
Directives for Composing Aspect-Oriented Design
Class Models

Y.R. Reddy, S. Ghosh, R.B. France, G. Straw, J.M. Bieman,
N. McEachen, E. Song, and G. Georg

Computer Science Department,
Colorado State University,

Fort Collins, CO 80523, USA
ghosh@cs.colostate.edu

Abstract. An aspect-oriented design model consists of a set of aspect models
and a primary model. Each aspect model describes a feature that crosscuts ele-
ments in the primary model. Aspect and primary models are composed to obtain
an integrated design view. In this paper we describe a composition approach that
utilizes a merging algorithm and composition directives. Composition directives
are used when the default merging algorithm is known or expected to yield incor-
rect models. Our prototype tool supports default class diagram composition.

Keywords: Aspect-oriented modeling, Composition directives, KerMeta, Meta-
model, EMOF, Signature, UML.

1 Introduction

Design features that address dependability concerns (e.g., security and fault tolerance
concerns) may crosscut many elements of a design model. The crosscutting nature of
these features can make understanding, analyzing, and changing them difficult. This
complexity can be better managed through the use of aspect-oriented modeling (AOM)
techniques that support separation and composition of crosscutting features [1].

In the AOM approach that we developed [1], an aspect-oriented design model con-
sists of a primary model and one or more aspect models. An aspect model describes
a feature that crosscuts the primary model. Aspect models are generic descriptions of
crosscutting features that must be instantiated before they can be composed with the
primary model. An integrated view of an aspect-oriented design model is obtained by
composing the instantiated aspect models and the primary model. Instantiated aspect
models and primary models consist of UML [2] models. Composition of the models in-
volves merging UML models of the same types. For example, the class model in an in-
stantiated aspect model is merged with the class model in a primary model. In previous
work, a name-based composition approach was used to merge UML models [1]. Model
elements with the same name are merged to form a single element in the composed
model. The composition approach assumes that elements with the same name represent
consistent views of the same concept. This may not always be the case. For example,
consider an aspect-oriented design consisting of a primary model that describes a class
representing a server that provides unrestricted access to services via operations in the

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 75–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

76 Y.R. Reddy et al.

class, and an instantiated aspect model that describes the same server class with ac-
cess control features. In this case, simple name-based merging of the two classes and
the operations in them could lead to operations that are associated with inconsistent
specifications (a primary model operation and its corresponding aspect model opera-
tion would have the same name but different argument lists and specifications). Often,
a more sophisticated form of composition is needed to produce composed models with
required properties. To meet this need we proposed the use of composition directives to
ensure that the name-based composition approach produces desired results [3].

This paper extends previous work by introducing (1) a more general form of model
element matching that is based on the notion of model element signatures, (2) a com-
position metamodel with behavioral features that specify how UML elements are com-
posed, and (3) new forms of composition directives. In this paper we illustrate how a
signature-based composition approach can be used to compose class models and de-
scribe how composition directives can be used to ensure that the composition approach
produces desired results. We have developed a prototype tool that implements the class
model composition behavior specified in the composition metamodel [4].

The remainder of the paper is organized as follows. Section 2 gives an overview of
signature-based model composition and composition directives. Section 3 describes the
composition metamodel. Section 4 describes the composition directives and provides
illustrations of their use. Related work is discussed in Sect. 5, and Sect. 6 presents
conclusions and plans for future work.

2 An Overview of Signature-Based Model Composition

A primary model in an aspect-oriented design model consists of one or more UML
models, where each model describes a view of the core functionality. The core func-
tionality determines the dominant structure of a design. Aspect models consist of UML
model templates that describe generic forms of crosscutting features as patterns. An
aspect model must be instantiated to produce a model that can be composed with a pri-
mary model. An instantiation of an aspect model, called a context-specific aspect model,
describes the form the feature takes in a part of the design. Instantiating an aspect model
involves binding the aspect model’s template parameters to application-specific values.

A single aspect model may have to be instantiated multiple times for a given ap-
plication. For example, consider the case where a decision has been made to make an
application design fault-tolerant and highly available by replicating critical resources
such as data repositories and service providers. Incorporating the crosscutting replica-
tion feature into the (primary) design model proceeds as follows:

1. An aspect model describing the replication feature for a generic resource is devel-
oped or acquired.

2. The replication aspect model is instantiated multiple times. Each instantiation is
a context-specific aspect model that describes the replication feature for a specific
application resource.

3. The context-specific aspect models are composed with the primary application
model to produce a design in which specified resources are replicated.

Directives for Composing Aspect-Oriented Design Class Models 77

In our previous work we developed a composition approach that used model element
names to identify the elements that are to be merged. Model elements of the the same
syntactic type and with the same name are merged to form a single model element.
Naming conflicts can be avoided if there is a managed namespace from which values
used to bind aspect models and to name primary model elements are obtained. We
refer to such a namespace as the application domain namespace [1]. Unfortunately, a
managed namespace is often not available in design development environments, and
thus naming conflicts may occur.

2.1 Matching Model Elements Using Signatures

Name-based composition is relatively easy to implement, but as a matching criterion,
it can be too permissive in some cases. For example, matching operations using only
their names could lead to merging problems when the operations have incompatible
return types or when the argument lists differ. Similarly, matching attributes using only
their names can lead to merging problems when the types associated with the attributes
are incompatible. One would like to have matching criteria that take into considera-
tion additional properties of the elements being matched. For example, one should be
able to express a matching criterion for attributes that requires matching attributes to
have the same name and type. The need for finer-grained matching criteria led to the
development of the signature-based composition approach described in this paper.

The signature-based composition approach merges information in model elements
with matching signatures to form a single model element in the composed model. A
model element’s signature is defined in terms of its syntactic properties, where a syn-
tactic property of a model element is either an attribute or an association end defined
in the element’s UML metamodel class. For example, isAbstract is a syntactic prop-
erty defined in the metamodel class called Class. If an instance of Class is an abstract
class then isAbstract = true for the class, otherwise the instance is a concrete class (i.e.,
isAbstract = f alse).

The signature of a model element is a collection of values for a subset of syntac-
tic properties defined in the model element’s metamodel class. The set of syntactic
properties used to determine a model element’s signature is called a signature type. For
example, the signature type for an operation can be defined as a set consisting of the fol-
lowing properties defined in the Operation class: name (value is the operation’s name)
and ownedParameter (value is the collection of parameters associated with the opera-
tion). Using this signature type, the signature of an operation update(x : int,y : int) is
the set {update,(x : int,y : int)}. If this signature is used to match operations, two oper-
ations match if and only if they have the same name and parameter list. If the signature
type of an operation consists only of the operation name, then the signature of the op-
eration is {update}. Use of this name-only signature type results in a weaker matching
criterion for operations: two operations match if and only if they have the same name.

A signature type that consists of all syntactic properties associated with a model ele-
ment is called a complete signature type. Complete signature types require that match-
ing model elements have equivalent values for all syntactic properties (i.e., the matching
elements must be syntactically identical). Complete signature types are typically used
for matching contained model elements such as class attributes and operation parame-

78 Y.R. Reddy et al.

Model 2Model 1

name:String
address:String

Customer
Account

updateAcct()

name:String

Customer

(a) (b)

...
...

Composed Model 2 (faulty model)

Account

updateAcct()

name:String

Customer

(d) Merging using a signature consisting of class names, attributes
and operations. Result is a faulty model in which two different

concepts are represented by classes with the same name

name:String
address:String

Customer
...

Composed Model 1

Account

updateAcct()

name:String
address:String

Customer

(c) Merging using a signature consisting only of class names.
Customer classes in Model 1 and Model 2 are merged

...

Fig. 1. An example of model element matching and merging

ters. Composite model elements that contain a variety of model elements (e.g., classes)
tend to have signature types that are not complete.

If two model elements of the same syntactic type1 have the same signature, then
their properties are merged to form a single model element of that syntactic type. As
an example, consider a model, Model 1, containing a concrete class named Customer
with attributes name and, address, (see Fig. 1a) and another model, Model 2, which
contains a concrete class named Customer with an attribute name and a reference to
an Account object (see Fig. 1b). If the signature type used to compose the classes in
Figs. 1a and 1b consists of the class name property and the isAbstract property, then
the two classes match (they have the same name and they are both concrete), and their
contents are merged to form a single class. The issue of merging syntactic properties
that are not part of a model element’s signature type arises in this case. The matching
classes in this example have different attribute, operation, and association end sets.
Merging the constituent model elements involves matching them using signature types
defined for the elements. The constituent elements that are matched are merged in the
composed model. Those elements that are not matched are included in the composed
model.

