when 
we refer to the amount of unfinished 
work, we always mean UW/TW. 

Figure 11 also shows the theoretical 
limit that any method can achieve. This 
limit is computed using the exact informat- 

ion that comes from the actual run-to-completion execution of the n=10 queries. That 
is, based on this exact information, we compute the optimal set of queries that should 
be aborted at time rt so that all the other queries can finish by the scheduled 
maintenance time rt+t.  

If t=tfinish, then in both the no PI method and the multi-query PI method, all queries 
can run to completion and there is no unfinished work. However, in the single-query 
PI method, 67% of the total work TW is not finished. The reason is as follows. In 
general, as can be seen from the experiment results in Section 5.2.1, the single-query 
PI tends to significantly overestimate the remaining execution time of those queries 
whose remaining costs are large at time rt. Consequently, the single-query PI method 
thinks that a large portion of those queries cannot meet the scheduled maintenance 
time and aborts them unnecessarily at time rt.  

If t<tfinish, each of the three methods needs to abort queries. Among the three 
methods, the multi-query PI method has the least amount of unfinished work. 
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Compared to the no PI method, the multi-query PI method reduces the amount of 
unfinished work by 18%~44%. Compared to the single-query PI method, the multi-
query PI method reduces the amount of unfinished work by 15%~67%. The reason for 
this reduction of work is as follows. First, in this case the multi-query PI can estimate 
the remaining query execution time fairly precisely. As a result, the multi-query PI 
method can estimate which queries cannot finish in time and abort them early so that 
more queries can meet the scheduled maintenance time. Second, as explained above, 
the single-query PI method aborts a large number of queries unnecessarily. Finally, 
the no PI method does not abort any query until the scheduled maintenance time. As a 
result, before the scheduled maintenance time, queries compete with each other for 
resources and are executed relatively slowly. Hence, compared to the multi-query PI 
method, fewer queries can meet the scheduled maintenance time.  

In general, the no PI method has less unfinished work than the single-query PI 
method. However, when t is small (say, t=0.2×tfinish), the no PI method has a little bit 
more unfinished work than the single-query PI method. This is because in this case, at 
time rt, the single-query PI method aborts those queries whose remaining costs are 
large. Then other queries can run faster and finish by the scheduled maintenance time. 
In contrast, the no PI method does not abort any query at time rt. This leads to the 
effect that all queries are executed very slowly. As a result, very few queries can meet 
the scheduled maintenance time. Note that if t is large, this effect is not so significant. 
This is because those queries whose remaining costs are small at time rt are going to 
finish in a small amount of time. Then other queries can run faster. 

In all ten runs, in most cases, the multi-query PI method performs better than both 
the no PI method and the single-query PI method. In the extreme case, compared to 
the no PI method and the single-query PI method, the multi-query PI method reduces 
the amount of unfinished work by 73% and 94%, respectively. (Note: the maximum 
percentage by which the multi-query PI method can reduce the amount of unfinished 
work is at most 100%.) 

Occasionally, the multi-query PI method performs worse than either the no PI 
method or the single-query PI method. In the worst case, compared to the no PI method 
and the single-query PI method, the multi-query PI method increases the amount of 
unfinished work by 12% and 3%, respectively. This is because in the multi-query PI 
method, the greedy method only provides an approximate solution to the knapsack 
problem (finding the optimal solution to the knapsack problem is NP-hard). Also, the 
estimates provided by multi-query PIs have errors, mainly due to the imprecise 
statistics collected by PostgreSQL.  

Among all the three methods, the multi-query PI method performs the closest to the 
theoretical limitation. When t<tfinish, compared to the theoretical limitation, on 
average, the multi-query PI method increases the amount of unfinished work by 
3%~12%. In the worst case, the multi-query PI method increases the amount of 
unfinished work by 60%. 

In summary, the average performance of the multi-query PI method is better than both 
that of the no PI method and that of the single-query PI method. The multi-query PI 
method can avoid extremely bad decisions. In the best case, the multi-query PI method 
can perform much better than both the no PI method and the single-query PI method. In 
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the worst case, compared to both the no PI method and the single-query PI method, 
the multi-query PI method performs only a little worse. Moreover, in a large number 
of cases, the multi-query PI method performs fairly close to the theoretical limitation.  

6   Related Work 

As mentioned in the introduction, all previous work on PIs has considered only 
single-query PIs, and none of the previous work has considered the application of PIs 
to workload management. Of course, there is a great deal of related work dealing with 
workload management. In general, the workload management problems discussed in 
Section 3 are scheduling problems. In this section, we give a brief survey of existing 
work related to scheduling. 

Process scheduling has been exhaustively studied in the context of operating 
systems. In general, the process scheduler in the operating system does not know the 
job sizes [20]. By contrast, in our workload management environment, the query costs 
are known (or at least the query costs can be roughly estimated). 

Process scheduling and transaction scheduling have been extensively studied in 
real-time operating systems [9, 24] and real-time database systems [1, 18]. In general, 
the main concern there is to meet deadlines rather than to maximize resource 
utilization. Most real-time systems are memory resident and the jobs there can be 
finished in a short amount of time (say, less than a few seconds). Hence, they need 
special time-cognizant protocols (e.g., to handle critical sections). Many real-time 
systems use hard deadlines. As a result, the jobs there are usually pre-defined (i.e., 
“canned” jobs). Also, almost all jobs there have deadlines. 

In our workload management environment, we do not want to sacrifice resource 
utilization ratio in our general-purpose RDBMS. Queries may incur substantial I/Os 
and run for a long time. Therefore, short-term effects can be ignored and no special 
time-cognizant protocol is needed. Before queries are submitted to the RDBMS, we 
have only approximate knowledge of their resource requirements. Also, most queries 
do not have hard deadlines. 

Job scheduling has been extensively studied in operations research and in computer 
science theory [2, 16]. In these studies, jobs usually have precedence constraints. On a 
single machine, jobs are typically executed one after another. Also, the main concern 
is to maximize the throughput/utilization ratio of the machines. In our database 
workload management environment, queries do not have precedence constraints and 
are executed concurrently. 

7   Conclusion 

In this paper we considered going beyond the state of the art in RDBMS PIs by 
considering the impact queries have on each other’s progress and eventual 
termination. Our multi-query PIs consider not only currently executing queries, but 
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also predictions about queries that might arrive in the future. Even approximate 
information about future queries is helpful, and the PIs are adaptive in that they detect 
when they were given “bad” information about the future and correct their estimates 
as they learn more about the true query workload. We also demonstrated how to apply 
the resulting multi-query PIs to several workload management problems. As shown in 
experiments with a prototype implementation, for both estimating remaining query 
execution time and workload management purposes, the proposed multi-query PIs 
have significant advantages over single-query PIs or no PIs, suggesting that multi-
query PIs may be a useful addition to RDBMSs. 
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Abstract. The problem of rewriting queries using views has received
significant attention because of its applications in a wide variety of data-
management problems. For select-project-join SQL (a.k.a. conjunctive)
queries and views, there are efficient algorithms in the literature, which
find equivalent and maximally contained rewritings. In the presence of
arithmetic comparisons (ACs) the problem becomes more complex. We
do not know how to find maximally contained rewritings in the general
case. There are algorithms which find maximally contained rewritings
only for special cases such as when ACs are restricted to be semi-interval.
However, we know that the problem of finding an equivalent rewriting
(if there exists one) in the presence of ACs is decidable, yet still doubly
exponential. This complexity calls for an efficient algorithm which will
perform better on average than the complete enumeration algorithm. In
this work we present such an algorithm which is sound and complete. Its
efficiency lies in that it considers fewer candidate rewritings because it in-
cludes a preliminary test to decide for each view whether it is potentially
useful in some rewriting.

1 Introduction

The problem of answering queries using views (i.e. rewriting queries using views)
is as follows. Suppose we are given a query Q over a database schema, and a
set of view definitions V1, V2, . . . , Vk over the same schema. We want to know
whether and how we can answer the query Q using only the answers to the views
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V1, V2, . . . , Vk. The problem has recently received significant attention because
of its applications in a wide variety of data management problems, query op-
timization, maintenance of physical data independence, data integration, data
warehousing, global information systems and mobile computing.

When answering queries using views we often need either find equivalent
rewritings for a query or maximally contained rewriting (MCR). In data in-
tegration, where views describe a set of autonomous heterogenous data sources,
we search for a maximally-contained rewriting, which provides the best answer,
given the available sources. In query optimization or maintenance of physical
data independence we search for a solution that uses the views and is equivalent
(instead of contained) to the original query. When the query and views are con-
junctive (i.e., select-project-join) without comparison predicates, the maximally-
contained rewriting is a union of conjunctive queries over the views [2].

The original definition of conjunctive queries does not allow for comparisons
between data values. However, in practice users often ask select-project-join
queries that do involve comparisons in the selection condition (e.g. price ≤ 100).
For this reason, we extend the class of conjunctive queries by allowing built-in
predicates which are arithmetic comparisons (ACs). So the problem of answering
queries using views in the presence of arithmetic comparisons becomes more
important, yet more complex. The following example illustrates this complexity.

Example 1. Consider the following query Q and set of views V1, V2:

Q : q(X,X) :- a(X,X), b(X), X < 7
V1 : v1(T,U) :- a(S, T ), b(U), T ≤ S, S ≤ U
V2 : v2(T,U) :- a(S, T ), b(U), T ≤ S, S < U

The query Q′ : q(A,A) :- v1(A,A), A < 7 is an equivalent rewriting of Q using
V1. To see why, suppose we expand Q′ by replacing the view subgoal v1(A,A)
by its definition. We get the expansion Q′exp : q(A,A) :- a(S,A), b(A), A ≤
S, S ≤ A,A < 7. By equating S and A we see that the expansion is equivalent
to Q. Notice that the definitions of the views V1, V2 differ only on their second
inequalities. However V2 can not be used to answer Q. Thus, it is the comparison
predicate that affects the existence of the rewriting.

Equivalent and contained rewritings use the containment test. Several algo-
rithms have been proposed for testing containment in the presence of arithmetic
comparisons [12, 10, 25, 4]. Some of these algorithms [10, 25] first normalize the
queries by replacing constants and shared variables, each with new unique vari-
ables, and add arithmetic comparisons to equate those new variables to the
original constants or shared variables. The containment is tested by checking a
logical implication using multiple containment mappings. Another containment
test existing in the literature is based on canonical databases [17, 12].

The problem of finding an equivalent rewriting (if there exists one) in the
general case of ACs is decidable, yet still doubly exponential [3]. This complexity
calls for an efficient algorithm which will perform better on average than the
complete enumeration algorithm.
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In this work we present an algorithm that, given a query and a set of views
which are conjunctive queries with arithmetic comparisons, finds an equivalent
rewriting if there exists one. The algorithm is sound and complete. Its efficiency
lies in that it considers fewer candidate rewritings because it includes a pre-
liminary test to decide for each view whether it is potentially useful in some
rewriting. One of the challenges of our work consists in finding the relationship
between the two problems; a) finding equivalent rewritings in the case of conjunc-
tive queries with arithmetic comparisons and b) finding equivalent rewritings in
the case of simple conjunctive queries. Such relation would allow us to leverage
on existing algorithms for the latter problem. However this is not easy as we
explain in detail in Subsection 3.1.

Another challenge comes from the following observation. In the case of con-
junctive queries, if an equivalent rewriting exists in the language of union of
conjunctive queries, then there exists one which is a single conjunctive query.
However, in the case of conjunctive queries with arithmetic comparisons this prop-
erty does not hold. Indeed even for very simple cases of conjunctive queries and
views with arithmetic comparisons, it is often not possible to find equivalent
rewritings in the form of a single conjunctive query with arithmetic comparisons.
Instead, it is possible to find equivalent rewritings in the form of unions of con-
junctive queries with arithmetic comparisons, as the following example illustrates.

Example 2. Consider the following query Q and set of views V1, V2:

Q : q() :- p(X), X ≥ 0
V1 : v1() :- p(X), X = 0
V2 : v2() :- p(X), X > 0

It is easy to see that there is no conjunctive query which is an equivalent
rewriting of Q using V1, V2. Instead, the following union of conjunctive queries
is an equivalent rewriting:

r0() :- v1()
r0() :- v2()

1.1 Related Work

The problem of answering queries using views is closely related to the problem
of testing for query containment. Chandra and Merlin [6] have shown that the
problems of containment, minimization, and equivalence of conjunctive queries
are NP-complete. Klug in [12] showed that the containment problem for the class
of conjunctive queries with arithmetic comparisons is in ΠP

2 which is the second
level of the polynomial hierarchy introduced by Stockmeyer [23]. In the same
work was also proved that when only left (or right) semi-interval comparisons
are used, the containment problem is shown to be in NP. In a more recent
work Afrati et al. [4] showed more classes of conjunctive queries with arithmetic
comparisons for which the problem of query containment is in NP. Van der
Meyden in [24] proved Klug’s conjecture that containment for conjunctive queries
with inequality arithmetic comparisons is ΠP

2 -complete. He also pointed out
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that the containment problem for conjunctive queries with inequalities (�=) is
also ΠP

2 -complete. The work in [13] studies the computational complexity of the
query containment problem of queries with inequality (�=). In fact, Kolaitis et
al. proved that the complexity for the containment problem for safe conjunctive
queries with inequalities ranges between coNP and ΠP

2 -completeness depending
on how many times each database predicate occurs in the body of the contained
query. They also showed that when one of the two queries is fixed the problem
can be DB-complete, where DB is the class of all decision problems that are the
conjunction of a problem in NP and a problem in coNP.

The problem of finding whether there exists an equivalent rewriting for a query
using views was studied in [14]. An efficient algorithm for finding equivalent
rewritings with the smallest number of subgoals is given in [5]. The work in
[16] considers the problem of answering conjunctive queries using infinite sets of
views and they extend their results to cases when the query and the views use
the built-in predicates <,≤,= and �=.

The work in [1] shows how to find a Datalog maximally-contained rewriting
(MCR) for a special case of Datalog queries and views that are unions of con-
junctive queries. Several algorithms have been developed for finding rewritings
of queries using views. The bucket algorithm [9, 15], the inverse-rule algorithm
[8, 21, 1], the MiniCon algorithm [20], and the Shared-Variable-Bucket algorithm
[18] are some of them (see [11] for a survey.) These algorithms aim at generating
contained rewritings for a query that compute a subset of the answer to the
query, and take the open-world assumption.

Afrati et al. in [2, 3] study the problem of query rewriting in the presence of
arithmetic comparisons. They show that it is decidable to tell whether there ex-
ists an equivalent rewriting which is the union of conjunctive queries with arith-
metic comparisons. They also investigate the existence of maximally contained
rewritings in the presence of arithmetic comparisons and prove that for a special
case of semi-interval comparisons there is a maximally contained rewriting.

2 Preliminaries

In this section we review the problem of query rewriting using views and summa-
rize results in the literature on conjunctive queries with arithmetic comparisons.
In the remainder of the paper we shall use names beginning with lower-case
letters for constants and relations, and names beginning with upper-case letters
for variables. We use V, V1, . . . , Vm to denote views that are defined by conjunc-
tive queries on the base relations. Moreover, for the sake of simplicity, we use
“CQ” to represent “conjunctive query”, “AC” for “arithmetic comparison”, and
“CQAC” for “conjunctive query with arithmetic comparisons”.

2.1 Answering Queries Using Views

We start by reviewing the problem of answering queries using views for conjunc-
tive queries (i.e., select-project-join queries). A conjunctive query CQ is a query
of the form: h(X) :- e1(X1), . . . , ek(Xk), where the head h(X) represents the
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results of the query, and e1 . . . ek are database relations. Each atom in the body
of a conjunctive query is said to be a subgoal. Every argument in the subgoal
is either a variable or a constant. The variables in X are called head or distin-
guished variables, while the variables in Xi are called body variables of the query.
A conjunctive query is said to be safe if all its distinguished variables also occur
in its body. A query Q1 is contained in a query Q2, denoted Q1 1 Q2, if for any
database D of the base relations, the answer computed by Q1 is a subset of the
answer computed by Q2, i.e., Q1(D) ⊆ Q2(D). The two queries are equivalent,
denoted Q1 ≡ Q2, if Q1 1 Q2 and Q2 1 Q1.

Chandra and Merlin [6] show that a conjunctive query Q1 is contained in
another conjunctive query Q2 if and only if there is a containment mapping
from Q2 to Q1. The containment mapping maps the head and all the subgoals
in Q2 to Q1. It maps each variable to either a variable or a constant, and maps
each constant to the same constant. Concerning unions of CQs, the following
containment test is from [22]; a union of CQs P1 ∪ . . . ∪ Pk, is contained in a
union of CQs Q1 ∪ . . .∪Qn, denoted P1 ∪ . . .∪ Pk 1 Q1 ∪ . . .∪Qn, iff for all Pi

there exists some Qj such that Pi 1 Qj .
Let Q be a query defined on a database schema S, V be a set of views defined

on S, and D be a database with the schema S. A query R is a rewriting of
the query Q using the views in V if the subgoals of R are only view predicates
defined in V or interpreted predicates. The expansion of a query P on a set of
views V , denoted by P exp, is obtained from P by replacing all the views in P
with their corresponding base relations. Note that in the case of union of CQs
the following holds: if R = ∪Ri, then Rexp ≡ ∪(Rexp

i ).
Given a query Q and a view set V , a query P is a contained rewriting of query

Q using V if P uses only the views in V , and P exp 1 Q. That is, P computes
a partial answer to the query. Given a rewriting language L (e.g., unions of
conjunctive queries), we call P an equivalent rewriting of Q using V w.r.t. L if
P is in L, and P exp ≡ Q. We call P a maximally-contained rewriting (MCR)
of Q w.r.t. L if (1) P is a contained rewriting (in L) of Q, and (2) there is no
contained rewriting P1 (in L) of Q such that P1 properly contains P .

2.2 Conjunctive Queries with Arithmetic Comparisons

In this work we study the problem of rewriting a query using views when both the
query and the views are of the following form:

h(X) :- e1(X1), . . . , ek(Xk), C1, . . . , Cm

where each Ci is an arithmetic comparison in the form A1θA2, where A1 and A2
are variables or constants. The operator θ is one of the following: <, ≤, =, >, or ≥.
We call an arithmetic comparison open if its operator is < or > and closed if its
operator is ≤ or ≥. We call the ei’s ordinary subgoals, and the Ci’s arithmetic
comparison subgoals (AC subgoals). In addition, the following assumptions must
hold:

1) Values for the arguments in the arithmetic comparisons are chosen from an
infinite, totally densely ordered set, such as the rationals or reals.
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2) The arithmetic comparisons are not contradictory; that is, there exists an
instantiation of the variables such that all the arithmetic comparisons are true.

3) All the comparisons are safe, i.e., each variable in the comparisons also
appears in some ordinary subgoal.

2.3 Testing Containment of CQACs

When the queries and views are expressed as conjunctive queries (without arith-
metic comparisons), we know how to find equivalent rewritings (if they exist) and
maximally-contained rewritings (MCRs) that are unions of conjunctive queries
(see [11] for a survey). However, arithmetic comparisons introduce many com-
plications to the problem. In particular, both the containment mapping theorem
[6] and the theorem for unions of CQs [22] no longer hold.

Let Q1 and Q2 be two conjunctive queries with arithmetic comparisons
(CQACs). To test whether Q2 1 Q1 there are two most popular methods: a)
the test of canonical databases [17, 12] and b) the test of Gupta and Zhang-
Ozsoyoglu [10, 25]. In the following paragraphs we shortly review the first test,
which we use extensively throughout the paper. Due to space limit, we refer the
reader to [4] for more details about the second test. Before presenting the test,
we briefly explain how to obtain a canonical database D given a query Q: we
turn each ordinary subgoal into a fact by replacing each variable in the body by
a distinct constant, and treating the resulting subgoals as the only tuples in D.

We now describe the test of canonical databases [17, 12]. When dealing with
CQACs we must consider the set of values in the database as belonging to a
totally ordered set, e.g. the rationals or reals. This test produces an exponential
number of canonical databases any one of which could be a counterexample to
the containment. Suppose we want to test Q1 1 Q2. We do the following:

1) Consider all partitions of the variables of Q1. For each partition P consider
all possible total orders of the members of the partition and assign to each
member bi of P a unique positive integer ni such that if bk, bl ∈ P and bk < bl,
then nk < nl. Then, substitute (freeze) every variable in each member bi of P by
the corresponding constant ni. Thus we obtain a number of canonical databases
D1, D2, . . . , Dn, one database for each different order in each partition. Each Di

consists of the frozen subgoals of Q1 excluding the subgoals having comparison
predicates.

2) Test whether for all Di that make the body of Q1 true, Q2(Di) includes
the frozen head of Q1. The frozen head of Q1 is obtained by making the same
substitution of constants for variables that yielded Di.

3) Q1 1 Q2 if and only if (2) holds.

2.4 Known Decidability Results

The following two theorems from [2] prove the decidability of the problem we
study in this work.

Theorem 1. (CQAC equivalent rewritings) For a query and views that are con-
junctive queries with arithmetic comparisons, it is decidable whether there is an
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equivalent rewriting for the query using the views, where the rewriting is also a
conjunctive query with arithmetic comparisons. If such an equivalent rewriting
exists, there is an algorithm to find it.

Theorem 2. (Union of CQAC equivalent rewritings) For a query and views
that are conjunctive queries with arithmetic comparisons, it is decidable whether
there is an equivalent rewriting for the query using the views, where the rewriting
is a finite union of conjunctive queries with comparisons. If such an equivalent
rewriting exists, there is an algorithm to find it.

2.5 Technical Details

This subsection contains some technical points that are needed to understand
the details of our algorithm. Let D be the canonical database of the query Q
when ignoring the ACs and let V (D) be the result of applying the view defini-
tions V on database D. For each tuple in V (D), we “unfreeze” each introduced
constant back to the original variable of Q, and obtain a set of view tuples
T (V ).

A head homomorphism [20] of the head variables in a view is a partitioning
of these variables, such that all the variables in each member of the partition are
equated to a single variable. For a specific view, different head homomorphisms
result in different view tuples.

Now we consider containment mappings from the ordinary subgoals of the
query to the ordinary subgoals of the view. Let μ be one such mapping from
some query subgoals to view subgoals. The definition of the shared variable
property for μ is the following: whenever a query variable X is mapped on a
nondistinguished view variable, then all query subgoals that contain X are in
the domain of the mapping.

Definition 1. We assume that the sets of variables in the query and the view
definitions are disjoint. An MCD mapping (MiniCon Description [20]) μ is an
one-to-one1 containment mapping from the ordinary subgoals of the query to the
ordinary subgoals of view V which satisfies the shared variable property. Let S
be the set of query variables that are mapped to head variables of view V un-
der μ. We rename each variable X in μ(S) to μ−1(X). Let v be the head of
view V after this renaming. Then, we say that μ is an MCD mapping for view
tuple v.

Intuitively, an MCD mapping represents a fragment of a containment mapping
from the query to the expansion of the rewriting. The way in which MCDs are
constructed guarantees that these fragments can be combined seamlessly.

Definition 2. Let υi and υj be view tuples of V such that there is a containment
mapping from υi to υj. We say that υi is a more relaxed form of υj.
1 This is the only difference with the algorithm in [20]. Here we consider one-to-one

mappings because we are searching for equivalent rewritings whereas in [20] they are
searching for MCR’s.
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Definition 3. We call a nondistinguished variable X in a view V exportable if
there is a head homomorphism h for V , such that the inequalities in h(V ) imply
that X is equal to a distinguished variable in V .

To find exportable nondistinguished variables in a view V , we use the ACs in
V to construct its inequality graph [12], denoted by G(V ). That is, for each
variable or constant A in ACs we create a node in the graph labelled with A.
Then, for every comparison predicate AθB where θ is < or ≤, we introduce
an edge labeled θ from A to B. If there is a path from node A to C, we have
A ≤ C. If there is a <-labeled edge on any path between A and C, then A < C.
We need the following concepts to show how to export a nondistinguished view
variable.

Definition 4. Let X be a nondistinguished variable in a view V . The leq-set
(less-than-or-equal-to set) of X, denoted by S≤(V,X), includes all distinguished
variables Y of V that satisfy the following conditions. There exists a path from
Y to X in the inequality graph G(V ), and all edges on all paths from Y to X are
labeled ≤. In addition, in all paths from Y to X, there is no other distinguished
variable except Y .

Correspondingly, we define the geq-set (greater-than-or-equal-to set) of a variable
X, denoted by S≥(V,X). The following lemma from [2] can help us decide if a
variable in a view V is exportable.

Lemma 1. A nondistinguished variable X in view V is exportable if and only
if both S≤(V,X) and S≥(V,X) are nonempty.

3 Finding Equivalent Rewritings of CQAC Queries Using
CQAC Views

In the following paragraphs we present an algorithm that finds an equivalent
rewriting (if there exists one) for queries that are CQAC using views that are
also CQAC. Our algorithm consists of two phases. In the first phase we find all
candidate rewritings that contain the query, while in the second phase we add
constraints to the rewritings (obtained in the first phase) and we check whether
these rewritings are contained in the query.

The efficiency of our algorithm is mainly based on the observations that if
there exists an equivalent rewriting then there exists one which uses view sub-
goals out of a restricted search space of potentially useful view subgoals. These
useful view subgoals are found by using techniques for finding rewritings of
queries and views without arithmetic comparisons. In more detail, we use chase-
like techniques [7, 19, 5] to find candidate useful subgoals and then we prune
the space even further by using techniques used in finding maximally contained
rewritings [20].

The main challenge of our algorithm however comes from the presence of
arithmetic comparisons and the complications in testing query containment in
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this case. Due to these complications, existing algorithms cannot be used without
modification as the discussion in the next subsection shows.

3.1 Technical Challenges

In the first phase of our algorithm we find rewritings using the views V that
contain the query Q. We begin by considering query Q′ and view V ′ which
result from Q and V after dropping the ACs. Then, we find maximally con-
tained rewritings of Q′ using V ′ and we ensure that these are also equivalent
rewritings of Q′ using V ′ by deleting the view tuples that are not more relaxed.
In particular, we use the algorithm proposed in [20] adjusted to our setting
as described in Subsection 3.2. Other known algorithms which compute either
equivalent rewritings or maximally contained rewritings might also be used. In
any case it is not straightforward how they can be useful. The reason is that
these algorithms focus on rewritings which do not use redundant view subgoals
or that are containment minimal [5]. The following two examples illustrate this
point.

Example 3. Consider query Q and set of views V = {V1, V2, V3}:
Q : q() :- a(X1, X2), a(X2, X3), a(X3, X4), a(X4, X5), a(X5, X6), a(X6, X7),

a(X7, X1), X2 > 5, X7 < 8
V1 : v1(X1, X4) :- a(X1, X2), a(X2, X3), a(X3, X4), a(X4, X5), a(X5, X6),

a(X6, X7), a(X7, X1), X3 > 5
V2 : v2(X3, X5) :- a(X1, X2), a(X2, X3), a(X3, X4), a(X4, X5), a(X5, X6),

a(X6, X7), a(X7, X1), X4 < 8
V3 : v3(X,Y ) :- a(X,X2), a(X2, Y )

Note that Q evaluates to true whenever there exists a closed path of length
7 in the database D such that the conditions shown in Figure 1(a) hold for that
path. We consider also the query Q′ which is defined as Q with the ACs dropped
and the views V ′

1 , V ′
2 , and V ′

3 (with predicates v′
1, v′

2 and v′
3 respectively) which

are the views Vi without the ACs in their definition. For this last query Q′ the
CoreCover algorithm [5] will find an equivalent rewriting R′ where:

R′ : r() :- v′
1(X,Y )

However, if we use this rewriting and simply add ACs, we will not find an
equivalent rewriting of the original query Q using views Vi. Note that such an
equivalent rewriting R does exist and is the following:

R : r() :- v1(X,Y ), v2(Z,X), v3(Y,Z)

This comes easily from Figure 1(b) which shows the two heptagons correspond-
ing to the (expansions of the) atoms v1(X,Y ) and v2(Z,X) with a common
vertex labelled X. Notice also the path formed by the arcs Y → X ′′

2 and
X ′′

2 → Z corresponding to the (expansion of the) atom v3(Y,Z). Thus the Fig-
ure 1(b) represents the expansion of R. It is easy to see that Q 1 R since
whenever Q evaluates to true then so does R (we can check it by consider-
ing twice the heptagon corresponding to instance of the body of Q). To check
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Fig. 1. Example 3

that R 1 Q notice that the heptagon with vertices Z,X ′
4, X,X2, X3, Y,X ′′

2
which is formed by the expansion of R satisfies the properties required by
the query Q. It is not straightforward that the heptagon fulfills the conditions
of Q.

The rewriting:R′′ : r() :- v′
1(X,Y ), v′2(Z,X), v′3(Y,Z) is an equivalent rewrit-

ing of Q′ using V ′ and in fact it is the rewriting that our algorithm needs to
use in order to find an equivalent rewriting of the given CQAC Q using the
views V . However, this rewriting would not have been computed by the existing
algorithms since it contains the redundant subgoals v′

2(Z,X) and v′
3(Y,Z).

Example 4. Suppose we are given the following query and set of views:

Q : q(X,Y ) : − a(X,Z1), a(Z1, 2), b(2, Z2), b(Z2, Y ), Z1 < 5, Z2 > 8
V1 : v1(X,Y ) : − a(X,Z1), a(Z1, 2), b(2, Z2), b(Z2, Y ), Z1 < 5
V2 : v2(X,Y ) : − a(X,Z1), a(Z1, 2), b(2, Z2), b(Z2, Y ), Z2 > 8

Note that an equivalent rewriting is

R : r(X,Y ) :- v1(X,Y ′), v2(X ′, Y )

We consider the query Q′ which is defined as query Q with the ACs dropped
and the views V ′

1 and V ′
2 which are the two views again without the ACs in their

definition. In this case the rewriting of Q′ using V ′ does not contain redundant
subgoals. Still, it is not a containment minimal rewriting [5], i.e. there is another
equivalent rewriting of Q′ using V ′ which is the following:

R′ : r(X,Y ) :- v1(X,Y ).

However we cannot obtain from R′ an equivalent rewriting of Q using V . There-
fore we cannot use the algorithm in [5].
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3.2 Phase 1: Construct Rewritings that Contain the Query

In Phase 1 we begin by creating all canonical databases of the query. For this we
consider all total orders of the variables of the query and the constants of both
the query and the views. Thus we obtain a number of canonical databases. Notice
that the number of canonical databases is exponential in the number of variables.
From these canonical databases we keep only those that compute the head of
the query, or if the query is boolean, that make the body of the query true.
Suppose D1, D2, . . . , Dk are these canonical databases. For every Di, i = 1, . . . , k
we compute the view tuples Ti(V ) by applying the view definitions V on Di and
restoring back the variables in the tuples. Note that the total order of each
canonical database must satisfy the ACs of views; otherwise we omit the view
tuples corresponding to the specific canonical database and view definition.

Example 5. Suppose we are given the following query Q and the view V :

Q : q(A) :- r(A), s(A,A), A ≤ 8
V : v(Y,Z) :- r(X), s(Y,Z), Y ≤ X,X ≤ Z

(Note that P : p(A) :- v(A,A), A ≤ 8 is an equivalent rewriting of Q).
To compute the sets of view tuples we first construct the canonical databases of
Q by considering all variables of Q and all constants of both query and views:

D1 = {r(a), s(a, a)} : a < 8
D2 = {r(a), s(a, a)} : a = 8
D3 = {r(a), s(a, a)} : a > 8

From these canonical databases we keep only D1, D2 as they compute (taking
also into account the comparison predicates) the head of the query. To compute
the view tuples corresponding to D1 we apply the view definitions to D1. We
get V (D1) = {v(a, a)}. Then, by restoring the constant a back to the variable
A we get the set of view tuples T1(V ) = {v(A,A)}. Similarly, for the canonical
database D2, we get T2(V ) = {v(A,A)}.

Having computed Ti(V ) we proceed as follows. Let Q0 be the query obtained
by deleting the comparisons from Q, and let V0 be the view obtained by deleting
the comparisons from V and exporting in the head of the view definition the ex-
portable variables (Subsection 2.5, or see [4] for more details). Due to the different
ways of exporting variables, it is possible that to one view in V may correspond
more than one view in V0. The following example illustrates this point.

Example 6. Suppose we are given the following view definition:

V : v(X,Y,W ) :- a(X,Z1), a(Z1, Z2), b(Z2, Y,W ), X ≤ Z1,W ≤ Z1, Z1 ≤ Y .

By equating variable X to variable Y we obtain the view tuple v1 and by equat-
ing variable Y to variable W we obtain the view tuple v2. In both cases we export
variable Z1, in v1 by equating Z1 to X and in v2 by equating Z1 to Y . That is:

V1 : v1(X,X,W ) :- a(X,X), a(X,Z2), b(Z2, X,W )
V2 : v2(X,Y, Y ) :- a(X,Y ), a(Y,Z2), b(Z2, Y, Y )
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We continue with an overview of the algorithm presented by Pottinger and Levy
in [20] in order to make clear the contribution of our work. The algorithm in [20]
consists of two phases. The first phase computes MCDs and populates the buckets
accordingly. In the second phase the algorithm combines the content of the buckets
to create MCRs. Our algorithm starts as the first phase of [20] but after this we do
not proceed directly to the second phase. First, we delete those view tuples in the
buckets that are not more relaxed forms of view tuples in Ti(V ). Then, we proceed
to the second phase of [20] but only to get an answer to whether there exists an
MCR. If it does not exist, our algorithm stops. If it does exist, then we output a
rewriting PRi consisting of a conjunctive query with subgoals the content of all
buckets. So to every canonical database corresponds only one rewriting.

The above procedure is repeated for every canonical database. If there exists
a canonical database Di for which there is no maximally contained rewriting,
then the algorithm stops and there is no equivalent rewriting of the query. If
there is at least one maximally contained rewriting, then the output of the first
phase of our algorithm is a set of Pre-Rewritings (denoted PR1, PR2, . . . , PRk),
one for each canonical database. Figure 2 summarizes the steps of the first phase
of our algorithm.

Example 7. (Continued from Example 5) There are two Pre-Rewritings PR1,
PR2 corresponding to the two canonical databases D1, D2:

PR1(A) : −v(A,A)
PR2(A) : −v(A,A)

Procedure Pre-Rewritings:
Input: A CQAC Q and a set V of CQAC views.
Output: A set of Pre-Rewritings PR1, PR2, ..., PRk together with the corresponding
canonical databases D1, D2, ..., Dk.
Method:
(1) Construct all canonical databases for Q by taking into account the variables of Q
and all constants of the query and views. Construct also query Q0 which is Q with the
ACs dropped, and a set V0 of CQ views which is V with the ACs dropped.
(2) Keep only those canonical databases which compute the head of Q.
(3) For every canonical database Di do:
1. Compute the view tuples Ti(V ) by applying the view definitions V on Di.
2. If for a canonical database Di it holds Tk(Dk) = ∅ then stop (as there is no

rewriting).
3. Run the first phase of [20] with respect to Q0 and V0 which populates the buckets.
4. Delete from the buckets those tuples that are not more relaxed forms of view tuples

in the Ti(V ).
5. Run the second phase of [20]. If it produces an MCR continue, otherwise stop.
6. Produce a Pre-Rewriting whose subgoals are all view tuples contained in the buck-

ets.
7. Output the Pre-Rewriting together with the corresponding canonical database.

Fig. 2. Phase 1 of our algorithm
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In Proposition 1 we prove that each canonical database Di of the query must
correspond to one CQAC P exp

j of P which computes the query head on this
canonical database.

Proposition 1. Let Q be a CQAC query. If there exists a union of CQAC
P = ∪Pi which is an equivalent rewriting of Q, then for every canonical database
Di of Q, there exists a Pj such that P exp

j computes the head of Q in Di.

Proof. (sketch) The reason is that for every canonical database Di of the query,
P exp must compute the head of the query on this canonical database. Therefore,
there must exist a Pj such that P exp

j computes the head of the query.

The view subgoals in the body of Pj (the corresponding CQAC of canonical
database Di) as a consequence of Proposition 1 are necessarily more relaxed
forms of view tuples in Ti(V ). Therefore, it suffices to restrict our search to view
tuples in more relaxed forms than tuples in Ti(V ). Proposition 2 shows that by
restricting ourselves to view tuples, that we compute in Phase 1, we do not lose
solutions.

Proposition 2. Let Q be a CQAC query. Suppose there is an equivalent rewrit-
ing P of Q in the language of unions of CQACs using a set of CQAC views V .
Then, there is a P ′ = ∪P ′

i which is an equivalent rewriting of Q using views
V with the following property. There exists a canonical database D on which Q
computes the head tuple such that any view (hence ordinary) subgoal of P ′

i maps
on a view tuple in D.

Proposition 3 shows that by restricting ourselves to view tuples in their more
relaxed form that are part of an MCR CQAC we do not lose solutions.

Proposition 3. Let Q be a CQAC query. Suppose there is an equivalent rewrit-
ing P of Q in the language of union of CQACs using a set of CQAC views V .
Then there is a P ′ which is an equivalent rewriting of Q using views V with the
following property. Let P ′

i be a CQAC in P ′. Let P ′
i = P ′

i,0 + βi. Then P ′
i,0 is a

CQ in the MCR of Q0 using V0 possibly with redundant subgoals.

Propositions 2 and 3 are partial results of the completeness of our algorithm and
Lemma 2 is a partial result of soundness so far.

Lemma 2. Let Q be a CQAC query and V a set of CQAC views. Let Di, with
i = 1, . . . , k, be the canonical databases and PRi, with i = 1, . . . , k, the corre-
sponding Pre-Rewritings obtained by procedure of Figure 2. Let PRexp,V

i be the
expansion of PRi wrt V . Then Q 1 ∪PRexp,V

i .

Proof. The proof of the lemma follows from the containment test for CQACs.

3.3 Phase 2: Construct Rewritings that Are Contained in the
Query

The second phase performs two tasks: a) it constructs the candidate rewritings
by adding constraints to the Pre-Rewritings PRi obtained in Phase 1, still pre-
serving that the union of the new Pre-Rewritings still contains the query, b) it
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checks that the candidate rewritings are also contained in the query. In task a)
to every PRi we add the constraints of the canonical database of Q to which
this Pre-Rewriting corresponds. We call these new Pre-Rewritings PR′

i. Then, in
task b) we check the containment in the query by considering the expansions of
all PR′

is w.r.t. V and constructing the canonical databases of these expansions.
We keep only those canonical databases that compute the head of the expan-
sion (or if the expansion is boolean, that make the body true). Note that the
expansion contains constraints coming from the bodies of the view definitions
too. So fresh variables may also appear. However these variables are used only
for checking the containment in the query.

Example 8. (Continued from Example 7). To those Pre-Rewritings obtained in
Phase 1 we add the total order of the corresponding canonical database. So we
have the following Pre-Rewritings:

PR′
1(A) :- v(A,A), A < 8

PR′
2(A) :- v(A,A), A = 8

We then consider the expansion of PR′
1, and PR′

2:

PR
′exp
1 (A) :- r(X), s(A,A), A < 8, A ≤ X,X ≤ A

which simplifies to

PR
′exp
1 (A) :- r(A), s(A,A), A < 8

and,

PR
′exp
2 (A) :- r(X), s(A,A), A = 8, A ≤ X,X ≤ A

which simplifies to

PR
′exp
2 (A) :- r(A), s(A,A), A = 8

We proceed to the construction of the canonical databases of every PR
′exp
i by

considering all variables and constants of the expansion. Here, both PRi’s have
the same set of canonical databases.

D1,1 = {r(a), s(a, a)} : a < 8
D1,2 = {r(a), s(a, a)} : a = 8
D1,3 = {r(a), s(a, a)} : a > 8
D2,1 = {r(a), s(a, a)} : a < 8
D2,2 = {r(a), s(a, a)} : a = 8
D2,3 = {r(a), s(a, a)} : a > 8

We keep only the canonical databases that compute the head of the expansion
of the rewriting. In this example we keep only the canonical databases D1,1, D2,2.

The last step of Phase 2 consists in checking the constraints for each PR′
i

through a two-column tableau constructed as follows. Each row corresponds
to a canonical database of the expansion of PR′

i. We apply the query Q on
this canonical database and if the expansion head is computed, we place the
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Procedure Equivalent rewritings:
(1) Input: A set of Pre-Rewritings PR1, PR2, ..., PRk together with the corresponding
canonical databases D1, D2, ..., Dk

(2) Output: An equivalent rewriting R
(3) Method:
1. For each PRi do:

(a) Construct PR′
i by adding the ACs of the canonical database Di to which PRi

corresponds.
(b) Consider the expansion PR

′exp
i wrt V of PR′

i and all its canonical databases.
(c) Make a two-column tableau as follows: in the left column place the total order

of all canonical databases created from the PR
′exp
i in which Q computes the

head variable of PR
′exp
i . In the right column place the total order of the

canonical databases created from the PR
′exp
i s in which Q does not compute

the head variable of PR
′exp
i .

2. If a constraint appears on the right column of the tableau, then the algorithm fails
(there is no rewriting). If not, then output R = ∪PR′

i.

Fig. 3. Phase 2 of our algorithm

constraint corresponding to the total order of the canonical database in the left
column of the tableau. Otherwise, we place the constraint in the right column.
In the end, if there is at least one constraint on the right column of the tableau
there is no equivalent rewriting to the query. Otherwise, the equivalent rewriting
of Q is the union of PR′

i. Figure 3 presents the steps of Phase 2.

Example 9. (Continued from Example 8). For every canonical database that we
finally keep, we check the corresponding total order through the following tableau:

Q satisfies db Q does not satisfy db
D1,1 : a < 8
D2,2 : a = 8

Since no constraint appears on the right column of the tableau, then the equiv-
alent rewriting R to the query Q consists of the union:

r(A) :- v(A,A), A < 8
r(A) :- v(A,A), A = 8

Example 10. This example illustrates the case when the algorithm detects that
there is no equivalent rewriting and stops. Consider the query and view:

Q : q(A) :- r(A), s(A,A), A ≤ 8
V : v(Y,Z) :- r(X), s(Y,Z), Y ≤ X,X < Z

Phase 1: We construct the canonical databases of Q by considering all vari-
ables of Q and all constants of the query and views:

D1 = {r(a), s(a, a)} : a < 8
D2 = {r(a), s(a, a)} : a = 8
D3 = {r(a), s(a, a)} : a > 8
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We keep those canonical databases on which we compute the head of the
query. That is, we keep only D1, D2. As V (D1) = V (D2) = ∅, the algorithm
would stop in Phase 1, and the query has no equivalent rewriting.

3.4 Soundness and Completeness

To prove soundness and completeness of our algorithm we use Lemma 2 and
Propositions 2 and 3 from Phase 1.

Proposition 4. Let PRi be the Pre-Rewriting computed in Phase 1 of the al-
gorithm corresponding to the canonical database Di of Q. Then, every PR

′exp
i

constructed in Phase 2 still computes the head of Q in Di. Hence, Q 1 ∪PR
′exp
i .

Proof. (sketch) The PR′
is in Phase 2 are constructed from PRis by adding the

constraints implied by the total order of the corresponding canonical database
Di of Q. So the new constraints do not harm, and ∀i PR

′exp
i still computes the

head of Q in Di.

So far we have proved that our algorithm is complete i.e. if there are rewritings
equivalent to Q with respect to the views in V , then our algorithm finds at least
one. Lemma 3 proves that whenever our algorithm produces a rewriting then
this rewriting is equivalent to the query.

Lemma 3. Let Q be a CQAC query and V a set CQAC views. Let PR = ∪PRi

be the set of Pre-Rewritings. When the algorithm does not fail then the output
R of the algorithm in Figure 3 is an equivalent rewriting of Q using V .

Theorem 3. Given a query and views that are CQACs, our algorithm finds an
equivalent rewriting (if there exists one) in the language of unions of CQACs.

Proof. (sketch) Completeness: a consequence of Propositions 2, 3 and 4.
Soundness: a consequence of Lemma 3.

4 Experimental Results

In this section we present some of the experiments conducted to evaluate the
efficiency of our algorithm. All the experiments were run on a machine with 3GHz
Intel Pentium 4 processor with 512MB RAM and a 80GB hard disk, running the
Windows XP operating system. Figure 4(a), (b) and (c) show that the runtime of
the algorithm depends strongly on the number of distinct variables and constants
in the CQAC queries and CQAC views rather than on the number of views.

Note that a completely naive full-enumeration algorithm would not have a
chance because it would have to enumerate thousands of combinations of view
tuples for a typical query. In simple words, we would not be able to draw the
curves in the graphs as they would go nearly vertically.

In more detail, Figure 4(a) shows the dependence of the runtime on the num-
ber of views where the number of variables is kept constant (6 variables and
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(a) (b)

(c)

Fig. 4. Experimental results

constants). The graphs in Figures 4(b) and 4(c) present the dependence of our
algorithm on both the number of the variables and the number of views. To be
more precise, graph (b) gives the dependence for 10-20 views whereas graph (c)
for 20-60 views.

5 Conclusions

The problem of rewriting queries using views in the presence of arithmetic com-
parisons is an important problem since users often need to pose queries con-
taining inequalities. However the presence of arithmetic comparisons adds more
complexities. The problem of finding an equivalent rewriting (if there exists one)
in the presence of ACs is decidable. The doubly exponential complexity though
calls for an efficient algorithm which will perform better on average than the
complete enumeration algorithm.

In this work we present an algorithm which finds equivalent rewritings for
conjunctive queries with arithmetic comparisons, and prove its correctness. Its
efficiency lies in that it considers fewer candidate rewritings because it includes
a preliminary test to decide for each view whether it is potentially useful in some
rewriting. Experiments conducted to evaluate our algorithm proved its efficiency.
In future work it would be interesting to investigate special cases in which our
algorithm may have lower complexity, such as acyclic queries.
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Abstract. The need of processing graph reachability queries stems from many
applications that manage complex data as graphs. The applications include
transportation network, Internet traffic analyzing, Web navigation, semantic web,
chemical informatics and bio-informatics systems, and computer vision. A graph
reachability query, as one of the primary tasks, is to find whether two given data
objects, u and v, are related in any ways in a large and complex dataset. Formally,
the query is about to find if v is reachable from u in a directed graph which is
large in size. In this paper, we focus ourselves on building a reachability label-
ing for a large directed graph, in order to process reachability queries efficiently.
Such a labeling needs to be minimized in size for the efficiency of answering the
queries, and needs to be computed fast for the efficiency of constructing such a
labeling. As such a labeling, 2-hop cover was proposed for arbitrary graphs with
theoretical bounds on both the construction cost and the size of the resulting la-
beling. However, in practice, as reported, the construction cost of 2-hop cover
is very high even with super power machines. In this paper, we propose a novel
geometry-based algorithm which computes high-quality 2-hop cover fast. Our
experimental results verify the effectiveness of our techniques over large real and
synthetic graph datasets.

1 Introduction

Consider a reachability query querying whether a node v is reachable from node u in a
large directed graph, G. There are several possible yet feasible solutions for efficiently
answering such a query, as indicated in [2]. Those solutions include i) maintaining the
transitive closure of edges, which results in high storage consumption, and ii) comput-
ing the shortest path from u to v over such a large graph on demand, which results high
query processing cost. A 2-hop reachability labeling, or 2-hop cover, was proposed by
Cohen et al, as a feasible solution, to answer such reachability queries [2]. The key is-
sue is how to minimize such a 2-hop cover, because the minimum 2-hop cover leads to
the efficiency of answering reachability queries. The problem is shown to be NP-hard,
because minimum 2-hop cover is a minimum set cover problem. Cohen et al proposed
an approximation solution. The theoretical bound on the size of 2-hop cover is also

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 961–979, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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provided. Despite the excellence of the theoretical bound on the time complexity, the
cost for computing the minimum 2-hop cover is high when dealing with large graphs.
In [19], Schenkel, Theobald and Weikum run Cohen et al’s algorithm on a 64 processor
Sun Fire-15000 server with 180 gigabyte memory for a subset of DBLP which con-
sists of 344,992,370 connections. It took 45 hours and 23 minutes using 80 gigabytes
of memory to find the 2-hop cover which is in size of 1,289,930 entries. The long con-
struction time makes it difficult to construct such a 2-hop cover for large graphs.

The main contribution of our work in this paper are summarized below.

– We propose a set cover I solution (SCI) instead Cohen et al’s set cover II solution
(SCII) [8], where SCI minimizes the number of subsets in a set cover and SCII
minimizes the overlapping among subsets in a set cover. We show evidences that
SCI can achieve a similar satisfactory level as SCII as to minimize the 2-hop cover
for a large graph, and at the same time can compute 2-hop cover efficiently.

– We propose a novel geometry-based algorithm to further improve the efficiency of
computing 2-hop cover. The two main features of our solution are given below.
First, we do not need to compute transitive closure as required in all algorithms
that need to compute 2-hop. Second, we map the 2-hop cover problem onto a two-
dimensional grid, and compute 2-hop using operations against rectangles with help
of a R-tree.

– We conducted extensive experimental studies using different graph generators, and
real datasets, with different parameter settings. Our results support our approach as
it can significantly improve the efficiency of finding 2-hop cover for large graphs.

The remainder of this paper is organized as follows. Section 2 gives the definition
of the 2-hop cover problem. Section 3 discusses our motivation of solving the 2-hop
cover problem using a set cover I solution [8] instead of the set cover II solution used in
Cohen et al’s study [2]. Our work is motivated by the main requirements of the 2-hop
cover problem: minimization of the 2-hop cover and minimization of processing time.
Section 4 discusses a new geometry-based approach as a set cover I solution to the 2-
hop cover problem. Experimental results are presented in Section 5 followed by related
work in Section 6. Finally, Section 7 concludes the paper.

2 Problem Definition

The 2-hop reachability labeling is defined in [2]. We introduce it below in brief. Let
G = (V,E) be a directed graph. A 2-hop reachability labeling on graph G assigns
every node v ∈ V a label L(v) = (Lin(v), Lout(v)), where Lin(v), Lout(v) ⊆ V such
as every node x in Lin(v) connects to every node y in Lout(v) via the node v. A node
v is reachable from a node u, denoted u � v, if and only if Lout(u)∩Lin(v) �= ∅. The
size of the 2-hop reachability labeling over a graph G(V,E), is given as L, below.

L =
∑

v∈V (G)

|Lin(v)| + |Lout(v)| (1)

In order to solve the 2-hop reachability labeling, Cohen et al. introduced 2-hop cover,
which is given below [2].
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Definition 1. (2-hop cover) Given a directed graph G = (V,E). Let Pu�v be a set
of paths from node u to node v in G, and P be a set of all such Pu�v in G. A hop,
hu, is defined as hu = (pu, u), where pu is a path in G and u is one of the endpoints
of pu. A 2-hop cover, denoted H , is a set of hops that covers P , such as, if node v is
reachable from node u then there exists a path p in the non-empty Pu�v where the path
p is concatenation of pu and pv , denoted p = pupv , and hu = (pu, u) and hv = (pv, v).

The 2-hop reachability labeling can be derived from a 2-hop cover [2]. In addition, the
size of the 2-hop cover, |H|, for a graph G, is the same as that of 2-hop reachability
labeling (|H| = L).

The 2-hop cover problem is to find the minimum size of 2-hop cover for a given
graph G(V,E), which is proved to be NP-hard [2]. Cohen et al show that a greedy
algorithm exists to compute a nearly optimal solution for the 2-hop cover problem.
The resulting size of the greedy algorithm is larger than the optimal at most O(log n).
The basic idea is to solve the minimum 2-hop cover problem as a minimum set cover
problem [8]. Note: in the corresponding minimum set cover problem, a set is a set of
edges.

We illustrate Cohen et al’s algorithm in Algorithm 1. We call it MaxDSCovering.
In Algorithm 1, it initializes the 2-hop cover H (line 1), and computes the transitive
closure, T , for the given graph G (line 2). Here, T is treated as the ground set of the
minimum set cover problem. The main body of the algorithm is a while loop, which
repeatedly finds hops until T becomes empty (line 3-14). The 2-hop cover is returned
in line 15. In line 5-10, it finds a densest bipartite graph, B, which has node w as its
virtual center, by calling a function denSubGraph. In denSubGraph, the densest bipartite
graph is constructed, based on a node w, in two main steps.

– Construct a bipartite graph BC(VC , EC) where VC = VCin
∪VCout

, based on node
w, such as

VCin
= {u | (u,w) ∈ T} ∪ {w} (2)

VCout
= {v | (w, v) ∈ T} ∪ {w} (3)

and
EC = VCin

× VCout
(4)

The sets, VCin
and VCout

, are all connected via the virtual center w, respectively.
– Find the densest bipartite graph, denoted B(V,E), where V = Vin ∪ Vout, from

BC , such as

max
Vin⊆VCin

Vout⊆VCout
E⊆EC

|E ∩ T ′|
|Vin| + |Vout|

(5)

where T ′ is the set of uncovered edges. Note: finding the minimum set over is
equivalent to find the densest subgraph [2], as illustrated in Eq. (5). As a densest
subgraph problem, it can be solved in polynomial time [5].

The candidate bipartite graph B with the highest score (Eq. (5)), after checking every
node in G, is identified after line 10. In line 11-12, new hops are added into the 2-
hop cover, based on B. After it, the set of edges of B, denoted E(B) will be removed
from T ′.
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Algorithm 1. MaxDSCovering(G)

Input: graph, G(V, E).
Output: 2-hop cover, H .

1: H ← ∅;
2: T ′ ← T ← {(u, v) | Pu�v �= ∅};
3: while T ′ �= ∅ do
4: τ ← 0;
5: for all w ∈ V do
6: B ← denSubGraph(w, T , T ′) with a score cw; {B(V, E) is a bipartite graph with

V = Vin ∪ Vout.}
7: if cw > τ then
8: vb ← w; τ ← cw; B ← B;
9: end if

10: end for
11: for all u ∈ Vin of B do H ← H ∪ {(u � vb, u)};
12: for all v ∈ Vout of B do H ← H ∪ {(vb � v, v)};
13: T ′ ← T ′ \ E(B);
14: end while
15: return H;

3 A Set Cover I Solution

Cohen et al. solve (approximate) the minimum 2-hop cover problem as a minimum
set cover problem with a theoretical bound on the time complexity, O(n4) where n is
the number of nodes in the graph G. However, it is challenging to compute such a 2-
hop cover for very large graphs because the algorithm is CPU intensive as reported in
[18, 19]. Also, it needs to precompute the transitive closure which requires large mem-
ory space. Recall, in [19], Schenkel, Theobald and Weikum run Cohen et al’s algorithm
on a 64 processor Sun Fire-15000 server with 180 gigabyte memory for a subset of
DBLP which consists of 344,992,370 connections. It took 45 hours and 23 minutes
using 80 gigabytes of memory to find the 2-hop cover which is in size of 1,289,930
entries.

The minimum set cover problem used in MaxDSCovering is called a minimum set
cover II problem, denoted SCII, in [8]. SCII is to find a set cover which has the least
overlapping, and shares the same goal as 2-hop cover problem’s. In [8], Johnson also
gave a set cover I problem, denoted SCI, which is to minimize the cardinality. Here,
consider a set of subsets S1, S2, · · · , Sm, over a finite set S (= ∪iSi). The minimum
set cover I (SCI) is to find a smallest set of sets, denoted S, such as ∪jSj = S for
Sj ∈ S. The two set cover problems, SCI and SCII, are different. The optimal solution
for one may not be the optimal solution for the other.

In this paper, we show that the minimum 2-hop cover problem can be solved using
SCI effectively. By effectiveness, we mean that the size of 2-hop set identified by SCI
is very similar to the size of 2-hop set identified by SCII, in practice, using greedy
algorithms, when handling large graphs.

We propose an algorithm called MaxCardinality. The algorithm is the same as
MaxDSCovering after replacing Eq. (5) with the following equation Eq. (6), for finding
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Fig. 1. SCII vs SCI over a Directed Acyclic Graph (|V | = 2, 000, |E| = 4, 000)

a bipartite subgraph B(V,E) from a bipartite graph BC(VC , EC) where V = Vin ∪
Vout. As the name of the algorithm indicates, it is to maximize the cardinality of the
edges (uncovered paths) in each bipartite graph.

max
Vin⊆VCin

Vout⊆VCout
E⊆EC

|E ∩ T ′| (6)

where T ′ is the uncovered set.
We show the similarities and differences between the two solutions, namely, SCI and

SCII, in Fig. 1, using a random graph, G(V,E) where |V | = 2, 000 and |E| = 4, 000,
generated by a graph generator [9]. In Fig. 1, it compares MaxCardinality (a SCI solu-
tion) with MaxDSCovering (a SCII solution). The figures (a)-(d) are for MaxDSCover-
ing, and the figures (e)-(h) are for MaxCardinality. Note: both algorithms are the same
as shown in Algorithm 1 except that MaxDSCovering uses Eq. (5) and MaxCardinality
uses Eq. (6) for identifying a subgraph.

– In Fig. 1 (a) and (e), we show the density of the subgraph found in MaxCardinality
and MaxDSCovering (B(V, E) in Algorithm 1). The density (y-axis) is |E|/(|Vin|+
|Vout|) where V = Vin ∪Vout. It is important to note that MaxCardinality does not
use it to compute, but uses it to measure its density per iteration, in comparison
with MaxDSCovering.

MaxDSCovering decreases monotonically, because it always finds the best dens-
est subgraph per iteration (Fig. 1 (a)). MaxCardinality decreases globally, but shows
fluctuation patterns (Fig. 1 (e)), because it cannot find the best densest subgraph per
iteration. However, one very important observation is that MaxCardinality can find
a more dense graph than former selected ones in one of the following iterations
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after it misses a densest graph in some iteration. If we compare the two subfigures,
MaxCardinality sometime outperforms MaxDSCovering in many iterations for this
reason.

– In Fig. 1 (b) and (f), we show the accumulated compression ratio, |Ti|/Hi, where
Ti is the transitive closure that has been covered already at the i-th iteration, and
Hi is the 2-hop cover for Ti. Both figures are almost the same. It shows that the 2-
hop cover can be solved effectively using a SCI solution. For this graph, the size of
the transitive closure, T , is |T | = 24, 888. The sizes of the 2-hop covers found by
MaxDSCovering and MaxCardinality are, 6,840 and 7,089. The difference is 249.
The compression rate of the 2-hop covers by MaxDSCovering and MaxCardinality
are, 0.27 (6, 800/248, 88) and 0.28 (7, 089/24, 888).

– In Fig. 1 (c) and (g), we show the coverage of the graph up to the i-th iteration,
|Ti|/|T ′

i |, where Ti is the transitive closure being covered at the i-th iteration, and
T ′ is the transitive closure that has not been covered up to the i-th iteration. Both
share the similar trend.

– In Fig. 1 (d) and (h), we show the CPU time spent in every iteration. Due to the
difference between SCI (Eq. (5)) and SCII (Eq. (6)), MaxCardinality spends much
less time than MaxDSCovering.

The above discussions show that a SCI solution can effectively and efficiently solve
the minimum 2-hop cover problem.

4 A Fast Geometry-Based Algorithm for the Set Cover I Solution

In this section, we show that we can significantly improve the efficiency of MaxCardi-
nality (a SCI solution) by solving it over a 2-dimensional space using simple operations
against rectangles.

The outline of our approach is given below. First, for a given directed graph G, we
construct a directed acyclic graph, denoted G↓. Second, we compute the 2-hop cover for
the directed acyclic graph G↓. Third, we compute the 2-hop cover for the directed graph
G using the 2-hop cover obtained for G↓, in a simple post-processing step. Below, we
discuss the first step, and the third step and will discuss the second step in the following
subsections.

Directed acyclic graph construction: Given a directed graph G(V,E), we identify
its strongly connected components, C1, C2, · · · efficiently, in the order of O(|V | +
|E|) [4]. Note: any two nodes are reachable if they are in the same strongly connected
component, Ci. The directed acyclic graph G↓(V↓, E↓) is constructed as follows. A
node v ∈ V↓ represents either a strongly connected component, Ci or a node in G. If
v represents a strongly connected component Ci, we randomly select one of the nodes
in Ci, denoted v′, as the representative in V↓. All other nodes in Ci will not appear in
V↓. All the edges between the nodes in the strongly connected component Ci will not
appear in E↓; all edges going into/from the strongly component, Ci, will be represented
as edges going into/from the node v′ in E↓. If v represents a node in G, which is not
involved in any strongly connected component, the node will be added into V↓, and the
corresponding edges going into/from v appear in E↓. The conversion of G to G↓ can be
done as the same time when finding strongly connected components as a by-product.
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Generation of 2-hop cover for G upon the 2-hop cover for G↓: Recall in a strongly
component Ci, any two nodes, u and v, are reachable such as u � v and v � u.
Therefore, they share the same 2-hop. Suppose that we know the 2-hop for a node u in
a strongly connected component, Ci, all the nodes in Ci should have the same 2-hop.
The 2-hops can be simply added for connecting nodes in a single strongly component.

4.1 Computing 2-Hop Cover for a Directed Acyclic Graph

In the following subsections, we explain how to compute 2-hop cover for a directed
acyclic graph. The main techniques are: 1) to map a reachability between u � v onto
a grid point in a 2-dimensional grid, 2) map a bipartite graph with a virtual center into
rectangles, and 3) compute the densest bipartite graph, based on Eq. (6), as to compute
the largest area of rectangles. Note: R-tree can be used to assist the last step.

Below, in Section 4.2, we introduce an efficient approach [1] which computes an
interval labeling for reachability over a directed acyclic graph. Note: there is no need
to compute transitive closure. We will discuss space complexity between the interval
labeling and 2-hop labeling in our experimental studies. In Section 4.3, we discuss a 2-
dimensional reachability map, which is constructed using the interval labeling [1]. The
reachability information is preserved completely in the map. In Section 4.4, we give our
algorithm, and explain it using an example.

4.2 An Interval Based Reachability Labeling for Directed Acyclic Graphs

Agrawal et al [1] proposed a method for labeling directed acyclic graphs using inter-
vals. The labeling is done in three steps for a directed acyclic graph, GD. 1) Con-
struct an optimum tree-cover T . An optimum tree-cover is defined as to minimize
the number of intervals. 2) Every node, v, in T is labeled using an internal [s, e]. A
node v has a unique postorder number, denoted po, which is the number assigned
following a postorder traversal of the tree starting from 1. The e value in [s, e] for a
node v is the postorder number of the node v, and the s value in the interval is the
smallest postorder number of its descendants, where s = e if v is a leaf node. 3) Af-
ter T is labeled, it examines all nodes of GDin the reverse topological order. During
the traversal, for each node u, add all the intervals associated with v, if there exists
an edge (u, v), into the interval associated with u. An interval can be eliminated if
it is contained in another. Let Iu be a list of intervals assigned to a node u. Sup-
pose there are two nodes u and v where Iu = {[s1, e1], [s2, e2], · · · , [sn, en]}, and
Iv = {[s′1, e′1], [s′2, e′2], · · · , [s′m, e′m]}. There exists a path from u to v iff the postorder
of v is in an interval, [sj , ej ], of u.

