


Lecture Notes in Computer Science 3880
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Awais Rashid Mehmet Aksit (Eds.)

Transactions on
Aspect-Oriented
Software Development I

13



Volume Editors

Awais Rashid
Lancaster University
Computing Department
Lancaster, LA1 4YR, UK
E-mail: awais@comp.lancs.ac.uk

Mehmet Aksit
University of Twente
Department of Computer Science
Enschede, The Netherlands
E-mail: aksit@ewi.utwente.nl

Library of Congress Control Number: 2006921902

CR Subject Classification (1998): D.2, D.3, I.6, H.4, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-32972-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32972-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11687061 06/3142 5 4 3 2 1 0



 

Editorial 

Welcome to the first volume of Transactions on Aspect-Oriented Software 
Development. Aspect-oriented methods, tools and techniques are gaining in popularity 
due to their systematic support for modularizing broadly scoped properties, the  
so-called crosscutting concerns, in software systems. Such crosscutting concerns 
include security, distribution, persistence, mobility, real-time constraints and so on. 
As software systems become increasingly ubiquitous, mobile and distributed, the 
modular treatment of such crosscutting concerns also becomes critical to ensure that 
software artifacts pertaining to such concerns are reusable, evolvable and 
maintainable. This modular treatment of crosscutting concerns by aspect-oriented 
techniques is not limited to code level. In fact, aspect-oriented techniques cover the 
software life cycle, handling crosscutting concerns in requirements, architecture, 
design, code, test cases, system documentation, etc.  

The aspect-oriented software development community is growing fast, with an 
increasing number of researchers and practitioners across the world contributing to 
the development and evolution of the field. The community launched its own 
conference in 2002, which has since been held with great success on an annual basis. 
Recent reports from Burton and Gartner groups have put aspect-orientation on the 
plateau of productivity on the evolution cycle of new technologies. One of the key 
indicators of the maturity of a field is the availability of high quality research  
of an archival nature. The launch of Transactions on Aspect-Oriented Software 
Development, therefore, signifies a key milestone for the maturity of work in this 
area. The journal is committed to publishing work of the highest standard on all facets 
of aspect-oriented software development techniques in the context of all phases of the 
software life cycle, from requirements and design to implementation, maintenance 
and evolution. The call for papers is open indefinitely and potential authors can 
submit papers at any time to: taosd-submission@comp.lancs.ac.uk. Detailed 
submission instructions are available at: http://www.springer.com/sgw/cda/frontpage/ 
0,,3-164-2-109318-0,00.html. A number of special issues on current important topics 
in the community are already in preparation. These include special issues on AOP 
systems, software and middleware; AOP and software evolution; dynamic AOP, and 
Early Aspects. Calls for such special issues are publicized on relevant Internet mailing 
lists, Web sites as well as conferences such as the Aspect-Oriented Software 
Development conference. 

The articles in this volume cover a wide range of topics from software design to 
implementation of aspect-oriented languages. The first four articles address various 
issues of aspect-oriented modeling at the design level. The first article, “Assessing 
Aspect Modularizations Using Design Structure Matrix and Net Option Value”, by 
Lopes and Bajracharya, proposes a methodology and a tool to show how aspects can 
be beneficial as well as detrimental to a certain design. The second article, 
“Modularizing Design Patterns with Aspects: A Quantitative Study”, by Garcia et al., 
analyzes and compares the aspect-oriented and object-oriented implementations of 
design patterns with respect to quality values such as coupling and cohesion. The 
article “Directives for Composing Aspect-Oriented Class Models”, by Reddy et al., 
proposes models for expressing aspect-oriented and non–aspect-oriented properties of 



Editorial VI 

systems and defines techniques to compose these models together. In the article 
“Aspect Categories and Classes of Temporal Properties”, Shmuel Katz defines a 
method for classifying aspects with respect to their temporal properties so that 
application of aspects in a system can be better understood and analyzed. 

The following four articles discuss various programming language issues. The 
article “An Overview of CaesarJ”, by Aracic et al., gives an overview of the CaesarJ 
programming language, which aims at integrating aspects, classes and packages so 
that large-scale aspect components can be built. In the article “An Expressive Aspect 
Language for System Applications with Arachne”, Douence et al. motivate the 
applicability of the Arachne language in improving systems written in the C language, 
where system dynamicity and performance play an important role. Monteiro and 
Fernandes define in their article, “Towards a Catalogue of Refactorings and Code 
Smells for AspectJ”, a catalogue that helps in detecting aspects in object-oriented 
programs and in improving the structure of extracted aspects within the context of the 
AspectJ language. The final paper in the language category is “Design and 
Implementation of An Aspect Instantiation Mechanism” by Sakurai et al. It proposes 
association aspects as an extension to AspectJ for flexible descriptions of aspects 
whose instances are associated with more than one object. 

The final article in this volume, “abc: An Extensible AspectJ Compiler”, by 
Avgustinov et al., describes a workbench for implementing aspect-oriented languages, 
so that easy experimentation with new language features and implementation 
techniques are possible.  

The inception and launch of Transactions on Aspect-Oriented Software 
Development and publication of its first volume would not have been possible without 
the guidance, commitment and input of the editorial board and the reviewers who 
volunteered time from their busy schedules to help realize this publication. We thank 
them greatly for their help and efforts. Most important, we wish to thank authors who 
have submitted papers to the journal so far. The journal belongs to the community and 
it is the submissions from the community that are at the heart of this first volume and 
future volumes of Transactions on Aspect-Oriented Software Development. 
 
 

Awais Rashid and Mehmet Aksit 
Coeditors-in-chief 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

Organization 

Editorial Board 

Mehmet Aksit, University of Twente 
Don Batory, University of Texas at Austin 
Shigeru Chiba, Tokyo Institute of Technology 
Siobhán Clarke, Trinity College Dublin 
Theo D’Hondt, Vrije Universtiteit Brussel 
Robert Filman, Google 
Shmuel Katz, Technion-Israel Institute of Technology  
Gregor Kiczales, University of British Columbia 
Karl Lieberherr, Northeastern University  
Mira Mezini, University of Darmstadt  
Ana Moreira, New University of Lisbon  
Linda Northrop, Software Engineering Institute 
Harold Ossher, IBM Research  
Awais Rashid, Lancaster University 
Douglas Schmidt, Vanderbilt University 
David Thomas, Bedarra Research Labs 

List of Reviewers 

Jonathan Aldrich 
Joao Araujo 
Elisa Baniassad 
Lodewijk Bergmans 
Lynne Blair 
Paulo Borba 
Silvia Breu 
Johan Brichau 
Shigeru Chiba 
Ruzanna Chitchyan 
Siobhán Clarke 
Yvonne Coady 
Wesley Coelho 
Maja D’Hondt 
Theo D’Hondt 
Pascal Dürr 
Ulrich Eisenecker 
Tzilla Elrad 
Eric Ernst 
Robert France 
Alessandro Garcia 
Andy Gokhale 
Jeff Gray 

Jean-Marc Jezequel 
Joerg Kienzle 
Micheal Kircher 
Barbara Kitchenham 
Shriram Krishnamurthi 
Ramnivas Laddad 
Karl Lieberherr 
Roberto Lopez-Herrejon 
David Lorenz 
Hidehiko Masuhara 
Marjan Mernik 
Mattia Monga 
Ana Moreira 
Juan Manuel Murillo 
Gail Murphy 
Harold Ossher 
Klaus Ostermann 
Andres Diaz Pace 
Monica Pinto 
Ragghu Reddy 
Christa Schwanninger 
Domink Stein 
Stan Sutton 



Organization VIII

John Grundy 
Charles Haley 
Stephan Hannenberg 
Jan Hannemann 
Wilke Havinga 
 

Wim Vanderperren 
Kris de Volder 
Robert Walker 
Nathan Weston 
Jianjun Zhao 

 



Table of Contents

Assessing Aspect Modularizations Using Design Structure Matrix and
Net Option Value

Cristina Videira Lopes, Sushil Krishna Bajracharya . . . . . . . . . . . . . . . 1

Modularizing Design Patterns with Aspects: A Quantitative Study
Alessandro Garcia, Cláudio Sant’Anna, Eduardo Figueiredo,
Uirá Kulesza, Carlos Lucena, Arndt von Staa . . . . . . . . . . . . . . . . . . . . 36

Directives for Composing Aspect-Oriented Design Class Models
Y.R. Reddy, S. Ghosh, R.B. France, G. Straw, J.M. Bieman,
N. McEachen, E. Song, G. Georg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Aspect Categories and Classes of Temporal Properties
Shmuel Katz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

An Overview of CaesarJ
Ivica Aracic, Vaidas Gasiunas, Mira Mezini, Klaus Ostermann . . . . . 135

An Expressive Aspect Language for System Applications with Arachne
Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud,
Marc Ségura-Devillechaise, Mario Südholt . . . . . . . . . . . . . . . . . . . . . . . . 174

Towards a Catalogue of Refactorings and Code Smells for AspectJ
Miguel P. Monteiro, João M. Fernandes . . . . . . . . . . . . . . . . . . . . . . . . . 214

Design and Implementation of an Aspect Instantiation Mechanism
Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi,
Saeko Matuura, Seiichi Komiya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

abc: An Extensible AspectJ Compiler
Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhoták, Ondřej Lhoták, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, Julian Tibble . . . . . . . . . . . . . . . 293

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335



Assessing Aspect Modularizations Using
Design Structure Matrix and Net Option Value�

Cristina Videira Lopes and Sushil Krishna Bajracharya

Department of Informatics,
Donald Bren School of Information and Computer Sciences,

University of California, Irvine
{lopes, sbajrach}@ics.uci.edu

Abstract. The design structure matrix (DSM) methodology and the
net option value (NOV) model have been used before to show how as-
pects can add value to a design. Following an in-depth analysis of that
study, this paper demonstrates how aspects can be beneficial as well as
detrimental. The structural transformations involved in aspect modu-
larizations are carefully analyzed in the context of DSMs. This analysis
exposes the unique reversion effect on dependencies that aspect modules
are known for. To capture that effect within the NOV model, we extend
its original set of six modular operators with an additional reversion
operator. Using a design case study, its NOV worksheet and NOV ex-
periments’ curves are presented to show a simulation of the evolutionary
patterns of modules, including aspect modules. These patterns show how
subtle dependencies, or the lack of them, bring down, or up, the value
of an existing design. Based on the observations made in this case study,
preliminary design guidelines for aspects are formulated.

Keywords: Aspect-oriented programming and design, modularity,
design space matrix, net option value.

1 Introduction

Software design is a complicated process that tries to balance several factors,
some of them contradictory. Bad design decisions can have disastrous conse-
quences. Therefore, whenever new design concepts are proposed, they must be
carefully assessed, so that their scopes of appropriate applicability can be iden-
tified. Such is the case with aspect-oriented design. To do that, one needs to use
appropriate assessment methods. Conventional techniques for evaluating soft-
ware design are based on metrics, quality attributes and heuristics [14, 17, 35].
While they can be useful for a posteriori analyses, they are not thought of for
assessing the design options at certain decision points. But in the case of aspects,
one needs to be able to assess when an aspect modularization is more beneficial
than its nonaspectual alternatives.
� This work has been supported in part by the National Science Foundation’s grant

no. CCF-0347902.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 1–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 C.V. Lopes and S.K. Bajracharya

This paper presents a case study where several object-oriented and aspect-
oriented design variants for a software application are compared and analyzed
in depth using a new methodology. This methodology uses the design structure
matrix (DSM) as a design representation and net option value (NOV) as an ana-
lytical model. The paper explores this new methodology for assessing design op-
tions, and at the same time, it demonstrates how aspect-oriented modularization
can cause beneficial as well as detrimental effects in an existing object-oriented
design.

DSM, also known as design space matrix or dependency structure matrix, is
an analysis and design tool used in various engineering disciplines [1, 15, 38,40].
In its simplest form, a DSM is an adjacency matrix representation of the de-
pendencies between design elements. The idea of using DSMs to model complex
systems was first introduced by Steward [40]. DSMs are widely used in system
design, independent of NOV. Various analysis techniques, metrics and tools have
been developed that are based on DSMs. MacCormack et al. present an empir-
ical study that compares the structure of large-scale complex software (Linux
and Mozilla) using DSM-based metrics [28]. A commercial tool for analyzing
software architecture based on DSMs has been developed by Lattix [2]. These
related works demonstrate the applicability of DSMs in analyzing large software
systems.

NOV is a model for evaluating modular design structures based on the eco-
nomic theory of real options. Baldwin and Clark formulated NOV and first demon-
strated its usage in analyzing design options [13] in the computer hardware indus-
try. There are two fundamental components in Baldwin and Clark’s work: (a) a
general theory of modularity in design with six modular operators as sources of
design variation;1 and (b) NOV as a mathematical model to quantify the value
of a modular design: the mathematical expressions for NOV tie together modular
dependencies, uncertainty and economic theory in a cohesive model.

Sullivan et al. first demonstrated how the methodology using DSMs and NOV
can be used in the analysis of software design [42]. Their work extends the DSM
structure by introducing environment parameters, and applies this extended
model to the design of KWIC (Keywords in Context), the program originally pre-
sented by Parnas [31]. Using NOV analysis they showed how information-hiding
design is superior to the protomodular one. Information hiding is achieved by
defining appropriate interfaces as design rules, which facilitate future changes in
the design by reducing intermodular dependencies.

DSMs and NOV have also been used in analyzing aspect-oriented modular-
ization [26]. This was the first work that looked into a new form of modu-
lar construct, Aspect [22], in addition to the conventional constructs for creat-
ing independent modules with representations for data structure, interface and
algorithm.

In the context of the prior work mentioned above, namely [26,42], the contri-
butions of this paper are as follows:

1 The six modular operators are: (i) splitting, (ii) substitution, (iii) augmenting (aug-
mentation), (iv) exclusion, (v) inversion, and (vi) port(ing).



Assessing Aspect Modularizations Using DSM and NOV 3

– The paper provides examples that give insights on the correlation between
module dependencies and the benefits/disadvantages of aspects, using a re-
alistic case study.

– Based on the detailed analysis of the design evolution of the case study,
preliminary guidelines for aspect-oriented design are presented.

In addition, the work presented in this paper is one of the most detailed ap-
plications of NOV to software design to this date (late 2005). It explores the
applicability of NOV in evaluating software design options and exposes limita-
tions that need to be further resolved. In the context of NOV, a new modular
operator for aspects is defined that has been named reversion.

The paper is organized as follows. The software application used as the case
study is described in Sect. 2. Further detail on DSMs as applied to this paper
is given in Sect. 3. The process of exploring design variants for the case study is
detailed in Sect. 4. This starts with studying a third-party application to identify
the design parameters within it. These parameters are changed to obtain a design
for a new application which is further modified to obtain rest of the variants, the
last two being the results of aspect modularization (Sects. 4.3–4.7). Each of these
design changes is described in terms of one or more of the six modular operators
from the NOV model. A new modular operator called reversion is formulated in
Sect. 5 based on the structural changes that aspects bring in and the effect they
have on module dependencies. Section 6 summarizes the mathematical model of
NOV and details all the assumptions made about the NOV parameters for the
case study in this paper. Section 7 discusses the NOV analysis of the case study,
and, based on several observations, it formulates preliminary aspect-oriented
design guidelines. Section 8 describes the limitations of the analysis, the open
issues in using NOV to evaluate software design and further work we intend to
pursue. Section 9 concludes the paper.

2 Case Study

The case study used throughout the paper is a Web application that uses Web
services to meet most of its functional requirements. The application, WineryLo-
cator, uses Web services to locate wineries in California. This section describes
what the application is about and how is it structured.

A user can give a point of interest in California as a combination of street
address, city and zip code. The address need not be exactly accurate. Once
this information is given, the user is either presented with a list of matching
locations to his/her criteria or is forwarded to another page if the given address
uniquely maps to a valid location in California. Once the application gets a valid
starting point, the user then can select preferences for the wineries. Based on
the preferences and the starting point, the application generates a route for a
tour consisting of all the wineries that match the criteria. The result is a set of
stops in the route and a navigable map. From the result the user can also get
driving directions.



4 C.V. Lopes and S.K. Bajracharya

2.1 Functional Decomposition

With the functionality described above, the following types of services are needed:

Finding Accurate Locations (List). A service that takes an incomplete de-
scription of a location and returns exact/accurate locations that match the
description.

Getting List of Wineries. A service that returns a list of all the wineries
around the vicinity of the user’s starting point. The user must be able to filter
(her) his selection according to the different criteria (s)he wanted regarding
the wineries to be visited.

Getting Wineries Tour. Once an accurate starting point is obtained, we need
to get a set of wineries around that starting location. This further breaks
down as:
– Getting all the winery stops and information that form a tour
– Getting a map for the tour that constitutes the wineries
– Navigating the map that highlights the tour with appropriate marks and

supports basic operations like panning and zooming
Driving Directions. Given a route made up of locations, we need a set of

driving directions to visit all the destinations in the tour.

We use an existing application for MapPoint Web services [8] called Store-
Locator,2 developed by SpatialPoint [9], as our starting design so that we can
make changes in it to get WineryLocator. StoreLocator is similar in many ways
to WineryLocator. Given a starting point of interest, StoreLocator displays sev-
eral matching locations. Once the user picks the starting location, it generates
a navigable map and a list of all coffee stores close to that starting location
within a radius specified by the user. The user then can click on each store to
get driving directions from the start location.

Hence, as far as the functionalities are concerned, only two changes need to be
made in StoreLocator to get WineryLocator: (i) replace the coffee store search
with winery search, and (ii) present the user with a tour including the start
location and all the wineries, unlike a list of directions from the start location
to a selected store in StoreLocator.

In order to locate points of interest, such as coffee stores or wineries, MapPoint
allows their service users to either use an already available datasource or upload
new geographic data as a custom datasource. To bring out more opportunities
for design changes, we substitute this functionality from MapPoint by our own
Web service WineryFind, which provides a list of wineries around a vicinity of an
exact start location. WineryFind also allows the users to set their search criteria
by giving different preferences related to wines and wineries.

Table 1 shows the mapping of core application functionalities to the available
Web services. The implementation was done in Java, using Apache AXIS [7] as
well as the SOAP [43] toolkit to access the Web services.

2 Available online at http://demo.mappoint.net.



Assessing Aspect Modularizations Using DSM and NOV 5

Table 1. Mapping tasks to services

Task Services Providers Method Signatures ∗

Finding set of exact
locations

FindService MapPoint FindResults findAddress

(FindAddressSpecification)

Getting wineries
matching criteria

WineryFind Local ser-
vice we de-
veloped

Destination[]

getLocationsByScore

(WinerySearchOption)

Generating route
from the tour given
set of destinations

RouteService MapPoint Route calculateSimpleRoute

(ArrayOfLatLong, String

/*dataSourceName*/,

SegmentPreference)

Getting a map
representing a
route/tour. Also,
navigating the map

RenderService MapPoint ArrayOfMapImage

getMap(MapSpecification)

Getting driving di-
rections

RouteService MapPoint can be obtained from a Route object

∗ Showing only the most relevant methods in format - return type

Web service function name (input parameter type). The types shown in the
list represent the classes in Java that map to the types defined in the MapPoint object
model. These classes were autogenerated by the tool WSDL2Java, which is a part of
the Apache AXIS toolkit [7].

2.2 Subsidiary Functions

Besides the main functionalities that WineryLocator offers to its end users, we
consider two subsidiary functions the application needs to provide. These sub-
sidiary functions, which are not directly visible to the users, are as follows: (1)
Authentication: Before using any of the MapPoint services the application needs
to provide a valid credential (username and password) to it. This credential does
not come from an end user, but is managed by the application service provider.
MapPoint uses the HttpDigest authentication mechanism for this. (2) Logging:
A logging feature is introduced in the system as a nonfunctional (subsidiary)
requirement to trace all the calls made to the Web services. Such a feature is
useful in many scenarios that require maintaining statistics about the access to
the Web services within the application. This feature can simply be implemented
by tracing every call to a Web service in the system.

3 Representing Design Structures with DSM

Figure 1 depicts the design of StoreLocator in a DSM. Before presenting the de-
sign evolution from StoreLocator to WineryLocator in DSMs, we first describe
some fundamental design concepts presented by Baldwin and Clark in [13], fo-
cusing primarily on software.



6 C.V. Lopes and S.K. Bajracharya

Fig. 1. DSM for StoreLocator

3.1 Elements of Modular Design in Software

In this paper, interpretation of the terms like modularity, architecture and hier-
archy remains the same and as generic as that originally presented by Baldwin
and Clark [13]. Almost all of the constituents of design that make up their the-
ory can be seen in the designs for StoreLocator and WineryLocator. We briefly
summarize the definitions of the core elements from [13], as they are seen in the
examples presented in this paper. All the definitions and vocabulary borrowed
from [13] are shown in italics below.

1. Design: Design is defined as an abstract description of the functionality and
structure of an artifact. Representations such as software architectures [33,
39] design models in UML or source code fit this definition.

2. Hierarchies: The notion of hierarchy concurs with the one defined by Par-
nas [32]. A module A is dependent on module B if A needs to know about
B to achieve its function, i.e., if B is visible to A.

3. Medium for expressing design: A designer expresses the basic structure and
configuration of design elements with a medium (s)he chooses to work with.
Examples are Architecture Description Languages (ADLs) for software archi-
tecture [30], UML for object-oriented modeling and Java for program design
(code). Media are among the highest parameters in the design hierarchy.

4. Design parameters—the elements of design: Parameters are the attributes
of the artifact that govern the variation in design. Choosing new values for
parameters gives new design options. Java is used as the primary medium to
express all the design variants presented in this paper, so the basic structural
constructs like classes, objects, attributes, methods and packages all could be
seen as the design parameters. In the examples, we remain at the granularity
of classes and interfaces.

5. Module: Structural elements that are strongly connected are grouped to-
gether as a module. Modules adhere to these three fundamental character-
istics [13]:



Assessing Aspect Modularizations Using DSM and NOV 7

(a) Modularity increases the range of manageable complexity.
(b) Modularity allows different parts of a design to be worked on concur-

rently.
(c) Modularity accommodates uncertainty.
While identifying modules in a design, we follow these principles listed above.
A module can also be characterized by the set of tasks it performs. A mod-
ule’s task is equivalent to an operation or a service it provides.

6. Modular operators: Baldwin and Clark define design evolution as a value-
seeking process, with the six modular operators as sources of variation. We
discuss our design changes and map them to one or more of these six modular
operators.

7. Abstraction: Abstraction hides the complexity of the element. As a measure to
reduce the complexity of design parameters, we represent complex modules
(made up of further submodules) as a single parameter, as long as the details
inside need not be revealed. An example of this in our models is treating a
Web service as a single parameter.

Following the definitions for design parameters, module and abstraction,
three interchangeable terms can be used to refer to the individual elements
that constitute a design: (i) design elements, (ii) design parameters and (iii)
modules. For example, if we have a module composed of a set of simpler
modules, the latter can be considered as the design parameters of the for-
mer. But both are design elements, too. Thus, we use these three terms
interchangeably without the loss of generality.

8. Interface and design rules: Making changes in modules that have highly
interdependent structures often requires endless tweaking as the designer
tends to get lost in the cyclic side effect one module has on others. To avoid
such cycles, decisions common to modules that are unlikely to change are
factored out as design rules. These design rules constitute the interfaces that
designers use to connect modules with each other.

9. Architecture: provides a framework that allows for both independence of
structure and integration of function. In our designs, frameworks for enabling
enterprise computing capabilities, such as J2EE [11], and APIs (Application
Programming Interfaces), such as Java Servlet [10] (also a part of J2EE),
are considered architectures.

3.2 Categories of Design Parameters

We categorize the modules in the DSMs based on our ability to change them:

External Parameters. These are the parameters that cannot be modified and
that are taken for granted from some external providers. These parameters
might be replaceable with similar parameters providing same functionality.
External services, imported libraries and frameworks fall under this category.
External parameters usually bring their own set of design rules into the
application.



8 C.V. Lopes and S.K. Bajracharya

Extending DSMs with environment parameters was a major enhancement
made to DSMs [42]. We take external parameters to be a particular category
of environment parameter as they have similar characteristics.

Design Rules. Parameters used as the interface between modules and that are
less likely to be changed are design rules. Design rules can either be imported
from external parameters or designed specifically for the application.

Application (functional) Modules. Functional units in the system that per-
form application-specific task(s) are categorized as application modules.

Subsidiary Modules. We further classify modules that contribute to sub-
sidiary or secondary functionalities as subsidiary modules. If a module per-
forms both application-specific tasks as well as subsidiary tasks, it is treated
as an application module.

Application Controller. These are mostly connector modules, as they use
the design rules as interface to access the functionalities provided by the
application modules, “gluing them up” in an application, and serving the
end users. We also put configuration modules such as deployment descriptors
in this category as they contribute in assembling modules, even though they
do not directly serve the end users of the system.

We believe most of the modules in modern applications fall into one of the
above categories. Furthermore, most of the development task in today’s appli-
cations lies within mapping application-specific requirements to the imported
functionalities from external modules.

3.3 Conventions for DSMs

Figure 1 shows the DSM for StoreLocator. The DSMs have been constructed as
normally is done [1, 13, 38, 42]. All the design parameters are arranged in row–
column form, with marks in those cells where we need to show the
interdependencies between the parameters. We have adopted the simplest form
of showing interdependencies, by putting an “X” mark in the relevant cell.

The DSMs and the design parameters roughly match the application struc-
ture, but there is not an exact one-to-one mapping from the elements in a DSM
to the syntactic constructs in the program. The parameters we have shown are
semantic, rather than syntactic objects that occur to a designer’s mind. How-
ever, all of the parameters, excluding the external ones, can be mapped to any
one of these: Java classes or interfaces, aspects written in AspectJ [3], or XML
deployment descriptor files. In short, a DSM presents an abstract view of module
dependencies in an application.

Clustering and partitioning are two standard DSM operations to get a modu-
lar or a protomodular [13] structure from an otherwise unmodularized DSM. The
elements in our DSMs are taken from a ready-made application, StoreLocator.
Thus, each DSM already has a basic modular structure, and the DSM operations
do not have a very significant role in our process. The only explicit clustering
done in the DSMs is the categorization of the parameters into the categories
listed in Sect. 3.2. The following list describes the graphical and visual clues
present in our DSMs:



Assessing Aspect Modularizations Using DSM and NOV 9

1. The leftmost (first) column in the DSM is used to label the clusters of param-
eters. This clustering is based on the classification presented in Sect. 3.2.

2. The second column lists the name of all the design parameters.
3. The third column assigns numbers to all these parameters for easy reference.

The rest of the columns constitute the matrix showing dependencies. The
topmost row resembles the parameters by the numbers as assigned in the
third column.

4. In the matrix area (fourth column onwards), thick solid borders in the cells
set the boundary for modules, dark dashed lines set boundaries for the inter-
action areas between different categories of modules (for example, between
design rules and external parameters) and light dotted lines are markers for
individual cells.

5. Shaded groups of cell(s), enclosed within a dark border, represent a group of
parameters (or a single parameter) that we treat as individual modules for
NOV analysis.

6. We use a descriptive text inside a pair of opening and closing angular bracket
(e.g., < DR >) for two purposes: (i) in first column to abbreviate the cat-
egory name and (ii) in second column as a stereotype to mark the special
connotation some design parameters bear. Table 2 lists all such stereotypes
we have used.

Table 2. Labels used in DSMs and hierarchy diagrams (HD)

Labels Meaning Used in

Medium As defined in Sect. 3.1 HD

Architecture As defined in Sect. 3.1 HD

API Application Programming Interface HD, DSM

porting tool Translation tool used to convert artifacts
produced in one medium to another

HD

service Remote Web service HD, DSM

DD Deployment descriptor HD, DSM

JSP Java server pages HD, DSM

Aspect A modular unit representing a crosscutting
concern

HD, DSM

Design Rules Java server pages HD, DSM

EP External parameters DSM

DR Design rules DSM

AM Application modules DSM

AC Application controller DSM

SM Subsidiary modules DSM

3.4 Design Hierarchy Diagrams

Figure 2 depicts the design hierarchy diagram (or simply, hierarchy diagram)
of StoreLocator. Hierarchy diagrams and DSMs model the same structure and
information about dependencies among design elements. A hierarchy diagram is



10 C.V. Lopes and S.K. Bajracharya

a dependency graph of all the parameters in a design. A parameter in a hierarchy
diagram has two set of connections: connections from above, to those parameters
it depends on, and connections from below, to those parameters that depend
on it.

MapPoint Design Rules

< service > 

MapPoint

< jsp > 

locate

< jsp > 

display

< jsp > 

directions

< DD > 

web.xml

< API > 

Servlet/JSP

< Architecture > 

J2EE

< Architecture > 

SOAP
< medium > Java

WSDL

< API > Apache AXIS

< porting tool > 

WSDL2Java

<medium>
XML

HttpSession

BindingListener

StoreLocator

HttpSessionStoreLocator

Fig. 2. Hierarchy diagram for StoreLocator

To avoid line cluttering in the hierarchy diagram we have omitted a few
dependencies from Fig. 2.3 Furthermore, we group some related parameters into
large boxes, and show their common dependency with other parameters using
the box that encloses them. We label, or stereotype, special elements in hierarchy
diagrams (as in the DSMs). These labels are listed in Table 2.

Even though all the designs for StoreLocator and WineryLocator are discussed
using DSMs, hierarchy diagrams are introduced in this section for two reasons.
First, we want to show all the higher level elements in the design that remain the
same across all design variants (Fig. 2). Elements such as Java, XML, SOAP,
WSDL and WSDL2Java remain unchanged in all the design variants.4 Thus,
Fig. 2 serves as a contextual view of the architecture of StoreLocator, which
is the starting point of our design exploration. Second, hierarchy diagrams are
also used to depict the effect of different modular operators on existing designs
(Sect. 5).

3 The DSM for StoreLocator in Fig. 1 shows these excluded dependencies.
4 These design elements are discussed in Sect. 4.2.



Assessing Aspect Modularizations Using DSM and NOV 11

4 Analyzing Design Evolution with DSMs

4.1 Design Goals for WineryLocator

StoreLocator serves as the right design to start our analysis. We derive several
design variants for WineryLocator, starting from StoreLocator, which gradually
fulfill the following design goals:

1. Identifying separate functional units as application modules so that we can
plug in our own Web service, providing winery information between the
several functionalities offered by the MapPoint Web services.

2. Decoupling the application controller from MapPoint’s design rules.
3. Defining a set of simple, yet sufficient design rules for our application that

allows us to have different implementation of application controller modules;
for example, to switch from Web-based to a GUI application based on Java
Swing.

4. Being able to replace each of the application modules with an alternative
implementation with the least possible side effects to the other modules.

With the required background and conventions we now discuss the different
design variants.

4.2 Identifying Basic Design Elements

The DSM in Fig. 1 is the starting point for our design exploration. These dia-
grams were created after understanding the code structure of StoreLocator and
the design rules of MapPoint. The list below enumerates all the design parame-
ters and their role in the initial design of StoreLocator shown in Figs. 1 and 2.

1. MapPoint design rules: These constitute the classes and methods as defined
in the MapPoint object model [4], which are used to access and interact
with its services. The porting tool WSDL2Java, part of the Apache AXIS
toolkit [7] for Web services, generates all these required classes in Java from
the description of the Web services expressed in XML as a WSDL (Web
Services Description Language) [44] file.

2. StoreLocator:5 This is an application module implemented as a Java class. It
handles the mapping of the application tasks to the services available from
MapPoint by providing methods that take user inputs as parameters and call
the appropriate service methods to list starting locations. It also provides
access to the list of stores, maps, map navigation functions and driving
directions. This StoreLocator module uses MapPoint’s classes as parameters
in its helper methods.

5 The name of this module is same as the application. Whenever this distinction is
not clear from the context, we explicitly specify whether we are referring to the
application or to this module.



12 C.V. Lopes and S.K. Bajracharya

3. HttpSessionStoreLocator: Since a valid credential comprising a user name
and a password needs to be provided to MapPoint before using any of its
services, the module StoreLocator is extended as a class HttpSessionStoreLo-
cator that adds the authentication capability. There are no design parame-
ters in the Mappoint object model that reflect this authentication mechanism
because MapPoint relies on HttpDigest authentication. This authentication
mechanism is a part of the XML-based communication protocol that Web
services use. The AXIS toolkit [7], which implements such protocol, injects
parameters that support such protocol-specific tasks in the MapPoint design
rules during the process of generating them. Consequently HttpSessionStore-
Locator depends on the Apache AXIS API to submit the authentication
credentials to MapPoint as the parameters related to authentication come
along with Apache AXIS. This is a subtle dependency, as the otherwise
unnecessary detail has to be known to understand the full working of this
authentication mechanism.

4. HttpSessionBindingListener: This is an interface defined in the Java Servlet
API [10]. HttpSessionStoreLocator implements this interface and provides
methods that are called by the servlet container whenever an object of
HttpSessionStoreLocator is brought into a session. In this way the servlet
container can provide the values for the “username” and “password”, con-
figured in the deployment descriptor of the application, to HttpSessionStore-
Locator.

5. web.xml: is the deployment descriptor of the application and stores configura-
tion information like user name/password values and URLs for accessing the
Web services. These values are passed into HttpSessionStoreLocator through
the methods it implements from HttpSessionBindingListener.

6. Application controller modules (JSPs, Deployment Descriptor): locate takes
the information on starting location, presents the matching list and picks
a starting address. It links to display for rest of the functionalities. display
presents the user with the matching store locations and also a navigable map
with the stores highlighted. display takes the information on a particular
store to be visited and links to the directions page that displays the driving
directions from the start address to the store selected in display.

Most of the external parameters are omitted in the DSMs as the application
modules do not directly depend on them. Since the changes we make are concen-
trated within the application, this omission does not affect the comprehensibility
of design evolution.

The hierarchy diagram in Fig. 2 shows all the external parameters in the
StoreLocator. The dependencies among these external parameters show how
porting [13] works at a higher level, enabling the interoperability of externally
implemented services with a custom application and how external design rules
can be imported in applications. Most of these external parameters remain un-
changed in all of the design variants we discuss.



Assessing Aspect Modularizations Using DSM and NOV 13

4.3 First Version of WineryLocator After Performing Splitting and
Substitution on StoreLocator

Figure 3 shows the DSM for the first version of WineryLocator we obtained from
StoreLocator. A new set of design rules, WineryFind Design Rules (F.3, P.7)6

have been imported into the application for using the services provided by the
WineryFind Web service (F.3, P.2). The StoreLocator module (F.1,P.6) along
with HttpSessionStoreLocator (F.1, P.7) have been split, resulting in five pa-
rameters (F.3, P.8 through 12). The application controller modules have been
substituted and augmented with a new module searchWinery (F.3, P.14). The
design changes listed in Table 3 describe all the splitting, substitution and aug-
mentation made from Fig. 1 to Fig. 3.

Fig. 3. DSM for WineryLocator application after splitting and substituting the mod-
ules in StoreLocator

4.4 Introducing Subsidiary Functionality with Augmentation

We get to the design in Fig. 4 by adding a logging feature to the first version of
WineryLocator shown in Fig. 3. We introduce a new module WebServicesLogger
(F.4, P.8) that is responsible for logging the access of Web services and maintain-
ing any pertaining statistics. (F.4, P.9), (F.4, P.11) and (F.4, P.12) are the three
modules that access the Web services. All the calls to the Web services within
these modules need to be traced and linked to WebServicesLogger (F.4, P.8) to
maintain the log.

4.5 Setting Application-Specific Design Rules for WineryLocator

The design of WineryLocator in Fig. 4 is functionally complete, in the sense
that it fulfills all the functional requirements that we had set for WineryLocator
6 From here on, we refer to figures by “F” and parameters by “P” for brevity. With

this convention we can refer to any nth parameter in a Fig. m as (F.m, P.n).



14 C.V. Lopes and S.K. Bajracharya

Table 3. Changes made in StoreLocator for the first version of WineryLocator

StoreLocator (Old) WineryLocator
(New)

Changes

Figure 1 (DSM) Figure 3 (DSM) StoreLocator application modified
as WineryLocator application

StoreLocator (F.1, P.6) AddressLocator
(F.3, P.8),
WineryFinder
(F.3, P.10),
RouteMapHandler
(F.3, P.11)

The composite functionality of
StoreLocator module has been
split into (F.3, P.8) that lo-
cates an accurate starting address,
(F.3, P.10) that generates list of
wineries (this enabled the substi-
tution of “store search” with “win-
ery search”) and (F.3, P.11) that
generates maps and routes.

HttpSessionStoreLocator
(F.1, P.7)

AuthAddressLocator
(F.3, P.9), Au-
thRouteMapHandler
(F.3, P.12)

Splitting of (F.1, P.6), led to
the splitting of (F.1, P.7) into
(F.3, P.9) and (F.3, P.12). This
split was necessary to carry on the
authentication feature (F.1, P.7)
provided to (F.1, P.6) into the
newly created modules (F.3, P.9)
and (F.3, P.12).

Locate (F.1, P.8) StartWineryFind
(F.3, P.13)

(F.1, P.8) substituted by
(F.3, P.13), both provide an
equivalent functionality.

−− SearchWinery
(F.3, P.14)

(F.3, P.14) is a new module that
helps users to specify criteria for
refining winery search; this func-
tionality was absent in StoreLoca-
tor (addition of this module can
be taken as augmentation).

Display (F.1, P.9) Tour (F.3, P.15) (F.3, P.15) presents the user with
list of wineries and a navigable
map that constitutes a tour.

Directions (F.1, P.10) Directions
(F.3, P.16)

(F.3, P.16) presents the user with
detailed driving directions for a
tour of all the wineries, whereas
(F.1, P.10) presents the directions
from a start location to a destina-
tion.

in Sect. 2. But it lacks the design goals listed in Sect. 4.1. We introduce a
new set of design rules for WineryLocator to decouple the application controller
modules from MapPoint’s design rules. This allows us to move MapPoint and
WineryFind Design rules to the external parameters category. These new design
rules are specific to WineryLocator and are independent of the MapPoint and
WineryFind design rules.



Assessing Aspect Modularizations Using DSM and NOV 15

Fig. 4. DSM for WineryLocator with logging feature after augmentation

Five new parameters (F.5, P.8 through 12) are introduced as application
design rules for WineryLocator. The application controller modules (F.5, P.19
through 22) use these application design rules as interfaces to the application
modules (F.5, P.14 through 18). Table 4 lists the role of the newly introduced
design rules through the tasks they model.

Table 4. Application-specific design rules for WineryLocator

Design Rules ID Models

startAddress:Address (F.5, P.8) Starting location users provide and select

matches:Address[] (F.5, P.9) Collection of address matches for the starting
location

WinerySearchOption (F.5, P.10) Preferences for winery search

Tour (F.5, P.11) Tour representation for all wineries visit in-
cluding a representation for map

MapOperation (F.5, P.12) Standard map operations users perform

4.6 Applying Aspect-Oriented Modularization

We use the two forms of modularization that Aspects7 provide to reduce the
dependencies among the modules (application and subsidiary) in the design for
WineryLocator in Fig. 5. We perform aspect-oriented modularization for two of
WineryLocator’s features:

7 Although we conceive these modularizations with AspectJ in mind, any aspect-
oriented framework providing Pointcut-Advice and Introduction can be used for this
purpose.



16 C.V. Lopes and S.K. Bajracharya

Fig. 5. DSM for WineryLocator after introducing application-specific design rules

1. Logging: Using the Pointcut-Advice mechanism [29], we remove the depen-
dencies that modules (F.5, P.14), (F.5, P.16) and (F.5, P.17) have on module
(F.5, P.13). We add a Logging aspect (F.6, P.22) that captures the calls to
the Web services directly from the design rules for MapPoint (F.6, P.6) and
WineryFind (F.6, P.7). The logging aspect, module (F.6, P.22), hooks these
calls with the module WebServicesLogger (F.6, P.21).

2. Authentication: We use Introduction, also known as the open-class mech-
anism [29], to inject the authentication-specific functionality into the ap-
plication modules (F.6, P.13) and (F.6, P.8.15). This adds another aspect,
Authentication (F.6, P.23), in the final design.

With this modification, all the design goals set for WineryLocator have been
achieved.

4.7 Localizing Method Calls from JSP Pages in an Aspect

The Application Modules in previous designs (in particular, Figs. 5 and 6) mainly
have two parts: (i) a visible interface, methods that the JSP pages call to use
the functionality supported by these modules, and (ii) a hidden implementation,
all the machinery that is needed to map the public interface to external services
via design rules. The latter includes some helper methods and additional code
that is hidden from the client modules.

As a final experiment in WineryLocator’s design, it is remodularized one last
time by defining a new aspect module called JSPConnections. The role of this
aspect is to encapsulate all the visible operations (i.e., public methods) in the



Assessing Aspect Modularizations Using DSM and NOV 17

Fig. 6. DSM for WineryLocator after aspect-oriented modularization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 16 17 18 19 20 21 22 23
1 *
2 *
3 *
4 *
5 X *
6 X X *
7 X X *
8 *
9 *
10 *
11 *
12 *
13 X X X *
14 X X X *
15 X X X *
24 X X X X X X X X *
16 X X X X X * X
17 X X X X X X * X
18 X X X X X X * X
19 X X X X *
20 X X X X *
21 *
22 X X X *
23 X X X X X *

 Tour

 < Aspect > Logging

 < jsp > tour
 < jsp > directions

 AddressLocator
 WineryFinder

 < Aspect > JSPConnections
 RouteMapHandler

 < jsp > searchWinery

 < API > Apache AXIS

 HttpSessionBindingListener

 < DD > web.xml
 WebServicesLogger

 MapPoint Design Rules  
 WineryFind Design Rules 

 < jsp > startWineryFind

 startAddress : Address
 matches : Address [ ]
 WinerySearchOption

 < API > Servlet

 MapOperation

 < Aspect > AuthenticationSu
bs

id
ia

ry
 

M
od

ul
es

Ex
te

rn
al

 P
ar

am
et

er
s

D
es

ig
n 

R
ul

es
A

pp
lic

at
io

n 
M

od
ul

es
A

pp
lic

at
io

n 
C

on
tr

ol
le

r

 < service > MapPoint
 < service > WineryFind

Fig. 7. DSM for WineryLocator after localizing method calls from JSP pages in an
aspect



18 C.V. Lopes and S.K. Bajracharya

Application Modules that are called from the JSPs. This results in a new de-
sign as shown in Fig. 7. For this remodularization, all the public methods from
the Application Modules (F.7, P.13 through 15) are moved into the JSPConnec-
tions aspect (F.7, P.24). This aspect uses Introduction to inject all the removed
methods in the respective Application Modules.

This change makes JSPConnections (F.7, P.24) dependent on the rest of the
Application Modules (F.7, P.13 through 15) and on the Design Rules (F.7, P.8
through 12). Since JSPConnections now holds all the methods that the JSP
pages use, it too belongs to the Application Modules category. Although the
clients (JSP pages, F.7, P.16 through 19) are unaware of the presence of the as-
pect JSPConnections (F.7, P.24), they directly depend on it, as the methods that
these clients expect to be in the Application Modules now reside in the aspect.

5 Effect of Aspects on Dependencies

Separating interface from implementation is a common practice in software de-
sign that concurs with the notion of design rules and hidden modules. But the
consequence of this separation technique is that the client modules need to be
linked to the server modules (those that implement the interfaces) in some way.
(To prevent any confusion we refer to these server modules as providers and
client modules simply as clients.)

Different strategies exist to resolve these dependency issues between providers
and clients. Fowler discusses these in some depth in [18] and [19], where he intro-
duces dependency injection as one of the solutions. Dependency injection relies
on Assembler modules that are responsible for connecting the client modules
with implementation, thus clients become virtually independent on implementa-
tion, they just see the interface. Assembler modules lie lowest in the hierarchy.

Aspect-oriented modularizations, especially those involving Introduction, are
similar to the dependency injection technique. However, they can add subtle
dependencies that affect the evolution of the system. We discuss those in this
section.

5.1 Structural Transformations

The hierarchy diagrams in Figs. 8–10 show the effects that aspects have on
module dependencies. In these figures the direction of the large arrows indicate
the design change after introducing aspects. Figure 8 models the design change
that was made to perform aspect-oriented modularization to logging. Figure 9
models the design change for the authentication aspect, and Fig. 10 shows two
possible dependency models for the JSPConnections aspect in the final version
of WineryLocator.

In the case of modularizing authentication using Introduction (from Fig. 5 to
Fig. 6), the client modules do not directly need, or more precisely expect, the
parameters in the provider modules that were captured by the aspect. But in the
case of JSPConnections (Fig. 7), the parameters that were extracted out from the
providers and localized in the aspect are the parameters that the client modules



Assessing Aspect Modularizations Using DSM and NOV 19

Provider

Client 1C

Aspect

(pointcut-advice)

Client 2C Client 3C Client 3

C

Client 3Client 3

Provider

Fig. 8. Effect of the logging aspect on dependencies. The logging aspect includes
pointcut-advice elements only. “C” represents common points in clients accessing the
providers. (Direction of the arrow shows the change after applying aspect-oriented
modularization).

Extended

Provider 1

Extension

Interface
Provider 1 Provider 2

Extended

Provider 2

Extension Aspect

(introduction)

Provider 1 Provider 2

Clients Clients 

Extension

Interface

Fig. 9. Effect of the authentication aspect on dependencies. The authentication aspect
includes introduction.

(JSP pages) directly use and expect from the provider modules. Once the aspect
is implemented, this dependency from clients to the parameters captured inside
aspects has to be somehow reflected in the new design. Two alternative design
options that resemble the case of implementing JSPConnections are shown in
Fig. 10. Alternative 2 in Fig. 10 models the DSM in Fig. 7.

With these observations we can say that good aspect modularization elimi-
nates the dependencies clients have on providers by introducing aspects as new
modular structures. Aspects depend on (or see) these clients and providers, and
are responsible for providing connections between them. In cases where aspect
modularization introduces additional dependencies (such as between clients and
aspects) the effect may be detrimental.

5.2 Inversion vs. Reversion

The structural changes introduced by aspect-oriented modularizations are sim-
ilar, but not identical, to Baldwin and Clark’s inversion operator. Inversion
has two major effects, namely (i) it captures common elements hidden inside
the modules, and (ii) puts them above the existing modules as architectural
modules, thus changing the levels of the modules and dependency relationships
between them. A simple example of inversion is shown in Fig. 11.

Both inversion and aspect-oriented modularization involve capturing common
parameters and moving those common parameters to a single module, creating a
new level in the hierarchy. However, aspect-oriented modularization introduces



20 C.V. Lopes and S.K. Bajracharya

P1

S1

P2

S2

P3

S3

C1 C2 C3 C4

Aspect

P1

S1

P2

S2

P3

S3

C1 C2 C3 C4

P1 P2 P3

C1 C2 C3 C4

Design before applying Introduction

Design Alternative 1 Design Alternative 2

Design alternatives for localizing services using Introduction

Aspect

S1 S2 S3

Fig. 10. Effect of the JSPConnections aspects on dependencies. The JSPConnections
aspects include introduction. Here, Px = provider, Sx = visible services offered by
providers, and Cx = clients (x = 1, 2 or 3). Bidirectional arrows represent two-way
dependencies.

Provider

Client 1R

Architectural

Module

Client 2R Client 3R Client 3

R

Client 3Client 3

Provider

Fig. 11. The effect of inversion. “R” represents redundant parameters/code in clients
that is moved to Architectural module after inversion.

modules (aspects) that depend on existing modules, whereas inversion introduces
modules on which existing modules are dependent. This makes aspect-oriented
modularization a new operator, which we call reversion.

5.3 Design Rules for Aspects

Figures 8–10 are three variations of Pointcut-Advice and Introduction mecha-
nisms. Particularly, in these figures we do not see what the visible design rules
for aspects are. In both cases aspects depend on clients or/and providers.

In Fig. 8 a small box labeled as C denotes the common points in clients
accessing the providers. C is moved into the aspect after aspect-oriented modu-
larization, and it represents two things: (i) interfaces that a provider provides,



Assessing Aspect Modularizations Using DSM and NOV 21

Aspect

Client(s)

Design Rules for 
AO modularization

Provider(s)

Fig. 12. Design rules for aspect-oriented (AO) modularization

and (ii) points in clients that access such interfaces. A typical way to design
aspects following this process (as in AspectJ) is to capture these points as join-
points (for example, the method names a provider provides and the method
names of clients that access the provider), which need to be advised. Such join-
points constitute C, and, in a way, become design rules for the aspect. Defining
design rules for aspects implies making such joinpoints explicit. Just as archi-
tectural modules emerge after sustaining a considerable design evolution, an
aspect-oriented design would also result in well-defined design rules for aspect-
oriented modularization, as in the structure shown in Fig. 12. This notion of
design rules for aspects, which was first raised in an earlier work [26], is critical
for avoiding unforeseen addition of dependencies after aspect modularizations.
One of the reasons that we encounter detrimental dependencies from modules
to aspects (as in Fig. 10) is due to the lack of standard design rules to which
clients, providers and aspects can conform.

6 Quantitative Analysis with Net Option Value

This section presents the quantitative analysis of the various design options for
WineryLocator starting from StoreLocator. The analysis is based on a generic
expression for NOV [13]. This generic expression for evaluating the option to
redesign a module is represented mathematically as shown below.

V = S0 + NOV1 + NOV2 + ... + NOVn, (1)

NOVi = maxki{σin
1/2
i Q(ki) − Ci(ni)ki − Zi}, (2)

Zi =
∑

j−sees−i

cnj . (3)

Below we present a brief explanation of mathematical model for NOV as given
in [13].

– V denotes the value of a system.
– S0 is the value of the system with no modular structure, which can be nor-

malized to 0.
– NOVi is the NOV for ith module, taken as the maximum return value pos-

sible out of k design experiments on the ith module.



22 C.V. Lopes and S.K. Bajracharya

– (σin
1/2
i Q(ki)) represents the expected benefit to be gained from the ith mod-

ule. This value is assumed to be the expected value of a random variable with
a normal distribution having a variance of σ2

i ni.
• σi is the technical potential of the module.
• Q(k) is the expected value of the best k independent trials from a stan-

dard normal distribution for all positive values in the distribution.
– (Ci(ni)) represents the cost of running a design experiment on the ith mod-

ule. Mathematically the cost of an experiment is a function of the module’s
complexity. Thus,
• (Ci(ni)ki) is the cost of running k experiments on the ith module.
• If N represents the total complexity of a system, then ni, the complexity

of the ith module, would be given as mi/N , where mi is the ith module’s
contribution to N .

– (Zi) is the visibility cost, the cost to replace the ith module.
• Mathematically, Zi =

∑
j−sees−i cjnj. It sums up the cost to redesign

each jth module containing nj parameters that depends on (sees) the
ith module.

• cj is the redesign cost per parameter for the jth module.

6.1 NOV for Aspect-Oriented Modularization (Reversion)

Based on the discussion of inversion vs. reversion presented in Sect. 5.2, Table 5
presents a model for the NOV of aspect-oriented modularization, comparing
it with NOV for inversion. Baldwin and Clark have defined NOV expressions
for all their six modular operators. However, for the purposes of this paper, in
evaluating the design options, we have not used these individual expressions.
We believe further work is needed for these individual NOV expressions to be
directly used in evaluating various forms of fine-grained design changes made in
software. Instead, we use the generic expression for NOV (discussed earlier in
this section) that is applicable to any modular design.

Table 5. NOVs for inversion (NOVinv) and reversion (NOVrev)

NOVinv = Option value of architectural module
– Cost of designing architectural module
– Option value lost in hidden modules’ experiments
+ Cost savings in hidden modules’ experiments
– Costs of visibility

NOVrev = Option value of aspect module (aspects and design rules
for aspects)

– Cost of designing aspects and design rules for aspects
– Option value lost in scattered code’s experiments in hid-

den modules
+ Cost savings in scattered code’s experiments in hidden

modules
– Costs of visibility of modules on design rules for aspects



Assessing Aspect Modularizations Using DSM and NOV 23

6.2 Assumptions for NOV Analysis

The main objective behind the NOV analysis in this paper is to compare the
difference between the values of the different designs, rather than to assess the
individual worth of the design in terms of a market value. We believe our as-
sumptions give consistent values for comparing the different designs.

We omit external parameters as modules for NOV analysis because they are
not subjected to further experimentation. We treat all parameters under design
rules as a single module. All other design parameters are treated as individual
modules. Our assumptions for rest of the parameters are given below.

Redesign Cost Per Parameter (ci). We assume the redesign cost of a single
module to be 1 (following [13]).

Technical Potential (σ) of a Module. A fundamental relation between the
technical potential σ and cost c for (re)designing individual modules comes from
the break-even assumption of one experiment on an unmodularized system [13].
This assumption says that in an unmodularized system (or a system with only
one module), σN1/2Q(1)− cN = 0. With this relation we can assume the maxi-
mum value for σ = 2.5, as we have assumed ci, redesign cost of a single module
to be 1 and Q(1) = 0.4.

Estimating the technical potential of a module has been identified as the
most difficult task in NOV analysis [12,26,42]. Simple heuristics has been used
to calculate the technical potential for the modules in StoreLocator and Win-
eryLocator [26]. But, such heuristics lacks proper validation and is based on a
set of design constraints to be enforced in the case studied. Since we lack the
basic historical data for the designs presented in this paper we simply choose
the technical potential of all the modules in our designs to be 2.5. Design Rules
and web.xml are two exceptions. The design rules are kept fixed in all given de-
signs so, we can assign them a technical potential of 0. The parameter web.xml is
merely a configuration file, and since it is not subjected to any design experiment
we assign it a technical potential of 0, too.

Module Complexity (ni). A module’s complexity is proportional to its tasks
[13]. Table 6 lists the number of visible tasks that each module exposes to its
prospective clients or users. These tasks do not account for the internal tasks
that a module hides from others. We add a baseline value of 1 to the task
numbers for each module to account for such hidden tasks. This convenient
assumption leads to a nonzero value to the three application modules (Address-
Locator, WineryFinder and RouteMapHandler) in the final design (Fig. 7) as all
the tasks that resided in these modules (in earlier designs) are moved into the
aspect JSPConnections.

Finally, to calculate the complexity of individual modules we assume N , the
complexity of the whole design, to be the total tasks (visible tasks + 1) performed
by all the modules in the system. We calculate the complexity of a module by
dividing the total number of tasks it performs by N .



24 C.V. Lopes and S.K. Bajracharya

Table 6. Task list used to calculate the complexity (ni) of individual modules. (#
denotes number of externally visible (public) tasks. * denotes the modules from the
last design shown in Fig. 7)

Design parameter Tasks #

ExternalParameters – 0

DesignRules (StoreLocator) Provide structures that model start location, ad-
dress matches, directions and map

4

DesignRules (WineryLocator) Provide structures that model start location, ad-
dress matches, winery search option, tour and
map

5

StoreLocator Locate addresses, list stores, provide maps, map
navigation, provide directions

5

HttpSessionStoreLocator Authentication 1

locate List location, specify starting address 2

display List store, map, map navigation 3

directions List directions 1

Web.xml Application configuration 1

AddressLocator List locations 1

AuthAddressLocator Authentication 1

WineryFinder List wineries, provide options for wineries selec-
tion

2

RouteMapHandler Generate maps, provide navigation, list direc-
tions

3

AuthRouteMapHandler Authentication 1

startWineryFind List location, specify starting address 2

searchWinery Set winery search options 1

tour List wineries, map, map navigation 3

directions Present directions 1

WebServicesLogger Implement logging 1

Logging (Aspect) Provide logging 1

Authentication (aspect) Authentication 1

AddressLocator* List locations 0

WineryFinder* List wineries, provide options for wineries selec-
tion

0

RouteMapHandler* Generate maps, provide navigation, list direc-
tions

0

JSPConnections* Generate maps, provide navigation, list direc-
tions

6

7 Observations

The result of the NOV analysis is shown in Table 7. The NOV increased
with each of the subsequent designs, except the final one, where the NOV went
down. The last three columns give a comparison of the relative changes in NOVs
of each design with respect to a particular design. The last column (I4) shows
the relative changes in NOV with respect to the earliest complete version of



Assessing Aspect Modularizations Using DSM and NOV 25

WineryLocator (Fig. 4). In other words, it compares the NOV of the last four
designs that are functionally equivalent, in terms of the visible tasks they per-
form. This means that the differences in the NOVs in this column are entirely due
to remodularizations: introduction of an additional layer of design rules (Fig. 5),
aspect-oriented modularizations for logging and authentication (Fig. 6), and lo-
calization of the public methods from the Application Modules into the aspect
JSPConnections (Fig. 7).

The results clearly indicate that the introducing Design Rules (OO modular-
ization, Fig. 5) adds more value to the existing design (Fig. 4). Separating log-
ging and authentication using aspects (Fig. 6) enhances the existing OO design
(Fig. 5). However, isolating the public methods from the Application Controllers
in an aspect is detrimental (Fig. 7). In fact, the use of aspects in this last case
lowers the value of the design with respect to all comparisons we make (Table 7,
last row).

We provide some insight on these design consequences in the following sec-
tions. A closer look at the NOVs of all the modules for different experiments
gives more insight on the effect aspects have on the value of the overall design.

Table 7. NOVs for different design options. Here, Ic = cumulative increase in value,
I3 = net increase in value with respect to WineryLocator (Fig. 3), I4 = net increase
in value with respect to WineryLocator with logging (Fig. 4).

Design Fig. NOV Ic (%) I3 (%) I4 (%)

StoreLocator 1 1.05 NA NA NA

WineryLocator 3 2.87 172.20 NA NA

WineryLocator with Logging 4 3.07 6.99 6.99 NA

WineryLocator with design rules
for application

5 3.13 1.92 9.04 1.92

WineryLocator with Aspects 6 3.34 6.58 16.21 8.62

WineryLocator with aspect JSP-
Connections

7 2.68 −19.65 −6.63 −12.73

7.1 NOV Worksheet

Figure 13 is the NOV worksheet that details the complete calculation of NOV
for the last three designs; Fig. 6 (AO-Design), Fig. 5 (OO-Design) and Fig. 7
(AO-Design). Along with all the parameters of NOV, the worksheet shows the
simulated value of each kth experiment for each parameter in all three designs.
These values are shown in the 11 columns corresponding to the 11 values of k
(second row). These 11 columns can be taken as the evolutionary simulation of
experiments on the individual parameters of the given designs. In short, they
depict the evolutionary patterns of individual modules.

We can see that for all the modules with nonzero σ the value of experiments
increases until a break-even point is reached. All these break-even points have
been highlighted with a shaded cell and solid borders. Experiments after this
break-even point result in declining returns for investment. Experiments lower



26 C.V. Lopes and S.K. Bajracharya

F
ig

.
1
3
.
N

O
V

w
o
rk

sh
ee

t
sh

ow
in

g
ca

lc
u
la

ti
o
n
s

fo
r

la
st

th
re

e
d
es

ig
n

va
ri
a
n
ts



Assessing Aspect Modularizations Using DSM and NOV 27

than the threshold values are labeled feasible, indicating that further experiments
(increasing k) will keep the value increasing until the experiment threshold.

With the visual cues for feasible experiments and the experiment threshold in
the NOV worksheet, we can see that both AO-Design and OO-Design have the
same evolutionary pattern (all the modules reach experiment threshold after the
same number of experiments). However, they differ in terms of the value each
module contributes to the total NOV. In OO-Design authentication modules
contribute less than in the AO-Design. Also, the value of AddressLocator goes
down in AO-Design compared to the OO-Design.

The Detrimental AO-Design has a different evolutionary pattern compared to
the other two designs. Particularly the Application Modules (AddressLocator,
WineryFinder and RouteMapHandler) have a wider range for feasible experi-
ments. This might seem beneficial (as a sign of more opportunities to exper-
iment) but, this is, in fact, a consequence of bad design. The values for the
experimental thresholds for these modules are very low compared to the ones in
the earlier two designs (OO/AO-Design). This indicates that this design might
lead to experiments on modules that are nonprofitable and result in very low
value. The Detrimental AO-Design also introduces a new parameter, JSPConnec-
tions, which has the highest complexity (that is, provides a lot of functionality)
but contributes very little to the overall NOV of the design. This, again, is an
indicator of a bad design.

7.2 NOV Curves

Figure 14 shows the option values of each module in the last four designs.
Each curve represents the variation of NOV of a module for 11 different ex-
periments [13]. The highest peak in each curve denotes the value a module
contributes to the NOV of the overall design. Sum of all the peak values of all
the curves give the NOV.

We can see the same evolutionary pattern we observed in the NOV worksheet
using NOV charts too. The charts show that NOV curves for the designs in Fig. 4
(WineryLocator with MapPoint design rules) and Fig. 5 (WineryLocator with
application design rules) are almost identical. Design in Fig. 6 (AO-Design) is
slightly different from Figs. 4 and 5. In the curves for Fig. 6 we can see that
one of the curves goes above 0.4, and there is only one curve that lies below
0.2, compared to curves for Figs. 4 and 5 that have two curves below 0.20. This
indicates how aspect modularization leads to a better design in Fig. 6.

The NOV curves for the design in Fig. 7 are strikingly different from rest of
the curves. We see many curves starting below 0 for lower values of k. This indi-
cates that these modules need more experiments before they reach the threshold
(maximum value) they offer. Two of the modules hardly contribute to the to-
tal NOV (AddressLocator and RouteMapHandler). Almost half of the curves
lie below 0.2, and the curve for JSPConnections reaches its threshold too early,
without contributing much to the total NOV. All this indicates how the new
aspect modularization in Fig. 7 affects the evolution pattern of all the modules
and brings down the NOV of the entire design.



28 C.V. Lopes and S.K. Bajracharya

O
pt

io
ns

 V
al

ue
 fo

r W
in

er
yL

oc
at

or
 w

ith
 A

pp
lic

at
io

n 
D

es
ig

n 
R

ul
es

 
(F

ig
ur

e 
5)

-0
.7

0

-0
.6

0

-0
.5

0

-0
.4

0

-0
.3

0

-0
.2

0

-0
.1

0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0
1

2
3

4
5

6
7

8
9

10

Ex
pe

rim
en

ts

NOV

A
dd

re
ss

Lo
ca

to
r

W
in

er
yF

in
de

r

R
ou

te
M

ap
H

an
dl

er

st
ar

tW
in

er
yF

in
d

se
ar

ch
W

in
er

y

to
ur

di
re

ct
io

ns

W
eb

S
er

vi
ce

sL
og

ge
r

A
ut

hA
dd

re
ss

Lo
ca

to
r

A
ut

hR
ou

te
M

ap
H

an
dl

er

O
pt

io
n 

Va
lu

es
 fo

r A
O

-D
es

ig
n 

(F
ig

ur
e 

6)

-0
.7

0

-0
.6

0

-0
.5

0

-0
.4

0

-0
.3

0

-0
.2

0

-0
.1

0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0
1

2
3

4
5

6
7

8
9

10

Ex
pe

rim
en

ts

NOV

A
dd

re
ss

Lo
ca

to
r

W
in

er
yF

in
de

r

R
ou

te
M

ap
H

an
dl

er

st
ar

tW
in

er
yF

in
d

se
ar

ch
W

in
er

y

to
ur

di
re

ct
io

ns

W
eb

S
er

vi
ce

sL
og

ge
r

Lo
gg

in
g 

(A
sp

ec
t)

A
ut

he
nt

ic
at

io
n

(A
sp

ec
t)

O
pt

io
ns

 V
al

ue
 fo

r A
O

 D
es

ig
n 

w
ith

 a
sp

ec
t J

SP
C

on
ne

ct
io

n 
(F

ig
ur

e 
7)

-0
.7

0

-0
.6

0

-0
.5

0

-0
.4

0

-0
.3

0

-0
.2

0

-0
.1

0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0
1

2
3

4
5

6
7

8
9

10

Ex
pe

rim
en

ts

NOV

A
dd

re
ss

Lo
ca

to
r

W
in

er
yF

in
de

r

R
ou

te
M

ap
H

an
dl

er

JS
P

C
on

ne
ct

io
ns

(A
sp

ec
t)

st
ar

tW
in

er
yF

in
d

se
ar

ch
W

in
er

y

to
ur

W
eb

S
er

vi
ce

sL
og

ge
r

Lo
gg

in
g 

(A
sp

ec
t)

A
ut

he
nt

ic
at

io
n 

(A
sp

ec
t)

di
re

ct
io

ns

O
pt

io
n 

Va
lu

es
 fo

r W
in

er
yL

oc
at

or
 w

ith
 M

ap
Po

in
t D

es
ig

n 
R

ul
es

 
(F

ig
ur

e 
4)

-0
.7

0

-0
.6

0

-0
.5

0

-0
.4

0

-0
.3

0

-0
.2

0

-0
.1

0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0
1

2
3

4
5

6
7

8
9

10

Ex
pe

rim
en

ts

NOV

W
eb

S
er

vi
ce

sL
og

ge
r

A
dd

re
ss

Lo
ca

to
r

A
ut

hA
dd

re
ss

Lo
ca

to
r

W
in

er
yF

in
de

r

R
ou

te
M

ap
H

an
dl

er

A
ut

hR
ou

te
M

ap
H

an
dl

er

st
ar

tW
in

er
yF

in
d

to
ur

di
re

ct
io

ns

se
ar

ch
W

in
er

y

F
ig

.
1
4
.
C

h
a
rt

s
sh

ow
in

g
th

e
eff

ec
t

o
f
a
sp

ec
t-

o
ri
en

te
d

m
o
d
u
la

ri
za

ti
o
n

o
n

o
p
ti
o
n

va
lu

es



Assessing Aspect Modularizations Using DSM and NOV 29

In [26] we observed how additional design constraints inhibit the evolution
of existing modules. In particular, the various assignments for σ that captured
the design heuristics about not all modules being equal caused the curve for
WebServicesLogger stay below zero in all designs.

We can see that after aspect-oriented modularization the NOV curves for
existing Application Modules (such as RouteMapHandler) go down. The increase
in overall NOV for WineryLocator after aspect-oriented modularization is due
to the NOV of newly introduced aspects, Logging and Authentication.

7.3 Towards Formulating Design Guidelines for Aspects

In light of the preceding observations made in the NOV worksheet and the
NOV curves, we can now formulate the following preliminary guidelines for using
aspect-oriented modularizations:

– An aspect modularization adds value to the existing design if the parameters
captured by aspects can be hidden from the existing parameters.

The case of modularizing logging with aspects clearly presents this case.
In the design given in Fig. 5, the Application Modules (F.6, P.14, 16, 17) de-
pend on WebServicesLogger (F.5, P.13). These dependencies are eliminated
in Fig. 6 as the aspect Logging (F.6, P.22) hides the module WebServices-
Logger (F.6, P.21) from the application modules (F.6, P.13 through 15). This
is one of the primary factors that increased the NOV value of the aspect-
oriented design (Fig. 6) in our case study.

– An aspect modularization can be harmful when aspects enforce additional
dependencies from the rest of the parameters to the aspects.

The final design (Fig. 7) in the case study illustrates this guideline. The
aspect JSPConnections (F.7, P.24) introduces four new dependencies in the
design in Fig. 7, which are largely responsible for bringing down the NOV
of this design.

These two basic guidelines can inform designers for making decisions about
aspect-oriented designs. The variations in design options we have considered and
the results obtained from NOV attest to these guidelines. They also conform to
a generally acceptable notion about dependencies and design quality.

8 Limitations and Future Work

Three problem areas need to be addressed before adopting NOV as a practical
tool to assess design options in software. First, there is the question about the
validity of the NOV model itself as it applies to software. Second, it would be very
useful to be able to combine the NOV of modular operators instead of always
computing the NOV of the whole design. Finally, the validity of the assumptions
can also be questioned. We discuss these below.



30 C.V. Lopes and S.K. Bajracharya

8.1 Applicability of NOV

The first problem is about some of the simplifying assumptions in the NOV
model, such as the linearity in summing up the NOV of a design and assumptions
about the probabilistic relationship that simulates the module evolution. We
have taken these assumptions as they are, and an elaborate discussion of these
is beyond the scope of this paper. However, an implicit assumption about the
visibility cost in NOV needs some clarification.

In all our designs, we have prepared the DSMs showing only the direct depen-
dencies between design parameters. We do not include transitive dependencies
in the DSMs. This has a serious implication on calculating visibility cost. The
visibility cost in the NOV (Zi =

∑
j−sees−i cnj), described earlier in Sect. 6, only

considers the direct dependents of a module. This means that, by modeling only
the direct dependencies and using Baldwin and Clark’s definition for visibility
cost, we are considering that the ripple effects due to any change in a given
module will be compensated in its direct dependents, and thus those changes
will not be allowed to propagate further down the dependency tree. A naive way
of accounting the ripple effects on all the dependents is to build higher order
matrices that show both direct and transitive dependencies and calculate the
visibility cost on such a matrix. Another approach might be to modify the defi-
nition of the visibility cost itself such that it follows the dependencies until it hits
all terminal dependents. However, if we need to capture all such possibilities this
naive approach will not be sufficient. Since we are using the programming model
as the design space, with constructs like classes and methods as design parame-
ters, we need a deeper understanding about how these dependencies propagate
along different relations. For example, in Fig. 5 startWineryFind depends on
AuthAddressLocator because of usage, while AuthAddressLocator depends on
AddressLocator because of inheritance. We need to further investigate how to
account for transitive operations on different relations such as these.

In a recent work, Cai and Sullivan have proposed a formal theory for modeling
and analysis of design [16]. Their approach seems feasible for a tractable rea-
soning of design alternatives at a higher level of abstraction. It takes away some
of the fuzziness such as the problem of properly reasoning about the transitive
operation on two (or more) different relationships.

8.2 Modular Operators and Special NOV Expressions

Our analysis of NOV for the various designs is based on the general expression
to calculate NOV of a modular design rather than the NOV expressions for the
individual operators. We followed this approach because we still need to have
a precise understanding about how a NOV for a design change resulting in a
different dependency structure, other than the modular operators model, should
be expressed in terms of these individual NOV for the operators. For example,
we cannot exactly pick which operator models the design change we presented
in Sect. 4.5 (from Fig. 4 to Fig. 5). We can treat it as a refinement of inversion,
which previously had created the design rules in Figs. 3 and 4, but accurate
evaluation cannot be done without a precise NOV expression that models this



Assessing Aspect Modularizations Using DSM and NOV 31

change in the design. Such problems arise as we move into finer granularity
of design changes and thus need to investigate the feasibility of modeling and
evaluating finer design changes with Baldwin and Clark’s theory (for example,
various forms of small and big refactorings [20]). We need to understand how far
(or deep) we can go with these basic operators, and in particular with NOV, in
considering fine-grained design changes in software.

8.3 Assumptions About the NOV Parameters

The assumptions made in Sect. 6.2 directly follow convenient conventions that
are borrowed from Baldwin and Clark’s original work [13], for example, the
assumption about redesign cost being 1 for all modules and the definition for
complexity. Also, earlier heuristics for calculating the technical potential lack
formal or empirical verification [26]. Standard techniques to estimate parameters
for NOV and richer models for NOV for software are issues of further research
in this field.

Some of the open questions about NOV have been discussed in [12]. Empirical
validation of the assumptions made about NOV parameters has been proposed
as a possible approach in seeking answers to such questions. In particular, some
preliminaries on measuring the technical potential of a module are given.

Despite of these limitations we are positive about the reliability of NOV re-
sults under the influence of varying assumptions for its parameters. Two NOV
analyses have been done with the same case study; the one in this paper and
in an earlier work [26]. These analyses use two different techniques for assigning
value to σ, the technical potential of a module. Both strategies show that log-
ging and authentication aspects are beneficial (from design in Fig. 5 to Fig. 6)
whereas the JSPConnections aspect is detrimental to WineryLocator ’s design
(from design in Fig. 6 to Fig. 7). This result has been summarized in Table 8,
which shows how the NOV result varies with two different assumptions about σ.
The exact NOV values are different with these two different assumptions for σ.
But, the values themselves are consistent in indicating whether the design is good
(value increase) or bad (value decrease). Alternative approaches for measuring
the values of NOV parameters can be found in existing literature [41,42].

Table 8. NOVs for different design options with two different measurement strategies
for σ

NOV for design shown in Fig. → 3 4 5 6 7

Using the measurement heuristics for σ
from [26]

1.38 1.41 1.59 1.76 1.73

With σ assumed to be 2.5 for all modules
(see Sect. 6.2)

2.87 3.07 3.13 3.34 2.68

8.4 Future Work

In this paper we have only considered two aspect-oriented techniques, Pointcut-
Advice and Introduction. We intend to investigate the structure of dependencies



32 C.V. Lopes and S.K. Bajracharya

and modularity in several existing models for representing aspects, using tech-
niques and theories presented in related works, such as [5,21,24,29,37].

Some of the major recent efforts in aspect-oriented software development that
are relevant and seem promising in contributing to further solve some problems
we have identified are given below.8

1. Symmetric models for AOP that provide a unified approach for implementing
advice implementations and classes, and decouple aspect implementation
from binding, have potentials in allowing designers to express uniform design
rules both for aspects and base classes. Some of the recent works in this area
are [6,27, 34].

2. Principles of aspect modularization: Other related works put forward some
principles and mechanisms to identify and implement standard interfaces in
aspects [23,25,41]. We believe these efforts will contribute greatly in identi-
fying the standards for Design Rules for AO modularization (see Fig. 12).

3. Classification system for aspects: Rinard et al. have presented a classifica-
tion system for aspects [36]. Although we have not yet incorporated such
a classification, we believe it is critical to account for such differences that
various types of aspects have on design. One possible way to account for
such differences is to assign different weights to dependencies in the DSMs.

We believe these research efforts will contribute in discovering standard tech-
niques to define design rules for aspects and help us understand the implications
these design rules have on the overall value of an aspect-oriented design.

We observed that it is tedious and error-prone to work with DSMs and NOV
analysis without proper tool support. We believe DSM can be implemented as
an interactive and direct manipulation tool for software design. We intend to
look into the issues of scalability and possibilities for alternative representations
of design in DSM. We also plan to incorporate advanced features of DSMs such
as numerical DSMs with dependencies classified according to their strength and
modeling software with various types of DSMs using component-based and team-
based DSMs [1, 15]. With these, we intend to investigate whether DSM can be
further extended as a tool for real software practitioners and designers.

We are currently investigating modular dependencies based on the true nature
of aspects. With a rigorous analysis based on: (i) what form of aspect is used, (ii)
where the aspect is applied (or, how it relates to other existing modules), and
(iii) how the aspect is applied (such as various kinds of joinpoints/pointcuts),
we can augment a model like net option value, for example, by providing a
classification scheme for assigning values for the strength of dependencies. We
believe such efforts would lead us to a more accurate evaluation and analysis of
aspect-oriented designs.

8 This is not an exhaustive and complete list, but represents some of the recent works
that we have come across that complement the work presented in this paper.



Assessing Aspect Modularizations Using DSM and NOV 33

9 Conclusion

Originally conceived as a modularity mechanism, aspects bring powerful possibil-
ities whose deep implications in an existing design cannot be fully known without
a rigorous analysis. We have presented a case study that illustrates the conse-
quences that aspects have on modular design evolution using the NOV model. In
particular, the evolutionary patterns of modules using the NOV worksheet and
NOV curves provide insights on the role that aspects play on the evolution of
other modules in the system. These patterns help in understanding how subtle
dependencies due to aspects bring down the value of an existing (good) design.
Based on this, we formulated basic guidelines on aspect design that say that
aspects should hide design parameters from other modules and aspects should
avoid enforcing additional dependencies from the rest of the parameters.

It should be noted that NOV is just one model to do assessments like these,
and there might exist other forms of analysis techniques for designs that would
complement NOV or address different issues than NOV does. A natural extension
to the manual work presented here would be to implement these analysis tech-
niques in design tools. This would greatly simplify analysis and make evaluating
individual alternatives feasible.

The example we have used in this paper is relatively complex. However, it
is rather small in comparison to real industrial software that ranges in millions
lines of code. It is imperative to gain experience in using NOV with such systems
to understand its applicability in analyzing complex design options.

We believe that a deeper look into the problems we have identified will
provide a scientific basis for making design decisions that go beyond intuitions.
This will lead to a clear understanding of using aspects that will open doors for
their widespread adoption.

References

[1] Tutorials and resources on DSM, http://www.dsmweb.org. Cited 20 September
2005

[2] Lattix Web site. http://www.lattix.com. Cited 20 September 2005

[3] AspectJ project Web site. http://www.aspectj.org. Cited 20 September 2005

[4] MapPoint Object Model, http://msdn.microsoft.com. Cited 20 September 2005

[5] Concern Manipulation Environment (CME). http://www.eclipse.org/cme. Cited
20 September 2005

[6] AspectWerkz, http://aspectwerkz.codehaus.org. Cited 20 September 2005

[7] The Apache Foundation. Apache AXIS, http://ws.apache.org/axis. Cited 20
September 2005

[8] MapPoint Web services. http://www.mappoint.com. Cited 20 September 2005

[9] Spatialpoint. http://www.spatialpoint.com. Cited 20 September 2005

[10] Sun Microsystems. Java Servlet Specifiation. http://java.sun.com/products/
servlet. Cited 20 September 2005

[11] Sun Microsystems. J2EE, Java 2 Enterprise Edition Specification. http://java.
sun.com/j2ee. Cited 20 September 2005



34 C.V. Lopes and S.K. Bajracharya

[12] S.K. Bajracharya, T.C. Ngo, and C.V. Lopes. On using net options value as
a value based design framework. In: EDSER ’05: Proceedings of the Seventh
International Workshop on Economics-Driven Software Engineering Research,
ACM, New York, pp. 1–3, 2005

[13] C.Y. Baldwin and K.B. Clark. Design Rules Vol. I, The Power of Modularity.
MIT Press, Cambridge, MA, 2000

[14] J.K. Blundell, M.L. Hines, and J. Stach. The measurement of software design
quality. Ann. Softw. Eng., 4:235–255, 1997

[15] T.R. Browning. Applying the design structure matrix to system decomposition
and integration problems: a review and new directions. IEEE Transactions on
Engineering Management, 48:292–306, 2001

[16] Y. Cai and K.J. Sullivan. A value-oriented theory of modularity in design. In:
Proceedings of the 7th International Workshop on Economics-Driven Software
Engineering Research (EDSER) at ICSE’05, 2005

[17] N. Fenton and S.L. Pfleeger. Software Metrics 2nd edn.: A Rigorous and Practical
Approach, PWS, Boston, MA, 1997

[18] M. Fowler. Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html

[19] M. Fowler. Module assembly. IEEE Software, 21(2):65–67, 2004
[20] M. Fowler, K. Beck, J. Brant, O. Opdyke, and D. Roberts. Refactoring: improving

the design of existing code. Object Technology Series. Addison-Wesley, 1999
[21] W.H. Harrison and H.L. Ossher. Member-group relationships among objects.

IBM Technical Report RC22048, 2002
[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In: M. Akşit and S. Matsuoka (eds.)
11th Europeen Conf. Object-Oriented Programming, LNCS Vol. 1241, Springer,
pp. 220–242, 1997

[23] G. Kiczales and M. Mezini. Aspect-oriented programming and modular reason-
ing. In: ICSE ’05: Proceedings of the 27th International Conference on Software
Engineering, ACM, New York, pp. 49–58, 2005

[24] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with Aspectual
Components. Technical Report NU-CCS-99-01, College of Computer Science,
Northeastern University, Boston, MA, 1999

[25] C.V. Lopes. On the nature of aspects: Principles of aspect-oriented design. In:
ACM Transactions of Software Engineering. Under Review

[26] C.V. Lopes and S.K. Bajracharya. An analysis of modularity in aspect oriented
design. In: AOSD ’05: Proceedings of the 4th International Conference on
Aspect-Oriented Software Development, ACM, New York, pp. 15–26, 2005

[27] C.V. Lopes and T.C. Ngo. The Aspect markup language and its support of
Aspect plugins. ISR Technical Report UCI-ISR-04-8, 2004

[28] A. MacCormack, J. Rusnak, and C. Baldwin. Exploring the structure of complex
software designs: An empirical study of open source and proprietary code.
Harvard Business School Working Paper Number 05-016, 2004

[29] H. Masuhara and G. Kiczales. Modeling crosscutting in aspect-oriented
mechanisms. In: ECOOP 2003–Object-Oriented Programming 17th European
Conference, Springer, pp. 2–28, 2003

[30] N. Medvidovic and R.N. Taylor. A classification and comparison framework
for software architecture description languages. IEEE Trans. Softw. Eng.,
26(1):70–93, 2000

[31] D.L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, 1972



Assessing Aspect Modularizations Using DSM and NOV 35

[32] D.L. Parnas. On a “Buzzword”: Hierarchical structure. In: Software Pioneers:
Contributions to Software Engineering, Springer, New York, pp. 429–440, 2002

[33] D.E. Perry and A.L. Wolf. Foundations for the study of software architecture.
SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992

[34] H. Rajan and K.J. Sullivan. Classpects: unifying aspect- and object-oriented
language design. In: ICSE ’05: Proceedings of the 27th International Conference
on Software Engineering, ACM, New York, pp. 59–68, 2005

[35] A.J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman, Boston,
MA, 1996

[36] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis
for aspect-oriented programs. In: SIGSOFT ’04/FSE-12: Proceedings of the 12th
ACM SIGSOFT Twelfth International Symposium on Foundations of Software
Engineering, ACM, New York, pp. 147–158, 2004

[37] M.P. Robillard and G.C. Murphy. Concern graphs: finding and describing
concerns using structural program dependencies. In: Proceedings of the 24th
International Conference on Software Engineering (ICSE-02), ACM, New York,
pp. 406–416, 2002

[38] D. Sharman and A. Yassine. Characterizing complex product architectures.
Systems Engineering Journal, 7(1):35–60, 2004

[39] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996

[40] D.V. Steward. The design structure system: A method for managing the design
of complex systems. IEEE Transactions on Engineering Management, 28:71–74,
1981

[41] K. Sullivan, W.G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and H. Rajan.
Information hiding interfaces for aspect-oriented design. ESEC/FSE 05 (April)

[42] K.J. Sullivan, W.G. Griswold, Y. Cai, and B. Hallen. The structure and value of
modularity in software design. In: Proceedings of the 8th European Software En-
gineering Conference Held Jointly with 9th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, ACM, New York, pp. 99–108, 2001

[43] W3C, SOAP (Simple Object Access Protocol) version 1.2 specification. http://
www.w3.org/TR/soap12. Cited 20 September 2005

[44] W3C, Web Services Description Language (WSDL). http://www.w3.org/TR/
wsdl. Cited 30 September 2005



A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 36 – 74, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Modularizing Design Patterns with Aspects: 
A Quantitative Study 

Alessandro Garcia1, Cláudio Sant’Anna2, Eduardo Figueiredo2, Uirá Kulesza2, 
 Carlos Lucena2, and Arndt von Staa2  

1 Lancaster University, Computing Department, InfoLab 21, 
Lancaster - United Kingdom 

garciaa@comp.lancs.ac.uk 
2 PUC-Rio, Computer Science Department, LES, SoC+Agents Group, 

Rua Marques de São Vicente, 225 - 22453 - 900, Rio de Janeiro, RJ, Brazil 
 {claudios, emagno, uira, lucena, arndt}@inf.puc-rio.br 

Abstract. Design patterns offer flexible solutions to common problems in 
software development. Recent studies have shown that several design patterns 
involve crosscutting concerns. Unfortunately, object-oriented (OO) abstractions 
are often not able to modularize those crosscutting concerns, which in turn 
compromise the system reusability and maintainability. Hence, it is important 
verifying whether aspect-oriented approaches support improved modularization 
of crosscutting concerns relative to design patterns. Ideally, quantitative studies 
should be performed to compare OO and aspect-oriented implementations of 
classical patterns with respect to fundamental software engineering attributes, 
such as coupling and cohesion. This paper presents a quantitative study that 
compares Java and AspectJ solutions for the 23 Gang-of-Four patterns. We 
have used stringent software attributes as the assessment criteria. We have 
found that most aspect-oriented solutions improve separation of pattern-related 
concerns, although only four aspect-oriented implementations have exhibited 
significant reuse. This paper also discusses the scalability of the analyzed 
solutions with respect to separation of concerns, and the determination of a 
predictive model for the modularization of design patterns with aspects. 

1   Introduction 

Since the introduction of the first software pattern catalog containing the 23 Gang-of-
Four (GoF) patterns [9], design patterns have quickly been recognized to be important 
and useful in real software development. A design pattern describes a proven solution 
to a design problem with the goal of assuring reusable and maintainable solutions. 
Patterns assign roles to their participants, which define the functionality of the 
participants in the pattern context. However, a number of design patterns involve 
crosscutting concerns in the relationship between the pattern roles and participant 
classes in each instance of the pattern [15]. The implementation of the pattern roles 
often crosscuts several classes in a software system. Moreover, recent studies [11, 12, 
15] have shown that object-oriented (OO) abstractions are not able to isolate these 
pattern-specific concerns and tend to lead to programs with poor modularity. In this 
context, it is important to systematically verify whether aspect-oriented approaches 



 Modularizing Design Patterns with Aspects: A Quantitative Study 37 

[22, 33] support improved modularization of the crosscutting concerns relative to  
the patterns.  

To the best of our knowledge, Hannemann and Kiczales [15] have developed the 
only systematic study that explicitly investigated the use of aspect-oriented 
programming (AOP) to implement classical design patterns. They performed a 
preliminary study in which they developed and compared Java [20] and AspectJ [2] 
implementations of the GoF patterns. Their findings have shown that AspectJ 
implementations improve the modularity of most patterns. However, these 
improvements were based on some attributes that are not well known in software 
engineering, such as composability and (un)pluggability. This study has also not 
investigated the scalability of both object-oriented and aspect-oriented solutions. 
Moreover, this study was based only on a qualitative assessment and empirical data is 
missing. To solve this problem, this previous study should be replicated and 
supplemented by quantitative case studies in order to improve our knowledge body 
about the use of aspects for addressing the crosscutting property of design patterns. 

This paper presents quantitative assessments of Java and AspectJ implementations 
for the 23 GoF patterns. Our study is based on well-known software engineering 
attributes such as separation of concerns, coupling, cohesion and size. We have found 
that most aspect-oriented solutions improved the separation of pattern-related 
concerns. In addition, we have found that: 

(i) The use of AOP helped to improve the coupling and cohesion of some pattern 
implementations. 

(ii) The “aspectization” of design patterns reduced the number of attributes of 10 
patterns, and decreased the number of operations and respective parameters of 
12 patterns. 

(iii) Only four design patterns implemented in AspectJ have exhibited significant 
reuse. 

(iv) The relationships between pattern roles and application-specific concerns are 
sometimes so intense that it seems not trivial to separate those roles in aspects.  

(v) The use of coupling, cohesion and size measures was helpful to assist the 
detection of opportunities for aspect-oriented refactoring of design patterns.  

We have also analyzed the influence of AspectJ solutions on inheritance coupling. 
In addition, we discuss the scalability of both aspect-oriented and object-oriented 
solutions, and the determination of a predictive model for the aspectization of design 
patterns. As each design pattern usually has different variants and is heterogeneously 
instantiated through distinct applications [9], we also present some discussions about 
the particularities of the AspectJ implementations of the patterns used in this study. 
This information is useful to any software engineer, specially those who wish to 
replicate our experiment. Finally, we summarize how the findings of our study confirm 
or contradict the claims presented in the Hannemann and Kiczales’ work [15]. 

The remainder of this paper is organized as follows. Section 2 presents our study 
setting, while giving a brief description of Hannemann and Kiczales’ study. Section 3 
presents the study results with respect to separation of concerns, and Sect. 4 presents 
the study results in terms of coupling, cohesion and size attributes. These results are 
 



38 A. Garcia et al. 

interpreted and discussed in Sect. 5, in which a broader analysis is drawn. Section 6 
introduces some related work. Section 7 includes some concluding remarks and 
directions for future work. 

2   Study Setting 

This section describes the configuration of our empirical study. As this study is 
directly related to Hannemann and Kiczales’ work, the goals and conclusions of that 
study are presented in Sect. 2.1. Section 2.2 uses the Mediator pattern to illustrate the 
crosscutting property of some design patterns. Section 2.3 introduces the metrics used 
in the evaluation process, and Sect. 2.4 describes our assessment procedures. 

2.1   Hannemann and Kiczales’ Study 

Several design patterns exhibit crosscutting concerns [15]. In this context, 
Hannemann and Kiczales (HK) have undertaken a study in which they have 
developed and compared Java [20] and AspectJ [2] implementations of the 23 GoF 
design patterns [9]. They claim that programming languages affect pattern 
implementation. Hence it is natural to explore the effect of aspect-oriented 
programming (AOP) techniques on the implementation of the GoF patterns. For each 
of the 23 GoF patterns, they developed a representative example that makes use of the 
pattern and implemented the example in both Java and AspectJ. 

Design patterns assign roles to their participants; for example, the Mediator and 
Colleague roles are defined in the Mediator pattern. A number of GoF patterns 
involve crosscutting structures in the relationship between roles and classes in each 
instance of the pattern [15]. For instance, in the Mediator pattern, some operations 
that change a Colleague must trigger updates to the corresponding Mediator; in other 
words, the act of updating crosscuts one or more operations in each Colleague in the 
pattern. 

Two kinds of pattern roles are identified in the HK study, which are called defining 
and superimposed roles. A defining role defines a participant class completely. In 
other words, classes playing a defining role have no functionality outside the pattern. 
The unique role of the Façade pattern is an example of defining role. A superimposed 
role can be assigned to participant classes that have functionality outside of the 
pattern. An example of superimposed role is the Colleague role of the Mediator 
pattern, since a participant class playing this role usually has functionality not related 
to the pattern. These kinds of roles are used by the authors to analyze the crosscutting 
structure of design patterns. 

In the HK study, the goal of the AspectJ implementations is to modularize the 
pattern roles. The authors have reported that modularity improvements were reached 
in 17 of the 23 cases, and 12 aspect-oriented pattern implementations resulted in 
improved reuse. The degree of improvement with AOP has varied according to each 
pattern implementation. The next section discusses these improvements and 
crosscutting pattern structures in terms of the Mediator pattern. 



 Modularizing Design Patterns with Aspects: A Quantitative Study 39 

2.2   Example: The Mediator Pattern 

The intent of the Mediator pattern is to define an object that encapsulates how a set of 
objects interact [9]. The Mediator pattern defines two roles, Mediator and Colleague,  
to their participant classes. The Mediator role has the responsibility for controlling 
and coordinating the interactions of a group of objects. The Colleague role represents 
the objects that need to communicate with each other. Hannemann and Kiczales [15] 
present a simple example of the Mediator pattern in the context of a Java Swing 
application. In such a system the Mediator pattern is used to manage the 
communication between two kinds of graphical user interfaces components. A Label 
class plays the Mediator role of the pattern, and a Button class plays the Colleague 
role.  

Figure 1 depicts the class diagram of the OO implementation of the Mediator 
pattern. The interfaces GUIMediator and GUIColleague are defined to realize the 
roles of the Mediator pattern. Specific application classes must implement these 
interfaces based on the role that they need to play. In the example presented, the 
Button class implements the GUIColleague interface. The Label class implements 
the interface GUIMediator in order to manage the actions to be executed when 
buttons are clicked. Figure 1 also illustrates how the OO implementation of the 
Mediator pattern is spread across the code of the application classes. The shadowed 
attributes and methods represent code necessary to implement the Colleague role of 
the Mediator pattern in the application context. 

 

 

setMediator (...)

<<interface>>
GUIColleague
setMediator (...)

<<interface>>
GUIColleague

colleagueChange (...)

<<interface>>
GUIMediator

colleagueChange (...)

<<interface>>
GUIMediator

Button

,,,
colleagueChanged(...)

Label

...

JButton
...

JButton
...

JLabel
...

JLabel

...
clicked(...)
setMediator (...)

Legend:
– colleague-specific member
– method with some 

colleague-specific code  

Fig. 1. The OO design of the mediator pattern  

 

Figure 2 illustrates the source code of the Button class. The necessary elements to 
implement the Colleague role are shadowed. The Button class implements the 
GUIColleague interface (line 2), defines an attribute to reference a mediator (line 3), 
and implements the respective setMediator() method (lines 5–7).  Moreover, the 
clicked() method of the Button class defines the functionality to communicate 
with the mediator (line 20). 

In their study, Hannemann and Kiczales identified the generic part of several 
design patterns and isolated their implementation by defining “abstract reusable 
aspects”. These aspects are reused and extended in order to instantiate the pattern for 
a specific application. In the AspectJ solution of the Mediator pattern, for example, 
 



40 A. Garcia et al. 

the code for implementing the pattern is textually localized in two categories of 
aspects: (i) the MediatorProtocol abstract aspect that encapsulates the common 
part to all potential instantiations of the pattern, and (ii) concrete extensions of the 
abstract aspect that instantiate the pattern for specific contexts. 
 

 
01 public class Button extends JButton  
02   implements GUIColleague { 
03   private GUIMediator mediator; 
04 
05   public void setMediator(GUIMediator mediator) { 
06     this.mediator = mediator; 
07   } 
08 
09   public Button(String name) { 
10     super(name); 
11     this.setActionCommand(name); 
12     this.addActionListener( new ActionListener() { 
13       public void actionPerformed(ActionEvent e) { 
14         clicked(); 
15       } 
16     }); 
17   } 
18 
19   public void clicked() { 
20     mediator.colleagueChanged(this); 
21   } 
22 } 

Fig. 2. The Button class of the OO implementation 

Figure 3 presents the reusable MediatorProtocol abstract aspect. Code related 
to the Colleague role is shadowed. Both roles are realized as protected inner interfaces 
named Mediator and Colleague (line 3 and line 7, respectively). Concrete 
extensions of the MediatorProtocol aspect assign the roles to particular classes. 
Implementation of the mapping from Colleague to Mediator is realized using a weak 
hash map that stores for each colleague its respective mediator (line 9). Changes to 
the Colleague–Mediator mapping can be realized via the public setMediator() 
method (lines 16–18). The MediatorProtocol aspect also defines an abstract 
pointcut named change and an abstract method named notifyMediator(). The 
former specifies points in the execution (joinpoints) of colleague objects where a 
communication with the mediator object needs to be established. The latter defines 
the functionality to be executed by a Mediator object when a change to a Colleague 
occurs. These abstract elements must be concretized by the MediatorProtocol 
subaspects. Finally, the communication protocol between Mediator and Colleague is 
implemented by an after advice (lines 22–24) in terms of the change pointcut and the 
notifyMediator() method.  

As we can see, in the AspectJ implementation of the Mediator pattern, all code 
pertaining to the relationship between Mediators and Colleagues is moved into 
aspects. In this way, code for implementing the pattern is textually localized in 
aspects, instead of being spread across the participant classes. Moreover, the abstract 
aspect code can be reused by all pattern instances. 

 



 Modularizing Design Patterns with Aspects: A Quantitative Study 41 

01 public abstract aspect MediatorProtocol { 
02 
03   protected interface Mediator { } 
04 
05   protected abstract void notifyMediator(Colleague c, Mediator m); 
06 
07   protected interface Colleague { } 
08 
09   private WeakHashMap mappingColleagueToMediator = new WeakHashMap(); 
10 
11   private Mediator getMediator(Colleague c) { 
12     Mediator mediator = (Mediator) mappingColleagueToMediator.get(c); 
13     return mediator; 
14   } 
15 
16   public void setMediator(Colleague c, Mediator m) { 
17     mappingColleagueToMediator.put(c, m); 
18   } 
19 
20   protected abstract pointcut change(Colleague c); 
21 
22   after(Colleague c): change(c) { 
23     notifyMediator(c, getMediator(c)); 
24   } 
25 } 

Fig. 3. The MediatorProtocol aspect 

2.3   The Metrics 

In our study, a suite of metrics for separation of concerns, coupling, cohesion and size 
[29] was selected to evaluate Hannemann and Kiczales’ pattern implementations. 
These metrics have already been used in five different studies [8, 10, 11, 19, 31], 
where the measures have been proved to be effective quality indicators. Most of them 
have been automated in our own measurement tool [7]. This metrics suite was defined 
based on the reuse and refinement of some classical and OO metrics [5, 6]. The 
original definitions of the OO metrics [5] were extended to be applied in a paradigm-
independent way, thereby supporting the generation of comparable results. The 
metrics suite also encompasses new metrics for measuring separation of concerns [10, 
29]. Table 1 presents a brief definition of each metric and associates them with the 
attributes measured by each one.  

The separation of concerns metrics measure the degree to which a single concern in 
the system maps to the design components (classes and aspects), operations (methods 
and advices), and lines of code. The more directly a concern maps to the design and 
code elements, the fewer elements are affected by the concern, and the better 
modularized the system is. The suite is composed of three metrics for separation of 
concerns: (i) concern diffusion over components (CDC), (ii) concern diffusion over 
operations (CDO), and (iii) concern diffusion over lines of code (CDLOC).  

In order to better understand these metrics, consider the OO example of the 
Mediator pattern, shown in Fig. 1 (Sect. 2.2). In that example, there is code relative to 
the Colleague role in the GUIColleague interface and in the shadowed methods  
of the Button class. In other words, the Colleague concern is implemented by  
one interface and one class. Therefore, the value of the CDC metric for this 
 



42 A. Garcia et al. 

concern is two. Similarly, the value of the CDO metric for the Colleague role is three, 
since this concern is implemented by the one method of the GUIColleague interface 
and the two shadowed methods of the Button class. Figure 2 shows the shadowing of 
the Button class in detail. 

