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Abstract. Advances in technology have rendered the Internet a viable
medium for employing multiple independent computers collaboratively
in the solution of a single computational problem, leading to the new
genre of collaborative computing that we term Internet-based comput-
ing (IC). Scheduling a computation for IC presents challenges that were
not encountered with earlier modalities of collaborative computing, espe-
cially when the computation’s constituent tasks have interdependencies
that constrain their order of execution. This paper surveys an ongoing
study of (an abstraction of) the scheduling problem for such computa-
tions for IC. The work employs a “pebble game on computation-dags,”
that abstracts the process of allocating a computation’s interdependent
tasks to participating remote computers. The goal of a schedule, moti-
vated by two related scheduling challenges, is to maximize the production
rate of tasks that are eligible for execution. First, in many modalities of
IC, remote computers become available at unpredictable times. Always
having a maximal number of execution-eligible tasks enhances the uti-
lization of available resources. Second, the fact that remote computers
are often not dedicated to this IC computation, hence, may be more dila-
tory than anticipated, can lead to a type of “gridlock” that results when
a computation stalls because (due to dependencies) all execution-eligible
tasks are already allocated to remote computers. These motivating chal-
lenges raise the hope that the optimality results presented here within
an abstract IC setting have the potential of improving efficiency and
fault-tolerance in real IC settings.

1 Introduction

A variety of so-called pebble games on dags3 (directed acyclic graphs) have been
shown, over the course of several decades, to yield elegant formal analogues of a
variety of problems related to scheduling the tasks/nodes of a computation-dag.
The basic idea underlying such games is to use tokens (called “pebbles”) to model
the progress of a computation on a dag: the placement or removal of pebbles of
various types—which is constrained by the dependencies modeled by the dag’s
arcs4—represents the changing (computational) status of the tasks represented
3 Precise definitions of all required notions appear in Section 2.
4 Pending the definitions of Section 2, one can refer to an algorithms text such as [5]

for examples of task interdependencies and their representations via dags.
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by the dag’s nodes. Pebble games have been used to study problems as diverse
as register allocation [17, 3], interprocessor communication in parallel comput-
ers [11], “out-of-core” memory accesses [10], and the bandwidth-minimization
problem for sparse matrices (which can be formulated as a genre of schedul-
ing problem) [20]. Additionally, pebble games have been shown to model many
complexity-theoretic problems perspicaciously; see the survey [18]. The current
paper is devoted to surveying ongoing joint work, [19, 21, 16], by the authors and
M. Yurkewych (U. Massachusetts), which uses a new pebble game to study the
problem of scheduling computation-dags for Internet-based computing (IC, for
short). While this new game shares its basic structure with the “no recompu-
tation allowed” pebble game of [20], it differs markedly from that game in the
resource one strives to optimize.

A word about IC will explain the pebble game we study. Advancing tech-
nology has rendered the Internet a viable medium for employing multiple in-
dependent computers collaboratively in the solution of a single computational
problem. A variety of mechanisms have been developed for IC, with “Web-based
computing” [14], Peer-to-Peer computing (P2PC) [2, 23], and Grid computing
[6, 7] being among the most popular.5 Most forms of IC—including those just
cited—lend themselves naturally to the master-slave computing metaphor, in
which a master computer enlists the aid of remote “slave” (or, client) computers
to collaborate in the computation of a massive collection of compute-intensive
tasks. In rough terms, the differences among the listed modalities are as follows.
In “Web-based computing,” the remote clients are individuals who allow the
master to download a program that will run in background on each client’s pc;
the clients are typically anonymous and, hence, untrusted; the project usually
exists to perform a single computation. Grid computing—so named in anal-
ogy with a power grid—typically involves a fixed assemblage of computing sites
that contract with one another to share computing resources (possibly, but not
necessarily, including computing cycles); Grid members are usually mutually
trusted. P2PC often shares with “Web-based computing” the anonymity of re-
mote clients; it usually shares with Grid computing the revolving role of master
and client, hence, a lifetime that goes beyond a single computation.

As with all new computing technologies, IC engenders novel scheduling chal-
lenges, even while enabling a large variety of computations that could not be han-
dled efficiently by any fixed-size assemblage of dedicated computing agents (e.g.,
multiprocessors or clusters of workstations). Two related challenges that arise in
IC motivate our study. First, in many modalities of IC, remote clients become
available (to receive work) at unpredictable times. Second, the fact that remote
clients are often not dedicated to the IC computation being performed raises
the possibility that some may be slower than anticipated in returning the results
from tasks allocated to them. (Indeed, in “Web-based computing,” a client may

5 Definitions and terminology in this fast-evolving field tend to vary from one re-
searcher to another, but the definitions here should convey the essential nature of
the three modalities of IC. We put “Web-based computing” in quotes because this
specific modality has no generally accepted name.
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never return its results.) When the tasks being computed are mutually indepen-
dent, then (finite) delays by clients are just an annoyance; in particular, delays
by “old” clients can never preclude having a new task available for allocation to
a new client who becomes available. In contrast, when the tasks being computed
have interdependencies that constrain their order of execution, dilatory clients
may cause the supply of eligible tasks to be very small at certain times. Indeed,
in the limit, an IC computation could occasionally encounter a type of “gridlock”
wherein the computation stalls because (due to intertask dependencies) all tasks
that are eligible for execution are already in the hands of remote clients. The
dual scheduling challenges inherent in the preceding scenarios—to enhance the
utilization of remote clients and to prevent “gridlock”—motivated the work we
survey here.