4.3 A 2-Dimensional Reachability Map

First, we show how to construct a 2-dimensional reachability map, M . With the help of
M , we want to check u � v in a directed acyclic graph, G↓, quickly, using a function
f(u, v), such as f(u, v) = 1 iff u � v, and f(u, v) = 0 iff u �� v.

The construction of the reachability map is done using two interval labelings ob-
tained on the directed acyclic graph, G↓(V↓, E↓), on which we are going to compute
its 2-hop cover, and another auxiliary directed acyclic graph, G↑(V↑, E↑), respectively.
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Fig. 2. A directed graph, and its two directed acyclic graphs, G↓ and G↑

Table 1. A Reachability Table for G↓ and G↑

w G↓ G↑
po↓(w) I↓(w) po↑(w) I↑(w)

0 9 [1,9] 4 [4,4]
1 1 [1,1],[3,3] 3 [1,5]
3 6 [1,6] 5 [4,5]
4 2 [2,2] 9 [4,5],[9,9]
5 5 [3,5] 6 [4,6]
8 7 [1,1],[3,3],[7,7] 1 [1,1],[4,4]
9 4 [3,4] 7 [4,7]
11 3 [3,3] 8 [1,8]
12 8 [1,1],[3,3],[8,8] 2 [2,2],[4,4]

Note: G↑(V↑, E↑) can be easily obtained from G↓(V↓, E↓), such as V↑ = V↓, and a
corresponding edge (v, u) ∈ E↑ if (u, v) ∈ E↓. In brief, for a node, u, the former can
tell which nodes u can reach, and the latter can tell which nodes can reach u, fast. For
the pair of graphs, G↓ and G↑, we compute the postorder numbers (op↓ and op↑) and
interval labels (I↓ and I↑), using Agrawal et al’s algorithm efficiently [1]. We store them
in a table, called a reachability table.

Example 1. As a running example, a random directed graph, G1(V1, E1), with 12
nodes and 19 edges, is shown in Fig. 2 (a). There are two strongly connected com-
ponents. One is among nodes 10 and 5, the other is among nodes 1, 6 and 7.

Consider the example graph G1 (Fig. 2 (a)). Its two directed acyclic graphs, G↓ and
G↑, are shown in Fig. 2 (b) and (c), respectively. In G↓, there are only 9 nodes out of
12 nodes in G1, because there are two strongly connected components. One is among
nodes 5 and 10, and the other is among 1, 6 and 7. We select 5 and 1 as the representa-
tives for the former and latter strongly connected components in G↓. The corresponding
reachability table is shown in Table 1. In Table 1, the first column is the node identifiers
in G1 (Fig. 2 (a)). The second and third columns are the postorder number and the inter-
vals for G↓, and the fourth and fifth columns are the postorder number and the intervals
for G↑.

We can virtually represent the reachability table, as an n × n-grid reachability map
M , where n = |V↓| = |V↑|. The x-axis represents the postorder numbers of the nodes
in the graph G↓, and the y-axis represents the postorder numbers of the same nodes in
the graph G↑. Note, the postorder numbers are in the range of [1, n]. Given a pair of



Fast Computation of Reachability Labeling for Large Graphs 969

nodes, u and v in G↓, a function f(u, v) maps it onto a grid (x(v), y(u)) in M , where
x(w) = op↓(w) and y(w) = op↑(w). Here, op↓(w) represents the postorder number
of w in G↓ and op↑(w) represents the postorder number of w in G↑. The grid value of
f(u, v) is 1, if u � v, otherwise 0.

The reachability map M for G↓ (Fig. 2 (b)) is shown in Fig 3, where a shaded grid
shows a reachability u � v. The details for all possible u � v, such as u �= v, G↓, are
given in Table 2. For example, 3 � 9, is mapped onto (4, 5) in M , and (4, 5) represents
3 � 9, because it is shaded.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Fig. 3. Reachability Map

Table 2. All u � v in G↓

p f(p) p f(p) p f(p)
0 � 1 (1, 4) 0 � 3 (6, 4) 0 � 4 (2, 4)
0 � 5 (5, 4) 0 � 8 (7, 4) 0 � 9 (4, 4)
0 � 11 (3, 4) 0 � 12 (8, 4) 1 � 11 (3, 3)
3 � 1 (1, 5) 3 � 4 (2, 5) 3 � 5 (5, 5)
3 � 9 (4, 5) 3 � 11 (3, 5) 5 � 9 (4, 6)
5 � 11 (3, 6) 8 � 1 (1, 1) 8 � 11 (3, 1)
9 � 11 (3, 7) 12 � 1 (1, 2) 12 � 11 (3, 2)

Second, we show that, for a node w as a virtual center, all the the nodes that w can
reach and the nodes that can reach w, can be represented as rectangles in the reach-
ability map, M . We explain it below. Given a node w ∈ G↓. Suppose that I↓(w) =
([s1, e1], [s2, e2], · · · , [sn, en]) and I↑(w) = ([s′1, e

′
1], [s

′
2, e

′
2], · · · , [s′m, e′m]). It is im-

portant to note that a pair [si, ei] in I↓(w) indicates that the corresponding nodes in
[si, ei] can be reached from w and a pair [s′j , e

′
j ] in I↑(w) indicates that the correspond-

ing nodes in [si, ei] can reach w. Therefore, all the possible pairs of [si, ej ] and [s′j , e
′
j ]

represent the reachability with w as the center.
We define a function Rect(w) which maps the all reachability, with w as the virtual

center, onto n × m rectangles in M , such as ((si, s
′
j), (ei, e

′
j)) for every 1 ≤ i ≤ n

and 1 ≤ j ≤ m. Note: a rectangle being contained in another can be eliminated. Two
adjacent rectangles can be merged into a single rectangle.

The rectangular representation of the reachability of the nine nodes in G↓ (Fig. 4 (b))
are shown in Fig. 4. For example, consider node w = 1 in G↓. The cross in Fig. 4 (b)
represents node w = 1 as 1 � 1 at the grid (x, y) = (1, 3) in M . Here, I↓(1) has
two intervals, [s1, e1] = [1, 1] and [s2, e2] = [3, 3], and I↑(1) has an interval [s′1, e

′
1] =

[1, 5]. The two rectangular representations become ((s1, s
′
1), (e1, e

′
1)) = ((1, 1), (1, 5))

and ((s2, s
′
1), (e2, e

′
1)) = ((3, 1), (3, 5)).

Third, we show that Rect(w) represents a bipartite graph BC(VC , EC) ⊆ G↓, which
has w as its virtually center, in the reachability map, M . Recall: VC = VCin

∪ VCout
,

Vin (Eq. (2)) and Vout (Eq. (3)) can be computed as follows.

VCin
= g↑(Rect(w)) (7)

VCout
= g↓(Rect(w)) (8)



970 J. Cheng et al.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

(a) w = 0
0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

(b) w = 1
0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

(c) w = 3

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

(d) w = 4
0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

(e) w = 5
0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

(f) w = 8

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

(g) w = 9
0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

(h) w = 11
0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

(i) w = 12

Fig. 4. Rectangular representations of bipartite graphs for nodes w ∈ G↓

where g↓ and g↑ are functions that return a set of node identifiers represented as pos-
torder numbers in the y-axis and x-axis. We explain the two functions, g↓ and g↑, using
an example.

Reconsider node w = 1 again in G↓ (Fig. 2 (b)). Rect(w) represents two rectangles,
((1, 1), (1, 5)) and ((3, 1), (3, 5)). Rect(w) covers x-values in X = {1, 3} and y-values
in Y = {1, 2, 3, 4, 5}. As shown in Table 1, Vout = {1, 11}, because 1 = op−1

↓ (1)
and 11 = op−1

↓ (3). In a similar fashion, Vin = {8, 12, 1, 0, 3}, because every value,
k ∈ Vin, is obtained by a value l ∈ Y , such as k = op↑(l). The corresponding bipartite
graph is shown in Fig. 5.

Fourth, we show that we can compute densest bipartite graphs using rectangles. Let
BC1 and BC2 be two bipartite graphs for nodes w1 and w2. We have the following three
equations.

Rect(BC1 ∩ BC2) = Rect(BC1) ∩ Rect(BC2) (9)

Rect(BC1 ∪ BC2) = Rect(BC1) ∪ Rect(BC2) (10)

Rect(BC1 − BC2) = Rect(BC1) − Rect(BC2) (11)

The above equations state that the rectangle of union/intersection/difference of two
bipartite graphs is the union/intersection/difference of the rectangles of the two bi-
partite graphs. Based on them, we can fast compute SCI using rectangles. We omit
the proof, because it is trivial. An example is shown in Fig. 6. Here, BC1 is mapped
onto ((x1, y1), (x2, y2)) by Rect(BC1), and BC2 is mapped onto ((x3, y3), (x4, y4))
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Fig. 5. A bipartite graph for w = 1 in G↓

BC1

(x4, y4)
BC2

(x1, y1)

(x2, y2)

(x3, y3)

Fig. 6. BC1 − BC2

by Rect(BC2). Rec(BC1 − BC2) is the two rectangles: ((x1, y1), (x3 − 1, y2)) and
((x3, y4 + 1), (x2, y2)).

4.4 The Algorithm

We discuss our new fast 2-hop algorithm, called MaxCardinality-G, because it can result
in the same set of 2-hop cover as MaxCardinality. The efficiency of MaxCardinality-G is
achieved due to the introduction of reachability map and the operations over rectangles
(Eq. (9), (Eq. (10) and (Eq. (11)). We do not need to compute bipartite graphs, BC , with
a node w as its virtual center, and we do not need to compute sets. Instead, we use I↓
and I↑ to obtain BC , and use rectangles to determine the densest subgraph based on
SCI.

In MaxCardinality-G (Algorithm 2), it takes G as an input directed graph. It con-
structs a directed acyclic graph G↓ for G (line 1), and computes its reachability table
and its reachability map (line 2). The 2-hop cover, H↓, will be obtained after line 12. In
line 13, it computes a 2-hop cover for the given graph G based on the 2-hop cover, H↓,
for G↓. The 2-hop cover H is returned in line 14. The main body of MaxCardinality-G
is to compute the 2-hop cover H↓ for the directed acyclic graph G↓. For computing
H↓, it initializes H↓ in line 3. Also, in line 4, it initializes Δ as empty which is used to
maintain all the rectangles covered by the algorithm. A rectangle represents a bipartite
subgraph in G↓. In line 6, it finds the densest bipartite subgraph, with node w as its
center in G↓, in terms of Eq. (5), using operations (Eq. (9), (Eq. (10) and (Eq. (11))
upon its corresponding rectangles, Rect(w), over the reachability map M . In line 6, it
finds the largest area of Rect(w) − Δ. Suppose the largest rectangle is for node w, in
line 7-9, it add hops into H↓. Afterward, it adds the covered rectangles into Δ (line 10),
and removes node w from the set of nodes V↓ (line 11).

We explain MaxCardinality-G using the directed acyclic graph example G↓ (Fig. 2)
(b). Below, we show the details of the algorithm MaxCardinality-G, in comparison with
its counterpart algorithm MaxCardinality. The 4 bipartite graphs, generated in the 4
iterations of the algorithm MaxCardinality are shown in Fig. 8, using Eq. (6). In the 1st
iteration, it finds a bipartite graph with w = 3 as its virtual center (Fig. 8 (a)); in the 2nd
iteration, it finds a bipartite graph with w = 1 as its virtual center (Fig. 8 (b)); in the
3rd iteration, it finds a bipartite graph with w = 9 as its virtual center (Fig. 8 (c)); and
in the 4th iteration, it finds a bipartite graph with w = 0 as its virtual center (Fig. 8 (d)).

Recall the reachability map, which preserves the complete reachability information
is given in Fig. 3. Therefore, the algorithm MaxCardinality-G needs to find all rectan-
gles Rect(w), for node w, that cover all the valid points in the reachability map. We
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Algorithm 2. MaxCardinality-G

Input: a graph, G(V, E)
Output: a 2-hop cover, H

1: Construct a directed acyclic graph G↓(V↓, E↓);
2: Compute the reachability table, and consider it as a virtual reachability map;
3: H↓ ← ∅ {2-hop cover for G↓}
4: Δ ← ∅; {covered rectangles}
5: while V↓ �= ∅ do
6: let w be the node with the max area of Rect(w)−Δ; {Densest subgraph in terms of SCI}
7: let u and v be two nodes in G↓;
8: for all (x(w), y(u)) ∈ Rect(w) do H↓ ← H↓ ∪ {(u � w, u)};
9: for all (x(v), y(w)) ∈ Rect(w) do H↓ ← H↓ ∪ {(w � v, v)};

10: Δ ← Δ ∪ (Rect(w) − Δ);
11: V↓ ← V↓ \ {w};
12: end while
13: Compute H over H↓ for G;
14: return H;
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Fig. 7. MaxCardinality-G Steps for G↓

show how it is done using Fig. 7. In Fig. 7 (a), all the shaded points are the valid points;
the cross point show the node w = 3, which is the same node selected in the 1st iteration
of MaxCardinality (Fig. 8 (a)); and the striped points shows the largest area of Rect(w),
for w = 3, among all the other nodes. The Rect(3) corresponds to Fig. 8 (a). After this
step, the covered area, Δ, is shown as dark points in Fig. 8 (b)-(d)). In the second it-
eration, the algorithm MaxCardinality-G will select a node w = 1 which has largest
area of Rect(w)−Δ. As shown above, the algorithm MaxCardinality-G finds the exact
bipartite graphs as the algorithm MaxCardinality but performs more efficiently, because
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Fig. 8. MaxCardinality Steps for G↓

Table 3. 2-hops

w 2-hops

3 (0 � 3, 0),(3 � 5, 5),(3 � 9, 9)
(3 � 11, 11),(3 � 1, 1),(3 � 4, 4)

1 (12 � 1, 12),(8 � 1, 8),(1 � 11, 11)
9 ((5 � 9), 5),(9 � 11, 11)
0 (0 � 8, 8),(0 � 12, 12)
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it only needs to use operations against rectangles. The hops found in every iteration are
given in Table 3.

We give implementation details for the algorithm MaxCardinality-G. The reacha-
bility table for the directed acyclic graph G↓ is maintained in memory. The rectangles
for the covered areas, Δ, are maintained in a R-tree [6]. The area of a node w with
Rect(w) − Δ is done as follows. 1) use Rect(w) to retrieve all the areas in Δ that
overlap with Rect(w). 2) Suppose there are n rectangles, R1, · · · , Rn, returned. It does
Rect(w) − Ri for all 1 ≤ i ≤ n. 3) The area of the Rect(w) − Δ can be computed.

5 Experimental Studies

We conducted extensive experimental studies to study the performance of the three algo-
rithms, namely, the algorithm MaxDSCovering, MaxCardinality, and MaxCardinality-
G. We have implemented all the algorithms using C++. In the following, denote them
as D, C and C-G, respectively.

Both D and C compute set cover, for a graph G(V,E), upon its transitive closure,
T , whose size can be very large, in the worst case, O(|V |2). We compute the transi-
tive closure using the algorithm [7], and precompute all bipartite graphs, BC(VC , EC)
which has w as its center. All those precomputed bipartite graphs are stored in a B-tree
on disk. For a given node w ∈ G, we can efficiently retrieve its corresponding bipartite
graph BC from disk through a simple buffering mechanism from the B-tree. For D and
C, all the other data, except the transitive closure T , are maintained in main memory.
We also implemented a variation for D and C by the procedure of DAG conversion, that
is: 1) converting a directed graph into a directed acyclic graph, 2) finding 2-hop cover
for the directed acyclic graph using D and C respectively, and 3) generating 2-hop cover
for the directed graph using a simple post-processing step, based on the 2-hop obtained
in step 2). We denote them as D* and C*, respectively. For C-G, we maintain data
structures in main memory where possible including the reachability table and R-tree.
We use Antonin Guttman’s R-tree code1. We also implemented a ranking adopted from
[19], which is used to reduce the cost for computing densest bipartite graphs in every
iteration. Table 4 summarizes the processing involved in each algorithm.

Table 4. Algorithms in Testing

MaxDSCovering MaxCardinalityProcessing Involved
D D* C C* C-G

Transitive Closure
Computation

√ √ √ √ ×

DAG Conversion × √ × √ √

Geometry-based
Approach

× × × × √
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Fig. 9. Interval-Code vs 2-Hop Cover

We generated various synthetic data using two graph generator, namely, the random
directed graph generator GraphBase developed by Knuth [14] and the random directed

1 http://web.archive.org/web/20020802233653/es.ucsc.edu/ tonig/
rtrees
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acyclic graph generator DAG-Graph developed by Johnsonbaugh [9]. We vary two pa-
rameters, |V | and E|, used in the two generators, while the default values for the other
parameters. We also tested several large real graph datasets.

We conducted all the experiments on a PC with a 3.4GHz processor and 2GB mem-
ory running Windows XP.

5.1 Exp-1: Comparison of the Five Algorithms over Directed Graphs

Because the focus of this paper is to compute 2-hop cover for general directed graphs,
we first generate 10 random directed graphs using GraphBase, where |V | = 5, 000 and
|E| = 10, 000, with different seeds. We compare five algorithms, namely, two SCII
algorithms and three SCI algorithms. Note: D and D* are a SCII solution, and C, C*
and C-G are a SCI solution. We report the size of 2-hop cover, H , processing time
(sec), memory consumption (MB), and the number of I/O accesses. Figure 10 shows
the details for D, C, D*, C*, and C-G in that order, using 10 random directed graphs.
In terms of quality, they all performed in a similar way. All algorithms achieved the
similar size of 2-hop cover and hence the similar compression ratio. In terms of effi-
ciency (CPU, Memory, I/O), D and C performed worst because they compute 2-hop
cover for a directed graph by first computing transitive closure. D* and C* performed
better because they compute 2-hop cover by first converting a directed graph into a
smaller directed acyclic graph. The cost can be reduced because the cost of comput-
ing transitive closure is reduced, and less computational cost is needed for the 2-hop
cover. C-G performed the best, and significantly outperformed the others, because it
does not need to compute transitive closure and it computes the bipartite graphs using
rectangles. Averagely, D uses as much time as 364 times of C*’s and 70,065 times of
C-G’s.
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As expected, as shown in Fig. 10, the strategy of converting a directed graph onto a
directed acyclic graph is beneficial. As a SCII solution, D* performed the best, and as a
SCI solution, C-G performed the best. In the following, we focus on D* and C-G, and
report our testing results using D* and C-G.

5.2 Exp-2: Scalability Testing on Directed Acyclic Graphs

As discussed above, for increasing efficiency, a directed graph can be first converted
onto a directed acyclic graph to compute 2-hop cover. In this testing, we focus on
scalability testing, for D* and C-G, over directed acyclic graphs. We use the DAG-
Graph generator to generate directed acyclic graphs, using various |V | and |E|. We fix
n = |E|/|V | to be 3, 4, 5 and 6, and increase |V | from 4,000 to 6,000. Such a setting is
due to the fact that D* consumes much time to complete for larger graphs.

The results are shown in Fig. 11. In terms of quality (the size of 2-hop cover, H), D*
marginally outperforms C-G. As shown in Fig. 11 (a-d), when n = |E|/|V | increases
from 3 to 6, the difference between C-G and D* becomes smaller in terms of the size of
the 2-hop cover. As also confirmed in other testing, C-G and D* becomes very similar
when the density of directed acyclic graphs becomes higher. In terms of efficiency, C-G
significantly outperforms D*, in particular, when the density of a directed acyclic graph
is high, e.g. n = 6 in this testing. It is worth noting that D* consumes more 2,387 sec.
than C-G to gain a compression ratio larger than C-G by 2.12, about 0.539% of T .

In Fig. 9, we also compared the code size between the 2-hop labeling and the interval
labeling [1] over directed acyclic graphs. The 8 directed acyclic graphs are labeled
|V |, |E| on the x-axis. Let n = |E|/|V |, the first four pairs are with n = 3, and the
remaining pairs are with n = 4. We compare the size by the number of units where
a unit can be an integer. Note for the interval code, 2 units for start and end numbers
and 1 unit for postnumber. The 2-hop labeling outperforms interval labeling in all the
8 graphs. As the n = |E|/|V | and |V | increase, the size of the interval code increases
significantly, while the size of 2-hop cover remains similar.
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5.3 Exp-3: Test Dense Graphs

We test dense directed acyclic graphs using the DAG-Graph generator. We fix |V | =
1, 000, and vary |E|, based on |E| = n · |V |, where n is in range from 120 to 480.
The results are shown in Fig. 12 where n = |E|/|V | is shown in the x-axis. Note, let
|V | = 1, 000, |E| = 480, 000 when n = 480. C-G significantly outperforms D* in
terms of efficiency, and achieves the similar quality as D* does.
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We also conducted experiments on C-G using large directed graphs. We fix |V | =
100, 000 and vary |E| from 120, 000 to 180, 000. The graphs are randomly generated
by the Graph-Base generator [14]. The processing time decreases while |E| increases,
because the number of strongly connected components increases. When the number of
strongly connected components is larger, the generated directed acyclic graph becomes
smaller. Therefore, the processing time becomes smaller. For the fast one, we only
use 6.99 sec. to compute the 2-hop cover for a directed graph with 10, 000 nodes and
180, 000 edges.
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5.4 Exp-4: Real Graph Datasets Testing

We tested several real datasets including Ecoo157 used [1], a subset of DBLP2, which
consists of all the records for 5 international conferences, SIGMOD, VLDB, ICDE,
EDBT and ICDT, until 2004, and two XMark benchmark datasets [20] using factor 0.1
and 0.2. We only show the results of C-G in Table 5, because the others consume too
much resources to compute. For example, for XMark dataset with factor 0.2, denoted

2 A snapshot of http://dblp.uni-trier.de/xml/dblp.xml in Mar/2004
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XMK.02, the number of nodes is is 336K, and the number of edges is 398K. It is a
sparse graph, the compression rate achieves up to 3,565. The processing time is 3,600
seconds, and the memory consumption is 223MB at most, because C-G does not need to
compute transitive closure, and uses rectangles. For the small real dataset Ecoo157 with
12,620 nodes and 17,308 edges, C-G only takes 0.36 seconds, and consumes 10MB
memory.

Table 5. Performance on real graphs

Data Set |V | |E| Time(sec.) Mem.(MB) # of I/Os |H| |T | |T |/|H|
Ecoo157 12,620 17,308 0.36 9.83 237 23,913 2,402,260 100.46
DBLP 140,005 157,358 737.05 99.67 11,628 653,184 198,008,864 303.14
XMK.01 167,865 198,412 831.87 114.66 4,866 583,706 2,009,963,198 3,443.45
XMK.02 336,244 397,713 3,598.69 222.52 9,418 1,165,683 4,156,191,411 3,565.46

6 Related Work

Agrawal et al studied efficient management of transitive relationships in large databases
[1]. The interval based labeling in [1] for directed acyclic graphs are reexamined for ac-
cessing graph, semistructured and XML data. Kameda [10] proposed a labeling scheme
for reachability in planar directed graphs with one source and one sink. Cohen et al
studied reachability labeling using 2-hop labels [2]. Schenkel et al [18, 19] studied 2-
hop cover problem and proposed a divide-conquer approach. They attempted to divide
a large graph into a set of even-partitioned smaller graphs, and solve the 2-hop cover
problem for the large graph by post-processing the 2-hop covers for the small graphs.
The work presented in this paper suggests that we can compute a large entire graph
efficiently without the need to divide a graph into a large number of smaller graphs.
Also, when there is a need to compute a large graph using the divide-conquer approach
[18, 19], using our approach, it only needs to divide a graph into a rather small number
of large graphs. In [22], we proposed a dual labeling scheme, in order to answer reach-
ability queries in constant time for large sparse graphs. The work in [22] is different
from the work presented in this paper. In this paper, we focus on computing 2-hops for
arbitrary graphs which can be either sparse or dense. Several numbering schema were
proposed for processing structural joins over tree structured data (XML data) including
region-based [25, 24, 17, 12], prefix-based [3, 16, 11, 13, 21], and k-ary complete-tree-
based [15, 23].

7 Conclusion

In this paper, we studied a novel geometry-based algorithm, called MaxCardinality-G,
as a set cover I solution, to solve the 2-hop cover problem. Our algorithm utilizes an
efficient interval based labeling for directed acyclic graphs, and builds up a reachabil-
ity map which preserves all the reachability information in the directed graph. With
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the reachability map, our algorithm uses operations against rectangles to solve the 2-
hop cover efficiently. As reported in our extensive experimental studies using synthetic
datasets and large real datasets, our algorithm can compute 2-hop cover for large di-
rected graphs, and achieve the similar 2-hop cover size as Cohen’s algorithm can do.

Acknowledgment. The work described in this paper was supported by grant from
the Research Grants Council of the Hong Kong Special Administrative Region, China
(CUHK418205).
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Abstract. Sensor networks monitor physical phenomena over large geographic
regions. Scientists can gain valuable insight into these phenomena, if they un-
derstand the underlying data distribution. Such data characteristics can be effi-
ciently extracted through spatial clustering, which partitions the network into
a set of spatial regions with similar observations. The goal of this paper is to
perform such a spatial clustering, specifically δ-clustering, where the data dis-
similarity between any two nodes inside a cluster is at most δ. We present an
in-network clustering algorithm ELink that generates good δ-clusterings for both
synchronous and asynchronous networks in O(

√
N log N) time and in O(N)

message complexity, where N denotes the network size. Experimental results
on both real world and synthetic data sets show that ELink’s clustering qual-
ity is comparable to that of a centralized algorithm, and is superior to other
alternative distributed techniques. Furthermore, ELink performs 10 times
better than the centralized algorithm, and 3-4 times better than the distributed
alternatives in communication costs. We also develop a distributed index struc-
ture using the generated clusters that can be used for answering range queries
and path queries. The query algorithms direct the spatial search to relevant clus-
ters, leading to performance gains of up to a factor of 5 over competing
techniques.

1 Motivation

Sensor networks are being deployed over large networks to monitor physical phe-
nomenon: to collect, analyze, and respond to time-varying data. The analysis and
querying of sensor data should be done in a distributed manner in order to remove
the performance bottlenecks and to avoid the single point of failure of a centralized
node. We address the problem of discovering spatial relationships in sensor data through
the identification of clusters. This clustering is achieved through in-network distributed
algorithms.

Sensing phenomena such as temperature [2] or contaminant flows [5] over large
spatial regions helps scientists explain phenomena such as wind patterns, and varying
disease rates in different regions. For example, Fig. 1 shows the varying sea surface
temperature regions in the Tropical Pacific [2]. Given such a heat map, a geologist can
explain that the wind currents shown in the figure arise due to the pressure variations
among the underlying temperature zones.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 980–100 , 2006.
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The goal of this paper is to partition the network into such a set of zones or clusters,
which have observed similar phenomena. For example, consider the time series of four
sensors (from Fig. 1) that are shown in Fig. 2. Notice that the spatially proximate sensors
follow similar trends. Since our objective is to cluster regions based on the underlying
trend, spatial clustering would group the top pair of sensors (shown in Fig. 2) into one
cluster and the bottom pair into another.

Spatial clustering also serves to prolong network lifetime. Instead of gathering data
from every node in the cluster, only a set of cluster representatives need to be sampled
based on their spatio-temporal correlations. This reduces data acquisition and trans-
mission costs [9, 14] in a sensor network constrained by storage, communication and
power resources. Furthermore, there exists a need in the sensor network community
to identify such clusters where space-stationarity holds. Eiman et al. [10] assume spa-
tial stationarity of data in order to remove faults and outliers based on neighborhood
and history. Guestrin et al. [14] perform in-network regression using kernel functions
assuming rectangular regions of support. Our work addresses this important neces-
sity to discover clusters that are both spatially stationary and are natural regions of
support.

Clustering can be done off-line at the base station, if every node transmits its data
to the central base station. But, this leads to huge communication costs. Besides, the
power consumption for communication is up to three orders of magnitude higher than
that for computation on a sensor node (such as a Crossbow Mica2 mote [3]). Therefore,
for power efficiency, we propose in-network clustering. Furthermore, we regress time-
series data at each node to build models. Clustering on model coefficients not only
captures global spatio-temporal correlations, but also reduces transmission and memory
costs. Overall, the contributions of the paper are:

1. We prove that δ-clustering is NP-complete and hard to approximate.
2. We present and design a distributed clustering algorithm called ELink that gener-

ates high quality clusterings in O(
√

N log N) time and in O(N) message complex-
ity, for both synchronous and asynchronous networks.

3. We present an efficient slack-parameterized update algorithm that trades quality for
communication. Furthermore, we employ the spatial clusters to efficiently answer
both range queries and path queries.
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4. Our experimental results on both real world and synthetic data sets show that
ELink’s clustering quality is comparable to that of a centralized algorithm and
is superior to other distributed alternative techniques. Furthermore, ELink per-
forms 10 times better than the centralized algorithm, and 3-4 times better than
other distributed alternative techniques in communication costs. For the query al-
gorithms, the average communication gains were up to a factor of 5 over competing
techniques.

2 Parameterized Clustering

We first define the clustering problem and discuss its complexity. Then, we briefly dis-
cuss the distance measure used for clustering.

2.1 Clustering: Definition and Complexity

A good spatial clustering algorithm should group nodes in a sensor network based on
data characteristics. In order to achieve this, data is regressed locally at each node to
build models [26]. We adopt an auto-regression framework for defining the models
(discussed in Section 2.2). The coefficients of this model are used as the features [15]
at each node. We denote the feature at a sensor node i by Fi. The (dis)similarity be-
tween any two features Fi and Fj is captured by distance d(Fi, Fj). We assume that
the distance is a metric, i.e., it satisfies positivity, symmetry and triangle inequality. For
example, consider the communication graph CG of a sensor network S as shown in
Fig. 3a). Fig. 3b) shows an example of a distance metric d() between the features of the
nodes in S.

Using the dissimilarity threshold δ, a cluster is defined as follows:

Definition 1. (δ-cluster) Given a set of sensors S, their communication graph CG,

distance metric d, and a real number δ, a set of sensors C is called a δ-cluster if the
following two conditions hold.

1. The communication subgraph induced by C on CG is connected.
2. For every pair of nodes i and j belonging to C, d(Fi, Fj) ≤ δ. We refer to this

property as the δ-condition or δ-compactness.

δ-Clustering is defined as the partition of the communication graph CG into a set of
disjoint δ-clusters. Our goal is to find the optimal δ-Clustering, i.e., the clustering with
the minimum number of δ-clusters.

Consider the network in Fig. 3a). If δ = 5, then nodes c and e cannot belong to the
same cluster since d(Fc, Fe) = 6 > 5, and for the same reason, nodes c and d cannot
belong to the same cluster. Hence, the two possible minimal clusterings are as shown in
Fig. 3c). Next, we present the complexity results for optimal clustering.

Theorem 1. Given a set of sensors S, a communication graph CG, a metric distance
d, and a real number δ:

1. The decision problem “Does there exist a partition of graph CG into m disjoint
δ-clusters?” is NP-complete.
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2. It is not possible to approximate (in polynomial time) the optimal solution to δ-
clustering within ratio nφ where φ > 0, unless P=NP.

Proof. The proof is based on a reduction from the clique cover [19] problem. The
clique-cover problem (G = (V, E), c) states that the decision problem “Does there
exist a partition of graph G into c disjoint cliques?” is NP-complete.

Given an instance I of the clique-cover (G = (V, E), c), we map it into an instance
I ′ of δ-clustering (CG, d, δ, m) as follows: Define CG as a clique of size |V |. Set δ
equal to 1 and m equal to c. For every pair of vertices i, j ∈ V , define d() as shown.

d(Fi, Fj) =

{
1 if eij ∈ E,

2 otherwise.

Note that d() satisfies the metric properties. Output the solution of I ′ as the solution
for I . From the above mapping, we can see that I has a solution iff I ′ has a solution.
Also, there exists a one to one correspondence between the solutions of I and I ′; so,
the above reduction is approximation preserving. Since clique cover denies any approx-
imation within ratio nφ, therefore the same bound holds for δ-clustering as well. ��

Since optimal δ-clustering is a hard problem, even in a centralized setting, we propose
an efficient distributed algorithm that generates high quality clusterings. But first, we
explain features and distance measures.

2.2 Feature Model and Distance

In order to discover the global spatio-temporal patterns in a sensor network, spatial
clustering should be performed on the underlying trend rather than on the raw time-
series data. Therefore, we construct a data model at each node to capture the structure
in the data (e.g., the trends and cycle in the four sensors observed in Fig. 1). Each node
models data using an Auto-Regression (AR) model. The general ARIMA model [26]
captures the seasonal moving averages (MA) along with the daily up and down trends
(AR). At a node i, the set of model coefficients represent the feature Fi.

In an AR(k) model, the time series of an attribute X at any node is modeled as
Xt = α1Xt−1 + . . . + αkXt−k + εt where α1, . . . , αk are the auto-regression coeffi-
cients and εt is white noise with a zero mean and non-zero variance. Given m such data
measurements at a single sensor node, the problem of finding auto-regressive coeffi-
cients can be stated in matrix notation as Y = XTα + e where Y is a m×1 column of
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known Xt values, X is k×m matrix of known explanatory variables (Xt−1, . . . , Xt−k)
and α is a k × 1 column of unknown regression coefficients. Under basic assump-
tions of e = N(0, σ2I), the minimization of least squares errors leads to the solution

α̂ = (XXT)−1
XY.

Next, we discuss the distance d(), between models. Consider the models at three
nodes:

N1 : xt = 0.5xt−1 + 0.4xt−2 + εt (1)

N2 : xt = 0.5xt−1 + 0.3xt−2 + εt (2)

N3 : xt = 0.4xt−1 + 0.4xt−2 + εt (3)

Node N1 is more correlated to N2 than to N3, because of the importance of higher
order coefficients. Therefore, simple euclidean or Manhattan distance between the co-
efficients will not suffice. We need to consider a weighted euclidean distance on the
model coefficients. Such distances are metrics. This motivates us to formulate the clus-
tering problem in the context of metric spaces, rather than euclidean spaces.

3 Distributed Clustering Algorithm

In this section, we present and analyze a distributed algorithm, ELink, for in-network
clustering. In the experimental section, we present three other alternative techniques:
a centralized spectral clustering algorithm, and two other distributed clustering tech-
niques, Spanning forest and Hierarchical for comparison. Section 9 discusses the draw-
backs of extending the traditional clustering algorithms such as k-medoids-,
hierarchical-, and EM- [8, 13, 23] based algorithms to this particular problem setting.

At the termination of the ELink algorithm, the communication graph CG is decom-
posed into disjoint δ-clusters. Each cluster is organized as a tree, referred to as a cluster
tree, with the root as the designated leader. A node i inside a cluster Ci maintains a
3-tuple 〈ri, Fri , p〉. The first is the root id, ri; the second is the root feature, Fri ; the
third is the id of the parent, p, in the cluster tree.

3.1 ELink Clustering

The key idea behind ELink is to grow clusters from a set of sentinel nodes to the maxi-
mal extent, i.e., until they are δ-compact, and then start growing another set of clusters
from a different set of sentinel nodes, reiterating this process until every node is clus-
tered. A definite order is imposed on the scheduling of the different sentinel sets; and
moreover, a new sentinel set begins expanding only after the previous set has finished
clustering. A node in the new sentinel set does not start expanding either until it is
contacted by a node in the previous sentinel set (in an explicit signalling approach), or
until its predefined timer expires (in an implicit signalling approach). Although both
the techniques are guaranteed to run in O(

√
N log N) time and in O(N) message com-

plexity, the implicit signalling technique is designed for synchronous networks, whereas
the explicit signalling technique is designed for asynchronous networks. We first give
an overview of the general ELink algorithm, and then explain both the techniques
in detail.
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3.2 Algorithm

In order to understand the sentinel sets, we begin with a decomposition of the sensor
network. To simplify the discussion, we assume a square grid of N nodes. Spatially,
the entire topology is recursively broken down into cells at different resolutions (lev-
els) in a quadtree like structure. The root cell is at level 0. Every cell elects a leader
node [11, 16].1 Sentinel set Sl comprises of all the cell leaders at a particular level l
(as shown in Fig. 4), for 0 ≤ l ≤ α, such that

∑α
l=0 |Sl| = N . Since |Sl| = 4l, the

depth of the hierarchy, α, evaluates2 to log4(3N + 1) − 1. The parents of all the nodes
in the sentinel set Sl comprise the set Sl−1. Initially, the single sentinel in S0 begins
expanding its cluster until it is δ-compact. Then, all the sentinels in S1 are either ex-
plicitly or implicitly signalled to start expanding. This process is carried recursively at
every level. The expansion of each sentinel is carried out only using the edges of the
communication graph CG.

We use the term root (and tree) in two different contexts. The quadtree has a root,
sentinel S0. Every cluster Ci also has a root, cluster leader ri, which is one of the
sentinels belonging to S0, S1, . . . , Sα. The quadtree is used for the definition of the
sentinels and their signalling. The cluster tree is used for defining the clusters.

The underlying idea behind the ELink algorithm is as follows. We first suppose that
the whole network can be placed in a single δ-cluster; hence, we allot sufficient time
for the cluster from S0 to expand and include every node in the network. In that case,
none of the lower level sentinels in S1, . . . , Sα start, and the single cluster remains
intact. Otherwise, we suppose that the whole network can be partitioned into at most
five clusters. So, cluster formation is initiated from each of the four sentinels in S1.
We allow nodes to switch cluster memberships a limited number of times. This handles
the case when the number of clusters should be less than 5. Now, if the whole network
is still not clustered after sentinel set S1’s expansion, we assume that the network can
be decomposed into at most twenty one clusters (five from the previous levels), and
start growing each of the sixteen sentinels in S2. A sentinel set Sl’s expansion begins
only after sentinel set Sl−1 terminates clustering. The implicit and explicit signalling
techniques ensure that expansion happens strictly as above. Next, we explain how a
sentinel node grows its δ-cluster.

Once a sentinel node i at level l has been signalled, it examines if it is already
clustered. If so, it does nothing. Else, it elects itself as the leader (root) of cluster
Ci and sets Fri = Fi. Then, it attempts to include every neighbor j in its cluster, if
d(Fri , Fj) ≤ δ/2. If node j is unclustered, it joins cluster Ci. If it is already clustered,
we ensure that its reclustering does not destroy clusters grown from a lower level and
that the gain in the clustering quality (measured by a distance in the metric space) is
above a certain predefined threshold φ. Furthermore, we allow node j to switch clusters
at most c times, where c is again a predefined constant. This is done in order to reduce
the communication overhead. Constant c is application specific and is usually small,
around 3–5.

1 For routing purposes, the node closest to the cell centroid is elected as the leader.
2 This is precise for a grid network. But, even under the general assumption of uniform network

density [11, 18], α can be bounded by log4(3N + 1) + k, for some small positive integer k,
which is sufficient for all the subsequent theorems to hold.
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Fig. 5. For δ = 6, the feature distances of ev-
ery other node to sentinel node D are shown in a).
The expansion of cluster C1 starts as shown in b),
continues as shown in c), and terminates as shown
in d).

If node j decides to be a member of cluster Ci, then j sets its root id to i, and stores
the root feature Fri . It now attempts to expand cluster Ci. This process repeats until no
new nodes can be added. Since the distance between the feature value of any node in
the cluster and the root feature Fri is at most δ/2, triangle inequality ensures that the
distance between the feature values of any two nodes in the cluster is at most δ.

The following example (Fig. 5) illustrates the clustering by a sentinel node D, for
δ = 6. The metric distance of every node to sentinel D is shown in Fig. 5a). Initially,
D sets itself as the root, as shown in Fig. 5b). Since d(FD, FF ) = 1 ≤ 3 = δ/2,
node D includes neighbor F in its cluster C1, and transmits its root feature FD to it.
Similarly, neighbors B and E are included in cluster C1, as shown in Fig. 5c). Nodes D
and E cannot expand further, since all their neighbors are already clustered. Now, node
F expands C1 to include node G, since d(FD, FG) = 2 ≤ 3. In a similar way, node B
includes node A in C1, but does not include node C, since d(FD, FC) = 4 > 3. After
this step, none of the nodes in the cluster can expand, and so the clustering terminates.
The final cluster C1 is shown in Fig. 5d). The complete algorithm is outlined in Fig. 16
(Appendix B).

4 Implicit Signalling Technique

The implicit signalling technique is designed for synchronous networks. This algorithm
ensures that the sentinel set Sl is granted sufficient time to complete expansion, before
sentinel set Sl+1 starts growing. Consider the bounding rectangle [L × L] of the entire
N node network on the x-y plane. If ρ denotes the node density, then ρL2 = N . For
the sake of simplicity, we assume ρ = 1 implying L =

√
N . We assume that the every

node has at most d neighbors. In sensor networks [12], d is assumed to be a constant
and very small compared to N . Let stretch factor γ denote the ratio of the worst case
increase in path length of “expand” messages (for cluster expansion) to the shortest
path length between two nodes using multi-hop communication. Constant γ is usually
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small, around 0.2–0.4 [18]. For simplicity, assume that the worst-case delay over a hop
is a single time unit. This blurs the distinction between path length and end-to-end
communication delay between two nodes. Let κ denote the worst-case message cost or
time (in a synchronous network) for the root sentinel S0 to cluster with any other node
in its level 0 cell (the whole network).

Note that κ = (1+γ)
√

N
2 . Similarly,

A

L

w

t1

w =

√
L
2 (1 + 1/2)

t1 = w(1 + γ)

= κ(1 + 1/2)

Fig. 6. The worst case path length from node
A ∈ sentinel set S1 to cluster any node in the
network is t1

the worst-case time for a sentinel in Sm to
cluster with any other node in its level m
cell is κ/2m. Extending this reasoning, a
sentinel in Sl can cluster with any other
node in the entire network in time tl =
κ(1+1/2+..1/2m+..+1/2l). Therefore,
every node in Sl is allotted a time interval
tl to finish expansion. Fig. 6 illustrates
the interval t1 of a sentinel node A ∈ S1.
Hence, scheduling of the sentinel set is
done as follows. At time T = 0, sentinel
set S0 starts expanding, and every other
sentinel set Sl starts its expansion at time T =

∑l−1
i=0 ti. The algorithm is outlined in

Fig. 17 (Appendix B).

Theorem 2. The implicit signalled ELink algorithm runs in O(
√

N log N) time and
requires O(N) messages.

Proof. First, we prove the bound on time. Since every sentinel set Sl terminates expan-
sion before Sl+1 starts growing, the total running time of the algorithm is bounded by
the scheduling time for the sentinel set for the last level α, combined with its allotted
expansion duration. Therefore, the total running time is T = (

∑α−1
l=0 tl) + tα. Since

t1 < t2 < t3 . . . < tα−1 < tα, and tα < 2κ, T is at most 2κα. Hence, ELink runs in
time O(

√
N log N).

Next, we consider the message complexity. A node sends out a message only in
two cases; first, when it is scheduled as a sentinel, and second, when it has received a
message from a neighbor, which is a member of a different cluster. In the first case, a
sentinel node sends messages to all its neighbors, and since every node has at most d
neighbors, the total cost over all nodes is at most dN . In the second case, a node sends a
message only if it has switched clusters, or has just been clustered for the first time. As
a node is restricted to switch cluster membership at most c times, it will send no more
than c + 1 messages to each of its neighbors. Hence, the N nodes will send at most
d(c + 1)N messages. Therefore, ELink’s message complexity is O(N). ��

5 Explicit Signalling Technique

The running time and message complexity of the implicit technique are guaranteed only
for a synchronous network. In order to retain these complexities for an asynchronous
network, we designed the explicit signalling technique, incorporating additional syn-
chronization [4] into ELink. In this technique, a sentinel in Sl+1 does not begin cluster
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expansion until it is explicitly contacted by its parent in Sl. This does not happen until
every sentinel in Sl completes expansion; thus, maintaining the order in sentinel set
expansion: S0 → S1 → · · · → Sα. Next, we give an overview of the synchronization
that ensures this ordering.

The synchronization at every level l is divided into two phases. After realizing the
completion of its cluster expansion, each sentinel in Sl begins the first phase, phase 1,
by contacting its quadtree parent. This parent, after being contacted by all its children,
notifies its own parent. This is carried recursively up till the root sentinel, S0. When
the root is contacted by all its quadtree children, implying that all the nodes in Sl have
finished expansion, it starts the second phase, phase 2, by propagating messages recur-
sively down the quadtree to notify all the nodes in Sl. After receiving such a phase 2
message, each node in Sl instructs its children in Sl+1 to start ELink.

The complete algorithm is shown in Fig. 18. During the ELink expansion of a sen-
tinel in Sl, an intermediate node i along every path of cluster expansion, maintains a
children counter to denote the number of children it has in the cluster tree. Node i
receives an ack2 message from a child j, when the cluster expansion of subtree rooted
at j is complete. Then, node i decrements the children counter by 1, and if the counter
equals 0, then node i realizes the completion of cluster expansion of the tree rooted at i.
Now, if node i is not the cluster root, it transmits an ack2 to its parent p. Else, it realizes
that the entire cluster expansion has been completed, and contacts its quadtree parent
by a phase 1 message.

Theorem 3. The explicit signalled ELink algorithm runs in O(
√

N log N) time and
requires O(N) messages.

Proof. First, we prove the bound on time. A node i in the sentinel set Sl completes
expansion in time interval tl (defined in Section 4). Therefore, within 2∗tl time, all ack2
messages denoting the completion of cluster expansion arrive at the sentinel. After this,
there is the additional time of contacting the root sentinel S0 with phase 1 messages,
and then, S0 responding back with phase 2 messages. The worst-case path length from
a sentinel in Sm to its quadtree parent in Sm−1 is bounded by κ/2m. Thus, the total time
for a sentinel in Sl, to contact S0 in phase 1 is at most κ(1/2+1/22+ ..+1/2m + ..+
1/2l), which is the same as tl−1/2. Similarly, the time taken by phase 2 can also be
bounded by tl−1/2. After the completion of two phases, sentinel i contacts the children
in Sl+1 via start messages. This delay is bounded by κ/2l+1. Hence, the total running
time for all the sentinel sets is T =

∑α
l=0 2 ∗ tl +

∑α
l=1 tl−1 +

∑α−1
l=0 κ/2l+1. In

a manner similar to the implicit technique, the first and second summations evaluate
to O(

√
N log N), whereas the third summation evaluates to O(

√
N). Hence, the time

complexity is O(
√

N log N).
Now, consider the message complexity. In addition to the two types of clustering

messages transmitted as in the implicit technique, nodes have to deal with four other
types of messages— first, to inform the parents in the cluster tree (ack1) about their
children; second, to inform the sentinel node about the completion of cluster expansion
(ack2); third, the messages sent up the quadtree while notifying the root (phase 1),
and down the quadtree while receiving a reply (phase 2); fourth, the messages sent to
instruct the children (start) to invoke ELink. In the first and second cases, the total
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number of messages will be the same as those needed for cluster expansion as in the
implicit technique, which is O(N). We will now bound the total number of messages
in phase 1 and phase 2, μ, over all levels. Let βl denote the message cost of notifying
the root by all the nodes in Sl in phase 1. Then βl can be recursively expressed as βl =
βl−1+|Sl|∗κ/2l. Since |Sl| = 4l, this recurrence yields the solution βl = (2l+1−1)∗κ.
Hence summing over all sets Sl, the total cost of phase 1 and phase 2 messages, μ, can
be expressed as shown below in equation (1).

μ =
α∑

l=1

2 ∗ βl = 2
α∑

l=1

(2l+1 − 1) ∗ κ

= 2κ (4(2α − 1) − α)

= 2κ (2
√

(3N + 1) − log4(3N + 1) − 3) (4)

Since κ = O(
√

N), the total cost of the above term is O(N). The total cost of start

messages is
∑α−1

l=0 |Sl| ∗ κ/2l+1. In a manner similar to Equation 4, this term also
evaluates to O(N). Hence, the explicit technique’s message complexity is O(N). ��

Note that if optimizing the time complexity was our sole concern, then an unordered
expansion of the sentinel suffices. We can expand all the sentinels simultaneously, sub-
ject to the constraint that a node can switch clusters at most c times. Since 2κ is the
worst-case time for any node to reach any other node in the network, this algorithm will
terminate in O(

√
N) time. The message complexity of this algorithm can be bounded

by O(N). However, this algorithm has poor clustering quality due to excessive con-
tention across sentinel levels.

6 Dynamic Cluster Maintenance

After the clustering of distributed data sources has been carried out, the underlying data
distribution may change.3 This may lead to violations of the δ-compactness conditions
within a cluster, necessitating an expensive re-clustering. In this section, we show that
introducing a small slack [25] locally at each node avoids such global computations.
Although this leads to a degradation in clustering quality, the resulting benefits in com-
munication are huge.

Given a slack parameter Δ, the maximum divergence within a cluster, δ, is reduced
to (δ − 2Δ) during the initial clustering, and during any global cluster re-computation.
Such a reduction gives a Δ slack for the feature update at node j for the δ-compactness
condition.

Let Fi the feature at node i be up-

d(Fi, F
′
i ) ≤ Δ (A1)

d(F ′
i , Fri) − d(Fi, Fri) ≤ Δ (A2)

d(F ′
i , Fri) ≤ δ − Δ (A3)

dated to F ′
i with the arrival of a new mea-

surement. Similarly, let the feature at the
root of node i, Fri be updated to F ′

ri
. The

root node verifies locally that d(Fri , F
′
ri

) ≤
Δ. Node i verifies the conditions A1, A2

and A3.
3 On the arrival of a new measurement, each node updates its AR model as shown in

Appendix A.
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If any of these conditions holds then it follows from triangle inequality that the
δ-compactness property is not violated. If all the three conditions are violated, a re-
clustering needs to occur. Node i propagates a message up the cluster tree to the root
to obtain the updated root feature F ′

ri
. After obtaining this feature, node i evaluates

d(F ′
i , F

′
ri

) ≤ δ. If the condition is violated, node i detaches from the cluster, and
merges with the cluster of a neighbor k if d(F ′

i , Frk
) ≤ δ. Else, it becomes a singleton

cluster.
If the condition d(Fri , F

′
ri

) ≤ Δ is violated at the root, then the root propagates F ′
ri

down to every node in the cluster tree. Every intermediate node computes its distance to
this feature and decides if it should remain in the same cluster. The details of the update
algorithm are deferred to the full paper [21].

7 Index Structure and Queries

In this section, we first discuss how a distributed index structure is built on the models,
and then, describe how this index structure along with the δ-compactness property is
employed to prune large portions of the sensor network for range and path queries.

7.1 Index Structure

The ELink algorithm partitions the network into cluster trees that provide a natural
way to build a hierarchical index structure. Our index structure is similar to a dis-
tributed M-tree [7] built on the feature space, but physically embedded on the com-
munication graph. An index at node i maintains a routing feature, FR

i , and a covering
radius, Ri such that the feature of every node in the subtree rooted at i is within dis-
tance Ri from FR

i . A leaf in the cluster tree propagates its routing feature FR
i = Fi

and covering radius Ri (set to 0 for a leaf node) to its parent. The parent uses its
own feature and the information from all its children to compute its own routing fea-
ture and covering radius. This process is carried on recursively up to the root of the
cluster.

A range query q with radius r on an M-tree retrieves all the nodes whose feature
values are within distance r from the query feature q. The range search starts from the
root and recursively traverses all the paths leading to nodes which cannot be excluded
from the answer set. A subtree rooted at node i can be safely pruned from search, if
d(q, FR

i ) > r +Ri. The whole subtree satisfies the query, if d(q, FR
i ) ≤ r−Ri. Since,

each node stores the information of all its children, node i can prune a child-subtree
rooted at j, if the condition |d(q, FR

i )−d(FR
i , FR

j )| > r +Rj holds; or it can include
the subtree completely in the query if the condition d(q, FR

i ) + d(FR
i , FR

j ) ≤ r − Rj

holds. All the above follow from triangle inequality. Next, we discuss the range and
path query algorithms.

7.2 Range Querying in Sensor Networks

Geographic regions exhibiting abnormal behavior similar to that of the El Nino pat-
tern [2] are of critical interest to scientists. These regions can be discovered by posing
range queries of the form: “Which are the regions behaving similar to node x?” or
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“Given a query model q, find all the regions whose behavior is within a specified dis-
tance r (measured in terms of model coefficients) of q?”.

A spanning tree connecting the leaders of different clusters (a backbone network)
is built in order to efficiently route the query to every cluster. A range query can be
initiated from any node in the network. The initiator routes the query to its cluster root,
which forwards it to other cluster roots using the backbone tree. Every root first prunes
using the δ-compactness property (explained next), and then employs the hierarchical
index structure to selectively propagate the query to its children. Results are aggregated,
first within the cluster tree, and then on the backbone network, and returned to the query
initiator.

Pruning by the δ-compactness prop-

ri

1
q1

Ci

ri
Ci

a) b)

2.5

1

2.5 5

2.5

q
2

Fig. 7. Pruning conditions for δ = 5: a) cluster
Ci is excluded from the query q1(8, 9) with r =
1, b) cluster Ci is included in query q2(4, 6)
with r = 5

erty is achieved as follows. No node in
a cluster will satisfy the query q with ra-
dius r if query q’s distance from the root
d(q, Fri) > r + δ/2. On the other hand,
every node inside the cluster will satisfy
the query if d(q, Fri) ≤ r − δ/2. (These
follow from triangle inequality). If the
query doesn’t satisfy either of these con-
ditions, the root employs the M-tree to
prune the query (as mentioned in 7.1) in
order to retrieve the answer set.

The above pruning is now illustrated using an example in which a model is repre-
sented by a tuple of two coefficients. For the sake of simplicity, assume euclidean dis-
tances. Let the root of cluster Ci (shown in Fig. 7) be Fri :(3, 7) where δ = 5. Fig. 7a)
shows that no node inside cluster Ci can intersect the query q1:(8, 9) with radius r = 1
because d(q1, Fri) = 5.38 > 1 + 5/2. Therefore, Ci can be completely pruned. On
the other hand, every node in the cluster Ci will satisfy the query q2:(4, 6) with ra-
dius r = 5 as shown in Fig. 7b), since d(q, Fri) = 1.414 ≤ 5 − 5/2. Query q3:(3, 7)
with r = 1 does not fall into either of the cases since d(q3, Fri) = 0 > 1 + 5/2
is false and d(q3, Fri) = 0 ≤ 1 − 5/2 is also false. Therefore, it is injected into
the M-tree root of cluster Ci. The M-tree pruning conditions are employed in this
case.

7.3 Path Querying in Sensor Networks

During pollutant leaks and fire hazards, rescue missions need to navigate a safe path
from a source node to a destination node. Ensuring the safety of mission implies that
the exposure to chemical along the path is at least a safe γ distance away from the
danger (represented as a feature) FD. Formally, a path query is posed as “Return a path
from the source node x to destination node y, such that for all the nodes j along the
path, d(Fj , FD) ≥ γ”.

Path querying employs pruning similar to a range query. A cluster Ci with root
ri is safe for traversal if d(Fri , FD) > γ + δ/2; it is unsafe for traversal if
d(Fri , FD) ≤ γ − δ/2. Otherwise, the safe and unsafe regions inside a cluster are
identified by drilling down the index structure, as safe and unsafe sub-clusters. Then,
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every set of spatially contiguous safe clusters (and sub-clusters) is connected using
a safe backbone tree. Thus, the whole network is partitioned into disjoint set of safe
trees.

The source node x forwards the query to the root of its cluster. If the cluster is
evaluated to be unsafe, the root suppresses the query. Else, it dispatches a BFS query
using the safe backbone tree to the root of the cluster (or sub-cluster), which contains
the destination y. The whole path from the destination node y to source node x can be
traced back. If node y does not belong to the same safe backbone tree as node x, then
there does not exist a safe path between these two nodes.

8 Experimental Results

In this section, we first explain our real-world and synthetic datasets, then present inter-
esting alternatives for clustering and querying, and finally evaluate a) the quality and the
communication gains of ELink clustering, and b) the communication benefits achieved
by the query pruning techniques over the presented alternatives. We only report the
results for range queries. Results for path queries are deferred to the full paper [21].

8.1 Data Sets

Tao (Spatially correlated dynamic data set): This data consists of daily sea surface
temperature measurements of Tropical Pacific Ocean [2]. We obtain a 10-minute reso-
lution data for a month (December 1998) from each sensor in a 6 × 9 grid. The sensors
are moored to the buoys between 2S–2N latitudes and 140W–165E longitudes. The
temperature range was (19.57, 32.79) with μ = 25.61 and σ = 0.67. The neighbors
in the communication graph were defined by the grid. Each node is initialized with
a model trained on the previous month’s data. The temperatures within a day follow
regular upward and downward trends, i.e, AR(1), whereas the daily variations in mean
were observed to follow an AR(3). Hence, the temperature at every node is modelled as
xt = α1xt−1 +β1μT−1 +β2μT−2 +β3μT−3 +εt. The weight vector for distance com-
putation is (0.5, 0.3, 0.2, 0.1). Coefficient α1 is updated for every measurement whereas
β’s are updated every day.

Death Valley data (Spatially correlated static data set): This data consists of ge-
ographic elevation of Death Valley [1]. Sensors are assumed to be scattered over the
terrain and the elevation of the terrain at a sensor location is assigned as the sensor fea-
ture. The altitude range was (175, 1996). Our performance results are averaged over 5
different random topologies, each consisting of 2500 samples.

Synthetic data (Spatially uncorrelated dynamic data set): Experiments were con-
ducted on network sizes ranging from 100 nodes to 800. We used a random placement
of nodes with a uniform probability distribution. Node densities were varied from 0.7
to 0.9. Each node has on the average 4 nodes within its radio range. Data at every node
i is modeled as, xt = αixt−1 + et where et ∼ U(0, 1) and αi ∼ U(0.4, 0.8). 100, 000
readings were generated at each node. The range was (10.00, 132.93) with μ = 69.27
and σ = 48.19. Every node is initialized with α1 = 1. This model is updated for every
measurement.
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8.2 Performance Metrics

Clustering: The clustering quality is measured by the number of clusters generated by
each algorithm.

Communication: Communication overhead is measured by the total number of mes-
sages exchanged for each algorithm. A message can transmit a single coefficient or a
data value. The query cost is the average number of messages required to route the
query, and to aggregate the results back at the originator. The cost of building the inter-
cluster leader backbone network is accounted in the ELink algorithm.

8.3 Alternative Clustering and Querying Techniques

The performance of the ELink algorithm is compared against a centralized algo-
rithm [22] and two other distributed algorithms that we propose. Our range query algo-
rithm is compared against TAG [20] and our path query algorithm is compared against
BFS.

Centralized clustering: There are two kinds of centralized algorithms. In the first, ev-
ery update to the raw data is sent to the centralized base station (for baseline comparison
in communication). In the second, an AR model is built at each node, and the model co-
efficients are sent to the centralized base station if the coefficient changes by more than
a certain threshold [25]. We explain how this threshold is set in Section 8.5. At the base
station, a spectral decomposition algorithm [22] is used for clustering. It computes the
Laplacian L of the affinity matrix and then partitions the network into k clusters using
the k largest eigenvectors of L. If x denotes the distance d(Fi, Fj) between any two
nodes i and j, then we define the affinity matrix a() as follows:

The algorithm is repeated with different val-
a(i, j) =

{
x if eij ∈ CG,

0 otherwise.ues of k and the smallest k is chosen such that
each cluster satisfies the δ-condition.

Spanning forest based clustering: This algorithm generates sub-optimal clusters in
a greedy manner, but incurs a low communication cost. It consists of two phases. In
the first phase, the algorithm decomposes the network into a spanning forest of trees,
and in the second phase, it partitions each tree greedily into subtrees which satisfy the
δ-compactness property.

In the first phase, each node selects the neighbor with the smallest feature distance,
and an id smaller than its own id as its parent (to ensure a partial order). By iterative
expansion, this phase decomposes the network into a forest of trees. In the second phase
of the algorithm, these trees are checked for δ-compactness. Variable height at a node
stores an upper bound on the feature distance between the node and any leaf belonging
to the cluster subtree of the node. Every node initializes its height to 0. Beginning with
the leaves, each leaf i sends its height (0) and its feature Fi to its parent p. Each parent
node p maintains its own height, its local feature Fp, and the identifier of the child with
the maximal height in a variable highest child. When it receives a new height from one
of its children i, it uses a temporary variable h to store the value height + d(Fi, Fp),
and then examines if the sum of h and the local height variable at node p exceeds δ.
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If it does, then node p instructs the child whose height is the largest (highest child) to
detach. Otherwise, node p updates its height and highest child variables. After receiving
the heights of all its children, p sends its own height and feature Fp to its parent. Every
detached subtree forms a new cluster with the highest child as the root. The time and
message complexity of this algorithm is O(N).

Hierarchical clustering: The second distributed algorithm, Hierarchical clustering,
grows the clusters in a hierarchical fashion using a notion of optimality absent in the
spanning forest algorithm. Every cluster maintains a feature diameter and spatially
neighboring clusters whose merger increases the diameter the least are merged in a
bottom-up hierarchical fashion [23].

For a given cluster, every neighboring cluster is a candidate for merger if it does
not violate the δ-condition. A fitness value is defined for all the candidates. The can-
didate with the minimum fitness is called the best candidate. A pair of clusters merge
if they are the best candidates with respect to each other. This merger continues re-
cursively until there is a single cluster in the whole network or no further mergers are
possible.

Assuming that k clusters (trees) have been generated, we now explain how two
neighboring trees Ci and Cj merge. Every cluster Ci maintains its diameter mi. Clus-
ters Ci and Cj verify the condition: mi +d(Fri , Frj )+mj ≤ δ. If they violate the con-
dition, then Ci and Cj rule each other out as candidates for merger; else, they evaluate
the fitness of the possible merger. The fitness of the merger is determined by mij , the di-
ameter of the merged cluster. If mi ≥ mj then mij is set to max(mi, mj+d(Fri , Frj )),
else it is set to max(mj , mi + d(Fri , Frj )). Cluster Ci chooses the optimal candidate
based on these values: best candidatei = argminj mij . Clusters Ci and Cj merge if
best candidatei = j and best candidatej = i. The time and message complexity of
this algorithm is O(N2).