The CDLOC metric allows us to measure the number of transition points for each 
concern through the lines of code. A transition point is the place in the code where 
there is a “concern switch”. CDLOC is measured by shadowing lines of code in the 
application classes related to the specific concern that you are interested in 
investigating. After that, it is necessary to count the number of transitions points 
through the source code of every shadowed class. In the example presented in Fig. 2, 
the Button class was shadowed in order to make it possible to measure the value of 
CDLOC for the Colleague concern. The value of CDLOC is four in that case, since 
that is the number of transition points through the source code of the Button class. 

 
Table 1. The metrics suite 

Attributes Metrics Definitions 

Concern diffusion 
over components 

(CDC) 

Counts the number of classes and aspects whose main 
purpose is to contribute to the implementation of a 
concern and the number of other classes and aspects 
that access them 

Concern diffusion 
over operations 

(CDO) 

Counts the number of methods and advices whose 
main purpose is to contribute to the implementation of 
a concern and the number of other methods and 
advices that access them 

Separation of
concerns 

Concern diffusion 
over LOC 
(CDLOC) 

Counts the number of transition points for each 
concern through the lines of code. Transition points 
are points in the code where there is a “concern 
switch” 

Coupling between 
components (CBC) 

Counts the number of other classes and aspects to 
which a class or an aspect is coupled 

Coupling 
Depth inheritance tree 

(DIT) 
Counts how far down in the inheritance hierarchy a 
class or aspect is declared 

Cohesion 
Lack of cohesion in 
operations (LCOO) 

Measures the lack of cohesion of a class or an aspect 
in terms of the amount of method and advice pairs that 
do not access the same instance variable 

Lines of code (LOC) Counts the lines of code 
Number of attributes 

(NOA) 
Counts the number of attributes of each class or aspect 

Size 
Weighted operations 

per component 
(WOC) 

Counts the number of methods and advices of each 
class or aspect and the number of its parameters 

 

Our suite also includes two metrics for assessing coupling from different 
viewpoints: coupling between components (CBC) and depth of inheritance tree (DIT). 
Coupling among system components has long been regarded as a major contributor to 
the system complexity. Coupling is an indication of the strength of interconnections 
between the components in a system. Highly coupled systems have strong 



 Modularizing Design Patterns with Aspects: A Quantitative Study 43 

interconnections, with program units largely dependent on each other. Excessive 
coupling is not desirable, since it is detrimental to modular design. CBC is defined for 
a component (class or aspect) as a tally of the number of other components to which it 
is coupled. DIT is concerned with inheritance coupling. DIT is defined as the 
maximum length from a node to the root of the tree. It counts how far down the 
inheritance hierarchy a class or aspect is declared. DIT is an extension of the 
traditional OO metric [5] with the same name that also considers the inheritance 
between aspects [10, 29]. 

The suite of metrics encompasses one metric for cohesion, called lack of cohesion 
in operations (LCOO). This metric measures the lack of cohesion of a component by 
counting the amount of method/advice pairs that do not access the same instance 
variable [10, 29]. A low LCOO value indicates high closeness on the relationships 
between internal component operations (i.e., high cohesion), which is a desirable 
situation. On the other hand, low-cohesive components suggest an inappropriate 
design, because each of them involves the encapsulation of unrelated module entities, 
which should not be kept together in the same modular unit[3]. 

The software size measures the length of a software system’s design and code [6]. 
Size metrics are concerned with different perspectives of the system size. The metrics 
suite encompasses three size metrics: (i) lines of code (LOC), (ii) number of attributes 
(NOA), and (iii) weighted operations per component (WOC). In general, the higher 
the size, the more complex the system is. LOC counts the lines of code in the system 
implementation, while NOA captures the number of attributes in each aspect or class. 
WOC measures are obtained by counting the number of parameters of the operation. 
The metric treats advice and methods of aspects in the same way that the 
corresponding OO metric [5] treats methods of classes.  

2.4   Assessment Procedures 

Replication of software engineering experiments is one of the main mechanisms to 
enable us to improve our understanding of existing techniques. In our study, we have 
used the same Java and AspectJ implementations of the HK study so that we could 
explicitly correlate our empirical results with the ones from this previous study. The 
AspectJ implementations basically followed the strategies described in [15], where 
abstract reusable aspects (Sect. 2.2) were defined when possible. It was not 
particularly feasible to define a reusable aspect for the patterns Abstract Factory, 
Factory Method, Template Method, Builder, and Bridge; aspects were used to isolate 
the pattern roles while providing support for multiple inheritance, which is not 
supported in Java. The Façade implementations are the same in AspectJ and Java. 

As Hannemann and Kiczales have mostly chosen the default version of the 
patterns, no major decisions needed to be taken in the Java implementations of the 
patterns since the pattern implementations are already explicitly documented in the 
GoF book. This procedure was important to guarantee that the Java versions were 
good enough to enable fair comparisons with the AspectJ counterparts. The only 
major change done in both implementations of the patterns was that abstract classes 
 



44 A. Garcia et al. 

defined in the patterns were replaced with interfaces, as often happens in realistic 
applications. The idea is to allow the business classes to extend application-specific 
abstract classes in addition to the interfaces of the pattern. In few cases, they have 
chosen specific variants of the patterns in the Java implementations, but the design 
differences with respect to the main version of the pattern are also documented in the 
GoF catalogue. In addition, the AspectJ solutions implemented those same variants. 
The implementation of nondefault versions of the patterns only happened in two 
cases: the Singleton pattern (variant exploring specialization of singletons), and the 
Adapter pattern (variant called Object Adapter [9]). Refer to [1, 15] for further details 
about the design pattern implementations, and respective decisions and constraints. 

In order to compare the two implementations of the patterns, we had to ensure that 
both versions of each pattern were implementing the same functionalities. Therefore, 
some minor modifications were realized in the original code [1] of the patterns. 
Examples of such kinds of changes were: (i) to add or remove a functionality – a 
method, a class or an aspect – in the aspect-oriented (or object-oriented) 
implementation of the pattern in order to ensure the equivalence between the two 
versions. We decided to add or remove a functionality to the implementation by 
evaluating its relevance for the pattern implementation. Another kind of change was  
(ii) to ensure that both versions were using the same coding styles. 

Afterwards, we changed both Java and AspectJ implementations of the 23 GoF 
patterns to add new participant classes to play pattern roles. For instance, in the 
Mediator pattern implementation, four classes playing the role of Colleague were 
added, as the Button class in Fig. 1 (Sect. 2.2); furthermore, four classes playing the 
role of Mediator were added, as the Label class in Fig. 1. These changes were 
introduced because the HK implementations encompass few classes per role (in most 
cases only one). Hence we have decided to add more participant classes in order to 
investigate the pattern crosscutting structure and the scalability of both OO and AO 
solutions. Table 2 presents the superimposed roles of each studied pattern and the 
participant classes introduced to each pattern implementation example. Finally, we 
have applied the chosen metrics to the changed code. We analyzed the results after the 
changes, comparing with the results gathered from the original code (i.e., before the 
changes).  

In the measurement process, the data was partially gathered by the CASE tool 
Together 6.0 [34]. It supports some metrics: LOC, NOA, WOC (WMPC2 in 
Together), CBC (CBO in Together), LCOO (LOCOM1 in Together) and DIT (DOIH 
in Together). The data collection of the separation of concerns metrics (CDC, CDO 
and CDLOC) was preceded by the shadowing of every class, interface and aspect in 
both implementations of the patterns. Their code was shadowed according to the role 
of the pattern that they implement. Like the HK study, we treated each pattern role as 
a concern, because the roles are the primary sources of crosscutting structures. 
Figures 2 and 3 exemplify the shadowing of some classes and aspects in both Java 
and AspectJ implementations of the Mediator pattern by considering the Colleague 
role of this pattern. After the shadowing, the data of the separation of concerns 
metrics (CDC, CDO, and CDLOC) was manually collected.  

 



 Modularizing Design Patterns with Aspects: A Quantitative Study 45 

Table 2. The design patterns, their superimposed roles and the respective changes 

Design patterns Superimposed roles Introduced changes 
Abstract Factory – 4 Factories 
Adapter Adaptee 4 Adaptee methods  
Bridge – 2 Abstractions and 2 implementors 
Builder – 4 Builders 
Chain of Responsibility (CoR) Handler 4 Handlers 
Command Commanding, Receiver 4 Commands and 2 invokers 
Composite Composite, Leaf 2 Composites and 2 leafs 
Decorator Component 4 Decorators 
Façade – No change 
Factory Method – 4 Creators 
Flyweight Flyweight 4 Flyweights 
Interpreter – 4 Expressions 
Iterator Aggregate 2 Iterators and 2 aggregates 
Mediator Mediator, Colleague 4 Mediators and 4 colleagues 
Memento Originator 2 Mementos and 2 originators 
Observer Subject, Observer 4 Observers and 4 subjects 
Prototype Prototype 4 Prototypes 
Proxy Proxy 4 Proxies and 2 real subjects 
Singleton Singleton 4 Singletons and 4 subclasses 
State Context 4 States 
Strategy Context 4 Strategies and 4 contexts 
Template Method AbstractClass, ConcreteClass 4 Concrete classes 
Visitor Element 4 Elements and 2 visitors 

 

3   Results: Separation of Concerns 

This section and Sect. 4 present the results of the measurement process. The data have 
been collected based on the set of defined metrics (Sect. 2.3). The goal is to describe 
the results through the application of the metrics before and after the selected changes 
(Sect. 2.4). The presentation of the measurement outcomes is broken into two parts. 
This section focuses on the analysis of to what extent the aspect-oriented (AO) and 
object-oriented (OO) solutions1 provide support for the separation of pattern-related 
concerns. Section 4 presents the results with respect to coupling, cohesion and size. 
The discussion about the interplay among all the results is concentrated in Sect. 5. 
Section 5 also presents other relevant discussions, such as the relationships between 
our study’s results and the conclusions obtained in the HK study.  

Graphics are used to represent the data gathered in the measurement process. The 
resulting graphics present the gathered data before and after the changes applied to 
the pattern implementation (Sect. 2.4). The graphic Y-axis presents the absolute 
values gathered by the metrics. Each pair of bars is attached to a percentage value, 
which represents the difference between the AO and OO results. A positive 
percentage means that the AO implementation was superior, while a negative 
percentage means that the AO implementation was inferior. These graphics support 
 
                                                           
1  From herein, we will use the terms “aspect-oriented solutions” and “object-oriented 

solutions” to refer to, respectively, the Aspect solutions and Java solutions. 



46 A. Garcia et al. 

an analysis of how the introduction of new classes and aspects affect both solutions 
with respect to the selected metrics. The results shown in the graphics were gathered 
according to the pattern point of view; that is, they represent the tally of metric values 
associated with all the classes and aspects for each pattern implementation.  

For separation of concerns, we have verified the separation of each role of the 
patterns on the basis of the three metrics defined for this purpose (Sect. 2.3). For 
example, the isolation of the Mediator and Colleague roles was analyzed in the 
implementations of the Mediator pattern, while the modularization of the Context  
and State roles was investigated in the implementations of the State pattern. 
According the data gathered, the investigated patterns can be classified into 3 groups. 
Group 1 represents the patterns that the aspect-oriented solution provided better 
results (Sect. 3.1). Group 2 represents the patterns in which the OO solutions have 
shown as superior (Sect. 3.2). Group 3 involves the patterns in which the use of 
aspects did not impact the results (Sect. 3.3). 

3.1   Group 1: Increased Separation 

The first group encompasses all the patterns that aspect-oriented implementations 
exhibited better separation of concerns. This group includes the following list of 14 
patterns: Decorator, Adapter, Prototype, Visitor, Proxy, Singleton, Mediator, 
Composite, Observer, Command, Iterator, CoR (Chain of Responsibility), Strategy 
and Memento. This list is decreasingly ordered by the measures for separation of 
concerns, starting from the design pattern that presents the best results for the aspect-
oriented solution, the Decorator pattern.  

Figures 4 and 5 depict the overall results for the AO and OO solutions based on the 
metrics. The figures only present a representative set of the patterns in this group. 
Note that the graphics present the measures before and after the execution of the 
changes. Figure 4a presents the CDC results, i.e., to what extent the pattern roles are 
isolated through the system components in both solutions. Figure 4b presents the 
CDO results, the degree of separation of the pattern roles through the system 
operations. Figure 5 illustrates the CDLOC measures – the tally of concern switches 
(transition points) through the lines of code. 

Most of these graphics show significant differences in favor of the aspect-based 
solutions. These solutions require fewer components and operations than OO 
solutions to express these concerns. In addition, they require fewer switches between 
role concerns, and between role concerns and application concerns. An analysis of 
Figs. 4 and 5 show that the best improvements come primarily from isolating the 
pattern roles into the aspects. For example, the definition of the Component  
role required eight classes, while only two modular units were necessary to 
encapsulate this concern before the changes (Fig. 4a). It is equivalent to 67% in favor 
of the AO design for the Decorator pattern. In fact, most superimposed roles were 
better modularized in the AO solution, such as Mediator (8 against 2), Colleague  
(7 against 3), and Handler (9 against 3). The results were similar when analyzing 
separation of concerns over operations (Fig. 4b) and lines of code (Fig. 5). In 
addition, we can also observe that good results are achieved on the modularization of 
some defining roles, such as Decorator. 

  



 Modularizing Design Patterns with Aspects: A Quantitative Study 47 

0

2

4

6

8

10

12

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r 

of
 C

om
po

ne
nt

s
N

u
m

be
r

o
f 

C
o

m
p

o
ne

n
ts

AO

OO

AO

OO

Decorator
Pattern

Mediator
Pattern

CoR
Pattern

Memento
Pattern

+67%

+80%

+50%

0%

0%

+57%

+40% -20%

+29%

+25%

-33%

Before After Before After Before After Before After Before After Before After Before After

+67%

0%

+67%

        
(a) Concern diffusion over components 

 

0

5

10

15

20

Component Decorator Mediator Colleague Handler Memento Originator

N
u

m
b

er
 o

f 
O

p
er

at
io

n
s

N
u

m
b

er
o

f 
O

p
er

at
io

n
s

AO

OO

AO

OO

Decorator
Pattern

Mediator
Pattern

Memento
Pattern

+75%

+88%

+71%

0%

0%

+67%
-46%

-22%

+6%
+60%

-40%

Before After Before After Before After Before After Before After Before After Before After

+67%
-14%

-29%CoR
Pattern

 
(b) Concern diffusion over operations 

 

Fig. 4. Separation of concerns over components and operations (Group 1) 

 
After a careful analysis of Figs. 4 and 5, we come to the conclusion that after the 

changes most AOP implementations isolated the roles 25% or higher than the OO 
implementations. There are some cases where the difference is even more striking — 
the superiority of AOP exceeds 70%. In some cases, such as the Colleague role, the 
AO solution is even better before the incorporation of new components. This problem 
happens in the OO solution because several operation implementations are 
intermingled with role-specific code. For example, the code associated with the 
control and coordination of the interobject interactions (Mediator pattern – Sect. 2.2) 
is amalgamated with the basic functionality of the application classes. It increases the 
number of transition points and the number of components and operations that deal 
with pattern-specific concerns. 



48 A. Garcia et al. 

The results also show that the overall performance of the AO solutions gradually 
improves as new components are introduced into the system. It means that as more 
components are included into an OO system, more role-related code is replicated 
through the system components. Thus a gradual improvement takes place in the AO 
solutions of the patterns. The series of small introduced changes (Sect. 2.4) affects 
negatively the performance of the OO solution and positively the AO solution. The 
changes lead to the degradation of the OO modularization of the pattern-related 
concerns. This observation provides evidence of the effectiveness of AO abstractions 
for segregating crosscutting structures for the patterns in this group. 

Among the list of 14 patterns mentioned above, the first six are the patterns that 
achieved the best results: Decorator, Adapter, Prototype, Visitor, Proxy and Singleton. 
These patterns have several similar characteristics. They presented superior results for 
the AO solution both before and after the introduced changes. This means that the AO 
implementations of these patterns are superior even in simple pattern instances, i.e., 
circumstances where there are few application classes playing the pattern roles. In 
fact, the role-specific concerns are easier to separate in these patterns because the 
AspectJ constructs directly simplify the implementation of most of these patterns, 
namely Decorator, Adapter, Visitor and Proxy. As a result, the implementation of 
these patterns completely disappears [15], requiring fewer classes and operations to 
address the isolation of the roles. All these six patterns have another common 
characteristic: they either involve no reusable aspect (Decorator and Adapter) or 
involve very simple reusable aspects (Prototype, Visitor, Proxy, Singleton). 

0

5

10

15

20

25

30

35

Component Decorator Mediator Colleague Handler Memento Originator

N
u

m
b

er
 o

f 
Tr

an
si

ti
o

n 
P

oi
n

ts
N

u
m

b
er

o
f 

T
ra

n
si

ti
o

n
P

o
in

ts AO

OO

AO

OO

Mediator
Pattern

Memento
Pattern

+78%

+25%

+85%

+22%

0%

0%

Before After Before After Before After Before After Before After Before After Before After

+67%
0%

+92%CoR
Pattern

+88% Decorator
Pattern

+50%+50% 0%

+75%

50

 

Fig. 5. Concern diffusion over LOC (Group 1) 

The Decorator pattern is the representative of this kind of patterns in Figs. 4 and 5. 
Note that the AO solution for this pattern exhibits meaningful advantages on the 
modularization of both roles from all the perspectives: numbers of components 
(CDC), operations (CDO) and transition points (CDLOC). One additional observation 
is that these numbers remain unaltered as the change scenarios are applied to the AO 
implementation. For example, the absolute number of operations and components for 
specifying the Component role is the same before and after the scenarios in the AO 
design. The changes do not affect the measures. It demonstrates how well the AO 



 Modularizing Design Patterns with Aspects: A Quantitative Study 49 

abstractions localize these pattern roles. In addition, after the scenarios are applied, 
the absolute difference on the measures between AO and OO implementations tends 
to be higher in favor of the AO solutions than before the change scenarios. 

The following five patterns in Group 1 – Mediator, Composite, Observer, 
Command and Iterator – expressed similar results. They manifested improved 
separation of concerns only after the introduced changes. In general, the use of 
aspects led to inferior or equivalent results before the application of the changes, but 
led to substantially superior outcomes after the changes. It happens because the AO 
implementations of these patterns involve generic aspects that are richer; they 
encapsulate more operations and LOC than the simple reusable aspects defined for the 
four patterns mentioned before in this group. In this way, the benefit of improved 
locality is observed in the AO solutions of these patterns only when complex 
instances of the patterns are used. The more pattern code can be captured in a reusable 
aspect, the less has to be duplicated in the participant classes. 

The Mediator pattern represents these five patterns in Figs. 4 and 5. Note that after 
the changes, the isolation of the Mediator and Colleague roles with aspects was 60% 
higher than the OO solution for all the metrics. This is an interesting fact given that in 
these cases the values were equivalent in both OO and AO solutions before the 
implementation of the changes. The definition of the Colleague role required 12 
classes, while only four aspects were able to encapsulate this concern. This result was 
similar in the other four patterns, i.e., absolute number of components (CDC) did not 
vary after the modifications in the AO solutions. This reflects the suitability of aspects 
for the complete separation of the roles associated with the five patterns. When new 
classes are introduced, they do not need to implement pattern-related code.  

Finally, there were three AO solutions in this group (CoR, Strategy, and Memento) 
that, although provided overall improvements in the isolation of the roles, presented 
some negative results in terms of a specific measure. Figures 4 and 5 illustrate two 
examples: CoR and Memento. The AO implementation of CoR has fewer components 
(Fig. 4a) and transition points (Fig. 5) both before and after the changes. However, it 
has more operations involved in the implementation of the pattern role (Fig. 4b). The 
AO solution of Memento isolates well the Memento role for most the metrics (CDC 
and CDO). However, although the implementation of the Originator role with aspects 
led to fewer transition points (Fig. 5), the same observation does not happen to 
number of operations and components (Fig. 4).  

3.2   Group 2: Decreased Separation 

The second group includes design patterns in which AO implementations exhibited 
decreased separation of concerns. This group includes six patterns, namely Template 
Method, Abstract Factory, Factory Method, Bridge, Builder and Flyweight. In fact, 
the AspectJ implementations of the first five are mainly meant to explore AOP as an 
alternative solution to multiple inheritance, replacing abstract classes with interfaces 
and thereby increasing implementation flexibility [15]. Figure 6 depicts the CDC, 
CDO and CDLOC measures of separation of concerns for the pattern implementations 
in this group.  

Although some measures presented similar results for the OO and AO solut- 
ions of these patterns, several measures presented differences in favor of OO 
 



50 A. Garcia et al. 

implementations. As the pattern roles are already nicely realized in OO, these patterns 
could not be given more modularized aspect-oriented implementations. Thus the use 
of aspects does not bring apparent gains to these pattern implementations regarding to 
separation of concerns. On the contrary, the OO implementations, in general, 
provided better results, mainly with respect to the CDC measures (Fig. 6a).  

The main reason for this result is that all the patterns in this group, except the 
Flyweight, are structurally similar: they have an additional aspect to replace the 
 

0

2

4

6

8

10

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
u

m
be

r 
o

f C
om

po
ne

nt
s

Before After

Flyweight
Pattern

-20%

0%

-33%

-33%

N
u

m
b

er
o

f 
C

o
m

p
o

n
en

ts

-11%

-20%

Before After Before After Before After

AO

OO

AO

OO

Template Method
Pattern

0%

-33%

 
      (a) Concern diffusion over components 

 

0

3

6

9

12

15

18

21

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
u

m
be

r 
o

f 
O

p
er

at
io

ns

Before After

Flyweight
Pattern

-50%

N
u

m
b

er
o

f 
O

p
er

at
io

n
s

Before After Before After Before After

AO

OO

AO

OO

Template Method
Pattern 0%

0% 0%

0%
0%

0% -50%

 
   (b) Concern diffusion over operations 

 

0

4

8

12

16

20

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
u

m
b

er
 o

f 
T

ra
n

si
ti

o
n

 P
o

in
ts

Before After

Flyweight
Pattern

-33%

N
u

m
b

er
o

f 
T

ra
n

si
ti

o
n

P
o

in
ts

Before After Before After Before After

AO

OO

AO

OO

Template Method
Pattern

0%

0%

0%

-20%

-33%

0%

-33%

 
   (c) Concern diffusion over LoC 

 

Fig. 6. Separation of concerns (Group 2) 



 Modularizing Design Patterns with Aspects: A Quantitative Study 51 

abstract class mentioned in the GoF solution by interfaces without losing the ability to 
associated (default) implementations to their methods [15]. For example, the 
Template Method pattern has an additional aspect that attaches the template method 
and its implementation to a component that plays the AbstractClass role, thereby 
allowing it to be an interface. Although this kind of aspects makes the patterns more 
flexible, it does not improve the separation of the pattern-specific concerns. 

The Flyweight pattern is an exception in this group. The OO design provided better 
results than the AO design for all the measures. The superiority of the OO solution 
reaches 33% for most of the measures. It happens because the AO solution does not 
help to separate a crosscutting structure relative to the pattern roles. In fact, the 
classes playing the Flyweight role are similar in both implementations. The aspects 
have no pointcuts and advices, and the generic FlyweightProtocol aspect could be 
implemented as a simpler class. As a result, the additional components and operations 
introduced by the AO solution decreases the separation of concerns since the roles 
implementation are scattered over more design elements. 

3.3   Group 3: No Effect 

This group includes three patterns: Façade, Interpreter, and State. Overall, no 
significant difference was detected in favor of a specific solution; the results were 
mostly similar for the AO and OO implementations of these patterns. The AO and OO 
implementations of the Façade pattern are identical. There were some minor 
differences, as in the State pattern, but they were irrelevant (less than 5%).  
The outcomes of this group were highly different from the ones obtained in Group 1 
(Sect. 3.1) because the OO implementations of the patterns do not exhibit significant 
crosscutting structures. The role-related code in these patterns affects a very small 
number of methods. 

4   Results: Coupling, Cohesion and Size 

This section presents the coupling, cohesion and size measures. We used graphics to 
present the data obtained before and after the systematic changes (Sect. 2.4), similarly 
to the previous section. The results represent the tally of metric values associated with 
all the classes and aspects for each pattern implementation, except the DIT metric. 
The DIT results represent the maximum value of this metric through the whole pattern 
implementation. In other words, it represents the higher inheritance depth achieved in 
a given AspectJ or Java implementation. The patterns were classified into five groups 
according to the similarity in their measures. 

4.1   Group 1: Better Results for AO  

The first group includes the Composite, Observer, Adapter, Mediator and Visitor 
patterns, which presented meaningful improvements with respect to the attributes 
coupling, cohesion and size in the AO solution. In some cases, the improvement was 
higher than 50%. Figure 7 shows the graphics with results for the Mediator and 
Visitor patterns, which represent this group.  



52 A. Garcia et al. 

In the AO implementation of the Mediator pattern, the major improvements were 
achieved in the CBC, LCOO, NOA and WOC measures. The use of aspects led to a 
17% reduction of CBC in relation to the OO design. This occurs because the 
Colleague classes are unaware of the Mediator class in the AO design (Sect. 2.2), 
while in the OO implementation each Colleague holds a reference to the Mediator. 
Thus, all the Colleague classes are coupled to the Mediator class. In the same way, the 
AO implementation of the Visitor pattern led to a 32% reduction after the changes. 
The reason is that the Visitor classes are coupled to all the Element classes in the OO 
implementation. These couplings are not necessary in the AO solution. 

 
 
Note that inheritance was not affected by the use of aspects. The OO solution of 

the Mediator pattern used the interface implementation to define the Colleague and 
Mediator participants. The AO solution is based on specialization to define a concrete 
Mediator protocol (Sect. 2.2). As a result, the DIT was two for both solutions. 

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC

Mediator
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

+15%

+17%

0% 0% 0%
0%+80%

+19% -25%

+22%

110

AO
OO

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC

Mediator
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

+15%

+17%

0% 0% 0%
0%+80%

+19% -25%

+22%

110

AO
OO
AO
OO

LOC

Mediator
Pattern

Before After

350

300

250

200

150

100

50

0

0%

-21%

-

LOC

Mediator
Pattern

Before After

350

300

250

200

150

100

50

0

0%

-21%

-

CBC DIT LCOO NOA WOC

Visitor
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

350

300

250

200

150

100

50

0

0% 0%
0%

0%

0%

-6%

+32%

+25%

+93%

+46%
105 ...

CBC DIT LCOO NOA WOC

Visitor
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

350

300

250

200

150

100

50

0

0% 0%
0%

0%

0%

-6%

+32%

+25%

+93%

+46%
105 ... Visitor

Pattern

LOC
Before After

-15%

+23%

Visitor
Pattern

LOC
Before After

-15%

+23%

0

10

20

30

40

50

60

70110

0

10

20

30

40

50

60

70110

Fig. 7. The Mediator and Visitor patterns: coupling, cohesion and size (Group 1) 



 Modularizing Design Patterns with Aspects: A Quantitative Study 53 

The AO solution was superior to the OO solution in terms of cohesion. The 
cohesion in the AO implementation was 80% higher than in the OO implementation 
because the Colleague and Mediator classes in the OO solution implement role-
specific methods, which, in turn, are not related to the main functionality of the 
classes. An example is the setMediator() method, which is part of the Colleague 
role and is responsible for setting the Mediator reference (see Fig. 1). The AO design 
localizes these methods in the aspects that implement the roles, increasing the 
cohesion of both classes and aspects. Likewise, the OO solution of the Visitor pattern 
has a method defined in the Element classes to accept the Visitor objects. This method 
is not related to the main functionality of the Element classes and, therefore, does not 
access any attribute of these classes. In the AO solution, this method is moved to the 
aspect. Consequently, the cohesion of the Element classes in the OO implementation 
is inferior to the classes in the AO solution. 

The number of attributes and weight of operations in the OO implementation of the 
Mediator pattern were, respectively, 19% and 22% higher than in the AO code after 
the introduction of new components. In the OO solution, each Colleague class needs 
both an attribute to hold the reference to its Mediator and a method to set this 
reference. These elements are not required in the Colleague classes of the aspect-
oriented solution, because only the aspect controls the relationship between 
Colleagues and Mediators. A similar benefit was reached in the AO implementation 
of the other patterns in this group.  

The coupling, cohesion and size improvements in the aspect-oriented solutions of 
the patterns in this group are directly related to the achieved separation of concerns 
for them (Sect. 3.1). The enhanced isolation of the pattern implementations directly 
contributed to (i) reduce the number of LOC, operations and attributes; (ii) improve 
the module cohesion by disentangling pattern-related concerns; and (iii) achieve 
reduced coupling (Fig. 7). For instance, as previously explained in this section, the 
coupling, cohesion and size of the Mediator pattern are improved because the pattern 
roles are better isolated in aspects and not spread over several classes. A similar result 
occurs in the other four patterns. For instance, in the Visitor pattern, the AO 
implementation solves the problem of code replication related to the implementation 
of the method that accepts the Visitor classes in every Element class. Hence after the 
changes the OO implementation had 23% more LOCs, and an inferior coupling in 
46%  (Fig. 7). 

4.2   Group 2: Better Results for AO in Most Measures  

This group encompasses the patterns in which AO solutions produced better results in 
most of the measures except in one metric. This group includes the Decorator, Proxy, 
Singleton and State patterns. The measures gathered from implementations of the 
Decorator, Proxy, Singleton were mostly similar. The AO implementation of these 
patterns showed improvements related to all metrics except the CBC metric. On the 
other hand, the AO solution of the State pattern did not show improvements only in 
the number of attributes. Figure 8 presents the results of the Decorator and State 
patterns as representative of this group. 



54 A. Garcia et al. 

 
 

The AO implementations of the Decorator, Singleton and Proxy patterns manifest 
similar benefits to the patterns of Group 1 (Sect. 4.1). That is, the improvement in the 
separation of the pattern-specific code (Sect. 3.1) conducted to improvements in other 
attributes, such as, cohesion and size. However, as shown in Fig. 8 for the Decorator 
pattern, the CBC measures were inferior in the AO implementation: 50% and 79% 
before and after the changes, respectively. This problem occurs in the Decorator 
pattern because one of the Decorator aspects has to declare the precedence among all 
the Decorator aspects. Therefore, it is coupled to all the other aspects. In the Singleton 
pattern, there is an additional aspect per Singleton class. The coupling between the 
aspects and the Singleton classes increased the results of the CBC metric. 

The measures concerning the State pattern provided peculiar results. Despite 
showing no improvements related to the separation of concerns metrics (Sect. 3.3), 
the AO implementation of the State pattern was superior in coupling, cohesion and 
weight of operations (Fig. 8). On the other hand, the OO implementation provided 
better results in two measures: NOA and LOC. The coupling in the OO solution is 
higher than in the AO solution because the classes representing the states are highly 

LOC

Decorator
Pattern

Before AfterBefore After

400

175

150

125

100

75

50

0

+31%

+22%

+

+56%

+53%

25

WOC LOC

Decorator
Pattern

Before AfterBefore After

400

175

150

125

100

75

50

0

+31%

+22%

+

+56%

+53%

25

WOC

0

3

6

9

12

15

18

21

24

CBC DIT NOA

Decorator
Pattern

BBefore AfterBefore AfterBefore After

AO

OO

-50%

-79%

+50%
+67%

0

3

6

9

12

15

18

21

24

CBC DIT NOA

Decorator
Pattern

BBefore AfterBefore AfterBefore After

AO

OO

AO

OO

-50%

-79%

+50%
+67%

CBC DIT NOA

State
Pattern

Before AfterBefore AfterBefore After

400

175

150

125

100

75

50

0

0%

+41%

0% 0%

-33%

-35%

+25

CBC DIT NOA

State
Pattern

Before AfterBefore AfterBefore After

400

175

150

125

100

75

50

0

0%

+41%

0% 0%

-33%

-35%

+25

0

3

6

9

12

15

18

21

24

0

3

6

9

12

15

18

21

24 State
Pattern

LOC
Before After Before After

+22%

-2%

-9%

...

WOC

+33%
367 ... 374

State
Pattern

LOC
Before After Before After

+22%

-2%

-9%

...

WOC

+33%
367 ... 374

AO
OO
AO
OO

Fig. 8. The Decorator and State patterns: coupling and size (Group 2)



 Modularizing Design Patterns with Aspects: A Quantitative Study 55 

coupled to each other. This problem is overcome by the AO solution because the 
aspects modularize the state transitions (Fig. 9), minimizing the coupling between the 
pattern participants. Figure 9 shows that the coupling in the OO solution is 7 because 
each State class needs to have references to the other State classes. 

It is important to highlight that the definition of the State pattern [9] does not 
specify which pattern participant defines the criteria for state transitions. In this way, 
it is possible to isolate the state transitions even in the Java solution by moving them 
from the “state” classes to the “context” class (when the criteria are fixed). However, 
even though it is possible to isolate the transitions in the “context object”, the 
transitions can be, in several cases, more naturally implemented in the state classes 
due to a number of conditions/constraints specific to the state classes. The AspectJ 
solution supports an improved modularization of the state transitions in this second 
case.  

With respect to WOC measures, the OO solution produced more complex 
operations because all the methods on the State classes have an additional parameter 
to receive the Context object in order to implement the state transition. It is not 
required in the AO design because a central aspect is responsible for managing the 
transitions between states. 

From the NOA point of view, the OO design was superior because the AO design 
has additional attributes in the aspects to hold references to the State elements. This 
difference increases as new State elements are added to the system (Fig. 8). In spite of 
the fact that the State classes in the AO implementation have fewer lines of code, the 
OO implementation as a whole provided fewer LOCs. This occurs because the aspect, 
which manages the state transitions, has a high number of LOCs since: (i) it holds 
references to all the State classes, and (ii) it has one additional advice associated with 
methods of State classes. 

 

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

 

Fig. 9. Coupling in the state pattern: OO vs. AO 

4.3   Group 3: Better Results for OO in Most Measures 

This group includes the CoR, Command, Prototype and Strategy patterns. The 
measures gathered from the implementations of these patterns were similar in the 
sense that, in general, the OO implementations provided better or similar results. The 
AO solutions improved the results for only one size metric. The AO implementation 



56 A. Garcia et al. 

of the CoR, Command and Strategy patterns required fewer attributes than the OO 
implementation (NOA metric), while the AO solution of the Prototype pattern 
involved fewer operations (WOC metric). 

The CoR pattern is the representative element of this group. Figure 10 shows the 
results for this pattern. Note that the OO implementation had 75% more attributes 
than the AO implementation after the inclusion of new Handler classes. Nevertheless, 
the AO implementation showed inferior results concerning lines of code and weight 
of operations. Moreover, there was insignificant difference between the two solutions 
in terms of the coupling metrics (CBC and DIT). 

As shown in Sect. 3.1, these patterns benefit from the AO implementation in terms 
of separation of concerns. However, those benefits were not sufficient to improve 
most of the other quality attributes. For instance, the OO implementation of the CoR 
pattern requires the incorporation of an attribute to hold a reference to its successor in 
the Handler class. In the AO implementation, the chain of successors is localized in 
an aspect, removing the successor attribute from the Handler classes. As a 
consequence, the number of attributes was lower in the AO implementation. 
However, the amount of additional operations required in the aspect to handle the 
chain of successors negatively affected the LOC and WOC measures. Furthermore, 
due to the coupling between the aspect and all the Handler classes, the AO solution 
did not provided significant improvements (CBC metric). This phenomenon also 
happened in the other patterns of this group. For instance, in the AO implementation 
of the Prototype pattern, the methods to clone the Prototype classes were localized in 
an aspect and not replicated in all the Prototype classes. However, this design choice 
was only sufficient to reduce the weight of operations (WOC metric). 

 

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO

OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO

OO

AO

OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

 

Fig. 10. The Chain of Responsibility pattern: coupling, cohesion and size (Group 3) 

4.4   Group 4: Better Results for OO 

The fourth group comprises the patterns that the AO implementation provided worse 
results related to coupling, cohesion, and size. This group includes the following list 
 



 Modularizing Design Patterns with Aspects: A Quantitative Study 57 

of eight patterns: Template Method, Abstract Factory, Bridge, Interpreter, Factory 
Method, Builder, Memento and Flyweight. The Template Method and Memento 
patterns represent this group in Fig. 11. 

 

The measures of the Template Method, Abstract Factory, Bridge, Interpreter, 
Factory Method and Builder patterns exhibited minor differences in favor of the OO 
implementation. In fact, we have already mentioned in Sect. 3.2 that these patterns are 
already nicely realized in OO, and thus could not be given more modularized AO 
implementations. The AO implementation of the Template Method, for instance, 
showed higher coupling (33%) and more lines of code (5%) than the OO 
implementation. The other measures produced equal results for both solutions (see 
Fig. 11). This minor difference is due to the additional aspect which associates 
(default) implementation to the methods in the interface that plays the AbstractClass 
role. 

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC

Template Method
Pattern

Before AfterBefore AfterBefore AfterBefore After

-33% -33% 0% 0%
0% 0%

0%

0%

-

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC

Template Method
Pattern

Before AfterBefore AfterBefore AfterBefore After

-33% -33% 0% 0%
0% 0%

0%

0%

-

200

140

120

100

80

60

40

0

20

160

180

LOC

Template
Method
Pattern

Before After B

-
-5%

-2%

200

140

120

100

80

60

40

0

20

160

180

LOC

Template
Method
Pattern

Before After B

-
-5%

-2%

AO
OO
AO
OO

CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

Memento
Pattern

BBefore AfterBefore AfterBefore AfterBefore After

AO

OO

0%

0%-37%

-28%

-50% -50%

-29%

+3%

CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

Memento
Pattern

BBefore AfterBefore AfterBefore AfterBefore After

AO

OO

AO

OO

0%

0%-37%

-28%

-50% -50%

-29%

+3%

Memento
Pattern

LOC

Before After

-35%

-28%

Memento
Pattern

LOC

Before After

-35%

-28%

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

30

35

40

45

50

Fig. 11. The Template Method and Memento patterns: coupling and size (Group 4) 



58 A. Garcia et al. 

The measures of the Flyweight and Memento patterns showed better results for the 
OO implementation. The AO implementation of the Flyweight pattern showed worse 
results mainly with respect to coupling. It is because an aspect is coupled to all 
Flyweight classes in order to introduce the Flyweight interface in them by means of 
the intertype declaration mechanism. The AO implementation of the Memento pattern 
showed the worst results when compared with the other AspectJ pattern 
implementations in this group. Removing the pattern-related code from the Originator 
classes and placing it in an aspect makes the design more complex. This is shown by 
the results of the CBC, DIT, WOC and LOC metric (see Fig. 11). 

4.5   Group 5: No Effect 

This group includes the Iterator and Façade patterns. The measures related to these 
patterns exhibited no significant difference in favor of a specific solution. The AO 
and OO implementations of the Façade pattern are essentially the same. In the AO 
implementation of the Iterator pattern, the method which returns a reverse iterator is 
removed from the Aggregate classes. These methods are localized in an aspect. 
However, the number of methods was not reduced since it was still necessary one 
method per Aggregate class. Therefore, in spite of showing better separation of 
concerns (Sect. 3.1), the AO implementation provided insignificant improvements in 
terms of coupling, cohesion and size. 

5   Discussions 

Empirical studies are the most effective way to supply evidence that may improve our 
understanding about software engineering phenomena [4, 23]. Although quantitative 
studies have some disadvantages [23], they are very useful because they boil a 
complex situation down to simple numbers that are easier to grasp and discuss. They 
supplement qualitative studies with empirical data. Quantitative studies investigating 
the implementation of design patterns as aspects are rare [15]. Most of the claims are 
supported by experience reports of practitioners, but there is a lack of quantitative 
research providing empirical evidence in favor of the claimed benefits. This section 
provides a more general analysis (Sect. 5.1) of the previously observed results in 
Sects. 3 and 4, some analysis of specific design patterns (Sect. 5.2), and discussions 
about the constraints on the validity of our empirical evaluation as well as lessons 
learned (Sect. 5.3).  

5.1   General Analysis 

This section presents an overall analysis of the results observed on the application of 
metrics for separation of concerns, coupling, cohesion and size. The general analysis 
also covers discussions on: the scalability of the pattern implementations (Sect. 5.1.2), 
the effects of the design pattern aspectization on different coupling dimensions  
(Sect. 5.1.4), reusability issues (Sect. 5.1.6), the interplay between these measures and 
a predictive model (Sect. 5.1.7), a comparative summary between this study’s 
findings and the HK study’s claims (Sect. 5.1.8), and the need for multidimensional 
assessments (Sect. 5.1.9).    



 Modularizing Design Patterns with Aspects: A Quantitative Study 59 

5.1.1   Separable and Inseparable Concerns 
Table 3 summarizes the findings on separation of concerns for each design pattern. 
This table complements the graphics presented in Sect. 3, which only shows the 
results for some representative patterns. The first three columns bring the gathered 
data for both AO and OO solutions with respect to all the three measures of separation 
of concerns: concern diffusion over components (CDC), concern diffusion over 
operations (CDO), and concern diffusion over lines of code (CDLOC). Table 3 
focuses on the measures obtained after the changes (Sect. 2.4) introduced to the 
pattern implementations.  

An additional goal of Table 3 is to provide a different perspective on the results 
obtained for separation of concerns. While the graphics in Sect. 3 show the measures 
in terms of each pattern role, Table 3 presents the values associated with the whole 
design pattern, i.e., the value shown in each cell represents the tally of the measures 
for all the roles of a design pattern. For example, consider the Mediator pattern: the 
graphic in Fig. 4a shows that, after the changes, the CDC measure for the Mediator 
role was 6 in the OO version against 2 of the AO version, and for the Colleague role 
was 7 in the OO version against 3 of the AO version. As a result, considering the two 
roles of the pattern, the final result indicates that the AO solution was superior – 5 
against 13 of the OO solution, as illustrated in Table 3. This different perspective 
shows how the Java and AspectJ solutions were effective or not to modularize the 
pattern as a whole. It is worth recalling here that a higher value means that the 
implementation approach was inferior to modularize the pattern roles. 

The last two columns of Table 3 are respectively concerned with the scalability 
criterion and with the indication of which implementation was superior. The 
scalability issue will be discussed in the next section. With respect to the last column, 
we have classified an AspectJ or Java solution as superior when it has achieved better 
results for most the measures when compared with the results of the other solution. 
The AspectJ solutions that achieved the best results, as discussed in Sect. 3.1, are 
marked with the symbol “+”. The AspectJ implementations for these patterns were 
superior both before and after the introduced changes.  

Table 3 shows that AspectJ implementations of 14 patterns have shown better 
results in terms of all the metrics for separation of concerns. In addition, the Java 
implementation of six patterns presented superior separation of roles (Sect. 3.2), and 
three patterns presented similar results in both implementations (Sect. 3.3). This 
observation provides evidence of the superior effectiveness of AO abstractions for 
segregating crosscutting structures relative to design patterns. Indeed, most of these 
results have confirmed the observations in the HK study in terms of the locality 
property.  

However, the HK study also claimed that three additional patterns offered locality 
improvements in the respective AO implementations: Flyweight, State and Template 
Method. Our study’s results somewhat contradict these claims (Table 3). The solution 
of patterns in Group 2 (Sect. 3.2), like Template Method, sounds to be natural in the 
OO fashion, and it does not seem reasonable or even possible to isolate the pattern 
roles into aspects. In fact, the AO solution of the Template Method is not aimed at 
improving the separation of the pattern roles, but increasing the pattern flexibility [15] 
(Sect. 3.2). The AO implementation of the Flyweight pattern is similar to the OO 
implementation with additional aspects that do not assist in the isolation of 



60 A. Garcia et al. 

crosscutting pattern-specific concerns (Sect. 3.2). The separation of concerns in the 
AO version of the State pattern helps to separate state transitions, but the differences 
in the measures are not significant (Sect. 3.3). 
 

Table 3. Overall results for separation of concerns 

 CDC CDO  CDLOC Scalability Superior
Design pattern OO AO OO AO OO AO OO AO solution

Abstract Factory 14 16 35 35 34 34 No No OO
Adapter# 8 7 30 22 32 16 No Yes AO+

Bridge 12 13 24 26 16 16 No No OO
Builder 9 10 29 30 8 8 Yes Yes OO
CoR# 9 3 15 21 50 4 No Yes AO 
Command# 17 11 23 16 38 21 No Yes AO 
Composite# 18 9 149 28 70 48 No No AO 
Decorator# 18 8 31 8 38 6 No Yes AO+

Façade Same implementations for Java and AspectJ 
Factory Method 14 16 23 23 18 18 No No OO
Flyweight# 10 13 10 12 20 26 No No OO
Interpreter 13 13 26 26 38 38 No No =
Iterator# 10 6 20 20 18 14 No No AO 
Mediator# 13 5 18 6 36 10 No Yes AO 
Memento# 11 10 23 24 44 40 No No AO 
Observer# 14 9 49 9 92 20 No Yes AO 
Prototype# 7 3 7 2 30 8 No Yes AO+

Proxy# 11 11 38 19 8 2 No Yes AO+

Singleton# 6 6 6 1 6 2 Yes Yes AO+

State# 10 10 78 78 30 30 No No =
Strategy# 14 12 20 17 18 16 No No AO 
Template Method# 15 16 24 24 20 20 No No OO
Visitor# 20 9 50 23 34 14 No Yes AO+

Success total  6  vs. 12 5  vs. 11 1  vs. 14 2  vs. 11 6 vs. 14 
# The design pattern contains one or two superimposed roles. 
+  AO solutions that achieved the best results.   The  

 
An additional interesting observation in our study is that sometimes the pattern 

roles are expressed separately as aspects, but it remains nontrivial to specify how 
these separate aspects should be composed with the application classes into a simple 
manner. A lot of effort is required to compose the participant classes and the aspects 
that modularize the pattern roles. For example, the AO design of the Memento pattern 
provided better separation of the pattern-related concerns (Sect. 3.1). However, 
although the AO solution isolates the pattern roles in the aspects, it resulted in higher 
complexity in terms of coupling (CBC), inheritance (DIT) and lines of code (LOC), as 
described in Sect. 4.4. The same observation can be made for the Strategy and CoR 
patterns (Sect. 4.3). Hence, there are some cases where the separation of the pattern-
related concerns leads to more complex design solutions. 



 Modularizing Design Patterns with Aspects: A Quantitative Study 61 

The last line of Table 3 also counts how many patterns each solution was superior 
with respect to each metric (3 first cells), and in general terms (last cell). These values 
show that around 50% of the AO solutions have not shown improvements in terms of 
the CDO metric. In these cases, either the OO implementation required fewer 
operations to handle the pattern-related concerns than the AO implementation or they 
were similar. An analogous situation occurred in the CDC measures. The superiority 
of the AO solutions seems to be more compelling in the CDLOC measures: 14 against 
1. The frequency of concern switches in the AspectJ implementations was drastically 
reduced. It means that there is a tendency on several AspectJ implementations to not 
reduce the number of operations implementing a concern. In general, it seems that the 
most recurring benefits come from disentangling the pattern-related concerns and 
other application concerns. 

5.1.2   Scalability 
As explained in Sect. 2.4, we changed both original Java and AspectJ 
implementations of the 23 patterns to investigate the scalability of those solutions to 
more complex instances of the patterns. In the context of this study, scalability is used 
to determine whether the introduction of the changes (described in Table 2) in a given 
implementation did not require modifying more components in that implementation 
than the number of elements introduced. In other words, we considered here a 
solution as scalable if the evolution of the implementation did not impact a number of 
modules that is higher than the number of modules being introduced. 

We have used the CDLOC metric as the main mechanism to assess the scalability 
of the OO and AO versions. For example, Fig. 5 shows that the total number of 
concern switches for the implementation of the Mediator pattern, considering both 
roles before the changes, is 12 in the OO version and 10 in the AO version. After the 
changes, the number of switches remains 10 in the AO solution. However, it grows to 
36 in the OO version, which is higher than the number of introduced changes (8 
changes – i.e., 4 mediators and 4 colleagues). As a result, Table 3 indicates that the 
OO solution is not scalable, while the AO solution is considered scalable. In fact, the 
evolution of the AspectJ version occurred in a modular manner. All the separation of 
concerns measures, not only CDLOC, remained unaltered as the change scenarios 
were applied to the implementation, as illustrated in Figs. 4a, 4b and 5. The changes 
did not affect the measures. We have drawn a similar conclusion for the AO 
implementation of the Decorator pattern in Sect. 3.1; it is also ranked as scalable in 
opposite to the corresponding OO version. 

Table 3 summarizes the scalability results for all the OO and AO solutions. Some 
AO solutions that were classified as superior did not achieve a good scalability. For 
the 14 AspectJ solutions that were considered as superior, 11 implementations were 
also classified as scalable. Only two Java solutions, Builder and Singleton, were 
effectively scalable with respect to the CDLOC measures. Although the AO solutions 
of the Composite, Iterator and Memento presented a better separation of the pattern 
roles than the respective OO solutions, they are not very scalable since they also 
require reasonable efforts to support the separation of the pattern roles. For instance, 
Fig. 5 illustrates this scalability problem for the Memento pattern. The CDLOC 
measures show that a number of extra changes were also required in the AspectJ 
version. A similar problem was detected for the Iterator and Composite. We do not 



62 A. Garcia et al. 

extensively reproduce all the detailed measurements here. The complete description 
of the data gathered is available at [28]. 

5.1.3   Reducing Coupling and Increasing Cohesion 
Table 4 summarizes the conclusions related to coupling and cohesion for each design 
pattern. Like Table 3, it complements the graphics presented in Sect. 4, which shows 
only partial results. The first two columns respectively describe the results with 
respect to intercomponent coupling (CBC) and inheritance-related coupling (DIT) for 
both AO and OO solutions. The third column presents the gathered data for the 
cohesion metric (LCOO). Table 4 also concentrates on the description of the measures 
obtained after the changes.  

Table 4. Overall results for coupling and cohesion 

 CBC DIT  LCOO Superior
Design pattern OO AO OO AO OO AO solution

Abstract Factory 37 44 7 7 1 1 OO
Adapter# 5 5 2 1 – – AO 
Bridge 17 18 2 2 0 0 OO
Builder 2 3 2 2 12 6 OO
CoR# 29 28 2 2 1 13 OO
Command# 21 34 7 7 3 4 OO
Composite# 47 23 2 2 463 82 AO 
Decorator# 3 14 3 1 0 0 AO 
Façade Same implementations for Java and AspectJ 
Factory Method 22 24 2 2 3 0 OO
Flyweight# 11 17 2 2 0 1 OO
Interpreter 17 23 5 5 0 0 OO
Iterator# 12 13 2 2 0 0 =
Mediator# 41 34 2 2 5 1 AO 
Memento# 13 18 1 2 0 0 OO
Observer# 45 40 2 2 80 30 AO 
Prototype# 7 13 2 2 0 0 OO
Proxy# 11 39 2 2 0 0 AO 
Singleton# 11 22 2 2 5 0 AO 
State# 17 10 2 2 106 93 AO 
Strategy# 18 32 2 2 – – OO
Template Method# 2 3 2 2 – – OO
Visitor# 41 28 2 2 27 2 AO 
Success total  15 vs. 6 1 vs. 2 3 vs. 8 12  vs. 9 

  # The design pattern contains one or two superimposed roles.  
 

It is interesting to observe that the intercomponent coupling was weaker in 15 Java 
solutions against 6 AspectJ implementations. The DIT values were similar for both 
versions in most the measures. With respect to the cohesion metric, the AspectJ 
solutions achieved a better score: eight implementations were more cohesive against 



 Modularizing Design Patterns with Aspects: A Quantitative Study 63 

only three Java implementations. As indicated in Table 4, it was not possible to 
measure the cohesion of a few solutions because either there was no attribute defined 
in those implementations or there were modules with a single method. As explained 
in Sect. 2.3, our selected cohesion metric captures the closeness between internal 
methods by checking accesses to the same attributes. Considering all the coupling and 
cohesion measures, only five AspectJ solutions clearly presented weaker coupling and 
stronger cohesion, namely Mediator, Observer, State, Visitor, and Composite. 

Finally, based on Tables 3 and 4 and on the interplay of the results in Sects. 3 
and 4, we can conclude that the use of aspects provided better coupling and 
cohesion results for the patterns with high interaction between the roles in their 
original definition. In fact, the Mediator, Observer, State, Visitor and Composite 
patterns are examples of this kind of pattern. The Mediator pattern, for instance, 
exhibits high inter-role interaction: each Colleague collaborates with the Mediator, 
which in turn collaborates with all the Colleagues. The use of AOP was useful to 
reduce the coupling between the participants in the pattern and to increase their 
cohesion, since the aspect code modularizes the collaboration protocol between the 
pattern roles. Figure 9 illustrates how the aspect was used to reduce the coupling of 
the OO solution of the State pattern. On the other hand, the use of aspects did not 
succeed for improving coupling and cohesion in the patterns whose roles are not 
highly interactive. This is the case for the Prototype and Strategy patterns and the 
patterns in Group 4, presented in Sect. 4.4. 

5.1.4   Inheritance Coupling: A Different Perspective 
Given the results obtained from the DIT measures, which did not show considerable 
differences between AspectJ and Java implementations, we have decided afterwards 
to use another classical metric: Number of Children (NOC) [5]. This measure counts 
the number of modules that extends a module using inheritance. Table 5 presents the 
NOC measures for the OO and AO versions of all the pattern implementations. It also 
compares the DIT values with the NOC values. 

From the NOC point of view, it is clear that the use of AO abstractions 
significantly reduces the use of inheritance as extension mechanism. While AspectJ 
solutions tend to present a stronger intercomponent coupling (Sect. 5.1.3) since they 
heavily rely on pointcuts and advice to support the specification of extensions and 
refinements to the affected modules, the Java implementations tend to present a 
stronger inheritance coupling. This observation motivates the need for further 
empirical case studies that evaluate the trade-offs of using each of these different 
extension mechanisms with respect to distinct quality attributes, such as 
understandability, reusability, maintainability, and reliability. 

5.1.5   Aspects and Size Attributes 
The reduction in the program size in general decreases the likelihood of developers 
introducing errors into the system [25]. Table 6 presents the overall results for size-
related measures in terms of each pattern. Section 4 presented the size results associated 
with coupling and cohesion. Table 6 brings a new view for our assessment because it 
classifies the pattern implementations only in terms of size-related programming efforts. 
The columns respectively present the results with respect to number of attributes 
(NOA), complexity of operations (WOC) and lines of code LOC).  



64 A. Garcia et al. 

Table 5. Results for two inheritance-related measures 

 DIT NOC Superior
Design pattern OO AO OO AO solution

Abstract Factory 7 7 6 6 =
Adapter# 2 1 1 0 AO 
Bridge 2 2 8 8 =
Builder 2 2 6 6 =
CoR# 2 2 7 1 AO 
Command# 7 7 6 1 AO 
Composite# 2 2 6 1 AO 
Decorator# 3 1 8 0 AO 
Façade Same implementations for Java and AspectJ
Factory Method 2 2 6 6 =
Flyweight# 2 2 6 7 OO
Interpreter 5 5 9 9 =
Iterator# 2 2 6 3 AO 
Mediator# 2 2 10 1 AO 
Memento# 1 2 0 3 OO
Observer# 2 2 10 3 AO 
Prototype# 2 2 6 1 AO 
Proxy# 2 2 9 6 AO 
Singleton# 2 2 5 10 OO
State# 2 2 7 7 =
Strategy# 2 2 6 1 AO 
Template Method# 2 2 6 6 =
Visitor# 2 2 10 10 =
Success total  1 vs. 2 3 vs. 11 3  vs. 11 

 # The design pattern contains one or two superimposed roles.  
 
We have found that the use of aspects has a considerable impact on the size 

attributes of the pattern implementations In general, the AO solutions were superior 
with the exception of lines of code. For 7 of the patterns, the AO solutions had fewer 
LOC than the OO solutions, which were superior in 14 cases. However, for these 14 
implementations, the difference was not relevant in several cases. In fact, the 
discrepancy was evident (i.e., more than 10%) only in 1 case: the Memento pattern 
(Table 6). For ten of the patterns, the AspectJ implementations had fewer attributes 
than the Java implementations. Only one OO solution was superior in terms of NOA. 
For 12 of the patterns, the AO implementation reduced the number of operations and 
respective parameters (WOC metric). The OO implementation provided better results 
for seven patterns with respect to the WOC metric.  

The last column of Table 6 indicates which solution was superior for each pattern 
considering all the three size measures. Similarly to Tables 4 and 5, we have 
classified an AspectJ or Java solution as superior when it has achieved better results 
for most the measures when compared with the results of the other solution. We have 
only considered that an implementation was better than the other when the difference 



 Modularizing Design Patterns with Aspects: A Quantitative Study 65 

between two values for the same metric was equal or higher than 10%. The last cell of 
Table 6 shows the final result: the AO solutions succeeded in ten cases against four 
for the OO solutions. 
 

Table 6. Overall results for size measures 

 NOA WOC  LOC Superior
Design pattern OO AO OO AO OO AO solution

Abstract Factory 9 9 37 41 231 265 OO
Adapter# 3 1 34 32 67 61 AO 
Bridge 1 1 40 44 156 161 OO
Builder 7 7 50 51 168 177 =
CoR# 8 2 40 64 213 234 =
Command# 6 4 26 29 198 206 =
Composite# 19 12 169 63 501 283 AO 
Decorator# 1 0 34 16 88 69 AO 
Façade Same implementations for Java and AspectJ 
Factory Method 1 1 17 17 135 146 =
Flyweight# 7 7 30 36 119 132 OO
Interpreter 14 14 99 99 216 219 =
Iterator# 9 9 50 53 164 163 =
Mediator# 21 17 51 40 253 253 AO 
Memento# 6 6 32 31 128 179 OO
Observer# 26 21 134 117 363 265 AO 
Prototype# 6 6 38 33 142 147 AO 
Proxy# 9 3 105 38 248 190 AO 
Singleton# 30 26 25 21 238 251 AO 
State# 13 20 164 110 367 374 =
Strategy# 5 1 62 58 251 264 AO 
Template Method# 0 0 46 46 125 128 =
Visitor# 13 13 105 57 289 222 AO 
Success total  1 vs. 10 7 vs. 12 14 vs. 7 4  vs. 10 

# The design pattern contains one or two superimposed roles.  

5.1.6   Reusability Issues 
The HK study observed reusability improvements in the AspectJ versions of 12 
patterns by enabling a core part of the pattern implementation to be abstracted into 
reusable code (Sect. 2.2). In our study, expressive reusability was observed only in 
four patterns: Mediator, Observer, Composite and Visitor. These patterns were also 
qualified as reusable in the HK study and have several characteristics in common: (i) 
defined as reusable abstract aspects, (ii) improved separation of concerns (Sect. 3.1), 
(iii) low coupling – CBC – and high cohesion – LCOO (Sect. 4.1), and (vi) decreased 
values for the LOC and WOC measures as the changes are applied. Expressive reuse 
is evident when the extension or customization of existing components to include new 
functionalities requires the implementation of few lines of code, operations, attributes, 
classes and the like.   



66 A. Garcia et al. 

However, note that in our investigation the presence of generic abstract aspects has 
not necessarily led to improved reusability in several cases. The Flyweight, 
Command, CoR, Memento, Prototype, Singleton and Strategy patterns have abstract 
aspects and were ranked as “reusable” patterns in the HK study. In contrast, an 
analysis of the results presented in Sects. 3 and 4 leads to contrary conclusions for 
these patterns. In general, reusable elements lead to less programming effort by 
requiring fewer operations and lines of code to be written. However, the LOC and 
WOC measures of the AO implementations of these patterns were higher than in the 
respective OO implementations both before and after the changes. In fact, the abstract 
aspects associated with these patterns are very simple and do not enable a reasonable 
degree of reuse. 

5.1.7   Superimposed Roles as a Predictive Model? 
Determining when an AO technique is useful in a given context is a challenging task. 
The HK study has tried to establish a predictive model for helping the designers to 
decide when AspectJ should be used in design pattern implementations. According to 
this preceding study, the presence of superimposed roles (Sect. 2.1) seems to be a 
determining factor in such a decision-making process. Participant classes have their 
own functionalities outside the pattern scope in addition to the incorporation of 
pattern-related superimposed behavior. The OO version of the pattern implementation 
forces each of these classes to implement at least two concerns: the original 
responsibility and the pattern-specific behavior. The HK study claims that the AspectJ 
solution allows for the improved modularization of the superimposed roles. 

Various flavors of our empirical study can be used to support or refute this claim, 
including the separation of concerns measures (Sect. 3), and the coupling, cohesion, 
and size measures (Sect. 4). In general, the results presented in Table 3 do not accredit 
this predictive model as absolute. In the table, the 17 patterns with superimposed roles 
are marked with “#”. Some patterns that encompass superimposed roles achieved 
improved modularity in AspectJ implementations, namely Adapter, Decorator, Proxy, 
Visitor, Composite, Mediator, Singleton and Observer. Indeed, for seven of them 
(except the Composite and Iterator patterns), the AO solution has scaled up well 
(Table 3). However, seven of them did not reach convincing modularity 
improvements: Templated Method, Command, Flyweight, Memento, Strategy, CoR 
and Prototype. Moreover, the AspectJ version of the State pattern has not exhibited 
improved separation of concerns, when the aspectization of the Iterator pattern has 
presented poor coupling (CBC metric) and more complexity in the operation 
definitions (WOC metric). As a result, there is no evidence that the presence of 
superimposition should be considered as the sole determining factor to use AO 
abstractions to implement design patterns.  

Analyzing simultaneously Tables 3 and 4 and according to the discussions in the 
previous subsections, it clearly seems that other important factors should be 
considered as part of a predictive model. Coupling and cohesion should be also 
considered when deciding for the aspectization of the design patterns since the more 
successful AspectJ implementations were the ones where there was a higher inter-role 
interaction (Sect. 5.1.3). The coordinated analysis of these factors would certainly 
result in a more consistent prediction mechanism according to our findings. 



 Modularizing Design Patterns with Aspects: A Quantitative Study 67 

5.1.8   Comparison with the HK Study 
Through the replication of case studies with similar goals, the AOSD community can 
build an experience factory of empirical findings. In this context, when performing 
systematic case studies it is important to compare the new results with those of 
previous studies so that we can effectively build a body of knowledge about the theme 
under assessment. This information is also important to researchers and practitioners 
who intend to replicate this experiment. This section summarizes the outcomes of our 
study that confirms, contradicts or refines the claims in the HK study [15]. We have 
focused only on three issues where there was a direct intersection in the findings: 

(i) While the HK study has found improved separation of concerns in 17 
AspectJ pattern implementations, our study detected only 14 improvements 
(Sect. 5.1.1). 

(ii) The first study ranked 12 AspectJ solutions as reusable against 4 of this study 
(Sect. 5.1.6). 

(iii) The findings in this study suggest that the original prediction model,  presented 
by the HK study, should be refined to also consider coupling and cohesion 
(Sect. 5.1.7). 

The differences in the two studies are mainly because the HK study has used only 
simple pattern instances, which did not allow a clear understanding of the benefits and 
drawbacks of the aspect-oriented implementations. In addition, the authors took a 
narrow view of reusability, and the definition of the proposed predictive model was 
naturally biased by the role-oriented strategy that they have used to “aspectize” the 
design patterns. 

5.1.9    Need for Multidimensional Analysis 
As discussed in Sect. 5.1.7, it seems imperative to analyze other software attributes 
when assessing AO solutions. The HK study has centered the comparative analysis 
only on separation of concerns, and how the achieved separation helps to improve 
directly associated high-level qualities, such as (un)pluggability and composability. 
Lopes [24] has also carried out a case study that rests only on separation of concerns 
as assessment criteria. However, based on the results of this study (Sects. 3 and 4) and 
the discussion above, it seems clear that the analysis of other software dimensions or 
attributes, such as coupling and internal complexity of operations, are extremely 
important to compare AO and OO designs. In fact, the interaction between the aspects 
and the classes is sometimes so intense that the separation of aspects in the source 
code seems to be a more complex solution with respect to other software attributes. 

5.2   Analysis of Specific Patterns 

The measurements in this study were also important to assess the AO implementation 
of each design pattern in particular. We have found that some problems in the AO 
solutions are not related to the AO paradigm itself, but to some design or 
implementation decisions taken in the HK implementations. In this sense, quantitative 
assessments are also useful to capture opportunities for refactoring in AO software, 
for discarding a specific solution or for just clarifying important limitations of the 
 



68 A. Garcia et al. 

solution. This section presents some examples of how the metrics used in this 
quantitative study were useful to support either the refactoring (Sects. 5.2.1 and 5.2.2) 
or the discarding (Sects. 5.2.3–5.2.6) of some AO solutions of the GoF patterns. 

5.2.1   Prototype 
The use of the selected metrics for separation of concerns was important to detect 
remaining crosscutting concerns relative to the design patterns. For example, the 
original AspectJ implementation of the Prototype pattern left the declaration of the 
Cloneable interface, which is a pattern-specific responsibility, in the description of 
the application-specific classes. This solution was refactored based on the use of an 
intertype declaration in order to improve the separation of concerns, overcoming the 
crosscutting problem present in the original version of the AspectJ implementation 
[15]. 

5.2.2   Chain of Responsibility and Memento 
The coupling measures were also important to detect opportunities for improvements 
in the AO implementations. For example, the implementations of some client classes, 
such as in the CoR and Memento patterns, have explicit references to the aspects 
implementing the pattern roles that increase the system coupling. These references are 
used in the client classes to trigger aspect initializations. This kind of coupling is 
unnecessary and could be avoided. The aspects associated with these patterns could 
incorporate, in addition to the initialization methods in the aspects, the definition of 
simple pointcuts to capture the joinpoints where the initializations should be 
triggered. This finding was also supported by the metrics for separation of concerns.  

5.2.3   Flyweight and Interpreter 
The presence of several negative results can also serve as warnings of unhelpful 
designs. As mentioned before, the AspectJ implementation of the Flyweight pattern 
did not provide evident benefits. All the metrics for separation of concerns (Sect. 3.2) 
and almost all the metrics for coupling, cohesion and size (Sect. 4.4) supported this 
finding.  

In the same way, the metrics did not show advantages for the AO solution of the 
Interpreter pattern. In fact, there is no difference between the AO and OO 
implementations in terms of the structure of this pattern. This claim is supported by 
similar results for all the metrics. There are minor differences in favor of the OO 
version in terms of coupling and size. This difference is caused by the use of an aspect 
to attach methods to the participant classes by means of the intertype declaration 
mechanism. However, this aspect does not change the OO structure of the pattern. It 
is only used to add methods in the participant classes without changing them. 
Therefore, the AO solution is not useful for removing pattern code from the 
participant classes. Actually, in this aspect code there is a comment where 
Hannemann and Kiczales claim that, due the very nature of the Interpreter pattern, 
using aspect to remove the pattern code from the participants does not work  
nicely [15]. 



 Modularizing Design Patterns with Aspects: A Quantitative Study 69 

5.2.4   Strategy 
As stated earlier, for some patterns, the AO solution was more complex than the OO 
solution in terms of coupling and size. This problem occurred for the Strategy pattern 
and was detected with the help of the coupling between components (CBC) and lines 
of code (LOC) metrics. The results of these metrics showed high values for the 
concrete aspect used to assign the roles to the Strategy and Context classes and trigger 
the execution of the strategy algorithm. In order to choose what is the strategy to be 
executed for a given Context class, this aspect uses a sequence of “if” statements and 
references to all Strategy classes. This design is less flexible than the OO design since 
this aspect has to be changed whenever a new Strategy class is created. 

5.2.5   Command 
The problem of the aspect-oriented solution of the Command pattern is similar to the 
problem described for the Strategy pattern (Sect. 5.2.4). The aspects, which 
modularize pattern roles, are highly coupled to the other elements in the design. In the 
case of the Command pattern, a concrete aspect is coupled to all Invoker, Receiver 
and Command classes. As a consequence, adding new participants to an instance of 
the AspectJ version of this pattern requires more effort than to an instance of the Java 
version. This occurs because the aspect needs to be inevitably changed. 

Another deficiency of the AO version of this pattern concerns to the use of 
parameters on the execute() method of the Command classes. In the AspectJ 
implementation, the Invoker classes are not aware of the command execution as they 
are in the OO implementation. Instead, the execution of the commands is triggered by 
the aspects. This design decision does not allow the Invokers to pass information of 
their context to the commands as parameters of the execute() method. Thus, if the 
Command classes need information from the context of the Invokers, this AO solution 
of the Command pattern should not be used. 

5.2.6   Decorator 
The AO implementation of the Decorator pattern showed better results for most 
metrics. However the inferior results obtained for the coupling between components 
(CBC) metric highlight an important limitation of this design. One of the Decorator 
aspects is coupled to all other aspects, since it determines the order in which the 
decorators are applied to the component by means of the declare precedence 
construct. Therefore, this aspect has to be changed whenever a new decorator is 
created. Besides, this design is very rigid in the sense that the decorators must be 
applied in the same order for every component. Hence, if it is necessary to apply 
decorators in different orders, this AO solution should be discarded. 

5.3   Study Constraints and Lessons Learned 

Concerning our experimental assessment, there is one general type of criticism that 
could be applied to the used software metrics (Sect. 2.3). This refers to theoretical 
arguments leveled at the use of conventional size metrics (e.g., LOC), as they are 
applied to traditional (non-AO software) development. Despite, or possibly even 
because of, simplicity of these metrics, it has been subjected to severe criticism [37]. 
In fact, these measures are sometimes difficult to evaluate with respect to a software 



70 A. Garcia et al. 

quality attribute. For example, the LOC measures are difficult to interpret since 
sometimes a high LOC value means improved modularization, but sometimes it 
means code replication.  

However, in spite of the well-known limitations of these metrics, we have learned 
that their application cannot be analyzed in isolation, and they have shown themselves 
to be extremely useful when analyzed in conjunction with the other used metrics. In 
addition, some researchers (such as Henderson-Sellers [16]) have criticized the 
cohesion metric as being without solid theoretical bases and lacking empirical 
validation. However, we understand this issue as a general research problem in terms 
of cohesion metrics. In the future, we intend to use other emerging cohesion metrics 
based on program dynamics. 

We have also learned some lessons when using the separation of concerns metrics. 
We have observed that these three metrics complement each other. CDC and CDO 
respectively measure the number of components and operations that implement a 
concern. However, a concern may be spread through many classes, but may not be 
tangled with other concerns, since these components and operations may only 
implement a single concern. The isolate use of CDC and CDO are not enough to 
capture the noncrosscutting nature of such a concern; even worse, they will likely 
provide false warnings to the AO designers. In this way, CDLOC metric complements 
CDC and CDO metrics by measuring if the concern is tangled with other concerns. 
Therefore, these metrics are complementary since we need to measure both degrees of 
scattering and tangling in order to verify whether a concern is well modularized. In 
addition, CDC and CDO also complement each other because a concern may be 
scattered over few components but may affect many operations in those components. 
This situation was observed in the AO solution for the Chain of Responsibility 
pattern, where Handler role was implemented by few aspects but scattered over many 
operations, indeed, more operations than the OO solution. 

The limited size and complexity of the examples used in the implementations may 
restrict the extrapolation of our results. In addition, our assessment is restricted to the 
specific pattern instances at hand. However, while the results may not be directly 
generalized to the context of real-world systems and professional developers, these 
representative examples allow us to make useful initial assessments of whether the 
use of aspects for the modularization of classical design patterns would be worth 
studying further. In spite of its limitations, the study constitutes an important initial 
empirical work and is complementary to qualitative work (e.g., [15]) previously 
performed. In addition, although the replication is often desirable in experimental 
studies, it is not a major problem in the context of our study due to the nature of our 
investigation. Design patterns are generic solutions and, as a consequence, exhibit 
similar structures across the different kinds of applications where they are used. 

Finally, we have also learned that some problems may be directly related to the 
programming language used in this study. There is a pressing need to perform similar 
studies applying other AO programming languages, such as Hyper/J [18] and Caesar 
[26]. Each of these languages has different features that certainly impact on the 
pattern implementations with respect to the quality software attributes investigated in 
this quantitative study. In fact, other quantitative studies on the aspectization of 
design patterns are needed; for example, it would be important to investigate whether 
and how the AO solutions scale in real large-scale systems. In this sense, it would be 



 Modularizing Design Patterns with Aspects: A Quantitative Study 71 

possible to quantify the effects of modularizing pattern-related crosscutting concerns 
with aspects in systems where the pattern implementations are not simple pattern 
instances and are inserted in richer application contexts. In addition, it would be 
important to explore and assess the use of aspects when combining the use of two or 
more design patterns, as was done in [21] where an OO version of the Builder pattern 
and an AO version of the Decorator pattern were composed. 

6   Related Work 

There is little related work focusing either on the quantitative assessment of AO 
solutions in general, or on the empirical investigation of using aspects to modularize 
crosscutting concerns of classical design patterns. Up to now, most empirical studies 
involving aspects rest on subjective criteria and qualitative investigation. In a 
previous work [30], we have quantitatively analyzed only six patterns. The present 
paper presents a complete study involving all the 23 design patterns. There are some 
other works [13, 14, 17, 27] that investigate the interplay between aspects and design 
patterns. However, they focus on specific patterns and do not provide systematic 
quantitative assessments.  

One of the first case studies was conducted by Kersten and Murphy [21]. They 
built a Web-based learning system using AspectJ. In this study, they discussed the 
effect of aspects on their OO practices and described some rules they employed to 
achieve their goals of modifiability and maintainability using aspects. Since several 
design patterns were used in the design of the system, they considered which of them 
should be expressed as classes and which should be expressed as aspects. They found 
that Builder, Composite, Façade and Strategy patterns [9] were more easily expressed 
as classes, once these patterns had little or no crosscutting behaviors. We have found 
here similar results for the Strategy, Builder and Façade patterns (Sects. 3 and 4). 
However, the AO implementation of the Composite pattern achieved better separation 
of concerns in our study. 

Soares et al. [32] reported their experience using AspectJ to implement distribution 
and persistence aspects in a Web-based information system. They implemented the 
system in Java using specific design patterns and restructured it with AspectJ. They 
argued that the AspectJ implementation of the system bring significant advantages 
with the corresponding pure Java implementation.  

Garcia et al. [11] have presented a quantitative study designed to compare the 
maintenance and reuse support of a pattern-oriented approach and an AO approach 
for a multiagent system. The subjects in the study used both approaches to try to 
modularize agent-related concerns, including autonomy, interaction, mobility, 
learning, adaptation and collaboration. They used an assessment framework that 
includes the same metrics suite used in our study. The results showed that the AO 
approach allowed the construction of the investigated system with improved 
modularization of the crosscutting agent-specific concerns. The use of aspects 
resulted in superior separation of the agent-related concerns, lower coupling (although 
less cohesive) and fewer lines of code. However, their study was also not focused on 
the use of aspects to isolate the crosscutting concerns relative to classical design 
patterns. 



72 A. Garcia et al. 

Zhao and Xu [35, 36] have proposed new cohesion measures that consider the 
peculiarities of the AO abstractions and mechanisms. Their metrics are based on a 
dependence model for AO software that consists of a group of dependence graphs; 
each of them can be used to explicitly represent various dependence relations at 
different levels of an AO program. Also, the cohesion measures [36] proposed by the 
authors are formally defined. The authors have shown that their measures satisfy 
some properties that good measures should have. However, these metrics have not yet 
been validated or applied to the assessment of realistic AO systems.  

7   Conclusion  

This paper presented a quantitative study comparing the AO and OO implementations 
of the GoF patterns. The results have shown that most AO implementations provided 
improved separation of concerns. However, some patterns resulted in higher coupled 
components, more complex operations and more LOCs in the AO solutions. Another 
important conclusion of this study is that separation of concerns cannot be taken as 
the only factor to conclude for the use of aspects. It must be analyzed in conjunction 
with other important factors, including coupling, cohesion and size. Sometimes, the 
separation achieved with aspects can generate more complicated designs. Hence, 
based on our analysis, many AO implementations present implementation alternatives 
with different tradeoffs from their OO equivalents. Also, since this is a first 
exploratory study, to further confirm the findings, other rigorous and controlled 
experiments are needed.  

It is important to notice that from this experience, especially in a nonrigorous 
area such as software engineering, general conclusions cannot be drawn. The scope 
of our experience is indeed limited to (a) the patterns selected for this comparative 
study, (b) the specific implementations from the GoF book [9] and the HK study 
[15], (c) the Java and AspectJ programming languages, and (d) a given subset of 
application scenarios that were taken from our development background. However, 
the goal was to provide some evidence for a more general discussion of what 
benefits and dangers the use of AO abstractions might create, as well as what and 
when features of the AO paradigm might be useful for the modularization of 
classical design patterns. Finally, it should also be noted that properties such as 
reliability must be also examined before one could establish preference 
recommendations of one approach relative to the other. 

Acknowledgments. We would like to thank Jan Hannemann and Gregor Kiczales for 
making the pattern implementations available, and Brian Henderson-Sellers and 
Barbara Kitchenham for the discussions on the selection of the software metrics. This 
work has been partially supported by CNPq-Brazil under grant No. 381724/04-2 for 
Alessandro, grant No. 140214/04-6 for Cláudio and under grant No. 140252/03-7 for 
Uirá. The authors are also supported by the ESSMA Project under grant 552068/02-0. 



 Modularizing Design Patterns with Aspects: A Quantitative Study 73 

References 

[1] Aspect-Oriented Design Pattern Implementations. http://www.cs.ubc.ca/~jan/AODPs/. 
Cited May 2005 

[2] AspectJ Team. The AspectJ Guide. http://eclipse.org/aspectj/ 
[3] Basili V., Briand, L., Melo W. A validation of object-oriented design metrics as quality 

indicators. IEEE Transactions on Software Engineering, 22(10):751–761, 1996 
[4] Basili V., Selby R., Hutchins D. Experimentation in software engineering. IEEE 

Transactions on Software Engineering, SE-12, 733–743, 1986 
[5] Chidamber S., Kemerer C. A metrics suite for OO design. IEEE Transactions on 

Software Engineering, 20(6):476–493, 1994 
[6] Fenton N., Pfleeger S. Software metrics: A rigorous practical approach. PWS, London 

1997 
[7] Figueiredo E., Garcia A., Sant’Anna C., Kulesza U., and Lucena C. Assessing aspect-

oriented artifacts: Towards a tool-supported quantitative method. In: QAOOSE.05: 
Proceedings of the 9th ECOOP Workshop on Quantitative Approaches in OO Software 
Engineering, Glasgow, 2005 

[8] Filho F., Rubira C., and Garcia A. A quantitative study on the aspectization of exception 
handling. In: Proceedings of the ECOOP Workshop on Exception Handling in Object-
Oriented Systems, 2005 

[9] Gamma E. et al. Design patterns: Elements of reusable object-oriented software. 
Addison-Wesley, Reading, 1995 

[10] Garcia A. From objects to agents: An aspect-oriented approach. Doctoral Thesis, PUC-
Rio, Rio de Janeiro, Brazil, 2004 

[11] Garcia A. et al. Separation of concerns in multi-agent systems: An empirical study. In: 
Software Engineering for Multi-Agent Systems II, LNCS vol. 2940, Springer, 2004 

[12] Garcia A., Silva V., Chavez C., Lucena C. Engineering multi-agent systems with aspects 
and patterns. Journal of the Brazilian Computer Society, 8(1):57–72, 2002 

[13] Hachani Q., and Bardou D. On Aspect-oriented technology and object-oriented design 
patterns. In: ECOOP: Workshop on Analysis of Aspect-Oriented Software, Springer, 
Germany, 2003 

[14] Hachani Q., and Bardou D. Using aspect-oriented programming for design patterns 
implementation. In: OOIS: Workshop on Reuse in Object-Oriented Information Systems 
Design, 2002 

[15] Hannemann J., and Kiczales G. Design pattern implementation in java and AspectJ. In: 
OOPSLA’02: Proceedings of the Conference on Object-Oriented Programming, Systems, 
Languages and Applications, pp. 161–173, 2002 

[16] Henderson-Sellers B. Object-oriented metrics: Measures of complexity. Prentice Hall, 
New Jersey, USA, 1996 

[17] Hirschfeld R et al. Design patterns and aspects - Modular designs with seamless run-time 
integration. 3rd German GI Workshop on Aspect-Oriented Software Development, 
German Informatics Association, University of Essen, Germany, 2003 

[18] Hyper/J Web page. http://www.research.ibm.com/ hyperspace/HyperJ/HyperJ.htm, 2001 
[19] Godil I., Jacobsen H. Horizontal decomposition of prevayler. In: Proceedings of 

CASCON 2005, Richmond Hill, Canada, 2005 
[20] Java Reference Documentation. http://java.sun.com/reference/docs/index.html 
[21] Kersten M., and Murphy G. Atlas: A case study in building a web-based learning 

environment using aspect-oriented programming. In: OOPSLA’99: Proceedings of the 
Conference on Object-Oriented Programming, Systems, Languages and Applications, 1999 



74 A. Garcia et al. 

[22] Kiczales G. et al. Aspect-oriented programming. In: ECOOP’97: Proceedings of the 
European Conference on Object-Oriented Programming, LNCS vol. 1241, Springer,  
pp. 220–242, 1997 

[23] Kitchenham B. Evaluating software engineering methods and tools, part 1: The 
evaluation context and evaluation methods. ACM SIGSOFT Software Engineering Notes, 
21(1):11–15, 1996 

[24] Lopes C. D: A language framework for distributed programming. PhD Thesis, 
Northeastern University, Boston, USA, 1997 

[25] Malaiya Y., and Denton J. Module size distribution and defect density. In: ISSRE'00: 
Proceedings of the 11th International Symposium on Software Reliability Engineering, 
2000 

[26] Mezini M., and Ostermann K. Conquering aspects with caesar. In: Proceedings of the 2nd 
International Conference on Aspect-Oriented Software Development, Boston, USA, 2003 

[27] Miles R. AspectJ cookbook. O’Reilly, UK, 2004 
[28] Modularizing Patterns with Aspects: A Quantitative Study. http://www.teccomm.les.inf. 

puc-rio.br/alessandro/GoFpatterns/empiricalresults.htm 
[29] Sant’Anna C. et al. On the reuse and maintenance of aspect-oriented software: An 

assessment framework. In: SBES’03: Proceedings of the Brazilian Symposium on 
Software Engineering, Manaus, Brazil, pp. 19–34, 2003 

[30] Sant’Anna C. et al. Design patterns as aspects: A quantitative assessment. Journal of the 
Brazilian Computer Society (SBES’04 Best Paper Award), 10(2), Porto Alegre, Brazil, 
2004 

[31] Soares S. An aspect-oriented implementation method. Doctoral Thesis, Federal 
University of Pernambuco, Recife, Brazil, 2004 

[32] Soares S., Laureano E., and Borba P. Implementing distribution and persistence aspects 
with AspectJ. In: OOPSLA’02: Proceedings of the Conference on Object-Oriented 
Programming, Systems, Languages and Applications, pp. 174–190, 2002 

[33] Tarr P. et al. N degrees of separation: Multi-dimensional separation of concerns. 
In: ICSE’99: Proceedings of the International Conference on Software Engineering,  
pp. 107–119, 1999 

[34] Together Technologies. http://www.borland.com/together/ 
[35] Zhao J. Towards a metrics suite for aspect-oriented software. Technical-Report 

SE-136-25, Information Processing Society of Japan (IPSJ), 2002 
[36] Zhao J., and Xu B. Measuring aspect cohesion. In: FASE'04: Proceedings Conference on 

Fundamental Approaches to Software Engineering, LNCS vol. 2984, Springer, pp. 54–68, 
2004 

[37] Zuse H. History of software measurement. http://irb.cs.tu-berlin.de/~zuse/metrics/ 
History_00.html 



Directives for Composing Aspect-Oriented Design
Class Models

Y.R. Reddy, S. Ghosh, R.B. France, G. Straw, J.M. Bieman,
N. McEachen, E. Song, and G. Georg

Computer Science Department,
Colorado State University,

Fort Collins, CO 80523, USA
ghosh@cs.colostate.edu

Abstract. An aspect-oriented design model consists of a set of aspect models
and a primary model. Each aspect model describes a feature that crosscuts ele-
ments in the primary model. Aspect and primary models are composed to obtain
an integrated design view. In this paper we describe a composition approach that
utilizes a merging algorithm and composition directives. Composition directives
are used when the default merging algorithm is known or expected to yield incor-
rect models. Our prototype tool supports default class diagram composition.

Keywords: Aspect-oriented modeling, Composition directives, KerMeta, Meta-
model, EMOF, Signature, UML.

1 Introduction

Design features that address dependability concerns (e.g., security and fault tolerance
concerns) may crosscut many elements of a design model. The crosscutting nature of
these features can make understanding, analyzing, and changing them difficult. This
complexity can be better managed through the use of aspect-oriented modeling (AOM)
techniques that support separation and composition of crosscutting features [1].

In the AOM approach that we developed [1], an aspect-oriented design model con-
sists of a primary model and one or more aspect models. An aspect model describes
a feature that crosscuts the primary model. Aspect models are generic descriptions of
crosscutting features that must be instantiated before they can be composed with the
primary model. An integrated view of an aspect-oriented design model is obtained by
composing the instantiated aspect models and the primary model. Instantiated aspect
models and primary models consist of UML [2] models. Composition of the models in-
volves merging UML models of the same types. For example, the class model in an in-
stantiated aspect model is merged with the class model in a primary model. In previous
work, a name-based composition approach was used to merge UML models [1]. Model
elements with the same name are merged to form a single element in the composed
model. The composition approach assumes that elements with the same name represent
consistent views of the same concept. This may not always be the case. For example,
consider an aspect-oriented design consisting of a primary model that describes a class
representing a server that provides unrestricted access to services via operations in the

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 75–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



76 Y.R. Reddy et al.

class, and an instantiated aspect model that describes the same server class with ac-
cess control features. In this case, simple name-based merging of the two classes and
the operations in them could lead to operations that are associated with inconsistent
specifications (a primary model operation and its corresponding aspect model opera-
tion would have the same name but different argument lists and specifications). Often,
a more sophisticated form of composition is needed to produce composed models with
required properties. To meet this need we proposed the use of composition directives to
ensure that the name-based composition approach produces desired results [3].

This paper extends previous work by introducing (1) a more general form of model
element matching that is based on the notion of model element signatures, (2) a com-
position metamodel with behavioral features that specify how UML elements are com-
posed, and (3) new forms of composition directives. In this paper we illustrate how a
signature-based composition approach can be used to compose class models and de-
scribe how composition directives can be used to ensure that the composition approach
produces desired results. We have developed a prototype tool that implements the class
model composition behavior specified in the composition metamodel [4].

The remainder of the paper is organized as follows. Section 2 gives an overview of
signature-based model composition and composition directives. Section 3 describes the
composition metamodel. Section 4 describes the composition directives and provides
illustrations of their use. Related work is discussed in Sect. 5, and Sect. 6 presents
conclusions and plans for future work.

2 An Overview of Signature-Based Model Composition

A primary model in an aspect-oriented design model consists of one or more UML
models, where each model describes a view of the core functionality. The core func-
tionality determines the dominant structure of a design. Aspect models consist of UML
model templates that describe generic forms of crosscutting features as patterns. An
aspect model must be instantiated to produce a model that can be composed with a pri-
mary model. An instantiation of an aspect model, called a context-specific aspect model,
describes the form the feature takes in a part of the design. Instantiating an aspect model
involves binding the aspect model’s template parameters to application-specific values.

A single aspect model may have to be instantiated multiple times for a given ap-
plication. For example, consider the case where a decision has been made to make an
application design fault-tolerant and highly available by replicating critical resources
such as data repositories and service providers. Incorporating the crosscutting replica-
tion feature into the (primary) design model proceeds as follows:

1. An aspect model describing the replication feature for a generic resource is devel-
oped or acquired.

2. The replication aspect model is instantiated multiple times. Each instantiation is
a context-specific aspect model that describes the replication feature for a specific
application resource.

3. The context-specific aspect models are composed with the primary application
model to produce a design in which specified resources are replicated.



Directives for Composing Aspect-Oriented Design Class Models 77

In our previous work we developed a composition approach that used model element
names to identify the elements that are to be merged. Model elements of the the same
syntactic type and with the same name are merged to form a single model element.
Naming conflicts can be avoided if there is a managed namespace from which values
used to bind aspect models and to name primary model elements are obtained. We
refer to such a namespace as the application domain namespace [1]. Unfortunately, a
managed namespace is often not available in design development environments, and
thus naming conflicts may occur.

2.1 Matching Model Elements Using Signatures

Name-based composition is relatively easy to implement, but as a matching criterion,
it can be too permissive in some cases. For example, matching operations using only
their names could lead to merging problems when the operations have incompatible
return types or when the argument lists differ. Similarly, matching attributes using only
their names can lead to merging problems when the types associated with the attributes
are incompatible. One would like to have matching criteria that take into considera-
tion additional properties of the elements being matched. For example, one should be
able to express a matching criterion for attributes that requires matching attributes to
have the same name and type. The need for finer-grained matching criteria led to the
development of the signature-based composition approach described in this paper.

The signature-based composition approach merges information in model elements
with matching signatures to form a single model element in the composed model. A
model element’s signature is defined in terms of its syntactic properties, where a syn-
tactic property of a model element is either an attribute or an association end defined
in the element’s UML metamodel class. For example, isAbstract is a syntactic prop-
erty defined in the metamodel class called Class. If an instance of Class is an abstract
class then isAbstract = true for the class, otherwise the instance is a concrete class (i.e.,
isAbstract = f alse).

The signature of a model element is a collection of values for a subset of syntac-
tic properties defined in the model element’s metamodel class. The set of syntactic
properties used to determine a model element’s signature is called a signature type. For
example, the signature type for an operation can be defined as a set consisting of the fol-
lowing properties defined in the Operation class: name (value is the operation’s name)
and ownedParameter (value is the collection of parameters associated with the opera-
tion). Using this signature type, the signature of an operation update(x : int,y : int) is
the set {update,(x : int,y : int)}. If this signature is used to match operations, two oper-
ations match if and only if they have the same name and parameter list. If the signature
type of an operation consists only of the operation name, then the signature of the op-
eration is {update}. Use of this name-only signature type results in a weaker matching
criterion for operations: two operations match if and only if they have the same name.

A signature type that consists of all syntactic properties associated with a model ele-
ment is called a complete signature type. Complete signature types require that match-
ing model elements have equivalent values for all syntactic properties (i.e., the matching
elements must be syntactically identical). Complete signature types are typically used
for matching contained model elements such as class attributes and operation parame-



78 Y.R. Reddy et al.

Model 2Model 1

name:String
address:String

Customer
Account

updateAcct()

name:String

Customer

(a) (b)

...
...

Composed Model 2 (faulty model)

Account

updateAcct()

name:String

Customer

(d) Merging using a signature consisting of class names, attributes
and operations. Result is a faulty model in which two different

concepts are represented by classes with the same name

name:String
address:String

Customer
...

Composed Model 1

Account

updateAcct()

name:String
address:String

Customer

(c) Merging using a signature consisting only of class names.
Customer classes in Model 1 and Model 2 are merged

...

Fig. 1. An example of model element matching and merging

ters. Composite model elements that contain a variety of model elements (e.g., classes)
tend to have signature types that are not complete.

If two model elements of the same syntactic type1 have the same signature, then
their properties are merged to form a single model element of that syntactic type. As
an example, consider a model, Model 1, containing a concrete class named Customer
with attributes name and, address, (see Fig. 1a) and another model, Model 2, which
contains a concrete class named Customer with an attribute name and a reference to
an Account object (see Fig. 1b). If the signature type used to compose the classes in
Figs. 1a and 1b consists of the class name property and the isAbstract property, then
the two classes match (they have the same name and they are both concrete), and their
contents are merged to form a single class. The issue of merging syntactic properties
that are not part of a model element’s signature type arises in this case. The matching
classes in this example have different attribute, operation, and association end sets.
Merging the constituent model elements involves matching them using signature types
defined for the elements. The constituent elements that are matched are merged in the
composed model. Those elements that are not matched are included in the composed
model.

The composed model shown in Fig. 1c is obtained by using complete signature types
for attributes, operations, and association ends:

1 The syntactic type of a model element is the class of the model element in the UML meta-
model.



Directives for Composing Aspect-Oriented Design Class Models 79

– The attribute name : String in Model 1 and Model 2 match and is included once in
the composed model.

– The attribute address : String in Model 1 does not appear in Model 2 and thus is
not matched. It appears in the composed model.

– The operation updateAcct() in Model 2 does not appear in Model 1 and thus is not
matched. It appears in the composed model.

– The association and the class Account in Model 2 do not appear in Model 1 and
thus are not matched. They are included in the composed model.

The use of particular signature types can lead to models that are not syntactically
well-formed in some cases. For example, consider the case in which the signature type
for class is defined as consisting of the following properties: Name, isAbstract, and
ownedAttribute. Two classes match using this signature type if and only if they have
the same name, are both abstract or are both concrete, and they have the same set of
attributes and association ends. If this signature type is used to compose the class mod-
els shown in Fig. 1a and Fig. 1b, then the result is shown in Fig. 1d. The model is not
well-formed because there are two classes with the same name in the same namespace.

To resolve the above problem one must understand the intent behind the signature
type. If it is determined by the modeler that the signature type correctly reflects the
syntactic form of classes that represent the same concept, then the problem is resolved
by renaming either the Customer class in Model 1 or the Customer class in Model 2.
As will be described later in this paper, this can be accomplished by using a rename
composition directive. On the other hand, if the modeler determines that the classes
actually represent similar classes then the signature type must be changed so that the
classes are matched.

2.2 Identifying and Using Composition Directives

The composition approach that we have developed utilizes a signature-based merging
algorithm and composition directives. In some cases, sole use of the algorithm will
produce models with undesirable properties. This is the case when the views described
by the models contain inconsistent information. In some cases, the problems can be
resolved by syntactically tweaking the models that are involved in the composition or
by overriding some of the composition rules. Composition directives can be used for
these purposes.

Figure 2 shows activities related to identifying and using composition directives. The
activity diagram shows the relationship among three activities: the composition activity
(Compose aspect and Primary models), the model analysis activity (Analyze Composed
model), and the directives identification activity (Identify Composition Directives). The
composition activity, Compose aspect and Primary models, takes in three inputs: a pri-
mary model, a nonempty set of context-specific aspect models, and a (possibly empty)
set of composition directives. In this activity, the aspect and primary models are com-
posed using the algorithm and composition directives to produce a Composed model.
The matching and merging procedure is capable of detecting conflicting syntactic prop-
erty values associated with matching model elements. For example, if two matching
classes have different values for the isAbstract property, a conflict is flagged.



80 Y.R. Reddy et al.

Analyze
Composed model

Properties

to Verify

Primary model

[Problems identified

[No problems 
identified]

during composition]

[Problems identified]

[No problems 

identified]

Context−specific

aspect models

Composed model

Composition Directives

Identify ApplicableCompose
Aspect and

Primary models

Composition

directives

Fig. 2. Using composition directives to resolve composition problems

After composition, the composed model can be formally analyzed against desired
properties (referred to as Properties to Verify in Fig. 2) to uncover design errors. For
example, one can analyze the models against well-formedness rules to identify badly
formed models, or one can analyze the models against desired semantic properties (e.g.,
“only the owner of a file can delete the file”). In related work, we developed a technique
for uncovering semantic problems during composition [5]. In the approach, the seman-
tic property to be verified is used in the composition process to generate proof obliga-
tions. Establishing that a composed model has the stated semantic properties requires
discharging the proof obligations.

In some cases, the uncovered problems can be resolved using composition directives.
In these cases an appropriate set of directives are identified and used to compose the
context-specific aspect and primary models. In other cases, more substantial changes
may be required. For example, it may be determined that another variant of the aspect
model is needed or that the primary model has to be significantly refactored.

This paper focuses on the Compose Aspect and Primary models activity shown in
Fig. 2. Activities related to analysis of models to uncover problems and the identifica-
tion of composition directives is not within the scope of this paper.

2.3 Examples of Applying Composition Directives

Composition directives can be classified as Model Directives and Element Directives.
Model directives are used to determine the order in which multiple aspect models are
composed with a primary model. Element directives are used to determine how an as-
pect model is composed with a primary model. Element directives can be classified in
terms of when they are applied in the composition process:



Directives for Composing Aspect-Oriented Design Class Models 81

– Premerge directives: These directives are used to carry out simple modifications of
the models before they are merged. For example, one can rename model elements,
delete model elements, or replace model elements (delete and add model elements)
in the primary or context-specific aspect models.

– Merge directives: These directives are used to override rules for merging model ele-
ments. For example, one can specify that a model element in one model completely
replaces an element in another model.

– Postmerge directives: These directives are used to carry out simple modifications on
the model produced after merging possibly modified primary and context-specific
aspect models. The directives for renaming, adding, deleting, and replacing model
elements also fall into this category.

In the remainder of this section we provide examples of composition problems that
can be resolved using composition directives. It is important to note that the compo-
sition approach discussed in the following sections does not provide systematic tech-
niques for analyzing composed models nor for identifying appropriate composition di-
rectives once problems are uncovered. As stated earlier, the merging algorithm will flag
cases where conflicting syntactic properties exist for model elements that are merged.
It does not, however, detect semantic conflicts that can arise as a result of inconsis-
tent specifications of behavior or other semantic properties. Uncovering such semantic
properties requires formal semantic analysis of the composed model.

Figure 3 shows a simple example of a composition that leads to a faulty composed
class model. In the example, a modeler creates a primary model (see Fig. 3a) in which
an output producer (an instance of Writer) sends outputs directly to the output device
to which it is linked (instance of FileStream). The modeler then decides to incorporate
a buffering feature into the model by instantiating a buffering aspect model. Figure 3b
shows the class diagram template that is part of the buffering aspect model. The as-
pect model describes how entities that produce outputs (represented by instantiations
of BufferWriter) are decoupled from output devices through the use of buffers. Tem-
plate parameters are preceded by the symbol “|”. The operation templates |write() in
|Buffer and |BufferWriter are associated with template forms of operation specifi-
cations [1].

