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pierre@lri.fr
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Abstract. We consider the task of exploring graphs with anonymous
nodes by a team of non-cooperative robots, modeled as finite automata.
For exploration to be completed, each edge of the graph has to be tra-
versed by at least one robot. In this paper, the robots have no a priori
knowledge of the topology of the graph, nor of its size, and we are in-
terested in the amount of memory the robots need to accomplish explo-
ration, We introduce the so-called reduced automata technique, and we
show how to use this technique for deriving several space lower bounds
for exploration. Informally speaking, the reduced automata technique
consists in reducing a robot to a simpler form that preserves its “core”
behavior on some graphs. Using this technique, we first show that any
set of q ≥ 1 non-cooperative robots, requires Ω(log(n

q
)) memory bits

to explore all n-node graphs. The proof implies that, for any set of q
K-state robots, there exists a graph of size O(qK) that no robot of this
set can explore, which improves the O(KO(q)) bound by Rollik (1980).
Our main result is an application of this latter result, concerning ter-
minating graph exploration with one robot, i.e., in which the robot is
requested to stop after completing exploration. For this task, the robot
is provided with a pebble, that it can use to mark nodes (without such a
marker, even terminating exploration of cycles cannot be achieved). We
prove that terminating exploration requires Ω(log n) bits of memory for
a robot achieving this task in all n-node graphs.
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1 Introduction

The problem of exploring an unknown environment occurs in a variety of sit-
uations, like robot navigation, network maintenance, resource discovery, and
WWW search. In these situations the entities performing exploration can be
either a physical mobile device or a software agent. In this paper, we restrict
our attention to the case where the environment in which the mobile entities
are moving is modeled as a graph. At an abstract level, graph exploration is the
task where one or more mobile entities, called robots in this paper, are trying
to collectively traverse every edge of a graph. In addition to the aforementioned
applications, graph exploration is important due to its strong relation to com-
plexity theory, and in particular to the undirected st-connectivity (USTCON)
problem (cf., e.g., [6]). Given an undirected graph G and two vertices s and t,
the USTCON problem is to decide whether s and t are in the same connected
component of G. The directed version of the problem is denoted STCON. It is
known that STCON is complete for NL, the class of non-deterministic log-space
solvable problems. Whether USTCON is complete for L, the class of problems
solvable by deterministic log-space algorithms, has been a challenging open prob-
lem for quite a long time, and it is only very recently that Reingold proved that
USTCON is indeed complete for L [15]. Note that the existence of a finite set
of finite-state automata able to explore all graphs would have put USTCON
in L, and proving or disproving this existence had therefore motivated quite
a long sequence of studies. Cook and Rackoff [6] eventually proved that even a
more powerful machine, called JAG, for ”Jumping Automaton for Graphs”, can-
not explore all graphs (a JAG is a finite set of globally cooperative finite-state
automata enhanced with the ability, for every automaton, to ”jump” from its
current position to any node occupied by another automaton). Since this lat-
ter result, the exploration graph problem is focussing on determining the space
complexity of robots able to explore all graphs.

As far as upper bounds in concerned, Reingold showed in [15] that his log-
space algorithm for USTCON implies the existence of log-space constructible
universal exploration sequences (UXS) of polynomial length. Roughly speaking,
a UXS [14] is a sequence of integers that (1) tell a robot how to move from node
to node in a graph (the exit port at the kth step of the traversal is obtained
by adding the kth integer of the UXS to the entry port), and (2) guarantee to
explore every node of a graph of appropriate size (a UXS is defined for a given
size, and a given degree). Rephrasing this latter result, there is a O(log n)-space
robot that explores all the graphs of size n. The extend to which this bound can
be decreased by using a set of q > 1 cooperative robots remains open. Also, the
question of the existence of log-space constructible universal traversal sequences
(UTS) [1] remains open (a UTS is a sequence of port-numbers so that the output
port at the kth step of the traversal is the kth element of the sequence).

As far as lower bounds are concerned, most papers are dealing with the
design of small traps for arbitrary teams of robots, i.e., small graphs that no
robot of the team can explore. (Formally, a trap consists of a graph and a
node from where the robots start the exploration.) The first trap for a finite
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state robot is generally attributed to Budach [5] (the trap is actually a planar
graph). The trap constructed by Budach is however of large size, and a much
smaller trap was described in [12] which proved that, for any K-state robot, there
exists a trap of at most K + 1 nodes. In [16], Rollik proved that no finite set
of finite locally-cooperative automata, i.e., automata that exchange information
only when they meet at a node, can explore all graphs. In the proof of this result,
the author uses as a tool a trap for a set of q non-cooperative K-state robots (such
robots may have different transition functions, hence they will follow different
paths in the explored graph). This latter trap is of size O(KO(q)) nodes. Rollik’s

trap for cooperative robots is even larger: Õ(KK···
K

) nodes, with 2q + 1 levels
of exponentials where the Õ notation hides logarithmic factors. In this paper,
we present a new lower bound technique for graph exploration, called reduced
automata technique. Roughly, this technique consists in reducing a robot to a
simpler form that preserves its “core” behavior on some graphs: except for some
easily described closed paths, the reduced robot follows the path of the original
robot, on any such graph.

The interested reader can find other pointers to the literature in, e.g., [3–
5, 7, 8, 12]. To complete the picture, and before describing our results in more
details, let us point out that Shimon Even, whom this book is dedicated to, was
interested in graph exploration problems early on in his career. In particular,
in his 1976 seminal paper with Tarjan [11], he presented a way of numbering
nodes during a DFS traversal that proved to be useful in many algorithms. In
collaboration with A. Litman and P. Winkler [10], he then studied traversal in
directed networks. With G. Itkis and S. Rajsbaum [9], he described a traversal
strategy for undirected graphs that constructs a subgraph with good connectivity
but few edges. And recently, in collaboration with S. Bhatt, D. Greenberg, and
R. Tayard [2], he studied the problem of using a robot as simple as possible (with
access to some local memory stored in the vertices) to find an Eulerian cycle in
mazes and graphs.

