
Dinitz’ Algorithm:

The Original Version and Even’s Version

Yefim Dinitz

Dept. of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel

dinitz@cs.bgu.ac.il

Abstract. This paper is devoted to the max-flow algorithm of the au-
thor: to its original version, which turned out to be unknown to non-
Russian readers, and to its modification created by Shimon Even and
Alon Itai; the latter became known worldwide as “Dinic’s algorithm”.
It also presents the origins of the Soviet school of algorithms, which re-
main unknown to the Western Computer Science community, and the
substantial influence of Shimon Even on the fortune of this algorithm.

1 Introduction

The reader may be aware of the so called “Dinic’s algorithm” [4]1, which is one
of the first (strongly) polynomial max-flow algorithms, while being both one of
the easiest to implement and one of the fastest in practice. This introduction
discusses two essential influences on its fortune: the first supported its invention,
and the other furthered its publicity, though changing it partly.

The impact of the late Shimon Even on Dinic’s algorithm dates back to 1975.
You may ask how a person in Israel could influence something in the former
USSR, when it was almost impossible both to travel abroad from the USSR and
to publish abroad or even to communicate with the West? This question will
clear up after first considering the impact made by the early Soviet school of
computing and algorithms.

The following anecdote sheds some light on how things were done in the
USSR. Shortly after the “iron curtain” fell in 1990, an American and a Russian,
who had both worked on the development of weapons, met. The American asked:
“When you developed the Bomb, how were you able to perform such an enormous
amount of computing with your weak computers?”. The Russian responded: “We
used better algorithms.”

This was really so. Russia had a long tradition of excellence in Mathematics.
In addition, the usual Soviet method for attacking hard problems was to combine
pressure from the authorities with people’s enthusiasm. When Stalin decided to
develop the Bomb, many bright mathematicians, e.g., Izrail Gelfand and my
first Math teacher, Alexander Kronrod, put aside their mathematical studies
and delved deeply into the novel area of computing. They have assembled teams
1 In this paper, the references are given in chronological order.

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 218–240, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Dinitz’ Algorithm: The Original Version and Even’s Version 219

of talented people, and succeeded. The teams continued to grow and work on
the theory and practice of computing.

The supervisor of my M.Sc. thesis was George Adel’son-Vel’sky, one of the
fathers of Computer Science. Among the students in his group at that time were
M. Kronrod (one of the future “Four Russians”, i.e. the four authors of [3]), A.
Karzanov (the future author of the O(n3) network flow algorithm [9]) and other
talented school pupils of A. Kronrod. This was in 1968, long after the Bomb
project had been completed. The work on the foundations of the chess pro-
gram “Kaissa”, created by members of A. Kronrod’s team under the guidance
of Adel’son-Vel’sky, was almost finished; “Kaissa” won the first world cham-
pionship in 1974. Adel’son-Vel’sky’s new passion became discrete algorithms,
which he felt had a great future.

The fundamental contribution of Adel’son-Vel’sky to computer science was
AVL-trees. He (AV) and Eugene Landis (L) published the paper [1] about AVL-
trees, which consists of just a few pages. Besides solving an important problem, it
presented a bright approach to data structure maintenance. While this approach
became standard in the USSR, it was still unknown in the West. No reaction
immediately followed their publication, until several years later another paper,
15 pages long, was published by a researcher (unknown to me), who understood
how AVL-trees work and explained this to the Western community, in its own
language. Since then, AVL-trees and the data structure maintenance approach
became corner-stones of computer science.

We, Adel’son-Vel’sky’s students, absorbed the whole paradigm of the Soviet
computing school from his lectures. This paradigm consisted of eagerness to
develop economical algorithms based on the deep investigation of a problem and
on the use of smart data structure maintenance and amortized running time
analysis as necessary components. All this became quite natural for us in 1968,
seventeen years before the first publication in the West on amortized analysis
by R. Tarjan [21]. Hence, it was not surprising that my network flow algorithm,
invented in January 1969, improved the Ford&Fulkerson algorithm by using and
maintaining a layered network data structure and employing a delicate amortized
analysis of the running time.

However, at that time, such an approach was very unusual in the West.
Shimon Even and (his then Ph.D. student) Alon Itai at the Technion (Haifa)
were very curious and intrigued by the two new network flow algorithms: mine
[4] and that of Alexander Karzanov [9] in 1974. It was very difficult for them
to decipher these two papers (each compressed into four pages, to meet the
page restriction of the prestigious journal Doklady). However, Shimon Even was
not used to giving up. After a three-day long effort, Even and Itai understood
both papers, except for the layered network maintenance issue. The gaps were
spanned by using Karzanov’s concept of blocking flow (which was implicit in my
paper), and by a beautiful application of DFS for finding each augmenting path.

It is well known that Shimon Even was an excellent lecturer. During the next
couple of years, Even presented “Dinic’s algorithm” in lectures, which he gave
in many leading research universities of the West. The result was important,



220 Yefim Dinitz

the idea was fresh, the algorithm was very nice, and the combination of BFS
for constructing the layered network and DFS for operating it was fascinating.
“Dinic’s algorithm” was a great success and gained a place in the annals of
the computer science community. Hardly anyone was aware that the algorithm,
taught in many universities since then, is not the original version, and that
a considerable part of the beauty of its known version—combining BFS and
DFS—was due to the contribution of Even and Itai. Also, its name was rendered
incorrectly as [dinik] instead of [dinits].

The original paper, published in a Soviet journal, was not understood also by
others in the West. This algorithm and many other achievements of the Moscow
school of algorithms in the network flow area were published as a book [10].
This book was well known all over the former USSR, and students of leading
Soviet universities studied its contents as an advanced course. After more than 15
years, the book appeared in the West (in Russian) and was reviewed in English
by A. Goldberg and D. Gusfield [25]. A few years later, I finally explained the
original version of my algorithm, as published in [4], to Shimon Even.

The rest of the paper is devoted to the description of my algorithm and
its various versions and to the development of max-flow algorithms following
it. The presentation is a bit didactic; it shows that serious and devoted work
towards maximal understanding of a phenomenon and the best implementation
of algorithms may bring important, unexpected fruits.

2 The Original Dinitz’ Algorithm

2.1 The Max-Flow Problem and the Ford&Fulkerson Algorithm

Max-Flow Problem Let us recall the max-flow problem definition. A capaci-
tated directed graph G = (V, E, c), where c is a non-negative capacity function
on edges, with vertices s distinguished as the source and t as the sink is given. A
flow is defined as a function on the (directed) edges, f , satisfying the following
two laws:

– Capacity constraint : ∀e ∈ E : 0 ≤ f(e) ≤ c(e), and
– Flow conservation: ∀v ∈ V \ {s, t} :

∑
(v,u)∈E f(v, u)−∑

(u,v)∈E f(u, v) = 0.

The quantity
∑

(v,u)∈E f(v, u)−∑
(u,v)∈E f(u, v) is called the net flow from

v. The value of a flow f is defined as the net flow from s (which is equal to
the negated net flow from t). The task is to find a flow of the maximal value,
called “maximum flow” (see Figure 1a for illustration). Initially, some feasible
flow function, f0, is given, which is by default the zero function.