To incorporate the buffering feature into the primary model, the modeler must first
instantiate the aspect model to produce a context-specific model. Instantiating the
buffering class diagram template produces a class diagram that describes how buffering
is to be accomplished in the context of the primary model. The class diagram shown
in Fig. 3c is obtained from the buffering class diagram template using bindings that
include the following:

(|Buffer<-WriterBuffer), (|Output<-FileStream), (|BufferWriter<-Writer),
(|BufferWriter::|write()<-writeLine()), (|Buffer::|write()<-writeBuff()),
(|Output::|write()<-addToStream())

The result of composing the class diagram shown in Fig. 3c with the primary model
class diagram shown in Fig. 3a is presented in Fig. 3d. Composition is carried out by
matching model elements using signatures consisting only of model element names.
If the matching model elements are associated with invariants, the invariant associated



82 Y.R. Reddy et al.

writeBuff()

WriterBuffer

addToStream()

FileStream

writeLine()

Writer

pre: true
post: wbuffer^writeBuff(?)
post: fstream^addToStream(?)

wbuffer

bfstream

pre: ...
post:
bfstream^addToStream(?)

fstream

(d) Composed Model

writeBuff()

<<Buffer>>
WriterBuffer

addToStream()

<<Output>>
FileStream

writeLine()

<<BufferWriter>>
Writer

pre: true
post:
wbuffer^writeBuff(?)

wbuffer

bfstream

pre: ...
post:
bfstream^addToStream(?)

(c) Context-Specific
Aspect Model

|write()

<<Class Template>>
|Buffer

|write()

<<Class Template>>
|Output

|write()

<<Class Template>>
|BufferWriter

pre: true
post:
|buffer^|write(?)

|buffer

|output

pre: ...
post:
|output^|write(?)

(b) Buffering Aspect Model

writeLine()

Writer

addToStream()

FileStream

fstream

pre: true
post:
fstream^addToStream(?)

(a) Primary Model

Fig. 3. An example of a faulty composition

with the merged element in the composed model is the conjunction of the invariants in
the matched elements. Operation specifications, expressed as OCL pre- and postcon-
ditions, can also be merged for matching operations. The precondition of the merged
operation in the composed model is the disjunction of the preconditions associated with
the matching operations, and the postcondition of the merged operation is the conjunc-
tion of their postconditions.

The merging of the writeLine() operations in the primary and context-specific as-
pect models produces an operation that calls the buffer’s write operation writeBuff()
and the filestream’s write operation addToStream(). This is not the desired result: The
intent is to completely decouple Writer from FileStream using WriteBuffer. To
resolve this problem, the following composition directives can be used:

– a premerge composition directive that removes the association between Writer and
FileStream in the primary model

– a premerge composition directive that removes the operation specification associ-
ated with the writeLine() operation in the primary model

Once the above premerge directives are applied, the composition algorithm is used to
compose the modified primary model with the context-specific aspect model.



Directives for Composing Aspect-Oriented Design Class Models 83

Repository
User

Repository
User

addUser(u:User,mID:MgrID)

doAddUser(u:User)

Repository Manager

Operation names match but specified properties conflict. 

addUser in Primary model are not the same

The properties of addUser in Context−specific aspect model and

Primary modelContext−specific aspect model

... ...

Repository Manager

addUser(u:User)

Fig. 4. Example of a property conflict

As another example, consider the partial context-specific and primary class models
shown in Fig. 4. The addUser() operation in the primary model adds a user (instance
of User) to a collection of users (instance of a class User Repository). The addUser()
operation in the context-specific aspect model calls the doAddUser operation only when
the client calling the operation is authorized to add a user. The doAddUser() operation
adds a user to the collection. Using signatures that consist only of model element names,
the two Repository Manager classes match and thus their properties are merged. During
the merge of these two classes, the addUser() operations are matched and their speci-
fications (not shown) are merged. The resulting addUser() operation specification will
have a semantic conflict: The specification from the primary model allows uncondi-
tional adding of users, but the specification from the context-specific model will allow
adding of users only if the operation is authorized for the client. This is an example of
a semantic property conflict: A semantic property conflict occurs when two matching
elements (elements with the same signature) are associated with conflicting semantic
properties. In this example, the intent is to merge the doAddUser() operation in the
context-specific aspect model with the addUser() operation in the primary model. To
resolve this conflict and reflect the intent, a premerge composition directive that re-
names the addUser() operation in the primary model to doAddUser() can be used.
After this renaming, signature-based composition will produce a composed model with
the required properties.

Renaming directives can also be used to resolve syntactic naming conflicts. A syntactic
naming conflict occurs when two or more model elements representing different concepts
have the same name. This class of conflicts can be avoided by instantiating the generic
aspect model such that the names do not match or by using a premerge rename directive.

In some cases, postmerge directives are needed to add or delete elements in the model
produced by merging primary and context-specific aspect models to produce a model
that has required properties. For example, associations may be added between a class
introduced by the primary model and another class introduced by a context-specific
aspect model to provide required access to behaviors defined in the classes, or they may
be removed to prevent access that is to be prohibited in the composed model.



84 Y.R. Reddy et al.

With the ability to rename, add, and remove elements comes the risk of another type
of conflict: the nonexistent-reference conflict. A nonexistent-reference conflict arises
when a reference in one of the models refers to an element that no longer exists, or exists
under a different name. To resolve this conflict, the affected references in a model must
be identified and updated. Composition directives that identify and update specified
references are needed.

In an aspect-oriented model that contains multiple aspect models, different compo-
sition orderings may produce different composed models [6]. A particular ordering can
lead to undesirable emergent behaviors. For example, consider an auditing feature and
a password feature that are to be composed with a primary model. If the password fea-
ture is composed with the primary model before the auditing feature, then the end result
could be a model in which the auditing feature captures and stores passwords. This may
be an undesirable emergent behavior. Composition directives that can be used to specify
the order used to compose multiple aspects with a primary model are needed.

Defining composition ordering raises another type of conflict. A cyclic-ordering con-
flict occurs when there is a cycle among ordering relationships defined over multiple
aspects. Analysis can detect and correct ordering conflicts.

The above discussion indicates that the following list of actions should be captured
by composition directives:

– creating new elements
– adding elements to a Namespace
– deleting elements from a Namespace
– changing property values of elements
– finding and changing references to specified model elements
– specifying override relationships between matching elements
– changing default composition rules
– specifying ordering relationships among multiple aspects

The above list of actions reflects our current experience and may be incomplete.

3 The Composition Metamodel

Our composition metamodel uses static and behavioral features needed to support
model composition. In this paper, we describe the behavioral properties in terms of
class operations and narrative descriptions of the operations. Alternatively, sequence
and activity diagrams can be used to describe the interactions and activities that take
place during composition.

The core part of the metamodel has been implemented using KerMeta, an open
source metamodeling language developed by the Triskell team at IRISA [7]. KerMeta
extends the Essential Meta-Object Facility (EMOF) 2.0 [8] with an action language
that allows one to describe the behavior of operations associated with classes in a meta-
model. KerMeta was used primarily because it is compatible with the Eclipse Modeling
Framework (EMF), which allows us to use Eclipse tools to edit, store, and visualize
models manipulated in our AOM approach. A more detailed description of the language
is presented in [9].



Directives for Composing Aspect-Oriented Design Class Models 85

EMOF 2.0 is a subset of the Meta-Object Facility (MOF) that can be used to describe
metamodels using object-oriented concepts. It utilizes concepts from UML 2.0, and
thus allows one to use UML tools to build metamodels. EMOF defines a class called
Object from which all other EMOF classes inherit properties. This class contains the
following operations that will be used in the composition metamodel described later in
this section:

– The getMetaClass() operation returns the class of an object.
– The container() operation returns the containing parent object.
– The equals(element) operation determines if the element is equal to this instance.
– The set(property,element) operation sets the value of the property to the element.
– The get(property) operation returns a list of values or a single value depending on

the multiplicity.

The isComposite attribute defined in the EMOF class Property returns true if the
object is contained in the parent object. Cyclic containment is not possible, i.e., an
object can be contained in only one other object. The getAllProperties() operation in
the EMOF class called Class returns all the properties (including inherited properties)
associated with a Class object.

Figure 5 shows the core part of the composition metamodel. The metamodel contains
elements from the UML metamodel [2], but it differs from the UML metamodel in that
it includes operations that specify composition behavior.

The core concepts shown in Fig. 5 are described below:

– Element: Instances of this class are model elements. Element is an extension of the
UML metaclass, Element. It is extended by the operation getMatchingElements
(e : Set(Element)). Operations associated with the EMOF Ob ject class are also
available in the Element class.

• Element::getMatchingElements(): This operation takes in a set of elements
and returns a set of elements that have the same syntactic type and signature
as the element that invokes it. The syntactic type check is performed by in-
voking the getMetaClass() and the getAllProperties() operations defined in
the EMOF Ob ject class. The signature is obtained using the getSignature()
operation.

– Mergeable: This is an abstract class that characterizes model elements that can
be merged. Examples of mergeable elements shown in the figure are instances of
Classi f iers, Operations, and Models.

• Mergeable::merge(): This operation merges the element with the mergeable
element passed in as an operation argument. The merge method returns a new
element that is the merge of the element m and the element on which the merge
is called.

• Mergeable::sigEquals(): This operation determines whether the element’s sig-
nature is equal to the signature of another element.

• Mergeable::getSignature(): This operation gets the signature of the element.

– Signature: Instances of this class are representations of signatures. Every merge-
able element is associated with exactly one instance of this class.



86 Y.R. Reddy et al.

merge(m:Mergeable)
sigEquals(m: Mergeable)
getSignature()

Mergeable

Signature

getMatchingElements(e:Set(Element))

Element

1 *

sigEquals(m: Mergeable)

Operation

sigEquals(m: Mergeable)

Classifier

sigEquals(m: Mergeable)

Model
...

...

ElementDirective ModelDirective

execute()

CompositionDirective

PrimaryModel AspectModel

*

*

ComposedModel

execute()

RenameDirective

main()

Composer

1 *

1

1

Fig. 5. Core elements of composition metamodel

The KerMeta implementation of the core parts of the composition metamodel (i.e.,
the metamodel obtained by excluding the CompositionDirective hierarchy) treats the
model elements and instances of the other classes in the metamodel as objects (i.e.,
instances of the EMOF Object class). The implementation is thus written independently
of model element types, and it uses reflection to obtain type information. The operations
in the composition metamodel (including those defined in EMOF) were implemented
using the KerMeta action language.

The model elements are merged only when they have the same syntactic type and
the same signature. The sigEquals() operation is used to determine whether signatures
of model elements are the same (see Appendix). Each model element type defines its
own procedure for checking equality of signatures, that is, specializations of Mergeable
can override the inherited sigEquals().

Merging of two matching model elements, e1 and e2, in the absence of composition
directives proceeds as follows:

– Primitive property rule: A primitive property is a model element property
that must be associated with exactly one value. The isAbstract property of classes
is an example of a primitive property. The primitive properties of matching el-
ements must have the same values. If they have different values then a conflict



Directives for Composing Aspect-Oriented Design Class Models 87

is indicated for each conflicting value. For example, if e1 and e2 are matching
classes with different values for the isAbstract property then a conflict is
indicated.

– Composite property rule: This rule applies to model element properties that are
associated with values that are collections of model elements. The ownedAttribute
property of a class is an example of this kind of property. This rule has a base case
part and a recursive part. The recursive part essentially applies the merge recur-
sively to merge the constituent parts of the property that match across the encom-
passing two model elements. The base case part determines the stopping condition
for the recursion. In what follows, the composite property is referred to as p, e1.p
refers to the collection of values associated with p in e1, and e2.p refers to the
collection of values associated with p in e2.
• Recursive part: For each constituent element in e1.p a search is made for a

matching element in e2.p (based on the signature type associated with the con-
stituent element type). If a match is not found then the element is included
in merged form of e1 and e2. If a match is found the two matching con-
stituent elements are merged and included in the merged form of e1
and e2.

• Base Case part: If two constituent matching elements, c1 and c2, are compos-
ites that consist of only one model element, q, then the following occurs. If the
signatures of c1.q and c2.q match then c1.q is merged with c2.q. If the signa-
tures do not match, then a conflict is indicated. For example, if two attributes
are matched using only their names, then a conflict is indicated if their types
do not match.

The composition of two models (instances of Model) is started by calling the
merge() operation in one of the models, using the other as an argument. The main()
method of the Composer class invokes the initial merge. Since a Model is not a prim-
itive type, its merge() operation will result in the merging of the matching parts of the
model. The algorithm for merging elements is given in the Appendix.

Two types of composition directives are described in the composition metamodel.
Element directives (instances of ElementDirective) are composition directives that ap-
ply to a group of elements in a single model. These directives can be used to add new
elements, delete existing elements, rename elements, override elements, and replace
references in a model. Model directives (instances of ModelDirective) are composition
directives that are associated with a group of models. An example of a model directive
is a composition directive that specifies the order in which aspects are composed with a
primary model.

Each composition directive is associated with a behavior that implements the action
associated with the directive. These behaviors are invoked by the merge() operations of
elements before the merges of constituent properties are attempted.

The KerMeta implementation of the composition metamodel currently does not sup-
port the use of composition directives. We are now developing such support. The pre-
and postmerge directives can be viewed as transformations on models and this is how
they will be implemented in KerMeta (KerMeta was originally designed to support
specification of model transformations).



88 Y.R. Reddy et al.

4 Composition Directives

In this section we describe the composition directives that we have identified through
application of the composition approach on small case studies (e.g., see [10, 11, 12]).
The directives can be used to modify aspect and primary models, add new elements to
composed models, or to override default composition rules in order to produce desired
composed models. The directives that modify models can be viewed as transformations
on the models. Directives that affect only aspect and primary models are applied to the
models before their elements are merged. Those that add elements to composed models
and those that override composition rules are applied during merging.

Each directive (except for the directives that override composition rules) is described
using the following format:

– Directive Name: This section states the name of the directive or the form of names
for a family of directives.

– Application: This section describes the purpose of the directives and describes the
entities that the directives operate on.

– Form: This section describes the syntactic form of the directives.
– Constraint: This section gives the conditions that must hold if the directives are to

have the intended effect. The constraint in this section is referred to as the directive
precondition.

– Effect: This section describes the effect of the directives on their targets. The spec-
ification of effect is called the directive postcondition.

As indicated in the composition metamodel described in the previous section, there
are two types of composition directives: element directives and model directives. The
following sections describe the directives in each of these categories and give examples
of their application.

4.1 Element Directives

We have identified the following element directives thus far:

– creating new model elements (a family of directives)
– adding model elements to a namespace
– removing model elements from a namespace
– changing properties (a family of directives)
– replacing references to a model element in a namespace
– overriding model elements
– overriding composition rules (a family of directives)

When an element is created by a create directive, a handle that can be used to refer-
ence the element is provided. These handles can be used in composition directives that
are applied after the creation of the model elements. The names that appear on model
elements in aspect and primary models serve as references to the model elements in
directives. For example, an association name or a role name can refer refer to an asso-
ciation in a directive.



Directives for Composing Aspect-Oriented Design Class Models 89

Creating new model elements. The following describes the family of create directives.

Directive Name: create<metamodel class name>
The following are examples of names for create directives: createAssociation, cre-
ateClass, where Association and Class are the names of concrete classes in the UML
metamodel.

Application: The create directives are used to create new model elements (i.e., model
elements that are not in the primary or aspect models being composed). In the com-
position metamodel, each concrete Element class is associated with a constructor. The
create directives use these constructors to create model elements to ensure that the cre-
ated elements are syntactically well-formed. The new element is not a member of any
namespace when it is created.

A create directive has set of operands that determines the arguments passed to the
constructors of the model elements. The operands are a set of (property name = property
value) pairs, where the property name is the name of a model element property.

Form: newHandle = create<Element> {operands}
The following is an example of a create directive that creates a concrete class with a

name “NewClass”.

newClass = createClass {name = "NewClass", isAbstract = false}
The following create directives are used to create a strong aggregation relation bet-

ween two existing classes: primary::UserMgmt, and aspect::UserAuth.

userAuthEnd = createProperty { isComposite = false, aggregation = none,

type = aspect::UserAuth, opposite = userMgmtEnd, lower = 1, upper = 1 }
userMgmtEnd = createProperty { isComposite = true, aggregation = composite,

type = primary::UserMgmt, opposite = userAuthEnd, lower = 1, upper = -1 }
userAuth-userMgmt = createAssociation { name = "UserAuth-UserMgmt" ,

isDerived = false, memberEnd = [userAuthEnd,userMgmtEnd] }

The operands of the above directives indicate that the two association ends
(property) userAuthEnd and userMgmtEnd must be created before the association
userAuth-userMgmt is created. We assign the value of “-1” to upper (representing
the upper limit of a multiplicity), where “-1” represents the multiplicity “*”. The “[..]”
notation is used to denote a collection of association ends in the createAssociation
directive.

Constraint: There are no constraints for these directives.

Effect: A create directive provides a reference to a new model element that is valid.
The new Element is not a member of any namespace.

Adding model elements to a namespace.

Directive Name: add



90 Y.R. Reddy et al.

Application: The add directive is used to add a model element to a namespace in a
model. It can be used to add a newly created model element (i.e., one created by a
create directive) to a namespace and to add an element from another namespace into a
target namespace. The latter action is needed when a model element is migrated to a new
namespace in order to ensure that the composed model has required properties. Such a
migration would involve removing the element from its original namespace (using the
remove directive described later) and then adding it to the new namespace.

The add directive has one operand, the model element to be added.

Form: add owner::elem
In the above, the model element, elem, is added to the namespace, owner.

Constraint: The target namespace must exist, the element to be added must have a
unique name within the namespace, and the element must be an instance of a concrete
UML metamodel class that can be owned by the namespace.

Effect: The element is in the target namespace.

Removing model elements from a namespace.

Directive Name: remove

Application: The remove directive is used to remove a model element from a names-
pace. It is used when the presence of certain model elements compromises desired
properties of the composed model. For example, consider a security aspect model that
requires that certain associations not exist in the composed model because their pres-
ence can lead to leaks of sensitive information. The remove directive can remove these
associations in the primary model.

Removing a composite model element involves removing all its contained parts. For
example, removing an association involves removing its association end properties (but
not the classes at the association ends).

Removing a model element can result in models with hanging references: Refer-
ences to the removed element may be present in the namespace and elsewhere (e.g.,
in OCL expressions) after removal. Use of the directive should be coupled with the
use of other directives that take care of the hanging references. For example, one can
use the replaceOccurrences directive to replace reference to the deleted element with
references to other elements.

The remove directive has one operand, the model element that is to be removed.

Form: remove owner::elem
In the above, the model element, elem, is removed from the namespace, owner.

Constraint: The namespace must exist in a model. The element must be in the names-
pace before the directive is applied.

Effect: The element is not in the namespace.

Changing properties of model elements in a namespace. The family of directives
for changing model element properties are described below.



Directives for Composing Aspect-Oriented Design Class Models 91

Directive Name: change<property name>
Examples of change directive names are changeisAbstract and changename. The
changename directive is written more concisely as rename.

Application: The changeProperty directive is used to change the value of a model
element property. This directive can be used to force or prevent matching of model el-
ements by changing the property values used to determine element matches. For exam-
ple, in the cases where matching is based only on the names of elements, this directive
can be used to rename elements so that they match or do not match.

This directive has two operands. The first is the model element with the property,
and the second is the new value of the property.

In our case studies we often use this directive to rename model elements, and thus
we use a more concise name for the directive: rename. The renaming directive is often
applied to the primary model, because renaming of elements in the context-specific
aspect models can also be accomplished by rebinding the (generic) aspect model.

Form: change<property name> owner::targetElement to propertyValue

In the cases where the property to be changed is a model element name one can use
the form below:

rename owner::targetElement to newName

Constraint: The element must exist in a primary, aspect or composed model.

Effect: The specified property value in the target model element has the new value.

Replace references to a model element in a namespace.

Directive Name: replaceOccurrences

Application: The replaceOccurrences directive is used to replace references to a
model element with references to another model element in a namespace. It is often
used in conjunction with directives that add and remove model elements. For example,
if an association that is referenced in an OCL expression is removed then one can use
this directive to change the reference in the OCL expression.

The replaceOccurrences directive has two operands: The first is a reference to a
model element, and the second is a reference to another model element.

Form: replaceOccurrences owner1::elem with owner2::replacementElem
The above states that references to elem in the namespace owner1 are to be replaced by
references to replacementElem in the namespace owner2.

Constraint: There are no constraints for this directive.

Effect: All existing references to the model element owner1::elem are changed to
references to the element owner2::replacementElem.

Overriding a model element. This composition directive is similar to the override
relationship proposed by Clarke et al. [13].



92 Y.R. Reddy et al.

Directive Name: override

Application: The override directive defines an override relationship between two po-
tentially conflicting model elements. It indicates that the properties of a model element
take precedence over properties of a matching model element during composition.

When an override relationship is defined for two model elements, the relationship
propagates to the contained model elements. The consequences of the implicit overrides
may not be immediately obvious. Explicit override relationships should be defined for
contained model elements when this is feasible and practical.

The override directive has two operands. The second operand is the model element
that overrides the first operand.

Form: override owner1::elem1 with owner2::elem2

Constraint: owner1::elem1 and owner2::elem2 must exist in separate models, one
in a primary model, and the other in a context-specific aspect model. The two elements
must match.

Effect: During composition, the properties of elem1 are replaced by properties of
elem2.

Overriding default composition rules. When merging matching model elements with
different property values, a composition mechanism can use default rules to determine
the property values that will be used in the composed model. For example, in previous
work [5] we defined the following rules for combining properties with different values
in matching elements:

– If two matching attributes are associated with invariants, the invariant in the com-
posed model is the conjunction of the two invariants.

– If two matching operations have operation specifications, the composed operation
has a precondition that is the disjunction of the two preconditions and a postcondi-
tion that is the conjunction of the two postconditions.

– If two associations match and their multiplicities are different, then the merged
association uses the weaker multiplicity constraint at each end.

Sometimes one may want to change the default rules when composing models.
For example, one may want to use the stronger multiplicity constraint at the ends of
composed associations. Override composition rule directives are used for this purpose.
In our approach, each rule is associated with a set of possible variations, and a directive
for each variation is defined. For example, the association end multiplicity rule is
associated with the following directive:

association end multiplicity rule owner1::assocend1;
owner2::assocend2 stronger

Use of this directive indicates that the stronger of the two multiplicities at the
specified associations are to be used in the composed model. One can also override the
rule globally using the following directive:



Directives for Composing Aspect-Oriented Design Class Models 93

association end multiplicity rule stronger

For the operation specification rule we have the following directive:

operation specification rule owner1::aclass1::PreSpec(anoperation1),
owner2::aclass2::PreSpec(anoperation2) conjunct

The above states that the precondition of the operation formed by merging the
matching operations anoperation1 and anoperation2 is the conjunction of their
preconditions. A similar directive for postconditions is also defined:

operation specification rule owner1::aclass1::PostSpec(anoperation1),
owner2::aclass2::PostSpec(anoperation2) disjunct

Currently we have a very limited number of composition rules. In the cases where
we do not have such rules, composition results in a conflict when the property values
differ. Work on providing a small and useful set of rules and associated directives is
ongoing.

4.2 Composition Examples

The following are examples of composition scenarios that require the use of directives
to produce desired results. In the examples we show the effect of directives in terms of
before and after diagrams. Note that the after diagrams are not the composed models:
They show only the effect of the directives on the primary and aspect models.

Example 1: The faulty composition shown in Fig. 3 can be avoided by using com-
position directives that do the following (the aspect and primary models are shown in
Fig. 6):

1. Remove the association between Writer and FileStream in the primary model:
In the desired composed model, all writing to the file stream is done via the buffer.
The write should not have direct access to the filestream in the composed model.

2. Remove the OCL specification for writeLine() in the primary model: The oper-
ation specification in the context-specific aspect model fully specifies the desired
behavior and thus the conflicting specification in the primary model can be deleted.

The directives that accomplish the above are given below:

(1) remove primary::Writer::fstream
(2) remove primary::Writer::Spec(writeLine)

In the above, Spec(writeLine) refers to the specification associated with the opera-
tion writeLine(). Figures 6 and 7 illustrate the effect of the directives on the primary
and aspect model. An “X” indicates the removal of an element.

In the example, the operation specification associated with writeLine() in the pri-
mary model contained only a statement that refers to the deleted f stream element. If
the specification had contained additional statements that were required in the operation
specification of writeLine() in the composed model, then removal of the specification



94 Y.R. Reddy et al.

addToStream()

FileStream

pre: true

writeLine()

addToStream()

fstream

wbuffer

writeLine()

WriterFileStream

post:
fstream^addToStream(?)

Writer WriterBuffer

writeBuff()

bfstream

aspect: AspectModel

pre: true
post:

pre: 
post:
bfstream^addToStream(?)

wbuffer^writeBuff(?)

...

Primary: PrimaryModel

Fig. 6. Example 1. Before application of directives

addToStream()

FileStream

writeLine()

addToStream()

wbuffer

writeLine()

WriterFileStream

post:
fstream^addToStream(?)

Writer WriterBuffer

writeBuff()

bfstream

aspect: AspectModel

pre: true
post:

pre: 
post:
bfstream^addToStream(?)

wbuffer^writeBuff(?)

...

fstream

pre: 

Primary: PrimaryModel

Fig. 7. Example 1. After application of remove directives

in the primary model would not give the desired result. To handle these situations, di-
rectives that replace the elements to be removed in the OCL specifications with desired
elements are needed. Such directives require technology for parsing OCL expressions.
A metamodel for the OCL is currently being standardized by the Object Management
Group (see http://www.omg.org/uml), and it is expected that OCL parsers based on the
metamodel will be developed soon after.

An alternative way to accomplish the above would be to use the override directive
instead of the second remove directive, as shown below.

(1) remove primary::Writer::fstream
(2) override primary::Writer with aspect::Writer

Figure 8 illustrates the effect of the directives on the primary and aspect models.

Example 2: The following example, from France et al. [1], illustrates the use of the
create, add, remove, and replaceOccurrences directives. The aspect model shown



Directives for Composing Aspect-Oriented Design Class Models 95

Writer

fstream^addToStream(?)
post:

FileStream Writer

writeLine()

wbuffer

addToStream()

writeLine()

WriterBuffer<<override>>

Primary: PrimaryModel

pre: 

fstream

...

wbuffer^writeBuff(?)

bfstream^addToStream(?)
post:
pre: 

post:
truepre: 

aspect: AspectModel

bfstream

writeBuff()

FileStream

addToStream()

Fig. 8. Example 1. After application of remove and override directives

SystemMgmtAuthRepository

checkSysAuth(mid:MgrID,op:String)

<<datatype>>
MgrID

UID
<<datatype>>

UID
<<datatype>>

<<datatype>>
MgrID

1..*

primary: PrimaryModelaspect: AspectModel

1..*m: MgrID

Manager

m: MgrID

Manager

addUser(mid:MgrID,u:UID)

accessAuthRep

doDeleteUser(u:UID)
doAddUser(u:UID)
deleteUser(mid:MgrID,u:UID)

accessUserRep

UserMgmt

deleteUser(u:UID)
addUser(u:UID)

UserRepository

uaccesses accesses

1..1

1..1

1..1

1..1

1..1

1..1
UserAuth

Fig. 9. Example 2. Before application of directives

in Fig. 9 presents a view in which add and delete user actions must be authorized
before they are carried out. The primary model describes a view in which authorization
does not occur. The objective of the composition is to produce a composed model in
which the authorization behavior in the aspect is incorporated into the primary model.
In Fig. 9, the UserAuth class in the aspect model performs authorization checks on
clients requesting the addition or deletion of users from the system. In the composed
model, Manager client must request the add and deleter user operations by calling
the corresponding operations in UserAuth and should have no direct access to the
UserMgmt class. To accomplish this, a directive is used to remove the accesses
association in the primary model:

(1) remove primary::Manager::accesses

There are references to the accesses association in Manager that must be replaced
or removed. In this case, references to accesses in the primary model must be changed
to uaccesses in the context-specific aspect model, because all access to the operations



96 Y.R. Reddy et al.

is made via the uaccesses association in the composed model. The following directive
is used to accomplish this:

(2) replaceOccurrences primary::Manager::accesses
with aspect::Manager::uaccesses

The definitions of the addUser and deleteUser operations in UserAuth include
an authorization check. In the aspect model, if a Manager client is authorized to carry
out the add or delete action a call is made to the respective doAddUser, doDeleteUser
operations. In the described composed model, the operations addUser and deleteUser
in UserMgmt carry out the add and delete user actions, respectively. To make this
possible a composition directive that adds an association between the UserMgmt class
and the UserAuth class is used:

(3) userAuthEnd = createProperty { isComposite = false, aggregation = none,

type = aspect::UserAuth, opposite = userMgmtEnd, lower = 1, upper = 1 }
userMgmtEnd = createProperty { isComposite = true, aggregation = composite,

type = primary::UserMgmt, opposite = userAuthEnd, lower = 1, upper = -1 }
userAuth-userMgmt = createAssociation { name = "UserAuth-UserMgmt" ,

isDerived = false, memberEnd = [userAuthEnd,userMgmtEnd] }
Once the new Association is created, we need to add it to the composed model.

The composition directive that accomplishes this is given below. We reference the
composed model using the name comp:

(4) add comp::userAuth-userMgmt,
add comp::UserAuth::userAuthEnd,
add comp::UserMgmt::userMgmtEnd

There are two options for creating a composed model in which authorized calls to
addUser and DeleteUser are made: The first option is to replace the specifications
of doAddUser and doDeleteUser so that they delegate the actions to the respective
operations in UserMgmt using the new association. The second option is to replace
the calls to doAddUser and doDeleteUser by calls to the respective operations in
UserMgmt. We give the directives that accomplish the latter option below:

(5) replaceOccurrences aspect::UserAuth::doAddUser
with primary::UserMgmt::addUser(),

remove aspect::UserAuth::doAddUser,
replaceOccurrences aspect::UserAuth::doDeleteUser

with primary::UserMgmt::deleteUser(),
remove aspect::UserAuth::doDeleteUser

The effect of the directives on the aspect and primary models is shown in Fig. 10.
The association between UserMgmt and UserAuth exists in the composed and not in
the aspect or primary models; it is shown here only to indicate that this association will
exist in the composed model. The dependencies from the addUser and deleteUser
operations in UserAuth indicate that they call the respective operations in UserMgmt.



Directives for Composing Aspect-Oriented Design Class Models 97

SystemMgmtAuthRepository

checkSysAuth(mid:MgrID,op:String)

<<datatype>>
MgrID

UID
<<datatype>> UID

<<datatype>>

<<datatype>>
MgrID

primary: PrimaryModel

m: MgrID

Manager UserMgmt

UserRepository

1..*m: MgrID

Manager

addUser(mid:MgrID,u:UID)

accessAuthRep

doDeleteUser(u:UID)
doAddUser(u:UID)
deleteUser(mid:MgrID,u:UID)

uaccesses

aspect: AspectModel

1..*

accessUserRep

deleteUser(u:UID)
addUser(u:UID)

accesses
1

(5)

(5)

1..1

1..1
1..1

1..1

1..1

1..1

(1)+(2)
1..*

(3)+(4)

UserAuth

Fig. 10. Example 2. After application of directives

4.3 Combining Element Directives

The examples and the descriptions of composition directives provide some indication
that use of some element directives are often coupled with the use of others. For ex-
ample, removing a model element sometimes requires use of directives such as the
replaceOccurrences directive to avoid hanging references. An overview of combined
directives in the premerge, merge, and postmerge categories are given below:

Premerge combined directives: Matching directives are combined directives that
force the matching of elements or disallow the matching of elements. The directives
are often combinations of changeproperty and replaceOccurrences directives.

Merge combined directives: Combinations of the override and replaceOccurrences
directives are often used to override rules used to merge model elements.

Postmerge combined directives: These directives are often combinations of direc-
tives for creating model elements, adding model elements to a namespace, and
deleting model elements from a namespace.

The development of a library of combined directives that are based on actual use of
directives on realistic projects is a major goal of our research on composition directives.

4.4 Model Directives

Model directives determine how a set of models are composed. The model directives
we have identified constrain the order in which context-specific aspect models are com-
posed with a primary model. These directives can define a weave-ordering relationships
between aspect models. A weave-ordering relationship is a binary constraint that speci-
fies an ordering between two aspect models. There are two cases: An aspect model must
be composed before another, or an aspect model must be composed after another.



98 Y.R. Reddy et al.

Precedes

Directive Name: precedes

Application: This directive specifies that one aspect model is to be composed with a
primary model before another. This directive has two aspect models as operands. The
first operand is the aspect model that is to be composed before the second operand.

Form: former precedes latter

Constraint: Both aspect models must exist.

Effect: A weave-ordering relationship is created between the two aspect models and
added to the set of weave-ordering constraints maintained by the composer. This direc-
tive does not imply that former will be woven immediately before latter. It simply
requires that former be woven some time before latter.

Follows

Directive Name: follows

Application: This directive specifies that one aspect model is to be composed with a
primary model after another. This directive is provided only to increase the readability
of composition directives. It may be interpreted as equivalent to the precedes directive
with the operands switched. This directive has two aspect model operands. The first
operand is the aspect model to be composed after the second operand.

Form: later follows earlier

Constraint: See precedes.

Effect: See precedes.

4.5 Weave Ordering Example

Consider the aspect design model in Fig. 11(a). There are three different aspect models
and the primary model. In this example, the authentication aspect model needs to
be composed before the authorization aspect model, because authorization without
authentication is meaningless. Therefore, we declare the following composition
directive to make the order explicit.

(1) authentication precedes authorization

We could have also defined a composition directive using the follows directive with the
operands reversed to achieve the same result.

Suppose we also wish to weave the errorChecking aspect model last. The
following composition directives accomplish this:

(2) errorChecking follows authorization
(3) errorChecking follows authentication



Directives for Composing Aspect-Oriented Design Class Models 99

The result is shown in Fig. 11(b). The dependency from authentication to autho-
rization illustrates the weave-order relationship that specifies that authentication must
be woven before authorization, and the dependencies from errorChecking to each of
the other aspects illustrates the two binary weave-order relationships that specify er-
rorChecking as the last aspect to be woven.

(b)

primary:PrimaryModel

Composition Directives

Mapping Rules

Design ModelDesign Model

primary:PrimaryModel

Composition Directives

Mapping Rules

authentication:Aspect

errorChecking:Aspect

authorization:Aspect

authentication:Aspect

authorization:Aspect

errorChecking:Aspect

<<follows>>

<<follows>>

<<precedes>>

(a)

Fig. 11. Example 4. Specifying weave order

5 Related Work

A number of researchers have developed aspect-oriented software development
(AOSD) approaches (e.g., see [13, 14, 15, 16, 17, 18, 19, 20]). The composition ap-
proaches used in these AOSD approaches can be categorized as asymmetric and sym-
metric [21]. In asymmetric composition, aspects and base models play clearly distin-
guished roles during composition. These composition approaches tend not to support
composition of aspects and composition of base models. AspectJ [22] is one of the
popular aspect-oriented programming languages that uses an asymmetric composition
approach. In symmetric composition both aspect and base models are treated the same,
and thus aspect and base model composition are possible. The composition approaches
used in work on viewpoints [23], subject-oriented programming [24, 25], and multidi-
mensional separation of concerns (MDSOC) [26] tend to be symmetric. This paper uses
a hybrid composition approach. The (generic) aspect models are patterns that cannot be
directly composed with base models, but the instantiated forms of the aspect models
(i.e., context-specific aspect models) are not distinguished from the primary model dur-
ing composition. The approach can be used to compose (generic) aspect models (i.e.,
patterns) to obtain new aspect models (e.g., see [27]) and to compose UML models. To
date we have implemented the procedure for composing UML class models.

A survey of AOSD approaches can be found in Chitchyan et al. [28]. Very few
approaches in the survey provide support for composing design models. At the pro-
gramming level, the subject-oriented approach is closest to the approach described in



100 Y.R. Reddy et al.

this paper. In subject-oriented programming [24, 25], program elements such as classes
and methods are composed by merging corresponding elements. The correspondence is
established based on specified composition rules. The default correspondence is name-
based, which can be altered by writing additional composition rules. The composition
rules used to control this process can be classified under three categories: rules that es-
tablish correspondence, rules that control combination, and rules that control both cor-
respondence and combination. The composition rules in subject-oriented programming
are analogous to our use of signatures to determine matches and the use of directives to
alter model elements and override default composition rules. Our composition approach
depends on the properties specified in the signature rather than just names of model el-
ements, primarily because not all UML model elements are named elements. We have
found that name-based matching has a greater potential of producing faulty models
than signature-based composition, simply because signature-based composition allows
for finer tuning of matching criteria.

At the model level, a comparable AOM approach is the Theme approach proposed
by Baniassad and Clarke [13, 29, 30]. In the Theme approach, a design, called a theme,
is created for each system requirement. These themes, like context-specific aspect and
primary models, are essentially design views. A comprehensive design is obtained by
composing themes. Composition in the Theme approach is based on the symmetric ap-
proach used in subject-oriented programming. Composition relationships specify how
models are to be composed by identifying overlapping concepts and specifying how
models are integrated. Two types of integration strategies are used: override and merge.
Override integration is used when existing behavior in a subject needs to be updated to
reflect new requirements. Merge integration is used when subjects for different require-
ments are to be integrated. Operations in related subjects may need to be merged into
a unified operation. Reconciliation strategies resolve conflicts between property values
of corresponding subject elements. Precedence relationships, transformation functions
applied to conflicting elements, explicit specification of reconciled elements, and de-
fault values may be used for reconciliation. Clarke [13] also extends the UML meta-
model with the notion of composableElements that can be composed using a compo-
sition relationship. They have a Match metaclass that supports specification of match-
ing criteria. Their matching criteria include matchByName and dontMatch. They leave
the details of implementing the matchByName and dontMatch to the user of the meta-
model. In this sense the metamodel describes a framework for composing UML models.
In our work we have developed a more specialized metamodel that contains specifica-
tions of composition behaviors. The metamodel was designed to describe our com-
position approach and to guide the development of supporting tools. To validate the
metamodel, we used it to develop a prototype tool for composing UML class models.
The composition directives that we have developed include some that are similar to
the merge and override integration strategies. The use of composition directives and
signatures, as described in this paper, allows modelers to define and apply their own
integration and reconciliation strategies, and thus to gain finer control over how models
are composed.

Brito and Moreira describe an aspect composition process that identifies match
points in a design element and defines composition rules [31]. Rules use identified



Directives for Composing Aspect-Oriented Design Class Models 101

match points, a binary contribution value (either positive or negative) that quantifies the
affects on other aspects, and a priority for a given aspect. In the context of AOP [32],
Kienzle et al. describe composition rules based on dependencies between aspects [33].
Both papers [31, 33] focus primarily on relationships that can exist between aspects.
We describe the possible relationships between aspects as weave-order relationships
and override relationships, but it may also be possible to use priorities and dependen-
cies as done by Kienzle, Brito, and Moreira in our approach. In this sense, the ideas
presented in their papers complement the ideas presented in this paper.

Aldawud et al. [34] propose a mechanism for composing state charts where a cross-
cutting behavior is an event that triggers a state transition. The composition is specified
by linking events across state diagrams. We have not considered composition of state
charts in our work.

6 Conclusions and Future Work

In this paper we present a signature-based composition approach that allows one to
vary how models are composed using composition directives. The signature-based ap-
proach improves upon name-based composition approaches by giving the modeler finer-
grained control over the criteria used to match model elements. Composition directives
give added flexibility by providing the means to alter model elements and override de-
fault composition rules to obtain desired composed models. The directives described in
this paper are based on our experience with using the composition approach to com-
pose aspects modeling security features with primary models. For example, we have
applied the approach to modeling and composition of access control features such as
Role-Based Access Control and Bell LaPadula schemes [5, 27, 35, 36], and for other
security features [6, 37, 38, 39]. We are currently applying the techniques in a larger
case study involving the development of an e-commerce system.

A composition metamodel that describes the static and behavioral properties needed
to support model composition is also presented. The metamodel describes not only the
static relationships among composition concepts, but also provides specifications of
behaviors that are needed to support model composition using our approach. The com-
position metamodel describes the behavior needed to support model composition and
thus can be used to guide the development of model composition tools that support the
composition approach we developed. To validate the metamodel, we built a prototype
tool on top of the KerMeta framework. The tool currently supports the composition
of UML class models and can be extended to support additional features that appear
in the composition metamodel. We are currently developing a subsystem for handling
composition directives that will be plugged into the tool.

Empirical evaluation is needed to validate the composition approach in real-world
design settings. Such studies can determine the amount of effort required to specify the
kinds of compositions that are required in real-world designs. The studies can also be
used to determine whether the composition directives match the requirements of a real
project. The insights gained from the studies will be used to develop a tractable method
for selecting, defining, and applying composition directives and signatures. Work in this
respect could result in the specification of some common composition strategies [6] to
ease the task of specifying and using composition directives.



102 Y.R. Reddy et al.

Acknowledgment

This material is based upon work partially funded by AFOSR under Award No.
FA9550-04-1-0102.

References

[1] France R.B., Ray I., Georg G., Ghosh S. An aspect-oriented approach to design modeling.
IEE Proceedings - Software, Special Issue on Early Aspects: Aspect-Oriented Require-
ments Engineering and Architecture Design, 151:173–185, 2004

[2] The Object Management Group (OMG): Unified Modeling Language: Superstructure. Ver-
sion 2.0, Final Adopted Specification, http://www.omg.org (2003)

[3] Straw G., Georg G., Song E., Ghosh S., France R., and Bieman J. Model composition
directives. In: Proceedings of the International Conference on the UML, Springer, pp.
84–97, 2004

[4] Reddy R., France R.B., Ghosh S., Fleury F., and Baudry B. Model composition - A sig-
nature based approach. In: Proceedings Aspect Oriented Modeling workshop held with
MODELS/UML 2005, Montego Bay, Jamaica, 2005

[5] Song E., Reddy R., France R., Ray I., Georg G., and Alexander R. Verifiable composition
of access control and application features. In: SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, ACM, New York, pp. 120–129,
2005

[6] Georg G., Ray I., and France R. Using aspects to design a secure system. In: ICECCS
2002: Proceedings of the International Conference on Engineering Complex Computing
Systems, ACM, pp. 117–126, 2002

[7] TRISKELL: The KerMeta Project home page. http://www.kermeta.org (2005)
[8] OMG adopted specification ptc/03-10-04: The Meta Object Facility (MOF) Core Specifi-

cation. Version 2.0. http://www.omg.org
[9] Muller P., Fleury F., and Jézéquel J. Weaving executability into object-oriented meta-

languages. In: Proceedings of MODELS/UML 2005, Montego Bay, Jamaica, 2005
[10] Reddy Y.R., France R.B., Georg G. An aspect-based approach to modeling and analyz-

ing dependability features. Technical Report CS04 - 109, Colorado State University, Fort
Collins, CO, USA, 2004

[11] France R., Georg G. Modeling fault tolerant concerns using aspects. Technical Report
02-102, Computer Science Department, Colorado State University, Fort Collins, CO, USA,
2002

[12] Georg G., France R.B., and Ray I. Composing aspect models. In: 4th AOSD Modeling with
UML Workshop, San Francisco, CA, 2003

[13] Clarke S. Extending Standard UML with Model Composition Semantics. Science of Com-
puter Programming 44, pp. 71–100, 2002

[14] Araujo J., and Coutinho P. Identifying aspectual use cases using a viewpoint-oriented re-
quirements method. In: Early Aspects 2003: Aspect Oriented Requirements Engineering
and Architecture Design, Workshop of the 2nd Intl. Conference on Aspect-Oriented Soft-
ware Development, Boston, MA, 2003

[15] Clarke S., and Walker R.J. Composition patterns: An approach to desigining reusable as-
pects. In: Proc. of 23rd Intl. Conference on Software Engineering (ICSE), Toronto, Canada,
pp. 5–14, 2001

[16] Gray J., Bapty T., Neema S., Tuck J. Handling crosscutting constraints in domain-specific
modeling. Communications of the ACM, 44:87–93, 2001



Directives for Composing Aspect-Oriented Design Class Models 103

[17] Grundy J.C. Multi-perspective specification, design and implementation of software com-
ponents using aspects. International Journal of Software Engineering and Knowledge En-
gineering, 10(6):713–734, 2000

[18] Jacobson I. Case for aspects - Part I. Software Development Magazine, 32–37, 2003
[19] Rashid A., Sawyer P., Moreira A., and Araujo J. Early aspects: A model for aspect-oriented

requirements engineering. In: IEEE Joint Intl. Conference on Requirements Engineering,
Essen, Germany, pp. 199–202, 2002

[20] Aksit M., Wakita K., Bosch J., Bergmans L., and Yonezawa A. Abstracting object in-
teractions using composition filters. In: Guerraoui R., Nierstrasz O., and Riveill M.
(eds.) Proceedings of the ECOOP’93 Workshop on Object-Based Distributed Program-
ming, Springer, Vol. 791, pp. 152–184, 1994

[21] Harrison W., Ossher H., Tarr P. Asymmetrically vs. symmetrically organized paradigms
for software composition. Technical report, IBM - RC22685 (W0212-147), 2002

[22] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingier J., and Irwin J.
Aspect oriented programming. In: ECOOP: Proc. of the European Conference on Object-
Oriented Programming, LNCS vol. 1241, Springer, pp. 220–242, 1997

[23] Nuseibeh B., Kramer J., Finkelstein A. A framework for expressing the relationships be-
tween multiple views in requirements specification. IEEE Transactions on Software Engi-
neering, 20:760–773, 1994

[24] Harrison W., and Ossher H. Subject oriented programming (a critique of pure objects).
In: OOPSLA ‘93: Proc. of the 8th Annual Conference on Object-Oriented Programming:
Systems, Languages, and Applications, Washington, DC, pp. 411–428, 1993

[25] Ossher H., Kaplan M., Katz A., Harrison W., Kruskal V. Specifying subject-oriented com-
position. Theory and Practice of Object Systems, 2(3):179–202, 1996

[26] Tarr P., Ossher H., Harrison W., and Sutton S. N degrees of separation: Multi-dimensional
separation of concerns. In: ICSE ’99: Proceedings of the 21st International Conference on
Software Engineering, pp. 107–119, 1999

[27] Ray I., Li N., Kim D.K., and France R. Using parameterized UML to specify and compose
access control models. In: IICIS 2003: Proceedings of Sixth IFIP TC-11 WG 11.5 Working
Conference on Integrity and Internal Control in Information Systems, 2003

[28] Chitchyan R., Rashid A., Sawyer P., Garcia A., Alarcon M., Bakker J., Tekinerdogan B.,
Clarke S., Jackson A. Survey of aspect-oriented analysis and design approaches. Technical
Report ULANC-9, AOSD, Europe, 2005

[29] Baniassad E., and Clarke S. Theme: An approach for aspect-oriented analysis and design.
In: Proceedings of the International Conference on Software Engineering, pp. 158–167,
2004

[30] Clarke S., and Walker R.J. Composition patterns: An approach to designing reusable as-
pects. In: ICSE: The 23rd International Conference on Software Engineering, Toronto,
Canada, 2001

[31] Brito I., and Moreira A. Towards a composition process for aspect-oriented requirements.
In: Proceedings of the Early-Aspects Workshop at AOSD2002, 2002

[32] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C.V., Loingtier J.M., and Irwin J.
Aspect-oriented programming. In: ECOOP ’97: Proceedings of the European Conference
on Object-Oriented Programming, LNCS vol. 1241, Springer, pp. 220–242, 1997

[33] Kienzle J., Yu Y., and Xiong J. On composition and reuse of aspects. In: Proceedings of
the Foundations of Aspect-Oriented Languages Workshop, Boston, MA, USA, 2003

[34] Aldawud O., Bader A., and Elrad T. Weaving with statecharts. In: Workshop on Aspect-
Oriented Modeling (held with AOSD-2002), Enschede, Netherlands, 2002

[35] Ray I., France R., Li N., Georg G. An aspect-based approach to modeling access control
concerns. Information and Software Technology 40:557–633, 2004



104 Y.R. Reddy et al.

[36] Ray I., Li N., France R., and Kim D.K. Using UML to visualize role-based access control
constraints. In: SACMAT: Proceedings of the Symposium on Access Control Models and
Technologies, pp. 31–40, 2004

[37] Georg G., France R., and Ray I. Designing high integrity systems using aspects. In: IICIS
2002: Proceedings of the Fifth IFIP TC-11 WG 11.5 Working Conference on Integrity and
Internal Control in Information Systems, Bonn, Germany, 2002

[38] Georg G., France R., and Ray I. An aspect-based approach to modeling security concerns.
In: Proceedings of the Workshop on Critical Systems Development with UML, Dresden,
Germany, 2002

[39] Homb S.H., Georg G., France R., Bieman J., and Jurjens J. Cost-benefit trade-off analysis
using BBN for aspect-oriented risk-driven development. In: ICECCS: Proceedings of the
10th IEEE International Conference on Engineering of Complex Computer Systems, 2005

Appendix

Merge Part of the Signature-Based Composition Procedure

********************************************************************************
// e1 and e2 are the model elements that need to be merged
e1.merge(e2 : ModelElement) //precondition : e1.sigEquals(e2) returns true
********************************************************************************
result := e1.getMetaClass.new // create the merged instance in the context of e1

// Iterate on all properties of the objects to be merged.
// e1 and e2 have the same meta-class. Thus, they have the
// same set of properties.

foreach Property p in e1.getMetaClass.getAllProperties

if type of p is primitive
// Primitive types are basic datatypes such as string, int.
// If an object does not have a value for a property then

// the value val is taken from the other object and vice versa.
// This is not a conflict.

// If neither object has values, then val is null in the resulting
// merged object.

if e1.get(p) is null or e2.get(p) is null then
result.set(p, val)

else
// If the values are the same then it is ok.
// Otherwise a conflict has been detected.
if e1.get(p) = e2.get(p) then

result.set(p, e1.get(p))
else

A conflict has been detected
else
// Type of p is not primitive.
// If the property refers to a single object, this is the base case.

if the property upper bound is 1
if e1.get(p) is null or e2.get(p) is null then

result.set(p, val) // val is the same as above
else

if sigEquals(e1.get(p), e2.get(p)) then
// If the object e1.get(p) is contained by e1 and same for e2



Directives for Composing Aspect-Oriented Design Class Models 105

// (p.isComposite=true) then the objects should be merged,
// otherwise, one is chosen.
// Either one can be chosen because they both have the same signature

if p.isComposite is true then
result.set(p, merge(e1.get(p), e2.get(p)))

else
result.set(p, e1.get(p).clone())

else
A conflict has been detected

else
// The property refers to a collection of objects.
// The resulting merged object should contain property values that are

// either only in e1 or only in e2, or the merged version of objects
// that are in both e1 and e2.
for each value v1 in e1.get(p)

for each matching element v2 in e2.get(p)
if p.isComposite then

result.get(p).add(merge(v1, v2))
else

result.get(p).add(v1.clone())
if no element found

result.get(p).add(v1.clone())
for each value v2 in e2.get(p)

if NO matching element found in e1.get(p)
result.get(p).add(v2.clone())

********************************************************************************



A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 106 – 134, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Aspect Categories and Classes of Temporal Properties 

Shmuel Katz 

Computer Science, The Technion, Haifa, Israel 
katz@cs.technion.ac.il 

Abstract. Generic categories of aspects are described, and their potential value 
is explained. For some categories, broad classes of syntactically identifiable 
temporal properties, such as safety, liveness, or existence properties, are 
guaranteed to hold for a system with any aspect of the category woven into it, if 
the property was true in the system without the aspect. Thus classes of 
properties preserved by the aspect are defined. Moreover, relatively simple 
verification techniques are shown to hold for some classes of temporal 
properties over systems augmented with some other categories of aspects. 
Verification of new properties added by the aspects is also considered. Each 
category is defined in terms of the semantic transformation it makes to the state 
graphs of underlying systems. A generic procedure to identify syntactically 
when an aspect belongs to a category is described and related to existing code 
analysis systems that use static code analysis and dataflow techniques. The 
definitions of categories, identification procedures, and lemmas about property 
classes provide the needed foundations that justify and motivate automatic code 
analysis modules to identify aspect categories. The categories enable simpler 
proofs of correctness than would otherwise be possible, and exploiting their 
characteristics can aid in software development.  

Keywords: Aspect specification, spectative, regulative, invasive, aspect 
categories, dataflow analysis, aspect verification. 

1   Introduction 

Aspect-oriented programming seeks to isolate crosscutting concerns in aspect 
modules that are then woven with other aspects or with more standard object-oriented 
classes. Even in the earliest examples of aspects, it was clear that some were more 
complicated than others as far as the relation to the underlying program with which 
they were woven. The classic examples of logging or adding performance monitoring 
influence the underlying program less than aspects treating overflow of integer 
computations, or restricting access to some methods to favored users. In turn, those 
are less closely tied to the computations of the underlying program than aspects that 
compute and apply discount prices to an underlying online bookshop or that change 
the designs of buildings in an architecture support program in order to enforce 
handicapped access regulations.  

In [27] and in some earlier works on superimpositions, spectative, regulative, and 
invasive types of aspects were suggested to describe categories of aspects such as 
those above. The spectative aspects only gather information about the system to 



 Aspect Categories and Classes of Temporal Properties 107 

which they are woven, usually by adding fields and methods, but do not otherwise 
influence the possible underlying computations. On the other hand, regulative aspects 
change the flow of control (e.g., which methods are activated in which conditions) but 
do not change the computation done to existing fields, while invasive aspects do 
change values of existing fields (but still should not invalidate desirable properties). 

In this paper these categories of aspects are extended and made more precise. An 
analysis is given of how properties are affected by aspects in each category. The 
classes of properties are described as those satisfying generic temporal logic 
formulae, and have previously been used for purposes related to refinement and proof 
techniques. Both the influence of the aspect on classes of properties that already were 
true in the underlying system, and the difficulty of verifying new properties added by 
the aspect are considered. The categories and lemmas enable establishing some 
properties automatically without expensive proofs using model checkers. For some 
other properties and categories the verification is not immediate, but simpler proofs of 
correctness can be used than would otherwise be possible. Aspect categories can aid 
in software development by encouraging the modularity that is identified in the 
categories presented here. 

The view taken in this paper is of a main existing system to which one or more 
aspects can be applied, as in AspectJ [18]. When the entire system is considered to be 
a composition of aspects, as in the HyperJ approach [24], similar considerations can 
be applied.  The implications of our results for interference among aspects are  
considered in Sect. 8, but otherwise the relations between a given system and a single 
aspect are treated. In the continuation, the system before an aspect is woven into it is 
termed the original or the  underlying system. After an aspect has been woven into it, 
the result is referred to as the augmented system. The aspect categories are defined in 
terms of restrictions on the semantic changes between the state graphs of the 
underlying and the augmented system. These are then used to justify claims about 
classes of temporal logic properties. A particular aspect generally cannot be directly 
checked for the semantic restrictions. Instead, for most aspect languages, static 
analysis with dataflow techniques or a rich type system can be used to identify subsets 
of the categories. Here, generic dataflow techniques for identification are presented 
for each category, and shown to guarantee the semantic definitions. In Sect. 9, related 
approaches and analysis techniques are surveyed, and their connections to the 
categories defined here are explained. As new techniques are developed, they can be 
shown to identify the appropriate semantic categories, so that the associated lemmas 
on classes of properties will automatically hold. Thus this paper can be seen as 
providing a semantic foundation and implications for temporal logic properties over 
static analysis for aspects. 

In this paper a running example is used of aspects over an underlying system that 
manipulates fractions, and generates and checks online exams for students with 
simple arithmetic exercises for fractions. In Fig. 1, the outline of this system is given, 
as a minimal basis on which to add aspects. The RationalExam class initiates exams, 
generates questions, accepts answers, and checks whether an answer is correct, all 
using the Rational class. The doExam method is activated externally. In later sections 
aspects are added to compile the results, restrict use of the system, and reduce the 
fractions.  



108 S. Katz 

Fig. 1. Outline of an online exam system 

In order to investigate the properties of a system and categorize aspects applied to it, 
the systems to which aspects are woven as well as the aspects themselves will be 
assumed to have specifications. These are descriptions of the desirable properties of the 
system. Often the exact nature of the specifications will not need to be available, but 
rather the class of property described will be sufficient, e.g., safety or invariant 
properties. Note that specifications do not describe all properties of the system, only 
those seen as important and positive. Such properties should be maintained (perhaps in 
a modified form) even if the system is augmented with aspects, or even if an aspect is 
combined with other aspects. For example, if a system has been shown to properly 
complete each request submitted externally, and an aspect is added to monitor 
performance, we do not want the combined system with the aspect to occasionally 
crash in midtreatment of a request. In the system with fractions, a desirable invariant 
property might  be that the denominator of every fraction is positive, and any aspects 
added might be expected to maintain that invariant. What can change completely are 
the properties of the system not seen in the specification. The form of such 
specifications using syntactic forms of temporal logic assertions is described in Sect. 2. 

In general, once an aspect has been shown to belong to one of the categories 
described, there are various semantic implications for the properties of a system 
augmented with such an aspect. In the best case, classes of properties true of the 
underlying system can be shown to be maintained automatically in the augmented 
one, without further proof. In other situations, properties can be established by 
analyzing only the aspect code. In the worst case, the entire system must be 
considered, but for certain properties easier proof methods can be used. The lemmas 
about aspect categories and types of temporal properties are justified using a semantic 
view of object systems and aspects based on state graphs. In Sect. 3, this view is 
presented and related to other definitions of the semantics of aspects. Section 4 
 

public class Rational{ 
 private int numerator = 0; 
 private int denominator = 1; 
 public int getNumerator() {...} 
 public void setNumerator(int numerator) {...} 
 public int getDenominator() {...} 
 public void setDenominator(int denominator) {...} 
 public Rational add(Rational r) {...} 
} 
public class RationalExam{… 
 private static String getInput() {...} 
 private static Rational randomRational() {...} 
 private Rational getAnswerToAddQuest(Rational r1, Rational r2) {...} 
 private boolean checkAnswer(Rational answer, Rational correctresult) {...} 
 public void doExam() {...} 
} 



 Aspect Categories and Classes of Temporal Properties 109 

explains that real-time and next-state properties are not covered by the analysis 
framework in this paper. In Sects. 5–7, spectative, regulative, weakly invasive, and 
invasive categories of aspects are defined in terms of the semantic transformations of 
the graphs, syntactic checks are shown to guarantee aspects of the desired category, 
and classes of temporal properties are shown to be preserved or to be easier to prove 
for the category. In Sect. 8 interactions among multiple aspects are considered, Sect. 9 
discusses related work, while Sect. 10 summarizes the results. 

2   Temporal Logics and Classes of Properties   

2.1   Specifications of Aspects 

Specifications of aspects need to describe both what is assumed true of the underlying 
system at each joinpoint identified by the aspect (often, any object or method in the 
basic system to which the aspect may be applied), and, on the other hand, what is 
required to be true after the advice is applied, if the needed assumption indeed holds 
at the joinpoint. For each joinpoint and advice segment of code, the advice assumes 
some property of the system, and guarantees some property when it finishes (as well 
as possibly some properties during the aspect execution). Such an assume–guarantee 
structure for aspects has already been recognized [9, 27, 28] and is essential for 
describing the added value of an aspect. The overall properties added by the aspect 
can also be globally described.  

Since many aspects deal with so-called nonfunctional concerns such as availability, 
fault tolerance, security, or persistence, explicitly providing their specifications is that 
much more difficult. Still, no such distinction is made here, and temporal logic can be 
used to specify such properties as well as functional ones. Even if some properties 
have not been formally expressed, for the purposes of property analysis described 
below, it is sufficient to identify to which well-known classes of specification 
properties the specific properties of interest belong, e.g., if they are invariant 
properties. 

2.2   The Semantics of Temporal Logic 

Temporal logic provides a formal notation for describing properties of execution 
sequences, using temporal modalities to quantify over the execution sequences and 
the states in them from a reference state. In the simplest version of linear temporal 
logic (without existence properties), G stands for “globally”, i.e., from now on in the 
sequence of states, and F stands for “in the future”, i.e., eventually there is a state. 
Thus an assertion G(p => Fq) means that in every state, if p is true then eventually 
there will be another state with q. If p represents “a request has been made”, while q is 
“a response is given”, this corresponds to a specification that every request has a later 
response. An assertion pUq means that p will hold in all states from now on until a 
state that satisfies q (and there is a state satisfying q). An assertion Xp (in words: 
“next” p) is true in a state if p itself is true in the state immediately following. 
Formally, in terms of an execution sequence (a sequence of states)  σ, and an index in 
that sequence i, we have: 



110 S. Katz 

• (σ , i) satisfies Gp iff ∀j  i. p(σ(j)) 
• (σ , i) satisfies Fp iff   ∃ j  i. p(σ(j)) 
• (σ , i) satisfies pUq iff ∃ j  i. q(σ(j))  ∧ ∀k. j >k  i. p(σ(k))  
• (σ , i) satisfies Xp iff p(σ(i+1))  

Similar past modalities are defined symmetrically. Linear temporal logic (LTL) only 
has modalities defined in this format.  

In branching temporal logic, such as CTL [4], there are also path quantifiers over 
all possible continuations from a state (denoted A) and some possible continuation 
(denoted E). Formally, such formulas are interpreted over an execution tree, i.e., a 
collection of execution sequences organized into a tree, where common prefixes are 
written once as paths from the root. When applied to systems, temporal logic 
formulae are interpreted over a Kripke structure semantics (see [5]) consisting of a 
state transition graph with nodes corresponding to the possible states reachable in 
executions of the system, and edges labeled by possible atomic actions of the system 
that transform the source state into the target. The states are labeled by values for 
every possible atomic assertion. 

In linear temporal logic an assertion is true for a system iff it is true for every path 
through the Kripke structure starting at initial states, while for CTL, the formula must 
be true for the execution tree obtained by “unwinding” the Kripke structure. Thus an 
LTL assertion Gp is equivalent to a branching temporal logic assertion AGp. 

2.3   Classes of Temporal Properties 

Classes of temporal properties were first defined by [22] and were shown to 
correspond to a simple syntactic form, to a proof method, and to a complexity 
hierarchy. Safety properties  hold in every state, and may relate to the history of states 
up to the state being considered. Such properties describe what is allowed in the 
system, under what conditions, and what states cannot occur. This class includes 
precedence properties such as “a state satisfying P is always preceded by a state 
satisfying Q”, as well as the invariant properties described below. As shown in [22], 
all safety properties can be expressed as an LTL assertion of the form Gp, where p is 
a predicate without other future modalities, relating only to the state variables or the 
past history leading to the state under consideration (a past predicate). The temporal 
modalities needed to express such past assertions are not given here since they are not 
needed in the continuation. 

(Global) invariant properties are true in every state (without reference to the 
computation history), and are the most common subclass of assertion in the class of 
safety properties. A weaker safety assertion common in object-oriented systems is 
known as a class invariant, and is required to be true initially, as well as before and 
after each method call of the class (but not while method calls are ongoing). A partial 
correctness assertion, intended to hold whenever the system terminates, is also a kind 
of invariant property. An invariant intended to be true at certain points, such as a class 
invariant or partial correctness assertion, can be transformed to a global invariant of 
the form “at(method call) implies p” or “at(return) implies p” instead of only asserting 
p at the method call or return point. Thus partial correctness and class invariants are 
merely special forms of global invariants.  



 Aspect Categories and Classes of Temporal Properties 111 

Liveness properties are guaranteed to hold eventually for every possible execution. 
Example properties in this category are the successful termination of a kind of method 
activation, an assertion that every message sent is eventually received, or an assertion 
that some crucial event (e.g., a particular method call) will occur whenever some 
other event occurs first. Such properties always can be expressed using an eventuality 
(F or Until) modality not negated. Among the common combinations are Fp (to 
express “eventually there is a state in which p is true”),  GFp (to express that p is 
infinitely often true in an infinite computation),  FGp (to express that eventually p 
becomes continuously true), or various combinations of these forms. 

Both safety and liveness are categories that make assertions about every possible 
computation of a system. In a branching temporal logic, there is an A quantifier on the 
outer level, and no other path quantifiers. As noted above, there are also branching 
temporal logic Existence properties that can express assertions about possible 
computations of a system (e.g., there is a path that reaches an interrupt). Syntactically, 
these are equivalent to properties with an E path quantifier not negated, relating to the 
existence of a computation among the possible executions of the system. There are 
branching time generalizations of the safety and liveness properties above that have 
been shown to be maintained under certain types of model abstractions [7]. Instead of 
writing “for every object r of a class, r.fieldname” in assertions, just the fieldname is 
used when clear from the context. So G(denominator >0) means that the assertion is 
true in every object of class Rational. 

3   The Semantics of Aspects and Object Systems 

3.1   Approaches to Aspect Semantics 

In order to define and reason about the categories of aspects and their connections to 
classes of properties, the form of an object-oriented system and its semantics must be 
defined. There are several formal semantic definitions of aspects and aspect systems, 
using, e.g., denotational [32], operational (or so-called small step semantics) [15], 
process calculus [3], and functional [31] approaches. In principle, any of them could 
be used to justify the claims connecting categories of aspects to the correctness of 
types of temporal properties. Most of them assume a simplified object or functional 
base language, in order to concentrate on  a semantic definition for the new aspect 
construct.  

3.2   State Machine Semantics for Object Systems 

Here we adopt the state graph semantic view, because it is most appropriate for 
verification of temporal properties, and is used by software model checkers such as 
Bandera [14]. This view can be seen in the UML statechart semantics, where each 
class is accompanied by a statechart (equivalent to a hierarchical state graph) 
expressing the possible states and transitions for each instance (object) of that class.  

A node in the state graph of an object gives specific values to the variables, fields, 
and control state of that object, and the edges (transitions) describe the effect of 
executing an enabled step from that node. A system is then described by the cross 
product of the state graphs of the active objects, linked by potential method calls 



112 S. Katz 

among them. Each object has a designated node in its state graph corresponding to the 
present values of the object. The cross product of these designated nodes defines a 
mapping that provides the present values of variables, fields, locations, and internal 
stacks of method activations along with identification of which actions are presently 
enabled in the system, for each object. This can be seen as a continuation semantics 
describing both the immediate values and the potential continuations for each point 
during an execution. For simplicity, the term variables is used to refer to all of the 
state components that are given values in each state.  

The semantic meaning of a system (either underlying or augmented with aspects) 
at any point during its execution is defined as the expansion of the cross product of 
state graphs described above, to a single computation state graph, where the nodes are 
particular values for the existing variables at that point (what is usually called a state), 
and the arrows are transitions that correspond to the atomic actions of the system. 
Note that this does not exclude transitions that extend the state graph by adding new 
object occurrences, or shrink it by discarding objects that have been finished. Issues 
of inheritance and polymorphism can complicate the definition of the state graph, but 
are orthogonal to the question of adding aspects. The system and semantic state graph 
are often organized as a reactive system [22], where each external activation leads to a 
finite computation corresponding to a transaction. A maximal sequence of states in 
the graph from an external activation to a rest state is known as a trace. Although 
such a state graph may have an infinite number of states (if there are variables with 
infinite domains, such as the integers), abstraction techniques can be used to create 
finite-state versions that are used in model-checking. 

3.3   Aspect Semantics as State Graph Transformations 

An aspect declaration and its binding (known as weaving) to an underlying system 
define  joinpoints or events of the underlying system where the aspect is to be 
activated and aspect code (known as advice) is to be executed. The joinpoints are 
described syntactically using pointcut declarations. Semantically, the weaving of an 
aspect to a system transforms the graph of the original system to that of the 
augmented one. Thus the semantics of an aspect is defined as a transformer of state 
graphs: given the graph of the underlying system, it yields the graph of the augmented 
one. Note that this semantics is neutral about how aspects and weaving are actually 
implemented in an aspect language: systems that in-line aspect code, those that 
capture events and transfer control at run time, as well as languages with other known 
implementation techniques, are all equally valid. 

When an aspect is woven, for each joinpoint in the original system, a transition to 
the beginning of the state machine of the corresponding advice is added. The 
transitions and states generated by applying the aspect advice code are part of the 
subgraph following the joinpoint transition. However, note that objects of the original 
system not related to the joinpoint continue to have enabled operations that can be 
interleaved with those of the aspect code, and that appear in the state graph of the 
augmented system as transitions from states generated by aspect operations (or as 
separate components that have an implicit cross product of local states). 

The semantic picture is clearly influenced by whether the aspect code is intended 
to interrupt the underlying system before, after, or around an event of that system. 



 Aspect Categories and Classes of Temporal Properties 113 

(Note that the terminology of AspectJ is used here, although other aspect languages 
have similar ideas.) If the aspect advice code is intended to execute before the event 
that defines the occurrence of a joinpoint, then the transition to the advice code is 
from the state before the transition corresponding to the joinpoint event, and the 
joinpoint event transition itself is removed at that point, to be inserted later where the 
aspect advice completes. The intention is that the code of the underlying program will 
be continued after the advice completes, but it is not at all clear that the continuation 
is from the local state that previously held before that continuation. Thus the issues 
raised by where to reconnect are discussed as the types of aspects are examined in 
greater detail. The considerations for an aspect intended to occur after an event 
defined by a pointcut are similar, with the transition to the beginning of the advice 
state graph added from the state after the event in the underlying system. When the 
around option is used and the proceed statement occurs in the advice, it is equivalent 
to a before advice, followed by an after advice. When proceed does not occur, the 
advice does not continue from the point in the code at which it was interrupted, so 
there is no return arrow at all. 

A fragment of a generic state graph of an underlying system is seen in Fig. 2a, 
where x represents the state of the original system, while the augmented graph after 
weaving an aspect before the P transition is seen in Fig. 2b. As will be shown later, 
assuming that w is local to the aspect,  the situation described is typical of a spectative 
aspect because the x component is not changed by the aspect transitions, and the P 
transition at the end of the aspect transitions reconnects to the same state as in the 
original, if we ignore w. Note that in this example, there are no independent objects 
 

x=0 x=7 x=2 x=0
w=? 

x=7 
w=? 

x=2 
w=14

x=7 
w=14

x=7
w=7

x=7
w=0

join

 (a) Fragment of original state graph 
                    

           (b) Fragment of augmented state graph  

P P

 

Fig. 2. A fragment of underlying and augmented state graphs 

that would require a cross-product in the augmented state graph. In the augmented 
fragment, w appears in the states corresponding to those of the underlying system, but 
no assertion of the underlying system could have referred to it, since it was not 
defined there. 



114 S. Katz 

The influence of applying aspects from each category to an underlying system can 
now be considered in terms of the state graphs of the original and augmented systems. 
However, first the limits of this approach are described. 

4   Properties Not Inherently Preserved 

There are two types of properties that are not analyzed in the continuation: those not 
in the temporal logic defined earlier over the state space of the underlying or the 
augmented system, and next-state properties. Both of these have properties that are 
not maintained, no matter which category of aspect is considered, and a more 
specialized analysis is needed which is different from the type of semantic reasoning 
used here. 

4.1   Real-Time Properties 

If an aspect or underlying system already explicitly contains clock variables, 
explicitly incremented in code, the framework here can relate to them. However, 
usually this is not the case, and real-time properties that relate to the elapsed time 
expected between two events are not expressible in the classes of temporal logic 
defined in Sect. 2, without special external variables. Time can be introduced either 
using special time or clock variables that automatically are increased with time values 
not explicitly in the code, or by extending temporal logic with additional operators. 
Thus the claims below that automatically extend properties of the original system to 
the augmented one do not apply to real-time properties. This is fortunate, since such 
properties can be influenced by aspects that have joinpoints between those events, and 
thus add the computation of the advice code to the previous computation of the 
underlying system. Clearly, some real-time properties true of the underlying system 
may not be true of the augmented one, no matter how loosely connected the aspect 
functionality is to that of the original system.  

4.2   Next-State Properties 

Moreover, for any category of aspect, assertions about immediately following states 
that were true in the underlying system may not be true for the augmented one if an 
aspect can add advice (that generates new intermediate states). An assertion true in 
the underlying system, such as AG(p => Xq) (meaning, whenever p is true, q is true 
in the immediately following state), will not necessarily remain true if in the 
augmented system an aspect joinpoint can be added immediately after a state where p 
is true.  

In general, assertions using the “next-state” temporal modality X are known to be 
sensitive to refinements or additions, and have therefore been considered problematic 
[21]. In fact, in order to achieve greater abstraction and robustness under refinements, 
it has been suggested that a temporal logic should not be able to “detect stuttering” 
(i.e., repetitions of states). Lamport and others have shown that a temporal logic 
without X or the corresponding “immediately previous” operator cannot distinguish 
among sequences of states that only differ in the number of repetitions of states that 
appear. We thus have the following simple lemma: 



 Aspect Categories and Classes of Temporal Properties 115 

Lemma 1: Any property of the underlying system relating a state and its immediate 
successor or predecessor state (a “next-state property”) is not automatically preserved 
in an augmented system when any aspect code can be applied at a joinpoint including 
the earlier state of the pair related. 

This claim is straightforward because new intermediate states are always generated 
by the advice code.                                                                                                          

5   Spectative Aspects  

A spectative aspect can change the values of variables local to the aspect, but does not 
change either the value of any variable or the flow of method calls of the underlying 
system. New fields and methods can be added to existing classes of the underlying 
system, or new classes can be added, but these will not affect either the potential or 
actual actions of the original system. Each computation path of the augmented system 
has sections of original computation interleaved with sections of new aspect 
computation. The result is always equivalent to temporarily suspending the 
underlying system, recording some information about it, computing new values not 
influencing the underlying system in any way, and then continuing as before. More 
precisely we have: 

Definition: An aspect is spectative if the projection of the augmented state graph 
onto the state variables of the underlying system is identical to the underlying state 
graph, except that the projection contains additional repetitions of states connected by 
edges that correspond to aspect operations. 

The repetitions of states in the projection represent the advice segments, which can 
affect variables local to the aspect, but not those of the underlying system. In Fig. 2b, 
the projection of the augmented system fragment onto x is identical to the original 
fragment in Fig. 2a, except for repetitions of the x=7 state. Note that the projection of 
the augmented state graph could have several subpaths with repeated states branching 
from the state before a joinpoint state and reconnecting at the joinpoint state. This 
could be due to reading input values or branching in the aspect code. However, the set 
of traces (i.e., maximal sequences of states) of the projection is identical to the set in 
the original system except for repetitions of states, and the branching structure of the 
original is also maintained. 

Such a situation might be difficult to detect directly on the state graphs that 
represent the semantics, and which, of course, are usually not generated in practice. 
However, detecting that an aspect is spectative is possible on the code level in most 
aspect languages, using standard type checking and data-flow techniques. For 
spectative aspects the local fields of the aspect are the only ones computed by that 
aspect, and no assignments are made by aspect code to fields or to parameters that can 
be bound to fields, variables, or parameters of the basic system. Care must be taken in 
defining what is “local.” A class and objects or fields declared within the aspect and 
only accessed there are clearly local. In addition, even if a class is declared globally, 
but objects are instantiated and the class methods are used only within the aspect, that 
class is effectively local to the aspect. Moreover, parameters of system methods that 
print values are also considered local to the aspect, because printing a value has no 
 



116 S. Katz 

effect on other values printed. This means that assertions about what is not printed 
may be changed in the augmented system (although positive assertions about values 
printed in the original program are maintained, as will be shown). The aspect code 
cannot “redirect” the flow of execution, and simply adds to the previous system 
without skipping any of its computation. Moreover, the aspect code must be “wait-
free”, i.e., progress of its execution is not dependent on a condition being achieved in 
the underlying system. 

This situation is easiest to detect if all bindings between fields or variables of the 
aspect and the basic system are made through parameters of the aspect. On the other 
hand, when arbitrary binding is possible, for example, by using the same name in both 
code segments, then only when a specific binding has been made can the augmented 
system be analyzed to determine which elements are bound and whether the aspect is 
spectative. In either case, dataflow techniques such as the uses and the defined-use 
pairs of standard code optimization  can be employed to determine whether there is 
any influence of fields in an aspect on those of the basic system (the other direction is, 
of course, not a problem). The possibility of analyzing just the aspect is one argument 
in favor of clearly identifying parameters for weaving, rather than allowing free 
bindings that force global analysis. The generic detection procedure to identify a 
spectative aspect is: 

1. Identify which variables (including parameter names) of the aspect code are bound 
to variables in the underlying system (either by identifying (actual, formal) 
parameter pairs from an aspect instance using its declaration, or by identifying the 
same name in the aspect code and the underlying code, if that is sufficient to bind 
the variables). The set C denotes the aspect variables bound to an underlying 
system variable. 

2. Check that no variable of C is assigned a value by the aspect (appears on the left-
hand side of an assignment in advice of the aspect, or is an actual parameter that is 
assigned a value in an internal method call of the advice code). 

3. Check that each aspect code segment (advice) terminates. Although generally an 
undecidable problem, syntactic special cases often hold, such as identifying 
straight-line code (a basic block, in dataflow terms),  or loop-free segments. 

4. Check that the aspect code does not disable independent underlying operations and 
is wait-free. 

5. Check that the code of the underlying system is resumed at each joinpoint 
identified and the enabling conditions for the underlying operations have not been 
affected. Thus there cannot be exceptions thrown in the aspect code that lead to 
abnormal termination or do not resume the underlying execution at the joinpoint 
from which it was interrupted, and around advice without a proceed is not allowed. 

First, we show that if the generic syntactic checks are made successfully, then the 
aspect is spectative. An aspect can be spectative if bound with before, after, or around 
including a proceed. Here we treat only the before case, since the others are similar. 
Recall that here, as in all subsequent lemmas until Sect. 8, an augmented system is 
treated where a single aspect is woven to an underlying system. 

 
Lemma 2: If the detection procedure above has been applied successfully to an aspect 
and underlying code, the aspect is spectative. 



 Aspect Categories and Classes of Temporal Properties 117 

Proof: From steps 1 and 2 it follows that the advice does not change the variables of 
the underlying system. Thus in the projection of the augmented system to the 
variables of the underlying one, each transition corresponding to operations of the 
advice code leaves the values of those variables unchanged. From step 3 it follows 
that the subsequences corresponding to aspect operations are finite. From step 4 it 
follows that the enabledness of transitions from objects independent of the joinpoint 
in the underlying system is not affected by the aspect operations. Finally, from step 5 
it follows that after the last state resulting from an advice code operation, the location 
in the code of the program counter is at the operation that identified the joinpoint. 
Since the values of the variables of the underlying program are  also unchanged, that 
operation will have the same effect as in the underlying system, so the reconnection 
arrow is to the same state as previously (see Fig. 2). It thus follows that the projection 
of the augmented graph satisfies the conditions in the definition of a spectative  
aspect.                                                                                                                             

 
Fig. 3. Aspect for computing scores 

 
 
Consider the aspect given in Fig. 3. This aspect counts the correct and incorrect 

answers given to questions about fractions in locally declared fields correct and 
wrong. This aspect satisfies all of the conditions above, since it uses the parameters 

 public aspect ScoringAspect { 
 // Inter-type declarations 
 private int RationalExam.correct = 0; 
 private int RationalExam.wrong = 0; 
 // Pointcuts 
 pointcut checkingAnswer(RationalExam exam) : 
  call(void RationalExam.checkAnswer(Rational, Rational)) 
  && target(exam) ; 
 pointcut doingExam(RationalExam exam) : 
  call (void RationalExam.doExam()) && target(exam); 
 
 // Advice 
 after(RationalExam exam) returning (boolean ok):  
  checkingAnswer(exam) { 
  if (ok) 
   exam.correct++; 
  else 
   exam.wrong++; 
 } 
 after(RationalExam exam) : doingExam(exam) { 
 System.out.println("You answered " + exam.correct +" correct answers"); 
 System.out.println("You answered " + exam.wrong +" wrong answers");

 } 
} 



118 S. Katz 

bound to the Exam object, but only changes the local fields, or prints values, and the 
advice code does not wait for any condition to hold. This aspect is therefore 
spectative. Note that even though the termination requirement in item 3 is undecidable 
in general, in this example there are no loops, and only simple system methods, so the 
termination is trivial. 

As another example, an aspect that treats the display of a shape manipulation 
program is often used as a case study for modularization using aspects, as opposed to 
a version without aspects that scatters the display updates in the object code. The 
aspect simply gathers information on the shapes, including joinpoints that occur as 
shapes are changed or moved, and displays them using classes that are effectively 
local to the aspect. Since all of the display updating is now done in the aspect using 
the effectively local display class, the aspect is spectative relative to the underlying 
system performing shape manipulations. Even if the display object is used by other 
parts of the system, if an aspect only locally introduces and maintains a new field in 
the display, it is spectative. 

As will be discussed in Sect. 9, in practical analysis systems for identifying 
spectative aspects, aliasing, inheritance, and polymorphism can significantly 
complicate the analysis. Dataflow and type-safety techniques such as those used in 
static analysis are always conservative, in that if successful, the spectative nature of 
the aspect is guaranteed. If the analysis does not establish that the aspect is spectative, 
but has not revealed a clear violation of the semantic definition, perhaps only a deeper 
semantic analysis is needed. 

Now a key lemma about spectative aspects can be stated and proven, in terms of 
the classes of properties defined earlier and the underlying and augmented state 
graphs. 

Lemma 3: If an aspect is spectative, all safety, liveness, and existence properties of 
the underlying system that are not next-state properties and involve assertions only 
about variables, fields, and methods of the underlying system will not be influenced 
by the aspect, and will also hold in the augmented system. Moreover, every such 
property true of the augmented system was already true of the underlying one. 

 
Proof: By the definition of a spectative aspect, in terms of the variables of the 
underlying system, the projections to those variables of the new states due to the 
advice code of a spectative aspect are identical to the state before the joinpoint 
transition. The subsequences corresponding to states and transitions of the advice are 
finite and reconnect back to the state in the underlying program after the operation 
that activated the joinpoint transition (since a before advice is being considered). 
Because the assertions have no next-state properties, they are insensitive to repetitions 
of states, and thus any such linear or existence assertion true of the underlying system 
and involving only its variables is also true of the projection of the augmented graph. 
Since only variables in the projection appear in the assertions, they also hold in the 
augmented state graph itself. 

No new properties involving only the variables of the underlying system can be 
added by the augmented one because, again, the projection of the state graph of the 
augmented system to the variables of the underlying one differs from the original 
underlying state graph only in the number of finite repetitions of states that already 
 



 Aspect Categories and Classes of Temporal Properties 119 

exist, and such differences cannot be distinguished without including a next-state 
property (i.e., a temporal formula with an X or the corresponding “previous” temporal 
operator).                                                                                                                         

In the example, the underlying system could have invariant properties such as 
G(denominator>0) (i.e., in every state, the denominator is greater than 0). This will 
automatically hold for the augmented system with ScoringAspect, because it is 
spectative. A liveness property such as G(at(setNumerator) => F(at(setDenominator)) 
(i.e., setNumerator is always eventually followed by setDenominator) will also be 
automatically extended to the augmented system, if it was already true of the 
underlying system without the aspect. 

However, it should be noted that implicitly scoped visibility properties such as “the 
value of a field is not visible outside the class” can be violated by spectative aspects, 
even when the properties were previously true of the underlying system. The problem is 
that the assertion of “not visible outside the class” when applied to the augmented 
system involves both the original variables, fields, and methods and new ones added by 
the aspect, and thus is different from the original assertion. Therefore Lemma 3 does not 
guarantee that such a property will be preserved in the augmented system. For example, 
within the aspect code, the value of a (hidden) field X of the underlying system could be 
“made visible” by examining another field Y (added by the aspect) that is given the 
value of X, or by adding public methods, both possible in a spectative aspect.  

New properties of the augmented system that do involve both variables of the 
aspect and those of the underlying system are also easier to verify if the aspect is 
spectative: 

Lemma 4: Invariant properties true of the variables of a spectative aspect, or 
connecting the aspect and underlying variables, can be established for the augmented 
system by separately analyzing the aspect variables not bound to variables of the 
underlying system in the aspect code and the other variables in the underlying code.  

Proof: By the definition of a spectative aspect, variables of the underlying system and 
variables of the aspect bound to those of the underlying system are only changed in 
the underlying system. Moreover, variables of the aspect not bound to those of the 
underlying system are clearly changed only by the aspect advice code. 

If variables of both the aspect and the underlying system are in the assertion, it is 
sufficient to consider separately whether the underlying variables and the aspect 
variables bound to them (which are only changed in the underlying system) maintain 
the invariant, and whether the “local” aspect variables (changed only in the aspect 
code) also maintain the invariant.                                                                                   

Lemma 4 can allow the decomposition of the verification task for the augmented 
system to two smaller problems, especially if model-checking abstraction techniques 
are used. For the visibility property mentioned earlier, for spectative aspects it is 
sufficient to check only the aspect code in order to extend the property to the 
augmented system. Liveness properties added by the aspect, on the other hand, are 
closely connected to the liveness properties of the underlying system, because aspect 
advice is only executed when joinpoints of the underlying system are reached. Thus, 
in general, to establish new liveness properties involving the aspect, the augmented 



120 S. Katz 

system as a whole must be considered.  A simple exception is liveness properties 
involving only the aspect code segments, such as an assertion that each advice 
segment that is initiated will properly terminate without throwing exceptions. 

6   Regulative Aspects 

Regulative aspects can affect the flow of control of the underlying system by 
restricting operations, delaying some operations, or preventing the continuation of a 
computation.  

 
Definition: An aspect is regulative if the projection of the augmented state graph on 
the variables of the underlying system is identical to the state graph of the underlying 
system, except that some states are repeated (with new edges from aspect operations) 
and some edges are removed. States are ignored that become disconnected 
(unreachable) from the augmented state graph with entrance points (external method 
calls). 

 
Note that, as for spectative aspects, a repeated state and added edge can branch off 
from an existing state. In a regulative aspect, that branch might lead to the repeated 
state, but with no continuation from there because edges have been removed. For 
example, in a regulative variant of Fig. 2b, there could be an additional edge from the 
(x=7, w=0) state after the join, to an identical state, but with no continuation edge. 
This would correspond to a branch in the aspect code that prevents the continuation. 
For regulative aspects, each trace of the projection is either a prefix of or the same as 
a trace in the original, except for repetitions of states. As before, the branching 
structure of the original is maintained, except for removed edges. 

 In terms of code, regulative aspects prevent, restrict, or delay some of the actions 
that were possible in the underlying system. However, they cannot simply skip some 
steps in a transaction of the underlying program while continuing to other steps. Then 
a weakly invasive aspect (see Sect. 7) is needed. In a simple case, a regulative aspect 
might make fields or methods private that were previously publicly available. Then an 
external message activating the method would be denied in the augmented system, 
while an internal one would continue to execute as before. If requirements arise to 
restrict access to method calls that were originally unrestricted, a regulative aspect 
might add a parameter with a password or authorization key, along with aspect code 
that continues with the original method only if the password is authorized. When the 
restrictions are only to external method calls, as in the password authorization 
example above, the aspect belongs to the special category of an externally regulative 
aspect.  

In general, regulative aspects enforce additional checks before allowing the 
activation of methods or actions that were not restricted in the underlying system. 
Thus, an aspect might terminate a system if overflow of an integer variable occurs, 
preventing continuations that were previously possible when overflow was ignored. In 
Fig. 4 an aspect is given that restricts initiating an exam (by the method doExam, 



 Aspect Categories and Classes of Temporal Properties 121 

called only externally) to children over the age of 7. Note that the (age < MIN_AGE) 
test corresponds to a branch that terminates with no continuation, while the negation 
continues the original computation. The projection to the variables of the original 
system has a trace with  repetitions of the initial state that has no continuation, and 
another one that is as in the original system, with repeated states. Thus it satisfies the 
conditions for a restrictive aspect. 

Other examples include synchronization or scheduling aspects, such as one that 
enforces mutual exclusion among methods in different objects that were independent 
and could overlap without the aspect. In this case some actions are delayed until new 
synchronization or mutual exclusion conditions are satisfied An aspect that enforces 
mutual exclusion among instances of exams when they wish to print out summaries 
on the same printer (so the printer will be used exclusively by one or the other) is 
regulative in that one of the summaries is delayed until the other completes. The 
edges leading to states where the two printing tasks overlap are removed. 

To detect that an aspect is regulative, we proceed as for a spectative aspect as far as 
determining that variables are independent of assignments in the underlying system, 
but are more liberal about the reconnection properties of the advice code and waiting 
for conditions during the advice. The generic detection procedure for a regulative 
aspect is:  

1. Determine the set C of variables in the aspect that are bound to variables of the 
underlying system. 

2. Check that no variable of C is assigned a value by the aspect. 
3. The aspect code may contain wait conditions and restrict execution of 

previously independent operations of the underlying system, but each advice 
should be shown to terminate if the wait conditions hold.  

4. Check whether one of the following reconnection conditions hold:  
• resume computation of the underlying system at the joinpoint  
• throw an exception that terminates the execution or directly terminate the 

execution of the entire system or of the present transaction 

The possibility of preventing external calls to methods of the underlying system (e.g., 
by adding parameters and checks on them or making methods or fields private) is 
included in the above, as it is viewed as terminating a transaction before it can even 
begin.  

 
Lemma 5:  If the detection procedure above succeeds, the aspect is regulative. 

Proof: For rules 1 and 2, the reasoning is as for spectative aspects. The liberal 
termination policy in rule 3 means that the sections of the graph resulting from aspect 
advice operations should be finite, but might deadlock or terminate, corresponding to 
removing edges to the continuation. The reconnection conditions ensure that no code 
of the underlying system is skipped unless the system terminates or at least completes 
its reaction to the most recent input (in a transaction view). Together these guarantee 
that the projection of the augmented state graph satisfies the conditions in the 
definition of a regulative aspect, and only removes edges or adds repetitions of states, 
including possible branching to repeated states with no continuation.                           



122 S. Katz 

 

Fig. 4. An aspect restricting method activation 

In principle, the syntactic conditions above are too strong, and regulative aspects 
could be allowed to change some variables bound to those of the underlying system, 
but only under conditions that are hard to check statically. The elements of C that are 
given values by the aspects may be bound only to  variables of the underlying system 
that are exclusively used in conditional statements, and the aspect assignments must 
lead to strengthening the condition under which a method is activated. That is, the 
aspect leads to choosing a method in fewer cases than previously (and never to 
choosing one more often). Some of the static analysis or type systems for aspects 
discussed in Sect. 9 also identify special cases of regulative aspects. 

Lemma 6: If an aspect is regulative, all safety properties of the underlying system 
that are not next-state properties and involve assertions only about variables, fields, 
and methods of the underlying system will not be influenced by the aspect, and will 
also hold in the augmented system. Liveness and existence properties are not 
automatically preserved. 

Proof:  In terms of the state graph of an augmented system with a regulative aspect, 
relative to the state graph for the underlying system, the projection described for 
spectative aspects applies, except that some edges are removed. In particular, some 
potential entrance points (external method calls) are restricted or closed compared to 
the graph of the underlying system, and some arrows are simply removed, but no new 
ones are added except between repetitions of states in the original graph. Note that if 
an operation of the original computation were simply skipped, an arrow would be 
added from the state before the removed operation to the state now reached by doing a 
step in the continuation, which is forbidden for a regulative aspect. However, it is 
possible for the aspect advice to delay some actions by waiting for a global condition 
involving underlying variables, as in the mutual exclusion example. The other actions 
that are meanwhile executed could have occurred by chance before the delayed one, 

public aspect AgeRestrictionAspect { 
 private static final int MIN_AGE = 7; 
 // Pointcuts 
 pointcut doingExam(RationalExam exam) : 
  call (void RationalExam.doExam()) && target(exam); 
 // Advice 
 void around(RationalExam exam) : doingExam(exam) { 
  System.out.print("Hello, how old are you? "); 
  int age = Integer.parseInt(getInput()); 
  if (age < MIN_AGE) { 
   System.out.println("You're too young for fractions"); 
   return; //returns without doing the exam 
  } 
  proceed(exam); //proceeds with the exam when old enough 
 } 
 



 Aspect Categories and Classes of Temporal Properties 123 

so only some interleavings are eliminated, and no new traces are added relative to the 
underlying system, except for repetitions. The remaining computations maintain the 
partial order among operations that are not independent. 

That is, in the semantic view, the state graph of a regulative aspect  prunes edges 
from the computation graph of the underlying system (along with adding transitions 
and state only involving aspect variables, as for spectative aspects). The projection of 
the augmented graph onto the variables of the underlying system is an edge-pruned 
version of the original underlying computation graph, along with repeated states. Any 
safety property true of the original graph has the form AGp where p only relates to the 
history. Since the history of each state in the projection of the augmented system is 
identical to the history in the original system except for repetitions of states that 
already appear, and the assertion has no next-state operators, it will be true of the 
states in the augmented system if it was true of the states in the original one. 

Liveness or existence properties need not be preserved by regulative aspects, since 
states previously reached may be inaccessible both in the augmented system and in 
the pruned graph with repeated states that is the projection of the augmented system. 
Thus a computation that existed in the underlying system may be interrupted in the 
augmented one, and a state that eventually occurred in the original may not appear in 
the pruned version.                                                                                                          

Recall that for spectative aspects, no new properties involving only the variables of 
the underlying system can be added in the augmented one. However, for regulative 
aspects, besides maintaining safety properties already true, there can be new safety 
properties even involving only the variables of the underlying system. 

Lemma 7: An augmented system with a regulative aspect can have additional safety 
properties involving only the variables, fields, and methods of the underlying system 
that were not true in the underlying system.  

Proof: As seen above, in an augmented system with a regulative aspect some system 
states of the original system can be unreachable. Thus, for example, new invariants 
may hold for all reachable states of the augmented system even if they did not hold 
for some states of the underlying one, because the problematic states become 
unreachable in the augmented system. In fact, one of the reasons for weaving a 
regulative aspect into an underlying system is to eliminate problematic states (that 
violate desired invariants) by making them unreachable in the state graph of the 
augmented system.                                                                                                          

In Fig. 5a, a fragment of an original state graph with state variables X and Y shows 
independent operations a and b, perhaps activated from different objects. The 
operation a increments X by one, while b does the same for Y. In the augmented 
version, a state component of the aspect, S, is added, to restrict which operations are 
allowed, yielding the augmented state graph in Fig. 5b. This fragment satisfies the 
conditions for a regulative aspect, because in the projection of Fig. 5b to X and Y, the 
first state of the original is repeated, and the edge labeled b is removed, making the 
state (X=1, Y=1) unreachable, so it can be removed. In the augmented version, the 
invariant G(X > Y) is true, while in the original it is not. 

 
 



124 S. Katz 

X=1
Y=0
S=?

X=1
Y=0

S=‘a’

X=2
Y=0

S=‘b’

X=2
Y=1
S=?

join

a

b

X=1
Y=0

X=2
Y=0

X=1
Y=1

X=2
Y=1

a

a

b

b

(a) Original fragment (b) After regulative aspect 

 

Fig. 5. State graph fragments for a regulative aspect 

For an example of a regulative aspect that adds a mutual exclusion property by 
introducing a local mutex object, the invariant G(~(in(crit1) /\ in(crit2))) (meaning, in 
every state, we are not both in critical section 1 and in critical section 2 at the same 
time) becomes true in the augmented system, even though it did not hold in the 
original system. States where it did not hold in the original system have been 
eliminated from the state graph of the augmented one by preventing the transitions 
that lead to a violation. 

Lemma 8: If a regulative aspect only restricts external method calls from outside the 
original system and is thus externally regulative, then existential properties may not 
be preserved, but all safety and liveness properties preserved by a spectative aspect 
are also preserved for a resultant augmented program with such a regulative aspect.  

Proof: In this case, only potential computations are limited, but all safety and liveness 
properties within the system (about the state graph of the original or augmented 
system) are maintained. Since the environment cannot be forced to actually make a 
particular method call even in the original system, there could not have been a 
liveness property that guaranteed its occurrence.                                                            

 
For example, the aspect restricting initialization of an exam on fractions is externally 
regulative. Thus it does not influence any of the internal safety or liveness properties, 



 Aspect Categories and Classes of Temporal Properties 125 

but does mean that there will not be any computations where the age of the user is 
declared to be under 7. 

7   Invasive Aspects and Partial Analysis 

7.1   Weakly Invasive Aspects 

Invasive aspects do change the values of variables in the underlying system. Thus, in 
principle, they could completely invalidate any property that held previously in the 
underlying system. Nevertheless, in many situations invasive aspects change the 
underlying system in restricted ways suitable for detection and exploitation. The basic 
question about an invasive aspect is how it reconnects to the computation from the 
underlying system. This will influence the extent to which the aspect influences the 
continuation of the computation. Even for a before aspect, although the code of the 
underlying system continues executing after the advice, the advice may have created a 
new state that did not exist in the underlying system. Thus in the augmented system 
even the code from the underlying system can continue to create an entirely new 
subgraph whose properties are unknown. In this situation it seems difficult to avoid 
having to consider the entire augmented system at once. An interesting special case 
can help alleviate the difficulty. 

Definition: An aspect is weakly invasive if in the state graph of the augmented 
system, transitions that correspond to operations from the underlying system begin in 
states that already existed in the state graph of the underlying system (perhaps for 
different inputs from those in the augmented system). 