1.1 Problem Settings

As in [6, 16], we are interested in exploration of undirected graphs where nodes
are not uniquely labeled. Note that, besides the theoretical interest of under-
standing when or at what cost such graphs can be explored, the unlabeled-node
setting can occur in practice, due to, e.g., privacy concerns, limited capabilities
of the robots, or simply anonymous edge intersections. The robots, modeled as
a deterministic automata, can however identify the edges incident to a node
through unique port labels, from 1 to the degree of the node. We consider two
types of exploration:

– Perpetual exploration, in which the task of the robots is to, eventually, tra-
verse all edges.

– Terminating exploration, in which the robots, after completing exploration,
must eventually stop.
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In acyclic graphs, terminating exploration is strictly more difficult than
perpetual exploration. In particular, it is shown in [7] that terminating ex-
ploration in n-node bounded degree trees requires a robot with memory size
Ω(log log log n), whereas perpetual exploration is possible with O(1) bits. In ar-
bitrary graphs, terminating exploration cannot be achieved. Indeed, it is easy
to see that a robot can traverse all edges of some graphs, say a cycle, but that
it cannot recognize when it has visited a node twice, because nodes are not
uniquely labeled. That is, there are graphs that a robot can explore perpetually,
but it can never stops. Thus, as in previous work in this setting, e.g., [3, 4, 8], we
assume that, for terminating exploration, robots can mark nodes: a robot can
drop a pebble in a node and later identify it and pick it up.

Following the common conventions in the literature, the robots aiming at
performing perpetual exploration are not given pebbles, whereas robots aim-
ing at performing terminating exploration are given one or more pebbles. As a
consequence, the two problems becomes incomparable. Indeed, terminating ex-
ploration is more demanding than perpetual exploration, but the ”machines”
designed for these two tasks do not have the same power.

A team of robots is a set of deterministic automata with possibly different
transition functions, all starting from the same starting point. When sets or
teams of robots are considered, the robots of a team can communicate in various
manners. Four cases are considered in the literature:

– Non-cooperative robots: the robots are oblivious of each other, and each of
them acts independently from the others.

– Locally cooperative robots: robots meeting at a node can exchange informa-
tion, including their identities and their current states.

– Globally cooperative robots: the robots are perpetually aware of the states
of the others, of whether they meet and who they meet, and of the degrees
of the nodes occupied by the robots.

– Jumping Automaton: the robots are globally cooperative, and any robot is
able to jump from the node it is currently occupying to a node currently
occupied by any other robot.

In this paper, we restrict our attention to the two weakest models: non-
cooperative robots, and locally cooperative robots.

1.2 Our Results

In this paper, we present a new lower bound technique for graph exploration,
called reduced automata technique. Based on this technique, the lower bounds
presented in this paper are obtained as follows. Assume a set of q robots is given.
Then construct the smallest possible graph, called a trap for this set of robots,
such that if the robots are placed in some specified nodes of the graphs, then
there is at least one edge that is not traversed by any of the robots. If the q
robots have K states each, and the trap has fq(K) nodes, then the space lower
bound for a set of q robots exploring all n-node graphs is Ω(log f−1

q (n)) bits.
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The reduced automata technique for the design of space lower bounds for
graph exploration is described in Section 2. This lower bound technique allows
us to concentrate on a subclass of graphs, called homogeneous: edge-colored and
regular. For such graphs, a robot can be described by a very simple automaton,
whose transition function consists of a graph formed by a directed path followed
by a directed cycle. The reduced automata technique applies to homogeneous
graphs. Roughly speaking, a reduced robot has the property that if it traverses
an edge {u, v} at some step of the exploration, say from u to v, then its next
move will not be traversing the edge back to u. This property is achieved by
transforming a robot into a reduced robot whose transition function never has
two consecutive edges with the same label. We construct a trap core directly
from the transition function of a reduced robot, which is then easily extended
to a trap for the original robot.

In Section 3 we use the technique of reducing a robot to construct a degree 3
trap for a K-state robot, of size K + 3. The proof technique can be generalized
to produce traps of any degree, but for illustrating the technique, it is sufficient
to work with degree 3 graphs. Indeed, [12] presents a trap of size K + 1, planar
and valid for graphs of any degree. The proof we present is somewhat simpler
than the one of [12], and moreover, it illustrates the technique used to prove our
results in the following sections.

In Section 4 we present our new results about traps for collective exploration
by a set of non cooperative robots. The robots do not communicate at all, and
every edge must be traversed by at least one robot. We show (cf. Theorem 4)
that for any set of q non-cooperative K-state robots, there exists a 3-regular
graph G, and two pairs {u, u′} and {v, v′} of neighboring nodes, such that any
robot of the set, starting from u or u′, fails to traverse the edge {v, v′}. The
graph G has O(qK) nodes. This improves the O(KO(q)) bound of Rollik [16] (cf.
Corollary 2).

By simply plugging this new trap for non-cooperative robots into Rollik’s
construction, we get (cf. Corollary 4) a new trap for locally-cooperative explo-

ration of size Õ(KK···
K

) with q + 1 levels of exponential, to be compared with
the 2q + 1 levels of [16]. Our trap is thus smaller than the one in [16].

In Section 5 we show that Theorem 4 has a significant impact on the space
complexity of terminating graph exploration by a single robot. As mentioned
above, when terminating exploration is required, the robot is provided with a
pebble. We prove (cf. Theorem 5) that terminating exploration requires a robot
with Ω(log n) bits for the family of graphs with at most n nodes. As mentioned
before, in arbitrary graphs, perpetual exploration and terminating exploration
are not comparable because even if perpetual exploration is a simpler task than
terminating exploration, in the latter case the robot is given a pebble. Therefore,
even if the existence of traps with at most K + O(1) nodes for any K-state
robot implies an Ω(log n) bits lower bound for the memory size of a robot that
performs perpetual exploration in all graphs with at most n nodes, the Ω(log n)
lower bound for terminating exploration is not a consequence of the first result
about perpetual exploration.
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2 Preliminaries

In Section 2.1 we define formally what we mean by a robot exploring a graph.
In Section 2.2 we describe basic properties of a robot. In Section 2.3 we show
how to simplify the structure of a robot, for the proofs of the following sections.

