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Abstract. The notion of state is fundamental to the design and analysis
of virtually all computational systems. The Myhill-Nerode Theorem of
Finite Automata theory—and the concepts underlying the Theorem—
is a source of sophisticated fundamental insights about a large class
of state-based systems, both finite-state and infinite-state systems. The
Theorem’s elegant algebraic characterization of the notion of state often
allows one to analyze the behaviors and resource requirements of such
systems. This paper reviews the Theorem and illustrates its application
to a variety of formal computational systems and problems, ranging from
the design of circuits, to the analysis of data structures, to the study of
state-based formalisms for machine-learning systems. It is hoped that
this survey will awaken many to, and remind others of, the importance
of the Theorem and its fundamental insights.

A dedication. I decided to contribute this piece to this volume because
Shimon Even is largely—albeit indirectly—responsible for the piece. I
learned about Finite Automata Theory and the Myhill-Nerode Theorem
in a course taught by Shimon at Harvard during his last year of graduate
school and my first. I further learned from associating with Shimon,
during a friendship of more than 42 years, a commitment to effective
teaching and the importance of defending strongly held positions, even
when they run counter to prevailing trends.

1 Introduction

A paean to the Myhill-Nerode Theorem. The notion of state is fundamen-
tal to the design and analysis of virtually all computational systems, from the
sequential circuits that underlie sophisticated hardware, to the semantic models
that enable optimizing compilers, to leading-edge machine-learning concepts, to
the models used in discrete-event simulation. Decades of experience with state-
based systems have taught that all but the simplest display a level of complexity
that makes them hard—conceptually and/or computationally—to design and
analyze. One brilliant candle in this gloomy scenario is the Myhill-Nerode Theo-
rem, which supplies a rigorous, mathematical, analogue of the following informal
characterization of the notion “state.”

The state of a system comprises that fragment of its history that allows
it to behave correctly in the future.
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Superficially, it may appear that this definition of “state” is of no greater oper-
ational significance than is the foundational identification of the number eight
with the infinitude of sets that contain eight elements. This appearance is illu-
sory. The Myhill-Nerode Theorem turns out to be a conceptual and technical
powerhouse when analyzing a surprising range of problems concerning the state-
transition systems that occur in so many guises within the field of computation.
Indeed, although the Theorem resides most naturally within the theory of Finite
Automata—it first appeared in [13]; an earlier, weaker version appeared in [12];
the most accessible presentation appeared in [15]—it has manifold lessons for
the analysis of many problems associated with any state-transition system, even
those having infinitely many states.

It is my goal to back up the preceding praise for the Myhill-Nerode Theorem
by reviewing both the Theorem and a sampler of its applications. In subsequent
sections, I review the work of several researchers from the 1960’s, whose work
on a variety of problems relating to state-transition systems can be viewed as
applying the fundamental insights that underlie the Theorem. While the Theo-
rem originated as a cornerstone of the theory of Finite Automata,1 several of the
systems we consider here are quite removed from the standard Finite Automaton
model.

A pedagogical ax to grind. Permit me now to step away from technical
matters to pedagogical ones. I argue here via case studies that the Myhill-Nerode
Theorem, in the insights that it supplies and the formal settings that it suggests,
is one of the real gems of the foundational branch of theoretical computer sci-
ence. To the extent that this evaluation is accurate, it is regrettable that the
Theorem, and its algebraic message and insights, have disappeared from virtu-
ally all modern introductory texts on “computation theory,” despite that fact
that all of these begin with a section on finite automata. For illustration, as I
was examining texts for my introductory course in this area, I perused [3, 4, 8, 9,
11, 18] and found the Theorem only in the first edition of [4]; its second edition,
[3], no longer presents it! While it is not my intention to speculate at length
on why the Theorem has been systematically excluded from the aforementioned
texts, I suspect that it is due to a narrowing of attitudes over the years/decades
about what constitutes the foundational branch of theoretical computer science.
Whereas earlier attitudes identified “computation theory” with all approaches to
a mathematical foundation—as defined in texts by some compendium of loosely
related material from the theories of automata, formal languages, computability,
and complexity—modern attitudes seem to posit the overriding importance of
complexity theory (even while texts continue to include a smattering of material
from the three other theories). Thus, understanding the essential nature of com-
putation, as manifest in the resources required to compute various functions, has
largely displaced (in the introductory course, at least) the attempt to develop
mathematical tools for understanding the structures that underlie the hardware

1 In my opinion, only the Kleene-Myhill Theorem, which establishes the equivalence
between Finite Automata and “Regular Expressions,” rivals the Myhill-Nerode The-
orem for importance in the theory of Finite Automata.
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and software systems that we build and use. I believe that this trend is unsound,
both technically and pedagogically. We present embryonic computer scientists
with abstract models that we do little to motivate, and we largely deprive them
of exposure to foundational material that is likely to be at least as meaningful
to them in their professional lives as much of the esoterica that they are exposed
to in what for many is their one and only course on “computation theory.”

It is incumbent on me to justify my claims about the Myhill-Nerode The-
orem—and, thereby, the more general claims I have just made. I do this by
presenting the Theorem and a sampler of its applications. I acknowledge freely
that my choice of material—as, perhaps, my position—is personal and eccentric.
That said, I hope that the reader will at least find this essay provocative.

A roadmap. We begin by introducing, in Section 2, a very general, unstruc-
tured, model of state-transition system, that we call the Online Automaton.
This model is intended to capture those aspects of a state-transition system
that are captured by the Myhill-Nerode Theorem and its underlying concepts.
We next turn in Section 3 to Finite Automata, and we develop the Myhill-Nerode
Theorem (and its proof) in this, its “natural domain.” Section 4 presents two
applications of the Theorem to finite-state systems. In Section 4.1, we describe
how to use the Theorem to prove that a language is not regular—i.e., is not
acceptable by a Finite Automaton. We further argue in Section 4.1.2 that the
proofs of nonregularity that emerge from the technique proposed in all modern
texts—which use the so-called Pumping Lemma for regular languages—are never
shorter and are seldom as perspicuous as the proofs advocated in Section 4.1.
We invoke Occam’s Razor2 to argue for the reinstatement of the Myhill-Nerode
Theorem as the fundamental technique for proofs of nonregularity. In Section 4.2,
we describe how the Theorem supplies the foundation for the fundamental oper-
ation of “minimizing” a Finite Automaton, by coalescing states that are “equiv-
alent” with respect to the language that the automaton accepts. Importantly
for applications of the theory, such state minimization is purely algorithmic and
requires no understanding of what the automaton does. We next leave the “nat-
ural domain” of the Theorem and describe three of its conceptual applications
to state-transition systems that are not Finite Automata. Our first “indirect”
application, in Section 5.1, describes a result from [6] that, informally, applies
the Theorem to Online Automata that accept nonregular languages. This result
quantitatively sharpens the Theorem’s characterization of nonregular languages
as those having infinite “memory requirements,” by supplying a lower bound on
these “requirements.” The next study we review, in Section 5.2, lends structure
to the infinitely many states of an Online Automaton, by specifying the organi-
zation of the memory that the states control. We arrive, thereby, at the notion
of a multi-tape multi-dimensional online Turing Machine. Now, such models are
not in vogue today, largely because they do not faithfully model the structure
of digital computers and their peripherals. However, if one views such “ma-
chines” as stylized programs that manipulate multiple data structures—a linear
“tape” is a linear list, a two-dimensional “tape” is an orthogonal list, etc.—then