As is common in the literature on scheduling (cf. [8, 9]), the studies we survey
view the intertask dependencies of the computations being scheduled as having
the structure of a dag. The goal of our schedules is to allocate the tasks of a given
computation-dag to remote clients in a way that always maximizes the number
of tasks that are eligible for execution. Although details must await further de-
velopment and/or reference to [21], we can pictorially hint at the significance of
the quality metric we are studying. Imagine that one wants to schedule a compu-
tation whose task-dependencies have the structure of the evolving mesh in (the
upper left corner of) Fig. 1. If one schedules the dag along its “diagonal levels,”
as depicted in Fig. 2, then after having executed x tasks, one has roughly

√
x

tasks that are eligible to be the next executed task. In contrast, if one chooses
to schedule the dag along its “square shells,” as depicted in Fig. 3, then one
never has access to more than three tasks that are eligible for execution. This
example presents an atypically extreme contrast, but it should suggest that the
rate of producing execution-eligible tasks may vary significantly for a given dag
depending on the schedule used to execute the dag.

Of course, even if one were able to schedule all dags optimally within our
idealized setting, one may not always eliminate the two motivating challenges.
However, our scheduling strategies would provide guidelines that would provably
improve utilization of remote clients and decrease the likelihood of gridlock—
when tasks are executed in the order in which they are assigned to the clients.
(One avenue toward achieving the desired order is to monitor the behavior and
performance of remote clients, as mandated in [1, 13, 22].) And, importantly, the
guidelines we derive prescribe actions that are under the control of the IC master
and are independent of the behavior of the remote clients!

Our presentation centers on three topics. In Section 2.2, we define the IC
Pebble Game that underlies the theory we are developing. Section 3 presents
several results that suggest the range of ways that a given family of dags can
fit into our embryonic theory—from not admitting an optimal schedule, at one
extreme, to admitting infinitely many such schedules, at the other. Section 4
sketches some of the analyses used to derive optimal schedules for certain very
uniform families of dags, notably, those in Fig. 1. Section 5 describes our latest,
most exciting work, which establishes a foundation for a decomposition-based
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Fig. 1. Clockwise from upper left: the (2-dimensional) evolving mesh, a (binary)
reduction-tree, a (2-dimensional) reduction-mesh (or, pyramid dag), an FFT-dag.
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Fig. 2. Computing a typical diagonal level of the evolving mesh. “X” denotes an exe-
cuted node; “E” denotes an eligible node.

procedure that derives optimal schedules for a broad range of dags of quite
complex, nonuniform structures. Finally, Section 6 describes our response to the
fact that some dags admit no optimal schedules within the theory discussed thus
far: a batched-scheduling analogue of our theory, within which optimal schedules
exist for all families of dags. The major issue in the batched-scheduling setting
is how complex (near-)optimal schedules are to derive.

2 A Formal Model for Scheduling Dags for IC

2.1 Computation-Dags

A directed graph (digraph, for short) G is given by: a set of nodes NG and a set of
arcs (or, directed edges) AG , each having the form (u → v), where u, v ∈ NG . A
path in G is a sequence of arcs that share adjacent endpoints, as in the following
path from node u1 to node un:
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Fig. 3. A schedule for M2 that traverses square levels. “X” denotes an executed node;
“E” denotes an eligible node. The long arrows indicate sequences of node-executions.

(u1 → u2), (u2 → u3), . . . , (un−2 → un−1), (un−1 → un) (1)

A dag (short for directed acyclic graph) G is a digraph that has no cycles; i.e., G
cannot contain a path of the form (1) wherein u1 = un. When a dag G is used
to model a computation, i.e., is a computation-dag:

– each node v ∈ NG represents a task of the computation;
– an arc (u→ v) ∈ AG represents the dependence of task v on task u: v cannot

be executed until u is.

For each arc (u → v) ∈ AG , we call u a parent of v and v a child of u in G.
The transitive extensions of the parent and child relations are, respectively, the
ancestor and descendant relations. Excepting the degenerate dag that has no
nodes: every dag has at least one parentless node (which is called a source);
every finite dag has at least one childless node (which is called a sink). The
outdegree of a node is its number of children. A dag G is bipartite if:

1. NG can be partitioned into subsets X and Y such that, for every arc (u →
v) ∈ AG , u ∈ X and v ∈ Y ;

2. each v ∈ NG is incident to some arc of G, i.e., is either the node u or the
node w of some arc (u → w) ∈ AG . (Prohibiting “isolated” nodes avoids
degeneracies.)

G is connected if, when one ignores the orientation of G’s arcs, there is a path
connecting every pair of distinct nodes. A connected bipartite dag H is a con-
stituent of G just when:

1. H is an induced subdag of G: NH ⊆ NG , and AH comprises all arcs (u →
v) ∈ AG such that {u, v} ⊆ NH.

2. H is maximal: the induced subdag of G on any superset of H’s nodes—i.e.,
any set S such that NH ⊂ S ⊆ NG—is not connected and bipartite.

Let G1,G2, . . . ,Gn be connected bipartite dags that are pairwise disjoint, in the
sense that NGi

∩NGj
= ∅ for all distinct indices i and j. The sum of these dags,

denoted G1 + G2 + · · ·+ Gn, is the bipartite dag whose node-set and arc-set are,
respectively, the unions of the corresponding sets of G1,G2, . . . ,Gn.
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We have not posited the finiteness of computation-dags. While the inter-
task dependencies in nontrivial computations usually have cycles—caused, say,
by loops—it is useful to “unroll” these loops when scheduling the computa-
tion’s individual tasks. This converts the computation’s (possibly modest-size)
computation-digraph into a sequence of expanding “prefixes” of what “evolves”
into an enormous—often infinite—computation-dag. One typically has better
algorithmic control over the “steady-state” scheduling of such computations if
one expands these computation-dags to their infinite limits and concentrates on
scheduling tasks in a way that leads to a computationally expedient sequence of
evolving prefixes.

Fig. 1 displays four dags that are studied in [19, 21]: the mesh-dag in the
upper left is an infinite dag (which has no sinks); the other three dags are finite.
In Section 5, we outline the (de)composition-based theory of [16], which shows
how to construct these four dag-families from bipartite building blocks.