Another equivalent is formed by considering a flow as a skew-symmetric func-
tion on the pairs of vertices connected by at least one edge in the given graph.
For such a pair v, u, if one of the edges between them is absent, in E, we add
it to E with capacity and flow zero (clearly, the problem remains equivalent).
Given any feasible flow function, f , we define the new function f̄ by setting



Dinitz’ Algorithm: The Original Version and Even’s Version 221

Gf

s t s ts t0

G G

1 1

1

1
1

0
0

0
1 1 0 1

1

a b c

Fig. 1. (a) A flow network G and a maximum flow in it, of value 2 (the numbers denote
flows in edges; all edge capacities are 1). (b) Another flow, f , in same network, of value
1. In terms of Sections 3 and 5, f is “maximal” and “blocking”, resp. The dashed line
shows the unique augmenting path, P , which decreases the flow on the diagonal edge.
The residual capacity cf (P ) is 1, and pushing the flow along P results in the above
maximum flow. (c) The residual network Gf , where the residual capacity of all edges
is 1. The path as in (b) is the unique path from s to t in Gf .

f̄(v, u) = f(v, u) − f(u, v) for any edge (v, u) in the (extended) E. This repre-
sents the total flow from v to u on the pair of edges (v, u) and (u, v) together.
It is easy to see that f̄ satisfies the following three constraints:

– Capacity constraint : ∀(v, u) ∈ E : f̄(v, u) ≤ c(v, u),
– Skew symmetry: ∀(v, u) ∈ E : f̄(u, v) = −f̄(v, u), and
– Flow conservation: ∀v ∈ V \ {s, t} :

∑
(v,u)∈E f̄(v, u) = 0.

The net flow from v is defined then as
∑

(v,u)∈E f̄(v, u). To retrieve f from
f̄ use the formula f(v, u) = max(0, f̄(v, u)); it results in a feasible flow function
according to the original definition. Both transformations keep the flow value.
Hence, using any one of them may be considered legal.

We say that an edge (v, u) is saturated, if f̄(v, u) is equal to c(v, u). We call the
difference c(v, u)− f̄(v, u) the current or residual capacity of the edge (v, u), and
denote it by cf (v, u). In the original flow definition terms, the property of being
saturated is equivalent to the combined property: f(v, u) = c(v, u) & f(u, v) = 0,
while the residual capacity is equal to c(v, u)− f(v, u)+ f(u, v). The meaning of
residual capacity is “how much may be added to the flow from v to u on edges
(v, u) and (u, v) together”; the formulae use the essential equivalence between
increasing the flow in (v, u) and decreasing it in (u, v). Both flow representations
are widely known; while Ford and Fulkerson introduced the first one in [2], some
of the popular textbooks, e.g. [23], use the second one.

In what follows, we use the skew-symmetric form of flows, where the con-
cepts of saturated edge and residual capacity are easier to handle. Nevertheless,
for simplicity, we denote flows by regular Latin letters, e.g. f , not f̄ , and in
explanations, we refer f(v, u) as the flow on edge (v, u).

Ford&Fulkerson’s Algorithm The classic Ford&Fulkerson algorithm [2] finds
a maximum flow using the following natural idea: augmenting the current flow
iteratively, by pushing an additional amount of flow on a single source-sink path
at each iteration, as long as possible. Let f denote the current flow. A path from



222 Yefim Dinitz

s to t is sought, such that none of its edges is saturated by f ; such a path is
called “augmenting”. When an augmenting path, P , is found, its current capacity
cf (P ) = mine∈P cf (e) > 0 is computed. Then, the flow on every edge of P is
increased by cf (P ) (of course, the corresponding update of the skew-symmetric
flow values at the opposite edges—decreasing them by cf (P )—is made as well;
we will not mention this, in what follows). As a result of this iteration, the
flow value grows by cf (P ) and at least one edge of P becomes saturated. For
illustration see Figure 1b.

For convenience sake, let us define the residual network Gf = (V, Ef ), where
Ef consists of all unsaturated edges in E. Now, an augmenting path is simply any
path in Gf from s to t (see Figure 1c). Clearly, it is easy to find an augmenting
path, if exists, given G and f : just run any search algorithm (e.g. BFS or DFS)
on Gf , from s. It is easy to see that, after each iteration, using an augmented
path P , the change of the residual network is as follows: it loses all the edges of
P which became saturated and acquires all the edges opposite to the edges of P
that were saturated before the iteration.

The famous theorem of Ford and Fulkerson states that when no augment-
ing path exists (i.e. t is disconnected from s in Gf ), the current flow is maxi-
mum. Clearly, if the initial data—capacities and the initial flow—is integer, the
current flow remains integer and eventually becomes maximum. That is, the
Ford&Fulkerson algorithm (henceforth, FF ) is finite and pseudo-polynomial in
the integer case. For the general case, Ford and Fulkerson provided an example
of a network with an execution of FF in it which runs infinitely; moreover, the
flow value converges at a quarter of the maximal possible one. So, the question of
the existence of a polynomial, or even of a finite or converging algorithm, for the
general case, remained open. This was settled affirmatively by J. Edmonds and
R.M. Karp [5] and by Y. Dinitz [4], independently. The algorithms suggested in
these papers are modifications of FF.

2.2 Layered Network Data Structure for Accelerating Iterations

Layered Network The initial intention of the author of [4] was just to acceler-
ate iterations of FF by means of a smart data structure. Recall that all the parts
of an iteration of FF, except for finding an augmenting path, P , cost time pro-
portional to the length of P , that is O(|P |) = O(|V |). Indeed, all computations
and updates are made along P , while the remainder of the data is not touched.
However, the search running on G costs O(|E|); one may even say Θ(|E|), ac-
cording to the search algorithms. Notice that Θ(|E|) is, in general, substantially
more than O(|P |) or O(|V |), and is O(|V |2) in the general case. So, finding an
augmenting path is the computational time bottleneck of an iteration of FF.

We will use BFS from s as the network scanning and path search algorithm.
Recall that BFS assigns to each vertex reachable from s its distance (the number
of edges in the shortest path) from s, and builds a tree rooted at s, where the
single edge incoming each vertex, except for s itself, comes from a vertex at the
distance less by one. A shortest path from s to t is restored as the chain of such
incoming edges, beginning from t. Let us try to save the information achieved



Dinitz’ Algorithm: The Original Version and Even’s Version 223

at a BFS run for the following iterations. Notice that at least one edge of the
BFS tree, lying on the path from s to t, is saturated at the iteration, so it must
be erased from the tree. Thus, s and t become disconnected in this tree, and
there are no easy means to connect them again using unsaturated edges. For
illustration see Figure 2a,b.

LL

L

L=L(s,t)

L=L(s,t)

b

s t

s ts t

e
a

f

s t

b
h

s t

g
a b

s t

G

i

f

s t

a

G

c

s t

L(s)

a

dc

s t

d

Fig. 2. (a) A network G (edge capacities are not shown). (b) A BFS tree from s in
G, with the path from s to t in it shown in bold. The edge that would be saturated
as a result of the flow augmentation along it is shown crossed. (c) The network L(s),
w.r.t. the zero initial flow. (d) The layered network L̂ = L̂(s, t), of length 3, and a path
from s to t in it. Two its crossed edges are saturated by the flow augmentation. (e) The
network L̂ with the saturated edges removed. (f) RightPass began with removing dead-
end a and the edges outgoing from it. (g) After vanishing of L̂, the new L̂ = L̂(s, t),
w.r.t. the current flow, is of length 4 (its second layer is encircled by a dotted line). The
flow augmentation along the path shown in bold saturates the crossed edge. Vertex a
will be cleaned from L̂. (h) The updated layered network; the augmentation along its
single path from s to t saturates the crossed edge. (i) The residual network Gf after
vanishing of L̂ of length 4. BFS execution in Gf marks as reachable from s vertices s,
a, c, and d, but not t. Hence, the current flow is maximum.