2 “Entia non sunt multiplicanda praeter necessitatem” (William of Occam, 14th cent.)
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one can use such a model to advantage to prove nontrivial facts about data
structures. The result that we adapt from [2] exposes the impact of memory
structure on computational efficiency (specifically, time complexity), within the
context of a simple data-retrieval problem. Our final “indirect” application of
the Theorem, in Section 6, has implications for some of the voluminous work
on probabilistic state-transition systems, such as are quite popular within the
artificial-intelligence community. We present one of the most striking results from
[14]: Even if Finite Automata are modified to make their state transitions prob-
abilistic, the resulting model still accepts only regular sets when the probability
that an input is accepted is always bounded away from the threshold required for
acceptance. I close in Section 7 with a closing polemic advocating reinstituting
the Myhill-Nerode Theorem within our theoretical computer science curricula.

The thread that connects all of the work we survey is the Myhill-Nerode
Theorem and its underlying concepts. We hope that we have done justice to
this work and that, after reading this piece, the reader will understand—and,
hopefully, sympathize with—our claim that the Myhill-Nerode Theorem is a
treasure that should be passed on to subsequent generations.

2 Online Automata and Their Languages

Languages. Let Σ be a finite set of (atomic) symbols (or, an alphabet). We
denote by Σ� the set of all finite-length strings of elements of Σ—including the
null string ε, which is the unique string of length 0. A word over Σ is any
element of Σ�; a language over Σ is any subset L ⊆ Σ�.

Equivalence relations on Σ�, specifically, right-invariant ones, cast a broad
shadow in the theory, hence, in our survey.

An equivalence relation ≡ on Σ� is right-invariant if, for all z ∈ Σ�, xz ≡ yz
whenever x ≡ y.

Our particular focus will be on the following specific (right-invariant) equiv-
alence relation on Σ�, which is defined in terms of a given language L ⊆ Σ�.

For all x, y ∈ Σ� : [x ≡L y] iff (∀z ∈ Σ�)[[xz ∈ L] ⇔ [yz ∈ L]]. (1)

The following important result is a simple exercise.

Lemma 1 For all alphabets Σ and all languages L ⊆ Σ�, the equivalence rela-
tion ≡L is right-invariant.

Automata. An online automaton M is specified as follows:
M = (Q, Σ, δ, q0, F ), where

– Q is a (finite or infinite) set of states;
– Σ is a finite alphabet;
– δ is the state-transition function: δ : Q × Σ −→ Q;
– q0 is M ’s initial state; it is the state M is in when you first “switch it on;”
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– F ⊆ Q is the set of final (or, accepting) states; these are the states that
specify M ’s “response to” each input string x ∈ Σ�.

In order to make the OA model dynamic (so that it can “accept” a language),
we need to talk about how an OA M responds to strings, not just to single
symbols. We therefore extend the state-transition function δ to operate on Q ×
Σ�, rather than just on Q × Σ. It is crucial that our extension truly extend δ,
i.e., that it agree with δ on strings of length 1 (which can, of course, be viewed
as symbols). We call our extended function δ̂ and define it via the following
induction. For all q ∈ Q:

δ̂(q, ε) = q

(∀σ ∈ Σ, ∀x ∈ Σ�) δ̂(q, σx) = δ̂(δ(q, σ), x).

The first equation asserts that M responds only to the stimuli embodied by
non-null strings. In the second equation, the unadorned “δ” highlights the fact
that δ̂ is an extension of δ.

We can finally define the language accepted (or, recognized) by M (some-
times called the “behavior” of M):

L(M) def= {x ∈ Σ� | δ̂(q0, x) ∈ F}.
Since it can cause no confusion to “overload” the semantics of δ, we stop

embellishing the extended δ with a hat and just write δ : Q × Σ� −→ Q.
In analogy with the equivalence relation ≡L of Eq. 1, which is associated with

a language L, we associate with each OA M the following equivalence relation
on Σ�.

For all x, y ∈ Σ� : [x ≡M y] iff [δ(q0, x) = δ(q0, y)]. (2)

The following is an immediate consequence of how we extended the state-
transition function δ to Q × Σ�, in particular, the fact that δ(q0, xz) =
δ(δ(q0, x), z).

Lemma 2 For each OA M = (Q, Σ, δ, q0, F ):
(a) the equivalence relation ≡M is right-invariant;
(b) (∀x, y ∈ Σ�) [x ≡M y] iff [x ≡L(M) y].

3 Finite Automata and the Myhill-Nerode Theorem

A finite automaton (FA, for short) is an OA, M = (Q, Σ, δ, q0, F ), whose
state-set Q is finite. A language L is regular iff there is an FA M such that
L = L(M).

We now prepare for our presentation of the Myhill-Nerode Theorem, which
supplies a rigorous mathematical correspondent of the notion of “state.” We
begin with some basic definitions, facts, and notation. Let ≡ be any equivalence
relation on Σ�.
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– For each x ∈ Σ�, the ≡-class that x belongs to is [x]≡
def= {y ∈ Σ� | x ≡ y}.

(When the subject relation ≡ is clear from context, we simplify notation by
writing [x] for [x]≡.)

– The classes of ≡ partition Σ�.
– The index of ≡ is the number of classes that it partitions Σ� into.

Theorem 3 ([12, 13, 15]). (The Myhill-Nerode Theorem)
The following statements about a language L ⊆ Σ� are equivalent.

1. L is regular.
2. L is the union of some of the equivalence classes of a right-invariant equiv-

alence relation over Σ� of finite index.
3. The right-invariant equivalence relation, ≡L of Eq. 1 has finite index.

Note. The earliest version of the Theorem, in [12], uses congruences—i.e.,
equivalence relations that are both right- and left-invariant.

Proof. We prove the (logical) equivalence of the Theorem’s three statements by
verifying the three cyclic implications: statement 1 implies statement 2, which
implies statement 3, which implies statement 1.

(1) ⇒ (2). Say that the language L is regular. There is, then, a FA M =
(Q, Σ, δ, q0, F ) such that L = L(M). Then the right-invariant equivalence rela-
tion ≡M of Eq. 2 clearly has index no greater than |Q|. Moreover, L is the union
of some of the classes of relation ≡M :

L = {x ∈ Σ� | δ(q0, x) ∈ F} =
⋃

f∈F

{x ∈ Σ� | δ(q0, x) = f}.

(2) ⇒ (3). We claim that if L is “defined” via some (any) finite-index right-
invariant equivalence relation, ≡, on Σ�, in the sense of statement 2, then the
specific right-invariant equivalence relation ≡L has finite index. We verify the
claim by showing that the relation ≡ must refine relation ≡L, in the sense that
every equivalence class of ≡ is totally contained in some equivalence class of ≡L.
To see this, consider any strings x, y ∈ Σ� such that x ≡ y. By right invariance,
then, for all z ∈ Σ�, we have xz ≡ yz. Since L is, by assumption, the union of
entire classes of relation ≡, we must have

[xz ∈ L] if, and only if, [yz ∈ L].