It follows that advice transitions end in states that were in the original state graph, at 
least whenever an underlying operation can then be executed. Although it can be 
difficult to identify when an aspect is weakly invasive only using static analysis, there 
are special cases where this is possible. Otherwise, the user can simply declare that 
the aspect is weakly invasive, for cases where this is obvious. For example, an aspect 
may identify conditions (joinpoints) at which it is necessary to reset the underlying 
variables to some fixed values that also occur in the underlying system without the 
aspect. In a transaction control system, an aspect can be used to record values and 
later rollback the computation to the earlier state with the recorded values when a 
transaction cannot be completed. In an aspect to impose a discount policy for prices, 
the prices are changed, but the continuation is equivalent to one in which the price 
was originally set to the value now obtained through the discount policy. All of these 
can be identified as weakly invasive aspects. 

In Fig. 6, an aspect that changes the values chosen for the arithmetic operations on 
fractions to reduced fractions is outlined. The partially specified pointcut identifies 
where new values are given to a fraction, and a method to reduce them is then 
activated before continuing. (Details of the method reduce which performs the 
reduction, and thus changes the value of the fraction, are not shown.) This aspect is 
weakly invasive because the original choice of values might already be reduced, so 
the state reached is a possible state of the original system. 

 



126 S. Katz 

 

Fig. 6. An aspect to reduce fractions 

Lemma 9: If an aspect is weakly invasive, then an invariant true for the underlying 
system can be proven to hold for the augmented system by assuming it true at the 
beginning of each aspect advice, and showing it true for each state generated during 
the execution of the advice.  

Proof: By induction on the joinpoints reached in any computation of the augmented 
system. To base the induction, the invariant is true in all states until the first joinpoint 
is reached, since only states of the underlying computation are reached. For the 
general case, assume the invariant is true until a joinpoint is reached.  If the invariant 
then also holds for all states generated by the advice code until the computation 
reconnects to a state that was in the underlying one, then it will continue to hold until 
the next joinpoint because it is true in all states of the underlying state graph.             

 
The implications of this lemma are that to extend an invariant to an augmented system 
for a weakly invasive aspect, the original system does not have to be rechecked, and 
the entire augmented system does not have to be considered at once. It is sufficient to 
reason only about the much smaller state graphs that correspond to the advice of the 
aspect. Since the lemma holds for global invariants, it clearly also holds for class 
invariants, invariants at a location, and partial correctness assertions, since all these 
can be expressed as a global invariant. 

In the weakly invasive ReductionAspect, above, if an invariant G(denominator>0) 
was true of the original system, then to extend it to the augmented system it is 
sufficient to show that it is maintained by the reduce method. 

Note that general safety properties do not have to be extended to augmented 
systems with weakly invasive aspects, even when the property holds within the aspect 
state graph, because the history of how a state is reached can be different in the 
underlying and in the augmented system. For example, a safety property “a state 
satisfying P is always preceded by a state in the history satisfying Q” could be true for 
the underlying system, and could hold for the state graph of the aspect itself, and yet 
not be true in the augmented system. This could be because the reconnection is to a 
predecessor of a state satisfying P, and yet Q is not true anywhere in the new history 
including the aspect. Moreover, liveness and existence properties are also not 
similarly extended to the augmented system with weakly invasive aspects, and there 
does not seem to be such a clean separation of reasoning, because states from the 
underlying system can be skipped or made unreachable in the augmented system.  

public aspect ReductionAspect { 
 // Pointcut 
 pointcut rationalChanging(Rational r) : 
  (call (void Rational.set*(int)) || …) && target(r); 
 
  // Advice 
 after(Rational r) returning : rationalChanging(r) { reduce(r); } 



 Aspect Categories and Classes of Temporal Properties 127 

7.2   Identifying Independence for Invasive Aspects 

Another direction for simplifying reasoning for invasive aspects considers the degree 
of invasiveness. In other words, the aspect usually will only affect some of the 
variables in the underlying system, and identifying independent parts can allow 
simplifications similar to those for spectative and regulative aspects. A variable x of 
the underlying system is independent of an aspect if no variable that is assigned 
values in the aspect code is bound to x and all variables used in the computation of  x 
or that influence conditionals that control basic blocks with assignments to variables 
that influence x, are also independent of the aspect. As previously, standard dataflow 
techniques from optimizations in compilers can be used to detect independence in 
many cases. 

Lemma 10: An invariant property of the underlying system that does not include a 
next-state property and only includes variables independent of an aspect is maintained 
in an augmented program with that aspect woven into the underlying program.  

Proof:  Due to the definition of “independent”, even an invasive aspect does not 
influence any of the computation that affects the values of the independent variables 
in the invariant property, and does not add any new computation affecting those 
variables. This includes not influencing the control flow of assignments to the 
variables in the invariant. An invariant only relates those values within each state. 
Thus the invariant property is also true in the augmented system.                                 

Note that general safety properties could be affected because of changes in the 
history. Stronger notions of independence could be defined to treat such cases, but 
may be difficult to establish through syntactic analysis. 

7.3   Verifying Inductive Invariants for Invasive Aspects 

When an invariant of the underlying system involves variables that are changed by the 
aspect, or the invariant includes variables from both the aspect and the underlying 
system, a simplified verification is nevertheless possible for a restricted class of 
invariant properties. Consider extending an invariant that was true of an underlying 
system when the aspect applied is (strongly) invasive, i.e., changes the values of 
variables in the underlying system, redirects control, and need not resume executing 
the code of the underlying system where it was suspended. If the invariant is what is 
known as “inductive”, it can be shown to also be an invariant of the augmented 
system by only checking the advice, even without analyzing in what situations the 
aspect code will be applied and without rechecking the code of the original system.  

An invariant I is inductive  if {I} s {I} can be shown directly for each individual 
step s, without any knowledge of the state before the step s except that it satisfies I. In 
some sense, it means that the assertion is “self-contained”, and by assuming just itself, 
a proof can be constructed to show that it is reestablished after each step. Note that 
even states that do not occur in the system but for which I is true are sufficient 
preconditions to guarantee I after s is executed.  

 



128 S. Katz 

In this situation, to establish that I is also an invariant of the augmented system, 
it is sufficient to check that each aspect action t also satisfies the same assertion 
{I} t {I}. For example, consider a situation where x>y>0 is an invariant of a system, 
and an aspect has changes of the form: 

<complex>  double (x,y),

where <complex> is a complex condition for applicability, and double(x,y) doubles 
the values of x and of y. Then we easily have 

{x>y>0} double(x,y) {x>y>0}, 

extending the invariant to the augmented system, even though only the aspect code 
was newly analyzed, and when it is applied was ignored.  

Assume that the invariant G(denominator>0) was inductive for the fractions 
system, i.e., it was provable for each step of the original system only assuming itself. 
Then even if the reduce method in the above example could introduce negative 
fractions that were not treated in the original system, only the aspect advice must be 
newly checked. Note that the aspect now is strongly invasive, since states not in the 
original system are generated at the end of the advice, and the exact effect of applying 
code of the basic system to these new states is unknown. Still, the new resultant states 
will satisfy the invariant. On the other hand, if the invariant was not inductive, in the 
original proof the fact that the fractions were nonnegative may have been true before 
some step and used to help establish the invariant after the step. In that case a new 
proof is needed for the entire augmented system now that the aspect introduces new 
states. 

To summarize this discussion: 

Lemma 11: If an invariant has been shown to be inductive, and proven for an 
underlying system by only using the invariant itself as an assumption (i.e., with 
assertions  {I} s {I} in Hoare logic notation, for each statement s of the original 
system), then the invariant can be extended to hold for an augmented system with an 
invasive aspect, by proving {I} t {I} for each statement t only of the aspect code, 
without reconsidering the original system.  

Proof: Since I is already known to be an invariant of the original system, it is true of 
the augmented system whenever the aspect is first applied, even without analyzing the 
joinpoints. By induction, it is easy to see that I will hold whenever some t action is 
taken from the code of the aspect, and it is proven that if I holds, then it will again 
hold after t, for any state. Thus, I is an invariant of the augmented system, even 
without rechecking the original code.                                                                             

8   Interference Among Aspects 

So far, the relation has been considered between an underlying system and an 
augmented system with a single aspect added to the underlying one. However, most 
augmented systems have multiple aspects applied to them, and the issue of whether 
these aspects interfere with each other is of obvious concern. Several compositions of 
aspects are possible, as described in [27]. In some cases, there is a clear ordering 
among the aspects to be applied. In effect, a later aspect is actually applied to the 



 Aspect Categories and Classes of Temporal Properties 129 

augmented system obtained after applying an earlier aspect. In this case the joinpoints 
of the later aspect may include events generated by the earlier one. The treatment in 
earlier sections, of a single aspect woven to an underlying system, may be used 
iteratively. That is, once the properties of an augmented system with one aspect have 
been established, possibly using the lemmas above, it can be considered as an 
underlying system relative to another aspect. However, the syntactic analysis to 
determine possible interactions becomes more complicated. Program slicing for 
aspects, as seen in the following section, can be used to determine the category of 
aspect relative to an underlying system that itself has aspects. 

In other situations, several aspects are to be applied independently only to the 
underlying system. In this case we clearly do not want any direct binding of variables, 
objects, methods, or parameters local to one aspect to those elements of another 
aspect. This also can be enforced syntactically, and checked. Still, when pointcuts of 
several aspects define the same joinpoints, and parameters of more than one aspect 
are bound to the same underlying variable, indirect (usually unintended) connections 
can occur. From the property preservation claims seen earlier, we have: 

Lemma 12: If there are no direct bindings among aspects, spectative aspects can be 
applied in any order without influencing safety, liveness, or existence properties of 
the result. Spectative aspects should be applied before restrictive or invasive ones, and 
will not influence their safety,  liveness, or existence properties.  

Proof: An augmented system with a spectative aspect resumes from the state of the 
joinpoint after executing advice, since only new variables of the aspect are changed. 
Moreover, the assumptions of an aspect specification about the underlying program 
and joinpoints to which that aspect may be applied only relate to variables of the 
underlying program and local variables of that aspect. Therefore, the assumptions of 
any aspect B will not be influenced by applying a spectative aspect A first, even at 
joinpoints where both are activated. Since the aspect is presumed correct when woven 
over any underlying system satisfying its assumptions, it remains correct relative to its 
specification when a spectative aspect is applied previously.                                        

For multiple regulative or invasive aspects, their order of application changes the 
semantics (i.e., the resultant computation graphs of the augmented systems may be 
different for different orderings). As previously, a finer analysis of partial 
independence can be made to determine allowable orderings. 

9   Related Aspect Categories and Static Analysis Tools 

Additional categories of aspects have been defined in several works. Although in [6] a 
tool was not developed, that work defines an observer aspect (roughly similar to a 
spectative one). It also points out difficulties of aliasing that can complicate syntactic 
static analysis of code to determine whether an aspect is an observer and suggests a 
development methodology using observers. In [17], an aspect is defined to be harmful 
if it invalidates any desired properties of the system to which it is applied. As seen in 
the lemmas, one way to exploit the categories in this paper is to help determine 
whether desirable properties true of the underlying system are still true in the 
augmented one. Clearly, the categories here can help in automatically detecting 



130 S. Katz 

whether there is any danger of harmful aspects, once the specification properties are 
identified as belonging to the appropriate classes of temporal logic properties. Then a 
system can be unaware of, or oblivious [11, 12] to, the particular aspects to be applied 
to it, but its specification can nevertheless restrict new aspects to those that do not 
violate key properties, so that the system specification can influence which aspects are 
woven. The obliviousness of the system is thus slightly restricted. 

Several works have concentrated on automatic identification of aspect categories 
either based on static code analysis for aspects using dataflow, or with transformation 
rules that allow deriving only aspects of a desired type. The code analysis system for 
a simplified aspect language seen in [26] is intended primarily for code optimization, 
but the information gathered can also be (and has been) used by the authors to identify 
spectative aspects. Similarly, in [29] an extensive interference analysis is made for 
real Java and AspectJ-like programs, emphasizing the complications introduced by 
inheritance and multiple instances. Again, the result is the effective syntactic 
identification of spectators/observers and nonoverlap among aspects (which is there 
called interference-freedom). 

In [25] finer distinctions are defined, but the basic categories resemble those 
already described. That work concentrates on determining the relations between an 
aspect and a method of the underlying system. If they are orthogonal, the two access 
disjoint fields, if they are independent  neither writes to a field that the other may read 
or write (but both may read the same field), in an observation relation the advice may 
read fields that the methods may write, actuation means that the advice may write to a 
field that the method may read, but they are otherwise independent, and interference 
means that both may write to the same field. If the aspect code segments can also be 
shown to always terminate and not redirect control, the first three correspond to 
spectative aspects. Otherwise, if basic code is not skipped, they are regulative. The 
later two categories are invasive, but could be further analyzed to identify special 
cases of weakly invasive aspects. The tool described in [25] uses standard dataflow 
techniques for AspectJ over Java, and numerous sample programs have been 
analyzed. 

There is also considerable work [1, 2, 33] on extending well-known programming 
slicing techniques based on dataflow to aspects. These are used to identify the extent 
of influence of an aspect on the underlying system, and to identify potential conflicts 
among aspects. In effect, any potential interactions or conflicts are identified. Such 
techniques can also be used to reduce the size of the model that must be analyzed 
when model-checking techniques are to be applied. In [2] an implemented slicing 
system for AspectJ is presented to identify the influence of each aspect. Similar ideas 
to detect interference has been undertaken for Composition Filters with the Compose* 
analysis system [23]. 

Although the systems above do not explicitly deal with families of properties, they 
are usually demonstrated on spectative aspects as tests. However, many of them either 
ignore or simply assume termination of the aspect code (some assume straight-line 
code). Generally, the code of the basic system is resumed from the joinpoint after the 
aspect advice, and thus the aspects are shown regulative. Lemma 6 is therefore 
applicable, which means that safety properties are necessarily extended to the 
augmented system if they held in the original, but liveness might not be preserved.  



 Aspect Categories and Classes of Temporal Properties 131 

Correctness-preserving transformation systems guaranteeing that only aspects of a 
particular type are generated are another approach to establishing aspect categories. 
An abstract transformational theory is presented in [10] to prevent interference among 
aspects (discussed in Sect. 8), emphasizing pointcut conflicts  for event-based aspects. 
In [8] a type system and transformation rules are presented to guarantee harmless 
advice. This is defined as advice that does not change the final values produced by the 
original system, if the augmented system still terminates normally. In the terms here, 
partial correctness properties are preserved. Since the rules are informally described 
in their papers as guaranteeing regulative aspects, it is likely that their results can be 
extended to general safety properties, again using Lemma 6. 

In [19] aspect-aware interfaces are suggested as a weakening of obliviousness, on 
the code level. The aspects activated in a module are explicitly identified in these 
interfaces so that the effects of method activations can be more easily understood for 
modularity and analysis purposes. Although the construct is orthogonal to the 
semantically defined categories in this paper, it can help in the syntactic identification 
of aspect categories by making the connections among aspects and objects more 
explicit and isolating the effect of advice to parts of the underlying system. In [30] 
and [13] crosscut programming interfaces are introduced to help modularize and 
decouple aspects from the implementation details of the underlying system when 
defining pointcuts. These also provide a convenient mechanism for specifying aspects 
through preconditions and postconditions, supporting the assume–guarantee 
specifications suggested in Sect. 2.  

In [20] aspect advice represented directly as a state transition graph is model-checked 
to extend properties proven true for the original system to the augmented one. They 
assume that the advice reconnects to the state transition graph of the original system at 
the joinpoint. However, they do not identify parts of the statespace local to the aspect. If 
the changes made by the advice are to parts of the state not used in the original system, 
the aspect would be spectative, and the model check is extraneous, since all relevant 
properties are maintained. If the original state variables are changed, they must be 
changed back to the original values before ending the advice, by assumption. In that 
case, their aspect is weakly invasive, and Lemma 9 applies, justifying a model check of 
only the aspect state graph, as they also show. 

10   Summary 

The categories of aspects, the procedures for their identification, and the semantic 
influence of aspects from each category on classes of properties provide the basis for 
a code-analysis module for aspects. The distinction between the semantic definitions 
of the categories and restrictions sometimes needed in order to syntactically determine 
to which category an aspect belongs can be seen by considering whether the aspects 
can contain “call-backs” to methods of classes already declared in the original system, 
beyond a proceed statement. The absence of such method calls can be easily 
determined by static analysis, and may help in determining that the aspect is, for 
example, spectative. However, there is no real semantic problem with such calls. As 
seen in Sect. 6, a class declared in the original system may have objects effectively 
local to the aspect. Moreover, even for objects defined and used in the original 



132 S. Katz 

system, methods that only return values can be activated by spectative aspects, to 
obtain information not explicitly in the pointcut definition. Only methods that change 
values in the original object, or change the conditions under which method calls in the 
original program may be activated are forbidden. Similar considerations hold for 
regulative and weakly invasive aspects. 

The goal of full specification and verification of aspect-oriented systems is still 
important. But even when specifications of aspects are difficult to express for 
nonfunctional concerns, and a full verification may be difficult, identifying categories 
of aspects through syntactic analysis is a valuable exercise. A significant 
improvement in code reliability and quality can be obtained at a relatively low cost, 
especially when specifications of the underlying system and the aspects are available, 
or at least the classes of properties needed to express desired features are understood. 
Proper language design for aspects, with local variables and parameterization, can 
help extend the static analysis of only the aspect code, either for classes of properties 
and for every possible weaving, or by reanalyzing only the aspect for each weaving. 
Even for invasive aspects, partial syntactic analysis can be useful and can ease the 
task of establishing the properties of the augmented system. 

As the level of interference of the aspect increases, from spectative, to regulative, 
to weakly invasive, to strongly invasive, the classes of properties which are 
automatically extended or have modular proofs become successively smaller. Thus, 
for spectative aspects all safety, liveness, and existence properties without next-state 
properties are maintained, while for regulative ones, just safety properties are 
automatically maintained. For weakly invasive aspects, safety properties are not 
maintained, but any invariants of the underlying system can be extended to the 
augmented one by only checking the advice. Finally, for strongly invasive aspects, 
only the restricted class of inductive invariants can be modularly extended to the 
augmented system.  

As already noted, syntactic checks to determine the category of aspect use dataflow 
techniques also seen in code optimizations, and therefore should be incorporated into 
the compilation and optimization of aspect languages. In addition to the analysis 
systems already developed, detection of the new categories of externally regulatory 
and weakly invasive aspects seems valuable, since they both are practically 
widespread, and significantly easier reasoning about properties is possible for 
augmented systems with aspects in these categories.  

A tool for static analysis to determine aspect categories could connect to further 
analysis, testing, or verification tools (e.g., [16] or [20]) by determining the easiest 
verification techniques to extend properties from the underlying system, establish new 
properties, or further analyze the system when a conservative analysis indicates 
possible interferences that may not occur in practice.  

Acknowledgments 

I would like to thank the referees of this paper for their valuable and constructive 
comments. I also acknowledge support from AOSD-Europe, a Network of Excellence 
in the FP6 IST of the European Union. 



 Aspect Categories and Classes of Temporal Properties 133 

References 

[1] D. Balzarott and M. Monga. Using program slicing to analyze aspect-oriented 
composition. In: Foundations of Aspect Languages (FOAL) Workshop Associated with 
AOSD, 2004 

[2] D. Balzarotti, A.C. D’Ursi, L. Cavallaro, and M. Monga. Slicing AspectJ woven code. In: 
Foundations of Aspect Languages (FOAL) Workshop Associated with AOSD, 2005  

[3] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. μabc: A minimal aspect calculus. In: 
CONCUR 2004, LNCS vol. 3170, Springer, Berlin Heidelberg New York, 2004 

[4] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using 
branching-time temporal logic. In: Workshop on Logics of Programs, LNCS vol. 131, 
Springer, Berlin Heidelberg New York, pp. 52–71, 1981 

[5] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking, MIT Press, Cambridge, MA, 
1999 

[6] C. Clifton and G. Leavens. Observers and assistants: a proposal for modular aspect-
oriented reasoning (also, modified as Spectators and assistants: enabling modular aspect-
oriented reasoning). In: Foundations of Aspect Languages (FOAL) Workshop 2002, Iowa 
State TR02-10, 2002 

[7] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM 
Transactions on Programming Languages and Systems, 19(2):253–291, 1997 

[8] D. Dantas and D. Walker. Harmless advice. In: POPL: 33rd ACM Symposium on 
Principles of Programming Languages, 2006 

[9] B. Devereux. Compositional reasoning about aspects using alternating-time logic. In: 
Foundations of Aspect Languages (FOAL) Workshop Associated with AOSD, 2003 

[10] R. Douence, P. Fradet, and M. Sudholt. Trace-based aspects. In: M. Aksit, S. Clarke, T. 
Elrad, and R. Filman, (eds.) Aspect-Oriented Software Development, Addison-Wesley, 
2004 

[11] R.E. Filman and D.P. Friedman. Aspect-oriented programming is quantification and 
obliviousness. In: OOPSLA: Workshop on Advanced separation of Concerns, 2000 

[12] R.E. Filman. What is AOP, Revisited. In: Workshop on Advanced Separation of 
Concerns, 15th ECOOP, 2001 

[13] W. Griswald, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and H. Rajan. Modular 
software design with crosscutting interfaces. IEEE Software, 23:51–60, 2006 

[14] J. Hatcliff and M. Dwyer. Using the Bandera tool set to model check properties of 
concurrent Java software. In: CONCUR2001, LNCS vol. 2154, Springer, pp. 39–58, 2001 

[15] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-oriented programs. 
In: ECOOP 2003, LNCS vol. 2743, Springer, pp. 54–73, 2003 

[16] S. Katz and M. Sihman. Aspect validation using model checking. In: Symposium on 
Verification in honor of Zohar Manna, LNCS vol. 2772, Springer, pp. 389–411, 2003 

[17] S. Katz. Diagnosis of harmful aspects using regression verification. In: Foundations of 
Aspect Languages (FOAL) Workshop Associated with AOSD, 2004 

[18] G. Kiczales et al. An overview of AspectJ. 16th ECOOP, 2001 
[19] G. Kiczales and M. Mezini. Aspect-oriented programming and modular reasoning. In: 

Intl. Conference on Software Engineering (ICSE), pp. 49–58, 2005 
[20] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect advice modularly. In: 

Foundations of Software Engineering (FSE) Conference, pp. 137–146, 2004 
[21] L. Lamport. What good is temporal logic?. In: IFIP 9th World Congress, pp. 657–668, 

1983 



134 S. Katz 

[22] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems—
specification, Springer, Berlin Heidelberg New York, 1991 

[23] I. Nagy, L. Bergmans, and M. Aksit. Declarative aspect composition. In: SE Properties of 
Languages and Aspect Technologies (SPLAT) Workshop of AOSD04, 2004 

[24] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the Hyperspace 
approach. In: M. Aksit (ed.) Software Architectures and Component Technology, Kluwer 
Academic, Dordrecht, 2001 

[25] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for aspect-
oriented programs. In: Foundations of Software Engineering (FSE) Conference, 2004 

[26] D. Sereni and O. de Moor. Static analysis of aspects. Aspect-Oriented Software 
Development (AOSD), pp. 30–39, 2003 

[27] M. Sihman and S. Katz. Superimposition and aspect-oriented programming. The 
Computer Journal, 46:529–541, 2003 

[28] H.B. Sipma. A formal model for cross-cutting modular transition systems, In: 
Foundations of Aspect Languages (FOAL) Workshop associated with AOSD, 2003 

[29] M. Storzer and J. Krinke. Interference analysis for AspectJ. In: Foundations of Aspect 
Languages (FOAL) Workshop, 2003 

[30] K. Sullivan, W.G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and H. Rajan. 
Information hiding interfaces for aspect-oriented design. In: European Software 
Engineering Conference/Foundations of Software Engineering (ESEC/FSE), pp. 166–
175, 2005 

[31] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In: ICFP’03, ACM, 
NewYork, pp. 127–139, 2003 

[32] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic join points 
in aspect-oriented programming. Transactions on Programming Languages and Systems 
(TOPLAS), 26(5):890–910, 2004 

[33] J. Zhao. Slicing aspect-oriented software. IEEE International Workshop on Programming 
Comprehension, pp. 251–260, 2002 



An Overview of CaesarJ

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann

Darmstadt University of Technology, D-64283 Darmstadt, Germany
{aracic, gasiunas, mezini, ostermann}@informatik.tu-darmstadt.de

Abstract. CaesarJ is an aspect-oriented language which unifies as-
pects, classes and packages in a single powerful construct that helps to
solve a set of different problems of both aspect-oriented and component-
oriented programming. The paper gradually introduces the concepts of
the language and illustrates them by showing how they can be used for
noninvasive component refinement and integration, as well as for devel-
opment of well modularized flexible aspects. In this way we demonstrate
that the combination of aspect-oriented constructs for joinpoint intercep-
tion with advanced modularization techniques like virtual classes and
propagating mixin composition can open the path towards large-scale
aspect components.

1 Introduction

Aspect-oriented programming is mostly perceived as a technology for localizing
crosscutting concerns by means of a mechanism to intercept execution at relevant
events in order to trigger aspect-specific functionality. More recently [1,27,44],
more attention has been given to other software engineering properties attributed
to good modularization such as robustness against changes, well-defined inter-
faces and information hiding, or reusability.

CaesarJ1 is an aspect-oriented language with strong support for reusability.
It combines the aspect-oriented constructs, pointcut and advice, with advanced
object-oriented modularization mechanisms. From an aspect-oriented point of
view, this combination of features is particularly well-suited to make large-scale
aspects reusable—one can say it enables aspect components. From a component-
oriented view, on the other hand, CaesarJ addresses the problem of integrating
independent components into an application without modifying the component
to be integrated or the application.

In this paper, we will give an overview of CaesarJ’s features. Previous pub-
lications have focused on one of the viewpoints in isolation when presenting
CaesarJ features. In [37], the language features that are relevant to component
integration have been discussed, while the focus in [38] has been on features
for improving the modularity and reusability of aspect code. This paper unifies
the two viewpoints mentioned above and is the first comprehensive overview of
CaesarJ. In particular, we will show how enabling reusable large-scale aspect
components and supporting noninvasive integration of independently developed
1 CaesarJ can be downloaded from caesarj.org.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 135–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



136 I. Aracic et al.

components are actually facets of the same problem, which can be addressed by
the same set of language features. By doing so, the paper also contributes an
in-depth presentation of CaesarJ features that have not or have only sparsely
been discussed in previous works in their interplay with the rest of the language.

The structure of the paper is as follows. In the next section, we illustrate the
problem we want to address with a concrete example and give a rough overview
of how a solution to this problem in CaesarJ would look. In Sect. 3, we intro-
duce the main module construct of CaesarJ—a generalized notion of classes
that unifies them with the notion of packages (in terms of sets of collaborating
classes) and aspects—and demonstrate how it can be used to capture, extend
and compose large-scale software components. In Sect. 4, we show how CaesarJ
addresses the crosscutting integration problem by providing means for reconcil-
ing independently modularized parts of a system. In Sect. 5, we introduce the
notion of dynamic aspect deployment, a flexible mechanism that enables control
over the scope in which an aspect component is active. The implementation of
CaesarJ as an extension of Java [2] that produces JVM-compatible bytecode
is outlined in Sect. 6. Related and future work is described in Sects. 7 and 8,
respectively.

2 Problems Addressed by CaesarJ in a Nutshell

This section briefly surveys the limitations of mainstream object-oriented (OO)
programming that CaesarJ addresses, so as to establish the frame within which
to understand the in-depth technical discussion in the following sections. It does
so by an example that will subsequently be used throughout the paper.

2.1 Large-Scale Units of Modularity Beyond Individual Classes

A significant body of research has raised the concern that classes are too small
a unit of modularity [15, 36, 43, 48, 50]. We think that any large-scale piece of
functionality involves a group of related classes; hence, abstraction, late-binding
and subtype polymorphism should be supported at the level of groups of inter-
related classes. Different terminology has been used in the literature to denote
such groups of interrelated classes, such as collaborations [22, 32, 36,43,53], lay-
ers [43,48], teams [22] and families [14]. In this paper, the notion of a group of
interrelated classes corresponds to that of a class family [14]. Hence, this term
will be used.

To illustrate the need for carrying over the notions of abstraction, late bind-
ing and subtype polymorphism to the level of class families, consider the class
diagram in Fig. 1. It shows the structure of a software for displaying hierarchical
data structures (see the screenshot in Fig. 2). As indicated by Fig. 2, the data
model assumed by the display component is one of a composite structure, where
nodes are randomly labeled childA, childB, etc. The implemented layout is one
in which boxes displaying nodes in the hierarchy have a fixed size, independent
of the length of the displayed text; connections between nodes are shown as
straight lines between the middle points of the boxes.



An Overview of CaesarJ 137

calculateLayout(..)
draw(g)
refresh()

HierarchyDisplay

getText()
textFits(text)
calculateLayout(..)
positionNode(..)
initShape(pt)
draw(g)

shape: Shape

Node

getChildAt(index)
getChildCount()
calculateLayout(..)
draw(g)

CompositeNode

init(parent, child)
initShape(pt)
draw(g)

conn: Connector

Connection

0-*connections

parent

child

0-*

children

root

Fig. 1. Hierarchy display class diagram Fig. 2. Hierarchy display

Now consider some simple variations of this display functionality. One is to
enable boxes capable of adjusting their size to the displayed content (screenshot
in Fig. 3). Another variation would be to have right-angled connections (screen-
shot in Fig. 4); yet another would use colors to encode the hierarchical levels.
Each of these variations makes sense in isolation and in combination with others;
it is reasonable to require that in scenarios where variability is important, e.g.,
in product line development, all of them coexist. This calls for an incremental
style of programming and flexible composition mechanisms.

Fig. 3. Hierarchy display adjusted
nodes

Fig. 4. Hierarchy display plus right-
angled connections

We can incrementally define different variations of the node and connection
abstractions by subclassing Node and Connection. However, in addition we need
to make sure that any reference to Node and/or Connection is (re)bound to the
respective new definition. For this, we have to redefine all classes that refer to
Node and/or Connection either by calling their constructor or by being a subclass
of them. For constructor calls, we need to redefine all methods where instances of
Node, respectively Connection, are created.2 For subclasses of the refined classes
the problem is even harder—most object-oriented languages provide no obvious
solution.
2 Some design patterns can help with this in dynamic languages like Smalltalk.



138 I. Aracic et al.

HierarchyDisplayType

AdjustedHierarchyDisplayType

textFits(text)
positionNode(..)

maxWidth: int

Node

CompositeNode

Connection

0-*connections

parent

child

0-*

children

calculateLayout(..)
draw(g)
refresh()

HierarchyDisplay

getText()
textFits(text)
calculateLayout(..)
initShape(pt)
draw(g)

shape: Shape

Node

getChildAt(index)
getChildCount()
calculateLayout(..)
draw(g)

CompositeNode

init(parent, child)
initShape(pt)
draw(g)

conn: Connector

Connection

0-*connections

parent

child

0-*

children

root

HierarchyDisplay root

Fig. 5. Hierarchy display extension with virtual classes

This problem is well-known [24]. To cope with it, CaesarJ supports virtual
classes, a concept that stems from the programming languages Beta [35] and
has been refined and generalized in more recent work [12, 16]. Just like a vir-
tual method, a virtual class is also an abstraction that has different meanings
depending on the dynamic context of use. Virtual classes are defined as inner
classes of an enclosing family class; just like methods and fields, they are also
members of instances of their enclosing family class, called family objects. Hence,
at any time during the execution their meaning is relative to the dynamic type
of the family object.

With family classes, we can group sets of collaborating classes into a new unit
(which is again a class). Figure 5 shows that the classes of the hierarchy display
component are now members (virtual classes) of an enclosing class Hierarchy-

DisplayType. The name HierarchyDisplayType suggests that an instance of this
family class represents a particular configuration of hierarchy display, by being
a repository for the inner classes.

Subclasses of a family class can refine inherited inner classes. Figure 5 shows
how AdjustedHierarchyDisplayType extends HierarchyDisplayType with text-
fitting functionality; it contains only a refinement (a so-called further-binding)
of the virtual class Node.3 In such a further-binding, we can override inherited
methods, add new methods or new states, as well as add additional superinter-
faces and superclasses (the latter leads to multiple inheritance, which will be
explained later).

There is a significant difference between a further-binding and a conventional
subclass of Node: All references to the type Node in the other virtual classes
are automatically rebound to the refined Node class, when they are referred to
during the execution of an object of type AdjustedHierarchyDisplayType. This is
indicated by the gray shadows of the other virtual classes in Fig. 5. For example,
in the context of an instance of AdjustedHierarchyDisplayType, a CompositeNode

3 One could similarly refine Connection in a subclass AngularHierarchyDisplayType
to extend HierarchyDisplayType with angular connections.



An Overview of CaesarJ 139

is a subclass of the refined Node class. Similarly, instance creation expressions
are also late bound.

A related problem addressed by CaesarJ is how to compose different vari-
ations of some basic functionality. In mainstream object-oriented languages, a
subclass is defined to a particular superclass. This lack of abstraction over the
implementation of the superclass hinders reusability: The variation defined by
the subclass cannot be reused with other superclasses. For illustration, consider
that it makes sense to compose different variants of hierarchy displays, e.g.,
AdjustedHierarchyDisplayType and AngularHierarchyDisplayType, to have a lay-
out strategy with both, adjusted nodes and angular connections, (see screenshot
in Fig. 4). However, such a composition is not possible if both subclasses are
defined to a concrete implementation of HierarchyDisplayType.

To solve this problem, CaesarJ shares with gbeta [12] a mixin-based class
composition mechanism [13]: (a) classes (simple or families) are mixins, i.e., their
superclass can be exchanged [9], and (b) mixin composition of family classes au-
tomatically propagates into their inner classes. By being mixins defined to a
common supertype, modules that implement the display layout strategy with
adjustable nodes and with angular connections can be composed with each
other; superclasses in the inheritance hierarchy are replaced according to specific
composition rules. Mixin composition propagation ensures that the composition
structure is propagated from families to their inner classes. Unambiguity of the
composition is ensured by the composition order and a linearization algorithm
to be discussed in Sect. 3.2.

2.2 Crosscutting Composition Mechanisms

The composition mechanism outlined so far is hierarchical: In order to compose
different modules in a nontrivial way, they must have common ancestors be-
cause only those inner class definitions are merged that are further-bindings of
a common class definition. In our example, all variations inherit the structure of
HierarchyDisplayType. It is this shared structure that makes them composable
with each other; the composition of differently structured class families is still
possible, but not very useful, because it would not compose any inner classes.

In many cases, however, one would like to compose independent (family)
classes that do not have a hierarchical relationship, and hence no common an-
cestor, in a meaningful way. For illustration, consider the class diagram in Fig. 6,
which shows part of a software system for automating the administration of
companies. Assume that we are involved in implementing a GUI, that is capa-
ble of displaying the company structure. Given the two components we already
have, HierarchyDisplayType (or any of its variations) and Company, it is desirable
to “simply” compose them. The composition cannot, however, be performed
automatically by mixin composition, because the operands of the composition
are not in a hierarchical relationship as the variations of the hierarchy display
functionality.

There are two issues involved in integrating hierarchy display and company
components. On the one hand, the generic visualization functionality of the dis-



140 I. Aracic et al.

getCEO()
getCompanyName()
setCompanyName()
getDepartmentAt()
getDepartmentCount()
setCEO()
addDepartment()
transferEmployee()
exchangeRoles()

companyName

Company

getDepartment()
getFullName()
getInitials()
getRole()
setFirstName()
setLastName()
setRole()
setDepartment()

name
role

Employee

getName()
getManager()
getWorkerAt()
getWorkerCount()
setName()
setManager()
addWorker()
removeWorker()

name

Department

0-*

ceo1 1 manager

0-*

1
workers

Fig. 6. Company data model

play component must be customized to the specifics of the company administra-
tion structure. On the other hand, the functionality of the company component
must be tuned in such a way that changes to the company state, e.g., mov-
ing of employees from one department to another, are signaled to the display
component so that the latter can refresh itself.

Let us quickly discuss why this is a problem in conventional OO languages.
One could use the adapter pattern [17] for customizing the hierarchy display
functionality to the company structure and the observer pattern [17] for the dis-
play refresh aspect of the composition, as outlined in Figs. 7 and 8, respectively.
However, the resulting composition exhibits crosscutting structure.

First, the adaptation of the generic display functionality to the structure
of the company software requires a lot of infrastructural logic: hash tables to
maintain adapter identity [24] and ubiquitous type casts in the adapter code.
Second, the adaptation logic cuts across various display variations. Adapters are
implemented in subclasses of concrete implementations of the types Node and
CompositeNode, e.g., those encoding the standard layout; hence, they only work
with that specific implementation. The adaptation logic must be duplicated for
all variations of the display implementation.4 Third, the observation logic for
refreshing the display cuts across the modular structure of the company compo-
nent. Notification logic is not explicit and is mixed within data model operations.
Besides, the composition is not incremental: Adding observation support requires
changing existing code. The lack of means for explicit expression of the crosscut-
ting structure of the display refreshing aspect results in a lot of infrastructural
code for observer registration and event dispatch.

4 A part of the adaptation code can be made reusable in a language that supports
multiple inheritance.



An Overview of CaesarJ 141

getRoot()
draw(g)
setView(view)
refresh()
calculateLayout(..)

view : JComponent

HierarchyDisplay

getRoot()

root : Company

CompanyHierarchyDisplay

getText()
getChildAt(index)
getChildCount()

wrappee : Company

CompanyNode

getText()
getChildAt(index)
getChildCount()

wrappee : Department

DepartmentNode

getText()
getChildAt(index)
getChildCount()

wrappee : Employee

EmployeeNode

getText()
textFits(text)
calculateLayout(..)
draw(g)

shape: Shape

Node

getChildAt(index)
getChildCount()
calculateLayout(..)
draw(g)

CompositeNode

Company EmployeeDepartment
0-*

ceo 11manager

0-*1

workers

Adapters

Fig. 7. Integrating components with adapters

companyChanged()
departmentChanged()
departmentRemoved()
workerAdded()
workerRemoved()
employeeChanged()

CompanyHierarchyDisplay

addObserver()
removeObserver()

observers

Company

addObserver()
removeObserver()

observers

Employee

addObserver()
removeObserver()

observers

Department

0-*

ceo 1

1

manager

0-*1
workers

employeeChanged()

EmployeeObserver

departmentChanged()
workerAdded()
workerRemoved()

DepartmentObserver

companyChanged()
deparmentAdded()
departmentRemoved()

CompanyObserver

0-* 0-*

0-*

Observers

Fig. 8. Integrating components with observers

To cope with the outlined problems, CaesarJ provides two dedicated mecha-
nisms for expressing crosscutting compositions. First, an AspectJ-like pointcut-
advice mechanism [26] is available for expressing modifications of existing be-
havior incrementally. Second, CaesarJ provides a mechanism for automatic
management of associations between company objects and their adapters to
roles in the hierarchy display concept world. The integration logic is expressed
in so-called binding classes.

Similar to the hierarchical variations, bindings are also expressed in family
classes as variations on the display functionality, i.e., they rely on the concepts
of virtual classes and propagating mixin composition. This has a twofold effect:
(a) Type casts present in adapters are no longer needed, and (b) a binding
of the hierarchy display can be reused (composed) with any hierarchy display



142 I. Aracic et al.

variation. Details on bindings as well as the variability enabled by CaesarJ will
be discussed in Sect. 4.

3 Class Families, Refinement and Mixin Composition

In this section, we will first introduce the notion of virtual classes as realized in
CaesarJ, then we will talk about composing class hierarchies and how the type
system supports polymorphic usage of class families. Finally we will explain the
semantics of abstract virtual classes and introduce the notion of collaboration
interfaces.

3.1 Virtual Classes, Type System and Family Polymorphism

With virtual classes, we can group sets of collaborating classes into a new unit
(which is again a class), and subclasses of such a unit can refine inherited inner
classes.

To understand the effect of making a class a virtual member of another class,
consider another version of the example from Fig. 5. Figure 9 shows an alter-
native design for the hierarchy display component: The state and methods of
the virtual class HierarchyDisplay from Fig. 5 are moved to the top level. These
two designs differ from each other in an important way: The Node, CompositeNode
and Connection classes are members of individual HierarchyDisplay instances in
Fig. 9, whereas in Fig. 5 all HierarchyDisplay instances share the same Node,
CompositeNode and Connection classes.

That is, in Fig. 5 different instances of HierarchyDisplay could share or ex-
change parts of the displayed data, whereas in Fig. 9 the family class acts as a
unit of confinement : The type system prevents that nodes or connections that
stem from different families (in this case the hierarchy display instance is the

getRoot()
calculateLayout(..)
draw(g)
refresh()

HierarchyDisplay

getText()
textFits(text)
calculateLayout(..)
positionNode(..)
initShape(..)
draw(g)

shape: Shape

Node

getChildAt(index)
getChildCount()
calculateLayout(..)
draw(g)

CompositeNode

init(parent, child)
initShape(pt)
draw(g)

conn: Connector

Connection

0-*connections

parent

child

0-*

children

Fig. 9. Alternative design of hierarchy display with confined types



An Overview of CaesarJ 143

1 cclass HierarchyDisplay {
2 cclass Node { ... }
3 cclass CompositeNode extends Node { ...
4 calculateLayout() { ...
5 Connection c = new Connection(); ... }
6 }
7 cclass Connection { ...
8 void initShape(Point pt) { ... }
9 }
10 Node root; ...
11 }
12 cclass AdjustedHierarchyDisplay extends HierarchyDisplay {
13 cclass Node { ...
14 int maxwidth;
15 }
16 void foo(Node n) {... n.maxwidth ... }
17 }
18 cclass AngularHierarchyDisplay extends HierarchyDisplay {
19 cclass Connection { ...
20 void initShape(Point pt) { ... }
21 }
22 }

Listing 1. Code for HierarchyDisplay

family) will ever be mixed. This is also the reason why the name of the family
class in Fig. 5 is HierarchyDisplayType: An instance of it represents a partic-
ular configuration or type of hierarchy displays, whereby multiple instances of
HierarchyDisplay might be instances of the same hierarchy display type.

Choosing between these two design alternatives is an important design deci-
sion to be made on a case-by-case basis. Such design considerations are out of
the scope of this paper; the distinction between the two alternatives was done
with the sole purpose to highlight the effect of making a class a virtual member
of another class. In the remainder of the paper we will use the design from Fig. 9
in our examples. Listing 1 shows source code that corresponds to the design in
Fig. 9 as well as two extensions, AdjustedHierarchyDisplay and AngularHierar-

chyDisplay, of the base component. The keyword cclass is used instead of class
in order to differentiate pure Java classes from (virtual) CaesarJ classes.

Since all virtual classes depend on their family, all types that refer to virtual
classes are implicitly (or explicitly) annotated with a path to their owner family
object. For example, the type Connection in line 5 of List. 1 implicitly means
HierarchyDisplay.this.Connection,5 because the actual definition of this type
depends on the owner family object. Similarly, the superclass declaration in line 3
should be read as extends HierarchyDisplay.this.Node, meaning that the actual
superclass definition depends on the family object. The effect of late-bound types
is also illustrated in line 16: A type cast is not necessary to access the maxwidth

property, because it is known that all nodes of an AdjustedHierarchyDisplay

have this property.
If virtual classes are used as types outside their family classes, the implicit

scoping must be replaced by an explicit specification of the owner family object.

5 In Java, as well as in CaesarJ, the owner object is referenced by qualifying this
with its class name.



144 I. Aracic et al.

1 hd.Node findChild(final HierarchyDisplay hd, hd.CompositeNode n, String text) {
2 for (int i = 0; i < n.getChildCount(); i++)
3 hd.Node m = n.getChildAt(i);
4 if (m.getText().equals(text)) return m;
5 }
6 return null;
7 }
8 ...
9 final HierachyDisplay hda = new AdjustedHierarchyDisplay();
10 hda.CompositeNode cna = . . . ;
11 final HierachyDisplay hdb = new AngularHierarchyDisplay();
12 hdb.CompositeNode cnb = . . . ;
13 hda.Node n1 = findChild(hda, cna, someString); // ok
14 hdb.Node n2 = findChild(hdb, cnb, someString); // ok
15 hda.Node n3 = findChild(hdb, cnb, someString); // static error

Listing 2. Illustration of path-dependent types and family polymorphism

This is illustrated in List. 2, which shows a method defined in some class outside
HierarchyDisplay as well as some code that uses this method. The type decla-
ration hd.CompositeNode in the signature of the method findChild means that
only instances of CompositeNode that belong to the family hd may be passed as
the second parameter to the method. Similarly, the return type hd.Node means
that the returned node instance belongs to the family hd.

Hence, the calls in line 13 and 14 are correct, whereas the call in line 15 causes
a static type error, because the variable n3 belongs to the family hda rather than
hdb. In general, the type checker makes sure that families are never mixed, i.e.,
an object o1 can only be compatible to an object o2, if o1 and o2 belong to the
same family.

Listing 2 also illustrates the concept of family polymorphism [14]: The find-

Child method can be used polymorphically with different families (in the exam-
ple hda and hdb). The type checker for these kinds of dependent types is highly
nontrivial but not in the focus of this work. A full formalization of the core
constructs of virtual classes as used in CaesarJ (operational semantics, type
system and a soundness proof) can be found in [16].

3.2 Composing Class Hierarchies

As illustrated in List. 3, CaesarJ classes can be composed with the operator
&. The class AdjustedAngularHierarchyDisplay composes AdjustedHierarchyDis-

play and AngularHierarchyDisplay. The composition operator realizes a variant
of multiple inheritance that linearizes the superclasses, thereby avoiding am-
biguities w.r.t. method dispatch and w.r.t. sharing or duplicating of inherited
state. The composition uses a variant of C3 linearization [3,13], which produces
a unique and predictable linearization of the inheritance graph. In the case of
AdjustedAngularHierarchyDisplay, the linear order of superclasses produced by
the linearization algorithm is [HD,AngHD,AdjHD,AdjAngHD], whereby HD is an ab-
breviation for HierarchyDisplay, Ang is an abbreviation of angular, Adj is an
abbreviation of Adjusted and the last mixin is the most specific one.

The order of the mixin operands of the operator & is important in deter-
mining the order of the mixins in the linearized chain. The operator & is not



An Overview of CaesarJ 145

1 cclass AdjustedAngularHierarchyDisplay extends
2 AdjustedHierarchyDisplay & AngularHierarchyDisplay {}

Listing 3. Composing variants of hierarchy display

commutative, and the operand on the left-hand side is more specific than the
one on the right-hand side. The leftmost mixin is the most specific one. The
same linearization algorithm is also used if a further-binding of a class declares
additional superclasses.

In the context of virtual classes, this composition operator propagates the
composition into inner classes. This means that all inner classes of the com-
posed classes that are further-bindings of a common class are automatically
composed via linearization, whereby the linearization of the enclosing family
class determines the linearization of the inner classes. This composition works
recursively with arbitrary levels of nesting. In our example, this means that
AdjustedAngularHierarchyDisplay combines further-bindings of both Adjusted-

HierarchyDisplay and AngularHierarchyDisplay. Since the inner classes of a class
can represent an entire class hierarchy, the & operator can effectively be used to
extend and compose class hierarchies.

A definition of how mixins are linearized and composed is given in Fig. 10.6

Therein, p denotes a mixin by the static path C1...Cn, Ci class names, that
denotes the lexical position of the class body corresponding to p. For example,
the mixin for the class definition in line 3 of List. 1 is HD.CompositeNode. The
notation p denotes a list of mixins p1, ..., p|p|, e.g., p = [HD,AdjHD,AdjAngHD],
and p denotes a list of mixin lists. The [ ... | ... ] notation is used to denote list
comprehensions as, e.g., in Haskell or Python.7

Given a class C and the mixin list of the enclosing family p, the Assemble
function computes the mixin list that determines the definition of C relative to
p. For illustration, we will simulate the evaluation of Assemble([HD,AdjHD], Com-

positeNode), which calculates the mixin list of CompositeNode in the context of
AdjustedHierarchyDisplay, resulting in [HD.Node,AdjHD.Node,HD.CompositeNode].
To do so, Assemble first calls Defs to collect all the definitions of CompositeNode
(our C) located in any of the class bodies specified by [HD,AdjHD] (our p).8 The
result is HD.CompositeNode, because there is only one definition of CompositeNode
and no further-binding.

The complete mixin list for a class C must also include the mixins of all its
ancestors. For this purpose, Assemble applies Expand over the list of mixins re-
turned by Defs and linearizes the result. For each p in this list, Expand computes
the mixin list for each superclass of p, again relative to the enclosing mixin list
p. For this purpose, Expand recursively applies Assemble over the list of all su-
perclasses, linearizes the result and adds the mixin p at the end. The recursion is
well defined because it recurses only on the superclasses and the superclass rela-
6 These definitions are part of the aforementioned formalization of virtual classes [16].
7 For example, [ 2n | n ← 1...5, n > 3 ] is the list [8, 10].
8 The function ClassDef , which is not defined here, simply looks up a class in the

program.



146 I. Aracic et al.

Assemble(p, C) = Linearize([ Expand(p, p) | p ← Defs(p, C) ])

Defs(p, C) = [ p.C | p ← p, ClassDef (p.C) �= ⊥ ]

Expand(p, p) = Linearize([Assemble(p, C′) | C′ ← C1...Cn ]) p
where ClassDef (p) = cclass C extends C1&...&Cn { ... }

Linearize(nilp) = nilp
Linearize(p p) = Lin2 (Linearize(p), p)

Lin2(nilp, nilp) = nilp
Lin2 (p p, p′ p) = Lin2(p, p′) p
Lin2(p, p′ p′) = Lin2(p, p′) p′ if p′ �∈ p
Lin2(p p, p′) = Lin2(p, p′) p if p �∈ p′

Lin2 (p p′p′′p, p′p′) = Lin2(p p′′p, p′) p′

(Note: use first case that matches)

Fig. 10. Mixin computation for class C given mixin list p of enclosing family class

tion has no cycles in a well-formed program (we stop when we reach a top-level
object, which has a trivial mixin list).

For our setting of p = HD.CompositeNode, and p = [HD,AdjHD], Expand
will be applied to HD.Node, the only superclass of HD.CompositeNode, which
will cause Assemble([HD,AdjHD], Node) to be recursively called, resulting in
[HD.Node,AdjHD.Node]. Since Node does not have any further superclases,
this is the end of the recursion. The mixin HDComposite is added to
[HD.Node,AdjHD.Node] yielding the overall result: Assemble([HD,AdjHD], Compos-

iteNode) = [HD.Node,AdjHD.Node,HD.CompositeNode].
Linearization is a technique for topological sorting of an inheritance graph,

so that method calls can be dispatched along the calculated order. The function
Linearize in the lower part of Fig. 10 linearizes a list of mixin lists, i.e., it produces
a single mixin list that contains the same mixins as those in the operands, in
an order which is controlled by the operands. Linearize is defined in terms of
a binary linearization function, Lin2 . This function is an extension of the C3
linearization algorithm [3,13]. The linearization algorithm has been designed so
that the ordering of mixins in a virtual class can be controlled by the programmer
of a subclass, in a similar spirit as when the programmer of a subclass can decide
to override a method in any mainstream OO programming language, see [3,13].

3.3 Abstract Classes and Collaboration Interfaces

The benefits of polymorphism can be maximized by using abstract family classes.
A separate interface concept is not necessary because we do not have the single
inheritance bottleneck. For example, we can use an abstract family class IHier-

archyDisplay to define the public interface of the HierarchyDisplay component,
as shown in List. 4. The abstract family class exposes the public methods of the
component as well as the classes that should be visible to the clients, e.g., the
abstraction in List. 4 does not expose the Connection class.



An Overview of CaesarJ 147

1 abstract public cclass IHierarchyDisplay {
2 abstract public Node getRoot(); /∗ data model ∗/
3 abstract public void calculateLayout(); /∗ visualization ∗/
4 abstract public void draw(Graphics g); /∗ visualization ∗/
5 abstract public void refresh(); /∗ visualization ∗/
6 ...
7 abstract public cclass Node {
8 abstract public String getText(); /∗ data model ∗/
9 abstract public boolean textFits(String text); /∗ visualization ∗/
10 }
11 abstract public cclass CompositeNode extends Node {
12 abstract public Node getChildAt(int i); /∗ data model ∗/
13 abstract public int getChildCount(); /∗ data model ∗/
14 abstract public void calculateLayout(); /∗ visualization ∗/
15 }
16 }
17 public cclass HierarchyDisplay extends IHierarchyDisplay { ... }

Listing 4. Collaboration interface of hierarchy display

1 final public IHierarchyDisplay hier = new HierarchyDisplay();
2 hier .CompositeNode node = hier.new CompositeNode(); /∗ error ∗/
3 final public IHierarchyDisplay2 hier2 = new HierarchyDisplay2();
4 hier2.CompositeNode node = hier.new CompositeNode(); /∗ ok ∗/

Listing 5. Polymorphic instantiation of classes of an abstract family class

Declaring a class as abstract means that it cannot be instantiated. According
to this rule, we cannot create instances of the class IHierarchyDisplay. The
virtual classes Node and CompositeNode are declared as abstract too. This means
that they cannot be instantiated polymorphically through a family variable with
type IHierarchyDisplay; so the line 2 in List. 5 will generate a compiler error.

In a similar way, we can allow polymorphic instantiation of virtual classes by
declaring them as concrete. For example, List. 6 shows an alternative interface to
the hierarchy display component, which declares its virtual classes Node and Com-

positeNode as concrete even though they contain abstract methods. The intent
of such a design is to allow their polymorphic instantiation as shown in line 4 of
List. 5. Here, the instantiation is requested through the abstract interface, but
the class that is actually instantiated is CompositeNode of HierarchyDisplay2,
which belongs to a concrete family class and must implement all the inherited
abstract methods.

Abstract classes are also allowed within concrete classes. For example, in an
alternative design of HierarchyDisplay component, there could be a new class
LeafNode to represent leaf nodes, while Node would serve only as an abstraction
to define the common interface for all types of nodes. In such case, declaring
Node as abstract would prevent its instantiation.

If we do not know whether a virtual class will be concrete in concrete subfam-
ilies, it is better to declare it as abstract, because we can override an abstract
class with a concrete one, but not the other way around. Overriding a concrete
class with an abstract one is not allowed because it would break the soundness
of polymorphic instantiation.

In Java, a class containing an abstract method must be declared as abstract.
In CaesarJ this rule is weakened: A method can be abstract when at least one



148 I. Aracic et al.

1 abstract public cclass IHierarchyDisplay2 {
2 ...
3 public cclass Node {
4 abstract public String getText(); ...
5 }
6 public cclass CompositeNode extends Node {
7 abstract public Node getChildAt(int i); ...
8 }
9 }
10 cclass HierarchyDisplay2 extends IHierarchyDisplay2 { }

Listing 6. Alternative interface to the hierarchy display

1 abstract public cclass MutableHierarchyModel extends IHierarchyDisplay {
2 protected Node root;
3 public void getRoot() { return root; }
4 ...
5 public cclass Node {
6 protected String text;
7 public String getText() {
8 return fitsText(text) ? text : text.substring(0, 1);
9 } ...
10 }
11 public cclass CompositeNode {
12 protected List children = new LinkedList();
13 public Node getChildAt(i) { return (Node)children.get(i); }
14 public int getChildCount() { ... }
15 ...
16 }
17 }

Listing 7. Hierarchy display data model as a separate module

of its enclosing classes is abstract. This rule is sufficient to ensure that abstract
methods will never be called, because it excludes the possibility of direct in-
stances of the class declaring the method. According to this rule, it is legitimate
to have concrete classes with abstract methods inside an abstract family class,
which is the case in List. 6. It is also possible to have abstract classes with
abstract methods inside a concrete class.

Abstract classes used as interfaces enable a more fine-grained separation of
the different concerns of our hierarchy display. One of these concerns that we
might want to separate is how the data to be displayed are represented. Our
previous implementation stored the data model directly in corresponding fields.
The comments in List. 4 now identify a set of methods that are the interface to
the data model. With inheritance and class composition we can now separate
the display logic from the data model.

Listing 7 shows a sample implementation of the data model. The correspond-
ing family class is abstract because it is only an implementation of the data
model; hence, the part of the IHierarchyDisplay interface responsible for the
visualization is missing. On the other hand, List. 8 shows a version of Hierar-

chyDisplay that does not define the data model, hence, it is abstract as well.
Note that the code in List. 8 uses the methods responsible for the data model
without defining them. In an appropriate composition, such as in List. 9, both
facets of a hierarchy display are composed. Since the composition is complete,
it does not need to be abstract and can be used directly.



An Overview of CaesarJ 149

1 abstract public cclass HierarchyDisplay extends IHierarchyDisplay {
2 protected Component view = null;
3 public void calculateLayout()
4 getRoot().calculateLayout();
5 refresh ();
6 }
7 public void draw(Graphics g) { ... }
8 public void refresh() { ... }
9 ...
10 abstract public cclass Node {
11 protected TextShape shape = new Rectangle();
12 public void draw(Graphics g) { shape.setText(getText()); shape.draw(g); }
13 public boolean textFits(String text) { ... }
14 ...
15 }
16 abstract public cclass CompositeNode {
17 protected List connections = new LinkedList();
18 public void draw(Graphics g) {
19 super.draw(g);
20 for (int i1 = 0; i1 < getChildCount(); i1++) getChildAt(i1).draw(g); ...
21 }
22 public void calculateLayout() { ... }
23 ...
24 }
25 public cclass Connection { ... }
26 }

Listing 8. HierarchyDisplay without data model implementation

1 public cclass MutableHierarchyDisplay
2 extends HierarchyDisplay & MutableHierarchyModel { }

Listing 9. Reconstructing the mutable hierarchy display component

There are two important aspects in the design embodied in Lists. 4, 8 and 9:
(a) the partition of the interface methods into different facets, as indicated by
the comments in List. 4, and (b) the design rule that subclasses of the interface
responsible for one facet implement only those methods belonging to this facet
(whereby any method declared in the interface can be called). In such a design,
the interface in List. 4 controls the collaboration between different facets of its
implementation, hence, we call such interfaces collaboration interfaces.

It is tempting to turn this design pattern into a language feature, so that
conformance to a particular interface facet is checked by the compiler. In pre-
vious publications [37, 38] we actually proposed to divide the methods of such
a collaboration interface into two generic fixed facets: expected and provided. In
the implementation of CaesarJ, we dropped this mechanism because it is not
general enough. In general, there can be many different facets of an interface,
not just two. We are currently working on a new interface concept that allows
more freedom in this regard while still retaining static checking of classes with
respect to the facets they are responsible for.

4 Crosscutting Integration

In this section, we will introduce CaesarJ features for supporting crosscutting
composition.



150 I. Aracic et al.

4.1 Bindings

The implementations of hierarchy display facets that are presented in List. 7 and
List. 8 are self-consistent and completely encapsulated behind the collaboration
interface. Alternatively, facets can be implemented as adapters of already exist-
ing classes. In our example, we might want to display the company model from
Fig. 6 with our hierarchy display. The company model can indeed be seen as a
data model for our hierarchy display, except that it does not fit to its internal
modular structure. Hence, in the following we will implement the data model
facet of the hierarchy display as an adapter to the company model, which allows
us to view the company model as a data model for the hierarchy display.

A family class that implements a component facet by adapting external classes
is called binding. Concrete family classes are produced by combining bindings
with the families implementing the component functionality to be integrated.
Figure 11 shows how the family class CompanyHierarchyDisplay for visualizing the
company organizational hierarchy is defined as a combination of the implemen-
tation of the visualization facet of the IHierarchyDisplay interface implemented
in HierarchyDisplay and the data model facet of IHierarchyDisplay defined as
its binding to the company model CompanyHierarchyBinding.

Bindings map between types from two domains by means of wrapper classes—
dynamic extensions of other classes, called wrappees. A wrapper can introduce
new state and operations, as well as adapt the wrappee to required interfaces.
The wrapper–wrappee relationship is established by the keyword wraps. A wrap-
per can access its wrappee by means of the special identifier wrappee.

To map the display and the company domains of our example, we have to
bind hierarchy display nodes to company model objects. One wrapper class is
needed for each type of display node. Top nodes are bound to company objects,
nodes at the second level of the display hierarchy to department objects, and
bottom nodes to employees. In List. 10, WorkerNode is a wrapper for Employee.
It adapts Employee to the data model facet of Node by implementing getText,

HierarchyDisplay

Node

CompositeNode

Connection

0-*connections

parent

child

IHierarchyDisplay

CompositeNode

CompanyHierarchyBinding

Node

CompositeNode

CompanyNode

DepartmentNode

WorkerNode

CompanyHierarchyDisplay

Node

Fig. 11. Integration of hierarchy display into company model



An Overview of CaesarJ 151

1 abstract public cclass CompanyHierarchyBinding extends IHierarchyDisplay {
2 protected Company company = null;
3 public Node getRoot() { return CompanyNode( company); }
4 ...
5 public cclass WorkerNode extends Node wraps Employee {
6 public String getText() {
7 return textFits(wrappee.getFullName()) ?
8 wrappee.getFullName() : wrappee.getInitials();
9 }
10 }
11 public cclass DepartmentNode extends CompositeNode wraps Department {
12 public String getText() { ... }
13 public Node getChildAt(int i) {
14 return WorkerNode(wrappee.getWorkerAt(i));
15 }
16 public int getChildCount() { return wrappee.getWorkerCount(); }
17 }
18 public cclass CompanyNode extends CompositeNode wraps Company {
19 public Node getChildAt(int i) {
20 return DepartmentNode(wrappee.getWorkerAt(i));
21 }
22 ...
23 }
24 pointcut departmChildrenChange() : execution(∗ Department.addWorker(..)) ||
25 execution(∗ Department.removeWorker(..));
26 pointcut companyChildrenChange() : execution(∗ Company.addDepartment(..)) ||
27 execution(∗ Company.removeDepartment(..));
28 pointcut displayChange() : execution(∗ company.∗.set∗Name(..)) ||
29 departmChildrenChange() || companyChildrenChange();
30 after(Department d) : departmChildrenChange() && this(d) {
31 DepartmentNode(d).calculateLayout();
32 }
33 after(Company c) : companyChildrenChange() && this(c) {
34 CompanyNode(c).calculateLayout();
35 }
36 after() : displayChange() && !cflowbelow(displayChange()) { refresh(); }
37 }

Listing 10. Company hierarchy binding

the only method related to the data model in Node, using methods of Employee.
Wrappers for Company and Department turn these classes into composite nodes
in the display world: They inherit from CompositeNode and implement its data
model-related methods for retrieval of text and children.

Wrappers are createdbywrapper constructors, which take as parameters the ob-
jects to be wrapped and return the corresponding wrapper objects. For example,
a DepartmentNode should return the nodes representing the workers at that depart-
ment as its children. Itsmethod getChildAt(i) inList. 10 retrieves the ith employee
of the department and wraps it into a WorkerNode object. A wrapper constructor
differs from a conventional instantiation: Given a certain wrappee object, o, only
the first call of a wrapper constructor with o as a parameter creates a new wrapper
for o; consecutive calls will always return the same wrapper instance.

Such “wrapper recycling” ensures that there is only one wrapper for one
wrappee per binding and, hence, enables stateful wrappers. Attaching additional
state to wrapped objects is important: A component to be integrated has its own
state which cannot be inferred from wrappee’s state. For example, the position
of a node and its graphical attributes cannot be inferred from the data model
and must be stored in node objects.



152 I. Aracic et al.

1 public cclass CompanyHierarchyDisplay
2 extends HierarchyDisplay & CompanyHierarchyBinding { }

Listing 11. Component for company hierarchy display

However, an object can have multiple wrappers of the same type within dif-
ferent family instances. The wrapper constructor call WorkerNode(..) in List. 10
is, in fact, an abbreviation for this.WorkerNode(..). Wrappers are also virtual
classes—their meaning is relative to an enclosing family. Wrapper constructors
are also available outside the family class by explicitly qualifying their calls with
a reference to a family instance.

Mapping between the abstractions in their respective domains is not enough
for full integration: The components often need to adapt their behavior within
the composition. In our example, organizational changes, e.g., transfer of employ-
ees from one department to another, affects the layout of the hierarchy display
and should cause the layout of certain branches in the hierarchy to be recalcu-
lated. In CaesarJ, such behavioral integrations are expressed within a binding
by means of pointcuts and advice. CaesarJ supports AspectJ-like pointcuts and
advice. In the following discussion, we assume that the reader is familiar with
the crosscutting mechanisms in AspectJ [26] and the advantages of observing
with pointcuts [20,27].

In our example, the binding in List. 10 uses pointcuts to observe relevant
changes. Pointcuts departmChildrenChange and companyChildrenChange observe
DepartmentNode, respectively CompanyNode, children changes. The pointcut dis-

playChange observes any kind of change that affects the company hierarchy dis-
play.9 Display update is done in advice (List. 10) using methods of the collabora-
tion interface (List. 4). Top-level methods, such as refresh, can be called directly,
the methods of the nodes, e.g., calculateLayout, are called on the corresponding
wrapper object.

As already mentioned, the company hierarchy display component is con-
structed by applying mixin composition to the implementation of its visualiza-
tion facet and its company binding (List. 11). Figure 12 depicts the implicit class
diagram inside CompanyHierarchyDisplay, which is the result of merging the in-
herited classes and their relationships. It contains both the wrapper classes from
the binding as well as the Connection class from the family HierarchyDisplay,
which implements the visualization facet. The classes Node and CompositeNode of
HierarchyDisplay become the superclasses of the wrapper classes in the context
of CompanyHierarchyDisplay. Thus, the resulting wrapper classes inherit both the
functionality related to the data model and to the visualization.

Of course, bindings do not necessarily need to be coded to collaboration in-
terfaces. If the code of a binding is not reusable, it can be defined as a sim-
ple subclass of the family type that we want to adapt in a specific context.

9 It reuses the pointcuts for children changes and quantifies over all methods that
affect names of the data model objects. We use the cflowbelow pointcut to ensure
that the display is refreshed only once after a sequence of changes that constitutes
a logical transaction.



An Overview of CaesarJ 153

CompanyHierarchyDisplay

Node

CompositeNode

CompanyNode

DepartmentNode

WorkerNode

Connection

0-*connections

parent

child

Fig. 12. Class diagram of the virtual classes within CompanyHierarchyDisplay

For example, CompanyHierarchyDisplay could also be implemented as subclass of
HierarchyDisplay. Then the binding would be a concrete family class and could
be instantiated directly.

4.2 Dynamic Wrapper Selection

This section considers the issue of defining wrappers in the presence of inheri-
tance hierarchies. For example, the class Employee may have various subclasses,
e.g., InternalEmployee and ExternalEmployee to distinguish between internal em-
ployees of the company and the employees subcontracted from other companies.
We may want this difference to be reflected in the display of the organiza-
tional structure. The question is how to define wrappers for subclasses of already
wrapped classes.

In CaesarJ, wrappers for classes in a hierarchy chain build a hierarchy of
related wrappers that share the same name but are distinguished by the type of
the objects they wrap, i.e., they have different wraps clauses. All these wrappers
share the same constructor, which decides which specific wrapper type to create
by the dynamic type of the wrappee object passed as a parameter. The general
rule of wrapper selection is that the most specific wrapper is selected for the given
object. In this way, a wrapper for an object can be retrieved polymorphically.

For illustration, consider the WorkerNode wrapper for ExternalEmployee in
List. 12. It refines the implementation of getText so that the display text in-
cludes the name of the external company. For an instance of ExternalEmployee,
the version of WorkerNode that wraps ExternalEmployee will be used, whereas for
an instance of InternalEmployee, the WorkerNode wrapping Employee will be used,
because there is no more specific wrapper declared for InternalEmployee. The
wrapper is retrieved polymorphically in the getChildAt method of Department-
Node (List. 12).

Polymorphic usage of wrappers imposes certain typing constraints. The Work-

erNode wrapper constructor in the method getChildAt in List. 12 may return an
instance of type this.WorkerNode, where the WorkerNode is the wrapper class for
Employee or an instance of WorkerNode wrapper for ExternalEmployee. To allow
the polymorphic usage of wrappers, WorkerNode for ExternalEmployee must be a
subtype of WorkerNode for Employee. In CaesarJ, this is ensured by implicit in-
heritance between such wrapper classes, which is why we do not need to declare
explicitly WorkerNode for ExternalEmployee as a subclass of Node. The general rule
is that subtype relationship between wrappee classes implies inheritance between
corresponding wrapper classes. As a consequence, wrappers with the same name



154 I. Aracic et al.

1 abstract public cclass CompanyHierarchyBinding extends IHierarchyDisplay {
2 ...
3 public cclass DepartmentNode extends CompositeNode wraps Department {
4 public Node getChildAt(int i) {
5 return WorkerNode(wrappee.getWorkerAt(i));
6 } ...
7 }
8 public cclass WorkerNode extends Node wraps Employee {
9 public String getText() { ... }
10 }
11 public cclass WorkerNode wraps ExternalEmployee {
12 public String getText() {
13 return super.getText() + ”(” + wrappee.getCompanyName() + ”)”;
14 }
15 }
16 }

Listing 12. Wrapper hierarchy for different types of employees

build inheritance hierarchies, which reflect the inheritance hierarchies of their
wrappees.

Dynamic wrapper selection can be ambiguous in the case of multiple inheri-
tance relationships between wrappees. This can occur when wrapping Java in-
terfaces or CaesarJ classes. Consider the case of two wrappers for types A and
B, where both A and B are supertypes of a given wrappee class W. If B is subtype of
A, B’s wrapper will be selected for W. The ambiguous situation occurs when A and
B are not comparable. The ambiguity can be resolved by declaring a wrapper for
a supertype of W that is a subtype both of A and of B.

The problem is, however, that detection of such ambiguities cannot be done
in a modular way and requires a global analysis of the type system of an applica-
tion. An analogous problem has been raised in the context of the implementation
of external methods in Multijava [10]; the problem is addressed there by disal-
lowing dynamic dispatch on interface types. External methods on interfaces are
allowed in Relaxed Multijava [40], but the ambiguities are detected only at class
load time. In the current implementation of CaesarJ, ambiguities of dynamic
wrapper selection are detected at run time.

We plan to generalize the dynamic wrapper selection to multiple wrappees
(such that there is, e.g., a unique wrapper for a pair of wrappees). At the time of
writing this paper, the best strategy for dealing with ambiguities and with the
inheritance relationships between wrappers (see the next section) has not yet
been fully worked out; hence, this is part of our future work. Note that multiple
wrappees can still be used if the programmer defines a usual constructor and
takes care of the wrapper management manually.

So far, we have discussed the case of defining wrappers for classes that have
an inheritance relationship but are adapted to the same abstraction. In List. 12,
both Employee and its subclass ExternalEmployee are adapted to Node. In the gen-
eral case, given two abstractions A1 and A2 pertaining to one concern, where A2

is a subtype of A1, it might be necessary to adopt them to two different abstrac-
tions pertaining to another concern B1 and B2, where B2 is a subtype of B1.



An Overview of CaesarJ 155

1 abstract public cclass GUIHierarchyBinding extends IHierarchyDisplay {
2 protected Component rootComp = null;
3 public Node getRoot() { return ComponentNode(rootComp); }
4

5 public cclass ComponentNode extends Node wraps Component {
6 public String getText() {
7 String name = wrappee.getClass().getName();
8 return name.substring(name.lastIndexOf(’.’) + 1);
9 }
10 }
11 public cclass ComponentNode extends CompositeNode wraps Container {
12 public Node getChildAt(int i1) {
13 return ComponentNode(wrappee.getComponent(i1));
14 }
15 public int getChildCount() { return wrappee.getComponentCount(); }
16 }
17 }

Listing 13. Binding for containment hierarchy of GUI elements

Consider for illustration the binding of IHierarchyDisplay to the containment
hierarchy of GUI elements in a typical Java application in List. 13. In the stan-
dard Java library, Component is the supertype of all GUI elements, and Container

is the supertype of GUI elements containing other elements. In order to display
a GUI hierarchy, we have to bind Node to Component and CompositeNode to Con-

tainer. Further, since Container is subtype of Component, their wrappers must
belong to the same hierarchy.

So we have a situation where wrappers of the same hierarchy must implement
different interfaces of the collaboration interface. This is possible in CaesarJ,
because each wrapper in the hierarchy can introduce new inheritance relation-
ships. For example, in List. 13 the ComponentNode wrapper for Container inherits
from CompositeNode besides its implicit inheritance from the wrapper Compo-

nentNode for Component.

4.3 CaesarJ Bindings Versus AspectJ Intertype Declarations

Bindings share pointcut and advice declarations with AspectJ’s aspects, but
they are based on a different static crosscutting model. CaesarJ aspects use
wrappers instead of intertype declarations to add new functionality to existing
objects. Bindings support reuse by the techniques of coding to interfaces, virtual
types and mixin composition. AspectJ’s reuse mechanisms, on the other hand,
are limited to abstract aspects and aspect inheritance. In this section, we will
discuss the implications of these differences.

Polymorphic aspectual extensions. Wrappers and dynamic wrapper selec-
tion allow to define functionality outside a base class (a.k.a open classes [10]), while
retaining subtypepolymorphism.Wrapper classes define functionality that is poly-
morphic with respect to both base object types (wrappees) and aspect types.

Consider for illustration List. 10. The method calculateLayout belongs to
aspect functionality. It is polymorphic with respect to hierarchy node types (each
node type has its own draw method, which is called by calculateLayout). In
its control flow, calculateLayout eventually calls methods pertaining to data



156 I. Aracic et al.

management, such as, e.g., getChildAt or getText. The latter are defined relative
to different base types in List. 10, i.e., they are polymorphic w.r.t. base types.
Each company object has its specific way to access children or to display a text
label. Futhermore, this specific way is also relative to a particular aspect. That
is, it is not only possible to define different ways of accessing children for different
company objects within the same aspect; the latter can also be different from
aspect to aspect.

As discussed in [38], polymorphic behavior in the extent described above is
not possible with intertype declarations. One can only achieve polymorphism
w.r.t base types by invasively adding state and methods to base classes directly,
however, at the cost of losing independent extensibility and polymorphism with
respect to aspect types [38,49].

Late-bound operations outside the base model is also the motivation of the
visitor design pattern [17]. Both late-bound wrappers and visitors activate their
functionality dynamically. Nevertheless, differently from wrappers, visitors re-
quire preplanned preparations in the data model and manual implementation of
the dispatch code. Furthermore, wrappers give more flexibility for default han-
dling of certain variants of the data model. In List. 12, e.g., we specify default
display behavior for all types of Employee and handle only ExternalEmployee in a
specific way. Finally, a visitor implements the late-binding of a single operation
and, therefore, does not support interactions between multiple operations.

Wrappers also allow one to associate arbitrary aspect-specific state with base
objects; the state can either be defined in the wrapper or inherited from the
component class the wrapper binds. As shown in List. 10, wrapper construc-
tors provide a convenient way to navigate from a base (application) object to
the corresponding aspect (component) wrapper. An alternative to wrapper con-
structors in AspectJ would be manual implementation of similar mechanisms
for each specific case in the aspect code. Other solutions require modification
of application classes to contain links to the corresponding wrapper objects. A
more detailed discussion of the problems with managing aspect specific state
extensions can also be found in [38].

Abstraction and Reuse. Collaboration interfaces support reuse of the same
functionality in different contexts. In Sects. 4.1 and 4.2 we discussed two reuse
scenarios for HierarchyDisplay: one with the organizational hierarchy of a com-
pany and another with the containment hierarchy of GUI elements. Bindings are
also reusable, as long as they are defined to the collaboration interface. We can
provide other implementations of hierarchy display for the same collaboration
interface. In Sect. 3, we have defined different extensions to HierarchyDisplay,
which are also alternative implementations of the visualization facet of the same
collaboration interface. They can all be reused with our bindings to both the
company and GUI structure.

By mixin composition, any display implementation is composable with any
binding, as shown in Fig. 13. This is not an accident, but instead is a consequence
of proper abstraction. The collaboration interface sets an explicit contract for
the composition. It ensures that methods used by the display implementation



An Overview of CaesarJ 157

Generic Components (n)

Collaboration Interface Component Bindings (m)

IHierarchyDisplay
CompanyHierarchy

Binding

GUIHierarchy

Binding

ColoredHierarchyDisplay

AngularHierarchyDisplay

AdjustedHierarchyDisplay

HierarchyDisplay

Concrete Components (n x m)

CompanyHierarchyDisplay

AdjustedCompany

HierarchyDisplay

AngularCompany

HierarchyDisplay

ColoredCompany

HierarchyDisplay

GUIHierarchyDisplay

AdjustedGUI

HierarchyDisplay

AngularGUI

HierarchyDisplay

ColoredGUI

HierarchyDisplay

.

.
.

.   .   .

.   .   .

.   .   .

.   .   .

.   .   .

.

.

.

.

.

.

.

.

.

Fig. 13. Composing variations of display implementations and bindings

Fig. 14. Company hierarchy display variations

have the same signature as those implemented by the binding, and the other way
around. The collaboration interface also unifies the names of the shared classes,
making them automatically composable. Any deviation from this contract would
be detected by the compiler. The rules for abstract classes help to check correct-
ness of the composition, too. The compiler can ensure that only concrete classes
are instantiated and that concrete classes in concrete collaborations are fully
implemented.

Once the variability basis (meaningful variations of the display functionality)
is set up, CaesarJ developers can easily support different strategies for display-
ing the company structure, as illustratively shown in Fig. 14, with no additional
overhead. The decision as to which strategy to use in a concrete situation can
be made statically or even dynamically. Here the CaesarJ’s deployment mech-
anism, which will be discussed in the next section, comes into play.

As also discussed in [38], the same degree of reuse and variability is not pos-
sible with abstract aspects and intertype declarations of AspectJ. First, the lin-
ear inheritance hierarchy is not sufficient for multidimensional reuse, i.e., either
the bindings would inherit from concrete display implementations, or the other
way around. Second, the intertype declarations of an abstract aspect cannot be
reused in multiple concrete aspects that provide alternative implementations of
the introduced operations.



158 I. Aracic et al.

5 Dynamic Aspect Control

We can increase applicability of aspects by enabling flexible control over their
activation time and scope. One way to achieve this is to encode the activation
logic directly in the aspect. But, this tightly couples the aspect to specific parts
of the application and limits its reusability in other contexts. A better solution
is to provide control mechanisms over aspects from outside. In this section, we
review features of CaesarJ that enable dynamic control over aspects and their
scope of activity.

5.1 Explicit Instantiation, Local and Thread-Based Deployment

In CaesarJ an aspect is simply a class containing pointcuts and advice. Like
conventional objects, aspects in CaesarJ can be instantiated at any point of
the program execution using the keyword new. There can be multiple instances
of an aspect type with independent state, life cycle and scope of deployment.
Like any other objects, aspects can be referenced, passed as parameters and used
polymorphically.

Instantiation does not automatically activate an aspect; the latter must be
deployed in order to activate its pointcuts and advice. Aspects can be de-
ployed on different dynamic scopes. For simplicity, we will first consider the sim-
plest deployment method, called local deployment. By means of deploy, respec-
tively undeploy, statements, aspects are deployed, respectively undeployed, on all
joinpoints occurring in the local virtual machine process, as illustrated in List. 14
(lines 9 and 15).

Let us illustrate the usefulness of explicit aspect instantiation for the de-
sign of the company hierarchy display. The component CompanyHierarchyDisplay
(List. 11) is an aspect, because it inherits pointcuts and advice from its binding
(List. 10). On the other hand, CompanyHierarchyDisplay has all the properties
of a conventional class. It can be instantiated whenever the application needs
to display the company hierarchy. It can be instantiated once more, if the user
opens one more view. Furthermore, the decision which concrete variation of the
aspect to instantiate may depend on run-time conditions, e.g., user preferences
can specify which of the hierarchy display variations should be used.

In List. 14, CompanyHierarchyDisplay is created in a class that handles the
menu action to open a hierarchical view of a company. After instantiation we
can initialize it with additional data and pass it as a parameter to a view object,
which uses its visualization functionality. Once initialized, the aspect is deployed
and starts observing changes in the company model.10

An aspect is garbage-collected when it is not referenced anymore and is not
deployed. It would be incorrect to garbage-collect deployed aspects, because even
if they are not explicitly referenced, they are still reachable through joinpoint
interception and provide a meaningful functionality just by reacting to certain
10 We could also deploy the aspect in its constructor, i.e., automatically at creation

time; the solution in List. 14 is however safer, because the observation begins only
after completing initialization, which establishes necessary application invariants.



An Overview of CaesarJ 159

1 public class ShowCompanyHierarchyAction implements ActionListener {
2 List companyList; Frame mainWindow;
3 ...
4 public void actionPerformed(ActionEvent e) {
5 CompanyHierarchyDisplay hier = new CompanyHierarchyDisplay();
6 hier .setCompany(selectCompanyFromList(companyList));
7 HierarchyView view = createNewView(mainWindow);
8 view.setHierarchy(hier );
9 deploy hier;
10 }
11 }
12 public class HierarchyView extends JComponent {
13 IHierarchyDisplay hierarchy;
14 ...
15 public void close() { undeploy hierarchy; }
16 }

Listing 14. Life cycle of company hierarchy display component

1 deployed public cclass CompanyDisplayLogging {
2 void around() : execution(∗ draw(..)) && this(CompanyHierarchyDisplay) {
3 CompanyLogger logger = new CompanyLogger();
4 deploy (logger) { proceed(); }
5 }
6 }

Listing 15. Thread-based deployment

application events. Aspects can be undeployed explicitly from outside or implic-
itly as a reaction to some joinpoint. For example, CompanyHierarchyDisplay can
be undeployed by its client view when the view is closed (List. 14).

By deploying and undeploying aspects at certain points of program execution
we control their scope of application. In List. 14, we deploy CompanyHierarchyDis-

play when its owner view is created, and undeploy it when the view is destroyed.
In this way we limit the scope of the aspect application to the lifetime of the
corresponding view. We can also restrict the scope of the applicability of the
aspect to individual control flows. A similar level of flexibility of aspect control
is hard to achieve with static aspect activation as in AspectJ.

The scoping enabled by local deployment is limited only by time of activation.
This may not be sufficient in a multithreaded environment, where we might want
to limit the scope of aspects to a single thread. For this purpose, CaesarJ pro-
vides thread-based deployment, expressed by the deploy block. For illustration,
consider how the aspect in List. 15 is deployed on the scope of the control flow
inside the block and does not have any influence on concurrent executions.

Thread-based deployment works well for crosscutting of inherently syn-
chronous processes, such as calculations or workflows. However, in event-driven,
data-centric environments, we may want to observe updates and events inde-
pendently of the thread that causes them; in this case, local deployment is more
suitable.

5.2 Static Deployment

When an aspect needs to be active all the time, it can be deployed statically.
There are two ways to express static deployment. One can declare an aspect class



160 I. Aracic et al.

1 deployed public cclass CompanyLogger {
2 pointcut logMethods() : execution(∗ company.∗.∗(..)) || execution(company.∗.new(..));
3 before() : traceMethods() {
4 System.out.println(thisJoinPointStaticPart.toString ());
5 }
6 }

Listing 16. Singleton aspect to trace company model

1 public cclass CompanyLogger extends AbstractLogger { ... }
2 public cclass Application {
3 deployed final private static CompanyLogger compLogger = new CompanyLogger();
4 ...
5 }

Listing 17. Static deployment outside the aspect

as statically deployed by adding the deployed modifier to its declaration. This
means that a single instance of the class must be created and deployed at load
time. This is useful for implementing singleton aspects. Listing 16 demonstrates
a singleton aspect CompanyLogger, which traces all operations on the company
model to the console window.

By declaring the aspect class as statically deployed, we couple its definition
with the decision that it will not be used dynamically. The decision can be
postponed by expressing it outside the aspect: the deployed keyword can also
be applied to static fields, declared as final. This causes the instance referenced
by the field to be automatically deployed at the load time of the enclosing class.
Listing 17 shows the alternative way to create a statically deployed instance of
CompanyLogger.

Static deployment is mainly a matter of convenience. It allows us to express
a special case of dynamic deployment in a more compact way.

5.3 Remote Deployment

Distributed applications open one more dimension for scoping. Process bound-
aries should not be an obstacle for aspect-oriented interaction techniques. Just as
distributed OO applications need to call methods on remote objects, distributed
aspect-oriented applications need to intercept remote joinpoints.

In a distributed environment, the company model—instances of Company,
Department, Employee—would most probably reside on a server; the display
functionality—the CompanyHierarchyDisplay together with dependent instances
of Node and CompositeNode—would be on the client. Observation with pointcuts
would have to cross the process boundaries: advice would be executed in the con-
text of the hierarchy display component on the client as a reaction to joinpoints
of the company model on the server.

Interception of remote joinpoints is enabled by remote deployment, which
allows one to deploy aspects on the scope of remote processes. Remote aspect
deployment must be enabled on the server process by calling a special API
method activateAspectDeployment on an instance of CaesarHost initialized with
the RMI address identifying the server (List. 18). This creates and publishes an



An Overview of CaesarJ 161

1 public class CompanyServer {
2 public static void main(String[] args) {
3 ...
4 CaesarHost host = new CaesarHost(”rmi://myserver.net/MyServer/”);
5 host.activateAspectDeployment();
6 ...
7 }
8 }

Listing 18. Server process hosting company model

1 public class ShowCompanyHierarchyAction implements ActionListener {
2 CaesarHost host = new CaesarHost(”rmi://myserver.net/MyServer/”);
3 ...
4 public void actionPerformed(ActionEvent e) {
5 try {
6 CompanyHierarchyDisplay hier = new CompanyHierarchyDisplay();
7 hier .setCompany((Company)host.resolve(”Company”));
8 HierarchyView view = createNewView(mainWindow);
9 view.setHierarchy(hier );
10 host.deployAspect(hier);
11 }
12 catch (CaesarRemoteException e) { System.out.println(e.getMessage()); }
13 }
14 }

Listing 19. Initializing display of remote company model

object that accepts aspect deployment requests on the process where activate-

AspectDeployment is called.
On the client side, aspects can be deployed on the remote process by con-

structing an instance of CaesarHost with the same RMI address and using its
deployAspect and undeployAspect methods. Listing 19 shows a modified version
of List. 14, which initializes the hierarchy display of a remote company object.
We just have to change the way the Company object is retrieved and replace local
deployment of display component with remote deployment.

Remote aspect deployment is built on top of the Java RMI infrastructure
that deals with such issues as remote calls, marshaling of method arguments and
management of remote references. Additionally, we provide a tool that generates
stubs for CaesarJ classes that must be executed for each CaesarJ class that
is used or deployed remotely.

5.4 Deployment on a Distributed Control Flow

In Sect. 5.1, we argued that the aspects observing processes need to be deployed
on single threads. In List. 15, the aspect CompanyLogger was deployed inside the
execution of the method draw of the company display component to monitor how
the display uses the data model. Such a solution fails in a distributed environ-
ment, where the display component is working on the client side, but the data
model is located on the server.

On the other hand, the remote deployment described in Sect. 5.3 enables
observation of the data model activity on the server process, but it does not dis-
tinguish between requests from different clients. So, if we deploy CompanyLogger

using the remote deployment method, it will monitor all the activity on the



162 I. Aracic et al.

1 deployed public cclass CompanyDisplayLogging {
2 void around() : execution(∗ draw(..)) && this(CompanyHierarchyDisplay) {
3 CompanyLogger logger = new CompanyLogger();
4 RemoteDeployment.deployOnControlFlow(logger);
5 proceed();
6 RemoteDeployment.undeployFromControlFlow(logger);
7 }
8 }

Listing 20. Deployment on distributed control flow

data model during its deployment period. However, we need to intercept only
the joinpoints on the server side that are in the control flow of the draw method
including the synchronous remote calls.

The necessary filtering is provided by another deployment method supported
in CaesarJ, deployment on a distributed control flow. This deployment method
is expressed by API calls, as shown in List. 20. The aspect affects the synchronous
control flow, which the current thread is part of. The synchronous control flow
may involve multiple threads from different processes, which interact through
synchronous calls. In this way, we can filter the joinpoints of company model
methods, which were requested by the draw functionality.

6 Implementation

In this section, we discuss the implementation of CaesarJ on top of the Java Vir-
tual Machine (JVM) by presenting the steps performed by the CaesarJ compiler.

6.1 Implementation of Virtual Classes

By explicitly redefining virtual classes in a subfamily, we potentially also intro-
duce implicit (inherited) types and relations. Let us consider List. 1 for illus-
tration. Although the virtual type CompositeNode is not explicitly declared in
AdjustedHierarchyDisplay, there is an implicit virtual type AdjustedHierarchy-

Display.CompositeNode (dashed rectangles in Fig. 15). Furthermore, there are
a number of implicit relations, namely the relations inherited from the super-
family and the subtype relations between different refinements of a virtual class
(dashed inheritance arrows in Fig. 15).

In CaesarJ, all available virtual types are generated at compile time as Java
classes. Hence, the first step in the compilation process is the calculation of the

Fig. 15. Implicit types and relations



An Overview of CaesarJ 163

Fig. 16. Separated interface and implementation hierarchies

type graph by extending the explicit (in source code) declared structure with
the information about the implicit types and relations. For example, all boxes
and relations in Fig. 15 (explicit and implicit ones) constitute the type graph of
List. 1. Note that the cclass interface hierarchy directly reflects the structure of
the type graph.

Next, for each CaesarJ type contained in the type graph, the compiler gener-
ates a corresponding mixin list with the algorithm already discussed in Sec. 3.2.
Finally, the generated mixin lists are transformed to Java language constructs.
This is achieved as follows. For each cclass declaration, the CaesarJ compiler
generates a Java interface, called the cclass interface in the following discussion,
and a Java class, called the cclass implementation below. This results in an in-
terface and an implementation hierarchy. For example, Fig. 16 shows separated
implementation and inheritance hierarchies for the set of classes defined in the
framed listing. The interfaces have the same name as the cclass declarations
in the source code. A Impl-suffix is appended to the names of implementation
classes.

To construct the implementation hierarchy, every cclass is conceptually
viewed as a mixin whose superclass parameter is restricted to the declared parent
or a subclass of it. The cclass implementations are gained from a composition
of an ordered mixin list. For example, the mixin list of B Impl is [A, B].

Given the set of mixin lists for a set of CaesarJ classes, the compiler con-
structs the single inheritance implementation hierarchy using plain Java classes.
Nodes in the resulting inheritance hierarchy are cclass implementations; each
path in it, starting with the root node, corresponds to a mixin list. Sometimes,
mixins need to be duplicated and the declared parent of a mixin has to be
changed. For example, the mixin list of D Impl is [A, B, C, D]. That is, the
super of C, which is A by default, needs to be replaced with B.



164 I. Aracic et al.

To generate the corresponding path in the implementation hierarchy, the com-
piler generates a new Java class by cloning the bytecode of the original mixin,
then it replaces in the cloned bytecode all occurrences of the old superclass ref-
erences with the new one. In our example, C Impl Copy is the clone of C Impl,
having the references to the old superclass replaced by B Impl.

The interface hierarchy hides the implementation hierarchy. It contains the
public methods of the cclass implementations and represents their subtype rela-
tions. For example, the interface D is a subtype of B and C. Since the implementa-
tion class always implements the corresponding cclass interface, we can preserve
type compatibility by working with cclass interfaces, e.g., we can assign D Impl

to B and C.

6.2 Implementation of Wrappers

Wrapper recycling is managed by family objects via a map from wrappees to
wrappers for each hierarchy of wrappers with the same name. When a wrapper
constructor is called, a wrapper is retrieved from a hash table using the wrappee
as a key. If the wrapper for given wrappee is not available, a new most-specific
wrapper for given wrappee is created and registered in the hash table.

Wrapper classes are translated to virtual classes that are identified by the
pairs of wrapper and wrappee names, as shown in Figs. 17 and 18. The ex-
ample shows that wrappers can be overridden in the subfamily by declaring a
new wrapper with the same name and for the same wrappee class. The inheri-
tance relationships between the translated wrappers are generated according the
subtype relationships of their wrappee classes. In the next compilation steps,

1 class N extends M { }
2 class O extends N { }
3 class P extends O { }
4

5 cclass CollabA {
6 cclass A wraps M { ... }
7 cclass A extends B wraps O { ... }
8 cclass B { ... }
9 }
10 cclass CollabB extends CollabA {
11 cclass A wraps M { ... }
12 cclass A wraps P { ... }
13 }

Fig. 17. Code with wrapper classes

1 cclass CollabA {
2 cclass A M { ... }
3 cclass A O extends B & A M { ... }
4 cclass B { ... }
5 public A M newAforM(M x) {
6 if (x instanceof O) {
7 return newAforO((O)x);
8 }
9 return new A M(x);
10 }
11 public A O newAforO(O x) {
12 return new A O(x);
13 }
14 }
15 cclass CollabB extends CollabA {
16 cclass A M { ... }
17 cclass A P extends A O { ... }
18 public A O newAforO(O x) {
19 if (x instanceof P) {
20 return newAforP((P)x);
21 }
22 return new A O(x);
23 }
24 public A P newAforP(P x) {
25 return new A P(x);
26 }
27 }

Fig. 18. Generated code



An Overview of CaesarJ 165

wrappers are treated in the same way as described in Sect. 6.1 for the simple
virtual classes.

Figure 18 also shows methods generated for the creation of the most specific
wrapper for the given wrappee. Such methods are generated for each wrapper
class. Each method checks if the direct subclasses of the wrapper class can be
applied for the given wrappee: If yes, the selection is delegated to the more
specific method; if not, the current wrapper class is instantiated. Note that the
instantiation is polymorphic, which ensures that the most-specific versions of
the wrappers will be instantiated. The selection methods must be overridden
when the set of the direct subclasses of the wrapper is changed, e.g., newAforO is
overridden in List. 18, because a new subclass of A O was defined.

Another important implementation issue is the life cycle management of wrap-
pers. The life cycle of a wrapper is coupled to the life cycle of two objects, the
family and the wrappee. In the current implementation, families use a standard
Java hash map to implement the mapping from wrappees to wrappers. This
means that entries in the map are garbage-collected only when the correspond-
ing family object is garbage-collected. A better solution would be to release a
mapping as soon as neither the wrappee nor the wrapper are reachable. Weak
references sound like a solution at first glance, but it turned out that the sup-
port for weak references as currently implemented in the JVM is not sufficient
to implement this strategy.

6.3 Implementation of Dynamic and Remote Deployment

In this section, we sketch the implementation of aspect deployment in CaesarJ.
The aspect deployment framework builds upon static aspects. Each crosscutting
class is split into two classes: an implementation class and a registry class. The
implementation class encapsulates the behavior of the aspect objects, while the
registry class manages their deployment. Pieces of advice, declared in the aspect,
are translated to methods in the implementation class, while the pointcuts are
copied to the registry class.

The registry is a singleton aspect, which is statically woven using the AspectJ
weaver [26]. The methods of the registry can be seen as statically woven hooks,
which are responsible to dispatch calls to the corresponding methods of the
deployed instances of the implementation class. The singleton registry instance
maintains a container of the deployed instances of the implementation class, as
shown in Fig. 19.

Aspect containers in Fig. 19 decide on the deployed objects that must be
called at a certain joinpoint. Different deployment methods use different types
of containers. The container for local deployment notifies all objects it manages.
The thread-based deployment strategy, on the other hand, uses a map-based
container that notifies only the objects that are deployed on the current thread.
Simultaneous use of multiple deployment strategies is supported by using a com-
posite container, which aggregates the aspect containers of multiple deployment
methods. The relationship between the implementation and the registry classes
is not one to one. The compiler analyzes inheritance relationships between as-



166 I. Aracic et al.

Objects of Woven
Classes

registry2:
AspectB.Registry

aspectContainer2:
ThreadAspectMapper

b1:
AspectB

b2:
AspectB

b3:
AspectB

registry1:
AspectA.Registry

aspectContainer1:
AspectList

a1:
AspectA

advice
calls

advice
calls

aspect registriesaspect containersaspect objects

o1

o4

o7o8

o3
o6

o2

o5

Fig. 19. Sample run-time configuration with dynamically deployed aspects

pect classes, which may involve mixin composition, and generates shared registry
classes for aspects with identical crosscutting behavior.

The implementation of dynamic deployment has been carried out with care
about performance. The weaver inserts advice calls only at joinpoints that are
referenced by the aspects in the application. If no aspect is deployed at a join-
point, the dispatch logic causes one redundant static method call and one field
check for the null value. When aspects are deployed, there is only one additional
virtual method call as compared to AspectJ. The reader interested in a more
details on aspect registries is referred to [18].

Remote Deployment. Remote aspect deployment in CaesarJ uses Java RMI,
which generates stub classes for transparent communication with remote objects.
Stubs must also be generated for aspects that are remotely deployed. When an
aspect object is deployed remotely, a stub is created for this object on the remote
process. The stub intercepts joinpoints on the remote process and marshals the
advice calls to the real aspect object. The stubs are generated by a specialized
RMI compiler for CaesarJ classes. Classes, which are used or deployed remotely,
must be prepared by this tool. Differently from standard Java RMI, the CaesarJ
RMI compiler does not require specially prepared remote interfaces. The stub
can be generated for any CaesarJ class.

Deployment on Distributed Control Flow. Each synchronous control flow
is represented by a single thread in each involved process; therefore, the aspects
deployed on the control flow are actually deployed on these threads. During
remote call the client process must send the aspects deployed within the current
thread, and the remote process must again deploy the received aspects on the
thread that serves the client request.

To send aspects to another process, the marshaling of remote method calls has
been modified. Normally the stub of a remote object marshals the reference to
the object, the name of the called method and the arguments. In the modified
version, the stub additionally sends the references to the aspects, which are
deployed on the current control flow. The remote process unpacks the received
references to the aspects and deploys them on the corresponding thread.



An Overview of CaesarJ 167

7 Related Work

We have divided work similar to the paper itself into three different groups:
hierarchical composition crosscutting composition and dynamic aspect control.