2.2 The Internet-Computing Pebble Game

For brevity, we describe the Internet-Computing (IC) Pebble Game within a
“pull”-based scheduling framework, in which remote clients approach the server
seeking work; the reader can easily adapt our description to a “push”-based
framework, in which the server polls remote clients for availability.

The Idealized IC Pebble Game The IC Pebble Game on a computation-dag
G involves one player S, the Server, who has access to unlimited supplies of two
types of pebbles: eligible pebbles, whose presence indicates a task’s eligibility
for execution, and executed pebbles, whose presence indicates a task’s having
been executed. We now present the rules of the Game, which simplify those of
the original IC Pebble Game of [19, 21].

Our simplification resides in the assumption that by monitoring remote
clients (as mandated in, say, [1, 13, 22]) the Server can enhance the likeli-
hood, if not the certainty, that remotely allocated tasks will be executed
in order of their allocation. We idealize by assuming that the Server can
ensure this ordering exactly.

Fig. 4 presents the rules of the IC Pebble Game; Fig. 2 illustrates the rules via
a succession of moves of the Game on the 2-dimensional evolving mesh.

For each step t of a play of the IC Pebble Game on a dag G, let X(t) denote
the number of executed pebbles on G’s nodes at step t, and let E(t) denote
the analogous number of eligible pebbles. Of course, X(t) = t in our idealized
version of the Game, although this is not true in the original version of [19]

We measure the quality of a play of the IC Pebble Game on a dag G by
the size of E(t) at each step t of the play—the bigger E(t) is, the better.
Our goal is an IC optimal schedule, in which, for all steps t, E(t) is as
big as possible.
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— S begins by placing an eligible pebble on each unpebbled source of G.
/*Unexecuted sources are always eligible for execution, having no parents
whose prior execution they depend on.*/

— At each step, S
• selects a node that contains an eligible pebble,
• replaces that pebble by an executed pebble,
• places an eligible pebble on each unpebbled node of G all of whose

parents contain executed pebbles.
— S’s goal is to allocate nodes in such a way that every node v of G eventually

contains an executed pebble.
/*This modest goal is necessitated by the possibility that G is infinite.*/

Fig. 4. The Rules of the IC Pebble Game

The significance of IC quality—hence of IC optimality—stems from the following
intuitive scenarios. (1) Schedules that produce eligible nodes maximally fast
may reduce the chance of a computation’s “stalling” because no new tasks can
be allocated pending the return of already assigned ones (the “gridlock” of the
Introduction). (2) If the Server receives a batch of requests for nodes at (roughly)
the same time, then an IC-optimal schedule allows maximally many requests to
be satisfied, thereby enhancing the exploitation of clients’ available resources.

3 The Boundaries of the Playing Field

The property of IC optimality is so demanding that it is not a priori clear that
such schedules ever exist! The property demands that there be a single schedule
Σ for a dag G such that, at every step of the computation, Σ maximizes the
number of eligible nodes across all schedules for G. In principle, it could be
that every schedule that maximizes the number of eligible nodes at some step t
requires that a certain set of t nodes is executed, while every analogous schedule
for step t + 1 requires that a disjoint set of t + 1 nodes is executed. Indeed,
there exist (simple) dags that do preclude IC-optimal scheduling for precisely
this reason. However, there is a large class of computationally significant dags
that can be scheduled IC optimally. In this section, we exhibit, in turn:

– simple dags that admit no IC-optimal schedule;
– a familiar family of dags (evolving meshes), each of which admits a unique

strategy for producing IC-optimal schedules; we also show that a natural
alternative to this schedule is actually pessimal in IC quality;

– a familiar family of dags (evolving trees) all of whose schedules are IC opti-
mal.

Regrettably, we do not yet know the complexity of determining whether or not a
given dag admits any IC-optimal schedule; this is an inviting research challenge.
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Dags that admit no IC-optimal schedule. We begin with two recalcitrant dags;
the reader can easily produce others.

(a) (b)

Fig. 5. Two simple dags that admit no IC-optimal schedule.

Fig. 5 contains two simple dags that do not admit any IC-optimal schedule —
for precisely the reason mentioned in the opening paragraph of the section. For
the 2-component dag of Fig. 5(a): in order to maximize the number of eligible
nodes at time t = 1, after one node is executed, one must begin executing
the dag with the (unique) outdegree-1 source; in order to maximize the number
of eligible nodes at time t = 2, after two nodes are executed, one must
begin executing the dag with the two outdegree-2 sources. For the tree-dag6 of
Fig. 5(b): in order to maximize the number of eligible nodes at time t = 2, after
two nodes are executed, one must begin executing the dag with the subtree in
the lefthand dashed box; in order to maximize the number of eligible nodes at
time t = 4, after four nodes are executed, one must begin executing the dag
with the subtree in the righthand dashed box.

Dags with a unique IC-optimal scheduling strategy. Fig. 1 (upper left) depicts
the first four levels of the evolving two-dimensional mesh-dag M2. The nodes
of M2 are all ordered pairs of nonnegative integers; its arcs connect each node
〈v1, v2〉 to its two children 〈v1+1, v2〉 and 〈v1, v2 +1〉. Node 〈0, 0〉 is M2’s unique
source (often called its origin). The kth diagonal level of M2, denoted Lk, is the
set of nodes whose coordinates sum to k. While M2 admits infinitely many
IC-optimal schedules, all of them implement the strategy of proceeding along
successive diagonal levels, from one end to the other.

Theorem 1 ([19]) (a) For any schedule that allocates nodes sequentially along

successive diagonal levels of M2, E(t) = n whenever
(
n

2

)
≤ t <

(
n+ 1

2

)
.

(b) For any schedule for M2, if t lies in the preceding range, then E(t) can be
as large as n, but no larger.

