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Abstract. We describe two widely used methods for the design and
analysis of approximation algorithms, the primal-dual schema and the
local ratio technique. We focus on the creation of both methods by revis-
iting two results by Bar-Yehuda and Even—the linear time primal-dual
approximation algorithm for set cover, and its local ratio interpretation.
We also follow the evolution of the two methods by discussing more
recent studies.

1 Introduction

We describe two approximation methods for solving combinatorial optimization
problems, the primal-dual schema and the local ratio technique. We specifically
focus on the contribution of two papers written by Reuven Bar-Yehuda and
Shimon Even in the early 1980’s. In their first paper [8] Bar-Yehuda and Even
presented a linear programming (LP) based approximation algorithm for the set
cover problem, and for its the well known special case, the vertex cover prob-
lem. The idea of using linear programming for approximating set cover was
not new—it was used before by Chvátal [17] and Hochbaum [24]. However, the
specific way in which linear programming was used was new. Bar-Yehuda and
Even’s algorithm [8] constructs simultaneously a primal integral solution and a
dual feasible solution without solving either the primal or dual programs. Their
algorithm was the first to operate in this way, which later became known as the
primal-dual schema. The local ratio technique was first used about a couple of
years later in a second paper by Bar-Yahuda and Even [9] that deals with the
set cover problem. In this paper they presented a local ratio analysis of the algo-
rithm from [8]. They also developed a (2− log log n

2 log n )-approximation algorithm for
the vertex cover problem, which is partially based on the local-ratio technique.
Over the years the two methods have become immensely popular. Numerous
algorithms which use either the primal-dual schema or the local ratio technique
were published. Almost two decades later, Bar-Yehuda and Rawitz [13] proved
that the two methods are actually equivalent.
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Before going any further, we present some basic concepts relating to combi-
natorial optimization and approximation algorithms. An optimization problem
is a problem consisting of a set of possible instances. Each possible instance has
a set of candidate solutions, called feasible solutions, each of which is associated
with a weight. In a minimization (resp., maximization) problem our goal is to
find a feasible solution of minimum (resp., maximum) weight. Such a solution
is called an optimal solution. The weight of an optimal solution is call the opti-
mum. For example, in the vertex cover problem, an instance consists of a simple
graph G = (V, E), and a weight function w on the vertices. A solution is a set of
vertices, and a feasible solution is a subset U ⊆ V such that each edge in E has
at least one end-point in U . Such a feasible solution is called a vertex cover. The
weight of a vertex cover U is the total weight of the vertices in U . In the vertex
cover problem our goal is to obtain a minimum weight vertex cover. The special
case in which w(u) = 1 for every u ∈ V is referred to as the unweighted vertex
cover problem. In this problem, our goal is to find a vertex cover of minimum
cardinality.

Since the vertex cover problem and many other optimization problems are
NP-hard, we are forced to compromise. Instead of seeking algorithms that com-
pute optimal solutions in polynomial time, we are willing to settle for efficient
algorithm that compute near optimal solutions, or approximate solutions. A solu-
tion whose weight is within a factor of r of the optimum is called r-approximate.
An r-approximation algorithm is an algorithm that computes r-approximate so-
lutions.

For example, consider Algorithm UnweightedVC which is a 2-
approximation algorithm for unweighted vertex cover due to Gavril (see [20]).

Algorithm 1 - UnweightedVC(G): a 2-approximation algorithm for vertex
cover
1: U ← ∅
2: while there exists an uncovered edge do
3: Let (u, v) be an uncovered edge
4: U ← U ∪ {u, v}
5: end while
6: Return U

Clearly, this algorithm runs in linear time. Also, U is a vertex cover because
this is the termination condition of the algorithm. However, how close is the
size of the solution U to the size of an optimal vertex cover? We show that the
size of U is quite close to the optimum by proving that it is not more than
twice the optimum. Denote by M the set of edges that are considered in Line 3.
Clearly, M is a maximal matching. Since there are no two edges in M that share
a common vertex, any vertex cover must be at least as large as M . Hence, if U∗

is an optimal vertex cover, then |U | = 2|M | ≤ 2|U∗|.
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Consider the analysis of Algorithm UnweightedVC. It is based on the fol-
lowing simple idea. First, we find a lower bound on the optimum value and then
we show that the size of the solution computed by the algorithm is bounded by
r times the lower bound, where r is the approximation ratio of the algorithm.
The bound in our case is the size of M . This theme is widely used in the field of
approximation algorithms, especially in approximation algorithm that are based
on linear programming—many combinatorial optimization problems can be ex-
pressed as linear integer programs, and the value of an optimal solution to their
LP-relaxation provides the desired bound.

As we shall see in the sequel, algorithms that fall within the scope of either
the primal-dual schema or the local ratio technique use a variation on the lower
bound idea (or, upper bound, in the maximization case). Let W denote the
weight of the solution computed by the algorithm. Instead of finding directly
some lower bound B on the optimum such that W ≤ r · B, we break down
the weight of the solution into a sum of partial weights W = W1 + . . . + Wk.
Then, for each such partial weight Wi we find a “partial” lower bound Bi such
that Wi ≤ r · Bi. Our solution is r-approximate since the sum of the partial
lower bounds is not greater than the optimum. In both methods the breakdown
of W is determined by the manner in which the solution is constructed by the
algorithm. In fact, the algorithm constructs the solution in such a manner as to
ensure that such a breakdown exists. The breakdown is done in steps, where in
the ith step, the algorithm determines the ith partial weight, and the ith lower
bound Bi. In the primal-dual schema the partial weight and bound are induced
by an increase of the dual solution, while in the local ratio technique they are
determined by the construction of a weight function.