7.1 Hierarchical Composition

Virtual classes were originally introduced in Beta [34] and were further de-
veloped in gbeta [12], which supplemented them with mixin composition and
family polymorphism. CaesarJ provides a solid implementation of these con-
cepts on the JVM and combines them with language features for crosscutting
composition.

Jx [42] supports a kind of nested inheritance. A major difference is that Jx
considers inner classes not as properties of the enclosing object, but as properties
of the surrounding class. Applicability of Jx is limited to linear refinements,
because it does not provide any composition mechanisms for family classes. A
similar linear refinement of classes is also supported in Keris [54], but as an
extension technique for static modules rather than for instantiable family classes.

AHEAD [4] is the newest technology based on ideas of GenVoca [5] and Mixin
Layers [48]. AHEAD supports modularization of application features in large-
scale units called layers, which are sets of files describing fragments of different
artifacts of the application including fragments of Java classes. The layers are
composed using a mixin composition technique that is similar to the one of
CaesarJ. The provided implementation is based on source-to-source transfor-
mation. Layers lack subtyping and abstraction capability. In CaesarJ, abstrac-
tions play an important role for ensuring validity of individual family classes
and their composition. In AHEAD reliable composition of layers is assured by
additional specifications. Differently from CaesarJ family classes, layers cannot
be instantiated and used polymorphically.

Virtual classes are composed along two dimensions: At first the mixins of the
same virtual class are composed, and then such a mixin list is composed with
analogous mixin lists of its superclasses. Traits [6] also support the composition
of the classes along two dimensions: composing the traits inside a class and
then along the inheritance hierarchy. Composition of traits inside a class is an
orthogonal dimension w.r.t. both the composition dimensions of virtual classes.
Traits in combination with virtual classes would mean that virtual classes could
be extended with new traits in their further bindings.

7.2 Crosscutting Composition

Hölzle analyzed the problem of integrating independent components in OO lan-
guages [24]. Our work addresses many problems identified by Hölzle. CaesarJ
is also related to Hyper/J [51] and the notion of multidimensional separation of
concerns (MDSOC) [52]. In order to avoid the “tyranny of the dominant decom-
position” CaesarJ is not limited to hierarchical refinement and composition
techniques, but supports the development the of multiple independent hierar-
chies and their crosscutting composition by means of bindings.



168 I. Aracic et al.

However, on the technical level CaesarJ is very different from Hyper/J. In
Hyper/J, one can define an independent component in a hyperslice. A hyper-
slice is integrated into an existing application by means of composition rules,
specified in a hypermodule. Hyperslices are independent of their context of use,
because they are declaratively complete, i.e., they declare as abstract methods
everything that they need, but cannot implement themselves. This is different
from the CaesarJ approach of shared abstractions in form of a collaboration
interface, which facilitates reliable composition and makes the composition code
itself reusable. The composition mechanisms in Hyper/J are class-based and
cannot be applied in a dynamic way like CaesarJ bindings. Furthermore, Hy-
per/J’s sublanguage for mapping specifications from different hyperslices is fairly
complex and not well integrated into the common OO framework.

Integration of multiabstraction of components was addressed by the prede-
cessor technologies of CaesarJ: Adaptive Plug and Play Components (AP-
PCs) [36], Aspectual Components (AC) [31] and Pluggable Composite Adapters
(PCA) [39]. Due to a lack of necessary abstraction capabilities, connectors and
adapters in APPC, AC, and PCA models are bound to a fixed implementation
of an aspect and cannot be reused. CaesarJ also extends these technologies
with mechanisms for layered refinement and composition.

The idea of collaboration-based design and composition with bindings is also
implemented in ObjectTeams [22]. The notion of a team is analogous to our family
classes, and the roles inside teams have similar semantics as virtual classes. This
enables linear refinement of teams and separation of generic team implementa-
tion from its concrete binding to application classes. However, similarly to APPC,
AC and PCA, ObjectTeams does not support collaboration interfaces and reuse
of bindings. Besides, the crosscutting capabilities supported in the form of call-ins
are significantly less expressive than the pointcuts supported by CaesarJ.

Framed Aspects [33], Sally [19] and LogicAJ [28] provide a form of genericity
for AspectJ-like aspects. In this way an aspect is more reusable, because it can
be bound to various application classes by specifying different generic parameters.
In CaesarJ, we assume that bindings to different classes are different and may
require totally different adaptation code. Nevertheless, CaesarJ can benefit from
generic pointcuts for better reuse of similar bindings.

7.3 Dynamic Aspect Control

Method Call Interception (MCI) [29] offers dynamically deployed joinpoint in-
terception on the basis of source code instrumentation. Their idea to use cen-
tral registry to control execution of explicitly instantiated and deployed ad-
vice objects is similar to our local dynamic deployment mechanism outlined
in List. 14. In comparison to the implementation of MCI [30], CaesarJ pro-
vides additional optimizations by creating a specialized registry for each type
of aspect and weaves it only at the joinpoints, referenced by the pointcuts of
the aspect.

CaesarJ and most other dynamic aspect activation approaches, such as EAOP
[11], JAC [45], PROSE [46], JBoss AOP [25] and AspectWerkz [8], require one or



An Overview of CaesarJ 169

another form of pre-run-time class preparation for weaving. The classes are either
prepared at compile time, at class load time or during just-in-time compilation.
There are two possibilities for pre-run-time class preparation: either to insert hooks
at all joinpoints of a loaded class or to limit to a fixed set of known joinpoints.
While the first option causes significant performance overhead, the second op-
tion (also used in CaesarJ) assumes initial knowledge about aspects that will be
activated.

Dynamic aspect deployment can be more efficiently implemented on the sys-
tems supporting real run-time weaving, such as Steamloom [7] and AspectS [23].
Steamloom is particularly well-suited for the needs of aspect deployment in Cae-
sarJ, because it supports thread local aspects as well as aspect deployment on
individual objects.

Remote pointcuts introduced in DJcutter [41] allow definition of aspects which
refer to joinpoints on remote processes. All aspects run on a special aspect server
and intercept joinpoints in all or some of the registered hosts. CaesarJ ex-
tends applicability of remote joinpoints, by combining them with dynamic as-
pect deployment. This enables dynamic selection of servers as well as connecting
and disconnecting from the server at any point of program execution. Besides,
dynamic deployment postpones the decision about local or remote usage of an
aspect until run time.

The idea of unifying aspects and classes, i.e., support for stateful aspects and
their explicit instantiation, has also recently been implemented in the Eos-U lan-
guage [47]. In Eos-U, the advice overriding problem is solved by completely re-
placing advice with methods. A similar effect can be achieved in CaesarJ by
inserting method calls on self in the advice bodies.

8 Summary and Future Work

In this paper we gave an overview of the CaesarJ programming language. We
demonstrated that advanced OO techniques for multiclass components and inter-
action based on joinpoint interception are complementary technologies, which can
be used together to solve important software design problems.

In Sect. 3, we showed that by treating collaborations as classes, we can apply
OO techniques on a larger scale. Virtual classes and propagating mixin compo-
sition provide a means for abstraction, refinement and polymorphism of mul-
ticlass components, but they are not sufficient for integration of independently
developed components with different modular structure. The problem of cross-
cutting integration of structure and behavior can be solved by the mechanisms
for joinpoint interception and dynamic object extensions in form of wrappers.
The unification of aspects and collaborations facilitates development of reusable
well-modularized aspects, as was explained in Sect. 4. Finally, Sect. 5 demon-
strated that treating an aspect as a class enables its free instantiation and flexible
control over its scope of application.

The current implementation of the CaesarJ compiler covers all the features
presented in this paper except the dynamic wrapper selection, which is part of
our ongoing work. The existing implementation is stable and is already used



170 I. Aracic et al.

in case studies of our industrial partners. We also provide an integrated devel-
opment environment for the language in the form of an Eclipse plug-in, which,
among other features, includes views for visualization of CaesarJ virtual classes
and crosscutting structure. The compiler, the Eclipse plug-in, the language ref-
erence as well as other documentation are available from caesarj.org.

There are several areas of ongoing and future work. We are investigating ways
to provide better support for CaesarJ language features on the virtual machine
level. So far, we have been building support for shadow search, weaving and
dynamic aspect deployment into the aspect-oriented virtual machine Steamloom
[21]. However, CaesarJ is not built on top of Steamloom so far. We believe
that implementing CaesarJ compiler on top of Steamloom could significantly
improve the implementation, but JVM compatibility would have to be sacrificed.

Also, we plan to add support for the virtual classes directly at the virtual
machine level. This will significantly facilitate the implementation of the compiler
and will avoid a lot of code duplication generated right now by the compiler to
simulate the virtual class semantic on top of standard Java classes. Another
path in our future research will be concerned with bringing into CaesarJ a
more powerful pointcut language such as the one supported by the prototype
language presented in [44].

Yet other threads of future work will be concerned with the module system
of CaesarJ. One interesting issue to consider is to support a more flexible
bundling of classes into families. Right now, related virtual classes have to be
defined within a module. This might be too restrictive. We would like to be able
to bundle classes that are defined independently into families. This imposes hard
challenges on static typing, which need to be considered carefully. Another issue
to investigate is the relation between CaesarJ modules, generic components and
crosscutting bindings to genericity. We believe that CaesarJ modules, equipped
with some extensions such as so-called final bindings, are able to simulate generics
properly, but this needs to be investigated more in the future.

Acknowledgments

This work is partly supported by TOPPrax Project sponsored by the German
Ministry of Education and Science (BMBF) and the European Network of Ex-
cellence on Aspect-Oriented Software Development (AOSD-Europe) sponsored
by the EU FP6.

References

[1] J. Aldrich. Open modules: Modular reasoning in aspect-oriented programming.
In: Workshop on Foundations of Aspect-Oriented Languages (FOAL) at AOSD’04,
2004

[2] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
Reading, MA, 1996



An Overview of CaesarJ 171

[3] K. Barrett, B. Cassels, P. Haahr, D.A. Moon, K. Playford, and P.T. Withington.
A monotonic superclass linearization for Dylan. In: Proceedings of the 11th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM, pp. 69–82, 1996

[4] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In:
ICSE ’03: Proceedings of the 25th International Conference on Software Engineer-
ing, IEEE Computer Society, pp. 187–197, 2003

[5] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. The
GenVoca model of software-system generators. IEEE Softw., 11(5):89–94, 1994

[6] A.P. Black and N. Scharli. Traits: Tools and methodology. In: ICSE ’04: Proceed-
ings of the 26th International Conference on Software Engineering, IEEE Com-
puter Society, pp. 676–686, 2004

[7] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual machine support for
dynamic join points. In: AOSD ’04: Proceedings of the 3rd International Conference
on Aspect-Oriented Software Development, ACM, New York, pp. 83–92, 2004

[8] J. Boner. Aspectwerkz. http://aspectwerkz.codehaus.org/index.html. 2004
[9] G. Bracha and W. Cook. Mixin-based inheritance. In: OOPSLA/ECOOP ’90:

Proceedings of the European Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, ACM, New York, pp. 303–311, 1990

[10] C. Clifton, G.T. Leavens, C. Chambers, and T. Millstein. Multijava: Modular open
classes and symmetric multiple dispatch for java. SIGPLAN Not., 35(10):130–145,
2000

[11] R. Douence and M. Südholt. A model and a tool for event-based aspect-oriented
programming. Technical Report 02/11/INFO, Ecole des Mines de Nantes, 2002

[12] E. Ernst. gbeta—A Language With Virtual Attributes, Block Structure, and Prop-
agating, Dynamic Inheritance. PhD thesis, Department of Computer Science,
University of Aarhus, Denmark, 1999

[13] E. Ernst. Propagating class and method combination. In: ECOOP ’99: Proceed-
ings of the 13th European Conference on Object-Oriented Programming, Springer,
pp. 67–91, 1999

[14] E. Ernst. Family polymorphism. In: ECOOP ’01: Proceedings of the 15th European
Conference on Object-Oriented Programming, Springer, pp. 303–326, 2001

[15] E. Ernst. Higher-order hierarchies. In: L. Cardelli (ed.) Proceedings ECOOP 2003,
LNCS vol. 2743, Springer, pp. 303–329, 2003

[16] E. Ernst, K. Ostermann, and W. Cook. A virtual class calculus. In: POPL’06: 33rd
ACM Symposium on Principles of Programming Languages, ACM SIGPLAN-
SIGACT, to appear, 2006

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, Reading, MA, 1995

[18] J. Hallpap. Towards Caesar: Dynamic deployment and aspectual polymorphism.
Master’s thesis, Department of Computer Science, Darmstadt University of Tech-
nology, 2003. http://www.st.informatik.tu-darmstadt.de/database/theses/thesis/
DiplomaThesis.pdf?id=15

[19] S. Hanenberg and R. Unland. Parametric introductions. In: AOSD ’03: Proceed-
ings of the 2nd International Conference on Aspect-Oriented Software Develop-
ment, ACM, New York, pp. 80–89, 2003

[20] J. Hannemann and G. Kiczales. Design pattern implementation in Java and
AspectJ. In: OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, ACM,
New York, pp. 161–173, 2002



172 I. Aracic et al.

[21] M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker, M. Eichberg, and M. Krebs.
An execution layer for aspect-oriented programming languages. In: VEE ’05: Pro-
ceedings of the 1st ACM/USENIX International Conference on Virtual Execution
Environments, ACM, New York, pp. 142–152, 2005

[22] S. Herrmann. Object teams: Improving modularity for crosscutting collabora-
tions. In: NODe ’02: Revised Papers from the International Conference NetOb-
jectDays on Objects, Components, Architectures, Services, and Applications for a
Networked World, Springer, pp. 248–264, 2003

[23] R. Hirschfeld. AspectS – aspect-oriented programming with squeak. In: NODe
’02: Revised Papers from the International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications for a Networked World,
Springer, pp. 216–232, 2003

[24] U. Hölzle. Integrating independently-developed components in object-oriented
languages. In: ECOOP ’93: Proceedings of the 7th European Conference on Object-
Oriented Programming, Springer, pp. 36–56, 1993

[25] JBoss Inc. JBoss aop beta3. http://www.jboss.org. 2004
[26] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An

overview of AspectJ. In: ECOOP ’01: Proceedings of the 15th European Conference
on Object-Oriented Programming, Springer, pp. 327–353, 2001

[27] G. Kiczales and M. Mezini. Aspect-oriented programming and modular reason-
ing. In: ICSE ’05: Proceedings of the 27th International Conference on Software
Engineering, ACM, New York, pp. 49–58, 2005

[28] G. Kniesel, T. Rho, and S. Hanenberg. Evolvable pattern implementations need
generic aspects. In: RAM-SE, Fakultät für Informatik, Universität Magdeburg,
Germany, pp. 111–126, 2004

[29] R. Lämmel. A semantical approach to method-call interception. In: AOSD ’02:
Proceedings of the 1st International Conference on Aspect-Oriented Software De-
velopment, ACM, New York, pp. 41–55, 2002

[30] R. Lämmel and C. Stenzel. Semantics-Directed Implementation of Method-Call
Interception. IEE Proceedings Software, 151(2):109–128, 2004

[31] K.Lieberherr,D. Lorenz, and M.Mezini. Programming with aspectual components.
Technical Report NU-CCS-99-01, Northeastern University, Boston, MA, 1999

[32] K. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual collaborations – combining
modules and aspects. Journal of British Computer Society, 46(5):542–565, 2003

[33] N. Loughran and A. Rashid. Framed aspects: Supporting variability and config-
urability for AOP. In: J. Bosch and C. Krueger (eds.) International Conference
on Software Reuse, Madrid, Spain, LNCS vol. 3107, Springer, pp. 127–140, 2004

[34] O.L. Madsen and B. Møller-Pedersen. Virtual classes: A powerful mechanism
in object-oriented programming. In: OOPSLA ’89: Conference Proceedings
on Object-Oriented Programming Systems, Languages and Applications, ACM,
New York, pp. 397–406, 1989

[35] O.L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object Oriented Programming
in the Beta Programming Language. Addison-Wesley, Reading, MA, 1993

[36] M. Mezini and K. Lieberherr. Adaptive plug-and-play components for evolution-
ary software development. In: OOPSLA ’98: Proceedings of the 13th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM, New York, pp. 97–116, 1998

[37] M. Mezini and K. Ostermann. Integrating independent components with on-
demand remodularization. In: OOPSLA ’02: Proceedings of the 17th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM, New York, pp. 52–67, 2002



An Overview of CaesarJ 173

[38] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In: AOSD ’03:
Proceedings of the 2nd International Conference on Aspect-Oriented Software De-
velopment, ACM, New York, pp. 90–99, 2003

[39] M. Mezini, L. Seiter, and K. Lieberherr. Component integration with pluggable
composite adapters. In: M. Aksit (ed.) Software Architectures and Component
Technology: The State of the Art in Research and Practice, Kluwer, 2000

[40] T. Millstein, M. Reay, and C. Chambers. Relaxed multijava: Balancing extensi-
bility and modular typechecking. SIGPLAN Not., 38(11):224–240, 2003

[41] M. Nishizawa, S. Chiba, and M. Tatsubori. Remote pointcut: A language construct
for distributed aop. In: AOSD ’04: Proceedings of the 3rd International Conference
on Aspect-Oriented Software Development, ACM, New York, pp. 7–15, 2004

[42] N. Nystrom, S. Chong, and A.C. Myers. Scalable extensibility via nested inheri-
tance. SIGPLAN Not., 39(10):99–115, 2004

[43] K. Ostermann. Dynamically composable collaborations with delegation layers.
In: ECOOP ’02: Proceedings of the 16th European Conference on Object-Oriented
Programming, Springer, pp. 89–110, 2002

[44] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased
modularity. In: ECOOP’05: European Conference on Object-Oriented Program-
ming, LNCS vol. 2586, Springer, pp. 214–240, 2005

[45] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible solution for
aspect-oriented programming in Java. In: Proceedings REFLECTION ’01, LNCS
vol. 2192, pp. 1–24, 2001

[46] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-oriented
programming. In: AOSD ’02: Proceedings of the 1st International Conference on
Aspect-Oriented Software Development, ACM, New York, pp. 141–147, 2002

[47] H. Rajan and K.J. Sullivan. Classpects: Unifying aspect- and object-oriented
language design. In: ICSE ’05: Proceedings of the 27th International Conference
on Software Engineering, ACM, New York, pp. 59–68, 2005

[48] Y. Smaragdakis and D.S. Batory. Implementing layered designs with mixin layers.
In: ECCOP ’98: Proceedings of the 12th European Conference on Object-Oriented
Programming, Springer, pp. 550–570, 1998

[49] C. Szyperski. Independently extensible systems – software engineering potential
and challenges. In: Proceedings 19th Australian Computer Science Conference,
Australian Computer Science Communications, Melbourne, 1996

[50] C. Szyperski. Component Software – Beyond Object-Oriented Programming.
Addison-Wesley, New York, 1998

[51] P. Tarr and H. Ossher. Hyper/J user and installation manual, 1999. http://www.
research.ibm.com/hyperspace

[52] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton. N degrees of separation:
Multi-dimensional separation of concerns. In: ICSE ’99: Proceedings International
Conference on Software Engineering, ACM, pp. 107–119, 1999

[53] M. VanHilst and D. Notkin. Using role components in implement collaboration-
based designs. In: OOPSLA ’96: Proceedings of the 11th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
ACM, New York, pp. 359–369, 1996

[54] M. Zenger. Evolving software with extensible modules. In: International Workshop
on Unanticipated Software Evolution, LNCS vol. 2548, Springer, pp. 92–106, 2002



An Expressive Aspect Language for System
Applications with Arachne

Rémi Douence1,�, Thomas Fritz2,��, Nicolas Loriant1, Jean-Marc Menaud1,
Marc Ségura-Devillechaise1, and Mario Südholt1,�

1 OBASCO project,
École des Mines de Nantes - INRIA, LINA,

4, rue Alfred Kastler,
44307 Nantes Cedex 3, France

{douence, nloriant, jmenaud, msegura, sudholt}@emn.fr
2 Gruppe PST,

Institut für Informatik,
Ludwig-Maximilians-Universität München,

Oettingenstraße 67,
80538 München, Germany

fritz@informatik.uni-muenchen.de

Abstract. Security, networking and prefetching are typical examples of
concerns which crosscut system-level C applications. While a careful de-
sign can help to address these concerns, they frequently become an issue
at runtime, especially if avoiding server downtime is important. Vulner-
abilities caused by buffer overflows and double-free bugs are frequently
discovered after deployment, thus opening critical breaches in running
applications. Performance issues also often arise at run time: in the case
of Web caches, e.g., a prefetching strategy may be required to increase
performance. Aspect-oriented programming is an appealing solution to
solve these issues. However, none of the current dynamic aspect sys-
tems is expressive and efficient enough to support them properly in the
context of C applications. Arachne is a new aspect system specifically
designed to address these issues. Its aspect language allows aspects to
be expressed concisely using a sequence construct for quantification over
function calls and accesses through variable aliases. Arachne enables as-
pects to be woven “on the fly” in running legacy applications. We show
how these abilities can be used to prevent security breaches, to modular-
ize the replacement of network protocols by more efficient ones, and to
introduce prefetching in Web caches. We present two formal semantics for
Arachne: one which defines in abstract terms the main properties of the
sequence construct, and a second one which enables reasoning about the
actual implementation. Following a detailed presentation of Arachne’s
implementation, we give performance evaluations showing that Arachne
is fast enough to extend high-performance applications, such as the Squid
Web cache.

� This work has been supported by AOSD-Europe (http://www.aosd-europe.net).
�� Part of this work was done during the author’s stay at École des Mines de Nantes.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 174–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Expressive Aspect Language for System Applications with Arachne 175

1 Introduction

Real-world applications are typically made of a number of different concerns.
System-level C applications are no exception: security considerations, network
concerns, caching and prefetching concerns are usually scattered in the entire
program code. Furthermore, there is a strong need to isolate and manipulate
these concerns at run time, especially in server environments whose downtime
must be minimal. Security breaches such as double-free bugs and buffer overflows
might be discovered after server deployment. Hardware resources might turn
out to be undersized calling, for instance, for use of more appropriate network
protocols or for the inclusion of prefetching strategies within Web caches. The
Web cache Squid [1] is a typical illustration of this situation. First, we have found
that several such concerns are scattered over large portions of the code of Squid.
Second, such a Web cache should not be stopped in order to avoid performance
loss by keeping caches filled continuously. Similarly, a buffer overflow should be
fixed without incurring server downtime.

Potentially aspect-oriented programming (AOP) [2] should allow one to prop-
erly modularize and manipulate crosscutting concerns such as those we have
identified for the Squid Web cache. Furthermore, Squid is designed to be as
efficient as possible and therefore exploits any suitable operating system and
hardware particularity. Its code base is therefore difficult to understand and
manipulate, thus hinting at the use of specialized aspect systems instead of tra-
ditional means for modularization. However, these concerns exhibit three char-
acteristics which make difficult the application of basic aspect technology. First,
any of these concerns expose intricate relationships between execution points:
network protocols, e.g., are most concisely expressed in terms of sequences of
execution points, not individual ones. Second, as motivated above, the concerns
need to be manipulated “on the fly” once the application is running. A dynamic
aspect weaver is therefore needed. Finally, their lack of modularization at design
time typically results from performance considerations. Use of aspect-oriented
(AO) techniques in this context must only degrade efficiency to a very small
extent.

To our knowledge, none of the current aspect systems for C is suitable for
the modularization of such concerns. In particular, no existing aspect systems
meets the three requirements introduced above, e.g., dynamic weavers often trade
efficiency for expressivity. This paper summarizes our attempt to treat such con-
cerns as aspects using the Arachne system. The core to our solution is a new
expressive aspect language providing a sequence construct which allows us to
quantify over function call events and access to local aliases of global variables.
A main contribution of this paper is to show how sequences allow us to facili-
tate nontrivial evolution tasks of legacy systems software. Technically, we show
how they support the proper modularization of the four concerns introduced
above. Its implementation is based on binary code rewriting techniques and al-
lows aspects to be woven dynamically in running C applications (which uses
implementation techniques quite different from load-time or dynamic weaving
in, e.g., Java-based aspect systems).



176 R. Douence et al.

The paper is structured as follows. Section 2 presents the motivating concerns
we identified within Squid. Section 3 shows how to modularize these concerns as
aspects and presents the Arachne aspect language. The language is defined in
Sect. 3, where two formal semantics for this language are presented: an abstract
one defining the main properties of the language and an implementation-level one
that allows us to reason about the code executed by the Arachne tool. Section 5
describes Arachne’s implementation. Section 6 assesses the performance of our
implementation. In Sect. 7, we discuss related work, and we conclude in Sect. 8.

2 Motivation

Legacy C applications involve multiple crosscutting concerns. Many of them
remain challenging, both in terms of expressiveness required to handle them
properly in an AO language and in terms of constraints posed on the weaver. In
this section we discuss four such concerns in C applications: memory manage-
ment problems caused by double-free bugs, buffer overflows, switching network
protocols and Web cache prefetching. The security threats posed by double-
free bugs and buffer overflows are typically scattered over the entire application.
Since guarding all buffers against overflows or monitoring memory manipulations
might considerably decrease performance, administrators are often left with no
other option than accepting the trade-offs between security and performance
chosen at design time of an application. Likewise, switching network protocols
is a real problem for administrators facing bandwidth problems. Prefetching is
another well-known crosscutting concern that traditionally require similar trade-
offs [3, 4]. Since prefetching aims at increasing performance, prefetching aspects
make only sense with an efficient weaver. Yet, it is still difficult to modularize
these four concerns in today’s AO languages. In this section, we first describe
the contexts in which the different concerns arise before giving evidence of their
crosscutting nature and finally motivating the lack of appropriate means of ex-
pression in current AO languages.

2.1 Double-Free Bugs

Unix systems introduced the brk system call, allowing programs to dynamically
resize the heap. Later on, the standard C library has provided the malloc inter-
face that acts as a layer between applications and the system. It allocates large
chunks of memory through brk and fragments these chunks for the application,
thus providing a more efficient and finer-grained interface for dynamic memory
manipulation.

For performance reasons the GNU C library performs no sanity check on
use of the malloc interface: freeing a nonallocated memory chunk leads to an
implementation-dependant behavior, most frequently a segmentation fault. This
has widely been exploited by hackers to build denial of service attacks [5]. In or-
der to deal both with performance and fragmentation issues, the GNU C library
implementation stores information such as the list of free chunks, the chunk size
and other management information within the heap itself. If an application tries



An Expressive Aspect Language for System Applications with Arachne 177

to free a nonallocated memory chunk, hackers can exploit the GNU C mem-
ory layout to take control of the application by corrupting its memory [6]. To
protect against these so-called double-free bugs (which occur frequently because
of erroneously freeing a memory location twice), a safe implementation of the
malloc interface, which can be selected at load time, is provided by the GNU
C library. Nevertheless, this safe implementation turns out to be very inefficient
and is rarely if ever used. Hence, administrators discovering that an application
contains a double-free bug cannot ensure security without deploying a bug-free
version of the application. This requires the application to be stopped at the
cost of potentially trashing the work in progress.

Despite the fact that Squid implements its own heap manipulation API,1

it has recently been proven to be vulnerable to double-free bugs [7]. In Squid,
memory allocation is a crosscutting concern: 71% of the .c files, which constitute
its source code, contain direct references to the heap manipulation API.

In order to ensure continuous servicing without hurting performance, san-
ity checks on double-free calls should be limited to untrusted code (i.e., external
libraries) or to periods when the environment is known to be hostile. Adding san-
ity checks to memory manipulation code may affect an entire application source
code as dynamic memory allocation is highly common in string and buffer ma-
nipulations. In this case, an AO system is likely to permit users to improve on the
lengthy and error-prone process of manually adding sanity checks. Furthermore,
it should be helpful to address the security versus performance trade-off.

2.2 Buffer Overflows

In C, the size of an array is fixed at allocation time. According to ISO and
ANSI standards [8], an invalid array access, i.e., an access out of the bounds of
the array, does not result in an immediate error but leads to an implementation-
dependent behavior. These vulnerabilities are increasingly exploited by computer
worms such as CodeRed [9, 10], Slammer [11, 12] and Blaster [13, 14], and cause
billions of dollars worth of damage [15]. Today, about 50% of vulnerabilities
reported by CERT [16] arise from buffer overflows, and buffer-overflow attacks
present the most common security attacks on software systems [17, 18].

A typical buffer-overflow attack tries to modify the memory by injecting code
and altering the control flow so that the attacker gains control of the machine
[19]. The most common buffer-overflow attack, the so-called stack smashing,
overwrites the return address of a function on the stack with an address pointing
to previously inserted malicious code (Fig. 1). This overwriting of the return
address is possible as the program does not check if input exceeds the bounds
of the buffer, and thus the attacker can overwrite code adjacent to the buffer.
Once the function returns, the control is handed to the malicious code, and
the attacker may get control over the machine [20]. A simple echo server in C
containing such a buffer-overflow vulnerability is shown in Fig. 2. The code lacks

1 Squid can also be configured to use its own heap manipulation routines on top of
GNU malloc.



178 R. Douence et al.

Arguments

Local Buffer

Arguments

Local Buffer

Overwritten Return Address

(pointing to malicious code)
Return Address

Fig. 1. Buffer-overflow attack overwriting the return address of a function

void echo() {

char* in = malloc(255);

gets(in); /*read user input*/

printf("%is\n",in); /*display it*/

free(in);

}

Fig. 2. Echo server in C with buffer-overflow vulnerability

a test whether the user input exceeds the size of the array, and an attacker could
easily exploit this vulnerability as described.

Therefore, it is crucial to ensure every access to a buffer to be in its bounds.
But bound-checking is error-prone and easily forgotten, and it is infeasible to de-
tect all buffer-overflow vulnerabilities by statically analyzing code [20]. Several
buffer overflow detectors have thus been proposed. Some of these approaches do
not protect against all attacks, like StackGuard [21]. This approach is based on
placing a dummy value between the stack data and the return address and then
checking whether it has been altered or not. Thus, it just detects attacks over-
writing everything along the stack. Bound-checkers, on the other hand, detect
all buffer-overflow attacks as they check all buffer accesses. But approaches like
Cyclone [22] or CCured [23], which are based on bound-checking, imply changes
to the code. Cyclone is a “safe dialect of C” [22]. To prevent safety violations,
the approach requires a subset of the C language to be used, e.g., by restrict-
ing pointer arithmetic, and the corresponding compiler performs static analysis
and inserts run-time checks. CCured is a program transformation system that
statically analyzes the program by classifying pointers and, depending on the
classification, also adds run-time checks. Compilers have also been proposed
that enforce proper array access by bound-checking [15, 24]2 without requiring
code changes. But even the most efficient of these compilers, CRED [15], incur
an overhead of up to 130%. Moreover, most frequently used C compilers, like
the gcc compiler, do not support bound-checking.

2 http://sourceforge.net/projects/boundschecking/



An Expressive Aspect Language for System Applications with Arachne 179

Also, with respect to performance, most approaches are too generic. They
check every buffer access, even if the environment is not hostile and there is no
vulnerability. However, as bound-checking is expensive, it should only run on
buffer-overflow vulnerabilities [25].

Nowadays, administrators discovering a buffer-overflow vulnerability in a run-
ning application are mostly left with no other option than stopping the appli-
cation and restarting a bug-free version, as done in Squid [26]. However, this
technique does not conserve the continuous service property required by appli-
cations like the Squid Web cache. Furthermore, by stopping the application, the
administrator has no means to know whether and how the vulnerability has been
exploited, and thus this technique entails an important loss of information.

Bound-checking code tends to crosscut the entire application. In Squid, bound-
checking code can be found in any of the 104 .c files of its source code. Of the
57,635 lines composing these .c files, at least 485 relate to bound-checking.

This problem fails to be handled properly in current aspect languages since
they lack the ability to trigger advices upon access made through the alias of a
variable. Furthermore, many AO systems offer only static weaving capabilities,
preventing the administrator from choosing the trade-off between security and
performance that suits his needs.

2.3 TCP to UDP Protocol

The Hypertext Transfer Protocol (HTTP) [27] is the primary method of the
World Wide Web to transfer information over the Internet. The most frequently
used communication protocol underlying HTTP is the Transmission Control Pro-
tocol (TCP) [28]. TCP is a connection-oriented protocol ensuring reliable com-
munication by explicitly setting up and tearing down connections. While TCP
is used as the underlying transport protocol of HTTP, it is not well-suited for
short-lived connections exchanging only little data. However, short interactions
comprise a significant amount of Web traffic. According to a study conducted
on the soccer World Cup Web site of 1998 [29], the average request size is about
4 KB, and there are results that 40% of the Web traffic can even fit into a single
datagram of 1500 bytes, making up the size of a maximum transfer unit (MTU)
of Ethernet [30]. Thus, the cost of a Web interaction is dominated by data
exchanged for control purposes of the TCP connection rather than the actual
requested data. Furthermore, HTTP 1.1 has introduced persistent connections,
allowing a client to retrieve multiple pages from the same server through the
same TCP connection. However, the number of simultaneous TCP connections
is limited by operating systems, and thus servers have a strong incentive to close
HTTP connections as soon as possible.

Therefore, as also supported in [30, 31, 32], it seems beneficial to use the User
Datagram Protocol (UDP) [33]. UDP incurs much less overhead for connection
establishment than TCP as the underlying transport protocol of HTTP for short-
lived connections and thereby reduces the overhead induced by TCP.

In spite of the corresponding potential performance gains, the existence of a
large number of legacy Web applications and the corresponding adaptation costs



180 R. Douence et al.

listen

accept

read

write

close

write

read

close

connect

socket

Server Client

TCP Protocol

socket

bind

close close

socket

Server Client

UDP Protocol

recvfrom

sendto recvfrom

socket

bind

NetworkNetwork

sendto

Time

Fig. 3. Typical usage of the TCP and UDP APIs

have hindered widespread adoption of this solution. In particular, a complete
redesign of legacy applications is typically not reasonable. Besides the corre-
sponding development costs, deployment of the modified applications is prob-
lematic. Existing approaches to application deployment require stopping the
legacy Web application to switch the protocol. This, however, does not satisfy
the continuous servicing property inherent in such applications and, for exam-
ple, in the case of an e-commerce Web server, causes a direct loss of money.
Therefore, one may swap the application between different machines to avoid
shutting down the service, but this requires redundant servers, which are often
not affordable for small companies. For wide acceptance, a HTTP dialect using
UDP as transport protocol should thus be deployable on demand at run time.

In addition, replacing TCP by UDP is relatively difficult in an application.
The choice of a transport protocol is usually based on standards believed to
be everlasting and is made at an early design stage. Hence, no particular effort
is made to localize this design decision in a single piece of code. For example,
despite a modularization effort, the TCP API provided by the operating system
is used directly in 7 of the 104 .c source files of the Squid Web cache.

As shown in Fig. 3, the TCP API is built around a set of C functions to
be invoked sequentially by the application [34]. In a properly written program,
TCP functions are first used to establish the connection (typically with socket,
connect, bind and listen), exchange data through the connection (typically
with read and write) and then close it (typically close). Similarly, UDP appli-
cations first direct the operating system to dedicate the appropriate resources to
exchange data (typically with socket and bind), then exchange data through
these resources (typically with sendto and recvfrom) before releasing them (typ-
ically with close). Hence, the problem is not only difficult because TCP-related



An Expressive Aspect Language for System Applications with Arachne 181

function invocations are scattered but also because the relative order of each in-
vocation is important in order to map it onto the appropriate UDP function. Fur-
thermore, there can be several connections at the same time, i.e., several clients
that connect with one server, and each connection can be in a different state.

2.4 From Fetching to Prefetching

Operations like retrieving a file on a local disk or over the Web can be sped
up if the underlying software anticipates user requests and fetches documents in
advance of explicit requests. Such prefetching schemes differ from one another by
how they predict future user requests. These “oracles” actually prevent a clean
encapsulation of prefetching in a single module communicating with the rest of
the application through well-defined interfaces since predictions are based on
information meant to be private to other modules. In addition, it is obvious that
there is no universally perfect oracle [35]. A statically linked prefetching module
is therefore inappropriate; instead, prefetching modules along with the necessary
oracles should be loaded and unloaded on the fly. Because of their crosscutting
nature, prefetching modules including such oracles are better written with as-
pects, as motivated by Coady et al. for file prefetching in the FreeBSD OS [3]
and our previous work considering the Squid Web cache [4].

Despite potential performance improvements, prefetching also increases re-
source consumption (e.g., network prefetching consumes local storage and band
width). When the need for such resources is too high, prefetching computation
competes for them against regular user requests and slows down their treatment
instead of speeding it up. In such cases, prefetching should therefore be temporar-
ily disabled. Squid, for instance, essentially manages file descriptors, a resource
only available in a limited quantity. A file descriptor is used by the underlying
operating system and applications to describe a network connection or a file on
the disk. Squid’s file descriptor management is based on a global variable that
tracks the number of file descriptors currently in use. By comparing its value
with the maximum number of file descriptors allowed by the operating system,
it is possible to evaluate whether prefetching should be disabled or activated.

Using current AO technology, enabling/disabling of prefetching depending on
the number of open file descriptors would be handled within advice by explic-
itly managing a corresponding state and triggering the corresponding actions.
This is bad practice because it impedes both readability and maintainability. A
mechanism is needed within the aspect language to restrict advice execution at
times where resource usage is too high.

3 An Expressive Aspect Language for System
Programming in C

While AOP is an obvious choice to tackle the crosscutting concerns introduced
above, none of the existing AO systems provides explicit support for some of
their essential elements, in particular, references to aliases which are local to a
function, and joinpoint sequences for protocols.



182 R. Douence et al.

In this section we introduce a new aspect language for system programming
in C that allows such crosscutting concerns to be expressed concisely. In order
to make this point, we first revisit the examples by concisely “aspectizing” them
using our language. (Note that our aspect language is expressive in the sense that
it enables the concise definition of certain types of aspects, especially compared
to other tools for system-level manipulations, but it is not necessarily more ex-
pressive than existing approaches in a language-theoretic sense.) We then define
the joinpoint model underlying our language precisely, followed by the definition
of its syntax and informal semantics. Its formal semantics is the subject of the
following section.

3.1 Example Crosscutting Concerns Revisited

We now revisit the concerns discussed in Sect. 2 in order to show our language
in action and to give evidence that it allows such concerns to be concisely modu-
larized. Our motivating examples are reordered following increasing complexity
of the language constructs involved.

Double-Free Bugs. The aspect shown in Fig. 4 detects double-free bugs. It uses
two sets, addMalloc and addFree, which are initially empty to collect addresses
that have been allocated and freed as exemplified by the first advice. The sec-
ond advice checks whether these sets are consistent when free(buffer) is to be
called. First, when the current address has already been freed previously, the ad-
vice terminates the execution of the application. Second, when buffer does not
belong to addMalloc, either the aspect has been dynamically woven after the cor-
responding call to malloc that returned buffer and this call to free(buffer)

void ∗ checkMalloc(size t size) {
void ∗ buffer = malloc(size);
addMalloc = addMalloc ∪ {buffer};
addFree = addFree \ {buffer};
return buffer;

}

void checkFree(void ∗ buffer) {
if (buffer ∈ addFree) exit(error);
else if (buffer /∈ addMalloc) warning();

free(buffer);
addFree = addFree ∪ {buffer};
addMalloc = addMalloc \ {buffer};

}

call(void ∗ malloc(size t)) && args(size) then checkMalloc(size);

call(void free(void∗)) && args(buffer) then checkFree(buffer);

Fig. 4. An aspect for detecting double-free bugs



An Expressive Aspect Language for System Applications with Arachne 183

is correct, or the aspect has been dynamically woven after the previous call to
free(buffer) and the current call is a bug. These two cases cannot be distin-
guished, so the advice only prints a warning. The memory is freed, and the two
sets of addresses are maintained. Note that, if the user does not care about warn-
ings, the aspect can be simplified by suppressing the set addMalloc.

TCP to UDP Protocol. The aspect shown in Fig. 5 translates transport
protocols from TCP to UDP. A protocol defines a sequence of function calls, so
the top-level operator of this aspect is seq. The sequence aspect syntactically
consists of a list of pairs of pointcut and advice, with the pairs being separated
by “;”. In the example, the TCP protocol starts with a call to socket() with
three arguments that are bound to family, type and protocol and compared to
constants (AF INET, SOCK STREAM and 0) in the if-expression. When such
a call is matched for which the comparisons in the if-expression also evaluates
to true, the second parameter is replaced by SOCK DGRAM as required by the
UDP protocol. The result of this transformed call, the file descriptor, is bound
to fd by return(fd). Then the next call to connect() is matched for which the
same file descriptor has to be the first parameter (achieved by binding it to fd1
and comparing it to fd in an if-expression). In this case, the values of the other
parameters are bound to arguments address and length, and the original call is
replaced by returnZero(), which simulates a successful connection establishment
by returning zero and doing nothing else. Indeed, there is no connect step in
the UDP protocol. After that, calls to read() and write() (using the “or” on
aspects: ||) on the same file descriptor fd are translated to UDP recvfrom()
and sendto(), respectively. Note that sequences of such access are potentially
repeatedly translated (due to use of the repetition operator “∗”). Finally, a call
to close() on the same file descriptor fd terminates the TCP protocol as well as

seq( call(int socket(int, int, int)) && args(family, type,protocol)
&& if((family == AF INET) && (type == SOCK STREAM)

&& (protocol == 0))
&& return(fd)
then socket(AF INET, SOCK DGRAM, 0);

call(int connect(int, struct socketaddr∗, socklen t))
&& args(fd1, address, length) && if(fd1 == fd)
then returnZero(); // where int returnZero() { return 0; }

( call(size t read(int, void∗, size t)) && args(fd2, readBuffer, readLength)
&& if(fd2 == fd)
then recvfrom(fd, readBuffer, readLength, 0, address, length);

|| call(size t write(int, void∗, size t))
&& args(fd3, writeBuffer, writeLength) && if(fd3 == fd)
then sendto(fd, writeBuffer, writeLength, 0, address, length); ) ∗

call(int close(int)) && args(fd4) && if(fd4 == fd) ; )

Fig. 5. An aspect for switching transport protocols, from TCP to UDP



184 R. Douence et al.

seq( call(void ∗ malloc(size t))
&& args(allocatedSize) && return(buffer) ;

write(buffer) && size(writtenSize)
&& if(writtenSize > allocatedSize)
then reportOverflow (); ∗

call(void free(void∗)) && args(b1) && if(b1 == buffer) ; )

Fig. 6. An aspect for detecting buffer overflow

require Number Of Fd as int∗;
require Squid MaxFd as int∗;

controlflow(call(void clientSendMoreData(void∗, char∗, size t)),
call(HttpReply ∗ clientBuildReply(clientHttpRequest∗, char∗, size t))
&& args( request, buffer,bufferSize ))

then startPrefetching(request, buffer,bufferSize);
&& until(writeGlobal(int ∗ Number Of Fd) && if((∗Number Of Fd) ∗
100/(∗Squid MaxFd) ≥ 75) ; )

controlflow( call(void clientSendMoreData(void∗, char∗, size t)),
call(void comm write mbuf(int,MemBuf, void∗, void∗))
&& args(fd, mb, handler, handlerData) && if(! isPrefetch(handler)) )

then parseHyperlinks(fd, mb, handler, handlerData);

call(void clientWriteComplete(int, char∗, size t, int, void∗))
&& args(fd, buf, size, error, data) && if(! isPrefetch(handler))
then retrieveHyperlinks(fd, buf, size, error, data);

Fig. 7. An aspect for prefetching

the UDP protocol and thus is not modified (i.e., there is no then clause). This
last step is required to free the variables used in the sequence (here, fd, address
and length). Indeed, this aspect can use numerous (instances of these) variables
when it deals with interleaved sequences, as each call to socket() creates a new
instance of the sequence.

Buffer Overflows. The aspect shown in Fig. 6 detects buffer overflows. The
corresponding sequence starts when the function malloc() returns the buffer
address that is then bound to the buffer. Then, each time this address is accessed
(through a global variable or a local alias) the size of the data to be written is
compared with the size of the initially allocated memory. If the former exceeds
the latter, an overflow is indicated. The sequence ends when the memory is
deallocated using free().

From Fetching to Prefetching. The aspect in Fig. 7 introduces prefetching
in a Web cache. The first controlflow phrase initializes prefetching when an



An Expressive Aspect Language for System Applications with Arachne 185

HTTP response is built (clientBuildReply()) within the control flow of a client
request (clientSendMoreData()). The until clause stops prefetching when the
number of connection becomes too large, a situation where prefetching would
effectively degrade performance. The second controlflow phrase analyzes hy-
perlinks in a page being transmitted (i.e., when comm write mbuf() is called
within the control flow of clientSendMoreData()). Finally, the last call phrase
prefetches hyperlinks analyzed by the second aspect. It does so by replacing the
method call to clientWriteComplete() with retrieveHyperlinks(). Finally, note
that the two require clauses at the top of the aspect declare the types of the
global variables of the base program used in the aspects.

3.2 Joinpoints

A joinpoint model defines the points in the execution of the base program to
which pointcuts may refer. In our case, joinpoints are defined by JP in the
grammar shown in Fig. 8. A joinpoint is either:

– A call of a function callJP(v1 funId(−→v2)) with function name funId , return
value v1 and a vector of arguments −→v2 .

– A read access that comes in two variants: readGlobalJP(varId, v) denotes
reading a global variable with name varId holding the value v ; readJP(@, v)
denotes reading a global variable or a local alias with address @ holding the
value v .

– Write access, which also comes in two variants: writeGlobalJP(varId, v, size)
denotes assignment to a global variable with name varId of the value v of
size size. writeJP(@, v, size) denotes assignment to a global variable or a
local alias with address @ of the value v of size size.

– A cflow expression controlflowJP(
−−−−→
funId, c), where

−−−−→
funId = [funId1 , ..,

funIdn ] is a stack of function names, and c (either a function call or an

JP ::= callJP(val funId(
−→
val))

| readGlobalJP(varId, val)
| readJP(@, val)
| writeGlobalJP(varId, val, size)
| writeJP(@, val, size)

| controlflowJP(
−−−−→
funId, cfEnd)

| controlflowstarJP(
−−−−→
funId, cfEnd)

cfEnd ::= callJP(val funId(
−→
val))

| readGlobalJP(varId, val)
| writeGlobalJP(varId, val, size)

val ::= 0 | 1 | 2 | ... // int

| @0 | @1 | @2 | ... // int*

| ... // values of other C types

Fig. 8. Joinpoint model



186 R. Douence et al.

access to a global variable) occurs within the body of function funIdn. Such
a joinpoint requires a call to funIdi+1 within the body of funIdi.

– A cflow expression controlflowstarJP(
−−−−→
funId, c), where

−−−−→
funId = [funId1 ,

.., funIdn ] is a partial stack of function names, and c (either a function call
or an access to a global variable) occurs within the control flow of function
funIdn. Such a joinpoint requires a call to funIdi+1 within the control flow
of (i.e., not necessarily in the body of) funIdi. Therefore, in contrast to the
preceding cflow expression, no direct nesting is required, but the functions
and the final execution point c may be nested at arbitrary depth within the
preceding function.

Two features of this joinpoint model may be surprising at first sight: distinc-
tion of accesses to aliases from those to global variables and explicit representa-
tion of control flow expressions. Both are motivated by our quest for efficiency
and are grounded in strong implementation constraints in the context of dy-
namic weaving of binary C code: An access to a local alias is several magnitudes
slower than that to a global variable, and matching of control flow joinpoints
can be done using an atomic test on the implementation level.

3.3 Pointcuts

We now present a pointcut language (Fig. 9) that provides constructs to match
individual joinpoints.

Primitive pointcuts are defined by PPrim and comprise three basic pointcuts:
matching calls, global variable accesses and control flow joinpoints. Primitive
pointcuts can also be combined using a logical “or”, noted ||.

A call pointcut PCall selects all call joinpoints callJP(val funId(
−→
val)), i.e.,

all calls to a function matching the signature type funId(
−−→
type), where the argu-

ments of the function can be bound to pointcut variables using argument binder
args(

−−−−−→
pattern ) and the return value can be bound to a pointcut variable us-

ing a return clause return( pattern ). The two constructs args(
−−−−−→
pattern ) and

return( pattern ) can also provide pattern matching by using values (or already
bound pointcut variables) in pattern. Pointcuts can also depend on a Boolean
condition using the if-constructor.

A global access pointcut PAccGlobal selects either all read joinpoints, i.e.,
readGlobalJP(varId, val), or all write joinpoints writeGlobalJP(varId, val, size)
on the global base program variable varId . In these cases, the read or written
value can be bound to a variable using value(pattern). In addition, the size of
the written value can be bound with size(varName). Pattern matching can also
be used for variable access.

A control flow pointcut PCf , which is of the form controlflow( PCallSig1 ,
..., PCallSign , PCfEnd), matches controlflowJP(funId1, ..., funIdn, cfEnd)
joinpoints, where the function identifier in PCallSigi is funIdi. Similarly, a
control flow pointcut may match a global variable access for a given stack con-
figuration. The pointcuts of the form controlflowstar(. . . ) select calls or global
variable accesses in a stack context, allowing for calls that are not directly nested
within one another.



An Expressive Aspect Language for System Applications with Arachne 187

PPrim ::= PCall
| PAccGlobal
| PCf
| PPrim || PPrim

PCall ::= PCallSig [ && args(
−−−−−→
pattern ) ] [ && return( pattern ) ]

[ && PIf ]

PCallSig ::= call( type funId(
−−→
type) )

PIf ::= if( expr ) [ && PIf ]

PAccGlobal ::= readGlobal( type varId ) [ && value( pattern ) ] [ && PIf ]
| writeGlobal( type varId ) [ && value( pattern ) ]

[ && size( pattern ) ] [ && PIf ]

PCf ::= controlflow( PCallSigList, PCfEnd )
| controlflowstar( PCallSigList, PCfEnd )

PCallSigList ::= PCallSig [ , PCallSigList ]
PCfEnd ::= PCall | PAccGlobal

PAcc ::= read( var ) [ && PIf ]
| write( var ) [ && size( pattern ) ] [ && PIf ]

pattern ::= var | val

Fig. 9. Pointcut language

Finally, PAcc, an access pointcut for a global variable or all of its local aliases,
matches all joinpoints of the form readJP or writeJP.

3.4 Aspect Language

The aspect language we propose is defined in Fig. 10. Aspects Asp are either
primitive aspects AspPrim, or sequences of primitive aspects AspSeq.

Both primitive and sequence aspects can be combined with requirement
statements. A requirement statement is needed for each function or global vari-
able of the base program used in the aspect. Similar to the declaration of a
function before its first use in a C file, e.g., in a header file, a function or
global variable with identifier Id has to be specified in a requirement state-
ment require Id as Type; before it can be used in an aspect.

A primitive aspect AspPrim combines a primitive pointcut with an advice
that will be applied to all joinpoints selected by the pointcut. An advice (Advice)
is a C function call that replaces a joinpoint in the base program execution
(similarly to around in AspectJ). It must have the same return type as the
joinpoint it replaces, that is, the type of the global variable in case of a read
access, void for a write access and the return type of the function for a call.
When the advice is empty (no then clause), the original joinpoint is executed.
The original joinpoint can be skipped by calling an empty C function.



188 R. Douence et al.

Asp ::= RequireStmt Asp
| AspPrim [ && until( AspPrim ) ]
| AspeSeq [ && until( AspPrim ) ]

RequireStmt ::= require Id as Type ;

AspPrim ::= PPrim Advice

AspSeq ::= seq( AspPrim
AspSeqElts
AspSeqElt )

AspSeqElts ::= AspSeqElt [AspSeqElts]
| AspSeqElt ∗ [AspSeqElts]

AspSeqElt ::= AspPrim
| PAcc Advice
| (AspSeqElt || AspSeqElt)

Advice ::= ;

| then funId(
−−−−−→
pattern) ;

pattern ::= var
| value

Fig. 10. Aspect language

A sequence aspect is composed of a sequence of primitive aspects. A sequence
instance is created when the pointcut of the first primitive aspect matches. The
following primitive aspects in the sequence are activated as soon as the corre-
sponding pointcut matches (i.e., a primitive aspect has priority over its prede-
cessor if both match). All but the first and last primitive aspects can be repeated
zero or multiple times by using the operator “∗”. Branching, i.e., a logical “or”
between two primitive aspects in a sequence, is supported by the operator ||.
Different sequence instances are (conceptually) matched in parallel.

A primitive or a sequence aspect a can be used in combination with an
expression until(a1 ), to restrict its scope. In this case, once a joinpoint has
been matched by a, the execution of a proceeds as previously described until a1

matches.
To conclude the presentation of our language, note that it does not include

some features, such as named pointcuts as arguments to controlflows, and con-
junctive terms, which are not necessary for the examples we considered but which
could easily be added. (As an aside, note that such extensions of the pointcut
language may affect the computability of advanced algorithmic problems, such
as whether a pointcut matches some part of any base program [36].)



An Expressive Aspect Language for System Applications with Arachne 189

4 Formal Semantics for Expressive Aspects

In the previous sections, we have given an informal semantics of our aspect
language. We now illustrate how the aspect language can be formally defined by
means of two different semantics:

– A semantics translating our aspects language into an extension of the lan-
guage used in the formal framework of [37]. This semantics abstracts from
most implementation details but allows a clear and succinct definition of the
main properties of our sequence construct.

– A semantics providing a translation scheme into the actual C implementation
used in the Arachne tool. This semantics has been harnessed to establish
correctness arguments about and and thus guide the implementation of our
tool.

4.1 An Abstract Formal Semantics

Douence et al. [37, 38] have introduced a generic framework for AOP support-
ing stateful crosscuts, i.e., pointcuts with explicit state. Without relying on any
specific programming language, they have applied this framework to the formal
definition of aspects and for certain kinds of reasoning techniques over aspects.
In the case of our aspect language, their language must be extended in order to
deal with halting aspects, an unbounded number of sequential aspects executed
in parallel and arbitrary joinpoint predicates. The grammar of our extended
version, our tiny aspect language, is defined in Fig. 11. In this language, as-
pect expressions A consist of parallel combinations of aspects. C is a joinpoint
predicate (similar to our pointcut language) expressed as a conjunction of a
term pattern and possibly an expression from the constraint logic programming
language CLP(R) [39].

An aspect A′ is either:

– A parallel composition of two aspects A1 || A2.
– A recursive definition.
– A sequence formed using the prefix operation C � I ; X , where X is an

aspect, a recursion variable, or a halting aspect STOP, and I a piece of code
(i.e., an advice).

A ::= A′

| A || A ; parallelism

A′ ::= μa.A′ ; recursive definition (a ∈ Rec)
| C � I; A ; prefixing
| C � I; a ; end of sequence (a ∈ Rec)
| C � I; STOP ; halting aspect
| A′ � A′ ; choice

Fig. 11. Tiny aspect language



190 R. Douence et al.

– A choice construction A1 � A2 (A1, A2 must not be parallel expressions)
which chooses the first aspect that matches a joinpoint (the other is thrown
away). If both match the same joinpoint, A1 is chosen.

One can think of a stateful aspect A (as well as A′) as a kind of transition
system. Thereby, an aspect is always in a certain state in its execution, e.g., at
rule C � I (which is the head of a sequence of rules, which in turn is possibly
part of a more complex expression), and waiting on a joinpoint to match C. If
a joinpoint matching C occurs, the aspect executes I and advances to the next
state, i.e., the next rule in the sequence.

Protocol Translation. The semantics of the protocol translation aspect (from
TCP to UDP) is given in Fig. 12. A sequence can have several instances. This
is translated into the language A by the expression a1 || ..., which starts
a new sequence a1 once the first joinpoint has been matched and continues
to match the rest of the sequence in progress. The repetition operator “∗” is
translated into recursion on the variable a2. The branching operator || of the
source language is translated into the choice operator � of A. Finally, the last
primitive aspect of the sequence occurs as the first aspect of a choice to get
priority over the joinpoints read and write because of the repetition marked by
“∗”. Note that we use joinpoint patterns with variables, where an overbar marks
the first occurrence of a variable (i.e., its definition in opposition to a use) and
subsequent variable occurrences without overbar mark variable uses (e.g., to use
the value of the file descriptor fd in argument positions).

Buffer Overflow Detection. The semantics of the aspect for detecting buffer-
overflows is given in Fig. 13. This definition reports overflows after memory for
a buffer has been allocated until a joinpoint matches the free crosscut, in which
case the sequence instance corresponding to the freed buffer will be stopped.

These examples demonstrate that this style of semantics clearly exhibits the
advantages stated in the beginning by concisely defining three important prop-
erties of our sequence aspect:

1. A sequence can have several instances, as for each joinpoint matching the
pointcut of the first primitive aspect, a new sequence instance is created.
The parallel operator a1 || ... in the translation of the sequence aspect

μa1. callJP(fd socket(AF INET, SOCK STREAM, 0)) �

socket(AF INET, SOCK DGRAM, 0);
a1 || ( callJP(var1 connect(fd, address, length)) � returnZero();

μa2. callJP(var2 close(fd)) � close(fd); STOP
� callJP(var3 read(fd, readBuffer, readLength)) �

recvfrom(fd, readBuffer, readLength, 0, address, length); a2

� callJP(var4 write(fd, writeBuffer, writeLength)) �

recvfrom(fd, writeBuffer, writeLength,0, address, length); a2

Fig. 12. Definition of the protocol translation using the tiny aspect language



An Expressive Aspect Language for System Applications with Arachne 191

μa1. callJP(buffer malloc(allocatedSize)) � malloc(allocatedSize);
a1 || μa2. callJP(var1 free(buffer)) � free(buffer); STOP

� writeJP(buffer, var2, writtenSize)
&& (writtenSize > allocatedSize) � reportOverflow() ; a2

Fig. 13. Definition of the buffer overflow aspect using the tiny aspect language

expresses this property. Once the first joinpoint has been matched, a new
sequence a1 is started and the rest of the sequence in progress continues to
match in parallel.

2. The last step in a sequence aspect determines the finalization of sequence
instances. When a joinpoint matches the pointcut of the last sequence el-
ement and a sequence instance is in a state waiting for such a joinpoint,
i.e., the instance has already passed all previous steps of the sequence, the
advice of the last step is executed and then the instance is terminated. In A′,
the finalization is expressed by STOP, which terminates the corresponding
sequence.

3. The star operator ∗ attached to a sequence step, besides expressing rep-
etition, causes the following step to have priority over its predecessor. The
choice operator � and the order of arguments of the choice in the translation
ensure this property.

Note that formal definitions such as that of the protocol translation aspect
and the buffer overflow detection aspect precisely define several important issues,
which are somewhat implicit in the sequence aspect construct. In particular, they
define when new instances of the sequence aspect are created: A new sequence
instance is created once the first step in the sequence is matched, i.e., sequences
are implicitly in scope of a repetition. The abstract semantics could be used, e.g.,
to formally prove that two instances match when a joinpoint matches the first as
well as another step of a sequence. Furthermore, they disambiguate potentially
nondeterministic situations, e.g., when two pointcuts of consecutive primitive
aspects in the sequence match at the same time. Finally, this style of semantics
clearly abstracts from implementation details, e.g., how the sequence state is
represented in the implementation.

4.2 An Implementation-Level Semantics

Due to its abstractness, the semantics presented in the previous section illus-
trates certain properties of Arachne’s aspect language very clearly, e.g., when
new sequence instances are created. However, it abstracts from many details
that are relevant, in particular, to judge the correctness of the Arachne tool:
most important the above semantics abstracts from the generated C code, the
C run-time environment and the concrete weaving process. In order to support
a detailed understanding of the Arachne tool we have therefore developed an
implementation-level formal semantics, which we present in this section.

This implementation-level semantics — in the remainder of this section the
term “semantics” always refers to the implementation-level semantics — is



192 R. Douence et al.

formulated as a denotational semantics [40] whose valuation functions define
transformations from aspects into the corresponding C code executed by the
Arachne tool. Technically, the valuation functions map syntactic categories of
our language to a list of code generation functions. The code generation functions
define code that handles the initialization of aspects, the dynamic conditions that
are used to check whether a joinpoint actually matches the pointcut of an aspect
as well as calls to the advice.

In addition, the generated code contains symbolic references to rewriting sites,
i.e., places in the base program that have to be rewritten. The exact sites to be
rewritten are first known at run time, as only then the aspect is woven into
the base program. After the aspect code is generated, it will be compiled into a
dynamic link library (DLL).3 At weave time, the aspect DLL will then instruct
Arachne to instrument the base program at the appropriate places and once
such a site is encountered at run time, the dynamic predicates are tested and
the advice function eventually executed.

This semantics therefore helps understanding of the Arachne tool by the fol-
lowing two characteristics:

– code generation functions providing a structured presentation of the executed
C code

– a notion of rewriting sites providing an explicit representation of the weaving
process

This way it is concrete enough to serve for correctness considerations of our
tool, while being abstract enough to enable such considerations compositionally
in terms of structural entities.

In this section we first present the denotational semantics in the context of
a concrete example aspect and the evaluation of that aspect by means of the
semantics. Second, we present a detailed overview of the semantics (a complete
account can be found in [41]).

Example: Semantics of a Control Flow-Based Aspect. In order to il-
lustrate the semantics and provide some information about the complexity in
using the semantics (which cannot be completely avoided since it enables, in
fine, derivation of the executed C code), we first discuss a concrete transforma-
tion. The following example shows an aspect that executes an advice action(x)
when the function h is called within a control flow path on which functions f
and g have already been called (see Listing 1 for the aspect definition).

Figure 14 presents three steps resulting from the application of the valuation
functions of the semantics to the preceding aspect definition:

(a) The initial transformation step introduces initialization code and calls the
valuation function corresponding to the aspect at hand (here AP).

3 A library that is linked to a process/application at run time rather than at compile
time and can be shared between several processes (called “shared object libraries”
under Unix).



An Expressive Aspect Language for System Applications with Arachne 193

A�controlflow(call(int f(int)),call(long g(short)),
call(float h(double))&&args(x))

then action(x);�

= (step a)
createAspectInitialization(1);
createAspectCompletionGuard();
AP�controlflow(call(int f(int)),call(long g(short)),

call(float h(double))&&args(x))
then action(x);�(1)

. . .

= (step b)
createAspectInitialization(1);
createAspectCompletionGuard();
defineAF ACTION(1,1, action(x) );
defineMacro(NUMBER OF JPS,1,1);
defineJPMacro(1,1);
let (c,d) = PCSL�call(int f(int)),call(long g(short))�("",0)

in defineCF BEGIN(1,0,c,d);
defineCF END FC(1,0);

PC�call(float h(double))&&args(x))�(1,0)
createPrimitiveAspect(1);

. . .

= (step c)
createAspectInitialization(1);
createAspectCompletionGuard();
defineAF ACTION(1,1, action(x) );
defineMacro(NUMBER OF JPS,1,1);
defineJPMacro(1,1);
defineCF BEGIN(1,0,""f","g"",2);
defineCF END FC(1,0);
defineORIGINAL FC(1,"float","h","double","x");
createEntryPointFunctionFC(1,0,"float","h","double","x",

"double x");
createJoinPointFunCall(1,0,"h");
createPrimitiveAspect(1);

Fig. 14. Example: Transformation of an control flow-based aspect (excerpt)

controlflow (call(int f(int)),call(long g(short)),

call(float h(double)) && args(x)) then action(x);

Li i A lfl
Listing 1. Aspect using a control flow pointcut



194 R. Douence et al.

(b) An intermediate step which enables matching of the call to h (via the point-
cut valuation function PC) after the call sequence f;g has been matched
(valuation function PCSL)).

(c) The final step represents the complete aspect code. This definition is given
in terms of functions manipulating macro definitions (which, in turn, corre-
spond to “real” C macros). The use of macro manipulation functions allows
the semantics to be expressed quite concisely while still completely defining
the executing code. The final step makes explicit, e.g., that pointcut match-
ing is specialized w.r.t. the concrete number of joinpoints (through the use
of NUMBER OF JPS), which governs how many concrete joinpoint macros can
be instantiated (via defineJPMacro).

Listing 2 shows the executed code, i.e., once all the macro definitions and
manipulations resulting from the final step of the transformation shown in Fig. 14
have been resolved.

This code (which is actually executed code, not some pseudocode) that will
be generated by the compiler consists of initialization code, the advice and en-
trypoint of the aspect, a file guard and an aspect structure.

When the compiled aspect DLL is loaded, the initialization code (lines 1–4)
triggers the automatic initialization of the aspect. Thereby the aspect is added
to the active aspects and Arachne’s kernel instruments all sites in the base pro-
gram affected by the aspect structure (lines 32–54), which in the example are
all function calls to h. Once the base: program executes a site rewritten for the
aspect, the guard (lines 6–10) of the aspect, which indicates the progress of the
weaving process, is checked to see whether it is true or false. In case all affected
sites have been rewritten, the guard is set to true and the corresponding entry-
point function (lines 12–30) is invoked. In the entrypoint function the dynamic
part of the pointcut is checked, to see whether the joinpoint really matches. In
our example, the stack is checked for the functions f and g that are specified
in the controlflow pointcut. If the dynamic predicate of the pointcut holds
for the joinpoint, the advice/action (line 24) is executed; otherwise the original
function is executed (lines 27–28).

The aspect structure (lines 32–54) consists of an array of joinpoints affected by
the aspect (lines 35–48). Each joinpoint in the array specifies an entrypoint func-
tion (line 42), has a type and, in case of a function call or a global read
or write access, additionally specifies a function identifier or a variable identi-
fier, respectively. In the example, the only joinpoint of the array is a function call
joinpoint, and thus the function identifier is specified (line 43). The AllocatorAPI
provides an interface for the dynamic allocation and deallocation of structures,
and each structure required for an aspect thus has a pointer to it (lines 8, 15, 34,
37, 41).

Overview of the Implementation-Level Semantics. Figure 15 shows a typ-
ical excerpt of the semantics itself. Valuation functions typically map syntactic
entities to lists of code generation functions (see the signature of the valuation
function A). They may, however, also depend on context information, e.g., the



An Expressive Aspect Language for System Applications with Arachne 195

static Aspect * __aspect_1__; static void initAspect_1 ()

2 __attribute__ (( constructor )); static void initAspect_1 () {

AspectsInFile ->api ->add(AspectsInFile ,__aspect_1__)

4 }

6 static Guard * __fileGuard__ = & (Guard) {

(GuardAPI *) & __guardAPI__ ,

8 (AllocatorAPI *) & __transparentAllocatorAPI__ ,

false

10 };

12 float entryPointOfJoinPoint_1_0(double x) {

static CFlow * cflow = & (CFlow) {

14 (CFlowAPI *) & __CFLowAPI__ ,

(AllocatorAPI *) & __transparentAllocatorAPI__ ,

16 (char* []) {"f","g"},

UNKNOWN_EIP_2_FUNCTION_ADDRESS

18 };

static boolean init = false;

20 if(!init) {

defaultLoader ->api ->loadJoinpoint(defaultLoader ,cflow);

22 }

if(CHECK_STACK(cflow ->functions ,cflowFunctions ,2,1,1)){

24 return action(x);

}

26 else{

return (( float (*) (double ))

28 (defaultAspectLoader ->api ->getSymbolsByName("h")))(x);

}

30 }

32 static Aspect* __aspect_1__ = & (Aspect) {

(AspectAPI *) & __AspectAPI__ ,

34 (AllocatorAPI *) & __transparentAllocatorAPI__ ,

& (ArrayOfJoinpoint) {

36 (ArrayOfJoinpointAPI *) & __ArrayOfJoinpointAPI__ ,

(AllocatorAPI *) & __transparentAllocatorAPI__ ,

38 (Joinpoint *) {

Joinpoint) &(void *[]) {

40 (JoinpointAPI *) &__FunctionCallJoinpointAPI__ ,

(AllocatorAPI *) &__transparentAllocatorAPI__ ,

42 (void*) entryPointOfJoinPoint_1_0 ,

"h"

44 };

},

46 1,

1

48 },

UNKNOWN_SOURCE ,

50 UNKNOWN_PATH ,

UNKNOWN_LINE ,

52 TO_STRING("hand�generated"),

__fileGuard__

54 }

Listing 2. Example: Generated code for a control flow aspect (Listing 1)



196 R. Douence et al.

A: Aspect �−→ CG∗
A�AspSeq� =

createAspectInitialization(1);
createAspectCompletionGuard();
AS�AspSeq�(1)

PCF: ControlFlowPointcut �−→( INT × INT ) �−→CG∗
PCF�controlflow(PCallSigList,PCall)�(n,m) =

let (l,d) = PCSL�PCallSigList�("",0)
in defineCF BEGIN(n,m,l,d);
defineCF END FC(n,m);

PC�PCall�(n,m)

PCSL: FunctionCallSignature* �−→(STRING × INT ) �−→(STRING × INT )

PCSL�call(Type FunId(TypeList))�(s,i) =
(concat(s,concat("\"",concat(S�FunId� ,"\""))),i+1)

PCSL�call(Type FunId(TypeList)),PCallSigList�(s,i) =
PCSL�PCallSigList�(concat(concat(s,","),

concat("\"",concat(S�FunId� ,"\""))),i+1)

Fig. 15. Valuation function of implementation-level semantics (excerpt)

function identifiers (e.g., the string arguments in the signature of function PCF)
and position arguments in a sequence of a list of code generation functions (see
the signatures of functions PCF and PCSL). The valuation function A defines
how aspects are transformed by introducing aspect intialization code and then
calling the valuation function of the current aspect construct (sequences, in the
excerpt). The valuation function PCF defines that control-flow pointcuts are
translated by first generating test code (by means of PCSL) for the sequence
of calls in whose flow the final call has to occur, setting the macros CF BEGIN,
CF END FC which allow to test such a context and, finally, generating test code
for the final call (using PC).

5 Dynamic Weaving with Arachne

Arachne is built around two tools (Fig. 16), an aspect compiler and a run-
time weaver. The aspect compiler translates the aspect source code into a com-
piled library that, at weaving time, directs the weaver to place the hooks in the
base program. The hooking mechanisms used in Arachne are based on improved
techniques originally developed for μDyner [4]. These techniques allow users to
rewrite the binary code of executable files on the fly, i.e., without pausing the



An Expressive Aspect Language for System Applications with Arachne 197

Process Executing Base Program 2

Rewriting Sites)
(Informations on
MetaData DLL

Loaded

(API for rewriting
join points)

Loaded
Rewriting DLL

Aspect DLL
Loaded

ARACHNE’s
Kernel DLL

Thread
Running

ARACHNE’s
Kernel

Manager

weave / unweave)
(provides

w
ea

ve

Aspect DLLsAspects

Compiler

ARACHNE’s

T
im

e
R

un
ti

m
e

A
sp

ec
t 

C
om

pi
le

independent

ARACHNE’s Runtime Environment

Linux OS

Code & Data

Process Executing Base Program 1

Base Program 1

Process Executing Base Program 3

Fig. 16. Arachne’s architecture

base program, as long as these files conform to the mapping defined by the Unix
standard [42] between the C language and x86 assembly language. Arachne’s
implementation is structured as an open framework that allows one to experi-
ment with new kinds of joinpoints and pointcut constructs. Another important
difference between Arachne and μDyner is that μDyner requires a compile time
preparation of the base program, whereas Arachne does not. Hence Arachne is
totally transparent for the base program while μDyner is not.

5.1 The Arachne Open Architecture

The Arachne open architecture is structured around three main entities: the
aspect compiler, the instrumentation kernel and the different rewriting strategies.
The aspect compiler translates the aspect source code into C before compiling
it. Weaving is accomplished through a command line tool weave that acts as a
front end for the instrumentation kernel. weave relays weaving requests to the
instrumentation kernel loaded in the address space of the program through Unix
sockets. Upon reception of a weaving request, the instrumentation kernel selects
the appropriate rewriting strategies referred by the aspects to be woven and
instruments the base program accordingly. The rewriting strategy consults the
pointcut analysis performed by the aspect compiler to locate the places where
the binary code of the base program needs to be rewritten. It finally modifies
the binary code to actually tie the aspects to the base program.



198 R. Douence et al.

With this approach, the Arachne core is independent of a particular aspect,
of the aspect language, of the particular processor architecture and of a partic-
ular base program. In fact, all dependencies to aspect language implementation
are limited to the aspect compiler. All dependencies to the operating system
are localized in the instrumentation kernel and, finally, all dependencies to the
underlying hardware architecture are modularized in the rewriting strategies.

The Arachne Aspect Compilation Process. The aspect compilation scheme
is relatively straightforward: It transforms advices into regular C functions.
Pointcuts are rewritten as C code driving hook insertions into the base pro-
gram at weaving time. There are, however, cases where the sole introduction of
hooks is insufficient to determine whether an advice should be executed. In this
case, the aspect compiler generates functions that complement the hooks with
dynamic tests on the state of the base program. These dynamic tests are called
residues in AspectJ, and the rewritten instructions within the base program the
shadow [43]. Once the aspects have been translated into C, the Arachne compiler
uses a legacy C compiler to generate a dynamically linked library (DLL) for the
compiled aspects.

The Arachne Weaving Process. From a user viewpoint, the Arachne weave
and deweave command line programs the same syntax as μDyner’s version.
They both take two arguments. The first identifies the process to weave aspects
in or deweave aspects from, and the second indicates the aspect DLL. However,
Arachne can target potentially any C application running on the machine, while
μDyner was limited to applications compiled with it running on the machine.
When Arachne’s weave receives a request to weave an aspect in a process that
does not contain the Arachne instrumentation kernel, it loads the kernel in the
process address space using standard techniques [44].

The instrumentation kernel is transparent for the base program, since the
latter cannot access the resources (memory and sockets essentially) used by the
former. Once injected, the kernel creates a thread with the Linux system call:
clone. This thread handles the different weaving requests. Compared to the
POSIX pthread create function, the usage of clone allows the instrumentation
thread to prevent the base program to access its sockets. The instrumentation
kernel allocates memory by using side-effect-free allocation routines (through the
Linux mmap API). Because the allocation routines are side-effect-free, Arachne’s
memory is totally invisible to the base program. It is up to the aspect to use
Arachne’s memory allocation routines or base program-specific allocation func-
tions. This transparency turns out to be crucial in our experiments. Legacy
applications such as Squid use dedicated resource management routines and ex-
pect any piece of code they run to use these routines. Failures will result in an
application crash.

After loading an aspect, the instrumentation kernel rewrites the binary code
of the base program. These rewriting strategies are not included in the kernel
and must be fetched on demand by each loaded aspect.



An Expressive Aspect Language for System Applications with Arachne 199

5.2 Rewriting Strategies

Rewriting strategies are responsible for transforming the binary code of the base
program to effectively tie aspects to the base program at weaving time. These
strategies localize Arachne’s main dependencies to the underlying hardware ar-
chitecture. In general, rewriting strategies need to collect information about the
base program. This information typically consists of the addresses of the dif-
ferent shadows, their sizes, the symbol (i.e., function or global variable name)
they manipulate, their length, etc. In order to keep compiled aspects indepen-
dent from the base program, this information is gathered on demand at run
time. The mapping between a symbol name in the base program source code
and its address in memory is inferred from linking information contained in the
base program executable. However, because this information can be costly to
retrieve, Arachne collects and stores it into metainformation DLLs. These DLLs
behave as a kind of cache and lessen the problem of collecting the information
required to instrument the base program. To implement our aspect language,
Arachne provides a set of eight rewriting strategies that might eventually use
each other.

Strategies for call, readGlobal and writeGlobal. In Arachne, call,
readGlobal and writeGlobal allow an advice to be triggered upon a function
call, a read on a global variable or a write, respectively. While the implementation

shadow: rewriting
site replaced by a

x86 instruction

x86 instruction

x86 instruction

x86 instruction

execution flow

generated at aspect compile time
Aspect DLLHooks generated at weaving

time

jump

Binary code of the
compiled base

program

and/or advices
Residue (dynamic tests)

Entry hook

save registers

Return hook
Restore registers

instruction(s)
Relocated tailored

updating registers

Legacy base program

Fig. 17. Generic hook operations



200 R. Douence et al.

of readGlobal and writeGlobal in Arachne is close to the one in μDyner,
Arachne implements the strategy for call by rewriting function invocations
found in the base program. μDyner instead rewrites the function body of the
callee. On the Intel architecture, function calls benefit from the direct mapping
to the x86 call assembly instruction that is used by almost, if not all, compilers.
Write and read accesses to global variables are translated into instructions using
immediate, hard-coded addresses within the binary code of the base program.
By comparing these addresses with linking information contained in the base
program executable, Arachne can determine where the global variable is being
accessed. Therefore those primitive pointcuts do not involve any dynamic tests.
The sole rewriting of the binary base program code is enough to trigger advice
and residue4 executions at all appropriate points.

The size of the x86 call instruction and the size of an x86 jump (jmp) in-
struction are the same. Since the instruction performing an access to a global
variable involves a hard-coded address, x86 instructions that read or write a
global variable have at least the size of a x86 jmp instruction. Hence at weaving
time, Arachne rewrites them as a jmp instruction to a hook. Hooks are generated
on the fly on freshly allocated memory. As shown in Fig. 17, hooks contain a few
assembly instructions that save and restore the appropriate registers before and
after an advice (or shadow) execution. A generic approach is to have hooks save
the whole set of registers, then execute the appropriate residue and/or advice
code before restoring the whole set of registers. Finally, the instructions found
at the joinpoint shadow are executed to perform the appropriate side effects
on the processor registers. This is accomplished by relocating the instructions
found at the joinpoint shadow. Relocating the instructions makes the rewriting
strategies handling read and write access to global variables independent from
the instruction generated by the compiler to perform the access.5 The limited
number of x86 instructions used to invoke a function allows Arachne’s rewriting
strategy to exploit more efficient, relocation-free hooks.

Strategies for controlflow and controlflowstar. Every time a C function is
called, the Linux runtime creates an activation record on the call stack [42]. Like
μDyner, Arachne’s implementation of the rewriting strategy for controlflow
uses the most deeply nested function call (or global read or write access) in the
control flow pointcut as shadow. This shadow triggers a residue. This residue
uses the activation record’s chaining to check whether the remaining function
calls of the control flow are on the call stack maintained by the Linux run time.
An appropriate usage of hash tables that store the linking information contained
in the base program executables can thereby decrease the cost of determining if
a specific function is the caller of another to a pointer comparison. Therefore,
the residue for a controlflow with n directly nested functions implies exactly
4 Residues (i.e., dynamic tests on the base program state) are required when these

primitive pointcuts are combined with conditional pointcuts or when pattern match-
ing is involved.

5 About 250 x86 instruction mnemonics can directly manipulate a global variable.
This corresponds to more than 1000 opcodes.



An Expressive Aspect Language for System Applications with Arachne 201

n pointer comparisons. However, the residue worst-case run time for the indi-
rect control flow operator controlflowstar that allows for not directly nested
functions is proportional to the base program stack depth.

Strategies for read and write. read and write are new joinpoints not in-
cluded in μDyner that have been added to the latest version of Arachne. Their
implementation relays on a page memory protection as allowed by the Linux op-
erating system interface (i.e., mprotect) and the Intel processor specifications
[46].6 A read or write pointcut triggers a residue to relocate the bound variable
into a memory page that the base program is not allowed to access and adds a
dedicated signal handler. Any attempt made by the base program to access the
bound variable identified will then trigger the execution of the previously added
signal handler. This handler will then inspect the binary instruction trying to
access the protected page to determine whether it was a read or a write access
before eventually executing the appropriate advice.

Strategies for seq. Like read and write, seq is a new language feature of
Arachne. μDyner offers no equivalent construct. Arachne’s rewriting strategy of
this operator associates a linked list to every stage inside the sequence except the
last one. Each stage in a sequence triggers a residue that updates these linked
lists to reflect state transitions of currently matching execution flows. Upon
matching of the first pointcut of the first primitive aspect in the seq, a node
is allocated and added to the associated linked list. This node contains a struc-
ture holding variables shared among the different pointcuts within the sequence.
Once a joinpoint matches a pointcut of an primitive aspect denoting a stage
in the sequence, Arachne consults every node in the linked list associated with
the previous stage and executes the corresponding advice.7 Arachne eventually
updates the node and, in the absence of a ∗, moves it to the list associated with
the currently matched pointcut. If the matching pointcut corresponds to the end
of the sequence, structures are not moved into another list but are freed. Our
aspect compiler includes an optimization where structures are allocated from a
resizable pool, and upon a sequence termination, structures are not freed but
returned to the pool.

5.3 Limitations of Arachne

Aggressive optimizations of the base program might prevent Arachne from seam-
lessly weaving aspects. Two optimizations are not yet supported by Arachne.
First, if the compiler inlines a function in another one within the binary code of
the base program, the Arachne weaver will fail to properly handle pointcuts re-
ferring to that function. Second, control flow pointcuts are based on the chaining

6 Even if this implementation is Linux/x86 specific, it is applicable to arbitrary archi-
tectures supporting memory paging.

7 In case the previous stage pointcut was used with a star ∗, Arachne examines nodes
from linked list associated with the last two previous stages, and so on, until a
not-starred primitive aspect in the sequence is reached.



202 R. Douence et al.

of activation records. On the x86 architecture, in leaf functions, optimizing com-
pilers sometimes do not maintain this chaining to free one register for the rest of
the computation. This, however, has not been a problem during our experiments
as we used the open-source C compiler gcc. Arachne does not require the base
program’s source code in order to weave aspects, however it relies on linking
information embedded within the executable to determine where the program
code must be rewritten. Hence the stripping of symbols from executables as well
as aggressive optimizations that break the interoperability between compilers
and/or debuggers are incompatible with Arachne. In practice, Arachne can be
used on applications compiled like Squid with two of the three gcc optimization
levels.

6 Performance Evaluation

Aspect-oriented solutions will be used if the aspect system’s language is expres-
sive enough and if the aspect system overhead is low enough for the task at
hand. The purpose of this section is to study Arachne’s performance. We first
present the speed of each Arachne language construct and compare it to similar
C language constructs. Second, we study the overhead of extending Squid with
a prefetching policy. Third, we measure the overhead induced by protecting the
Washington University’s FTP server wu-ftpd from a buffer-overflow vulnerabil-
ity. These two case studies show that even if the cost of some Arachne aspect
language constructs might be high compared to C language constructs, this over-
head is largely amortized in real applications.

6.1 Evaluation of the Language Constructs

This performance evaluation focuses on studying the cost of each construct of our
aspect language. To estimate the cost for each construct of our aspect language,
we wrote an aspect using this construct that behaves as an interpreter of the
base program. For example, to study the performance of readGlobal, we wrote
an aspect whose action returns the value of the global variable referred to in
the pointcut, i.e., we wrote aspects behaving like the base program. For each of
these aspects, we compare the time required to perform the operation matching
the pointcut, in case the operation is interpreted by the woven aspect, with the
time required to carry out the operation natively (without the woven aspect).
For example, to study the performance of readGlobal, we first evaluate the time
needed to retrieve the global variable value through the code generated by the
C compiler gcc without any aspect woven and compare this value to the time
needed to retrieve the global variable value through the aspect once it has been
woven in the base program. We express our measurements as a ratio between
these two durations to abstract from the experimentation platform.

This approach requires the ability to measure short periods of time. For in-
stance, a global variable value is usually retrieved (readGlobal in our aspect
language) in a single clock tick. Since standard time measurement APIs were



An Expressive Aspect Language for System Applications with Arachne 203

not precise enough, our benchmarking infrastructure relies on the rdtsc assem-
bly instruction [45]. This instruction returns the number of clock cycles elapsed
since power up. The Pentium 4 processor has the ability to dynamically reorder
the instructions it executes. To ensure the validity of our measurement, we thus
insert mfence instructions in the generated code whose execution speed is being
measured. An mfence forces the preceding instructions to be fully executed be-
fore going on. The pipeline mechanism in the Pentium 4 processor entails that
the speed of a piece of assembly code depends on the preceding instructions. To
avoid such hidden dependencies, we place the operation whose execution time is
being measured in a loop. We use gcc to unroll the loop at compile time, and
we measure the time to execute the complete loop. This measure divided by the
number of loop repetitions yields an estimation of the time required to execute
the operation. The number of times the loop is executed is chosen after the rela-
tive variations of the measures, i.e., we increased the number of repetitions until
ten runs yields an average relative variation not exceeding 5%. To check the cor-
rectness of our experimental protocol, we measured the time needed to execute
a nop assembly instruction, which requires one processor cycle according to the
Intel specification. The measures of nop presented a relative variation of 1.6%.

Table 1 summarizes our experimental results. Using the aspect language to
replace a function that returns immediately is only 1.3 times slower than a
direct, aspectless call to that empty function. Since the aspect compiler packages
advices as regular C functions, and because a call pointcut involves no residue,
this good result is not surprising. When an access to a global variable is replaced
by an advice execution, the hooks generated by the rewriting strategy need to
prepare the processor to call the advice function. This increases the time spent
in the hooks. A seq of three invocations of empty functions is only 3.2 times
slower than the direct, aspectless, three successive functions calls. Compared to
the pointcuts used to delimit the different stages, the seq overhead is limited to
a few pointer exchanges between the linked lists holding the bound variable. On
Intel x86, global variable accesses benefit from excellent hardware support. In the
absence of aspects, a direct global variable read is usually carried out in a single
unique cycle. To trigger the advice execution, the Arachne runtime has to save

Table 1. Speed of each language construct used to interpret the base program com-
pared to a native execution

Execution times (cycles)

Arachne Native Ratio

call 28±2.3% 21±1.9% 1.3

seq 201±0.5% 63±1.7% 3.2

cflow 228±1.6% 42±1.8% 5.4

readGlobal 2762±4.3% 1±0.2% 2762

read 9729±4.9% 1±0.6% 9729



204 R. Douence et al.

Controlflow28
 C

yc
le

s 22
8 

C
yc

le
s

32
7 

C
yc

le
s

42
4 

C
yc

le
s

52
2 

C
yc

le
s

1 2 53 4

10

20

30

Number of imbricated calls
1 2 53 4

Number of in matching instances

5

10

20
0.

6 
C

yc
le

s

29
3.

2 
C

yc
le

s

38
0.

8 
C

yc
le

s

46
6.

3 
C

yc
le

s

Sequence

57
7 

C
yc

le
s

R
at

io
 w

ith
 a

 n
or

m
al

 f
un

ct
io

n 
ca

ll

R
at

io
 w

ith
 3

 c
al

ls
Variable Access

Size read in bits
8 128643216

1000

2000

3000

24
66

 C
yc

le
s

24
87

 C
yc

le
s

33
63

 C
yc

le
s

49
90

 C
yc

le
s

R
at

io

25
62

 C
yc

le
s

Fig. 18. controlflow, seq and readGlobal performances

and restore the processor state to ensure the execution coherency, as advices are
packaged as regular C functions (see also Sect. 5.2). It is therefore not surprising
that a global variable readGlobal appears as being 2762 times slower than a
direct, aspectless global variable read. read performance can be accounted in
the same way: In the absence of aspect, local variables are accessed in a single
unique cycle. The signal mechanism used in the read requires that the operating
system detects the base program attempt to read into a protected memory page
before locating and triggering the signal handler set up by Arachne, as shown
in Sect. 5.2. Such switches to and from kernel space remain slow. Using read to
read a local variable is 9729 times slower than retrieving the local variable value
directly, without aspects.

seq and controlflow can refer to several points in the execution of the base
program (i.e., different stages for seq and different function invocations for the
controlflow). The run time of these pointcuts grows linearly with the number
of execution points they refer to and with the number of matching instances.
Variable access pointcut performance varies depending on the size of the data
accessed. Indeed, on IA32 architectures, an access to a variable smaller or equal
to 32 bits is performed atomically in one processor cycle, while time to access
a variable larger than 32 bits grows linearly with the variable size. Hence, the
overhead of an aspect replacing an access to an up to 32-bit variable is constant
and beyond amortized corresponding to the variable size. Figure 18 summarizes
a few experimental results for controlflow, seq and readGlobal that provide
evidence for these performance propositions.

6.2 Case Study on a Real Application

Since executing a base program with aspects can slow it down by a factor rang-
ing between 1.3 and 9729, depending on the aspect construct used, we studied
Arachne’s performance on a real-world application, the Web cache Squid. We
extended Squid with a prefetching policy [46]. As described in Sect. 3.1, we im-
plemented this policy as a set of aspects and made a second implementation



An Expressive Aspect Language for System Applications with Arachne 205

of this policy by editing the Squid source code and recompiling it. This section
compares the performance of these two implementations using standard Web
cache performance indicators: throughput, response time and hit ratio.

A tool which seemingly is appropriate for such a real-world experience is the
traces generated during Web cache executions. However, obtaining access traces
adequate to study a Web cache performance is difficult. The trace must be long
enough to fill the cache. Because of privacy issues, traces are usually not publicly
available. Since traces do not include the content of the accessed pages, these
pages must be downloaded again. In the meantime, the page contents may have
changed and even the URLs may have disappeared.

Instead of traces, we based our evaluation on Web Polygraph [47]. Polygraph
is a benchmarking tool developed by the Squid team that features a realistic
HTTP and SSL traffic generator and a flexible content simulator.

We filled up the cache and simulated a one-day workload with its two request
rate peaks observed in real-life environments [47]. Table 2 shows some results
of our simulation. Measures have been made during the two request peaks. All
measures, be it the hit time, the miss time, the time needed to deliver a doc-
ument presenting the cache or not, are very similar, independent of Arachne
being used or not. These measures prove that differences are imperceptible be-
tween the version of Squid extended by Arachne and the one extended manually
(less than 1%). Hence, even if the cost of some of Arachne’s aspect language con-
structs might seem high, they are largely amortized in real applications. To give a
typical example observed on our experimental platform: in case of a cache hit, a
3.8-MB page was retrieved in a single second, the time spent in prefetching ad-
vices amounted to 1801 μsec, and the time spent within Arachne to execute the
hooks and dynamic tests was 0.45 μsec. In a miss case, on the average, a client

Table 2. Performance comparison between manual modification and Arachne, for
prefetching policy integration in Squid

Arachne Manual
Top1 Top1 Diff
Top2 Top2 (%)

Throughput
(request/s)

5.59 5.59
–

5.58 5.59

Response
time (ms)

1131.42 1146.07
1.2 – –1

1085.31 1074.55

Miss response
time (ms)

2533.50 2539.52
0.2 – 1.8

2528.35 2525.34

Hit response
time (ms)

28.96 28.76
–0.6 – 3.8

30.62 31.84

Hit ratio
59.76 59.35

–0.6 – 0.7
61.77 62.22

Errors
0.51 0.50

–1.9 – 0
0.34 0.34



206 R. Douence et al.

retrieved the same page in 1.3 seconds, 16679 μsec were spent in the advices and
0.67 μsec within Arachne itself.

6.3 A Second Case Study: wu-ftpd

We also applied Arachne on the real-world application wu-ftpd (Washington
University file transfer protocol Daemon), a widely deployed file transfer protocol
service. It constitutes the basis for development of several other ftp servers, e.g.,
BSD ftpd, ProFTPD.

We performed measurements on wu-ftpd applying an aspect for the correc-
tion of a buffer overflow. We chose a buffer-overflow vulnerability identified in
the s/key authentication mechanism discovered in 2004 and referenced by the
Common Vulnerabilities and Exposures under the identifier CVE-2004-0185.

In order to evaluate wu-ftpd’s performance, we used dkftpbench [48], a
benchmarking tool for FTP servers. dkftpbench permits users to stress ftp
servers by faking client connections using automata. Each fake client authen-
ticates to the server, retrieves a particular file and disconnects. dkftpbench
constantly creates new automata and then permits users to measure instant/av-
erage/maximum numbers of simultaneous users. We recorded our measurements
between two machines: one for dkftpbench and one for wu-ftpd over a 100-Mb/s
ethernet. wu-ftpd was running on a Pentium 4, 3.3 GHz, with 512-MB RAM.
Each file to be retrieved was 5-MB long, and network bandwidth dedicated to
each client was set so that the network was never subject to congestion.

We measured the maximum number of users simultaneously served by wu-
ftpd when running unprotected and protected with our aspect. Results show
no significant difference between the two versions, which allow for 1008 and
1012 simultaneous users, respectively. This demonstrates that even if our aspect
constructs might seem to consume an important amount of local resources, they
are clearly reasonably applicable in real-world situations by permitting users to
protect applications against attacks without impacting performance significantly.

Nevertheless, performance penalties could be significant. Indeed, frequent
use of the read construct could greatly slow down program execution. Such
a situation would arise, for example, when every single buffer in an applica-
tion should be protected from overflowing. However, one of the main char-
acteristics of our approach is that it supports the selective modification of
system-level applications using aspects. Furthermore, those situations seem to
be quite unlikely anyway: for all applications we have encountered, read/write
and readGlobal/writeGlobal pointcuts have been marginal compared to call
pointcuts.

7 Related Work

Aspect-oriented research currently focuses on object-oriented languages. Apart
from μDyner and Arachne, there are few aspect weavers for C (or even C-like
languages). AspectC [3] and AspectC++ [49] are two noteworthy exceptions.



An Expressive Aspect Language for System Applications with Arachne 207

They both rely on source-code transformation and solely weave aspects at com-
pile time. DAC++ [50] and Toskana [51] are dynamic weavers for C++ and C.
DAC++ is built around a metaobject protocol enabling the run time instru-
mentation required to weave aspects at run time. Since C++ does not include
a standard metaobject protocol, the base program has to be compiled with
a dedicated specific compiler. Toskana weaves aspects in a running Linux kernel.
It does not allow users to weave aspects in user applications. In addition, the
joinpoint model in Toskana is limited to function calls. Hence, none of these
weavers is suitable to modularize and dynamically compose the concerns we
considered.

There is quite a large body of work now on the notion of expressive aspect
languages, where “more expressive” typically compares to AspectJ’s pointcut
and advice models. Our work has been inspired by Event-based AOP [52], which
aims at the definition of pointcuts in terms of arbitrary relations between events.
Nevertheless, many other approaches to expressive aspect languages exist. For
example, data-flow relations [53], logic programming [54], process algebras [55],
graphs [56] and temporal logics [57] have all been proposed as a basis for the
definition of expressive aspect languages. However, few of these encompass dy-
namic weaving, and only the latter has been applied to C code under efficiency
considerations similar to our setting (but using a static approach to weaving).

Research on explicit sequence pointcuts and aspects is still in its infancy.
Sequential aspects were first introduced by Douence et al. with the notion of
stateful aspects [37, 38]. They exploited the underlying notion of regular se-
quence aspects — which are thus of more restricted expressiveness than the
sequence aspects considered in this article — to analyze aspect interactions, and
a prototype supporting arbitrary relations between joinpoints for Java was im-
plemented [58]. However, this prototype is based on static weaving and does
not allow dynamic modification of aspects. Regular sequence aspects have also
been integrated in the Java-based JAsCo aspect system [59]. In [60] a specialized
language was proposed to define pointcuts as sequences of method calls in Java.
A pointcut is associated with a single advice, which is executed at the end of
the sequence. This approach does not support advice attached to the middle
of a sequence. Moreover, this Java-based tool supports static source-code-only
weaving.

Another class of techniques relevant to our work is dynamic binary code in-
strumentation, which has already been widely studied. These techniques were
used in the first computers [61]. In these techniques, difficulty issues range from
the complexity to rewrite binary code to the lack of a well-defined relation-
ship between source code and the compiler-generated binary code. Pin [62] and
Dyninst [63] enable programmers to modify any binary instruction belonging to
an executable. Based on a just-in-time translation, Pin is very efficient but is lim-
ited to insert code before or after a binary instruction of the base program. This
prevents Pin from serving as a back end for an aspect system using around-like
aspect. Dyninst does not suffer from this limitation; it is designed around the
Unix debugging API: ptrace. After suspending the base program execution, this



208 R. Douence et al.

API allows a third-party process to read and write the base program memory.
In comparison, Arachne suspends the base program at most once to inject, with
ptrace, its kernel DLL into the base program process. In addition, instrumen-
tation schemes written with Dyninst are not ensured to be reliable: Dyninst’s
implementation relocates several adjacent instructions. Since one of the relocated
instructions can be a branching instruction target, the instrumentation success
depends on the base program considered. In comparison, Arachne’s joinpoint
model has been devised to avoid these kind of issues by design.

Finally, there are many Java-based approaches to nonstatic code weaving,
i.e., dynamic weaving and load-time weaving. Load-time weaving refers to the
process of instrumenting the base program when the execution environment
— the Java virtual machine, for instance — transfers it from disk storage to
memory-executable structures. To provide aspect deployment at run time they
have to prepare, i.e., instrument, the base program at load time and thus can
imply a nonnegligible overhead, even in the absence of aspects [64, 65, 66, 67].
Contrary to those approaches, Arachne does not weave aspects at load time
but dynamically at run time and does not require any anticipation of aspect
weaving at load time. Furthermore, Arachne keeps a clear separation at run
time between the base program code and the aspect code, so that aspects can be
unwoven without leaving residues in the base program code. Some approaches,
most notably JAsCo [68], Steamloom [69], JBoss AOP [70], Spring AOP [71]
and AspectWerkz (which is currently under integration with AspectJ) support
run-time weaving of aspects for Java. As Java-based approaches they cannot be
applied to solve the legacy code problems we consider. Furthermore, they do
not provide Arachne’s fine-grained weaving (weaving on the level of processor
instructions). Finally, since they rely on particularities of the Java platform
(such as the debugging interface or Hotswap), the incurred performance overhead
is large to very large compared to that of Arachne, and the implementation
techniques themselves are not transferable to C.