We thus have
[x ≡ y] ⇒ [x ≡L y].

Since relation ≡ has only finitely many classes, and since each class of relation
≡ is a subset of some class of relation ≡L, it follows that relation ≡L has finite
index.

(3) ⇒ (1). Say that L is the union of some of the classes of the finite-index
right-invariant equivalence relation ≡L on Σ�. Let the distinct classes of ≡L

be [x1], [x2], . . . , [xn], for some n strings xi ∈ Σ�. (Note that, because of the
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transitivity of relation ≡L, we can identify a class uniquely via any one of its
constituent strings. This works, of course, for any equivalence relation.) We claim
that these classes form the states of an FA M = (Q, Σ, δ, q0, F ) that accepts L.
To wit:

1. Q = {[x1], [x2], . . . , [xn]}.
This set is finite because ≡L has finite index.

2. For all x ∈ Σ� and all σ ∈ Σ, define δ([x], σ) = [xσ].
The right-invariance of relation ≡L guarantees that δ is a well-defined func-
tion.

3. q0 = [ε].
M ’s start state corresponds to its having read nothing.

4. F = {[x] | x ∈ L}
One verifies by an easy induction that M is a well-defined FA that accepts L.

4 Applying Myhill-Nerode Concepts to FA’s

4.1 Proving that Languages Are Nonregular

FA’s are very limited in their computing power due to the finiteness of their
memories, i.e., of their sets of states. Indeed, the standard way to expose the
limitations of FA’s—by proving that a language L is not regular—is to establish
somehow that the structure of L requires distinguishing among infinitely many
mutually distinct situations.

4.1.1. The Continuation Lemma and Fooling Sets. Given the conceptual
parsimony and power of Theorem 3, it is not surprising that the Theorem affords
one a simple, yet powerful tool for proving that a language is not regular. This
tool is encapsulated in the following corollary, which follows immediately from
the equivalence of statements (1) and (3) in the Theorem. For reasons that
we hope will become suggestive imminently, we refer to the corollary as “The
Continuation Lemma.” We maintain that the ensuing development should be
viewed as the primary tool for proving that a language is not regular.

Lemma 4 (The Continuation Lemma)
Let L ⊆ Σ� be an infinite regular language. Every sufficiently large set of words
over Σ contains at least two words x, y such that x ≡L y.

The Continuation Lemma has a natural interpretation in terms of FA’s,
namely, that an FA M has no “memory of the past” other than its
current state. Specifically, if strings x and y lead M to the same state
(from its initial state)—i.e., if x ≡M y—then no continuation/extension
of the input string will ever allow M to determine which of x and y it
actually read.
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One applies the Continuation Lemma to the problem of showing that an
infinite3 language L ⊆ Σ� is not regular by constructing a fooling set for L,
i.e., an infinite set of words no two of which are equivalent with respect to L.
In other words, an infinite set S ⊆ Σ� is a fooling set for L if for every pair of
words x, y ∈ S, there exists a word z ∈ Σ� such that precisely one of xz and yz
belongs to L.

This technique has a natural interpretation in terms of FA’s. Since any
FA M has only finitely many states, any infinite set of words must (by the
pigeonhole principle) always contain two, x and y, that are indistinguish-
able to M , in the sense that x ≡M y (so that x ≡L(M) y; cf. Lemma 2).
By the FA version of the Continuation Lemma, no continuation z can
ever cause M to distinguish between x and y.

We now consider a few sample proofs of the nonregularity of languages, which
suggest how direct and simple such proofs can be when they are based on the
Continuation Lemma and fooling sets.

Application 1. The language4 L1 = {anbn | n ∈ N} ⊂ {a, b}� is not
regular.

We claim that the set S1 = {ak | k ∈ N} is a fooling set for L1. To see this,
note that, for any distinct words ai, aj ∈ S1, we have aibi ∈ L1 while ajbi 	∈ L1;
hence, ai 	≡L1 aj . By Lemma 4, L1 is not regular. 
�

Application 2. The language L2 = {ak | k is a perfect square} is not reg-
ular.

This application requires a bit of subtlety. We claim that L2 is a fooling set
for itself! To see this, consider any distinct words ai2 , aj2 ∈ L2, where j > i.
On the one hand, ai2a2i+1 = ai2+2i+1 = a(i+1)2 ∈ L2; on the other hand,
aj2

a2i+1 = aj2+2i+1 	∈ L2, because j2 < j2+2i+1 < (j+1)2; hence, ai2 	≡L2 aj2
.

By Lemma 4, L2 is not regular. 
�
Applications 3 and 4. The language5

L3 = {x ∈ {0, 1}� | x reads the same forwards and backwards;
symbolically, x = xR}

(whose words are often called “palindromes”), and the language

L4 = {x ∈ {0, 1}� | (∃y ∈ {0, 1}�)[x = yy]}
(whose words are often called “squares”), are not regular.

We claim that the set S3 = {10k1 | k ∈ N} is a fooling set for both L3 and
L4. To see this, consider any pair of distinct words, 10i1 and 10j1, from S3.
On the one hand, 10i110i1 ∈ L3 ∩ L4; on the other hand, 10j110i1 	∈ L3 ∪ L4;
hence, 10i1 	≡L3 10j1, and 10i1 	≡L4 10j1. By Lemma 4, neither L3 nor L4 is
regular. 
�
3 Easily, every finite language is regular; cf. [4].
4 N denotes the positive integers. an denotes a string of n occurrences of string (or

symbol) a.
5 xR denotes string x written backwards; e.g., (σ1σ2 · · ·σn−1σn)R = σnσn−1 · · ·σ2σ1.
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4.1.2. The Pumping Lemma for Regular Languages. Inexplicably to
me, most texts shun the proof strategy of Section 4.1.1, in favor of the more
cumbersome—or, at least, never less cumbersome—use of the so-called Pump-
ing Lemma for Regular Languages.

The phenomenon of “pumping” that underlies the Pumping Lemma is a
characteristic of any finite closed system. Consider, for instance, any finite semi-
group6, S = {α1, α2, . . . , αn}. Since there are only finitely many distinct products
in any sequence of the form αi1 , αi1αi2 , αi1αi2αi3 , . . . , where each αij ∈ S, there
must exist two products in the sequence, say αi1αi2 · · ·αik

and αi1αi2 · · ·αik
αik+1

· · ·αik+�
such that

αi1αi2 · · ·αik
= αi1αi2 · · ·αik

αik+1 · · ·αik+�

within the semigroup. By associativity, then, for all h ∈ N,

αi1αi2 · · ·αik
= αi1αi2 · · ·αik

(αik+1 · · ·αik+�
)h,

where the power notation implies iterated multiplication within the semigroup.
Within the context of FA’s, the phenomenon of “pumping” manifests itself

as follows. Focus on an arbitrary FA M = (Q, Σ, δ, q0, F ). Any word w ∈ Σ�

of length7 �(w) ≥ |Q| can be parsed into the form w = xy, where y 	= ε,8 in
such a way that δ(q0, x) = δ(q0, xy). Since M is deterministic—i.e., since δ is a
function—for all h ∈ N,

δ(q0, x) = δ(q0, xyh), (3)

where, as earlier, the power notation implies iterated concatenation. Since the
“pumping” depicted in Eq. 3 occurs also with words w ∈ Σ� that admit a
continuation z ∈ Σ� that places them in L(M)—i.e., wz ∈ L(M)—we arrive
finally at the Pumping Lemma. (Note the implicit invocation of Lemma 4 in our
argument.)