The remainder of this essay is organized as follows. In Section 2 we present
several basic results in the area of linear programming, and formally define the
problems that we consider in this essay. Bar-Yehuda and Even’s [8] primal-dual
approximation algorithm for set cover is presented, in hitting set terms, in Sec-
tion 3. Afterwards, we give a general description of the schema, and demonstrate
it on an extension of the hitting set problem called generalized hitting set. The
local ratio version of the approximation algorithm for set cover [9] is given in
Section 4. This section also contains a general description of the local ratio
technique, and a local ratio algorithm for generalized hitting set. Finally, in Sec-
tion 5 we survey results that were obtained in both methods during the last two
decades, and discuss the connection between the two methods.

2 Preliminaries

2.1 Linear Programming

In this section we state several basic facts from the theory of linear programming.
Note that the section is written in terms of minimization problems. (Similar
arguments can be made in the maximization case.) For more details about linear
programming the reader is referred to, e.g., [28, 29, 31].
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Consider the following linear integer program:

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi ∀i ∈ {1, . . . , m}

xj ∈ N ∀j ∈ {1, . . . , n}

(IP)

The LP-relaxation of IP is obtained by removing the integrality constraints:

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi ∀i ∈ {1, . . . , m}

xj ≥ 0 ∀j ∈ {1, . . . , n}

(P)

Let opt(IP) and opt(P) denote the optimum of IP and P, respectively.
Notice that any feasible solution of IP is also feasible with respect to P. Hence,

Observation 1 opt(P) ≤ opt(IP).

We refer to P as the primal linear program. The following linear program is
the dual of P:

max
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≤ cj ∀j ∈ {1, . . . , n}

yi ≥ 0 ∀i ∈ {1, . . . , m}

(D)

A solution of P is called a primal solution, and a solution of D is called a
dual solution. A solution of IP is referred to as an integral primal solution.

The connection between the primal and dual optima is given by the following
two theorems (the second is given without proof):

Theorem 2 (Weak Duality). Let x and y be a pair of primal and dual solu-
tions. Then, bT y ≤ cT x.

Proof.

n∑

j=1

cjxj ≥
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑

i=1




n∑

j=1

aijxj



 yi ≥
m∑

i=1

biyi (1)

where the first inequality follows from a summation of the dual constraints, and
the second follows from a summation of the primal constraints. ��
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Theorem 3 (Strong Duality). Let x∗ and y∗ be a pair of optimal primal and
dual solutions. Then, bT y∗ = cT x∗.

It follows that

Observation 4 Let x be an integral primal solution, and let y be a dual solution.
Then, bT y ≤ opt(D) = opt(P) ≤ opt(IP) ≤ cT x.

The Strong Duality Theorem provides us with a way to characterize a primal-
dual pair of optimal solutions.

Theorem 5 (Complementary Slackness Conditions). Let x and y be a
pair of primal and dual solutions. Then, x and y are optimal if and only if the
following conditions, called the complementary slackness conditions, are satis-
fied:

Primal conditions: ∀j, xj > 0⇒
m∑

i=1

aijyi = cj

Dual conditions: ∀i, yi > 0 ⇒
n∑

j=1

aijxj = bi

Proof. First, assume x and y are optimal. By the Strong Duality Theorem it
follows that cT x = bT y. Therefore, the inequalities in Equation (1) become
equalities:

n∑

j=1

cjxj =
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑

i=1




n∑

j=1

aijxj



 yi =
m∑

i=1

biyi (2)

The primal complementary slackness conditions are implied by the first equality,
and the dual conditions are implied by the third equality.

For the other direction assume that the complementary slackness conditions
are satisfied. In this case Equality (2) is satisfied as well, and therefore cT x = bT y.
x and y are optimal by the Weak Duality Theorem. ��

2.2 The Problems

Recall that, in the vertex cover problem, an instance consists of a simple graph
G = (V, E), and a weight function w on the vertices, and our goal is to obtain a
minimum weight vertex cover. Hence, the vertex cover problem can be formulated
by the following linear integer program:

min
∑

u∈V

w(u)xu

s.t. xu + xv ≥ 1 ∀(u, v) ∈ E
xu ∈ {0, 1} ∀u ∈ V

(VC)

where xu = 1 if and only if u is in the vertex cover. The LP-relaxation of VC
is obtained by replacing the integrality constraints by: xu ≥ 0 for every u ∈ V .
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(Notice that the possible inequalities of the form xu ≤ 1 are redundant.) We
denote the LP relaxation of VC by VC-P. (Henceforth, a -P suffix denotes the
LP-relaxation of a linear integer program, while a -D suffix denotes the dual of
the LP-relaxation.)

The hitting set problem is defined as follows. The input consists of a collection
of subsets S = {S1, . . . , Sm} of the ground set U of size n. Each element u ∈ U
is associated with a positive weight w(u). A set H is said to hit a subset S if
H ∩ S 
= ∅. A hitting set is a set H ⊆ U that hits every subset S ∈ S. In the
hitting set problem our goal is find a hitting set of minimum total weight. Given
a hitting set instance, we denote by S(u) the collection of sets that contain u,
i.e., S(u) � {S : u ∈ S}. We define smax � maxS∈S |S|. Note that the vertex
cover problem is a special case of hitting set in which all sets are of size two, and
hence smax = 2 in this special case. We also note that some of the results in this
survey were originally written in terms of the set cover problem. In the set cover
problem we are given a collection of sets S of the ground set U , and a weight
function on the subsets. The objective is to find a minimum weight collection of
sets that covers all elements, or a minimum weight set cover. It is easy to see
that set cover and hitting set are equivalent problems in the sense that each is
obtained from the other by switching the roles of sets and elements.