6 A tree-dag T is any dag such that, if one ignores the orientations of T ’s arcs, then
the resulting graph is a tree (in the graph-theoretic sense).
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It follows that M2’s IC-optimal schedules are precisely the diagonal-threading
schedules.

The intuition underlying Theorem 1 resides in the following facts.

– Each row or column of M2 contains at most one eligible node.
– All ancestors (parents, parents of parents, . . . ) of each eligible node of M2

are executed.

Theorem 1 asserts that a lazy regimen for executing M2—i.e., one that always
executes the oldest eligible node, say, by proceeding up each diagonal level of
M2—is IC optimal (albeit not uniquely so). In contrast, an eager regimen—i.e.,
one that always executes the newest eligible node—is actually pessimal in IC
quality. One implementation of the eager regimen is the “square-shell” schedule
depicted schematically in Fig. 3. By fleshing out this schematic depiction to a
level of detail commensurate with that of the lazy, “diagonal-level,” schedule
of Fig. 2, the reader will find that, under the “square-shell” schedule, no more
than three nodes of M2 are ever simultaneously eligible, in contrast with the
ever-growing number of eligible nodes promised by Theorem 1 for any lazy
schedule.

Dags for which any schedule is IC optimal. Consider the evolving binary out-tree
of Fig. 6. A simple argument shows that every valid schedule for the evolving

λ

10

01 10 1100

. .
 .

. .
 .

. .
 .

. .
 .

Fig. 6. An evolving binary out-tree.

binary out-tree T is IC optimal. To wit, at every moment during the execution
of T , the executed nodes are the internal nodes of a full binary sub-out-tree
T ′ of T , and the eligible nodes are the leaves of T ′. It follows that at every
step of any schedule for T , the number of eligible nodes is precisely one more
than the number of executed nodes.

The messages of this section.

– There are significant families of dags that admit IC-optimal schedules.
– The disparity between the IC quality of an optimal schedule and that of a

natural competitor can be very large.
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– No scheduling strategy is going to guarantee IC-optimal schedules for all
dags.

The remaining sections summarize our responses to these messages.

4 IC-optimal Schedules for Specific Families of Dags

In this section, we complete the scheduling story for the dags in Fig. 1 by dealing
with the three “reductive” dags.

Theorem 2 ([21]) A schedule for any reduction-mesh, reduction-tree, or FFT-
dag is IC optimal if, and only if, it is parent-oriented—i.e., it executes all parents
of a node in consecutive steps.

Since the proofs for the three families of dags share are almost identical in
structure (cf. [21]), we sketch the proof only for the reduction-mesh.

The nodes of the �-level reduction-mesh M� comprise the set of ordered pairs
of integers {〈x, y〉 | 0 ≤ x + y < �}. M�’s arcs connect each node v = 〈x, y〉 to
node 〈x − 1, y〉 whenever x > 0 and to node 〈x, y − 1〉 whenever y > 0. The
integer x + y is the level of node 〈x, y〉. M�’s � source nodes are the nodes at
level �− 1; M�’s unique sink node is node 〈0, 0〉, the sole occupant of level 0.

Focus on a play of the IC Pebble Game on M�. Say that at step t of the
play, each level l ∈ {0, 1, . . . , � − 1} of M� has E(t)

l eligible nodes and X
(t)
l

executed nodes. Let c be the smallest level-number for which E(t)
c +X

(t)
c > 0.

Claim. Given the current profile 〈X(t)
l | 0 ≤ l < �〉 of executed nodes:

1. The aggregate number of eligible nodes at time t, E(t) def=
∑�−1

i=0 E
(t)
i , is

maximized if all executed nodes on each level of M� are consecutive.7

2. Once E(t) is so maximized, we have c ≤ E(t) ≤ c+ 1.

Each nonsource eligible node of M� has two executed parents; any two
consecutive nonsource eligible nodes share an executed parent. We thus have
the following system of inequalities.

E
(t)
l ≤ X

(t)
l+1 −X

(t)
l − 1 for l ∈ {c, c+ 1, . . . , �− 2};

E
(t)
�−1 = �−X

(t)
�−1.

(2)

1. If all executed nodes occur consecutively along a level l+ 1 of M�, then
the inequality involving E(t)

l in (2) is an equality. Therefore, all inequalities in
(2) are equalities when the executed nodes at every level occur consecutively.
Further, such consecutiveness may decrease the value of c, by rendering new
nodes eligible at lower-numbered levels. Consequently, this arrangement of
executed nodes maximizes the value of E(t).
7 Nodes u0, u1, . . . , uk−1 are consecutive on level l of M� just when each uj = 〈m +

j, l − m − j〉 for some 0 ≤ m ≤ l − k, 0 ≤ j < k.
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2. Summing the (now) equalities in system (2) yields an explicit expression
for the maximum value of E(t) in terms of

∑�−1
i=0 X

(t)
i = t, namely: E(t) =∑�−1

i=c E
(t)
i = c+1−X

(t)
c . Part (2) of the claim now follows, because when the

executed nodes at each level of M� occur consecutively, we must haveX(t)
c ≤ 1:

a larger value would imply that X(t)
c−1 + E

(t)
c−1 > 0.

For reduction-meshes, parent-orientation means “level-by-level” execution.
For reduction-trees, the phrase means that each tree-node u and its “sibling”
(i.e., the node that shares a child with u) must be executed in consecutive
steps. For FFT-dags, the phrase means that each node u and its “butterfly
partner”(i.e., the node that shares two children with u) must be executed in
consecutive steps.

5 Toward a Theory of Scheduling Composite Dags

The similarities in the structures of the proofs of Theorem 2 for its three families
of dags led us to seek a structure-based explanation of the similarities. We now
describe the results of this quest, which has gone far beyond just the motivating
explanation.