2.1 Graphs, Robots and Traps

A robot considered in this paper traverses a graph by moving from node to
node along the edges of the graph. We first describe the basic model of a robot
traversing a graph, and what we mean by a trap, namely a pair (G, u) where G
is a graph and u ∈ V (G) such that a robot starting from u cannot explore G.
To construct a trap for a robot, we first design a graph that the robot cannot
leave, called a trap core, and then we add to it edges that the robot does not
explore. We explain how the description of a robot is simplified when traversing
a more symmetric kind of graph, called homogeneous. The simpler description
will be crucial in the rest of the paper.

The Basic Model of a Robot Traversing a Graph. In a graph where nodes
have no identifiers, two nodes are indistinguishable to the robot, unless they
have different degree. However, edges have local port numbers, so the robot can
distinguish two different edges incident to a node. In more detail, each edge has
two labels, each one associated to one of its two endpoints. The labels of the edges
incident to a node v are arbitrary and pairwise distinct in the set {0, . . . , δv −1},
where δv denotes the degree of v. When a robot is in a node, it sees only the
labels at the endpoints of the edges incident to the node. This allows the robot
to distinguish the edges incident to the node through their unique labels, called
local port numbers. Notice that an edge may have different port numbers in its
two endpoints. We refer to those graphs as port-labeled graphs.

A robot is an automaton with a single initial state; at the beginning, it is
placed on an arbitrary starting node of the graph in this state. When a robot is
in a node u and traverses an edge {u, v} to get to v, it learns the label at v’s
endpoint of the edge once it enters v. The robot decides which edge to take to
leave v based on this label, as well as on the degree of v, and of course, based
on its local state. We do not define formally such a robot because we will study
its behavior only on a special class of graphs, called homogeneous, for which a
very simple representation of a robot is possible, that we will define formally.
In Section 5 we will consider an extended definition of a robot that can drop a
pebble in a node and pick it up when it returns to the node to drop it somewhere
else.

A trap for a set of robots is a pair (G, U), where G is a port-labeled graph
and U is a set of nodes of G, such that if all the robots are placed in nodes
u ∈ U , each in its initial state, then there will be an edge {u, v} that is never
traversed by the robots. To make our lower bound results stronger, sometimes
we present a simple trap, namely with no parallel edges and self-loops.
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Fig. 1. A trap and its core

Homogeneous Graphs and Trap Cores. We will study the behavior of a
robot in a graph where both port numbers of an edge coincide. In such a graph
a robot can be described by a very simple automaton, as we shall see next. A
δ-homogeneous undirected graph is a graph that is δ-regular and δ-edge-colored.
A graph is δ-regular if each of its nodes has degree δ, and it is δ-edge-colored if
each edge is labeled with one of the integers in the set ∆ = {0, 1, . . . , δ − 1} in
a way that no two edges incident to the same node have the same color. For the
sake of clarity, we mainly focus on graphs with maximum degree three.

When a robot traverses a 3-homogeneous graph, each time it arrives to a node
the local environment looks exactly the same as in any other node: all nodes are
equal and in each node all local ports are 0, 1, or 2. Thus, the robot decides
which edge to take to exit the node based only on its current state. Formally, a
robot is an automaton A = (∆,S, f, ŝ), with a finite set of states S, an initial
state ŝ ∈ S, and a transition function f : S → S × ∆. For a state s ∈ S with
f(s) = (s′, i), denote fst(s) = s′ and f�(s) = i. The robot A moves on a 3-regular
graph as follows. Initially A is placed on a node of the graph in state ŝ. If A is
in a node v in state s then A moves to the node v′ such that the edge {v, v′} is
labeled f�(s), and changes to state fst(s).

When considering the formal definition of a robot for homogeneous graphs,
one can construct a trap by first defining a graph G that is edge-colored, but not
necessarily 3-regular, and then adding some edges and nodes to obtain a trap in
which the trap core looks homogeneous to the robot. We do not demand that a
trap is 3-homogeneous as long as a robot never tries to take an edge that is not
defined in the graph. Formally:
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Definition 1 (Trap Core). A trap core for a set of robots is a pair (G, U),
where G is a 3-edge-colored graph and U is a set of nodes of G, such that if all
the robots are placed in nodes u ∈ U , each in its initial state, then each time a
robot A = (∆,S, f, ŝ) is in some node u in some state s, if f�(s) = i then an
edge {u, v} labeled i must be in G.

From a Trap Core to a Trap. Once we have built a trap core (G, U) it is not
difficult to construct a trap (G′, U), by adding to it some edges and a constant
number of nodes. Notice that if (G, U) is a trap core for a set of robots, then
(G′, U) is a trap for the same set of robots, because G is a strict subgraph of
G′ that the robots never leave. We first show how to construct G′ from a 3-edge
colored graph G, by adding at most 2 nodes, and adding edges that guarantee
that every node of G has degree exactly 3, and we define local port labels for the
newly added edges. Thus, as in Figure 1, edges that were originally in G have
the same port labels in both endpoints (e.g. {v, w} in the figure), while newly
added edges may have different port labels (e.g. {u, w} in the figure). Afterward
we show how to construct an homogeneous G′ with at most 13 new nodes.

Definition 2 (Simple Trap Extension). Given a 3-edge-colored graph G =
(V, E), the labeled simple graph G′ = (V ′, E′), |V ′| ≤ |V | + 2, obtained from G
in the following construction is called the simple trap extension of G.

To construct G′ first we can assume that there are at most 2 nodes of degree
less than 3. Otherwise, there are two nodes of degree less than 3 that are not
connected by an edge, and we may add an edge connecting them, with appro-
priate local port labels. Now, we add at most 2 new nodes. Each time we add
a new node, we connect it to nodes with degree less than 3, with appropriate
local port labels. If all nodes of G have now degree exactly 3, we are done, else
we add a new node and repeat the procedure. At the end we obtain the desired
3-edge colored graph G′, where all original nodes have exactly degree 3, while
the new nodes have degree at most 3. Moreover, G′ is a simple graph.

Remark. Using the same type of arguments as above, it is possible to construct
a simple trap extension for arbitrary degree δ, by adding at most δ − 1 nodes.

We can construct a trap extension Ghom from G that is homogeneous, by
adding a few more nodes.