The hitting set problem can be formulated by the following linear integer
program:

min
∑

u∈U

w(u)xu

s.t.
∑

u∈S

xu ≥ 1 ∀S ∈ S

xu ∈ {0, 1} ∀u ∈ U

(HS)

where xu = 1 if and only if u is in the hitting set. The LP-relaxation of HS is
obtained by replacing the integrality constraints by: xu ≥ 0 for every u ∈ U . We
denote that LP relaxation by HS-P. The dual of HS-P is:

max
∑

S∈S
yS

s.t.
∑

S∈S(u)

yS ≤ w(u) ∀u ∈ U

yS ≥ 0 ∀S ∈ S

(HS-D)

In the generalized hitting set problem we are also given of a collection of
subsets S of the ground set U , and our goal is to hit the sets in S by using
elements from U . However, in this case, we are allowed not to hit a set S,
provided that we pay a tax w(S). Hence, the weight function w is define on
both the elements and the subsets. Formally, the input is a collection of sets
S = {S1, . . . , Sm} of the ground set U = {1, . . . , n}, and a weight function on
the elements and subsets, and our goal is to find a minimum-weight set H ⊆ U ,
where the weight of H is the weight of the elements in H and the weight of the
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sets that are not hit by H . The hitting set problem is the special case where the
tax w(S) is infinite for every set S ∈ S.

In order to formulate generalized hitting set using a linear program it would
be convenient to slightly change the problem definition. Instead of simply search-
ing for a set of elements H , we shall search for a set of elements H and a sub-
collection of sets T such that for every set S either S is hit by H , or it is contained
in T , i.e., we seek a pair (H, T ) where H ⊆ U , T ⊆ S, and for all S ∈ S, either
H ∩ S 
= ∅ or S ∈ T . This means that we allow a set S to be both hit by H and
contained in T . Clearly, for a given generalized hitting set instance, the optima
of both problems are the same. Moreover, any solution for the second definition
can be easily turned into a solution for the first. Hence, the generalized hitting
set problem can be formalized as follows:

min
∑

u∈U

w(u)xu +
∑

S∈S
w(S)xS

s.t.
∑

u∈S

xu + xS ≥ 1 ∀S ∈ S

xu ∈ {0, 1} ∀u ∈ U
xS ∈ {0, 1} ∀S ∈ S

(GHS)

where xu = 1 if and only if the element u is contained in H , and xS = 1 if and
only if the subset S is contained in T . As usual, the LP-relaxation is obtained
by replacing the integrality constraints by: xu ≥ 0 for every u ∈ U and xS ≥ 0
for every S ∈ S. We denote that LP relaxation by GHS-P. The dual is:

max
∑

S∈S
yS

s.t.
∑

S∈S(u)

yS ≤ w(u) ∀u ∈ U

yS ≤ w(S) ∀S ∈ S
yS ≥ 0 ∀S ∈ S

(GHS-D)

Notice that a generalized hitting set instance can be viewed as a hitting
set instance in which each set S contains a unique element uS whose weight
is w(uS) � w(S). This way, we can pay w(S) for the element uS instead of
paying the tax w(S) for not hitting S. In the sequel we present several smax-
approximation algorithms for hitting set. It follows that these algorithm can
be used to obtain (smax + 1)-approximate solutions for generalized hitting set.
However, we also show how to obtain smax-approximate solutions for generalized
hitting set.

An important notion in the design of approximation algorithms using primal-
dual or local ratio is the notion of minimal solutions. A feasible solution is said
to be minimal with respect to set inclusion (or minimal for short) if all its
proper subsets are not feasible. Minimal solutions arise naturally in the context
of covering problems, which are the problems for which feasible solutions have
the property of being monotone inclusion-wise, that is, the property that adding
items to a feasible solution cannot render it infeasible. For example, adding an
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element to a hitting set yields a hitting set, so hitting set is a covering problem.
In contrast, adding an edge to a spanning tree does not yield a tree, so minimum
spanning tree is not a covering problem. However, if instead of focusing only on
trees, we consider all sets of edges that intersect all non trivial cuts in the given
graph the problem becomes a covering problem.

It is easy to see that generalized hitting set (under the second definition) is
a covering problem. The following observation formalizes the fact that it makes
no sense to add a set S to T if H ∩ S 
= ∅.

Observation 6 Let (H, T ) be a minimal solution, and let x be the inci-
dence vector of (H, T ). Then, (i) xS = 1 if and only if

∑
u∈S xu = 0, and

(ii)
∑

u∈S xu + xS ≤ smax.

We note that the use of minimality in the context of the generalized hitting
set problem is somewhat artificial. However, it will assist us in demonstrating
the use of minimality in the design of primal-dual and local ratio approximation
algorithms for covering problems.

3 The Primal-Dual Schema

In this section we present the primal-dual smax-approximation algorithm for
hitting set from [8]. Afterwards we give a general description of the primal-dual
schema, and demonstrate it on the generalized hitting set problem.

An r-approximation algorithm for a minimization problem that is based on a
primal-dual analysis produces an integral primal solution x and a dual solution
y such that the weight of the primal solution is not more than r times the value
of dual solution. Namely, it produces an integral primal solution x and a dual
solution y such that

cT x ≤ r · bT y (3)

The integral primal solution x is r-approximate due to Observation 4.
There are several ways to find such a pair of primal and dual solutions. The

first one to do so was Chvátal [17], who proved that the greedy algorithm for
hitting set computes Hm-approximate solutions, where Hm is the mth harmonic
number. (Recall that, in hitting set terms, m is the number of sets.) In his
analysis he obtained an infeasible dual solution whose value as not less than
the weight of the integral primal solution that was computed by the algorithm.
Then, he showed that if the dual solution is divided by Hm it becomes feasible.
This method was later called dual fitting, and the feasible solution was referred
to as shrunk dual. (See [32, 26] for more details.)