TAG querying: TAG [20] is a tiny aggregation scheme, distributed as a part of the
TinyDB (Tiny Database) package that runs on motes [3]. TAG uses a SQL like declar-
ative query interface to retrieve data from the network. It consists of two phases. In
the distribution phase, the query is pushed down into the network using an overlay tree
network, and in the collection phase, the results are aggregated continually up from the
children to parents and reported to the base station. We evaluate the pruning benefits
achieved by our range query algorithm by comparing it to TAG.

8.4 Clustering Quality

Figs. 8 & 9 compare the clustering quality of ELink with the competing schemes, for
varying δ. The threshold decrease required to switch a cluster, φ, was set to 0.1δ, and
the maximum number of switches allowed, c, was set to 4. The Implicit and Explicit
signalled ELink algorithms output the same clusters, except that the Explicit ELink has
a higher communication cost than the Implicit one due to additional synchronization.
The clustering quality of these algorithms is almost as good as the centralized scheme
for all the data sets. Notice that ELink generates better clustering quality than the Hi-
erarchical and Spanning forest algorithms. The Hierarchical algorithm performs better
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Fig. 9. Clustering quality for Death Valley data

than Spanning forest, as it employs the fitness function to optimize the diameter. Re-
sults for the synthetic data set [21] were similar, except that there was an increase in the
number of clusters due to little data correlations among spatial neighbors.
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8.5 Communication Costs

In this section, we evaluate the cluster update handling algorithm and the scalabil-
ity of our algorithms in terms of their communication costs. Computational costs are
negligible compared to communication costs in a sensor network. For brevity, we only
report the representative results.

Update Handling: Every node in the centralized algorithm has to update the base sta-
tion if the local model violates the slack Δ; hence, the algorithm incurs a huge commu-
nication overhead. Even if the slack condition (A1) is violated locally, the ELink update
algorithm (in section 6) does not generate any messages if the conditions A2 and A3
are satisfied. Since these conditions require the cluster root feature Fri , and a node in
the centralized algorithm does not maintain Fri locally, the centralized algorithm can-
not prune by conditions A2 and A3. Due to these reasons, the communication cost of
ELink algorithms is 10 times lower than the centralized algorithm as seen in Fig 10. As
the slack is increased (effectively reducing the δ parameter), the quality of clustering
decreases for all the algorithms as shown in Fig 11.
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Scalability: Fig. 12 & 13 depict the scalability of the algorithms with time, and with
the size of network. Fig. 12 shows the log scale plot of the scalability of algorithms
on the Tao data set. We have included an extra plot for the centralized algorithm, in
which every update to a raw value at a node is sent to the centralized base station.
This figure illustrates that communication benefits obtained by modeling alone are an
order of magnitude compared to raw data updates, whereas modeling combined by
in-network clustering brings the cost down by another order of magnitude. Fig. 13
shows the scalability of algorithms with network size. We see the superior scalabil-
ity of ELink based algorithms. This is because all the distributed techniques confine
the updates locally, whereas the centralized scheme incurs a huge overhead of trans-
mitting the model coefficients to the base station. Furthermore, Hierarchical clustering
also incurs a huge cost since every merger decision has to be propagated to the clus-
ter leader in order to evaluate the best candidate. Since Explicit ELink algorithm has
additional synchronization costs, it incurs a larger overhead than the Implicit ELink
algorithm.

8.6 Range Querying

Figs. 14 & 15 show the average per-query cost when the range query algorithm is run
separately on each clustering algorithm on both the data sets. The query point was sam-
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pled uniformly from the nodes. The query radius r was varied from (0.7δ, 0.9δ) for the
real data and (0.3δ, 0.7δ) for the synthetic data. TAG is shown for comparison. Since
TAG builds an overlay tree and aggregates the results back, the average number of mes-
sages per query is fixed and is equal to twice the number of edges in the spanning
tree. In the real data set in Fig. 14, the clustering was compact, and hence ELink and
Hierarchical pruned many clusters using the δ-compactness property, thus decreasing
the query cost 5 times. But, as the query radius increased, the benefits of pruning by
the δ-compactness property decreased, the pruning was now primarily due to the dis-
tributed index structure. Fig. 15 shows that there were less communication benefits for
the synthetic data set. This is because the data was not spatially correlated.

9 Related Work

The general problem that the paper addresses—clustering of data distributions —has
been extensively studied in statistics, machine learning and pattern recognition liter-
ature. There are three basic types of clustering algorithms: partitioning, hierarchical
and mixture of Gaussian models. Partitioning algorithms such as k-means for eu-
clidean spaces, or k-medoids for metric spaces (e.g. PAM, CLARANS [23]) repre-
sent each of the k clusters by a centroid or an object. For our problem, distributed
k-medoids would be communication intensive because in every iteration, all the
medoids would have to be broadcast throughout the network so that every node com-
putes its closest medoid. In hierarchical clustering (e.g. CURE [24]), the most simi-
lar pair of clusters are merged in each round, finally resulting in a single cluster. Our
distributed hierarchical clustering technique is based on the same idea. But, this in-
curred a huge communication cost because of the exchange of data in in every round of
merger.

Spatial data mining discovers interesting patterns in spatial databases. STING [28],
a spatial clustering technique, captures the statistics associated with spatial cells at dif-
ferent resolutions, in order to answer range-queries efficiently. But it generates isothetic
clusters whose boundaries are aligned to horizontal or vertical axis. WaveCluster [27]
finds the densely populated regions in the euclidean space using the multi-resolution
property of wavelets. It is a centralized scheme. In sensor networks distributed clus-
tering has been studied for effcient routing purposes rather than for discovering data
correlations [30]. Chintalapudi et al. [6] detect the edges of clusters (or phenomenon)
in the specific setting where a sensor node emits only binary values. Instead of cluster-
ing, Kotidis [17] aims to determine the representatives among groups of sensors with
similar observations.

10 Conclusions

We considered the problem of spatial clustering in sensor networks, and showed that
is both NP-complete and hard to approximate. We presented a distributed algorithm,
ELink, based on a quadtree decomposition and a level by level expansion using sentinel
sets. Our algorithm generated good quality clustering, comparable to those achieved
by centralized algorithms. Our algorithm is also efficient: it takes O(N) messages and
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O(
√

N log N) time for both synchronous and asynchronous networks. Our experiments
showed that ELink outperforms a centralized algorithm (10 times) and competing dis-
tributed techniques (3-4 times) in communication costs of clustering. We also answered
range queries and path queries efficiently based on the δ-compactness property and by
using a hierarchical index, resulting in communication gains of up to a factor of 5 over
competing techniques.
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Appendix A. Online Updates to a Model

In this section we show how our model coefficients are updated incrementally. Let us assume that
X is an k×m matrix of m measurements (one set of k input variables per column), α is the k×1
vector of regression coefficients and y the m × 1 vector of outputs. The Least Squares solution
to the over-determined system XT α = y is the solution of XXT α = Xy. Let P denote XXT

and b denote XY . We can compute α̂ = P −1b, where

Pk = [
k∑

i=1

xix
T
i ]−1 and bk =

k∑
i=1

xiyi (5)

The operations above will be performed once. When a new vector xm+1 and output ym+1 arrive,
the recursive equations for online model computation can be derived from [29] as:

bk = bk−1 + xkyk (6)

Pk = Pk−1 − Pk−1xk[1 + xT
k Pk−1xk]−1xT

k Pk−1 (7)

α̂k = α̂k−1 − Pk(xkxT
k αk−1 − xkyk) (8)
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Appendix B. ELink Algorithms

� ELink clustering at node i (0 ≤ i < N )

l : level of node i in the quadtree.
clustered : boolean variable. Initially false.
m : level of the sentinel it is clustered by.
p : parent of i in the cluster tree. Initially set to i.
ri : root of cluster to which i belongs.
Fi : feature value at node i.
Fri : feature value at root ri.
counter : number of times a node can switch clusters.

Initialized to c.
φ : threshold for switching clusters.

// Procedure executed upon receiving a signal
ELink (i) ::

if (¬clustered) then
ri := i;
clustered := true;
Fri := Fi;
m := l;
send <“expand”, Fri , ri, m> to all neighbors.

receive <“expand”, Frj , rj , n> from a neighbor j ::
if (d(Frj , Fi) ≤ δ/2 & (¬clustered || (n = m

& d(Frj , Fi) < d(Fri , Fi) + φ & counter ≥ 0) ))
then

p := j;
ri := rj ;
Fri := Frj ;
m := n;
if (clustered) then

counter := counter − 1;
clustered := true;
send <“expand”, Fri , ri, m> to all neighbors;
// Explicit Signalling: send <“ack1”> to p.

Fig. 16. ELink clustering algorithm

� Implicit signalling at node i (0 ≤ i < N )

Sl : Sentinel set to which i belongs.

κ := (1 + γ)
q

N
2 // Worst-case time for the quadtree

root to cluster with any node
in the network.

tl := κ(1+1/2+...+1/2l) // Duration for i to expand.
T imer :=

Pl−1
j=0 tj // Time after which i starts Elink.

T imerExpires ::
ELink (i).

Fig. 17. Implicit signalling technique

� Explicit signalling at node i (0 ≤ i < N )

children : number of i’s children in the cluster tree.
Initially 0.

quad children : number of i’s children in the
quadtree. Initially 4.

quad parent : i’s parent in the quadtree.
// The rest of the variables are from ELink algorithm.

// A node after sending the expand messages (Fig. 16),
determines that it is a leaf in the cluster tree
if it does not receive any ack1 messages from its
neighbors within a conservative time-out period.

if (i is a leaf)
send <“ack2”> to p.

MessageHandler ::

// This message is received during
// ELink’s cluster expansion.
receive <“ack1”> from j ::

children := children + 1.

receive <“ack2”> from j ::
children := children − 1;
if (children = 0)

if (i = ri) // i is the cluster leader.
send <“phase 1”, l> to quad parent;

else
send <“ack2”, l> to p.

receive <“phase 1”, n> from j ::
quad children := quad children − 1;
if (quad children = 0)

if (i ∈ S0) // the quadtree root
send <“phase 2”, n> to all quadtree children;

else
send <“phase 1”, n> to quad parent ;
quad children := 4. // Reset for the next

round.
receive <“phase 2”, n> from j ::

if (l = n)
send <“start”> to all quadtree children;

else
send <“phase 2”, n> to all quadtree children.

receive <“start”> from j ::
quad parent := j;
ELink (i).

Fig. 18. Explicit signalling technique
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Abstract. In this paper, we propose, SCUBA, a Scalable Cluster Based
Algorithm for evaluating a large set of continuous queries over spatio-
temporal data streams. The key idea of SCUBA is to group moving
objects and queries based on common spatio-temporal properties at run-
time into moving clusters to optimize query execution and thus facili-
tate scalability. SCUBA exploits shared cluster-based execution by ab-
stracting the evaluation of a set of spatio-temporal queries as a spatial
join first between moving clusters. This cluster-based filtering prunes
true negatives. Then the execution proceeds with a fine-grained within-
moving-cluster join process for all pairs of moving clusters identified as
potentially joinable by a positive cluster-join match. A moving cluster
can serve as an approximation of the location of its members. We show
how moving clusters can serve as means for intelligent load shedding
of spatio-temporal data to avoid performance degradation with minimal
harm to result quality. Our experiments on real datasets demonstrate
that SCUBA can achieve a substantial improvement when executing con-
tinuous queries on spatio-temporal data streams.

1 Introduction

Every day we witness technological advances in wireless communications and
positioning technologies. Thanks to GPS, people can avoid congested freeways,
businesses can manage their resources more efficiently, and parents can ensure
their children are safe. These developments paved the way to a tremendous
amount of research in recent years in the field of real-time streaming and spatio-
temporal databases [11, 14, 20, 29, 33]. As the number of users of location-based
devices (e.g., GPS) continues to soar, new applications dealing with extremely
large numbers of moving objects begin to emerge. These applications, faced
with limited system resources and near-real time response obligation call for
new real-time spatio-temporal query processing algorithms [23]. Such algorithms
must efficiently handle extremely large numbers of moving objects and efficiently
process large numbers of continuous spatio-temporal queries.

Many recent research works try to address this problem of efficient evalua-
tion of continuous spatio-temporal queries. Some focus on indexing techniques

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1001–1019, 2006.
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[14, 20, 32, 37], other on shared execution paradigms [24, 29, 39], yet others on
special algorithms [34, 27]. A major shortcoming of these existing solutions, how-
ever, is that most of them still process and materialize every location update
individually. Even in [24, 39] where authors exploit a shared execution paradigm
among all queries, when performing a join, each moving object and query is ul-
timately processed individually. With an extremely large number of objects and
queries, this may simply become impossible.

Here we now propose a two-pronged strategy towards combating this scalabil-
ity problem. Our solution is based on the fact that in many applications objects
naturally move in clusters, including traffic jams, animal and bird migrations,
groups of children on a trip or people evacuating from danger zones. Such moving
objects tend to have some common motion related properties (e.g., speed and
destination). In [41] Zhang et. al. exploited micro-clustering for data summariza-
tion i.e., grouping data that are so close to each other that they can be treated
as one unit. In [22] Li et. al. extended this concept to moving micro-clusters,
groups of objects that are not only close to each other at a current time, but
also likely to move together for a while. These works focus on finding interesting
patterns in the movements. We take the concept of moving micro-clusters1 fur-
ther, and exploit this concept towards the optimization of the execution of the
spatio-temporal queries on moving objects.

We propose the Scalable Cluster-Based Algorithm (SCUBA) for evaluating
continuous spatio-temporal queries on moving objects. SCUBA exploits a shared
cluster-based execution paradigm, where moving objects and queries are grouped
together into moving clusters based on common spatio-temporal attributes. Then
execution of queries is abstracted as a join-between clusters and a join-within
clusters executed periodically (every Δ time units). In join-between, two clusters
are tested for overlap (i.e., if they intersect with each other) as a cheap pre-
filtering step. If the clusters are filtered out, the objects and queries belonging
to these clusters are guaranteed to not join at an individual level. Thereafter, in
join-within, individual objects and queries inside clusters are joined with each
other. This two-step filter-and-join process helps reduce the number of unneces-
sary spatial joins. Maintaining clusters comes with a cost, but our experimental
evaluations demonstrate it is much cheaper than keeping the complete infor-
mation about individual locations of objects and queries and processing them
individually.

If in spite of our cheap pre-filtering step, the query engine still cannot cope
with the current query workload due to the limited system resources, the results
may get delayed and by the time they are produced probably become obsolete.
This can be tackled by shedding some data and thus reducing the work to be
done. The second contribution of this work is the application of moving clusters
as means for intelligent load shedding of spatio-temporal data. Since clusters
serve as summaries of their members, individual locations of the members can
be discarded if need be, yet would still be sufficiently approximated from the
location of the their cluster centroid. The closest to the centroid members are

1 We use the term moving clusters in this paper.
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abstracted into a nested structure called cluster nucleus, and their positions are
load shed. The nuclei serve as approximations of the positions of their mem-
bers in a compact form. To the best of our knowledge this is the first work
that exploits moving clustering as means to perform intelligent load shedding of
spatio-temporal data.

For simplicity, we present our work in the context of continuous spatio-
temporal range queries. However, SCUBA is applicable to other types of spatio-
temporal queries (e.g., knn queries, trajectory and aggregate queries). Since clus-
ters themselves serve as summaries of the objects they contain (i.e., aggregate)
based on objects’ common properties. This can facilitate in answering some of
the aggregate queries. For knn queries, moving clusters that are not intersecting
with other moving clusters and contain at least k members can be assumed to
contain nearest members of the query object.

The contributions of this paper are the following:

1. We describe the incremental cluster formation technique that efficiently
forms clusters at run-time. Our approach assures longevity and quality of the
motion clusters by utilizing two key thresholds, namely distance threshold
ΘD and speed threshold ΘS .

2. We propose SCUBA - a first of its kind cluster-based algorithm utilizing
dynamic clusters for optimizing evaluation of spatio-temporal queries. We
show how the cluster-based execution with the two-step filtering approach
reduces the number of unnecessary joins and improves query execution on
moving objects.

3. We describe how moving clusters can naturally be applied as means for
intelligent load shedding of spatio-temporal data. This approach avoids per-
formance degradation with minimal harm to result quality.

4. We provide experimental evidence on real datasets that SCUBA improves
the performance when evaluating spatio-temporal queries on moving objects.
The experiments evaluate the efficiency of incremental cluster formation al-
gorithm, query execution and load shedding.

The rest of the paper is organized as follows: Section 2 is background on the
motion model. The essential features of moving clusters are described in Section
3. Section 4 introduces join algorithm using moving clusters. Moving cluster-
driven load shedding is presented in Section 5. Section 6 describes experimental
evaluation. Section 7 discusses related work, while Section 8 concludes the paper.

2 Background on the Motion Model

We employ a similar motion model as in [22, 34], where moving objects are
assumed to move in a piecewise linear manner in a road network (Fig. 1). Their
movements are constrained by roads, which are connected by network nodes,
also known as connection nodes2.
2 Our solution relies on the fact that objects have common spatio-temporal properties

independent of whether objects move in the network or not, and is applicable to
both constrained and unconstrained moving objects.
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We assume moving objects’ location updates arrive via data streams and have
the following form (o.OID, o.Loct, o.t, o.Speed, o.CNLoc, o.Attrs), where o.OID
is the id of the moving object, o.Loct is the position of the moving object, o.t is
the time of the update, o.Speed is the current speed, and o.CNLoc is the position
of the connection node in the road network that next be reached by the moving
object (its current destination). We assume that an CNLoc of the object doesn’t
change before the object reaches this connection node, i.e., the network is stable.
o.Attrs is a set of attributes describing the object (e.g., child, red car).

A continuously running query is represented in a similar form (q.QID, q.Loct,
q.t, q.Speed, q.CNLoc, q.Attrs). Unlike for the objects, q.Attrs represents a set
of query-specific attributes (e.g., size of the range query)

3 Overall Moving Cluster Framework

3.1 The Notion of Moving Clusters

A moving cluster (Fig. 2) abstracts a set of moving objects and moving queries.
Examples include a group of cars travelling on a highway, or a herd of migrating
animals. We group both moving objects and moving queries into moving clusters
based on common spatio-temporal properties i.e., with the intuition that the
grouped entities3 travel closely together in time and space for some period. We
consider the following attributes when grouping moving objects and queries into
clusters: (1) speed, (2) direction of the movement (e.g., connection node on the
road network), (3) relative spatial distance, and (4) time of when in that location.
Moving objects and queries that don’t satisfy conditions of any other existing
clusters form their own clusters, single-member moving clusters. As objects and
queries can enter or leave a moving cluster at any time, the properties of the
cluster are adjusted accordingly (Section 3.2).

Road NetworkCity Map

- Connection node
- Moving object

Fig. 1. Road Network Representation

Centroid

Actual 
Cluster SizeD

Max Cluster Size

Velocity Vector

Cluster members:
moving objects

Cluster members:
moving queries

Fig. 2. Moving Cluster in SCUBA

A moving cluster m at time t is represented in the form (m.CID, m.Loct, m.n,
m.OIDs, m.QIDs, m.AveSpeed, m.CNLoc, m.R, m.ExpTime), where m.CID is
the moving cluster id, m.Loct is the location of the centroid of the cluster at
time t, m.n is the number of moving objects and queries that belong to this
3 By entities we mean both moving objects and queries.
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cluster, m.OIDs and m.QIDs are the collections of id’s and relative positions
of the moving objects and queries respectively that belong to this moving clus-
ter, m.AveSpeed is the average speed of the cluster, m.CNLoc is the cluster
destination, m.R is the size of the radius, and m.ExpTime is the “expiration”
time of the cluster (for instance, this may be the time when the cluster reaches
the m.CNLoc travelling at m.AveSpeed). The motivation behind the “expira-
tion” time of the cluster is the fact that once a cluster reaches its m.CNLoc
(which may represent a major road intersection) its members may change their
spatio-temporal properties significantly (e.g., move in different directions) and
thus no longer belong to the same cluster. Alternate options are possible here
(e.g., splitting a moving cluster). We plan to explore this as a part of our future
work.

Individual positions of moving objects and queries inside a cluster are repre-
sented in a relative form using polar coordinates (with the pole at the centroid
of the cluster). For any location update point P its polar coordinates are (r, θ),
where r is the radial distance from the centroid, and θ is the the counterclockwise
angle from the x-axis. As time progresses, the center of the cluster might shift,
thus making it necessary to transform the relative coordinates of the cluster
members. We maintain a transformation vector for each cluster that records the
changes in position of the centroid between the periodic executions. We refrain
from constantly updating the relative positions of the cluster members, as this
info is not needed, unless a join-within is to be performed (Fig. 3).

We face the challenge that with time clusters may deteriorate [15]. To keep
a competitive and high quality clustering (i.e., clusters with compact sizes), we
set the following thresholds to limit the sizes and deterioration of the clusters as
the time progresses: (1) distance threshold (ΘD) and (2) speed threshold (ΘS).
Distance threshold guarantees that the clustered entities are close to each other
at the time of clustering, while the speed threshold assures that the entities
will stay close to each other for some time in the future. The thresholds prevent
dissimilar moving entities from being classified under the same cluster and ensure
that good quality clusters will be formed.

Clusters are dissolved once they reach their destination points. So if the dis-
tance between the location where the cluster has been formed and its destination
is short, the clustering approach might be quite expensive and not as worthwhile.
The same reasoning applies if the average speed of the cluster is very fast and it
thus reaches its destination point very quickly, then forming a cluster might not
give very little, if any, advantages. In a typical real-life scenario though, moving
objects can reach relatively high speeds on the larger roads (e.g., highways),
where connection nodes would be far apart from each other. On the smaller
roads, speed limit, and the proximity of other cars constrains the maximum
speed the objects can develop, thus extending the time it takes for them to
reach the connection nodes. These observations support our intuition that clus-
tering is applicable to different speed scenarios for moving objects in every day
life.
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3.2 Moving Cluster Formation

We adapt an incremental clustering algorithm, similar to the Leader-Follower
clustering [8, 16], to create and maintain moving clusters in SCUBA. Incremen-
tal clustering allows us not to store all the location updates that are to be
grouped into the clusters. So the space requirements are small compared to the
non-incremental algorithms. Also once Δ expires, SCUBA can immediately pro-
ceed with the query execution, without spending any time on re-clustering the
entire data set. However, incremental clustering makes local one-at-a time de-
cisions and its outcome is in part dependent on the arrival order of updates.
We experimentally evaluate the tradeoff between the execution time and clus-
tering quality when clustering location updates incrementally as updates arrive
vs. non-incrementally when the entire data set is available (Sec. 6.4).

We now will illustrate using an example of a moving object how moving en-
tities get clustered. A spatial grid index (we will refer to it as ClusterGrid) is
used to optimize the process of clustering. When a location update from the
moving object o arrives, the following five steps determine the moving cluster it
belongs to:
————————————————————————————————————————————
Step 1: Use moving object’s position to probe the spatial grid index ClusterGrid to find the moving
clusters (Sc) in the proximity of the current location (i.e., clusters that the object can potentially
join).
————————————————————————————————————————————
Step 2: If there are no clusters in the grid cell (Sc = ∅), then the object forms its own cluster, with
the centroid at the current location of the object, and the radius = 0;
————————————————————————————————————————————
Step 3: If otherwise, there are clusters that the object can potentially join, we iterate through the
list of the clusters Sc and for each moving cluster mi ∈ Sc check the following properties:

1. Is the moving object moving in the same direction as the cluster mi

(o.CNLoc == mi.CNLoc)?
2. Is the distance between the centroid of the cluster and the location update less than the distance

threshold, that is |o.Loct − mi.Loct| ≤ ΘD?
3. Is the speed of the moving object less than the speed threshold, that is

|o.Speed − mi.AveSpeed| ≤ ΘS?

————————————————————————————————————————————
Step 4: If the moving object o satisfies all three conditions in Step 3, then the moving cluster mi

absorbs o, and adjusts its properties based on o’s attributes. The cluster centroid position is ad-
justed by considering the new relative position of object o. The average speed gets recomputed. If
the distance between the object o and the cluster centroid is greater than the current radius, the
radius is increased. Finally, the count of the cluster members is incremented.
————————————————————————————————————————————
Step 5: If o cannot join any existing cluster (from Step 4), o forms its own moving cluster.
————————————————————————————————————————————

Critical situations (e.g., each moving cluster contains one object or one big mov-
ing cluster contains all moving objects) are rare to happen. If such situation does
in fact occur, then our solution can default to any other state-of-the-art moving
objects processing technique without any savings offered by our solution.

4 Join Algorithm Using Moving Clusters

In this section, we describe the joining methods utilized by SCUBA to minimize
the cost of execution of spatio-temporal queries. The main idea is to group
similar objects as well as queries into moving clusters, and then the evaluation
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of a set of spatio-temporal queries is abstracted as a spatial join, first between the
moving clusters (which serves as a filtering step) and then within the moving
clusters (Fig. 3). To illustrate the idea, traditionally each individual query is
evaluated separately. In the shared execution paradigm the problem of evaluating
numerous spatio-temporal queries is abstracted as s spatial join between the
set of moving objects and queries [39]. While a shared plan allows processing
with only one scan, however objects and queries are still joined individually.
With large numbers of objects and queries, this may still create a bottleneck
in performance and may cause us to potentially run out of memory. The shared
cluster-based execution groups moving entities into moving clusters and a spatial
join is performed on all moving clusters. Only if two clusters overlap, we have to
go to the individual object/query level of processing, or automatically assume
that objects and queries within those clusters produce join results (Fig. 4).

4.1 Data Structures

In the course of execution, SCUBA maintains five in-memory data structures
(Fig. 5): (1) ObjectsTable, (2) QueriesTable (3) ClusterHome, (4) ClusterStorage,
and (5) ClusterGrid.

ObjectsTable stores the information about objects and their attributes. An
object entry in the ObjectsTable has the form (o.OID, o.Attrs), where o.OID
is the object id and o.Attrs is the list of attributes that describe the object.
Similarly, QueriesTable stores the information about queries, and has the form
(q.QID, q.Attrs) where q.QID is the query id, and the q.Attrs is the list of query
attributes. ClusterHome is a hash table that keeps track of the current rela-
tionships between objects, queries and their corresponding clusters. A moving
object/query can belong to only one cluster at a time t. An entry in the Clus-
terHome table is of the following form (ID, type, CID), where ID is the id of
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a moving entity, type indicates whether it’s an object or a query, and the CID
is the id of the cluster that this moving entity belongs to. ClusterStorage table
stores the information (e.g., centroid, radius, member count, etc.) about moving
clusters. ClusterGrid is a spatial grid table dividing the data space into N x N
grid cells. For each grid cell, ClusterGrid maintains a list of cluster ids of moving
clusters that overlap with that cell.

4.2 The SCUBA Algorithm

SCUBA execution has three phases: (1) cluster pre-join maintenance, (2) cluster-
based joining, and (3) cluster post-join maintenance as depicted in Fig. 6. The
cluster pre-join maintenance phase is continuously running where it receives in-
coming information from moving objects and queries and applies in-memory
clustering. In this phase, depending on the incoming location updates, new clus-
ters may be formed, “empty” clusters may be dissolved, and existing clusters
may be expanded. The cluster-based joining phase is activated every Δ time
units where join-between and join-within moving clusters is executed. The clus-
ter post-join phase is started by the end of the joining phase to perform a cluster
maintenance for the next query evaluation time.

Algorithm 1 shows the pseudo code for SCUBA execution. For each execution
interval, SCUBA first initializes the interval start time (Step 3). Before Δ time
interval expires, SCUBA receives the incoming location updates from moving
objects and queries and incrementally updates existing moving clusters or creates
new ones (Step 6).

When Δ time interval expires (location updating is done), SCUBA starts the
query execution (Step 8) by performing join-between clusters and join-within
clusters. If two clusters are of the same type (all objects, or all queries), they are
not considered for the join-between. Similarly, if all of the members of the clus-
ter are of the same type, no join-within is performed. The join-between checks
if the circular regions of the two clusters overlap (Algorithm 2), and join-within
performs a spatial join between the objects and queries of the two clusters (Al-
gorithm 3). If join-between does not result in intersection, join-within is skipped.

After the joining phase, cluster maintenance is performed (Step 23). Due to
space limitations, we don’t include the pseudo-code for PostJoinClustersMainte-
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Algorithm 1. SCUBA()

1: loop
2: //*** CLUSTER PRE-JOIN MAINTENANCE PHASE ***
3: Tstart = current time //initialize the execution interval start time
4: while (current time - Tstart) < Δ do
5: if new location update arrived then
6: Cluster moving object o/query q //procedure described in Section 3.2

// Δ expires. Begin evaluation of queries
7: //*** CLUSTER-BASED JOINING PHASE ***
8: for c = 0 to MAX GRID CELL do
9: for every moving cluster mL ∈ Gc do

10: for every moving cluster mR ∈ Gc do
11: //if the same cluster, do only join-within
12: if (mL == mR) then
13: //do within-join only if the cluster contains members of different types
14: if ((mL.OIDs > 0) && (mL.QIDs > 0)) then
15: Call DoWithinClusterJoin(mL,mL)
16: else
17: //do between-join only if 2 clusters contain members of different types
18: if ((mL.OIDs > 0) && (mR.QIDs > 0)) ||

((mL.QIDs > 0) && (mR.OIDs > 0)) then
19: if DoBetweenClusterJoin(mL,mR) == TRUE then
20: Call DoWithinClusterJoin(mL,mR)
21: Send new query answers to users
22: //*** CLUSTER POST-JOIN MAINTENANCE PHASE ***
23: Call PostJoinClustersMaintenance() //do some cluster maintenance

Algorithm 2. DoBetweenClusterJoin(Cluster mL, Cluster mR)

1: //Check if two circular clusters mL and mR overlap
2: if ((mL.Loct.x - mR.Loct.x)2 + (mL.Loct.y - mR.Loct.y)2) < (mL.R - mR.R)2 then
3: return TRUE; //the clusters overlap
4: else
5: return FALSE; //the clusters don’t overlap

nance(). The operations performed during post-join cluster maintenance include
dissolving “expiring” clusters and re-locating the “non-expiring” clusters (in the
ClusterGrid) based on their velocity vectors for the next execution interval time
(i.e., T +Δ). If at time T +Δ the cluster passes its destination node, the cluster
gets dissolved.

Example. Fig. 7 gives an illustrative example for the SCUBA algorithm. There
are two moving clusters M1 and M2 (Fig. 7a). M1 contains four moving objects
(O1,O2,O3,O5) and no moving queries. M2 contains one moving object (O4) and
two moving queries (Q1,Q2). New moving object O6 and a new moving query Q3
send their location updates (Fig. 7b). Q3 has common attributes with moving
cluster M1 and O6 has common attributes with M2. Thus M1 adds query Q3 as
its member (which causes its radius to expand). M2 adds object O6 as its member
(no radius expansion here) (Fig. 7c). In Fig. 7d, we differentiate the members of
the two clusters using color4. At time T the cluster joining phase begins (Fig. 7e).
Join-between M1 and M2 returns a positive overlap. Thus the join-within the
two clusters must be performed which produces a result (Q2,O3). Join-within
for the cluster M1 returns a result (Q3,O5). After the cluster joining phase,

4 We do it for visibility purpose for the reader. No such step is executed in SCUBA.
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Algorithm 3. DoWithinClusterJoin(Cluster mL, Cluster mR)

1: R = ∅; //set of results
2: Sq = Set of queries from mL ∪ mR //query members from both clusters
3: So = Set of objects from mL ∪ mR //object members from both clusters

//join moving objects with queries from both clusters
4: for every moving object oi ∈ So do
5: for every moving query qj ∈ Sq do
6: spatial join between object oi with query qj (oi �� qj)
7: Sr = Set of queries from joining oi with queries in Sq

8: for each Q ∈ Sq do
9: add (Q, oi) to R

10: return R;
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the maintenance on the clusters is performed (Fig. 7f). Based on the velocity
vectors, SCUBA calculates the positions of the clusters at the next joining time
(T+Δ). Since M1 still hasn’t reached its destination node at time T+Δ, it is
not dissolved, but moved to its expected position based on the velocity vector.
M2 will pass its destination at the next join time. It will be dissolved at this
stage.
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5 Load Shedding Using Moving Clusters

Load shedding is not a new idea. It has been well explored in networking [18],
multimedia [6], and streaming databases [2, 36, 35]. Typically, there are two fun-
damental approaches distinguishing which data tuples to load shed, namely ran-
dom tuples or semantically less important ones [36]. Thereafter, most works thus
far primarily focus on the easy case, namely random drops, treating all tuples
equally in terms of value to users [28, 35]. We instead here follow the idea of
semantic load-shedding, however now as applied to the spatio-temporal context.
That is, our proposal is to use moving clusters to identify and thus subsequently
discard the less important data first (i.e., the data that would cause the minimal
loss in accuracy of the answer). Specifically, we consider for this purpose relative
positions of the cluster members with respect to their centroids.

Depending on the system load and the accuracy requirements, SCUBA em-
ploys the following methods for handling cluster members (Fig. 8). Namely, all
cluster members’ relative positions are maintained (i.e., no load shedding) (Fig.
8a), none of the individual positions are maintained (i.e., full load shedding)
(Fig. 8b), or a subset of relative positions of the cluster members are maintained
(partial load shedding) (Fig. 8c). The members near the center are abstracted
into a structure inside a cluster called nucleus, a circular region that approxi-
mates the positions of the cluster members near the centroid of the cluster. The
size of the nucleus is determined by its radius threshold, ΘN parameter where
(0 ≤ ΘN ≤ ΘD). The larger the value of ΘN , the more data is load shed.

If the system is about to run out of memory, SCUBA begins load shedding of
cluster member positions and uses a nucleus to approximate their positions. If
memory requirements are still high, then SCUBA load sheds positions of all clus-
ter members. In this case the cluster is the sole representation of the movement
of the objects and queries that belong to it. Such abstraction of cluster members
positions by nucleus/cluster corresponds to a tradeoff between accuracy and per-
formance. The accuracy depends on how compact the clusters are. The larger
the size of the clusters, the more false positives we might get for answers when
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performing the join-between. If individual positions are load shed, then when
two clusters intersect (in join-between), we assume that the objects from the
clusters satisfy the queries from both clusters. Making the size of the clusters
compact will give more accurate answers, but also will increase the overall num-
ber of clusters, hence the join time. Increasing the size of clusters would make
the processing faster, but with less accurate results. In Section 6.6 we evaluate
all three schemes (i.e., no load shedding, full load shedding, and partial load
shedding) in terms of its impact on performance and accuracy.

6 Experimental Evaluation

In this section, we compare SCUBA with a traditional grid-based spatio-temporal
range algorithm5, where objects and queries are hashed based on their locations
into an index, say a grid. Then a cell-by-cell join between moving objects and
queries is performed. Grid-based execution approach is a common choice for
spatio-temporal query execution [9, 24, 27, 39, 29]. In all experiments queries are
evaluated periodically (every Δ time units).

6.1 Experimental Settings

We have implemented SCUBA inside our stream processing system CAPE [31].
Moving objects and queries generated by the Network-Based Generator of Mov-
ing Objects [5] are used as data. The input to the generator is the road map of
Worcester, USA. All the experiments were performed on Red Hat Linux (3.2.3-
24) with Intel(R) XEON(TM) CPU 2.40GHz and 2GB RAM. Unless mentioned
otherwise, the following parameters are used in the experiments. The set of ob-
jects consists of 10,000 objects and 10,000 spatio-temporal range queries. Each
evaluation interval, 100% of objects and queries send their location updates ev-
ery time unit. No load shedding is performed, unless noted otherwise. For the
ClusterGrid table we chose a 100x100 grid size. Δ is set to 2 time units. The
distance threshold ΘD equals 100 spatial units, and the speed threshold ΘS is
set to 10 (spatial units/time units).

6.2 Varying Grid Cell Size

In this section, we compare the performance and memory consumption of SCUBA
and the regular grid-based algorithm when varying the grid cell size. Fig. 9 varies
the granularity of the grid (on x-axis). Since the coverage area (the city of Worces-
ter) is constant, by increasing/decreasing the cell count in each dimension (x- and
y-), we control the sizes of the grid cells. So in the 50x50 grid the size of a grid
cell is larger than in the 150x150 grid. The larger the count of the grid cells, the
smaller they are in size and vice versa.

From Fig. 9a, the join time decreases for the regular operator when decreasing
the grid cell size. The reason for that is that smaller cells contain fewer objects
5 For simplicity, we will refer to it as regular execution or regular operator.
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and queries. Hence, fewer comparisons (joins) need to be made. But the fine
granularity of the grid comes at a price of higher memory consumption, because
of the large number of grid cells, each containing individual location updates of
objects and queries.

The join time for SCUBA slightly goes up as the grid cell sizes become smaller.
But the change is minimal, because the cluster sizes are compact and even as
the granularity of the cells is increasing, the size of grid cells is frequently larger
than the size of clusters. So unless many clusters are on the borderline of the
grid cells (overlapping with more than one cell), the performance of SCUBA is
not “hurt” by the finer granularity of the grid. Moreover, only one entry per
cluster (which aggregates several objects and queries) needs to be made in a
grid cell vs. having an individual entry for each object and query. This provides
significant memory savings when processing extremely large numbers of densely
moving objects and queries.

6.3 Varying Skewness to Facilitate Clustering

Now we study the impact of the skew in the spatio-temporal attributes of moving
objects and queries. By varying the cluster-related attributes causing objects and
queries to be very dissimilar (no common attribute values) or very much alike
(i.e., clusterable). This determines the number of clusters and the number of
cluster members per cluster.

In Fig. 10, the skew factor on x-axis represents the average number of moving
entities that have similar spatio-temporal properties, and thus could be grouped
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into one cluster. For instance, when skew factor = 1, each object and query
moves in a distinct way. Hence each forms its own cluster. When the skew factor
= 200, every 200 objects/queries send their updates move in a similar way. Thus
they typically may form a cluster. In Fig. 10, when not many objects and queries
are clusterable, the SCUBA performance suffers due to the overhead of many
single-member clusters. Thus more join-between clusters are performed as the
number of clusters goes up. If many single member clusters spatially overlap,
the join-within is performed as well. This increases the overall join time. In real
life this scenario is highly unlikely as with a large number of moving objects
the chance increases that common motion attributes for some duration of time
are present (e.g., increase in traffic on the roads). As the skew factor increases
(10-200), and more objects and queries are clusterable, the join time for SCUBA
significantly decreases. The overall join time is several orders of magnitude faster
compared to a regular grid-based approach when the skew factor equals 200, i.e.,
approximately 200 moving entities per cluster.

6.4 Incremental vs. Non-incremental Clustering

In this section we study the tradeoff between the improved quality of the clusters
which can be achieved when clustering is done non-incrementally (with all data
points available at the same time) and the performance of SCUBA. As proposed,
SCUBA clusters location updates incrementally upon their arrival. We wanted
to investigate if clustering done offline (i.e., non-incrementally, when all the data
points are available) and thus producing better quality clusters and facilitating a
faster join-between the clusters outweighs the cost of non-incremental clustering.
In particular, we focus on the join processing time, and how much improvement
in join processing could be achieved with better quality clusters.

We implemented a K-means (a common clustering algorithm) extension to
SCUBA for non-incremental clustering. The K-means algorithm expects the
number of clusters specified in advance. We used a tracking counter for the
number of unique destinations of objects and queries for a rough estimate of the
number of clusters needed. Another disadvantage is that K-means needs several
iterations over the dataset before it converges. With each iteration, the quality
of clustering improves, but the clustering time increases. We varied the number
of iterations from 1 to 10 in this experiment to observe the impact on quality of
clusters achieved by increasing the number of iterations.

Fig. 11 presents the join times for SCUBA when clustering is done incremen-
tally vs non-incrementally. The bars represent a combined cost of clustering time
and join time. The time to perform incremental clustering is not portrayed as
the join processing starts immediately when Δ expires. In the offline clustering
scenario, the clustering has to be done first before proceeding to the join. With
the increased number of iterations (on x-axis), the quality of clusters improves
resulting in faster join execution compared to the incremental case. However,
the cost of waiting for the offline algorithm to finish the clustering outweighs
the advantage of the faster join. When the number of iterations is 3 or greater,
the clustering time in fact takes longer than the actual join processing. The
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larger the dataset the more expensive each iteration becomes. Offline clustering
is not suitable for clustering large amounts of moving objects when there are
constraints on execution time and memory space. Even with a reduced number
of scans through the data set and improved join time, the advantage of having
better quality clusters is not amortized due to the amount of time spent on offline
clustering and larger memory requirements. This justifies the appropriateness of
our incremental clustering as an efficient clustering solution.

6.5 Cluster Maintenance Cost

In this section, we compare the cluster maintenance cost with respect to join time
in SCUBA and regular grid-based join time. Fig. 12 gives the cluster maintenance
time when the number of clusters is varied. By cluster maintenance cost we mean
the time it takes to pre- and post-process the clusters before and after the join is
complete (i.e., form new clusters, expand existing clusters, calculate the future
position of the cluster using its average speed, dissolve expired clusters, and
re-insert clusters into the grid for the next evaluation interval).

For this experiment, we varied the skew factor to affect the average number
of the clusters (the number of objects and queries stays the same). The x-axis
represents the average number of clusters in the system. Fig. 12 shows that the
cluster maintenance (which is an overhead for SCUBA) is relatively cheap. If we
combine cluster maintenance with SCUBA join time to represent the overall join
cost for SCUBA, it is still faster than the regular grid-based execution. Hence,
even though maintaining clusters comes with a cost, it is superior over processing
objects and queries individually.

6.6 Moving-Cluster-Driven Load Shedding

Here we evaluate the effect of moving cluster-based load shedding on the per-
formance and accuracy in SCUBA. Figures 13a and 13b respectively represent
the join processing times and accuracy measurements for SCUBA when load
shedding positions of the cluster members. The x-axis represents the percent of
the size of the nucleus (i.e., circular region in the cluster approximating cluster
members whose positions are discarded) with respect to the maximum size of
the cluster. For simplicity, we will refer to percent of the nucleus-to-cluster size
as η. When η = 0%, no data is discarded. On the opposite, when η = 100%,
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all cluster members’ positions are discarded, and the cluster solely approximates
the positions of its members. The fewer relative positions are maintained, the
fewer individual joins need to be performed when executing a join-within for
overlapping clusters.

As expected load shedding comes at a price of less accurate results (Fig. 13b).
To measure accuracy, we compare the results outputted by SCUBA when η = 0%
(no load shedding) to the ones output when η > 0%, calculating the number of
false-negative and false-positive results. The size of the nucleus has a significant
impact on the accuracy of the results when performing load shedding. Hence it
must be carefully considered. When η = 50%, the accuracy ≈ 79%. So relatively
good results can be produced with cluster-based load shedding even if 50 % of a
cluster region is shed. If random load shedding were to be performed, the same
number of tuples - but just not the same tuples would be load shed. Instead the
shedding mechanism would randomly pick which ones to shed, potentially throw-
ing away more important data and significantly degrading the results’ accuracy.

7 Related Work

Related Work on Spatio-Temporal Query Processing: Efficient evalua-
tion of spatio-temporal queries on moving objects has been an active area of
research for quite some time. Several optimization techniques have been devel-
oped. These include Query Indexing and Velocity Constrained Indexing (VCI)
[29], shared execution [24, 38, 39], incremental evaluation [24, 39], and query-
aware moving objects [17]. Query Indexing indexes queries using an R-tree-like
structure. At each evaluation step, only those objects that have moved since
the previous evaluation step are evaluated against the Q-index. VCI utilizes the
maximum possible speed of objects to delay the expensive updates to the index.
To reduce wireless communication and query reevaluation costs, Hu et. al [17]
utilize the notion of safe region, making the moving objects query aware. Query
reevaluation in this framework is triggered by location updates only. In the sim-
ilar spirit [29] and [38] try to minimize the number of unnecessary joins between
objects and queries by using the Safe and No-Action regions respectively. In the
latter case, the authors combine it with different join policies to filter out the
objects and queries that are guaranteed not to join.
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The scalability in spatio-temporal query processing has been addressed in
[11, 23, 24, 29, 39]. In a distributed environment, such as MobiEyes [11], part of
the query processing is send to the clients. The limitations of this approach is that
the devices may not have enough battery power and memory capacity to perform
the complex computations. The shared execution paradigm as means to achieve
scalability has been used in SINA [24] for continuous spatio-temporal range
queries, and in SEA-CNN [39] for continuous spatio-temporal kNN queries. Our
study falls into this category and distinguishes itself from these previous works
by focusing on utilizing moving clusters abstracting similar moving entities to
optimize the execution and minimize the individual processing.

Related Work on Clustering: Clustering has been an active field for over 20
years [1, 25, 41]. Previous work typically uses clustering to analyze data to find
interesting patterns. We instead apply clustering as means to achieve scalable
processing of continuous queries on moving objects. To the best of our knowl-
edge, this is the first work to use clustering for shared execution optimization of
continuous queries on spatio-temporal data streams.

In this work we considered clustering algorithms in which clusters have a dis-
tinguished point, a center. The commonly used clustering algorithm for such clus-
tering, k-means, is described in [8, 13, 30]. Our concentration was on incremental
clustering algorithms only [4], [7], and [40]. Some of the published clustering algo-
rithms for an incremental clustering of data streams include BIRCH[41], COB-
WEB [10], STREAM [12, 26], Fractal Clustering [3], and the Leader-Follower
(LF) [16]. Clustering analysis is a well researched area, and due to space limita-
tions we do not discuss all of the clustering algorithms available. For an elaborate
survey on clustering, readers are referred to [19]. In our work, we adapt an incre-
mental clustering algorithm, similar to the Leader-Follower clustering [16]. The
extensibility, running time and the computational complexity of this algorithm
is such that makes it attractive for processing streaming data.

Clustering of spatio-temporal data has been explored to a limited degree in
[21]. This work [21] concentrates on discovering moving clusters using historic
trajectories of the moving objects. The algorithms proposed assume that all
data is available. Our work instead clusters moving entities at run-time and
utilizes moving clusters to solve a completely different problem, namely, efficient
processing of continuous spatio-temporal queries.

8 Conclusions and Future Work

In this paper, we propose a unique algorithm for efficient processing of large
numbers of spatio-temporal queries on moving objects termed SCUBA. SCUBA
combines motion clustering with shared execution for query execution optimiza-
tion. Given a set of moving objects and queries, SCUBA groups them into moving
clusters based on common spatio-temporal attributes. To optimize the join exe-
cution, SCUBA performs a two-step join execution process by first pre-filtering
a set of moving clusters that could produce potential results in the join-between
moving clusters stage and then proceeding with the individual join-within exe-
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cution on those selected moving clusters. Comprehensive experiments show that
the performance of SCUBA is better than traditional grid-based approach where
moving entities are processed individually. In particular the experiments demon-
strate that SCUBA: (1) facilitates efficient execution of queries on moving ob-
jects that have common spatio-temporal attributes, (2) has low cluster main-
tenance/overhead cost, and (3) naturally facilitates load shedding using motion
clusters while optimizing the processing time with minimal degradation in result
quality. We believe our work is the first to utilize motion clustering to optimize
the execution of continuous queries on spatio-temporal data streams. As future
work, we plan to further refine and validate moving cluster-driven load shedding,
enhance SCUBA to produce results incrementally and explore further through
additional experimentation.
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Abstract. In this paper, we propose a novel client-side, multi-granularity
caching scheme, called “Complementary Space Caching” (CS caching),
for location-based services in mobile environments. Different from con-
ventional data caching schemes that only cache a portion of dataset, CS
caching maintains a global view of the whole dataset. Different portions
of this view are cached in varied granularity based on the probabilities
of being accessed in the future queries. The data objects with very high
access probabilities are cached in the finest granularity, i.e., the data ob-
jects themselves. The data objects which are less likely to be accessed in
the near future are abstracted and logically cached in the form of com-
plementary regions (CRs) in a coarse granularity. CS caching naturally
supports all types of location-based queries. In this paper, we explore
several design and system issues of CS caching, including cache memory
allocation between objects and CRs, and CR coalescence. We develop al-
gorithms for location-based queries and a cache replacement mechanism.
Through an extensive performance evaluation, we show that CS caching
is superior to existing caching schemes for location-based services.

1 Introduction

Due to the rapid advances in wireless and positioning technologies, location-
based services (LBSs) [1] have emerged as one of the killer applications for mo-
bile computing. To improve the access efficiency and alleviate the contention of
limited wireless bandwidth in mobile environments, data caching techniques are
particularly important for LBSs.

Conventional caching techniques cache a portion of a database in units of
tuples or pages. Due to the lack of data semantics, clients cannot be sure whether
the cached data alone can sufficiently satisfy some complex queries, forcing them
to submit requests to the server even if the answers are completely available in
the cache. Semantic caching addresses this problem by caching query results
along with their corresponding queries (which serve as the semantic descriptions
of the cached query results) [2, 3, 4]. Thus, a query and its result form a semantic
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region. By consulting cached semantic regions, a new query can be decomposed
into a probe query which can be answered locally by the cache and a remainder
query which is only answerable by the server. If a query is fully covered by cached
semantic regions, no contact with the server is needed.

However, the representation of semantic regions is highly query-dependent. If
a query is of different type from the queries captured by semantic regions, the
cached data objects cannot be reused. Besides, because clients’ knowledge about
data objects is constrained by cached semantic regions, the clients are unable
to determine whether there are objects beyond the cached semantic regions.
Therefore if a query is partially covered by semantic regions, remainder queries
(i.e., uncovered portions of the query) must be formed and submitted to the
server to retrieve possibly missing objects. The following example (as shown in
Fig. 1(a)) illustrates the above described deficiencies.

Example 1. Suppose that a database server contains 9 objects, namely, ‘a’ through
‘i’. A client with an empty cache submits a window query, Q1, to the server. A
result set of three objects {f, e, g} is returned and cached along with the query
window as a semantic region. Later, a nearest neighbor (NN) query, Q2 (with
a query point p), is issued. Due to incompatibility between window and NN
queries, the cached semantic region cannot answer the query even though the
result (i.e., e) is in the cache. Consequently, Q2 is submitted to server and e
is retrieved again. Later, the client issues another window query, Q3, which is
partially covered by the semantic region. Thus, a remainder query is submitted
to the server even though this query actually retrieves no object. �

These deficiencies are due to the lack of a global view of data in the cache.
For a cache designed to support various kinds of queries, it is desirable to main-
tain certain auxiliary location information that provides a global view of all data
objects in the database. Motivated by this observation, we propose a novel multi-
granularity data caching scheme for mobile clients called Complementary Space
Caching (CS caching). The CS caching distinguishes itself from other caching
schemes by having a global view of the whole dataset. Different portions of this
cached view have varied granularity based on the probabilities of corresponding
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data objects to be accessed in the future queries. The data objects with very
high access probabilities are cached in the finest granularity, i.e., the actual data
objects. Those data objects less likely to be accessed in the near future are not
physically cached, rather are abstracted and logically cached in the form of com-
plementary regions (CRs) in a coarse granularity. In our design, CRs present
auxiliary location information regarding to missing objects, i.e., those objects in
the server but not kept in the cache. This auxiliary information can facilitate
the local processing of various location-dependent queries and alleviate unnec-
essary queries to the server. Fig. 1(b) shows that same scenario as Example 1
except that CS caching is adopted (where black dots are objects and rectan-
gle boxes are CRs). Since the result of Q1 is cached, object e in the cache can
answer Q2 because no other object or CR is closer than e to p. Q3 finds only
object f inside the query window so no additional objects are needed from the
server.

Due to limited cache memory, there is a trade-off between keeping objects
and keeping CRs in the cache. Storing more data objects in the cache can
potentially provide a higher cache hit rate but reduce the precision of the
auxiliary location information in CRs (because more CRs need to be merged
and stored in a coarse granularity in order to make rooms for objects). This
could lead to more false misses, i.e., a query finds a CR for potentially an-
swer objects but no objects are returned. On the other hand, taking more
cache memory to maintain fine-granularity CRs will reduce the number of data
objects cached physically and thus reduce the cache hits. The design of CS
caching strives to optimize the cache memory allocation for physical data ob-
jects and CRs in order to achieve a high cache hit rate and a low false miss
rate (which leads to the excellent performance in terms of response time and
bandwidth consumption). In this paper, we explore several design and system
issues of CS caching. We develop and implement algorithms for processing win-
dow, range, and k nearest neighbor queries based on CS caching, and develop
a very efficient cache replacement mechanism for cache maintenance. Through
comprehensive experiments based on simulation, we validate our proposal and
show that CS caching is superior to existing caching schemes for location-based
services.

The rest of this paper is organized as follows. Section 2 gives an overview of
the CS caching model and reviews related work. Section 3 describes the query
processing in CS caching. Section 4 discusses CR coalescence, an important tech-
nique for reducing transmission overhead. Section 5 describes the cache manage-
ment. Section 6 reports the simulation result. At last, Section 7 states our future
directions.

2 Complementary Space Caching

In this section, we first briefly review the R-tree and the notion of minimum
bounding boxes that we adopt to represent complementary regions. We then
describe the CS caching model and discuss some relevant research.
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2.1 Preliminaries

In many spatial databases, objects are very often indexed using R-tree [5] or its
variants for its efficiency and wide acceptance. In R-tree, objects close in space
are clustered in a leaf node represented as a minimum bounding box (MBB).
Nodes are then recursively grouped together following the same principle until
the top level, which consists of a single root. To process a query, a search algo-
rithm starts traversal at the root and recursively visits index nodes and objects.
By simply examining MBBs of index nodes or objects (e.g., by checking the
intersection of the query and an MBB for window queries or the mindist be-
tween a query point and an MBB for kNN queries [6]), whether the enclosed
objects are candidates of the query can be quickly determined. If an MBB
does not satisfy the query requirement, the corresponding subtree (i.e., the en-
closed group of objects) can be safely discarded from further investigation. The
query traversal ends when all objects are retrieved and all irrelevant subtrees
are pruned.
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Fig. 2(a) depicts an R-tree (with a fanout of 3) that has 3 leaf nodes, labeled
N1, N2 and N3, and 9 objects labeled ‘a’ through ‘i’. The corresponding object
placements are shown in Fig. 2(b). Suppose a window query Q is evaluated. It
first traverses the root and skips its child entry eN1 whose MBB does not overlap
with the query. Next, N2 is explored. Entry ed is not explored since it is outside
Q. Then objects e and f are collected. Similarly for N3, object g is retrieved
while eh and ei are not explored. Finally, objects e, f and g are collected as the
query result while the unexplored entries are {eN1, ed, eh, ei}.

It can be observed from the above index traversal that the unexplored entries
exactly represent the complement set of objects to queried objects. In other
words, both queried objects and those unexplored entries’ MBBs cover the en-
tire data space. If such information is available in mobile clients, a new query,
Q′, of any type can be supported and resolved at the client side by simply
examining the previous queried objects and by checking whether the areas cov-
ered by MBBs need to be further explored (i.e., by sending requests to the
server). This observation inspires the ideas we proposed for the design of CS
caching.



1024 K.C.K. Lee et al.

2.2 Complementary Space Caching Model

We assume that the server is stateless and a point-to-point communication chan-
nel is established between the server and a client. We also assume that the
database is indexed by R-tree. To simplify our discussion, we assume all updates
occur in the server and the update is infrequent. The issue of cache coherence is
out of scope of this study and will be the extension of this work.

Formally, we consider a database at the server composed of a set of objects,
O. All object locations (x-,y-coordinates) constitute a bounded geographical
space, S. Data objects O ⊆ O residing in a subspace S ⊆ S can be determined
by a function, m, i.e. m(S) → O1. Conversely, given a set of objects O, the
corresponding (minimal) subspace S can also be determined.

The CS cache C is defined as (O,R), where O is a set of cached objects and R
is a set of subspaces that is complementary regions (CRs). The CRs are presented
in a form of MBBs2. Initially, a client cache is empty and is initialized as (∅, {S}).
After the first query is processed by the server, queried objects along with MBBs
of unexplored entries are returned to the client and are cached. There is obviously
an overhead for maintaining the MBBs in the client cache, but it is justifiable for
the following reasons: (1) collection of unexplored entries and their MBBs via
R-tree based query processing at the server is almost effortless; (2) individual
MBBs are compact in size and thus do not consume a lot of bandwidth and
cache memory; (3) the number of unexplored entries (and MBBs) is reasonably
small since most of irrelevant data objects are pruned at high-level branches of
the R-tree due to its nice clustering property; (4) It is only a one-time cost,
which will be amortized over subsequent queries; and (5) as shown previously,
keeping MBBs in the cache can effectively avoid sending unnecessary queries to
the server. As to be discussed in Section 6, our evaluation demonstrates that the
performance gain outweighs the overhead cost.

With both objects and CRs kept in the cache to preserve a global view of the
dataset, query processing and cache management in CS caching behave differ-
ently from the conventional ones. Fig. 3 that continues the running example in
Fig. 2(b) gives the overview of query processing and cache replacement. Suppose
after Q, the cache content of a client becomes ({e, f, g}, {rN1, rh, ri, rd}) (where
rx is the MBB of ex). Suppose the client moves and issues a query that covers
rN1 (see Fig. 3(a)). The client explores rN1 by querying the server. Then an
object c together with two MBBs, ra and rb, that are part of rN1 are received.
Both are in a finer granularity and they represent other areas of current client
interest. In that sense, query processing resembles as a zooming-in action that
brings more details about queried area into the cache. Memory should be re-
claimed to accommodate new coming objects and other finer CRs if the cache is
full. Suppose an object g is chosen to be removed from the cache (see Fig. 3(b)).
First, rg, a CR for object g is introduced in the g’s position (so that the global
view is preserved) and then g is physically deleted. Further, if more free space is
demanded, rg, rh and ri, three closely located CRs, are coalesced into a single
1 This function is logically supported by the database.
2 If no ambiguity caused, we would use CR and MBB interchangeably.
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CR that is cached in a coarser granularity. This cache replacement is analogous
to a zooming-out action that removes the details of an area that is currently not
interested by the client.

In order for query processing and cache replacement to maintain a global view
of the dataset, CS caching reinforces the following integrity requirements:

Requirement 1 Full dataset coverage. At any time, the union of cached
objects, O, and missing objects captured by the set of CRs, R, must equal O,
formally (∪r∈Rm(r)) ∪ O = O. �
This integrity requirement assures that every missing object (/∈ O) is captured
by one of the CRs, r ∈ R. Based on R, a client can determine whether there are
potentially missing objects for a query.

Requirement 2 No CR-object overlap. A CR should not cover any cached
object, formally ∀r ∈ R,m(r) ∩ O = ∅. �

Requirement 3 No full CR-CR containment. No CR is contained in an-
other CR, formally, ∀ri ∈ R, rj ∈ R, i �= j,m(ri) � m(rj). �
The second requirement aims at reducing false misses. The third requirement
eliminates redundant CRs. A CR is redundant if it is already covered by another
CR and thus is safe to remove.

2.3 Related Work

As discussed earlier, semantic caching [2, 3, 4] is query-dependent and provides
limited knowledge about the cached subspace. By fixed space partitioning, chunk-
based caching [7] partitions the semantic space into chunks, independent of query
and object distribution. Every window query is mapped into a set of chunks. Query
fetches chunks from the server if they are not in the cache, regardless of whether
the chunks have objects or not. Without keeping an entire view of semantic space,
chunk-based caching cannot support various kind of queries.

Similar to CS caching, proactive caching [8] supports a number of different
types of spatial queries. It is important to note that these two caching schemes
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are conceptually and functionally different. Proactive caching tightly adheres to
R-tree, yet CS caching does not. Proactive caching maintains traversed index
paths (a portion of index) and a set of objects below the cached index paths in
the cache. The cached partial index enables a client to execute query processing
algorithms as the server does. If a query needs to find any missing index nodes
or objects, the query and all intermediate execution states are shipped to the
server for remaining execution. The cached index path in proactive caching is
the only means to access underlying objects so implicitly the index nodes are
granted higher priority than objects to cache. This has an impact on cached
hit rate because cached index nodes alone (without beneath objects) cannot
make query locally answered. Besides, excessive bandwidth is taken to transmit
index structures which in fact can be reconstructed using objects and CRs as
shown in CS caching. Without the necessity to conform to the R-tree at the
server, CRs can be flexibly coalesced and partitioned for optimizing the cache
performance.

3 Location-Based Query Processing

With the global view maintained in the cache, a location-based query of any
kind can be answered by reusing cached objects and exploring some involved
CRs for missing objects from the server. Generally speaking, query processing
with CS caching is a three-step procedure:

1. Cache probing: Qualified objects in the cache are collected as a tentative
query result and CRs that could contribute to the query result are identified.
The cache probing varies with different types of queries and will be discussed
shortly in Section 3.1.

2. Remainder query processing: If no CR is identified for the query meaning the
query is fully covered by the cache, the query processing terminates here.
Otherwise, the missing objects in the identified CRs need to be requested
from (and possibly checked by) the server. This will be discussed in Sec-
tion 3.2.

3. Cache maintenance: After the remainder query is answered, the newly re-
turned data objects and CRs are admitted to the cache. This invokes the
cache maintenance operations such as cache replacement and CR coalescence
that will be discussed in Section 5.

3.1 Cache Probing

In the following, we informally describe the cache probing for some typical
location-based queries such as window, range, and k nearest neighbors (kNN)
queries3. They are incompatible in nature but can be processed in a similar fash-
ion using CS caching. The outputs of cache probing are cached objects in the
answer set and CRs to be explored in the server via remainder query processing.
3 A range query is specified by a query point and a radius.
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Fig. 4. Examples of lookup mechanism for various types of queries

Cache probing for a window (or range) query is pretty straightforward. The
client scans the cached objects and CRs to return those overlapped by the query
window (or range). Figure 4(a) shows an example of a window query, QW . In this
example, cached object, g, and CR, rh, are identified. Without an explicit search
range, cache probe for an NN query expands a search range from a query point
outwards until one object is touched. Then, all CRs within the search range are
identified for further exploring. The extension to handle kNN query is straightfor-
ward by extending the search range to first k covered objects. Fig. 4(b), the client
finds objects f and e, the two closest objects to q2NN of the query Q2NN . The CR
rN1 overlapped with the vicinity circle across e is identified for further exploring.