8 Conclusion and Future Work

Technical issues such as double-free bugs and buffer overflows, networking, and
prefetching are typical examples of concerns which crosscut system-level C ap-
plications: in many real-world legacy applications such as the Squid Web cache,
these concerns are scattered over the entire program source code. Since secu-
rity breaches and insufficient resources are often discovered after deployment,
and because downtime must be avoided in many application contexts, there is a
growing need to modularize and manipulate these concerns at runtime.

Security, networking and prefetching are appealing candidates for modulariza-
tion using aspects. However, basic aspect-oriented techniques are not applicable
due to the complex relationships between executions points these aspects are
required to account for. We have proposed an aspect language enabling us
to specify these relationships involving sequences of execution points as well
as for variable aliases. We have shown how to successfully modularize security,



An Expressive Aspect Language for System Applications with Arachne 209

networking and prefetching concerns within this aspect language. Furthermore,
we have presented two formal semantics for this language that clearly express
different properties of the language due to their different abstraction levels.

The Arachne tool implements this language. It can weave and deweave as-
pects dynamically in running legacy C applications like Squid or the wu-ftpd
ftp server. We have provided detailed evidence that the performance of these
two applications, including modifications by Arachne aspects, competes with
(optimal) manual source code modifications.

As future work, we intend to investigate how unexpected interactions be-
tween aspects can be detected at compile time and at weaving time. Unexpected
interactions can occur when two aspects refer to the same joinpoint or by shar-
ing variables. Detecting these interactions would greatly ease the development of
large aspects libraries. Another lead for future work is to exploit the better mod-
ularization of system-level functionalities by Arachne aspects for the testing of
such functionalities. We also plan to integrate debugging information support to
Arachne. Because this is the missing link between source and binary code, that
information should permit users to overcome aggressive optimizations performed
by compilers.

References

[1] Wessels D. Squid: The Definitive Guide. O’Reilly, 2004
[2] Kiczales G., Lamping J., Menhdhekar A., Maeda C., Lopes C., Loingtier J.M.,

Irwin J. Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) Pro-
ceedings European Conference on Object-Oriented Programming, LNCS vol. 1241,
Springer, Jyväskylä, Finland, pp. 220–242, 1997

[3] Coady Y., Kiczales G., Feeley M., and Smolyn G. Using AspectC to improve the
modularity of path-specific customization in operating system code. In: Gruhn, V.
(ed.) Proceedings of the Joint 8th European Software Engeneering Conference
and 9th ACM SIGSOFT Symposium on the Foundation of Software Engineer-
ing (ESEC/FSE-01). Volume 26, 5 of SOFTWARE ENGINEERING NOTES,
ACM, New York, pp. 88–98, 2001

[4] Ségura-Devillechaise M., Menaud J.M., Muller G., and Lawall J. Web cache
prefetching as an aspect: Towards a dynamic-weaving based solution. In: Pro-
ceedings of the 2nd International Conference on Aspect-Oriented Software Devel-
opment, ACM, pp. 110–119, 2003

[5] Arce I., Levy E. An analysis of the slapper worm. IEEE Security and Privacy
1:82–87, 2003

[6] SolarDesigner: JPEGCOMMarkerProcessingVulnerability inNetscapeBrowsers.
http://www.openwall.com/advisories/OW002-netscape-jpeg/ (1997)

[7] Ubuntu: Squid Proxy Cache Double Memory Free Vulnerability. http://www.
security.nnov.ru/Idocument338.html (2005)

[8] American National Standards Institute: ANSI/ISO/IEC 9899-1999: Programming
Languages — C. American National Standards Institute, New York, 1999

[9] CERT Coordination Center: CERT Advisory CA-2001-13 Buffer Overflow in IIS
Indexing Service DLL. http://www.cert.org/advisories/CA-2001-13.html (2001)

[10] CERT Coordination Center: “Code Red” Worm Exploiting Buffer Overflow in IIS
Indexing Service DLL (CERT Incident Note IN-2001-10). http://www.cert.org/
incident notes/IN-2001-08.html (2001)



210 R. Douence et al.

[11] US-CERT (United States Computer Emergency Readiness Team): Microsoft SQL
Server 2000 contains stack buffer overflow in SQL Server Resolution Service (Vul-
nerability Note VU#484891). http://www.kb.cert.org/vuls/id/484891 (2002)

[12] CERT Coordination Center: CERT Advisory CA-2003-04 MS-SQL Server Worm.
http://www.cert.org/advisories/CA-2003-04.html (2003)

[13] US-CERT (United States Computer Emergency Readiness Team): Microsoft
Windows RPC vulnerable to buffer overflow (Vulnerability Note VU#568148).
http://www.kb.cert.org/vuls/id/568148 (2003)

[14] CERT Coordination Center: CERT Advisory CA-2003-20 W32/Blaster worm.
http://www.cert.org/advisories/CA-2003-20.html (2003)

[15] Ruwase O. and Lam M.S. A practical dynamic buffer overflow detector. In: Pro-
ceedings of the 11th Annual Network and Distributed System Security Symposium,
Internet Society, San Diego, CA, 2004

[16] CERT Coordination Center: CERT/CC advisories. http://www.cert.org/
advisories/ (1988)

[17] Wagner D., Foster J.S., Brewer E.A., and Aiken A. A first step towards automated
detection of buffer overrun vulnerabilities. In: Network and Distributed System
Security Symposium, Internet Society, San Diego, CA, pp. 3–17, 2000

[18] Cowan C., Wagle P., Pu, C., Beattie S., and Walpole J. Buffer overflows: Attacks
and defenses for the vulnerability of the decade. In: DARPA Information Sur-
vivability Conference and Exposition (DISCEX). Vol. 2, Hilton Head Island, SC,
USA, 119–129, IEEE 2000

[19] Wilander J. and Kamkar M. A comparison of publicly available tools for dynamic
buffer overflow prevention. In: Proceedings of the 10th Network and Distributed
System Security Symposium, Internet Society, San Diego, CA, pp. 149–162,
2003

[20] Larochelle D. and Evans D. Statically detecting likely buffer overflow vulner-
abilities. In: Proceedings of the 10th USENIX Security Symposium, USENIX,
Washington, DC, pp. 177–190, 2001

[21] Cowan C., Pu C., Maier D., Walpole J., Bakke P., Beattie S., Grier A., Wagle P.,
Zhang Q., and Hinton H. StackGuard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In: Proc. 7th USENIX Security Conference,
USENIX, San Antonio, TX, pp. 63–78, 1998

[22] Jim T., Morrisett G., Grossman D., Hicks M., Cheney J., and WangY. Cyclone:
A safe dialect of C. In: Proceedings of the USENIX Annual Technical Conference,
USENIX, Monterey, CA, pp. 275–288, 2002

[23] Condit J., Harren M., McPeak S., Necula G.C., and Weimer W. CCured in the
real world. In: PLDI ’03: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, ACM, San Diego, CA,
pp. 232–244, 2003

[24] Jones R. and Kelly P. Backwards-compatible bounds checking for arrays and
pointers in C programs. In: Kamkar, M. (ed.) Proceedings of the Third Interna-
tional Workshop on Automatic Debugging. Vol. 2, Linköping, Sweden, Linköping
Electronic Articles in Computer and Information Science, pp. 13–26, 1997

[25] Keromytis A.D. “Patch on demand” saves even more time? IEEE Computer,
37:94–96, 2004

[26] US-CERT (United States Computer Emergency Readiness Team): Squid Proxy
Server contains buffer overflow in parsing of the authentication portion of FTP
URLs (Vulnerability Note VU#613459). http://www.kb.cert.org/vuls/id/613459
(2002)



An Expressive Aspect Language for System Applications with Arachne 211

[27] Berners-Lee T., Fielding R., Frystyk H. RFC 1945: Hypertext Transfer Protocol
— HTTP/1.0 (1996) Status: INFORMATIONAL.

[28] Postel J. Transmission Control Protocol. RFC 793. http://www.rfc-editor.org/
rfc/rfc793.txt (1981)

[29] Arlitt M., Jin T. A workload characterization study of the 1998 world cup web
site. IEEE Network, 14:30–37, 2000

[30] Cidon I., Gupta A., Rom R., Schuba C. Hybrid TCP-UDP transport for web
traffic. Technical Report 99-71, Sun Microsystems Laboratories, Palo Alto, CA,
1999

[31] Rabinovich M. and Wang H. DHTTP: An efficient and cache-friendly transfer
protocol for web traffic. In: IEEE INFOCOM, pp. 1597–1606, 2001

[32] Chen H. and Mohapatra P. CATP: A context-aware transportation protocol for
HTTP. In: International Workshop on New Advances in Web Servers and Proxy
Technologies Held with ICDCS, Providence, RI, USA, pp. 922–927, 2003

[33] Postel J. User datagram protocol. RFC 768. http://www.rfc.net/rfc768.html
(1980)

[34] Comer D., Stevens D. Internetworking with TCP/IP, Volume III — Client-Server
Programming and Applications for the BSD Socket Version. Volume III. Prentice
Hall, 1993

[35] Issarny V., Banâtre M., Charpiot B., Menaud J.M. Quality of service and elec-
tronic newspaper: The Etel solution. LNCS vol. 1752, pp. 472–496, 2000

[36] Lieberherr K.J., Palm J., Sundaram R. Expressiveness and complexity of crosscut
languages. Technical Report NU-CCIS-04-10, Northeastern University, 2004

[37] Douence R., Fradet P. and Südholt M. A framework for the detection and resolu-
tion of aspect interactions. In: GPCE’02: Proceedings of the ACM SIGPLAN/SIG-
SOFT Conference on Generative Programming and Component Engineering,
LNCS vol. 2487, Springer, Pittsburgh, PA, USA, pp. 173–188, 2002

[38] Douence R., Fradet P., and Südholt M. Composition, reuse and interaction anal-
ysis of stateful aspects. In: AOSD’04: Proc. of 3rd International Conference on
Aspect-Oriented Software Development, ACM, Lancaster, UK, pp. 141–150, 2004

[39] Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C. The clp(r) language and
system. ACM Trans. Program. Lang. Syst., 14:339–395,1992

[40] Schmidt D.A. Denotational semantics - A methodology for language development.
Allyn and Bacon, http://www.cis.ksu.edu/˜schmidt/text/densem.html (1986)

[41] Fritz T. An expressive aspect language with arachne. Master’s thesis, Ludwig-
Maiximilians-Universität München, 2005

[42] System Unix U.S.L.: System V application binary interface intel 386 architecture
processor supplement. Prentice Hall Trade, 1994

[43] Hilsdale E. and Hugunin J. Advice weaving in AspectJ. In: Proceedings of the
3rd International Conference on Aspect-Oriented Software Development, ACM,
pp. 26–35, 2004

[44] Clowes S. Injectso: Modifying and spying on running processes under linux. In:
Black Hat Briefings, 2001

[45] Intel Corportation: IA-32 Intel Architecture software developer’s manual. Intel
Corportation, 2001

[46] Chinen K.I. and Yamaguchi S. An interactive prefetching proxy server for im-
provement of WWW latency. In: INET’97: Seventh Annual Conference of the
Internet Society, Internet Society, Kuala Lumpur, Malaysia, 1997

[47] Rousskov A., Wessels D. High-performance benchmarking with Web Polygraph.
Software Practice and Experience, 34:187–211, 2004



212 R. Douence et al.

[48] Kegel, D. dkftpbench. http://www.kegel.com/dkftpbench/ (2000)
[49] Spinczyk O., Gal A., and Schröder-Preikschat W. AspectC++: An aspect-oriented

extension to the C++ programming language. In: Proceedings of the Fortieth
International Conference on Tools Pacific, Australian Computer Society, Sydney,
Australia, pp. 53–60, 2002

[50] Almajali S. and Elrad T. Coupling availability and efficiency for aspect-oriented
runtime weaving systems. In: DAW’05: Proceeding of the 2nd Dynamic Aspects
Workshop at AOSD, Chicago, IL, pp. 47–56, 2005

[51] Engel M. and Freisleben, B. Supporting autonomic computing functionality via
dynamic operating system kernel aspects. In: AOSD ’05: Proceedings of the
4th International Conference on Aspect-Oriented Software Development, ACM,
New York, pp. 51–62, 2005

[52] Douence R., Motelet O., and Südholt M. A formal definition of crosscuts. In:
Yonezawa, A., Matsuoka, S. (eds.) Proceedings of the 3rd International Conference
on Metalevel Architectures and Separation of Crosscutting Concerns, LNCS vol.
2192, Kyoto, Japan, Springer, Berlin Heidelberg New York, pp. 170–186, 2001

[53] Masuhara H. and Kawauchi K. Dataflow pointcut in aspect-oriented program-
ming. In: Ohori, A. (ed.) APLAS’03: First Asian Symposium on Programming
Languages and Systems, LNCS vol. 2895, Beijing, China, Springer, Berlin Heidel-
berg New York, pp. 105–121, 2003

[54] de Volder K. Aspect-oriented logic meta programming. In: Cointe, P. (ed.) Meta-
Level Architectures and Reflection, 2nd International Conference on Reflection,
LNCS vol. 1616, Saint Malo, France, Springer, Berlin Heidelberg New York, pp.
250–272, 1999

[55] Andrews J.H. Process-algebraic foundations of aspect-oriented programming. In:
Yonezawa, A., Matsuoka, S. (eds.) Proceedings of the 3rd International Confer-
ence on Metalevel Architectures and Separation of Crosscutting Concerns, LNCS
vol. 2192, Kyoto, Japan, Springer, Berlin Heidelberg New York, pp. 187–209, 2001

[56] Aßmann U. and Ludwig A. Aspect weaving with graph rewriting. In: Czar-
necki, K., Eisenecker, U.W. (eds.) GCSE: Generative Component-Based Software
Engineering, Erfurt, Germany, pp. 24–36, 1999

[57] Åberg R.A., Lawall J.L., Südholt M., Muller G., and Meur A.F.L. On the auto-
matic evolution of an OS kernel using temporal logic and AOP. In: ASE 2003:
Proceedings of the 18th IEEE International Conference on Automated Software
Engineering, IEEE Computer Society, Montreal, Canada, pp. 196–204, 2003

[58] Douence R., Südholt M. A model and a tool for event-based aspect-oriented
programming (eaop). Technical Report 02/11/INFO, École des mines de Nantes
(2002) French version published in Proc. of LMO’03, Hermes Sciences,

[59] Vanderperren W., Suvee D., Cibran M.A., and De Fraine B. Stateful aspects
in JAsCo. In: SC’05: Proc. of the 4th Int. Workshop on Software Composition,
LNCS vol. 3628, Springer, Berlin Heidelberg New York, 2005

[60] Allan C., Avgustinov P., Christensen A.S., et al. Adding trace matching with free
variables to AspectJ. In: Gabriel, R.P. (ed.) OOPSLA’05: ACM Conference on
Object-Oriented Programming, Systems and Languages, ACM, 2005

[61] Aspray W. John von Neumann’s contributions to computing and computer sci-
ence. Annals of the History of Computing, 11:189–195, 1989

[62] Luk C.K., Cohn R., Muth R., Patil H., Klauser A., Lowney G., Wallace S., Reddi
V.J., and Hazelwood K. Pin: Building customized program analysis tools with dy-
namic instrumentation. In: PLDI: Proceedings of the ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation, ACM, Chicago,
IL, pp. 190–200, 2005



An Expressive Aspect Language for System Applications with Arachne 213

[63] Hollingsworth J.K., Miller B.P., Goncalves M.J.R., Naim O., Xu, Z., and Zheng L.
MDL: A language and compiler for dynamic program instrumentation. In: PACT:
Proceedings of the 6th Conference on Parallel Architectures and Compilation Tech-
niques, IEEE Computer Society, San Francisco, CA, USA, pp. 201–213, 1997

[64] Chiba S. Load-time structural reflection in Java. In: ECOOP 2000: Sophia An-
tipolis and Cannes, LNCS vol. 1850, France, Springer, Berlin Heidelberg New
York, pp. 313–336, 2000

[65] Pawlak R., Seinturier L., Duchien L., and Florin G. JAC: A flexible solution for
aspect-oriented programming in Java. In: Proceedings of Reflection’01. LNCS vol.
2192, Springer, Berlin Heidelberg New York, pp. 1–24, 2001

[66] Popovici A., Alonso G., and Gross T.R. Just-in-time aspects: Efficient dynamic
weaving for Java. In: AOSD: Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development, ACM, pp. 100–109, 2003

[67] Chiba S. and Nakagawa K. Josh: An open AspectJ-like language. In: Murphy,
G.C., Lieberherr, K.J. (eds.) AOSD: Proceedings of the Third International Con-
ference on Aspect-Oriented Software Development, ACM, pp. 102–111, 2004

[68] Suvée D., Vanderperren W., and Jonckers V. JasCo: An aspect-oriented approach
tailored for component-based software development. In: Press, A. (ed.) AOSD’03:
Proc. of 2nd International Conference on Aspect-Oriented Software Development,
pp. 21–29, 2003

[69] Bockisch C., Haupt M., Mezini M., and Ostermann K. Virtual machine support
for dynamic join points. In: AOSD ’04: Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development, ACM, New York, pp. 83–
92, 2004

[70] JBoss Inc: JBoss AOP. http://jboss.com/products/aop. (2005)
[71] Spring Framework: Spring AOP. http://www.springframework.org/. (2005)



A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 214 – 258, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Towards a Catalogue of Refactorings 
and Code Smells for AspectJ 

Miguel P. Monteiro1 and João M. Fernandes2 

1 Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco, 
Avenida do Empresário, 6000-767, Castelo Branco, Portugal 

mmonteiro@di.uminho.pt 
2 Departamento de Informática, Universidade do Minho, Campus de Gualtar, 

4710-057 Braga, Portugal 
jmf@di.uminho.pt 

Abstract. In this paper, we contribute to the characterisation of a programming 
style specific to aspect-oriented programming. For this purpose, we present a 
collection of refactorings for aspect-oriented source code, comprising refactor-
ings to enable extraction to aspects of crosscutting concerns from object-
oriented legacy code, the subsequent tidying up of the extracted aspects and 
factoring out of common code from similar aspects to superaspects. The second 
group of refactorings is documented in detail. In addition, we propose some 
new aspect-oriented code smells, including one smell that is specific to aspect 
modules. We also propose a reinterpretation of some of the traditional object-
oriented code smells in the light of aspect-orientation, to detect the presence of 
crosscutting concerns. 

1   Introduction 

Refactoring [10, 13, 31] and aspect-oriented programming (AOP) [23] are two tech-
niques that contribute to dealing with the problems of continuous evolution of soft-
ware. Refactoring processes enable the improvement of the internal structure of source 
code without changing a system’s external behaviour, thus facilitating its evolution in 
line with changes in environments and requirements. AOP enables the modularisation 
of crosscutting concerns (CCCs), thus diminishing the potential impact of changes  
to the code related to a given concern on code not related to that concern. 

AOP’s steady progress from a “bleeding edge” research field to mainstream tech-
nology [33] brings forward the problem of how to deal with large number of object-
oriented (OO) legacy code bases. Experience with refactoring of OO software in the 
latest half-decade suggests that refactoring techniques have the potential to bring the 
concepts and mechanisms of aspect-orientation to existing OO frameworks and  
applications. 

1.1   Some Challenges of Refactoring Aspect-Oriented Systems 

We believe there are three main hurdles that should be addressed so that refactoring 
techniques can be effectively used in AOP software. The first hurdle is the present 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 215 

lack of a fully developed idea of “good” AOP style. This is an important issue, for a 
clear notion of style is a fundamental prerequisite for the use of refactoring. Notions 
of good style enable programmers to see where they are heading when refactoring 
their code. For instance, Fowler et al. [10] advocated a specific notion of style for OO 
code through a catalogue of 22 code smells, compounded by a catalogue of 72 refac-
torings through which those smells can be removed from existing code. These cata-
logues proved very useful in bringing the concepts of refactoring and good OO style 
to a wider audience and in providing programmers with guidelines on when to refactor 
and how best to refactor. Refactoring and notions of good style are key concepts of 
extreme programming [1], which regards a system’s source code as primarily a com-
munication mechanism between people, rather than computers. 

A second hurdle – both a cause and a consequence of the first – is the present lack 
of an AOP equivalent of such catalogues. Our work is based on the assumption that 
AOP would equally benefit from AOP-specific catalogues of smells and refactorings, 
helping programmers to detect situations in the source code that could be improved 
with aspects, as well as guiding them through the transformation processes. 

A third hurdle is the absence of tool support for AOP constructs and mechanisms  
in integrated development environments (IDEs). The catalogues presented by Fowler 
et al. [10] provided a basis on which developers could rely to build tool support for 
OO refactoring; similar catalogues for AOP are likely to bring similar benefits to tool 
developers. Tool developers will not be able to provide adequate support to refactor-
ing operations unless they first have a clear idea of AOP style, and consequently of 
which specific refactorings are worthy of their development efforts. 

1.2   On the Need for an AOP-Specific Notion of Style 

The notion of style in a programming language expresses the coding practices that 
yield code that is easier to maintain and evolve. Whenever a programming language 
provides alternative ways to achieve some result, the way that causes the least prob-
lems to present and future programmers should be considered the one in the best style. 
Throughout the various stages of development of programming languages, many ideas 
of style appeared due to the advent of new, superior mechanisms. We mention three 
examples: 

1. Dijkstra’s famous dictum that the “Go-to statement [should be] considered harm-
ful” [7] stemmed from the availability of control structures, namely loops. 

2. Fowler et al. [10] considered the use of the “switch” statement a code smell, due 
to the availability of polymorphism and dynamic binding. 

3. Orleans suggested in [32] that the “if” statement be considered harmful in the 
context of languages using elaborate forms of predicate dispatch. 

All these considerations suggest that the appropriate notion of style for a given lan-
guage strongly depends on what can be achieved with that language. In this light, the 
suitable style of AspectJ [22, 26] cannot be the same as for Java. AspectJ enables 
programmers to perform compositions that are impossible with Java and to avoid 
negative qualities such as code scattering and code tangling. This suggests that many 



M.P. Monteiro and J.M. Fernandes 216 

of traditional OO solutions resulting in those negative qualities should now be consid-
ered bad style. This includes OO implementations of many design patterns [16]. 

The compositional power itself of AspectJ can be cause for problems. AspectJ of-
fers multiple ways to achieve various effects and compositions. For instance, imple-
mentation of mixins [2] can be achieved both through marker interfaces and through 
inner static aspects placed within interfaces. Likewise, nonsingleton aspect associa-
tions provide alternatives to solutions obtained with default singleton aspects. AspectJ 
programmers are sometimes faced with so many choices that it becomes hard to de-
cide on the design most appropriate to a particular situation. There is a need to further 
study the consequences and implications of each solution in order to make choices 
clear. We believe that catalogues of code smells and refactorings [10] are an effective 
way to present this knowledge to programmers. 

1.3   Contributions 

In this paper, we expand the existing refactoring space for AOP and thus contribute to 
the characterisation of an AOP style. We present a collection of refactorings for AOP 
source code. The refactorings were developed to be performed manually, and for this 
reason we describe them with a style similar to that of [10]. We complement the refac-
torings with descriptions of AOP code smells [10], which the refactorings are sup-
posed to remove. In addition, we review the traditional OO code smells in the light of 
AOP and propose a reinterpretation of a few traditional OO smells as indicators of the 
presence of CCCs. 

The subject language we use is AspectJ [22, 26] whose backward compatibility 
with Java opens the way for refactoring existing Java applications by introducing AOP 
constructs. The task of assessing the extent to which our results can be applied to 
different aspect-oriented languages is left to future work. 

This paper is  a revised and extended version of a paper presented at AOSD 2005 
[30]. The main additional contribution relative to the other paper is the detailed 
documentation of a group of refactorings. This paper also provides more information 
on how refactorings and code smells were derived and updated and revised sections 
on related and future work. 

1.4   Issues Not Addressed 

Our focus in this paper is on creating a catalogue of refactorings that can enable the 
development of tool support rather than on the implementation of the support. We 
analyze the effect of our refactorings qualitatively because our focus is on understand-
ing the breadth of refactorings needed to transform OO code into well-styled AO 
code, rather than on a formal description of each refactoring, which is left as future 
work [3]. To further clarify the context of this paper, we next mention several related 
subjects that we do not cover. 

No tool support. Developing tools that automate standard transformations of source 
code is related to the subject covered in this paper, but it is not the same. Even when 
provided with appropriate refactoring tools, developers still need to have a proper 
notion of style to decide when code should be refactored and to be able to choose the 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 217 

specific refactoring appropriate for each situation. It is this knowledge that we aim to 
expand. Nevertheless, we believe this paper can be helpful to developers of tool sup-
port for aspect-oriented refactorings by suggesting refactorings that may be worthy of 
their development efforts. Therefore, this paper indirectly contributes to the develop-
ment of future tools. 

No metrics. We do not attempt to formally measure and quantify the benefits in code 
of the proposed refactorings. Work on metrics for the complexity of aspect-oriented 
source code can be found in [12, 38, 39]. 

No formalism. We do not attempt to provide a formal, mathematical basis for the 
refactorings. Cole and Borba worked in this field, and in [3] they state their interest in 
extending their work to cover our refactorings. 

1.5   Outline 

The rest of this paper is structured as follows. In Sect. 2, we describe the approach we 
took to develop the collection of refactorings. In Sect. 3, we present an overview of 
the refactorings, which are documented in Sect. 4. In Sect. 5, we review some of the 
traditional smells in the light of AOP and propose three novel such smells. In Sect. 6, 
we present a code example illustrating the presence of some smells and results of 
applying the refactorings that remove those smells. In Sect. 7, we survey related work, 
and in Sect. 8 we consider future directions. In Sect. 9, we summarise the paper. 

2   The Approach 

We took the approach of performing refactoring experiments on code bases, as a vehi-
cle for gaining the necessary insights. The selected case studies were code bases in 
Java and/or AspectJ with the appropriate structural characteristics. We approached 
Java code as bad-style or “smelly” AspectJ code, and looked for the kinds of refactor-
ings that would be effective in removing the smells. The selected case studies were 
systems likely to include CCCs or code bases that promised to yield interesting in-
sights. 

The first experiment comprised the extraction of a CCC from a workflow frame-
work to an aspect, yielding refactorings extract feature into aspect, extract fragment 
into advice, move field from class to intertype, move method from class to intertype 
(Table 1), as well as experience that was invaluable for the subsequent case study. 
Despite yielding some positive results, we do not consider the extraction we undertook 
to be a good example of the use of AspectJ. The extraction we undertook was really 
an attempt to decompose the system according to use cases [19] or features [20] (for 
the purposes of this paper we regard the two concepts as equivalent). The extracted 
aspect is a monolithic module that uses the mechanisms of AspectJ to compose its 
internal elements to the appropriate points of the primary system. Though the ex-
tracted aspect as a whole is crosscutting, each intertype declaration has a single target 
type and each pointcut captures a single joinpoint. We concluded that the feature we 
extracted does not comprise a good example of the sort of CCC that AspectJ can 



M.P. Monteiro and J.M. Fernandes 218 

advantageously modularise. AspectJ is appropriate for cases with many duplicated 
fragments that can be replaced by one or a few pointcuts plus advice acting on the 
captured joinpoints, thus yielding significant savings in lines of code. Since the ex-
tracted CCC is an instance of Interpreter, we compared its code with the AspectJ im-
plementation of Interpreter proposed by Hannemann and Kiczales [16]. Unlike several 
of the examples from the collection from [16], the implementation of Interpreter com-
prises a single concrete aspect (i.e., it does not extend a reusable abstract aspect). 
Hannemann and Kiczales placed a few comments at the beginning of the aspect source 
file, remarking in the end that Interpreter “does not lend itself nicely to aspectifica-
tion”. The aspect we extracted is simply a more complex instance with similar prob-
lems. For more information regarding the relevant characteristics of the framework, 
the extraction experiment and the results derived from it, the reader is referred to [28] 
and [27]. 

The second case study was the collection of implementations (version 1.1) in both 
Java and AspectJ of the 23 Gang-of-Four (GoF) design patterns [11], presented by 
Hannemann and Kiczales [16]. The 23 GoF patterns illustrate a variety of design and 
structural issues that would be hard to find in a single code base (except in very large 
and complex systems). The GoF patterns effectively comprise a microcosm of many 
possible systems. They provided us with a rich source of insights, without the need to 
analyse large code bases or learn domain-specific concepts. The implementations 
presented by Hannemann and Kiczales [16] can be counted among the currently avail-
able examples of good AOP style and design, presenting a clear picture of the desir-
able internal structure of aspects. Many of the findings presented in this paper stem 
from our study of these examples, compounded with studies of Java implementations 
of the same patterns by other authors [5, 8] which further enriched the patterns’ poten-
tial as providers of insights. 

Our approach to the GoF implementations was to pinpoint the refactorings that 
would be needed to transform the Java implementations into the AspectJ implementa-
tions. This comprised an iterative process, in which each Java code example was sub-
ject to multiple refactoring sessions aiming to yield the corresponding AspectJ ver-
sion. The experience gained from each session was used to refine and enrich the de-
scriptions of the code transformations being used. The descriptions of the refactorings 
presented in this paper emerged gradually through this process. Care was taken to only 
develop descriptions of generally applicable transformations, i.e., refactorings that can 
be applied to multiple, unrelated cases. During this process, various refactoring candi-
dates were discarded because they turned out to be too case-specific. 

In the subsequent phase, we tested and refined the refactorings thus obtained on the 
implementations of other, structurally similar patterns, or in different Java implemen-
tations of the same patterns [5, 8]. The code examples presented at the end of each 
description found in this paper originate from those test sessions, as well as the refac-
toring process described in detail in [29].1 The latter also serves as a first validation 
effort. 

                                                           
1  [29] is complemented with an eclipse project containing 33 complete code snapshots, avail-

able at www.di.uminho.pt/~jmf/PUBLI/papers/ObserverExample.zip. 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 219 

Throughout our work on the mechanics of the refactorings, we took care to choose 
the safest path. As the refactorings are intended to be performed manually, it is impor-
tant that each refactoring step be small, in order to ensure an easy backtracking and to 
maximise safety. In a few cases, this led us to decompose the refactoring under study 
into several smaller steps. 

After the experiments were carried out and the refactoring descriptions were stable, 
we analysed the results in order to characterise the smells that the refactorings were 
supposed to remove. The novel smells presented in Sects. 5.2 – 5.4 are distillations of 
these ideas. In addition, we analysed existing, traditional OO smells [10, 21, 37,] to 
assess whether some of these smells could also be used as indicative of the presence of 
CCCs (see Sect. 5.1). 

The refactorings described in this paper are to some extent specific to the character-
istics of the languages used – Java and AspectJ. Our approach has the limitation that 
insights obtained to derive refactorings and code smells directly depend on the charac-
teristics of the code bases used as case studies, and are only as good as the insights 
obtained from them. If a given characteristic or mechanism is not used in the subject 
code base, the experiments are not likely to yield insights related to that characteristic 
or mechanism. For instance, none of the code bases we used includes elaborate uses of 
exceptions. For this reason, our work did not yield any refactorings related to excep-
tions or exception handling. Further work on more case studies is needed to overcome 
these limitations. We elaborate on this subject in Sect. 8. 

All refactorings presented in this paper were applied in at least one code example, 
with the exception of most of the simple push down refactorings from Table 3, which 
were derived for completeness. push down advice is used in the refactoring process 
described in [29]. 

3   Overview of the Refactorings 

This section presents an overview of the refactorings. All descriptions use a format 
and level of detail similar to the one used by Fowler et al. [10] (Kerievsky took the 
same approach in [21]). The format includes (1) name, (2) typical situation, 
(3) recommended action, (4) motivation stating the situations when applying the  
refactoring is desirable, (5) a detailed mechanics section and (6) code examples.  
Tables 1–3 present the refactorings, mentioning the first three elements of the format. 
Section 4 presents complete descriptions of the refactorings from Table 2. Complete 
descriptions of refactorings from Tables 1–3 can also be found in [27]. 

The mechanics do not attempt to cover all possible situations that can potentially 
arise in source code. For instance, they do not account for uses of reflection. Likewise, 
they do not deal with the fragile pointcut problem [24], which is caused by the fact 
that almost all refactorings can potentially break existing aspects, particularly point-
cuts (in [28, 29] we call it the fragile base code problem). We believe human pro-
grammers will be able to thoroughly deal with this problem only when provided with a 
new generation of tools, specifically designed to account for the presence of aspects. 
 



M.P. Monteiro and J.M. Fernandes 220 

Table 1. Refactorings for extraction of crosscutting concerns 

Name of the 
refactoring 

Typical situation Recommended action 

Change 
abstract class 
to interface 

An abstract class prevents sub-
classes from inheriting from 
another class 

Turn the abstract class into an 
interface and change its rela-
tionship with subclasses from 
inheritance to implementation 

Extract feature 
into aspect 

Code related to a feature is 
scattered across multiple meth-
ods and classes, tangled with 
unrelated code 

Extract to an aspect all imple-
mentation elements related to 
the feature 

Extract 
fragment into 
advice 

Part of a method is related to a 
concern whose code is being 
moved to an aspect 

Create a pointcut capturing the 
appropriate joinpoint and con-
text and move the code frag-
ment to an advice based on the 
pointcut 

Extract inner 
class to 
stand-alone 

An inner class relates to a con-
cern being extracted into an 
aspect 

Eliminate dependencies from 
the enclosing class and turn the 
inner class into a stand-alone 
class 

Inline class 
within aspect 

A small stand-alone class is 
used only within an aspect 

Move the class to within the 
aspect 

Inline interface 
within aspect 

One or several interfaces are 
used only by an aspect 

Move the interfaces to within 
the aspect 

Move field from 
class to  
intertype 

A field relates to a concern 
other than the primary concern 
of its owner class 

Move the field from the class to 
the aspect as an intertype decla-
ration 

Move method 
from class to 
intertype 

A method belongs to a concern 
other than the primary concern 
of its owner class 

Move the method into the as-
pect that encapsulates the sec-
ondary concern as an intertype 
declaration 

Replace imple-
ments with 
declare 
parents 

Classes implement an interface 
related to a secondary concern. 
Class code implementing the 
interface is used only when the 
secondary concern is included 
in the system build 

Replace the implements in the 
class with a equivalent declare 
parents in the aspect 

Split abstract 
class into 
aspect and 
interface 

Classes are prevented from 
using inheritance because they 
inherit from an abstract class 
defining several concrete mem-
bers 

Move all concrete members 
from the abstract class to an 
aspect. You can then turn the 
abstract class into an interface 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 221 

Table 2. Refactorings for restructuring the internals of aspects 

Name of the 
refactoring 

Typical situation Recommended action 

Extend marker 
interface with 
signature 

An inner interface models a role 
used within the aspect. You 
would like the aspect to call a 
method specific to a type that 
implements the interface but that 
is not declared by it 

Add an intertype abstract decla-
ration of the case-specific 
method signature to the inter-
face 

Generalise 
target type 
with marker 
interface 

An aspect refers to case-specific 
concrete types, preventing it from 
being reusable 

Replace the references to spe-
cific types with a marker inter-
face and make the specific 
types implement the marker 
interface 

Introduce 
aspect protec-
tion 

You would like an intertype 
member to be visible within the 
declaring aspect and all its subas-
pects, but not outside the aspect 
inheritance chain 

Declare the intertype member 
as public and place a declare 
error preventing its use outside 
the aspect inheritance chain 

Replace inter-
type field with 
aspect map 

An aspect statically introduces 
additional state to a set of classes, 
when a more dynamic or flexible 
link between state and targets 
would be desirable. 

Replace the intertype declara-
tions with a structure owned by 
the aspect that performs a map 
between the target objects and 
the additional state 

Replace inter-
type method 
with aspect 
method 

An aspect introduces additional 
methods to a class or interface, 
when a more dynamic and flexi-
ble composition would be desir-
able 

Replace the intertype method 
with an aspect method that gets 
the target object as an extra 
parameter 

Tidy up 
internal 
aspect struc-
ture 

The internal structure of an aspect 
resulting from the extraction of a 
crosscutting concern is sub-
optimal 

Tidy up the internal structure of 
the aspect by removing dupli-
cated intertype declarations and 
dependencies on case-specific 
target types 

However, we also believe it is possible to keep this problem under control, provided 
adequate practices are followed, including programming AspectJ’s constructs with a 
prudent and appropriate style, such as that proposed by Laddad [25]. This is particu-
larly important with pointcuts, which should be made in a style stressing intent rather 
than a specific case (e.g., expressions using wildcards). This way, pointcuts can ex-
press a general policy and may be robust enough to not be affected by minor modifica-
tions in the target code, such as the removal or addition of a new class or method. 
Another good practice is to place the aspects close to the code they affect whenever 
 



M.P. Monteiro and J.M. Fernandes 222 

Table 3. Refactorings to deal with generalisation 

Name of the 
refactoring 

Typical situation Recommended action 

Extract 
superaspect 

Two or more aspects contain 
similar code and functionality 

Move the common features to a 
superaspect 

Pull up 
advice 

All subaspects use the same ad-
vice acting on a pointcut declared 
in the superaspect 

Move the advice to the su-
peraspect 

Pull up de-
clare parents 

All subaspects use the same de-
clare parents 

Move the declare parents to the 
superaspect 

Pull up 
intertype 
declaration 

An intertype declaration would be 
best placed in the superaspect 

Move the intertype declaration 
to the superaspect 

Pull up 
marker 
interface 

All subaspects use a marker inter-
face to model the same role 

Move the marker interfaces to 
the superaspect 

Pull up 
pointcut 

All subaspects declare identical 
pointcuts 

Move the pointcuts to the su-
peraspect 

Push down 
advice 

A piece of advice is used by only 
some subaspects, or each subas-
pect requires different advice 
code 

Move the advice to the subas-
pects that use it 

Push down 
declare par-
ents 

A declare parents in a superaspect 
is not relevant for all subaspects 

Move the declare parents to the 
subaspects where it is relevant 

Push down 
intertype 
declaration 

An intertype declaration would be 
best placed in a subaspect 

Move the intertype declaration 
to the subaspect where it is 
relevant 

Push down 
marker 
interface 

A marker interface declared 
within a superaspect models a 
role used only in some subaspects

Move the marker interface to 
those subaspects 

Push down 
pointcut 

A pointcut in the superaspect is 
not used by some subaspects 

Move the pointcut to the subas-
pects that use the pointcut 

possible, to increase the likelihood that all team members be aware of the aspects 
potentially affected by refactorings. This often entails placing the aspect in the same 
package, or even within the same source file as the target class (as inner or peer  
aspects). 

All refactorings from Tables 1–3 assume AspectJ as the subject language. How-
ever, the refactorings from Table 1 are a special case in that the starting points of all 
refactorings from that group are in plain Java. This is not a specifically intended 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 223 

restriction, it just follows that all refactorings deal with extractions of the various 
elements of a CCC. CCCs are expected to reside in plain Java bases but not in AspectJ 
code, and therefore the existence of aspects in the code base is not taken into account 
in the mechanics. Actually, the code bases targeted by the refactorings from Table 1 
can include aspects (namely a Java base that is undergoing the extraction of multiple 
aspects). However, we assume that already existing aspects do not interfere with the 
constructs manipulated during the extraction process. 

The traditional OO refactorings can be used in AspectJ code as well. We did not 
detect any refactoring from [10] targeting an OO construct that could not be applied to 
the same construct within aspects. For instance, in the mechanics of Extend Marker 
Interface with Signature we prescribe the use of Extract Method ([10], p. 110) inside 
aspects. 

3.1   Grouping the Refactorings 

The collection is structured in groups of refactorings with similar purposes, as is done 
in [10]. The adopted grouping also reflects a strategy likely to be followed in many 
refactoring processes. This establishes that prior to anything else, all elements related 
to a CCC should be moved to a single module (following extract feature into aspect2). 
Only afterwards should we start improving the underlying structure of the resulting 
aspects (following tidy up internal aspect structure), because such tasks are consid-
erably easier to perform after the associated implementation is modularised. In case 
duplication is detected among different but related aspects, we extract the commonal-
ities to a (possibly reusable) superaspect (using extract superaspect). This strategy 
leads to the following grouping: (1) extraction of CCCs, (2) improvement of the inter-
nal structure of an aspect and (3) generalisation of aspects. The sequence of code 
transformations described in [29] also fits naturally with this grouping. 

The three refactorings mentioned above are composite refactorings that provide the 
entry points to someone approaching the catalogue. Rather than prescribe specific 
actions on the source code, as is the case of those documented in [10], they provide a 
framework for the other refactorings from the same group, specifying the situations 
when they should be used and when they should not. They are also useful in providing 
a broader view of a refactoring process. 

3.2   Refactorings for Extracting Features to Aspects 

We expect the refactorings from this group (Table 1) to comprise the starting point for 
the majority of refactoring processes targeting OO legacy code. Extract feature into 
aspect pinpoints procedures for extracting scattered elements of a CCC into a single 
module [28]. We suggest using move field from class to intertype to move state to the 
aspect. Behaviour can be moved using move method from class to intertype and ex-
tract fragment into advice. Moving an inner class to an aspect is done in two stages: 
first using extract inner class to stand-alone, to obtain a stand-alone class from the 
inner class, and next using inline class within aspect to turn the resulting class into an 
                                                           
2  In the context of these refactorings, we use the term “feature” to mean a CCC of the kind that 

can be effectively modularised by an AOP language such as AspectJ. 



M.P. Monteiro and J.M. Fernandes 224 

inner class within the aspect. We did not see a justification for defining a refactoring 
equivalent to extract inner class to stand-alone for interfaces, as interfaces are not 
generally used within classes. Interfaces are inlined into aspects using inline interface 
within aspect, after which they can be turned into marker interfaces. To complete the 
modularisation of the code related to the interface, we propose replace implements 
with declare parents for inlining the “implements” clause of implementing classes. 

Split abstract class into aspect and interface enables the extraction of definitions 
from an abstract class to an aspect, opening the way to using change abstract class to 
interface to turn the abstract class into an interface. This way, subclasses of the ab-
stract class become free to inherit from some other class. Together, the pair effectively 
extracts a mixin [2] from the original abstract class. The pair was derived from the 
analysis on the group of the GoF patterns that Hannemann and Kiczales related to 
multiple inheritance (Sect. 4.2.4 of [16]) and can be used to transform the Java im-
plementations of those patterns into the corresponding AspectJ implementations. 

3.3   Restructuring the Internals of Aspects 

The refactorings from this group (Table 2) deal with the task of improving the internal 
structure of an aspect after all elements from a CCC were moved into it, using the 
refactorings presented in Sect. 3.2 (Table 1). Tidy up internal aspect structure pro-
vides the general framework for improving the internal structure of extracted aspects. 
The mechanics prescribe at the start the use of generalise target type with marker 
interface, which entails replacing references to case-specific types with marker inter-
faces representing the roles played by the participants. Generalise target type with 
marker interface removes the duplication caused by multiple intertype declarations of 
the same member. In straightforward cases, it is enough to attain (un)pluggability. 

When using generalise target type with marker interface we may sometimes find 
that a single call to a case-specific method prevents a code fragment from being reus-
able. For such cases, extend marker interface with signature separates the generically 
applicable code from case-specific code, by extending marker interface with the 
method’s signature. 

Replace intertype field with aspect map and replace intertype method with aspect 
method prescribe how to replace intertype state and behaviour with a mapping struc-
ture providing the same functionality in a more dynamic way, and amenable to being 
controlled by client objects. These two refactorings can also deal with hurdles that 
arise when we try to move duplicated intertype declarations along aspect hierarchies 
(Sect. 3.4). 

The motivation for introduce aspect protection stems from the impossibility of us-
ing the protected access in intertype members. This refactoring prescribes how to 
preserve this access through declare error clauses. 

Split abstract class into aspect and interface and change abstract class to interface 
deal with the extraction of inner classes to aspects. The former removes dependencies 
of the inner class on the enclosing class and turns into a stand-alone class. The latter 
inlines the class within the aspect. 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 225 

3.4   Dealing with Generalisation 

The refactorings from this group (Table 3) deal with the extraction of common code to 
superaspects, with extract superaspect providing the general framework. All the re-
maining refactorings in this group deal with moving members up and down the inheri-
tance hierarchies of aspects. New refactorings for moving traditional OO members 
such as fields and methods were not created, as the issues and mechanics are similar to 
those documented in [10]. In [29] we show how the reusable aspect presented in [16] 
can be extracted from similar aspects. 

Pull up intertype declaration and push down intertype declaration have a very re-
stricted scope of applicability, only to simple cases not involving duplication. They 
are almost antirefactorings – one motivation for including them in the collection is to 
better document some issues and warn against attempts to treat intertype declarations 
as if they were like other members. The hurdles arise because duplicated intertype 
declarations of fields cannot generally be moved between superaspects and subas-
pects: such movements change the number of instances of intertype fields and their 
relation to aspect instances. It is important to keep in mind that (1) the visibility 
scopes of multiple intertype declarations of the same member cannot overlap and that 
(2) target objects (i.e., instances of classes affected by the intertype declaration) have 
one separate instance of the intertype member for each subaspect. If duplicated  
intertype declarations are factored out to a single declaration in a superaspect, target 
objects will have just one instance of the introduced member. In most cases, dealing 
with duplicated intertype declarations entails the prior replacement of the introduced 
fields with some mapping logic that maintains the association between target objects 
and the additional state and behaviour (using replace intertype field with aspect map 
and replace intertype method with aspect method). 

The remaining refactorings from this group deal with pulling up and pushing down 
aspect-specific constructs, including pointcuts, advice and declare parents clauses. 
Inner interfaces are also covered due to their widespread use as marker interfaces. 

3.5   Refactorings for Plain Java 

Two pairs of refactorings presented in the previous sections were initially conceived 
as single refactorings but were later split into the present pairs because this way 
seemed to have a more appropriate granularity: 

 extract inner class to stand-alone and inline interface within aspect (Sect. 3.2) 
 split abstract class into aspect and interface and change abstract class to 

interface (Sect. 3.3) 

In both cases, one of the resulting refactorings deals only with plain Java con-
structs: extract inner class to stand-alone and change abstract class to interface, 
though this was not specifically intended. We believe the motivation for these particu-
lar plain Java refactorings arises only or mostly in the context of aspects. For these 
reasons they are included in their respective groups. 



M.P. Monteiro and J.M. Fernandes 226 

4   Refactorings for Tidying Up Extracted Aspects 

This section documents the refactorings from Table 2. Complete descriptions of all 
refactorings from Tables 1–3 can be found in [27]. 

4.1   Extend Marker Interface with Signature 

Typical situation. An inner interface models a role used within the aspect. You would 
like the aspect to call a method specific to a type that implements the interface but that 
is not declared by it. 

Recommended action. Add an intertype abstract declaration of the case-specific 
method signature to the interface. 

Motivation. Sometimes you would like to temporarily resolve a dependence on a 
case-specific part because that would enable you to do some tidying up of the as-
pect’s internals, after which you would be in a better position to deal with the de-
pendence. Extend marker interface with signature can be used as a stopgap in such 
situations to temporarily resolve dependences to a type-specific method. One case 
in which this situation arises often is during the use of generalise target type with 
marker interface. 

An alternative solution to these problems would be to resort to downcasts. How-
ever, downcasts create dependencies to the target type of the cast: the specific type 
will need to be included in the aspect’s “import” section, the type’s binary file will 
have to be available when performing a build, etc. Extend marker interface with sig-
nature can be preferable in some situations because it avoids such dependencies. The 
dependence it creates is restricted to a method signature only, not to specific types. 
For these reasons, this refactoring is worth using in simple cases. 

Preconditions. The signature must be public in order to be acceptable to the compiler. 
In addition, this solution is feasible only if all the types made to implement the marker 
interface export the signature. 

Mechanics. 

 If the method is not public, change it to public. 
 Create in the aspect an intertype abstract declaration of the method’s signa-

ture targeting the marker interface that will be used in place of the specific 
type. 

 Compile and test. 

Example. The ExampleAspect aspect uses the Role marker interface. Some instruc-
tions using Role resort to a downcast to specific type SpecificType, to resolve the call 
to the doSomething method, which is specific to this type. By using extend marker 
interface with signature, we eliminate this dependence to SpecificType. Provided this 
is the only use of SpecificType within ExampleAspect, the import clause itself can be 
removed, as shown below. 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 227 

import ...SpecificType; 
 
public aspect ExampleAspect { 
 private interface Role { } 
 ... action(Role obj) { 
  //... 
  ((SpecificType)obj).doSomething() 

 
import ...SpecificType; 
 
public aspect ExampleAspect { 
 private interface Role { } 
 public abstract void Role.doSomething(); 
 //... 
 obj.doSomething() 

4.2   Generalise Target Type with Marker Interface 

Typical situation. An aspect refers to case-specific concrete types, preventing it from 
being reusable. 

Recommended action. Replace the references to specific types with a marker inter-
face and make the specific types implement the marker interface. 

Motivation. This refactoring contributes to reduce the coupling between an aspect 
and its target code bases. It can also be used to expose and eliminate much duplication 
that could not be eliminated if the code kept referring to specific types. It can also be 
useful when we want to apply extract superaspect to aspects providing similar func-
tionality, because it contributes to rationalise its internal structures. 

Several situations can prevent extract superaspect from being applied to a set of 
similar aspects. The aspects can contain code specific to concrete classes in the midst 
of generally applicable code. If a general marker interface could be used instead of the 
specific types, use generalise target type with marker interface. The resulting marker 
interfaces may be candidates for pulling up to a superaspect. 

Mechanics. 

 Create a marker interface representing the role played by the target classes. 
Create the “declare parents” to associate the concrete classes to the role. 

 Replace the references to the class with references to the marker interface. In 
cases when the aspect introduces the same field or method to more than one 
class, remove the duplication by replacing the various introductions with a sin-
gle introduction to the interface. 

 Sometimes the replacement cannot be made in method bodies because parts of 
the code depend on elements specific to a concrete class. In such cases, con-
sider using extract method ([10], p. 110) to separate the parts covered by the 
role interface from the parts specific to particular classes. This may be an indi-
cation that in the future the aspect should be split into a generally applicable 
abstract superaspect and one or several specific concrete subaspects, using ex-
tract superaspect. 



M.P. Monteiro and J.M. Fernandes 228 

 Compile and test. 
 When all method introductions refer to the interface, it is possible to remove 

the declarations of operations (methods) within the interface (if the interface is 
a inner interface, nested within the aspect, the related operations are defined 
within the aspect anyway, so removing the declarations from the interface will 
result in simpler code). If, however, the interface is kept stand-alone, leave the 
declarations in place. This way the code will be easier to understand. 

Example: Simple Replacements. In the following example, GUIColleague is an 
interface representing a role. The aspect Mediator assigns the GUIColleague role to 
the Button class, but some parts of the code still specifically refer to Button instead of 
GUIColleague. We want to make all code to depend only on the interface (see below). 
 
public aspect Mediator { 
 declare parents: Button implements GUIColleague; 
 declare parents: Label implements GUIMediator; 
 GUIMediator Button._mediator; 
 public void Button.setMediator(GUIMediator mediator) { 
  this._mediator = mediator; 
 } 
 pointcut buttonClicked(Button button): 
  execution(public void clicked()) && this(button); 
 after(Button button): buttonClicked(button) { 
  button._mediator.colleagueChanged(button); 
 } 
 //... 
} 

 
public aspect Mediator { 
 declare parents: Button implements GUIColleague; 
 declare parents: Label implements GUIMediator; 
 GUIMediator GUIColleague._mediator; 
 public void GUIColleague.setMediator(GUIMediator mediator) { 
  this._mediator = mediator; 
 } 
 pointcut buttonClicked(GUIColleague button): 
  execution(public void clicked()) && this(button); 
 after(GUIColleague button): buttonClicked(button) { 
  button._mediator.colleagueChanged(button); 
 } 
 //... 
} 

Naturally, the names of some variables (such as button) should now be renamed to 
reflect their more general context. 

Example: Eliminating Duplication. This example is based on the Observer pattern 
([11], p. 293). The ObservingOpen aspect encapsulates an observing relationship that 
was extracted from the participant classes. ObservingOpen introduces some fields and 
methods into several classes playing the Observer role (in this case Bee and Humming-
bird). The classes are the only differing things among the introductions. By applying 
generalise target type with marker interface, we create the Subject marker interface and 
remove the duplication. 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 229 

public aspect ObservingOpen ... { 
 //... 
 private OpenObserver Hummingbird.openObsrv = 
  new OpenObserver(this); 
 private OpenObserver Bee.openObsrv = new OpenObserver(this); 
 
 public java.util.Observer Bee.openObserver() { 
  return openObsrv; 
 } 
 public java.util.Observer Hummingbird.openObserver() { 
  return openObsrv; 
 } 
} 

 
public aspect ObservingOpen ... { 
 //... 
 private interface Subject { } 
 declare parents: (Bee || Hummingbird) implements Subject; 
 private OpenObserver Subject.openObsrv = new OpenOb-
server(this); 
 
 public java.util.Observer Subject.openObserver() { 
  return openObsrv; 
 } 
} 

4.3   Introduce Aspect Protection 

Typical situation. You would like an intertype member to be visible in an aspect and 
all its subaspects, but not outside the aspect inheritance chain. 

Recommended action. Declare the intertype member as public and place a “declare 
error” preventing its use outside the aspect inheritance chain. 

Motivation. AspectJ does not allow the protected access on intertype members, so 
whenever we would like to extend its access to subaspects we must classify the mem-
ber as public. In some cases, it is desirable to have some form of access protection 
preventing the use of the member outside aspect code. The “declare error” mechanism 
enables us to emulate that protection. 

Mechanics. 

 Add a “declare warning” in the aspect enclosing the intertype member, speci-
fying the intended restriction on its use. 

 Compile and test. 
 For each warning generated by the compiler, perform the refactorings neces-

sary to move the use of the member to the authorised modules of the system. 
 When there are no more warnings, change the “declare warning” to “declare 

error”. 

Example: Protecting an Intertype Field. Consider an abstract superaspect General-
Policy declaring intertype the field _sensitiveData. We want to restrict use of the field 
to aspect and its subaspects. 



M.P. Monteiro and J.M. Fernandes 230 

abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 //... 
} 
 
aspect ConcretePolicy extends GeneralPolicy { 
 //code using Participant._sensitiveData 
} 
 

We can add in the superaspect the following “declare warning”: 
 
abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 declare warning: 
  (set(public Data Participant+._sensitiveData) || 
  get(public Data Participant+._sensitiveData)) 
  && !within(GeneralPolicy+): 
  "field _sensitiveData is aspect protected. Not visible 
here."; 
 //... 
} 
 

Next, we deal with all points in the system, giving rise to warnings. After all warn-
ings are gone, we change the “declare warning” to “declare error”. 

Example: Protecting an Intertype Method. Suppose the same abstract aspect as in 
the previous example also includes method processSensitiveData, which we also 
would like to protect: 
 
abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 public void processSensitiveData() { 
  //code using Participant._sensitiveData 
 } 
 //... 
} 
 

We create the following “declare warning”: 
 
abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 public void processSensitiveData() { 
  //code using caspule._sensitiveData 
 } 
 declare warning: 
  call(void processSensitiveData()) 
  && !within(GeneralPolicy+): 
  "method processSensitiveData is aspect protected. Not visible 
here."; 
 //... 
} 
 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 231 

Likewise, the “declare warning” should be changed to “declare error” when all the 
warnings are gone. 

Example: Protecting Intertype Method from Access Outside Inheritance Class 
and Aspect Inheritance Chains. What if we want to allow the access to a member in 
the host class, in addition to the aspect and their descendents? In the above example 
all that is needed is one more within to the above “declare error”: 
 
declare error: 
 call(void processSensitiveData()) 
 && !within(Participant+) 
 && !within(GeneralPolicy+): 
 "Call to processSensitiveData() outside Participant and General 
Policy chains."; 

4.4   Replace Intertype Field with Aspect Map 

Typical situation. An aspect statically introduces additional state to a set of classes, 
when a more dynamic or flexible link between state and targets would be desirable. 

Recommended action. Replace the intertype declarations with a structure owned by 
the aspect that performs a map between the target objects and the additional state. 

Motivation. An intertype declaration is a static mechanism. It affects all instances of 
the target class, throughout their entire life cycles. For some problems, this is exactly 
right, but for others something more flexible would be preferable. In some cases only 
a subset of all instances of a class needs the extra state and behaviour, or they need it 
only in a specific phase of their life cycles. Sometimes the same instance simultane-
ously needs multiple instances of the extra state and behaviour. Sometimes the appli-
cation only knows at run time which instances need the extra state and behaviour. 
Intertype declarations do not provide the necessary flexibility in these cases. 

An intertype declaration is itself a kind of mapping, usually from a class to a field 
or method. However, we cannot control the moments when it applies, when it ceases 
to apply, and the precise set of objects to which it applies. Whenever this kind of 
flexibility is required and the existing solution relies on introductions, use replace 
intertype field with aspect map to replace the introductions with a suitable mapping. 

This refactoring is also useful in a different situation. Sometimes we have several 
aspects performing similar actions on similar data, and these include intertype declara-
tions. Such duplication should be removed by pulling the common parts to a superas-
pect. Here arises another problem. Target objects have separate instances of the addi-
tional state for each subaspect, but if the code is pulled up to the superaspect, there 
will be a single instance of the introduced state common to all subaspects. A similar 
problem would arise if we tried to replace an instance field with a static field. Such 
pulls will almost certainly not be behaviour-preserving. In most cases, an intertype 
declaration cannot be pulled up to a superaspect as is. The pulls usually require the 
prior replacement of intertype state with aspect state. 

As it happens, the kind of replacements that solve the first problem can solve the 
second problem as well. Unlike with intertype declarations, there is a separate instance 
of the state declared in the superaspect in each active subaspect. In most cases, solving 



M.P. Monteiro and J.M. Fernandes 232 

the problem merely entails selecting a suitable structure to replace the intertype fields, 
and update the associated logic accordingly. 

To ease the replacement of the original intertype state with the new mapping struc-
ture, you should first isolate it behind a small layer within the aspect, to protect the 
rest of the aspect code from being exposed to it. In the simplest case, all that has to be 
done is to ensure that the aspect is provided with accessor methods encapsulating the 
intertype fields. Only those methods will need to be changed when the structure is 
replaced. In the case of preparing intertype declarations to be pulled up, replace 
intertype field with aspect map must be applied to each of subaspects in turn. Next, 
use pull up field ([10], p. 320) and pull up method ([10], p. 322) to pull the state and 
its associated logic to the common superaspect. 

Preconditions. Ensure that the fields in the various aspects do indeed provide equiva-
lent interfaces and functionality. 

Mechanics. 

 Use encapsulate field ([10], p. 206) on the introduced field. Unlike traditional 
accessor methods, create aspect methods, receiving the target object as argu-
ment. 

 Add to the aspect a mapping structure capable of supporting the equivalent 
mapping functionality. Add accessors similar to the ones created in the previ-
ous step, retrieving the introduced fields from the mapping structure. Ideally, 
these map-based accessors should have the same signatures and names as those 
created in the previous step. Add any additional management methods (i.e., for 
insertion, removal, etc.) that may also be required. 

 If the aspect has intertype methods using the intertype field, use replace inter-
type method with aspect method to create aspect versions of those methods, 
based on the new mapping structure. 

 Compile and test. 
 Replace each call to the accessors created in the first step with the map-based 

accessors. Compile and test when all replacements are done. 
 Remove the accessor methods created in the first step. Compile and test. 
 Remove the intertype field and related code. Compile and test. 

Example: Replacing an Intertype Field with an Aspect Map. The following exam-
ple presents fragments of an aspect implementing an instance of the Mediator pattern 
([11], p. 273), adapted from a Java implementation by Cooper [5]. In this example, 
there is a mediator object (of type Mediator) acting as the hub of communication be-
tween various colleagues. The colleagues are instances of ClearButton and Move 
Button, both subclasses of javax.swing.JButton, and KidList, which is a subclass of 
javax.swing.JScrollPane, implementing a listener interface from the javax.swing.event 
API. This example declares the Colleague role as a marker interface and assigns it to 
the three colleague participant types. The aspect indirectly introduces in each col-
league a reference to the mediator, by way of the marker interface. 

This implementation is unsuitable because it introduces the additional state and be-
haviour to all instances of the participant classes, independently of whether all of them 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 233 

need it or not. By replacing this implementation with one based on a map, we elimi-
nate this inflexibility. 
 
public aspect Mediating ... 
 private interface Colleague {} 
 private Mediator Colleague.mediator; 
 
 declare parents: 
  (ClearButton || MoveButton || KidList) implements Colleague; 
 
 pointcut clearButtonExecute(ClearButton clearButton): ... 
 after(ClearButton clearButton):clearButtonExecute(clearButton){
  clearButton.mediator.clear(); 
 } 
 
 pointcut moveButtonExecute(MoveButton moveButton): ... 
 after(MoveButton moveButton): moveButtonExecute(moveButton) { 
  moveButton.mediator.move(); 
 } 
 
 pointcut kidListChanged(KidList kidList): ... 
 after(KidList kidList) returning: kidListChanged(kidList) { 
  kidList.mediator.select(); 
 } 
 

As a first step, we perform a refactoring similar to encapsulate field ([10], p. 206) 
to produce a temporary etter method for the intertype field. The same etter can be 
used in all different target types. It cannot be given exactly the same name as the map-
based etter, so we add a zero to avoid compiler errors. 
 
public aspect Mediating ... 
 private Mediator getMediator0(Colleague colleague) { 
  return colleague.mediator; 
 } 
 pointcut ... 
 after(ClearButton clearButton):clearButtonExecute(clearButton) {
  getMediator0(clearButton).clear(); 
 } 
 pointcut ... 
 after(MoveButton moveButton): moveButtonExecute(moveButton) { 
  getMediator0(moveButton).move(); 
 } 
 pointcut ... 
 after(KidList kidList) returning: kidListChanged(kidList) { 
  getMediator0(kidList).select(); 
 } 
 

Now that all accesses to the intertype field are done through this temporary etter, 
the intertype nature of the mediator field is effectively encapsulated. Next, we add a 
suitable data structure to map the target objects to the mediator field. A hash table is a 
good choice for these cases. The introduced field was private to the aspect, so the 
etters are private as well. The access mode of the map-based setter can be more prob-

lematic. Note that the map-based setter is responsible for associating the target object 
with the mediator field, using the newly added mapping structure. It does not 
 

s s

s

s

s



M.P. Monteiro and J.M. Fernandes 234 

have a correspondent statement in the original version of the code, but we must find 
an appropriate point of the program to place it. The access mode of the map-based 
setter depends on where the field is used in the system: private if it is used only within 
the aspect, nonprivate otherwise. In this example, we assume a public access. 

 
import java.util.WeakHashMap; 
 
public aspect Mediating ... 
 WeakHashMap colleague2mediatorMap = new WeakHashMap(); 
 
 private Mediator getMediator(Colleague colleague) { 
  return (Mediator)colleague2mediatorMap.get(colleague); 
 } 
 public void setMediator(Colleague colleague, Mediator mediator) { 
  colleague2mediatorMap.put(colleague, mediator); 
 } 
 private Mediator getMediator0(Colleague colleague) { 
  return colleague.mediator; 
 } 
 

We must now decide on the places where to put the calls to the map-based setters. 
The places where the objects containing the field are created could be used as a basis, 
though in some cases it may be preferable to place the calls elsewhere. After all, that 
is precisely one of the advantages of replacing a static mapping with a dynamic one: 
we have more choices. Outside the aspect, the calls to the final setter should be some-
thing like this: 
 
 Mediating.aspectOf().setMediator(clearButton, mediator); 
 

Inside advice within the aspect, the same call can be expressed in a simpler way: 
 
 setMediator(clearButton, mediator); 
 

We insert the calls to the map-based etter and make the calls to the temporary et-
ter refer to the map-based etter. After compiling and testing again, we can delete the 
original declaration and the temporary etter. Now the aspect’s code looks like this: 
 
public aspect Mediating ... 
 private Mediator Colleague.mediator; 
 declare parents: (ClearButton || MoveButton || KidList) 
  implements Colleague; 
 
 WeakHashMap colleague2mediatorMap = new WeakHashMap(); 
 
 private Mediator getMediator(Colleague colleague) { 
  return (Mediator)colleague2mediatorMap.get(colleague); 
 } 
 public void setMediator(Colleague colleague, Mediator mediator) { 
  colleague2mediatorMap.put(colleague, mediator); 
 } 
 
 private Mediator getMediator0(Colleague colleague) { 
  return colleague.mediator; 

s s
s

s



Towards a Catalogue of Refactorings and Code Smells for AspectJ 235 

 } 
 pointcut clearButtonExecute(ClearButton clearButton): ... 
 after(ClearButton clearButton): clearButtonExecute(clearButton) {
  getMediator(clearButton).clear(); 
 } 
 pointcut moveButtonExecute(MoveButton moveButton): ... 
 after(MoveButton moveButton): moveButtonExecute(moveButton) { 
  getMediator(moveButton).move(); 
 } 
 pointcut kidListChanged(KidList kidList): ... 
 after(KidList kidList) returning: kidListChanged(kidList) { 
  getMediator(kidList).select(); 
 } 
 

Example: Making an Implementation of Observer Amenable for the Extraction 
of a Superaspect. This second example is an implementation of Observer ([11],  
p. 293). This implementation was extracted into an aspect from the example by Coo-
per [5], using extract feature into aspect. This example is a bit more complex than the 
previous one, because it includes intertype methods that use the intertype field. These 
intertype methods must be replaced using replace intertype method with aspect 
method. We assume the scenario in which the system has other, similar implementa-
tions of the pattern and we would like to factor out the common elements by pulling 
them up to a superaspect. These implementations rely on the introduction of a 
java.util.Vector field to the subject participant, which is among the elements we would 
like to pull up, along with its associated logic. 

The present implementation does not lend itself to be pulled up to the superaspect, 
for the same reasons as in the previous example: It was designed assuming there 
would be only one instance of the pattern for each subject. That is, the vector cannot 
support multiple observing relationships for the same object. To solve this problem, 
we will replace the intertype vector with a more suitable hash table owned by the 
aspect, which will manage the mappings between subjects and the list (i.e., a 
java.util.Vector object) of its observers. We will use replace intertype method with 
aspect method to replace the original logic using the vector with aspect logic using the 
hash table. 

Cooper’s example includes a Watch2LSubject object as subject and two types of ob-
servers, which are instances of ListFrameObserver and ColorFrameObserver (both sub-
classes of javax.swing.JFrame). The Watch2LSubject object includes three radio but-
tons, one for each of the colours red, green and blue. Whenever a different radio button 
is selected, the ColorFrameObserver instances change their background colour accord-
ingly, and the ListFrameObserver adds the name of the selected colour to its list. 

The refactored aspect uses two inner interfaces (they were inlined to within the Ob-
serving aspect during the refactoring process) to represent the roles of subject and 
observer. It introduces the java.util.Vector field to the objects playing the role of sub-
ject, which holds the subject’s registered observers. The aspect also introduces two 
methods to the subjects: addObserver(Observer), which is used to register a new ob-
server for the subject, and notifyObservers(JRadioButton), through which subjects 
notify all their registered observers of a change in the selected colour. That notifica-
tion is carried out through the sendNotify method, which is declared in the Observer 



M.P. Monteiro and J.M. Fernandes 236 

inner interface. The sendNotify method receives a string representing the new colour 
as parameter. The aspect also introduces the implementation of sendNotify for each 
concrete observer type. 
 
public aspect Observing ... 
 private interface Subject {} 
 interface Observer { 
  /** notify the Observers that a change has taken place */ 
  public void sendNotify(String s); 
 } 
 declare parents: Watch2LSubject implements Subject; 
 declare parents: (ListFrameObserver || ColorFrameObserver) 
  implements Observer; 
 
 private Vector Subject._observingFramesList = new Vector(); 
 
 public void Subject.addObserver(Observer obs) { 
  //  adds observer to list in Vector 
  _observingFramesList.addElement(obs); 
 } 
 /* sends text of selected button to all observers */ 
 private void Subject.notifyObservers(JRadioButton rad) { 
  String sColor = rad.getText(); 
  for (int i = 0; i < _observingFramesList.size(); i++ ) { 
   ((Observer) (_observingFramesList.elementAt(i))). 
    sendNotify(sColor); 
  } 
 } 
 
 public void ListFrameObserver.sendNotify(String s) { 
  _listData.addElement(s); 
 } 
 public void ColorFrameObserver.sendNotify(String str) { 
  changeColor(str); 
 } 
 

The aspect also includes a pointcut and corresponding advice to trigger the ade-
quate behaviour when the subject changes the selected colour: 
 
pointcut watchStateChange(Watch2LSubject watch,ItemEvent event) :... 
after(Watch2LSubject watch, ItemEvent event): 
  watchStateChange(watch, event) { 
 if(event.getStateChange() == ItemEvent.SELECTED) 
  watch.notifyObservers((JRadioButton) event.getSource()); 
} 
 

The mechanics prescribe the use of Encapsulate Field ([10], p. 206) on the existing 
field. In this particular case, we must instead create a new field as the mapping struc-
ture (we will create the accessor methods for the structure as soon as there is a need to 
do so). 

import java.util.WeakHashMap; 
... 
public aspect Observing ...  
 //... 
 WeakHashMap _subject2Observers = new WeakHashMap(); 
 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 237 

Next, we use replace intertype method with aspect method to replace the addOb-
server and notifyObservers intertype methods with aspect versions using the new 
mapping structure. See the example section of replace intertype method with aspect 
method (Sect. 4.5) for more details of this step. 

The new implementation is now in place and working. There was no need to add 
accessors to the mapping structure, as it is already encapsulated by addObserver and 
notifyObservers. These two aspect methods comprise a small layer hiding the struc-
ture. We can now delete the old implementation, after which the aspect looks like this: 
 
public aspect Observing ... 
 private interface Subject {} 
 interface Observer { 
  /** notify the Observers that a change has taken place */ 
  public void sendNotify(String s); 
 } 
 declare parents: Watch2LSubject implements Subject; 
 declare parents: (ListFrameObserver || ColorFrameObserver) 
  implements Observer; 
 
 private Vector Subject._observingFramesList = new Vector(); 
 
 public void Subject.addObserver(Observer obs) { 
  //  adds observer to list in Vector 
  _observingFramesList.addElement(obs); 
 } 
 /* sends text of selected button to all observers */ 
 private void Subject.notifyObservers(JRadioButton rad) { 
  String sColor = rad.getText(); 
  for (int i = 0; i < _observingFramesList.size(); i++ ) { 
   ((Observer) (_observingFramesList.elementAt(i))). 
    sendNotify(sColor); 
  } 
 } 
 
 WeakHashMap _subject2Observers = new WeakHashMap(); 
 
 public void addObserver(Subject subject, Observer observer) { 
  Vector observers; 
  Object obj = _subject2Observers.get(subject); 
  if(obj == null) 
   observers = new Vector(); 
  else observers = (Vector) obj; 
  observers.add(observer); 
  _subject2Observers.put(subject, observers); 
 } 
 public void 
 notifyObservers(Subject subject, JRadioButton radioButton) { 
  String sColor = radioButton.getText(); 
  Vector observersList = 
   (Vector)_subject2Observers.get(subject); 
  for (int i = 0; i < observersList.size(); i++ ) { 
   ((Observer) (observesList.elementAt(i))). 
    sendNotify(sColor); 
  } 
 } 



M.P. Monteiro and J.M. Fernandes 238 

 public void ListFrameObserver.sendNotify(String s) { 
  _listData.addElement(s); 
 } 
 /* Observer is notified of change here */ 
 public void ColorFrameObserver.sendNotify(String str) { 
  changeColor(str); 
 } 
 
 pointcut watchStateChange(Watch2LSubject watch,ItemEvent event): 
  ... 
 after(Watch2LSubject watch, ItemEvent event): 
   watchStateChange(watch, event) { 
  if(event.getStateChange() == ItemEvent.SELECTED) 
   notifyObservers(watch, (JRadioButton) event.getSource()); 
 } 
} 

4.5   Replace Intertype Method with Aspect Method 

Typical situation. An aspect introduces additional methods to a class or interface, 
when a more dynamic and flexible composition would be desirable. 

Recommended action. Replace the intertype method with an aspect method that gets 
the target object as an extra parameter. 

Motivation. This refactoring was designed to be a follow-up to replace intertype field 
with aspect map. That refactoring deals with intertype fields and the present refactor-
ing deals with the (intertype) methods that use those fields. 

The present refactoring is made possible by the fact that a method introduced to a 
class can always be replaced by a similar aspect method receiving an instance of the 
target class as an additional argument, which will use the target object as a key. 
 
public class Capsule { 
 private int _value; 
 public Capsule(int value) { 
  _value = value; 
 } 
public aspect Additional { 
 public void Capsule.doSomethingMore() { 
  System.out.println("Doing something more with " + this); 
 } 
  Capsule capsule = new Capsule(7); 
  capsule.doSomethingMore(); 

 
public class Capsule { 
 private int _value; 
 public Capsule(int value) { 
  _value = value; 
 } 
public aspect Additional { 
 public void doSomethingMore(Capsule capsule) { 
  System.out.println("Doing something more with " + capsule); 
 } 
  Capsule capsule = new Capsule(7); 
  Additional.aspectOf().doSomethingMore(capsule); 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 239 

Replacements of this kind should not be made in the general case, and that is why 
we prescribe using this refactoring only in the context of replace intertype field with 
aspect map. This refactoring is equally useful to deal with both situations covered by 
the other refactoring: (1) replacing intertype declarations with a dynamic mechanism 
and (2) preparing intertype state duplicated in various aspects to be factored out to a 
common superaspect. This refactoring transforms existing intertype methods into 
aspect methods based on the map that was created when applying replace intertype 
field with aspect map. 

Mechanics. 

 Create in the aspect a copy of the intertype method, with the same name and 
signature. Insert, in the beginning of the aspect method’s parameter list, an ad-
ditional parameter whose type is the original target of the intertype declaration. 

 Replace each reference to “this” with the new parameter. Change all self-calls 
and references to fields to refer to the new first parameter. 

 Compile and test. 
 Change the body of the intertype method so that it calls the aspect method, if 

there are no further dependences preventing you. 
 Add a “declare warning” exposing all calls to the intertype method: 

declare warning: 
 (call(<type> <host class>.someMethod(<arguments>)): 
 "method <host class>.someMethod() is called here."; 

 Following the warnings, replace each call to the intertype method with a call to 
the aspect method. Compile and test after each change. 

 When there are no more warnings, delete the “declare warning” and the inter-
type method (when covering the mechanics of several refactorings from [10], 
Fowler considers the situation when the existing method is part of the interface 
and cannot be changed; Fowler recommends that in such cases the old method 
be left in place and marked as deprecated). 

 Compile and test. 
 

Example. This example is part of the second example for replace intertype field with 
aspect map. In it, an aspect introduces the following methods to the Subject marker 
interface: 

 public void Subject.addObserver(Observer obs) { 
  _observingFramesList.addElement(obs); 
 } 
 private void Subject.notifyObservers(JRadioButton rad) { 
  String sColor = rad.getText(); 
  for (int i = 0; i < _observingFramesList.size(); i++ ) { 
   ((Observer) (_observingFramesList.elementAt(i))). 
    sendNotify(sColor); 
  } 
 } 
 



M.P. Monteiro and J.M. Fernandes 240 

As an example of client code, the following subject and observers are created and 
registered, through calls to the Subject.addObserver method: 
 
  Watch2LSubject subject = new Watch2LSubject(); 
  //Observing.aspectOf().setSubject(subject); 
 
  ColorFrameObserver cframeObs1 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs2 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs3 = new ColorFrameObserver(); 
  ListFrameObserver lframeObs = new ListFrameObserver(); 
 
  subject.addObserver(cframeObs1); 
  subject.addObserver(cframeObs2); 
  subject.addObserver(cframeObs3); 
  subject.addObserver(lframeObs); 
 

The aspect itself also includes an advice calling the other method, Sub-
ject.notifyObservers: 
 
 after(Watch2LSubject watch, ItemEvent event): 
   watchStateChange(watch, event) { 
  if(event.getStateChange() == ItemEvent.SELECTED) 
   watch.notifyObservers((JRadioButton) event.getSource()); 
 } 
 

This functionality should be replaced by aspect methods based on a hash table 
owned by the aspect: the aspect field _subject2Observers, which uses subject objects 
as keys, and vectors of observers as values: 
 
 WeakHashMap _subject2Observers = new WeakHashMap(); 
 

As a first step, we create the following two aspect methods, with the same names: 
 
 public void addObserver(Subject subject, Observer observer) { 
  Vector observers; 
  Object obj = _subject2Observers.get(subject); 
  if(obj == null) observers = new Vector(); 
  else observers = (Vector) obj; 
  observers.add(observer); 
  _subject2Observers.put(subject, observers); 
 } 
 public void 
 notifyObservers(Subject subject, JRadioButton radioButton) { 
  String sColor = radioButton.getText(); 
  Vector observersList = 
   (Vector)_subject2Observers.get(subject); 
  for (int i = 0; i < observersList.size(); i++ ) { 
   ((Observer) (observersList.elementAt(i))). 
    sendNotify(sColor); 
  } 
 } 

 
 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 241 

We cannot replace the body of the intertype methods with calls to the new ones at 
this point. We must first replace the calls to the addObserver method, which register 
the observers to their subjects. Otherwise, the tests would fail. We therefore perform 
the next step as prescribed, adding “declare warning” clauses that will expose all calls 
to these methods: 
 
declare warning: call(void Subject.addObserver(Observer)): 
 "Method Subject.addObserver(Observer) is called here."; 
declare warning: call(void Subject.notifyObservers(JRadioButton)): 
 "Method Subject.notifyObservers(JRadioButton) is called here."; 
 

We compile, resulting in a series of warnings locating the calls to the old methods. 
After replacing each of them with calls to the aspect methods, we compile again. All 
warnings disappeared, and we test. We remove the “declare warning” clauses. Now 
the client code calling addObservers looks like this: 
 
  Watch2LSubject watch2LFrame = new Watch2LSubject(); 
 
  ColorFrameObserver cframeObs1 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs2 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs3 = new ColorFrameObserver(); 
  ListFrameObserver lframeObs = new ListFrameObserver(); 
 
  subject.addObserver(cframeObs1); 
  subject.addObserver(cframeObs2); 
  subject.addObserver(cframeObs3); 
  subject.addObserver(lframeObs); 
 
  Observing.aspectOf().addObserver(watch2LFrame, cframeObs1); 
  Observing.aspectOf().addObserver(watch2LFrame, cframeObs2); 
  Observing.aspectOf().addObserver(watch2LFrame, cframeObs3); 
  Observing.aspectOf().addObserver(watch2LFrame, lframeObs); 
 

The call to notifyObservers now takes the form: 
 

 after(Watch2LSubject watch, ItemEvent event): 
   watchStateChange(watch, event) { 
  if(event.getStateChange() == ItemEvent.SELECTED) 
   notifyObservers(watch, (JRadioButton) event.getSource()); 
 } 

4.6   Tidy Up Internal Aspect Structure 

Typical situation. The internal structure of an aspect resulting from the extraction of 
a CCC is suboptimal, being based on static compositions and betraying duplication. 

Recommended action. Tidy up the internal structure of the aspect by removing dupli-
cated intertype declarations and dependencies on case-specific target types. 

Motivation. This refactoring serves as the general framework indicating when to use 
the remaining refactorings from the same group,3 and in what situations. 

                                                           
3 Each refactoring from the group is not necessarily referred to directly. 



M.P. Monteiro and J.M. Fernandes 242 

AOP adds a new type of situation in which code duplication can arise (i.e., is ex-
posed). Refactoring an object-oriented (OO) code base to aspects entails extracting 
concerns and features whose very crosscutting nature gives rise to duplication that is 
hard or impossible to avoid when using traditional OO mechanisms. A typical situa-
tion is a system containing repeated implementations of the same functionality scat-
tered in multiple classes. Simply extracting those code snippets into an aspect does not 
guarantee, by itself, removal of this duplication. It merely moves the duplicated code 
into aspects. In some cases, the duplication becomes obvious only when it is placed in 
a single module. Therefore, extracting the crosscutting code is only the first part of the 
job. Next, duplication within the aspect must be removed and its internal structure 
improved. 

Intertype declarations make it very easy to move members from classes to aspects 
without impact on client code, and aspects resulting from extractions are likely to use 
them. However, in some cases, we would like the aspect to introduce the additional 
state and behaviour on an object-by-object basis, and intertype declarations are not 
flexible enough to achieve that. This entails the replacement of these introductions 
with different logic. 

Mechanics. 

 If the code assigns roles to participant classes, see if the aspect code uses 
marker interfaces to represent those roles instead of referring directly to case-
specific classes. If it is not the case, use generalise target type with marker 
interface. 

 If parts of the code make explicit references to specific classes that cannot be 
generalised, separate the specific parts from the generally applicable ones by 
using extract method ([10], p. 110). You should do this if the aspect contains 
enough generally applicable logic to be worth extracting to a reusable abstract 
superaspect. 

 Inspect the intertype declarations looking for cases in which the extra state and 
behaviour is needed only at specific times, or is needed by only a subset of the 
instances of the target classes, or may be needed in multiple instances simulta-
neously. In such cases, consider using replace intertype field with aspect map 
to deal with the introduced state, and replace intertype method with aspect 
method to deal with the behaviour based on that state. 

Example. The refactoring process described in [29] includes a thorough example of 
this composite refactoring. 

5   Code Smells 

Code smells are the way proposed by Beck and Fowler (Chap. 3 of [10]) to diagnose 
problems in existing code that could be removed through refactorings. Code smells do 
not aim to provide precise criteria for when refactorings are overdue. Instead, code 
smells suggest symptoms that may be indicative of something wrong in the code. Pro-
grammers are required to develop their own sense of style and to decide when a symp-



Towards a Catalogue of Refactorings and Code Smells for AspectJ 243 

tom indeed warrants a change. Decisions also depend on the specific aims of the pro-
grammer and the specific state and structure of the code on which she is working. 

5.1   OO Smells in Light of AOP 

We analysed the code smells presented in [10, 21, 37] and propose that some be used 
as symptoms of the presence of CCCs. This particularly applies to divergent change 
([10], p. 79) and shotgun surgery ([10], p. 80). According to Fowler et al., “Shotgun 
surgery is one change that alters many classes” (i.e., a symptom of code scattering) 
and “Divergent change is one class that suffers many kinds of changes” (i.e., a symp-
tom of code tangling). Wake [37] mentions configuration information, logging and 
persistence as possible causes to the shotgun surgery smell, all of which can be 
counted among the favourite examples for the use of AOP. 

Kerievsky [21] proposes a variant of shotgun surgery that he calls solution sprawl. 
Kerievsky states ([21], p. 43) that “you become aware of this smell when adding or 
updating a system feature causes you to make changes to many different pieces of 
code”. The difference between the two smells is the way they are sensed – “we be-
come aware of solution sprawl by observing it, while we detect shogun surgery by 
doing it”. Both variants are equally promising as indicators of CCCs. 

We think it is useful to extend the above definitions to cover methods as well as 
classes, to account for class-wide aspects that cut across the methods of a single class. 
We propose the extract feature into aspect refactoring (Table 1 and Sect. 3.2) as a 
general framework for the modularisation of concerns detected through these smells. 

5.2   The Double Personality Code Smell 

The double personality smell can be found in classes that play multiple roles. Ideally, 
each class should play a single role, meaning that it contains only one, coherent set of 
responsibilities. This often is not possible in OO frameworks and applications. 

Examples of double personality can be found in the OO implementations of design 
patterns [11] that include what Hannemann and Kiczales call superimposed roles – 
roles assigned by the pattern to classes that have functionality and responsibility out-
side the pattern [16]. Examples are chain of responsibility ([11], p. 223), which super-
imposes the Handler role to some of the participant classes, and observer ([11], 
p. 293), which superimposes the Subject and Observer roles. 

One symptom that can help to detect double personality in Java source code is im-
plementation of interfaces. Interfaces are a popular way to model roles in Java – e.g., 
the motivation for extract interface ([10], p. 341). When a class implements an inter-
face modelling a role that does not relate to the class’s primary concern, the class 
smells of double personality. 

When double personality is detected in one class, we suggest that developers ana-
lyse the code base to see if it applies to just that class. Again, looking to the interfaces 
may help: if multiple classes implement the interface, this means the secondary con-
cern is crosscutting (it cuts across multiple classes). 

If a single class is affected, or if the code of the secondary role is restricted to the 
implementation of the interface, the solution is to extract the secondary role to a mixin 



M.P. Monteiro and J.M. Fernandes 244 

[2]. There are several ways to do this. Laddad’s extract interface implementation [25] 
suggests placing the secondary concern inside an inner aspect enclosed within the 
interface modelling the superimposed role. If the programmer strives for total oblivi-
ousness [9] of the secondary role, she can use replace implements with declare 
parents (Table 1). As an alternative to extract interface implementation [25], we pro-
pose split abstract class into aspect and interface (Table 1), which completely encap-
sulates the secondary concern into an aspect, including the “implements” clause. 
When the related code is more complex than a simple implementation of an interface, 
we suggest using extract feature into aspect (Table 1) to move all the related code to 
an aspect (see also Sect. 3.2). 

5.3   Abstract Classes as a Code Smell 

The AspectJ composition mechanisms that enable the emulation of mixins [2] also 
enable the separation of definitions (i.e., implementation code) from declarations in 
abstract classes, opening the way to turn the classes into interfaces. Hannemann and 
Kiczales take this approach in implementing five of the GoF design patterns in As-
pectJ [16]. This separation has the advantage that classes become free to inherit from 
some other class and interfaces can still be provided with a default implementation. 
This suggests that abstract classes should be considered a code smell in some situa-
tions – e.g., whenever we would like a class to inherit from some other class, but the 
class already inherits from an abstract class that contains implementation elements. 
Two of the refactorings presented here (Table 1) remove that smell. Split abstract 
class into aspect and interface can be used to extract the concrete members of an 
abstract class into an aspect, and resulting pure abstract class can be turned into an 
interface using change abstract class to interface. 

5.4   The Aspect Laziness Code Smell 

The aspect laziness smell applies to aspects that do not carry the full weight of their 
responsibilities and instead pass the burden to classes, in the form of intertype declara-
tions. We detect this smell in aspects that resort to the mechanism of intertype declara-
tions to add state and behaviour to a class when something more dynamic and/or 
flexible would be desirable. Intertype declarations are static mechanisms that apply to 
all instances of the target class, throughout their entire life cycle. Its use should be 
considered a smell in some situations. We detect aspect laziness in uses of intertype 
declarations for solving problems whose requirements have one or several of the fol-
lowing characteristics: 

 The additional state and/or behaviour are needed by only a subset of the in-
stances of the target classes. 

 The additional state and/or behaviour are needed only during certain specific 
phases in the execution of the program. 

 Instances of the target classes (may) require multiple instances of that state and 
behaviour simultaneously. 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 245 

In such cases, intertype declarations are not dynamic or flexible enough. It is pref-
erable for the aspect itself to hold the additional state and behaviour and program-
matically associate the additional state to the individual target objects. We propose 
replace intertype field with aspect map and replace intertype method with aspect 
method (Table 2) to replace the existing design with a mapping logic that provides the 
same functionality more flexibly. 

6   Illustrative Example 

In this section, we present a code example to illustrate some of the smells and the 
results of many of the refactorings. The example is based on an implementation of the 
Observer pattern ([11], p. 293) by Eckel [8]. In [29], we describe in detail a refactor-
ing process that starts with Eckel’s implementation and ends with the AspectJ imple-
mentation proposed by Hannemann and Kiczales [16]. The process uses 17 of the 
refactorings presented in this paper, shown in Table 4. 

Table 4. Refactorings used in the illustrating example 

Encapsulate implements 
with declare parents 

Move field 
from class to intertype 

Extend marker interface with signature Move method 
from class to intertype 

Extract feature into aspect Push down advice 
Extract inner class to stand-alone Pull up marker interface 
Extract fragment into advice Pull up pointcut 
Extract superaspect Replace intertype field 

with aspect map 
Generalize target type 
with marker interface 

Replace intertype method 
with aspect method 

Inline class within aspect Tidy up internal aspect structure 
Inline interface within aspect  

 

The intent of Observer is to “define a one-to-many dependency between objects so 
that when one object changes state, all its dependents are notified and updated auto-
matically” [11]. The example includes two observers, one of which is class Bee, 
shown in Fig. 1 with the primary concern shaded (the other observer class, Humming-
bird, is similar). Figure 2 shows the class Flower, which plays the role of Subject 
(shaded code relates to the primary concern). Each of Flower’s two operations, open 
and close the petals, originates one observing relationship. 

Eckel’s implementation uses the Observer/Observable protocol from Java’s stan- 
dard java.util API, which requires Subject participant to inherit from java.util.Ob- 
servable. Eckel’s design manages to partially isolate the two observing relationships  
 
 



M.P. Monteiro and J.M. Fernandes 246 

01 public class Bee { 
02  private String name; 
03  private OpenObserver openObsrv = new OpenObserver(); 
04  private CloseObserver closeObsrv = new CloseObserver(); 
05 
06  public Bee(String nm) { name = nm; } 
07  private class OpenObserver implements Observer { 
08   public void update(Observable ob, Object a) { 
09    System.out.println("Bee "+name +"'s breakfast time!"); 
10   } 
11  } 
12  private class CloseObserver implements Observer{ 
13   public void update(Observable ob, Object a) { 
14    System.out.println("Bee " + name + "'s bed time!"); 
15   } 
16  } 
17  public Observer openObserver() { 
18   return openObsrv; 
19  } 
20  public Observer closeObserver() { 
21   return closeObsrv; 
22  } 
23 } 

Fig. 1. Bee class as observer in the implementation of the observer pattern from [8] 

by defining, for each relationship, an inner class inside each participant. Thus, Flower 
defines two inner classes (Fig. 2, lines 25–37 and 38–50, respectively) that inherit 
from java.util.Observable. The classes within Flower use two inherited methods: 
(1) setChanged (used in lines 29 and 42), which marks a subject as having been 
changed, and (2) notifyObservers, which notifies all its observers if subject was 
changed. Though notifyObservers is overridden (lines 27–33 and 40–46), its function-
ality is reused (in lines 30 and 43). 

Each observer likewise encloses one inner class implementing java.util.Observer 
for each observing relationship (Fig. 1, lines 7–11 and 12–16, respectively). As pre-
scribed by the interface, each inner class defines an update method (lines 8–10 and 
13–15). All participants in the pattern betray strong doses of double personality. 

The example shows that OO does not cope well with concerns affecting multiple 
objects and classes, forcing programmers to produce decentralised designs for CCCs, 
when they would rather centralise the concern’s implementation within some module. 
Such designs lead to duplicated code in every class playing some role in the concern. 

OO programmers trying to cope with code scattering and tangling often resort to in-
terfaces and/or inner classes to ameliorate the effects. These constructs improve both 
the interface and internal structure of classes: interface types help to better organise 
the interactions of a class with other classes, and inner classes help to better structure 
the internals of a class, namely to separate the code related to the class’s primary  
concern from unrelated code. We believe the limitations in the compositions achiev-
able with OO provide one of the motivations to use inner classes and interfaces. Inde-
pendent authors reached the same conclusion regarding interfaces [35]. 

 
 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 247 

01 public class Flower { 
02  private boolean isOpen; 
03  private OpenNotifier oNotify = new OpenNotifier(); 
04  private CloseNotifier cNotify = new CloseNotifier(); 
05 
06  public Flower() { isOpen = false; } 
07  public void open() { // Opens its petals 
08   System.out.println("Flower open."); 
09   isOpen = true; 
10   oNotify.notifyObservers(); 
11   cNotify.open(); 
12  } 
13  public void close() { // Closes its petals 
14   System.out.println("Flower close."); 
15   isOpen = false; 
16   cNotify.notifyObservers(); 
17   oNotify.close(); 
18  } 
19  public Observable opening() { 
20  return oNotify; 
21  } 
22  public Observable closing() { 
23   return cNotify; 
24  } 
25  private class OpenNotifier extends Observable { 
26   private boolean alreadyOpen = false; 
27   public void notifyObservers() { 
28    if(isOpen && !alreadyOpen) { 
29     setChanged(); 
30     super.notifyObservers(); 
31     alreadyOpen = true; 
32    } 
33   } 
34   public void close() { 
35    alreadyOpen = false; 
36   } 
37  } 
38  private class CloseNotifier extends Observable { 
39   private boolean alreadyClosed = false; 
40   public void notifyObservers() { 
41    if(!isOpen && !alreadyClosed) { 
42     setChanged(); 
43     super.notifyObservers(); 
44     alreadyClosed = true; 
45    } 
46   } 
47   public void open() { 
48    alreadyClosed = false; 
49   } 
50  } 
51 } 

Fig. 2. Flower class as subject in the implementation of the observer pattern from [8] 

Figure 3 shows the participants from Figs. 1 and 2, after each of the two observing 
relationships was extracted to its own aspect, using the refactorings from Table 1. 
During the extraction of both observing relationships [29] the isOpen field (Fig. 3, line 
4) was encapsulated, yielding two new methods for the Flower class: isOpen  



M.P. Monteiro and J.M. Fernandes 248 

(lines 7–9) and setIsOpen (lines 10–12). The code for the reaction of the observers 
when they are notified of open and close events was likewise extracted to methods 
breakfastTime (lines 28–30) and bedtimeSleep (lines 31–33) respectively. 

 
 

01 public class Flower { 
02  private boolean _isOpen; 
03 
04  public Flower() { 
05  _isOpen = false; 
06  } 
07  boolean isOpen() { 
08   return _isOpen; 
09  } 
10  private void setIsOpen(boolean newValue) { 
11   _isOpen = newValue; 
12  } 
13  public void open() { // Opens its petals 
14   System.out.println("Flower open."); 
15   setIsOpen(true); 
16  } 
17  public void close() { // Closes its petals 
18   System.out.println("Flower close."); 
19   setIsOpen(false); 
20  } 
21 } 
22 public class Bee { 
23  private String name; 
24 
25  public Bee(String nm) { 
26   name = nm; 
27  } 
28  public void breakfastTime() { 
29   System.out.println("Bee " + name + "'s breakfast time!"); 
30  } 
31  public void bedtimeSleep() { 
32   System.out.println( "Bee " + name + "'s bed time!"); 
33  } 
34 } 

Fig. 3. Code of Flower and Bee after extracting the observing relationships to an aspect 

Figure 4 shows part of the aspect related to observing the open operation. The other 
aspect (not shown), related to the observation of close, is similar. We can see from 
Figs. 3 and 4 that the code for implementing the Observer pattern is no longer spread 
across the participant classes. However, the structure of the aspect resulting from the 
extraction still hardly resembles the one presented in [16], as ideally would be the 
case. The internal structure of the extracted aspect (Fig. 4) still reflects the original, 
decentralised design. The aspect betrays duplicated code ([10], p. 76), as it introduces 
identical fields (Fig. 4, lines 9 and 10–11) and methods (lines 16–18 and 19–21) to the 
two observer participants. The duplication was always present, but now that the code 
is modularised, it is clearly exposed. After modularisation, the original design is no 
longer justified and the inner classes comprise a needlessly complicated structure. The 
 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 249 

01 public aspect ObservingOpen { 
02  static class OpenNotifier extends Observable { 
03   //... 
04  } 
05  static class OpenObserver implements Observer { 
06   //... 
07  } 
08  private OpenNotifier Flower.oNotify = new OpenNotifier(this); 
09  private OpenObserver Bee.openObsrv = new OpenObserver(this); 
10  private OpenObserver 
11   Hummingbird.openObsrv = new OpenObserver(this); 
12 
13  public Observable Flower.opening() { 
14   return oNotify; 
15  } 
16  public Observer Bee.openObserver() { 
17   return openObsrv; 
18  } 
19  public Observer Hummingbird.openObserver() { 
20   return openObsrv; 
21  } 
22  pointcut flowerOpen(Flower flower): 
23   execution(void open()) && this(flower); 
24  after(Flower flower) returning : flowerOpen(flower) { 
25   flower.oNotify.notifyObservers(); 
26  } 
27  pointcut flowerClose(Flower flower): 
28   execution(void close()) && this(flower); 
29  after(Flower flower): flowerClose(flower) { 
30   flower.oNotify.close(); 
31  } 
32 } 

Fig. 4. Part of the extracted aspect ObservingOpen modularising observations of Flower’s open 
operation 

code also betrays aspect laziness. In this example, it is desirable to select the individ-
ual objects participating in the observing relationships and the moments when these 
become effective, but the present structure does not enable this. 

Hannemann and Kiczales mention four modularity properties [16] for their imple-
mentation of the Observer pattern: locality, reusability, composition transparency and 
(un)pluggability. Just after the extraction, the aspect (Fig. 4) has only the first and last 
of these properties. Figure 5 shows a refactored aspect whose structure is close to that 
presented in [16]. 

The static nature of intertype declarations can lead to the aspect laziness smell. At 
the very least, the extracted aspect will need a tidying up. In some cases, including the 
present one, it requires a complete redesign. Intertype declarations are one of the rea-
sons why the structure of aspects resulting from extraction processes is often unsuit-
able. Intertype declarations are usually transparent to client code (to our knowledge, 
only code using AspectJ’s “within” pointcut designator can be affected by extraction 
refactorings based on intertype declarations) and therefore make it simple to move 
members from classes to aspects. However, only the source code is modularised: the 
intertype members still belong to their respective target classes at the binary and run-
time levels. 