A hallmark of the nascent scheduling theory of [16] is that it seeks explicit IC-
optimal schedules only for connected bipartite dags (which experience has shown
is already often quite a challenge). It then uses these bipartite dags as building
blocks for constructing complex dags that inherit their IC-optimal schedules
from those of the bipartite dags. We outline this development in this section.

The following simple result is quite useful in analyzing scheduling strategies
for possible IC optimality. It should allow the reader to intuit the proofs for
several of the results that we present.

Lemma 3 ([16]) If a schedule Σ for a dag G is altered to execute all of G’s
nonsinks before any of its sinks, then the IC quality of the resulting schedule is
no less than Σ’s.

5.1 A Sampler of Bipartite Building Blocks

Our study applies to any repertoire of connected bipartite building-block dags
that one chooses to build complex dags from. For illustration, though, we focus
on the following specific building blocks. The following descriptions proceed left
to right along successive rows of Fig. 7. For all descriptions, we use the drawings
in Fig. 7 to refer to “left” and “right.”

The first three dags are named for the letters suggested by their topologies.
W-dags. For each integer d > 1, the (1, d)-W-dag W1,d has one source and d

sinks; its d arcs connect the source to each sink. Inductively, for positive integers
a, b, the (a + b, d)-W-dag Wa+b,d is obtained from the (a, d)-W-dag Wa,d and
the (b, d)-W-dag Wb,d by identifying (or, merging) the rightmost sink of the
former dag with the leftmost sink of the latter. W-dags epitomize “expansive”
computations.
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(1,4)−W: (2,4)−W: (1,3)−M: (2,3)−M:

3−N: 3−Cycle: (3,4)−Clique: (4,3)−Clique:

Fig. 7. The building blocks of semi-uniform dags.

M-dags. For each integer d > 1, the (1, d)-M-dag M1,d has d sources and one
sink; its d arcs connect each source to the sink. Inductively, for positive integers
a, b, the (a + b, d)-M-dag Ma+b,d is obtained from the (a, d)-M-dag Ma,d and
the (b, d)-M-dag Mb,d by identifying (or, merging) the rightmost source of the
former dag with the leftmost source of the latter. M-dags epitomize “contractive”
(or, “reductive”) computations.

N-dags. For each integer s > 0, the s-N-dag N s has s sources and s sinks;
its 2s − 1 arcs connect each source v to sink v and to sink v + 1 if the latter
exists. Specifically, N s is obtained from Ws−1,2 by adding a new source on the
right whose sole arc goes to the rightmost sink. The leftmost source of N s has
a child that has no other parents; we call this source the anchor of N s.

(Bipartite) Cycle-dags. For each integer s > 1, the s-(Bipartite) Cycle-dag
Cs is obtained from N s by adding a new arc from the rightmost source to the
leftmost sink—so that each source v has arcs to sinks v and v + 1 mod s.

(Bipartite) Clique-dags. For integers s, s′ > 1, the (s, s′)-(Bipartite) Clique-
dag Qs,s′ has s sources, s′ sinks, and an arc from each source to each sink. (We
actually deal only with (s, s)-Cliques, which we henceforth denote Qs; we present
general (s, s′)-Cliques as an invitation to the reader.)

5.2 Building Dags Via Composition

Our basic technique for constructing complex dags is the following inductively
defined operation of composition.

– We start with any set B of connected bipartite dags; these will serve as our
base set.

– Given dags G1,G2 ∈ B—which could be copies of the same dag with nodes
renamed to achieve disjointness—we obtain a composite dag G as follows.
• Let the composite dag G begin as the sum, G1 + G2, of the dags G1,G2.

We rename nodes to ensure that NG is disjoint from NG1 and NG2 .
• We select some set S1 of sinks from the copy of G1 in the sum G1 + G2,

and an equal-size set S2 of sources from the copy of G2 in the sum.
• We pairwise identify (i.e., merge) the nodes in the sets S1 and S2 in some

way. The resulting set of nodes is G’s node-set; the induced set of arcs is
G’s arc-set.

– We add the dag G thus obtained to the base set B.
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We denote the composition operation by ⇑ and refer to the resulting dag G as a
composite dag of type [G1 ⇑ G2]. (Note that the structure of G is not identified
uniquely by its type. Our theory does not require knowledge of this detailed
structure.) The roles of G1 and G2 in creating G are asymmetric: G1 contributes
sinks, while G2 contributes sources.

We can now simply illustrate the natural correspondence between the node-
set of a composite dag and those of its constituents, via Fig. 1:

– The evolving mesh M2 is composite of type W1,2 ⇑ W2,2 ⇑ W3,2 ⇑ · · ·.
– A binary reduction-tree is obtained by pairwise composing many instances

of M1,2 (seven instances in the figure).
– The reduction-mesh M5 is composite of type M5,2 ⇑ M4,2 ⇑ M3,2 ⇑ M2,2 ⇑

M1,2.
– The FFT dag is obtained by pairwise composing many instances of C2 = Q2

(twelve instances in the figure).

As hinted at in the preceding description, the composition operation is asso-
ciative, so we do not have to keep track of the order in which constituent dags
are incorporated into a composite dag.

Lemma 4 ([16]) The composition operation on dags is associative. That is, for
all dags G1, G2, G3, a dag is composite of type [[G1 ⇑ G2] ⇑ G3] if, and only if, it
is composite of type [G1 ⇑ [G2 ⇑ G3]].

One can garner intuition for the proof of Lemma 4 from the dags on Fig. 8.

(c)(b)(a)

Fig. 8. A sampler of composite dags, each of which admits an IC-optimal schedule.

5.3 The Priority Relation �
The next ingredient in our scheduling theory is the following relation on bipar-
tite dags. This relation is the mechanism that we can often use to “inherit”
an IC-optimal schedule for a composite dag from IC-optimal schedules for its
constituents.
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Let the disjoint bipartite dags G1 and G2, having s1 and s2 sources, respec-
tively, admit the IC-optimal schedules Σ1 and Σ2, respectively. Say that the
following inequalities hold.8

(∀x ∈ [0, s1]) (∀y ∈ [0, s2]) :
EΣ1(x) + EΣ2(y) ≤ EΣ1(min{s1, x+ y}) + EΣ2(max{0, x+ y − s1}).