3.2 Remainder Query Processing

A remainder query is submitted to the server to retrieve missing objects if some
CRs are identified for a query. Besides, refined CRs (i.e., MBBs of those entries
inside submitted CRs but not explored by a query) may be returned. One of
the primary issues in processing remainder queries is “how to express the query”
which has a major impact on the processing cost (in terms of response time and
bandwidth overhead) and the quality of cached information. We examine two
possible approaches: 1) CRs only, and 2) Query+CRs.

The first approach is to submit only the identified CRs treated as window
queries in the server. As shown in Fig. 5(a), a query, Q, overlaps with three
objects, e, f , g and three CRs, rN1, rh, ri. The remainder query in this approach
is expressed as (rN1, rh, ri). Because rN1 covers a large area outside Q’s range,
some extra objects may be returned to the client. Even worse, they would not
be used at all eventually. This approach consumes minimal uplink bandwidth.

The second approach is to submit the original query along with the identified
CRs. The CRs are used as filters for processing of Q in the server. When the
R-tree index is traversed, only the branches overlapped with the CRs are further
explored. The MBBs unexplored by Q and intersecting with the CRs are also
returned (as refined CRs in the original CRs) along with qualified data objects
to the client. As shown in Fig. 5(a), a remainder query in this approach is



1028 K.C.K. Lee et al.

rN1

rd

f g

1

2 3 41

2

6 75

3

4

5

6

7

8

9

(a) Query Q covering e, f, g, rh, rh, rN1

x

y

e

0

Q

rh

ri

8

rN1

P1

P2 P3

Q

(b) CR Partitioning of rN1

rN1

rd

f g

1

2 3 41

2

6 75

3

4

5

6

7

8

9

(c) Request CR Coalescence of rh and ri

x

y

e

0

Q

rh

ri

8

r: coalescence of rh and ri

Fig. 5. Remainder query

expressed as Q+(rN1, rh, ri). With this approach, the downlink cost is expected
to be reduced because a precise set of required objects and a smaller number of
CRs are downloaded.

Delivering a large number of fine-granularity CRs back to the clients may
incur an excessive downlink overhead (and the additional energy consumption
of clients). To address this issue, a client can partition CRs if they are only
partially covered by a query during remainder query preparation. An example is
depicted in Fig. 5(a), CR rN1 is partially covered by a query Q and thus can be
partitioned into three parts, namely, P1, P2 and P3 (as shown in Fig. 5(b)). The
portion, P3, enclosing the overlap between rN1 and Q, is taken to formulate a
remainder query. Thus, rN1 is removed while P1 and P2 are retained as CRs in
the cache. This partitioning may result in some savings of download overhead
because the number of refined CRs in P3 is expected to be smaller than those
in rN1. However, a low precision CR will be resulted like P1 and P3 having
not exact bounding box of enclosed objects. It is also probable that the par-
titioned CRs have no missing object inside. Examining them definitely causes
false misses.

On the other hand, a large number of CRs could be covered by a query.
Submitting all those individual CRs to the server incurs a high upload cost.
Thus, CRs can be merged into a few coarse CRs. This merging of CRs is called
CR coalescence. As shown in Fig. 5(c), rh and ri are coalesced to a coarse CR
r. rN1 and r can be submitted instead, i.e., the remainder query is Q + (r, rN1).
However, the newly formed CR may overlap with some answer objects already
found in the cache. For example, further coalescence of r and rN1 may form a
larger CR, r′, that overlaps with cached objects e, f , and g. Using r′ as request
CR will redundantly fetch these already cached objects.

To tackle this problem, we supplement IDs of overlapped cached objects in
the remainder query as a result filter that removes the objects already cached
from the downlink. Then, the new remainder query becomes Q+(r′)+({e, f, g})
and is sent to the server. It raises a question if an expression Q+(r′)+({e, f, g})
saves more uplink bandwidth than Q + (r, rN1) or other expressions else. This
is an optimization issue in CR coalescence, which will be discussed in Section 4.
Finally, for NN or kNN query processing, instead of exploring all potential CRs
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covered by the conservative vicinity circle as described above, we can take an
incremental approach to explore the identified CRs one by one until the answer
set is obtained.

4 CR Coalescence

CRs are essential information to transmit between the client and the server.
An efficient CR coalescence algorithm is needed to condense those overly fine
CRs to save bandwidth. In this section, we first devise a generic CR coalescence
algorithm, based on which two specializations for coalescing CRs in request
messages and in reply messages are derived.

4.1 Generic CR Coalescence Algorithm

Given a set of CRs, R, a coalescence algorithm selects n subsets of R, that is
R′

1, · · · , R′
n (R′

i ⊆ R), to coalesce. Each R′
i is replaced by a newly formed CR

called coalescing CR, denoted by rR′
i
, that is an MBB of all original CRs in R′

i.
Hence, the coalescence operation on R can be described as (R−∪iR

′
i)∪(∪i{rR′

i
}).

The key issue here is to determine the optimal subsets of CRs to be coalesced.
In order to tackle this selection problem, we first formulate a cost model. Every
CR, r, bears a cost, c(r), which measures the performance loss due to missing
objects. The definition of cost function varies with the operation scenario (to be
detailed later in this section). In general, the larger is the region, the higher is the
cost, and the more is the potential performance loss. Therefore, after coalescing
R′

i’s (i = 1, 2, · · · , n), the cost increase is:

total cost increase =
∑

1≤i≤n

(
c(rR′

i
) −

∑
r∈R′

i

c(r)
)
, (1)

but the number of CRs is reduced by:

total CR saving =
( ∑

1≤i≤n

|R′
i|
)
− n (2)

Given an expected CR saving, the optimal selection algorithm should mini-
mize the cost increase. Here, we propose a greedy algorithm to choose CRs to
coalesce until an application-dependent termination condition is met. The algo-
rithm is outlined in Fig. 6. At each step, it selects the best pair of CRs to merge.
The “best” means the least cost increase after coalescing the pair of CRs. A
priority queue is used to keep track of the possible CR pairs. Initially, we deter-
mine the best counterpart for each CR in R and coalesce the best pair of CRs.
After coalescence, the original CRs ri and rj are replaced with the coalescing
CR, r{ri,rj}; the CR saving and cost increase are 1 and c(r{ri,rj})− c(ri)− c(rj),
respectively. Based on r{ri,rj}, a new candidate pair is inserted to the queue.
The algorithm continues until the termination condition is satisfied. The termi-
nation condition can be specified by limiting the number of CRs coalesced so
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Algorithm. GenericCRCoalescence(R: a set of CRs)
Input/output: R: a set of CRs;
Local: Q: priority queue;
Begin
1 foreach r ∈ R do
2 find r’s best counterpart CR, r′ from R − {r};
3 push (r, r′, anticipated cost increase) into Q;
4 while (termination condition is not satisfied) do
5 pop (ri, rj , anticipated cost increase) from Q;
6 r ← coalesce(ra, rb);
7 replace ri and rj with r in R;
8 find r’s best partner CR, r′ from R − {r};
9 push (r, r′, anticipated cost increase) into Q;
10 output R;
End.

Fig. 6. Generic CR coalescence algorithm

that the remaining number of CRs can be controlled or by setting a threshold
on cost increase metric that guarantees the CR fineness. In the following two
subsections, we shall derive specific coalescence techniques for coalescing CRs in
requests (request CRs) and CRs in replies (reply CRs).

4.2 Client Request CR Coalescence

In Section 3.2, we briefly discussed the issue of request CR coalescence and raised
the question about what CRs should be coalesced. Here, we address this problem
with our generic coalescence algorithm described above. Let r be a CR. We set
the cost of r, c(r), as the number of objects covered by r. As the size of remainder
query is our main concern in coalescing request CRs, we aim at maximizing the
overhead reduction specified below:

overhead reduction = total CR saving × CR size −
total cost increase × object ID size.

(3)

This expression considers the volume saved by CR coalescence (CR saving) and
the overhead of including additional object IDs (cost increase). Reconsider the
situation in Fig. 5(c), rh and ri can be coalesced to form a coalescing CR, r,
with 1 CR saved and no object included, i.e., c(r) = 0. Further, coalescing r and
rN1 into r′ has 1 more CR saved but covers three objects, i.e., c(r′) = 3. As a
CR and an object ID respectively take 16 bytes and 4 bytes, the total overhead
reduction for taking r′ and {e, f, g} is 32 − 12 = 20 and that for taking r and
rN1 is 16. Thus, both r′ and {e, f, g} are used to express the remainder query.

4.3 Server Reply CR Coalescence

Very often, portions of CRs, submitted as remainder queries, might not be fully
explored for answering queries in the Query + CRs approach. Thus, refined CRs
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are returned to the client along with the answer objects. To save the downlink
cost, the server reply CRs can be coalesced. The optimization should consider
reducing the number of CRs while retaining the quality of CRs such that a
low false miss rate can be achieved. We associate CR quality with some quan-
titative metrics by defining cost function c(r) for a CR r based on different
heuristics:

– Area. Generally, the larger the area of a CR, the more likely the CR provides
a higher false miss rate since it may include more empty regions in which no
objects exist. Therefore, c(r) is set to the area of r, area(r). In this case, we
expect a smaller average size of coalescing CRs.

– Distance. With spatial access locality, the closer is the CR located to the
user location, the more likely is the CR to be accessed in the near future. It
is thus important to have a fine granularity for those nearby CRs. Hence, we
model c(r) as the inverse of its distance to the user, i.e., 1/dist(r). In this
case, we expect to coalesce farther CRs.

– Area By Distance. Area and distance are two orthogonal factors and they
can be used in setting the cost c(r), i.e., area(r)/dist(r).

Server reply CR coalescence can save download cost but it also haunts the CR
quality. To balance the transmission overhead saving and the quality of coalesced
CRs, we limit the CR saving. In our implementation, we set a threshold that is
the percentage of the total number of CRs before coalescence. When the number
of remained CRs falls below the threshold, the coalescence terminates. Note that
server reply CR coalescence has an additional constraint in coalescing CRs. If a
coalesced CR contains some returning objects, the corresponding coalescence is
prohibited because the resultant CR is highly possible to give a false miss if the
client issues the same queries later (see Requirement 2 in Section 2.2).

5 Cache Management

As CS caching keeps both objects and CRs to preserve the global view of a
dataset, its cache management is totally different from conventional ones that
cache homogeneous caching units such as data objects. In this section, we discuss
the CS cache organization and two cache space allocation strategies, followed by
description of the cache CR coalescence and the cache replacement algorithm.

5.1 Cache Organization

The cache memory is structured as a table. Each table entry is of equal size and
large enough to accommodate either one object or a collection of CRs. A table
entry assigned to maintain CRs (called CR entry) keeps at most n CRs and one
coalescing CR, which is an MBB enclosing all the CRs within this entry with n
the capacity of a CR entry. Each stored CR has a timestamp about the latest
access time. The coalescing CR facilitates fast CR lookup and CR coalescence
in the cache, serving cache replacement.
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The admission of an object is straightforward, i.e., finding a vacant entry to
accommodate the object. The admission of CRs is handled in a way similar to R-
tree insertion. A CR entry is chosen to store the admitted CRs if the expansion of
its coalescing CR after insertion is the smallest among all candidate CR entries.
If a CR entry overflows after insertion, all CRs (except the coalescing CR) are
migrated to other CR entries with free space. If the space is insufficient, the
collection of CRs in a CR entry are split into two groups and each group is
placed into two CR entries. Deletion removes a CR from an entry. To maintain
high occupancy, an occupancy threshold is set4. An underflowed entry (i.e., its
occupancy below the threshold) is removed and all its CRs (except the coalescing
CR) are re-inserted to other CR entries.

We propose two possible space allocation strategies, namely static allocation
and dynamic allocation. For static allocation, cache memory is split into two
portions with each dedicated to caching objects or CRs. Dynamic allocation has
no fixed portions and treats objects and CRs in the same way to exploit higher
flexibility in space utilization.

5.2 Cache CR Coalescence

Cache CR coalescence replaces a set of fine CRs with a bounding CR in a coarser
granularity to release cache space. The efficiency of CR coalescence is crucial to
the performance when cache replacement occurs frequently. Therefore, instead
of using the generic algorithm described in Section 4, we adopt a pre-clustering
technique that groups CRs in the same CR entry into their corresponding coa-
lescing CR.

The pre-clustering of CRs is performed when CRs are admitted to the cache
(as described in Section 5.1). We use minimal expansion of coalescing CRs as
the criteria to determine which CR entry a new CR can be inserted into. Since
the coalescing CR in a CR entry readily represents the result of coalescing all
CRs in the entry, we can quickly perform CR coalescence to release a CR entry
by looking up the coalescing CRs only.

5.3 Cache Replacement

Cache replacement in CS caching is responsible not only for fitting objects and
CRs in the cache but also for balancing the granularity of different portions of
the global view (in terms of objects and CRs) maintained in the cache. An object
removal is performed as converting the object to a CR. A CR removal implies
coalescence of a set of CRs. However, to make cache replacement efficient, usually
all CRs in a victim CR entry will be removed by inserting its coalescing CR
into another CR entry. In the following, we discuss the replacement algorithms
corresponding to both static allocation and dynamic allocation.

Static allocation. Replacement starts in the object portion. If the object por-
tion is full, victim objects are removed by transforming them into CRs, which

4 Our simulation uses n/2 where n is the capacity of a CR entry.
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are put to the CR portion. If a CR portion is full, victim CR entries are chosen to
remove and their coalescing CRs are re-inserted to the CR portion. The victim
selection (i.e. cache replacement policy) is based on LRU and FAR [9] heuristics.
For FAR heuristic, distance is measured between the current client position and
the anticipated CR (either resulted from object deletion or CR coalescence).

Dynamic allocation. Both object replacement and CR coalescence can make
room for new objects and CRs. Cache replacement policy for both operations is
crucial for ensuring the overall cache performance. In order to prioritize object
replacement and CR coalescence which are totally different in nature, we use a
replacement score based on the expected reloading cost of objects or CRs. Let
sizeo and sizer denote the object size and the CR size respectively, and ρ denote
the access probability of an entity (either an object or a CR). In this work, we
consider access probability based on LRU and FAR. The communication cost
of reloading an object from the server is ρ × sizeo and that of reloading CRs is
ρ × m × sizer, where m is the number of CRs involved in the CR coalescence.
Taking the reloading cost as a replacement score, we describe our cache replace-
ment operation as follows. We maintain a priority queue of existing table entries.
The queue always returns one entry with the least reloading cost. If a table en-
try is retrieved from the queue, it is freed to accommodate the new object and
the newly formed CR (resulted from conversion of object or CR coalescence)
is inserted back to an appropriate CR entry. Similarly, CRs downloaded from
the server are inserted to CR entries. It may be the case that a CR entry over-
flows and additional entry space is required. Then, an additional entry space
is reclaimed as that for a new incoming object. It might be possible that the
newly formed CR entry whose reloading cost is less than those in the queue.
In this case, CR coalescence is immediately performed and the coalescing CR is
re-inserted to the cache.

6 Performance Evaluation

We conduct a performance evaluation on our proposal based on a simulation
developed in C++. In the simulation, there are only one client and one server
communicating via a point-to-point wireless channel with bandwidth of 384Kbps,
the typical capacity of 3G network. The server maintains a synthetic dataset with
100,000 point objects uniformly distributed in a unit square of [1, 1] and indexed
with a R*tree [10] which has a node page size of 1Kbytes and its maximum
fanout is 50. The size of each object is ranged from 64, 128, 256 to 512 bytes.
The client has 128 Kbyte cache memory. In the experiments, client movement
patterns are generated based on two well known mobility models, Manhattan
Grid model and Random Waypoint, using BonnMotion [11]. For Manhattan
Grid model, we set the mean speed to 1 × 10−3/sec and standard deviation to
0.2×10−3/sec. For Random Waypoint model, we set the speed ranging between
0.5×10−3/sec to 1.5×10−3/sec. The maximum think times (i.e., time duration
that the client remains stationary during moving path change) for both models
are set to 60 seconds. Meanwhile, we generate a query workload with query
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inter-arrival time following the exponential distribution with mean varying from
10 to 30 at step of 10 (seconds). We assume that the client issues queries along
her journey. We examine three types of queries: 1) range queries (with radius of
5× 10−3 to 10× 10−3), 2) window queries (with window size of (10× 10−3)2 to
(20×10−3)2), and 3) kNN (with k ∈ [10, 20]). Each type of queries has the same
weight in our experiments. The simulation runs for 10,000 seconds.

The performance metrics used in our evaluation include response time, band-
width consumption, cache hit ratio and answerability while the answerability mea-
sures how many queries can be completely answered by the client cache without
the server help. In addition to our proposed CS caching scheme, we implement
Chunk-based caching [7], Semantic caching [2, 12], and Proactive caching [8] for
comparison. Note that the chunk-based caching only supports window queries.
Semantic caching supports window and kNN queries by caching two types of se-
mantic regions. However, each type of semantic regions can only support queries
of the same type. Proactive caching keeping a portion of R-tree index can support
all queries we considered. When a client receives a query that is not supported,
it requests the server to process it and results of these queries are not cached.

6.1 Evaluation 1. Performance of Caching Schemes

We first examine the performance of different caching schemes, namely, Semantic,
Chunk-based, Proactive and CSC in terms of response time, bandwidth (both upload
and download) and cache hit ratio. For CSC, remainder queries are expressed as
Query + CRs, with CR partitioning and both request and reply CR coalescence.
The Manhattan Gird model is adopted. The result is depicted in Fig. 7 (where
the cache size and object size are fixed at 128KByte and 256 bytes, respectively).

From the plots, we can see that CSC outperforms the rest in all metrics for its
effectiveness in supporting different queries, the efficient use of cache memory,
and the low overhead in data transmission. Semantic is the weakest among all
because it maintains two types of semantic regions that may result in an overlap
of cached objects, in turn degrading the effective use of cache (as indicated by
its low cache hit ratio). Chunk-based performs better since chunks contain extra
objects that can be used to answer later window queries, thus outweighing some
loss in processing kNN and range queries. Proactive performs worse than Chunk
because the cached partial server index reduces the availability of cache memory
for data objects. This evaluation validates CSC for location-based services.
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In addition, we study the impact of cache size on caching schemes. In Fig. 8
(where the object size is fixed at 256 bytes and the mean query inter-arrival
time is 20 seconds), the response time of Semantic and Chunk-based is shown to be
more or less invariant since they use cache space to maintain the query results
they support. In effect, they may not fully utilize the space. For CSC, response
time is a bit higher when cache size is 64K. For Proactive, response time drops
when more space is available to store the index nodes.

In Fig. 9 (where the cache size is 128K and mean query inter-arrival time is 20
seconds), all caching schemes show that the larger the object size, the longer the
expected response time. As the object size is increased, the cache hit is reduced
accordingly because less objects are cached. The download cost, a major time
consuming component, also increases when larger objects are experimented. For
the same reasons discussed in above two settings, CSC is shown superior to others.

6.2 Evaluation 2. Performance of Remainder Query Expressions

Here we evaluate three different forms of remainder queries, i.e., original query
plus CRs (denoted as Q+CRs), Q+CRs with partitioning (denoted as Q+CRs (p)),
and Q+CRs with both partitioning and client request CR coalescence (denoted
as Q+CRs (p+c)). These three forms of remainder queries have the same cache hit
(so the plot is not shown to save space). Also, we have evaluated the remainder
query with CRs only but its performance is much worse. The plot is not shown
for space saving. The difference in their performance is due to the compression
and improved precision of CRs. Using partitioning (i.e., Q+CRs (p) and Q+CRs
(p+c)), the client avoids downloading extra CRs (see Fig. 10(c)). The response
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Fig. 10. Performance of using all remainder query expressions

time is also shortened in Fig. 10(a). However, the answerability is much lower
than the basic Q+CRs because the CRs partitioned by the client are less precise
(see Fig. 10(d)). Both of Q+CRs (p) and Q+CRs (p+c) can only answer 10% of
queries without the server help while the Q+CRs needs to do that for 33% of
time. Finally, the CR coalescence Q+CRs (p+c) is shown to be very effective
in reducing the uplink bandwidth (see Fig. 10(b)). It saves almost 50% uplink
bandwidth compared with Q+CRs (p). This saving is important because mobile
clients consume more energy in sending packets than receiving packets.

6.3 Evaluation 3. Performance of Server Reply CR Coalescence

We study three heuristics, Area, Distance, and Area By Distance, used in coalescing
CRs in server replies (see Fig. 11). We assume that remainder queries are sent in
form of Q+CRs. We vary the percentage of CRs coalesced (where 0% means no
coalescence) to observe its impact on response time and total bandwidth. Area is
generally not a good heuristic because CRs close to the query are often of smaller
area. Forming coarse CRs with those close CRs will degrade the cache perfor-
mance since those close CRs are likely to be accessed. However, Area By Distance
can provide very good performance (even better than Distance). Balancing on
client location and CR size renders an appropriate granularity for returned CRs.

6.4 Evaluation 4. Performance of Cache Management

Finally, we study the two space allocation strategies, i.e., static allocation (Static)
and dynamic allocation (Dynamic). For Static, we allocate x percent of cache
storage for CRs. As shown in Fig. 12(a), Dynamic generally performs the best in
term of response time. For Static, we can see that increasing cache space for CRs
from 10% to 20% improves the response time but not when it is increased 25% as
reflected by their corresponding cache hit ratios (shown in Fig. 12(a)). The more
cache space allocated to CRs, the less cache space is available for objects, so the
cache hit ratio drops when the CR portion of cache expands. Though Static 10%
and Static 20% by allocating less space to CRs have higher cache hit ratios than
Dynamic, they hold overly coarse CRs and result in a high false miss rate, which
in turn increases the response time. For cache management, we also tested cache
replacement using FAR and LRU policies upon different moving model. FAR
generally outperforms LRU. The results are not shown due to limited space.
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Fig. 12. Performance of cache allocation strategies

7 Future Works

As for the next steps of this research, we plan to study the issues of cache coher-
ence caused by updates. We also plan to perform a more extensive performance
evaluation to bring out more insights. Finally, we plan to prototype the system
and to perform the feasibility test in a realistic mobile computing environment.
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Abstract. In this work we address the problem of managing the reactive
behavior in distributed environments in which data continuously changes
over time, where the users may need to explicitly express how the trig-
gers should be (self) modified. To enable this we propose the (ECA)2 –
Evolving and Context-Aware Event-Condition-Action paradigm for spec-
ifying triggers that capture the desired reactive behavior in databases
which manage distributed and continuously changing data. Since both
the monitored event and the condition part of the trigger may be contin-
uous in nature, we introduce the concept of metatriggers to coordinate
the detection of events and the evaluation of conditions.

1 Introduction and Motivation

Many application domains deal with data that changes very frequently and is
generated by distributed and heterogeneous sources. These data-properties have
spurred extensive research efforts in several fields. In Event-Notification Sys-
tems (ENS), and Publish-Subscribe (P-S) systems [3, 11], typically an instance
user’s profile is matched against the current status of continuously evolving data
sources, and appropriate notifications are sent to the user. The main focus of
Continuous Queries (CQ) processing [6, 12] is on efficient management of user
queries over time, without forcing the users to re-issue their queries. The data
values may arrive as streams which the system has to process on the fly [5, 4, 14]
and, furthermore, the data may be multidimensional in nature, as is the case in
Location-Based Services (LBS) [16] and Moving Objects Databases (MOD) [10].
In some applications, e.g sensor networks, the data management must consider
other constraints such as the limited battery-lifetime of the nodes [22].

One may observe that in the majority of the applications, there is a need
for some form of a reactive behavior. The database community has provided
many results on the topic of Active Databases (ADb), which manage triggers
operating under the Event-Condition-Action (ECA) paradigm [8, 15, 20]. In the
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recent years there have been works incorporating ECA-like triggers in novel,
highly-heterogeneous, distributed and dynamic data-driven application domains,
e.g., the Web [9], peer-to-peer (P2P) systems and sensor networks [22]. Despite
the co-existence of the large body of works in ENS, CQ, Data Streams, MOD
[3, 5, 4, 6, 12, 11, 16, 10], all of which have the common need of dealing with dy-
namically changing information, and the rich history of ADb results [8, 15, 20]
– there is a lack of tools that would enable using the ”best of all the worlds”.
Namely, there is no paradigm that allows the users to seamlessly tie: (1) Detec-
tion of (composite) events obtained by monitoring continuously changing data
with (2) Evaluation of conditions that are continuous queries and with (3) Dy-
namical adjustment of the triggers themselves – all for the purpose of executing
a desired policy in a constantly evolving domain of interest.

In order to illustrate our motivation better, we present two scenarios and we
analyze the requirements posed by each of them.

I. Rq1: “When a moving object is continuously moving towards the region R
for more than 5 minutes, if there are less than 10 fighter jets in the base B1,
then send alert_b to the armored unit A1. Also send alert_a to the infantry
regiment I1, when that object is closer than 3 miles to R, if all the marine corps
units are further then 5 miles from R”.
Rq1 needs to detect a composite event (moving continuously towards...), using
the individual (location,time) updates as simple events. These can be obtained,
e.g., by tracking sensors [22], and in [18] we provided efficient algorithms for
detecting the continuously moving towards predicate. RQ1 also needs to initiate
a continuous query at a remote system – the one monitoring the status of the
air-base B1. However, Rq1 has some other subtleties:

• It needs the status of the air-base B1 for as long as the original enabling event
moving towards is still valid. After detecting its enabling event, Rq1 requires
that the system “spans” its attention to monitoring one more event (closer
than 3 miles to R) and, upon its detection, request an evaluation of another
remote condition-query, which happens to be instantaneous. Observe that there
is a binding between the new event to the original event – the new one needs
to focus on the distance pertaining to the particular object that satisfied the
original enabling event.
II. Rq2: “When the IBM stock in New York stock exchange has three consecutive
increases of its value within 30 minutes with a total increase of at least 5%, if
there is a stock exchange at which both IBM and Intel stocks within 15 min.
from the originating event have achieved a one hour interval without dropping,
then execute portfolio P1 for purchasing IBM shares at that stock exchange.
Otherwise, if there is a non-decrease of the Google stock for 45 minutes, while the
IBM increase is still valid on any other stock exchange, execute portfolio P2 for
purchasing IBM shares at that other stock exchange. Subsequently, only execute
portfolio B for purchasing Motorola shares, when its stock has two consecutive
increases by a total of at least 8% in London, if its average daily increase on any
other exchange market is non-negative”.
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• Unlike Rq1, now the validity of the composite event related to the IBM values,
which is detected based on the primitive events that are updates of the value of
the its stock, is limited by an explicit time-value – 15 min. The system requests
an evaluation at another site of the if condition, however, this condition is pecu-
liar in that it combines a continuous query with the one-hour past history of the
system [5] of the IBM and Intel stocks, but allows for a portion of that history
to be satisfied within the continuous query itself, for as long as it is within 15
minutes after the detection of the IBM-increase event.
• In Rq2 the user has an “alternative plan” of reacting, if the first condition fails.
This alternative depends on the outcome of another continuous query (Google
stock), which is tying the duration of interest for evaluating the continuous query
with the “native” enabling event. Rq1 requires the system to span its attention,
but Rq2 in its last part requires the system to completely shift the focus of its
reactive behavior. After the failure of the respective Intel and Google-related
criteria, the user is no longer interested in reacting to the events related to the
increases of the IBM stock and wants to focus on the Portfolio B for Motorola
shares.

The observations related to Rq1 and Rq2 have motivated our research to-
wards the new paradigm for reactive behavior. Our main contributions are:

• We introduce a paradigm for specifying reactive behavior, called (ECA)2

(Evolving and Context-Aware Event-Condition-Action), that enables the users
to specify triggers that pro-actively evolve so that they can ensure a desired
policy.
• We introduce the concept of a metatrigger for the purpose of minimizing the
communication overhead and ensuring behavioral correctness in distributed set-
ting. We observe that there is a duality in the nature of events and conditions
that can be exploited in the functioning of the the metatriggers.

In the rest of this paper, Section 2 introduces the (ECA)2 paradigm and its
syntactic elements. The concept of the metatriggers is presented in Section 3,
and Section 4 concludes the paper.

2 Evolution of the Triggers

In this section, we explain the main aspects of the specification of the triggers
under the (ECA)2 paradigm. The syntactic components are presented in Figure
1. Firstly, observe that in the events, conditions and actions we allow variables to
be used. Thus, for example, Ep(EVp) denotes that the event of the parent-trigger
Ep has the (vector of) variable(s) EVp in its specification; similarly, Cp1(V Cp1)
denotes the query and the variables used in the first condition of the parent
trigger. We assume that the usual rules for safety [19] of the variables apply, in
the sense that each variable that appears in a negative literal, must also appear in
a positive literal, or have a ground value at the time of the invocation/evaluation
of the corresponding (negated) predicate. Secondly, observe that we allow two
types of children-triggers to be specified within the scope of a given (parent)
trigger. As is commonly done in the programming languages, we use rectangles
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ON Ep(VEp) <priority>
IF Cp1(VCp1) within_time(Tc1)/within_event(Ec1(VEc1))

THEN Ap1(VAp1)

ELSE-IF  Cp2(VCp2) within_time(Tc2)/within_event(Ec2(VEc2))

THEN Ap2(VAp2)
.....

validity(Tpv /Epv(VEpv))

Consumed-by-Parent=<yes/no>,

   ON Ec1(VEc1) <priority> validity(Tc1v/Ec1v(VEc1v))
   IF Cc11(VCc11)     

ELSE-IF ...
.....

Span (child’)

ON ...

Subsequently (child’’)

Consume-Parent=<yes/no>

ON Es1(VEs1) <priority> validity(Ts1v/Es1v(VEs1v))
IF  Cs11(VCs11) 

within_time(Tc11)/within_event(Ec11(VEc11)) 

further nesting of triggers

THEN Ac11(VAc11)

further nesting of triggers

within_time(Ts11)/within_event(Es11(VEs11)) 

THEN As11(VAs11)

ELSE-IF ...
.....

further nesting of triggers

further nesting of triggers

Consume-Parent=<yes/no>
ON ...

(ECA)
2

Trigger

Consume-Parent=<yes/no>

Consume-Parent=<yes/no>Consumed-by-Parent=<yes/no>,

Fig. 1. Evolving Triggers Specification

to visualize the nesting of the relative scope of children-triggers within the scope
of the parent-trigger. As indicated in Figure 1, the user can specify an arbitrary
level of nesting of descendants within the children-triggers.

Before we give detailed explanation of the syntax of the (ECA)2 triggers, we
provide an example for the Rq2, illustrated in Figure 2. Using variables, one can
express the desired relationships among the locations of the stock exchanges for
evaluating the criteria of interest. Thus, when evaluating the condition for the
alternative policy regarding the Google stock, the variable SE2 denotes a stock
exchange which is different from New York. By using SE2 as a variable in the
action that executes the Portfolio P2, we ensure that the purchase is executed at
“that other” stock exchange. The important observation here is that whenever
the value of the IBM stock in New York stock exchange decreases it terminates
the validity of the enabling event for the (parent) trigger. Past that point, the
child trigger which implements the reactive policy for Motorola stock exists on
its own, monitoring its respective event. Now we proceed with explaining the
elements in the syntax of the (ECA)2 triggers:

1. The option validity in the trigger’s specification allows the user to state how
long should the trigger be considered “alive”. It reflects the user’s policy, and
it can be either an explicit time-value, or an event which, when detected causes
the particular trigger’s instance to be disabled. As a special case, one is able
to specify for as long as the original enabling event is valid, by utilizing proper
expressions of the available event algebra. For example, in the case of Rq2 one
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IF  StockChange(SE1,’IBM’,X,60,T1) AND X>=0

   AND T1>=T within_time(15)

THEN Portfolio_P1(SE1,’IBM’)

ELSE-IF 

   AND StockChange(SE1,’Intel’,Y,60,T1) AND Y >=0

StockChange(SE2,’Google’,Z,45,T2) AND Z>=0

ON  E_StockIncrease(’NY’,’IBM’,3,5%,30,T)

Subsequently:

Consume-Parent = yes

ON  E_StockIncrease(’London’,’Motorola’,2,8%,T2)
IF  AVG-variation(SE3,’Motorola’,Z,T2) AND 

     Z>=0 AND SE3 == ’London’

THEN Portfolio_B(’London’,’Motorola’)

pa
re

nt

ch
ild

THEN Portfolio_P2(SE2,’IBM’)

within_event(E_StockIncrease(’NY’,’IBM’,...))
AND T2>=T AND S2 == ’NY’   

Increase of IBM stock

decrease of IBM 
stock in New York

detected in New York

No Google-related 

events detected

Trigger for Rq2::

Fig. 2. Example Trigger for Rq2

may specify a composite event which is (a sequence of) IBM-increase events that
enabled the trigger, followed by an IBM-decrease related event.
2. The Else-If parts at each level of nesting of the triggers correspond to alter-
native policies, based on the value of the respective conditions, once an instance
of a particular trigger is “awaken”. Clearly, these can be written as conditions
of separate triggers with the same enabling event. We use the way depicted in
Figure 1 for compactness, assuming that the ordering of the conditions actually
corresponds to the users’ preference when it comes to their evaluation. Some
prototype systems (e.g., Starburst [21]) enable the users to explicitly state their
ranking for (partial) ordering among the triggers (e.g., PRECEDES), but some
commercial systems conforming to the ANSI standard (e.g., Oracle 9i [2]) do
not allow this – triggers are ranked based on their time-stamps and that ranking
is not always ensured at run-time. As indicated in Figure 1, we do consider the
option of an explicit numeric priority specification for the triggers, which can be
straightforwardly extended to the conditions.
3. Each condition has two options for indicating for how long its corresponding
continuous query should be evaluated. One option is to explicitly list a time-
interval value, as commonly done in CQ systems (e.g., [6]). An example for this
is the statement within time(15) in the trigger for Rq2. The other option is to
specify an event which will confirm the termination of the user’s interest in that
condition. In the case of Rq1, the user is interested in getting updates about
the state of the air-base for as long as the composite event E moving towards is
satisfied, based on the (location,time) update-events [18].
4. There are two types of child-triggers:
4.1. The first type – child’, enables a reaction to subsequent occurrences of other
events that could potentially request monitoring of other conditions. This is the
case in Rq1, where the user is also interested in detecting the proximity of
that particular object to the region R. The value Consumed-by-Parent = yes
indicates that the child-trigger should terminate when the parent-trigger ter-
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minates. Conversely, Consumed-by-Parent = no, specifies that the child-trigger
should continue its execution even though the parent has ceased to exist. As an
example, in Rq1 the value Consumed-by-Parent = no specifies that, although
the particular moving object may no longer be moving continuously towards the
region R (e.g., it is following a zig-zag route), which disables the original (parent)
trigger, the user is still interested in monitoring the distance of that particular
object. Both consumption parameters provide means to dynamically enable and
dissable instances of the triggers.
4.2. The second type of a child-trigger – child”, is specified with the Subse-
quently option, and its intended meaning is that, after the particular parent-
trigger has been enabled, and all its “options have been exhausted” (e.g., expi-
ration of the interval of interest for the continuous queries; no occurrence of the
events for the child’-triggers), the user wants to focus on other aspects of the
possible subsequent evolutions of the domain of interest. In the case of Rq2, the
user shifts his interests to the properties related to the Motorola stock. How-
ever, the user has the option of stating whether in the future, the system should
consider ”waking-up” the parent trigger again or not. This is achieved by the
statement Consume-Parent. Consume-Parent = yes reflects the user’s intention
not to consider the parent-trigger in the future at all. In the context of our Rq2
example, the user does not want to bother with the future variations related to
the IBM. In a sense, this is an equivalent to the SQL drop trigger rule, as no
further instances of the parent-trigger are desired. Consume-Parent = no has
the opposite effect.

Having the instances of the child-triggers active is similar in effect to the
SQL enable command. However, in practice it is very unlikely to expect that
the desired behavior can be achieved if the users are to manually execute it.
Furthermore, attempting to write a child-trigger as a separate trigger from (and
at the same scoping/nesting level as) its parent, with an enabling event which is a
sequence of the parent event followed by the own event, may yield an unintended
behavior. For example, in Rq2 if, instead of being a child, the trigger related to
Motorola stock is specified independently, with the event E StockIncrease(’NY’,
’IBM’,3,...) ; E StockIncrease(’London’,’Motorola’,2,...), the user may end up
executing the Portfolio B in the settings in which, according to his preferences,
he should have executed portfolio P1. The reason for this is that the condition of
the Motorola-related trigger is an instantaneous query, which may be satisfied as
soon as the composite event which enables the corresponding trigger is detected.

3 Metatriggers

The metatrigger is a module that is in charge of coordinating the detection of
events and evaluation of the conditions in distributed environments, in a manner
that ensures behavioral correctness and minimizes the communication overhead.
To better motivate it, observe the following detailed example in the context of
Rq1 assuming, for the sake of argument that the (location,time) are detected
every two minutes.
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R

Air-Base B1
Take-off 
   at 5:175:10

5:16

5:18

5:06

5:08

Fig. 3. Dynamics of Events and Conditions

As illustrated in Figure 3, the system began monitoring the object at 5:06, how-
ever, the (location,time) updates at 5:06 and 5:08, depicted with blank circles,
were discarded because they were of no use for detecting the event of interest.
Starting at 5:10, the system can detect the occurrence of the desired composite
event moving towards) at 5:16 [18] which, in turn, “awakes” an instance of the
corresponding trigger for Rq1. Upon checking the condition (less than 10 air-
planes in B1), the system will find out that there are actually 12 airplanes there
and will not execute the action part (alert). However, as illustrated in Figure 3,
in a very short time-span, three jets have left the air-base and, by 5:17 it has
only 9 jets available. Intuitively, the trigger for the Rq1 should fire and raise the
alert. However, this may not happen until 5:18 at which time the event moving
towards is (re)detected. In many time-critical applications, this may cause un-
wanted effects. One possible solution is to periodically poll the remote database,
however, this may incur a lot of unnecessary communication overhead1 and,
moreover, may still “miss” the actual time-point at which the condition became
satisfied.

The main role of the metatriggers is the management of the type of behavior
as described above in distributed environments. Figure 4 illustrates the position
of the metatrigger module in the context of a typical ADb architecture, extended
with an Event-Base (EB) (c.f. [8]). The arrowed lines indicated the data flow
among the modules. Note that the module for the Continuous Queries Process-
ing (CQP), is coupled with the Query Processing (QP) and the Rule (trigger)
Processing (RP) modules [6].

When it comes to managing the reactive behavior in distributed settings, the
crux of the metatriggers is the Event and Conditions Manager (ECM) com-
ponent. This component translates the original specifications of the user and
generates a new set of triggers, events and conditions that achieve the desired
behavior, but are much more efficient for distributed environments. To describe
this task more formally, consider the following simplified version of a trigger:

TR1: ON E1
IF C1i ∧ C1c

THEN A1

Its condition part consists of two conjuncts:

1 Observe that the user may insist on a particular frequency of re-evaluation of the
continuous query (c.f. [6]).
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Fig. 4. Metatriggers Activities

• Ci1-instantaneous conditions, whose evaluation may be bound to various states.
Such bindings have already been identified as a semantic dimension of the active
databases [8, 15] and there are syntactic constructs that can specify particular
states for evaluating the condition of the triggers (e.g., referencing old/new).
• C1c- a condition which expresses a continuous query.
The ECM component of the metatrigger performs the following activities:
1. Translate the specifications of the original trigger into:

TR1’: ON E1 ; (E→
C1c

; E←
C1c

)
IF C1i

THEN A1

Where E→
C1c

and E←
C1c

are two new events with the following semantics:
1.1. E→

C1c
– an event denotes the request for evaluating C1c, which may have to

be sent to a remote site – e.g., in the case of Rq1 it is send to the air-base.
1.2. E←

C1c
– an event (external in case of Rq1), which denotes that the con-

tinuous condition has been evaluated to true, and the notification about it has
been received. Observe that the new local trigger TR1’ is now enabled by the
composite event which is the sequence of events E1 ; (E→

C1c
; E←

C1c
)

2. It translates the continuous query C1c of the condition into:
2.1. A message for the remote site, requesting immediate evaluation and notifi-
cation if true;
2.2. A trigger that is transmitted to the remote site, which essentially states:

TR1c: ON E1; E→
C1c

IF C1c

THEN A(Send Notification(E←
C1c

))

3. Lastly, the ECM generates the specification of another local trigger TR1”,
whose description we omit – but whose purpose is to detect when the original
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trigger TR1, as specified by the user, has “expired”, i.e., the criteria used in the
validity specification, temporal or event-based, is satisfied, and:
3.1. disable the current instance of the local trigger TR1’.
3.2. Send a notification that the instance of the Tr1c in the remote site should
be disabled.

What we described above exemplifies how something that was initially per-
ceived as a pure query-like condition, becomes a ”generator” of a several new
events/triggers. We only explained the basic functionality of the ECM as a trans-
lator for a simplified version of the original specifications of the user’s trigger.
Clearly, in reality, one may expect more sophisticated queries whose translation
and generation of the equivalent new events, triggers, and messages to the re-
mote sites will be more complicated. In the settings of the Rq1, one may observe
another motivation for translating the original condition’s query: the predicate
JetsCount (c.f. Figure 2), say, for security purposes, may be a view and the user
cannot express much at the specification time of the corresponding trigger.

Although the ECM is the most relevant component of the metatrigger mod-
ule, it has few other components. The parser extracts the constructs of the
syntax that define the corresponding events and conditions, as well as user’s
preferences for priority/ordering. The Ordering and Lifetime (OL) component
of the metatrigger works in conjunction with the RP component. It ensures that,
whenever a particular event is detected, the order of evaluating the conditions
and executing the actions among all the triggers ”awaken” by that event, con-
forms with the user’s specifications. We re-iterate that although some prototype
ADb systems, such as Starburst [20] provide the option for priorities among
the triggers ([8, 15]), the commercial DBMS with active capabilities, conform-
ing with the ANSI SQL99 standard specifications [1] do not. Since we are using
Oracle 9i [2], we needed to write a separate PL/SQL routine (c.f. [17]). The
OL component of the metatrigger is also in charge of enable-ing the (instances
of the) child-triggers in the proper states of the evolution of the system. Upon
”ceasing” of a particular trigger, OL ensures that the appropriate clean-up ac-
tions are performed which, based on the values of the Consumed-by-Parent and
Consume-Parent parameters, are either disable or drop.

4 Related Works and Concluding Remarks

There is a large body of existing results in several research areas that address
managing of (re)active behavior [3, 5, 7, 8, 11, 13, 15, 21, 22]. These works provide
a technical foundations for, and in turn, can benefit from our work, however,
their detailed discussion is well beyond the scope of this paper.

We presented a novel paradigm (ECA)2, for triggers that are aware of the
dynamic correlation between the events and conditions and, in a sense, can
“react in a proactive manner” – by modifying themselves. We also provided
syntactic constructs for specifying the triggers under this paradigm and enable
using the (ECA)2 paradigm in dynamic distributed environments, and we pro-
posed the concept of the metatriggers as a possible tool for their management.
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Currently, we are focusing on further incorporating the (ECA)2 in heteroge-
neous/multidatabase settings, and we would like to believe that, in a near future,
our work will motivate a wide spectrum of new challenges, ranging from theo-
retical aspects (e.g., termination/expresiveness [21]) up to intricate details that
depend on the application/problem domain constraints (e.g., power-limitations
in sensor networks [22]; interplay among context variables in LBS [16]).
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Abstract. As data management applications grow more complex, they
may need efficient distributed query processing, but also subscription
management, data archival etc. To enact such applications, the current
solution consists of stacking several systems together. The juxtaposition
of different computing models prevents reasoning on the application as
a whole, and wastes important opportunities to improve performance.

We present a simple extension to the AXML [7] language, allowing
it to declaratively specify and deploy complex applications based solely
on XML and XML queries. Our main contribution is a full algebraic
model for complex distributed AXML computations. While very expres-
sive, the model is conceptually uniform, and enables numerous powerful
optimizations across a distributed complex process.1

1 Introduction

Distributed data management has been an important domain of research almost
since the early days of databases [15]. With the development of the Web and
the existence of universal standards for data exchange, this problem arguably
became the most essential challenge to the database community. The problem
as considered in distributed relational systems was already very complex. With
the heterogeneity and autonomy of sources, it is now even more difficult.

The language Active XML based on the embedding of service calls inside XML
documents has been proposed for distributed data management. Several works
have shown that the exchange of such documents provides a powerful support
for distributed optimization [1, 2, 3]. However, these works proposed isolated so-
lutions for isolated tasks, and had to rely on features not present in the language.
In this paper, we isolate the missing components and propose an extension that
could serve as a unified powerful language for describing, in a very flexible man-
ner the deployment and evaluation of queries in a collaborative manner. The
aforementioned techniques, as well as standard distributed query optimization
techniques, can all be described based on rewrite rules in the language.

To pursue the analogy with (centralized) relational database, Active XML as
originally proposed, is a logical language for describing distributed computation,
1 This work was partially supported by the French Government ACI MDP2P and the

eDos EU project.
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c© Springer-Verlag Berlin Heidelberg 2006



1050 S. Abiteboul, I. Manolescu, and E. Taropa

to which we associated a fixed simple evaluation strategy. Its extension proposed
here is an algebraic counterpart that provides for more efficient evaluation.

One missing aspect from Active XML (as originally described) is the capability
to control explicitly the shipping of data and queries, although we did use this
feature [1]. We explicitly add it here, to allow delegating computations to other
peers. We also explicitly introduce generic data and service, which are available
on several sites; a particular flavor of this feature was used in [3].

This paper is organized as follows. Section 2 introduces AXML, and shows
how the application could be deployed based on AXML. Section 3 holds our main
contribution: an algebra for distributed computations, with associated equiva-
lence rules and an optimization methodology. Section 4 concludes.

An application of our methodology to a real-life software distribution appli-
cation is described in the full version of this paper [4].

2 Preliminaries: AXML Documents and Queries

In this section, we briefly introduce the features of the pre-existing ActiveXML
model (AXML, in short) [5, 7]. We use the following notations:

– a set D of document names. Values from D are denoted: d, d1, d2 etc.
– a set S of service names. Values from S are denoted: s, s1, s2 etc.
– a set P of peer identifiers. Values from P are denoted: p, p1, p2 etc.
– a set Nof node identifiers. Values from N are denoted: n1, n2 etc.

We assume given a finite set of peers, each of which is characterized by a
distinct peer identifier p ∈ P. Intuitively, a peer represents a context of compu-
tation; it can also be seen as a hosting environment for documents and services,
which we describe next. We make no assumption about the structure of the peer
network, e.g. whether a DHT-style index is present or not. We will discuss the
impact of various network structures further on.

2.1 XML Documents, Types, and Services

We view an XML tree as an unranked, unordered tree, where each leaf node has
a label from L, and each internal nodes has a label from L and an identifier
from N . Furthermore, each tree resides on exactly one peer identified by p ∈ P.
We will refer to the tree as t@p. An XML document is a tuple (t, d) where t is
an XML tree, d ∈ D is a document name. No two documents can agree on the
values of (d, p). We will refer to a document as d@p.

We denote by Θ the set of all XML tree types, as expressed for instance in
XML Schema [18], and we refer to individual types as τ, τ1, τ2 etc.

We model a Web service as a tuple (p, s), where p ∈ P is the identifier of
the peer providing the service, and s ∈ S is the service name. The service is
associated an unique type signature (τin, τout), where τin ∈ Θn for some integer
n, and τout ∈ Θ. We use s@p to refer to such a service; it corresponds to a
(simplified) WSDL request-response operation [17].
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When a Web service s@p receives as input an XML forest of type τin, it reacts
by sending, successively, one or more XML trees of type τout. If the service may
send more than one such tree, we term it a continuous service.

2.2 AXML Documents

An AXML document is an XML document containing some nodes labeled with
a specific label sc, standing for service calls. An sc node has several children.
Two children, labeled peer and service, contain, respectively, a peer p1 ∈ P
and a service s1 ∈ S, where s1@p1 identifies an existing Web service. The others
are labeled param1,..., paramn, where n is the input arity of s@p.

Assume an AXML document d0@p0 contains a service call to a service s1@p1
as above. When the call is activated, the following sequence of steps takes place:

1. p0 sends a copy of the parami-label children of the sc node, to peer p1, asking
it to evaluate s1 on these parameters.

2. p1 eventually evaluates s1 on this input, and sends back to p0 an XML
subtree containing the response.

3. When p0 receives this subtree, it inserts it in d0, as a sibling of the sc node.

AXML supports several mechanisms for deciding when to activate a service
call. This control may be given to the user via some interactive hypertext. Alter-
natively, a call may be activated only when the call result is needed to evaluate
some query over the enclosing document [2], or in order to turn d0’s XML type
in some other desired type [6]. It is also possible to specify that a call must be
activated just after a response to another activated call has been received.

AXML also supports calls to continuous services. When such a call is acti-
vated, step 1 above takes place just once, while steps 2 and 3, together, occur
repeatedly starting from that moment. In this paper, we consider that the re-
sponse trees successively sent by p1 accumulate as siblings of the sc node [5]. If
a service call sc1 must be activated just after sc2 and sc2 is a call to a contin-
uous service, then sc1 will be activated after handling every answer to sc2. We
consider all services are continuous.

Sc nodes may reference any WSDL-compliant Web service. Of particular in-
terest for us are declarative Web services, whose implementation is a declarative
XML query or update statement, possibly parameterized. The statements im-
plementing such services are visible to other peers, enabling many optimizations.
Our goal is thus: given a set of AXML documents and declarative services, and
a query Q, find alternative evaluation strategies (possibly involving new docu-
ments and services dynamically created) which compute the same answers for
Q, and are potentially more efficient. We first make some extensions to AXML.

2.3 AXML Extensions

We introduce generic documents and services, and define a notion of tree, doc-
ument, and service equivalence. Then, we make some extensions to the syntax
of sc elements, central in AXML, to allow for more communication patterns.
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A generic document ed@any denotes any among a set of regular documents
which we consider to be equivalent; we say ed is a document equivalence class.
We consider a specific notion of document equivalence denoted ≡, suited for
AXML. Two documents are equivalent iff their trees are equivalent. Two trees
t1 and t2 are equivalent iff their potential evolution, via service call activations,
will eventually reach the same fixpoint. This notion has been formally defined
in [5] for the purpose of studying confluence and termination for AXML; we use
it here as a basis for optimization. We introduce generic services similarly [4].

We allow queries to refer to generic documents as well as regular ones, and sc
nodes to refer to generic services as well as regular ones. The semantics of such
queries and calls will be defined shortly.

We add to an sc element some optional forw children, each of which contains
a location to which the service results(s) should be forwarded. Each forw element
encapsulates a node identifier of the form n@p, where p ∈ P and n ∈ N . The
semantics is that the response should be added as a child of node n, which resides
on peer p. If no forw child is specified, a default one is used containing the ID
of the sc’s parent, just like in the existing AXML model.

We will refer to a document as d@p or alternatively as d@any, and similarly
for services. We will denote a service call in our extended AXML model as:

sc((pprov|any), serv, [param1,. . .,paramk], [forw1,. . .,forwm])
where pprov ∈ P is a peer providing the service serv.

3 An Algebra for Extended AXML Computations

3.1 AXML Expressions

To model the various operations needed by our distributed data management
applications, we introduce here a simple language of AXML expressions, denoted
E . In the following, p, p1, p2 are some peers from P.

Any tree t@p or document d@p is in E . Also, let q@p be a query of ar-
ity n defined at p, and let t1@p, t2, . . . , tn@p be a set of trees at p. Then,
q@p(t1@p, t2@p, . . . , tn@p) ∈ E .

Let t@p1 be a tree. Then, send(p2, t@p1) ∈ E , where send(·) is an expression
constructor. This expression denotes the sending of a piece of data, namely
t, from p1 to p2. Similarly, if d@p1 is a document, send(p2, d@p1) ∈ E . The
exact place where t (or d) arrives at peer p2 is determined when evaluating the
expression, as the next sections explains.

E also allows to specify the exact location(s) where a tree should arrive.
The expression send(n2@p2, t@p1) says that t should be added as a child of
the node n2@p2. The expression send([n2@p2, n3@p3, . . . , nk@pk], t@p1) corre-
sponds to the operation of sending the same tree to several destinations. Finally,
send(d@p2, t@p1) states that t is installed under the name d as a new document
at p2 (where d was not previously in used on p2).

E also allows sending queries (in the style of code shipping). Let q@p1 be a
query. Then, send(p2, q@p1) ∈ E , where send(·) is the same (slightly overloaded)
expression constructor. This denotes the sending of the query q on peer p2.
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An expression can be viewed (serialized) as an XML tree, whose root is la-
beled with the expression constructor, and whose children are the expression
parameters. An expression located at some peer, denoted e@p, is an XML tree.

3.2 Evaluating AXML Expression Trees

The expression language E describes some computations to be performed. In this
section, we define the evaluation of an expression tree e@p, where e ∈ E .

Intuitively, eval@p(e) may do one or more of the following: (i) return another
XML tree (or, more generally, a stream of XML trees, where a stream is a flow
of XML trees which accumulate, as children of a given node on some peer);
(ii) return a new service; (iii) as a side effect, create one or more XML streams,
accumulating under some well-specified nodes on one or more peers.

This is best illustrated by the following eval definitions, where p, pi designates
a peer, tj@p is a tree at peer p, and nl@p a node at p.

We first define eval for tree expressions. Let t@p0 be a tree, whose root is
labeled l ∈ L, l �=sc, and let t1, . . . , tn be the children of the root in t. We define:

eval@p0(t@p0) = l(eval@p0(t1), eval@p0(t2), . . . , eval@p0(tn)) (1)

The evaluation copies t’s root and pushes the evaluation to the children. Eval-
uating one XML tree (the expression tree on the left) yields the (partially eval-
uated) XML tree at right, into which the expressions to evaluate are smaller.

As a consequence of (1), for any tree t@p0 containing no sc node, we have
eval@p0(t@p0) = t@p0: evaluating the expression simply returns the data tree.

Now consider what happens if we replace the (static) tree t@p0 with a stream
of successive XML trees, accumulating as children of some node n@p0. Clearly,
in this case, definition (1) applies for every tree in the stream, thus eval over the
stream of trees returns another stream of (partially evaluated) trees.

Definition (1) covers a particular class of eval@p(t) expressions; we will define
eval for the other cases gradually. For the time being, we turn to defining the
evaluation of (a particular class of) query expression trees:

eval@p(q(t1@p, . . . , tn@p)) = q(eval@p(t1@p), . . . , eval@p(tn@p)) (2)

Evaluating a local query expression tree amounts to evaluating the query
parameters, and then evaluating the query (in the usual sense) on these trees.

Recall that all queries are continuous. If we take ti@p to be streams of trees
arriving at p, definition (2) captures the intuitive semantics of continuous in-
cremental query evaluation: eval@p(q) produces a result whenever the arrival
of some new tree in the input streams t1, t2, . . . , tn leads to creating some out-
put. This generalization reasoning (from trees to streams of trees) applies to all
remaining eval definitions, and we will consider it implicit in the sequel.

We next define the evaluation of a simple class of send expressions.

eval@p0(send(p1, t@p0)) = ∅ (3)

Evaluating a send expression tree at p0, hosting t, returns at p0 an empty result.
Intuitively, the message encapsulating the copy of t has left p0, and moved to p1.
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However, as a side effect, a copy of t@p0 is made, and sent to peer p1. From now
on, all evaluations of send expression trees are implicitly understood to copy the
data model instances they send, prior to sending them.

Notation. From now on, we will use the shorthand sendp1→p2(e) to denote
eval@p1(send(p2, e)), where p1, p2 ∈ P and e ∈ E , and we use sendp1→fwList(e)
to denote eval@p1(send(fwList, e)), where fwList is a list of nodes.

If p2 �= p0, sendp2→p1(t@p0) is undefined. The intuition is that p2 cannot send
something it doesn’t have. More generally, for any tree x@p0, sendp2→p1(x@p0)
is undefined if p2 �= p0. Similarly, we define:

sendp0→[n1@p1,n2@p2,...,nk@pk](t@p0) = ∅ (4)

Sending t@p0 to the locations ni@pi returns an empty result at p0, and as a side
effect, at each pi, the result of eval@pi(t@pi) is added as a child of ni@pi. We
use t@pi to denote the copy of t@p0 that has landed on pi.

We now define eval at some peer, of a data expression of a remote tree.

eval@p1(t@p2) = sendp2→p1(eval@p2(t@p2)) (5)

We assume p1 �= p2, thus p1 initially doesn’t have t. In order for p1 to get the
evaluation result, p2 is asked to evaluate it2, and then send it at p1. Overall,
p2 has received the expression tree t@p2 as some local tree, has replaced this
local tree with the result of eval@p2(t), and has sent this result to p1. After
this send evaluation, the local send expression tree on p2 becomes ∅, by (3).
Setting a tree to ∅ amounts to deleting it, thus, p2’s set of documents and
services is unchanged after the evaluation. The overall effect on p1 is that the
expression tree eval@p1(t@p2) has been replaced with the desired evaluation
result.

We now have the ingredients for defining the evaluation of a tree t@p0, whose
root is labeled sc. We denote by parList = [t1, t2, . . . , tn] the list of parami-
labeled children of the sc, and by fwList the list of their forwj-labeled siblings.

eval@p0(sc(p1, s1, parList, fwList)) =
sendp1→fwList(q1(sendp0→p1(eval@p0(parList)))) (6)

where eval@p0(parList) stands for [eval@p0(t1), eval@p0(t2), . . . , eval@p0(tn)].
The second part of the definition (6) is best read from the innermost paran-

thesis to the outer. To evaluate sc, p0 first evaluates the parameters (innermost
eval), then sends the result to p1, as denoted by eval@p0(send(p1, . . .)). Peer p1
evaluates, in the usual sense, the query q1 (the one which implements its service
s1), and sends the result to the locations in the forward lists.

We do not need to define the evaluation of a tree t@p0, whose root is labeled
sc, at some peer p1 �= p0; this case is already covered by definition (5).

2 This is performed at p2 by applying successively definitions (1), (5) and (6), see next.
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The evaluation at some peer p1, of a query defined at another peer p2, is:

eval@p1(q(t1@p2, t2@p2, . . . , tn@p2)) =
eval@p1((sendp2→p1(q)) (sendp2→p1([t1@p2, . . . , tn@p2])))

(7)

This states that p2 should send both q and its arguments to p1, as shown by the
two sendp2→p1 , and p1 can then evaluate locally as per definition (2).

What happens when evaluating a send expression of some query ?

eval@p1(send(p2, q@p1)) = sendp1→p2(q@p1) = ∅ (8)

Evaluating the send expression tree erases it from p1 and, as a side effect, deploys
query q on peer p2 as a new service. Rather than giving it an explicit name, by
a slight abuse of notation, we may refer to this service as sendp1→p2(q@p1).

So far, we have defined eval on expressions involving precise documents and
queries. We now turn to the case of generic documents and queries. We have:

eval@p(expr(d@any)) = eval@p(expr(eval@p(pickDoc(d@any)))) (9)

where expr is some E expression, and the functions pickDoc, present on all peers,
return the name of some document from the equivalence class d@any. A similar
rule applies for generic services [4]. Definition 9 states that p should find the
name of a regular document corresponding to the equivalence class d@any, then
proceed to evaluate expr where references to d@any have been replaced with
that name. The implementation of an actual pick function at p depends on p’s
knowledge of the existing documents and services, p’s preferences etc. [4].
We have so far specified a procedure for expression evaluation: for any e ∈ E , to
evaluate e@p, identify the definition among (1)-(9) which fits e’s topmost node
and p, apply this definition, and so on recursively down e’s structure until a plain
data tree is obtained at p. This strategy extends the basic AXML one, to deal
with the AXML extensions we introduced in Section 2.3. As we have argued,
however, this strategy will not necessarily lead to best performance.

3.3 Equivalence Rules

In this section, we explore equivalent, potentially more efficient strategies for
evaluating an expression tree eval@p(e), where p ∈ P and e ∈ E .

We call state of an AXML system over peers p1, p2, . . . , pn, and denote by
Σ, all documents and services on p1, p2, . . . , pn. Evaluating an expression e@p
over an AXML system in state Σ brings it to a possibly different state, which
we denote eval@p(e)(Σ). We say two expression evaluations e1@p1 and e2@p2
are equivalent, denoted e1@p1 ≡ e2@p2, if for any AXML system state Σ,
eval@p1(e1)(Σ) = eval@p2(e2)(Σ).

Our first equivalence rule refers to query delegation:

eval@p1(q(t@p1)) ≡ sendp2→p1((sendp1→p2(q))(sendp1→p2(t))) (10)

This rule says that evaluating a query q(t) at p1 gives the same result as: sending
q and t to another peer p2, evaluating q(t) at p2, and sending back the results
to p1. The rule derives from the definitions (2), (4) and (8).
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A second very useful rule refers to query composition/decomposition. Let q,
q1, q2, . . . , qn be some queries, such that q is equivalent to the composed query
q1(q2, q3, . . . , qn) (in the sense defined in Section 2.3). We have:

eval@p(q@p) ≡ eval@p(q1(eval@p(q2@p), . . . , eval@p(qn@p))) (11)

Intuitively, the rule states that eval distributes over query composition. It is a
direct consequence of the query equivalence hypothesis, and of the definition (2).

The query decomposition and query delegation rules, together, capture many
existing distributed query optimization techniques, as Example 1 illustrates.

Example 1 (Pushing selections). Let q1 be a query equivalent to q1(σ(q2)), where
σ is some logical selection, and q1 and q2 are chosen so that σ has been pushed
down as far as possible. Denoting by q3 the query σ(q2), we have q ≡ q1(q3)).
Let t@p2 be a tree, and p be some peer other than p2. We have:

eval@p(q(t@p2)) = eval@p(q1(q3(d@p2))) ≡(11)
eval@p(q1(eval@p(q3(t@p2)))) ≡(10)
eval@p(q1(sendp2→p(eval@p2(q3(t@p2)))))=(2) eval@p(q1(sendp2→p(q3(t@p2))))

The definition or rule used at each step above is shown by a subscript. The
first eval designates the evaluation of q on the remote tree t. Definition (7)
suggests sending the whole tree t to p and evaluating there. However, the last
eval above delegates the execution of q3 (which applies the selection) to p2, and
only ships to p the resulting data set, typically smaller. �
Other classical distributed optimizations may be similarly derived.