M.P. Monteiro and J.M. Fernandes 250 

public aspect ObservingOpen { 
 private interface Subject {} 
 private interface Observer {} 
 public abstract boolean Subject.isOpen(); 
 private boolean Subject.alreadyOpen = false; 
 public abstract void Observer.breakfastTime(); 
 
 private WeakHashMap subject2ObserversMap = new WeakHashMap(); 
 private List getObservers(Subject subject) { 
  List observers = (List)subject2ObserversMap.get(subject); 
  if(observers == null) { 
   observers = new ArrayList(); 
   subject2ObserversMap.put(subject, observers); 
  } 
  return observers; 
 } 
 public void addObserver(Subject subject, Observer observer){ 
  List observers = getObservers(subject); 
  if(!observers.contains(observer)) 
   observers.add(observer); 
  subject2ObserversMap.put(subject, observers); 
 } 
 public void removeObserver(Subject subject,Observer observer){ 
  getObservers(subject).remove(observer); 
 } 
 public void clearObservers(Subject subject) { 
  getObservers(subject).clear(); 
 } 
 private void notifyObservers(Subject subject) { 
  if(subject.isOpen() && !subject.alreadyOpen) { 
   subject.alreadyOpen = true; 
   List observers = getObservers(subject); 
   for(ListIterator it=observers.listIterator(); 
     it.hasNext();) { 
    ((Observer)it.next()).breakfastTime(); 
   } 
  } 
 } 
 pointcut flowerOpen(Subject subject): 
  execution(void open()) && this(subject); 
 after(Subject subject) returning : flowerOpen(subject) { 
  notifyObservers(subject); 
 } 
 pointcut flowerClose(Subject subject): 
  execution(void close()) && this(subject); 
 after(Subject subject): flowerClose(subject) { 
  subject.alreadyOpen = false; 
 } 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
} 

Fig. 5. Aspect ObservingOpen after being tidied up 

The transformations prescribed by tidy up internal aspect structure (Table 2 and 
Sect. 3.3) can transform the ObservingOpen aspect from Fig. 4 to the one shown in 
Fig. 5. In this example, we use the same implementation as in the reusable aspect for 
the Observer pattern [16], based on a weak hash map. The abstract declarations of 
methods isOpen and breakfastTime (Fig. 5) result from using extend marker interface 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 251 

with signature, which was needed to separate generically applicable code from case-
specific code. 

7   Related Work 

Deursen et al. [6] give a brief overview of the state of art in the area of aspect mining 
and refactoring. Though their main concern seems to be tools for the automatic detec-
tion of aspects, they also mention several open questions about refactoring to aspects, 
including “how can existing code smells be used to identify candidate aspects?” and 
“how can the introduction of aspects be described in terms of a catalogue of new 
refactorings?” In this paper, we contribute to answering both questions. 

Iwamoto and Zhao announced in [18] their intention to build a catalogue of AOP 
refactorings. They present a catalogue of 24 refactorings, but the information provided 
about them is limited to the names of the refactorings. The refactorings we describe in 
this paper and in [27] include a description of the situations where the refactoring 
applies, mention of preconditions, detailed mechanics and code examples. 

Several authors [15, 18, 24, 36, 38] call into attention the fragile pointcut problem 
(not always naming it this way), in some cases illustrating it with some code examples. 
The authors conclude that existing OO refactorings [10] cannot be applied to code 
bases with aspects. In [25], Laddad provides a few guidelines to ameliorate the prob-
lem, including suggestions on how to design and evolve pointcuts. Laddad prescribes 
several guidelines to ensure AOP refactorings for concern extraction are applied in a 
safe way. These involve the creation of a first version of the pointcut, based on a case-
by-case enumeration of the interesting joinpoints, followed by its replacement with a 
semantically more meaningful pointcut, based on wildcards. Laddad also proposes a 
mechanism based on AspectJ’s declare error mechanism to verify whether two differ-
ent pointcut expressions capture exactly the same set of joinpoints. In addition, 
Laddad recommends that aspects start being developed with a restricted scope, often 
affecting the methods of a single class, in order to make it simpler to test their impact 
on the base code. Only afterwards should the scope of the aspect widen, when its 
functionality is already tested with the restricted case. Considering that at present there 
is no adequate tool support for AOP refactorings, and that aspects can potentially 
impact a large number of joinpoints across an entire system, procedures such as these 
are essential to any refactoring process targeting nontrivial systems. 

Hanenberg et al. [15] propose aspect-aware refactorings – refactorings that take 
into account the presence of aspects and preserve behaviour by updating any pointcuts 
that may be affected by the transformation – and propose a set of enabling conditions 
to preserve the observable behaviour. By the author’s admission, these conditions 
must be automatically verified by an aspect-aware tool, as the manual verification is 
an exhausting task, even in small systems. Hanenberg et al. announce a tool providing 
a subset of the functionality they deem desirable. 

In [14] and [34] Griswold, Sullivan and other authors propose a novel approach 
based on information-hiding interfaces for CCCs. Their approach entails hiding the 
implementation details (i.e., joinpoints) of code base behind crosscut programming 
interfaces (XPIs) [14] against which aspects are written. The XPIs prevent direct 



M.P. Monteiro and J.M. Fernandes 252 

dependencies of aspects on the code bases they advise and enforce design rules [34] 
that constrain the base code developers to honour the contract expressed through 
XPIs. Thus, this approach promises to decouple base code from aspect code in a more 
symmetric way and to solve the fragile pointcut problem. In [34], the authors discuss  
a comparative study they undertook of three implementations of a real software sys-
tem, developed independently of the analysis. The authors refactored the system to 
both a version that conforms to the rules they propose and the more traditional  
nonsymmetric AOP approach that relies on obliviousness. The study suggests that the 
new approach brings benefits relative to the other two. To our knowledge, [14] is the 
first work attempting to provide clear rules on how to design base code for ease of 
advising. Though it is not expressed in terms of refactorings and code smells, the 
approach proposed in [14] and [34] contributes to developing a new style appropriate 
for AOP. 

Hanenberg et al. [15] propose three AOP refactorings – extract advice, extract in-
troduction and separate pointcut. Their extract advice corresponds to our extract 
fragment into advice (Table 1). Our collection of refactorings goes deeper in explor-
ing the refactoring space; in this paper and in [27] we provide more detail and tackle 
issues such as the tidying up of the internal structure of aspects resulting from extrac-
tion processes. We do not subscribe the recommendation, in their extract advice refac-
toring, to use “around” advice in the general case. We think that in cases where either 
“before” or “after” advice can be used, these should be used in preference to 
“around”, because it makes the scope of the advice easier to perceive at a first look at 
the code. In addition, the “around” advice is also more powerful than is often needed. 
In the case of code using it without a strict need for it, we envision refactorings such 
as change around advice to before and change around advice to after returning. 
Their proposed extract introduction refactoring corresponds to our move field from 
class to intertype and move method from class to intertype (Table 1) refactorings, 
which provide more detail. Separate pointcut relates to evolution of pointcuts and has 
no correspondence in our collection. This refactoring argues that, just as it is benefi-
cial to organise our systems using small methods with meaningful names, we should 
do the same with pointcuts. Hanenberg et al. do not elaborate on code smells, but we 
can infer from separate pointcut that anonymous pointcuts should be a code smell. 

In [25], Laddad presents a collection of refactorings [25] tailored to practitioners 
working in industry, particularly developers of J2EE applications. The refactorings 
vary widely in both level and scope of applicability, including generally applicable 
refactorings like extract interface implementation, extract method calls and replace 
override with advice, but also concern-specific refactorings such as extract concur-
rency control and extract contract enforcement. In addition, some refactorings belong 
to the category of “refactoring to patterns” as presented by Kerievsky [21] – extract 
worker object creation and replace argument trickle by wormhole. These two refac-
torings are based on two of the design patterns presented by Laddad in [26] – worker 
object creation ([26], p. 247) and wormhole ([26], p. 256) respectively. The extract 
exception handling refactoring as presented in [25] goes towards a variant implemen-
tation of the exception introduction pattern ([26], p. 260). 

Laddad’s refactorings and ours cover different areas of the AOP refactoring space, 
providing different and complementing contributions to filling that space. Some of 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 253 

Laddad’s refactorings are presented with only a mention of their name and a brief 
motivating paragraph. We believe the refactorings would benefit if presented in the 
same format as used by Fowler et al. [10] and Kerievsky [21], and which we use as 
well [27, 28]. A mechanics section would be particularly beneficial, having proved 
very useful as a checklist and to lead developers through the safest sequences of steps, 
in preference to riskier or less convenient ones. The important step-by-step guidelines 
proposed by Laddad for creating a new aspect and subsequently evolving it are in-
cluded in the code example illustrating the use of extract method calls, but not in 
several other refactorings to which they also apply (Laddad places some reminders). A 
mechanics section would make that part process clearer, and would clarify the rela-
tions between refactorings. In addition, several refactorings (namely the problem-
specific ones) can be decomposed into simpler, lower-level steps, always an important 
thing with refactoring. 

Laddad does not pinpoint the code smells that his refactorings are supposed to re-
move. We think that the material presented by Laddad has the potential to throw new 
light on existing OO code smells or to yield new ones. For instance, his extract 
method calls and replace argument trickle by wormhole refactorings respectively 
suggest the scattered method calls and argument trickle smells. Further research is 
required to discover latent smells and assess their feasibility and applicability. 

Tonella and Ceccato [35] base their work on the assumption that interfaces are of-
ten (not always) related to concerns other than the one pertaining to the system’s main 
decomposition. This is an interface implementation smell, though the authors do not 
name it this way. They provide specific guidelines for when an interface implementa-
tion is a symptom of a latent aspect and present a tool for mining and extracting as-
pects based on these criteria, and report on experimental results. These extractions are 
also covered by the refactorings we present in Table 1 and document in [27]. The 
authors also point out various issues that can arise in a typical extraction of an inter-
face implementation into an aspect. Our refactorings prescribe procedures to deal with 
all these issues. 

In [17], Hannemann et al. propose that refactoring support for AOP be divided into 
three categories: aspect-aware OO refactorings (the concept proposed by Hanenberg 
et al.), aspect-oriented refactorings (i.e., refactorings that specifically target AOP  
constructs, such as those presented in this paper) and refactorings of crosscutting 
concerns, i.e., refactorings in which the scattered elements comprising a target CCC 
and their individual transformations are considered together, instead of handling each 
element separately. The latter category can only be carried out with the support of a 
suitable tool. The focus of [17] is to present one such tool. Some of Laddad’s refactor-
ings [25], such as extract method calls, extract concurrency control and extract con-
tract enforcement, would be refactorings of CCCs if had some suitable tool support. 
Such refactorings tend to be concern-specific: these contrasts with ours, which aim to 
be applicable to multiple concerns, like those documented by Fowler et al. [10]. 

Like us, Hannemann et al. [17] use the Observer pattern ([11], p. 293) as a basis for 
an illustrating example. They provide the outline for a refactoring process comprising 
the extraction from a code base of a general implementation of Observer. The outline 
is much less detailed than the one we present in [29], which focuses on a specific Java 
implementation of Observer by Eckel. The outcome of their illustrating refactoring is 



M.P. Monteiro and J.M. Fernandes 254 

the AspectJ implementation [16] of Observer, which we also use in Sect. 6 and in 
[29]. Not surprisingly, there are similarities between some refactorings presented here 
and various refactorings that Hannemann et al. report using in their work: 

 Their add internal interface is subsumed by our generalise target type with 
marker interface (Table 2 and Sect. 4.2). 

 Their replace object method with aspect method is similar to our replace 
 intertype method with aspect method (Table 2 and Sect. 4.5). 

 Their replace method call with pointcut and advice corresponds to our extract 
fragment into advice (Table 1), the code fragment being a method call. 

 Their replace method with intertype method declaration and replace field with 
intertype field declaration corresponds to ours move method from class to 
intertype and move field from class to intertype (Table 1), respectively. 

In [3], Cole and Borba propose programming laws from which refactorings for As-
pectJ can be derived. The authors focus on the use of their laws to derive existing 
refactorings such as those proposed in [15, 18, 25], and describe two case studies in 
which the laws were tested, comprising the extraction of concurrency control and 
distribution, respectively. Many, though not all, of the laws relate to the extraction of 
CCCs to aspects, and therefore there is some overlap between the refactorings they 
derive and our own extraction refactorings (Sect. 3.2). However, their focus is on 
providing proofs that the transformations are behaviour-preserving, while we focus on 
covering new ground in the refactoring space. Nevertheless, the authors remark that 
extraction procedure for the second case study is generalisable, because its implemen-
tation of distribution is commonly used, and claim that it is possible to derive a con-
cern-specific extract distribution refactoring. No details are given, though. 

To our knowledge, no work besides ours deals with the potentially bad internal 
structure of aspects resulting from extraction processes. With the exception of the 
work by Tonella and Ceccato [35], we do not have knowledge of any other work cov-
ering the issue of AOP code smells. 

8   Future Work 

8.1   Maturing the Refactorings 

There is scope for maturing the refactorings presented here. It is important to test the 
refactorings with more case studies, particularly larger and more complex ones. More 
complex refactoring experiments may expose problems and situations that should be 
taken into account in the preconditions and mechanics sections. Refactoring experi-
ment targeting other languages should be performed to assess the validity of the refac-
torings beyond the Java/AspectJ space. 

8.2   Expanding the Refactoring Space 

Covering Other Language Characteristics. The refactorings we present here result 
from the two specific case studies, and do not use every available aspect construct, nor 
do they explore every possible combination. New research should cover the remaining 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 255 

aspect constructs, as well as the interactions between them and with existing Java 
constructs. We next mention two subjects. 

 Nonsingleton Aspect Association: Our work so far concentrated on singleton 
aspects. In future, we expect to cover other kinds of aspect association in 
order to obtain a clearer idea of the advantages and disadvantages of 
nonsingleton aspects, e.g., when should they be preferred and what 
refactorings should be used to transform singleton aspects. 

 Pointcuts: At present, refactorings and code smells specifically targeting 
pointcuts are still a largely unexplored area. AspectJ’s pointcut protocol 
comprises a rich language for quantification [9] and is likely to yield an 
equally rich pattern language for refactoring pointcut expressions, as well as 
their interaction with advice. Further research is needed on the adequate use 
of pointcut designators (e.g., pointcut smells), and how best to evolve 
pointcut expressions. 

Opposite Refactorings. We do not provide opposites for the presented refactorings, 
preferring to focus on extending the reach of the existing collection of refactorings. 
However, opposites are important to enable developers to backtrack, whenever they 
find out they took a wrong turn. In IDEs and refactoring tools, the opposite of a refac-
torings correspond to the “undo” of that refactoring. In addition, opposites are often 
useful in their own right (e.g., pull up vs. push down refactorings). 

Dealing with Published Interfaces. In this paper, we cover the restructuring of as-
pect code resulting from the extraction of CCCs, taking advantage of the newfound 
modularisation. It is also worth studying the impact of such extractions on the remain-
ing code base and what actions would be desirable (e.g., post-extraction refactorings). 

Restructuring the Remaining Base Code. In this paper, we cover the restructuring 
of aspect code resulting from the extraction of CCCs, taking advantage of the new-
found modularisation. It is also worth studying the impact of such extractions on the 
remaining code base and what actions would be desirable (e.g., post-extraction refac-
torings). The XPI concept proposed by Griswold et al. [14] and associated design 
rules proposed by Sullivan et al. [34] provide new opportunities to expand and evolve 
the current refactoring space for AOP. 

8.3   Other Code Smells 

We believe many AOP smells wait to be discovered. For instance, use of privileged 
aspects is a candidate: The rationale for avoiding them is the same as for avoiding the 
use of public data. As Colyer and Clement remark in [4], aspect privilege confers the 
general privilege to see any private state anywhere, while one often wishes to express 
privilege with respect to a single class or a restricted set of classes. Presently, this is 
not possible with AspectJ. Unfortunately, privileged aspect may be unavoidable in 
cases affecting multiple packages and in which the aspect needs access to nonpublic 
(e.g., protected and package-protected) data. Refactoring the affected code bases to 
expose the nonpublic data is one alternative. We need to study use cases of privileged 



M.P. Monteiro and J.M. Fernandes 256 

aspects to assess whether common patterns can be found, and pinpoint refactorings 
that tackle this issue. 

9   Summary 

In this paper, we argue that collections of refactorings and code smells can be an ef-
fective way to express notions of style for AOP source code. We propose AOP-
specific code smells, both for detecting CCCs in existing OO code and for improving 
the structure of extracted aspects – double personality, abstract classes and aspect 
laziness. We review existing OO code smells in the light of AOP. Divergent Change 
can be a sign of code tangling, and both shotgun surgery and solution sprawl can be 
signs of code scattering. 

Simply moving the members relating to a CCC does not yield a well-formed aspect. 
Extracted aspects expose problems caused by crosscutting, including duplicated code 
([10], p. 76). Aspect laziness relates to the static nature of intertype declarations. We 
can take advantage of the newfound modularity to tidy up the aspect’s internal 
structure with further refactorings. 

We present a collection of AOP refactorings, which can remove these smells from 
source code, comprising the following groups: 

 Ten refactorings to remove the smells related to CCCs from existing OO 
code. Besides covering common members such as fields and methods, these 
refactorings also deal with inner classes and interfaces. These refactorings 
are fully documented in [27]. 

 Six refactorings to remove problems found in extracted aspects, including 
duplicated code and aspect laziness. These refactorings are described in 
detail in this paper. 

 Eleven refactorings to deal with the generalisation of aspects, i.e., the 
extraction of common code to superaspects. These refactorings are fully 
documented in [27]. 

We discuss some of the many future directions in the hunt for new AOP refactorings 
and code smells, taking as a basis the contributions of this paper and related work. 

References 

[1] Beck K. Extreme programming explained: Embrace change. Addison-Wesley, Reading, 
MA, USA, 2000 

[2] Bracha G. and Cook W. Mixin-based inheritance. In: ECOOP/OOPSLA1990: Proceed-
ings of Conference on Object-Oriented Programming: Systems, Languages, and Applica-
tions and European Conference on Object-Oriented Programming, ACM, pp. 303–311, 
1990 

[3] Cole L. and Borba P. Deriving refactorings for AspectJ. In: AOSD 2005: Proceedings of 
the 4th International Conference on Aspect-Oriented Software Development, ACM, pp. 
123–134, 2005 



Towards a Catalogue of Refactorings and Code Smells for AspectJ 257 

[4] Colyer A. and Clement A. Large-scale AOSD for middleware. In: AOSD 2004: Proceed-
ings of the 3rd International Conference on Aspect-Oriented Software Development, 
ACM, pp. 56–65, 2004 

[5] Cooper J. Java design patterns: A tutorial. Addison-Wesley, Reading, MA, USA, 2000. 
Also availabe at www.patterndepot.com/put/8/DesignJava.PDF  

[6] Deursen A.v., Marin M., and Moonen L. Aspect mining and refactoring. In: REFACE03:  
Workshop on REFactoring: Achievements, Challenges, Effects, Waterloo, Canada, 2003 

[7] Dijkstra E. Go-to statement considered harmful, Communications of the ACM, 
11(3):147–148, 1968 

[8] Eckel B. Thinking in Patterns, revision 0.9. book in progress, 2003. Available at http:// 
www.pythoncriticalmass.com/downloads/TIPatterns-0.9.zip  

[9] Filman R.E. and Friedman D.P. Aspect-oriented programming is quantification and 
obliviousness. In: Workshop on Advanced Separation of Concerns at OOPSLA 2000, 
Minneapolis, 2000 

[10] Fowler M. et al. Refactoring – Improving the design of existing code, Addison-Wesley, 
Reading, MA, USA, 2000. 

[11] Gamma E., Helm R., Johnson R., Vlissides J. Design patterns. Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, Reading, MA, USA, 1995 

[12] Garcia A., Sant’Anna C., Figueiredo E., Kulesza U., Lucena C., and Staa A. Modulariz-
ing design patterns with aspects: A quantitative study. In: AOSD 2005: Proceedings of 
the 4th International Conference on Aspect-Oriented Software Development, ACM, pp. 
3–14, 2005 

[13] Griswold W.G. Program restructuring as an aid to software maintenance. PhD Thesis, 
University of Washington, USA, 1991 

[14] Griswold W.G., Sullivan K.J., Song Y., Cai Y., Shonle M., Tewari N., Rajan H. Modular 
software design with crosscutting interfaces. IEEE Software, Special Issue on Aspect-
Oriented Programming, pp. 51–60, 2006 

[15] Hanenberg S., Oberschulte C., Unland R. Refactoring of aspect-oriented software, 
net.objectdays 2003, Erfurt, Germany, 2003 

[16] Hannemann J. and Kiczales G. Design pattern implementation in Java and AspectJ. In: 
OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented 
Programming, Systems, Languages, and Applications, ACM, pp. 161–173, 2002 

[17] Hannemann J., Murphy G., and Kiczales G. Role-based refactoring of crosscutting con-
cerns. In: AOSD 2005: Proceedings of the 4th International Conference on Aspect-
Oriented Software Development, ACM, pp. 135–146, 2005 

[18] Iwamoto M. and Zhao J. Refactoring aspect-oriented programs. In: 4th AOSD Modelling 
With UML Workshop at UML’2003, San Francisco, USA, 2003 

[19] Jacobson I., Christerson M., Jonsson P., Övergaard G. Object-oriented software engineer-
ing: A use case driven approach, Addison-Wesley, Reading, MA, USA, 1992 

[20] Kang K.C., Cohen S.G., Hess J.A., Novak W.E., Peterson A. Feature-oriented domain 
analysis feasibility study, SEI, Technical Report CMU/SEI-90-TR-21, 1990 

[21] Kerievsky J. Refactoring to patterns. Addison-Wesley, Reading, MA, USA, 2004 
[22] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., and Griswold W.G. An over-

view of AspectJ. In: ECOOP 2001: Proceedings of the 15th European Conference on 
Object-Oriented Programming, LNCS vol. 2072, Springer, pp. 327–353, 2001 

[23] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J., and Irwin J. 
Aspect-oriented programming. In: ECOOP’97: Proceedings of the 11th European Con-
ference on Object-Oriented Programming, LNCS vol. 1241, Springer, pp. 220–242, 1997 



M.P. Monteiro and J.M. Fernandes 258 

[24] Koppen C. and Störzer M. PCDiff: Attacking the fragile pointcut problem. In: EIWAS 
2004: Interactive Workshop on Aspects in Software, Berlin, Germany, 2004 

[25] Laddad R. Aspect-oriented refactoring, parts 1 and 2. The Server Side, 2003. www. 
theserverside.com/ 

[26] Laddad R. AspectJ in action – practical aspect-oriented programming, Manning, Green-
wich, CT, USA, 2003 

[27] Monteiro M.P. Refactorings to evolve object-oriented systems with aspect-oriented con-
cepts. Ph.D. Thesis, Universidade do Minho, Portugal, 2005 

[28] Monteiro M.P. and Fernandes J.M. Object-to-aspect refactorings for feature extraction. 
In:  AOSD 2004: Industry Track Paper at the 3rd International Conference on Aspect-
Oriented Software Development, Lancaster, UK, 2004 

[29] Monteiro M.P. and Fernandes J.M. Refactoring a java code base to AspectJ – An 
illustrative example. In: ICSM 2005: Proceedings of the IEEE International Conference 
on Software Maintenance 2005, Budapest, Hungary, 2005 

[30] Monteiro M.P. and Fernandes J.M. Towards a catalogue of aspect-oriented refactorings. 
In: AOSD 2005: Proceedings of the 4th International Conference on Aspect-Oriented 
Software Development, ACM, pp. 111–122, 2005 

[31] Opdyke W.F. Refactoring object-oriented frameworks. Ph.D. Thesis, University of Illi-
nois at Urbana-Champaign, USA, 1992 

[32] Orleans D. Separating behavioral concerns with predicate dispatch, or, if statement con-
sidered harmful. In: Workshop on Advanced Separation of Concerns in Object-Oriented 
Systems at OOPSLA 2001, Tampa Bay, USA, 2001 

[33] Sabbah D. Aspects – From promise to reality. In: AOSD 2004: Proceedings of the 3rd In-
ternational Conference on Aspect-Oriented Software Development, ACM, pp. 1–2, 2004 

[34] Sullivan K.J., Griswold W.G., Song Y., Cai Y., Shonle M., Tewari N., and Rajan H. 
Information hiding interfaces for aspect-oriented design. In: ESEC/FSE 2005: Proceed-
ings of the Joint 10th European Software Engineering Conference and 13th ACM 
SIGSOFT Symposium on the Foundations of Software Engineering, ACM, pp. 166–175, 
2005 

[35] Tonella P. and Ceccato M. Migrating interface implementation to aspects. In: ICSM’04: 
Proceedings of 20th IEEE International Conference on Software Maintenance, IEEE 
Computer Society, Chicago, USA, pp. 220–229, 2004 

[36] Tourwé T., Brichau J., and Gybels K. On the existence of the AOSD-Evolution paradox. 
In: Workshop on Software-Engineering Properties of Languages for Aspect Technologies 
at AOSD 2003, Boston, USA, 2003 

[37] Wake W. Refactoring workbook, Addison-Wesley, Reading, MA, USA, 2004 
[38] Zhang C. and Jacobsen H.-A. Quantifying aspects in middleware platforms. In: AOSD 

2003: Proceedings of the 2nd International Conference on Aspect-Oriented Software 
Development, ACM, Boston, USA, pp. 130–139, 2003 

[39] Zhao J. Towards a metrics suite for aspect-oriented software. Technical-Report, SE-2002-
136-25, Information Processing Society of Japan (IPSJ), 2002 

 



Design and Implementation of an Aspect
Instantiation Mechanism

Kouhei Sakurai1, Hidehiko Masuhara2, Naoyasu Ubayashi3,
Saeko Matuura1, and Seiichi Komiya1

1 Shibaura Institute of Technology
sakurai@komiya.ise.shibaura-it.ac.jp,

matsuura@se.shibaura-it.ac.jp,

skomiya@sic.shibaura-it.ac.jp
2 University of Tokyo
masuhara@acm.org

3 Kyushu Institute of Technology
ubayashi@acm.org

Abstract. This paper describes the design and implementation of as-
sociation aspects, which are a linguistic mechanism for the AspectJ lan-
guage that concisely associates aspect instances to object groups by ex-
tending the per-object aspects in AspectJ. This mechanism allows an
aspect instance to be associated to a group of objects, and by providing
a new pointcut primitive to specify aspect instances as execution context
of advice. With association aspects, we can straightforwardly implement
crosscutting concerns that have stateful behavior related to a particular
group of objects. The new pointcut primitive can more flexibly specify
aspect instances when compared against previous implicit mechanisms.
We implemented a compiler for association aspects by modifying the
AspectJ compiler, which reduces the size of data structures for keeping
associations. Our benchmark tests confirm that the overheads of associ-
ation aspects are reasonably small when compared against functionally
equivalent aspects in pure AspectJ that manually manage associations.
The expressiveness of association aspects is demonstrated through de-
velopment of an integrated development environment with and without
association aspects.

1 Introduction

In aspect-oriented programming (AOP), an aspect is the unit of modular defi-
nitions of crosscutting concerns. Aspects may be provided as a different module
system from existing ones (e.g., in AspectJ [1]), or may be defined by using an
existing module system (e.g., in Hyper/J [2]). In both cases, an aspect serves
as the encapsulation of state and behavior, which are represented by instance
variables and advice declarations, respectively, in AspectJ-like languages.

AspectJ-like languages run an advice body in the context of an aspect in-
stance, in a similar sense that object-oriented languages run a method body in
the context of an object. A problem is how to determine an aspect instance as

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 259–292, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



260 K. Sakurai et al.

the context of an advice execution, since aspect instances are not usually obvious
during the program execution. AspectJ, for example, offers a few mechanisms1

to this problem:

– Singleton aspects create only one aspect instance for each aspect declaration.
This type of aspect is useful to implement concerns that have systemwide
behaviors.

– Per-object aspects associate a unique aspect instance for each object. When
an operation in terms of an object triggers an advice execution, the system
automatically looks up the aspect instance associated to the object, and
uses the instance as the execution context. This type of aspect is useful to
implement concerns that have a unique state for each object.

Those mechanisms are useful to certain kinds of crosscutting concerns, but Sul-
livan et al. pointed out that they do not straightforwardly support behavioral
relationships, which are the concerns that integrate the behaviors of collections
of objects by extending or modifying their respective behaviors [3]. With the
above mechanisms, such behavioral relationships are usually implemented by
creating a singleton aspect with a table for associating the states unique to ob-
ject groups. The resulting implementations have to have not only the code for
the core behavior but also the code for managing association in a single aspect
definition.

Subsequently, Rajan and Sullivan proposed instance-level advising by aspect
instances as a solution, as demonstrated in their AOP language Eos [4]. In Eos,
the programmer dynamically creates an aspect instance to represent behavioral
relationships. Each aspect can be associated to the objects in its representing
relation. When a method is called during program execution, the advice body is
executed in the context of each aspect instance that is associated to the target
of the call. As a result, the mechanism can cleanly implement such behavioral
relationships. However, the mechanism can still be improved with respect to the
following problems: (1) It is not flexible in the selection of aspect instances as
it always selects with respect to the target object, and (2) it requires additional
language constructs in order to distinguish associated objects of the compatible
types.

This paper proposes an alternative mechanism called association aspects,
which also allows us to associate an aspect instance to a group of objects.
The mechanism addresses the above-mentioned problems by providing a new
pointcut primitive that can more flexibly select aspect instances upon advice
execution, and can distinguish associated objects without introducing other lan-
guage constructs. The mechanism is implemented by modifying an AspectJ com-
piler(ajc [5]). Our benchmark tests showed that the association aspects can be
implemented with acceptable amounts of overhead in comparison to the single-
ton or per-object aspects that manually manage tables.

The rest of the paper is organized as follows. Section 2 presents an example of
behavioral relationships. Section 3 explains the design of association aspects, our
1 There are also mechanisms based on the control flow, but they are not directly

relevant to the topic of the paper.



Design and Implementation of an Aspect Instantiation Mechanism 261

proposed mechanism. Section 4 describes how association aspects are compiled
into native Java programs. Section 5 gives the result of our benchmark tests to
compare the efficiency of association aspects with respect to the programs in
pure AspectJ. Section 6 shows an application program written with association
aspects for comparing expressiveness against pure AspectJ. Section 7 compares
association aspects to similar approaches. Section 8 concludes the paper.

2 Motivating Example

This section presents an example system to motivate the need for association
aspects. Section 2.1 presents a system integration that becomes a crosscutting
concern in object-oriented programming, and starts with prerequisites and re-
quirements of the example system. Section 2.2 presents an object-oriented im-
plementation of the system integration using a design pattern. Section 2.3 then
shows that AspectJ implements the concern in an awkward manner. Section 2.4
analyzes the conditions when such problems happen. The problem presented in
this section was first pointed out by Sullivan et al. [3].

2.1 System Integration

Integration of independently developed systems often raises crosscutting con-
cerns; it often requires modifications on many descriptions of participating sys-
tems [3, 6, 7]. For example, assume that one builds an integrated development
environment (IDE) by integrating a text editor and a compiler [6, 7]. Without
AOP, descriptions for the integration concern have to appear in several places in
both subsystems; e.g., a “save” method not only writes to a file, but also needs
to invoke the compiler. We will revisit this example in Sect. 6.

For concreteness, we consider integration of Bit objects, which was originally
introduced by Sullivan et al. [3]. A Bit object has a Boolean instance variable
and methods for setting, clearing, and getting the value of the variable:

class Bit {
boolean value = false;
void set() { value = true; }
void clear() { value = false; }
boolean get() { return value; }

}

The integration concern is to synchronize the states of particular Bit pairs,
which are represented by relations. A relation consists of a type (either equality
or trigger) and a pair of Bit objects. The relations are created dynamically
during program execution.

Figure 1 shows three Bit objects (illustrated as ovals) connected by two equal-
ity relations (illustrated as diamonds). An equality relation propagates set and
get calls on the left-hand side to the right-hand side, and vice versa. Therefore,
when set is called on b2, the top equality relation calls set on b1, which in turn



262 K. Sakurai et al.

Equality

b1

Equality

b2

b3

Fig. 1. Integration of Bits

makes the bottom equality relation to call set on b3. Note that the relations
must not cause an infinite loop; i.e., the call on b1 by the top equality relation
should not be propagated back to b2.

We require the following properties for implementing the equality (and other)
relations for comprehensiveness, maintainability, and extensibility:

Nonintrusiveness. The implementation does not require modification of the
definition of Bit.

Variability. Not only equality, but also other kinds of relations are supported
simultaneously. For example, a trigger relation, which merely propagates
calls on the left-hand side to the right-hand side should also be used.

Simplicity. When the programmer uses relations, he/she need not consider the
implementation details of the relations.

2.2 A Solution in Java with Observer Pattern

Figure 2 shows an implementation of the Bit integration system in Java with
the Observer pattern. The Observer pattern is one of the Gang-of-Four (GoF)
design patterns [8] that define a dependency relationship between one to many
objects. When the monitored object changes its state, it notifies the depending
objects.

In order to implement the Bit integration system, we let Bit objects play the
Subject role and define Equality objects to represent describing equality rela-
tionships, and let Equality play the Observer role so that they can propagate
operations on Bit objects.

An Equality relation establishes an association by calling the attach method
on two Bit objects. Propagation of the set and clear operations are achieved by
inserting a call to the change method at the end of these methods. When the
change is called, it calls the update method of the Equality object associated
to the Bit object. The update method determines the opponent Bit object of
the relation, determines whether it should call set or clear method by sensing
the state of the changed object, and then calls the method on the opponent. The
instance variable busy of Equality is an algorithmic state for avoiding cyclic
calls of update on the same object.

With respect to the required properties presented in the last section, the
implementation is intrusive because we have to modify the Bit class. The mod-
ifications are not only at the end of each propagated operation, but also in the
inheritance hierarchy. This suggests that we cannot apply the implementation
to a class in the middle of an inheritance hierarchy. The implementation is also



Design and Implementation of an Aspect Instantiation Mechanism 263

interface Observer {

void update(Subject s);

}

class Subject {

List observers =

new LinkedList();

void attach(Observer o) {

observers.add(o);

}

void detach(Observer o) {

observers.remove(o);

}

void change() {

for (Iterator iter

= observers.iterator();

iter.hasNext();) {

Observer o

= (Observer) iter.next();

o.update(this);

} }

}

class Equality implements Observer {

Bit l, r;

boolean busy;

Equality(Bit l, Bit r) {

this.l = l; this.r = r;

l.attach(this); r.attach(this);

}

public void update(Subject s) {

Bit b = (s == l) ? r : l;

if (!busy) { //to avoid

busy = true; //infinite loop

if (((Bit) s).get())

b.set(); else b.clear();

busy = false;

}}

}

class Bit extends Subject {

boolean value = false;

void set() {value=true; change();}

void clear() {value=false; change();}

boolean get() {return value;}

}

Fig. 2. Bit integration system with observer pattern

less variable. When we introduce a different kind of relation that is to propagate
a different set of operations, the pattern forces every relation to receive notifi-
cations of all kinds of state changes, even if the changes are not relevant to a
specific relation.

2.3 A Solution in AspectJ

It is possible to define aspects in AspectJ that implement the above relations.
Figure 3 shows a possible definition of the equality relation in AspectJ.2 In
order to represent the state of each relation, the aspect defines an innerclass
called Relation, which has references to the related Bit objects and a busy
flag. The aspect adds a list of Relations to each Bit object, so that the advice
can find Relations from a Bit object.

Two advice declarations capture set and clear calls, respectively, to any Bit
object. The bodies of advice obtain a relations list from a target object. For
each Relation in the list, it checks the flag and invokes the same method when
the advice is not recursively executed for the same Relation.

The static method associate creates a relation. When the method is called
with two Bit objects, it creates a Relation object and registers it into each

2 The definition is written by the authors who follow the outline originally presented
by Sullivan et al. in [3].



264 K. Sakurai et al.

aspect Equality {

static class Relation {

Bit left, right;

boolean busy = false;

Bit getOpp(Bit b) {

return b==left? right:left;

} }

private List Bit.relations

= new LinkedList();

static void associate(

Bit left, Bit right) {

Relation r = new Relation();

r.left = left;

r.right = right;

left.relations.add(r);

right.relations.add(r);

}

after(Bit b): call(void Bit.set())

&& target(b) {

for (Iterator iter

= left.relations.iterator();

iter.hasNext(); ) {

Relation r

= (Relation) iter.next();

if (!r.busy) { //to avoid

r.busy = true; //infinite loop

r.getOpp(b).set();

r.busy = false;

} }

}

//advice for the clear

//method goes here

//...

}

Fig. 3. An implementation of Equality relation in AspectJ

of the relations lists in the given Bit objects. The integrated system of Bits
specified in Fig. 1 can be constructed by executing the following code fragment:

Bit b1 = new Bit(), b2 = new Bit(), b3 = new Bit();
Equality.associate(b1,b2); //connect b1 and b2
Equality.associate(b1,b3); //connect b1 and b3

2.4 Problems of AspectJ Solution

The AspectJ solution is better than the pure Java solution, but it still has
problems. Here, we analyze the AspectJ implementation with respect to the
required properties in Sect. 2.1:

Nonintrusiveness. The Equality aspect is not intrusive as its pointcut and
advice captures calls to Bit objects without modifying the class declaration
of Bit.

Variability. AspectJ allows the programmer to define relations other than
Equality without major interference. However, such a relation cannot share
the implementation with Equality as those different relations manage the
relations among objects in different ways.

Simplicity. The solution is not simple enough as it has to declare a separate
inner class for representing relations, and each advice body has to have an
iteration to find all the relevant relations. The latter point would be signifi-
cant when there are more advice declarations for more complicated relation-
ships. At the design level, an equality relation is an entity that encapsulates
the state (related objects and a busy flag) and the behavior (detection and
propagation of method calls). It would be straightforward if a relation is



Design and Implementation of an Aspect Instantiation Mechanism 265

modeled by an instance at the programming level. However, the AspectJ
solution models the relation as an aspect declaration (for the behavior) and
an instance of an inner class (for the state).

To summarize, aspect instantiation mechanisms in AspectJ are not sufficient
to straightforwardly implement concerns that affect a group of objects and have
stateful behavior. As it is a natural idea to encapsulate the state and behavior
in an aspect instance, a mechanism that enables us to create aspect instances
on a per-object-group basis is useful.

In other words, the singleton aspects in AspectJ are not suitable because they
can create no more than one instance. As a result, the implementation would
have to allocate the states in different objects, and manage a table to keep those
objects.

The per-object aspects in AspectJ, namely pertarget and perthis aspects,
are not suitable either. This is because only one per-object aspect instance is
allowed to exist for each object. In order to represent relations between objects,
more than one aspect instance exists for one object.

Although one may think standard protocols or APIs for managing relations
could solve problems of simplicity and variability, they actually help little for
achieving both. If we designed the protocols or APIs variable enough to support
various usages of relations, the resulting aspects would be no longer simple as
the protocols and APIs would require a number of descriptions such as iterators,
unsafe type casting, subclassing, and so forth.

We do not believe that this problem is unique to large-scale system integra-
tions. Rather, similar problems could be observed in smaller-scale systems. For
example, in the AspectJ implementation of the GoF design patterns [8] by Han-
nemann and Kiczales [9], 6 out of 23 patterns manage the relations and their
states by using tables.

3 Association Aspects

3.1 Overview

We propose an extension to the AspectJ’s aspect instantiation mechanism, called
association aspects, that allows the programmer to associate an aspect instance
to a tuple of objects. Association aspects are designed to straightforwardly model
crosscutting concerns like behavioral relations, which coordinate behavior among
a particular group of objects. Two basic functions support the association as-
pects: (1) a function to associate an aspect instance to tuples of objects, and (2)
a function to select aspect instances based on the association at advice execution.

Figure 4 shows the Bit integration example rewritten with the association
aspects. The perobjects modifier on the first line declares that its instance is
to be associated to a pair of Bit objects. The following statements builds the
integrated Bits in Fig. 1:



266 K. Sakurai et al.

aspect Equality perobjects(Bit, Bit) {

Bit left, right;

Equality(Bit l, Bit r) {

associate(l, r); //establishes association

left = l; right = r;

}

after(Bit l) :

call(void Bit.set()) && target(l) && associated(l,*){

propagateSet(right); //when left is called, call set on right

}

after(Bit r) :

call(void Bit.set()) && target(r) && associated(*,r){

propagateSet(left); //when right is called, call set on left

}

boolean busy = false; //indicates if the relation is active

void propagateSet(Bit opp) {

if (!busy) { //call set on opp

busy = true; //unless it already has propagated

opp.set();

busy = false;

} }

// advice decls. for clear method go here

}

Fig. 4. Equality relation with association aspects

Bit b1 = new Bit(), b2 = new Bit(), b3 = new Bit();
Equality a1 = new Equality(b1,b2);
Equality a2 = new Equality(b1,b3);

The new expressions create Equality aspect instances. The constructor of
Equality associates the created instance to the given Bit objects.

The associated pointcuts in the advice declarations specify what aspect
instances shall be used as the execution context of the advice bodies. The com-
bination of pointcuts target(l) && associated(l,*) selects aspect instances
that are associated to the current target object. The selected aspect instances
serve as execution context of advice; i.e., the body of advice runs with accesses
to the instance variables of the selected aspect instances. For example, when a
program evaluates b2.set(), aspect instance a1 is selected by the second ad-
vice, and executes the advice body. The advice checks busy flag in a1, and calls
set on left, which is bound to b1 in a1. We hereafter refer to the process that
selects aspect instances and runs advice body in the context of selected instances
as advice dispatching to aspect instances.

3.2 Properties of Association Aspects

Association aspects satisfy the three properties that are presented in Sect. 2.1.

Nonintrusiveness. Equality in Fig. 4 is as nonintrusive as the one in AspectJ.



Design and Implementation of an Aspect Instantiation Mechanism 267

Variability. By combining associated pointcuts with AspectJ’s abstraction
mechanism such as abstract aspect and pointcut overriding, association as-
pects are variable. As we will see in Sect. 3.4, associated pointcuts are
powerful enough to describe both symmetric and asymmetric relations. For
the Bit integration, it therefore is possible to define an aspect that has an
abstract pointcut and subaspects with concrete pointcuts to specify either
symmetric or asymmetric relation.

Simplicity. Equality in Fig. 4 is simpler than the one in Fig. 3 because associ-
ation aspects hide the implementation details of relations, which are explicit
in Fig. 3 (e.g., the field Bit.relations and the use of iterator in the after
advice). Moreover, composition of associated pointcuts with free variables,
which will be explained in Sect. 3.4, avoids the duplication of advice decla-
rations.

The following sections explain the association and advice dispatching mecha-
nisms in greater detail.

3.3 Creating and Associating Aspect Instances

Association aspects are declared with perobjects modifiers. They are defined
by the following syntax:

aspect A perobjects(T,. . .) { mdecl . . . }

where A is the name of the aspect, T is the type of objects to be associated,
and mdecl is the member declaration including constructor, method, variable,
advice, etc.

An association aspect can be instantiated by executing a new A(. . . ) ex-
pression in a similar manner to object instantiation. Creation of a new aspect
instance also invokes a constructor for initialization. A newly created aspect
instance is not associated to any objects.

The perobjects(T1,T2,. . .,Tn) modifier automatically defines an
associate method in A. It takes n objects of type T1, . . . , Tn, and asso-
ciates the aspect instance to the given objects o1, . . . , on. The modifier also
defines a void A.delete() method, which revokes association.

In contrast to per-object aspects in AspectJ, creation and association of as-
sociation aspects are explicit. This is due to the typical usage of association
aspects, in which they represent explicit artifacts such as the Equality relations
in the Bit integration example. When association aspects are required for ob-
jects in certain joinpoints, it is possible to make those operations nonintrusive
by defining advice, as we will see in Sect. 3.5.

3.4 Dispatching to Aspect Instances

Semantically, dispatching advice to aspect instances is realized by trying to exe-
cute the same advice in the context of all aspect instances, and only the instances
that satisfy the pointcut actually run the body. In order to select associated as-
pect instances, we provide the associated pointcut primitive.



268 K. Sakurai et al.

(1) b2.set()

a1

b1

a2

b2

b3

target(r) &&
associated(*,r) = true

target(r)&&
associated(*,r) = false

(2) a1 runs advice

(3) left.set()

a2 does not run

Fig. 5. Advice dispatching to associated aspects

Figure 5 illustrates the semantics in terms of the example presented at the
beginning of the section. The evaluation of b2.set() creates a call joinpoint (1).
We focus here on the execution of the second advice declaration. Each aspect
instance tests the pointcut. Since the pointcut is satisfied only when an aspect
instance is associated to b2 as the second parameter, a1 is the only aspect
instance to run the advice (2). The advice body propagates the call by accessing
the left instance variable stored in the execution context, a1 (3).

Aspect instances are ordered in undetermined order to test and execute an
advice declaration. For around advice, the following four steps are executed.
First, an aspect instance is randomly selected from all aspect instances. Second,
the selected aspect instance tests and executes the advice declaration. Third,
when the aspect instance executes a proceed form, or the aspect instance does
not match the advice declaration, a next aspect instance is selected and repeats
from the second step. When the aspect instance does not execute a proceed
form, it continues the execution without running the joinpoint. Fourth, when
there are no more aspect instances at the first step or the last part of the third
step, it continues the joinpoint.

An associated pointcut determines how an aspect instance is associated
to objects. In an aspect declared with perobjects(T1,. . .,Tn), the pointcut is
written as associated(v1,...,vn), where vi is either

– a variable that is bound by another pointcut (e.g., by target(vi))
– an asterisk (*) as a wild card, or a free variable

An additional restriction is that an associated pointcut has at least one bound
variable in its parameter.

The pointcut associated(v1,...,vn) is evaluated to true for an aspect in-
stance that is associated to 〈o1, . . . , on〉, if, for any 1 ≤ i ≤ n, vi is either an
asterisk or a free variable, or a variable bound to oi. The asterisks and free
variables allow more than one aspect instance to match the same joinpoint.



Design and Implementation of an Aspect Instantiation Mechanism 269

Note that the pointcut distinguishes parameter positions. This is useful to
define directed relations that capture different events on the different sides of
the relations.

Binding to Associated Objects. The associated pointcut can bind vari-
ables to associated objects when free variables are written instead of wild cards.
For example, the following declaration, which is slightly modified from the first
advice declaration in Fig. 4, has a free variable r instead of the wild card:

after(Bit l, Bit r) : call(void Bit.set())
&& target(l) && associated(l,r) {
propagateSet(r);

}

The modified advice has the same behavior as the original one except that it
binds r to each associated object at the second parameter position when it
executes the body.

The binding feature can give shorter definitions to symmetric association
aspects, which equally treat their associated objects. For example, the following
single advice declaration can be substituted for the first two advice declarations
in Fig. 4:

after(Bit b,Bit o): call(void Bit.set()) && target(b)
&& (associated(b,o) || associated(o,b)) {
propagateSet(o);

}

This is because the combination of associated pointcuts by an disjunctive oper-
ator identify aspect instances that are associated to the target object regardless
of parameter position, and then the binding feature binds o to the associated
object that is not the target.

3.5 Static Advice

Association aspects can declare static advice, which provides similar semantics
to the advice declarations in singleton aspects. When an advice declaration has
a static modifier, pointcut matching and execution is performed exactly once,
regardless of the number of existing aspect instances. Obviously, a static ad-
vice declaration may not use an associated pointcut. The execution context of
static advice is the aspect-class; the advice body can only access static (or class)
variables.

The static advice declarations are typically useful for bootstrapping. In order
to create a new aspect instance by using the advice mechanism, a static advice
declaration should be used because there are no aspect instances at the begin-
ning. For example, the advice in the following code creates an Equality instance
when callSomeMethod() happens:



270 K. Sakurai et al.

aspect Equality perobjects(Bit, Bit) {
static after(Bit l, Bit r) : callSomeMethod() && args(l,r) {
new Equality(l,r); //creates an aspect instance

}
...

}

3.6 Idioms to Find Aspect Instances

It is sometimes necessary to check if there is any aspect instance associated to
a particular tuple of objects, or to do something on all aspect instances associ-
ated to a particular object (e.g., deleting all aspect instances associated to an
object). Those operations can be realized by means of advice declarations with
associated pointcuts. We therefore do not provide specific primitives for such
purposes.

An example is to prevent creating no more than one Equality aspect instance
for the same pair of objects. The next advice does the job:

aspect Equality perobjects(Bit,Bit) {
...
Equality around(Bit l, Bit r) :

call(Equality.new(Bit,Bit)) && args(l,r)
&& (associated(l,r) || associated(r,l)) {

return this;
} }

When a program executes new Equality(b,b′) and there is an aspect instance
a associated to 〈b, b′〉 or 〈b′, b〉, the above advice returns a instead of creating a
new one. When there is no such an aspect instance, a new Equality instance
will be created because the advice does not run at all.

Enumerating all aspect instances associated to a particular object can be
realized by an empty static method with an advice declaration. For example,
execution of Equality.showAll(b) in Fig. 6 displays all aspect instances that
are associated to b.

aspect Equality perobjects(Bit,Bit) {

...

static void showAll(Bit b) { } // empty body

after(Bit b) :

call(void Equality.showAll(Bit)) && args(Bit b)

&& (associated(b,*) || associated(*,b)) {

System.out.println(this); //this is bound to

} } //associated instance

Fig. 6. An idiom to enumerate aspect instances



Design and Implementation of an Aspect Instantiation Mechanism 271

4 Implementation

The mechanisms for association aspects are implemented3 by modifying the
AspectJ compiler (ajc) version 1.2.0. Similar to the original compiler, it takes
class and aspect declarations as inputs, and generates Java bytecode as compiled
code. We first review how the original AspectJ compiler generates compiled code.
We then show how the extended compiler generates code for association aspects.
For readability, we present compiled code at the Java source-code level.

4.1 Compilation of Regular AspectJ Programs

The AspectJ compiler translates an aspect declaration into a class, and an ad-
vice body into a method of the class, respectively [10]. Advice is executed by the
inserted method calls into locations where the pointcut of the advice statically
matches. Dynamic conditions in the pointcut (e.g., cflow and if) are trans-
lated into conditional statements inserted at the beginning of translated advice.
Masuhara et al. gave a semantic model of the translation by using partial eval-
uation of an interpreter [11].

Consider the following (nonassociation) aspect definition, which counts invo-
cations of a method on a per-target-object basis:

aspect Counter pertarget(callSet()) {
pointcut callSet() : call(void Bit.set());
int count = 0;
after() returning() : callSet() {

count++;
} }

Compilation of Counter aspect with Bit class yields the code shown in Fig. 7.4

A statement b.set(); where b is of type Bit is translated into the following
statements:

b._bind(); //create&associate if not yet
b.set();
b._aspect._abody0();//advice dispatching

The Counter aspect is translated into a class. The variable count becomes
an instance variable, and the after advice becomes a method. The Bit class has
an instance variable aspect, which keeps an aspect instance (i.e., a Counter
object) associated to the Bit object. The bind method creates an associated
Counter instance for a Bit object if it is not yet created.

The translated call to set method is surrounded by a call to bind and a
call to run the advice body. The latter call is realized by invoking an instance
3 The implementation is available at http://www.komiya.ise.shibaura-it.ac.

jp/~sakurai/.
4 Note that the code is drastically simplified from what the actual compiler generates.

For readability, we inlined method calls and renamed compiler-generated methods
and fields, and removed unimportant access modifiers.



272 K. Sakurai et al.

class Bit { //translated

Counter _aspect; //associated aspect instance

boolean value; //original instance variable

public synchronized void _bind() {

if (_aspect == null) _aspect = new Counter();

}

//definitions of set, clear and get methods

//...

}

class Counter { //translated

int count = 0; //instance variable

public final void _abody0() {//body of the after

count++; //advice

} }

Fig. 7. Code compiled by AspectJ

method of Counter class. As a result, the body of the advice is executed in the
context of an associated aspect instance.

4.2 Overview of Compilation of Association Aspects

Compilation of Bit Integration Example. Association aspects are compiled
into Java classes in a similar manner to other aspects, except for association and
advice dispatching. We first show how the Bit class and the Equality aspect in
Fig. 4 are compiled.

The translated Bit class5 has a field aspects1 to keep a map from Bit
to Equality, and a field aspects2 to keep a list of Equality. The fields are
of different types because of optimizations reasons, which will be explained in
Sect. 4.3.

class Bit {// translated
Map<Bit, Equality> _aspects1 = new HashMap();
List<Equality> _aspects2 = new ArrayList();
...

}

These two collections are used for processing pointcuts associated(b,*) and
associated(*,b), respectively. They preserve the following invariants: when
an aspect instance a associated to 〈b1, b2〉, b1. aspects1.get(b2) = a and
b2. aspects2.contains(a) = true.

Note that those fields are not symmetric even though the Equality aspect
definition treats the first and second Bit objects equally. This is because our
compiler minimizes the collection types to reduce memory overheads. The de-
tailed compilation strategy is described in the next section.
5 We use Java 1.5 notation for collection types. Map<T1, T2> denotes the type of map

objects from T1 to T2. List<T> denotes the type of lists of T . The syntax for(T v
: e) s is a shorthand for looping s for each v of type T in iterator e.



Design and Implementation of an Aspect Instantiation Mechanism 273

b1
key value_aspects1

a2

a1

b3

b2 _aspects2

_aspects2

Fig. 8. Implementation of association with maps

Figure 8 shows how the implementation represents the associations of the
integrated Bits in Fig. 1.

Advice dispatching is translated into a loop over all key-value pairs in a map
or into a loop over a list. A statement b.set(); is translated into the following
code for dispatching the two advice declarations:

b.set(); //original call
for(Bit v: b._aspects1.keys()) { //for the first

Equality a=b._aspects1.get(v); //after-advice
a._abody0(b);

}
for(Equality a: b._aspects2) { //for the second

a._abody1(b); //after-advice
}

The two for-loops correspond to the two advice declarations. Since the first
advice has the associated(l,*) pointcut, where l is the target of the call, it
processes all the aspect instances a in the aspects1 map of the target object,
and runs the body of the advice by invoking the instance method of a. The code
for the second advice corresponds to the associated(*,r) pointcut, where r is
the target of the call and processes all the aspect instances a in the aspects2
list of the target object, and runs the body of the advice by invoking the instance
method of a.

When all parameters to the associated pointcut are bound, advice dispatch-
ing is translated into simple lookup in the map. For example, the parameters to
the associated pointcut in the following advice are both bound by args:

after(Bit l, Bit r) : call(Equality.new(Bit,Bit))
&& args(l,r) && associated(l,r) {

System.out.println("duplicated!");
}

Then the translation of an expression new Equality(b1,b2) yields the next
statements subsequent to the original expression:

Equality a = b1._aspects1.get(b2); //for the third
if (a != null) a._abody2(b1,b2); //after advice



274 K. Sakurai et al.

4.3 Compilation Process

The general compilation process is slightly more complicated because we allow
aspects to be associated with arbitrary numbers of (i.e., even more than two)
objects, and to use wild cards at any parameter positions in associated pointcuts.
Note that free variables are regarded as wild cards.

The compilation takes place in the following steps:

1. For each aspect declaration with a perobjects modifier, it enumerates a set
of parameter combinations that serve as keys for dispatching advice execu-
tion.

2. It computes a set of sequences of parameter indices. Each sequence represents
a type of data structure that records associations for specific associated
pointcuts.

3. Based on the set of sequences, it installs fields into the associated types for
recording associations, and generates methods for registering associations.

4. Finally, for each joinpoint shadow that matches an associated pointcut, it
inserts a code fragment for dispatching advice.

Below, we assume aspect A is declared with perobjects(T1, T2, · · · , Tn) and
advice declarations with associated pointcuts. We write the ith occurrence of
associated pointcut as pi = associated(vi1, vi2, . . . , vin), where vij is either
a bound variable or a wild card. Free variables are regarded as wild cards.

We define a parameter combination of an associated pointcut as a set of
indices of bound variables in the pointcut. The parameter combination of pi is
written as τi. When pi = associated(v1, v2, *), τi = {1, 2}.

For each associated pointcut, the compiler uses a sequence of indices σi

to determine the type of the data structure for recording associations, and to
generate a code fragment to dispatch advice execution. We write |σi| as the
length of the sequence, and σi(j) as the jth index in σi for 1 ≤ j ≤ |σi|. The
sequence σi contains all indices in τi at the first |τi| positions; i.e., ∀k ∈ τi, ∃j
such that j ≤ |τi| and σi(j) = k.

Given a sequence σi, we use a map of type Tσi(1) → Tσi(2) → · · · →
Tσi(|σi|) → A for recording associations. When objects o1, o2, . . . , o|σi| of type
Tσi(1), Tσi(2), . . . , Tσi(|σi|) are given, the dispatching procedure is to apply o1,
o2, . . . , o|σi| to the map, in order to obtain a reference to the associated aspect
instance. Usually, there are several possibilities to choose a set of σis for the
given aspect. We will discuss this issue after presenting how associations are
managed based on τis.

Managing Associations. In order to maintain an association between objects
and an aspect instance, the compiler actually installs fields into type declara-
tions of associated objects, and generates an associated method in the aspect
declaration by following the rules in Fig. 9.

Given a sequence of indices σi for pointcut pi, the compiler first installs a field
aspectsi of type Ui1(defined in Fig. 9) into class Tσi(1). The associate method,
shown in Fig. 9, consists of the statements installi, which installs an aspect



Design and Implementation of an Aspect Instantiation Mechanism 275

Uij =

Map<Tσi(j+1), Uij+1> j < |σi|
A j = |σi| = n

List<A> j = |σi| < n

void associate(T1 v1,T2 v2,. . .,Tn vn) {

install1
install2
...

}

installi =

Ui1mi1 = vσi(1)._aspectsi;

Ui2mi2 = getOrCreatei2(mi1,vσi(2));

Ui3mi3 = getOrCreatei3(mi2,vσi(3));

. . .

Ui|σi|−1mi|σi|−1 = getOrCreatei|σi|−1(mi|σi|−2,vσi(|σi|−1));

addaspect;

addaspect =

mi|σi|−1.put(vσi(n), this) |σi| = n

Ui|σi| mi|σi|= getOrCreatei|σi|(mi|σi|−1,vσi(|σi|));

mi|σi|.add(this)
|σi| < n

vσi(1)._aspectsi= this |σi| = 1

Fig. 9. Rules for generating associate method

aspect A perobjects(T1, T2, T3) {

before(T2 v2, T3 v3): call(* *.*(..))

&& args(v2, v3) && associated(*, v2, v3) { ... }

before(T1 v1, T2 v2, T3 v3): call(* *.*(..))

&& args(v1, v2, v3) && associated(v1, v2, v3) { ... }

}

Fig. 10. An example aspect definition

instance into a sequence of maps for each σi. Therefore, the compiler adds the
statements of Fig. 9 for each σi in the associate method.

getOrCreateij(m, v) in the installi statements in Fig. 9 returns a value of
type Uij for key v in Map m if it is registered. If not, it creates an empty map of
type Uij , registers it in m with key v, and returns the created object. The last
line of the installi registers the aspect instance depending on the length of σi.

For example, assume we have an aspect definition shown in Fig. 10 and
the compiler uses sequences of indices σ1 = 〈2, 3〉 and σ2 = 〈1, 2, 3〉 for the
first and second associated pointcuts, respectively. It inserts field declara-
tions aspects1 of type Map<T3,List<A>> into type T2 and aspects2 of type
Map<T2, Map<T3,A>> into type T1. It then generates the associate method in
Fig. 11 into A.



276 K. Sakurai et al.

void associate(T1 v1, T2 v2, T3 v3) {

Map<T3, List<A>> m1_1 = v2._aspects1;

List<A> m1_2 = getOrCreate1_2(m1_1, v3);

m1_2.add(this);

Map<T2, Map<T3, A>> m2_1 = v1._aspects2;

Map<T3, A> m2_2 = getOrCreate2_2(m2_1, v2);

m2_2.put(v3, this);

}

Fig. 11. associate method generated for Fig. 10

static void dispatch( Tσi(1) v1, Tσi(2) v2,...,Tσi(l) vl) {

if(!〈parameterless dynamic conditions〉) return;

Ui1 mi1=v1. aspectsi; if(mi1==null)return;

Ui2 mi2=mi1.get(v2); if(mi2==null)return;

...

Uil−1 mil−1=mil−2.get(vl−1); if(mil−1==null)return;

Uil mil=mil−1.get(vl); if(mil==null)return;

for (Uil+1 mil+1 : mil.values()) {

for (Uil+2 mil+2 : mil+1.values()) {

...

for (Ui|σi| mi|σi| : mi|σi|−1.values()) {

invokebody
}

...

} } }

invokebody =
for(A a :mi|σi|) a._abody(v1,..., vl); |σi| < n

mi|σi|._abody(v1,..., vl); |σi| = n

Fig. 12. Rules for generating dispatching method for pointcut pi

Dispatching Advice Execution. The compiler realizes advice dispatching by
inserting a call to a method that dispatches advice execution at each joinpoint
shadow that statically matches the pointcut. The dispatching method receives
l parameters from the context (i.e., the joinpoint),6 finds all aspect instances
associated to those parameters, and calls method abody on each aspect instance.
The abody is the method translated from the advice body, which first checks
conditions due to dynamic pointcuts (e.g., if and type tests), followed by the
body of the advice.

For brevity, we here explain the cases for before and after advice declarations.
The case for around advice is explained in the Appendix.

The rules for generating the dispatching method, which is shown in Fig. 12,
depend on the parameter sequence σi. Due to the sharing of parameter sequences

6 Actually, thisJoinPoint and other arguments used in pointcuts other than
associated should be passed to the advice body.



Design and Implementation of an Aspect Instantiation Mechanism 277

aspect A perobjects(T1, T2, T3, T4) {

before(T1 v1, T2 v2): call(void m1(T1, T2))

&& args(v1,v2) && associated(v1,v2,*, *) {

System.err.println("m1 with " + v1 + "," + v2);

}

}

Fig. 13. An example aspect definition

static void _dispatch1(T1 v1, T2 v2) {

Map<T2, Map<T3, List<A>>> m1 = v1._aspects1; if(m1==null) return;

Map<T3, List<A>> m2 = m1.get(v2); if(m2==null) return;

for (List<A> m3: m2.values()) {

for (A a : m3)

a._abody(v1, v2);

}

}

Fig. 14. Dispatching method generated for Fig. 13

S ← {}
while P �= {}

τmin ← min|τ |{τ |τ ∈ P}
P ← P\{τmin}
σmax ← max|σ|{σ|σ ∈ S ∪ {〈〉}, τmin contains σ}
S ← S\{σmax} ∪ {append(σmax, τmin)}

end

Fig. 15. Algorithm to compute a set of parameter sequence S for sharing maps

among pointcuts (which will be explained later), σi can be longer than the num-
ber of parameters available at the joinpoint. The dispatching method therefore
consists of two parts: the first half looks up the maps by using the parameters,
and the latter half iterates over all the elements in the maps. For example, with
the aspect declaration in Fig. 13, the rules in Fig. 12 generate the dispatch1
method in Fig. 14.

Sharing Maps. The compiler minimizes the number of map types that record
associations by sharing maps among different associated pointcuts. This avoids
the inefficiency of using redundant data structures when associated pointcuts
use different parameters for dispatching advice.

Normally, an advice declaration can reuse a map object if its parameter se-
quence appears in the head of a parameter sequence of another advice declara-
tion. Take the example in Fig. 10 again. When the compiler uses the sequences
σ1 = 〈2, 3〉 and σ2 = 〈1, 2, 3〉 for the two pointcuts, we have to have two maps.
When σ1 = 〈2, 3〉 and σ2 = 〈2, 3, 1〉, a field in T1 of type Map<T3, Map<T1,A>>
is sufficient for dispatching those two advice declarations.

In order to share maps among pointcuts, the compiler computes a set of
sequences S that cover all parameter combinations P in an aspect declaration
by applying the algorithm in Fig. 15.



278 K. Sakurai et al.

In the algorithm, τ contains σ if ∀k ∈ {σ(1), . . . , σ(|σ|)}. k ∈ τ , and
append(σ, τ) = σ′ is a shortest sequence that has the same first |σ| elements to σ,
and has all the elements in τ ; i.e., ∀j ∈ {1, . . . , |σ|}.σ(j) = σ′(j) and ∀k ∈ τ. ∃j ∈
{1, . . . , |τ |}. σ′(j) = k. When P = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},
one of the solutions of the algorithm is S = {〈3, 1〉, 〈2, 3〉, 〈1, 2, 3〉}. After com-
puting the set of sequences S, σi for τi is selected as the shortest sequence in S
whose first |τi| elements have all elements in τi.

5 Performance Evaluation

We carried out microbenchmark tests for comparing run-time efficiency between
(1) programs with association aspects, (2) programs with singleton aspects that
manually manage associated states, and (3) programs with per-object aspects in
AspectJ.

All benchmark tests were executed by Java HotSpot Client VM version 1.4.2,
running on a PowerPC G4 1.25-GHz MacOS X 10.4 machine with 512-MB mem-
ory. Each execution time was measured by averaging the execution time, which
is obtained through currentTimeMillis, of a loop that runs more than one
second.

5.1 Performance of Basic Operations

We measured the costs of the basic operations, namely object creation, aspect in-
stantiation and association, and method invocation with before advice execution.
They are measured by executing programs with aspect declarations associated
to n objects. The programs perform each of the following operations:

1. OBJ: create objects that can be associated to aspect instances
2. ASSOC: create an aspect instance and associate it to the n objects, and
3. BEFORE: invoke the empty method on an object

In the aspect declarations, there are advice declarations that use the
associated pointcut with 1 to n bound variables:

aspect Test perobjects(C,. . .,C) {
int x1, x2, x3, x4, x5;
Test(C o1,. . .,C on) {

associate(o1,. . .,on);
}
before(C o1, . . .,C on): callEmptyMethod()

&& args(o1,. . .,on) && associated(p1,. . .,pn) {
x1++; x2++; x3++; x4++; x5++;

} }

where pi is either oi or *.



Design and Implementation of an Aspect Instantiation Mechanism 279

We compare the following three aspect implementations:

AA: that uses association aspects (shown above).
SNG: that uses singleton aspects in AspectJ with inner-class objects stored in

collections for associated states (see below).
PO: that uses per-object aspect in AspectJ (namely pertarget). This is used

only for n = 1.

SNG uses the same collection structures to those in the AA. For example, the
SNG aspect declaration for n = 2 with one bound variable looks as in Fig. 16.

aspect Test {

static class Relation {

int x1, x2, x3, x4, x5;

C o1; C o2;

}

HashMap C.relations;

static void associate(C o1, C o2) {

Relation r = new Relation();

r.o1 = o1; r.o2 = o2;

HashMap m1 = o1.relations;

if (m1 == null) {

m1 = new HashMap();

o1.relations = m1;

}

m1.put(o2, r);

}

before(C o1): callEmptyMethod() && args(o1, *) {

if (o1.relations == null) return;

for (Iterator i = o1.relations.values().iterator();

i.hasNext(); ) {

Relation r = (Relation) i.next();

r.x1++; r.x2++; r.x3++; r.x4++; r.x5++;

} } }

Fig. 16. Declaration of an SNG aspect

Table 1 shows the execution times of those basic three operations for different
n and different variations of associated pointcuts. The column p shows the
parameters of the associated pointcuts. Since our current implementation uses
the same set of map structures, OBJ denotes the time for generating one object.
OBJ and ASSOC give the same figures for the same n. The rightmost column
shows the relative execution times of AA with respect to SNG. We omit the
cases for (*,*,o3) and (*,o2,o3) because they are identical to the cases for
(*,o2,*) and (o1,*,o3), respectively.

As we can see, AA poses at most 19% overheads compared to the man-
ual implementation, SNG, except for the aspects associated to one object (i.e.,



280 K. Sakurai et al.

Table 1. Execution times (in μs) of basic operations

n P AA SNG PO AA/SNG

OBJ 1 0.068 0.068 0.068 0.994
2 0.133 0.140 0.946
3 0.264 0.267 0.988

ASSOC 1 0.135 0.113 0.163 1.194
2 1.762 1.719 1.025
3 5.454 5.404 1.009

BEFORE 1 (o1) 0.050 0.032 0.072 1.566
2 (o1, *) 0.382 0.379 1.009

( *,o2) 0.326 0.322 1.012
(o1,o2) 0.139 0.117 1.191

3 (o1, *, *) 0.743 0.721 1.031
( *,o2, *) 0.683 0.667 1.023
(o1,o2, *) 0.476 0.464 1.025
(o1, *,o3) 0.416 0.404 1.030
(o1,o2,o3) 0.229 0.201 1.135

P =(o1)).7 Those numbers are reasonable as the compiled code for AA basically
does the same operations as SNG does, yet in much more concise descriptions.

5.2 Performance of Bit Integration

We also compared the performance by running the Bit integration example in
AA and SNG implementations (as shown in Figs. 3 and 4, respectively). The
benchmark programs first create 100 Bit objects, which are randomly connected
via n equality and trigger relations, and then invoke set or clear methods on
randomly selected objects for 1000 times.

Table 2. Execution times (in ms) of bit integration with n relations

n AA SNG AA
SNG

10 0.345 0.330 1.046
20 0.525 0.504 1.041
30 0.804 0.742 1.084
40 1.338 1.197 1.118

n AA SNG AA
SNG

50 3.450 3.183 1.084
60 21.081 18.612 1.133
70 62.731 57.124 1.098
80 347.120 287.047 1.209

The overall execution times are shown in Table 2. As seen in the rightmost
column on the table, the relative execution times of AA with respect to SNG

7 The relative overheads are increased from our previous measurement, which was
14%[12]. We presume that the additional overheads are introduced by the guard
code in the implementation of the association aspects that guarantees safe addition
and deletion of associations during advice dispatching. Since the guard code adds
constant overhead to each method invocation, we predict the ratio AA/SNG will not
change significantly for the cases n > 3, though we have not measured.



Design and Implementation of an Aspect Instantiation Mechanism 281

range 1.0 to 1.2, depending on the density of the relations. We conjecture that the
differences in the implementation details caused those differences. In particular,
we presume that the major overheads come from the guard code in the AA
implementation that allows safe addition and deletion of associations during
advice dispatching.

6 Expressiveness Evaluation

In this section, we illustrate a practical application program built with associ-
ation aspects. We then compare the implementation of the application against
the same application implemented differently, namely with Java and with pure
AspectJ. The comparison illustrates the advantages of association aspects.

6.1 An Application: Integrated Development Environment

We developed a simple integrated development environment(IDE) by integrating
existing application programs. Note that we used major open source software as
the applications to be integrated, rather than toy programs. Figure 17 shows a
screenshot of our developed IDE, consisting of:

– jEdit8 text editor on the left window.
– Apache Ant building system9 with our own simple GUI called AntManager,

whose role is to list source files in a project description file build.xml and
to launch the Ant process with the project file, on the bottom right window

– our own IDE front- end that starts the AntManager after letting the user
choose a build.xml file, and coordinates between the AntManager and jEdit.

The IDE front end uses association aspects called AutoBuild in order to build
a project after saving a file in the jEdit text editor, and in order to save jEdit
buffers before building a project.

The IDE instantiates an AutoBuild aspect when a user selects a source file
from AntManager or opens a file with jEdit. The instantiated aspects are associ-
ated to a Buffer object in jEdit and the AntManager object itself. The Buffer
object contains a copy of the text in the opened file. It has a method save to
write the modified text to the file. The AntManager object is instantiated on a
per-definition file of a project (build.xml) basis. Its method build calls Ant
with the build file.

When an aspect AutoBuild observes a call of method save to an associated
Buffer object, it invokes the method build of the associated AntManager object.
Moreover, when method build is called, the aspect AutoBuild invokes save
method to an associated Buffer object so that Ant can build the project with
the latest files.

8 http://www.jedit.org
9 http://ant.apache.org/



282 K. Sakurai et al.

Fig. 17. Screenshot of a tiny IDE system built with association aspects

6.2 Implementation of Integrated Development Environment

The code of the aspect AutoBuild from the design that was described in the
previous section is represented by Fig. 18. We implemented the same IDE in
Java and in AspectJ without using association aspects. By comparing those im-
plementations against the implementation in AspectJ with association aspects,
we observed the following problems:

The Pure Java Implementation. In the pure Java Implementation, the code
for integration crosscuts the underlying applications. We had to define a generic
Listener interface and to modify the Buffer and AntManager classes to im-
plement the interface, and to insert code fragments to notify the Listener into
several methods of those classes.

AspectJ Implementation Without Association Aspects. Figure 19 shows
an implementation of AutoBuild in AspectJ without using association aspects.
It basically follows an implementation technique discussed in Sect. 2.3. The
implementation adds the fields that store references to Relation objects into
Buffer and AntManager by means of intertype declarations.

The implementation even tries to modularize the code for managing associ-
ations by declaring an abstract aspect Association and by letting AutoBuild
inherit from Association. The reusability of this approach is, however, limited
as we have to define Relation inner class in AutoBuild and to explicitly write
loops over Relation objects in each advice body.

6.3 Comparison of Code Size

Table 3 compares implementations in AspectJ with and without association
aspects in terms of code size. In the table, the AALOC column shows the
lines of code of the implementation with association aspects on a per-file basis.



Design and Implementation of an Aspect Instantiation Mechanism 283

aspect AutoBuild perobjects(Buffer, AntManager) {

private int busy;

after(Buffer buffer, AntManager project):

execution(public boolean Buffer.save(..))

&& target(buffer) && associated(buffer, project) {

if (busy > 0) return;

busy++;

project.build();

busy--;

}

before(final Buffer buffer, AntManager project):

execution(public void AntManager.build())

&& associated(buffer, project)

&& target(project) && if(buffer.isDirty()) {

if (busy > 0) return;

busy++;

SwingUtilities.invokeLater(new Runnable() {

public void run() {

if (buffer.save(jEdit.getLastView(), null, false)) {

buffer.setDirty(false);

jEdit.getLastView().getEditPane()

.getBufferSwitcher().updateBufferList(); }

busy--;

} });

}

//...advice delete AutoBuild when file is closed,

// and so on, goes here

}

Fig. 18. Code of AutoBuild with association aspects

The AJLOC column shows the numbers without association aspects, in which
AutoBuild is defined by two aspects: AutoBuildAj.aj and Association.aj.
The two implementations share the Java classes AntFile.java, AntManager.
java and IDE.java that define GUI for ant and IDE.

As we can see, AALOC of AutoBuild.aj is 50, and AJLOC of
AutoBuildAj.aj is 83. In other words, the implementation with association as-
pects has merely 60% code size when compared against the implementation
without association aspects.

The difference in the code size can be observed as the additional lines in the
implementation without association aspects. The comments in Fig. 19 classify
the additional lines into the next three groups:

+REL: code for Relation class declaration
+LOOP: code for loops to access all relations
+GET: code for retrieving states in Relation objects



284 K. Sakurai et al.

public aspect AutoBuildAj extends Association {

private static class AutoBuildRelation extends Relation { //+REL

private int busy;

... //following getter and setter of busy definitions //+REL

} //+REL

protected Class getRelationClass() { //+REL

return AutoBuildRelation.class; //+REL

}

after(Buffer buffer):

execution(public boolean Buffer.save(..))

&& target(buffer) {

for (Iterator iter = (Iterator) associated(buffer, ANY); //+LOOP

iter.hasNext();) { // writing explicit loop by hand //+LOOP

AutoBuildRelation r = (AutoBuildRelation) iter.next(); //+LOOP

AntManager project = (AntManager) r.getRight(); //+GET

int busy = r.getBusy(); //+GET

if (busy > 0) return;

r.setBusy(busy+1);

project.build();

r.setBusy(busy-1);

} }

... //following other advice definitions

}

Fig. 19. Code of AutoBuild by the original AspectJ

Conversely, the advantages of association aspects are to provide language con-
structs for those operations.

The advantages of association aspects would become more significant when
we develop more practical IDEs. This is because such an IDE would have more
integrated operations not only between Buffer and AntManager, but also among
multiple projects (e.g., build depending projects before building a project), be-
tween a text editor and a source file versioning system, between a text editor and
a compiler for handling error messages, and so on. Implementing those additional
features by using association aspects would be good for assessing extensibility
and adaptability of aspects. We would like to explore this in future work.

Table 3. The result of comparing code size

File name AALOC File name AJLOC AALOC/AJLOC

AutoBuild.aj 50 AutoBuildAj.aj 83 0.60
Association.aj 77

AntFile.java 85 85
AntManager.java 128 128
IDE.java 132 132

Total 395 505 0.78



Design and Implementation of an Aspect Instantiation Mechanism 285

7 Discussion

7.1 Comparison with Eos

As the work on the association aspects is based on the work on Eos [4], we
here discuss the differences in detail. The most notable difference is that Eos
implicitly uses the current target object when selecting aspect instances at advice
execution. In contrast, association aspects can use arbitrary objects that are
explicitly specified by pointcuts. The mechanism in Eos is less flexible for the
following situations: (1) when aspect instances should be selected by using a
nontarget object, e.g., when advising a call to a class method, and (2) when
aspect instances should be selected by using more than one object, e.g., when a
security concern is to prevent method calls from object A to B, it can be realized
by an aspect instance associated to A and B. When a call from A to B happens,
all the aspect instances associated to B run an advice body in Eos, even though
the caller object A could be used for selecting aspect instances.

Both association aspects and Eos can distinguish roles of associated objects.
Eos, however, distinguishes by introducing additional role constructs around ad-
vice declarations, which might make it difficult to reuse aspects. For example,
even though Trigger and Equality aspects in Sect. 2.1 only differ in what ob-
jects should be used at advice dispatching, the declarations in Eos have different
program structures, since the former has to enclose advice declarations in a role
construct. Since association aspects distinguish roles of objects by the param-
eter positions in the associated pointcuts, the declarations of those aspects
can only differ in the pointcuts. Our approach, in which advice dispatching is
governed by pointcuts, would fit the other language features in AspectJ, as it
usually reuses aspects through the abstraction mechanisms of pointcuts (i.e., the
named pointcuts and the abstract pointcuts).

Both Eos and association aspects should be careful about the performance
penalty for the objects with no associated aspect instance. For the Bit inte-
gration example, a set call to a Bit object that has no associated Equality
instances should not have significant overhead. On this regard, there are two
possible dimensions to the overhead.

The first is the number of aspect instances. A naive implementation (which
is called the first work-around [4]) would significantly degrade its performance
to look up a systemwide table of aspect instances. Both Eos and association
aspects avoid this problem by having a list of associated aspects in each object.

The second is the number of advice declarations that statically match to
the call. Association aspects would linearly degrade the performance as each
advice declaration adds a getting a field and null checking into the method call
expression. Eos avoids this problem by having a list of thunks for each method
call expression. However, the approach in Eos requires more memory and more
operations for associating/unassociating aspect instances.

Those differences in implementation would result in the differences in per-
formance characteristics. However, we would need more programs written with



286 K. Sakurai et al.

association aspects in order to carry out quantitative comparison. This is because
the difference in performance depends on the number of advice declarations at
a joinpoint shadow and the number of joinpoint shadows that are advised by
different sets of aspect instances.

7.2 Other Related Work

Prior to the proposal of AOP, there have been studies on language mecha-
nisms that support the evolution of collaborative behavior for object-oriented
languages, namely the contracts by Helm and Holland [13], and the context rela-
tions by Seiter et al. [14, 15]. Those languages rely on different mechanisms from
pointcut and advice. Although there are many commonalities between those
language mechanisms and association aspects, there are also differences when
compared more closely. For example, a context relation can be associated to an
arbitrary number of objects, while an association aspect can be associated to, at
most, one object for each parameter position. Conversely, an association aspect
can be associated to an object pair in the same type, which does not seem to be
possible in the context relations.

There are AOP languages that have similar mechanisms to association as-
pects, namely CarsarJ proposed by Mezini and Ostermann [16, 17, 18], EpsilonJ
proposed by Tamai et al. [19], and ObjectTeams proposed by Herrmann et al.
[20, 21]. Those language models can support integration concerns by using role
objects and collaboration contexts.

In CaesarJ, a cclass object corresponds to an aspect instance, which can
be instantiated with several cclass instances that wrap objects as role mem-
bers. However, CaesarJ has no mechanism to associate a cclass instance to a
group of objects and to find associated instances. Supporting integration con-
cerns would need manual management of wrapper instances. A more recent ver-
sion of CaesarJ supports variable management implementations by a mixin-like
reuse mechanism.

EpsilonJ and ObjectTeams have a construct to define a context that encloses
several role definitions. A context (or a team in ObjectTeams) can be instan-
tiated explicitly and can bind a role to an arbitrary object. EpsilonJ realizes
one-to-many relations by introducing a mechanism that broadcasts calls to all
role objects of a specified type in a context; ObjectTeams can generalize the
mechanism by using an abstract team.

JAsCo [22] is an aspect-oriented language for component-based software de-
velopment. JAsCo introduces new language constructs such as a hook and a
connector. Although they have different granularity from the module system of
the association aspects (or AspectJ), we think that association aspects are useful
to connect(integrate) existing components as well as JAsCo.

Ostermann et al. proposed an expressive pointcut language ALPHA based on
logical queries over dynamic properties of a program execution [23]. Unlike other
extensible AOP languages that can query over static structures of a program,
ALPHA is so powerful that it can define pointcuts that examine a past state in
a program execution with individual object references. As a result, it is possible



Design and Implementation of an Aspect Instantiation Mechanism 287

to write a pointcut like “when called set or clear to a target bit1, there was
a call associate(bit1,bit2) in the past, then bind the second parameter to
bit2”. However, it is not clear whether such a pointcut can be as efficiently
implemented as association aspects.

Colman and Han developed the ROAD framework [24] using association as-
pects for defining a coordination system that manages an organizational system.
In the ROAD framework, objects are modeled as the roles in a specific organiza-
tion. Association aspects act as the stateful contract between role objects. When
an association aspect picks up a message between the role objects, the advice of
the aspect coordinates the role objects

The current version of association aspects is implemented by modifying the
ajc compiler [10]. There is another AspectJ compiler named abc developed by
de Moor et al. [25]. abc is an extensible compiler for implementing new language
constructs such as association aspects. We expect that association aspects for
the abc compiler can be achieved by applying the same compilation strategy as
that described in Sect. 4.

8 Conclusion

We presented association aspects as an extension to in AspectJ. They are based
on the notion of instance-level aspects in Eos [4], and extended with the pointcut-
based advice dispatching mechanisms that enable flexible yet concise descriptions
of aspects whose instances are associated to more than one object. As a result,
the association aspects can give straightforward representations of crosscutting
concerns that have stateful behavior with respect to a particular group of objects.

We developed a compiler for association aspects by modifying the AspectJ
compiler (ajc). The compiler employs an optimization strategy that reduces the
number of data structures. The benchmark tests exhibited that the slowdown
factors of the programs using association aspects with respect to the regular
AspectJ programs are 1.0 to 1.2.

As an application of association aspects, we developed an tiny IDE by in-
tegrating existing applications in a nonintrusive way. Although this is merely
one particular example, we observed that the use of association aspects reduced
the code size of the core integration aspect in the IDE to approximately 60%
from the one defined without association aspects. Our future plan is to quanti-
tatively evaluate association aspects by using software metrics other than code
size. In particular, evaluation criteria used for comparing GoF Design Pattern
implementations in Java and AspectJ [26] would be useful.

Bridging between design level concepts and association aspects at the im-
plementation level is also left for future work. Association aspects would be a
suitable vehicle to implement many design-level concepts such as relation ob-
jects in UML, roles in the collection designs, and composites of concepts in
CoCompose [27]. It would be useful to investigate methodologies to design these
concepts by assuming association aspects and to derive proper implementations
from those concepts.



288 K. Sakurai et al.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments
that helped us to clarify discussion and to fix English problems in an early drafts
of the paper. We also would like to thank Kevin Sullivan and Hridesh Rajan
for the detailed information on Eos, Alan Colman for the feedback from his
experience in using association aspects, the members of the TM Seminar and the
Kumini project at University of Tokyo and the members of Komiya’s Laboratory
at Shibaura Institute of Technology for valuable comments and suggestions.

References

[1] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., and Griswold W.G.
An overview of AspectJ. In: ECOOP ’01: Proceedings of the 15th European Con-
ference on Object-Oriented Programming, Springer, pp. 327–353, 2001

[2] Ossher H. Multi-dimensional separation of concerns: The Hyperspace approach.
In: Proceedings of Software Architectures and Component Technology, Springer,
2000

[3] Sullivan K., Gu L., and Cai Y. Non-modularity in aspect-oriented languages:
Integration as a crosscutting concern for AspectJ. In: Proceedings of the 1st
International Conference on Aspect-Oriented Software Development, ACM, pp.
19–26, 2002

[4] Rajan H. and Sullivan K. Eos: Instance-level aspects for integrated system de-
sign. In: ESEC/FSE-11: Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ACM, New York, pp. 297–306, 2003

[5] The AspectJ Project at Eclipse.org. http://www.eclipse.org/aspectj/. Cited 30
January 2006

[6] Sullivan K. Mediators: Easing the design and evolution of integrated systems. PhD
Thesis, Department of Computer Science, Unversity of Washington published as
TR UW-CSE-94-08-01 (1994)

[7] Sullivan K.J., Notkin D. Reconciling environment integration and software evo-
lution. ACM Trans. Softw. Eng. Methodol., 1:229–268, 1992

[8] Gamma E., Helm R., Johnson R., Vlissides J. Design patterns. Addison-Wesley,
1995

[9] Hannemann J. and Kiczales G. Design pattern implementation in java and As-
pectJ. In: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ACM, pp. 161–173, 2002

[10] Hilsdale E. and Hugunin J. Advice weaving in AspectJ. In: Proceedings of the
3rd International Conference on Aspect-Oriented Software Development, ACM,
pp. 26–35, 2004

[11] Masuhara H., Kiczales G., and Dutchyn C. A compilation and optimization model
for aspect-oriented programs. In: Proceedings of the 12th International Conference
Compiler Construction 2003, Springer, pp. 46–60, 2003

[12] Sakurai K., Masuhara H., Ubayashi N., Matsuura S., and Komiya S. Association
aspects. In: Proceedings of the 3rd International Conference on Aspect-Oriented
Software Development, ACM, pp. 16–25, 2004



Design and Implementation of an Aspect Instantiation Mechanism 289

[13] Helm R., Holland I.M., and Gangopadhyay D. Contracts: Specifying behavioral
compositions in object-oriented systems. In: OOPSLA/ECOOP ’90: Proceedings
of the European Conference on Object-Oriented Programming on Object-Oriented
Programming Systems, Languages, and Applications, ACM, New York, pp. 169–
180, 1990

[14] Seiter L.M., Palsberg J., and Lieberherr K.J. Evolution of object behavior using
context relations. In: Garlan, D. (ed.) Proceedings of the 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering, ACM (SIGSOFT), pp. 46–
57, 1996

[15] Seiter L.M., Palsberg J., Lieberherr K.J. Evolution of object behavior using
context relations. IEEE Transactions on Software Engineering, 24:79–92, 1998

[16] Mezini M. and Ostermann K. Conquering aspects with Caesar. In: AOSD ’03:
Proceedings of the 2nd International Conference on Aspect-Oriented Software De-
velopment, ACM, New York, pp. 90–99, 2003

[17] Mezini M. and Ostermann K. Integrating independent components with on-
demand remodularization. In: OOPSLA ’02: Proceedings of the 17th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM, New York, pp. 52–67, 2002

[18] Mezini M. and Ostermann K. Variability management with feature-oriented pro-
gramming and aspects. In: Proceedings of the 12th ACM SIGSOFT Twelfth Inter-
national Symposium on Foundations of Software Engineering, ACM, New York,
pp. 127–136, 2004

[19] Tamai T., Ubayashi N., and Ichiyama R. An adaptive object model with dynamic
role binding. In: ICSE ’05: Proceedings of the 27th International Conference on
Software Engineering, ACM, New York, pp. 166–175, 2005

[20] Veit M. and Herrmann S. Model-view-controller and object teams: A perfect match
of paradigms. In: AOSD ’03: Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development, ACM, New York, pp. 140–149, 2003

[21] Herrmann S., Hundt C., Mehner K., and Wloka J. Using guard predicates for
generalized control of aspect instantiation and activation. In: DAW ’05: Dy-
namic Aspects Workshop (held in conjunction with AOSD 2005), Chicago, Illinois,
pp. 93–101, 2005

[22] Suvée D., Vanderperren W., and Jonckers V. JAsCo: An aspect-oriented approach
tailored for component based software development. In: AOSD ’03: Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development,
ACM, New York, pp. 21–29, 2003

[23] Ostermann K., Mezini M., and Bockisch C. Expressive pointcuts for increased
modularity. In: ECOOP ’05: Proceedings of the 19th European Conference on
Object-Oriented Programming, Springer, 2005

[24] Colman A. and Han J. Coordination systems in role-based adaptive software. In:
COORDINATION 05: Proceedings of the Seventh International Conference on
Coordination Models and Languages, LNCS vol. 3454, Springer, pp. 63–78, 2005

[25] Avgustinov P., Christensen A.S., Hendren L., Kuzins S., Lhoták J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. abc: An extensible
AspectJ compiler. In: AOSD ’05: Proceedings of the 4th International Conference
on Aspect-Oriented Software Development, ACM, New York, pp. 87–98, 2005

[26] Garcia A., Sant’Anna C., Figueiredo E., Kulesza U., Lucena C., and von Staa
A. Modularizing design patterns with aspects: A quantitative study. In: AOSD
’05: Proceedings of the 4th International Conference on Aspect-Oriented Software
Development, ACM, New York, pp 3–14, 2005



290 K. Sakurai et al.

[27] Wagelaar D. and Jonckers V. A concept-based approach to software design. In:
SEA 2003: Proceedings of the 7th IASTED International Conference on Software
Engineering and Applications, Cambridge, MA, 2003

Appendix

Generating Code of Dispatching with Around Advice

The compilation rules of around advice are slightly different from those of before
and after advice due to the proceed mechanism in around advice. Figure 20
shows the skeletons of the methods and an auxiliary class, namely the dispatch
and abody methods and the Closure class.

When an around advice is to run, instead of directly running the advice body,
the compiled code first creates a Closure object with a list of associated aspects
that match the pointcut. The Closure object serves as a continuation of advice
body. When called, it runs the advice body in the context of the next aspect
instance, or performs the original operations of the joinpoint.

Assume the declaration of aspect A in Fig. 21. As shown in Fig. 22, the
Compiler generates the dispatch1 and abody1 methods in to class A and an
auxiliary class Closure. The compiler replaces every call to m with a called to
dispatch1, which in turn runs the body of advice in the context of an aspect
instance or runs method m when no more matching aspect instances are found.
Note that the former case creates a new Closure object for handling proceed
in the advice body. This is needed to cope with AspectJ’s language design that
allows around advice declarations to call proceed more than once.

Performance of Around Advice. The implementation of around advice in as-
sociation aspects has some overheads when compared against before advice. The
overheads include collecting n aspect instances and dispatching n closures with
proceed. Table 4 illustrates differences in execution times between around and
before advice with n aspect instances. Those figures are insensitive to the num-
ber of associated objects and the number of bound parameters in associated
pointcuts.

From the figures in the table, we can approximate the overhead of around
advice execution by the following formula:

Table 4. Execution times (in μs) of around advice

n AROUND BEFORE AROUND-BEFORE

0 0.786 0.029 0.757
1 2.016 0.327 1.689
25 11.986 3.578 8.408
50 24.103 6.948 17.155
75 39.369 10.268 29.101
100 56.223 13.642 42.581



Design and Implementation of an Aspect Instantiation Mechanism 291

AROUND(n) = 0.375n + 0.757 + BEFORE(n),

where AROUND(n) and BEFORE(n) are execution times of around and be-
fore advice with n instances, respectively.

This suggests that the around advice has overheads of approximately 0.757 μs
for each joinpoint and 0.375 μs for running an advice body in the context of an
aspect instance.

static Tjp dispatch( Tσi(1) v1, . . .,Tσi(l) vl) {

if(!〈parameterless dynamic conditions〉) return jp(v1, . . . , vl);

Ui1 mi1=v1. aspectsi; if(mi1==null)return jp(v1, . . . , vl);

Ui2 mi2=mi1.get(v2); if(mi2==null)return jp(v1, . . . , vl);

· · ·
Uil mil=mil−1.get(vl);

if(mil==null)return jp(v1, . . . , vl);

List as = new ArrayList();

for (Uil+1 mil+1 : mil.values()) {

· · ·
for (Ui|σi| mi|σi| : mi|σi|−1.values()) {

collecting
}

· · ·
}

return new Closure(as, 0).run(v1 ,· · · ,vl);

}

Tjp abody(Tσi(1) v1, . . ., Tσi(l) vl, Closure c) {

if (!〈dynamic conditions〉) return jp(v1, . . . , vl);

//statements in the advice body...

//proceed are translated to c.run(...)

}

class Closure {

List as; int i;

Closure(List as, int i) { this.as =as; this.i =i; }

Tjp run(Tσi(1) v1,. . . ,Tσi(l) vl) {

if(i < as.size()) {

return ((A)as.get(i)). abody(v1, ..., vl, new Closure(as, i+1));

} else { return jp(v1, . . . , vl); }

} }

collecting =
as.addAll(mi|σi|); |σi| < n

as.add(mi|σi|); |σi| = n

Fig. 20. Code for around advice dispatching and body



292 K. Sakurai et al.

aspect A perobjects(T1, T2, T3, T4) {

int around(T1 v1, T2 v2): call(int m(T1, T2))

&& args(v1, v2) && associated(v1,v2,*,*) {

return proceed(v1, v2);

} }

Fig. 21. An example aspect with an around advice declaration

static int _dispatch1(T1 v1, T2 v2) {

Map<T2, Map<T3, List<A>>> m1 = v1.aspects1;

if(m1==null) return m(v1,v2);

Map<T3, List<A>> m2 = m1.get(v2); if(m2==null) return m(v1,v2);

List as = new ArrayList();

_Closure c = new _Closure(as, 0); //create a closure

for (List<A> m3: m2.values()) //collect all matching

as.addAll(m3); // aspect instances

return c.run(v1,v2); //run the first advice

}

static int _abody1(T1 v1, T2 v2, _Closure c) {

return c.run(v1, v2); //the body of advice

}

class _Closure {

List as; int i;

_Closure(List as, int i) { this.as = as; this.i = i; }

int run(T1 v1, T2 v2) {

if (i < as.size()) {

A a = as.get(i); //run advice body

return a._abody1(v1,v2, new _Closure(as, i+1));

} else {

return m(v1,v2);

}

} }

Fig. 22. Generated methods and class for around advice



abc: An Extensible AspectJ Compiler

Pavel Avgustinov1, Aske Simon Christensen2, Laurie Hendren3,
Sascha Kuzins1, Jennifer Lhoták3, Ondřej Lhoták3, Oege de Moor1,

Damien Sereni1, Ganesh Sittampalam1, and Julian Tibble1

1 Programming Tools Group, Oxford University, United Kingdom
2 BRICS, University of Aarhus, Denmark

3 Sable Research Group, McGill University, Montreal, Canada

Abstract. Research in the design of aspect-oriented programming languages re-
quires a workbench that facilitates easy experimentation with new language fea-
tures and implementation techniques. In particular, new features for AspectJ have
been proposed that require extensions in many dimensions: syntax, type check-
ing and code generation, as well as data flow and control flow analyses. The
AspectBench Compiler (abc) is an implementation of such a workbench. The
base version of abc implements the full AspectJ language. Its front end is built
using the Polyglot framework, as a modular extension of the Java language. The
use of Polyglot gives flexibility of syntax and type checking. The back end is
built using the Soot framework, to give modular code generation and analyses.
In this paper, we outline the design of abc, focusing mostly on how the design
supports extensibility. We then provide a general overview of how to use abc to
implement an extension. We illustrate the extension mechanisms of abc through a
number of small, but nontrivial, examples. We then proceed to contrast the design
goals of abc with those of the original AspectJ compiler, and how these different
goals have led to different design decisions. Finally, we review a few examples
of projects by others that extend abc in interesting ways.

1 Introduction and Motivation

The design and implementation of aspect-oriented programming languages is a
buoyant field, with many new language features being developed. In the first instance,
such features can be prototyped in a system like the Aspect Sand Box [17] via a
definitional interpreter. Such interpreters are useful in defining the semantics and in
explaining the compilation strategy of new language features [32]. The acid test for
new language features is, however, their integration into a full, industrial-strength
language like AspectJ. That requires a highly flexible implementation of AspectJ that
can be extended in a clean and modular way.

The purpose of this paper is to present abc, the AspectBench Compiler for AspectJ,
which supports the whole of the AspectJ language implemented by ajc 1.2, and which
has been specifically designed to be an extensible framework for implementing AspectJ
extensions. abc is freely available under the GNU LGPL [1].

Challenges. An AspectJ compiler is already a complex piece of software, which, in
addition to the normal front-end and back-end components of a compiler, must also

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 293–334, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



294 P. Avgustinov et al.

support a matcher (for name patterns) and a weaver (both for intertype declarations and
for advice). Furthermore, the kinds of extensions that have been suggested for AspectJ
vary from fairly simple pointcut language extensions to more complex concepts which
require modifications in the type system, matcher and weaver. To make the challenges
explicit, we briefly review some previous work by others that has motivated our design.

At one end of the spectrum, there are fairly small extensions that require changes
primarily to the syntax. An example of this kind is the name pattern scopes proposed by
Colyer and Clement [12], which provide an abstraction mechanism for name patterns.
To support this type of extension, our workbench needs an easy way of extending the
syntax, as well as introducing named patterns into the environment.

A more involved extension is the parametric introductions of Hanenberg and Unland
[23]. These are intertype declarations that depend on parameters evaluated at weave
time. Their integration into AspectJ requires substantial changes to the type system as
well as the intertype weaver. This kind of extension thus motivates a highly flexible
implementation of types.