Let us try to enrich the data structure while building it. Notice that BFS
arranges vertices into layers, according to their distance from s. The BFS tree
includes only the first edge found, leading to each vertex from the previous layer;
it ignores all other edges coming to it from that layer, though they may be no
less useful than that first edge. The idea is to keep all those edges in our data
structure.



224 Yefim Dinitz

We begin with some definitions for an arbitrary digraph H . For an edge (v, u),
the vertex v is called its tail and u its head. Let a source vertex s be given. Let
dist(v, u) denote the distance to a vertex u from vertex v; we denote dist(v) =
dist(s, v). Let the ith vertex layer Vi be the set of vertices with dist(v) = i
(where V0 = {s}), and the ith edge layer Ei be the set of all the edges of H
going from Vi−1 to Vi. We define L(s) as the digraph (∪Vi,∪Ei). Notice that a
straightforward extension of BFS builds L(s), with the same running time O(|E|)
as that of the regular BFS; in what follows we call it “the extended BFS”. It is
easy to see, by the properties of BFS, that L(s) is the union of all the vertices
and edges of all shortest paths from s in H . For illustration see Figure 2c.

Since we are interested only in the paths from s to another given vertex, t,
let us prune L(s) to L̂(s, t), as in [4]. The network L̂(s, t) contains � layers, where
� = dist(s, t) is called its length. The vertices of its ith layer, V̂i, are characterized
by a double property: they are at distance i from s, while t is at distance �− i
from them. The ith layer of its edges, Êi, consists of all the edges of H going from
V̂i−1 to V̂i. The pruning of L(s) to L̂(s, t) is easy: we just run the extended BFS
once more, but on L(s) from t, using the opposite edge direction. For illustration
see Figure 2d.

Claim. The layered sub-graph L̂(s, t) is the union of all the vertices and edges
residing on all the shortest paths from s to t.

Proof. For any shortest path from s to t, its ith vertex is at distance i from
s, while t is at distance � − i from it. Conversely, for any vertex v in V̂i, there
is a path from s to v of length i and a path from v to t of length � − i; their
concatenation is a shortest path from s to t going via v. Similar reasons suffice
for the edges of Êi. ��

An easy property of L(s) and L̂(s, t) is that they have no “dead-ends”: ver-
tices without any incoming edge, except for s (for both L(s) and L̂(s, t)) and
those with no outgoing edge, except for t (for L̂(s, t) only). Due to the layered
structure and to this property, finding a shortest path from s to t, given any one
of L(s) and L̂(s, t), is almost as simple and exactly as fast (in time linear in its
length) as using the BFS tree, by means of the following procedure:

PathFinding : Starting from t, repeatedly choose one of the incoming edges
and pass to its tail. Necessarily, after � steps the layer 0, that is s, is reached.
The path consisting of the chosen edges (in the reverse order), is a shortest
path from s to t.

Remark : Notice that given L̂(s, t), a similar procedure executed from s, in
the direction of edges, also constructs a path from s to t, but in its natural order.

Layered Network Maintenance Suppose that, given a flow network G and
a flow f in it, we had built the sub-graph L̂(s, t) of the residual network Gf

(by two extended BFSs). Having found an augmenting path, by PathF inding
in L̂(s, t), we pushed some amount of flow along it (as in FF). A natural idea



Dinitz’ Algorithm: The Original Version and Even’s Version 225

is to find the next augmenting path, somehow using the existing L̂(s, t). We
accomplish this by adjusting it to the new flow.

Throughout the algorithm, we use a layered network data structure. It is
a general digraph, whose vertex set consists of consequent layers, so that the
leftmost one is {s}, while each its edge goes from some layer to the next one; L(s)
and L̂(s, t) are particular examples of a layered network. We begin the algorithm
by initializing our data structure L̂ as L̂(s, t) of the residual network w.r.t. the
initial flow. The maintenance of L̂, after an iteration, using an augmenting path
P , is as follows. We first remove from L̂ all the edges of P that became saturated;
clearly, we can extend the flow changing procedure of FF to provide a list of such
edges, Sat, keeping its running time O(�). Notice that updated L̂ is contained
in the current residual network, since only the edges, such as above, disappeared
from the residual network as a result of the flow change. Therefore, any path
from s to t found in the updated L̂ would be an augmenting path, w.r.t. the
current flow. For illustration see Figure 2e.

Observe further that applying PathF inding to updated L̂ might be stuck
at a dead-end vertex with no incoming edges. In order to restore the original
property of the layered network, to have no dead-ends, let us apply to it the
following procedure Cleaning. We initialize the left queue of edges Ql and
right queue of edges Qr by the list of saturated edges Sat. The main loop of
Cleaning consists of the right and left passes, processing edges in Qr and Ql,
respectively, one by one (in an arbitrary order), as follows:

RightPass For each edge e ∈ Qr, if its right end-vertex has no incoming edges,
then it is deleted from L̂, together with all its outgoing edges, while inserting
those edges into Qr (for illustration see Figure 2e,f).

LeftPass For each edge e ∈ Ql, if its left end-vertex has no outgoing edges, then
it is deleted from L̂, together with all its incoming edges, while inserting those
edges into Ql (for illustration see Figure 2g,h).

Notice that any deleted element of L̂ is absent in all paths from s to t in the
current L̂; in another words, the above procedure does not destroy any path
from s to t in L̂. If Cleaning empties L̂, it reports on its vanishing.

It is easy to see that the cleaned L̂ contains no dead-ends (for illustration see
Figure 2g,h). Indeed, a vertex becomes a dead-end when its last incoming or last
outgoing edge is removed from L̂; thus, any such event should be detected when
processing that edge and that vertex should be removed from L̂ during Cleaning.
Now, assuming that Cleaning has not caused L̂ to vanish, PathF inding in the
cleaned L̂ should be executed without any problem. This allows us to find an
augmenting path and to execute the entire next iteration of FF once more in
O(�) time. Notice that this time includes neither the time of building L̂, nor of
its cleaning. This is intentional; it is quite usual to count the cost of initializing
and maintaining a data structure separately.

Such accelerated iterations are executed until L̂ vanishes. The part of the
algorithm, beginning from the building of a layered network and ending at its
vanishing point, is called a phase. The algorithm consists of consequent phases,
repeated until the next layered network construction reveals that it cannot be



226 Yefim Dinitz

built. This happens when the current residual network Gf contains no path
from s to t. In this case, by the Ford&Fulkerson theorem, the current flow f is
maximum, i.e. the problem is solved. For illustration see Figure 2.

In what follows, we refer to the suggested algorithm as the Dinitz algorithm,
or DA. Its general description is as follows (the iteration invariant is discussed
and proved in Section 2.3):
The Original Dinitz Algorithm
Input :

a flow network G = (V, E, c, s, t),
a feasible flow f , in G (equal to zero, by default).