Hochbaum [24] presented several smax-approximation algorithms for hit-
ting set that require the solution of a linear program. The first algorithm
is as follows: (i) compute an optimal solution y∗ of HS-D, and (ii) return
HD = {u :

∑
S∈S(u) y∗

S = w(u)}. We show that HD is a hitting set. Assume by
contraposition that HD is not a hitting set. Then, there exists a set S such that
S ∩HD = ∅. Let ε = minu∈S{w(u)−

∑
S∈S(u) y∗

S}. Clearly, ε > 0. Furthermore,
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if we raise y∗
S by ε it remains feasible in contradiction to the optimality y∗. Next,

we show that HD is smax-approximate. Let xD be the incidence vector of HD.
Then,

w(HD) =
∑

u∈U

w(u)xu

=
∑

u∈U

xu

∑

S∈S(u)

y∗
S

=
∑

S∈S
y∗

S

∑

u∈S

xu

≤ smax

∑

S∈S
y∗

S

≤ smax · opt

and we are done.
An smax-approximate hitting set can also be found by solving the primal

linear program HS-P. Consider the following algorithm: (i) compute an optimal
solution x∗ of HS-P, and (ii) return HP = {u : x∗

u > 0}. HP must be a hitting
set, since otherwise, x∗ is not feasible. Moreover, by the complementary slack-
ness conditions HP ⊆ HD (where HD is defined as above). Hence, HP is smax-
approximate as well. Note that it is even enough to consider only elements whose
primal variable is at least 1/smax. That is, the set H ′

P = {u : x∗
u ≥ 1/smax} is

also an smax-approximate solution. H ′
P is feasible since there exists u ∈ S such

that x∗
u ≥ 1/smax for every subset S ∈ S, and H ′

P is smax-approximate since
H ′

P ⊆ HP .
Following the work of Hochbaum [24], Bar-Yehuda and Even [8] presented

another smax-approximation algorithm for hitting set that uses primal-dual ar-
guments. As opposed to Hochbaum’s algorithm, this algorithm is not based on
finding an optimal dual (or primal) solution, and therefore it is more efficient.
The key observation that was made by Bar-Yehuda and Even [8] is that the dual
solution, y∗, used in Hochbaum’s analysis does not have to be optimal. A dual
solution y is called maximal if an increase in yi makes y infeasible, for any i.
Clearly, an optimal dual solution is also maximal. It is not hard to verify that
H ′

D = {u :
∑

S∈S(u) yS = w(u)} is a hitting set for any maximal (and not nec-
essarily optimal) dual solution y. Hence, Hochbaum’s analysis stays intact when
a maximal dual solution is used (and HD is replaced by H ′

D). The improved
running time is due to the fact that a simple greedy algorithm can compute
a maximal dual solution in linear time. Algorithm PD-HS is the algorithm
from [8] given in terms of hitting set.

It is not hard to verify that the running time of Algorithm PD-HS is
O(
∑

S∈S |S|), which means that it runs in linear time. Observe that, in every
iteration, yS is raised as much as possible while maintaining feasibility, hence
y is a maximal dual solution. Hence, the set of elements whose corresponding
dual constraint is tight (i.e., H ′

D) constitute an smax-approximate hitting set.
Algorithm PD-HS does not return the set of elements whose corresponding
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Algorithm 2 - PD-HS(U,S, w): a primal-dual smax-approximation algorithm
for hitting set
1: H ← ∅
2: y ← 0
3: while S �= ∅ do
4: Let S ∈ S
5: v ← argminu∈S

{
w(u)−

∑
S′∈S(u) yS′

}

6: yS ← w(v)−
∑

S′∈S(v) yS′

7: H ← H ∪ {v}
8: S ← S \ S(v)
9: end while

10: Return H

dual constraint is tight. However, an element v may be added to H only if its
corresponding dual constraint is tight (i.e., H ⊆ H ′

D). Moreover, every subset
S contains at least one such element. Hence, H is feasible and therefore also
smax-approximate.

It is important to notice that since the choice of v (in Line 6) is made accord-
ing to the tightness of the dual constraints, and not according to the values of the
dual variables, it is enough to compute, in every iteration, the tightness of the
dual constraints, instead of maintaining the dual solution y. The actual values
of the dual variables are needed only for purposes of analysis. Hence, Lines 5–6
of Algorithm PD-HS can be replaced with the following two lines:

5: v ← argminu∈S {w(u)}
6: For every u ∈ S do: w(u)← w(u) − w(v)

In fact, the original algorithm was presented in this way in [8].
Algorithm PD-HS computes an integral primal solution x, the incidence

vector of H , and a dual solution y such that the weight of x is bounded by
smax times the value of y. This seems like a neat trick, but can we use this
idea in order to approximate other problems? We shall see that the connection
between x and y is somewhat more complicated than what is implied by the
analysis of Algorithm PD-HS. Clearly, Algorithm PD-HS picks only elements
whose corresponding dual constraint is tight. Hence, if xu = 1 (i.e., u ∈ H)
then

∑
S∈S(u) yS = w(u). Now, consider a set S ∈ S, and the corresponding

constraint
∑

u∈S xu ≥ 1. Clearly,
∑

u∈S xu ≤ smax for any S such that yS > 0
(or, for any other S). Putting it all together we get that x and y satisfy the
following conditions:

∀u ∈ U, xu > 0⇒
∑

S∈S(u)

yS = w(u)

∀S ∈ S, yS > 0⇒ 1 ≤
∑

u∈S

xu ≤ smax

The first set of conditions are exactly the primal complementary slackness con-
ditions, while the second is a relaxation of the dual conditions. Moreover, the
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relaxation factor is exactly the approximation ratio of Algorithm PD-HS. As
we shall see this idea is not limited to the hitting set problem.

Let x be an integral primal solution, and let y be a dual solution. Also, assume
that x and y satisfy the following relaxed complementary slackness conditions:

Primal conditions: ∀j, xj > 0⇒
m∑

i=1

aijyi = cj

Relaxed dual conditions: ∀i, yi > 0 ⇒ bi ≤
n∑

j=1

aijxj ≤ r · bi

Then,

n∑

j=1

cjxj =
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑

i=1




n∑

j=1

aijxj



 yi ≤ r ·
m∑

i=1

biyi

which means that x is r-approximate. Hence, we have found a way to compute
a pair of integral primal and dual solutions that satisfy Inequality (3).