Definition 3 (Homogenous Extension). Given a 3-edge colored graph G =
(V, E), the graph Ghom = (V ′, E′), |V ′| ≤ |V | + 13, obtained from G in the
following construction is called the homogeneous extension of G.

Add to each node of G of degree i less than 3, 3 − i pending “half-edges”
colored differently from each other and from the colors of edges incident to the
node. For � = 0, 1, 2, let parity(�) be the parity of the number of pending half-
edges labeled � in the resulting graph5 G′.
5 We will use this notion of “graph” with “half-edges” several times in this paper.
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Claim. For any �, �′ ∈ {0, 1, 2}, parity(�) = parity(�′).

Proof. An edge of G′ can be considered as two non-pending half-edges. For
� ∈ {0, 1, 2}, let t� be the total number of half-edges of G′ labeled �, and p�,
resp. np�, be the number of pending, resp. non-pending, half-edges of G′ labeled
�. All nodes in G′ are exactly of degree 3 and are incident to one half-edge of
each label. Thus t0 = t1 = t2, and this is equal to the number of nodes in G′,
|G′|. In G′, if a half-edge is not pending, then it forms an edge with another
non-pending edge with the same label. Therefore, all the np�’s are even. Since
t� = p� +np�, t� and p� have the same parity, and thus all the p�’s have the same
parity. ��

We now construct the desired homogeneous graph Ghom. Let � be the parity
of the number of pending half-edges of a given label in G′. If � is odd, then
we add to G′ a node connected to one of the half-edges, labeled say �, and add
two half-edges pending from this node, labeled �′ �= � and �′′ /∈ {�, �′}. As a
consequence, � becomes even. Now, we pair the half-edges with identical labels,
and connect them to form one edge. Parallel edges can be avoided, unless for
some � there are only two pending half-edges with label �, and these are incident
to the same edge. In this case the pair is connected by the gadget displayed in
Figure 2, where � = 0. By labeling the edges of every gadget appropriately (as
in the figure), we obtain a 3-homogeneous graph Ghom.

Claim. Ghom has at most 13 nodes more than G.

Proof. We added at most 1 node to correct the parities, and at most 3 gadgets
to avoid parallel edges, each one with 4 nodes. Thus the total number of nodes
added is at most 13. ��

0

2
1

G’
0 1 2

0

Fig. 2. The gadget for connecting half-edges

Remark. As for the simple trap extension, it is easy to check that one can
construct an homogeneous extension for arbitrary degree δ, by using a specific
gadgets for every δ.
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2.2 Basic Properties

Consider a robot A = (∆,S, f, ŝ). The transition function f defines a directed
labeled graph G(A) = (S, F ) with node set S and arc set F , such that the arc
(s, t) ∈ F iff fst(s) = t, and the arc has label f�(s). Notice that the labeled graph
G(A) together with the starting node ŝ completely determine the robot A. We
assume in the rest of the paper that every state s ∈ S of A is reachable from ŝ;
unreachable states do not affect the behavior of A and can be ignored. Namely,
there is in G(A) a directed path from ŝ to every other node.

Each node of G(A) has out-degree 1 because f is a function. It follows that
G(A) consists of a simple, possibly empty path starting in ŝ and ending in some
node s1, followed by a simple cycle starting and ending in s1. This is because we
assume that A has no unreachable states and S is finite. Thus, the arc labels of
the path define a path word W0 over ∆, |W0| ≥ 0, and the arc labels of the cycle
define a cycle word W over ∆, |W | ≥ 1. Clearly, |W0W | = |S|. The footprint of
A is fp(A) = W0W

∗. When A is placed on a node of a homogeneous graph G
in state ŝ, fp(A) is the sequence of labels of edges traversed by A.

The next lemma says that once A reaches a node x of the graph in some state
s that belongs to the cycle of G(A), the path that A follows in G is a closed path
that includes x; moreover, A returns to x in the same state s. A configuration
(x, s) denotes the fact that A is in node x in state s. Also, if fst(s) = s′, f�(s) = i,
and the label of the edge {x, x′} is i then we write (x, s) → (x′, s′).

Lemma 1. Consider a robot A with path and cycle words W0, W traversing a
graph G. Let x be a node reached by A after at least |W0| steps, and assume A
is in state s when it is in x. Then A will eventually be back in (x, s).

Proof. Assuming A is in state s when it is in x, consider the sequence of config-
urations starting with (x, s)

(x0, s0) → (x1, s1) → · · ·
where (x, s) = (x0, s0). The sequence of configurations must contain two equal
configurations, say (xi, si) = (xi+k, si+k), for some k > 1, because both G and
A are finite. Assume k is as small as possible. If i = 0 we are done, so suppose
i > 0. We will prove that (xi−1, si−1) = (xi+k−1, si+k−1), which implies that
(x0, s0) = (xk, sk), and the lemma follows.

Notice that A moves from xi−1 to xi along the edge labeled f�(si−1). Now,
when A eventually returns to the same configuration (xi+k, si+k), the state
si+k−1 = si−1 (all the states considered are in the cycle of G(A) because the
state s belongs to the cycle of G(A)). Thus, f�(si−1) = f�(si+k−1). It follows
that the edge {xi+k−1, xi+k} must be labeled f�(si−1). Finally, xi+k−1 = xi−1

since xi+k = xi and G is edge-colored. ��

2.3 Reduced Robots

A robot A is irreducible if G(A) satisfies two properties: (i) for any two consec-
utive (distinct) arcs s → s1 → s2, it holds f�(s) �= f�(s1), and (ii) for two arcs
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with the same end-node s → s1, s2 → s1, it holds f�(s) �= f�(s2). We show here
how to obtain an irreducible robot A′ from a robot A. The behavior of A and
of A′ on a graph will not be exactly the same, but will be related in the sense
that the region of a graph traversed by A cannot be much larger than the region
traversed by A′.