/* Phase Loop: */
dowhile
begin

Build L̂(s, t) in Gf , using the extended BFS;
if L̂(s, t) = ∅ then return f
else L̂← L̂(s, t);
/* Iteration Loop: */
while L̂ is not empty do
/* Iteration Invariant : L̂ is the union of all shortest augmenting paths */
begin

P ← PathF inding(L̂);
Sat← FlowChange(P );
/* Cleaning(L̂): */
begin

Removal of edges in Sat;
Qr, Ql ← Sat;
RightPass(Qr);
LeftPass(Ql);

end;
end;

end;

2.3 Algorithm Analysis

Two aspects of DA have to be analyzed:

– How much does it cost to maintain the layered network?
– How many iterations are contained in a phase? How many phases are con-

tained in the algorithm?

Layered Network Maintenance Cost It is easy to construct an extremal
example, where the entire layered network L̂ = L̂(s, t) of size O(|E|) vanishes
after a single iteration. For example, if the first edge layer consists of just a single
edge from s, of the minimal capacity, then the first executed iteration saturates
this edge and thus disconnects t from s.



Dinitz’ Algorithm: The Original Version and Even’s Version 227

We use the amortized analysis for bounding the total cost of all cleanings dur-
ing a single phase. Let us charge the cost of all relevant maintenance operations
to removed elements of L̂, as follows. A removed edge pays for the operations
applied to it, to the total of O(1), and for checking its two end-vertices; note that
checking whether a list it is empty or not costs O(1), as well. A removed vertex
pays for the operations applied to itself, except for checking as above, and for
the arrangement of the loop to remove its incident edges (but not for iterations
of that loop), which also totals O(1). Therefore, the overall maintenance cost
during a phase is O(|E|+ |V |), which is O(|E|), since L̂ is connected.

Running Time w.r.t. Iterations and Phases Recall that the construction
of the layered network, when initializing a phase, costs O(|E|). Hence, the total
cost of all layered network data structure operations, except for PathF inding,
is O(|E|) per phase. Recall that the total cost of an accelerated iteration is
O(�) = O(|V |), where � is the length of the layered network.

Let us denote the total number of iterations of DA by #it and the number
of phases by #ph (it might be infinite, in general). Then, the total running time
of DA is bounded as O(#it · |V |+#ph · |E|). First, this is better than the bound
O(#it·|E|) of FF. Indeed, DA is much faster than FF, even if FF uses only short-
est augmenting paths (see in [13] the results of an experiment comparing them,
among other max-flow algorithms). Second, the essential structure of FF, when
accelerated, remains exactly the same, so neither finiteness proofs, nor bounds
for the number of iterations ever proved for FF suffer from the acceleration.

However, we still have no provable reason to consider DA be theoretically
faster than FF. Indeed, there might be just a single iteration during a phase,
in the worst case, and there is no provable evidence that the average number of
iterations per phase #it

#ph is higher than Ω(1). To summarize for the time being,
DA seems to be just helpful heuristics for FF.

The Maintenance of the Layered Network Is Perfect Let us continue
analyzing the data structure, presenting its purity and beauty. Let us call a
method of data structure maintenance perfect if, before every iteration, the data
structure is as if built from scratch based on the current data. The method chosen
in the original paper [4] and described above is such. The following proposition
implies straightforwardly that L̂ coincides with L̂(s, t) of the current residual
network before every iteration of DA.

Proposition 1. After any iteration in the phase of DA with the layered network
of length �, the updated layered network is the union of all augmenting paths of
length �, while there is no shorter augmenting path (w.r.t. the current flow).

Proof. Let us consider an arbitrary iteration in the phase with the layered net-
work of length �. We relate to the function d(v) on vertices as the distance from
s to v in the residual network at the beginning of the phase. In other words, d(v)
is the number of the layer to which v was related by the first extended BFS,
during the process of the building of L(s).



228 Yefim Dinitz

Recall that, during this phase, the flow on an edge (v, u) is increased only if
d(u) = d(v) + 1; only those edges may be saturated and thus removed from Gf .
Also, the flow on an edge (u, v) is decreased only if d(v) = d(u)− 1; only those
edges may be unsaturated and thus added to Gf ; we call the added edges “new”.
An immediate consequence is that the value of function d is defined for any vertex
reachable from s in the current residual network Gf (equivalently, any such
vertex was reachable from s also at the beginning of the phase). Another easy
consequence is that no edge saturated during a certain phase can be unsaturated
later during the same phase. Thus, no edge removed from Gf can be restored to
it during the same phase.

First, let us consider augmenting paths of length � without new edges (hence-
forth “old paths”), and prove that they are the same in the updated L̂ and in
the current Gf (we use the generic notion Gf for the residual network, assuming
f changes from iteration to iteration).

Let us consider an arbitrary old path, P , of length �; by construction, it was
contained in the layered network L̂ at the beginning of the phase. Assume that
P is contained in Gf after some iteration. This means that none of its edges
were saturated during the phase. So, none of its edges were removed from L̂ as
saturated. Hence, the existence of P in L̂ is self-supporting, since it prevents its
nodes from ever being removed from L̂ as dead-ends. Therefore, P is contained
in the current layered network L̂. Now assume that P is contained in the current
L̂. This means that none of its edges were saturated during the phase. Thus, P
is contained in Gf . Summarizing, the layered network and the residual network
contain the same old paths of length �. Recall that there exist no old paths of
length less than �.

We now prove that the length of any “new” (not old) path, P ′, is at least
� + 2. Let P ′ contain k new edges; since P is new, k ≥ 1. Let us concentrate on
the change of function d along P ′ (recall that d is defined at all its vertices). Its
total increase, from d(s) = 0 to d(t) = �, is exactly �. Along any one of its old
edges, d increases by at most 1; along any one of its new edges, d decreases by
exactly 1 (for illustration see Figure 3). Hence, the number of old edges should
be at least � + k. That is, the length of P ′ is at least � + 2k ≥ � + 2, as required.

+1
+1

+1
+1

s t s t

a b

-1

Fig. 3. (a) A layered network of length 3, and an augmenting path in it, shown in bold.
(b) A part of the residual network after pushing the flow along this path, and a path
from s to t in it, shown bold. The encircled number near an edge shows the change of
d along it.



Dinitz’ Algorithm: The Original Version and Even’s Version 229

Thus, we see that after any iteration of the phase, there is no augmenting
path of length less than �, while all the augmenting paths of length �, if any, (are
old and) are contained in the current L̂.

Moreover, since cleaning restores the property of L̂ of having no dead-ends,
reasoning, as in the proof of Claim in Section 2.2, shows that all the vertices and
edges of L̂, if any, belong to the paths from s to t of length �. This suffices. ��

At this point, consider the moment after the last iteration of some phase.
At that moment, L̂ had vanished, so it contains no path from s to t of length
�. By Proposition 1, there is no augmenting path of length � or shorter, w.r.t.
the current flow. Therefore, the distance from s to t in Gf is at least � + 1,
and so is the length of the layered network built at the beginning of the next
phase (if the flow is not yet maximum). Thus, as a by-product of the perfect
method of maintaining the layered network data structure, we have arrived at
the remarkable property of DA that the length of the layered network grows
strictly from phase to phase.

The Polynomial Time Bound of DA An easy consequence of the foregoing
property is that there are at most |V | − 1 phases in DA, since the distance from
s to t cannot exceed |V | − 1.

It is easy to see that the number of iterations during a single phase is at most
|E|, since at least one out of at most |E| edges of L̂ is removed from it at every
iteration. Therefore, the total running time at each phase, which consists of the
accelerated iteration times and the layered network building and maintenance
time, is O(|E| · |V |+ |E|) = O(|V ||E|). Thus, DA is finite and its total running
time is O(|V |2|E|). We arrive at our main result:

Theorem 1. The Dinitz algorithm builds a maximum flow in time O(|V |2|E|).