The composed model shown in Fig. 1c is obtained by using complete signature types
for attributes, operations, and association ends:

1 The syntactic type of a model element is the class of the model element in the UML meta-
model.

Directives for Composing Aspect-Oriented Design Class Models 79

– The attribute name : String in Model 1 and Model 2 match and is included once in
the composed model.

– The attribute address : String in Model 1 does not appear in Model 2 and thus is
not matched. It appears in the composed model.

– The operation updateAcct() in Model 2 does not appear in Model 1 and thus is not
matched. It appears in the composed model.

– The association and the class Account in Model 2 do not appear in Model 1 and
thus are not matched. They are included in the composed model.

The use of particular signature types can lead to models that are not syntactically
well-formed in some cases. For example, consider the case in which the signature type
for class is defined as consisting of the following properties: Name, isAbstract, and
ownedAttribute. Two classes match using this signature type if and only if they have
the same name, are both abstract or are both concrete, and they have the same set of
attributes and association ends. If this signature type is used to compose the class mod-
els shown in Fig. 1a and Fig. 1b, then the result is shown in Fig. 1d. The model is not
well-formed because there are two classes with the same name in the same namespace.

To resolve the above problem one must understand the intent behind the signature
type. If it is determined by the modeler that the signature type correctly reflects the
syntactic form of classes that represent the same concept, then the problem is resolved
by renaming either the Customer class in Model 1 or the Customer class in Model 2.
As will be described later in this paper, this can be accomplished by using a rename
composition directive. On the other hand, if the modeler determines that the classes
actually represent similar classes then the signature type must be changed so that the
classes are matched.

2.2 Identifying and Using Composition Directives

The composition approach that we have developed utilizes a signature-based merging
algorithm and composition directives. In some cases, sole use of the algorithm will
produce models with undesirable properties. This is the case when the views described
by the models contain inconsistent information. In some cases, the problems can be
resolved by syntactically tweaking the models that are involved in the composition or
by overriding some of the composition rules. Composition directives can be used for
these purposes.

Figure 2 shows activities related to identifying and using composition directives. The
activity diagram shows the relationship among three activities: the composition activity
(Compose aspect and Primary models), the model analysis activity (Analyze Composed
model), and the directives identification activity (Identify Composition Directives). The
composition activity, Compose aspect and Primary models, takes in three inputs: a pri-
mary model, a nonempty set of context-specific aspect models, and a (possibly empty)
set of composition directives. In this activity, the aspect and primary models are com-
posed using the algorithm and composition directives to produce a Composed model.
The matching and merging procedure is capable of detecting conflicting syntactic prop-
erty values associated with matching model elements. For example, if two matching
classes have different values for the isAbstract property, a conflict is flagged.

80 Y.R. Reddy et al.

Analyze
Composed model

Properties

to Verify

Primary model

[Problems identified

[No problems
identified]

during composition]

[Problems identified]

[No problems

identified]

Context−specific

aspect models

Composed model

Composition Directives

Identify ApplicableCompose
Aspect and

Primary models

Composition

directives

Fig. 2. Using composition directives to resolve composition problems

After composition, the composed model can be formally analyzed against desired
properties (referred to as Properties to Verify in Fig. 2) to uncover design errors. For
example, one can analyze the models against well-formedness rules to identify badly
formed models, or one can analyze the models against desired semantic properties (e.g.,
“only the owner of a file can delete the file”). In related work, we developed a technique
for uncovering semantic problems during composition [5]. In the approach, the seman-
tic property to be verified is used in the composition process to generate proof obliga-
tions. Establishing that a composed model has the stated semantic properties requires
discharging the proof obligations.

In some cases, the uncovered problems can be resolved using composition directives.
In these cases an appropriate set of directives are identified and used to compose the
context-specific aspect and primary models. In other cases, more substantial changes
may be required. For example, it may be determined that another variant of the aspect
model is needed or that the primary model has to be significantly refactored.

This paper focuses on the Compose Aspect and Primary models activity shown in
Fig. 2. Activities related to analysis of models to uncover problems and the identifica-
tion of composition directives is not within the scope of this paper.

2.3 Examples of Applying Composition Directives

Composition directives can be classified as Model Directives and Element Directives.
Model directives are used to determine the order in which multiple aspect models are
composed with a primary model. Element directives are used to determine how an as-
pect model is composed with a primary model. Element directives can be classified in
terms of when they are applied in the composition process:

Directives for Composing Aspect-Oriented Design Class Models 81

– Premerge directives: These directives are used to carry out simple modifications of
the models before they are merged. For example, one can rename model elements,
delete model elements, or replace model elements (delete and add model elements)
in the primary or context-specific aspect models.

– Merge directives: These directives are used to override rules for merging model ele-
ments. For example, one can specify that a model element in one model completely
replaces an element in another model.

– Postmerge directives: These directives are used to carry out simple modifications on
the model produced after merging possibly modified primary and context-specific
aspect models. The directives for renaming, adding, deleting, and replacing model
elements also fall into this category.

In the remainder of this section we provide examples of composition problems that
can be resolved using composition directives. It is important to note that the compo-
sition approach discussed in the following sections does not provide systematic tech-
niques for analyzing composed models nor for identifying appropriate composition di-
rectives once problems are uncovered. As stated earlier, the merging algorithm will flag
cases where conflicting syntactic properties exist for model elements that are merged.
It does not, however, detect semantic conflicts that can arise as a result of inconsis-
tent specifications of behavior or other semantic properties. Uncovering such semantic
properties requires formal semantic analysis of the composed model.

Figure 3 shows a simple example of a composition that leads to a faulty composed
class model. In the example, a modeler creates a primary model (see Fig. 3a) in which
an output producer (an instance of Writer) sends outputs directly to the output device
to which it is linked (instance of FileStream). The modeler then decides to incorporate
a buffering feature into the model by instantiating a buffering aspect model. Figure 3b
shows the class diagram template that is part of the buffering aspect model. The as-
pect model describes how entities that produce outputs (represented by instantiations
of BufferWriter) are decoupled from output devices through the use of buffers. Tem-
plate parameters are preceded by the symbol “|”. The operation templates |write() in
|Buffer and |BufferWriter are associated with template forms of operation specifi-
cations [1].

To incorporate the buffering feature into the primary model, the modeler must first
instantiate the aspect model to produce a context-specific model. Instantiating the
buffering class diagram template produces a class diagram that describes how buffering
is to be accomplished in the context of the primary model. The class diagram shown
in Fig. 3c is obtained from the buffering class diagram template using bindings that
include the following:

(|Buffer<-WriterBuffer), (|Output<-FileStream), (|BufferWriter<-Writer),
(|BufferWriter::|write()<-writeLine()), (|Buffer::|write()<-writeBuff()),
(|Output::|write()<-addToStream())

The result of composing the class diagram shown in Fig. 3c with the primary model
class diagram shown in Fig. 3a is presented in Fig. 3d. Composition is carried out by
matching model elements using signatures consisting only of model element names.
If the matching model elements are associated with invariants, the invariant associated

82 Y.R. Reddy et al.

writeBuff()

WriterBuffer

addToStream()

FileStream

writeLine()

Writer

pre: true
post: wbuffer^writeBuff(?)
post: fstream^addToStream(?)

wbuffer

bfstream

pre: ...
post:
bfstream^addToStream(?)

fstream

(d) Composed Model

writeBuff()

<<Buffer>>
WriterBuffer

addToStream()

<<Output>>
FileStream

writeLine()

<<BufferWriter>>
Writer

pre: true
post:
wbuffer^writeBuff(?)

wbuffer

bfstream

pre: ...
post:
bfstream^addToStream(?)

(c) Context-Specific
Aspect Model

|write()

<<Class Template>>
|Buffer

|write()

<<Class Template>>
|Output

|write()

<<Class Template>>
|BufferWriter

pre: true
post:
|buffer^|write(?)

|buffer

|output

pre: ...
post:
|output^|write(?)

(b) Buffering Aspect Model

writeLine()

Writer

addToStream()

FileStream

fstream

pre: true
post:
fstream^addToStream(?)

(a) Primary Model

Fig. 3. An example of a faulty composition

with the merged element in the composed model is the conjunction of the invariants in
the matched elements. Operation specifications, expressed as OCL pre- and postcon-
ditions, can also be merged for matching operations. The precondition of the merged
operation in the composed model is the disjunction of the preconditions associated with
the matching operations, and the postcondition of the merged operation is the conjunc-
tion of their postconditions.