Most proposals for new features in AspectJ are, however, concerned with the dy-
namic join point model. Sakurai et al. [39] propose association aspects. These provide
a generalisation of per-object instantiation, where aspect instances are tied to a group
of objects to express behavioural relationships more directly. This requires not only
changes to the front end, but also substantial changes to code generation. Making such
code generation painless is another design goal of our workbench.

The community as a whole is concerned with finding ways of singling out
join points based on semantic properties rather than naming. For instance, Kiczales
has proposed a new type of pointcut, called predicted cflow [29]. pcflow(p) matches
at a join point if there may exist a path to another join point where p matches. It is cor-
rect to let pcflow(p) match everywhere, but that would lead to inefficient programs.
An efficient implementation of pcflow(p) needs substantial, interprocedural program
analysis. Our workbench needs to provide a framework for building such analyses.

In fact, examples where efficient implementation necessitates an analysis frame-
work abound. Particular instances include the data flow pointcuts of Masuhara and
Kawauchi [31], and the trace-based aspects of Douence et al. [14], as well as the com-
munication history aspects of Walker and Viggers [45].

All of the above are additions to the AspectJ language, but, of course, restrictions
can be equally important in language design. One promising example is the proposal of
Aldrich to restrict the visibility of join points to those that are explicit in the interface of
a class [2]. We aim to support the implementation of such restrictions, and this requires
a flexible implementation of the type system and the pointcut matcher.

Finally, we note that the implementation of advanced static checking tools for aspect-
oriented programs, such as those investigated by Krishnamurthi et al. [30], require all
types of extensions discussed above, ranging from simple variations in syntax to making
advanced analyses such as escape analysis take into account the effects of advice.

In summary, we can see that an extensible AspectJ compiler must be able to handle
a wide variety of extensions, possibly touching on many components of the compiler,
including the front-end scanner and parser, the type checker, the matcher and weaver,



abc: An Extensible AspectJ Compiler 295

and potentially requiring relatively sophisticated program analysis to ensure correctness
and efficiency.

Design Goals. One approach to implementing a language extension is to modify an ex-
isting compiler. However, this is not always the best approach, since existing compilers
may not have been designed with extensiblity as one of the main goals. Furthermore,
they may be constrained to work with infrastructures which themselves are not easily
extensible. In the case of AspectJ, the only pre-existing implementation is ajc, which is
designed to support fast and incremental compilation and also to interact closely with
the Eclipse toolset.

Our approach was to design and implement abc, the AspectBench Compiler, with
extensibility as its primary design goal. We also aimed for an optimising implementa-
tion of AspectJ, and we briefly summarise that perspective in our comparison with ajc
in Sect. 6.5. To support extensibility, we distilled the following requirements from the
above discussion of the challenges involved:

Simplicity. It must be relatively simple to develop new extensions. Users of the frame-
work should not need to understand complicated new concepts or a complex soft-
ware design in order to implement their extensions.

Modularity. We require two kinds of modularity. First, the compiler workbench itself
should be very modular, so that the different facets of each extension can be easily
identified with the correct module of the workbench. Second, the extension should
be modular (separate from the workbench code). Users of the workbench should not
need to change existing code; rather, they should be able to describe the extensions
as specifications or code that is separate from the main code base.

Proportionality. Small extensions should require a small amount of work and code.
There should not be a large overhead required to specify an extension.

Analysis capability. The compiler workbench infrastructure should provide both an
intermediate representation and a program analysis framework. This is necessary
for two reasons. First, some extensions may require relatively sophisticated anal-
yses to correctly implement their semantic checks and weaving. Second, some
extensions may lead to a lot of run-time overhead unless compiler optimisation
techniques are used to minimise that overhead.

The abc Approach. To meet these objectives, we decided to build on existing, proven
tools, namely the Polyglot extensible compiler framework for the front end [37], and the
Soot analysis and transformation framework for the back end [43]. [The McGill authors
of the present paper are the authors of Soot.] Indeed, Polyglot has been shown to meet
the criteria of simplicity, modularity and proportionality on a wide variety of extensions
to the syntax and type system of Java. By the same token, Soot has been shown to meet
all the above criteria for code generation, analysis and optimisation.

Given the success of these building blocks, we felt it extremely important to design
abc so that both are used as is, without any changes that are specific to abc, in order to
allow easy migration to new releases of those frameworks. As explained in Sect. 2, this
has dictated an architecture where the front end separates the AspectJ program into a
pure Java part and a part containing instructions for the back end.



296 P. Avgustinov et al.

Contributions. In general terms, the contributions of this paper are the following:

Comprehensive account of an AspectJ compiler. While ajc has been in use for eight
years or more, there are few publications that give a comprehensive account of
its main design decisions, a notable exception being the description of its advice
weaver in [27]. The present paper aims to provide a general overview of how to
build an AspectJ compiler, while pointing out the structure that is common to ajc
and abc. We also examine the consequences of the different design goals of ajc and
abc, in particular how abc places more emphasis on extensibility and optimisation.

Extensible workbench for AOP research. We have identified the requirements for
a workbench for research in aspect-oriented programming languages by analysing
previous research in this area. We show how abc meets these requirements, and val-
idate our architecture with a number of small but nontrivial examples. Furthermore,
we present an overview of extensions to abc that have been implemented by other
researchers.

Experience with Soot and Polyglot. abc builds on Polyglot and Soot without making
any changes to these two components. As such, abc is one of the largest projects
undertaken with either Soot or Polyglot. This paper is therefore also an experience
report, assessing the suitability of Polyglot and Soot for building aspect-oriented
programming tools.

At a more technical level, the contributions of abc with respect to extensibility are these:

Pass structure. abc has a carefully designed pass structure, where each compiler pass
achieves exactly one task, so that it is never necessary to split an existing pass when
inserting a new one required by an extension. Designing such a pass structure that
processes all types in the right order is quite hard, as witnessed, for example, by a
bug concerning ITDs on inner classes in ajc [5]. Another example is the need for
three separate passes that evaluate classname patterns. The pass structure is outlined
in Sect. 2, and then further detailed as necessary for our examples.

Separator. abc includes a separator pass that splits the original AspectJ abstract syn-
tax tree (AST) into a pure Java part and the aspectinfo; by enforcing that separation
very strictly, extensions never need to modify the code generation pass, which is
used unchanged from the Soot framework. The separator is explained in Sect. 2.3.

Use of Jimple. abc implements the use of a typed, stackless, three address interme-
diate representation, namely Jimple, to significantly simplify doing a good job of
writing a new weaver for new join point types. The advantages of Jimple (versus
bytecode) for weaving are discussed in Sect. 6.3.

Regular IR for pointcuts. abc also includes an intermediate representation of point-
cuts that is more regular than at source level. This representation makes it easier
to represent new pointcut primitives, and we shall illustrate this with the example
of local pointcut variables. The intermediate representation includes reducing com-
plex pointcut expressions to disjunctive normal form. An added benefit is that it
sorted out some nettly problems with the treatment of disjunction (||) in ajc [4].
Our intermediate representation for pointcuts is presented in Sect. 3.6.

Reweaving. An explicit representation of residues via a metalanguage that can be
optimised based on further analysis of woven Jimple; and a re-entrant design of



abc: An Extensible AspectJ Compiler 297

the weaver to exploit such opportunities via a weave-analyse-weave cycle. This re-
weaving architecture enables easy plug-and-play of complex optimisations. This
architecture is first introduced in Sect. 2.4, and we present some numbers that
demonstrate its advantages in Sect. 6.5.

Paper Structure. The structure of this paper is as follows. In Sect. 2, we first give an
overview of the main building blocks of abc, namely Polyglot and Soot, and show their
role in the overall architecture of abc. Next, in Sect. 3 we sketch the main points of
extensibility in abc. We then turn to describe some modest but representative examples
of AspectJ extensions in Sect. 4, and their implementation in Sect. 5. The design goals
of abc are contrasted with those of the original AspectJ compiler ajc in Sect. 6, and
we examine how the different goals have led to different design decisions. A particular
topic highlighted in Sect. 6 is the use of Jimple in a weaver, why it is good for extensions
and for implementing optimisations. In Sect. 7, we review a few examples by other
researchers who have extended abc. Also in Sect. 7, we discuss a number of similar
projects that share abc’s goals. Finally, in Sect. 8 we draw some conclusions from our
experience in building abc, and we explore possible directions for future research.

This paper is an enhanced, updated version of [6]. New material includes: the archi-
tecture of the weaver in Sect. 2, a detailed qualitative comparison to ajc in Sect. 6, a
discussion of other projects that build on abc in Sect. 7, and many small improvements
throughout.

2 Architecture

As stated in the introduction, abc is based on the Polyglot extensible compiler frame-
work [37] and the Soot bytecode analysis and transformation framework [43]. Using
Polyglot as an extensible front end enables customisation of the grammar and semantic
analysis; in the back end, Soot provides a convenient intermediate representation on
which to implement the weaving of extensions, as well as tools for writing any program
analyses that extensions may require.

Input classes can be given to abc as source code or class files, and abc is able to
weave into both. Source files are processed by the Polyglot front end, whereas only the
signature part of class files are read by Polyglot in order to perform type checking of
the source code. In both cases, weaving is performed on Jimple, Soot’s intermediate
representation.

Because abc works with an unmodified Soot and Polyglot, it is easy for us, as the
developers of abc itself, to update to the latest versions of Soot and Polyglot as they are
released. By the same token, authors of AspectJ extensions can upgrade to new versions
of abc without difficulty. This independence was achieved mainly by separating the
AspectJ-specific features in the code being processed from standard Java code. In the
front end, abc generates a plain Java AST and a separate aspect information structure
containing the aspect-specific information. We call the aspect information structure the
AspectInfo. The unmodified back end can read in the AST (because it is plain Java), and
abc then uses the AspectInfo to perform all required weaving. A simplified diagram of
the architecture of abc is shown in Fig. 1. In many respects, this architecture is similar
to that of ajc. At this level of abstraction, the main difference is the strict use of a



298 P. Avgustinov et al.

AspectJ
AST

.java

Java
AST

Aspect
Info

.class

Jimple
skeleton

Jimple
IR

Woven
Jimple

.java.class

Soot decompilationSoot bytecode generation

Polyglot AST transformations

Polyglot parser

Skeleton weaving

Woven
skeleton

Advice weaving

Soot skeleton generation

Soot jimple body generation

Analyses and optimisations

Final
Jimple

Fig. 1. abc overall design



abc: An Extensible AspectJ Compiler 299

separator pass (labelled “Polyglot AST transformations” in the figure) for splitting the
pure Java from any aspect-specific information. This separation process is described in
more detail below.

In the following subsections, we describe Polyglot and Soot in the context of abc,
with a focus on how they contribute to extensibility. Finally, we discuss in some more
detail how the two parts are connected.

2.1 Polyglot

Polyglot [37] is a front end for Java intended for implementing extensions to the base
language. In its original configuration, Polyglot first parses Java source code into an
AST, then performs all the static checks required by the Java language in a number
of passes which rewrite the tree. The output of Polyglot is a Java AST annotated with
type information, which is written back to a Java source file. Polyglot is intended to
perform all compile-time checks; when a class has passed through all of the passes
in Polyglot, the resulting Java file should be compilable without errors by any standard
Java compiler. When Polyglot is used as a front end for Soot, the Java-to-Jimple module
inside Soot compiles the final AST into the Jimple intermediate representation instead
of writing it out to a Java file. Therefore, in abc, the final Polyglot passes separate the
AspectJ program into pure Java (which is passed to the Java-to-Jimple module in Soot)
and instructions for the backend.

Several features of Polyglot make it well-suited for writing extensions, and also help
to make those extensions themselves extensible. Polyglot allows a new grammar to be
specified as a collection of modifications to an existing grammar, where these mod-
ifications are given in a separate specification file, not in the original grammar file.
The AspectJ grammar we developed for abc is specified as an extension of the Java
grammar, and the grammars for extensions are in turn specified as modifications to the
AspectJ grammar.

Polyglot makes heavy use of interfaces and factories, making it easy to extend or
replace most of its parts, such as the type system or the scope rules, as well as the list of
rewrite passes that are performed on the AST. Each pass in Polyglot nondestructively
rewrites the input tree. As a result, it is easy to insert new passes in between existing
ones, and each pass typically performs only a small amount of work compared to tra-
ditional compiler passes. In abc, we have added many AspectJ-specific passes, and it
is easy for extensions to add further passes of their own. The ordering of passes must
be chosen carefully, since the semantic analysis of Java source code might depend on
changes to the program introduced by aspects.

Each AST node in Polyglot uses a mechanism of extensions and delegates to allow
methods to be replaced or added in the middle of the existing class hierarchy, achieving
an effect similar to what can be done in AspectJ using intertype declarations, but in
plain Java. This mechanism is commonly used by extensions of abc to modify existing
AST nodes.

2.2 Soot

Soot [43], which is used as the back end of abc, is a framework for analysing and trans-
forming Java bytecode. The most important advantage of using Soot as the back end,



300 P. Avgustinov et al.

both for developing abc itself and for extending the language, is Jimple, Soot’s interme-
diate representation. Soot provides modules to convert between Jimple, Java bytecode
and Java source code. It furthermore includes implementations of standard compiler
optimisations, which abc applies after weaving. We have already observed significant
speedups from these optimisations alone [7]. In addition to already implemented analy-
ses and transformations, Soot has tools for writing new ones, such as control flow graph
builders, definition/use chains, a fixed-point flow analysis framework and a method in-
liner. These features are useful for implementing extensions that need to be aware of the
intraprocedural behaviour of the program, such as pointcuts describing specific points
in the control flow graph.

The Jimple intermediate representation is a typed, stackless, three-address code.
Rather than representing computations with an implicit stack, each Jimple instruction
explicitly manipulates specified local variables. This representation simplifies weaving
of advice, both for standard AspectJ features and for extensions. If it were weaving into
bytecode directly, the weaver would need to consider the effect of the woven code on
the implicit execution stack, and generate additional code to fix up the stack contents.
None of this is necessary when weaving into Jimple. Moreover, when values from the
shadow point are needed as parameters to the advice, they are readily available in local
variables; the weaver does not have to sift through the computation stack to find them.

As input, Soot can handle both class files and Java source files. To convert byte-
code to Jimple, Soot introduces a local variable to explicitly represent each stack loca-
tion, splits the variables to separate independent uses of the same location and infers a
type [20] for each variable. To convert source code to Jimple, Soot first uses Polyglot
to construct an AST with type information, and then generates Jimple code from the
AST. This process does not need to be modified in abc, because abc passes Soot a plain
Java AST, keeping all the aspect-specific information in the separate aspect information
structure. Normally, after all processing, Soot converts the Jimple code into bytecode
and writes it to class files, but it also includes a decompiler, dava [33], which is very
useful for viewing the effects of aspects and AspectJ extensions on the generated code.

2.3 Connecting Polyglot and Soot

We conclude the discussion of abc’s architecture by examining in closer detail how
Polyglot and Soot interact. A key component of this interaction is the separation of the
AspectJ AST into a pure Java AST and the auxilliary AspectInfo structure. This trans-
formation enables abc to use the existing facility in Soot for translating a Polyglot AST
into the Jimple IR. This is an important design decision in abc, as it implies that ex-
tension writers never need to modify the existing code generator. Other aspect-oriented
systems that use a similar separation pass include AspectWerkz and Hyper/J [8, 38].

The Java AST is basically the AspectJ program with all AspectJ-specific language
constructs removed. The AspectInfo structure contains complete information about
these constructs. In cases where these contain actual Java code (advice bodies,
if pointcut conditions, intertype method/constructor bodies, intertype field initialisers),
the code is placed in placeholder methods in the Java AST.

The Java AST only contains Java constructs, but it is incomplete in the sense that
it may refer to class members which do not exist or are not accessible in the unwoven



abc: An Extensible AspectJ Compiler 301

Java program. More specifically, the Java AST will in general not be compilable until all
declare parents and intertype declarations have been woven into the program. The first
of these can alter the inheritance hierarchy, and the second can introduce new members
that the pure Java parts may refer to. Since both of these features may be applied to class
files (for which we do not have an AST representation), it is not possible to perform this
part of the weaving process on the Polyglot representation before passing the AST to
Soot.

Fortunately, Soot allows us to conduct the conversion from Java to Jimple in two
stages, and the application of declare parents and intertype weaving can happen in be-
tween. In the first stage, Soot builds a class hierarchy with mere stubs for the methods:
it is a skeleton of a full program in Jimple, without method bodies. In the second stage,
Soot fills in method bodies, either by converting bytecode from class files, or by com-
piling AST nodes.

This setup permits both static weaving and advice weaving to work on the Jimple
IR, largely independent of whether the Jimple code was generated from source code or
bytecode. And since the skeleton that is filled out in the second stage has the updated
hierarchy and contains all intertype declarations, all member references in the code are
resolved correctly in the translation into Jimple.

The two-stage weaving (static and advice) is shared with ajc. Indeed, the two stages
are dictated by the AspectJ language design: static weaving only affects the type hi-
erarchy, whereas advice weaving affects run-time behaviour. Furthermore, one cannot
generate code without first adjusting the type hierarchy.

2.4 The Advice Weaver

The job of the advice weaver is to modify the Jimple code according to the instructions
in the AspectInfo such that advice bodies are executed whenever the corresponding
pointcuts match the currently executing join point.

The architecture of the advice weaver is shown in Fig. 2. The first step of advice
weaving is to identify all join point shadows, that is, all places in the Jimple code that
could potentially correspond to a join point in the execution of the program. Each of
these is then matched against all pointcuts in the program. If it is determined that a
pointcut might match a join point at a particular shadow, the matcher emits a weaving
instruction telling the weaver to weave the advice body at that shadow. Since a pointcut
can contain terms that depend on the run-time state of the program, it cannot always
be fully determined at compile time whether a particular pointcut matches at a shadow.
A weaving instruction thus consists of three parts: the shadow at which to weave, the
advice to weave in and a dynamic residue specifying what additional run-time checks
must be inserted to check that the pointcut actually matches the current join point. The
dynamic residue also contains information about how to bind the values that are to
become the arguments to the advice.

When all weaving instructions have been generated, the actual weaving is performed.
The result is a Jimple program whose behaviour includes all advice bodies executing
at the appropriate times. This program is then translated into bytecode by the Soot
bytecode generator, and the result is written out to the target class files.



302 P. Avgustinov et al.

Jimple IR
for Bytecode

Shadow
Finder

Shadows

Pointcuts
IR for

Matcher

Weaving
Instructions

Optimiser

Weaver Analysis
Results

Woven
Jimple

Analyser

Bytecode
Generator

Fig. 2. Design of the abc advice weaver

Some extensions might require some sophisticated analysis to be done on the Jimple
code. These fall roughly into two categories: preweaving analysis, where the analysis
is performed on the original Java code before the advice are woven in, and postweaving
analysis, where the analysis is performed on the woven code. Preweaving analysis is
typically employed when the analysis results are needed by the pointcut matcher, for
instance when implementing a new kind of pointcut. Postweaving analysis is used when
some property of the final code is desired, for instance when doing optimisations on the
final code or checking behavioural properties of the program.

In some cases, such as the cflow optimisation mentioned in Sect. 6.5, the analysis
needs to be performed on the woven code, but the result is needed by the weaver. To
facilitate such analyses, abc includes a mechanism for reweaving, which can throw
away the woven code and revert to the unwoven code while retaining the analysis results
obtained from analysing the woven code. This is also illustrated in Fig. 2. The results of
the analysis are channelled back into an optimisation pass which modifies the weaving
instructions to be used in a subsequent weaving pass. This process can be repeated as
many times as necessary.

3 Defining an Extension

We now outline the basic steps needed to create an extension, in a general manner. This
description is intended to give the reader an impression of the extension mechanisms
available in abc, without delving into excessive detail. After this generic description,
we shall introduce some concrete examples in Sect. 4, and show how the basic steps are
instantiated in Sect. 5.



abc: An Extensible AspectJ Compiler 303

This section serves two purposes. First, we outline how we build on the existing
extension mechanisms of Polyglot and Soot to achieve extensibility in abc (Sects. 3.2,
3.3, 3.4 and 3.8). Second, we wish to present some design decisions that are unique to
abc, which address specific issues regarding the extension of AspectJ (Sects. 3.1, 3.5,
3.6, 3.7 and 3.9).

3.1 Syntax

The first step in implementing a new extension is usually defining what additional syn-
tax it will introduce to the language. Making abc recognise the extended language in-
volves changing the lexer and the parser that it uses. Polyglot already handles extending
grammars in a very clean and modular fashion. However, the standard Polyglot lexer
is not extensible—extensions are expected to create their own lexer by copying it and
making appropriate modifications. Thus, in this section we describe our approach to
making an extensible lexer in some detail, and then briefly summarise the Polyglot
mechanism for extending grammars.

Lexer. We have designed the lexer for abc to support a limited form of extensibility
that has been sufficient for the extensions we have written so far. Specifically, the set of
keywords recognised by the lexer can be modified by an extension, and the actions taken
by the lexer when encountering one of these keywords are customisable. More complex
extensions can still be achieved by reverting to Polyglot’s approach of copying and
modifying the lexer definition. This is in agreement with the principle of proportionality
which was stated as a design goal—small extensions are easy, and complex ones are
possible.

The lexical analysis of AspectJ is complicated by the fact that there are really several
different languages being parsed: ordinary Java code, aspect definitions and pointcut
definitions. Consequently, the abc lexer is stateful—it recognises different tokens in
different contexts. The following example illustrates one kind of problem that is dealt
with by the introduction of lexer states:

if*.*1.Foo+.new(..)

The expected interpretation of such a string as Java code and as part of a pointcut
will be very different; for example, in Java, we would expect “1.” to become a floating
point literal, whereas in the pointcut language the decimal point would be viewed as a
dot separating elements of a name pattern. Similarly, “*” in Java should be scanned as
an operator, while in pointcuts, it is part of a name pattern. Note also the use of what
would be keywords in Java mode (if and new) as part of a pattern.

An important part of designing a stateful lexer is specifying when the lexer should
switch to a different state without adding too much complexity. The general pattern we
use is to maintain a stack of states, and recognise the end of a state when we reach an
appropriate closing bracket character for that state. For example, normal Java code is
terminated by the ‘}’ character. Of course, braces can be nested, so we need to recognise
opening braces and also count the nesting level. For more details regarding the lexer
states in abc, see Sect. 5.2.

Parser. The abc parser is generated by PPG [9], the LALR parser generator for exten-
sible grammars which is included in Polyglot [37]. PPG allows changes to an existing



304 P. Avgustinov et al.

File X File Y

S ::= a include X
| b extend S ::= d
| c | e

File Z Result

include Y S ::= a
drop S ::= b | c

| d | e

Fig. 3. Grammar extension mechanism

grammar to be entered in a separate file, overriding, inheriting and extending produc-
tions from the base grammar. This results in modular extensions, which can easily be
maintained should the base grammar change.

The example in Fig. 3 (using simplified nonPPG syntax) demonstrates the basic
principles. An existing grammar can be imported with the “include” keyword. New
production rules can then be specified, and one can change existing rules using the
keywords “extend” and “drop” to add and remove parts of the rule. More advanced
changes, such as modifying the precedence of operators, are also possible. For further
details on the specification of grammar, see [9].

3.2 Type System

Polyglot provides convenient facilities for extending the type system. As a minimum,
this involves introducing a new kind of type object and lookup functions for these new
entitities in the environment. The new type of environment is then invoked by overriding
the environment factory method in a subclass of AJTypeSystem, which describes the
type system of AspectJ itself.

To illustrate, consider the introduction of named class pattern expressions [12].
We would need to introduce a new type object to represent such names, say Named-
CPEInstance (in Polyglot, it is convention that identifiers for type classes end with
. . . Instance). The environment then maps (possibly qualified) names to objects of type
NamedCPEInstance.

The semantic checks for named patterns must enforce the requirement that there be
no cycles in definitions, since recursively defined named patterns do not make sense.
A similar check has already been implemented for named pointcuts, and it involves
building a dependency graph. Such data structures necessary for semantic checks are
typically stored in the type objects (here NamedCPEInstance): because Polyglot oper-
ates by rewriting the original tree, it is not possible to store references to AST nodes.

Examples such as the parametric introductions of Hanenberg and Unland [23] would
require more invasive changes in the type system, for example, by subclassing Inter-
TypeMethodInstance (the signature of a method introduced via an intertype declaration)
to take account of the parameters that are to be evaluated at compile time.



abc: An Extensible AspectJ Compiler 305

3.3 Semantic Checks

New semantic checks are usually implemented by overriding the appropriate method on
the relevant AST nodes. The most obvious place for simple checks is in the TypeChecker
pass; every AST node implements a typeCheck(TypeChecker) method. The type checker
is run after all variable references are resolved; all checks that do not require further data
structures are typically put in the typeCheck method.

Later passes use data flow information to check initialisation of local variables and
the existence of return statements. Again, each AST node implements methods to build
the control flow graph for these purposes. In the base AspectJ implementation, these are,
for example, overridden to take into account the initialisation of the result parameter in
after returning advice, and extensions can make variations of their own.

AspectJ is somewhat unusual in that some semantic checks have to be deferred to
the weaver. For example, it is necessary to type-check the results of around advice at
each point where it is woven in. Because abc maintains precise position information
throughout the compilation process, such errors can still be reported at the appropriate
locations in the source.

3.4 Rewriting

The normal use of Polyglot is as a source-to-source compiler for extensions to Java,
where the final rewriting passes transform new features into an equivalent pure Java
AST. abc is different in that most of the transformation happen at a later stage, when
weaving into Jimple. It is, however, often useful to employ Polyglot’s original paradigm
when implementing extensions to AspectJ that have an obvious counterpart in AspectJ
itself.

For example, consider again the feature of named class pattern expressions. A sim-
ple implementation would be to just inline these after appropriate semantic checks have
been done, so that nothing else needs to change in the compiler. Such inlining would
be implemented as two separate AST rewriting passes, one to collect the named pattern
definitions and the other to inline them—the two would then communicate via an ex-
plicit data structure that is common to both passes. As said, it is not recommended to
store pieces of AST explicitly unless they are immediately transformed away.

abc does extensive rewriting of the AST prior to conversion to Jimple. This consists
of introducing new placeholder methods (for instance, for advice bodies), and storing
instructions for the backend in the AspectInfo. Extensions can participate in this process
by implementing methods that are called by the relevant passes.

3.5 Join Points

Introducing new pointcuts will often involve extending the set of possible join points.
For example, implementation of a pointcut that matches when a cast instruction is
executed would require the addition of a join point at such instructions.

Many new join points will follow the pattern of most existing AspectJ join points
and apply at a single Jimple statement. These can be added by defining a new factory
class that can recognise the relevant statements and registering it with the global list of
join point types.



306 P. Avgustinov et al.

For more complicated join points, it will be necessary to override the code that it-
erates through an entire method body looking for join point shadows. The overriding
code can do any required analysis of the method body to find instances of the new join
points (for example, one might want to inspect all control flow edges to find the back
edges of loops [25]), and then call the original code to find all the “normal” join point
shadows.

3.6 Pointcuts

As pointed out in the introduction, there are many proposals for new forms of pointcuts
in AspectJ. To meet our objective of proportionality (small extensions require little
work), we have designed an intermediate representation of pointcuts that is more regular
than the existing pointcut language of AspectJ. This makes it easier to compile new
pointcut primitives to existing ones.

Specifically, the back-end pointcut language partitions pointcuts into the four cate-
gories listed below. Some of the standard AspectJ pointcuts fit directly into one of these
categories and are simply duplicated in the back end, while others must be transformed
from AspectJ into the representation used in abc.

– Lexical pointcuts are restrictions on the lexical position of where a pointcut can
match. For example, within and withincode fall into this category.

– Shadow pointcuts pick out a specific join point shadow within a method body. The
set pointcut is an example.

– Dynamic pointcuts match based on the type or value of some runtime value. Point-
cuts such as if, cflow and this are of this kind.

– Compound pointcuts represent logical connectives such as &&.

The motivation for this categorisation is that it allows the implementation of each back-
end pointcut to be simpler and more understandable, which in particular makes it easier
for extension authors to define new pointcuts.

An example of an AspectJ pointcut that does not fit into this model directly is the
execution(〈MethodPattern〉) pointcut, which specifies both that we are inside a method
or constructor matching MethodPattern and that we are at the execution join point. The
back-end pointcut language therefore views this as the conjunction of a lexical pointcut
and a shadow pointcut.

To add a new pointcut, one or more classes should be added to the back end, and
the front-end AST nodes should construct the appropriate back-end objects during the
generation of the AspectInfo structure.

The key class of the AspectInfo is the GlobalAspectInfo class—this is a singleton (it
has precisely one instance during a compiler run), and it contains lists of advice dec-
larations, intertype declarations, and so on. It also contains mappings to retrieve the
precedence of two aspects, to find the nonmangled name of a private intertype decla-
ration, and many similar mappings. The front end inserts the appropriate information
into these data structures via the accessor functions provided by GlobalAspectInfo. The
AspectInfo also contains classes for the intermediate pointcuts, and the class hierarchy
for these closely follows the above description.



abc: An Extensible AspectJ Compiler 307

The back-end classes are responsible for deciding whether or not the pointcut
matches at a specific location. If this cannot be statically determined, then the point-
cut should produce a dynamic residue which specifies the generation of the required
run-time code.

3.7 Advice

It appears that there are few proposals for truly novel types of advice: most new pro-
posals can be easily rewritten to the existing idioms of before, after and around. For
example, the proposal for “tracecuts” [14,45] reduces to a normal aspect, where a state
variable tracks the current matching state, and each pattern/advice pair translates into
after advice. Such new types of advice are thus implemented via rewriting, in the stan-
dard paradigm of Polyglot.

Nonetheless, adding a new kind of advice that follows the AspectJ model of advice
is straightforward: simply implement a new class and define how code should be gen-
erated to call that piece of advice and where in the join point shadow this code should
go. For example, the bookkeeping required for cflow is implemented as a special kind
of advice that weaves instructions both at the beginning and end of a shadow.

3.8 Optimisations

The straightforward implementation of a new extension may result in inefficient run-
time code. Even in the basic AspectJ language, there are a number of features that incur
significant runtime penalties by default, but in many cases can be optimised. abc aims
to make it as easy as possible to implement new optimisations, whether for the base
language or for extensions. In particular, it is straightforward to transform the AST in
the front end and the Jimple intermediate code in the back end.

Taking an example from the base AspectJ language, construction of the thisJoin-
Point is expensive because it must be done each time a join point is encountered at
run time. abc (like ajc) employs two strategies for mitigating this overhead. First, some
advice bodies only ever make use of the StaticPart member of thisJoinPoint, which
only needs to be constructed once. A Polyglot pass in the front end is used to identify
advice bodies where this is the case and transform the uses to thisJoinPointStaticPart
instead.

Second, the run-time code generated delays construction until as late as possible in
case it turns out not to be needed at all; this is complicated by the fact that if pointcuts as
well as advice bodies may make use of it, so construction cannot simply be delayed until
the advice body runs. abc generates code that instantiates the thisJoinPoint variable
where needed if it has not already been instantiated, using null as a placeholder until
that point. The Jimple code is then transformed to remove unnecessary checks and
initialisations, using a variation of Soot’s intraprocedural nullness analysis, which has
special knowledge that the thisJoinPoint factory method cannot return null.

3.9 Run-Time Library

The run-time library for AspectJ serves two purposes. First, it contains bookkeeping
classes necessary for the implementation of language constructs such as cflow.



308 P. Avgustinov et al.

Extensions such as data flow pointcuts [31] would require a similar run-time class in
order to store dynamic data about the source of the value in a particular variable.

Second, the run time provides the objects accessible through the thisJoinPoint fam-
ily of special variables; these make information about the current join point available
to the programmer via reflection. Any new pointcut introduced is likely to have unique
signature information which would be accessible to the user via an extension of the Sig-
nature interface. For example, the standard AspectJ runtime contains, amongst others,
AdviceSignature, FieldSignature and MethodSignature.

4 eaj: An AspectJ Extension

This section describes a few particular extensions to the AspectJ language that we have
implemented. These extensions have been chosen to illustrate the most salient of the
mechanisms that were described in the previous section. The full source code for these
examples is included with the standard distribution of abc [1]. For ease of reference, the
extended language is named eaj; one compiles eaj programs with the command “abc
-ext abc.eaj”. This is the usual way of invoking extensions with abc.

4.1 Private Pointcut Variables

In AspectJ, the only way to introduce new variables into a pointcut is to make them ex-
plicit parameters to a named pointcut definition or advice. It is sometimes convenient,
however, to simply declare new variables whose scope is only part of a pointcut expres-
sion, without polluting the interface of the pointcut. For example, it might be desired to
check that the value of an argument being passed has certain properties, without actu-
ally using that value in the advice body. The new keyword private introduces a locally
scoped pointcut variable. For instance, the following pointcut could be used to check
that the argument is either a negative int or a negative double:

pointcut negativefirstarg() :
private (int x) (args(x) && if(x < 0))

|| private (double x) (args(x) && if(x < 0));

4.2 Global Pointcuts

It is very common for many pieces of advice to share a common conjunct in their
pointcut. The idea of a global pointcut is to write these common conjuncts only once.
An example use is to restrict the applicability of every piece of advice within a certain
set of aspects. For example, we might write:

global : * : !within(Hidden);

This would ensure that no advice within any aspect could apply within the Hidden class.
As another example, it is often useful to prevent advice from an aspect applying

within that aspect itself. The following declaration (for aspect Aspect) can achieve this
more concisely than putting the restriction on each piece of advice:

global : Aspect : !within(Aspect);



abc: An Extensible AspectJ Compiler 309

In general, a global pointcut declaration can be put anywhere a named pointcut dec-
laration can be (i.e., directly within a class or aspect body). The location of such a
declaration has no effect on its applicability, except that name patterns within such
a declaration will only match classes and aspects visible from the scope of that
declaration.

The general form of a global pointcut declaration is as follows:

global : 〈ClassPattern〉 : 〈Pointcut〉 ;

It has the effect of replacing the pointcut of each advice declaration in each aspect
whose name matches ClassPattern with the conjunction of the original pointcut and the
global Pointcut.

4.3 Cast Pointcuts

The purpose of the cast pointcut is to match whenever a value is cast to another type.
A corresponding new type of join point shadow is added which occurs at every cast
instruction, whether for reference or primitive types, in the bytecode of a program.

To illustrate, the following piece of advice can be used to detect run-time loss of
precision caused by casts from an int to a short:

before(int i):
cast(short) && args(i)

&& if(i < Short.MIN VALUE
|| i > Short.MAX VALUE)

{
System.err.println(“Warning: loss of ” +

“ precision casting ” +
i + “ to a short.”);

}
In general the syntax of a cast pointcut is cast(〈TypePattern〉); this will match at

any join point where the static result type of the cast is matched by TypePattern. In
keeping with the pattern of other primitive pointcuts, the value being cast from can be
matched by the args pointcut, and the result of the cast can be matched by the optional
parameter to after returning advice (and is returned by the proceed call in around
advice).

4.4 Throw Pointcuts

The throw pointcut is introduced in the developer documentation for ajc [28], and
we have implemented it in eaj to compare the ease-of-extension of both compilers.
It matches a new join point shadow which occurs at each throw instruction.

The following example demonstrates how extended debugging information can be
produced in the event of a run-time exception, using a piece of advice:

before(Debuggable d):
this(d) && throw() && args(RuntimeException)

{
d.dumpState();

}



310 P. Avgustinov et al.

5 Implementing eaj Using abc

We have given a broad outline of how extensions are constructed and discussed some
specific extensions that we have implemented. We now show in detail how this was
done, both to provide a guide for others and to enable a realistic assessment of the work
involved.

5.1 Road Map

As we do not wish to hide any of the difficulties involved in writing an abc extension,
the presentation in the next few subsections is necessarily somewhat technical, so let us
first outline a generic road map of an abc extension. This will provide readers with a
high-level structure for the detailed explanations that follow.

Extension Packages. An extension typically consists of five Java packages, plus two
new “driver” classes that bind the extension to the existing base compiler. The five rele-
vant packages are shown in Fig. 4. The first of these is concerned with syntax and serves
to introduce new keywords and grammar rules: these will be discussed in Sects. 5.2 and
5.3 below. Next, one needs to write new classes for AST nodes. In Sect. 5.4 we give an
overview of what this involves for the example eaj extension. It is quite common that
new language features require new compiler passes. For the running example, that is the
case with global pointcuts, as it is necessary to collect all of these to make appropriate
modifications to advice declarations. In Sect. 5.5 we show how to write a new pass for
this purpose. This also requires subclassing the existing AST representation of advice
declaration: such subclasses reside in the extension package. For the simple examples
in this paper, it is not necessary to extend the AspectJ type system. All extensions to
the back end of the compiler occur in subpackages of weaving. Readers may wish to
glance back at Fig. 2, which depicts the architecture of abc’s weaver. For the example
in hand, one needs to extend the intermediate representation for pointcuts (in aspect-
info), and then make appropriate changes to the shadow finder and shadow matcher
(in matching). More complex extensions may also introduce new kinds of residue or

abc.〈extension〉
parse new lexer and grammar rules
ast new ast classes
visit new compiler passes
extension overrides of existing ast behaviour
types new types in typechecker
weaving

aspectinfo new IR for pointcuts
matching finding new shadows,

matching shadows to pointcuts
residues new residue kinds
weaver changes to the weaver

Fig. 4. Package structure of abc extensions



abc: An Extensible AspectJ Compiler 311

directly modify the weaving process, but for the examples discussed here, that is not
needed.

Driver Classes. Apart from extending the packages in Fig. 4, an extension author must
bind all the new functionality together, so that it can be invoked (via reflection) by the
base compiler. There are two driver classes for this purpose in abc, which any extension
must subclass.

The first of these is the AbcExtension class. An extension can be specified when abc
is invoked by passing its core package name to abc with the -ext flag. The AbcExtension
class from this package is then loaded by reflection. All the extensibility hooks in abc
are passed through this class. There is a default implementation of this class in the
abc.main package, which extensions must subclass.

Another driver class is ExtensionInfo. This is part of the extensibility mechanism of
Polyglot; all front-end extensions (except for the lexer) are registered by subclassing
this class. New instances of this class are returned by the subclassed AbcExtension.

Runtime. Some extensions need support in the AspectJ run time. Indeed, to access
reflective information about a new type of join point, we need to make sure the run time
is extended, so this is usually the last step required in implementing a new extension.
We shall discuss a concrete example in Sect. 5.8.

Sources of Extensibility. It may be helpful to point out at this stage what extensibility is
unique to abc, and what extensibility has been inherited from the components we built
on. We now briefly discuss that, going through the packages in Fig. 4. Polyglot provides
syntax extensibility; we have added an extensible lexer in abc. The way AST nodes are
extended in abc is based on the principles of Polyglot. Of course, the specific interfaces,
say for implementing pointcuts, are unique to abc. Furthermore, more than half of the
passes in abc are specific to AspectJ, and therefore the extensibility for introducing
new aspect features is in large part determined by our design for those passes. The
very small number of overrides of existing AST classes in Polyglot (in the extension
package) is testament to the extensibility of Polyglot’s Java compiler itself. All parts
of the weaver are particular to abc, although (as further discussed in Sect. 6) it shares
a lot of common structure with ajc. A particular feature that enables the extensibility
of abc’s weaver is the use of the Jimple intermediate representation. Because this is
so much easier to analyse and manipulate than either Java source code or bytecode,
extenders will find it much easier to implement crucial components like a new shadow
matcher.

5.2 Extending the Lexer

As described in Sect. 3.1, abc’s lexer is stateful. There are four main lexer states for
dealing with the different sub-languages of AspectJ: JAVA, ASPECTJ, POINTCUT and
POINTCUTIFEXPR. The first three are used in Java code, AspectJ code and pointcut
expressions, respectively. The POINTCUTIFEXPR state must be separate from the nor-
mal JAVA state because the if pointcut allows a Java expression to be nested inside a
POINTCUT, but whereas the JAVA state is terminated by a ‘}’, we need to return to the
POINTCUT state when reaching a matching closing ‘)’ character.



312 P. Avgustinov et al.

Keywords for each state are stored in state-specific HashMaps that map each key-
word to an object implementing the LexerAction interface. This interface declares a
method

public int getToken(AbcLexer lexer)

which is called when the corresponding keyword is recognised. Its return value is turned
into a parser token and passed to the parser for further analysis. A reference to the lexer
instance is passed as a parameter to getToken(...), so that side effects that affect the lexer
(like changing the lexer state) are possible. A default implementation of this interface is
supplied, which offers sufficient functionality to associate keywords with parser tokens
and (optionally) change the lexer state; custom implementations of LexerAction can
provide more flexibility. The default implementation provides functionality sufficient
for all but 5 (out of more than 90) Java and AspectJ keywords.

Implementing the eaj extensions required adding several new keywords. In partic-
ular, “cast” was introduced as a keyword in the POINTCUT state, and “global” as a
keyword in all four lexer states. Both “private” and “throw” are already keywords in all
states, and so do not need to be introduced specifically for the private pointcut variables
and throw pointcut extensions. Here is the code that adds the keywords to the respective
states:

public void initLexerKeywords(AbcLexer lexer)
{

// keyword for the “cast” pointcut extension
lexer.addPointcutKeyword(“cast”,

new LexerAction c(new Integer
(abc.eaj.parse.sym.PC CAST)));

// keyword for the “global pointcut” extension
lexer.addGlobalKeyword(“global”,

new LexerAction c(new Integer
(abc.eaj.parse.sym.GLOBAL),

new Integer(lexer.pointcut state())));

// Add the base keywords
super.initLexerKeywords(lexer);

}
Both keywords use the default implementation of LexerAction, i.e., the Lexer-

Action c class. We see the one-argument and two-argument constructors for that
class. The first argument is always the parser token that should be returned for the
keyword; the second argument (if present) is the lexer state that should be selected
after the keyword. As stated above, further logic can be implemented by subclassing
LexerAction c.

5.3 Extending the Parser

The grammar fragment below shows how two new productions are added for private
pointcut variables and the cast pointcut, which can appear anywhere a normal pointcut
could:



abc: An Extensible AspectJ Compiler 313

extend basic pointcut expr ::=
PRIVATE:x LPAREN formal parameter list opt:a RPAREN

LPAREN pointcut expr:b RPAREN:y
{:

RESULT =
parser.nf.PCLocalVars(parser.pos(x,y), a, b);

:}
| PC CAST:x LPAREN type pattern expr:a RPAREN:y

{:
RESULT =

parser.nf.PCCast(parser.pos(x,y), a);
:}

;

The fragment closely resembles code one would use with the popular CUP parser
generator, apart from the extend keyword, which signifies that these two produc-
tions are to be added to the rules that already exist for the nonterminal symbol
basic pointcut expr.

The first new production is for private pointcut variables. As will be apparent from
this example, terminal tokens are indicated by capitals. Note that it is possible to bind
the result of parsing each grammar symbol to an identifier, indicated by a colon and a
name. For instance, we bind the result of recognising the token PRIVATE to x, and the
result of recognising a pointcut expr to b. These named results can then be used in the
parser action associated with a production. This action is delineated with curly braces
and colons. Here we use the results of the first and last symbol in the right-hand side
of the production to compute the position (via the call parser.pos(x, y)) of the whole
private pointcut variable declaration. Positions in Polyglot are always a start location
(source file, line number, column number) together with an end location. Throughout
abc, great care is taken to preserve such position information, so that it is possible to
track the origin of every piece of code, even after optimisations have been applied. The
second grammar production in the above code fragment is for cast pointcuts, and as it
is simpler than the first production, we do not discuss it further.

Apart from extending the alternatives for existing nonterminals (as we did above),
the Polyglot Parser Generator PPG [9] also allows you to drop productions, transfer
productions from one nonterminal to another and override the productions of a particu-
lar nonterminal.

5.4 Adding New AST Nodes

As mentioned above, abc’s front end is built on the Polyglot extensible compiler frame-
work [37]. In fact, from Polyglot’s point of view, abc is just another extension. This
means that abc “inherits” all the extensibility mechanisms provided by Polyglot.

In particular, adding new AST nodes is common when writing compiler extensions,
and thus it is important to provide an easy and robust mechanism for doing so. All four
extensions discussed above required new AST nodes. For the sake of brevity we will
only present the node introduced by the global pointcut extension here; the other cases
are handled very similarly.



314 P. Avgustinov et al.

In order to write a clean Polyglot extension, one has to adhere to the rigorous use of
factories and interfaces to create nodes and invoke their members, respectively. The first
step is therefore to define an interface for the new AST node, declaring any functionality
it wants to present to the outside world:

public interface GlobalPointcutDecl extends PointcutDecl
{

public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
EAJNodeFactory nf);

}
We provide a method to insert the pointcut into a static data structure keeping track

of the global pointcuts defined in the program (cf. Sect. 5.5). Note that the interface ex-
tends abc’s PointcutDecl interface, so it provides all the functions relevant to a pointcut
declaration.

The next step is to write the class implementing that interface. Some boilerplate code
is required (a constructor and methods to allow visitors to visit the node), and, of course,
the method registerGlobalPointcut() is given a concrete implementation.

In order to make sure we can instantiate this new node type, we subclass abc’s de-
fault node factory (which, in turn, is derived from Polyglot’s node factory) and create a
method for obtaining an instance of GlobalPointcutDecl:

public GlobalPointcutDecl
GlobalPointcutDecl (

Position pos,
ClassnamePatternExpr aspect pattern,
Pointcut pc, String name,
TypeNode voidn )

{
return new GlobalPointcutDecl c(pos, aspect pattern,

pc, name, voidn);
}
Now the extended parser can produce GlobalPointcutDecl objects when it encoun-

ters the appropriate tokens (cf. listing in Sect. 5.3).
Note that all changes are local to new classes we created (in fact, these classes are

in a completely separate package). The fact that abc itself did not have to be changed
at all makes the extension robust with respect to abc upgrades. Also, since the new
AST node extends an existing node, very little functionality needs to be reimplemented.
The associated interfaces only have to declare the methods specific to the new node’s
particular functionality.

In the same way, interfaces PCLocalVars and PCCast were defined, along with im-
plementing classes, for the private pointcut variables and cast pointcut extensions. Cor-
responding factory methods were added to the extended AspectJ node factory.

5.5 Adding New Front-End Passes

Implementing the “global pointcuts” extension described in Sect. 4.2 requires two new
passes. First, all global pointcuts need to be collected, and then each pointcut must be



abc: An Extensible AspectJ Compiler 315

replaced with the conjunction of the original pointcut and all applicable global point-
cuts.

Polyglot’s visitor-based architecture makes implementing this very easy. We add
two new passes. The first stores all global pointcuts in a static variable, and the second
applies that pointcut to the relevant code. For reasons of code brevity, these two passes
are implemented by the same class, GlobalAspects. It uses a member variable called
pass to distinguish which of the two functions it is performing.

The traversal of the AST is performed by the ContextVisitor Polyglot class. The new
pass extends ContextVisitor with a method that performs the required action when it
encounters a relevant AST node.

The following code fragment illustrates the behaviour of the new visitor upon enter-
ing an AST node:

public NodeVisitor enter(Node parent, Node n) {
if (pass == COLLECT
&& n instanceof GlobalPointcutDecl) {

((GlobalPointcutDecl) n).
registerGlobalPointcut(this, context(), nodeFactory);

}
return super.enter(parent, n);

}

As mentioned above, both new passes are implemented by the same class, and hence
the check that pass==COLLECT makes sure that we do the right thing. If the current
node is a GlobalPointcutDecl (one of the new AST nodes defined in Sect. 5.4), we call
its special method so it registers itself with the data structure storing global pointcuts.
Then we delegate the rest of the work (the actual traversal) to the superclass.

The implementation of the leave() method, which is called when the visitor leaves
an AST node and has the option of rewriting the node if necessary, is very similar. If
pass==CONJOIN and we are at an appropriate node, we return the conjunction of the
node and the global pointcut.

The sequence of passes that the compiler goes through is specified in the special sin-
gleton ExtensionInfo class. By subclassing it and inserting our new passes in an overrid-
den method which then calls the original method, we make sure the original sequence
of passes is undisturbed. Note that this mechanism makes the extension robust with
respect to changes in the base abc passes—we can add and rearrange passes without
breaking the extension.

5.6 Adding New Join Points

To implement the cast and throw pointcuts, we first need to extend the list of join point
types. This is done by adding to a list of factory objects which the pointcut matcher
iterates over to find all join point shadows. The listShadowTypes method is defined in
the AbcExtension class and is overridden for eaj: (here and elsewhere, the element type
of a collection is indicated by a comment of the form /*<ShadowType>*/)



316 P. Avgustinov et al.

protected List /*<ShadowType>*/ listShadowTypes()
{

List /*<ShadowType>*/ shadowTypes =
super.listShadowTypes();

shadowTypes.add(CastShadowMatch.shadowType());
shadowTypes.add(ThrowShadowMatch.shadowType());
return shadowTypes;

}

The definitions of CastShadowMatch and ThrowShadowMatch are very simi-
lar and we therefore limit ourselves to discussing the former. The CastShadow-
Match.shadowType() method just returns an anonymous factory object that delegates
the work of finding a join point to a static method in the CastShadowMatch class. This
method, matchesAt(...), takes a structure describing a position in the program being wo-
ven into and returns either a new object representing a join point shadow or null. The
code for it is given in Fig. 5.

The purpose of the MethodPosition parameter is to allow abc to iterate through all
the parts of a method where a join point shadow can occur, and ask each factory object
whether one actually does. There are four types of MethodPosition for normal AspectJ
shadows:

– whole-body shadows: execution, initialization, preinitialization
– single-statement shadows: method call, field set, field get
– statement-pair shadows: constructor call
– exception-handler shadows: handler

public static CastShadowMatch
matchesAt(MethodPosition pos)

{
if (!(pos instanceof StmtMethodPosition))

return null;

Stmt stmt = ((StmtMethodPosition) pos).getStmt();

if (!(stmt instanceof AssignStmt))
return null;

Value rhs = ((AssignStmt) stmt).getRightOp();

if (!(rhs instanceof CastExpr))
return null;

Type cast to = ((CastExpr) rhs).getCastType();

return new CastShadowMatch(
pos.getContainer(), stmt, cast to);

}

Fig. 5. The CastShadowMatch.matchesAt(...) method



abc: An Extensible AspectJ Compiler 317

Most shadows either fall into the category of “whole body” or “single statement”. Two
are special, namely constructor call join points and handler join points. In both cases,
the special nature derives from the representation of their shadows in Java bytecode,
and consequently their representation in Jimple. In Java bytecode, a constructor call is
not a single instruction, but instead it consists of two separate instructions: new creates
a new instance, whereas invokespecial initialises it. A constructor call join point there-
fore encompasses both of these instructions. Handler join points can only be found by
looking at the exception handler table for a method, rather than its statements. If a new
join point requires an entirely new kind of method position, then the code that iterates
over them can be overridden.

The first job of the matchesAt(...) method is to check that we are at the appropriate
position for a cast pointcut, namely one with a single statement. Next, we need to check
whether there is actually a cast taking place at this position. The grammar of Jimple
makes this straightforward, as a cast operation can only take place on the right-hand
side of an assigment statement. If no such operation is found, we return null; otherwise
we construct an appropriate object.

Defining the CastShadowMatch class also requires a few other methods, connected
with defining the correct values to be bound by an associated args pointcut, report-
ing the information required to construct a JoinPoint.StaticPart object at runtime, and
recording the information that a pointcut matches at this shadow in an appropriate place
for the weaver itself to use. The details are straightforward, and we omit them for rea-
sons of space.

5.7 Extending the Pointcut Matcher

Again, we describe the implementation of the cast pointcut and omit discussion of the
almost identical throw pointcut. Once the corresponding join point shadow has been
defined, writing the appropriate back-end class is straightforward. The pointcut matcher
tries every pointcut at every join point shadow found, so all the cast pointcut has to do
is to check whether the current shadow is a CastShadowMatch, and if so verify that the
type being cast to matches the TypePattern given as argument to the cast pointcut:

protected Residue matchesAt(ShadowMatch sm)
{

if (!(sm instanceof CastShadowMatch))
return null;

Type cast to = ((CastShadowMatch) sm).getCastType();

if (!getPattern().matchesType(cast to))
return null;

return AlwaysMatch.v();
}
The AlwaysMatch.v() value is a dynamic residue that indicates that the pointcut

matches unconditionally at this join point. For those pointcuts where matching can-
not be statically determined, this is replaced by one which inserts some code at the
shadow to check the condition at runtime.



318 P. Avgustinov et al.

5.8 Extending the Run-Time Library

AspectJ provides dynamic and static information about the current join point through
thisJoinPoint and associated special variables. For the cast pointcut extension, this run-
time interface was extended to reveal the signature of the matching cast. For example,
the following aspect picks out all casts (except for the one in the body of the advice)
and uses run-time reflection to display the type that is being cast to at each join point:

import org.aspectbench.eaj.lang.reflect.CastSignature;

aspect FindCasts
{

before():
cast(*) && !within(FindCasts)

{
CastSignature s = (CastSignature)

thisJoinPointStaticPart.getSignature();

System.out.println(“Cast to: ” +
s.getCastType().getName());

}
}

Implementing this requires changes both in the back end of the compiler (where the
static join point information is encoded for the run-time library to read later), and the
addition of new run-time classes and an interface.

Static join point information is encoded in a string which is parsed at run time by a
factory class to construct the objects accessible from thisJoinPointStaticPart. This hap-
pens just once, namely in the static initialiser of the class where the join point shadow
is located. The alternative, which is to directly generate code to construct these objects,
would be expensive in terms of the size of the bytecode produced; using strings provides
a compact representation without too much run-time overhead.

The static information for a cast pointcut is encoded as follows. To allow us to eas-
ily reuse the existing parser for such strings, a fair amount of dummy information is
generated, corresponding to properties that cast join points do not have. For example,
modifiers such as public are important for join points that have a method or field signa-
ture associated with them, but make no sense for the cast join point. The string for the
cast pointcut is constructed from four parts:

– modifiers (encoded as an integer—0 for a cast)
– name (usually a method or field name, but for a cast it is just “cast”)
– declaring type—class in which the join point occurs
– type of the cast

For example, a cast join point within a method in the class IntHashTable which casts
the value retrieved from a HashMap to an Integer would produce the following encoded
string:
"0-cast-IntHashTable-Integer"



abc: An Extensible AspectJ Compiler 319

The run-time factory is subclassed to add a method that creates an object implement-
ing the new CastSignature interface for appropriate join points. The aforementioned
AbcExtension class has a method which specifies which run-time class should be used
as a factory for thisJoinPointStaticPart objects, which is overriden so that run-time
objects are created with the new factory:

public String runtimeSJPFactoryClass()
{

return
“org.aspectbench.eaj.runtime.reflect.EajFactory”;

}

5.9 Code Measurements

To enable the reader to assess the amount of effort involved in implementing each of
these new features, we have summarised some statistics in Fig. 6. The table shows the
size of the whole parser, and of the boilerplate for factories in the top and penultimate
row, respectively. The most interesting part is the breakdown by construct in the middle.
For private pointcut variables, all the work goes into defining new AST nodes, and
there is no need to define new passes or to touch the weaver in any way. By contrast,
global pointcuts require the introduction of new Polyglot passes, which reduce the new
construct to existing AspectJ constructs. Finally, for cast and throw pointcuts, there is
substantial work in the weaver, because these introduce a new type of join point.

eaj measurements Files Lines of code

Parsing 1 74
Private AST nodes 2 130
pointcut Passes 0 0
variables Weaver 0 0

Run time 0 0
Global AST nodes 4 64
pointcut Passes 1 77
declarations Weaver 0 0

Run time 0 0
Cast AST nodes 2 46
pointcuts Passes 0 0

Weaver 2 94
Run time 2 27

Throw AST nodes 2 46
pointcuts Passes 0 0

Weaver 2 91
Run time 2 16

Extension information
and shared classes

7 205

Total 27 870

Fig. 6. Code measurements for eaj



320 P. Avgustinov et al.

It is pleasing to us that the distinction between the examples is so sharp, as it gives
good evidence that the aim of modularity has been achieved. This claim is also backed up
by the fact that none of the extensions required any change to the code of the base com-
piler: the extensions are clearly separated plug-in modules. We believe that the amount
of code that needs to be written also meets the criterion of proportionality that was intro-
duced at the beginning of this paper. The criterion of simplicity is more difficult to mea-
sure, but we hope that the sample code in this section suffices to convince the reader that
we have succeeded in this respect as well. The examples presented here do not demon-
strate analysis capability: in Sect. 7 we do, however, discuss some more substantial case
studies done by others which make essential use of the analysis framework in abc.

6 Detailed Comparison to ajc

The de facto standard workbench for research into variations and extensions of AspectJ
is the ajc compiler. It has served this purpose admirably well, and, for example, [31,39]
report on the successful integration of substantial new features into ajc.

We believe that, in view of the explosion of research into new features and analyses,
the time has now come to disentangle the code of the base compiler from that of the
extensions. The benefits are illustrated by the table in Fig. 7. It compares the implemen-
tation of the throw pointcut in abc and ajc. In the case of ajc, we have to modify a large
number of existing files, thus tangling the new extension with the existing compiler
base. At the cost of some subclassed factories (and thus some more lines of code), abc
disentangles the two completely: there is no need to modify any part of the base code,
and abc extensions are clearly separated plug-in modules.

Throw pointcut statistics ajc abc
Core compiler/run-time files modified 8 0
throw-specific files created 2 6
Factory subclasses created - 5
Total files touched 10 11
Lines of code written1 103 187

Fig. 7. The throw pointcut in ajc and abc

These differences follow directly from the design goals of ajc, which are quite dif-
ferent from those of abc: it aims to be a production compiler, with very short compile
times and full integration with the Eclipse IDE. More information about ajc, including
a detailed description of its weaver, can be found in [27]. By contrast, abc’s overrid-
ing design goals are extensibility and optimisation, as well as a complete separation
from the components it builds on. In the remainder of this section, we make a detailed
comparison between the architecture of ajc and abc, in particular examining where the
different design goals led to different design decisions.

1 Note that the numbers in Fig. 7 for abc take into account the relevant lines of files, which are
listed under “Extension information and shared classes” in Fig. 6.



abc: An Extensible AspectJ Compiler 321

6.1 Separation from Components

To examine the way ajc and abc use their respective building blocks, we first measured
their size in lines of code, making a distinction between the front end and back end.
The overall size of ajc and abc are comparable, as shown in the following table. These
numbers were obtained in consultation with the authors of ajc, using the SLOCcount
tool:

ajc abc

Front end 10,197 16,444
Back end 23,938 17,397
Total 34,135 33,841

At first glance it appears that ajc’s front end is much smaller than that of abc. As we
shall see shortly, this is achieved at the cost of making numerous changes in the source
of the Java compiler it builds on—and these changes are not listed here. Furthermore,
abc uses Polyglot, which encourages the use of many tiny classes and requires a fair
amount of boilerplate for visitors and factories. Another notable point in the above
table is the small size of the back end of abc, which performs the most complex part of
the compilation process (weaving). This is explained by the use of a clean intermediate
representation, Jimple (which we present in more detail below in Sect. 6.3), as well as
the rich set of analyses available in the Soot framework. We now examine in some detail
how well ajc and abc are separated from the components that they build on.

Separation from Base Compiler: ajc. ajc builds on the Eclipse Java compiler. This
compiler has been written for speed: for example, it eschews the use of Java’s collection
classes completely, in favour of lower-level data structures. It also uses dispatch on
integer constants in favour of inheritance whenever appropriate.

Unfortunately, the architecture of the Eclipse compiler implies that ajc needs its
own copy of the source tree of that compiler, to which local changes have been applied.
These changes are by no means trivial: 44 Java files are changed, and there are at least
119 source locations where explicit changes are made. Furthermore, the grammar from
which the Eclipse parser is generated has been modified. For pointcuts, the new parser
simply reads in a string of “pseudotokens” that are then parsed by hand (using a top-
down parser) in the relevant semantic actions.

The 119 changes have complex dependencies. For example, the class that imple-
ments Java’s scope rules needs to be changed in eight places. It is because of such
changes to the Eclipse source tree that it can be fairly painful to merge ajc with the
latest version of the Eclipse compiler.

Separation from Base Compiler: abc. By contrast, abc does not require any changes
to the source of its base compiler, which is Polyglot. Polyglot has been carefully engi-
neered to be extensible, and indeed abc is just another Polyglot extension. The changes
to the scope rules are handled by introducing a new type for environments and a new
type system. These are implemented as simple extensions of the corresponding classes
in Polyglot. It is thus very easy to upgrade to new versions of Polyglot, even when
substantial changes are made to the base compiler.



322 P. Avgustinov et al.

There are 14 types of AST nodes in Polyglot where it is necessary to override some
small part of the behaviour. This is necessary, for example, because this has a different
semantics in AspectJ when it occurs inside an intertype declaration. However, since
Polyglot has been designed to allow changes of this nature to be made by subclassing,
rather than by changing the source of Polyglot itself, no extra work is required when
updating to a new version of Polyglot.

Finally, as we have described earlier, abc provides a clean LALR(1) grammar, pre-
sented in a modular fashion thanks to Polyglot’s parser generator, which allows a neat
separation between the Java grammar and that of an extension such as AspectJ.

Separation from Bytecode Manipulation: ajc. ajc uses BCEL, a library for directly
manipulating bytecode, in order to perform weaving and code generation. As in the case
of the base compiler, however, a special version of this library is maintained as part of
the ajc source tree. Originally this was regularly synchronised with the BCEL distribu-
tion, using a patch file of about 300 lines. The specialised version is now developed as
part of ajc, as BCEL is no longer actively maintained. The modified BCEL consists of
23,259 lines of code.

Separation from Bytecode Manipulation: abc. abc is completely separate from the
Soot transformation and code generation framework; no changes to Soot are required
whatsoever.

We conclude that abc is the first AspectJ compiler to achieve a clean-cut separation
between the components it builds on. It seems likely that it will be possible to port the
ideas that helped achieve this to extending other programming languages with aspect-
oriented features.

6.2 Compile Time

It is natural to inquire what the impact of using aspects is on the time taken to compile
a program: an AspectJ compiler does a lot more work than a pure Java compiler. To
assess this issue, we decided to compare four different AspectJ compilers: normal ajc,
ajc plus an optimisation pass of Soot over its output (ajc + soot), abc with all optimisa-
tions turned off (abc -O0), and abc with its default intraprocedural optimisations (abc).
We measured compile times for six benchmarks from [16], as shown in Fig. 8. Our
experiments were done on a dual 3.2-GHz Xeon with 4-GB RAM running Linux with
a 2.6.8 kernel. We compiled using abc 1.0.1, Soot 2.2.0, ajc 1.2.1 and javac 1.4.2. The
first column shows the benchmark name. We then give the size of the source in lines
(as counted with sloccount) and the number of times advice needs to be woven into a
shadow. The remainder of the columns show the four different compilers, plus javac
where applicable.

The first three AspectJ benchmarks (bean, figure, sim-nullptr) have Java equivalents,
where the weaving has been performed by hand (bean-java,figure-java,sim-nullptr-
java). As expected, aspect weaving has a significant impact on compile times. The main
reason is that an AspectJ compiler needs to make a pass over all generated code to iden-
tify shadows and possibly weave in advice. It may be possible to curtail such a pass,
for example, by determining from information in the constant pool that no pointcut can
match inside a given class. We plan to investigate such ways of reducing the extra cost



abc: An Extensible AspectJ Compiler 323

Benchmark SLOC APPS ajc ajc + Soot abc-O0 abc javac

bean 124 4 1.77 4.00 3.30 3.59 -
bean-java 104 0 1.43 3.21 3.05 3.03 0.54

sim-nullptr 1474 138 2.96 12.00 10.38 10.69 -
sim-nullptr-java 1547 0 1.75 6.52 7.45 8.64 0.76

figure 94 12 1.62 3.43 2.95 3.07 -
figure-java 98 0 1.25 2.83 2.63 2.65 0.51

LoD-sim 1586 1332 4.10 29.87 36.47 46.14 -

dcm 1668 359 3.37 17.07 14.74 17.43 -

tetris 1043 29 2.88 8.42 8.40 8.93 -

Fig. 8. Compile times using ajc, abc and javac (seconds)

of aspect weaving in future work. The last three benchmarks (LoD-cflow, dcm, tetris)
make heavy use of aspects so there are no hand-woven Java equivalents.

Overall, the compile times indicate that abc is significantly slower than ajc. This is
no surprise, as abc’s code has not been tuned in any way for compile-time performance,
whereas short compile times are an explicit design goal for ajc. The sim-nullptr bench-
mark is typical: the difference between abc and ajc for programs of a few thousand lines
is usually a factor of about 4. For examples where abc does a lot of optimisation, such
as LoD-sim, the gap can be slightly larger. For very large inputs, such as abc compiling
itself, the difference can be a factor of 14.

The compile times of abc reflect the cost of its powerful optimisation framework.
In particular, an appropriate comparison is not with ajc (which lacks such optimisation
capabilities), but with ajc + soot. This comparison shows that the compile times of abc
and ajc + soot are quite similar, which is encouraging.

It is furthermore pleasing that a research compiler such as abc can cope with very
sizeable examples (such as compiling itself); we believe that one natural use of abc
would be for optimised builds of programs whose day-to-day development is carried
out with ajc.

6.3 Weaving into Jimple (abc) Versus Weaving into Bytecode (ajc)

We illustrate the advantage of weaving into the three-address Jimple representation (as
abc does) compared to weaving directly into bytecode (as ajc does) with a simple ex-
ample of weaving a piece of advice before the call to method bar in the Java code
shown in Fig. 9a. The results of weaving into this code both directly on bytecode and
through Jimple are shown in Fig. 9b–d. In all cases, the instructions inserted in weaving
are shown in boldface.

Figure 9b shows the bytecode for the method after the call to the before advice has
been woven by ajc. Note that of the inserted bytecodes, only those at offsets 12 through
17 implement the lookup of the appropriate aspect and the call to the advice body. All
of the remaining bytecodes are stack fix-up code that must be generated to fix up the
implicit bytecode computation stack.



324 P. Avgustinov et al.

public int f(int x,int y,int z)
{

return bar(x, y, z);
}

(a) base Java code

public int f(int x,int y,int z)
0: aload_0
1: iload_1
2: iload_2
3: iload_3
4: istore %4
6: istore %5
8: istore %6
10: astore %7
12: invokestatic

A.aspectOf ()LA;
15: aload %7
17: invokevirtual

A.ajc$before$A$124 (LFoo;)V
20: aload %7
22: iload %6
24: iload %5
26: iload %4
28: invokevirtual Foo.bar (III)I
31: ireturn

(b) direct weaving into bytecode (ajc)

public int f(int,int,int)
{ Foo this;

int x, y, z, $i0;
A theAspect;

this := @this;
x := @parameter0;
y := @parameter1;
z := @parameter2;
theAspect = A.aspectOf();
theAspect.before$0(this);
$i0 = this.bar(x, y, z);
return $i0;

}
(c) weaving into Jimple (abc)

public int f(int x,int y,int z)
0: invokestatic A.aspectOf ()LA;
3: aload_0
4: invokevirtual

A.before$0 (LFoo;)V
7: aload_0
8: iload_1
9: iload_2
10: iload_3
11: invokevirtual Foo.bar (III)I
14: ireturn

(d) bytecode generated from Jimple (abc)

Fig. 9a–d. Weaving into bytecode versus weaving into Jimple

Figure 9c shows the Jimple code for the same method after the call to the before advice
has been woven by abc. The key difference is that Jimple does not use an implicit com-
putation stack. Instead, all values are denoted using explicit variables. Prior to weaving,
the Jimple code is as in Fig. 9c, but without the three lines in boldface. To weave, abc
needs only declare a Jimple variable, then insert the two lines to look up the aspect and
call the before advice. No additional code to fix up any implicit stack is needed.

Figure 9d shows the bytecode that Soot generates from the Jimple code from Fig. 9c.
This bytecode has the same effect as the ajc-generated code in Fig. 9b, but it is signif-
icantly smaller because of Soot’s standard backend optimisations. In addition, it uses
only three local variables, compared to seven required by the ajc-generated code. We
have observed that, even with modern JITs which perform register allocation, the ex-
cessive number of local variables required when weaving directly into bytecode has a
significant negative impact on the performance of the woven code.

6.4 Using Soot Optimisations in Weaving

The use of Soot as a back end for abc enables it to leverage Soot’s existing optimisation
passes to improve the generated code. This simplifies the design of the weaver, but



abc: An Extensible AspectJ Compiler 325

also enables aspect-specific optimisations that would be difficult or impossible to apply
directly during weaving. In these cases, the Java optimisations are typically augmented
with AspectJ-specific information.

For example, AspectJ makes a special variable named thisJoinPoint available in ad-
vice bodies. This variable contains various reflective information about the join point
that must be gathered at run time and is relatively expensive to construct, so both abc
and ajc implement “lazy” initialisation for this variable. This means that it is only con-
structed when it will really be needed by an advice body, but that it is never constructed
more than once even if more than one piece of advice applies at a join point. This is
done by first setting the variable to null, then initialising it with the proper value just
before advice is called, but only if it still contains null.

In ajc, the implementation does not work if there is any around advice at the join
point (for technical reasons), and it is special-cased to avoid the unnecessary laziness
if there is only one piece of advice at the join point. In abc, the lazy initialisation is
used in all cases, and a subsequent nullness analysis is used to eliminate the overhead
of the laziness in most cases (including the one where there is only one piece of advice).
The analysis is a standard Java one, which has been given the extra information that the
AspectJ run-time library method which constructs the thisJoinPoint object can never
return null. Thus, the implementation is simpler and more robust than the ajc version.

6.5 Performance of Object Code

It is beyond the scope of the present paper to do a detailed comparison of the efficiency
of code generated by ajc and abc. In earlier work, in preparation for the construction of
abc itself, we conducted a detailed study of the dynamic behaviour of aspect-oriented
programs [16]. Through a specially constructed set of measurement tools, we were able
to confirm the common belief that in many AspectJ programs the overhead introduced
by aspects is negligible. However, we were also able to identify common cases where
the overheads are surprisingly high. Motivated by these results, we made it an explicit
goal of abc to be able to experiment with new aspect-specific optimisations.

Because optimisations are an explicit design goal of abc, it is important that such
experiments are thorough and realistic. In a companion paper [7], we provide a detailed
account of the most important optimisations in abc, and of their effect on run times. The
reader is referred to that paper for a detailed technical account aimed at compiler writ-
ers; below we review the most salient points that are relevant to the present comparison
with ajc.

The first kind of optimisation is an improved implementation of around advice,
giving a six fold speedup on some benchmarks. In certain cases, ajc reverts to generating
closures in order to implement proceed. When this happens, a lot of heap space is
used, leading to very significant overheads. By contrast, in abc we are able to avoid the
construction of closures in all but very rare pathological cases. In cases where ajc does
not generate closures, it performs a great deal of inlining. This can result in significant
code bloat, especially where the advice is woven at many different join point shadows.
Again, the compilation strategy employed by abc strikes a careful balance between code
size and speed. This is illustrated in Fig. 10. Further details of the benchmarks can be
found in [7, 16].



326 P. Avgustinov et al.

Time (s) Size (instr.)
Benchmark abc ajc abc ajc

sim-nullptr 21.9 21.4 7893 10186
sim-nullptr-rec 23.6 124.0 8216 10724
weka-nullptr 19.0 16.0 103,018 134,290
weka-nullptr-rec 18.9 45.5 103,401 130,483
ants-delayed 17.5 18.2 3688 3785
ants-profiler 22.5 21.2 7202 13401

Fig. 10. Execution times and code size

abc ajc
Benchmark no-opt sharing sharing+ sharing+ +inter-proc 1.2 1.2.1

counters counters+ (no-opt) (sharing+
reuse counters)

figure 1072.2 238.3 90.3 20.3 1.96 450.5 167.7
quicksort 122.3 75.1 27.9 27.4 27.3 123.5 28.9
sablecc 29.0 29.1 22.8 22.5 20.4 29.7 24.2
ants 18.7 18.8 18.7 17.9 13.1 33.0 32.9
LoD-sim 1723.9 46.6 32.8 26.2 23.7 4776.2 35.3
LoD-weka 1348.7 142.5 91.9 75.2 66.3 2349.2 113.5
Cona-stack 592.8 80.1 41.2 27.4 23.1 1107.4 56.0
Cona-sim 75.8 75.3 73.8 72.0 73.6 76.8 69.0

Fig. 11. Optimisations of cflow

The second kind of optimisation is a set of intraprocedural improvements to cflow.
In ajc 1.2, the implementation of cflow used expensive manipulations of a stack, where
a simple counter would have sufficed. Also it retrieved the same thread-local state mul-
tiple times in a single procedure body, and it did not share work between multiple
occurrences of the same cflow pointcut. All these problems were eliminated in abc, and
compared to version 1.2 of ajc, these small optimisations yield improvements of 182×
(the LoD-sim benchmark). The simplest of these optimisations (counters and sharing)
were incorporated into ajc 1.2.1.

In earlier work, prior to the start of the abc project, we showed how an interprocedu-
ral analysis can be used to completely eliminate the cost of cflow [40]. This is a good
example where the full analysis capabilities of abc come into play. The essential idea is
to construct a static approximation of the dynamic call graph, so that for each shadow,
we can determine at compile time whether it will be in the cflow of a given pointcut.
Such call graph construction is notoriously hard [21], and thus it is important that we
do not need to construct a new analysis from scratch for AspectJ, or indeed for every
extension of AspectJ.

We would therefore like to leverage existing analyses for pure Java. To that end,
abc provides the technique of reweaving, which we briefly touched upon in Sect. 2,
in particular Fig. 2. The compiler does a first pass over the program, weaving advice



abc: An Extensible AspectJ Compiler 327

naively. The result of this process is a representation of the complete program as pure
Jimple code, without any aspect-oriented features. This is then analysed in the usual
manner. The results of the analysis are fed back into an optimiser of the advice-lists,
which can be viewed as little metaprograms that contain instructions to the weaver.
The optimisations usually consist of turning a piece of dynamic residue (like updates
of the cflow stack) into a no-op.

The effectiveness of our optimisations of cflow is shown in Fig. 11. The message for
researchers who wish to implement their own advanced extensions to AspectJ is that
abc provides the necessary infrastructure to overcome the challenge of implementing
these new features efficiently. It is our belief that new proposals for robust semantic
pointcuts (e.g., [15, 45]) necessitate the same type of optimisations and analyses that
we have used to make cflow efficient.

7 Related Work

The related work falls into two parts. First of all, others have made an independent
assessment of the extensibility of abc, by implementing extensions of their own. We
first discuss some of these. Second, we review a number of alternative proposals for
building an AOP language workbench, and we contrast them with the approach taken
in abc.

7.1 Users of abc

Harbulot and Gurd apply aspect-oriented techniques to parallelise scientific code [25].
For these applications, it is imperative to be able to define join points for loop iteration.
The alternative is to refactor the code to expose such join points via spurious method
calls. It is, however, not an easy task to define a robust notion of loop join points that
does not depend on the syntactic presentation of the code. This problem is addressed
in [26], and solved by a language extension that is implemented in abc.

To illustrate, suppose that we wish to advise loop iterations over a given array. Say
we want to intercept the loop

for (int i = 0; i < array.length; i + = 1) {
Object item = array[i];
. . .

}

In the proposed extension of Harbulot and Gurd, this can be achieved with the pointcut

pointcut arrit(Object[] array, int min, int max, int stride) :
loop() && args(min, max, stride, array);

Note, however, that it is highly nontrivial to detect the relevant patterns in bytecode.
Their implementation first recovers loop structure by computing dominators, and then it
does a flow analysis of the loop body to determine the loop variable, its lower and upper
bound (0 and array.length above), as well as the stride (1 in the above example). The
join point shadow matching depends on the precision of these analyses: there may be



328 P. Avgustinov et al.

loop iterations for which the correct min, max and stride cannot be statically determined.
The implementation described by [26] does however work independent of whether the
user employed while or for to express a computation.

This case study thus provides a good example of the need for strong analysis capa-
bilities in an extensible compiler for AspectJ. Similar examples abound in the literature,
such as Kiczales’ predicted cflow. The analysis capabilities of abc are also indispens-
able to efficiently implement advanced pointcuts such as the dataflow pointcut of [31].

Stolz and Bodden propose to use aspect-orientation for the run-time verification of
temporal properties. They define an extension of AspectJ where the user can specify
properties as LTL formulae [42]. The implementation is an extension of abc.

The atoms of the LTL formulae are pointcuts; and a formula as a whole is translated
into an alternating automaton, coded as a regular AspectJ aspect. The translation is thus
done entirely using Polyglot, and no changes to the backend are needed. This illustrates
one of the advantages of our architecture: it has a gentle learning curve, and there is no
need to enter into the complications of generating Jimple if that is not desired.

Experience seems to suggest that many beginning users of abc start by implementing
an extension as a source-to-source transformation very early on in the compiler, even
prior to name disambiguation. Then, when more sophisticated error checking is re-
quired, the transformation is moved later and is delayed until all checking is complete.
Indeed, such is the intended use of the Polyglot framework.

In the case of these novel features for runtime verification, however, there would
be a clear benefit to delaying at least part of the code generation even further, so that
it is possible to take advantage of the analysis framework in the backend to examine
control flow. Again, abc provides all support necessary for making such a step from the
implementation described in [42].

Aotani and Masuhara. It is natural to seek language-level mechanisms to enhance
the expressive power of pointcuts. A particularly promising approach is put forward by
Aotani and Masuhara [3], and they have implemented it with abc. Here the idea is to
use if pointcuts and join point reflection to conveniently express pointcuts such as “all
calls where the declared type of the receiver is an interface”:

pointcut interfaceCall() :
call(∗ ∗(..)) && if(isInterface(thisJoinPoint));

static boolean isInterface(JoinPoint tjp) {
return tjp.getSignature().getDeclaringType().isInterface();

}
When used directly in AspectJ, this would lead to quite inefficient code. Instead,

Aotani and Masuhara adopt the perspective of partial evaluation, evaluating if pointcuts
at compile time. Strictly speaking, this is therefore not an extension of the AspectJ
language, but rather a change in compilation strategy. Again both the Polyglot-based
front end and the Soot-based back end lend themselves very well to implementing such
transformations.

Other Extensions of abc. The overview above is not exhaustive, and many other re-
searchers are actively developing extensions of abc. Examples include DJCutter (a dis-



abc: An Extensible AspectJ Compiler 329

tributed AOP language) [36], Cona (a tool for checking contracts) [41], trace-based
aspects [15, 45], a model checker for aspects [30], and tools to perform tasks such as
slicing [46]. We are very encouraged by all these developments, and we believe it pro-
vides fairly strong independent evidence of the claims for abc’s extensibility made in
this paper.

7.2 Other Workbenches for AOP Language Research

Of course, we are not the first to realise the need for a workbench to conduct aspect-
oriented programming language research, and below we review some earlier approaches
put forward by others.

Javassist. Javassist is a reflection-based toolkit for developing Java bytecode translators
[11]. Compared to other libraries such as BCEL, it has the distinguishing feature that
transformations can be described using a source-level vocabulary. Compared to abc, it
provides some of the combined functionality of the Java-to-Jimple translator plus the
advice weaver, but its intended applications are different: in particular, it is intended for
use at load time. Consequently, Javassist does not provide an analysis framework like
Soot does in abc. In principle, such a framework could be added, but it would require
the design of a suitable intermediate representation akin to Jimple.

Josh. Josh is an open implementation of an AspectJ-like language based on Javassist
[10], and as such it is much closer in spirit to abc. Indeed, the primary purpose of Josh
is to experiment with new pointcut designators, although it can also be used for features
such as parametric introductions. Because of the implementation technology, there is no
special support for the usual static checks in the frontend, which is provided in abc by
the infrastructure of Polyglot. Josh does not cover the whole of AspectJ, which limits
its utility in realistic experiments.

Logic Metaprogramming. A more radical departure from traditional compiler tech-
nology is presented by logic metaprogramming, as proposed by [13, 22]. Here, pro-
gram statements where extra code should be woven in are selected by means of full-
fledged Prolog programs. This adds significant expressive power, and, like Josh, the
design makes it easy to experiment with new kinds of pointcuts. The system operates
on abstract syntax trees, which are not a convenient representation for transformation
and analysis—many years of research in the compilers community have amply demon-
strated the merits of a good intermediate representation. A further disadvantage, in our
view, is the lack of static checks due to the increased expressive power. The success of
AspectJ can partly be explained by the fact that it provides a highly disciplined form of
metaprogramming; some of that discipline is lost in logic metaprogramming, because
the full power of Prolog precludes certain static checks. Nevertheless, a system based on
these ideas is publicly available [44], and it is used as a common platform by a number
of researchers.

Pointcuts as Functional Queries. Eichberg, Mezini and Ostermann have very recently
suggested an open implementation of pointcuts, to enable easy experimentation with
new forms of pointcuts [18]. Their idea is closely related to that of logic metaprogram-
ming, namely to use a declarative query language to identify join point shadows of



330 P. Avgustinov et al.

interest. A difference is that they opt for the use of the XML query language XQuery
instead of a logic language. Furthermore, [18] only deals with static join points. As
argued in the introduction, several recent proposals for new pointcut primitives require
data flow analyses. We believe that it is not convenient to express such analyses via
queries on syntax trees. It is, however, quite easy to transfer some of the ideas of [18]
to abc, by letting the queries range over Polyglot ASTs. A challenge, then, is to define
appropriate type rules to implement as part of the frontend.

8 Conclusions and Future Work

We have presented abc, and its use as a workbench for experimentation with extensions
of AspectJ. Our primary design goal was to completely disentangle new features from
the existing codebase, and this goal has been met. In particular, extensions need not
make any changes to the code of the base compiler: they are truly separated plugin
modules. We hope that such disentangling will enable yet more rapid developments in
the design of aspect-oriented programming languages, and the integration of ideas from
multiple research teams into a single system, where the base can evolve independently
of the extensions.

This project has also been an evaluation of the extensibility of Polyglot and Soot,
from the perspective of aspect-oriented software development. We now summarise their
role in the extensibility of our design, and identify possible improvements.

Polyglot. Polyglot turned out to be highly suited to our purposes. Its extension mech-
anisms are exactly what is needed to implement AspectJ itself as an extension of Java,
with only minimal code duplication. This in turn makes the development of abc rela-
tively independent of further improvements to Polyglot.

As we have remarked earlier, the Polyglot mechanism of delegates mimicks that of
ordinary intertype declarations, whereas extension nodes roughly correspond to what
an AspectJ programmer would naturally do via declare parents and interface inter-
type declarations. Polyglot achieves this effect by cunningly creating a replica of the
inheritance hierarchy in code, which then provides the hooks for appropriate changes.
Arguably that mechanism is somewhat brittle, and it is certainly verbose, replicating the
same information in multiple places of the code.

We thus face the question whether it would be possible to extend abc using AspectJ,
or indeed any other dialect of Java that features open classes. The answer is in the
positive, as abc is written in pure Java. Todd Millstein has used Relaxed MultiJava [35]
in precisely this way, using open classes in lieu of Polyglot’s delegate and extension
nodes, to implement his recent work on predicate dispatch [34]. It follows that users
who prefer to use AspectJ to extend abc can do so without further ado.

Would the result be more compact and understandable code? Unfortunately, a sig-
nificant proportion of Polyglot’s extensions is taken up by boilerplate code for generic
visitors in each new AST node. To generate that automatically, one would need reflec-
tion or a feature akin to parametric introductions [23]. The reflection route has been
used with much success, in a framework by Hanson and Proebsting [24] that is very
similar to Polyglot.



abc: An Extensible AspectJ Compiler 331

On the whole we feel our choice of Polyglot has been justified. To further assess its
merits, we are now engaged in a comparative study of Polyglot’s extension mechanism
and more advanced technologies such as aspect-oriented reference attribute grammars
[19]. In particular, we would like to investigate how multiple, independent extensions
can be composed.

Soot. The choice of Soot as the basis for our code generation and weaver has had
a fundamental impact not only on the quality of the code that is generated, but also
on the ease by which the transformations are implemented. The Jimple intermediate
representation of Soot has been honed on a great variety of optimisations and analyses
before we applied it to abc, and we reap the benefits of this large body of previous work.

Equally important has been the use of the Dava decompiler that is part of the Soot
framework. This makes it much easier to pinpoint potential problems, and to commu-
nicate the ideas about code generation to others. It also opens the way to exciting new
visualisations, for example to indicate at source level exactly what dynamic residue was
inserted at a join point shadow.

In the comparison with ajc we demonstrated the importance of the analysis frame-
work in Soot: it is indispensable to eliminate the overheads of advanced language fea-
tures such as cflow. The need for such optimisation is likely to increase with new pro-
posed extensions such as predicted control flow [29], data flow pointcuts [31] and trace
cuts [14, 45]. Apart from optimisation, Soot’s analysis capabilities are also crucial in
the robust implementation of new pointcuts, for instance, those for loop iteration [26].

In summary, we have demonstrated (both through experiments of our own and by
reviewing work of others) that abc provides an extensible framework for experiments
in the design of aspect-oriented programming languages, meeting the criteria of sim-
plicity, modularity, proportionality and analysis capability set out in the introduction.
The next step in its development, namely the upgrade to Java 1.5, will provide a further
opportunity to hone these characteristics. Soot is ready for this transition, but Polyglot
still needs to be updated to Java 1.5.

Acknowledgments

This work was supported, in part, by NSERC in Canada and EPSRC in the United King-
dom. Our thanks to Chris Allan for his comments on a draft of this paper. Adrian Colyer
gave helpful advice on how to collect relevant statistics regarding the source of ajc.

References

[1] abc. The AspectBench Compiler. Home page with downloads, FAQ, documentation, sup-
port mailing lists, and bug database. http://aspectbench.org. Cited 1 February 2006

[2] Jonathan Aldrich. Open Modules: Modular Reasoning about Advice. In Andrew Black,
(ed.) ECOOP 2005: 19th European Conference on Object-Oriented Programming, LNCS
vol. 3586, Springer, Berlin Heidelberg Newyork, pp. 144–168, 2005

[3] Tomoyuki Aotani and Hidehiko Masuhara. Compiling conditional pointcuts for user-level
semantic pointcuts. In Proceedings of the SPLAT workshop at AOSD 2005, http://www.
daimi.au.dk/ eernst/splat05/. 2005



332 P. Avgustinov et al.

[4] AspectJ bug database. Wrong variable binding in || pointcuts. https://bugs.eclipse.org/bugs/
show bug.cgi?id=61568, 2004

[5] AspectJ bug database. ITD on inner class: missing accessor method. https://bugs.eclipse.
org/bugs/show bug.cgi?id=73856, 2005

[6] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. abc: An extensible AspectJ compiler. In: Peri Tarr, (ed.) AOSD 2005: 4th Interna-
tional Conference on Aspect-Oriented Software Development, ACM, pp. 87–98, 2005

[7] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. Optimising AspectJ. In: Vivek Sarkar and Mary W. Hall (eds.) PLDI 2005: ACM
SIGPLAN Conference on Programming Language Design and Implementation, ACM, pp.
117–128, 2005

[8] Jonas Bonér. AspectWerkz — dynamic AOP for Java. http://codehaus.org/ jboner/papers/
aosd2004 aspectwerkz.pdf, 2004

[9] Michael Brukman and Andrew C. Myers. PPG: a parser generator for extensible grammars,
www.cs.cornell.edu/Projects/polyglot/ppg.html. 2003

[10] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open AspectJ-like language. In: Karl
Lieberherr (ed.) AOSD 2004: 3rd International Conference on Aspect-Oriented Software
Development, pp. 102–111, 2004

[11] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient Java bytecode
translators. In: Frank Pfenning and Yannis Smaragdakis (eds.) GPCE ’03: 2nd Interna-
tional Conference on Generative Programming and Component Engineering, LNCS vol.
2830, Springer, pp. 364–376, 2003

[12] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware. In: Karl Lieber-
herr (ed.) AOSD 2004: 3rd International Conference on Aspect-Oriented Software Devel-
opment, ACM, pp. 56–65, 2004

[13] Kris de Volder. Aspect-oriented logic meta-programming. In: Pierre Cointe (ed.) 2nd Inter-
national Conference on Meta-level Architectures and Reflection, LNCS vol. 1616, Springer,
Berlin Heidelberg New York, pp. 250–272, 1999

[14] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction anal-
ysis of stateful aspects. In: Karl Lieberherr (ed.) AOSD 2004: 3rd International Conference
on Aspect-Oriented Software Development, ACM, pp. 141–150, 2004

[15] Rémi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In: Robert Filman,
Tzilla Elrad, Siobhan Clarke, and Mehmet Akşit (eds.) Aspect-Oriented Software Develop-
ment, Addison-Wesley, 2004

[16] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor, Ganesh Sittampalam,
and Clark Verbrugge. Measuring the dynamic behaviour of AspectJ programs. In: Pro-
ceedings of the 19th ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, ACM, pp. 150–169, 2004

[17] Chris Dutchyn, Gregor Kiczales, and Hidehiko Masuhara. Tutorial: AOP language explo-
ration using the Aspect Sand Box. In: Gregor Kiczales (ed.) AOSD 2002: 1st International
Conference on Aspect-Oriented Software Development, ACP, 2002

[18] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as functional queries. In:
Wei-Ngan Chin (ed.) APLAS 2004: Second ASIAN Symposium on Programming Languages
and Systems, LNCS vol. 3302, Springer, Berlin Heidelberg New York, pp. 366–381, 2004

[19] Torbjörn Ekman and Görel Hedin. Rewritable reference attributed grammars. In: Martin
Odersky (ed.) ECOOP 2004: 18th European Conference on Object-Oriented Program-
ming, LNCS vol. 3086, Springer, Berlin Heidelberg New York, pp. 144–169, 2004



abc: An Extensible AspectJ Compiler 333

[20] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference of static
types for Java bytecode. In: Jens Palsberg (ed.) Static Analysis Symposium, LNCS vol.
1824, Springer, Berlin Heidelberg New York, pp. 199–219, 2000

[21] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph construction
in object-oriented languages. In: Toby Bloom (ed.) OOPSLA: ACM Conference on Object-
Oriented Programming Systems, Languages and Applications, ACM, pp. 108–124, 1997

[22] Kris Gybels and Johan Brichau. Arranging language features for more robust pattern-based
crosscuts. In: Mehmet Akşit (ed.) AOSD 2003: 2nd International Conference on Aspect-
Oriented Software Development, ACM, pp. 60–69, 2003

[23] Stefan Hanenberg and Rainer Unland. Parametric introductions. In: Mehmet Akşit (ed.)
AOSD 2003: 2nd International Conference on Aspect-Oriented Software Development,
ACM, pp. 80–89, 2003

[24] David Hanson and Todd Proebsting. A research C# compiler. Software — Practice and
Experience, 34(13):1211–1224, 2004

[25] Bruno Harbulot and John R. Gurd. Using AspectJ to separate concerns in parallel scientific
Java code. In: Karl Lieberherr (ed.) AOSD 2004: 3rd International Conference on Aspect-
Oriented Software Development, ACM, pp. 122–131, 2004

[26] Bruno Harbulot and John R. Gurd. A join point for loops in AspectJ. In: Curtis Clifton,
Ralf Lämmel, and Gary T. Leavens (eds.) FOAL 2005: Foundations of Aspect-Oriented
Languages, pp. 11–20, 2005. Technical report 05-05, Department of Computer Science,
Iowa State University. http://www.cs.iastate.edu/ leavens/FOAL/index-2005.shtml

[27] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In: Karl Lieberherr (ed.)
AOSD 2004: 3rd International Conference on Aspect-Oriented Software Development,
ACM, pp. 26–35, 2004

[28] Jim Hugunin. Guide for developers of the AspectJ compiler and weaver, 2004. http://dev.
eclipse.org/ viewcvs/index.cgi/ checkout / org.aspectj/ modules/ docs/ developer/ compiler-
weaver/ index.html? rev=1.1& content-type=text/html& cvsroot=Technology Project

[29] Gregor Kiczales. The fun has just begun. Keynote address at AOSD. aosd.net/archive/2003/
kiczales-aosd-2003.ppt. 2003

[30] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying aspect advice mod-
ularly. In: Richard N. Taylor and Matthew B. Dwyer (eds.) ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, pp. 137–146, 2004

[31] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-oriented pro-
gramming. In: Atsushi Ohori (ed.) 1st Asian Symposium on Programming Languages and
Systems, LNCS vol. 2895, Springer, Berlin Heidelberg New York, pp. 105–121, 2003

[32] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A compilation and optimization
model for aspect-oriented programs. In: Görel Hedin (ed.) 12th International Conference
on Compiler Construction, LNCS vol. 2622, Springer, Berlin Heidelberg New York, pp.
46–60, 2003

[33] Jerome Miecnikowski and Laurie J. Hendren. Decompiling java bytecode: problems, traps
and pitfalls. In: R. Nigel Horspool (ed.) 11th International Conference on Compiler Con-
struction, LNCS vol. 2304, Springer, Berlin Heidelberg New York, pp. 111–127, 2002

[34] Todd Millstein. Practical predicate dispatch. In: John M. Vlissides and Douglas C. Schmidt
(eds.) OOPSLA 2004: Conference on Object-Oriented Programming, Systems, Languages
and Applications, ACM, pp. 345–364, 2004

[35] Todd Millstein, Mark Reay, and Craig Chambers. Relaxed MultiJava: Balancing extensi-
bility and modular typechecking. In: Ron Crocker and Guy L. Steel Jr. (eds.) OOPSLA
2003: Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions, ACM, pp. 224–240, 2003



334 P. Avgustinov et al.

[36] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Remote pointcut—a language
construct for distributed AOP. In: Karl Lieberherr (ed.) AOSD 2004: 3rd International
Conference on Aspect-Oriented Software Development, ACM, pp. 7–15, 2004

[37] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible
compiler framework for Java. In: Görel Hedin (ed.) 12th International Conference on
Compiler Construction, LNCS vol. 2622, Springer, Berlin Heidelberg New York, pp. 138–
152, 2003

[38] Harold Ossher and Peri Tarr. Hyper/J: multi-dimensional separation of concerns for java.
In: 22nd International Conference on Software Engineering, pp. 734–737, 2000

[39] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi, Saeko Matsuura, and Seiichi
Komiya. Association aspects. In: Karl Lieberherr (ed.) AOSD 2004: 3rd International
Conference on Aspect-Oriented Software Development, ACM, pp. 16–25, 2004

[40] Damien Sereni and Oege de Moor. Static analysis of aspects. In: Mehmet Akşit (ed.)
AOSD 2003: Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development, ACM, pp. 30–39, 2003

[41] Therapon Skotiniotis and David H. Lorenz. Cona: aspects for contracts and contracts for
aspects. In: OOPSLA ’04: Companion to the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, ACM, pp. 196–197,
2004

[42] Volker Stolz and Eric Bodden. Temporal Assertions using AspectJ. In: Fifth Workshop on
Runtime Verification (RV’05), Electronic Notes in Theoretical Computer Science, Elsevier
Science, 2005

[43] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville, and
Vijay Sundaresan. Optimizing Java bytecode using the Soot framework: Is it feasible? In:
David A. Watt (ed.) CC 2000: Compiler Construction, 9th International Conference, pp.
18–34, 2000

[44] Kris De Volder. The TyRuBa metaprogramming system. http://tyruba.sourceforge.net/
[45] Robert Walker and Kevin Viggers. Implementing protocols via declarative event patterns.

In: FSE-12: ACM Sigsoft International Symposium on Foundations of Software Engineer-
ing, pp. 159–169, 2004

[46] Jianjun Zhao. Slicing aspect-oriented software. In: 10th IEEE Workshop on Program
Comprehension, pp. 251–260, 2002



Author Index

Aracic, Ivica 135
Avgustinov, Pavel 293

Bajracharya, Sushil Krishna 1
Bieman, J.M. 75

Christensen, Aske Simon 293

de Moor, Oege 293
Douence, Rémi 174

Fernandes, João M. 214
Figueiredo, Eduardo 36
France, R.B. 75
Fritz, Thomas 174

Garcia, Alessandro 36
Gasiunas, Vaidas 135
Georg, G. 75
Ghosh, S. 75

Hendren, Laurie 293

Katz, Shmuel 106
Komiya, Seiichi 259
Kulesza, Uirá 36
Kuzins, Sascha 293

Lhoták, Jennifer 293
Lhoták, Ondřej 293

Lopes, Cristina Videira 1
Loriant, Nicolas 174
Lucena, Carlos 36

Masuhara, Hidehiko 259
Matuura, Saeko 259
McEachen, N. 75
Menaud, Jean-Marc 174
Mezini, Mira 135
Monteiro, Miguel P. 214

Ostermann, Klaus 135

Reddy, Y.R. 75

Sakurai, Kouhei 259
Sant’Anna, Cláudio 36
Ségura-Devillechaise, Marc 174
Sereni, Damien 293
Sittampalam, Ganesh 293
Song, E. 75
Straw, G. 75
Südholt, Mario 174

Tibble, Julian 293

Ubayashi, Naoyasu 259

von Staa, Arndt 36


	Frontmatter
	Assessing Aspect Modularizations Using Design Structure Matrix and Net Option Value
	Modularizing Design Patterns with Aspects: A Quantitative Study
	Directives for Composing Aspect-Oriented Design Class Models
	Aspect Categories and Classes of Temporal Properties
	An Overview of CaesarJ
	An Expressive Aspect Language for System Applications with Arachne
	Towards a Catalogue of Refactorings and Code Smells for AspectJ
	Design and Implementation of an Aspect Instantiation Mechanism
	{\itshape abc} : An Extensible AspectJ Compiler
	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