Summary Let us summarize what is established on the behavior of DA.

– DA consists of phases. Each one contains iterations changing the flow using
shortest augmenting paths of a fixed length, �.

– At the beginning of each phase, the extended BFS builds in O(|E|) time a
layered network data structure, L̂, of length �. The layered network is con-
stantly maintained during the phase as the union of all shortest augmenting
paths of length �, until it vanishes, in total time O(|E|).

– The layered structure of L̂ and absence of dead-ends in it allow for the
execution of every iteration of FF in O(�) = O(|V |) time.

– The layered network is strictly pruned after each iteration of FF. Therefore,
the number of iterations at each phase is bounded by |E|.

– When the layered network vanishes, there is no augmenting path of length
lesser than or equal to �, w.r.t the current flow. Hence, the length of the next
layered network, equal to the length of the currently shortest augmenting
path, is strictly greater than �.



230 Yefim Dinitz

– Since the length of L̂ grows from phase to phase, there are at most |V | − 1
phases.

– When DA stops, the current flow is maximum.
– The running time of DA is O(|V |2|E|).

A Historical Remark In Adel’son-Vel’sky’s Algorithms class, the lecturer had
a habit of giving the problem to be discussed at the next meeting as an exercise
to students. The DA was invented in response to such an exercise. At that time,
the author was not aware of the basic facts regarding FF, in particular, of the
idea of decreasing the current flow on opposite edges during a flow push along a
path. As a consequence from the then naive view, Proposition 1 turned out to be
quite natural, following from just exhausting the set of all paths of length �, since
the issue of “new” augmenting paths had not arisen at all. So, the entire effort
of the inventor was devoted to suggesting the best accelerating data structure.

Because of the above gap in knowledge, the first time bound was O(|V ||E|),
since the total number of iterations had been erroneously considered to be |E|,
according to the maximal possible number of saturated edges. After learning
about the inverse edges of Ford and Fulkerson, the author completed the proof
of Proposition 1 and corrected the time bound.

Ignorance sometimes has its merits. Very probably, DA would not have been
invented then, if the idea of possible saturated edge desaturation had been known
to the author.

3 The Version of Shimon Even and Alon Itai

There are various approaches for using a data structure for a sequence of iter-
ations of an algorithm. The perfect way, as chosen in [4] and described above,
is not the goal from the point of view of the algorithm itself. The updated data
structure may not be like one built from scratch, but it should work; the only
requirement is that the desired bound for the running time can be proved. This
was the approach chosen by Shimon Even and Alon Itai. In what follows, we
first relax some requirements for the layered network data structure, using the
notation defined in Section 2. Then we briefly describe the version of DA of Even
and Itai, as it appears in the Even’s textbook [14].

Note that using the two-terminal layered network L̂(s, t) is a luxury; the
one-terminal layered network L(s) is quite sufficient. Indeed, in order for
PathF inding to work, a layered network should have no dead-ends in the direc-
tion of s (i.e. without incoming edges), while the existence of dead-ends in the
direction of t does no harm. Hence, DA may switch to the layered network L,
which is initialized by L(s). In fact, the building of L(s) may be stopped upon
finishing the �th layer.

Moreover, during the update of L, DA may remove dead-ends in the direction
of s only; that is, at Cleaning, it is sufficient to execute RightPass(Qr) only.
Then, L vanishes when t is removed from it. Notice that the original property of
L(s), to be the union of all the shortest paths from s to all the vertices reachable



Dinitz’ Algorithm: The Original Version and Even’s Version 231

from it, is not preserved by such maintenance. However, this is not essential to
DA, since it uses the shortest paths to t only. The right invariant of L is to contain
all the augmenting paths of length � (not to be their union), while there is no
shorter augmenting path. Obviously, this property holds after the initializing L
at the beginning of a phase. Its maintenance during the phase, from iteration
to iteration, is proved like the proof of Proposition 1. Notice that the weaker
invariant above implies the property of increasing the layered network’s length
from phase to phase, as well. Therefore, the analysis of the number of phases,
the number of iterations, and the running time of DA, for the version where the
one-terminal layered network is used, is the same as in Section 2.3.

Even and Itai go much farther while changing DA. They admit dead-ends
in L in both directions; thus, they cancel Cleaning and are urged to give up
using PathF inding. They even “burn their bridges behind them” by finding a
path from s to t in L beginning from s. They suggest another way to find an
augmenting path: a search of the DFS type, combined with encountered dead-
ends removal. Each iteration of their version of DA is as follows.

Their DFS begins to build a path from s, incrementing it edge by edge, from
one layer to the next. Such path building stops either by arrival at t (a success),
or at another dead-end. In the last case, DFS backtracks to the tail of the edge
leading to that dead-end, while removing that edge from L as useless (i.e. not
contained in any path from s to t in L). After that, DFS continues as above,
incrementing the current path when possible or backtracking and removing the
last edge from L, otherwise. This process ends either when DFS is at s and has
no edge to leave it, indicating that the phase is finished, or when it arrives at t.
In the latter case, an augmenting path is built. Then, a flow change is executed
along that path, as at FF, while removing from L all its edges which have become
saturated; recall that there is at least one such edge.

The running time of a phase, after executing the extended BFS to initialize
L, is counted by Even and Itai as divided into intervals between arrivals at
dead-ends. First, each such event causes the removal of an edge from L, so there
may be at most |E| such events. Secondly, there may be at most � forward
steps of DFS between neighboring events, which costs O(�). Except for those
steps, there may be either a single backtracking and edge removal, which costs
O(1), or a flow change, together with saturated edge removals, which costs O(�).
In any case, every interval between consequent events costs O(�), which totals
O(� · |E|) = O(|V ||E|) per phase, as desired.

Summarizing our discussion on the version of DA suggested by Even and Itai,
we see that their use of a non-cleaned layered network, where ad-hoc cleaning
is made “on route”, is quite successful: not only the same O(·) time bounds are
acquired, but also the practical effectiveness (where constants are concerned as
well) is not lost. Needless to say, their version not only has its own real beauty,
but is somewhat “sexy” running DFS on the layered network constructed by
(extended) BFS.

Regarding proof of the crucial property of DA, that the length of the layered
network increases from phase to phase, Even and Itai use no data structure



232 Yefim Dinitz

invariant, maintained from iteration to iteration, in contrast with the original
paper [4]. Instead, they explicitly prove the above property, by analyzing the
situation when a layered network vanishes. They characterize such a situation
by the property of the flow accumulated in L during the phase being “maximal”
(as distinguished from “maximum”), defined as a flow such that any path from s
to t in L contains at least one edge saturated by it (a “blocking” flow, in notation
of Karzanov [9]). Lemma 5.4 in [14] proves that after arriving at a maximal flow
in the layered network of length �, the currently shortest augmenting path is
longer than �.

It is interesting that the arguments in the proof of that Lemma are similar to
those in the proof of Proposition 1. However, the reader may see clearly that the
overall emphases, in the presentation of Dinic’s algorithm at [14] are quite dif-
ferent from those of the original presentation of DA in [4], in both the algorithm
iteration and the algorithm analysis. The origin of this difference is apparently
the rejection of the data structure maintenance approach, occurring everywhere
in the version of Even and Itai. See Section 1 for a possible explanation of this
phenomenon.