Lemma 5 (The Pumping Lemma for Regular Languages)
For every infinite regular language L, there exists an integer n ∈ N such that:
Every word w ∈ L of length �(w) ≥ n can be parsed into the form w = xyz,
where �(xy) ≤ n and �(y) > 0, in such a way that, for all h ∈ N, xyhz ∈ L.

The reader should easily see how to use Lemma 5 to prove that sets are
not regular. The technique differs from our fooling set/Continuation Lemma
technique mainly in the new (and nonintrinsic!) requirement that one of the
“fooling” words must be a prefix of the other. I view this extraneous restric-
tion as a sufficient argument not to use Lemma 5 for proofs of nonregularity.
However, a common way of using the Lemma actually mandates looking for un-
desired “pumping” activity, rather than just for a pair of “fooling” words. For
instance, a common pumping-based proof of the nonregularity of the language
L1 of Application 1 notes that the “pumped” word y of Lemma 5:
6 A semigroup is a set of elements that are closed under an associative binary multi-

plication (denoted here by juxtaposition).
7 �(w) denotes the length of the string w.
8 Of course, we could have x = ε.
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1. cannot consist solely of a’s, or else the block of a’s becomes longer than the
block of b’s;

2. cannot consist solely of b’s, or else the block of b’s becomes longer than the
block of a’s;

3. cannot contain both an a and a b, or else the pumped word no longer has
the form “a block of a’s followed by a block of b’s.

Even when one judiciously avoids this three-case argument by invoking the
Lemma’s length limit on the prefix xy, one is inviting/risking excessive com-
plication by seeking a string that pumps. For instance, when proving the non-
regularity of the language L3 of palindromes, one must cope with the fact that
any palindrome does pump about its center. (That is, for any palindrome w and
any integer �, if one parses w into w = xyz, where x and z both have length
�, then, indeed, for all h ∈ N, the word xyhz is a palindrome.) Note that we
are not suggesting that any of the problems we raise is insuperable, only that
they unnecessarily complicate the proof process, hence violate Occam’s Razor.
The danger inherent in using Lemma 5 to prove that a language is not regular
is mentioned explicitly in [9]:

The pumping lemma is difficult for several reasons. Its statement is com-
plicated, and it is easy to go astray in applying it.

We show now that the condition for a language to be regular that is provided
in Lemma 5 is necessary but not sufficient. This contrasts with the necessary and
sufficient condition provided by Theorem 3.

Lemma 6 ([20]) Every string of length > 4 in the nonregular language

L5 = {uuRv | u, v ∈ {0, 1}�; �(u), �(v) ≥ 1}
pumps in the sense of Lemma 5.

Proof. We paraphrase from [20]. Each string in L5 consists of a nonempty even
palindrome followed by another nonempty string. Say first that w = uuRv and
that �(w) ≥ 4. If �(u) = 1, then we can choose the first character of v as the
nonnull “pumping” substring of Lemma 5. (Of course, the “pumped” strings
are uninteresting in this case.) Alternatively, if �(u) > 1, then, since ak is a
palindrome for every k > 1, where a is the first character of u, we can let this
first letter be the nonnull “pumping” substring of Lemma 5. In either case, the
lemma holds.

Notably, the discussion in [20] ends with the following comment.

For a practical test that exactly characterizes regular languages, see the
Myhill-Nerode theorem.

For the record, Theorem 3 provides a simple proof that L5 is not regular. Let
x and y be distinct strings from the infinite language L = (01)(01)�, with �(y) >
�(x). (Strings in L consist of a sequence of one or more instances of 01.) Easily,
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xxR is an even-length palindrome, hence belongs to L5 (with v = ε). However,
one verifies easily that yxR does not begin with an even-length palindrome, so
that yxR 	∈ L5. To wit, if one could write yxR in the form uuRv, then:

– u could not end with a 0, since the “center” substring 00 does not occur in
yxR;

– u could not end with a 1, since the unique occurrence of 11 in yxR occurs
to the right of the center of the string.

By Lemma 4, L5 is not regular. 
�
For completeness, we end this section with a version of Lemma 5 that supplies

a condition that is both necessary and sufficient for a language to be regular. This
version is rather nonperspicuous and a bit cumbersome, hence, is infrequently
taught.

Lemma 7 ([5]) (The Necessary-and-Sufficient Pumping Lemma)
A language L ⊆ Σ� is regular if, and only if, there exists an integer n ∈ N
such that: Every word w ∈ Σ� of length �(w) ≥ n can be parsed into the form
w = xyz, where �(y) > 0, in such a way that, for all z ∈ Σ�:

– if wz ∈ L, then for all h ∈ N, xyhz ∈ L;
– if wz 	∈ L, then for all h ∈ N, xyhz 	∈ L;

4.2 Minimizing Finite Automata

Theorem 3 and its proof tell us two important things.

1. The notion of “state” underlying the FA model is embodied in the relations
≡M . More precisely, a state of an FA is a set of input strings that the FA
“identifies,” because—and so that—any two strings in the set are indistin-
guishable with respect to the language the FA accepts.

2. The coarsest—i.e., smallest-index—equivalence relation that “works” is ≡L,
so that this relation embodies the smallest FA that accepts language L.

We can turn the preceding intuition into an algorithm for minimizing the state-
set of a given FA. You can look at this algorithm as starting with any given
equivalence relation that “defines” L (e.g., with any FA that accepts L) and
iteratively “coarsifying” the relation as far as we can, thereby “sneaking” up on
the relation ≡L.

The resulting algorithm for minimizing a FA M = (Q, Σ, δ, q0, F ) essentially
computes the following equivalence relation on M ’s state-set Q. For p, q ∈ Q,

[p ≡δ q] if, and only if (∀x ∈ Σ�)[[δ(p, x) ∈ F ] ⇔ [δ(q, x) ∈ F ]]

This relation says that no input string will allow one to distinguish M ’s being
in state p from M ’s being in state q. One can, therefore, coalesce states p and q
to obtain a smaller FA that accepts L(M). The equivalence classes of ≡δ, i.e.,
the set

{[p]≡δ
| p ∈ Q}
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are, therefore, the states of the smallest FA—call it M̂—that accepts L(M). The
state-transition function δ̂ of M̂ is given by

δ̂([p]≡δ
, σ) = [δ(p, σ)]≡δ

.

Finally, the initial state of M̂ is [q0]≡δ
, and the accepting states are {[p]≡δ

| p ∈
F}. One shows easily that δ̂ is well defined and that L(M̂) = L(M).

We simplify our explanation of how to compute ≡δ by describing an example
concurrently with our description of the algorithm. We start with a very coarse
approximation to ≡δ and iteratively improve the approximation. Fig. 1 presents
the FA

M = ({a, b, c, d, f, g, h}, {0, 1}, δ, a, {c})
for our example, in tabular form.