(3)

Then we say that G1 has priority over G2, denoted G1  G2.
By Lemma 3, the inequalities in (3) basically say that one never decreases

IC quality by executing a source of G1, in preference to a source of G2, whenever
possible.

It is important, both conceptually and algorithmically, that the relation  is
transitive. This fact is a bit trickier to prove than one might think at first blush.

Lemma 5 ([16]) The relation  on bipartite dags is transitive.

One simple, but consequential application of Lemma 5 is:

Corollary 6 ([16]) Let G1,G2, . . . ,Gn be pairwise disjoint bipartite dags. If G1 
G2  · · ·  Gn, then G1  (G2 + G3 + · · · + Gn).

5.4 Scheduling �-Linear Compositions of Composite Dags

We arrive finally at the first major result of the theory, which provides the
sought explanation for the structures of the proofs of Theorem 2 for the three
families of dags. More importantly, this result gives structure to our quest for a
decomposition-based scheduling theory.

Say that dag G is a -linear composition of the connected bipartite dags
G1,G2, . . . ,Gn if:

1. G is composite of type G1 ⇑ G2 ⇑ · · · ⇑ Gn;
2. each Gi  Gi+1, for all i ∈ [1, n− 1].

Dags that are -linear compositions inherit IC-optimal schedules from their
constituents.

Theorem 7 ([16]) Let G be a -linear composition of G1,G2, . . . ,Gn, where
each Gi admits an IC-optimal schedule Σi. The schedule Σ for G that proceeds
as follows is IC optimal.

1. Σ executes the nodes of G that correspond to sources of G1, in the order
mandated by Σ1, then the nodes that correspond to sources of G2, in the
order mandated by Σ2, and so on, for all i ∈ [1, n].

2. Σ finally executes all sinks of G in any order.

The proof of Theorem 7 essentially demonstrates that when a dag G is a
-linear composition, then the priority relation  on G’s bipartite constituents
is compatible with the executional priorities that are inherent in G’s being a dag.
8 [a, b] denotes the set of integers {a, a + 1, . . . , b}.
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5.5 Scheduling Composite Dags Via Decomposition

The framework developed thus far in this section is descriptive rather than pre-
scriptive. If a computation-dag G is constructed from bipartite building blocks
via composition, and if we can identify the “blueprint” used to construct G,
and if the underlying building blocks are interrelated in a certain way, then the
strategy prescribed in Theorem 7 produces an optimal schedule for G. We now
describe how the algorithmic challenge hidden in the preceding if’s is addressed
in [16]: given a computation-dag G, how does one apply the preceding frame-
work to it? The algorithms we describe now attempt to decompose G in order to
expose the structure needed to apply Theorem 7. We thereby derive IC-optimal
schedules for a large variety of dags.

We describe a suite of algorithms that: (a) reduce any computation-dag G
to its “transitive skeleton” G′, a simplified version of G that shares the same
set of optimal schedules; (b) decompose G′ to determine whether or not it is
constructed from bipartite building blocks via composition, thereby exposing a
“blueprint” for G′; (c) specify an optimal schedule for any such G′ that is built
from building blocks that are interrelated under .

Skeletonizing Input Dags For any dag G and nodes u, v ∈ NG , we write
u ⇒G v to indicate that there is a path from u to v in G. An arc (u → v) ∈
AG is a shortcut if there is a path u ⇒G v that does not include the arc. Of
course, removing shortcuts from a dag does not alter internode connectivities.
By removing all shortcuts from a dag G, one obtains G’s (transitive) skeleton
(or, transitive reduction). This dag, which is unique, is the smallest subdag of G
that shares G’s transitive closure [5]; we call this dag σ(G). One finds in [12] a
polynomial-time algorithm that generates σ(G) from G. (In fact, a very simple
algorithm suffices, that just removes, in turn, each arc (u→ v) from G and tests
if v is still accessible from u.)

Eliminating shortcuts is a critical first step in our decompsitional scheduling
strategy, because dags that are compositions of bipartite dags have no shortcuts.

Since G shares its node-set with σ(G), any schedule that executes one dag
also executes the other. This is important because any schedule executes G as
efficiently (in IC quality) as it executes σ(G). A special case of this result appears
in [19].

Theorem 8 ([16]) A schedule Σ has the same IC quality when executing a dag
G as when executing σ(G). In particular, if Σ is IC optimal for σ(G), then it is
IC optimal for G.

Decomposing a Composite Dag Once we have a shortcut-free dag G, we can
start trying to decompose it, to find subdags whose composition yields G. We
now describe this process.
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Selecting a constituent. We begin by selecting any constituent9 of G all of
whose sources are also sources of G; call the selected constituent B1 (the notation
emphasizing that B1 is bipartite).

In Fig. 1: Every candidate B1 for the FFT dag comprises a copy of
C2 = Q2 included in levels 2 and 3; every candidate for the reduction-tree
comprises a copy of M1,2; the unique candidate for the reduction-mesh
comprises M4,2.

Detaching a constituent. We “detach” B1 from G by deleting the nodes
of G that correspond to sources of B1, all incident arcs, and all resulting isolated
sinks. We thereby replace G with a pair of dags 〈B1,G′〉, where G′ is the remnant
of G remaining after B1 is detached.

If the remnant G′ is not empty, then we continue the process of selection
and detachment. If G was a composition of bipartite dags, then we produce a
sequence of the form

G =⇒ 〈B1,G′〉 =⇒ 〈B1, 〈B2,G′′〉〉 =⇒ 〈B1, 〈B2, 〈B3,G′′′〉〉〉 =⇒ · · · ,

that leads ultimately to a complete decomposition of G into a sequence compris-
ing all of its constituents: B1,B2, . . . ,Bn.