Indeed, a typical primal-dual algorithm computes a primal-dual pair (x, y)
that satisfies the relaxed complementary slackness conditions. Moreover, a
primal-dual algorithm usually constructs the primal-dual pair in such a way
that the relaxed complementary slackness conditions are satisfied throughout
its execution. It starts with an infeasible primal solution and a feasible dual
solution (usually, x = 0 and y = 0). It iteratively raises the dual solution, and
improves the feasibility of the primal solution while maintaining the following
two invariants: (i) a primal variable is increased only if its corresponding primal
condition is satisfied, and (ii) a dual variable is increased only if its corresponding
relaxed dual condition is satisfied. (We note that many primal-dual algorithms
change several dual variables in each iteration. However, it can be shown that it
is enough to raise only a single dual variable in each iteration [15, 13].) Hence, an
iteration of a primal-dual r-approximation algorithm (for a covering problem)
can be informally described as follows:

1. Find a primal constraint, αx ≥ β, such that αx ≤ r · β for every feasible
solution x.

2. Raise the dual variable that corresponds to the above primal constraint until
some dual constraint becomes tight.

3. Add an element whose corresponding dual constraint is tight to the primal
solution.

Steps (1) and (2) ensure that the relaxed dual conditions are satisfied, while
Step (3) ensures that the primal conditions are satisfied. The reader is referred
to [15, 13] for a formal description.

In many primal-dual algorithms the Step (1) is slightly modified. Instead of
finding a primal constraint for which αx ≤ r ·β for every feasible solution x, it is
enough to find a primal constraint αx ≥ β, for which αx ≤ r ·β for every minimal
solution x (or, sometimes, for every feasible solution x that satisfies some other
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property P). Such a constraint is called r-effective (or r-effective with respect to
P). In this case, the algorithm must compute a minimal solution x (or a solution
x that satisfies P), since otherwise the dual solution y do not satisfy the relaxed
dual complementary slackness conditions at termination. Primal-dual algorithms
that compute minimal solutions usually use a primal pruning procedure that is
sometimes referred to as reverse deletion. Algorithms that use a property P other
than minimality use some sort of solution correction procedure that depend on
P . (See [15, 13] for more details.)

We demonstrate the above ideas on the generalized hitting set problem. Al-
gorithm PD-GHS is an smax-approximation algorithm for generalized hitting
set that was presented by Bar-Yehuda and Rawitz [13].

Algorithm 3 - PD-GHS(U,S, w): a primal-dual smax-approximation algorithm
for generalized hitting set
1: H ← ∅, T ← ∅
2: y ← 0
3: for all S ∈ S do
4: Raise yS until some dual constraint becomes tight
5: if there exists an element u ∈ S whose dual constraint became tight then
6: H ← H ∪ {u}
7: else
8: T ← T ∪ {S}
9: end if

10: end for
11: T ← T \

⋃
u∈H S(u).

12: Return (H,T )

We show that Algorithm PD-GHS computes a pair of minimal primal so-
lution and dual solution that satisfies the relaxed complementary slackness con-
ditions. First, (H, T ) is minimal due to Line 11. Also, the primal conditions are
satisfied by the construction of the primal solution. Now, consider a set S ∈ S
and its corresponding primal constraint:

∑
u∈S xu + xS ≥ 1. According to Ob-

servation 6 we know that
∑

u∈S xu + xS ≤ smax for every minimal solution x.
Hence, any minimal solution satisfies the relaxed dual slackness condition corre-
sponding to S. It follows that Algorithm PD-GHS computes smax-approximate
solutions.

We note that in some cases proving that the relaxed dual slackness condi-
tions are satisfied for some r may be a difficult task, e.g., the 2-approximation
algorithms for the feedback vertex set problem [16]).

We also remark that most primal-dual algorithms in the literature are based
on a predetermined LP formulation, and therefore several dual variable are
changed in each iteration of the algorithm. Hence, most primal-dual algorithms
do not refer explicitly to the relaxed complementary slackness conditions. As
mentioned above, such algorithms can be altered such that only a single dual
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variable is changed in each iteration (see [15, 13]). After doing so these analyses
can be easily explained using the relaxed conditions. It is important to note that
the combinatorial properties of the problem that were used in the analysis are
usually presented in a much clearer fashion when the analysis change only a
single dual variable in each iteration and is based on the relaxed complementary
slackness conditions. Hence, such analyses tend to be simpler and more elegant.

4 Local Ratio

We re-consider Gavril’s 2-approximation algorithm for unweighted vertex cover
(Algorithm UnweightedVC). In each iteration the algorithm picks two vertices
u and v that cover the uncovered edge (u, v). Since this edge must be covered,
any vertex cover must contain at least one of the vertices. Hence, if we take both
u and v we decrease the optimum by at least one, while adding not more than
two vertices to the solution. Notice that this argument is local in the sense that
it refers separately to any edge in M . (Recall that M is the maximal matching
constructed by the algorithm.) This simple idea is at the heart of the local ratio
technique.

We show how to extend this algorithm to an smax-approximation algorithm
for the weighted hitting set problem. Imagine that we have to actually purchase
the elements we select as our solution. Rather than somehow deciding on which
elements to buy and then paying for them, we adopt the following strategy. We
repeatedly select an element and pay for it. However, the amount we pay need
not cover its entire cost; we may return to the same vertex later and pay some
more. In order to keep track of the payments, whenever we pay ε for a vertex,
we lower its marked price by ε. When the marked price of an element drops
to zero, we are free to take it, as it has been fully paid for. The heart of the
matter is the rule by which we select the element and decide on the amount to
pay for it. Actually, we select up to smax elements each time and pay ε for each,
in the following manner. We select any subset S whose elements have non-zero
weight, and pay ε = minu∈S w(u) for every element in S. As a result, the weight
of at least one of the elements drops to zero. After O(n) rounds, prices drop
sufficiently so that every set contains an element of zero weight. Hence, the set
of all zero-weight elements is a hitting set.