M q δ(q, 0) δ(q, 1) q ∈ F ?

(start state) → a b f /∈ F

b g c /∈ F

(final state) → c a c ∈ F

d c g /∈ F

e h f /∈ F

f c g /∈ F

g g e /∈ F

h g c /∈ F

Fig. 1. The FA M that we minimize.

Our initial partition9 of Q is Q − F, F , to indicate that the null string ε
witnesses the fact that no accepting state is equivalent to any nonaccepting
state. This yields the initial partition of M ’s states:

[a, b, d, e, f, g, h]1, [c]1

(The subscript “1” indicates that this is the first discriminatory step). State c,
being the unique final state, is not equivalent to any other state.

Inductively, we now look at the current, time-t, partition and try to “break
apart” time-t blocks. We do this by feeding pairs of states in the same block single
input symbols. If any symbol leads states p and q to different blocks, then, by
induction, we have found a string x that discriminates between them. In detail,
say that δ(p, σ) = r and δ(q, σ) = s. If there is a string x that discriminates
between states r and s—by showing them not to be equivalent under ≡δ—then
9 Recalling that partitions and equivalence relations are equivalent notions, we con-

tinue to use notation “[ab · · · z]” to denote the set {a, b, . . . , z} viewed as a block of
a partition (= equivalence class).
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the string σx discriminates between states p and q. In our example, we find that
input “0” breaks the big time-1 block, so that we get the “time 1.5” partition

[a, b, e, g, h]1.5, [d, f ]1.5, [c]

and input “1” further breaks the block down. We end up with the time-2 partition

[a, e]2, [b, h]2, [g]2, [d, f ]2, [c]2

Let’s see how this happens. First, we find that δ(d, 0) = δ(f, 0) = c ∈ F , while
δ(q, 0) /∈ F for q ∈ {a, b, e, g, h}. This leads to the “time-1.5” partition (since we
have thus far used only one of the two input symbols). At this point, input “1”
leads states a and e to block {d, f}, and it leads states b and h to block {c};
it leaves state g in its present block. We thus end up with the indicated time-2
partition. Further single inputs leave this partition unchanged, so it must be the
coarsest partition that preserves L(M).

The preceding sentence invokes the fact that, by a simple induction, if a
partition persists under (i.e., is unchanged by) all single inputs, then it persists
under all input strings. We claim that such a stable partition embodies the
relation ≡M , hence, by Lemma 2, the relation ≡L(M). To see this, consider any
two states, p and q, that belong to the same block of a partition that persists
under all input strings. Stability ensures that, for all z ∈ Σ�, the states δ(p, z)
and δ(q, z) belong to the same block of the partition; hence, either both states
belong to F or neither does. In other words: If δ(q0, x) = p and δ(q0, y) = q, for
x, y ∈ Σ�, then for all z ∈ Σ�, either {p, q} ⊆ F , in which case {xz, yz} ⊆ L(M),
or {p, q} ⊆ Q − F , in which case {xz, yz} ⊆ Σ� − L(M). By definition, then,
x ≡M y.

Returning to the algorithm, we have ended up with the FA M̂ of Fig. 2 as
the minimum-state version of M .

M̂ q δ̂(q, 0) δ̂(q, 1) q ∈ F ?

(start state) → [ae] [bh] [df ] /∈ F

[bh] [g] [c] /∈ F

(final state) → [c] [ae] [c] ∈ F

[df ] [c] [g] /∈ F

[g] [g] [ae] /∈ F

Fig. 2. The FA M̂ that minimizes the FA M of Fig.1.

5 Applying Myhill-Nerode Concepts to Non-FA’s

We present three applications of the concepts underlying Theorem 3 to state-
transition systems other than FA’s. Although our primary motivation is to ex-
pose interesting applications of Myhill-Nerode-type characterizations of “state,”
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for the sake of completeness, we sketch out the derivations of the results that
the characterizations lead to. The first two applications involve OA’s that are
strictly more powerful than FA’s.

5.1 Memory Bounds for Online Automata

By Theorem 3, any OA M that accepts a nonregular language must have in-
finitely many states. We now present a result from [6] that sharpens this state-
ment via an “infinitely-often” lower bound on the number of states an FA M (n)

must have in order to correctly mimic M ’s (word-acceptance) behavior on all
words of length ≤ n (thereby providing an “order-n approximation” of M). This
bound assumes nothing about M other than its accepting a nonregular language.
(Indeed, M ’s state-transition function δ need not even be computable.) In the
context of this survey, this result removes Theorem 3 from the confines of the
theory of FA’s, by adapting it to a broader class of state-transition systems. This
adaptation is achieved by converting the word-relating equivalence relation ≡M

to an automaton-relating relation that asserts the equivalence of two OA’s on all
words that are no longer than a chosen parameter.

Let L be a nonregular language, and let M be an OA that accepts L: L =
L(M). For any n ∈ N, an FA M (n) is an order-n approximate acceptor of L or,
equivalently, an order-n approximation of M if

{x ∈ L(M (n)) | �(x) ≤ n} = {x ∈ L | �(x) ≤ n} = {x ∈ L(M) | �(x) ≤ n}.

We denote by AL(n) the (obviously monotonic nondecreasing) number of states
in the smallest order-n approximate acceptor of L, as a function of n. This
quantity can be viewed as a measure of L’s “space complexity,” in the sense that
one needs �log2 AL(n)� bi-stable devices (say, transistors) in order to implement
an order-n approximate acceptor of L in circuitry.

The conceptual framework of Theorem 3 affords one easy access to a nontriv-
ial lower bound on the “infinitely-often” behavior of AL(n), for any nonregular
language L.

Theorem 8 ([6]). If the language L is nonregular, then, for infinitely many n,

AL(n) >
1
2
n + 1. (4)

Proof. Let M1 and M2 be OA’s. For any n ∈ N, we say that M1 and M2 are
n-equivalent, denoted M1 ≡n M2, just when

{x ∈ L(M1) | �(x) ≤ n} = {x ∈ L(M2) | �(x) ≤ n}.

This relation is, thus, a parameterized extension of the relation ≡M that is
central to Theorem 3.

Our analysis of approximate acceptors of L builds on the following bound on
the “degree” of equivalence of pairs of FA’s.
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Lemma 9 ([10]) Let M1 and M2 be FA’s with s1 and s2 states, respectively,
such that L(M1) 	= L(M2). Then M1 	≡s1+s2−2 M2.

Proof (Proof of Lemma 9). We bound from above the number of partition-
refinements that suffice for the state-minimization algorithm of Section 4.2 to
distinguish the initial states of M1 and M2 (which, by hypothesis, are distin-
guishable).

Since the algorithm is actually a “state-equivalence tester,” we can apply it
to state-transition systems that are not legal FA’s, as long as we are careful to
keep final and nonfinal state segregated from one another. We therefore apply
the algorithm to the following “disconnected” FA M . Say that, for i = 1, 2,
Mi = (Qi, Σ, δi, qi,0, Fi), where Q1∩Q2 = ∅. Then M = (Q, Σ, δ, {q1,0, q2,0}, F ),
where

– Q = Q1 ∪ Q2

– for q ∈ Q and σ ∈ Σ: δ(q, σ) =
{

δ1(q, σ) if q ∈ Q1

δ2(q, σ) if q ∈ Q2

– F = F1 ∪ F2.