The merging of the writeLine() operations in the primary and context-specific as-
pect models produces an operation that calls the buffer’s write operation writeBuff()
and the filestream’s write operation addToStream(). This is not the desired result: The
intent is to completely decouple Writer from FileStream using WriteBuffer. To
resolve this problem, the following composition directives can be used:

– a premerge composition directive that removes the association between Writer and
FileStream in the primary model

– a premerge composition directive that removes the operation specification associ-
ated with the writeLine() operation in the primary model

Once the above premerge directives are applied, the composition algorithm is used to
compose the modified primary model with the context-specific aspect model.

Directives for Composing Aspect-Oriented Design Class Models 83

Repository
User

Repository
User

addUser(u:User,mID:MgrID)

doAddUser(u:User)

Repository Manager

Operation names match but specified properties conflict.

addUser in Primary model are not the same

The properties of addUser in Context−specific aspect model and

Primary modelContext−specific aspect model

... ...

Repository Manager

addUser(u:User)

Fig. 4. Example of a property conflict

As another example, consider the partial context-specific and primary class models
shown in Fig. 4. The addUser() operation in the primary model adds a user (instance
of User) to a collection of users (instance of a class User Repository). The addUser()
operation in the context-specific aspect model calls the doAddUser operation only when
the client calling the operation is authorized to add a user. The doAddUser() operation
adds a user to the collection. Using signatures that consist only of model element names,
the two Repository Manager classes match and thus their properties are merged. During
the merge of these two classes, the addUser() operations are matched and their speci-
fications (not shown) are merged. The resulting addUser() operation specification will
have a semantic conflict: The specification from the primary model allows uncondi-
tional adding of users, but the specification from the context-specific model will allow
adding of users only if the operation is authorized for the client. This is an example of
a semantic property conflict: A semantic property conflict occurs when two matching
elements (elements with the same signature) are associated with conflicting semantic
properties. In this example, the intent is to merge the doAddUser() operation in the
context-specific aspect model with the addUser() operation in the primary model. To
resolve this conflict and reflect the intent, a premerge composition directive that re-
names the addUser() operation in the primary model to doAddUser() can be used.
After this renaming, signature-based composition will produce a composed model with
the required properties.

Renaming directives can also be used to resolve syntactic naming conflicts. A syntactic
naming conflict occurs when two or more model elements representing different concepts
have the same name. This class of conflicts can be avoided by instantiating the generic
aspect model such that the names do not match or by using a premerge rename directive.

In some cases, postmerge directives are needed to add or delete elements in the model
produced by merging primary and context-specific aspect models to produce a model
that has required properties. For example, associations may be added between a class
introduced by the primary model and another class introduced by a context-specific
aspect model to provide required access to behaviors defined in the classes, or they may
be removed to prevent access that is to be prohibited in the composed model.

84 Y.R. Reddy et al.

With the ability to rename, add, and remove elements comes the risk of another type
of conflict: the nonexistent-reference conflict. A nonexistent-reference conflict arises
when a reference in one of the models refers to an element that no longer exists, or exists
under a different name. To resolve this conflict, the affected references in a model must
be identified and updated. Composition directives that identify and update specified
references are needed.

In an aspect-oriented model that contains multiple aspect models, different compo-
sition orderings may produce different composed models [6]. A particular ordering can
lead to undesirable emergent behaviors. For example, consider an auditing feature and
a password feature that are to be composed with a primary model. If the password fea-
ture is composed with the primary model before the auditing feature, then the end result
could be a model in which the auditing feature captures and stores passwords. This may
be an undesirable emergent behavior. Composition directives that can be used to specify
the order used to compose multiple aspects with a primary model are needed.

Defining composition ordering raises another type of conflict. A cyclic-ordering con-
flict occurs when there is a cycle among ordering relationships defined over multiple
aspects. Analysis can detect and correct ordering conflicts.

The above discussion indicates that the following list of actions should be captured
by composition directives:

– creating new elements
– adding elements to a Namespace
– deleting elements from a Namespace
– changing property values of elements
– finding and changing references to specified model elements
– specifying override relationships between matching elements
– changing default composition rules
– specifying ordering relationships among multiple aspects

The above list of actions reflects our current experience and may be incomplete.

3 The Composition Metamodel

Our composition metamodel uses static and behavioral features needed to support
model composition. In this paper, we describe the behavioral properties in terms of
class operations and narrative descriptions of the operations. Alternatively, sequence
and activity diagrams can be used to describe the interactions and activities that take
place during composition.

The core part of the metamodel has been implemented using KerMeta, an open
source metamodeling language developed by the Triskell team at IRISA [7]. KerMeta
extends the Essential Meta-Object Facility (EMOF) 2.0 [8] with an action language
that allows one to describe the behavior of operations associated with classes in a meta-
model. KerMeta was used primarily because it is compatible with the Eclipse Modeling
Framework (EMF), which allows us to use Eclipse tools to edit, store, and visualize
models manipulated in our AOM approach. A more detailed description of the language
is presented in [9].

Directives for Composing Aspect-Oriented Design Class Models 85

EMOF 2.0 is a subset of the Meta-Object Facility (MOF) that can be used to describe
metamodels using object-oriented concepts. It utilizes concepts from UML 2.0, and
thus allows one to use UML tools to build metamodels. EMOF defines a class called
Object from which all other EMOF classes inherit properties. This class contains the
following operations that will be used in the composition metamodel described later in
this section:

– The getMetaClass() operation returns the class of an object.
– The container() operation returns the containing parent object.
– The equals(element) operation determines if the element is equal to this instance.
– The set(property,element) operation sets the value of the property to the element.
– The get(property) operation returns a list of values or a single value depending on

the multiplicity.

The isComposite attribute defined in the EMOF class Property returns true if the
object is contained in the parent object. Cyclic containment is not possible, i.e., an
object can be contained in only one other object. The getAllProperties() operation in
the EMOF class called Class returns all the properties (including inherited properties)
associated with a Class object.

Figure 5 shows the core part of the composition metamodel. The metamodel contains
elements from the UML metamodel [2], but it differs from the UML metamodel in that
it includes operations that specify composition behavior.

The core concepts shown in Fig. 5 are described below:

– Element: Instances of this class are model elements. Element is an extension of the
UML metaclass, Element. It is extended by the operation getMatchingElements
(e : Set(Element)). Operations associated with the EMOF Ob ject class are also
available in the Element class.

• Element::getMatchingElements(): This operation takes in a set of elements
and returns a set of elements that have the same syntactic type and signature
as the element that invokes it. The syntactic type check is performed by in-
voking the getMetaClass() and the getAllProperties() operations defined in
the EMOF Ob ject class. The signature is obtained using the getSignature()
operation.

– Mergeable: This is an abstract class that characterizes model elements that can
be merged. Examples of mergeable elements shown in the figure are instances of
Classi f iers, Operations, and Models.

• Mergeable::merge(): This operation merges the element with the mergeable
element passed in as an operation argument. The merge method returns a new
element that is the merge of the element m and the element on which the merge
is called.

• Mergeable::sigEquals(): This operation determines whether the element’s sig-
nature is equal to the signature of another element.

• Mergeable::getSignature(): This operation gets the signature of the element.

– Signature: Instances of this class are representations of signatures. Every merge-
able element is associated with exactly one instance of this class.

86 Y.R. Reddy et al.

merge(m:Mergeable)
sigEquals(m: Mergeable)
getSignature()

Mergeable

Signature

getMatchingElements(e:Set(Element))

Element

1 *

sigEquals(m: Mergeable)

Operation

sigEquals(m: Mergeable)

Classifier

sigEquals(m: Mergeable)

Model
...

...

ElementDirective ModelDirective

execute()

CompositionDirective

PrimaryModel AspectModel

*

*

ComposedModel

execute()

RenameDirective

main()

Composer

1 *

1

1

Fig. 5. Core elements of composition metamodel

The KerMeta implementation of the core parts of the composition metamodel (i.e.,
the metamodel obtained by excluding the CompositionDirective hierarchy) treats the
model elements and instances of the other classes in the metamodel as objects (i.e.,
instances of the EMOF Object class). The implementation is thus written independently
of model element types, and it uses reflection to obtain type information. The operations
in the composition metamodel (including those defined in EMOF) were implemented
using the KerMeta action language.