We formalize the above discussion by Algorithm LR-HS which is a lin-
ear time smax-approximation algorithm that was presented by Bar-Yehuda and
Even [9]. (The original algorithm was presented in set cover terms.) We say that
a set is positive if all its elements have strictly positive weights. Notice that on
instances of unweighted vertex cover it is identical to Gavril’s 2-approximation
algorithm.

To formally analyze the algorithm consider the ith iteration. Let Si be the
set that was selected in this iteration, and let εi be the weight of the minimum
weight element in Si. Since every hitting set must contain at least one element
in Si, decreasing the weight of the elements in Si by εi lowers the weight of
every hitting set by at least εi. Hence, the optimum must also decrease by at
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Algorithm 4 - LR-HS(U,S, w): a local ratio smax-approximation algorithm for
hitting set
1: while there exists a positive set S do
2: ε← minu∈S {w(u)}
3: For every u ∈ S do: w(u)← w(u)− ε
4: end while
5: Return the set H = {u : w(u) = 0}

least εi. Thus, in the ith round we pay smax · εi and lower the optimum by at
least εi. Since H is a zero weight hitting set (with respect to the final weights),
the optimum has decreased to zero. Hence, opt ≥

∑
i εi. One the other hand,

since our payments fully cover H , its weight is bounded by
∑

i smax · εi. H is
smax-approximate, because w(H) ≤

∑
i smax · εi ≤ smax · opt.

It is interesting to note that the proof that the solution found is smax-
approximate does not depend on the actual value of ε in any given iteration.
In fact, any value between 0 and minu∈S {w(u)} would yield the same result
(by the same arguments). We chose minu∈S {w(u)} for the sake of efficiency.
This choice ensures that the number of elements with positive weight strictly
decreases with each iteration.

In Algorithm LR-HS we have paid smax · ε for lowering opt by at least ε in
each round. Other local ratio algorithms can be explained similarly—one pays in
each round at most r ·ε, for some r, while lowering opt by at least ε. If the same
r is used in all rounds, the solution computed by the algorithm is r-approximate.
This idea works well for several problems. However, it is not hard to see that this
idea works mainly because we make a down payment on several elements, and we
are able to argue that opt must drop by a proportional amount because every
solution must contain one of these elements. This localization of the payments
is at the root of the simplicity and elegance of the analysis, but it is also the
source of its weakness: how can we design algorithms for problems in which
no single element (or set of elements) is necessarily involved in every optimal
solution? For example, consider the feedback vertex set problem, in which we are
given a graph and a weight function on the vertices, and our goal is to remove
a minimum weight set of vertices such that the remaining graph contains no
cycles. Clearly, it is not always possible to find a constant number of vertices
such that at least one of them is part of every optimal solution!

It helps to view the payments made by the algorithm as the subtraction of a
new weight function w1 from the current weight function w. For example, exam-
ine an iteration of Algorithm LR-HS. The action taken in Line 3 is equivalent
to defining a new weight function:

w1(u) =

{
ε u ∈ S,

0 u 
∈ S,

and subtracting it from w. The analysis above implies that:

Observation 7 Every hitting set is smax-approximate with respect to w1.
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Hence, any smax-approximate hitting set H with respect to w − w1 is also
smax-approximate with respect to w1. By the following theorem H is also smax-
approximate with respect to w.

Theorem 8 (Local Ratio Theorem [9, 6]). Let (F , w) be a minimization
problem, where F is a set of constraints on x ∈ R

n, and w ∈ R
n is a weight

function. Also, let w1 and w2 be weight functions such that w = w1 + w2. Then,
if x is r-approximate with respect to (F , w1) and with respect to (F , w2), then x
is r-approximate with respect to (F , w).

Proof. Let x∗, x∗
1, x

∗
2 be optimal solutions with respect to (F , w), (F , w1), and

(F , w2), respectively. Then, wx = w1x + w2x ≤ r ·w1x
∗
1 + r ·w2x

∗
2 ≤ r · (w1x

∗ +
w2x

∗) = r · wx∗. ��

Note that F can include arbitrary feasibility constraints and not just linear
constraints. Nevertheless, all successful applications of the local ratio technique
to date involve problems in which the constraints are linear.

This idea of weight decomposition leads us to the to Algorithm Recursive-
LR-HS which is a recursive version of Algorithm LR-HS.

Algorithm 5 - Recursive-LR-HS(U,S, w): a local ratio smax-approximation
algorithm for hitting set
1: if S = ∅ then
2: Return ∅
3: end if
4: Let S ∈ S
5: v ← argminu∈S {w(u)}
6: ε← w(v)

7: Define w1(u) =

{
ε u ∈ S,

0 u �∈ S,

8: H ← {v} ∪Recursive-LR-HS(U \ {v} ,S \ S(v), w − w1)
9: Return H

We first note that this algorithm is slightly different from Algorithm LR-
HS, since not all the vertices that have zero weight at the recursive base are
necessarily taken into the solution. (A similar pruning procedure can be added
to Algorithm LR-HS as well.)

Since Algorithm Recursive-LR-HS is recursive, it is natural to use in-
duction in its analysis. First, it is not hard to show that the solution re-
turned is a hitting set by induction on the number of recursive calls. (Note
that this number is bounded by the number of elements.) We prove that the
solution is smax-approximate by induction. In the base case, ∅ is an optimal
solution. For the inductive step, let H be the solution returned, and denote
w2 = w − w1. By the induction hypothesis H \ {v} is smax-approximate with
respect to (U \ {v} ,S \ S(v), w2). Since w2(v) = 0, the optima of (S, U, w2)
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and of (U \ {v} ,S \ S(v), w2) are the same. Hence, H is smax-approximate with
respect to (S, U, w2). Due to Observation 7 any hitting set with respect to the
instance (S, U) is smax-approximate with respect to w1, therefore H is smax-
approximate with respect to (S, U, w1). Finally, H is smax-approximate with
respect to (S, U, w) as well due to the Local Ratio Theorem.

Observation 7 states that the weight function w1 is well behaved. That is,
from its view point all hitting sets weigh roughly the same (up to a multiplitive
factor of smax). We formalize the notion of well behaves weight functions.