The following rules allow for powerful optimizations of data transfers, and can
be derived easily from the definitions of send evaluation:

sendp1→p2(eval@p0(send(p1, t@p0))) ≡ sendp0→p2(t@p0) (12)

eval@p(e1(e2(sendp1→p(t@p1)), e3(sendp1→p(t@p1)))) ≡
eval@p(e1(e2(sendp1→p(t@p1, d@p)), e3(d@p))) (13)

Rule (12), read from right to left, shows that data in transit from p0 to p2 may
make an intermediary stop to another peer p1. Read from left to right, it shows
that such an intermediary halt may be avoided. While it may seem that rule (12)
should always be applied left to right, this is not always true [4] !

In rule (13), subexpressions e2 and e3 need to transfer t@p1 to p. If t is
transferred for the needs of e2 and stored in a document d@p1, e3 no longer
needs to transfer t, and can use d@p directly. The rule holds assuming that
the evaluation of e3 is only enabled when d is available at p, which breaks the
parallelism between e2 and e3’s evaluations. This may be worth it if t is large.

Another powerful rule concerns delegation of expression evaluation:

eval@p(e) ≡ eval@p1(send(p, eval@p(e))) (14)

Some specific rules apply to trees rooted in sc nodes:

eval@p(sc(p1, s1, parList, fwList)) ≡
eval@p2(sendp→p2(sc(p1, s1, parList, fwList))) (15)
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eval@p(q@p(sc(p1, s1, parList@p, fwList)) ≡
sendp1→fwList(eval@p1((sendp→p1(q@p)) (q1(sendp→p1(parList@p))))) (16)

Rule (15) shows that the peer where an sc-rooted tree is evaluated does not
impact the evaluation result. Notice there is no need to ship results back to p1,
since results are sent directly to the locations in the forward list fwList.

Rule (16) provides an interesting method to evaluate a query q over a sc-
rooted tree. Here, sc refers to service s1@p1, implemented by the query q1. The
idea is to ship q and the service call parameters to p1, and ask it to evaluate q
directly over q1(parList). We call this rule pushing queries over service calls.

4 Concluding Remarks

The work presented here follows the footsteps of previous works on distributed
query processing [12, 15], and is particularly related to query optimization in
mediator systems [10, 16] and in peer-to-peer environments [3, 8, 9, 11]. Our work
brings the benefits of declarativeness and algebraic-based optimization to AXML,
a language integrating queries and data in a single powerful formalism. Our al-
gebra can be seen as a formal model for mutant query plans [13], extended to
continuous XML streams. AXML algebraic optimization has first been explored
in [14].

Our ongoing work focuses on refining our algebraic formalism, extending it
to AXML type-driven rewriting [6], designing and implementing in the AXML
system efficient and effective distributed optimization algorithms.
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serge.abiteboul@inria.fr, pierre@senellart.com

Abstract. We present in this paper a new model for representing prob-
abilistic information in a semi-structured (XML) database, based on the
use of probabilistic event variables. This work is motivated by the need
of keeping track of both confidence and lineage of the information stored
in a semi-structured warehouse. For instance, the modules of a (Hid-
den Web) content warehouse may derive information concerning the se-
mantics of discovered Web services that is by nature not certain. Our
model, namely the fuzzy tree model, supports both querying (tree pat-
tern queries with join) and updating (transactions containing an arbi-
trary set of insertions and deletions) over probabilistic tree data. We
highlight its expressive power and discuss implementation issues.

1 Introduction

If the problem of discovering information on the surface Web is facilitated by a
number of directories and search engines, the discovery, understanding and use of
databases published on the Web (typically via HTML forms) is still cumbersome.
It is therefore important to develop automatic tools to capture the semantics of
this so-called Hidden Web. Such tools require a combination of techniques, e.g.
from information extraction or natural language processing. We are concerned
with combining such tools to develop a content warehouse to manage tree data
coming from both the surface and Hidden Web [1]. Since such a system relies
on techniques that are by nature imprecise, we need a model for imprecise tree
data. The main contribution of this paper is such a model, the fuzzy tree model.

Models for managing imprecise information are not new. In particular, a large
literature exists for the relational model, typically based on two approaches:
(i) a probabilistic approach, e.g. [2, 3], and (ii) a logic approach, e.g. [4]. An
originality of our model is that it is based on a tree model, primarily to meet the
needs of the standard for data exchanges, XML. Another originality is that our
model combines the two aforementioned approaches. Probabilities are attached
to pieces of data to capture the confidence the warehouse may have about the
semantics of such pieces, while we rely on probabilistic events that are in the
spirit of the logical conditions of [4], e.g. to capture choices performed during
the extraction of information or its analysis. These probabilistic events capture
dependencies between the probabilities of distinct pieces of data. Finally, while
� This work was developed in the framework of the RNTL Project WebContent.
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most works on incomplete information focus on queries, updates play a central
role in the present work as, for instance, in [5].

The fuzzy tree model arises quite naturally when considering the management
of information discovered on the Web. The model is at the same time expressive (it
captures complex situations) and concise (it provides compact representations).
This will be shown by comparing the fuzzy tree model with two more standard
models for describing imprecision. Most importantly, we will show that the model
supports queries (tree pattern queries with joins, a standard subset of XQuery)
and updates. Queries provide the means for a user to obtain information. Up-
dates form the core component for the building of knowledge. The global system
consists in a number of modules (crawlers, classifiers, data extractor, etc.). These
tools introduce probabilistic knowledge in the content warehouse by updating it.

The paper is organized as follows. In Sect. 2, we present more motivation.
In Sect. 3, we briefly present preliminary notions used throughout the paper.
Section 4 discusses two simple models. The fuzzy tree model is the topic of
Sect. 5. Before discussing related work and concluding, we present in Sect. 6 an
on-going implementation of the fuzzy tree model. An extended version of
this paper is available in [6].

2 Motivation

Since its creation in 1991, the World Wide Web has considerably grown, with
billions of freely accessible pages. It is generally assumed that the Hidden Web
(also known as Deep Web or Invisible Web) that consists of databases accessible
through HTML forms or Web services, is even much larger (see, e.g., [7]) and
that its content is typically of better quality than that of the surface Web. The
Hidden Web is undoubtedly an invaluable source of information.

We want to provide access to the Hidden Web via high-level queries. To
illustrate, consider a Web user interested in available options for a particular
car. A current search engine will return a list of HTML pages including the
constructor’s website. We would like our system to discover that a particular form
on a given site provides the desired information, fill that form, get the answer
and directly provide the desired information. Such a semantic interpretation of
the Hidden Web implies that the system has to discover the service, understand
it, and index it so that, at query time, the proper data may be retrieved.

Imprecision is inherent in such a process: the inference performed by most
modules typically involves some level of confidence. For instance, the system
may be rather confident (but not certain) that a site is that of the constructor.
Any module participating in the construction of the warehouse must then be
able to insert, modify or delete information with a given confidence. This confi-
dence or, in other words, the probability that the information is true, should be
handled throughout the entire process. It is essential for informing the user of
the confidence of portions of an answer as well as for ranking query results.

Three aspects, namely (i) the independent agents, (ii) the need to moni-
tor the derivation of knowledge, and (iii) the non-sequentiality of the entire
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Query interface
(tree-pattern with

join)

Update interface
(insertions,
deletions)

Probabilistic XML Warehouse

Module 1 Module 2 Module 3}
Update

transaction
+ confidence

+ confidenceQuery
Results

Fig. 1. Queries and Updates on a Probabilistic XML Warehouse

process, suggest the design of a content-centric system, as shown on Fig. 1 in
the style of [1]. More precisely, the system is built on top of a content (semi-
structured) warehouse, with querying and updating capabilities supporting im-
precise information. Probabilistic information is stored in the warehouse and
confidence tracking is directly provided through the query and update interfaces.
Each query result and update transaction comes with confidence information.
The purpose of this paper is to detail the model used to describe, query and
update the probabilistic information stored in the warehouse.

3 Preliminary Definitions

In this section, we present preliminary definitions that are used in the remaining
of the paper. We assume the existence of a set N of labels and a set V of values
(say, the set of strings, with a particular value ε, the empty string). Although
we are typically interested in XML, the standard for data exchange on the Web,
we consider a simpler tree model that in particular ignores ordering of siblings.

Definition 1. An (unordered) data tree t is a 5-uple t = (S,E, r, ϕ, ν) where S
is a finite set of nodes, E ⊆ S2 a tree rooted in r ∈ S, ϕ : S → N associates a
label to each node in S and ν associates a value in V to leaves of the tree (where
a leaf is a node in S − {r} that has no child.)

Definition 2. A Tree-Pattern-With-Join (TPWJ) query is a 3-uple (t,D, J)
where t = (S,E, r, ϕ, ν) is a data tree, D ⊆ E is a set of descendant edges (the
other edges are interpreted as child edges) and J ⊆ S2 is a set of join conditions,
such that for all (s, s′) in J , s and s′ are two leafs of t and s �= s′.

Definition 3. Let Q = (t,D, J) with t = (S,E, r, ϕ, ν) be a TPWJ query and
t′ = (S′, E′, r′, ϕ′, ν′) a data tree. Then a valuation Ψ (from Q in t′) is a mapping
from S to S′ verifying: (i) (root) Ψ(r) = r′ (ii) (labels) ∀s ∈ S, ϕ(Ψ(s)) = ϕ(s)
(iii) (edges) ∀(s1, s2) ∈ E, if (s1, s2) ∈ D, Ψ(s2) is a descendant of Ψ(s1),



1062 S. Abiteboul and P. Senellart

otherwise it is a child of Ψ(s1) (iv) (values) For each leaf s of t with ν(s) �= ε,
Ψ(s) is a leaf of t′ and ν′(Ψ(s)) = ν(s) (v) (join conditions) For each (s1, s2) ∈ J ,
both Ψ(s1) and Ψ(s2) are leaves of t′ and ν′(Ψ(s1)) = ν′(Ψ(s2)).

Let Ψ be such a valuation. Then the minimal subtree of t′ containing Ψ(S) is
called an answer (we consider that a subtree is defined by a connected subset of
the set of nodes containing the root). The set of all answers is denoted Q(t′).

We next define update operations, whose basic components are insertions and
deletions. Let t = (S,E, r, ϕ, ν) and t′ = (S′, E′, r′, ϕ′, ν′) be two data trees.
Assume without loss of generality that they use different IDs, i.e. S ∩ S′ =
∅. An insertion is an expression i(t, n, t′) where n is in S, the node where t′

is to be inserted. A deletion is an expression d(t, n) where n is in S − {r}.
Node n is removed as well as all its descendants. Insertions and deletions are
elementary updates that are used to define update transactions. Typically, one
want to perform a number of update operations based on the result of a query.
This motivates the following definition.

Definition 4. An update transaction is a pair τ = (Q,U) where Q = (tQ, D, J)
is a TPWJ query and U is a set {i1 . . . ip, d1 . . . dq} where i1 . . . ip are insertions
on tQ and d1 . . . dq are deletions on tQ.

Queries are used to select the nodes of the trees where insertions or deletions are
made. Intuitively, when one applies a transaction on a data tree t, one operation,
say di, results in the deletion of a subtree for each valuation of Q.

Definition 5. Let τ = (Q,U) be an update transaction. Let t be a tree matched
by Q and let Ψ1 . . . Ψn be the valuations of Q on t. Let (ni1 . . . nip , nd1 . . . ndq ) be
the nodes of Q of the insertions and deletions of U . For each k with 1 ≤ k ≤ p,
we define the set Ik =

⋃
1≤j≤n{Ψj(nik)}. For each k with 1 ≤ k ≤ q, we define

the set Dk =
⋃

1≤j≤n{Ψj(ndk)}.
The result of the transaction τ on t, denoted τ(t), is the result of the insertions

i1 . . . ip on, respectively, each of the nodes of I1 . . . Ip and the deletions d1 . . . dq

on, respectively, each of the nodes of D1 . . . Dq.

4 Two Simple Models

A natural way of representing probabilistic information is to list all possible
worlds, each with its probability. See the example in Fig. 2. More formally:

Definition 6. A Possible Worlds (PW) set T is a finite set of pairs (ti, pi)
where each ti is a data tree, each pi is a positive real and

∑n
i=1 pi = 1.

If (t, p) is in a PW set T , this means that there is a probability p that the
information contained in T is indeed t. This is a rather general, if not practical,
way of representing probabilistic semi-structured information.

A PW set T = {(ti, pi)} is said to be normalized if there is no i, j distinct
such that ti, tj are identical (up to node isomorphism). The normalization of
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Fig. 2. Example Possible Worlds set

a PW set T is obtained by regrouping the identical component trees into one
component and summing their probabilities. In the remaining of this paper, we
will assume that all PW sets are normalized. The definition of TPWJ query on
a data tree can be extended in a quite natural way to PW sets.

Definition 7. Let Q be a TPWJ query and T = {(ti, pi)} a PW set. The set of
probabilistic possible answers is P = {(t, pi) | (ti, pi) ∈ T, t ∈ Q(ti)}. The result
of Q for T is the normalization Q(T ) of P.

Note that by construction Q(T ) is not always a PW set since the sum of proba-
bilities is not 1 in the general. The fact that (t, p) ∈ Q(T ) is interpreted as there
is a probability p that t is a result of the query Q over T . So, for instance, the
query “Who are the children of John?” may return “Alice” with a probability
0.9 and “Bob” with a probability 0.4. Note that the sum is greater than 1.

Now consider updates. A probabilistic update transaction is a pair (τ, c) where τ
is an update transaction and c ∈]0; 1] is the confidence we have in the transaction.

Definition 8. Let T = {(ti, pi)} be a PW set, (τ, c) a probabilistic update trans-
action, τ = (Q,Seq). The result of (τ, c) on T , denoted (τ, c)(T ), is a PW set
obtained by normalizing: {(t, p) ∈ T | t is not selected by Q}⋃

{(τ(t), p · c) | t is selected by Q}⋃
{(t, p · (1 − c)) | t is selected by Q}

Note that in the worst case, the number of components is multiplied by 2. This
may occur for instance if one inserts a node as a child of the root. Then Q
matches all data trees. Thus, the number of components grows, in the worst
case, exponentially in the number of update transactions performed.

Note that the PW model is not practical storage-wise. It is neither practical for
query and update processing (in particular because of the potential exponential
explosion). We next look at alternative ways of representing probabilistic tree
information. The possible world semantics is natural and will provide guidelines
for more complex models.

In the remaining of this section, we discuss another natural model, namely
the Simple Probabilistic tree model.

In the spirit of probabilistic models for the relational model, we can attach
a probability to each node in the tree. The intuition is that it captures the
probability of that node to be present assuming its parent is. A limitation of
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Fig. 4. More complex PW set

this model is that the only probability dependency captured is between the
dependencies of nodes in a parent/child relationship.

Definition 9. A Simple Probabilistic (SP) tree T is a pair (t, π) where t = (S,E, r,
ϕ, ν) is a data tree and π : S − {r} →]0; 1] assigns probabilities to tree nodes.

Such an SP tree is represented as in Fig. 3.
We can give a possible worlds semantics to an SP tree as follows. Choose

an arbitrary X ⊆ S. Consider tX the tree obtained by removing from t all
nodes not in X (and their descendants). We assign to this tree the probability
pX =

∏
s∈X π(s) ×

∏
s∈S−X(1 − π(s)).

The possible world semantics of T , denoted �T �, is defined as the normal-
ization of the set {(tX , pX) | X ⊆ S}). Note that, as X is an arbitrary subset
of S, a given tree t′ can be obtained from various subsets X, including subsets
which contain nodes not in t′. The normalization, by summing on the different
X leading to the same tree, ensures that the probability of t′ is correct. As an
example, the semantics of the SP tree of Fig. 3 is the PW set on Fig. 2.

A natural question is then whether the SP tree model is as expressive as the
PW set model. The answer is no. Figure 4 is an example of a PW set that has
no equivalent SP tree. This negative result is not a sufficient reason for rejecting
the SP model, since one might argue that PW sets not representable in the SP
model are of little practical interest. The following result, however, demonstrates
that the SP tree model does not meet basic requirements in terms of update, so
motivates the model we introduce in the next section.

Proposition 1. There exists an SP tree T and a probabilistic update transaction
(τ, c) such that there is no SP tree whose semantics is (τ, c)(�T �).

In other words, “SP trees are not closed under updates”. This comes from the fact
that dependencies between nodes are not expressible in the SP model. Indeed,
a simple modification that can be seen as an interdependent succession of an
insertion and a deletion, cannot be represented in the SP model. We next present
a model that overcomes this limitation.

5 The Fuzzy Tree Model

In this section, we propose an original model for representing probabilistic in-
formation in semi-structured databases, that we call the fuzzy tree model. This
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model is inspired by the SP model from the previous section and enriches it
using conditions à la [4], that are called probabilistic conditions here.

The conditions we use are defined using the auxiliary concept of probabilistic
event. Given a set W of event names, a probability distribution π assigns prob-
abilities, i.e. values in ]0; 1] to elements of W . An event condition (over W ) is a
finite (possibly empty) set of event atoms of the form w or ¬w where w is an
event in W . The intuition is that we assign probabilistic conditions to nodes in
the trees, instead of assigning them simple probabilities like in the SP model.
This mechanism captures complex dependencies between nodes in the database.

Definition 10. A fuzzy tree T is a 3-uple (t, π, γ) where t = (S,E, r, ϕ, ν) is a
data tree, π is some probability distribution over some set W of events and γ
assigns event conditions to nodes in S − {r}.

Definition 11. Let T = (t, π, γ) with t = (S,E, r, ϕ, ν) be a fuzzy tree. Let W
be the event names occurring in T . The possible worlds semantics of T is the
PW set, denoted �T �, defined as the normalization of:⋃

V ⊆W

{(
t|V ,

∏
w∈V

π(w)
∏

w∈W−V

(1 − π(w))
)}

where t|V is the subtree of t where all nodes conditioned by a ‘¬w’ atom with
w ∈ V or a ‘w’ atom with w /∈ V are removed (as well as their descendants).

Example of PW semantics of fuzzy trees are given in Fig. 2 and 4, respectively,
for the fuzzy trees of Fig. 5. Observe that the fuzzy tree model is more expressive
than the SP model, since the latter did not have an equivalent of the PW set
represented in Fig. 4. Actually, the following important result states that the
fuzzy tree model is as expressive as the PW model.

Theorem 1. For each PW set X, there exists a fuzzy tree T such that X = �T �.

We now define queries on fuzzy trees:

Definition 12. The result of Q on a fuzzy tree T = (t, π, γ), denoted Q(T ),
is the normalization of

⋃
u∈Q(t)

{(
u, eval

(⋃
n node of u γ(n)

))}
where eval(cond)

returns 0 if there is an event w such that both ‘w’ and ‘¬w’ are in cond, and∏
w∈cond π(w) ·

∏
¬w∈cond(1 − π(w)) otherwise.

When normalizing the set, if one of the probabilities is 0, the element is re-
moved. If the resulting set is empty, Q does not match T .

A

B

w1

C

D

w2

Event Proba.
w1 0.8
w2 0.7

A

B

w1,¬w2

C

D

w2

Event Proba.
w1 0.8
w2 0.7

Fig. 5. Sample fuzzy trees
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Theorem 2. Let T be a fuzzy tree and Q be a TPWJ query. Q matches T if
and only if Q matches �T �. Moreover, Q(T ) = Q(�T �).

Finally, we show that unlike the SP model, the fuzzy tree model supports arbi-
trary probabilistic update transactions. Let (τ, c) with τ = (Q,U) be a proba-
bilistic update transaction and T = (t, π, γ) a fuzzy tree. Let w be a fresh event
variable.

Consider the case where |Q(T )| = 1, that is where the position of update
operations is uniquely defined (the extension when |Q(T )| > 1 is straightfor-
ward and detailed in [6]). Let u be the unique element of Q(T ) and cond =⋃

n node of u γ(n); cond is the set of conditions to be applied to the inserted and
deleted nodes. The result of (τ, c) on T is denoted (τ, c)(T ), is the fuzzy tree
obtained from t by applying insertions and deletions in the following way.

Insertions are performed at the position mapped by Q on t in u. If n is
the position to insert a subtree t′, and condancestors is the union of the event
conditions on the (strict) ancestors of n, t′ is inserted and its root is assigned
the condition {w} ∪ (cond − (γ(n) ∪ condancestors)).

Deletions are performed at the position mapped by Q on t. Let n be the node
to be deleted and condancestors be the union of the event conditions on the (strict)
ancestors of n. Let condnew = {w}∪ cond− (γ(n)∪ condancestors). The original n
node is replaced by as many copies as elements of condnew. Let a1 . . . ap be the p
elements of condnew. The first copy of n is annotated with condition γ(n)∪{¬a1}.
The second copy of n is annotated with condition γ(n) ∪ {a1,¬a2}. . . The last
copy of n is annotated with conditions γ(n) ∪ {a1 . . . an−1,¬an}.

Theorem 3. Let (τ, c) be a probabilistic update transaction and T a fuzzy tree.
Then �(τ, c)(T )� = (τ, c)(�T �).

The fuzzy tree model provides a concise representation of imprecision. Updates
can be captured in the model. Simple updates (insertions, or deletions without
dependency on another branch of the tree) do not yield an exponential growth,
as it is the case for the PW model. Complex updates may still be costly.

An interesting side benefit of using the fuzzy tree model is the possibility
to keep lineage (or provenance) information about the data. Since every node
is conditioned by event variables corresponding to update transactions, we can
associate meta-data to these variables to record information about the origin of
the corresponding transaction. Note that these variables are preserved through-
out the whole process; a fuzzy tree system is able to deliver, along with query
results and probabilities, information about the lineage associated with a piece
of data (possibly updated more than once) and query results.

6 Implementation

This section briefly discusses our implementation of a fuzzy tree system that will
soon be available at http://pierre.senellart.com/software/fuzzyxml/

XML documents are stored in a file system. (The use of an XML reposi-
tory will be considered in the future.) TPWJ queries themselves are represented
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as XML fragments. The query evaluation over fuzzy trees is implemented us-
ing the Qizx/open Java XQuery engine [8]. TPWJ queries are compiled into
XQuery queries, whose results are converted to the minimal subtrees referred to
in Definition 2. A post-processing step is performed on the resulting subtrees to
compute the associated probabilities. For optimization, query processing relies
on a dataguide of the document obtained by using the XML Summary Drawer
described in [9]. Finally, updates are performed directly on the XML tree, fol-
lowing the rules described in Sect. 5.

7 Conclusion

The topic of probabilistic databases has been intensively studied, see for instance
[4, 3, 10, 11, 12], and [2, 13] for more recent works. In [13], Widom stresses the
need for a system maintaining both probability and lineage of the data. In that
paper, imprecision comes from three distinct sources: inaccuracy of the values,
confidence in the tuples of the relations and incompletude in the coverage of
relations. We were only interested here in this second source of imprecision.
The idea of associating probabilistic formulas to data elements comes from the
conditional tables of [4].

A relatively small number of works have dealt with the representation of
probabilistic semi-structured data. In [14], Dekhtyar et al. use a semi-structured
database to store complex probabilistic distributions of data which is essentially
relational. Works closer to ours are [15, 16, 17]. Nierman et al. [15] describe a
variant of the SP model and present strategies for efficient evaluations of logical
queries. In [16], a complex model, based on directed acyclic graphs, is developed,
along with an algebraic query language. Finally, Keulen et al. [17] present an
approach to data integration using probabilistic trees; their model is a mix of
the PW and SP model, which allows both extensive descriptions of the possible
worlds and node-based factorization. Querying and the way to present data
integration results on this model are also shown. It is to be noted that none
of the previous works, to the best of our knowledge, describes in an extensive
way how to do updates on a probabilistic semi-structured database, one main
contribution of this paper.

The work presented here is part of a larger project on the construction of
content warehouses from (Hidden) Web resources as described in Sect. 2. While
working on this topic, we realized that imprecision has to be a core part of the
XML-based warehouse since ad-hoc processing of imprecision simply does not
scale. This observation motivated the present work. We need now to complete the
implementation of the fuzzy tree system, move it to an efficient XML repository
and experiment with a real application.

A most important direction of research is to develop optimization techniques
tailored to the fuzzy tree model. In particular, one would like to trim query eval-
uation branches that would provide data with too low confidence. Also, we want
to study fuzzy tree simplification, i.e. finding more compact representations of
imprecise data. As it is defined, the fuzzy tree model is not completely algebraic:
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if the result of an update is a tree, the result of a query is a set of tree/probability
pairs. Actually, a similar construction can provide a representation of the answer
as a fuzzy tree; the details are omitted. Finally, an interesting aspect is schema
validation. Suppose we have a fuzzy tree representation T of some data, conform-
ing to some DTD D. Its semantics can be seen as X = {�T � ∩ sat(D)} where
sat(D) is the set of documents validating D. An issue is to efficiently compute
a fuzzy tree for X. Of course, we will have to ignore order-related typing issues.
But other aspects such as cardinalities are already quite challenging.
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Abstract. Managing coordination among peer databases is at the core
of research in peer data management systems. The Hyperion project
addresses peer database coordination through Event-Condition-Action
(ECA) rules. However, peer databases are intended for non-technical
end users, such as a receptionist at a doctor’s office or an assistant phar-
macist. Such users are not expected to know a technically demanding
language for expressing ECA rules that are appropriate for coordinating
their respective databases. Accordingly, we propose to offer a library of
”standard” rules for coordinating two or more types of peer databases.
These rules are defined in terms of assumed standard schemas for the
peer databases they coordinate. Once two acquainted peers select such
a rule, it can be instantiated so that it can operate for their respective
databases.

In this paper, we propose a mechanism for rewriting given standard
rules into rules expressed in terms of the schemas of the two databases
that are being coordinated. The rewriting is supported by Global-As-
View mappings that are supposed to pre-exist between specific schemas
and standard ones. More specifically, we propose a standard rule rewrit-
ing algorithm which we have implemented and evaluated.

1 Introduction

A peer system is an open-ended network of distributed computational peers
(nodes), where peers can join or leave the network at any time without central
control. Moreover, each peer is acquainted with a number of other peers - its
acquaintances. Acquaintance relationships are dynamic and ever-changing.

Existing peer systems, such as Napster, Gnutella, Freenet [3], Chord [7], CAN
[12], and Pastry [11] were designed specifically for file sharing, and cannot ac-
commodate relational databases. For example, it is difficult to search for some
files whose contents satisfy a given predicate, the way one can with relational
databases. Thus, along a different path, a few projects are focusing on data
semantics by using queries, views, and schema mappings for data sharing and
coordination among peer databases [6, 5, 4].

The Hyperion project has proposed a distributed Event-Condition-Action
(ECA) rule language as a coordination mechanism for peer databases [15, 13].
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Different peers may, however, have different database schemas. As a result, ECA
rules between different peers may also be different according to their respective
schemas even when they are intended to capture the same constraint. Moreover,
most end-users do not have sufficient professional training to establish ECA rules
for their own schemas, and hiring an expert to do the work can be both time
consuming and prohibitively expensive. Therefore, it is vital to have a means for
generating rules automatically for different schemas.

In this paper, we assume that there exist standard database schemas for
classes of peers, and standard coordination ECA rules between these schemas.
These rules capture common coordination patterns between different classes of
peers, e.g., family doctors and pharmacists. When a peer, such as a family doctor,
joins a class of peers, that peer establishes a mapping from the standard database
schema of the peer group to his or her own schema. When the peer wants to
adopt a standard rule to maintain data consistency with another peer, it uses
our rule rewriting algorithm to instantiate the rule for his or her schema so that
it will offer the same functionality as the standard rule for the standard schemas.

The main contribution of this paper is to propose an algorithm to instantiate
rules according to the mappings between the standard schemas and the instanti-
ated schemas. That is, given a set of standard database schemas s1, a standard
distributed ECA rule rule1 over s1, a set of instantiated database schemas s2,
and a mapping m from s2 to s1, the algorithm outputs a new rule, rule2, for s2,
which display the same functionality as rule1 for s1. In general, the mapping
m from s2 to s1 can relate several relations in s1 to several other relations in
s2. In this paper however, we restrict our attention to the special cases where
the two schemas s1 and s2 have isomorphic relations or the instantiated schema
s2 has more relations than the standard schema s1, whereby one relation in
s1 is mapped into several in s2. The algorithm does not support those cases
where several relations in s1 map into one schema in s2, neither does it support
many-to-many mappings.

2 Background: ECA Rules and Schema Mappings

2.1 ECA Rules

An Event-Conditon-Action(ECA) rule is composed of three parts:

WHEN< event >, (IF< condition >,) THEN< action >.

The ’when’ part describes the event which is meant to trigger the rule. The
event can be as simple as an insertion or a deletion of a tuple in table, or a time
event triggered at a certain time, or it can be a combination of many simple
events. The second part describes the condition of the rule. This is optional,
and consists of a Boolean expression. After the rule is triggered, the expression
is evaluated. If true, the action in the ’then’ clause is executed. The action of
the rule can be a simple database operation, a composite transaction including
many simple database operations, or even a user-defined function.

Kantere et al. [15] have proposed a distributed ECA rule language for peer
Data Management Systems. Their rule language allows that the data accessed
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and/or updated by a rule reside in different peer databases. They also propose
a mechanism to implement efficiently the distributed ECA rule language.

The following is an example of an ECA rule. Suppose that our peer network
includes peer groups such as a family doctors, pharmacists, and hospitals. Each
peer group has a standard - canonical - schema. Here is a fragment of the hospital
group standard schema:

SDHDB:
Admission (AdmID, OHIP#, ...)
Patient (H#, OHIP#, FName,LName, Sex, Age, FamilyDr, PatRecord)

The following is part of the standard schema for the family doctor group:

SDFDDB:
Patient (OHIP#, FName, LName, Phone#, Sex, Age, PatRecord)

A standard rule is defined over one or more standard schemas and is intended
to express a generic coordination constraint. For example, when a patient en-
ters a hospital, a record including the OHIP# (a unique patient identification
number used in the health care system of Ontario, Canada) of that patient is
inserted into the Admission table of the hospital database. This rule involves
a single standard schema. Another example rule is triggered when there is an
insertion into the Admission relation of the standard hospital schema. Its con-
dition part checks whether the patient with the same OHIP# is a patient of a
family doctor who is acquainted with the hospital. If the logical expression in the
condition part returns true - that is, the patient is a patient of the acquainted
family doctor - then the rule inserts a tuple to the ’Patient’ table in the hospital
database with the patient’s information retrieved from the ’Patient’ table of the
family doctor. If the logical expression returns false, no action is taken. This rule
can be expressed in the rule language of Kantere et al. as follows:

Rule 1:

WHEN SDHDB.(’insert’, (Admission, ( OHIP#=>OHIP# value1 )))
IF OHIP# value1 = OHIP# value2

where SDFDDB.(’retrieve’, 45, {OHIP# value2, FName value,
LName value, Phone# value, Sex value, Age value, PatRecord value})

THEN SDHDB.(’insert’, (Patient, (OHIP# <= OHIP# value1, FName <=
FName value, LName <= LName value, Sex <= Sex value, Age <=
Age value, PatRecord <= PatRecord value )))

The Query which retrieves the variables in the ’if’ part of Rule 1 is:

SDFDDB query 45:

SELECT OHIP#, FName, LName, Phone#, Sex, Age, PatRecord
FROM Patient

2.2 Schema Mappings: LAV and GAV

Data Integration systems address the problem of how to access data from various
data sources[16]. A data source can be a database system such as a relational



1072 D. Zhao et al.

database, an object-oriented database system, or a collection of some unstruc-
tured data such as text files or web pages. Accessing a collection of heterogeneous
data sources is done through a global schema – used as access point for all the
integrated data sources – along with a set of formal mappings between the global
schema and each local schema. Many languages are available to define such map-
pings - datalog, description logics, views and so on. In this paper, we use views,
because they are both expressive and simple. There are two main approaches
for expressing mappings using views: local-as-view (LAV) and global-as-view
(GAV), which are described in the following subsections.

The LAV approach treats the source data as views of the global schema – that
is, LAV describes source data in terms of the global schema. In this approach,
the integrated system is seen from a local view.

The GAV approach, on the other hand, treats the global schema as a view
of the local schemas - that is, the global schema is defined in terms of the local
ones. Here, each element of the global schema is associated with a query over
the sources.

Two assumptions generally accepted by many data integration systems are:
to not allow for integrity constraints over the global schemas and to consider
only exact views. A view used as a mapping in this setting is said to be exact if
it defines the same set of tuples as the associated element of the global schema.
Under these assumptions, the GAV query rewriting is reducible to an unfolding
mechanism [16]. The unfolding method is a straightforward strategy: whenever
a query q is posed against the global schema, every element of the global schema
mentioned in q is replaced by the associated query over the sources.

Table 1. Local schema and global schema

Local schema TGHDB: Admission (AdmID, OHIP#, ...)
Patient (TGH#, OHIP#, FName, LName, Sex, Age, Fami-

lyDr, PatRecord)
DavisDB: PatientInfo (Pat#, InsuranceType, Insurance#, FName, LName,

Phone#, Gender, Age, PatRecord)
global schema SDHDB: Admission (AdmID, OHIP#, ...)

Patient (H#, OHIP#, FName, LName, Sex, Age, FamilyDr,
PatRecord)

SDFDDB: Patient (OHIP#, FName, LName, Phone#, Sex, Age, Pa-
tRecord)

Table 1 shows a database schema of Toronto General hospital database
(TGHDB) and a database schema of a family doctor - Dr. Davis’ database
(DavisDB). The interface schemas are a standard hospital database schema (SD-
HDB) and a standard family doctor database schema (SDFDDB). Table 2 shows
a sample GAV mapping for this example.

In this paper, we choose GAV to define mappings between instance (local)
schemas and standard (global) ones. The intuition behind this choice is that
we only want to perform one-way rewriting; that is, we need only rewrite the
standard rules into instantiated ones and never proceed the other way back.



An ECA Rule Rewriting Mechanism for Peer Data Management Systems 1073

Table 2. Sample GAV Mapping

SDHDB. Admission: Select AdmID, OHIP#, ...
From TGHDB.Admission

Patient: Select TGH# as H#, OHIP#, FName, LName, Sex, Age, Fami-
lyDr, PatRecord

from TGHDB.Patient
SDFDDB. Patient: Select Insurance# as OHIP#, FName, LName, Phone#, Gender

as Sex, Age, PatRecord
from DavisDB.PatientInfo
where InsuranceType = ’OHIP’

3 Problem Definition

When using rules for coordinating data exchange between peers, we face a major
problem: since the coordination technology that we are developing is end-user
oriented, a non technical user needs only to be aware of pre-existing standard
ECA rules, while the system takes care of automatically instantiating those
pre-existing rules. Moreover, it is unrealistic to expect that users would design
rules for their acquaintances from scratch. Therefore we must produce peer data
management systems that have some mechanism to manage coordination among
acquaintances by instantiating pre-existing standard rules. We propose to accom-
plish this by using the existing standard schemas of peers groups as well as the
local schemas of peers and the respective GAV mappings that relate the stan-
dard schemas to the local ones. Specifically, we propose to solve the following
problem:

Input Given standard database schemas (a set of schemas) s1, and a stan-
dard distributed peer rule rule1, instantiated database schemas (also
a set of schemas) s2, and a GAV mapping m, m maps s2 to s1.

Output Based on (s1, s2, m, rule1), a new rule rule2 for s2, which acts the
same as rule1 for s1.

Figure 1 illustrates the problem.
In the Hyperion project, some standard schemas have been defined for differ-

ent groups, such as family doctors, hospitals, pharmacists and day care centers.
Standard rules describing common inter-peer constraints are also defined among
the standard schemas of those groups. After that, whenever a peer joins a group,
the peer can choose rules that apply to its own database and those of acquainted
peers. These rules can then be instantiated automatically through the instanti-
ation mechanism proposed in this paper.

Standard schemas in our framework clearly play a role analogous to that
of global schemas in the data integration literature. It is important to note,
however, that a standard schema is not intended to integrate the content of all
local (instance) databases. Rather, it is intended to capture common elements
of all these schemas in terms of which common coordination constraints can be
defined.
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Fig. 1. Problem Definition

4 Rewriting Algorithm

The main idea behind our algorithm is divide and conquer: We use the unfolding
method to rewrite the different parts of rules. If one database event is unfolded
to two or more events, we will also rewrite the event into two or more events;
if several database events are unfolded to two or more events, we will combine
the results of rewriting the result of each database event. When the information
in the instantiated schema is missing, we will just ignore it if the information
does not appear in the condition part; but if the information does appear in the
condition part, then we will get a value from a user through an input statement.

Assume that s1 and s2 were singletons; we abuse the notation by calling
the schemas in these sets s1 and s2, respectively. Our algorithm works only for
view-based mappings. Recall that it works if the two schemas (standard, and
instantiated) have isomorphic relations and also if the instantiated schema s2
has more relations than the standard schema s1 where one relation in s1 is
mapped into several in s2. But it does not support those cases where several
relations in s1 map into one relation in s2, nor does it support many-to-many
mappings.

We spell out the details of the algorithm as follows:

– We first use the unfolding; that is, we replace everything in rule1 and s1
with corresponding fields and tables in s2 by using mapping rules included
in m.

– If a database event in the event part of rule1 involves two or more tables in
s2, which means the related table in s1 maps to two or more tables in s2,
then we try to rewrite the database event into two or more events in which
every event leads to a new rule, while the missing information in other tables
will be retrieved later using queries.

– If there are more than one database events involving two or more tables, we
will produce two or more rules. When the composite event has m database
events, and when for every database event the number of related tables in
the instantiated schemas is n1, n2, n3, ..., nm, then the number of output
rules will be n1 ∗ n2 ∗ n3 ∗ ... ∗ nm. In practice, we seldom have more than
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three database events in a rule, which means that the number of resulting
rules will not increase too fast.

– If the action part is a composite action, then we directly put all the rewritten
actions in the result.

– This relates to a case when some instantiated schemas do not have infor-
mation in the standard schemas. If the missing field does not appear in the
condition part, the missing information will not cause a problem so we just
ignore it; otherwise, since the missing field appears in the condition part, we
will get the variable through the user’s input.

Figures 2-5 present the algorithm in more detail. Figure 2 shows the whole
rewriting process, which is implemented by a sequence of processes. The query
rewriting part and condition rewriting part both use the unfolding algorithm.
The function that implements rewriting the event part is ’rewriteevent’ and is
shown in Figure 4. The function that implements rewriting the action part is
’rewriteaction’ and is shown in Table 5.

Figure 3 shows the function rewriteelement(), which is called in both the
function rewriteevent() and the function rewriteaciton(). This function rewrites
an element of the event or action. We can do this because the event part and
action part have the same structure. If the element is of the form xxx value,

Rulerewrite(){
rewrite event part;
rewrite queries in the rule;
rewrite condition part;
rewrite action part;
combine the results of each part

}

Fig. 2. Pseudo-code for rule rewriting

rewriteelement(){
if the element part is of form xxx value,

replace it with the new name of the
value in the namemaplist

if the element part is a database event
or database action{

\\for example: AllenDB.(’insert’, (Cust-
\\ Info, (CustAge => CustAge value)))
for each attribute, find the relative
attribute in s2
Combain the attributes in same tables;
return the new DBelement(s);

}
if the element part is none of the above,

keep it same in the new rule;
}

Fig. 3. Pseudo-code for rewriting an element
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rewriteevent(){
oldevents = null event;
For each event element e{

newele = rewriteelement(e);
for i = 1 to oldevents.size
for j = 1 to newele.size

newevents[i][j] = oldevents[i]
appending newele[j];

oldevents = newevents;
}

}

Fig. 4. Pseudo-code for rewriting event part

rewriteaction(){
newaction = null;
For each action element a{

newele = rewriteelement(a);
for i =1 to newele.size

newaction = newaction
appending newele[i];

}
}

Fig. 5. Pseudo-code for rewriting action part

we find the new name for the variable in the namemaplist and return the new
name. If the element is a simple Database Event or simple Database Action,
e.g., AllenDB.(’insert’, (CustInfo, (CustAge => CustAge value))), we will find
each of the attributes in the new schema s2 using the mapping m. After that we
combine the results by the tables, because one simple database event can only
relate to one table. So we will return all the new database event(s) or action(s).
Another case is that the element is none of the above cases; here we just keep it
unchanged.

Figure 4 shows the functionality of rewriteevent(). We are maintaining a list
of the result events, because it is possible we get more than one events in the
result. We rewrite each of the elements in the event part, if the rewrite returns
one event element, we just append it to the end of each event in the result, if
the rewrite returns more than one (n) event elements, we will copy the events in
the result n times, and append the n event elements at the end of each of them
accordingly.

Figure 5 shows the functionality of rewriteaction(). We have a result action
variable and we only have one action in the result. Then we rewrite each element
in the action, and we append each of the returned elements to the end of the
result action variable.

From the pseudo-code, we can notice the difference between event part rewrit-
ing and action part rewriting. In the event part, it is possible that one event is
rewritten to many events; in the action part, we always get only one action in
the new rule.
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5 Discussion and Future Work

5.1 Related Work

It is interesting to compare query rewriting [1, 16] with rule rewriting considered
in this paper because both problems have many common features, but also some
differences. We do not attempt to review the extensive work done on query
rewriting, particularly in the context of data integration [16] and query answering
using views [1]. Instead, we briefly discuss how rule rewriting ressembles, but also
differs from query rewriting.

The key feature common to rule rewriting and query rewriting is that we want
them both to translate a given artifact to another format according to a mapping.
Therefore, we can adapt many ideas from query rewriting to rule rewriting. Of
course, we must point out that query rewriting is part of rule rewriting, since a
query is part of a rule. Consequently, rule rewriting is at least as hard as query
rewriting. In recent years, it has been shown how hard query rewriting can be
[17, 18]. It was particularly shown in [17] that, in the context of view-based query
processing, even for quite simple query languages, rewriting is in general a co-
NP function of the size of the extensions of the underlying views. Moreover, a
tight connection is found between view-based query processing and constraint
satisfaction problems, which, in general, rarely admit PTIME solutions. This
suggests the anticipated hardness of ECA rule rewriting.

On the other hand, in our rule rewriting approach, mappings are of the GAV va-
riety, while in query rewriting, most research has been done for the LAV approach.

Another point of interest is that – generally speaking – performance is a major
consideration for query rewriting, because the query is rewritten online; i.e., a
user or an application is waiting for the result which can not excessively be
delayed. Rule rewriting, however, is done offline, when acquainted peers decide
to adopt a standard rule, and before the rule is actually put to use. In this
setting, performance is not as critical.

5.2 Conclusions and Future Work

We have proposed an algorithm for rewriting standard ECA rules in terms of
local schemas of peers assuming the existence of GAV mappings between stan-
dard schemas of the groups to which the peers belong and the local schemas of
the peers. A longer version of the paper reports on the implementation of this
algorithm, and an evaluation of it using various samples rules.

The distributed rule mechanism of Kantere et al. [14] is the first known
attempt to propose a distributed rule mechanism for peer data management
systems. After this rule mechanism was proposed, the rule rewriting problem
emerged as an important and open problem. To our knowledge, the work re-
ported here is the first attempt to investigate the rule rewriting problem and
give an algorithm for it. More research needs to follow.

In the future, we propose to extend the algorithm by removing some of the cur-
rent restrictions (e.g., availability of GAV mappings, many-to-many correspon-
dences between relations in local and standard schemas). We also plan to formalize
the rule rewriting problem and study its complexity. Formal foundations will allow
us to state and prove the correctness and the efficiency of our proposed method.
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Query rewriting for LAV is generally intractable [1], making LAV mappings
hard for many data integration tasks. However, the Piazza approach [6] has shown
that efficient LAV or GLAV query rewriting algorithms can be designed for some
practical settings, despite the known discouraging complexity results. Therefore,
a next step would be to take a LAV approach towards ECA rule rewriting.

Finally, a particular question of interest is how to develop techniques for
discarding unnecessary rules when a standard rule may be rewritten into more
than one instantiated rules, some of which are not useful. We propose to extend
our algorithm to remove unnecessary rules semiautomatically, and on the fly.
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1   Introduction and Motivations 

This paper presents a platform, called Business Cockpit, that allows users to define, 
compute,  monitor, and analyze business and IT metrics on business activities. The 
problem with existing approaches to metric definition and computation is that they 
require a very significant development and maintenance effort. The cockpit over-
comes this problem by providing users with a set of abstractions used to model the 
problem space, as well as development and runtime environments that support these 
abstractions. The cockpit is based on three conceptual models: the business domain 
model defines the business data to be analyzed, the metric model defines the business 
metrics of interest for the user, and the reporting model defines how metrics should be 
aggregated and presented in the reports. The proposed approach provides the follow-
ing key benefits: i) it allows the definition of many different reports without writing 
code; ii) it reduces metric computation times; iii) it enables the definition of different 
ways of computing a metric based on the characteristic of the object being measured; 
iv) all the code of the cockpit is independent of the business domain to be managed. 
As such, it can be applied to many scenarios.  Domain independence, however, is not 
achieved at the expense of complexity in the configuration: to apply the cockpit to a 
given domain, users are simply required to provide an abstract description of the part 
of their data model that is useful for business operation analysis purposes. The cock-
pit, and the features described above, have been developed and refined over the past 
few years. Our research started in the context of business processes, and we have then 
applied the same concepts to other domains, such as inter-bank transactions. 

2   Business Cockpit Models  

Business Domain Model. To provide its functionality, the cockpit must be aware of 
the structure of the data in the operational system. This is because it needs i) to know 
on which entities users want to define metrics, e.g., “orders”, “processes”, “re-
sources”, etc; ii) to describe how to perform metric aggregations when providing  
reports; iii) to know how to retrieve data about entities from the operational system. 
Essentially, in this model users can specify which entities they want to measure, what 
are their attributes, what are their relationships, and how each of these is mapped to 
the operational database (e.g., in which table the entity data can be found). Attributes 
are needed as they are used as filtering criteria for reports. In addition, they are used 
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for context partitioning (see below). Relationships are used to know which aggrega-
tions can be computed when providing reports, and how to compute them (this is 
somewhat similar to linking facts with dimensions in star schemas for reporting). The 
aggregation logic can be derived by looking at the foreign keys, or it can be user-
defined.  

Metric Model. A metric is a measurable property of the elements of an entity. It can 
be quantitative (numeric) or qualitative (categorical). The metric computation logic is 
defined by associating metrics to mappings, i.e., reusable functions that label opera-
tional data with Boolean or numeric values. The following SQL query example is a 
function that runs over operational data and returns <quote identifiers, value> pairs 
where the value corresponds to the time taken to respond to a request for quote:  

 SELECT QUOTE_UUID, DURATION FROM QUOTE_REQUESTS Q 

The following function returns instead all orders processed in a time that exceeded 
the one specified as part of the SLA stipulated with the customer: 

 SELECT QUOTE_UUID 
 FROM QUOTE_REQUESTS Q, SLA, CUSTOMER C  
 WHERE Q.CUSTOMER_ID=C.ID AND SLA.CUSTOMER_ID=C.ID 

AND Q.DURATION>SLA.MAX_DURATION 

In general, a mapping is characterized by the following properties:  

− A name (e.g., compute SLA violations).  
− The data type of the values computed by the function. This can be numeric or Boo-

lean. Numeric metrics can be computed by numeric mappings. Taxonomical met-
rics are instead computed by associating, to each category in the taxonomy, a  
different Boolean mapping. If the mapping returns true for an element, then the 
element belongs to the category.  

− The entity whose elements are labeled. For example, a mapping can associate val-
ues to requests for quotes.  

− The mapping function, that returns a set of pairs <element ID, value>.  
− The name and types of the mapping function parameters, if any.  

Conceptually, the mapping function can be expressed in any language. In the cock-
pit, they are defined by means of SQL statements, for performance reasons.  

Metrics give semantics to the values computed by the mappings. A metric is char-
acterized by a definition and an implementation part. The definition part states i) the 
name of the metric; ii) the data type, that can be numeric, Boolean, or taxonomy; iii) 
the entity whose elements are to be measured (e.g., cost is computed for orders). The 
implementation part of a metric defines which mapping functions should be used to 
compute it. For example, a metric quote request SLA violation can be computed based 
on the Boolean mapping described above for those customers that had agreed on a 
certain SLA. Note that different customers can have different SLA targets. In sum-
mary, metrics measure elements of entities via mappings. 

The metric model allows a metric to be “polymorphic”, i.e., computed via differ-
ent mappings, depending on the element being measured (i.e., based on the business 
context to which the element belongs). The possibility of associating the same metric 
to different mappings is very important since it allows the definition of homogeneous 
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metrics over heterogeneous elements. An example is the SLA violation metric dis-
cussed above, where the computation logic depends on the customer (SLA logics can 
be very complex). In this case, the analyst can define one metric, and state that a dif-
ferent mapping should be used based on the context (customer). The analyst will be 
able to evaluate SLA violations by simply looking at one metric, regardless of the 
way violations are computed.  

Contexts can be identified by any partitioning over the set of elements. However, 
to simplify modeling, partitioning is specified in terms of relationships to other enti-
ties or in terms of an entity’s attributes. For example, orders can be partitioned based 
on the customer or on their priority level. Note that the cockpit knows how to com-
pute if an element belongs to a context, since attributes and relationships have been 
described as part of the business model.  

The key to reducing the development effort consists in allowing the definition of 
functions that are easily customizable and highly reusable, so that the same function 
can be leveraged to compute different metrics. For example, a mapping function that 
returns the value of a quote request attribute is completely generic, in that it does not 
“hardcode” the definition of the metric it is computing, nor the context to which it ap-
plies. As such, this function becomes handy for computing lots of different metrics. It 
is up to the cockpit, as we will see later, to use mappings in such a way that they can 
compute the right metric on the right context with the right parameters and in the most 
efficient way. Hence, the development time for defining a new report tends to zero as 
the number of metrics grow. This is indeed a very concrete benefit. In a supply chain 
scenario, only nine mappings were needed to define all the metrics underlying the  
reporting application, consisting of more than 80 reports. In this way, the software 
development and testing effort is drastically reduced.  

Reporting Model. The reporting model defines how we want to look at a metric. A 
report is characterized by the metric to be reported and by the desired statistics on this 
metric (e.g., average). In addition, grouping and filtering conditions can be specified, 
based on entity attributes and relationships. Thanks to the business model, the cockpit 
knows how to compute these. In addition, users can define the drill-down behavior, 
choosing from several options, including: displaying another specified report; execut-
ing a query; executing the code defined in a Java class; accessing a specified Web 
page. Finally, report definition includes scheduling times and preferred visualization 
(charting) technique. The definition of reports is done by means of a point-and-click 
GUI that is aware of the business domain and of the metric definitions, and therefore 
knows what options (in terms of, e.g., aggregation) can be provided. For example, it is 
aware that it is possible to aggregate orders by customers, but not vice versa.  

3   Mapping Transformations 

In the cockpit, definitions of the domain, metric, and reporting schema (along with 
other configuration information) are performed through a Java or a Web based GUI 
that accesses the cockpit definition API. The most interesting aspect in the definition 
process lies in the way mappings are handled. The cockpit keeps all metric definition 
data into a few database tables. In particular, a table meters defines the mappings used 
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by each metric, a table contexts stores information about the context for which a cer-
tain <metric,mapping> association should be applied, and a table meter_parameters 
defines which values should be given to mapping parameters when the mapping is 
used to compute a certain metric. For example, meter meterForCost may state that 
metric cost is measured by mapping numResourcesUsedTimesUnitCost (which has 
the unit cost as a parameter). An entry in table context may state that meterForCost is 
only applied to the purchase process. An entry in meter_parameters may state that for 
meterForCost, a certain cost value (e.g., 20$) should be used.  

Mappings as written by the user have no knowledge of the cockpit database 
schema, as users should not be required to know the intricacies of the cockpit’s inter-
nals, but just the domain data. The cockpit extends mapping definitions so that they 
can not only label elements with metric values, but also identify which metrics are be-
ing computed, what are the different parameter values, and what are the different  
contexts to which the mapping should be applied when computing each metric. For 
example, Figure 1 shows how the cockpit transforms the code of mapping quote re-
quest attribute value. The modified query accesses the different tables that store met-
ric definition data, and returns, in addition to element IDs and values, also the metric 
to which these values refer. Also, the where clause is extended with the capability of 
restricting the context as specified by the metric definition. The code that extends the 
mapping (like all of the cockpit code) is generic and has no a priori knowledge of the 
business domain. However, due to the way the domain model has been defined, the 
business domain description contains all the information necessary to perform the 
mapping transformation mentioned above, that can therefore be executed at mapping 
definition time. This post-processing of the mapping definition is what enables the 
creation of queries that are simple and generic, since cockpit dynamically figures out 
what they should compute and on what data, as opposed to hardcoding this informa-
tion into the query. Another benefit of this approach is that, thanks to the set oriented 
nature of SQL, one execution of a given mapping computes all metrics that have been 
defined on top of it. Since many metrics typically depend on the same mappings, the 
computation time remains quasi-constant as the number of metrics grows.  

SELECT Q.QUOTE_UUID,QD.VALUE, Q.TIMESTAMP, CK_M.ID 
FROM QUOTE_REQUESTS Q, QUOTE_DATA QD, QUOTE_DATA_DEFS QDD, METRICS CK_M, METERS 
CK_AM, CONTEXTS CK_C, METER_PARS EMP
WHERE CK_AM.MAPPING_ID = 5 AND CK_AM.METRIC_ID = CK_M.ID 

AND CK_C.METER_ID = CK_AM.ID 
AND ( CK_C.CONTEXT_ELEMENT_ID IS NULL OR 
(Q.QUOTE_UUID,  CK_C.CONTEXT_ELEMENT_ID) 
IN ( SELECT * FROM CK_CX_QUOTE_TO_PRODUCT))  
AND  EMP.METER_ID = CK_AM.ID  AND QDD.NAME=EMP.PAR1 AND QDD.ID=QD.DATA_DEF_ID AND 
QD.QUOTE_UUID=Q.QUOTE_UUID

computed metric

determines all the metrics based on this mapping

implements the context 
restrictions defined by all the 
metrics implemented by this 
mapping

retrieves all the actual 
parameters used by 
all the metrics 
implemented by this 
mapping  

Fig. 6. Wrapping of mapping definitions. Original code is in bold. 
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4   Concluding Remarks 

In summary, the proposed approach considerably simplifies development of reporting 
solutions, both for verticals (e.g., for a financial application) and for middleware ap-
plications (e.g., it can be used to provide reports for workflows or messaging  
systems). The use of modules that encapsulate metrics and mappings make such de-
ployments easy to perform and to maintain. Further details and publications on this 
topic are available at http://www.hpl.hp.com/techreports/ . 
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Abstract. We present the architecture of a Business Information Analysis pro-
visioning system, BISON. The service provisioning system combines two 
prominent domains, namely structured/unstructured data analysis and service-
oriented computing. We also discuss open research problems in the area. 

1   Introduction 

Today’s highly competitive business environment challenges enterprises to push their 
limits to take advantage of all available information to improve business performance 
and stay competitive.  This challenge becomes more difficult with the ever increasing 
amount of data from disparate sources. Although there is a glut of data generated by 
various sources those data mostly are not in a form that could be directly used to sup-
port critical business decision making processes. Thus, the essential problem is trans-
forming the data into information that provides insights into the business operations 
and the competitiveness measures. Typically, the data are available from heterogene-
ous resources in varied formats. It is well known that the amount of unstructured data 
in the text form far surpasses the amount of available data in the structured form. 
Therefore, one important step in exploiting the available resources is structuring the 
inherently unstructured data in meaningful ways.  A well-established first step in 
gaining understanding is to segment examples into meaningful categories.  This leads 
to the idea of taxonomies. The taxonomies are meaningful hierarchical categorizations 
of documents into topics reflecting the natural relationships between the documents 
and their business objectives.  Clearly there is need for systems that enable knowledge 
workers to take full-advantage of available data sources and generate business reports 
in a timely manner.  

We have developed such a system, called Business Insights Workbench (BIW), at 
the IBM Almaden Research Center. BIW has been used in numerous customer setups 
to solve complex problems that require understanding and analysis of very large tex-
tual data sets to fulfill the business objectives.  

Service-oriented computing is a new prominent computing paradigm. It allows or-
ganizations to seamlessly integrate heterogeneous resources that are available inter-
nally or externally. Services are defined as autonomous, platform-independent ele-
ments that are described, implemented, published, and discovered using standard 
protocols. We envisioned the union of these two technologies; namely the business 
information analysis and the service-oriented computing, to deliver even grater value 
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for the customers. The resultant computing environment offers scores of new compe-
tencies such as better integration with intra- and inter-organization computing capa-
bilities, enhanced and custom computing environments by composing available ser-
vices from different providers, larger customer base coverage, and solutions to clus-
tering, scalability, extensibility, dynamic provisioning, and fault tolerance. 

2   Business Insights Workbench (BIW) 

In this section we give an overview of our business information analysis system, 
BIW. The details of the system can be found in [1] and [2]. BIW is a comprehensive 
data analysis application that allows a knowledge worker to learn from large collec-
tions of unstructured documents. The tool can be used to automatically categorize a 
large collection of text documents and then to provide a broad spectrum of controls to 
refine the building of an arbitrarily complex hierarchical taxonomy. The applicable 
tasks are grouped under three categories, namely, Explore, Understand, and Analyze. 

Explore operation performs the selection of the data of interest via queries or 
search from the data sources and summarizes structured values via metrics. It includes 
data specific functions such as full text search, database drill down, data join, inter-
sect, and subset selection. 

Understand taxonomies uses text mining to extract higher level features from un-
structured information. It provides tools to edit generated taxonomies visualize rela-
tionships among categories, build text models that can be applied to other data sets, 
and use nearest neighbor techniques to find related documents. 

Analyze function examines the intersections between taxonomies and structured 
information. It is used to discover trends and correlations, visualize data categories 
over time, analyze relationships between categories in different taxonomies, and 
compare structured and unstructured information. Analyze function essentially com-
bines the structured and unstructured data sources to provide a complete view. 

2   Service-Oriented Approach 

We have been developing a business information analysis service provisioning sys-
tem, BISON, based on Business Insights Workbench that is presented above. The 
architecture diagram of BISON system is shown in Figure 1. We use J2EE standards 
as the implementation framework. Communications among the system entities, in-
cluding the clients, are implemented as Web Services.  

Data Sources may provide structured and unstructured data and metadata informa-
tion, such as full text indexes. Typical examples for text indexes are indexes created 
by crawling engines for increased full-text search performance. Data sources expose 
all the characteristics information, such as name of the source, schema of the data-
base, and types of the data available, and data access mechanisms as web services. 
Data sources are registered in the services directory so that they can be discovered by 
the other system entities. The system architecture allows data sources dynamically 
join or leave the resource pool, or change the service characteristics. 
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Data Access Service is primarily responsible for querying the data sources to re-

trieve the data of interest and performing database oriented tasks. It also supports 
analyze functions over the data sources. The data access service is instrumented to 
facilitate service provisioning specific tasks. These tasks include, access control, me-
tering, service monitoring for QoS and Service Level Agreements (SLAs). This in-
formation, along with the service management information from the other systems 
entities, is collected, monitored, acted upon by the Service Control Center. 

Taxonomy Analysis Service provides all of the enhanced analysis capabilities de-
fined over the taxonomies, that is, explore, understand, and analyze functions. The 
separation of the data access service and the taxonomy analysis service provides ser-
vice flexibility and scalability.  

Service Control Center oversees the service provisioning tasks in the system. It 
monitors and aggregates the system management data provided by the individual 
services. This aggregate information is used for billing, configuration management, 
dynamic provisioning, SLA management, and policy enforcement. 

The client is the consumer of the services.  Typically there are two different types 
of clients in our system. First, the individual users those connect to the service di-
rectly by using a web browser. The second category of the clients is the service pro-
viders. They use our services to provide additional services to their end-users.   

The Client Data Source is a temporary data source that is created to maintain the 
intermediate results between the service calls for the client. 

2   Current Research and Technology Issues 

Combining business information analysis applications and the service-oriented com-
puting presents certain research and technology issues. We describe some those prob-
lems in this section.  

Data Source 2 WS 

Data Source 1 WS 

Client Data 
Source WS

Client 

Service Control Center
 

Billing, Policies, SLAs, Monitoring 
Configuration, Administration 

Data Access Service
 

(Explore, Analyze) 

Service Management
WS 

Taxonomy Analysis Service
 

(Explore, Understand, Analyze) 

Service Management
WS 

Service Directory 

Fig. 1. The Architecture of BISON 
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Metering. Metering is important for the cost analysis of the service delivery and 
generating the billing information. The metering is also important from the system 
management perspective as it provides valuable information for the performance of 
the system components. The real challenge is defining the metrics for metering that 
would be meaningful for the information management functions. 

Monitoring. Along with the overall service and system monitoring, we need applica-
tion level monitoring techniques. Application level monitoring helps problem deter-
mination and also enables application specific billing. Given that each application has 
its own characteristics, developing a common monitoring methodology that could be 
applied to all of the possible service components is a challenging problem. 

Data Security and Privacy. The security of the data sources includes preventing 
unauthorized access to the data sources and preventing data disclosure to the parties 
who are not entitled to use the particular parts of the data.  In addition, the clients may 
be concerned about revealing their identity for their particular interest in certain data 
sets. As a more challenging problem, if the client actually owns a data source and just 
uses the information analysis services, then the possible disclosure of confidential 
information to the service provider becomes an issue. 

Business Integration. In most of the cases the information analysis is a part of the 
higher level business processes at the client organizations. Hence, we need to develop 
methodologies that allow us to model our system processes and tie them into higher 
level business processes. 

2   Conclusion  

We have presented the architecture of a Business Information Analysis provisioning 
system, BISON. The service provisioning system combines two very important do-
mains, structured/unstructured data analysis and service-oriented computing. We have 
also described some open research problems in this area. 
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Abstract. Data synopses are concise representations of data sets, that
enable effective processing of approximate queries to the data sets. The
τ -Synopses is a system designed to provide a run-time environment for
remote execution of multiple synopses for both relational as well as XML
databases. The system can serve as an effective research platform for
experimental evaluation and comparison of different synopses, as well as
a platform for studying the effective management of multiple synopses
in a federated or centralized environment.

1 Introduction

In large data recording and warehousing environments, it is often advantageous
to provide fast, approximate answers to queries, whenever possible. The goal
is to provide a quick response in orders of magnitude faster than the time to
compute an exact answer, by avoiding or minimizing the number of accesses to
the base data.

Approximate query processing is supported by synopses that are compact rep-
resentations of the original data, such as histograms, samples, wavelet-synopses
or other methods [1]. In the aqua system [2], synopses are precomputed and
stored in a dbms. The system supports approximate answers by rewriting queries
originally directed to the base tables to run on these synopses, and it enables
keeping synopses up-to-date as the database changes. The question of how to
reconcile various synopses for large data sources with many tables was studied
in [3].