The model elements are merged only when they have the same syntactic type and
the same signature. The sigEquals() operation is used to determine whether signatures
of model elements are the same (see Appendix). Each model element type defines its
own procedure for checking equality of signatures, that is, specializations of Mergeable
can override the inherited sigEquals().

Merging of two matching model elements, e1 and e2, in the absence of composition
directives proceeds as follows:

– Primitive property rule: A primitive property is a model element property
that must be associated with exactly one value. The isAbstract property of classes
is an example of a primitive property. The primitive properties of matching el-
ements must have the same values. If they have different values then a conflict

Directives for Composing Aspect-Oriented Design Class Models 87

is indicated for each conflicting value. For example, if e1 and e2 are matching
classes with different values for the isAbstract property then a conflict is
indicated.

– Composite property rule: This rule applies to model element properties that are
associated with values that are collections of model elements. The ownedAttribute
property of a class is an example of this kind of property. This rule has a base case
part and a recursive part. The recursive part essentially applies the merge recur-
sively to merge the constituent parts of the property that match across the encom-
passing two model elements. The base case part determines the stopping condition
for the recursion. In what follows, the composite property is referred to as p, e1.p
refers to the collection of values associated with p in e1, and e2.p refers to the
collection of values associated with p in e2.
• Recursive part: For each constituent element in e1.p a search is made for a

matching element in e2.p (based on the signature type associated with the con-
stituent element type). If a match is not found then the element is included
in merged form of e1 and e2. If a match is found the two matching con-
stituent elements are merged and included in the merged form of e1
and e2.

• Base Case part: If two constituent matching elements, c1 and c2, are compos-
ites that consist of only one model element, q, then the following occurs. If the
signatures of c1.q and c2.q match then c1.q is merged with c2.q. If the signa-
tures do not match, then a conflict is indicated. For example, if two attributes
are matched using only their names, then a conflict is indicated if their types
do not match.

The composition of two models (instances of Model) is started by calling the
merge() operation in one of the models, using the other as an argument. The main()
method of the Composer class invokes the initial merge. Since a Model is not a prim-
itive type, its merge() operation will result in the merging of the matching parts of the
model. The algorithm for merging elements is given in the Appendix.

Two types of composition directives are described in the composition metamodel.
Element directives (instances of ElementDirective) are composition directives that ap-
ply to a group of elements in a single model. These directives can be used to add new
elements, delete existing elements, rename elements, override elements, and replace
references in a model. Model directives (instances of ModelDirective) are composition
directives that are associated with a group of models. An example of a model directive
is a composition directive that specifies the order in which aspects are composed with a
primary model.

Each composition directive is associated with a behavior that implements the action
associated with the directive. These behaviors are invoked by the merge() operations of
elements before the merges of constituent properties are attempted.

The KerMeta implementation of the composition metamodel currently does not sup-
port the use of composition directives. We are now developing such support. The pre-
and postmerge directives can be viewed as transformations on models and this is how
they will be implemented in KerMeta (KerMeta was originally designed to support
specification of model transformations).

88 Y.R. Reddy et al.

4 Composition Directives

In this section we describe the composition directives that we have identified through
application of the composition approach on small case studies (e.g., see [10, 11, 12]).
The directives can be used to modify aspect and primary models, add new elements to
composed models, or to override default composition rules in order to produce desired
composed models. The directives that modify models can be viewed as transformations
on the models. Directives that affect only aspect and primary models are applied to the
models before their elements are merged. Those that add elements to composed models
and those that override composition rules are applied during merging.

Each directive (except for the directives that override composition rules) is described
using the following format:

– Directive Name: This section states the name of the directive or the form of names
for a family of directives.

– Application: This section describes the purpose of the directives and describes the
entities that the directives operate on.

– Form: This section describes the syntactic form of the directives.
– Constraint: This section gives the conditions that must hold if the directives are to

have the intended effect. The constraint in this section is referred to as the directive
precondition.

– Effect: This section describes the effect of the directives on their targets. The spec-
ification of effect is called the directive postcondition.

As indicated in the composition metamodel described in the previous section, there
are two types of composition directives: element directives and model directives. The
following sections describe the directives in each of these categories and give examples
of their application.

4.1 Element Directives

We have identified the following element directives thus far:

– creating new model elements (a family of directives)
– adding model elements to a namespace
– removing model elements from a namespace
– changing properties (a family of directives)
– replacing references to a model element in a namespace
– overriding model elements
– overriding composition rules (a family of directives)

When an element is created by a create directive, a handle that can be used to refer-
ence the element is provided. These handles can be used in composition directives that
are applied after the creation of the model elements. The names that appear on model
elements in aspect and primary models serve as references to the model elements in
directives. For example, an association name or a role name can refer refer to an asso-
ciation in a directive.

Directives for Composing Aspect-Oriented Design Class Models 89

Creating new model elements. The following describes the family of create directives.

Directive Name: create<metamodel class name>
The following are examples of names for create directives: createAssociation, cre-
ateClass, where Association and Class are the names of concrete classes in the UML
metamodel.

Application: The create directives are used to create new model elements (i.e., model
elements that are not in the primary or aspect models being composed). In the com-
position metamodel, each concrete Element class is associated with a constructor. The
create directives use these constructors to create model elements to ensure that the cre-
ated elements are syntactically well-formed. The new element is not a member of any
namespace when it is created.

A create directive has set of operands that determines the arguments passed to the
constructors of the model elements. The operands are a set of (property name = property
value) pairs, where the property name is the name of a model element property.

Form: newHandle = create<Element> {operands}
The following is an example of a create directive that creates a concrete class with a

name “NewClass”.

newClass = createClass {name = "NewClass", isAbstract = false}
The following create directives are used to create a strong aggregation relation bet-

ween two existing classes: primary::UserMgmt, and aspect::UserAuth.

userAuthEnd = createProperty { isComposite = false, aggregation = none,

type = aspect::UserAuth, opposite = userMgmtEnd, lower = 1, upper = 1 }
userMgmtEnd = createProperty { isComposite = true, aggregation = composite,

type = primary::UserMgmt, opposite = userAuthEnd, lower = 1, upper = -1 }
userAuth-userMgmt = createAssociation { name = "UserAuth-UserMgmt" ,

isDerived = false, memberEnd = [userAuthEnd,userMgmtEnd] }

The operands of the above directives indicate that the two association ends
(property) userAuthEnd and userMgmtEnd must be created before the association
userAuth-userMgmt is created. We assign the value of “-1” to upper (representing
the upper limit of a multiplicity), where “-1” represents the multiplicity “*”. The “[..]”
notation is used to denote a collection of association ends in the createAssociation
directive.

Constraint: There are no constraints for these directives.

Effect: A create directive provides a reference to a new model element that is valid.
The new Element is not a member of any namespace.

Adding model elements to a namespace.

Directive Name: add

90 Y.R. Reddy et al.

Application: The add directive is used to add a model element to a namespace in a
model. It can be used to add a newly created model element (i.e., one created by a
create directive) to a namespace and to add an element from another namespace into a
target namespace. The latter action is needed when a model element is migrated to a new
namespace in order to ensure that the composed model has required properties. Such a
migration would involve removing the element from its original namespace (using the
remove directive described later) and then adding it to the new namespace.

The add directive has one operand, the model element to be added.

Form: add owner::elem
In the above, the model element, elem, is added to the namespace, owner.

Constraint: The target namespace must exist, the element to be added must have a
unique name within the namespace, and the element must be an instance of a concrete
UML metamodel class that can be owned by the namespace.

Effect: The element is in the target namespace.

Removing model elements from a namespace.

Directive Name: remove

Application: The remove directive is used to remove a model element from a names-
pace. It is used when the presence of certain model elements compromises desired
properties of the composed model. For example, consider a security aspect model that
requires that certain associations not exist in the composed model because their pres-
ence can lead to leaks of sensitive information. The remove directive can remove these
associations in the primary model.

Removing a composite model element involves removing all its contained parts. For
example, removing an association involves removing its association end properties (but
not the classes at the association ends).

Removing a model element can result in models with hanging references: Refer-
ences to the removed element may be present in the namespace and elsewhere (e.g.,
in OCL expressions) after removal. Use of the directive should be coupled with the
use of other directives that take care of the hanging references. For example, one can
use the replaceOccurrences directive to replace reference to the deleted element with
references to other elements.

The remove directive has one operand, the model element that is to be removed.

Form: remove owner::elem
In the above, the model element, elem, is removed from the namespace, owner.