Now, the fact that L(M1) 	= L(M2) implies: (a) that q1,0 	≡M q2,0; (b) that
neither Q − F nor F is empty. How many stages of the algorithm would be
required, in the worst case, to distinguish states q1,0 and q2,0 within M , when
the algorithm starts with the initial partition {Q − F, F}? Well, each stage
of the algorithm, save the last, must “split” some block of the partition into
two nonempty subblocks. Since one “split,” namely, the separation of Q − F
from F , occurs before the algorithm starts applying input symbols, and since
|Q| = s1 + s2, the algorithm can proceed for no more than s1 + s2 − 2 stages;
after that many stages, all blocks would be singletons! In other words, if p 	≡M q,
for states p, q ∈ Q, then there is a string of length ≤ s1 + s2 − 2 that witnesses
the nonequivalence. Since we know that q1,0 	≡M q2,0, this completes the proof.

Back to the theorem. For each k ∈ N, Theorem 3 guarantees that there is a
smallest integer n > k such that AL(k) = AL(n− 1) < AL(n). The preceding
inequality implies the existence of FA’s M1 and M2 such that:

1. M1 has AL(n − 1) states and is an (n − 1)-approximate acceptor of L;
2. M2 has AL(n) and is an n-approximate acceptor of L.

By statement 1, M1 ≡n−1 M2; by statements 1 and 2, M1 	≡n M2. By Lemma 9,
then, M1 	≡AL(n−1)+AL(n)−2 M2. Since M1 ≡n−1 M2, we therefore have AL(n−
1) + AL(n) > n + 1, which yields Ineq. 4, since AL(n − 1) ≤ AL(n) − 1.

It is shown in [6] that Theorem 8 is as strong as possible, in that: the constants
1
2 and 1 in Ineq. 4 cannot be improved; the phrase “infinitely many” cannot be
strengthened to “all but finitely many.”
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5.2 Online Automata with Structured States

The preceding section derives a lower bound on the size of any OA M that
accepts a nonregular language L, by bounding the number of classes of ≡L. In
this section, we present lower bounds from [2] on the time a specific genre of OA
requires to accept a language L, based on the “structure” of the OA’s infinitely
many states. Specifically, we analyze the behavior of “online” Turing Machines
(TM’s) whose infinitely many states arise from a collection of read-write “work
tapes” of unbounded capacities. As in Section 5.1, the desired bound is achieved
by adapting Theorem 3 to a broad class of infinite-state OA’s. This adaptation is
achieved here by parameterizing the word-relating equivalence relation ≡M ; for
each integer t > 0, the parameter-t relation ≡(t)

M behaves like ≡M , but exposes
only discriminations that M can make in t or fewer steps.

A word about TM’s is in order, to explain why the study in this section is
relevant to computer scientists. The TM model originated in the monumental
study [19] that planted the seeds of computability theory, hence, also, of com-
plexity theory. Lacking real digital computers as exemplars of the genre, Turing
devised a model that served his purposes but that would be hard to justify to-
day as a way for thinking about either computers or algorithms. Seen in this
light, one surmises that TM’s persists in today’s textbooks on computation the-
ory only because of their mathematical simplicity. However, I believe there is
an alternative role for the TM model, which justifies continued attention—in
certain contexts. Specifically, one can often devise varieties of TM that allow
one to expose the impact of data-structure topology on the efficiency of certain
computations. These TM’s abstract the control portion of an algorithm down
to a finite state-transition system and use the TM’s “tapes” to model access to
data structures. The study in [2] uses TM’s in this way, focusing on the impact
of tape topology on efficiency of retrieving sets of words. As such, the bounds
here can be viewed as an early contribution to the theory of data structures.
This perspective underlay both my “data graph” model [16] and Schönhage’s
“storage modification machine” model [17]. The interesting features here are the
formulation of an information-retrieval problem as a formal language, and the
use of the concepts underlying Theorem 3 to analyze the problem.

5.2.1. The Online TM Model. A d-dimensional tape is a linked data structure
with an array-like topology, termed an orthogonal list in [7]. A tape is accessed
via a read-write head—the TM-oriented name for a pointer. Each cell of a tape
holds one symbol from a finite set Γ that contains a designated “blank” symbol;
e.g., in a 32-bit computer, Γ could be the set of 32-bit binary words, and the
“blank” symbol could be the word of all 1’s. Access to cells within a tape is
sequential: one can move the head at most one cell in any of the 2d permissible
directions in a step.

An online TM M with t d-dimensional “work tapes” can be viewed as an FA
that has access to t d-dimensional tapes. As with any FA, M has an input port
via which it scans symbols from its input alphabet Σ; it also has a designated
initial state and a designated set of final states.
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Let me explain the role of the input port in M ’s “online” computing,
by analogy with FA’s. One can view an FA as a device that is passive
until a symbol σ ∈ Σ is “dropped into” its input port. If the FA is in a
stable configuration at that moment—meaning that all bi-stable devices
in its circuitry have stabilized—then the FA responds to input σ. The
most interesting aspect of this response is that the FA indicates whether
the entire sequence of input symbols that it has been presented up to
that point—i.e., up to and including the last instance of symbol σ—
is accepted. Note that the FA responds to input symbols in an online
manner, making acceptance/rejection decisions about each prefix of the
input string as that prefix has been read. Of course, once the FA has
“digested” the last instance of symbol σ, by again reaching a stable
configuration, then it is ready to “digest” another input symbol, when
and if one is “dropped into” its input port.

The TM M uses its input port in much the manner just described. There is,
however, a fundamental difference between an FA and an online TM. During
the “passive” periods in which an FA does not accept new input symbols at
its input port, the FA is typically waiting for its logic to stabilize, hence is
usually not considered to be doing valuable computation. In contrast, during
the “passive” periods in which an online TM does not accept new input symbols
at its input port, the TM may be doing quite valuable subcomputations using its
work tapes. Indeed, the study in [2] can be viewed as bounding (from below) the
cumulative time that must be devoted to these “introspective” subcomputations
when performing certain computations. With this intuitive background in place,
a computational step by M depends on:

– its current state,
– the current input symbol, if M ’s program reads the input at this step,
– the t symbols (elements of Γ ) currently scanned by the pointers on the t

tapes.

On the basis of these, M :

– enters a new state (which may be the same as the current one),
– independently rewrites the symbols currently scanned on the t tapes (possi-

bly with the same symbol as the current one),
– independently moves the read-write head on each tape at most10 one square

in one of the 2d allowable directions.

Notes. (a) When d = 1, we have a TM with t linear (i.e., one-dimensional)
tapes. (b) Our tapes have array-like topologies because of the focus in [2]. It
is easy to specify tapes with other regular topologies, such as trees of various
arities.

One extends M ’s one-step computation to a multistep computation (whose
goal is language recognition, as usual) as follows. To determine if a word w =

10 “At most” means that a read-write head is allowed to remain stationary.
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σ1σ2 · · ·σn ∈ Σ� is accepted by M—i.e., is in the language L(M)—one makes
w’s n symbols available, in sequence, at M ’s input port. If M starts in its initial
state with all cells of all tapes containing the “blank” symbol, and it proceeds
through a sequence of N steps that:

– includes n steps during which M “reads” an input symbol,
– ends with a step in which M is programmed to “read” an input symbol,

then M is said to decide w in N steps; if, moreover, M ’s state at step N is an
accepting state, then M is said to accept w in N steps.