4 Implementation of DA by Cherkassky

At the implementation stage, nothing extra should be left over. The program
designer should have removed all the non-essential parts, not only to decrease the
volume of programming work and/or decrease constant factors at the running
time, but also to reduce the probability of bugs: a simpler program has less
bugs, and thus causes less risk of arriving, sometimes, at a sudden malfunction,
or what is the worst, at a wrong result. The only restriction, while choosing
an implementation, is the equivalence of the designed program to the original
algorithm, which is required for the validity of the program.

From the 1970s, Boris Cherkassky worked on the quality implementation of
various flow algorithms and on the experimental evaluation of their performance,
see [13, 27]. His recommendations for the best implementation of DA are as
follows:

– No layered network—neither L(s) nor L̂(s, t)—should be built. It is sufficient
to compute just the layer number (“rank”) dist(v, t) for every vertex up to
the distance � = dist(s, t). This may be done by a single run of the usual
BFS from t on the unsaturated edges, in the inverse edge direction.2

– The entire phase is conducted by a single DFS from s. Any saturated edge
or edge not going from a vertex of rank i to a vertex of rank i + 1 is just
skipped (instead of using the list of edges in the layered network).

– No edge removal is needed. If DFS backtracks on some edge, that edge will
not participate in the remaining part of DFS automatically.

2 We could retain the natural direction of edges and the ranks dist(s, v), for consistency
with the preceding discussion. Switching to the ranks dist(v, t) of Cherkassky is done
for better intuition and for consistency with the push-relabel technique, discussed in
Section 5.



Dinitz’ Algorithm: The Original Version and Even’s Version 233

– When the outgoing edges from the current vertex, v 
= s, t, are exhausted
(v becomes a dead-end), DFS backtracks from v. If s becomes a dead-end,
DFS (and the phase) is completed.

– When arriving at t, the current DFS path is an augmenting path. The usual
flow change is made along it. After this, DFS continues from the tail of the
edge closest to s which has been saturated during this flow change.

– The only network data needed during the phases is the residual capacity cf

for all the edges. After the last phase, the flow is restored as the difference
of capacities c and cf .

The resulting implementation is as follows:

Implementation of DA by Cherkassky

/* Input : */
a flow network G = (V, E, c, s, t),
a feasible flow f , in G (equal to zero, by default).

Initialization:
compute ∀e ∈ E : cf (e) = c(e)− f(e);

/* Phase Loop: */
dowhile
begin

compute ∀v ∈ V : rank(v) = dist(v, t), by BFS from t on edges
with cf > 0, in the inverse edge direction;

if rank(s) =∞ then begin f ← c− cf ; return f ; end;
while DFS from s do
begin

/∗ P denotes the current path and x the current vertex of DFS ∗/
any edge (x, y) s.t. cf (x, y) = 0 or rank(y) 
= rank(x)−1 is skipped;
if x = t then
begin

ε← min{cf (e) : e ∈ P};
for edges (v, u) of P , from t downto s do
begin

cf (v, u)← cf (v, u)− ε; cf (u, v)← cf (u, v) + ε;
if cf (u, v) = 0 then x← u;

end;
/∗ continue DFS from x ∗/
end;

end;
end;

In Section 5, we will see that such a simplification of DA, especially using
vertex ranks instead of layered networks, has a deep influence on the following
research on max-flow algorithms.



234 Yefim Dinitz

5 On the Further Progress of Max-Flow Finding

In this section, we consider some issues related to DA itself and the development
of the max-flow algorithms area from DA and on, on the level of ideas. Note
that many interesting results and even directions in the max-flow area remain
untouched or are mentioned quite briefly. We emphasize using layered networks
and/or distance ranks of vertices for max-flow finding.

Edmonds’ and Karp’s Version of FF Edmonds and Karp proved the finite-
ness and polynomial time of FF, if only the shortest augmenting paths are used
in it. The achieved time bound is O(|V ||E|2) = O(|V |5), which is higher than
O(|V |2|E|) = O(|V |4) of DA, since iterations are made in O(|E|) time each, as
usual in FF. A talk on their work was given at a conference held in the middle of
1968, just half a year before the invention of DA. However, their result became
known in Moscow and was told to the author only at the end of 1972, after the
journal version of their paper [5] had been published.

The Running Time of DA for Special Cases The “iron curtain” worked
in both directions. In January 1971, at a conference in Moscow, the author and
Alexander Karzanov reported on new time bounds of DA for specific network
types [6, 7]. In [6], it is shown that if DA is executed on a network with unit
capacities, the running time of each phase is bounded by O(|E|) (since each
edge of L̂ is saturated after participating in a one or two augmenting paths).
Hence, the total running time of DA is O(|V ||E|) for such a network. In [7], the
flow network modeling of the bipartite n×n matching is considered. The number
of phases of DA in such a modeling network is shown to be O(

√
n). Using the

result of [6], the running time of DA for solving the bipartite n × n matching
is found to be O(

√
nm) = O(n5/2), where m is the number of pairs allowed for

matching.
An algorithm for the bipartite n×n matching, similar to DA, with the same

time bound of O(
√

nm) = O(n5/2), was suggested by Hopkroft and Karp [8].
Their algorithm is the only one cited in the West. Various time bounds for DA
working in networks of special types, similar to those in [6, 7], were suggested by
Even and Tarjan in [11]; in particular, they showed that the number of phases
of DA for a network with unit capacities is bounded as O(min{|E|1/2, |V |2/3}),
and thus its running time is O(min{|E|1/2, |V |2/3}|E|). Still, the textbook [14]
published in 1979 does not mention the results of [6, 7], when reviewing these
topics.

Karzanov’s Algorithm Karzanov was the first to leave the augmenting paths
idea, in the research on max-flow finding. He suggested the “preflow-push” ap-
proach, as follows. He observed that at each phase of DA, it is sufficient to
somehow find a flow in a layered network L̂(s, t), such that any path from s
to t contains an edge saturated by it; he calls such a flow “blocking”. His algo-
rithm (henceforth, KA) finds a blocking flow in O(|V |2) time, thus arriving at
an O(|V |3) max-flow algorithm [9].



Dinitz’ Algorithm: The Original Version and Even’s Version 235

Here, we provide an outline of KA. Each finding of a blocking flow begins
from Pushing. It scans vertices of L̂(s, t) in their BFS order, starting from s,
and pushes flow from the current vertex, v, on its outgoing edges, as much as
possible. If the edges outgoing from v, v 
= s, have enough capacity to remove
from it all the flow brought to it on incoming edges, then a flow balance is created
at v; otherwise, a “flow excess” at v is created, to be fixed farther on. After
finishing Pushing, the flow function is infeasible, in general, with a flow excess
at some vertices; such a function is called a preflow. Then, KA begins Balancing,
which scans vertices with a flow excess but without outgoing unsaturated edges.
Balancing pushes flow from such a vertex back on its incoming edges. Then, a
flow excess is created at its preceding vertices, where outgoing unsaturated edges
may exist. Then, a new Pushing is executed, followed by a new Balancing, and
so on until balancing the preflow at all the vertices, except for s. The result is a
desired blocking flow.

It is worth to mention that the time bounds O(|V |2|E|) and O(|V |4) for
DA and O(|V |3) for KA are tight; the corresponding problem instances and
executions of algorithms are provided in [10, 17].