Constraint: The namespace must exist in a model. The element must be in the names-
pace before the directive is applied.

Effect: The element is not in the namespace.

Changing properties of model elements in a namespace. The family of directives
for changing model element properties are described below.

Directives for Composing Aspect-Oriented Design Class Models 91

Directive Name: change<property name>
Examples of change directive names are changeisAbstract and changename. The
changename directive is written more concisely as rename.

Application: The changeProperty directive is used to change the value of a model
element property. This directive can be used to force or prevent matching of model el-
ements by changing the property values used to determine element matches. For exam-
ple, in the cases where matching is based only on the names of elements, this directive
can be used to rename elements so that they match or do not match.

This directive has two operands. The first is the model element with the property,
and the second is the new value of the property.

In our case studies we often use this directive to rename model elements, and thus
we use a more concise name for the directive: rename. The renaming directive is often
applied to the primary model, because renaming of elements in the context-specific
aspect models can also be accomplished by rebinding the (generic) aspect model.

Form: change<property name> owner::targetElement to propertyValue

In the cases where the property to be changed is a model element name one can use
the form below:

rename owner::targetElement to newName

Constraint: The element must exist in a primary, aspect or composed model.

Effect: The specified property value in the target model element has the new value.

Replace references to a model element in a namespace.

Directive Name: replaceOccurrences

Application: The replaceOccurrences directive is used to replace references to a
model element with references to another model element in a namespace. It is often
used in conjunction with directives that add and remove model elements. For example,
if an association that is referenced in an OCL expression is removed then one can use
this directive to change the reference in the OCL expression.

The replaceOccurrences directive has two operands: The first is a reference to a
model element, and the second is a reference to another model element.

Form: replaceOccurrences owner1::elem with owner2::replacementElem
The above states that references to elem in the namespace owner1 are to be replaced by
references to replacementElem in the namespace owner2.

Constraint: There are no constraints for this directive.

Effect: All existing references to the model element owner1::elem are changed to
references to the element owner2::replacementElem.

Overriding a model element. This composition directive is similar to the override
relationship proposed by Clarke et al. [13].

92 Y.R. Reddy et al.

Directive Name: override

Application: The override directive defines an override relationship between two po-
tentially conflicting model elements. It indicates that the properties of a model element
take precedence over properties of a matching model element during composition.

When an override relationship is defined for two model elements, the relationship
propagates to the contained model elements. The consequences of the implicit overrides
may not be immediately obvious. Explicit override relationships should be defined for
contained model elements when this is feasible and practical.

The override directive has two operands. The second operand is the model element
that overrides the first operand.

Form: override owner1::elem1 with owner2::elem2

Constraint: owner1::elem1 and owner2::elem2 must exist in separate models, one
in a primary model, and the other in a context-specific aspect model. The two elements
must match.

Effect: During composition, the properties of elem1 are replaced by properties of
elem2.

Overriding default composition rules. When merging matching model elements with
different property values, a composition mechanism can use default rules to determine
the property values that will be used in the composed model. For example, in previous
work [5] we defined the following rules for combining properties with different values
in matching elements:

– If two matching attributes are associated with invariants, the invariant in the com-
posed model is the conjunction of the two invariants.

– If two matching operations have operation specifications, the composed operation
has a precondition that is the disjunction of the two preconditions and a postcondi-
tion that is the conjunction of the two postconditions.

– If two associations match and their multiplicities are different, then the merged
association uses the weaker multiplicity constraint at each end.

Sometimes one may want to change the default rules when composing models.
For example, one may want to use the stronger multiplicity constraint at the ends of
composed associations. Override composition rule directives are used for this purpose.
In our approach, each rule is associated with a set of possible variations, and a directive
for each variation is defined. For example, the association end multiplicity rule is
associated with the following directive:

association end multiplicity rule owner1::assocend1;
owner2::assocend2 stronger

Use of this directive indicates that the stronger of the two multiplicities at the
specified associations are to be used in the composed model. One can also override the
rule globally using the following directive:

Directives for Composing Aspect-Oriented Design Class Models 93

association end multiplicity rule stronger

For the operation specification rule we have the following directive:

operation specification rule owner1::aclass1::PreSpec(anoperation1),
owner2::aclass2::PreSpec(anoperation2) conjunct

The above states that the precondition of the operation formed by merging the
matching operations anoperation1 and anoperation2 is the conjunction of their
preconditions. A similar directive for postconditions is also defined:

operation specification rule owner1::aclass1::PostSpec(anoperation1),
owner2::aclass2::PostSpec(anoperation2) disjunct

Currently we have a very limited number of composition rules. In the cases where
we do not have such rules, composition results in a conflict when the property values
differ. Work on providing a small and useful set of rules and associated directives is
ongoing.

4.2 Composition Examples

The following are examples of composition scenarios that require the use of directives
to produce desired results. In the examples we show the effect of directives in terms of
before and after diagrams. Note that the after diagrams are not the composed models:
They show only the effect of the directives on the primary and aspect models.

Example 1: The faulty composition shown in Fig. 3 can be avoided by using com-
position directives that do the following (the aspect and primary models are shown in
Fig. 6):

1. Remove the association between Writer and FileStream in the primary model:
In the desired composed model, all writing to the file stream is done via the buffer.
The write should not have direct access to the filestream in the composed model.

2. Remove the OCL specification for writeLine() in the primary model: The oper-
ation specification in the context-specific aspect model fully specifies the desired
behavior and thus the conflicting specification in the primary model can be deleted.

The directives that accomplish the above are given below:

(1) remove primary::Writer::fstream
(2) remove primary::Writer::Spec(writeLine)

In the above, Spec(writeLine) refers to the specification associated with the opera-
tion writeLine(). Figures 6 and 7 illustrate the effect of the directives on the primary
and aspect model. An “X” indicates the removal of an element.

In the example, the operation specification associated with writeLine() in the pri-
mary model contained only a statement that refers to the deleted f stream element. If
the specification had contained additional statements that were required in the operation
specification of writeLine() in the composed model, then removal of the specification

94 Y.R. Reddy et al.

addToStream()

FileStream

pre: true

writeLine()

addToStream()

fstream

wbuffer

writeLine()

WriterFileStream

post:
fstream^addToStream(?)

Writer WriterBuffer

writeBuff()

bfstream

aspect: AspectModel

pre: true
post:

pre:
post:
bfstream^addToStream(?)

wbuffer^writeBuff(?)

...

Primary: PrimaryModel

Fig. 6. Example 1. Before application of directives

addToStream()

FileStream

writeLine()

addToStream()

wbuffer

writeLine()

WriterFileStream

post:
fstream^addToStream(?)

Writer WriterBuffer

writeBuff()

bfstream

aspect: AspectModel

pre: true
post:

pre:
post:
bfstream^addToStream(?)

wbuffer^writeBuff(?)

...

fstream

pre:

Primary: PrimaryModel

Fig. 7. Example 1. After application of remove directives

in the primary model would not give the desired result. To handle these situations, di-
rectives that replace the elements to be removed in the OCL specifications with desired
elements are needed. Such directives require technology for parsing OCL expressions.
A metamodel for the OCL is currently being standardized by the Object Management
Group (see http://www.omg.org/uml), and it is expected that OCL parsers based on the
metamodel will be developed soon after.

An alternative way to accomplish the above would be to use the override directive
instead of the second remove directive, as shown below.

(1) remove primary::Writer::fstream
(2) override primary::Writer with aspect::Writer

Figure 8 illustrates the effect of the directives on the primary and aspect models.