Let Ḡ(A) be the undirected graph corresponding to G(A). Roughly speaking,
we want the robot to be irreducible to construct a graph based on Ḡ(A) on which
the robot will be moving. Since the constructed graph must be edge-colored,
Ḡ(A) must be edge-colored. Then we can place A at the beginning of the path
of Ḡ(A) and it will never try to go out of Ḡ(A). To obtain an irreducible robot A′

from A we perform a series of reduction steps that modify its transition function
and reachable states. When A and A′ are placed on the same node of a graph,
the path traversed by A′ is contained in the path traversed by A; essentially A′

skips some closed walks of A. These reductions are formally defined next.
A reduction step is the operation consisting of transforming a robot A =

(∆,S, f, ŝ) into another robot A′ = (∆,S′, f ′, ŝ′), S′ ⊆ S, where one of the above
properties (i) or (ii) is enforced for two arcs. There are two types of reduction
steps, corresponding to the two properties. The idea is to repeat type-i steps
until no more are possible, and hence the robot satisfies property (i), and then
if property (ii) is not satisfied, do a single type-ii step to enforce property (ii).
Only type-i reductions change the path traversed by the robot.

Type-i Reduction. A type-i reduction step is applicable if G(A) has two con-
secutive distinct arcs s → s1 → s2 with f�(s) = f�(s1). The basic idea is illus-
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Fig. 3. A type-i reduction

trated in Figure 3. In (a) there is a segment of G(A) with the two consecutive
arcs labeled 1, and in (b) there is the corresponding segment of G(A′) after the
reduction. In this example s has only one in-neighbor, t, and hence s becomes
unreachable. This is the basic idea behind the type-i reduction, but in the for-
mal definition below we need to consider several special cases depending on the
number of in-neighbors of s, and on where is the initial state ŝ.
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The properties of a type-i reduction that we need are illustrated in Figure
3(c) and (d), where the path traversed by A and A′ resp. is depicted in dotted
arrows. If A is in node w of G in state t, it moves to node v in state s, and
then it moves to v′, change to state s1, and move back to v, in state s2 (since
f�(s) = f�(s1) = i, where {v, v′} is colored i; in the figure i = 1). Thus, it is
easy to check that a type-i reduction eliminates this v, v′, v loop from the path
traversed by the robot in the graph, and makes no other changes to the path;
that is, if the path arrives to v from w and then proceeds to w′ after traversing
the v, v′, v loop, after the type-i reduction the robot will go from w to v and then
directly to w′. Therefore, before the reduction step, the robot explores a node
at distance at most 1 from the nodes explored by the robot after the reduction.

Formally, a type-i reduction transforms A into A′ by doing the following
changes to f and by defining ŝ′ (f ′(·) = f(·) and ŝ′ = ŝ unless specified otherwise
below). We consider four cases:

Case s = s2: In this case the cycle is of length 2 with the same labels. Assume
w.l.o.g. that s has no other in-neighbor besides s1 (it is impossible that both
s and s1 have 2 in-neighbors). Let f ′(s1) = (s1, i), where i = f�(s1). If s = ŝ
then ŝ′ = s1.
Otherwise, if s �= s2, it is possible that s has 0, 1, or 2 in-neighbors.

Case s �= s2, s has 0 in-neighbors: In this case s = ŝ. Let ŝ′ = s2.
Case s �= s2, s has 1 in-neighbor: Let t be the in-neighbor (t �= s1), with

f(t) = (s, i). Then let f ′(t) = (s2, i). If s = ŝ then let ŝ′ = s2.
Case s �= s2, s has 2 in-neighbors: Assume they are t1, t2, with f(t1) = (s, i),

f(t2) = (s, j). Then s �= ŝ. Let f ′(t1) = (s2, i) and f ′(t2) = (s2, j).

After doing these modifications, A′ is obtained by removing any unreachable
states. Notice that for each one of the previous four cases at least one unreachable
state is removed, namely s. Thus, at most K − 1 type-i reductions are possible,
starting from a K-state robot.

Lemma 2. Let A′ be the robot obtained from A = (∆,S, f, ŝ) by applying a
type-i reduction on arcs s → s1 → s2 with f�(s) = f�(s1). Then

1. The node s together with s → s1 does not appear in A′.
2. If A and A′ start at the same node u of a graph in the same state s that

belongs to their cycle, when A and A′ are back in state s, they are placed in
the same node v and A has traversed at most one edge more than A′.

Proof. The first part of the lemma holds because state s becomes unreachable
in A′. We now prove the second part of the lemma. We thus consider that A and
A′ are both started from a node x0 in a state t0 that belongs to their cycle.

Assume a type-i reduction is applied to G(A) on the arcs s → s1 → s2 with
f�(s) = f�(s1), to obtain A′. When s has one in-neighbor t, with f(t) = (s, i),
and s �= ŝ, A′ is equal to A except that f ′(t) = (s2, i) (and hence s becomes
unreachable).

Consider the sequence of configurations of G(A) when starting in a node x0,

(x0, t0) → (x1, t1) → · · ·
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where t0 = ŝ. Then the sequence of configurations of G(A′) is the same, except
that each time A gets to state t, say in the i-th step

· · · → (xi, ti) → (xi+1, ti+1) → (xi+2, ti+2) → · · ·
where ti = t, and hence ti+3 = s2 with xi+1 = xi+3 (since f�(ti+1) = f�(ti+2)),
then the sequence of G(A′) is

· · · → (xi, ti) → (xi+3, ti+3) → · · ·
Therefore, the original path in the graph

x0, x1, . . . , xi, xi+1, xi+2, xi+3, . . .

becomes
x0, x1, . . . , xi, xi+3, . . .

and the loop xi+1, xi+2, xi+3 (xi+1 = xi+3) traversing the edge {xi+1, xi+2} back
and forth is eliminated from the path. ��

Type-ii Reduction. Once a type-i reduction step is not applicable in G(A),
a single type-ii reduction can be used. A type-ii reduction step is applicable if
G(A) has two states such that f(s) = f(s1), that is, G(A) has two arcs with
the same end-node s → t, s1 → t, and f�(s) = f�(s1). See Figure 4 where
f�(s) = f�(s1) = 1; in part (a) there is G(A), and in part (b) there is G(A′) after
the reduction. A type-ii reduction transforms A into A′ by doing the following
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Fig. 4. A type-ii reduction

changes to f and by defining ŝ′ (f ′(·) = f(·) and ŝ′ = ŝ unless specified otherwise
below). Exactly one of s, s1 must be in the cycle of G(A), let’s say s1. So there is
a path from t to s1. This path is of length at least 1, because otherwise t = s1 and
there is a loop from t to itself labeled f�(s), and a type-i reduction is applicable.
Recall that fp(A) = W0W

∗. Let W ′ be the longest common postfix of W0 and
W ∗; |W ′| > 0 by the type-ii assumption. Let t2 be the node just before W ′

starts in the cycle of G(A). In Figure 4, W ′ = 21. We consider two cases, in both
cases A′ is obtained from A by the following modifications, and removing any
unreachable states:
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Case |W0| > |W ′|: That is, W ′ is a strict postfix of W0; let t1 be the in-
neighbor of the node just before W ′ starts in the simple path of G(A).
Thus f�(fst(t1)) = f�(t2) is the first letter of W ′. Let f ′(t1) = (t2, f�(t1)).