Improvements upon DA and KA Much effort was made, based on DA
and KA, to lower the running time bound of max-flow finding; the aim was to
acquire an O(|V ||E|) max-flow algorithm. Following is a brief review, cut before
the push-relabel algorithm.

Cherkassky first simplified KA and later suggested a “hybrid” of DA and
KA running in time O(|V |2√|E|) [12]. Galil accelerated his algorithm to run
in time O(|V |5/3|E|2/3) [15]. Galil and Naaman suggested an acceleration of
augmenting path finding in DA by means of storing parts of previously found
augmenting paths [16]; Shiloach discovered a similar algorithm independently a
bit later. Their algorithms run in time O(|E||V | log2 |V |), which differs from the
“goal time” only in a poly-logarithmic factor. Sleator and Tarjan improved the
algorithm from [16] to run in time O(|E||V | log |V |) by using trees instead of just
paths [19]. These low running times were achieved by using smart, but heavy,
data structures.

Towards the Push-Relabel Algorithm The other max-flow research move-
ment was slow, its explicit direction was to simplify the pushing-balancing tech-
nique of Karzanov. As seen a-posteriory, its implicit goal was the “push-relabel”
approach, suggested finally in [20, 22]. Let us show an example of such a devel-
opment by analyzing the algorithm of Boris Cherkassky [13].3

One of the crucial steps taken in [13] is to cancel the previous goal of each
phase, to construct a feasible flow in the layered network, and hence to eliminate
Balancing. Instead, the new requirement is to achieve a flow balance at every
vertex only by the end of the algorithm’s execution. The main technical obser-
vation, while transforming KA, is that Balancing at some vertex is equivalent
3 The O(|V |3) max-flow algorithm described by Shiloach and Vishkin in [18] may also

be considered as a precursor of one of the push-relabel algorithms.



236 Yefim Dinitz

to Pushing from it in future, when it will appear in some layered network at a
greater distance from the sink t. As in his implementation of DA (see Section 4),
Cherkassky does not build layered networks, but just computes the vertex ranks
d(v) = dist(v, t).

There are steps of only the following two types in his algorithm:

Push For a vertex with a flow excess, pushing from it as much flow as possible
to the vertices of a rank smaller by one.

Relabel For vertices without unsaturated edges outgoing to vertices of a rank
smaller by one, recomputing their ranks.

For the reader familiar with the push-relabel approach, the remarkable similarity
of the above steps with those of the generic push-relabel algorithm is obvious.
(The names of the types are taken from [22], not from [13].)

Moreover, Cherkassky never computes new vertex ranks from scratch, except
at the beginning of the algorithm—he maintains them. That is, he just increases
the current vertex ranks as needed. This maintenance is done as that of the global
layered network , which was sketched in [4] and given later in detail in [10] (see
the next subsection). So, also the maintenance of vertex ranks is equivalent to
the relabeling method of [22]. Summarizing, the algorithm of [13] is one of the
possible implementations of the generic push-relabel algorithm [22].

The essential difference between the algorithm [13] and the approach of [22]
is that the former is rigid, while the latter is generic, i.e. leaving freedom to
choose any order for processing vertices with a flow excess. Leftovers of the phase
structure of DA and KA prevented Cherkassky from canceling the division of
his algorithm into phases, inherited from DA. At each phase of his algorithm,
all the vertices are processed in the BFS order from farther to closer to the sink,
and after that, all vertex ranks are updated. He uses the technique of the global
layered network for accelerating the algorithm only. He does not notice that it
is able to maintain vertex ranks after each elementary push at the same total
cost, so that after any push, the algorithm is ready and free to push at any other
vertex requiring it. This oversight prevented the algorithm [13] from becoming
generalized to the generic push-relabel algorithm.

Usually, in the modern research community, relaxations of suggested meth-
ods, which get rid of various leftovers, are made very quickly after the publication
of an interesting result. However, because of the ”iron curtain”, the results of
[13] were unknown in the West, preventing further development by Western re-
searchers4. The push-relabel approach was invented by a Ph.D. student, Andrew
Goldberg, in 1985 [20].

We may hope that all our efforts to the right direction are not in vain. The
following remarkable observation, heard by the author from his teacher Alexan-
der Kronrod, may be related to the invention of the push-relabel approach, to
some extent: “A solution to an open problem is always found much more easily,
if that problem has already been solved by somebody else, even in a case where
the current solver is completely unaware of the existing solution”.
4 Ahuja et al., in [26], relates even seminal introducing distance labels, (i.e. vertex

ranks) instead of layered networks, to [20].



Dinitz’ Algorithm: The Original Version and Even’s Version 237

Perfect Maintenance of the One-Terminal Layered Network For com-
pleteness, let us briefly describe the method of perfect maintaining of the one-
terminal layered network L(s) [10]. Note that using it may eliminate the phase
borders from both the original DA and its implementation given in Section 4.

The layered network L is initialized by building L(s) w.r.t. the initial flow
by the extended BFS in time O(|E|). After a flow change, we take care of the
vertices of L that lose the last incoming edge (called “dead-ends”). At DA, such
a vertex is only removed from the data structure, and now we must put it into its
correct layer. After removing the saturated edges, we set the temporary distance
from s to each dead-end v at d′(v) = d(v)+1. Additionally, every outgoing edge
(v, u) is removed from the list of edges incoming to u. If, as a result, u becomes
a dead-end, we apply the same operation to it.

We process the dead-ends in the non-decreasing order of temporary distances
d′. For each dead-end v, we check whether there is an incoming edge from the
layer d′(v)−1. If so, we assign d(v) = d′(v) and scan its incident edges: we insert
into L the edges going to v from the layer Ld(v)−1 and those going from v to the
layer Ld(v)+1. Otherwise, we increase d′(v) by one, to be processed once more.
It may be easily shown that this processing updates L to become L(s) w.r.t. the
new flow. In total, each vertex is moved to the next layer at most |V | − 2 times,
which implies that the total cost of updating L is O(|V ||E|) during the entire
layered network maintenance.

Maintaining vertex ranks, as in [13, 22], differs from the above method in
beginning from t, reversing edge directions, and removing all operations with
edges.

After Inventing the Generic Push-Relabel Algorithm The previously
best time bound for max-flow finding was improved by Goldberg and Tarjan
in [22]; their algorithm runs in time O(|V ||E| · log(|V |2/|E|)). The algorithm
combines the push-relabel approach, choosing a vertex of the maximal rank at
each push step, with the dynamic tree technique of [19] (changed a bit). After
that, more (slight) improvements of running time for max-flow finding were
made; we do not list them, referring to [28] for a review.

Interestingly, after the invention of the push-relabel approach, the develop-
ment of max-flow algorithms returned to the blocking flow techniques, that is
to dividing an algorithm execution into phases, each computing a blocking flow
in a certain auxiliary network. In a couple of years, Goldberg and Tarjan [24]
achieved a result finer than that of [22], by suggesting an O(|E| · log(|V |2/|E|))
algorithm for finding a blocking flow in an arbitrary acyclic graph (the need to
use acyclic graphs, which generalize layered, arisen when building a fast min-cost
max-flow algorithm). Thus, the above time bound O(|V ||E| · log(|V |2/|E|)) for
max-flow finding was achieved by a blocking flow algorithm too.

The above-mentioned results leave a polynomial gap between the general and
the unit capacity cases: the bounds on the number of blocking flow computations
in the former case is O(|V |) and in the latter, O(min{|E|1/2, |V |2/3}). For the
case when capacities are integers bounded by U , Goldberg and Rao [29] sug-



238 Yefim Dinitz

gest a blocking flow algorithm with O(min{|E|1/2, |V |2/3} · log U) blocking flow
computations.