The τ -Synopses system was designed to provide a run-time environment for
execution of multiple synopses. The system can serve as an effective research
platform for experimental evaluation and comparison of different synopses, as
well as a platform for studying the effective management of multiple synopses.
The synopses can be placed at a centralized environment, or they can function
as web services in a federated architecture.

A software demo of the system as a federated environment with remote ex-
ecution of synopses was presented in [5]. A software demo of the system with
emphasis on the synopses management in a centralized environment was pre-
sented in [4]. The system currently includes several dozens of synopses for both
Relational as well as XML databases.
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This paper presents a high-level overview of the architecture and functionality
of the system. For more details, please refer to the full paper [6].

2 The τ -Synopses Functionality

The main operational processes supported by the τ -Synopses system are: con-
structing and updating multiple pluggable synopses, interception and analysis of
query workload, interception and analysis of data updates, approximate query
processing, synopses management, and benchmarking.

The user interface provides an administrator user with a capability to man-
age data sources, synopses specifications, updates and pre-defined workloads.
Figure 1 depicts the main administration UI.

Fig. 1. The Administration UI

End users can test and compare different synopses that are registered in the sys-
tem. In the Query execution mode a user can evaluate a single synopsis at a time.

In the Query Mode, the user selects the synopsis to be evaluated. Relational
queries can be of the following structure:

SELECT Sum(Data) FROM Relation WHERE filter > l AND filter < h . For

XML synopses, the queries are XPath expressions. The system validates the user
input expression for the XPath syntax and the tag labels are validated against
existing labels of the underlying XML document.

The Query mode also allows the evaluation of multiple queries at a time by
specifying a workload to be evaluated. The approximate results obtained using
the registered synopses are depicted together with the exact results computed
by the system.

The Benchmark Mode enables multiple synopses evaluation over pre-defined
workloads and their comparison using visual display; see Figure 2. The user
selects the synopses to be evaluated and the workload to be used for the evalua-
tion. For the performance measurements, the minimum, maximum and step size
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Fig. 2. Benchmark Mode

for the synopses construction are set by the user. The system invokes the con-
struction of the different synopses, and these synopses are then evaluated over
the selected workload. The system can compute the accuracy of the different
synopses using several error metrics.

3 Architecture

In order to provide an effective operational and research platform the τ -Synopses
system commits to the following design goals:

– Pluggable integration
– Remote execution
– Distributed client-server environment
– Flexibility and scalability
– Low bandwidth requirement

The core of the τ -Synopses system architecture features the following compo-
nents: Query Execution Engine, Synopses Manager, Updates Logger, and Work-
load Manager. These modules interact with a relational or XML databases which
hold the data sets, and with registered synopses that act as web services. These
synopses are connected either locally or remotely through a soap-enabled plat-
forms.

The Synopses Manager is used for registration and maintenance of the syn-
opses. A new synopsis is added to the system by registering its parameters (in-
cluding list of supported queries and data sets) in the Synopses Manager Catalog.

The Query Execution Engine supports an interface for receiving query
request from end-users and invoking the appropriate synopsis (or synopses),
as determined by the Synopses Manager in order to process such query.

The Updates Logger feeds all data updates to the registered synopses by
intercepting data updates information in the data sources.

The Workload Manager captures, maintains and analyzes workload informa-
tion for building, maintaining and testing synopses.
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Fig. 3. General Architecture

The system provides a light-weight host process, inside which the custom syn-
opses will be running. The host is responsible for all communication with the
system and is transparent to the synopsis. This design enables unconstrained de-
ployment. A remote synopsis can be integrated into the system by deploying or
adapting such host into the remote system, and connecting the synopsis module
locally into the host. Figure 3 illustrates an overall view of the system in a dis-
tributed environment, consisting of multiple remote synopses, each representing
its local data source.

The system modules were implemented in the .net framework, with remote
modules communicating through the .net Remoting. Any relational DB can be
used as a database provider.

Acknowledgement. We thank Yariv Matia and Daniel Urieli for their contri-
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at Tel Aviv university who have contributed synopses implementations to the
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1 Introduction

When comparing alternative query execution plans (QEPs), a cost-based query opti-
mizer in a relational database management system (RDBMS) needs to estimate the
selectivity of conjunctive predicates. The optimizer immediately faces a challenging
problem: how to combine available partial information about selectivities in a consis-
tent and comprehensive manner [1]. This paper describes a prototype solution to this
problem.

In more detail, suppose that the optimizer needs to estimate the selectivity s1,2,...,n

of a predicate of the form p1 ∧ p2 ∧ ·· · ∧ pn defined over a specified relation R, where
each simple predicate pi (also called a Boolean factor or BF) is of the form “column op
literal.” Here column is the name of a column in R, op is a relational comparison oper-
ator such as “=”, “>”, or “LIKE”, and literal is a value in the domain of the column;
e.g., MAKE = ’Honda’ or YEAR > 1995. As usual, the selectivity of a predicate p
is the fraction of rows in R that satisfy p. Estimates are typically available for simple-
predicate selectivities of the form si and, in modern optimizers, partial information is
often available in the form of joint selectivity estimates such as s2,3, s1,3,5, and so forth.
These joint selectivities are computed from multivariate statistics (MVS) such as mul-
tidimensional histograms, column-group statistics [2], and statistics on views. Gaps in
the available information are typically filled using uniformity and independence as-
sumptions. A serious problem now arises in that there may be multiple, non-equivalent
ways of estimating the selectivity of a given predicate. E.g., if selectivities s1, s2, s3, s1,2,
and s2,3 are available, then we can estimate s123 as (i) s123 = s1 ·s2 ·s3, (ii) s123 = s1,2 ·s3,
or (iii) s123 = s1 · s2,3. Arbitrary, inconsistent choices among non-equivalent selectivity
estimates lead to arbitrary, unreliable, and usually suboptimal choices of QEPs. The ad
hoc methods for ensuring consistency used in current RDBMS are cumbersome and ex-
pensive, and throw away valuable information; as discussed in [1], the net effect is to
bias the optimizer toward those QEPs about which it has the least information.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1092–1096, 2006.
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To address the foregoing problems, the authors have proposed a technique called
MAXENT [1], which uses the maximum entropy principle to obtain selectivity estimates.
MAXENT exploits all available information in a consistent and principled manner, while
avoiding imposition of any extraneous assumptions. We illustrate the basic idea for a
predicate p1 ∧ p2 ∧ p3 having three conjuncts, assuming that partial selectivities s1, s2,
s3, and s1,2 are available. For a binary string of length 3, denote by xb the selectivity of
the corresponding atom associated with the BFs in the predicate. For example, x110 is
the selectivity of the atom p1 ∧ p2 ∧¬p3, and so forth. MAXENT provides a principled
means of assigning values to the collection of atomic variables x = {xb : b ∈ {0,1}3 },
that is, for selecting a relative frequency distribution x over the atoms. Given the
MAXENT solution, we can estimate the desired selectivity as s1,2,3 = x111. MAXENT

first expresses the available information as a system of equations; in our example, the
equations are:

x100 + x110 + x101 + x111 = s1 (1a)

x010 + x011 + x110 + x111 = s2 (1b)

x001 + x011 + x101 + x111 = s3 (1c)

x110 + x111 = s1,2 (1d)

∑b xb = 1 (1e)

There are typically many distributions x that satisfy (1a)–(1e); MAXENT selects the
distribution with the highest entropy value H(x) = −∑b xb logxb. Intuitively, H(x) is
a measure of uncertainty in the distribution x; by maximizing entropy, MAXENT se-
lects the “simplest” distribution that is consistent with the constraints in (1a)–(1e). In
the absence of information, the MAXENT solution reduces to the classical optimizer as-
sumptions of uniformity and independence. The maximum entropy distribution can be
computed using a well known algorithm called Iterative Scaling (IS); see [1] for details.

In this paper we describe our experience in implementing a prototype of MAXENT

in DB2 UDB. We found ourselves facing a number of challenges. First, the compu-
tational complexity of the IS algorithm grows exponentially in the number of BFs, so
we needed to decompose the constrained optimization problem into a multiple small
problems, each involving only a subset of the BFs. Our next problem was that the set of
constraints as in (1a)–(1e) was inconsistent in many cases, so that there did not exist a
feasible solution x to the optimization problem and the IS algorithm failed to converge.
Inconsistent constraints can arise both when statistics are gathered at different times
and when selectivity estimates are based on erroneous uniformity and/or independence
assumptions. Finally, the IS algorithm can fail to converge even when the constraints
are consistent, if the set of constraints implies that a given variable xb must equal 0
in any feasible solution [and hence ∂H(x)/∂xb = −1 − logxb = +∞]. For example,
if p1 ⇒ p2, so that s1,2 = s1, then x100 = x101 = 0. All such “implied zeros” must be
identified and handled explicitly when setting up the constrained optimization problem.

2 Implementation Overview

MAXENT fits seamlessly into the existing optimizer architecture. After parsing a query,
the optimizer, as in previous versions of DB2 UDB, first precomputes selectivities from
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single-column statistics and MVS (specifically, column-group statistics and statistics on
views). The new MAXENT module then precomputes any missing selectivities using
the iterative scaling algorithm. During the final steps of QEP enumeration, costing, and
selection, the DB2 optimizer uses the precomputed selectivity estimates to estimate the
cardinalities of each partial QEPs that it considers.

We now outline the various steps of our MAXENT implementation and indicate how
we have addressed the challenges mentioned in the previous section. These steps, de-
scribed below, consist of (1) partitioning, (2) inconsistency resolution, (3) implied-zero
elimination, (4) iterative scaling, and (5) combination.

Partitioning: The partitioning step decomposes the set of BFs into disjoint subsets; the
IS algorithm is run independently on each partition in order to reduce overall com-
putation time. Using the available selectivities, the partitioning algorithm first tries to
break up the BFs into mutually “independent” subsets that are each as small as possi-
ble; here, e.g., the subsets { p1, p2 } and { p3, p4 } are independent if s1,2,3,4 = s1,2 · s3,4.
If any of the resulting subsets are still too large to be efficiently processed by the IS

algorithm, the subset is partitioned further into (non-independent) subsets, in order to
ensure sub-second response time. See [1, Sect. 5] for further elaboration of the parti-
tioning problem. Steps (2)–(4) are now applied separately to each partition.

Inconsistency resolution: To detect and resolve inconsistencies in the constraint set,
MAXENT solves a linear program (LP) that is obtained by adding a pair of “slack”
variables to each constraint. The slack variables represent adjustments (increases or de-
creases) to the corresponding selectivity that are needed to achieve consistency. In our
running example, constraint (1d) becomes x110 + x111 + a+

1,2 − a−
1,2 = s1,2, and we add

the additional constraints a+
1,2,a

−
1,2 ≥ 0 and 0 ≤ s1,2 − a+

1,2 + a−
1,2 ≤ 1. The other con-

straints (1a)–(1c) are similarly modified. We then use linear programming to minimize
the sum of the slack variables, i.e., a+

1 + a−
1 + a+

2 + a−
2 + a+

3 + a−
3 + a+

1,2 + a−
1,2, subject

to the modified constraints, thereby making the adjustments as small as possible. The
selectivities are then modified using the slacks, e.g., we take s′

1,2 = s1,2 − a+
1,2 + a−

1,2.
Our prototype uses the open source COIN LP solver (found at www.coin-or.org).

Implied-zero elimination: Implied zeros can be detected using linear programming; the
maximum entropy optimization problem is then formulated so that implied zeros ap-
pear neither in the objective function nor the constraints. The “exact” solution is com-
putationally expensive, but the following heuristic method is very effective in practice.
Write each atomic variable as xb = vb + wb, and then maximize ∑b vb subject to the
usual maximum entropy constraints as in (1a)–(1e), as well as the additional constraints
that 0 ≤ wb ≤ 1 and 0 ≤ vb ≤ ε for each b, where ε is a small number such as 0.0001.
Then xb is taken as an implied zero if and only if wb = vb = 0 in the optimal solution.
The idea is that setting xb = 0 requires setting vb = 0, which significantly impacts the
objective function because of the ε upper bound; thus, only “true” implied zeros are
likely to appear in an optimal solution to the LP.

Iterative Scaling: In this step MAXENT computes the solution to the maximum-entropy
optimization problem using the IS algorithm, as described in [1].
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Combination: This step computes the overall maximum entropy solution by multiplying
selectivities from different partitions. E.g., given two partitions { p1, p2 } and { p3, p4 },

we would set x1101 = x(1)
11 · x(2)

01 , where x(i)
b is a selectivity for the ith partition.

3 Experimental Evaluation

Figure 1 shows the effect of the preprocessing steps on the quality of the maximum-
entropy solution. We used 600 random queries with BFs involving between 3 and 14
columns of a DMV database as in [1]. The first (resp., second) three bars show the effect
of the preprocessing without (resp., with) partitioning. With no preprocessing (Bar 1),
the IS algorithm fails for 24% of the queries due to inconsistent constraints and for
an additional 2% of the queries due to implied zeros. Inconsistency resolution (Bar 2)
guarantees the existence of a maximum entropy solution, but IS still converges for only
74% of the queries because of implied zeros. Elimination of implied zeros (Bar 3) pro-
duces a maximum entropy solution for every query. Bars 1P–3P show similar results in
the presence of partitioning.
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Figure 2 shows the total computation time needed to build the maximum entropy
model for the 600 queries. The various preprocessing regimes are as in Fig. 1. As can
be seen, partitioning reduces the computation time by orders of magnitude. Partition-
ing also has an impact on the relative effects of the preprocessing strategies; we focus
on Bars 1P–3P, since partitioning is the regime used in practice. Bar 2P shows that
inconsistency resolution almost triples the computation time, but Bar 3P shows that
the speedup due to implied-zero elimination more than compensates for the cost of in-
consistency resolution. Overall, the performance impact of the preprocessing steps is
negligible—the average time to process a query is 0.05 seconds—whereas the quality
of the results is improved dramatically as in Fig. 1.

As shown in [1], use of MAXENT can speed up query processing by orders of mag-
nitude. Our new results show that a careful implementation of MAXENT can achieve
these improvements in a commercial RDBMS while barely impacting query compilation
time.
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Abstract. The complexity of software has been dramatically increas-
ing over the years. Database management systems have not escaped this
complexity. On the contrary, this problem is aggravated in database sys-
tems because they try to integrate multiple paradigms (object, relational,
XML) in one box and are supposed to perform well in every scenario un-
like OLAP or OLTP. As a result, it is very difficult to fine tune the
performance of a DBMS. Hence, there is a need for a external tool which
can monitor and fine tune the DBMS. In this extended abstract, we
describe a few techniques to improve DB2 Performance Expert, which
helps in monitoring DB2. Specifically, we describe a component which
is capable of doing early performance problem detection by analyzing
the sensor values over a long period of time. We also showcase a trends
plotter and workload characterizer which allows a DBA to have a better
understanding of the resource usages. A prototype of these tools has been
demonstrated to a few select customers and based on their feedback this
paper outlines the various issues that still need to be addressed in the
next versions of the tool.

1 Introduction

Early detection/prediction of performance problems and potential resource con-
straints is essential for building robust and adaptive systems. Such prediction
systems are also useful in limiting the impact of the failure. Often simple heuris-
tics (rules of thumb) such as - the log size should be three times the raw data
size - are often inadequate to address this problem. For example, too small a log
size will increase the risk of frequent failures (transaction log full), and too large
a log size will prevent proper utilization of the system resources.
� Work done during his stay in IRL.

�� Work done during her internship in IRL.
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Previous attempts to predict system performance include specific models that
best characterize the given problem at hand. However, generalizing those mod-
els to a broad spectrum of database performance problems is very difficult. In
our research we focus on generic tools that address a broad spectrum of DB2
health issues. In other words, instead of problem-specific models we are building
a generic suit of models that can be applicable for addressing a broad set of
performance problems that arise in day to day DB2 production environments.
Our tools analyze the historical temporal data generated by the DB2 Perfor-
mance Expert [5] (PE) and predict potential resource constraints, performance
and specific trends.

1.1 Previous Art

Early Warning Mechanism is a very standard mechanism to provide some proac-
tive features. In commercial database software, several products offer such fea-
tures. DB2 Health Monitor [4] is one such tool and it monitors in background,
several gauges and automatically issues an alert when a pre-specified thresh-
old is met. Oracle in its version 10g provides trends analysis via the Automatic
Database Diagnostic Monitor (ADDM) [6]. The ADDM includes a trends anal-
ysis wizard permitting users to forecast when a particular event may occur by
using linear regression mechanism [7].

There are a few third party tools which also provide similar functionalities.
BMC Software [2] offers a Connection-Miner tool which is part of their DGI
Classic Suite. The tool provides some trend analysis reports showing resource
utilization, trends by hour, week, month, or other desired criteria. The same
features are also available in their SmartDBA offer [2]. Another third party tool
is NORAD DBControl from Bradmark [3] which provides almost the same func-
tionalities as that of the Connection-Miner tool. Finally, BEZ Systems [1] offers
BEZPlus software which includes SerView, a database performance and SQL
tuning tool and CorpView, an analysis tool that uses a performance data ware-
house to track usage of the resources, data and SQL activity on the monitored
server. The warehouse is used to perform trend analysis, problem identification
and root-cause analysis.

Unlike other database management tools, our current work tries to consol-
idate all these functionalities in a single tool thereby giving a holistic view to
the users. In the rest of the paper we first give a brief description of the compo-
nents showcased to customers in May 2005. We then outline a few components
which were conceived based on their feedback. Finally, we enumerate some prob-
lems that we encountered during the preliminary research on the components
described in this the paper.

2 Components and Features

This section outlines the different modules that could potentially extend the
existing tool, DB2 Performance Expert. Explained next are the modules that
were showcased to a few select customers.
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Performance Wizard: Optimizing DB2 performance involves tuning several
parameters which are dependent on the workload characteristics. Due to the dy-
namic nature of the workload, these parameters might need to be retuned. Hence
there is a need for a tool that would suggest optimal parameter values to the
DBA depending on the workload. This task is accomplished by the Performance
Wizard. To that end it creates a tree of registered performance problems. The
intermediate nodes of the tree consists of problems like memory problem, IO
problem etc. The leaves of a sub-tree represent the parameter values that can
potentially cause the problems represented by the nodes of the tree. The user
chooses a branch of the tree on which the problem analysis is to be performed.
The performance wizard engine analyzes the sensor values corresponding to the
parameters represented by the leaves of the sub-tree (for which the analysis is
to be performed). The value of these sensors is compared over time with a pre-
defined threshold, and more than one deviation from the normal behavior of
the sensor is necessary to detect a performance problem. If the engine detects
a performance problem, in order to fix the problem the engine suggests a new
value of the parameter to the user.
Trends Plotter: This component allows the user to plot the trend of several
sensors. The user is able to define the workload on which the analysis is to be
performed. A workload can be defined based on the queries executed by a specific
user, application, location (IP address of the origin of the query) or already
defined workloads. The user can then plot the usage of predefined resources
one by one or a set at the same time. The component also provides an option to
drill-down by workload so as to better understand the way that the resources are
being used. Another feature permits the user to plot the trend of the historical
data using linear regression techniques. The users are also given an option to
analyze the impact of the SQL queries performed by the RDBMS in terms of
most used columns, tables, joins etc.

These two extensions were showcased to a few selected customers. Based on
their feedback we are investigating the feasibility of their requirements. The
additional components being explored are given below:
Workload characterization: This feature involves fitting a mathematical
model that best describes the current workloads seen by the database engine. A
correlation between the workload characteristics and various system parameters
helps in estimating the system resource requirements for an arbitrary workload.
Discovering correlations between DB2 parameters: DB2 PE gathers over
hundred parameters and records the current status of each parameter in a
database. This component tries to establish the relationships between these
parameter values. Various feature selection techniques and correlation analysis
might uncover interesting relationships between various subsets of these param-
eters.
Long term storage: This component involves developing the storage and
archival techniques needed to efficiently manage the growing amount of histori-
cal runtime performance data present in DB2 PE. Apart from traditional com-
pression techniques, we are also investigating various statistical distributions to
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represent data very concisely (that is store trends, rather than trend data). Suit-
able statistical sampling techniques and inverse transformation (decompression)
techniques are being investigated to reconstruct the original data.
Fitting Prediction Models: This features exploits the workload characteri-
zation and correlation discovery components (explained above) to fit a suitable
mathematical model for predicting performance and resource usage. This will
provide advisory tools that would guide the user to select a best model based
on a given workload. Incremental algorithms are being designed so that analysis
and prediction models do not further overburden the system. Figure 1 shows an
example trend predicted (red) using one of our prediction model.

3 Future Work

During our work on the tool we encountered some problems due to the nature of
the data as well as the nature of the application. Monitoring a software always
implies a cost both in terms of communication (sending data over the network) as
well as processing (gathering the data) on the monitored side. To lower this cost
as much as possible, in our tool the data is only gathered using a discrete scheme
(i.e., at some intervals). As a result, handling of missing data is an intrinsic part
of the solution. This problem not only affects the numerical data extracted from
the different sensors, but it has a bigger impact on the retrieval of the SQL
statements. In the discreet scheme, the number of possible un-recovered SQL
statements is not know and hence it is very difficult to estimate the correctness
of the gathered information.

Another problem is re-
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Fig. 1. Prediction using AR model

lated to the analysis of the
historical data when seen
as numerical time series.
The literature on econo-
metrics or digital signal
processing is abundant
with techniques to analyze
time series to extract

trends or to predict future values. The basic assumption of these models (for
instance AR, ARIMA) is that the time series is stationary or pseudo-stationary.
Unfortunately, this assumption does not hold in the case of the sensor data
collected during our experimental phases which was generated using the TPC
benchmark. We plan to investigate the feasibility of developing each of the com-
ponents described above by designing new techniques which would overcome the
enumerated problems.
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Abstract. Schema evolution is of two kinds: (a) those requiring instance 
transformation because the application is simpler to develop when it works only 
with one version of the schema, and (b) those in which the old data must be 
preserved and instance transformation must be avoided. The latter is important 
in practice but has received scant attention in the literature. Data conforming to 
multiple versions of the XML schema must be maintained, indexed, and 
manipulated using the same query. Microsoft’s SQL Server 2005 introduces 
XML schema collections to address both types of schema evolution.  

1   Introduction 

Many XML schemas have become standard in vertical industry segments such as 
ACORD [1] and SportsML [5]. Microsoft’s Office products have made their XML 
schemas openly available [3]. These efforts have lead to better interoperability among 
loosely connected systems and the development of new applications, such as rich 
search and data sharing among applications. Standards bodies evolve their schemas, 
which may require reworking the applications since the XML schema evolution may 
require database schema changes.  The scenarios for schema evolution are: 

1. The new schema extends an existing one with new schema components. For 
example, the new schema can add a top-level element called “language” if a 
publisher enters a new, foreign market. The application considers existing data to 
have a default value for the new schema components (e.g. US English). 

2. The schema is modified in an incompatible way. This often occurs with change in 
business needs and merger of systems. The existing data must be mapped to the 
new schema, using, for example, XSL transformations [8], if it does not conform to 
the new schema. The data transformation can be avoided in some cases (e.g. 
maxOccurs of <phone> changes from 7 to 5 but no instance exceeds 5 <phone>s).  

3. The schema undergoes modification as government or business rules change. New 
data must conform to the new schema while old data must be retained in its old 
form for archival purposes. Examples are tax filing and securities trading. Tax laws 
change from one year to the next, but old tax returns should not be transformed to 
conform to the latest version of the XML schema.  

While the first two kinds of schema evolution have been studied extensively in the 
literature, the third kind is a practical problem with a few ad hoc solutions. SQL 
Server 2005 addresses it using a meta-data notion called an XML schema collection – 
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a container of XML schemas that may be related (e.g. through <xs:import>) or 
unrelated to one another. Each schema in an XML schema collection C is identified 
using its target namespace. A new version of an XML schema with a new target 
namespace can be added to C and is treated like a new schema. This framework is 
powerful enough to support the other types of schema evolution too.  

The XML data is stored in a column of a rich data type called XML, as opposed to 
decomposing the data into tables and columns. This avoids database schema 
modification when XML schemas in C are added, dropped or modified. The database 
engine validates each XML instance according to XML schema specified in the XML 
instance during data assignment and modification.  

2   XML Schema Collection 

An XML schema collection C is created using the following statement and registering 
one or more XML schemas: 

CREATE XML SCHEMA COLLECTION C AS ‘<xs:schema> … 
</xs:schema>’ 

The schema processor identifies and stores in C the schema components supplied 
in the schemas. An XML schema component is anything defined at the top level of an 
XML schema, such as an element, attribute, type, or group definition. Schema 
components from multiple XML schemas with the same target namespace are 
grouped together by the target namespace. 

A user can type an XML column using C. The constraint imposed by C is the 
collective set of the schema constraints imposed by the individual XML schemas in 
C. The post-schema validation Infoset (PSVI), which adds type information to the 
Infoset [6], is encoded in the internal representation of the XML data for faster 
parsing during XQuery [7] processing.  

2.1   Schema Evolution 

Suppose you add an XML schema with target namespace BOOK-V1 to an XML 
schema collection C. An XML column XDOC typed using C can store XML data 
conforming to BOOK-V1 schema. To extend the XML schema, the schema designer 
adds the new schema components to the BOOK-V1 namespace. Adding optional 
elements and attributes, and top-level elements and type definitions do not require re-
validation of the existing XML data in column XDOC. Suppose later the application 
wants to provide a new version of the XML schema, for which it chooses the target 
namespace BOOK-V2. This XML schema is added to C without transforming the 
existing XML instances in XDOC. The XML column can store instances of both 
BOOK-V1 and BOOK-V2 schemas. This yields significant simplification in data 
management when C contains a large number of XML schemas. The user can insert 
and modify XML instances conforming to the latest version of the schema as well as 
those conforming to the older versions of the schema.  

The XML schema collection framework can also support applications that require 
instance transformation. The application has to supply the modified XML schema and 
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the transform, such as XSL or XQuery, to be applied to the XML data. The system 
can generate the transform by comparing the old and the new XML schemas.  

XML schemas may use a “version” attribute [6] to specify the schema version 
while using the same target namespace for all versions. There is no language support 
in XQuery to specify the version of a schema. Furthermore, the XML schemas 
published by W3C and Microsoft include the year and optionally the month and the 
day of publication in the target namespace. Hence, our choice has been to rely on a 
new target namespace to indicate evolving versions of an XML schema.  

3   Indexing and Querying XML Data 

XML indexes [4] are built on XML columns to speed up different classes of queries. 
Type information from the XML schema collection is stored in the XML indexes for 
scalar values and element types. Furthermore, tag names and paths are encoded 
relative to their target namespace. This ensures that a search can distinguish between 
a <book> element within the target namespace BOOK-V1 from one within the target 
namespace BOOK-V2. This allows users to restrict their queries to the desired 
schema namespaces and yet get good performance. However, search for <book> in all 
namespaces can become a union query or turn into a primary XML index scan. 

One of the main benefits of an XML schema collection is the ability to query 
across multiple XML schemas. The XQuery compiler uses the schema component 
definitions to perform static type analysis, based on which it can reject a priori some 
queries that would result in run-time errors (e.g. type mismatch). It can also infer 
cardinality to assist in static query optimizations. If desired, an XQuery expression 
can be limited to a specific version of an XML schema. This is desirable since the 
older data should be as easily searchable as the new data.  

Querying over multiple schema versions can be broken down as follows: 

• If elementFormDefault or attributeFormDefault is specified as unqualified in 
an XML schema, the target namespace of non-top level elements and 
attributes in the schema is absent. A query for those elements and attributes 
looks for the type definitions in the special no name target namespace. This 
allows queries over elements and attributes defined in different XML schemas 
within the XML schema collection C, and yields very good performance. 

• If the element or attribute is qualified in the XML schema, then the 
appropriate target namespace can be used to limit an XQuery expression to 
the element or attribute definitions within the specified target namespace. 

• When an element or attribute is unqualified in an XQuery expression, the 
query looks for the type definitions in the default target namespace specified 
in the XQuery prolog. If no definition is found, then the no name target 
namespace is searched for the type definitions.  

• If the element or attribute is qualified in the XML schema, a search is 
performed over multiple target namespaces using a wildcard for the target 
namespace. Thus, to search for <book> elements within multiple versions of 
an evolving XML schema, the user can write the path expression as //*:book. 
This looks for the definition of the <book> element in all the XML schemas 
registered with the XML schema collection, including the no name target 
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namespace. Wildcard namespace queries are slow because they result in a 
primary XML index scan but some optimizations can be done such as turning 
it into an “or” query over the different XML schemas in C. 

4   Conclusions and Future Work 

The focus in SQL Server 2005 has been to build up the infrastructure for XML 
schema evolution using XML schema collection. Most of the common features of 
XML Schema specification have been implemented to meet customer needs. For 
future work, incorporating instance transformation is useful. This can be based on 
XQuery or XSLT, and the system can generate the transform.  

Some applications, such as securities trading, require limiting an XML schema 
collection to the latest version of the XML schemas. In a query such as //*:author, 
which finds the <author> elements in all the target namespaces within an XML 
schema collection, the query can be restricted to only the latest schema based upon 
execution context settings.  

The next version of the SQL standard for XML [2] introduces the concept of a 
registered XML schema which can accommodate multiple XML schemas that are 
related to one another using <xs:import>. This allows schema evolution as long as the 
evolved XML schema imports the old schema; the registered XML schema descriptor 
must be updated as well. By comparison, our XML schema collection accommodates 
disjoint XML schemas and allows more general schema evolution.  
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1 Introduction

Enterprises commonly outsource all or part of their IT to vendors as a way to
reduce the cost of IT, to accurately estimate what they spend on IT, and to im-
prove its effectiveness. These contracts vary in complexity from the outsourcing
of a world-wide IT function to smaller, country-specific, deals.

For service providers to realize the economies of scale necessary for them
to be profitable, they must “productize” services and work from models that
standardize significant aspects of services and the resources required to fulfill
them. However, “productization of services” is not simple. Services are inherently
different from products. Services organizations are more likely to have significant
regional variations when compared to their manufacturing counterparts. Local
customers often prefer local service. Global customers expect the same service in
all the regions that they operate in, and the service provider must thus leverage
local service capabilities in a globally consistent manner. IT technology evolves
rapidly, and service offerings, options on existing service offerings, and preferred
standard solutions must follow suit.

Finally, large global deals require the service provider to coordinate multiple
teams from various regions with different areas of expertise and that use a va-
riety of tools (often implemented using personal productivity applications such
as Excel) and highly-manual processes. This leads to information silos where in-
formation is trapped in personal documents, making it difficult for management
to make informed decisions about the services business.

We introduce here novel techniques that address the unique needs of the
IT service domain. Our initial prototype, introduced in [1], used conventional
techniques. However, we found this approach was subject to limitations that
prevented the wide adoption of our prototype (Section 2). Our new approach
leverages metadata technology and the ubiquity of office productivity tools to
overcome these barriers (Section 3).

2 Initial Approach

Our hypothesis is that a critical factor in these problems is that, fundamentally,
the right information is not made available to the right person at the right time.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1106–1109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Enabling Outsourced Service Providers to Think Globally 1107

We believe this is because manual processes simply cannot scale to accommodate
the tens of thousands of relationships and details involved in service design.

To address these issues, we look to the manufacturing domain’s experience
with computer-aided design (CAD) systems [2]. Backed by a library of com-
ponents and their relationships, a CAD system takes care of tedious details
of mechanical design tasks such as version management, component reuse, the
validation of design rules, etc., freeing designers to focus on design objectives.
Applying the CAD metaphor to the service domain, we hoped that by automat-
ing the management of relationship information and configuration processes, by
exploiting human input for the difficult tasks of term/value configuration and
mapping validation, and by integrating the relationships discovered during the
human input phase back into the system, we would manage the information re-
quired for the design of service solutions more accurately and efficiently than
either a fully-automated system or a non-automated system could.

2.1 First Prototype

Our first prototype application connected the stages of a deal lifecycle by provid-
ing a central repository that maintains and links between the per-customer data
used in each of the stages. We refer readers to [1] for details. We call our proto-
type system the Service Configurator because it helps design solutions based on
standard offerings followed by customer specific configuration. Integrating the
lifecycle stages lets us identify and control the amount of unique work required
for each customer and deliver low-cost, high-quality service offerings that adapt
to changing customer needs.

Our initial instinct was to use traditional design choices, such as a conven-
tional three-tier web-client-server architecture. The data source layer was based
upon a global information model, and used fixed schema mappings to provide
access to data from domain-specific “authoritative” repositories maintained by
the business unit. Each of these repositories was in turn itself global in nature,
with relatively stable schema and content.

Our business unit partners tested the prototype with data from an ongoing
deal with a major customer, and validated benefits of the Service Configurator’s
approach, such as information flow continuity and automation [1]. The prototype
was reasonably well-received. Our collaborators were intrigued by the possibili-
ties when presented with the concrete demonstrator, and we were chartered to
build a second prototype with help from a larger pool of domain experts.

2.2 Issues with the First Prototype

Despite its positive reception, the first prototype suffered from issues that pre-
vented it from being transferred directly to the business unit. Most significantly,
we came to realize that service configuration is characterized by highly dynamic,
distributed, disconnected processes, tools, and data sources. The first proto-
type was based upon a global perspective, yet its user community spans sub-
organizations, roles, and regions. Adopting the first system would have required
big changes in the field’s processes and data sources, not to mention the creation
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of a receptor organization to develop the prototype into a complete system and
support it. Because we did not accommodate existing regional infrastructures,
tools, and practices, regional users could not use our system as-is.

Second, although one of the most significant contributions of the first proto-
type is the data model, we came to realize that because the information model
was exposed implicitly through web forms, the underlying concepts/relationships
were not always clear to the system users.

Finally, our system must bridge gaps between global and regional models, deal
and service lifecycle stages, organizations and roles in the service business, and
service portfolios. We provided only a global view of solutions, and found that the
field needs to easily extend/augment the model. Furthermore, there was a need
for a means to share those extensions among peers (and eventually promote the
extensions to the global model). Our original, centralized, solution offered only
limited interchange/interoperability. We needed an easy way to export/import
subsets of the information model.

3 New (Federated) Approach

Our first system showed how a common information model could enable infor-
mation sharing and new capabilities across the various dimensions of service
outsourcing, e.g., service lifecycle, service offerings, tasks and roles. The goal of
our second system is to overcome the barriers to using such a system by the
service professionals. We used a two-pronged approach: integrate with familiar
user tools and utilize semantic information models.

Service professionals were skeptical how a central repository could maintain
up-to-date information in the fast-paced, dynamic and disconnected environ-
ment of deal pursuit and delivery. We also observed a reliance on simple office
productivity tools such as Excel and Word, which encapsulate information in
manageable chunks and are frequently shared in the field. Consequently, we
have developed interfaces between our system and Word and Excel. For Excel
documents, we support mappings between cells in a spreadsheet and parameters
in a service configuration. For Word documents, arbitrary snippets of content
can be tagged and associated with a parameter. Transformation programs then
exchange information between the Word or Excel documents and the repository.

Our mappings enable repository content to appear in documents and the
repository to be updated from the documents. Consequently, service profession-
als can immediately share and view any changes for a deal. An added advantage
is that these documents are mobile, so information is available even when the
repository is not accessible. Further, there is no learning curve for getting access
to this information since the user interfaces, Word and Excel are familiar. The
mappings are expressed in a relatively simple language and can be hidden. As
needed, new mappings could easily be defined by a trained user.

This basic capability is necessary but not sufficient because it only enables
data sharing. It does not enable the sharing of data definitions, i.e., metadata.
The information model in our first system was hidden behind a set of Web forms.
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Our second system exposes the information model, and enables the definition
and sharing of new concepts and relationships.

We chose RDF/OWL as a representation language for our information model
because it provides globally unique identifers for resources (URIs), enables rich
semantic descriptions of information, and supports decomposition of models into
smaller chunks that can be individually shared and extended. Rather than de-
velop a single, complicated ontology to describe the complete services business,
we are using an incremental approach that divides the business into sub-domains.
There are a number of core ontologies. We anticipate the development of ontolo-
gies specific to regions, task or industry segment.

RDF/OWL enables the extension and sharing of ontologies and facilitates
their integration. However, expressed as an RDF graph, an ontology is not an
appropriate representation for use by services professionals. We thus provide
task-specific views of the ontology, each of which is a projection of the graph
onto a tree. A tree provides a more natural presentation of the information, and
is easily expressed in XML, facilitating interchange with other tools. E.g., a deal
configuration graph might be projected onto a simpler, partonomic tree that lists,
for each service, the modules comprising the service and the parameter values
for each module. The views are expressed as templates and a transformation
program applies the template to a graph to generate an XML tree.

These views are intended for round-trip transformations. E.g., we can use a
single view template to create round-trip transformations– from RDF to XML,
as well as from XML back to RDF. In this way, we can extract information from
a graph representing a configuration, incorporate that into some Word or Excel
document, allow users to modify (in a limited way) that content and then update
the configuration with the modified information.

4 Status and Challenges

Our second prototype has been met with enthusiastic reception from business
unit contacts. Thus far, we have won sponsorship all the way up the services
organization and have begun to engage with a transfer organization.

In addition, we have identified some challenges to explore next. These include
more sophisticated reporting and analysis functions, mechanisms for enabling the
government of interactions between global and regional systems, and a workflow
framework for analysis and delivery.
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Abstract. The major commercial data warehouse systems available to-
day are based on record-oriented relational technology optimized for
OLTP applications. Several authors have shown that substantial im-
provements in query performance for OLAP applications can be achieved
by systems based on transposed files (column-oriented) technology, since
the dominant queries only require grouping and aggregation on a few
columns of large amounts of data. This new assumption underlying data
warehouse systems means that several aspects of data management and
query processing need to be reconsidered. We present some preliminary
results of an industrial research project which is being sponsored by the
Italian Ministry of Education, University and Research (MIUR) to sup-
port the cooperation of universities and industries in prototyping innova-
tive systems. The aim of the project is to implement an SQL-compliant
prototype data warehouse system based on a transposed file storage
system. The paper will focus on the optimization of star queries with
group-by.1

1 Introduction

The most important commercial data warehouse systems are based on record-
oriented relational technology optimized for OLTP applications. They have been
extended with new kinds of indexes and new optimization techniques for typical
OLAP queries that require grouping and aggregation on just a few columns over
large amounts of data. Several authors have demonstrated that, since a data
warehouse system is query-intensive, an implementation based on a transposed
file storage system (also called column-oriented, projection indexes) can achieve
substantial improvements in OLAP query performance [7], [4], [3], [1], [6]. In

1 This work was partially supported by the MIUR, under FAR Fund DM 297/99,
Project number 11384. The project partners are Advanced Systems, University of
Pisa, Department of Computer Science, and University of Sannio, Research Centre
on Software Technology.
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addition to research prototype systems there are several commercial products
that have adopted transposed files as a storage structure, such as Addamark
and KDB. Clearly, the idea of changing the way data are stored is not in itself
enough to achieve the expected query performance. Other storage structures
must be considered and new algorithms for generating access plans must be
designed. Although algorithms for join query processing are reported in the
above references, the execution of the most typical OLAP query with grouping
and aggregation has received less attention. It is well known that a standard
way to evaluate this kind of query is to perform all the joins first and then the
group-by. However, several authors have shown that an optimizer should also
consider doing the group-by before the join [2], [5].2

We present some preliminary results of an industrial research project SADAS
which began in March 2003 and is being sponsored by the Italian Ministry of
Education, University and Research (MIUR) to support the cooperation of uni-
versities and industries in prototyping innovative systems. The main contractor
is the Italian company Advanced Systems that implemented the commercial sys-
tem Overmillion in the late 1990s using a completely transposed storage struc-
ture. However the system does not support either multi-relation queries or SQL.
On the basis of their successful experience, the aim of our project was to re-
design and re-implement Overmillion to have a complete SQL-compliant data
warehouse system using a transposed file storage system.

The paper is organized as follows. First we outline the main storage structures
in SADAS, and then we present the approach adopted in generating query plans
for star queries with grouping and aggregations.

2 Storage Structures

We briefly present the storage structures implemented in SADAS and the physical
operators used in query plans. We consider only those features that are relevant
for the group-by optimization, and we make the following assumptions to sim-
plify the presentation: (a) the database has a star schema, where the primary
and foreign keys have only one attribute; (b) the database is read-only; (c) a
completely transposed structure is used for each table, and so each column is
stored in a separate file; (d) each column has fixed length values different from
null. The system adopts the following storage structures:

1. each column A of a table with n records is stored in two files with n ele-
ments using two representations: (a) a file named A.CLN (column values)
which contains the column values for all the records of a table (an index
is maintained for this file) and (b) a file named A.CLI (codified column)
which contains the column values coded as the position of the values in the
corresponding column index;

2 We would like to apologize to other contributors in this area whose work we have
not acknowledged due to limitations of space.
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2. for each foreign key fk of the fact table F for the dimensional table D there
is a join index, which is a file that contains the RIDs of the matching records
in D, instead of the corresponding key values;

3. for all the not empty subsets of the fact table foreign keys, the following
structures exist:
(a) a partial multi-column index G where (a) for each column A the values

are those stored in the corresponding file A.CLI, and (b) the index con-
tains only the values part and the number of elements for each entry.
For example, in the index on columns A and B of F , the k-th entry that
corresponds to the values (a1, b3), will contain the values (1, 3) if a1 has
code 1 and b3 has code 3;

(b) a file G.GDI that contains the column values coded as the position of
the values in the corresponding column index. For example, if the i-th
record of the fact table F has columns A e B with values (a1, b3), in the
file G.GDI the i-th entry contains the value k.

3 Optimization of Star Queries with Grouping and
Aggregations

Usually a star query is executed by traditional data warehouse systems using
the best of two plans, the one produced in the usual way by relational systems,
and the other produced with the following basic phases: (a) the local conditions
are applied to the fact table and to the dimensional tables that participate in
the join to compute the local rowsets. A local rowset is a bitmap representing
the selected tuples from a table; (b) using the join indexes and the local rowsets,
the global rowset is computed, which is a bitmap representing the records from
the fact table that belong to the star join. The algorithm to execute this phase
depends on the kind of join indexes available; (c) once the relevant fact table
records have been retrieved using the global rowset, they are joined with the
dimension tables to produce the answer to the query.

When a system adopts a completely transposed file solution, the best plan to
execute a star query is produced by adopting the same first two phases, using
the operators BMIndexFilter and BMJoinIndex, but a different strategy for the third
phase: To evaluate a group-by, the optimizer determines if a group-by can be
moved on the fact table to use the operator IndexGByJoinFromBM, which exploits
the benefits of a specific structure provided to accelerate the operation starting
from the global rowset produced by the BMJoinIndex operator:

IndexGByJoinFromBM(O, {Ai}, {Dj}, {Rh}, {gk}) groups the records of the
fact table that participate in the star join, represented by the global
rowset O, by a set of foreign keys {Ai}, and retrieves the values of the
dimensional columns {Dj}. It returns a set of records whose fields are
the values of the columns {Rh} ⊆ {Ai} ∪ {Dj} and the values of the
aggregate functions {gk}.

To exploit the benefits of doing the group-by before the join, we decided to
consider the three cases studied in [2], [5], which we revised and reformulated
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in the form of equivalent rules of the relational algebra. Due to limitations of
space, we will only show the following case.

Proposition 1. Let α(X) be the set of columns in X and R ��
Cj

S an equi-join
using the primary key pk of S and the foreign key fk of R. R has the invariant
grouping property

AγF (R ��
Cj

S) ≡ πA∪F ((A∪α(Cj)−α(S)γF (R)) ��
Cj

S)

if the following conditions hold: (a) the foreign key of R is functionally deter-
mined by the grouping columns A in R ��

Cj
S; (b) each aggregate function in F

only uses columns of R.

Example 1. Consider the star schema and the query:

Product(PKproduct, pName, cost, division), Keys: {PKproduct}, {pName}
Order(PKorder, FKproduct, FKdealer, price, qty, date), Key: {PKorder}

SELECT pName, SUM(qty) AS Q
FROM Order, Product
WHERE FKproduct = PKproduct AND division = ’D1’ AND qty = 100
GROUP BY pName;

Since the fact table Order has the invariant grouping property, the optimizer is
aware that the group-by can be moved on Order, and so it considers the following
plan:

IndexGByJoinFromBM
({FKProduct}, {pName}, {pName}, {SUM(qty) AS Q})

BMJoinIndex
(FKProductJDI)

BMIndexFilter
(qty = 100)

BMIndexFilter
(division = 'D1')

4 Conclusions

We have briefly presented (a) some of the features of the SADAS system, a data
warehouse management system based on transposed files, and (b) the approach
adopted in generating query plans for star queries with grouping and aggrega-
tions that benefit from specialized data structures. A single-user version of the
system using a subset of SQL is operational and the demonstration at EDBT
will show how its query performance compares favorably with that of com-
mercial row-store data warehouse products, as reported by authors of similar
projects.
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Abstract. In [12] we introduce a novel architecture for data processing, based on
a functional fusion between a data and a computation layer. In this demo we show
how this architecture is leveraged to offer significant speedups for data processing
jobs such as data analysis and mining over large data sets.

One novel contribution of our solution is its data-driven approach. The com-
putation infrastructure is controlled from within the data layer. Grid compute job
submission events are based within the query processor on the DBMS side and in
effect controlled by the data processing job to be performed. This allows the early
deployment of on-the-fly data aggregation techniques, minimizing the amount of
data to be transfered to/from compute nodes and is in stark contrast to exist-
ing Grid solutions that interact with data layers as external (mainly) “storage”
components. By integrating scheduling intelligence in the data layer itself we
show that it is possible to provide a close to optimal solution to the more general
grid trade-off between required data replication costs and computation speed-up
benefits. We validate this in a scenario derived from a real business deployment,
involving financial customer profiling using common types of data analytics.

1 Demonstration Outline

In this demo we will show how integrating a computation grid with a data layer results
in significant execution speedups. For example, with only 12 non-dedicated nodes, a
speedup of approximately 1000% can be attained, in a scenario involving complex
linear regression analysis data mining computations for commercial customer profiling.
In this demo we deploy XG with live connections (on-site demo only also possible)
to our 70+ nodes CPU Grid located in IBM Almaden. We then demonstrate the data
processing scenarios discussed below, including the mining query execution speedup
shown in Figure 2. Additionally, we propose to demonstrate some of the more subtle
features of our system, opening insights into important underlying design decisions.
These features include: (i) the runtime mechanism for on-demand QoS provisioning of
data replication and computation (provisioning the right amount of resources per data
processing task to meet QoS demands, e.g., deadlines), (ii) the on-the-fly recovery on
failure in both computation and data layers, (iii) the automatic discovery of computation

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1115–1120, 2006.
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resources, (iv) the runtime monitoring of computation and data flows between the data
layer and the grid. This demonstration is facilitated by the fact that these features are
exposed through a user-friendly GUI.

2 Introduction

As increasingly fast networks connect vast numbers of cheaper computation and storage
resources, the promise of “grids” as paradigms of optimized, heterogeneous resource
sharing across boundaries [2], becomes closer to full realization. It already delivered
significant successes in projects such as the Grid Physics Network (GriPhyN) [4] and
the Particle Physics Data Grid (PPDG) [10]. While these examples are mostly special-
ized scientific applications, involving lengthy processing of massive data sets (usually
files), projects such as Condor [1] and Globus [3] aim at exploring “computational
grids” from a declared more main-stream perspective.

There are two aspects of processing in such frameworks. On the one hand, we
find the computation resource allocation aspect (“computational grid”). On the other
hand however data accessibility and associated placement issues are also naturally
paramount (“data grid”). Responses to these important data grid challenges include
high performance file sharing techniques, file-systems and protocols such as GridFTP,
the Globus Replica Catalog and Management tools in Globus, NeST, Chirp, BAD-
FS , STORK , Parrot , Kangaroo and DiskRouter in Condor. The ultimate goal of
grids is (arguably) an increasingly optimized use of existing compute resources and
an associated increase of end-to-end processing quality (e.g. lower execution times).
Intuitively, a tighter integration of the two grid aspects (“computational” and “data”)
could yield significant advantages e.g., due to the potential for optimized, faster access
to data, decreasing overall execution times. There are significant challenges to such
an integration, including the minimization of data transfer costs by performing initial
data-reducing aggregation, placement scheduling for massive data and fast-changing
access patterns, data consistency and freshness.

In this work we propose, analyze and experimentally validate a novel integrated
data-driven grid-infrastructure in a data mining framework. Computation jobs can now
be formulated, provisioned and transparently scheduled from within the database query
layer to the background compute Grid. Such jobs include e.g., the computation of
analytical functions over a data subset at the end of which the result is returned back
in a data layer (either by reference to a specific location or inline, as a result of the job
execution). We designed and built a specialized experimental grid infrastructure. One
of the main design insights behind it is that (arguably) any “global” grid is ultimately
composed of clustered resources at the “edge”. It is then only natural to represent it
as a hierarchy of computation clusters and associated close-proximity data sources.
Using our end-to-end solution (data-layer aggregation and compute grid invocation), in
our considered application domain (data analysis for predictive modeling) significant
speed-ups have been achieved versus the traditional case of data-layer processing.

Scenario: Customer Analytics. Let us now explore an important commonly encoun-
tered operation scenario for data mining in a commercial framework that yielded sig-
nificant cost and speed-up benefits from our solution: a large company (i.e., with a cus-
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tomer base of millions of customers), maintains an active customer transaction database
and deploys data mining to better customize and/or optimize its customer-interaction
response and associated costs. There are two types of customer interactions, each sub-
ject to different types of requirements and response mechanisms, namely (i) incoming
(“pull” model) inquiries and (ii) outgoing advertisements (“push” model). For space
reasons, here we are discussing (i).

Incoming inquiries (e.g., over the phone, online) are handled in a real-time or short-
notice manner. There are bounds on response-time (e.g., Human-Computer interaction
experiences should feature response times of under 7-8 seconds to be acceptable) [11]
to be satisfied. An imprecise but fast initial “pre”-response might be often preferable to
an exact but slow one, as it is likely that higher waiting-times would result in a drop in
overall customer satisfaction.

The company’s response data is based on previously recorded customer “profiles”,
composed of a history of transactions and a set of related predictive models. Such
profiles need to be maintained with sufficient (preferably maximal) accuracy and the
associated (predictive) models re- computed periodically or as part of an event- driven
paradigm in which associate customer events trigger individual model re- computations.

In such an interaction, often the center-point (and likely the most expensive) is
processing a function of the immediate input data and the customer predictive models
in the stored profile (“model scoring”). Often, also, new models need to be computed on
the fly. Because of its real-time nature, and the potential for thousands of simultaneous
incoming customer requests, this scenario is extremely challenging.

To understand the size of this problem, let us quantify some of the previous state-
ments with real data. Let us assume a customer base of over 10 million customers.
Roughly 0.1% (10k) of them are active at any point in time (interactive and automated
phone calls, web access, other automated systems). Preferably, the company response in
each and every transaction should be optimally tailored (i.e., through on-demand data
mining) to maximize profit and customer satisfaction. On average, only 75% (7.5k)
of these active (meta)transactions are resulting in actual data mining tasks and, for
each second, only 20% of these task- triggering customers require data mining. To
function within the required response-behavior boundary, the company has to thus
handle a continuous parallel throughput of 1500 (possibly complex) simultaneous data
mining jobs. Achieving this throughput at the computation and data I/O level is very
challenging from both a cost and scalability viewpoint.

3 System Architecture

The end-to-end solution comprises several major components: modeling, aggregation
and computation outsourcing (in the data layer) and grid scheduling and management
(grid layer).

Data Layer. Designing specifically for data mining over large data sets, requires a care-
ful consideration of network data transfer overheads. As traditional data mining solutions
are often based on code directly executed inside the database query processor, these
overheads could often be reduced by an initial data aggregation step performed inside
the data layer, before outsourcing the more computation heavy model generation tasks.
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Fig. 1. (a) Data Layer Overview: The grid is leveraged transparently from the data side. Mining
tasks can execute normally within the query processor (e.g., as stored procedures). (b) Both data
replication/placement (to cluster stores) and job scheduling in the hierarchical grid infra-structure
is controlled by a meta scheduler.

The solution allows for dispatching of multiple simultaneous data processing tasks
from within the query processor (i.e. SQL level) by performing simple calls through
a user defined function (UDF) mechanism. At the completion of these tasks, their
results become available within the actual data layer, ready for further processing. The
interaction between the data layer and compute grid is composed of two elements: job
submission control and data placement/replication. Job submission is initiated in the
database and forwarded to the main computation grid through a webservice interface
exposing the main grid scheduling control knobs. This interaction is enabled by user de-
fined functions (UDF) within DB2, (constructs present also in a majority of big-vendor
DBMS solutions including DB2 [6], Oracle [9] and SQL Server [8]).

The grid scheduler controls are exposed through a webservice interface. This is
achieved through the XML Extender [7] and its SOAP messaging capabilities which
allows the invocation of job submission methods exposed by the schedulers in the
compute grid layer (see Figure 1 (a)). The invocation is asynchronous so as to not block
the calling thread and to allow actual parallelism in data processing. While extensive
details are out of the current scope, for illustration purposes, let us discuss here the
query in Figure 2 (a).

After the initial aggregation step (performed by agg()) the resulting computations
are outsourced to the grid (grouped by customer, c id) through the analysis grid()

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6  7  8  9  10 11 12 13

ex
ec

ut
io

n 
tim

e 
(s

)

compute nodes

SELECT c_id, analysis_grid(agg(c_assets))
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GROUP BY c_id

Fig. 2. (a) With increasing number of computation nodes, query execution time decreases.
(b) Sample Query.
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UDF. This constructs the necessary SOAP envelopes, converts the arguments to a serial-
izable format and invokes the grid scheduler with two parameters for each customer: (i)
an URL reference to the external regression analysis code (located in the grid code-base,
see Figure 1 (b)) and (ii) a reference to the aggregate input data.

There are two alternatives for data transfer to/from the compute grid: inline (as an
actual parameter in the job submission – suitable for small amounts of input data and
close local clusters) and by-reference where actual input data sources are identified as
part of the job submission – suitable for massive data processing in a global grid. To
support the input/output data by reference paradigm, in our design data replication is
activated by the meta-scheduler at the grid cluster level, leveraging “close” data stores
and linking in with data replication/placement mechanisms (Information Integration
[5]) if the data is “far” (see Figure 1 (b)).

Computation Layer. XG is a grid management solution designed for tight data-layer
integration. It enables a hierarchical grid structure of individual fast(er)-bus compute
clusters (at the extreme just a single machine). This design derived from the insight
that (arguably) a majority of grid infra-structures are to be composed of multiple high-
speed cluster networks linked by lower speed inter-networks. Designing an awareness
of this clustering structure in the actual grid allows for location-based scheduling and
associated data integration and replication algorithms.

The grid hierarchy is supported by the concept of a meta-scheduler, (Figure 1 (b)) a
software entity able to control a set of other individual (meta)schedulers in a hierarchical
fashion, composing a multi-clustered architecture. Job submission at any entry-point
in this hierarchy results in an execution in the corresponding connected subtree (or
sub-graph). At the cluster level a scheduler is managing a set of computation nodes. A
node is composed (among others) of an Execution Engine and an Execution Monitor.

The scheduler deploys a discovery protocol for automatic discovery of available
compute resources, a polling mechanism for monitoring job progress and notifica-
tions for job rescheduling (e.g., in case of failures) and a scheduling algorithm for
job scheduling. The scheduling algorithm is designed as a plugin within the scheduler,
allowing for different scheduling policies to be hot- swapped. For inter-operability, at
all levels, the schedulers are designed be invoked (e.g. for job scheduling) through a
web-service interface. This interface allows for job submission (with both inline and
by-reference data), job monitoring and result retrieval among others. More details are
out of scope here.

Results. Our experimental test-bed consists of a grid cluster composed of 70 general
purpose 1.2GHz Linux boxes with approximately 256MB of RAM each. The data layer
deploys IBM DB2 ver. 8.2. with the XML Extender [7] enabled. We evaluated the actual
speed-ups of the model generation process with increasing number of grid nodes. Figure
2 (b) illustrates a data mining scenario (for 100 customer profiling jobs) for which
execution time went down from roughly 112 seconds for one compute node, to about 11
seconds when 12 nodes where deployed. The deployed code in both the data layer and
the grid remained the same. What changed was just the availability of new computation
power on the grid side.
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4 Conclusions

In this work we introduced a novel architecture for data processing, a functional fusion
between a data and a computation layer. We then experimentally showed how our
solution can be leveraged for significant benefits in data processing jobs such as data
analysis and mining over large data sets.

There are significant open avenues for future research including: the integration of
a message passing interface solution in the compute grid, more complex failure recov-
ery augmented by check-pointing, the implementation of privacy-preserving primitives
for data processing, the exploration of both data placement and computation schedul-
ing as first class citizens in resource scheduling. This becomes especially relevant in
on-demand environments where a maximal throughput in data and compute intensive
application is not possible using current manual data partitioning and staging methods.
Last but not least, we believe grid-aware query processing to be an exciting avenue for
future research, ultimately resulting in a computation aware grid query optimizer within
a traditional DBMS query processor.
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1 Introduction

A data warehouse (DW) is a database that integrates external data sources
(EDSs) for the purpose of advanced data analysis. The methods of designing a
DW usually assume that a DW has a static schema and structures of dimensions.
In practice, schema and dimensions’ structures often change as the result of
the evolution of EDSs, changes of the real world represented in a DW, new
user requirements, new versions of software being installed, and system tuning
activities. Examples of various change scenarios can be found in [1, 8].

Handling schema and dimension changes is often supported by schema evolu-
tion [2], temporal extensions [3, 8, 5, 10, 7], and versioning extensions [6]. Schema
evolution approaches maintain one DW schema and the set of data that evolve
in time. Temporal versioning techniques use timestamps on modified data in
order to create temporal versions. In versioning extensions, a DW evolution is
managed partially by means of schema versions and partially by data versions.
These approaches solve the DW evolution problem partially. Firstly, they do not
offer a clear separation between different DW states. Secondly, the approaches do
not support modeling alternative, hypothetical DW states required for a what-if
analysis. In order to eliminate the limitations of the aforementioned approaches,
we propose a multiversion data warehouse.

2 Multiversion Data Warehouse - Supported Features

The multiversion data warehouse (MVDW) serves as a framework for: (1) sepa-
rating various structures and contents of a DW, corresponding to various time
periods; (2) creating and managing multiple alternative virtual business scenar-
ios, required for the what-if analysis; (3) running queries addressing either a
single or multiple DW versions [1].

Concept. The MVDW is composed of persistent versions, each of which de-
scribes a DW schema and data within a given time period. A DW version is
in turn composed of a schema version and an instance version. A schema ver-
sion describes the structure of a DW, whereas an instance version represents
the set of data described by its schema version. Both of them are valid within
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a certain period of time, represented by validity timestamps. We distinguish
real and alternative versions. Real versions are used for representing changes in
a real business environment, e.g. changing organizational structures, changing
geographical borders of regions. Real versions are linearly ordered by the time
they are valid within. Alternative versions represent virtual business scenarios
and are used for simulation purposes. All DW versions form a version derivation
graph whose root is the first real version.

Schema and Dimension Structure Changes. The structure of a schema
version and dimensions is modified by the set of operations that include among
others: creating/modifying/dropping/renaming fact and level tables, adding/
modifying/dropping/renaming attributes, inserting/updating/deleting fact and
dimension records, splitting/merging/reclassifying dimension records.

Data Sharing. Multiple DW versions may partially use the same sets of data
e.g., two real versions may use the same dimension. In order to eliminate data
redundancy and reduce data volume, our prototype system applies data sharing.
To this end, an information about all DW versions a given record belongs to is
stored with this record in the form of bitmaps. A single bitmap represents one
DW version. The number of bitmaps equals to the number of versions sharing
data. The number of bits in a bitmap equals to the number of records in a given
table. The ith bit in bitmap describing version Vm, is set to 1 if the ith record
in the table exists in Vm. Otherwise the bit is set to 0.

Querying Multiple DW Versions. In a MVDW, data of a user’s interest are
usually distributed among several versions and a user may not be aware of the
location of particular data. Moreover, DW versions addressed in queries may
differ with respect to their schemata. For the purpose of querying a MVDW we
proposed an extension to a standard SQL language that allows to: (1) address
either a single version (further called a single-version query - SVQ) or multiple
versions (further called a multi-version query - MVQ), (2) present results from
various DW versions as if they belonged to a selected DW version, c.f. [9].

A user expresses a MVQ in terms of a selected schema version (usually the
current real one), then a MVQ is processed by the parser and executor in the fol-
lowing steps. St1: Constructing the set of DW versions that are to be addressed
in a MVQ - to this end version validity timestamps are used. St2: Decomposing
MVQ into n SVQs taking into account schema changes (e.g. domain, attribute
name, and table name changes). Each of SVQs addresses its own DW version.
St3: Executing SVQs in their own DW versions. St4: Returning results of ev-
ery SVQs to a user and presenting them separately. Additionally, every result
set is annotated with: (1) information about a DW version the result was ob-
tained from, (2) meta information about schema (e.g. attribute/table renaming,
attribute domain modification) and dimension instance changes (e.g. reclassi-
fying, splitting, or merging dimension records) between adjacent DW versions
addressed by a MVQ. This meta information allows to analyze and interpret
the obtained data appropriately. St5: Integrating SVQ results into one common
data set (if possible). This set is represented in a DW version specified by a user
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(the current real version by default). The integration will not be possible if, for
example, some attributes are missing in some queried DW versions.

Transactional Maintenance. A MVDW is maintained by transactions in order
to assure the consistency of its schema and data versions. To this end, we use four
basic types of transactions. A versioning transaction is responsible for deriving
a new DW version. A schema transaction is responsible for modifying a schema
version. A data refreshing transaction is responsible for loading/refreshing fact
and dimension level tables. A user transaction is applied to analytical process-
ing by end users. The isolation of these transactions is achieved by a standard
multiversion concurrency control algorithm.
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Fig. 1. The software architecture of the MVDW prototype

Metadata Management. In order to provide schema and data versioning and
querying a MVDW, the set of well defined metadata is required. Our system
manages metadata on: (1) the structure and content of every DW version, (2)
changes applied between adjacent versions, (3) data conversion methods - which
are required for MVQs, (4) transactions run in the system.