Case |W0| = |W ′|: Let ŝ′ = t2.

The following lemma is straightforward.

Lemma 3. Let A′ = (∆,S′, f ′, ŝ′) be the robot obtained from A = (∆,S, f, ŝ)
by applying a type-ii reduction on arcs s → t, s1 → t, with f�(s) = f�(s1), and
s1 in the cycle of G(A). Then

1. The node s together with s → t does not appear in A′. Moreover, a type-ii
reduction is not applicable to G(A′).

2. If A and A′ start at the same node of a graph, they both traverse the same
path.

3. If a type-i reduction is not applicable to G(A) then it is not applicable to
G(A′).

Using Lemma 2 and Lemma 3 it is easy to prove the following, summarizing
the procedure to obtain an irreducible robot.

Lemma 4. Let A′ = (∆,S′, f ′, ŝ′) be the robot obtained from A = (∆,S, f, ŝ)
through the longest possible sequence of type-i reductions followed by a type-ii
reduction (if applicable). Let k be the number of reduction steps in this sequence.

1. A′ is irreducible.
2. |S′| + k ≤ |S|.
3. If A and A′ start at the same node u of a graph in the same state s that

belongs to their cycle, when A and A′ are back in state s, they are placed in
the same node v and A has traversed at most k edge more than A′.

Proof. The first part of the lemma follows from Lemma 2(1) and from Lemma
3(1,3): if there are two arcs violating property (i), then a type-i reduction can
be applied, and at least one state is removed in the process. Also, if there are
two arcs violating property (ii) after all arcs satisfy property (i), then a type-ii
reduction will eliminate the situation, without creating arcs that violate property
(i).

The second part of the lemma follows because each type-i and type-ii re-
duction eliminates at least one state, as observed in Lemma 2(1) and Lemma
3(1).

The third part of the lemma follows from Lemma 2(2) and Lemma 3(2), by
induction on k. ��

3 A Trap for a Single Robot

In this section, we focus on graph exploration by a single robot. We present a
trap for a K-state robot of size O(K). As explained in the Introduction, a similar
result was presented in [12]. We consider a robot and an irreducible version of it.
First we show how to construct a trap core for the irreducible robot, and then
how to extend it to a trap for the original robot.
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3.1 A Trap for an Irreducible Robot

Let Â = (∆,S, f, ŝ) be an irreducible robot with footprint fp(Â) = W0W
∗,

|W0W | = K. Recall that its graph of state transitions G(Â) consists of a di-
rected path starting in the initial state ŝ, followed by a directed cycle. Thus,
the corresponding undirected graph, Ḡ(Â), consists of a path P connected to a
cycle C; let x̂ be the initial node of P . If C is of length at least 3 then Ḡ(Â) is a
simple edge-colored graph (no parallel edges and no self-loops), and it serves as
a trap core (Definition 1) for Â. If C is of length less than 3 we modify it a little
to make it a simple edge-colored graph that is also a trap for Â, denoted Ḡ1(Â).
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Fig. 5. Eliminating parallel edges

We construct the simple, edge-colored graph Ḡ1(Â) from Ḡ(Â) as follows:

– Assume the directed cycle of G(Â) is of length 2, with states s and t (Figure
5(a) illustrates this case with W = 10). Then the undirected cycle in Ḡ1(Â)
will have 4 edges, labeled WW , adding two new nodes as in Figure 5(b).
The path is P , as in Ḡ(Â).

– Assume the directed cycle of G(Â) is of length 1 with state s (Figure 6(a)
illustrates this case with W = 1). Then the undirected cycle in Ḡ1(Â) will
have 4 edges, labeled abab, where a is equal to the single letter of W and b
is different from a and from the last letter of W0 (if any), as in Figure 6(b),
where abab = 1010. The path is P , as in Ḡ(Â).

Notice that the only node of Ḡ1(Â) of degree 3 is the node where the path and
the cycle are joined. Thus, it is not homogeneous, and if we place a robot in
one of its nodes, it could try to take an edge that does not exist in the graph.
Clearly, this does not happen if we place Â at x̂. Namely, starting at x̂, Ḡ1(Â)
with any edge added is a trap core for Â, with at most 3 nodes more than Ḡ(Â).
We have the following straightforward lemma.

Lemma 5. The graph Ḡ1(Â) is simple and edge-colored, with at most |S| + 3
nodes. Moreover, Ḡ1(Â) is a trap core for Â when starting at x̂.
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Fig. 6. Eliminating a self-loop

3.2 A Trap for the Original Robot

We present two different constructions of a trap for A. In both cases we use the
graph Ḡ1(Â) of Lemma 5, where Â is an irreducible robot obtained from A. The
first method, described in Theorem 1, produces a smaller trap than the second,
described in Theorem 2, but the second method will be useful in the following
section.

Theorem 1. For any robot A = (∆,S, f, s0) there exist a trap of at most |S|+2
nodes, and an homogeneous trap of at most |S| + 13 nodes.