Definition 9 A weight function w is said to be r-effective with respect to prop-
erty P if there exists a number b such that b ≤ wx ≤ r ·b for all feasible solutions
x that satisfy P.

In Algorithm Recursive-LR-HS the property P uses is simply feasibility.
However, in many local ratio algorithms the property P is minimality, and in
this case w is simply called r-effective. When P is satisfies by every solutions w
is sometimes called fully r-effective.

It turns out that in many cases it is convenient to use algorithms that are
based on weight decomposition. This is especially true when the local ratio ad-
vancement step includes more than a constant number of elements, or when w1

is well behaved for solutions that satisfy a certain property (usually, minimal
solutions) and not for every solution.

A typical local-ratio r-approximation algorithm for a covering problem is
recursive, and works as follows. Given a problem instance with a weight function
w, we find a non-negative weight function w1 ≤ w such that (i) every minimal
solution is r-approximate with respect to w1, and (ii) there exists some index j
for which w(j) = w1(j). We subtract w1 from w, and remove some zero weight
element from the problem instance. Then, we recursively solve the new problem
instance. If the solution returned is infeasible the above mentioned element is
added to it. This way we make sure that the solution is minimal with respect to
the current instance. Since the solution for the current instance is r-approximate
with respect to both w1 and w − w1, it is also r-approximate with respect to w
by the Local-Ratio Theorem. The base of the recursion occurs when the problem
instance has degenerated into an empty instance.

We demonstrate these ideas by presenting an smax-approximation algorithm
for the generalized hitting set problem. The algorithm is taken from [11] and is
called Algorithm LR-GHS. For purposes of conciseness we represent each set
S by an element uS that is contained in S and whose weight is w(uS) � w(S).
Recall that, this way, we can pay w(S) for the element uS instead of paying the
tax w(S) for not hitting S.

Note that the main difference between Algorithms Recursive-LR-HS
and LR-GHS is the fact that first simply adds an element to the solution found
by the recursive call (Line 8), while the latter adds the element only in case the
solution returned by the recursive call is infeasible without it (Lines 8-12). As
we shall see this modification makes sure that the solution returned is not only
feasible but also minimal.
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Algorithm 6 - LR-GHS(U,S, w): a local ratio smax-approximation algorithm
for generalized hitting set
1: if S = ∅ then
2: Return ∅
3: end if
4: Let S ∈ S
5: v ← argminu∈S {w(u)}
6: ε← w(v)

7: Define w1(u) =

{
ε u ∈ S,

0 otherwise.

8: H ′ ← LR-GHS(U \ {v} ,S \ S(v), w − w1)
9: H ← H ′

10: if H is not feasible then
11: H ← H ∪ {v}
12: end if
13: Return H

We show that Algorithm LR-GHS computes minimal solutions. The proof
is by induction on the recursion. At the recursion basis the solution returned
is the empty set, which is both feasible and minimal. For the inductive step,
we show that H \ {u} is not feasible for every u ∈ H . First, if H = H ′, then
H is minimal since H ′ is minimal with respect to (U \ {v} ,S \ S(v)) by the
inductive hypothesis. Consider the case where H = H ′ ∪ {v}. If u 
= v and
H \ {u} is feasible, then H ′ \ {u} is feasible with respect to (U \ {v} ,S \ S(v)),
and therefore H ′ is not minimal in contradiction to the inductive hypothesis.
Also, observe that v is added to H only if H ′ is not feasible.

It remains to show that Algorithm LR-GHS returns smax-approximate so-
lutions. The proof is by induction on the recursion. In the base case the so-
lution returned is the empty set, which is optimal. For the inductive step, H ′

is smax-approximate with respect to (U \ {v} ,S \ S(v)), and w2 by the induc-
tive hypothesis. Since w2(v) = 0, H is also smax-approximate with respect to
(U \ {v} ,S \ S(v)), and w2. Due to Observation 6, and the fact that H is min-
imal, it is also smax-approximate with respect to w1. Thus by the Local Ratio
Theorem H is smax-approximate with respect to w as well.

5 The Evolution of Both Methods

In this section we follow the evolution of both primal-dual and local ratio.

5.1 Applications to Various Problems

Covering problems and minimal solutions. During the early 1990’s the primal-
dual schema was used extensively to design and analyze approximation al-
gorithms for network design problems , such as the Steiner tree problem (see,
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e.g., [30, 1, 21]). In fact, this line of research has introduced the idea of using
minimal solutions to the primal-dual schema. Subsequently, several primal-dual
approximation frameworks were proposed. Goemans and Williamson [22] pre-
sented a generic primal-dual approximation algorithm based on the hitting set
problem. They showed that it can be used to explain many classical (exact
and approximation) algorithms for special cases of the hitting set problem, such
as shortest path, minimum spanning tree, and minimum Steiner forest. Follow-
ing [21], Bertsimas and Teo [15] proposed a primal-dual framework for covering
problems. As in [22] this framework enforces the primal complementary slackness
conditions while relaxing the dual conditions. However, in contrast to previous
studies, Bertsimas and Teo [15] express each advancement step as the construc-
tion of a single valid inequality, and an increase of the corresponding dual variable
(as opposed to an increase of several dual variables).

About ten years after the birth of the local ratio technique [9], Bafna et al. [3]
extended the technique in order to construct a 2-approximation algorithm for the
feedback vertex set problem. Their algorithm was the first local ratio algorithm
that used the notion of minimal solutions. Following Bafna et al. [3], Fujito [19]
presented a generic local ratio algorithm for a certain family of node deletion
problems. Later, Bar-Yehuda [6] presented a local ratio framework for covering
problems, which extends the one in [19] and can be used to explain many known
optimization and approximation algorithms for covering problems.