Prototype Architecture and Implementation. Our MVDW has been im-
plemented as a middle layer (cf. Figure 1) on top of Oracle10g DBMS that
stores metadata, versions of data, and the library of the system’s management
software. A user operates on a MVDW by means of a graphical interface imple-
mented in Java. It makes available tools for managing multiversion schema and
data, executing multiversion queries, and presenting their results. The middle
management layer is composed of four main software modules, i.e. transaction
manager, schema and data manager, MVQ parser, and MVQ executor.

3 Prototype Demonstration

The demonstration of the prototype MVDW will focus on: (1) showing how mul-
tiple DW versions are derived and managed, (2) applying schema and dimension
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modification operations to selected DW versions, (3) demonstrating how queries
can address multiple DW version that differ with respect to their schemata and
dimension structures, (4) demonstrating how results of MVQs are visualized
and how the results are annotated with meta information, (5) populating DW
versions with data and explaining data sharing between multiple DW versions.

4 Contribution

To the best of our knowledge, our MVDW prototype is the first system that sup-
ports changes not only to the structure of dimensions but also to the structure
of a DW schema. Real DW versions can also be used for storing versions of data
only, and in this case our MVDW offers the functionality identical to temporal
systems. Alternative DW versions are used for simulation purposes within the
what-if analysis. By physically separating DW versions, one can clearly distin-
guish between different states of reality or simulation scenarios. A user can query
only versions of interest, thus limiting the searched volume of data. Our imple-
mentation of a multiversion query language allows to query DW versions that
differ with respect to their schemata and the structure of dimensions [9]. Addi-
tionally, query results are annotated with meta information on changes applied
to the queried DW versions, which is a unique feature. This meta information
allows to interpret the obtained results correctly. Changes made between DW
versions are traced in the metaschema, but unlike the lineage techniques e.g., [4],
our prototype allows to manage the provenience of data and schema elements
only inside the MVDW.
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Abstract. We present the architecture of Natix V2. Among the features of this
native XML Data Store are an optimizing XPath query compiler and a powerful
API. In our demonstration we explain this API and present XPath evaluation in
Natix using its visual explain facilities.

1 The Natix System
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Fig. 1. Natix architecture

The Natix Project [3] was among the first
to realize the idea of a native XML Data
Store (XDS), which supports XML process-
ing down to the deep levels of storage and
query execution engine. Such native XDSs
are now also being introduced by major
database vendors [1]. Natix Version 2.0 pro-
vides most features of a native, enterprise-
class XDS to application programmers, e.g.
ACID transactions, efficient processing of
XPath 1.0, and a rich set of APIs. Fig. 1
shows the modules contained in the Natix
C++ library.

Applications use Natix’ schema manage-
ment facilities to organize their persistent
XML data collections. The topmost organizational unit is the Natix instance. Sys-
tem parameters, such as main memory buffer sizes, are instance-specific. Both trans-
action and crash recovery operate at the instance level. Therefore, all operations of
a particular transaction must be executed within the context of a single instance.
Each instance consists of several repositories that contain documents of a particu-
lar application domain. For example, the product catalog of an online shop could
be stored within one repository, while another one would be used for the business
reports. A repository comprises document collections. Document collections repre-
sent an unordered set of related documents, typically having a similar structure and
markup, although they are not required to conform to a conjoint schema. Applica-
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tions use this hierarchy level for grouping documents together that are processed as
a unit, for example, all items belonging to a particular commodity group of an online
shop.

2 Application Programming Interface

Programming convenience, flexibility, and high performance are crucial for developing
universal data management applications. Below, we describe the concepts that enable
the Natix API to satisfy these requirements. Natix provides a variety of language bind-
ings for the concepts. We present the C++ binding as an example.

2.1 Concepts

The Natix API [4] allows accessing and manipulating entities on all levels of the logi-
cal hierarchy through request objects. To perform a database operation, an application
creates a request object and and forwards it to the system. Instance-level operations
such as instance creation and destruction are performed by sending requests to the
instance, while transaction-level operations are performed by sending them to corre-
sponding transaction objects.

The API uses fragments as an abstract representation of all XML data that is han-
dled by the Natix system. Fragments are an analogy to UNIX file descriptors, which
provide a uniform interface to a variety of physical objects such as files, sockets, mem-
ory regions, etc. Natix fragments provide a uniform interface to a variety of XML data
sources, for example documents stored in Natix, documents stored in the file system,
entire document collections, or query results.

Another important concept are views. Generally, there are many ways to represent
and access XML data, such as the DOM and the SAX API, each of them having their
particular benefits and drawbacks depending on the requirements of the respective ap-
plication. In order to provide maximum flexibility, Natix implements many different
interfaces for accessing XML data. To access an XML data source through a particular
API, the application opens a corresponding view on a fragment. The current Natix re-
lease includes, among others, views for both the DOM and the SAX API, a C++ stream
interface, a document metadata view and various sequence views for iterating over el-
ements contained in an organizational unit (for example, all documents of a particular
collection).

The convenience and flexibility of the fragment/view concept is complemented by
an efficient implementation mechanism. Natix uses a fragment/view matrix to obtain
the most efficient implementation of a particular API for a given fragment type. For
example, when accessing a document in the file system using a DOM view, a conven-
tional parser is used to create a main-memory DOM representation. In contrast, if a
DOM view is requested for a document stored in Natix, an object manager will make
sure that only those parts that are actually required by the application are loaded from
secondary storage, thereby reducing main memory consumption and avoiding unneces-
sary I/O overhead. As another example, if a SAX view is opened for a query result, the
SAX events can be returned to the application in a pipelined fashion while the query is
being evaluated.



Natix Visual Interfaces 1127

2.2 C++ Language Binding

We will illustrate the Natix binding for C++ on the basis of the evaluation of XPath
queries1. Two queries will be used as examples, one for selecting the book with the spe-
cific id (//book[@id=’2342’]) from a particular book collection, the other one
for gathering all invoices that exceed a specific amount (/invoice[sum(item/
@price) > 200]) from a document collection.

/ / s t a r t t h e t r a n s a c t i o n
T r a n s a c t i o n t r a n s ( i n s t ) ;

/ / c r e a t e t h e quer y
QueryHandle que ryHand le =

Crea t eQueryT idy ( t r a n s ,
” / / book [ @id = ’2342 ’ ] ” ) ;

/ / p r e p a r e t h e quer y
Prepa reQueryT idy ( t r a n s , que ryHand le ) ;

/ / e x e c u t e i t and g e t a f r a g m e n t
F r a g m e n t D e s c r i p t o r q u e r y R e s u l t =

E xecu teQueryT idy ( t r a n s , queryHandle ,
” s t o r e ” , ” books ” ,
” document . xml” ) ;

OpenViewTidy<n a t i x : : DOMView>
domView ( t r a n s , q u e r y R e s u l t ) ;

x e r c e s c : : DOMNode ∗node=domView−>getNode ( ) ;

Fig. 2. Example for the query API

As proposed by the W3C,
query execution in Natix is di-
vided into two phases. We dis-
tinguish between a static and a
dynamic evaluation phase. During
the static phase, the query is com-
piled and prepared to be executed.
A static query context is provided,
which allows passing parameters
to the compilation process. Af-
ter the query is successfully pre-
pared, it can be executed. A dy-
namic query context defines the
environment for query execution,
in particular the context item (e.g.
a document or a collection). Fig-
ure 2 shows a few lines of code for
executing a query on a single doc-
ument. At the end, a DOMView
provides a DOM representation of the requested book element. Note that the actual
DOMNode object returned by the DOMView is a binary compatible instance of the
C++ DOM binding of Xerces C++ [5].

Executing the second example query on all invoices in one collection and opening a
DocumentSequenceView would return an iterator for all qualifying documents.

For programming convenience, the Natix API makes use of several C++ language
features such as automatic database resource deallocation when destroying the corre-
sponding objects. In Natix parlance, all of the request objects used in the example are
Tidy requests, which means that they free any resources when they are destroyed, for
example if an exception has been raised.

3 Executing XPath Queries in Natix

Next, we give an overview of efficient and scalable XPath query compilation and evalu-
ation. During this process an XPath query runs through different stages. Natix offers one
visual explain facility for each of the following three steps of the compilation process.2

1 The interface is capable of handling additional query languages such as XQuery or XSLT.
2 The tool used to trace the compilation process in the demonstration is also available online at

http://pi3.informatik.uni-mannheim.de/xpc.html
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The result of the first stage — after parsing and normalizing the query — is an
internal expression representation. It precisely describes the structure of a query, e.g.
relationships between expressions or classification of predicates.

σ

Υchild:book

Υd-o-s::node()

�root

=

Afirstnode

Υ@id

�

2342

Fig. 3. Query evaluation plan

Continuing with this representation, our
process departs from the conventional ap-
proach of interpreting XPath and enters the
realm of algebraic query evaluation. For ev-
ery expression we apply translation rules that
yield an operator tree as a result. Figure 3
shows an operator tree for the first example
query.

Besides special operators like unnestmap
(Υ ), this plan uses well-known operators such
as a selection (σ), or aggregation (A). The de-
tailed translation process is described in [2].

This query execution plan (QEP), which is a physical algebra plan, specifies detailed
rules for evaluating the query. The last step is called code generation and produces code
that can be evaluated efficiently in the Natix runtime system (RTS). The RTS imple-
ments a full-featured algebra as introduced in [2]. To provide scalability all sequence-
valued algebra operators are implemented as iterators. The subscripts of these operators
are implemented using assembler-like programs that are interpreted by the Natix virtual
machine (NVM). These provide mechanisms to access the persistent representation of
documents in the Natix page buffer or provide comparison and string functions.

4 Demonstration

Our demonstration consists of two main components: (1) We provide guidance of how
to build XML applications and how to retrieve XML data using the various interfaces
offered by Natix. Using several sample programs and a graphical user interface we
demonstrate how to create and manage huge XML repositories. Opening views or exe-
cuting queries shows a variety of possibilities for efficiently accessing the stored data.
(2) We explain the internals of the XPath query compiler using the various graphi-
cal representations of query plans that are provided by Natix. Several example queries
from, for instance, the XMark benchmark help to understand and interpret the facets of
our XPath compiler after every compilation step using the different visual explain fa-
cilities. The resulting query evaluation plans provide deep insight into the Natix query
execution engine.

The Natix XDS is available for download at [4].
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Abstract. The aim of this paper is to demonstrate Hermes, a robust framework 
capable of aiding a spatio-temporal database developer in modeling, 
constructing and querying a database with dynamic objects that change 
location, shape and size, either discretely or continuously in time. Hermes 
provides spatio-temporal functionality to state-of-the-art Object-Relational 
DBMS (ORDBMS). The prototype has been designed as an extension of STAU 
[6], which provides data management infrastructure for historical moving 
objects, so as to additionally support the demands of real time dynamic 
applications (e.g. Location-Based Services - LBS). The produced type system is 
packaged and provided as a data cartridge using the extensibility interface of 
Oracle10g. The offspring of the above framework extends PL/SQL with spatio-
temporal semantics. The serviceableness of the resulting query language is 
demonstrated by realizing queries that have been proposed in [9] as a 
benchmarking framework for the evaluation of LBS. 

1   Introduction 

In recent years, we have been witnessing the explosion of emerging non-traditional 
database applications, such as location-based services. The main components of the 
underlying database of such applications include stationary and moving objects. The 
so-called Moving Objects Databases (MODs) are (or soon will be) ubiquitous. As the 
number of mobile commerce or, in general, mobile services, increases rapidly 
everyday, the need for robust management systems about location data, as well as the 
analysis of user movements are vital. In this paper, we present the design and 
implementation issues of a research prototype for efficient location-based data 
management, called Hermes (the ancient Greek god of Commerce). Hermes can be 
considered as a MOD management system with emphasis on the peculiarities of 
MODs, from representation to querying issues. Someone could mention a series of 
applications of Hermes at various levels in the context of mobile services. For 
example, Hermes can be used as a plug-in in telecom companies’ data warehouses 
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that include spatio-temporal content. The previous example refers to offline 
processing of such historical data. Besides, Hermes supports the data management of 
real-time mobile services, addressing the issues of modern dynamic applications. For 
instance, imagine a user (tourist, consumer) moving around a city equipped with a 
next-generation mobile terminal (e.g. 3G cell-phone or PDA enhanced by the 
presence of a GPS receiver), receiving hints of information, commercial spots etc. 
Researchers [1], [2], [3], [4], motivated from such kind of application scenarios have 
tried to model spatio-temporal databases using this concept of moving objects and 
integrate them into any extensible DBMS.  On the other hand, commercial relational 
or object-relational database systems offer limited capability of handling this kind of 
non-traditional data (object trajectories, in time and space). Hermes is the partial 
realization of the above discussed research vision. 

2   The Prototype 

Hermes is developed as a system extension that provides spatio-temporal 
functionality to Oracle10g’s Object-Relational Database Management System 
(ORDBMS). The system is designed in a way that it can be used either as a pure 
temporal or a pure spatial system, but its main functionality is to support the 
modelling and querying of continuously moving objects. Such a collection of data 
types and their corresponding operations are defined, developed and provided as an 
Oracle data cartridge. Hermes Moving Data Cartridge (Hermes-MDC) is the core 
component of the Hermes system architecture. Hermes-MDC provides the 
functionality to construct a set of moving, expanding and/or shrinking geometries, as 
well as time-varying base types. Each one of these moving objects is supplied with a 
set of methods that facilitate the cartridge user to query and analyze spatio-temporal 
data. Embedding this functionality offered by Hermes-MDC in Oracle’s DML [5], 
one obtains an expressive and easy to use query language for moving objects. 

In order to implement such a framework in the form of a data cartridge we exploit 
a set of standard data types together with the static spatial data types offered by the 
Spatial option of Oracle10g [5] and the temporal literal types introduced in a temporal 
data cartridge, called TAU Temporal Literal Library Data Cartridge (TAU-TLL) [6]. 
Based on these temporal and spatial object data types Hermes-MDC defines a series 
of moving object data types illustrated in the UML class diagram of Figure 1 The 
interested reader in a detailed discussion for the resulted type system is referred to [7]. 

3   Architecture of Hermes 

Figure 2 illustrates the architecture of the Hermes system. A straightforward 
utilization scenario for a Hermes-MDC user is to design and construct a spatio-
temporal object-relational database schema and build an application by transacting 
with this database. In this case, where the underlying ORDBMS is Oracle10g, in 
order to specify the database schema, the database designer writes scripts in the 
syntax of the Data Definition Language (DDL), which is the PL/SQL, extended with 
the spatio-temporal operations previously mentioned. 
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To build an application on top of such a database for creating objects, querying 
data and manipulating information, the application developer writes a source program 
in Java wherein he/she can embed PL/SQL scripts that invoke object constructors and 
methods from Hermes-MDC. The JDBC pre-processor integrates the power of the 
programming language with the database functionality offered by the extended 
PL/SQL and together with the ORDBMS Runtime Library generate the application’s 
executable. By writing independent stored procedures that take advantage of Hermes 
functionality and by compiling them with the PL/SQL Compiler, is another way to 
build a spatio-temporal application. 

 

 

 

Fig. 1. Hermes-MDC Class Diagram Fig. 2. The architecture of Hermes 

4   The Demonstration Scenario 

In order to demonstrate the usefulness and applicability of the server-side extensions 
provided by Hermes we implement the majority of the benchmark queries for LBS 
proposed in [9]. Additionally, we specially develop an LBS application scenario for 
travellers entering the area of an airport, construct a spatial database modeling the 
ground plan of the airport, and input random trajectories of travellers moving around 
the area. Then, we pose queries following the same classification as proposed in [9]. 
Indicative examples include: 

• Queries on stationary reference objects; examples include point (e.g. does this 
check-in serve my flight?), range (e.g. are there any fellow travellers in the area 
in front of this check-in?), distance-based (e.g. find the closer check-in), nearest-
neighbor (e.g. find the closest coffee shops to my current location) and 
topological queries (e.g. find travellers crossed this gate during the past hour); 
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• Queries on moving reference objects; examples include distance-based (e.g. 
find travellers passed close to me this evening) and similarity-based queries 
(e.g. find the three most similar trajectories to the one I have followed so far in 
the airport); 

• Join queries; examples include distance-join (find the closest check-ins to 
travellers of this flight) and similarity-join queries (find the two most similar 
pairs of travellers’ trajectories); 

• Queries involving unary operators, such as travelled distance or speed (e.g. 
find the average speed of travellers on Saturday nights). 

Based on related research work [8] the above queries constitute a minimum 
functionality a MOD system should provide. The above demonstration scenario is 
also accompanied (wherever appropriate) by visual illustrations formulated by 
MapViewer [5] (see Figure 3). 

 

Fig. 3. Visualization of entry and exit points in an area of interest 

5   Conclusions 

In this paper, the Hermes prototype system was introduced. Hermes has been 
designed as a system extension that provides spatio-temporal functionality to state-of-
the-art ORDBMS. The usability of the prototype is demonstrated by applying 
benchmark queries proposed for the evaluation of systems providing location based 
services. Future work includes knowledge discovery from MODs. Typical examples 
we plan to incorporate in Hermes framework are: ‘characterization of routes as 
(in)frequent’, ‘habits in motion with respect to space and/or time constraints’ etc. 
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Abstract. TeNDaX is a collaborative database-based real-time editor
system. TeNDaX is a new approach for word-processing in which doc-
uments (i.e. content and structure, tables, images etc.) are stored in a
database in a semi-structured way. This supports the provision of col-
laborative editing and layout, undo- and redo operations, business pro-
cess definition and execution within documents, security, and awareness.
During document creation process and use meta data is gathered auto-
matically. This meta data can then be used for the TeNDaX dynamic
folders, data lineage, visual- and text mining and search.

We present TeNDaX as a word-processing ‘LAN-Party’: collaborative
editing and layout; business process definition and execution; local and
global undo- and redo operations; all based on the use of multiple editors
and different operating systems. In a second step we demonstrate how one
can use the data and meta data to create dynamic folders, visualize data
provenance, carry out visual- and text mining and support sophisticated
search functionality.

1 Introduction

Text documents are a valuable resource for virtually any enterprise and orga-
nization. Documents like papers, reports and general business documentations
contain a large part of (business) knowledge. Documents are mostly stored in
a hierarchical folder structure on file servers and it is difficult to organize them
with regard to classification, versioning etc., although it is of utmost importance
that users can find, retrieve and edit documents in a user-friendly way.

In most of the commonly used word-processing applications documents can be
manipulated by only one user at a time and tools for collaborative document edit-
ing and management are rarely deployed. Documents should be seen as a valuable
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business asset which requires an appropriate data management solution. The
need to store, retrieve and edit these documents collaboratively with guaranteed
mechanisms for security, consistency, availability and access control is obvious.

In the following, we present the database-based TeNDaX editor system which
enables collaborative document editing and management, all within a interactive
multi-user database environment.

2 The TeNDaX Editor System

TeNDaX stands for a Text Native Database eXtension. It enables the storage of
text in databases in a native form so that text editing is finally represented as
real-time transactions. Under the term ‘text editing’ we understand the follow-
ing: writing and deleting text (characters), copying and pasting, defining layout
and structure, inserting notes, setting access rights, defining business processes,
inserting tables, pictures, and so on, i.e. all the actions regularly carried out
by word processing users. By ‘real-time transactions’ we mean that editing text
(e.g. writing a character/word) invokes one or several database transactions so
that everything which is typed appears within the editor as soon as these objects
are stored persistently. Instead of creating files and storing them in a file sys-
tem, the content and all of the meta data belonging to the documents is stored
in a special way in the database, which enables very fast transactions for all
editing tasks [3]. The database schema and the transactions are designed to be
used in a multi-user environment, as is customary in the database context. As
a consequence, many of the database features (data organization and querying,
recovery, integrity and security enforcement, multi-user operation, distribution
management, uniform tool access, etc.) are now, by means of this approach, also
available for word processing.

TeNDaX creates an extension of DBMS to manage text. This addition is
carried out ‘cleanly’ and the responding data type represents a ‘first-class citizen’
[1] of a DBMS (e.g. integers, character strings, etc.).

Since the document data is stored in the database, we automatically gather
meta data during the whole document creation process [6]. We gain meta data
on document level (creator, roles, date and time, document object ID, document
names, structure affiliation, note affiliation, security settings, size, authors, read-
ers, state, places within static folders and user defined properties), on character
level (author, roles, date and time, copy-paste references, local and global undo /
redo, security settings, version and user defined properties) and from structure,
template, layout, notes, security and business process definitions.

3 Demonstration: Word-Processing ‘LAN-Party’

In our word-processing ‘LAN-Party’ we focus on the TeNDaX editor system.
Editors installed on different operating systems (Windows XP, Linux, Mac OSX)
will support the demonstration of the following TeNDaX features:
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- Collaborative editing: We will concurrently work with multiple users on
the same document. Editing a document includes operations like writing
and deleting characters [4], inserting pictures, creating tables, applying lay-
out and structure [2], local and global undo- and redo operations, setting
access rights etc. All these operations are carried out in a dynamic multi-
user database environment.

- Business process definitions and flow: We will define and run a dynamic
workflow within a document for ad-hoc cooperation on that document [5].
Tasks such as translation or verification of a certain document part can
be assigned to specific users or roles. The workflow tasks can be created,
changed and routed dynamically, i.e. at run-time.

- Dynamic Folders: On the base of the automatically gathered document
creation process meta data we will build dynamic folders [6]. Dynamic folders
are virtual folders that are based on meta data. A dynamic folder can contain
all documents a certain user has read within the last week. Its content is
fluent and may change within seconds (e.g. as soon as a document changes).
This represents a novel method for document management and text retrieval.

- Data Lineage: We can display document content provenance. Meta data
about all editing and all copy- and paste actions is stored with the docu-
ment. This includes information about the source of the new document part,
e.g. from which other document a text has been copied (either internal or
external sources). We use this meta data to visualize data linage as depicted
in Figure 1.

- Visual Mining: The information visualization plug-in provides a graphical
overview of all documents and offers a variety of interaction modalities. It
is possible to navigate the document and meta data dimensions to gain
an understanding of the entire document space. A visualization of a set of
documents is shown in Figure 2.

- Search: The meta data based searching and ranking plug-in offers sophisti-
cated search options. Documents and parts of documents can either be found
based on the document content, or structure, or document creation process
meta data. The search result can be ranked according to different ranking
options, e.g. ‘most cited’, ‘newest’ etc.

Fig. 1. Data Lineage Fig. 2. Visual Mining
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4 Conclusion

The collaborative database-based real-time TeNDaX editor system enables the
storage and management of documents within a database. It natively represents
text in fully-fledged databases, and incorporates all necessary collaboration sup-
port. It offers functions such as editing, awareness, fine-grained security, sophisti-
cated document management, versioning, business processes, text structure, data
lineage, text and visual mining - all within a collaborative multi-user database
environment.

Within the above presented TeNDaX editor system we use database technol-
ogy to provide full word-processing functionality and sophisticated document-
and meta data visualization. TeNDaX extends database technology and offers
database-based universal data management for text documents.
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Abstract. The τ -Synopses system was designed to provide a run-time
environment for multiple synopses. We focus on its utilization for syn-
opses management in a single server. In this case, a critical function
of the synopses management module is that of synopses reconciliation:
given some limited memory space resource, determine which synopses
to build and how to allocate the space among those synopses. We have
developed a novel approach of synopses calibration for an efficient com-
putation of synopses error estimation. Consequently we can now perform
the synopses reconciliation in a matter of minutes, rather than hours.

1 Introduction

Data synopses are concise representations of data sets, which enable effective
processing of approximate queries to the data sets. Recent interest in approxi-
mate query processing and in effectively dealing with massive data sets resulted
with a proliferation of new synopses.

The τ -Synopses system [6] was designed to provide a run-time environment
for local and remote execution of various synopses. It provides the management
functionality for registered synopses, and it enables easy registration of new
synopses either locally or from remote soap-enabled platforms. The τ -Synopses
system can serve as an effective research platform for experimental evaluation
and comparison of different synopses, as well as a platform for studying the effec-
tive management of multiple synopses in a federated or centralized environment.

The system was previously presented in the context of remote-synopses,
demonstrating how synopses can be managed in a distributed fashion [5]. We
now focus our attention on the utilization of the τ -Synopses system for synopses
management in a single server. In this case, a critical function of the Synopses
Manager module is that of synopses reconciliation: given some limited memory
space resource, determine which synopses to build and how to partition the
available space among those synopses.

The problem of synopses reconciliation was previously studied and several
algorithms were presented (e.g., [3, 2]). A basic operation in all reconciliation
algorithms is that of estimating the accuracy of synopses implementations for
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Fig. 1. Synopses Manager Architecture

given data sets. The common approach in obtaining such estimation is by in-
voking expensive queries into the original data. We present a novel approach, in
which the reconciliation algorithm can consult with an error-estimation module,
which can provide an error estimation without accessing the original data itself.
Instead, the error-estimation module computes the synopsis approximation-error
based on synopsis characteristics, which are computed by a calibration process
in integration-time, and statistical data about the data sets, computed by a pro-
filing process in registration-time. This results with an effective reconciliation
process.

2 Synopsis Calibration and Synopses Reconciliation

The Synopses Manager module provides an automatic recommendation of which
synopses to build and their sizes, based on the available synopses implementa-
tions, available memory space, and the registered relations and query workload.

As depicted in Figure 1 the Synopses Manager includes the following types of
data structures: (i) Relation Profile, which includes statistical information about
each registered relation; (ii) Synopsis Characteristics, which includes parameters
computed at integration time for each synopsis; and (iii) Reconciliation Rec-
ommendation, which includes the recommendations of synopses to be built for
each registered relation. It also includes the following modules: Calibration,
Profiling, Error Estimation, Reconciliation, and Approximate Query Optimizer;
these modules are described in more details below. A more detailed explanation
of the calibration and reconciliation processes can be found in [4].
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The synopsis error-estimation function. The crux of our approach is a novel
calibration technique [4], which associates to every synopsis implementation T
an error estimation function, EET .

We have found, through empirical testing, that the following function quite
accurately describes the relative error of synopses implementations w.r.t. their
corresponding relations and query workloads:

EET (L, Z, Q, R, S) = a1L
b1 + a2Z

b2 + a3Q
b3 + a4R

b4 + a5S
b5 + a6 .

The arguments L, Z, Q, R and S, collectively denoted as the Relation Profile,
are: the relation size (L), relation data distribution skew (Z), workload query
skew (Q), workload query range (R), and the synopsis size (S). The ai and bi

coefficients, collectively denoted as the Synopsis Characteristics, are unique to
each synopsis implementation.

Calibration. This module is invoked every time a new synopsis implementation
T is integrated into the system. The calibration process runs a small number
of tests on the synopsis implementation, measuring its behavior under various
synthetic relations and workloads. It then derives the ai and bi coefficients, of
EET , using a combination of squared linear fitting and the cplex commercial
solver [1]. The coefficients of the function are stored in the Synopsis Characteris-
tics data structure.

Error Estimation. This module is utilized by the Reconciliation and Approxi-
mate Query Optimizer modules. Given an approximate query to a relation with
synopsis implementation T , the module computes the error estimation function
EET based on the parameters available from the Relation Profile and Synopsis
Characteristics data structures, resulting with the estimated approximation-
error of the query.

Approximate Query Optimizer. This module has two functions: (1) triggers
the building of the required synopses based on the recommendations received
from the Reconciliation module; and (2) when a user submits an approximate
query to the system, this module performs the query on the relevant synopsis,
and also invokes the Error-Estimation module, returning both the estimated
result, and the estimated approximation-error of the result.

Profiling. This module is invoked whenever a new relation or query workload
are registered in the system. For relations, this module measures the cardinality
of the relation (distinct count), and uses linear-squared-fitting to fit a Zipf para-
meter to the relation data distribution skew. For query workloads, the number
and average range of the queries are calculated, and the Zipf parameter of the
query distribution skew is again fitted using linear-squared-fitting. The computed
statistical data is stored in the Relation Profile data structure.

Synopses reconciliation. Synopses reconciliation is basically an optimization
problem – given available synopses implementations, a memory space limit, and
a query workload, we would like to know the combination of synopses and their
sizes that would yield the minimal error for the entire system.
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The Synopses Reconciliation module can accommodate the implementations of
any synopses reconciliation algorithm. The module currently has implementations
of the algorithms from [3, 2], with the following modification. Whenever the error
measurement of a synopsis utilization is required, it uses the Error-Estimation
Module, instead of using the straight-forward measurement which involves
executing costly queries into the database. The process is invoked on-demand by
the administrator, and returns a recommended combination of synopses to build.

Utilizing the same reconciliation algorithms and heuristics as those in [3, 2],
but replacing the action of measuring the error with a call to an error-estimation
function, significantly reduces the run time of the reconciliation process while
maintaining good accuracy.

3 System Demonstration

We demonstrate the calibration process for one of these synopses, showing the
accuracy of the calculated EET function over different relations and work-
loads. We also demonstrate a full reconciliation process over a complex setup of
relations and workloads, showing how a process that would normally take hours
to complete, is completed in minutes, and compare its results to those of the
optimal combination.
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1 Università di Milano, Italy
mesiti@dico.unimi.it
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1 Introduction

The structure of XML documents, expressed as XML schemas [6], can evolve as
well as their content. Systems must be frequently adapted to real-world changes
or updated to fix design errors and thus data structures must change accordingly
in order to address the new requirements. A consequence of schema evolution
is that documents instance of the original schema might not be valid anymore.
Currently, users have to explicitly revalidate the documents and identify the
parts to be updated. Moreover, once the parts that are not valid anymore have
been identified, they have to be explicitly updated. All these activities are time
consuming and error prone and automatic facilities are required.

A set of primitives that can be applied on an XML schema to evolve its
structure has been proposed in [4]. For each primitive we have determined the
applicability conditions, that is, when its application produces a schema that
is still well-formed. Moreover, we have analyzed when the primitive application
alters the validity of the documents instances of the schema. Table 1 reports the
evolution primitives classified relying on the object (element, simple type, and
complex type) on which they are applied and the kind of operation (insertion,
modification, deletion). Primitives marked with “*” do not alter the validity of
the document instances. Therefore, their application do not require a revalidation
process. Other primitives might only alter the validity of a single element or of
a restricted set of elements depending on the schema specification. Therefore, in
these cases, the entire revalidation of a document is useless. In [4] we developed
an algorithm, based on an element type graph labelling, that minimizes the
revalidation process to only the elements affected by the primitives thus making
the process more efficient.

A related problem is how to evolve the structure of document instances in
order to make them valid for the evolved schema. Suppose to introduce an
element in a schema, and this is mandatory for all valid documents. This element
should be introduced (maybe with a default or null value) in all the previ-
ously valid documents. Suppose now to remove an element from the schema. It
should be removed from valid documents. The problem is more complex when
the schema modification refers to an operator or to the repeatability of ele-
ments, and would often require user intervention. The adaptation process thus

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1143–1146, 2006.
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Table 1. Evolution primitives

Insertion Modification Deletion

Simple Type insert glob simple type∗

insert new member type∗

change restriction
change base type
rename type∗

change member type
global to local∗

local to global∗

remove type∗

remove member type∗

Complex Type

insert glob complex type∗

insert local elem
insert ref elem
insert operator

rename local elem
rename global type∗

change type local elem
change cardinality
change operator
global to local∗

local to global∗

remove element
remove operator
remove substructure
remove type∗

Element insert glob elem

rename glob elem∗

change type glob elem
ref to local∗

local to ref∗
remove glob elem∗

involves subtleties related both to the kind of update performed and to the struc-
ture of the updated type. Several updates require the detection of the minimal
substructure for an element whose insertion is required in documents to vali-
date. Our approach to document adaptation is based on the use of restructuring
structures, that are an extension of the labelled element type graph employed
for document revalidation, in which labels can also be Δε

l , Δl
ε, and Δlo

ln
, with

l, ln, and lo element labels. These structures allow to specify the minimal mod-
ifications to be performed on documents invalidated by a schema update and
are automatically inferred from the schema update whenever possible (other-
wise, user intervention is required). The adaptation process will occur during
the revalidation process and the idea is that to validate the special subelement
Δε

l , element l should be inserted. Similarly, to validate the special subelements
Δl

ε and Δlo
ln

, element l should be deleted and element lo should be renamed to
ln, respectively.

In this demonstration paper we present X-Evolution, a .NET system
developed on top of a commercial DBMS that allows the specification of schema
modifications in a graphical representation of an XML schema. It supports
facilities for performing schema revalidation only when strictly needed and only
on the minimal parts of documents affected from the modifications. Moreover,
it supports the adaptation of original schema instances to the evolved schema.
The adaptation process is semi-automatic and the required user intervention is
minimized. Support is provided to the user for a convenient specification of the
required updates.

Commercial tools (e.g. [1, 5]) have been developed for graphically design XML
schemas. However, they are not integrated with a DBMS and do not allow the
semi-automatic revalidation and adaptation of documents within contained.
Schema evolution had been previously investigated for DTDs in [3], where
evolution operators were proposed. Problems caused by DTD evolution and the
impact on existing documents are however not addressed. Moreover, since DTDs
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Fig. 1. X-Evolution schema modification facility

are considerably simpler than XML Schemas [2] the proposed operators do not
cover all the set of schema changes that can occur on an XML Schema.

2 X-Evolution Facilities

X-Evolution offers different kind of facilities for handling the evolution of XML
schemas, an efficient revalidation of document instances, and the adaptation of
document instances to the evolved XML schema.

X-Evolution connects to one or more databases in which the XML schemas
and documents are stored. The left side bar of the schema modification facility
(Figure 1) presents the identified documents and schemas. Whenever a user
clicks on a schema, the system graphically represents the schema and identifies
the documents that are valid for such a schema. Whenever a user clicks on a
document, the system graphically represents the document and identifies the
schemas for which the document is an instance.

By graphically selecting a node of the tree representation of a schema,1

all the possible schema evolution primitives that can be applied on such a
node are visualized. When the user invokes an evolution primitive, X-Evolution
1 Actually a schema should be represented as a direct graph. However, for the sake of

readability, we duplicate nodes of the graph with more than one incoming edge.
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checks whether the operation can alter the schema consistency. If it is preserved
the operation is executed and the evolved schema visualized. Whenever the
operation alters (or can alter) the validity of document instances of the schema,
X-Evolution points out the documents that are not valid anymore. This opera-
tion is performed through an optimized revalidation algorithm detailed in [4].
The user interface helps the user in the adaptation process of non valid docu-
ments. For each non valid document the system points out the elements that
should be removed or added and allows the specification of default values or
structures to be inserted.

3 Demonstration

The demonstration of the X-Evolution system consists in four parts.

1. We will show how to connect the graphical interface to a database in which
the documents and schemas are stored and how we can easily work with the
graphical representation of documents and schemas.

2. We will show how to apply the developed evolution operations on a schema.
Specifically, we will show how to construct a schema from scratch and how we
can remove all the components from a schema making it an empty schema.
Consistency of the resulting schema is checked for each operation, and, if
violated, no update is performed.

3. We will show performances of our efficient approach in the revalidation of
XML documents against the evolved schema with respect to the naive solu-
tion of entirely revalidate the documents instances of the schema.

4. Finally we will show the effectiveness of our adaptation approach by specify-
ing schema modifications and showing the result of the adaptation process.

Acknowledgement. The authors wish to thank Daniele Ghelli and Giuseppe
Marchi for developing the graphical representation of XML documents and
schemas.
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Abstract. Effective and efficient data mining in time series databases is
essential in many application domains as for instance in financial analy-
sis, medicine, meteorology, and environmental observation. In particular,
temporal dependencies between time series are of capital importance for
these applications. In this paper, we present TQuEST, a powerful query
processor for time series databases. TQuEST supports a novel but very
useful class of queries which we call threshold queries. Threshold queries
enable searches for time series whose values are above a user defined
threshold at certain time intervals. Example queries are ”report all ozone
curves which are above their daily mean value at the same time as a given
temperature curve exceeds 28◦C” or ”report all blood value curves from
patients whose values exceed a certain threshold one hour after the new
medication was taken”. TQuEST is based on a novel representation of
time series which allows the query processor to access only the relevant
parts of the time series. This enables an efficient execution of threshold
queries. In particular, queries can be readjusted with interactive response
times.

1 Introduction

In this paper, we present TQuEST, a powerful analysis tool for time series
databases which supports a novel but very important query type which we call
threshold query. Given a query time series q, a threshold τ , and a time series
database DB, a threshold query TQDB(q, τ) returns the time series p ∈ DB
that has the most similar sequence of intervals of values above τ . In other words,
each time series o ∈ DB ∪ {q} is transformed into a sequence of disjoint time
intervals containing only those values of o that are (strictly) above τ . Then, a
threshold query returns for a given query object q the object p ∈ DB having
the most similar sequence of time intervals. Let us note that the exact values
of the time series are not considered, rather we are only interested in whether
the time series is above or below a given threshold τ . The transformation of the
time series into interval sequences is depicted in Figure 1.

Our new query type can for example be applied to pharmacological time
series like blood parameters after drug treatment or biological data like gene
expression profiles. Another possible application for our tool is the analysis of
environmental air pollution which has gained rapidly increasing attention by
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time

time series A

Sequence of time intervals, where the values exceed

time series B

time

Fig. 1. Transformation of time series into sequences of time intervals

many European research projects in recent years. For example, German state
offices for environmental protection maintain more than 100 million time series,
each representing the daily course of air pollution parameters1. It is important
to know which parameters nearly simultaneously exceed their legal threshold.

A lot of work on similarity search in time series databases has been published.
The proposed methods mainly differ in the representation of the time series,
a survey is given in [1]. Standard techniques for dimension reduction include
Discrete Fourier Transform (e.g. [2]), Discrete Wavelet Transform (e.g. [3]),
Piecewise Aggregate Approximation (e.g. [4]), and Chebyshev Polynomials [5].
However, all techniques which are based on dimension reduction cannot be
applied to threshold queries because necessary temporal information is lost.

An effective and efficient processing of queries like ”return all ozone time series
which exceed the threshold τ1 = 50μg/m3 at a similar time as the temperature
reaches the threshold τ2 = 25◦C” is of high importance but not supported by
the above mentioned techniques. Such a query type has to support the explo-
ration of time series based on user-defined amplitude spectrums. TQuEST not
only meets these prerequisites but also enables the user to interactively adjust
the query threshold.

2 Time Series Representation

As time series objects may be very complex, i.e. contain lots of measurements,
we need a data representation of time series objects which allows us to process
threshold queries very efficiently. An efficient processing enables interactive query
response times, so that the query can be readjusted w.r.t. the last results without
causing high response times. In the following, we assume that a time series is
described by a sequence of connected segments and each segment denotes the
interpolated time series course between a pair of subsequent time series values
(measurements).
1 We thank U. Böllmann and M. Meindl for providing us with real-world datasets

from the Bavarian State Office for Environmental Protection, Augsburg, Germany.
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The query processor is based on a novel data representation of time series.
Assume a threshold query with a threshold τ is given. At query time, the query
processor requires for each time series to derive the relevant time intervals, i.e.
the time frames where the time series course is above the specified threshold
τ . Obviously, those segments of the time series which cross the query threshold
τ suffice to determine the desired time frames. This observation can be used
as follows: we decompose the time series into trapezoids where the upper and
lower edge is parallel to the time axis, the left side is bounded by an increasing
time series segment and the right side is bounded by a decreasing segment.
For a certain range of thresholds and a certain range of time, each trapezoid
represents all time frames where the time series course is above the threshold.
The trapezoids can be described very compactly and can be efficiently accessed
by means of a spatial access method (e.g. [6]). The key point of our proposed
time series representation is that we do not need to access the complete time-
series data at query time. Instead only partial information of the time-series
objects suffices to report the results.

3 Threshold Query Processor

In this section, we present TQuEST, a JAVA 1.5 application, which supports
effective threshold queries efficiently. At first the user has to select the desired
threshold type. In case of an Absolute Threshold τ , all underlying calculations are
based on absolute time series values. Our tool also handles Relative Thresholds
where τ is given relative to the maximum and the minimum values of the time
series. This query mode requires that all time series are also represented in a
normalized form. In many application fields, a number of parameters is observed
at the same time. Quite often these measurements yield time series with totally
different ranges of values. By using relative thresholds, our tool is nonetheless
able to detect correlations between certain observed parameters (for example
between temperature and ozone concentration).

TQuEST supports two major types of queries: In the Time Interval Sequence
Query mode, the user can specify a sequence of time intervals on the time bar
and a threshold for the query. Our software then retrieves time series that match
these parameters best (cf. Figure 2(a)). The Time Series Query mode uses a
given time series as a query object. Here, the user has to provide a threshold
τ1 for the query time series and a threshold τ2 for the objects to retrieve. Our
software then searches for time series that exceed τ2 during the same (or similar)
time intervals as the query time series exceeds τ1 (cf. Figure 2(b)).

In both query modes, our tool ranks the resulting time series according to the
similarity between the specified time intervals and the time intervals in which
the result time series exceed the threshold. Depending on the available meta-
data for each time series our tool can be configured to display any combination
of additional attributes associated with a specific time series (e.g. patient ID,
observed parameter, geographical location of the corresponding sensor station,
etc.). To get a quick visual impression of the results, multiple time series can be
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(a) Time interval sequence query (b) Time series query

Fig. 2. Query interface

selected for the graphical display in the middle area of the query GUI. Finally,
by clicking the ‘Fetch Next’ button, the user can retrieve the next results from
the database w.r.t. the ranking order.

We demonstrate on real-world data that our prototype TQuEST is very useful.
For example, we discovered relationships between meteorological data (e.g. air
humidity) and air pollution attributes (e.g. particulate matter). Furthermore we
can show that our tool can handle complex threshold queries in adequate time.
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Abstract. In modern databases, complex objects like multimedia data,
proteins or text objects can be modeled in a variety of representations
and can be decomposed into multiple instances of simpler sub-objects.
The similarity of such complex objects can be measured by a variety
of distance functions. Thus, it quite often occurs that we have multiple
views on the same set of data objects and do not have any intuition
about how the different views agree or disagree about the similarity of
objects. VICO is a tool that allows a user to interactively compare these
different views on the same set of data objects. Our system is based on
OPTICS, a density-based hierarchical clustering algorithm which is quite
insensitive to the choice of parameters. OPTICS describes a clustering
as a so-called cluster order on a data set which can be considered as
an image of the data distribution. The idea of VICO is to compare the
position of data objects or even complete clusters in a set of data spaces
by highlighting them in various OPTICS plots. Therefore, VICO allows
even non-expert users to increase the intuitive understanding of feature
spaces, distance functions and object decompositions.

1 Introduction

In modern databases, complex objects like multimedia data, proteins or text
objects can be modeled in a variety of representations and can be compared
by a variety of distance or similarity functions. Thus, it quite often occurs that
we have multiple views on the same set of data objects and do not have any
intuition about how the different views on data objects agree or disagree about
the similarity of objects. VICO is a tool for comparing these different views
on the same set of data objects. Our system is heavily based on OPTICS, a
density-based hierarchical clustering algorithm, which is quite insensitive to its
parametrizations. OPTICS describes a clustering as a so-called cluster order on
a data set. A cluster order can be considered as an image of the data distribution
in one representation. The idea of VICO is to select data objects or even com-
plete clusters in one OPTICS plot and additionally highlight the same objects
in all other displayed views on the data. VICO has the following three main
applications: First, if more than one distance function for a given data set is
available, it allows direct comparisons of the distance functions. Second, in a
multi-represented setting, where multiple feature transformations for an object
are available, the relationships between the given data representations can be
examined by comparing the clusterings resulting w.r.t. these representations.
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Third, the connection between multi-instance objects and their single instances
can be examined by comparing the clustering of multi-instance objects to the
clusterings w.r.t. single instances.

2 Algorithmic Foundation

In the following, we will introduce the basic concepts behind OPTICS [1] which
is the clustering algorithm VICO employs to generate the density plot of a
given data representation. OPTICS is a density-based hierarchical clustering al-
gorithm that extends DBSCAN by deriving a cluster hierarchy that is displayed
within the so-called reachability plot. The central concepts of OPTICS are the
core distance of an object expressing the size of the neighborhood around an
object containing at least MinPts other objects. In other words, the core dis-
tance of object o is the smallest distance for which o would be considered a
core point with respect to MinPts . The reachability distance of an object p
from o denoted as dreach(p, o) is the maximum of the true distance between
o and p and the core distance of o. OPTICS performs a best first run in a
complete directed graph where the objects are the nodes and an edge between
the objects p and o is labeled with dreach(p, o). After starting its traversal
with an arbitrary node, OPTICS always pursues the edge first that provides
the smallest reachability distance and starts with an already reached object.
When traversing the data from one object to any other object the reachabilty
of the correponding link is collected in the so-called reachability plot. Valleys
in this plot indicate clusters: objects having a small reachability value are more
similar to their predecessor objects than objects having a higher reachability
value.

The reachability plot generated by OPTICS can be cut at any level ε parallel
to the abscissa. It represents the density-based clusters according to the density
threshold ε: A consecutive subsequence of objects having a smaller reachability
value than ε belong to the same cluster. An example is presented in Fig. 1: For
a cut at the level ε1, we retrieve two clusters denoted as A and B. Compared
to this clustering, a cut at level ε2 would yield three clusters. The cluster A is

Fig. 1. Reachability plot (right) computed by OPTICS for a sample 2-D dataset (left)
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split into two smaller clusters denoted by A1 and A2 and cluster B is decreased
in size. Usually, for evaluation purposes, a good value for ε would yield as many
clusters as possible.

3 Comparing Data Spaces Using VICO

The main purpose of VICO is to compare different feature spaces that describe
the same set of data. For this comparison, VICO relies on the interactive visual
exploration of reachability plots. Therefore, VICO displays any available view
on a set of data objects as adjacent reachability plots and allows comparions
between the local neighborhoods of each object. Fig. 2 displays the main window
of VICO. The left side of the window contains a so-called tree control that
contains a subtree for each view of the data set. In each subtree, the keys are
ordered w.r.t. the cluster order of the corresponding view. The tree control allows
a user to directly search for individual data objects. In addition to the object
keys displayed in the tree control, VICO displays the reachability plot of each
view of the data set.

Since valleys in the reachability plot represent clusters in the underlying rep-
resentation, the user gets an instant impression of the richness of the cluster
structure in each representation. However, to explore the relationships between
the representations, we need to find out whether objects that are clustered in one
representation are also similar in the other representation. To achieve this type
of comparison, VICO allows the user to select any data object in any reach-
ability plot or the tree control. By selecting a set of objects in one view, the
objects are highlighted in any other view as well. For example, if the user looks
at the reachability plot in one representation and selects a cluster within this
plot, the corresponding object keys are highlighted in the tree control and iden-
tify the objects that are contained in the cluster. Let us note that it is possible
to visualize the selected objects as well, as long as there is a viewable object

Fig. 2. VICO displaying OPTICS plots of multi-represented data
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representation. In addition to the information about which objects are clustered
together, the set of objects is highlighted in the reachability plots of the other
representations as well. Thus, we can easily decide whether the objects in one
representation are placed within a cluster in another representation as well or if
they are spread among different clusters or are part of the noise. If there exist
contradicting reachability plots for the same set of data objects, it is interesting
to know which of these representations is closer to the desired notion of simi-
larity. Thus, VICO allows the user to label data objects w.r.t. some class value.
The different class values for the objects are displayed by different colors in the
reachability plot. Thus, a reachability plot of a data space that matches the
user’s notion of similarity should display clusters containing objects of the same
color. Fig. 2 displays a comparison of two feature spaces for an image data set.
Each image is labelled with w.r.t. the displayed motive.

Another feature of VICO is the ability to handle multi-instance objects. In
a multi-instance representation, one data object is given by a set of separated
feature objects. An example are CAD parts that can be decomposed to a set
of spatial primitives, which can be represented by a single feature vector. This
way, the complete CAD part is represented by a set of feature vectors, which
can be compared by a variety of distance functions. To find out which instances
are responsible for clusters of multi-instance objects, VICO allows us to clus-
ter the instances without considering the multi-instance object they belong to.
Comparing this instance plot to the plot derived on the complete multi-instance
objects allows us to analyze which instance clusters are typical for the clusters
on the complete multi-instance object. Thus, for multi-instance settings, VICO
highlights all instances belonging to some selected multi-instance object.

4 Architecture and Implementation

VICO is implemented in Java 1.5 and thus, runs on any platform supporting the
current version of the Java Runtime Environment. VICO includes an integrated
version of OPTICS allowing the user to load and cluster data sets described in a
variety of file formats like CSV and ARFF files. For this version of OPTICS there
are several distance measures already implemented like the Euclidian, Manhattan
or Cosine distance. Furthermore, VICO already implements various distance func-
tions for multi-instance objects, e.g. the Hausdorffdistance. The system is based on
an extensible architecture, so that additional components like new distance func-
tions can be integrated easily by implementing Java interfaces. Finally, VICO can
directly load preprocessed reachability plots as well and also export reachability
plots that were computed by the integrated implementation of OPTICS.
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Abstract. We present in this demo the description of XQueryViz: an
XQuery visualization tool. This graphical tool can parse one or more
XML documents and/or schemas and visualizes them as trees with
zooming, expansion and contraction functionality. The tool can also
parse a textual XQuery and visualizes it as a DAG within two different
windows: the first for the querying part (i.e. For-Let-Where clauses) and
the second for the “Return” clause. More importantly, users can build
XQuery queries with this graphical tool by pointing and clicking on the
visual XML trees to build the XPath parts of an XQuery and then build
the whole XQuery using visual constructs and connectors. A textual
XQuery is then generated.

1 Introduction

We present in this demo XQueryViz: a graphical tool for the visualization and
construction of XQuery queries. This tool is made of four main parts (Fig. 1)
where the first vertical window(s) is(are) dedicated to the visualization of XML
documents and schemas. The second vertical window(s) is/are dedicated to the
visualization of the “For-Let-Where” (FLW) clauses of a FLWR query and the
third vertical window(s) is/are reserved to the “Return” clauses of the (sub)query.
The fourth window is a horizontal one where the textual representation of the
XQuery is shown and updated dynamically during visual query construction.

The contribution of this tool is its visualization and construction of XQuery
queries in a natural data-flow manner where a query block (“FLW” or “Return”
in a query or in a sub-query) is represented as a tree—with predicates connecting
branches in a tree. The visualization makes it natural for a user to imagine XML
data flowing from the root to the leaves of the tree, and hence makes it easier
to understand and construct more complex XQuery queries.

Contrary to XQBE [1] where the emphasis is on simplicity and the target users
are non-experts, XQueryViz is designed for more advanced users and hence is
more complex than XQBE. We explain in the next three sections the three major
parts of this graphical tool.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1155–1158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A snapshot of XQueryViz showing an XML schema and an XQuery example

2 XML and XPath

The upper-left window(s) of XQueryViz is/are dedicated to XML documents and
schemas and XPath visualization. Within these windows, both XML schemas
and documents can be visualized as trees. Moreover, and contrary to most
graphical interfaces that show XML documents and schemas in directory-like
trees, the trees in this window have their natural top-down shapes.

A user can load into this window one or more XML documents and/or
schemas. She can then expand and/or contract different branches of a tree and
zoom in and out on it. These two facilities are mostly helpful for large docu-
ments/schemas. The user can then build one or more XPath queries by pointing
and clicking on the nodes of a tree. While working on this visual representa-
tion of the document, an XPath query is dynamically generated and updated in
the lower (i.e. textual) window of the tool. In this way, the user can precisely
understand the semantics of her node-clicking and XPath query generation rela-
tive to the XML schema/document. Elements, attributes and predicates can be
included in the generated XPath expression. Several XPath expressions can be
generated and saved, and then included in a larger XQuery that can normally
contain several XPath expressions. Moreover, a user can use this part to define
and construct new XML schemas.
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 For      Let          Where XPath Variable   Element Attribute   Value       Sort By  Sort By

 Function  UDF         Parameter  Root   Operator  Wildcard Return     Return    Return        Edges
     element  attribute

Fig. 2. Visual icons

3 The Querying Part

The querying part of an XQuery is divided into three visual sub-parts that
represent the “For”, “Let”, and “Where” clauses of that query. This part is
visualized in the middle vertical window(s) of the graphical tool. Each clause
is written in the textual form with a specific color and shown in the visual
window with that specific color. In this case, the user can naturally associate
the sub-parts in that window with the clauses in the query.

A user can currently load an XQuery from a file and visualizes it in this
middle window and its “Return” clause in the third vertical window. The user
has also the option of visually modifying this query and saving its new textual
format or visually building a completely new query with or without using the
XPath construction facility provided in the first window. With these options, a
user can manipulate both textually and visually an XQuery so that it becomes
as complicated as that user needs it to be.

Every clause of an XQuery (i.e. For, Let, Where, Return, Order By) has its
own visual construct and every component in these clauses has its own visual
construct too. The components that XQueryViz currently supports are: elements,
attributes, wildcards, variables, XPath, document roots, numbers, strings, parent-
child relationships, ancestor-descendant relationships, predicates, functions, and
quantifiers. These are shown in a palette list to the left of the three vertical win-
dows in Fig. 1 and are shown is Fig. 2 with their meanings. Sub-queries are recur-
sively constructed in the same manner as explained in the following.

The “For” Clause: Multiple “For” clauses in an XQuery can be defined. The
first “For” clause binds a variable to an XPath expression that should be applied
on a certain XML document. Any subsequent “For” clauses may do the same of
binding their variables to previously bound ones, or to the same or newly defined
XML documents. The visual construct for the “For” clause has a right diamond
that is connected to the tree representing the XPath expression and where the
root of the document has its own visual construct and elements, attributes, and
predicate expressions can also be visualized/constructed with their respective
visual constructs.

The “Let” Clause: Here too, multiple “Let” clauses can be defined and they can
also be intertwined with “For” clauses. The “Let” clause has its visual construct
that binds a variable to another variable with or without extension to its XPath,
to an XPath expression on the root of an XML document, or to a constant value.
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The “Where” Clause: Predicate expressions on the previously defined variables
in the “For” and “Let” clauses are applied here. While the previous two clauses
contain only XPath expressions with their internal predicates, the user can define
here predicates across the different variables and XPath expressions; hence, even-
tually connecting some XPath trees to produce the general shape of a DAG.

4 The Return Part

A user can visualize and construct the result of a query in the third vertical
window of the graphical tool. Almost the same visual constructs for using previ-
ously defined elements and attributes, and for applying predicates and functions
can also be used here. The major new visual constructs are the ones that define
new elements. Moreover, defined variables in the “For-Let-Where” clauses (i.e.
in the middle windows) have their new visual construct that makes them under-
stood as defined earlier.

Sub-Queries: We recently extended XQueryViz to handle an XQuery as a
sub-query in both the “Where” and the “Return” clauses of a larger query.
Our design is based on recursively spanning from the FLW or the “Return”
window of the englobing XQuery two new windows that contain the two parts
of the querying and returning of the sub-query. The yet unresolved problem
here is how to visually connect these new windows to the spanning “Where” or
“Return” clause to make it clear for a user how this sub-query is part of that
“Where” or “Return” clause.

5 Conclusion

We presented in this paper the different functionality of an XQuery visualiza-
tion tool that can visualize and construct XQuery queries. This tool can also
visualize XML schemas and documents and let a user visually builds XPath
queries on them. XQuery queries can then be built and manipulated in quite
a more natural and easier manner than only textual format. We are currently
preparing a usability study of XQueryViz where a certain number of users with
different experience with XQuery will be asked to visualize and construct a
certain number of XQuery queries and collect feedback and statistics on how
effective and ergonomic this tool is.
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1 Motivation

Recent events (WTC attacks, Southeast Asia Tsunamis, Hurricane Katrina,
London bombings) have illustrated the need for accurate and timely situational
awareness tools in emergency response. Developing effective situational awareness
(SA) systems has the potential to radically improve decision support in crises by
improving the accuracy and reliability of the information available to the decision-
makers. In an evolving crisis, raw situational information comes from a variety of
sources in the form of situational reports, live radio transcripts, sensor data, video
streams. Much of the data resides (or can be converted) in the form of free text,
from which events of interest are extracted. Spatial or location information is one
of the fundamental attributes of the events, and is useful for a variety of situational
awareness (SA) tasks.

This demonstration will illustrate our approach, techniques and solutions for
obtaining spatial awareness from raw input text. There are several challenges
that arise in obtaining spatial awareness from raw text input - modeling/
representation, event extraction and disambiguation, querying, reasoning and
visualization. We specifically focus on illustrating solutions for (a)modeling and
representation that captures spatial uncertainty in text and (b) efficient indexing
and processing of various types of spatial queries to support reasoning of spatial
information. Our solutions are implemented in the context of a prototype system
called SAT (spatial awareness from text)that models and represents (potentially
uncertain) event locations described in free text and incorporates several types
of spatial queries of interest in SA applications. We demonstrate SAT in the
context of 2 real-world applications that derive spatial information from text at
different phases of the disaster response process.

• Offline spatial analysis of data from the Sept 11, 2001 WTC attacks to
retrieve relevant events and the response as it occurred.

• Online, real-time assistance to field personnel using real time communication
transcripts between dispatchers and first responders from 911 call centers in
Los Angeles area.

Such tools enable social scientists and disaster researchers to accurately analyze
transcribed communication logs and situational reports filed by the first

� This work was supported by NSF grants 0331707, 0331690.
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responders after major disasters. These techniques can also be used to support
real-time triaging and filtering of relevant communications and reports among
first responders (and the public) during a crisis. Our primary objective is to
design database solutions to support applications where the real world is being
monitored (potentially using a variety of sensing technologies) to support tasks
such as situation assessment and decision-making.

An illustrative example. Consider a scenario during the response to the
September 11, 2001 WTC attacks that demonstrates the need for spatial aware-
ness. The following are excerpts from two real reports1 filed by Port Authority
Police Department (PAPD) Officers:

1. “. . . the PAPD Mobile Command Post was located on West St. north of WTC
and there was equipment being staged there . . . ”

2. “. . . a PAPD Command Truck parked on the west side of Broadway St. and
north of Vesey St. . . .”

These two reports refer to the same location, i.e. the same command post –
a point-location in the New York, Manhattan area. However, neither of the re-
ports specify the exact location of the events; they do not even mention the same
street names. Our objective is to represent and index such reports in a manner
that enables efficient evaluation of spatial queries and subsequent analysis using
the spatial data. Our system should have efficient supports to commonly used
spatial queries, such as range, NN, spatial join, and so on. For instance, the rep-
resentation must enable us to retrieve events in a given geographical region (e.g.,
around World Trade Center). Likewise, it should enable us to determine simila-
rity between reports based on their spatial properties; e.g., we should be able
to determine that the above events might refer to the same location(assuming a
temporal correlation of the events).

To support spatial analyses on free text reports, merely storing location in
the database as free text is not sufficient either to answer spatial queries or
to disambiguate reports based on spatial locations. For example, spatial query
such as ‘retrieve events near WTC’, based on keywords alone, can only retrieve
the first report mentioned earlier. So instead, we need to project the spatial
properties of the event described in the report onto the 2-dimensional domain
Ω and answer queries within this domain. In this paper, we model uncertain
event locations as random variables that have certain probability density func-
tions (pdfs) associated with them. Assisted by GIS and probabilistic modeling
tools, we map uncertain textual locations into the corresponding pdfs defined
in Ω. Given that a large number of spatially uncertain events can potentially
arise during crisis situations2, the focus of our project is on developing scal-
able solutions for effective and efficient processing of such spatially-uncertain
events.

1 Original audio data available in converted text form.
2 For instance, more than 1000 such events can be extracted from just 164 reports

filed by Police Officers who participated in the disaster of September 11th, 2001.
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2 Research Challenges and Solutions to Be Demonstrated

Development of an end-to-end approach for spatial awareness from textual input
must address four practical challenges – (1) modeling uncertain spatial events,
(2) representation, (3) indexing, and (4) query processing. In Figure 1, we show
the major components of SAT. In the remaining of this section, we briefly de-
scribe the functionalities of SAT components and demonstrate the potentials of
SAT in handling these challenges.

Report

(1)
 Extract Candidate Events

from Sentences using
Landmarks & Spatial

Descriptors

(2)
 Map spatial descriptors
to  Probabilistic Models

(3)

Initial pdf

(4)
Validate

By
Analysts

Probabilistic Event
Database

(5)

Efficient pdf
Representation

(6)

Update
Spatial
Index

Probabilistic
Spatial Query

(7)

Index Pruning
(Phase I)

(8)

Post Processing
(Phase II)

(9)

GIS Display

Fig. 1. SAT Components

Fig. 2. WTC: Data and Query Fig. 3. GIS Interface

Modeling. Spatial uncertainty has been explored both in the GIS and in data-
base literature. We extend the probabilistic model for spatial uncertainty devel-
oped in [1, 2, 3]. In the probabilistic model, an uncertain location  is treated
as a continuous random variable (r.v.) which takes values (x, y) ∈ Ω and has
a certain probability density function (pdf) f
(x, y) associated with it. Inter-
preted this way, for any spatial region R, the probability that  is inside R is
computed as

∫
R f
(x, y)dxdy. However, to apply the probabilistic models in our

context requires us to solve: (a) event extraction from text, (b) modeling spa-
tial uncertainty in text. The first four components (1–4) of Figure 1 are meant
for these tasks. First, automated tools are employed to extract events from text,
including their spatial properties. The analyst oversees this process to correct er-
rors arising from this process and also to resolve extraction ambiguities (cf. [4]).
Next, we map the extracted textual location into the corresponding probabilis-
tic representation in a semi-supervised fashion. Our modeling solution [5] takes
a spatial expression (s-expression) as its input and outputs the desired pdf for
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the s-expression. It achieves that by analyzing landmarks and spatial descriptors
(s-descriptors) mentioned in the s-expression. The analyst oversees these steps
and adjusts the models if needed. We integrate this modeling process as a toolkit
to the standard GIS system as shown in Figure 3. For example, our extraction
and modeling tools can automatically determine the uncertainty regions of the
two reports in Section 1, and display them as in Figure 2. An analyst can use
the probabilistic modeling toolkit to further enhance the probabilistic models.
Besides demonstrating the modeling process, we will also demonstrate the prac-
tical significance of using the probabilistic models. Showing together with query
processing demonstration, we will show that simple bounding region models are
not sufficient to answer analytical queries.

Representation. In our context, we need to be able to represent pdfs of complex
shapes in the database. There are several known methods for such a representa-
tion, such as histograms and modeling pdf as a mixture of Gaussians or of other
distributions. However, these solutions cannot scale well. In [6], we have pro-
posed a novel compressed quad-tree representation. We have implemented this
representation in the SAT component No. 5 in Figure 1. Coupled with our new
indexing strategies, we will demonstrate significant performance boost in query
response time. It is interesting to note that the existing solutions that also deal
with probabilistic spatial queries [1,2,3] do not address the representation issues
directly. The reason is that their empirical evaluation is carried out using only
simple densities such as uniform and Gaussian.