Proof. Let Â be an irreducible robot obtained from A, and consider its undi-
rected graph Ḡ(Â). By Lemma 5 the modified graph Ḡ1(Â) is simple and edge-
colored. Also, Â can be placed in the first node x̂ of the path P of Ḡ1(Â) in its
initial state, and it never tries to take an edge not in the graph. Now, place A in
x̂ in its initial state. Each time A wants to take an edge with some label not in
the graph, we add the edge (with the label) to the graph. By Lemma 2 the paths
traversed by A (and not by Â) are trees where A stays in states eliminated
by the series of type-i reductions. Thus, the added edges form trees, and the
nodes added correspond to the eliminated states, so we get back a graph with
|S| nodes. Now, A never tries to take an edge not in the graph. For this graph,
consider the simple extension of Definition 2, and the homogeneous extension as
in Definition 3. The first is a trap (G, x̂) for A with at most 2 additional nodes,
while the second is a homogeneous trap (G, x̂) for A with at most 13 additional
nodes. ��

Remark. Using extensions for arbitrary degree allows us to obtain a similar result
as the one in [12]. In fact, the extension used in [12] outputs a graph which is
neither simple nor homogeneous. It is however of smaller size: |S| + 1 nodes,
independently from the considered degree.

The second way of constructing a trap uses the K-tower method. Assume
an homogeneous graph H is given, together with one of its edges, say {v, v′}.
Cut the edge to produce two pending half-edges e, e′. Add a “tower” of height
K + 1 connected to e, e′, and a gadget closing the tower as in Figure 7. The two
internal nodes of the gadget at the top of the tower are denoted by v1 and v′1.
Add labels to the tower and the gadget to make the whole graph edge-colored,
and denote it G. Thus, G is homogeneous.
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Fig. 7. The tower method

Theorem 2. For any robot A = (∆,S, f, s0) there exist an homogeneous trap
(G, U) of at most 3|S| + 22 nodes.

Proof. Let Â be an irreducible robot obtained from A, and consider its undi-
rected graph Ḡ(Â). By Lemma 5 the modified graph Ḡ1(Â) is simple and edge-
colored. Also, Â can be placed in the first node x̂ of the path P of Ḡ1(Â) in
its initial state, and it never tries to take an edge not in the graph. Consider
the homogeneous extension H of Ḡ1(Â), as in Definition 3, with at most 13
additional nodes. Pick any of the new edges added to H , say {v, v′}, and add
a tower of height K + 1, K = |S|, as described above, to obtain G. Now, place
A in x0 in its initial state. Notice that as G is homogeneous, A never tries to
take an edge not in the graph. Finally, the edge {v1, v

′
1} is not traversed by A.

This is because Â does not traverse the edge {v, v′}, and hence it does not enter
the tower. By Lemma 4, the trajectory of A is never at distance greater than
K (where K = |S|) from the trajectory of Â. Thus, since the tower is of height
K + 1, A never reaches the top of the tower. Therefore, A does not traverse the
edge {v1, v

′
1}, and (G, x̂) is a trap for A.

It remains to count the number of nodes of G. The graph Ḡ(Â) has at most
K nodes, Ḡ1(Â) has at most K + 3 nodes. Then, H has at most K + 16 nodes.
The tower has 2K + 6 nodes, so the total is at most 3K + 22 nodes. ��
Corollary 1. A robot that explores all graphs of size n requires at least Ω(log n)
memory bits.

Using a different proof argument, [12] also proves a lower bound that depends
on the diameter and the maximum degree of the graph, rather than just the
number of nodes. It is, nevertheless, possible to use the trap core proof method
to obtain a similar result. We recall the theorem from [12]:

Theorem 3. A robot that explores all graphs of diameter D and maximum de-
gree δ requires exactly Θ(D log δ) memory bits.

4 A Trap for a Team of Non-cooperative Robots

In this section, we focus on graph exploration by a team of non-cooperative
robots. (The independent robots may have different transition functions, hence
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they will follow different paths in the explored graph.) The main result of the
section is the construction of a trap of size O(qK) for any set of q non-cooperative
K-state robots. This result is stated in Theorem 4. To prove this result, we first
need an auxiliary lemma (Lemma 6) that shows how, given any automaton, any
homogeneous graph can be transformed into a trap for this automaton. This
result is used at every induction step of the proof of Theorem 4.

4.1 Trapping an Irreducible Robot

In this section we prove an auxiliary result for Theorem 4. Assume an irreducible
K-state robot Â = (∆,S, f, ŝ) is placed at a node x0 of a graph G in its initial
state ŝ, and we want to create a trap core for Â by extending G at a given
edge {v, v′}, and moreover, the extension should be of size O(K). (if Â does not
traverse the edge then there is nothing to be done.) See Figure 8. The extension
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Fig. 8. Extending a graph at a single edge to trap a robot

is by cutting {v, v′} to create two pending half-edges (Figure 8(b)); the node v
is connected to a pending half-edge e and v′ is connected to a pending half-edge
e′. The resulting graph is H1. A graph G′ of O(K) nodes is glued to e and
e′ (Figure 8(c)), such that Â does not traverse at least one of its edges. The
resulting graph is called H . Actually, it turns out that the extension added to G
is pretty simple: either adding a path connected to a cycle (based on Ḡ(Â)) as
illustrated in Figure 8(c), or connecting e and e′ by (an appropriately labeled)
path.

Consider the footprint of Â, fp(Â) = W0W
∗, |W0W | = K, where pi is the

i-th letter in fp(Â). Consider the sequence of configurations of Â

(x0, s0) → (x1, s1) → · · ·
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where s0 = ŝ. Let pi+1 = f�(si). Assume Â traverses {v, v′} for the first time
at step i, i ≥ 1; i.e., when going from (xi−1, si−1) to (xi, si); assume w.l.o.g. it
traverses it at this time from v to v′, i.e., xi−1 = v and xi = v′. Thus, pi is the
label of {v, v′}. In other words, if we cut the edge to obtain the two pending
half-edges e, e′, then Â traverses e.