Example 2: The following example, from France et al. [1], illustrates the use of the
create, add, remove, and replaceOccurrences directives. The aspect model shown

Directives for Composing Aspect-Oriented Design Class Models 95

Writer

fstream^addToStream(?)
post:

FileStream Writer

writeLine()

wbuffer

addToStream()

writeLine()

WriterBuffer<<override>>

Primary: PrimaryModel

pre:

fstream

...

wbuffer^writeBuff(?)

bfstream^addToStream(?)
post:
pre:

post:
truepre:

aspect: AspectModel

bfstream

writeBuff()

FileStream

addToStream()

Fig. 8. Example 1. After application of remove and override directives

SystemMgmtAuthRepository

checkSysAuth(mid:MgrID,op:String)

<<datatype>>
MgrID

UID
<<datatype>>

UID
<<datatype>>

<<datatype>>
MgrID

1..*

primary: PrimaryModelaspect: AspectModel

1..*m: MgrID

Manager

m: MgrID

Manager

addUser(mid:MgrID,u:UID)

accessAuthRep

doDeleteUser(u:UID)
doAddUser(u:UID)
deleteUser(mid:MgrID,u:UID)

accessUserRep

UserMgmt

deleteUser(u:UID)
addUser(u:UID)

UserRepository

uaccesses accesses

1..1

1..1

1..1

1..1

1..1

1..1
UserAuth

Fig. 9. Example 2. Before application of directives

in Fig. 9 presents a view in which add and delete user actions must be authorized
before they are carried out. The primary model describes a view in which authorization
does not occur. The objective of the composition is to produce a composed model in
which the authorization behavior in the aspect is incorporated into the primary model.
In Fig. 9, the UserAuth class in the aspect model performs authorization checks on
clients requesting the addition or deletion of users from the system. In the composed
model, Manager client must request the add and deleter user operations by calling
the corresponding operations in UserAuth and should have no direct access to the
UserMgmt class. To accomplish this, a directive is used to remove the accesses
association in the primary model:

(1) remove primary::Manager::accesses

There are references to the accesses association in Manager that must be replaced
or removed. In this case, references to accesses in the primary model must be changed
to uaccesses in the context-specific aspect model, because all access to the operations

96 Y.R. Reddy et al.

is made via the uaccesses association in the composed model. The following directive
is used to accomplish this:

(2) replaceOccurrences primary::Manager::accesses
with aspect::Manager::uaccesses

The definitions of the addUser and deleteUser operations in UserAuth include
an authorization check. In the aspect model, if a Manager client is authorized to carry
out the add or delete action a call is made to the respective doAddUser, doDeleteUser
operations. In the described composed model, the operations addUser and deleteUser
in UserMgmt carry out the add and delete user actions, respectively. To make this
possible a composition directive that adds an association between the UserMgmt class
and the UserAuth class is used:

(3) userAuthEnd = createProperty { isComposite = false, aggregation = none,

type = aspect::UserAuth, opposite = userMgmtEnd, lower = 1, upper = 1 }
userMgmtEnd = createProperty { isComposite = true, aggregation = composite,

type = primary::UserMgmt, opposite = userAuthEnd, lower = 1, upper = -1 }
userAuth-userMgmt = createAssociation { name = "UserAuth-UserMgmt" ,

isDerived = false, memberEnd = [userAuthEnd,userMgmtEnd] }
Once the new Association is created, we need to add it to the composed model.

The composition directive that accomplishes this is given below. We reference the
composed model using the name comp:

(4) add comp::userAuth-userMgmt,
add comp::UserAuth::userAuthEnd,
add comp::UserMgmt::userMgmtEnd

There are two options for creating a composed model in which authorized calls to
addUser and DeleteUser are made: The first option is to replace the specifications
of doAddUser and doDeleteUser so that they delegate the actions to the respective
operations in UserMgmt using the new association. The second option is to replace
the calls to doAddUser and doDeleteUser by calls to the respective operations in
UserMgmt. We give the directives that accomplish the latter option below:

(5) replaceOccurrences aspect::UserAuth::doAddUser
with primary::UserMgmt::addUser(),

remove aspect::UserAuth::doAddUser,
replaceOccurrences aspect::UserAuth::doDeleteUser

with primary::UserMgmt::deleteUser(),
remove aspect::UserAuth::doDeleteUser

The effect of the directives on the aspect and primary models is shown in Fig. 10.
The association between UserMgmt and UserAuth exists in the composed and not in
the aspect or primary models; it is shown here only to indicate that this association will
exist in the composed model. The dependencies from the addUser and deleteUser
operations in UserAuth indicate that they call the respective operations in UserMgmt.

Directives for Composing Aspect-Oriented Design Class Models 97

SystemMgmtAuthRepository

checkSysAuth(mid:MgrID,op:String)

<<datatype>>
MgrID

UID
<<datatype>> UID

<<datatype>>

<<datatype>>
MgrID

primary: PrimaryModel

m: MgrID

Manager UserMgmt

UserRepository

1..*m: MgrID

Manager

addUser(mid:MgrID,u:UID)

accessAuthRep

doDeleteUser(u:UID)
doAddUser(u:UID)
deleteUser(mid:MgrID,u:UID)

uaccesses

aspect: AspectModel

1..*

accessUserRep

deleteUser(u:UID)
addUser(u:UID)

accesses
1

(5)

(5)

1..1

1..1
1..1

1..1

1..1

1..1

(1)+(2)
1..*

(3)+(4)

UserAuth

Fig. 10. Example 2. After application of directives

4.3 Combining Element Directives

The examples and the descriptions of composition directives provide some indication
that use of some element directives are often coupled with the use of others. For ex-
ample, removing a model element sometimes requires use of directives such as the
replaceOccurrences directive to avoid hanging references. An overview of combined
directives in the premerge, merge, and postmerge categories are given below:

Premerge combined directives: Matching directives are combined directives that
force the matching of elements or disallow the matching of elements. The directives
are often combinations of changeproperty and replaceOccurrences directives.

Merge combined directives: Combinations of the override and replaceOccurrences
directives are often used to override rules used to merge model elements.

Postmerge combined directives: These directives are often combinations of direc-
tives for creating model elements, adding model elements to a namespace, and
deleting model elements from a namespace.

The development of a library of combined directives that are based on actual use of
directives on realistic projects is a major goal of our research on composition directives.

4.4 Model Directives

Model directives determine how a set of models are composed. The model directives
we have identified constrain the order in which context-specific aspect models are com-
posed with a primary model. These directives can define a weave-ordering relationships
between aspect models. A weave-ordering relationship is a binary constraint that speci-
fies an ordering between two aspect models. There are two cases: An aspect model must
be composed before another, or an aspect model must be composed after another.

98 Y.R. Reddy et al.

Precedes

Directive Name: precedes

Application: This directive specifies that one aspect model is to be composed with a
primary model before another. This directive has two aspect models as operands. The
first operand is the aspect model that is to be composed before the second operand.

Form: former precedes latter

Constraint: Both aspect models must exist.

Effect: A weave-ordering relationship is created between the two aspect models and
added to the set of weave-ordering constraints maintained by the composer. This direc-
tive does not imply that former will be woven immediately before latter. It simply
requires that former be woven some time before latter.

Follows

Directive Name: follows

Application: This directive specifies that one aspect model is to be composed with a
primary model after another. This directive is provided only to increase the readability
of composition directives. It may be interpreted as equivalent to the precedes directive
with the operands switched. This directive has two aspect model operands. The first
operand is the aspect model to be composed after the second operand.

Form: later follows earlier

Constraint: See precedes.

Effect: See precedes.

4.5 Weave Ordering Example

Consider the aspect design model in Fig. 11(a). There are three different aspect models
and the primary model. In this example, the authentication aspect model needs to
be composed before the authorization aspect model, because authorization without
authentication is meaningless. Therefore, we declare the following composition
directive to make the order explicit.

(1) authentication precedes authorization

We could have also defined a composition directive using the follows directive with the
operands reversed to achieve the same result.

Suppose we also wish to weave the errorChecking aspect model last. The
following composition directives accomplish this:

(2) errorChecking follows authorization
(3) errorChecking follows authentication

Directives for Composing Aspect-Oriented Design Class Models 99

The result is shown in Fig. 11(b). The dependency from authentication to autho-
rization illustrates the weave-order relationship that specifies that authentication must
be woven before authorization, and the dependencies from errorChecking to each of
the other aspects illustrates the two binary weave-order relationships that specify er-
rorChecking as the last aspect to be woven.

(b)

primary:PrimaryModel

Composition Directives

Mapping Rules

Design ModelDesign Model

primary:PrimaryModel

Composition Directives

Mapping Rules

authentication:Aspect

errorChecking:Aspect

authorization:Aspect

authentication:Aspect

authorization:Aspect

errorChecking:Aspect

<<follows>>

<<follows>>

<<precedes>>

(a)

Fig. 11. Example 4. Specifying weave order

5 Related Work

A number of researchers have developed aspect-oriented software development
(AOSD) approaches (e.g., see [13, 14, 15, 16, 17, 18, 19, 20]). The composition ap-
proaches used in these AOSD approaches can be categorized as asymmetric and sym-
metric [21]. In asymmetric composition, aspects and base models play clearly distin-
guished roles during composition. These composition approaches tend not to support
composition of aspects and composition of base models. AspectJ [22] is one of the
popular aspect-oriented programming languages that uses an asymmetric composition
approach. In symmetric composition both aspect and base models are treated the same,
and thus aspect and base model composition are possible. The composition approaches
used in work on viewpoints [23], subject-oriented programming [24, 25], and multidi-
mensional separation of concerns (MDSOC) [26] tend to be symmetric. This paper uses
a hybrid composition approach. The (generic) aspect models are patterns that cannot be
directly composed with base models, but the instantiated forms of the aspect models
(i.e., context-specific aspect models) are not distinguished from the primary model dur-
ing composition. The approach can be used to compose (generic) aspect models (i.e.,
patterns) to obtain new aspect models (e.g., see [27]) and to compose UML models. To
date we have implemented the procedure for composing UML class models.