The somewhat complicated double condition for acceptance (“includes . . . ”
and “ends with . . . ”) ensures that, if M accepts w, then it does so unambiguously.
Specifically, after reading the last symbol of w, M does not “give its answer”
until it prepares to read the next input symbol (if that ever happens). This
means that M cannot oscillate between accepting and nonaccepting states after
reading the last symbol of w.

5.2.2. The Impact of Tape Structure on Memory Locality. The con-
figuration of an online TM M having t d-dimensional tapes, at any step of a
computation, is the (t + 1)-tuple 〈q, τ1, τ2, . . . , τt〉 defined as follows.

– q is the state of M ’s finite-state control (its associated FA);
– each τi is the d-dimensional configuration of symbols from Γ that comprises

the non-“blank” portion of tape i, with one symbol highlighted (in some
way) to indicate the current position of M ’s read-write head on tape i.

(M ’s configuration is often called its “total state.”) The importance of this con-
cept resides in the following. Say that, for i = 1, 2, the database-string xi ∈ Σ�

leads M to configuration CM (xi) = 〈qi, τi1, τi2, . . . , τit〉. If:

– q1 = q2; i.e., the configurations share the same state;
– for some integer r ≥ 1, and all i ∈ {1, 2, . . . , t}, tape configurations τ1i

and τ2i are identical within r symbols of their highlighted symbols (which
indicate where M ’s read-write heads reside),

then we say that the databases specified by x1 and x2 are r-indistinguishable
by M , denoted x1 ≡(r)

M x2. This relation is an important parameterization of
the FA-oriented relation ≡M that is central to Theorem 3. Specifically, by an-
alyzing relation ≡(r)

M , one can sometimes bound the time-complexity of various
subcomputations by M , in the following sense.

Lemma 10 Say that x1 ≡(r)
M x2. If there exists a y ∈ Σ� such that one of

x1y, x2y belongs to L(M), while the other does not, then, having read either of
x1 or x2, M must compute for more than r steps while reading y.
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5.2.3. An Information-Retrieval Problem Formulated as a Language.
The following problem is used in [2] to expose the potential effect of tape struc-
ture on computational efficiency. We feed an online TM M a set of equal-length
binary words, which we term a database. We then feed M a sequence of bi-
nary words, each of which is termed a query. After reading each query, M must
respond “YES” if the query word occurs in the database, and “NO” if not.

The database language LDB ⊆ Σ�, where, Σ = {0, 1, :}, and “:” is a symbol
distinct from “0” and “1,” formalizes the preceding problem. Each word in LDB

has the form
ξ1 : ξ2 : · · · : ξm :: η1 : η2 : · · · : ηn

where, for some k ∈ N,

– each ξi (1 ≤ i ≤ m) and each ηj (1 ≤ j ≤ n) is a length-k binary string;
– m = 2k;
– ηn ∈ {ξ1, ξ2, . . . , ξm}.

Both the sequence of ξi’s and the sequence of ηj ’s can contain repetitions. In par-
ticular, we are interested only in the set of words {ξ1, ξ2, . . . , ξm} (the database).
The database string “ξ1 : ξ2 : · · · : ξm” is just the mechanism we use to present
the database to M . Each word ηj is a query. In each word x ∈ LDB, the double
colon “::” separates the database from the queries, while the single colon “:”
separates consecutive binary words.

The fact that we are interested only in whether or not the last query appears
in the database reflects the online nature of the computation: M must respond
to each query as it appears, with no knowledge of which is the last, hence, the
important one. (This is essentially the challenge faced by all online algorithms.)

5.2.4. Tape Dimensionality and the Time to Recognize LDB. For sim-
plicity, we focus henceforth on the sublanguages of LDB that are parameterized
by the common lengths of their binary words. For each k ∈ N, L

(k)
DB denotes

the sublanguage in which each ξi and each ηj has length k. Note that each
database-string in L

(k)
DB has length (k + 1)2k − 1.

Focus on any fixed L
(k)
DB. If the database-strings x1 and x2 specify distinct

databases, then there exists a query η that appears in the database specified by
one of the xi but not the other—so, precisely one of x1 :: η and x2 :: η belongs
to L

(k)
DB. Database-strings that specify distinct databases must, thus, lead M to

distinct configurations.
How “big” must these configurations be? On the one hand, there are 22k − 1

distinct databases (corresponding to each nonempty set of length-k ξi’s). On the
other hand, for any M with t d-dimensional tapes, there is an αM > 0 that
depends only on M ’s structure, such that M has ≤ αdtr

M distinct configurations
of “radius” r—meaning that all non-“blank” symbols on all tapes reside within
r cells of the read-write heads. Thus, in order for each database to get a distinct
configuration (so that ≡(r)

M has ≥ 22k − 1 equivalence classes), the “radius” r
must exceed βM · 2k/d, for some βM > 0 that depends only on M ’s structure.
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Combining this bound with Lemma 10, we arrive at the following time bound.

Lemma 11 If L(M) = L
(k)
DB, then, for some length-k query η, M must take11 >

βM · (21/d)k steps while reading η, for some βM > 0 that depends only on M ’s
structure.

The reasoning behind Lemma 11 is information theoretic, depending only
on the fact that the number of databases in L

(k)
DB is doubly exponential in k,

while the number of bounded-”radius” TM configurations is singly exponential.
Therefore, no matter how M reorganizes its tape contents while responding to
one bad query, there must be a query that is bad for the new configuration! By
focusing on strings with 2k bad queries, we thus obtain:

Theorem 12 ([2]). Any online TM M with d-dimensional tapes that recognizes
the language LDB must, for infinitely many N , take time > βM ·(N/ log N)1+1/d

to process inputs of length N , for some constant βM > 0 that depends only on
M ’s structure.

One finds in [2] a companion upper bound of O(N1+1/d) for the problem
of recognizing LDB. Hence, Theorem 12 does expose the potential of nontrivial
impact of data-structure topology on computational efficiency. In its time, the
theorem also exposed one of the earliest examples of the cost of the online
requirement. Specifically, LDB can clearly be accepted in linear time by a TM M
that has just a single, linear work tape, but that operates in an offline manner—
meaning that M gets to see the entire input string before it must give an answer
(so that it knows which query is important before it starts computing).

6 Finite Automata with Probabilistic Transitions

We now consider a rather different genre of OA’s, namely, FA’s whose state-
transitions are probabilistic, with acceptance decisions depending on the prob-
ability of ending up in an final state. This is a very timely model to consider
since probabilistic state-transition systems are currently quite in vogue in several
areas of artificial intelligence, notably the growing area of machine learning. The
main result that we present comes from [14]; it exhibits a nontrivial, somewhat
surprising situation in which probabilistic state-transitions add no power to the
model: The restricted automata accept only regular sets.