We claim that the described process does, indeed, recognize whether or not
G is a composite dag, and, if so, it produces the constituents from which G is
composed (possibly, of course, in an order that differs from their original order
of composition).

Theorem 9 ([16]) Let the dag G be composite of type G1 ⇑ G2 ⇑ · · · ⇑ Gn. The
decomposition process produces a sequence B1,B2, . . . ,Bn of constituents of G
such that:

– G is composite of type B1 ⇑ B2 ⇑ · · · ⇑ Bn;
– {B1,B2, . . . ,Bn} = {G1,G2, . . . ,Gn}.

It is fruitful to construct a super-dag that abstracts a dag G’s structure, as
exposed by the decomposition process. This super-dag, which we denote S(B1 ⇑
· · · ⇑ Bn), has the constituents B1,B2, . . . ,Bn as its nodes and has an arc from
each constituent Bi to each of the constituents that it is detached from during
the decomposition. Fig. 9 depicts the super-dag obtained from decomposing the
3-dimensional FFT dag. Easily that the linearization B1, . . . ,Bn produced by
the described decomposition process is a topological sort [5] of the super-dag
S(B1 ⇑ · · · ⇑ Bn).

Scheduling a Composite Dag Via Its Super-Dag Our remaining challenge
is to determine, given a super-dag S(B1 ⇑ · · · ⇑ Bn) that is produced by our
decomposition process, whether or not there is a topological sort of the super-dag
that linearizes the supernodes in an order that honors relation . We now present
sufficient conditions for this to occur, verified via a linearization algorithm.
9 Recall the technical definition of “constituent” from Section 2.1.
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Fig. 9. The 3-dimensional FFT dag and its associated super-dag.

Theorem 10 ([16]) Say that the dag G is composite of type B1 ⇑ · · · ⇑ Bn and
that, for each pair of constituents, Bi, Bj with i �= j, either Bi  Bj or Bj  Bi.
Then G is a -linear composition whenever the following holds.

Whenever Bj is a child of Bi in S(B1 ⇑ · · · ⇑ Bn), we have Bi  Bj.

Theorem 10 is proved via the following algorithm that determines whether
or not G is a -linear composition of the Bi.

1. We begin with a topological sort, B̂ def= Bα(1), . . . ,Bα(n) of SG
def= S(B1 ⇑ · · · ⇑

Bn).
2. We invoke the hypothesis that  is a (weak) order on the Bi’s to reorder B̂

according to , using a stable10 comparison sort.

Let B def= Bβ(1)  · · ·  Bβ(n) be the linearization of SG produced by the sort.
We claim that B is also a topological sort of SG . This follows easily because we
start with a topological sort of SG and employ a stable sort on relation . We
conclude that G is composite of type Bβ(1) ⇑ · · · ⇑ Bβ(n). In other words, B is
the desired -linearization of G.

Once we have the decomposition B, we can invoke Theorem 7 to obtain an
IC-optimal schedule for G.

6 A Batched Approach to Scheduling

Our development of a dag-scheduling theory for IC is still ongoing: we are making
steady progress in both refining and extending the work described in Section 5.
Yet, the stringent demands of IC optimality, as reflected in the requirement that
a schedule maximize the number of eligible nodes at every step of a computa-
tion, guarantees the existence of simple dags that admit no IC-optimal schedule
(cf. Section 3); hence, they preclude this theory from ever being comprehensive.
10 Stability means that if Bi � Bj and Bj � Bi, then the sort maintains the original

positions of Bi and Bj .
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Responding to this fact, we are investigating alternative formulations of the IC-
scheduling problem. We have developed one such in [15], and we describe its
rudiments in this section.

In the batched version of the IC Pebble Game, which abstracts the batched
version of the IC-scheduling problem, the Server does not respond to individual
requests by Clients as they come in. Instead, it services requests at fixed inter-
vals, hence responds to batches of requests rather than individual ones. This
formulation of IC scheduling simplifies the scheduling problem along one axis,
while complicating it along another. We now focus on optimizing the production
of eligible nodes:

1. for a single step of the computation, rather than uniformly for all steps;
2. while executing r (perforce, eligible) nodes as a batch, rather than a single

node.

The (algorithmic) greed built into this version of IC-scheduling—by the first
condition—ensures that there is an optimal solution to every instance of the
problem. The complication built into this version—by the second condition—
turns out to endow the challenge of finding this optimal solution with the likely
computational intractability of NP-hardness. (The solution is easy to find when
r = 1.) Fig. 10 presents the rules of the game.

— S begins by placing an eligible pebble on each unpebbled source node of G.
/*Unexecuted source nodes are always eligible for execution, having no parents
whose prior execution they depend on.*/

— At each step t—when there is some number, say et, of eligible pebbles on
G’s nodes—S is approached by some number, say rt, of Clients, requesting
tasks. In response, S:
• selects min{et, rt} tasks that contain eligible pebbles,
• replaces those pebbles by executed pebbles,
• places eligible pebbles on each unpebbled node of G all of whose parents

contain executed pebbles.
— S’s goal is to allocate nodes in such a way that every node v of G eventually

contains an executed pebble.
/*This modest goal is necessitated by the possibility that G may be infinite.*/

Fig. 10. The Rules of the Batch-IC Pebble Game

As in earlier sections, we call a node eligible (resp., executed) when it
contains an eligible (resp., an executed) pebble, and we talk about executing
nodes rather than tasks.

The Batch-IC scheduling problem (BICSO). Our goal is to play the
Batch-IC Pebble Game in a way that maximizes the number of eligible pebbles
on G at every step of the Game. That is, for each step t of a play of the Game
on a dag G, if there are currently et eligible tasks, and if rt Clients request
tasks, then we want the Server to execute a set of min{et, rt} eligible nodes
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that will result in the largest possible number of eligible tasks at step t + 1.
We thus arrive at the following optimization problem.