Other minimization problems. Both primal-dual and local ratio were also applied
to non-covering minimization problems. For example, in [11] the local ratio tech-
nique was used in the design of a 2-approximation algorithm for bounded integer
programs with two variables per constraint. Recently, Guha et al. [23] presented
a primal-dual 2-approximation algorithm to the capacitated vertex cover problem.

Jain and Vazirani [27] presented a 3-approximation algorithm for the metric
uncapacitated facility location problem. Their algorithm was the first primal-
dual algorithm that approximated a problem whose LP formulation contains
inequalities with negative coefficients. However, this algorithm deviates from
the primal-dual schema. Their algorithm does not employ the usual mechanism
of relaxing the dual complementary slackness conditions, but rather it relaxes
the primal conditions. (Note that this algorithm has a non-LP interpretation in
the spirit of local ratio [18].)

Bar-Yehuda and Rawitz [12] presented local ratio interpretations of known
algorithms for minimum s-t cut and the assignment problem. These algorithms
are the first applications of local ratio to use negative weights. The corresponding
primal-dual analyses are based on new IP formulations of these fundamental
problems that contain negative coefficients.

Maximization problems. By the turn of the 20th century both methods were
used extensively in the context of minimization algorithms. However, there was
no application of either method that approximated a maximization problem.
The first study to present a local-ratio and primal-dual approximation algo-
rithm for a maximization problem was by Bar-Noy et al. [4]. In this paper the
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authors used the local-ratio technique to develop an approximation framework
for resource allocation and scheduling problems. A primal-dual interpretation
was also presented.

Bar-Noy et al.’s [4] result paved the way for other studies dealing with max-
imization problems. In [5] Bar-Noy et al. developed approximation algorithms
for two variants of the problem of scheduling on identical machines with batch-
ing. Akcoglu at al. [2] presented approximation algorithms for several types of
combinatorial auctions.

5.2 Equivalence Between the Two Methods

It has often been observed that primal-dual algorithms have local ratio interpre-
tations, and vice versa. Bar-Yehuda and Even’s primal-dual algorithm for hitting
set [8] was analyzed using local ratio in [9]. The local ratio 2-approximation al-
gorithm for feedback vertex set by Bafna et al. [3] was interpreted within the
primal-dual schema [16]. The 2-approximation of a family of network design
problems by Goemans and Williamson [21] was explained using local ratio in [6]
(see also [7]). And, finally, Bar-Noy et al.’s [4] approximation framework for
resource allocation and scheduling problems was developed initially using the
local-ratio approach, and then explained it (in the same paper) in primal-dual
terms. Thus, over the years there was a growing sense that the two seemingly dis-
tinct approaches share a common ground, but the exact nature of the connection
between them remained unclear (see, e.g., [33], where this was posed as an open
question). The issue was resolved in a paper by Bar-Yehuda and Rawitz [13], in
which two approximation frameworks are defined, one encompassing the primal-
dual schema, and the other encompassing the local ratio technique, and showed
that these two frameworks are equivalent.

The equivalence between the paradigms is based on the simple fact that
increasing a dual variable by ε is equivalent to subtracting the weight function
obtained by multiplying the coefficients of the corresponding primal constraint
by ε from the primal objective function. In other words, this means that an
r-effective inequality can be viewed as an r-effective weight function and vice
versa. For example, the coefficients of the generalized vertex cover constraint∑

u∈S xu+xS ≥ 1 are the same as the coefficients of the weight function w1 from
Algorithm LR-GHS up to a multiplitive factor of ε. Furthermore, both primal-
dual analysis of Algorithm PD-GHS and local ratio analysis of Algorithm LR-
GHS are based on Observation 6. The equivalence between the methods is
constructive, meaning that an algorithm formulated within one paradigm can
be translated quite mechanically to the other paradigm.

5.3 Fractional Local Ratio and Fractional Primal-Dual

The latest important development in the context of local ratio is a new variant
of the local ratio technique called fractional local ratio [10]. As we have seen, a
typical local ratio algorithm is recursive, and it constructs, in each recursive call,
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a new weight function w1. In essence, a local ratio analysis consists of compar-
ing, at each level of the recursion, the solution found in that level to an optimal
solution for the problem instance passed to that level, where the comparison
is made with respect to w1. Thus, different optima are used at different recur-
sion levels. The superposition of these “local optima” may be significantly worse
than the “global optimum,” i.e., the optimum of the original problem instance.
Conceivably, we could obtain a better bound if at each level of the recursion
we approximated the weight of a solution that is optimal with respect to the
original weight function. This is the idea behind the fractional local ratio ap-
proach. More specifically, a fractional local ratio algorithm uses a single solution
x∗ to the original problem instance as the yardstick against which all interme-
diate solutions (at all levels of the recursion) are compared. In fact, x∗ is not
even feasible for the original problem instance but rather for a relaxation of it.
Typically, x∗ will be an optimal fractional solution to an LP relaxation of the
problem.

Recently, Bar-Yehuda and Rawitz [14] have shown that the fractional ap-
proach extends to the primal-dual schema as well. As in fractional primal-dual
the first step in a fractional primal-dual r-approximation algorithm is to com-
pute an optimal solution to an LP relaxation of the problem. Let P be the LP
relaxation, and let x∗ be an optimal solution of P . Next, as usual in primal-dual
algorithms, the algorithm produces an integral primal solution x and a dual
solution y, such that r times the value of y bounds the weight of x (we use
minimization terms). However, in contrast to other primal-dual algorithms, y is
not a solution to the dual of P . The algorithm induces a new LP, denoted by P ′,
that has the same objective function as P , but contains inequalities that may
not be valid with respect to the original problem. Nevertheless, we make sure
that x∗ is a feasible solution of P ′. The dual solution y is a feasible solution of
the dual of P ′. The primal solution x is r-approximate, since the optimum value
of P ′ is not greater than the optimum value of P .

5.4 Further Reading

A survey that describes the primal-dual schema and several recent extensions of
the primal-dual approach is given in [33]. A detailed survey on the local ratio
technique (including fractional local ratio) is given in [7].
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