A survey of AOSD approaches can be found in Chitchyan et al. [28]. Very few
approaches in the survey provide support for composing design models. At the pro-
gramming level, the subject-oriented approach is closest to the approach described in

100 Y.R. Reddy et al.

this paper. In subject-oriented programming [24, 25], program elements such as classes
and methods are composed by merging corresponding elements. The correspondence is
established based on specified composition rules. The default correspondence is name-
based, which can be altered by writing additional composition rules. The composition
rules used to control this process can be classified under three categories: rules that es-
tablish correspondence, rules that control combination, and rules that control both cor-
respondence and combination. The composition rules in subject-oriented programming
are analogous to our use of signatures to determine matches and the use of directives to
alter model elements and override default composition rules. Our composition approach
depends on the properties specified in the signature rather than just names of model el-
ements, primarily because not all UML model elements are named elements. We have
found that name-based matching has a greater potential of producing faulty models
than signature-based composition, simply because signature-based composition allows
for finer tuning of matching criteria.

At the model level, a comparable AOM approach is the Theme approach proposed
by Baniassad and Clarke [13, 29, 30]. In the Theme approach, a design, called a theme,
is created for each system requirement. These themes, like context-specific aspect and
primary models, are essentially design views. A comprehensive design is obtained by
composing themes. Composition in the Theme approach is based on the symmetric ap-
proach used in subject-oriented programming. Composition relationships specify how
models are to be composed by identifying overlapping concepts and specifying how
models are integrated. Two types of integration strategies are used: override and merge.
Override integration is used when existing behavior in a subject needs to be updated to
reflect new requirements. Merge integration is used when subjects for different require-
ments are to be integrated. Operations in related subjects may need to be merged into
a unified operation. Reconciliation strategies resolve conflicts between property values
of corresponding subject elements. Precedence relationships, transformation functions
applied to conflicting elements, explicit specification of reconciled elements, and de-
fault values may be used for reconciliation. Clarke [13] also extends the UML meta-
model with the notion of composableElements that can be composed using a compo-
sition relationship. They have a Match metaclass that supports specification of match-
ing criteria. Their matching criteria include matchByName and dontMatch. They leave
the details of implementing the matchByName and dontMatch to the user of the meta-
model. In this sense the metamodel describes a framework for composing UML models.
In our work we have developed a more specialized metamodel that contains specifica-
tions of composition behaviors. The metamodel was designed to describe our com-
position approach and to guide the development of supporting tools. To validate the
metamodel, we used it to develop a prototype tool for composing UML class models.
The composition directives that we have developed include some that are similar to
the merge and override integration strategies. The use of composition directives and
signatures, as described in this paper, allows modelers to define and apply their own
integration and reconciliation strategies, and thus to gain finer control over how models
are composed.

Brito and Moreira describe an aspect composition process that identifies match
points in a design element and defines composition rules [31]. Rules use identified

Directives for Composing Aspect-Oriented Design Class Models 101

match points, a binary contribution value (either positive or negative) that quantifies the
affects on other aspects, and a priority for a given aspect. In the context of AOP [32],
Kienzle et al. describe composition rules based on dependencies between aspects [33].
Both papers [31, 33] focus primarily on relationships that can exist between aspects.
We describe the possible relationships between aspects as weave-order relationships
and override relationships, but it may also be possible to use priorities and dependen-
cies as done by Kienzle, Brito, and Moreira in our approach. In this sense, the ideas
presented in their papers complement the ideas presented in this paper.

Aldawud et al. [34] propose a mechanism for composing state charts where a cross-
cutting behavior is an event that triggers a state transition. The composition is specified
by linking events across state diagrams. We have not considered composition of state
charts in our work.

6 Conclusions and Future Work

In this paper we present a signature-based composition approach that allows one to
vary how models are composed using composition directives. The signature-based ap-
proach improves upon name-based composition approaches by giving the modeler finer-
grained control over the criteria used to match model elements. Composition directives
give added flexibility by providing the means to alter model elements and override de-
fault composition rules to obtain desired composed models. The directives described in
this paper are based on our experience with using the composition approach to com-
pose aspects modeling security features with primary models. For example, we have
applied the approach to modeling and composition of access control features such as
Role-Based Access Control and Bell LaPadula schemes [5, 27, 35, 36], and for other
security features [6, 37, 38, 39]. We are currently applying the techniques in a larger
case study involving the development of an e-commerce system.

A composition metamodel that describes the static and behavioral properties needed
to support model composition is also presented. The metamodel describes not only the
static relationships among composition concepts, but also provides specifications of
behaviors that are needed to support model composition using our approach. The com-
position metamodel describes the behavior needed to support model composition and
thus can be used to guide the development of model composition tools that support the
composition approach we developed. To validate the metamodel, we built a prototype
tool on top of the KerMeta framework. The tool currently supports the composition
of UML class models and can be extended to support additional features that appear
in the composition metamodel. We are currently developing a subsystem for handling
composition directives that will be plugged into the tool.

Empirical evaluation is needed to validate the composition approach in real-world
design settings. Such studies can determine the amount of effort required to specify the
kinds of compositions that are required in real-world designs. The studies can also be
used to determine whether the composition directives match the requirements of a real
project. The insights gained from the studies will be used to develop a tractable method
for selecting, defining, and applying composition directives and signatures. Work in this
respect could result in the specification of some common composition strategies [6] to
ease the task of specifying and using composition directives.

102 Y.R. Reddy et al.

Acknowledgment

This material is based upon work partially funded by AFOSR under Award No.
FA9550-04-1-0102.

References

[1] France R.B., Ray I., Georg G., Ghosh S. An aspect-oriented approach to design modeling.
IEE Proceedings - Software, Special Issue on Early Aspects: Aspect-Oriented Require-
ments Engineering and Architecture Design, 151:173–185, 2004

[2] The Object Management Group (OMG): Unified Modeling Language: Superstructure. Ver-
sion 2.0, Final Adopted Specification, http://www.omg.org (2003)

[3] Straw G., Georg G., Song E., Ghosh S., France R., and Bieman J. Model composition
directives. In: Proceedings of the International Conference on the UML, Springer, pp.
84–97, 2004

[4] Reddy R., France R.B., Ghosh S., Fleury F., and Baudry B. Model composition - A sig-
nature based approach. In: Proceedings Aspect Oriented Modeling workshop held with
MODELS/UML 2005, Montego Bay, Jamaica, 2005

[5] Song E., Reddy R., France R., Ray I., Georg G., and Alexander R. Verifiable composition
of access control and application features. In: SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, ACM, New York, pp. 120–129,
2005

[6] Georg G., Ray I., and France R. Using aspects to design a secure system. In: ICECCS
2002: Proceedings of the International Conference on Engineering Complex Computing
Systems, ACM, pp. 117–126, 2002

[7] TRISKELL: The KerMeta Project home page. http://www.kermeta.org (2005)
[8] OMG adopted specification ptc/03-10-04: The Meta Object Facility (MOF) Core Specifi-

cation. Version 2.0. http://www.omg.org
[9] Muller P., Fleury F., and Jézéquel J. Weaving executability into object-oriented meta-

languages. In: Proceedings of MODELS/UML 2005, Montego Bay, Jamaica, 2005
[10] Reddy Y.R., France R.B., Georg G. An aspect-based approach to modeling and analyz-

ing dependability features. Technical Report CS04 - 109, Colorado State University, Fort
Collins, CO, USA, 2004

[11] France R., Georg G. Modeling fault tolerant concerns using aspects. Technical Report
02-102, Computer Science Department, Colorado State University, Fort Collins, CO, USA,
2002

[12] Georg G., France R.B., and Ray I. Composing aspect models. In: 4th AOSD Modeling with
UML Workshop, San Francisco, CA, 2003