6.1 PFA’s and Their Languages

We start with an FA, M = (Q, Σ, δ, q0, F ), and make its state-transitions and
acceptance criterion probabilistic. We call the resulting model a Probabilistic
Finite Automaton (PFA, for short).

11 We write 2k/d in the unusual form (21/d)k to emphasize that the dimensionality of
M ’s tapes (which is a fixed constant) appears only in the base of the exponential.
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States. We simplify the formal development by positing that the state-set
of the PFA M is Q = {1, 2, . . . , n}, with q0 = 1, and F = {m, m + 1, . . . , n} for
some m ∈ Q.

State-transitions. We replace M ’s state-transition function δ with a set of
tables, one for each symbol of Σ. The table associated with σ ∈ Σ indicates, for
each pair of states q, q′ ∈ Q, the probability—call it ρq,q′—that M ends up in
state q′ when started in state q and “fed” input symbol σ. It is convenient to
present the state-transition tables as matrices. The table associated with σ ∈ Σ
is:

∆σ =








ρ1,1 ρ1,2 · · · ρ1,n

ρ2,1 ρ2,2 · · · ρ2,n

...
...

. . .
...

ρn,1 ρn,2 · · · ρn,n








where each12 ρi,j ∈ [0, 1], and, for each i,
∑

j ρi,j = 1.
States, revisited. The probabilistic nature of M ’s state-transitions forces

us to distinguish between M ’s set of states—the set Q—and the “state” that
reflects M situation at any point of a computation, which is a probability dis-
tribution over Q. We therefore define the state-distribution of M to be a vector
of probabilities q = 〈π1, π2, . . . , πn〉, where each πi is the probability that M is
in state i. The initial state-distribution is q0 = 〈1, 0, . . . , 0〉.

State-transitions, revisited. Under the preceding formalism, the PFA ana-
logue of the FA single-symbol state-transition δ(q, σ) is the vector-matrix prod-
uct: ∆̂(q, σ) = q × ∆σ. By extension, the PFA analogue of the FA string
state-transition δ(q, σ1σ2 · · ·σk), where each σi ∈ Σ, is

∆̂(q, σ1σ2 · · ·σk) def= q × ∆σ1 × ∆σ2 × · · · × ∆σn . (5)

The language accepted by a PFA. The probabilistic analogue of accep-
tance by final state builds on the notion of an (acceptance) threshold θ ∈ [0, 1].
The string x ∈ Σ� is accepted by M iff

pM (x) def=
n∑

i=m

∆̂(q0, x)i > θ,

where ∆̂(q, x)i denotes the ith coordinate of the tuple ∆̂(q, x). (Recall that M ’s
final states are those whose integer-names are ≥ m.) Thus, x is accepted iff
it leads M from its initial state to its set of final states with probability > θ.
As with all OA’s, the language accepted by M is the set of all strings that M
accepts. Acknowledging the crucial role of the acceptance threshold θ, we denote
this language by

L(M, θ) def= {x ∈ Σ� | pM (x) > θ}.
12 As usual, [0, 1] denotes the closed real interval {x | 0 ≤ x ≤ 1}.
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6.2 L(M, θ) Is Regular when θ Is “Isolated”

It is noted in [14] that even simple—e.g., two-state—PFA’s can accept nonregular
languages, when accompanied by an “unfavorable” acceptance threshold. When
thresholds are “favorable,” though, all PFA’s accept regular languages.

The threshold θ ∈ [0, 1] is isolated for the PFA M iff there exist a real constant
of isolation ε > 0 such that, for all x ∈ Σ�, |pM (x) − θ| ≥ ε.

Theorem 13 ([14]). For any PFA M and associated isolated acceptance thresh-
old θ, the language L(M, θ) is regular.

Proof. We sketch the proof from [14], which is a direct application of Theorem 3.
Say that M has n states, a of which are final, and let ε > 0 be the constant
of isolation. We claim that the relation ≡L(M,θ) cannot have more than κ

def=
[1 + (a/ε)]n−1 classes.

This bound is established by considering a set of k words that are mutually
inequivalent under ≡L(M,θ), with the aim of showing that k cannot exceed κ.
This is accomplished by converting M ’s language-related problem to a geometric
setting, by considering, for each x ∈ Σ�, the point in n-dimensional space given
by ∆̂(q0, w) (cf. Eq. 5).

In the language-related setting, we consider an arbitrary pair of inequivalent
words, xi, xj ∈ Σ�, and note that there must exist y ∈ Σ� such that (w.l.o.g.)
xiy ∈ L(M, θ) while xjy 	∈ L(M, θ). In the geometric setting, this translates into
the existence of three points:

〈ξ(i)
1 , ξ

(i)
2 , . . . , ξ

(i)
n 〉 corresponding to xi

〈ξ(j)
1 , ξ

(j)
2 , . . . , ξ

(j)
n 〉 corresponding to xj

〈η1, η2, . . . , ηn〉 corresponding to y

such that (here are the acceptance conditions):

θ + ε < ξ
(i)
1 η1 + ξ

(i)
2 η2 + · · · + ξ(i)

n ηn;

θ − ε ≥ ξ
(j)
1 η1 + ξ

(j)
2 η2 + · · · + ξ(j)

n ηn.

Elementary reasoning then allows us to infer that

2(ε/a) ≤ |ξ(i)
1 − ξ

(j)
1 | + |ξ(i)

2 − ξ
(j)
2 | + · · · + |ξ(i)

n − ξ(j)
n |.

We next consider, for each i ∈ {1, 2, . . . , k}, the set Λi comprising all points
〈ξ1, ξ2, . . . ξn〉 such that

• ξl ≥ ξ
(i)
l for all l ∈ {1, 2, . . . , n} •

n∑

l=1

(ξl − ξ
(i)
l ) = (ε/a).

By bounding the volumes of the sets Λi, and arguing that no two share an
internal point, one arrives at the following bounds on the cumulative volumes of
the sets.

kc(ε/a)n−1 =
n∑

l=1

Vol(Λl) = c(1 + (ε/a))n−1.

We infer directly that k ≤ [1 + (a/ε)]n−1, as was claimed.
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7 Conclusions

It has been my goal to present a technical argument for the importance of the
Myhill-Nerode Theorem and the concepts it uses to characterize the notion of
“state.” I have attempted to do so by reviewing several applications of (the
concepts underlying) the Theorem, to areas as diverse as Finite Automata the-
ory (Section 4.1), logic design (Section 4.2), space complexity (Section 5.1), the
theory of data structures (Section 5.2), and artificial intelligence/machine learn-
ing (Section 6). To the extent that the role of theoretical computer science is
to provide nonobvious conceptual frameworks for thinking/reasoning about and
analyzing “real” computational settings and systems—and no one can dispute
that this is at least one of the roles of the theory—the Myhill-Nerode Theorem is
a success story for the field, one that should be in the toolbox of every theoretical
computer scientist.

In closing, I want to stress that the Myhill-Nerode Theorem and its asso-
ciated concepts is just one of the treasures from the 1960’s that have slipped
from front stage as automata-like models have slipped from favor. I would men-
tion the product-decomposition work in [1] as another topic in the study of
state-transition systems whose significance surely transcends the study of Finite
Automata in which the work originated.
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several others, notably Micah Adler and Ami Litman, for sharing insights and
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