Indexing and query processing. SAT efficiently supports several spatial
query types – such as range, NN, and spatial join – commonly used in SA appli-
cations. For example, using a spatial region query, an analyst can express a query
such as “find all the events, the location of which are around WTC”. Figure 2
shows this query visually (shaded region). The system should compute the prob-
ability of the events inside this region, and filter away low probability events.
In [6], we have proposed a novel grid base indexing approach. Compared to the
state-of-arts techniques proposed in [1, 3], our new indexing scheme has 2–10
times speedup. The new index solution has been incorporated into SAT system
as component 6,7 and 8 in Figure 1. In our demonstration, using both real and
synthetic data, we will demonstrate the efficiency of the indexing solution on
different types of spatial query.

3 Concluding Remarks

In this paper we presented a system – SAT – which builds spatial awareness
and provides for reasoning with spatial locations from textual input. Such Sit-
uational Awareness (SA) applications abound in a variety of domains including
homeland security, emergency response, command and control, process monitor-
ing/automation, business activity monitoring, to name a few. We believe that
techniques such as ours can benefit a very broad class of applications where free
text is used to describe events.
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Abstract. Nowadays, powerful music compression tools and cheap mass
storage devices have become widely available. This allows average con-
sumers to transfer entire music collections from the distribution medium,
such as CDs and DVDs, to their computer hard drive. To locate specific
pieces of music, they are usually labeled with artist and title. Yet the user
would benefit from a more intuitive organization based on music style
to get an overview of the music collection. We have developed a novel
tool called MUSCLE which fills this gap. While there exist approaches in
the field of musical genre classification, none of them features a hierar-
chical classification in combination with interactive user feedback and a
flexible multiple assignment of songs to classes. In this paper, we present
MUSCLE, a tool which allows the user to organize large music collections
in a genre taxonomy and to modify class assignments on the fly.

1 Introduction

The progress of computer hardware and software technology in recent years made
it possible to manage large collections of digital music on an average desktop
computer. Thus, modern computer systems are able to compress a piece of music
to a few megabytes in very fast time. Easy to use software that automates this
process is available. Often, this software stores meta information, such as artist,
album or title, along with the audio file. However, the amount and quality of the
available meta information in publicly accessible online databases, e.g. freedb.org,
is often limited. This meta data is especially useful when searching for a specific
piece of music in a large collection. To organize and structure a collection,
additional information such as the genre would be very useful. Unfortunately, the
genre information stored in online databases is often incorrect or does not meet
the user’s expectations.

In this demonstration paper, we present MUSCLE, a prototype of a powerful
hierarchical genre classification tool for digitized audio. It is often problematic to
assign a piece of music to exactly one class in a natural way. Genre assignment
is a somewhat fuzzy concept and depends on the taste of the user. Therefore,
MUSCLE allows multi-assignments of one song to several classes. The classifi-
cation is based on feature vectors obtained from three acoustic realms namely
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classifiers which achieve superior classification accuracy in various application ar-
eas and have received much attention recently. By using kernel functions in com-
bination with SVMs, any kind of data can be classified. Since a music piece is de-
scribed by a set of feature vectors, we apply a set kernel function [5] for SVMs.

The hierarchical classification problem is handled by performing a two layer
classification process (2LCP) on each inner node N of the genre taxonomy. This
process distinguishes only descendent nodes of N as classes Csingle and acts as
a guidepost for the hierarchical classification. We train SVMs in the first layer
of the 2LCP that distinguishes only single classes in each representation. Since
standard SVMs are able to make only binary decisions we apply the so-called one-
versus-one (OvO) approach in order to make a classification decision for more
than two classes. We argue that for our application the OvO approach is best
suitable because the voting vectors provided by this method are a meaningful
intermediate description that is useful for solving the multi-assignment problem
in the second layer of our 2LCP. In order to perform the multi-assignment we
take advantage of the class properties in our application domain. We limit the
possible class combinations to a subset Ccombi ⊂ 2Csingle because there exist
several combinations that do not make sense, e.g. a piece of music belonging
to the class ’classic’ is very implausible to be also in the class ’hip-hop’. Thus,
the classifier (SVM) in the second layer of the 2LPC uses an aggregation of the
voting vectors from the first layer of the 2LPC as input to assign an object to a
class c ∈ Csingle∪Ccombi. The voting vectors provided by the first layer SVMs for
each representation are aggregated by using a weighted linear combination. The
weights in the combination are calculated by using a so called object adjusted
weighting. The intuition behind the object adjusted weighting is that the object
to be classified needs to have a sufficient distance from any of the other classes.
For more details we refer to [6].

3 Practical Benefits

MUSCLE is implemented in C/C++ and runs on the Windows platform. Its
hierarchical playlist acts as a jukebox. The installation archive of MUSCLE
contains a default genre taxonomy including the necessary training data in the
form of feature vectors for each song. This data is used in the demonstration.
Using aggregated information such as feature vectors makes it possible to share
the training data without having to distribute the underlying music data. Classes
and training data in the genre taxonomy can be deleted, moved or added by
the user. When the user commits the changes of the class hierarchy or of the
corresponding training data, MUSCLE trains the affected classifiers. Note that
usually only a small subset of the entire classifier hierarchy has to be trained
because a modification at a node requires a partial adaptation of the node and
all parent nodes only. It is also possible to start the training automatically after
each modification or to run the training in the background. When the user is
satisfied with the training setup, a folder to automatically classify all contained
songs can be selected.
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(a) Multi-Assignment of Songs (b) User Feedback

Fig. 2. MUSCLE User Interface

Fig. 2 illustrates MUSCLE’s user interface. In the main window the playlist
containing the classification result in form of a genre tree is displayed. An exam-
ple for a multiple assignment of the song ’Anticipating’ to the classes ’pop’ and
’rhythm & base’ can be seen in Fig. 2(a). In case the user wants to manually
adjust the genre assignment of a song, entries can be re-arranged using drag &
drop as shown in Fig. 2(b).
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Abstract. We demonstrate iMONDRIAN, a component of the MONDRIAN an-
notation management system. Distinguishing features of MONDRIAN are (i) the
ability to annotate sets of values (ii) the annotation-aware query algebra. On top
of that, iMONDRIAN offers an intuitive visual interface to annotate and query
scientific databases.

In this demonstration, we consider Gene Ontology (GO), a publicly available
biological database. Using this database we show (i) the creation of annotations
through the visual interface (ii) the ability to visually build complex, annotation-
aware, queries (iii) the basic functionality for tracking annotation provenance.
Our demonstration also provides a cheat window which shows the system inter-
nals and how visual queries are translated to annotation-aware algebra queries.

1 Introduction

Modern science relies increasingly on the use of database systems to store huge
collections of scientific data. These data are generated from laboratory processes or
are copied from other scientific databases. To make sense of these data and decide un-
der which circumstances they can be used, scientists need to know their lineage, i.e.,
the conditions under which the data were generated, the accuracy of the processes that
produced them, or how trust-worthy is the source from which the data were copied.
These metadata are often stored in scientific databases in the form of annotations. In
spite of their importance, existing data formats and schemas are not designed to manage
the increasing variety of annotations. Moreover, DBMS’s often lack support for storing
and querying annotations.

Our work in the MONDRIAN1 annotation management system [1] is motivated
by the pressing needs of biologists, some of which are highlighted by the following
example. Consider the relation in Figure 1 which lists triples of identifiers belonging to
three distinct biological databases. Each triple associates the identifier gid of a gene (in
the gene database) with the identifier pid of the protein (in the protein database) that

1 Piet Mondrian: Dutch painter whose paintings mainly consist of color blocks.
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the gene produces, where the sequence of the protein is identified by sid (in the protein
sequence database). Such relations are widely used in the biological domain and offer a
quick way to cross-reference and establish associations between independent biological
sources [2, 3].

Given such a relation, a biologist often wants to annotate each triple with any evi-
dence that exist and verify its validity. Such evidence might include a reference to an
article that mentions that the indicated gene produces the specified protein, or the name
of a curator who verified this association. In the figure, we show possible annotations
in the form of blocks and block labels. Blocks are used to indicate the set of values
for which an annotation exists, while block labels are used to indicate the annotations
themselves. In the figure, the annotations indicate the names of curators who verified
that a particular association holds. So, in the first tuple, a block indicates Mary’s belief
that the gene with GDB id 120231 produces protein with id P21359. Notice that parts
of a triple can be verified by different curators (e.g. see the first tuple), while other parts
are yet to be verified (e.g. see the third tuple).

For annotations to be useful, the biologist must be able to query them. For example,
she might want tuples that are annotated by either John or Mary. Or, she might want
to find which are annotated, and by whom. Often, the lack of annotations is also of
interest. For example, a biologist might want the gene-protein (gid, pid) pairs that are
not annotated, so as to investigate the validity of these yet unverified pairs.

To the best of our knowledge, MONDRIAN is the first system to support the anno-
tation of sets of values, thus allowing for complex annotations such as the ones shown
in the figure. Previous works only allowed for annotations to be attached to a partic-
ular value of a specific attribute (e.g., see [4]). Single-value annotations are insuffi-
cient since they fail to capture the complex relationships of values, relationships which
span across attribute boundaries. Another distinguishing feature of MONDRIAN is the
ability to query annotations and values alike. MONDRIAN offers an annotation-aware
query algebra which we have shown to be both complete (it can express all possible
queries over the class of annotated databases) and minimal (all the algebra operators
are primitive) [1]. The expressiveness of our algebra goes well beyond the query capa-
bilities of similar systems like, for example, DBNotes [5]. The algebra is simple and
intuitive and is able to express all the queries mentioned earlier, and many more (see [1]
for the full syntax and examples). For example, query q1 below retrieves all the tuples
that are annotated by either John or Mary, while query q2 only retrieves tuples that have
a gene-protein sequence (gid, sid) annotated pair.

q1 = ΣMary ∪ ΣPeter q2 = ΠL
gid,sid

In spite of being simple (and very easy to learn by those familiar with relational alge-
bra), we don’t expect that biologists would want to learn yet another query algebra. In-
stead, it seems natural to offer a visual tool through which a biologists can both annotate
data and query them. The objective of this demonstration is to present iMONDRIAN, a
tool that offers the above capabilities. Once more, the simplicity of the algebra is to our
favor since it facilitates the direct translation of visual queries to algebra queries.
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2 The iMONDRIAN Demonstration

The demonstration of iMONDRIAN shows how the tool can be used by biologists,
throught the lifecycle of annotations, starting from their insertion, to their querying and
ending with their deletion. The demonstration uses data and annotations from Gene
Ontology (GO) [6], a publicly available biological database.

2.1 System Architecture

The MONDRIAN architecture, shown in Figure 2. MONDRIAN is built in java and is
running on top of MySQL. The iMondrian component is the front-end through which
a user interacts with the system. A visually expressed query is translated to a query
written in the MONDRIAN query algebra and this is subsequently translated to SQL
and is executed over the underlying RDBMS. One advantage of MONDRIAN queries
is that they are storage-model independent [1]. That is, MONDRIAN queries are at
a level of abstraction that is independent of the chosen representation of annotations.
Unlike the executed SQL queries, a change in this representation does not require the
reformulation of our queries.

120232 P35240A45770

JohnJohn, Mary

120231 P21359I78852

John Mary

pid gid sid

120234 P08138A25218Peter

120233 P01138A01399

Mary

Fig. 1. An annotated relation

iMONDRIAN

Biologist

Mondrian
Query Engine MySQL

Visual query

Mondrian
query algebra

SQL

pid     gid       sid pid gid sid  ann

Result

I78852  120231  P21359
A45770 120232  P35240
A01399 120233  P01138

1     1      0     John
0     1      1     Mary
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Fig. 2. The MONDRIAN Architecture

2.2 Demonstrated Functionality

Figures 3 and 4 show the iMONDRIAN interface. For ease of presentation, annotations
are represented as colors. Thus, sets of values with the same annotation are colored
the same. The same color can appear in a tuple over distinct attributes sets and thus
colors do not suffice to tell which attributes are annotated as a set. Therefore, when a
user selects an attribute value in a tuple, all the other attributes with which this value is
annotated are highlighted. Furthermore, a value can participate in more than one blocks
and thus it can have multiple colors. Such values are shown in grey, with a black border,
and when a user clicks on them she sees all its colors in a popup window (see Figure 3).

During the demo, we show how users can insert new tuples and annotations. An
annotation can be inserted by selecting a set of values and attaching a color to them.
This color can be either one that is used already in some tuple or a brand new color
(annotation).

The user can query both values and annotations in isolation or in unison. For ex-
ample, to query annotations, the user can select a color from a value and ask for all
the tuples that have the same color (annotation). For example, a visual query v1 might



iMONDRIAN: A Visual Tool to Annotate and Query Scientific Databases 1171

Fig. 3. The iMONDRIAN interface Fig. 4. The result of a visual query

ask for all the annotations with a red or green color. Or, the user can select a number
of attribute columns (by clicking check boxes next to each attribute name) and pose
a visual query v2 that returns all the tuples with annotations that involves all of these
columns. Each visual query results in a new window containing the query result. The
user can pose queries in the result window of a previous query, thus allowing for build-
ing of comlex queries. Figure 4 shows the result of applying visual queries v1 and v2
to the relation of Figure 3. The composed query, written in the MONDRIAN query
algebra, is available from the cheat window. This is useful if a user wants to execute
periodically the same query. Then, she doesn’t have to go through the same steps in
the iMONDRIAN interface. She only needs to copy the algebra query from the cheat
window and send it directly to the MONDRIAN query engine.

The demo also illustrates how MONDRIAN supports alternative annotation seman-
tics [1]. For example, we discuss annotation (non-)inheritance a property that, given
an annotation over a set of values, it determines whether, or not, any subset of these
values also inherits the annotation. Finally, the demo illustrates some basic provenance
functionality, which allows to trace back the origin of annotations.
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{pziegler, sturm, dittrich}@ifi.unizh.ch

Abstract. Ontology languages to represent ontologies exist in large
numbers, and users who want to access or reuse ontologies can often
be confronted with a language they do not know. Therefore, ontology
languages are nowadays themselves a source of heterogeneity.

In this demo, we present the SIRUP Ontology Query API (SOQA)
[5] that has been developed for the SIRUP approach to semantic data
integration [4]. SOQA is an ontology language independent Java API for
query access to ontological metadata and data that can be represented in
a variety of ontology languages. In addition, we demonstrate two applica-
tions that are based on SOQA: The SOQA Browser, a tool to graphically
inspect all ontology information that can be accessed through SOQA,
and SOQA-QL, an SQL-like query language that supports declarative
queries against ontological metadata and data.

1 Introduction

In current information systems, ontologies are increasingly used to explicitly
represent the intended real-world semantics of data and services. Ontologies
provide a means to overcome heterogeneity by providing explicit, formal de-
scriptions of concepts and their relationships that exist in a certain universe of
discourse, together with a shared vocabulary to refer to these concepts. Based on
agreed ontological domain semantics, the danger of semantic heterogeneity can
be reduced.

A large number of ontology languages is available to specify ontologies. Besides
traditional ontology languages, such as Ontolingua [1] or PowerLoom1, there is
a notable number of ontology languages for the Semantic Web, such as SHOE2,
DAML3, or OWL4. Therefore, ontology languages are nowadays themselves a
source of heterogeneity. As ontologies can be specified in a manifold of ontology
languages, users looking for suitable ontologies can often be confronted with
ontologies that are defined in a language they do not know. To make use of these
ontologies, users either have to learn the particular ontology language or to find
and employ suitable tools to access the desired ontology. Heterogeneity caused
1 http://www.isi.edu/isd/LOOM/PowerLoom/
2 http://www.cs.umd.edu/projects/plus/SHOE/
3 http://www.daml.org
4 http://www.w3.org/2004/OWL/
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by the use of different ontology languages can therefore be a major obstacle in
ontology access.

Besides this, building ontologies is a demanding and time-consuming task. Es-
pecially in cases where large all-embracing ontologies are built, the development
phase can be a substantial investment — for example, more than a person-
century has been invested in the development of CYC [2]. Therefore, existing
ontologies should be reused so that advantage can be taken of the efforts spent
during the ontology development phase. However, heterogeneity caused by the
use of different ontology languages can be a considerable impediment to this.

In this demo, we present the SIRUP Ontology Query API (SOQA) [5], which
is an ontology language independent Java API for query access to ontological
metadata and data that can be represented in a variety of ontology languages.
In an example scenario, four publicly available ontologies, each represented in
a different ontology language, are accessed through SOQA. It is shown how
their contents can be compared fast though concisely with the graphical SOQA
Browser and with declarative queries in the SOQA Query Shell.

2 Overview of the SIRUP Ontology Query API

In general, ontology languages are designed for a particular purpose and, there-
fore, they vary in their syntax and semantics. To overcome these differences,
we defined the SOQA Ontology Meta Model. It represents modeling capabilities
that are typically supported by ontology languages to describe ontologies and
their components; i.e., concepts, attributes, methods, relationships, instances,
and ontological metadata [5]. Based on the SOQA Ontology Meta Model, the
functionality of the SOQA API was designed. The SIRUP Ontology Query API
(SOQA) is an ontology language independent Java API for query access to onto-
logical metadata and data that can be represented in a multitude of ontology lan-
guages. That is, SOQA provides read access to ontologies through a uniform API
that is independent of the underlying ontology language and hardware/software
platform. Consequently, accessing and reusing general foundational ontologies
as well as specialized domain-specific ontologies can be facilitated. With SOQA,
users and applications can be provided with unified access to metadata and data
of ontologies according the SOQA Ontology Meta Model. Besides, data of con-
cept instances can be retrieved through SOQA. Note that despite the fact that
SOQA is mainly employed for ontology access used for data content explica-
tion in the SIRUP integration approach [4], it is intended and designed to be a
general-purpose ontology query API that can be used independently of SIRUP.
SOQA and all its components are fully implemented in Java 1.5.

From an architectural perspective, the SOQA API reflects the Facade design
pattern: SOQA provides a unified interface to a subsystem which is in charge
of retrieving information from ontologies that are specified in different ontology
languages. SOQA as a Facade shields external clients from the internal SOQA
components and represents a single point for unified ontology access (see Fig. 1).
Examples for external clients of the API provided by the SOQA Facade are:
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– The query language SOQA-QL [5], which supports declarative queries over
data and metadata of ontologies that are accessed through SOQA;

– The SOQA Browser [5] that enables users to graphically inspect the contents
of ontologies independent of the ontology language they are specified in;

– (Third-party) Java applications that use SOQA as a single point of access
to information that is specified in different ontology languages. Possible ap-
plication areas are virtual organizations, enterprise information and process
integration, the Semantic Web, and semantics-aware universal data manage-
ment.

User

SOQA

OWL W1 

PowerLoom W2 

DAML W3 

... Wn 
SOQA

Browser

Other

Applications

SOQA-QL

Ontologies Wrappers

R1 

R2 

R3 

Rn 

Reasoners User

User

Fig. 1. Overview of the SOQA Software Architecture

Based on its Facade architecture, SOQA provides more than 70 Java methods
for unified ontology access according to the SOQA Ontology Meta Model (for
details, see [5]). Behind the SOQA Facade, ontology wrappers are used as an
interface to existing reasoners that are specific to a particular ontology language
(see Fig. 1). Up to now, we have implemented SOQA ontology wrappers for
OWL, PowerLoom, DAML, and the lexical ontology WordNet [3].

3 Demonstration Highlights

To illustrate the capabilities of the SOQA, we assume an example scenario where
a developer of an information system is looking for a publicly available ontology
concerning persons from the university domain. Therefore, he or she might use
a search engine and find (1) the Aktors Portal Ontology5 that is represented in
OWL, (2) the PowerLoom Course Ontology6 developed in the SIRUP project,
(3) the DAML University Ontology7 from the University of Maryland, (4) and
the lexical ontology WordNet. In contrast to the traditional approach, where
our developer has to cope with four ontology languages and different ontology
tools, we demonstrate uniform access to ontological information through SOQA.
In particular, we show the capabilities of our graphical SOQA Browser and the
5 http://www.aktors.org/ontology/portal
6 http://www.ifi.unizh.ch/dbtg/Projects/SIRUP/ontologies/course.ploom
7 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml
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SELECT author, documentation, languagename FROM ontology; 
 

SELECT name, documentation FROM attributes(base1_0_daml:Student); 
 

SELECT * FROM directsuperconcepts(wordnet_1:Student); 
 

SELECT name, value(portal:emailAddress) 
FROM instances(subconcepts(portal:Student)) WHERE name < 'C'; 

Fig. 2. SOQA-QL Example Queries Against Different Ontologies

declarative SOQA Query Shell for user-friendly access to ontology information
independent of the language the four ontologies are represented in:

– The SOQA Browser is presented to quickly survey the concepts and their
attributes, methods, relationships, and instances that are defined in a par-
ticular ontology, as well as metadata concerning the ontology itself. Thus,
fast though concise comparisons of the four ontologies in distinct browser
windows are shown.

– In the SOQA Query Shell, SOQA-QL queries are formulated for detailed
access to ontological ontology data and metadata (see Fig. 2). Here, we
present how the four ontologies and their components can be compared using
declarative queries.

Based on this, we demonstrate how ontology access and reuse is enabled and
facilitated through SOQA that can, hence, contribute to leverage from database
systems to semantics-aware, universal data management.
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Avenue Escadrille Normandie-Niemen,

F-13397 Marseille Cedex 20
first.last@lsis.org

Abstract. With the proliferation of geographic data and resources over
the Internet, there is an increasing demand for integration services that
allow a transparent access to massive repositories of heterogeneous spa-
tial data. Recent initiatives such as Google Earth are likely to encourage
other companies or state agencies to publish their (satellite) data over
the Internet. To fulfill this demand, we need at minimum an efficient
geographic integration system. The goal of this demonstration is to show
some new and enhanced features of the VirGIS geographic mediation
system.

1 Introduction

With the proliferation of geographic data and resources over the Internet, there
is an increasing demand for integration services that allow a transparent access
to massive repositories of heterogeneous spatial data. Recent initiatives such as
Google Earth [5] are likely to encourage other companies or state agencies to
publish their (satellite) data over the Internet, while integrating such data still
poses several challenges.

The goal of this demonstration is to illustrate the enhanced and new features
of VirGIS[3], a geographic mediation/wrapper system that provides the user with
an integrated view of the data, and advanced query facilities. Typical mediation
approaches are data-driven and do not address the problem of integration of
query capabilities. But the exploitation of available query capabilities is critical
to a geographic mediation system.

A preliminary version of the VirGIS prototype has been demonstrated at
ICDE’2004[2]. This new version will exhibit advanced capabilities, both from
the query engine point of view, and from the user interface perspective as well.

2 What Will Be Demonstrated

We will show the following aspects:

1. An enhanced GQuery [1] user interface: in the previous prototype, users were
able to pose WFS [6] queries and some limited GQuery expressions. WFS
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queries or XML/KVP (keyword-value-pair) queries are XML programs sent
to WFS servers wrapping data sources. Although it allowed access to any
geographic repository that is OpenGIS compliant, i.e., with a WFS interface,
the system inherited WFS limitations because it lacked for complex queries
expressions. The need for a more expressive and powerful query langage
became obvious, and this led to the design and implementation of GQuery,
an XQuery based language that allows spatial complex queries over GML
data sources.

2. An extended mapping language that allows the expression of complex map-
pings (not only 1-to-1) in using constraints or functions (either basic ones or
topological ones) between corresponding entities, i.e., attributes or features
(classes).

3. A smarter query rewriting strategy: previously, when a property of a feature
was missing from a source, a null value was returned to the user. In the
current rewriting algorithm, feature properties that are missing in a source
candidate, are searched in the other (compensating) local sources. More de-
tails on our rewriting strategy are given in [4].

4. Performance enhancement: we discovered that 90% of the execution time was
devoted to join operations, performed by the underlying XQuery join proces-
sor. To speed up query processing, we developed a specific join component,
based on a merge-sort join algorithm.

3 Demonstration Scenario

3.1 Data Sources

The scenario is a simplified version of the satellite catalogue interoperability
problem. Consider the global (mediation) relation

satellite(ID,Name, SatID,Elevation,Date,Geom,Url).

describing a catalogue of satellite images. A user may pose a query against the
satellite relation schema, asking for a satellite image (stored at Url address) that
cover a location described by Geom (coordinates or bounding box), the image
(shot) being taken by a satellite named Name and whose id is SatID, at a given
Date and with a given sun Elevation.

Relation satellite results from the integration of three relations stored in three
different data sources as illustrated in Figure 1, and described as follows:

– the DBC relation, DBC(key, Satellite, Sat ID, Sun elev,Date , The
Geom), stored in a geographic shape format, contains images taken by dif-
ferent satellites (SPOT, ASTER, IKONOS, etc.). In our example, we are
interested only in images taken by SPOT (satellite = ’spot’).

– the ikonos relation, ikonos(key, Satellite, Sat ID, Sun el,Date acqui,
Geometry), relates to (IKONOS) data – expressed in a different scale, and
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Fig. 1. Mapping Between Global and Local Schemas

stored in a PostGIS format. The spatial operator Buffer is applied to the
Geometry attribute to perform scale conversion,

– the preview (quick look) relation, preview(key, filename) supplies data
stored in a POSTGRES database.

A typical query (denoted Qdemo) in this scenario could be phrased as follows:
Given a spatial location, return all satellite images supplied by SPOT and

IKONOS, between 2001 and 2004.
As we already said, this version of VirGIS provides a more expressif

mapping language. For example, one can add constraints to express mappings
between features (the satellite global feature corresponds to the DBC real fea-
ture under the condition satellite = ’spot’). For more expressivity, these con-
straints may also contain spatial operators (the satellite global feature corre-
sponds to the DBC real feature located in a zone z). Another extension of
the mapping language allows aggregations between global and local attributes.
For example, a global attribute may correspond to the result of an opera-
tor (spatial or not) executed over several local attributes (the global geome-
try attribute corresponds to a buffer built around the geometry of an ikonos
feature).

3.2 Demonstration Highlights

The query is posed over the satellite relation, either in using GQuery or the
graphical interface. When using the GQuery interface, a user can express com-
plex queries over several global features in the same time. This could not be
done on the previous prototype due to WFS limitations, that is get one feature
at a time. In order to process such complex queries, we developed a three steps
algorithm described as follows:
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Fig. 2. GQuery (Command Line) Interface

1. a decomposition step in which we decompose a complex global query into
elementary global queries, each of them dealing with one global feature only.
This results in a global execution plan,

2. a rewriting step in which each elementary global query is rewritten in terms
of the local schemas. The algorithm relies on key dependencies to return
complete answers. This results in an elementary execution plan for each
elementary query,

3. a transformation step during which we build the final execution plan. This
is done by replacing each elementary query by its elementary execution plan
and by adding transformation queries that perform sources to local schema
translations.

Figure 2 illustrates the processing of a GQuery expression Qdemo. The figure
highlights three screens: a general menu screen (left), a central screen that allows
GQuery expressions to be entered on line, and a right screen that details the
step by step query processing.

Figure 3 illustrates the graphical query interface, where a user simply delimits
the bounding box target, sets some attribute values and submits the query. The
answer may consist of several objects: a simple click on an object (one brick)
will display the info attached to it.
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Fig. 3. Graphical User Interface

4 Conclusion

In this paper, we described the main VirGIS characteristics that will be demon-
strated. The system relies on Open GIS standards (data model, GML, WFS,
etc.) and represents an advanced mediation system for geographic data. To the
best of our knowledge, there is no geographic mediation system that combines
both geographic standards with W3C ones.
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Abstract. Many different index structures have been proposed for spa-
tial databases to support efficient query processing. However, most of
these index structures suffer from an exponential dependency in pro-
cessing time upon the dimensionality of the data objects. Due to this
fact, an alternative approach for query processing on high-dimensional
data is simply to perform a sequential scan over the entire data set. This
approach often yields in lower I/O costs than using a multi-dimensional
index. The Fast Index Scan combines these two techniques and optimizes
the number and order of blocks which are processed in a single chained
I/O operation. In this demonstration we present a tool called FIS-by-
Step which visualizes the single I/O operations during a Fast Index Scan
while processing a nearest neighbor query. FIS-by-Step assists the de-
velopment and evaluation of new cost models for the Fast Index Scan
by providing user significant information about the applied page access
strategy in each step of the algorithm.

1 Introduction

A large number of index structures for high-dimensional data have been proposed
in previous years, cf. [2] for details. However, for sufficiently high dimensional
data the complexity of similarity queries on multidimensional index structures
is still far away from being logarithmic. Moreover, simple query processing tech-
niques based on a sequential scan of the data are often able to outperform
approaches based on sophisticated index structures. This is due to fact that
usual index structures access data in too small portions and therefore cause lots
of I/O accesses. The Fast Index Scan proposed in [1] subsumes the advantages
of indexes and scan based methods in an optimal way. The algorithm collects
accesses to neighboring pages and performs chained I/O requests, where the
length of the chains are determined according to a cost model. The benefit of
this chained I/O processing is that the seek costs–the main part of the total I/O
costs–have to be paid only once. The authors have shown that the Fast Index
Scan clearly outperforms both, the sequential scan as well as the Hjaltason and
Samet algorithm which is typically used for processing nearest neighbor queries.

In this demonstration we present a tool called FIS-by-Step to visualize the
single chained I/O operations during a nearest neighbor query by applying the
Fast Index Scan on top of an R-Tree. FIS-by-Step displays the applied page
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Fig. 1. The Fast Index Scan for nearest neighbor queries

access strategy in each step of the algorithm and provides user significant statis-
tical information. The step-by-step visualization is very useful in a lot of cases,
e.g. for teaching and explaining the function of the Fast Index Scan, for visual
evaluation of the applied strategies or for development of new strategies.

The remainder of this paper is organized as follows: The concepts of the Fast
Index Scan are described in Sect. 2. In Sect. 3 we demonstrate our tool FIS-by-
Step for visualizing the I/O operations during a Fast Index Scan.

2 The Fast Index Scan

As the Fast Index Scan has been evaluated in [1] on top of the IQ-Tree, it can
be applied to any R-Tree like spatial index structure that consists of only one
directory level. Usually nearest neighbor queries are evaluated by the algorithm
of Hjaltason and Samet (HS) [3], which has been proven to be optimal w.r.t.
the number of accessed pages. Unlike the original HS algorithm which loads and
processes one page after the other, the Fast Index Scan adapts the HS algorithm
and tries to chain I/O operations for subsequent pages on disk and optimizes
the number and order of pages which are processed in a single I/O-operation.

The HS algorithm keeps a priority list of all data pages in increasing order
to their distance to the query point. For all pages pi in the priority queue there
exists a certain probability that pi has to be loaded to answer the query. The
idea of the Fast Index Scan is to load in each step a chunk of neighboring pages
with a sufficient high probability instead of loading only one page, as the HS
algorithm would do. In [1] the authors proposed a stochastic model to estimate
the probability of a page to be accessed during a nearest neighbor query. Based on
this access probability the cost balance of a page can be determined. A negative
cost balance indicates that it is likely to be “profitable” to load the page in
the current chunk additionally. This is given if the additional transfer costs to
read the page in the current chunk are less than the estimated costs to read the
page later in the algorithm. In Fig. 1 the page strategy of the Fast Index Scan
is visualized: starting with page 3 the Fast Index Scan extends the chunk and
reads page 4 and 5 additionally, because page 5 has a very high probability to
be necessary to answer the query. Thus, reading page 4 and 5 in the current
chunk is less expensive than loading page 5 in all probability later and causing
additional seek costs.
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(a) Step 1

(b) Step 2

Fig. 2. Screenshots of the FIS-by-Step application

3 Visualization of the Fast Index Scan

The main purpose of the FIS-by-Step application is to show step-by-step how
the Fast Index Scan solves a nearest neighbor query. Figure 2 shows screenshots
of our application to explain how FIS-by-Step works.

Before running a query, it is possible to change some settings like the pagesize
in order to adjust the application to the data. After choosing a data file (a CSV
file of hyperpoints), the first line of black rectangles appears in the main window
of the application. Each of these rectangles represents a page on the disk, where
the order of the rectangles is identical with the order of the pages on disk. After
selecting the query point (which can be the first point of the data, a random
point of the data, or any given point) the second line of rectangles appears, again
showing all pages, but now there is one blue rectangle: This is the page that is
the nearest one to the query point.

The third line appears after using the “Next Step” button. This is the first
step of the Fast Index Scan: The access probability is calculated for all pages.
The different colors of the rectangles indicate the access probability of the pages:
Black indicates an access probability of 0%, i.e. these pages need not to be read.
Grey pages have been already processed and thus also have an access probability
of 0%. A blue page is the nearest unprocessed page to the query point and
therefore has an access probability of 100%. All other pages (with red to green
color) have access probabilities between 0% and 100% and might have to be read
during the algorithm. As illustrated in Fig. 2(a), in this step of our example 7
pages (underlined magenta) are read by the Fast Index Scan.
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Fig. 3. Statistics about the solved query

After using the “Next Step” button again, two things can happen: Either the
query is solved and some statistics are displayed, or the query is not solved yet,
so it is necessary to read some more pages as shown in Fig. 2(b). Note that
all pages that have been read in the last step are now colored gray, as their
access probability is now 0%. A lot of red colored pages from the first step are
now black, since they have a larger distance to the query point than the nearest
point of the already processed pages. Also there is a new blue page, i.e. a page
with an access probability of 100%. This page is the one that is the nearest one
to the query point, as all already processed pages are ignored. After this step the
example query is solved, thus after using the “Next Step” button there does not
appear a new line of rectangles, but a popup window, showing some statistics
about the query (cf. Fig. 3). The statistical information consists of the number
of accessed pages and the I/O time for solving the query using the Fast Index
Scan in comparison to use the HS algorithm or the sequential scan of the data
set, respectively. As the statistic shows, the Fast Index Scan outperforms the HS
algorithm as well as the sequential scan.

As mentioned above, the primary objective of our FIS-by-Step application is
the step-by-step visualization of the Fast Index Scan. This stepwise visualization
is very useful in a lot of cases, e.g. for teaching and explaining the Fast Index
Scan. FIS-by-Step supports the visual evaluation, comparison and improvement
of strategies for building chunks for chained I/O operations, layout of pages
on disk, and ordering pages for processing in CPU. Furthermore, FIS-by-Step
assists the development of new strategies, as the advantages and disadvantages
of a strategy for a given data are shown directly.
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1 Introduction

Handling the heterogeneity of structure and/or content of XML documents for
the retrieval of information is a fertile field of research nowadays. Many efforts
are currently devoted to identifying approximate answers to queries that require
relaxation on conditions both on the structure and the content of XML docu-
ments [1, 2, 4, 5]. Results are ranked relying on score functions that measure their
quality and relevance and only the top-k returned.

Current efforts, however, are still based on some forms of homogeneity on the
structure of the documents to be retrieved. The parent-child or ancestor descen-
dant relationship among elements should be still preserved, and the problem of
similarity at the tag level (whose solution often requires the use of an ontology)
is seldom considered [6, 8]. Consider for example, two entity types Book and
Author that are bound by the many-to-many Write relationship. Many XML
representations are possible. Someone can model books documents by starting
from the Book entity type and listing for each book its authors. Others can model
books documents by starting from the Author entity type and listing for each
author the books she wrote. Current approaches miss to find relevant solutions
in collections containing both kinds of documents because they can relax the
structural constraint (book/author becomes book//author) but they are not
able to invert the relationship (book/author cannot become author/book). A
more general problem is that current systems [3] support only a specific simi-
larity function on XML documents, while in practice the concept of “similarity”
strongly depends on the requirements of each particular application. This makes
it difficult, if not impossible, to tailor these systems to particular requirements.

In this paper we present ArHeX, a system for approximate retrieval in the con-
text of highly heterogeneous XML document collections. Our system is designed
to support different similarity functions, including lexical (i.e., tag-oriented) and
structural conditions in order to handle a wide variety of heterogeneous collec-
tions. In ArHex, a user can specify the pattern of data to be retrieved through

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1186–1189, 2006.
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Fig. 1. (a) ArHeX architecture, (b) sample pattern

a graphical interface. Moreover, she can specify mandatory constraints on some
relationships among elements or on the element tags that should be preserved.
By means of specifically tailored indexing structures and heuristics, ArHex is
able to efficiently identify the approximate answers for the specified retrieval
query ranked according to a similarity measure. Several parameters can be set
and used to tune the behavior of the system to the application scenario in which
it is employed.

2 ArHex System

ArHeX allows users to specify a suitable similarity measure for their collection,
combining lexical and structural conditions. The lexical measures range from sim-
ple techniques based on the overlap of substrings to ontology-based measures. In-
dexes are tailored to the required measure for an efficient computation, using an
inverted file-like structure. A peculiarity of our index is that we do not have an en-
try for each tag in the collection, but a normalization process is performed to group
together similar tags relying on the tag similarity function preferred by the user.

ArHex also supports a set of similarity measures that can be employed in
the selection and ranking of query results. The considered measures range from
standard information retrieval measures (e.g. occurrence of query tags) to more
sophisticated ones (e.g. structure based or sibling order based functions).

The developed system is equipped with the following functionalities.

– Pattern specification. The structures of user queries are represented as pat-
terns in our system. A pattern is a graph in which the user can specify a “pref-
erence” in the parent-child, ancestor-descendant and sibling relationships ex-
isting among elements or on the tags of elements (depicted through dashed
lines in the graphical representations). “Preference” means that higher scores
are given to query answers presenting such a structure but also results that do
not (or only partially) present such a structure are returned. Moreover, a user
can specify stricter constraints that must occur in the returned results. Our
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Fig. 2. ArHeX pattern evaluation facility

constraints are classified in 3 categories: ancestor-descendant, same level,
and tag constraints (as detailed in [7]). Figure 1(b) shows an example of
pattern in which we search for books having an author, editor and name
elements. The book element can be the parent or the child of the author
element. The name element can be the child of the author element but can
also appear in other positions. The editor element should be found in the
same level of the author element. In ArHeX patterns are specified through
a graphical interface and then mapped in an XML document.

– Pattern evaluation. The evaluation of a pattern in the collection is performed
in different steps (details in [7]). First, through the inverted index, a pattern
index organized in levels is generated containing the elements in the col-
lection whose tags are similar to those in the pattern. Then, fragments are
generated by considering the parent-child and ancestor-descendant relation-
ships among elements in the collection. Furthermore, through the use of a
similarity measure and the heuristic locality principle [6], fragments are com-
bined in regions when the similarity of the pattern with respect to a region is
higher than that with respect to each single pattern. Mandatory constraints
are checked both during fragment and region construction depending on the
category they belong to. Whenever a constraint is not met the correspond-
ing fragment/region can be dropped or penalized according to user prefer-
ences. Finally, the similarity measure is employed to rank the top-k results.
Figure 2 shows the evaluation of a pattern pointing out a similar region.

– Measure selection. Different measures can be applied for the evaluation of
similarity between a pattern and a region depending on the application do-
main. ArHeX allows the selection from a set of predefined measures and the
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combination of existing ones. Finally, in the evaluation of a pattern in the
collection, a user can visualize the differences of evaluation obtained through
a subset of the considered measures.

– Parameter tuning. A user can tune the behavior of ArHeX to a specific
scenario through a set of parameters that a graphical interface offers. For
example, a user can specify the kind of tag similarity to employ (syntactic,
semantic or both). Moreover, she can specify an extra weight to assign to
elements in the pattern that are not found in similar regions or she can state
when regions that do not meet the mandatory constraints should be dropped
or penalized (and the weight to apply as penalty in the last case).

3 The Demonstration

The demonstration will show the following features:

Specification of user-defined similarity measures. The system includes a
library of component-based lexical and structural similarity functions, which
can be tailored to the user’s needs. We will demonstrate the definition of
tailored measures.

Queries on different real and synthetic collections of documents. The
performance of similarity-based queries using the graphical interface will be
presented, using different real and synthetic collections of documents. Dif-
ferent similarity measures will be exercised showing the precision and recall
results.

Comparison of different measures. The system supports the interactive ex-
ploration of heterogeneous collection by allowing the use of several distinct
similarity measures, in order to compare the results.
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1 Introduction

Relational XQuery processors aim at leveraging mature relational DBMS query
processing technology to provide scalability and efficiency. To achieve this goal,
various storage schemes have been proposed to encode the tree structure of XML
documents in flat relational tables. Basically, two classes can be identified: (1)
encodings using fixed-length surrogates, like the preorder ranks in the pre/post
encoding [5] or the equivalent pre/size/level encoding [8], and (2) encodings
using variable-length surrogates, like, e.g., ORDPATH [9] or P-PBiTree [12].
Recent research [1] showed a clear advantage of the former for efficient evalua-
tion of XPath location steps, exploiting techniques like cheap node order tests,
positional lookup, and node skipping in staircase join [7]. However, once updates
are involved, variable-length surrogates are often considered the better choice,
mainly as a straightforward implementation of structural XML updates using
fixed-length surrogates faces two performance bottlenecks: (i) high physical cost
(the preorder ranks of all nodes following the update position must be modified—
on average 50% of the document), and (ii) low transaction concurrency (updat-
ing the size of all ancestor nodes causes lock contention on the document root).

In [4], we presented techniques that allow an efficient and ACID-compliant
implementation of XML updates also on the pre/post (respectively pre/size/level
encoding) without sacrificing its superior XPath (i.e., read-only) performance.
This demonstration describes in detail, how we successfully implemented these
techniques in MonetDB/XQuery1 [2, 1], an XML database system with full-
fledged XQuery support. The system consists of the Pathfinder compiler that
translates and optimizes XQuery into relational algebra [6], on top of the high-
performance MonetDB relational database engine [3].

1 MonetDB/XQuery and the Pathfinder compiler are available in open-source:
http://monetdb-xquery.org/ & http://pathfinder-xquery.org/; the second ver-
sion including XML updates will be released well before EDBT 2006.
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Fig. 1. The impact of Structural Updates on pre/size/level XML Storage

2 XML Updates

XML updates can be classified as: (i) value updates, which include node value
changes (be it text, comment or processing instructions), and any change concern-
ing attributes (attribute value changes, attribute deletion and insertion). Other
modifications are (ii) structural updates, that insert or delete nodes in an XML
document. With the pre/size/level encoding, value updates map quite trivially
to updates in the underlying relational tables. Therefore, we focus on structural
updates in the remainder.

W3C has not formulated a standard for XML updates, yet. However, we
expect that a future standard will include the functionality of the UpdateX
language as proposed in [11]. Given that there is no standard XML update
language (and hence syntax), yet, we decided to keep the changes in our XQuery
parser limited by not using the syntax proposed in [11], but rather implement
the same update functionality by means of a series of new XQuery operators
with side effects.

ConsistentBulk Processing. Semantically, which nodes are updated and with
what values is determined solely using the pre-image (i.e. snapshot semantics).
Still, updates need to be applied in the order mandated by XQuery evaluation,
which conflicts with the bulk relational query execution employed in MonetDB/
XQuery (where optimized query execution may use a different order). To over-
come this problem, the update operators initially just produce a tape of intended
updates. This tape is represented by an XQuery item sequence, and thus in the
end is yielded in the correct order. Finally, after optimization (in which duplicate
updates or updates on deleted nodes are pruned), these updates are applied and
committed. In our opinion, this optimized bulk approach to updates is unique to
MonetDB/XQuery. Note that the update tape, which separates query evaluation
and update execution, bears some resemblance to the idea of monad-based I/O
[10] in purely functional programming languages, e.g., Haskell.

Structural Update Problems. Figure 1 illustrates how the pre/size/level
document encoding is affected by a subtree insert (a delete raises similar issues):
all pre values of the nodes following the insert point change, as well as the size
of all ancestor nodes. The former issue imposes an update cost of O(N), with
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N the document size, because on average half of the document are following

nodes. The latter issue is not so much a problem in terms of update volume
(the number of ancestors is bound by the tree’s height, remaining small even
for large XML instances) but rather one of locking: the document root is an
ancestor of all nodes and thus must be locked by every update. This problem,
however, can be circumvented by maintaining for each transaction a list of nodes
of which the size is changed, together with the delta rather than the absolute
changed value. This allows transactions to release locks on size immediately, and
commit anyway later (even if the size of a node has been changed meanwhile
by another committed transaction, we can just apply the delta to set it to a
consistent state).

With the problem of locking contention on size removed this way, in the sequel
we concentrate on the problem of the shifts in pre here.

Page-Wise Remappable Pre-Numbers. Figure 2 shows the changes intro-
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Fig. 2. Updates With Logical Pages

duced in MonetDB/XQuery to handle
structural updates in the pre/size/level
table. The key observations are:

– the table is called pos/size/level now.
– it is divided into logical pages.
– each logical page may contain unused

tuples.
– new logical pages are appended only

(i.e., at the end).
– the pre/size/level table is a view

on pos/size/level with all pages in
logical order. In MonetDB, this is
implemented by mapping the under-
lying table into a new virtual memory
region.

Figure 2 shows the example document being stored in two logical pages. The
logical size is measured in a number of tuples (here: 8) instead of bytes. The
document shredder already leaves a certain (configurable) percentage of tuples
unused in each logical page. Initially, the unused tuples are located at the end of
each page. Their level column is set to NULL, while the size column holds the
number of directly following consecutive unused tuples. This allows the staircase-
join to skip over unused tuples quickly. For the same reason, the size of existing
nodes now also embraces the unused tuples within the respective subtrees.

The advantage of unused tuples is that structural deletes just leave the tuples
of the deleted nodes in place (they become unused tuples) without causing any
shifts in pre numbers. And since unused tuples are counted in the size of their
ancestors, deletes do not require updates of the size of their ancestors. Also,
inserts of subtrees whose sizes do not exceed the number of unused tuples on the
logical page, do not cause shifts on other logical pages. Larger inserts, only use
page-wise table appends. This is the main reason to replace pre by pos. The pos
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column is a densely increasing (0,1,2,...) integer column, which in MonetDB can
be efficiently stored in a virtual (non-materialized) void column.

We introduced new functionality in MonetDB to map the underlying disk
pages of a table in a different non-sequential order into virtual memory. Thus,
by mapping in the virtual memory pages of the pos/size/level table in logical
page order, overflow pages that were appended to it, become visible “halfway”
in the pre/size/level view.

In the example of Figure 2, three new nodes k, l and m are inserted as children
of context node g. This insert of three nodes does not fit the free space (the first
page that holds g only has one unused tuple at pos=7 ). Therefore, a new logical
page must be inserted in-between. Thus, we insert eight new tuples, of which only
the first two represent real nodes (l and m), the latter six are unused. Thanks to
the virtual column feature of MonetDB, in the resulting pre/size/level view, all
pre numbers after the insert point automatically shift, at no update cost at all!

3 Conclusion

In our demonstration, we will show the performance and scalability of both
read-only and update queries on potentially huge XML databases, provided by
MonetDB/XQuery. The demonstration will graphically show how the key tech-
niques described here influence the behavior of the system.
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Abstract. We present STRIDER1, a versatile system for the disam-
biguation of structure-based information like XML schemas, structures of
XML documents and web directories. The system performs high-quality
fully-automated disambiguation by exploiting a novel and versatile struc-
tural disambiguation approach.

1 Introduction

In recent years, knowledge based approaches, i.e. approaches which exploit
the semantics of the information they access, are rapidly acquiring more and
more importance in a wide range of application contexts. We refer to “hot” re-
search topics, like schema matching and query rewriting [2, 5], also in peer data
management systems (PDMS), XML data clustering and classification [8] and
ontology-based annotation of web pages and query expansion [1, 3], all going in
the direction of the Semantic Web. In these contexts, most of the proposed ap-
proaches share a common basis: They focus on the structural properties of the
accessed information, which are represented adopting XML or ontology based
data models, and their effectiveness is heavily dependent on knowing the right
meaning of the employed terminology. Fig. 1-a shows the hierarchical repre-
sentation of a portion of the categories offered by eBay. It is an example of a
typical tree-like structure-based information managed in the above mentioned
contexts and which our approach is successfully able to disambiguate. It con-
tains many polysemous words, from string to which WordNet [6], the most
used commonly available vocabulary, associates 16 meanings, to batteries (11
meanings), memory (10 meanings), and so on. The information given by the
surrounding nodes allows us to state, for instance, that string is a “stringed
instrument played with a bow” and not a “linear sequence of symbols”, and
batteries are electronic devices and not a group of guns or whatever else.

In this paper we propose STRIDER, a system which could be of support to
these kinds of approaches in overcoming the ambiguity of natural language, as
it makes explicit the meanings of the words employed in tree-like structures.
STRIDER exploits the novel versatile structural disambiguation approach we
proposed in [4].
� This work is partially supported by the Italian Council co-funded project WISDOM.
1 STRucture-based Information Disambiguation ExpeRt.
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Fig. 1. (a) A portion of the eBay categories;(b) The complete STRIDER architecture

2 An Overview of the STRIDER System

STRIDER is designed to perform effective disambiguation of tree-like struc-
tures. As shown in Fig. 1-b, which depicts the complete architecture of our sys-
tem, STRIDER takes in input structure-based information like XML schemas,
structures of XML documents and web directories and disambiguates the terms
contained in each node’s label using WordNet as external knowledge source. The
outcome of the disambiguation process is a ranking of the plausible senses for
each term. In this way, the system is able to support both the completely auto-
matic semantic annotation whenever the top sense of the ranking is selected and
the assisted one through a GUI that assists the user providing useful suggestions.
The STRIDER system has the following features:

– automated extraction of terms from tree’s nodes (Terms/Senses Selection
component in Fig.1-b);

– high-quality and fully-automated disambiguation that:
• is independent from training or additional data, which are not always

available [7];
• exploits a context which goes beyond the simple “bag of words” approach

and preserves the information given by the hierarchy (graph context);
• allows flexible extraction and full exploitation of the graph context ac-

cording to the application needs (Graph Context Extraction compo-
nent in Fig.1-b);

• enriches the graph context by considering the expanded context, with
additional information extracted from WordNet definitions and usage
examples (Context Expansion component in Fig.1-b);

– interactive and automated feedback to increase the quality of the disambigua-
tion results;
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Fig. 2. The Graphical User Interface of the STRIDER System

– user-friendly GUI speeding up the assisted disambiguation of trees, providing
an easy-to-use layout of the informative components.

Technical details about the implemented techniques for structural disambigua-
tion are available in [4].

3 Demonstration

In this section we demonstrate the main features of STRIDER. The effective-
ness of the system has been experimentally measured on several trees differ-
ing in the level of specificity and polysemy [4] (trees are available online at
www.isgroup.unimo.it/paper/strider).

Fig. 2 shows STRIDER’s GUI with the results of the disambiguation process
for the eBay example (Fig. 1-a). In the left part of the GUI we see columns Node,
Term that show the outcome of the automated extraction of terms from the tree’s
nodes and column Synset that contains the chosen sense for the corresponding
term. For flexibility purposes, the GUI allows users to fill it in either by manually
choosing one of the senses in the right part or by pressing the Magic Wand.
This simple act triggers the fully automatic disambiguation process of STRIDER
which is applied to the entire loaded tree and automatically chooses the top sense
in the ranking of each term. When the user highlights a term in the left part of
the GUI, the right part shows all the available senses and for each of them the
synset’s hypernym hyerarchy. One of the major strengths of our system is the
versatility of being able to choose the crossing setting that is best suited to the
tree characteristics. For instance, when the crossing setting is made up of the
whole tree, the term antique of Fig.1-a is not disambiguated as “an old piece
of furniture or decorative object”, but as “an elderly man” due to the presence
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of terms like fan and speaker that could have the meaning of “persons” rather
than “objects”. This behavior is typical of trees that gather very heterogeneous
concepts like web directories. On the other hand, only by using the whole tree
as the crossing setting in trees that have a very particular scope, for instance
an IMDB tree schema on movies, terms like episode and genre are correctly
disambiguated whereas a restricted crossing setting made of only ancestors and
descendants provides wrong results. In general, the performed tests demonstrate
that most of the term’s senses are correctly assigned straightforwardly with the
disambiguation (the mean precision level on the tested trees is generally over 80%
[4]). Such good performance is obtained even when the graph context provides
too little information, as in generic bibliographic schemas, thanks to the context
expansion feature which is able to deliver a higher disambiguation precision, by
expanding the context with additional related nouns contained in the description
and in the examples of each sense in WordNet. To get even better results the user
could choose to refine them by performing successive disambiguation runs; for
this purpose he/she is able to deactivate/activate the influence of the different
senses of the available context words on the disambiguation process. Further, the
flexibility of our approach allows the user to benefit from a completely automated
feedback, where the results of the first run are refined by automatically disabling
the contributions of all but the top ranked X senses in the following runs.

4 Conclusions

The disambiguation performances achieved by STRIDER are encouraging and
demonstrate the very good effectiveness of the adopted approach. The intuitive
GUI provides easy interaction with the user; further, the system can also be
used in batch mode to meet the needs of the most cutting edge semantic-aware
applications, where user intervention is not feasible.
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Abstract. Peer Data Management Systems (PDMS) have recently attracted at-
tention by the database community. One of the main challenges of this paradigm
is the development and evaluation of indexing and query processing strategies
for large-scale networks. So far, research groups working in this area build their
own testing environment which first causes a huge effort and second makes it
difficult to compare different strategies. In this demonstration paper, we present a
simulation environment that aims to be an extensible platform for experimenting
with query processing techniques in PDMS and allows for running large simula-
tion experiments in distributed environments such as workstation clusters or even
PlanetLab. In the demonstration we plan to show the evaluation of processing
strategies for queries with specialized operators like top-k and skyline computa-
tion on structured data.

1 Introduction

In recent years research concerning peer-to-peer (P2P) systems has mainly dealt with
P2P applications based on environments that are much more sophisticated than those
simple file sharing systems that they originate from. Especially Peer Data Management
Systems (PDMS) are the focus of current work. They consider the problems arising
from peers with different local schemas but appear to be one virtual database.

Research activities in this area do not only include the behavior and topology of
a P2P system itself but also query processing strategies, routing indexes[1], schema
correspondences[2], etc. All approaches and ideas have to be thoroughly evaluated. For
this purpose, simulation environments are built. Such implementations have to meet
several requirements in order to allow for reasonable evaluations. In the context of P2P
research the primary requirements are: scalability, dynamic behavior, performance, ex-
tensibility, arbitrary experimental settings, repeatability, traceability/logging, and con-
trol (as mentioned in [3]).

Usually, research groups build their own environments using different data sets, pro-
gramming languages, application areas and so on. This results in a couple of problems:

– Many environments are implemented rather hastily and have several shortcomings
like limited network size, firm index structures and query processing strategies, or
even include bugs. Other aspects are simplified and therefore cannot be examined.

– Results gained with different systems are usually not comparable. This leads to
unsatisfying evaluations or high reimplementation costs.
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– Existing environments are normally based on network simulators like ns-2 that are
too low-level for our purpose.

– Most environments do not have an intuitive user interface let alone a graphical one.
Configuring and using the software is difficult. The output is rather cryptic and does
not allow for an intuitive result analysis.

In this paper we present SmurfPDMS (SiMUlating enviRonment For PDMS), a simula-
tor that meets all the requirements mentioned above. Furthermore, it tries to overcome
the introduced shortcomings of existing simulators. In the following sections we present
its architecture (Section 2) and the aspect of extensibility (Section 3). Afterwards, in
Section 4, we present the graphical user interface that makes it easy to operate. Finally,
in Section 5 we point out what features we are planning to show at the conference.

2 Architecture

SmurfPDMS logically consists of two parts that we implemented using Java: the simu-
lation engine and an environment for configuration and experimenting. The latter uses
a graphical interface based on Swing and JGraph (http://www.jgraph.com) for visualiz-
ing configuration parameters, statistics, networks and so on. Moreover, this environment
can generate initial settings like the network topology based on user specified parame-
ters like the number of peers and the average number of connections per peer.

The simulation engine simulates peers whose states are represented by peer objects.
These objects have local caches and message queues to improve query processing, map-
pings to describe how to translate queries and data into a neighbor’s schema, and in-
dexes to describe a neighbor’s data. The simulation environment does not only allow
for running simulations locally on a single computer, it also gives the opportunity to
run simulations involving a couple of computers - improving scalability. Communica-
tion between participating computers is carried out by sending and receiving messages
using the JXTA [4] protocols. Simulating only one peer per machine enables the sim-
ulator to act like a “real” P2P application. In future work we intend to use PlanetLab
(http://www.planet-lab.org) as the underlying framework.

Each participating computer manages several peer objects that can be connected to
others residing on other computers. The localization of peer objects (local or remote)
does not have any influence on the implementation of other components like query pro-
cessing strategies. A central clock mechanism allows for gaining comparable results
even in resource-limited environments. Apart from the system architecture like intro-
duced above, Figure 1 shows the implementation architecture of SmurfPDMS. It con-
sists of three layers: the graphical user interface, the simulation layer, and the network
communication layer. This architecture considers several central concepts: (i) managers
that control the simulation or communication, (ii) messages for information exchange,
(iii) hierarchies of inherited objects, and (iv) the distinction of participating JXTA peers
between multiple participators and one coordinator. The coordinator runs on a desig-
nated computer and coordinates the simulation. Its most important tasks are:

– Determine the setup including calculating a network topology, assigning the peers
to the participating computers, calculating data partitions, etc.

– Choose queries and determine peers to initiate them
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Fig. 1. Architecture

– Determine and choose peers to leave or join the network.
– Simulate communication and processing delays, log the initial setup (in order to

achieve repeatability) as well as results and statistics.

3 Extensibility

We achieve extensibility by a modular architecture. Each of the above mentioned classes
(manager, strategy, message, peer, etc.) represents a base class. Thus, the logical sim-
ulation engine of SmurfPDMS can be easily extended. For example, we have derived
queries and answers from messages. If we want to introduce a new message type, we
just have to derive a new class from the base class. In order to process such messages
correctly, we could extend existing strategies or we could as well introduce a new strat-
egy class as an extension of the corresponding base class.

Just like the simulation engine, we can also extend the environment for configuration
and experimenting. SmurfPDMS has several algorithms for initializing a simulation.
Assume we want to test different topology construction algorithms or algorithms for
distributing the initial data among peers. Then all we have to do is adding an implemen-
tation of these algorithms to the concerned classes. All other parameters can remain
the same. This allows us to examine the influence of these algorithms under the same
environmental settings.

4 Running Experiments

First of all, the simulator has to be configured (arbitrary simulation settings). The user
has the chance to load configuration files, to reconfigure individual parameters, or to
have the simulator compute settings like the network topology, the data distribution, or
the query mix. All these parameters and settings can be written to configuration files and
reloaded for the next simulation (repeatability). Together with the log files we can easily
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reproduce and reconstruct entire simulations or reuse partial settings like the topology
(traceability/logging).

Afterwards, the simulator looks for other JXTA peers in the network. The user can
select among them those that he or she wants to participate in the simulation (scalability,
performance). After having selected the JXTA peers the simulation can be started with
the computer that the user currently operates on as coordinator (control).

Once the simulation has been started, simulations can be halted, canceled, and ex-
ecuted stepwise. Moreover, the graphical user interface provides the user with further
features for visualization like messages and their details or peers’ local statistics. Fig-
ure 2 shows the basic principles of visualizing. The simulation either ends after a user

Fig. 2. Simulation window

defined number of simulation steps or when no peer has any actions left to perform. In
both situations the coordinator sends the break signal to all participating JXTA peers
and thus ends the simulation. At the end of a simulation the global statistics are dis-
played to the user and a file containing that data is created. These results can be used
for creating charts like we did for example in [5] and [6].

5 Demonstration

We plan to focus our demonstration on the aspect of how to use the simulator for con-
ducting experiments with arbitrary settings. This includes presenting algorithms for
automatic topology generation as well as algorithms for distributing data among peers.
Furthermore, we will show how to formulate queries by hand or how to have them
generated automatically by the simulator. We will also show how to compare different
query processing strategies by means of their results and collected statistics. Finally, we
will show how we can do all this using a graphical user interface for both configuring
the simulator and visualizing the results.
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An interesting observation relates to the fact that the most successful applications on 
the Web incorporate some sort of social mechanism. This is true for commercial 
success stories, such as Ebay with its reputation mechanism, Amazon with its 
recommendation tool and Google with PageRank, a recommendation-based ranking 
algorithm. Peer-to-peer file sharing and photo sharing are other recent examples 
were the essence of the application consists of social interactions. In these 
applications large numbers of anonymous participants interact, such that mechanisms 
for social control become increasingly important. This explains the recent interest in 
reputation-based trust management. The same issues will emerge when large 
numbers of services will be deployed over the Web through Web services and Grid 
computing technology. 

The goal of the panel is to reflect on these developments, identify important classes 
of applications involving social interaction which require data management support 
and information management capabilities, and project from there the potential future 
impact on the field of data management.  

A characteristic property of applications involving social interactions is the large 
numbers of participants of whom the behavior needs to be tracked and analyzed. This 
implies a strong need for scalable data management capabilities. Will this require 
novel approaches in the area of data management or will existing technology be 
sufficient? The past has shown that new applications frequently open new avenues in 
data management research. Examples are semi-structured data management 
responding to the need of managing data on the Web and stream data management 
responding to the need of managing data in networked environments and sensor data. 

Recently, in the context of the Semantic Web, social mechanisms for semantic 
tagging, so-called folksonomies, have created quite some interest. There the creation 
and alignment of structured data annotations for Web content becomes a social 
activity. Similarly as with collaborative filtering in information retrieval the social 
context is exploited in order to deal with the semantics problem, namely providing 
proper interpretation of data. Is this a promising approach for dealing with one of the 
hardest problems in data management, namely dealing with semantic heterogeneity of 
structured data?  

In social settings uncertainty is omnipresent, since intentions and interpretations of 
autonomous participants cannot be made completely transparent. This holds also true 
when it comes to the exchange and shared use of data. Is it possible, that the recent 
growing interest of the database community in applying probabilistic techniques in 
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data management roots also in the need of having appropriate tools for dealing with 
the uncertainty resulting from interaction in a social context? 

Finally, from a more general perspective, new requirements on data management 
often initiate new directions of interdisciplinary research for the field. Will the need to 
provide solutions for data management on the Social Web lead database researchers 
to look into areas such as agent technologies, game theory or micro-economy to better 
understand the mechanics of social interactions and their impact on data management 
solutions? 

These were some of questions that we will pose to the panel in order to identify 
interesting directions for future data management research. 
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