Batched IC-Scheduling (Optimization version) (BICSO)
Instance: ı = 〈G, X,E; r〉, where:

• G is a computation-dag;
• X and E are disjoint subsets of NG that satisfy the following;

There is a step of some play of the Batched IC Pebble Game on G
in which X is the set of executed nodes and E the set of eligible
nodes on G.

• r is in the set [1, |E|].
Problem: Find a cardinality-r set R ⊆ E that maximizes the number of eligi-

ble nodes on G after executing the nodes in R, given that the nodes in X
are already executed.

Note that the process of solving BICSO automatically carries with it a guarantee
of optimality.

In contrast to the search for IC-optimal schedules for dags, every instance of
BICSO can be solved! The only question is how hard it is computationally to find
a solution. Unfortunately, solving BICSO is likely computationally intractable,
even for dags of quite restricted structure.

Theorem 11 ([15]) BICSO is NP-hard, even when restricted to bipartite dags.

Of course, results such as Theorem 11 automatically trigger a search for
special classes of dags that can be scheduled optimally in polynomial time. Not
surprisingly, bipartite tree-dags—and compositions thereof—are the first such
class that we discovered. The algorithm guaranteed by the following theorem
contains a dynamic program as a central component.

Theorem 12 ([15]) There is a polynomial-time algorithm Σtree that solves
BICSO for any bipartite tree-dag T .

Theorem 12 is actually more textured than it seems to be at first. On the
optimistic side: The theorem gives us more scheduling power than is immedi-
ately apparent. Specifically, we show in [15] how to build upon the theorem
to solve BICSO for any composition of bipartite tree-dags. This is important,
since compositions of such tree-dags need not be either leveled or (in their undi-
rected incarnations) cycle-free. On the less-optimistic side: Algorithm Σtree is
computationally rather inefficient: its timing polynomial has high degree. In re-
sponse, we have sought nontrivial classes of dags for which we could solve BICSO
efficiently, even if the solution was only approximate. We use the word “approx-
imate” here in its usual technical sense: we insist that the number of eligible
nodes produced by the scheduling algorithm in response to r requests be within
a predictable factor of the maximum possible number, given the then-current
number of eligible nodes.
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Our initial success in this quest involved the family E of bipartite expansive-
dags. Each such dag E is a bipartite dag wherein each source v has an associated
number ϕv ≥ 2 such that: v has ϕv children that have no parent other than v
and at most ϕv other children. Expansive-dags epitomize computations that are
“expansive” but may have complex interdependencies. A simple algorithm that
we call Algorithm Σexp approximates a solution to BICSO for the family E.

Algorithm Σexp implements the following natural, fast heuristic for schedul-
ing a dag E ∈ E. For each source v of E , say that there are ϕv nodes that have
v as their sole parent and ψv nodes that have other parents also. If there are r
requests for eligible nodes at time t, then Σexp selects the r eligible nodes
that have the largest associated integers ϕv. Of course, this greedy heuristic
may deviate from optimality because it ignores the “bonuses” that may arise
from executing eligible nodes that are siblings in E , but it does come close to
optimality.

Theorem 13 ([15]) For any instance ı = 〈E , X,E; r〉 of BICSO, where E ∈ E,
Algorithm Σexp will, in time O(|E|), find a solution to BICSO, whose increase
in the number of eligible nodes is at least one-fourth the optimal increase.

Work continues in trying to extend both Theorems 12 and 13, by expanding
the classes of dags for which we can tractably solve, or quickly approximate a
solution to BICSO.

7 Conclusions and Projections

We have described two related pebble games that abstract the problem of schedul-
ing computation-dags for Internet-based computing. Both games place an eli-
gible pebble (which represents a task’s being eligible for execution) on every
node all of whose parents contain executed pebbles (which represents a task’s
having been executed). At each step: one game selects a single eligible pebble
to replace with an executed pebble; the other selects a variable number of eli-
gible pebbles to replace (based on the input). With both games, the placement
of a new executed pebble may cause the placement of new eligible pebbles.
Both games strive, under somewhat different rules, to maximize the number of
nodes that contain eligible pebbles.

The IC Pebble Game takes as input a dag G. It seeks an execution schedule
for G that maximizes the number of nodes that hold eligible pebbles at every
step of the game. We have described the underpinnings of a theory of scheduling
under the IC Pebble Game, which builds on the decomposition of an input dag
G into bipartite “building-block” dags. When the decomposition exposes G to be
a composition of building blocks that are suitably iterrelated under the priority
relation, then the theory generates a schedule for G that is optimal. Ongoing
work, some in collaboration with G. Cordasco (U. Salerno), seeks to expand the
range of dags that the theory can schedule optimally, both by expanding the
repertoire of building blocks that it can deal with [4] and by extending the scope
of the priority relation. Other work, some in collaboration with I. Foster and
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M. Wilde of Argonne National Laboratory, seeks to assess the impact of the
emerging theory on a real IC project.

The Batched-IC Pebble Game takes as input a dag G, some e of whose
nodes hold eligible pebbles, and an integer r ≤ e of “requests.” It seeks to
find a set of r nodes currently holding eligible pebbles such that executing
those nodes will allow the placement of maximally many new eligible pebbles.
Results obtained thus far have shown the problem of solving instances of this
problem optimally to be NP-hard (with the decision version being NP-complete).
The problem is solvable in polynomial time for composite tree-dags, yet not effi-
ciently. The problem is efficiently approximable for certain special classes of dags.
Ongoing work here is delving further into the search for efficiently schedulable
classes of dags and efficiently approximable classes.

For both pebble games, attempts are also being made to assess the quality
of schedules produced by simple heuristics.
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