They combine the idea of increasing the distance from the source to the sink
after each phase with another interesting requirement for the result of a phase.
Let us denote by ∆f the residual flow value, i.e. the value of the maximum flow
in Gf . Edmonds and Karp considered in [5] the “thickest” augmenting path
strategy of FF, that is such that a path P maximizing the value of cf (P ) is
chosen at each iteration. They show that ∆f decreases by at least the fraction
1
|E| , i.e. becomes at most (1 − 1

|E|)∆f , after each iteration. Hence, the number
of iterations of this version of FF in the integer case is O(|E| · log U).

In the algorithm of Goldberg and Rao [29], the auxiliary network for each
phase is acyclic, instead of layered. They choose a certain threshold depending
on ∆f and assign to each edge a length of one or zero, depending on whether
its residual capacity is below or above that threshold, respectively. They use the
distances w.r.t. these edge lengths to construct an auxiliary graph; in order to
make it acyclic, they contract all the zero length cycles. After each phase, either
the distance from s to t increases, or ∆f decreases by a certain fraction. As a
consequence, the number of phases is bounded by O(min{|E|1/2, |V |2/3} · log U).
A blocking flow at each phase is found by the algorithm from [24], thus arriving
at the O(min{|E|1/2, |V |2/3}|E| · log U · log(|V |2/|E|)) total running time. Thus,
the time bound for the unit capacity case is extended to the integral capacity
case at the expense of a factor of log U · log(|V |2/|E|). Note that unless U is very
big, the time bound achieved in [29] for general flow networks is better than
O(|V ||E|).

Acknowledgments

The author is grateful to Avraham Melkman for sharing the effort to clarify the
explanation of Dinitz’ algorithm, to Boris Cherkassky and Andrew Goldberg for
useful information and comments, to Oded Goldreich for his patience and help
in improving presentation of this paper, and to Ethelea Katzenell for her English
editing.

References

1. G.M. Adel’son-Vel’sky and E.M. Landis. An algorithm for the organization of
information. Soviet Mathematics Doklady 3 (1962), 1259–1263.

2. L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton University Press,
Princeton, NJ, 1962.

3. V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, and I.A. Faradjev. On economical
finding of transitive closure of a graph. Doklady Akademii Nauk SSSR 194 (1970),
no. 3 (in Russian; English transl.: Soviet Mathematics Doklady 11 (1970), 1270–
1272).

4. E.A. Dinic. An algorithm for the solution of the max-flow problem with the poly-
nomial estimation. Doklady Akademii Nauk SSSR 194 (1970), no. 4 (in Russian;
English transl.: Soviet Mathematics Doklady 11 (1970), 1277–1280).



Dinitz’ Algorithm: The Original Version and Even’s Version 239

5. J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. J. of ACM 19 (1972), 248–264.

6. E.A. Dinic. An efficient algorithm for the solution of the generalized set represen-
tatives problem. In: Voprosy Kibernetiki. Proc. of the Seminar on Combinatorial
Mathematics (Moscow, 1971). Scientific Council on the Complex Problem “Kiber-
netika”, Akad. Nauk SSSR, 1973, 49–54 (in Russian).

7. A.V. Karzanov. An exact time bound for a max-flow finding algorithm applied to
the “representatives” problem. In: Voprosy Kibernetiki. Proc. of the Seminar on
Combinatorial Mathematics (Moscow, 1971). Scientific Council on the Complex
Problem “Kibernetika”, Akad. Nauk SSSR, 1973, 66–70 (in Russian).

8. J. Hopkroft and R.M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. on Computing 2 (1973), 225–231.

9. A.V. Karzanov. Determining the maximum flow in the network by the method of
preflows. Doklady Akademii Nauk SSSR 215 (1974), no. 1 (in Russian; English
transl.: Soviet Mathematics Doklady 15 (1974), 434–437).

10. G.M. Adel’son-Vel’sky, E.A. Dinic, and A.V. Karzanov. Network flow algorithms.
“Nauka”, Moscow, 1975, 119 p. (in Russian; a review in English see in [25]).

11. S. Even and R.E. Tarjan. Network flow and testing graph connectivity. SIAM J.
on Computing 4 (1975), 507–518.

12. B.V. Cherkassky. An algorithm for building a max-flow in a network, running in
time O(n2√p). In: Mathematical Methods for Solving Economic Problems, issue 7
(1977), “Nauka”, Moscow, 117–126 (in Russian).

13. B.V. Cherkassky. A fast algorithm for constructing a maximum flow through a
network. In Combinatorial Methods in Network Flow Problems. VNIISI, Moscow,
1979, 90–96 (in Russian; English transl.: Amer. Math. Soc. Transl. 158 (1994), no.
2, 23–30).

14. S. Even. Graph Algorithms. Computer Science Press, Rockville, MD, 1979.
15. Z. Galil. An O(V 5/3E2/3) algorithm for the maximal flow problem. Acta Inf. 14

(1980), 221-242.
16. Z. Galil and A. Naaman. An O(EV log2 V ) algorithm for the maximal flow prob-

lem. J. Comput. Syst. Sci. 21 (1980), no. 2, 203–217.
17. Z. Galil. On the theoretical efficiency of various network flow algorithms. Theor.

Comp. Sci. 14 (1981), 103–111.
18. Y. Shiloach and U. Vishkin. An O(n2 log n) parallel max-flow algorithm. J. of

Algorithms 3 (1982), 128–146.
19. D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. J. Comput.

Syst. Sci. 24 (1983), 362–391.
20. A.V. Goldberg. A new max-flow algorithm. TR MIT/LCS/TM-291, Laboratory

for Comp. Sci., MIT, Cambridge, MA, 1985.
21. R.E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc. Meth. 6

(1985), no.2, 306–318.
22. A.V. Goldberg and R.E. Tarjan. A new approach to the maximum flow problem.

In: Proc. of the 18th ACM Symp. on the Theory of Computing (1986), 136–146.
Full paper in J. of ACM 35 (1988), 921–940.

23. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill,
New York, NY, 1990.

24. A.V. Goldberg and R.E. Tarjan. Finding minimum-cost circulations by successive
approximation. Mathematics of Operations Research, 15 (1990), issue 3, 430–466.

25. A.V. Goldberg and D. Gusfield. Book Review: Flow algorithms by G.M. Adel’son-
Vel’sky, E.A. Dinits, and A.V. Karzanov. SIAM Reviews 33 (1991), no. 2, 306–314.



240 Yefim Dinitz

26. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Upper Saddle River, NJ, 1993.

27. B.V. Cherkassky and A.V. Goldberg. On implementing the push-relabel method
for the maximum flow problem. Algorithmica 19 (1997), 390–410.

28. A.V. Goldberg. Recent developments in maximum flow algorithms (invited
lecture). In: Proc. of the 6th Scandinavian Workshop on Algorithm Theory
(SWAT’98 ), LNCS 1432, Springer-Verlag, London, UK, 1998, 1–10.

29. A.V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of
ACM 45 (1998), 753–782.


	1 Introduction
	2 The Original Dinitz’ Algorithm
	3 The Version of Shimon Even and Alon Itai
	4 Implementation of DA by Cherkassky
	5 On the Further Progress of Max-Flow Finding