[13] Clarke S. Extending Standard UML with Model Composition Semantics. Science of Com-
puter Programming 44, pp. 71–100, 2002

[14] Araujo J., and Coutinho P. Identifying aspectual use cases using a viewpoint-oriented re-
quirements method. In: Early Aspects 2003: Aspect Oriented Requirements Engineering
and Architecture Design, Workshop of the 2nd Intl. Conference on Aspect-Oriented Soft-
ware Development, Boston, MA, 2003

[15] Clarke S., and Walker R.J. Composition patterns: An approach to desigining reusable as-
pects. In: Proc. of 23rd Intl. Conference on Software Engineering (ICSE), Toronto, Canada,
pp. 5–14, 2001

[16] Gray J., Bapty T., Neema S., Tuck J. Handling crosscutting constraints in domain-specific
modeling. Communications of the ACM, 44:87–93, 2001

Directives for Composing Aspect-Oriented Design Class Models 103

[17] Grundy J.C. Multi-perspective specification, design and implementation of software com-
ponents using aspects. International Journal of Software Engineering and Knowledge En-
gineering, 10(6):713–734, 2000

[18] Jacobson I. Case for aspects - Part I. Software Development Magazine, 32–37, 2003
[19] Rashid A., Sawyer P., Moreira A., and Araujo J. Early aspects: A model for aspect-oriented

requirements engineering. In: IEEE Joint Intl. Conference on Requirements Engineering,
Essen, Germany, pp. 199–202, 2002

[20] Aksit M., Wakita K., Bosch J., Bergmans L., and Yonezawa A. Abstracting object in-
teractions using composition filters. In: Guerraoui R., Nierstrasz O., and Riveill M.
(eds.) Proceedings of the ECOOP’93 Workshop on Object-Based Distributed Program-
ming, Springer, Vol. 791, pp. 152–184, 1994

[21] Harrison W., Ossher H., Tarr P. Asymmetrically vs. symmetrically organized paradigms
for software composition. Technical report, IBM - RC22685 (W0212-147), 2002

[22] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingier J., and Irwin J.
Aspect oriented programming. In: ECOOP: Proc. of the European Conference on Object-
Oriented Programming, LNCS vol. 1241, Springer, pp. 220–242, 1997

[23] Nuseibeh B., Kramer J., Finkelstein A. A framework for expressing the relationships be-
tween multiple views in requirements specification. IEEE Transactions on Software Engi-
neering, 20:760–773, 1994

[24] Harrison W., and Ossher H. Subject oriented programming (a critique of pure objects).
In: OOPSLA ‘93: Proc. of the 8th Annual Conference on Object-Oriented Programming:
Systems, Languages, and Applications, Washington, DC, pp. 411–428, 1993

[25] Ossher H., Kaplan M., Katz A., Harrison W., Kruskal V. Specifying subject-oriented com-
position. Theory and Practice of Object Systems, 2(3):179–202, 1996

[26] Tarr P., Ossher H., Harrison W., and Sutton S. N degrees of separation: Multi-dimensional
separation of concerns. In: ICSE ’99: Proceedings of the 21st International Conference on
Software Engineering, pp. 107–119, 1999

[27] Ray I., Li N., Kim D.K., and France R. Using parameterized UML to specify and compose
access control models. In: IICIS 2003: Proceedings of Sixth IFIP TC-11 WG 11.5 Working
Conference on Integrity and Internal Control in Information Systems, 2003

[28] Chitchyan R., Rashid A., Sawyer P., Garcia A., Alarcon M., Bakker J., Tekinerdogan B.,
Clarke S., Jackson A. Survey of aspect-oriented analysis and design approaches. Technical
Report ULANC-9, AOSD, Europe, 2005

[29] Baniassad E., and Clarke S. Theme: An approach for aspect-oriented analysis and design.
In: Proceedings of the International Conference on Software Engineering, pp. 158–167,
2004

[30] Clarke S., and Walker R.J. Composition patterns: An approach to designing reusable as-
pects. In: ICSE: The 23rd International Conference on Software Engineering, Toronto,
Canada, 2001

[31] Brito I., and Moreira A. Towards a composition process for aspect-oriented requirements.
In: Proceedings of the Early-Aspects Workshop at AOSD2002, 2002

[32] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C.V., Loingtier J.M., and Irwin J.
Aspect-oriented programming. In: ECOOP ’97: Proceedings of the European Conference
on Object-Oriented Programming, LNCS vol. 1241, Springer, pp. 220–242, 1997

[33] Kienzle J., Yu Y., and Xiong J. On composition and reuse of aspects. In: Proceedings of
the Foundations of Aspect-Oriented Languages Workshop, Boston, MA, USA, 2003

[34] Aldawud O., Bader A., and Elrad T. Weaving with statecharts. In: Workshop on Aspect-
Oriented Modeling (held with AOSD-2002), Enschede, Netherlands, 2002

[35] Ray I., France R., Li N., Georg G. An aspect-based approach to modeling access control
concerns. Information and Software Technology 40:557–633, 2004

104 Y.R. Reddy et al.

[36] Ray I., Li N., France R., and Kim D.K. Using UML to visualize role-based access control
constraints. In: SACMAT: Proceedings of the Symposium on Access Control Models and
Technologies, pp. 31–40, 2004

[37] Georg G., France R., and Ray I. Designing high integrity systems using aspects. In: IICIS
2002: Proceedings of the Fifth IFIP TC-11 WG 11.5 Working Conference on Integrity and
Internal Control in Information Systems, Bonn, Germany, 2002

[38] Georg G., France R., and Ray I. An aspect-based approach to modeling security concerns.
In: Proceedings of the Workshop on Critical Systems Development with UML, Dresden,
Germany, 2002

[39] Homb S.H., Georg G., France R., Bieman J., and Jurjens J. Cost-benefit trade-off analysis
using BBN for aspect-oriented risk-driven development. In: ICECCS: Proceedings of the
10th IEEE International Conference on Engineering of Complex Computer Systems, 2005

Appendix

Merge Part of the Signature-Based Composition Procedure

**
// e1 and e2 are the model elements that need to be merged
e1.merge(e2 : ModelElement) //precondition : e1.sigEquals(e2) returns true
**
result := e1.getMetaClass.new // create the merged instance in the context of e1

// Iterate on all properties of the objects to be merged.
// e1 and e2 have the same meta-class. Thus, they have the
// same set of properties.

foreach Property p in e1.getMetaClass.getAllProperties

if type of p is primitive
// Primitive types are basic datatypes such as string, int.
// If an object does not have a value for a property then

// the value val is taken from the other object and vice versa.
// This is not a conflict.

// If neither object has values, then val is null in the resulting
// merged object.

if e1.get(p) is null or e2.get(p) is null then
result.set(p, val)

else
// If the values are the same then it is ok.
// Otherwise a conflict has been detected.
if e1.get(p) = e2.get(p) then

result.set(p, e1.get(p))
else

A conflict has been detected
else
// Type of p is not primitive.
// If the property refers to a single object, this is the base case.

if the property upper bound is 1
if e1.get(p) is null or e2.get(p) is null then

result.set(p, val) // val is the same as above
else

if sigEquals(e1.get(p), e2.get(p)) then
// If the object e1.get(p) is contained by e1 and same for e2

Directives for Composing Aspect-Oriented Design Class Models 105

// (p.isComposite=true) then the objects should be merged,
// otherwise, one is chosen.
// Either one can be chosen because they both have the same signature

if p.isComposite is true then
result.set(p, merge(e1.get(p), e2.get(p)))

else
result.set(p, e1.get(p).clone())

else
A conflict has been detected

else
// The property refers to a collection of objects.
// The resulting merged object should contain property values that are

// either only in e1 or only in e2, or the merged version of objects
// that are in both e1 and e2.
for each value v1 in e1.get(p)

for each matching element v2 in e2.get(p)
if p.isComposite then

result.get(p).add(merge(v1, v2))
else

result.get(p).add(v1.clone())
if no element found

result.get(p).add(v1.clone())
for each value v2 in e2.get(p)

if NO matching element found in e1.get(p)
result.get(p).add(v2.clone())

**

	Introduction
	An Overview of Signature-Based Model Composition
	Matching Model Elements Using Signatures
	Identifying and Using Composition Directives
	Examples of Applying Composition Directives

	The Composition Metamodel
	Composition Directives
	Element Directives
	Composition Examples
	Combining Element Directives
	Model Directives
	Weave Ordering Example

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