We consider two cases depending on when Â traverses e, during the simple
path of G(Â) or during the cycle of G(Â).
Case 1. Assume Â traverses e at step i ≤ |W0|. Thus, pi belongs to W0. In this
case we can use the undirected graph of Â, Ḡ(Â), and construct the version with
no parallel edges and self-loops, Ḡs(Â), as in Lemma 5, adding at most 3 new
nodes. We glue the part of Ḡs(Â) that starts after pi to e. Namely, we connect
to e a path of length |W0| − i whose extremity is denoted by w. The edges of
this path are labeled pi+1, . . . , p|W0|. At w, we add the ring of Ḡs(Â). The other
half-edge e′ is completed into an edge by adding to it one new node, and the
graph obtained is H . Notice that we added at most K + 4 new nodes.
Case 2. If Â traverses e at step i > |W0|, then it traverses e to get into some
state s of the cycle in G(Â); assume this is the j-th state of the cycle (recall
that the cycle is assumed to start in the last state of the path of G(Â)). That
is, after traversing e, Â would traverse edges labeled p|W0|+j , p|W0|+j+1, . . .

Let x be the node of H1 reached by Â after |W0| steps, let W−1 be the
sequence W written in reverse order, and let Â−1 be the robot that traverses
edges labeled (W−1)∗. Thus, when Â−1 starts at x and Â reaches x, Â−1 proceeds
as Â, but backwards. Let Â∗ be the robot that traverses edges labeled W ∗, i.e.
the robot derived from Â by removing states and transitions that involved W0.

Claim. Starting from x, Â−1 eventually traverses one of the half-edges pending
at v or v′.

Proof. Assume for contradiction that Â−1 does not traverse any of the half-edges
pending at v or v′. By Lemma 1, Â−1 returns to x in the same state, and hence
its path in H1 is a closed path. This path traversed backwards is exactly what
Â∗ traverses from x. So Â∗ does not traverse any of the half-edges pending at v
or v′. Thus, Â also does not traverse them, a contradiction. ��

By Claim 4.1 we can consider the state reached by Â−1 after it traverses one
of the pending half-edges; assume this is the k-th state of the cycle in G(Â). We
consider two sub-cases, depending on whether Â−1 traverses the same half-edge
as Â, or not.

Case 2.1. The robot Â−1 traverses the half-edge e pending at v (i.e., the
same as Â). This implies that the k-th label in W is equal to the (j − 1)-th
label in W , which is the label of e. We consider the section of the cycle of
G(Â) from the j-th state to the k-th state. The end edges of this section have
the label of e. We now consider the following word: W ′ = W (j − 1)W (j)W (j +
1) . . .W (k−1)W (k)W (k+1) . . . W (j−1)W (j)W (j+1) . . .W (k−1)W (k)W (k+
1) . . .W (j−1)W (j)W (j+1) . . . W (k−1)W (k) (Note that W (j−1) = W (k) and
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|W ′| ≥ 2 × |W | + 2). The two robots Â and Â−1 cannot follow the same path
forever after crossing edge e: otherwise, it would mean that moving them both
backwards, they would also follow the same path forever (which is impossible
since the two robots took different paths at node x in the past). Moreover, the
two robots must separate after at most |W | steps, and since |W ′| ≥ 2× |W |+2,
they must separate after at least 1 step and at most |W | − 1 steps. Now, if the
two robots separate from each other at some point after crossing edge e, let us
consider the smallest l such that W (j + l) �= W (k − 1− l), i.e. the nearest place
where the two robots separate from one another. Since W (j − 1) = W (k), l ≥ 1.
By definition of l, we have W (j + l− 1) = W (k− l). Since the considered robots
are reduced, we also have W (j + l−1) �= W (j + l). Still by definition of l, we get
W (j + l) �= W (k − 1 − l). Finally, because we consider reduced robots and we
have W (j + l− 1) = W (k − l), we get W (j + l− 1) �= W (k − 1− l). Overall, this
means that W (j + l−1), W (j + l), and W (k−1− l) are pairwise disjoint. We are
now ready to construct the following graph: from e, there is a chain that ends in
W (j + l− 1) at node w, and from this last node a circle W ′′ goes from W (j + l)
to W (k − l − 1). Since W (j + l) �= W (k − 1 − l) (see above), |W ′′| > 2. We add
at w a ring of length |W ′′| labeled W ′′, starting and ending at w, so that once
Â and Â−1 reach w, each one traverses this ring in the opposite direction, and
gets back to w in the appropriate state to proceed along the path back to the
half-edge e. The other half-edge e′ is completed into an edge by adding to it one
new node, and the graph obtained is H . Notice that we added at most 2K + 1
new nodes.

Case 2.2. The robot Â−1 traverses the half-edge e′ pending at v′ (i.e., not
the same as Â). Suppose when Â−1 goes through v′ it is in state s. We consider
again the section of the cycle of G(Â) from the j-th state to the k-th state (if
the section is of length 1, we extend it with W to make sure there is at least one
internal node). We connect e and e′ by a path with the labels of this section,
to obtain H . Thus, when Â traverses the half-edge e, it follows the newly added
path, and gets to v′ in the appropriate state, namely s, to proceed along the
same path of Â−1 but backwards, and return to x. Notice that we added at
most 2K new nodes.

Lemma 6. The graph H is simple and edge-colored. Also, H is a trap core for
Â when starting in x0, with at most 2K + 3 nodes more than G.

Proof. It follows directly from Lemma 5 that H is simple and edge-colored. The
number of nodes of H is counted in the previous three cases.

The proof of Case 1 is as follows; the other cases are similar. Assume Â
traverses e at step i ≤ |W0|. In this case Â does not traverse the edge e′ of H .
Observe that Â is trapped in the segment of Ḡs(Â) added to e. This follows
because Â is in (xi−1, si−1) before traversing e, and in (xi, si) after traversing
it. At this moment it is at the beginning of the segment of Ḡs(Â) added, so it
will continue traversing this graph without trying to take an edge not defined,
as in Lemma 5. ��
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4.2 Trapping a Team of Robots

With the results of the previous subsection we are ready to prove the main result
of this section.

Theorem 4. For any set A of q non-cooperative K-state robots, there exist a
3-homogeneous graph G and two pairs of neighboring nodes {u, u′} and {v, v′}
such that (1) the edge {u, u′} is labeled 0, (2) starting at u or at u′, any robot
in A fails to traverse the edge {v, v′}, and (3) G has O(qK) nodes.

Proof. The proof is by induction on q ≥ 0. The basic step is q = 0. The corre-
sponding graph G is displayed on Figure 9.
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Fig. 9. Basic step of the induction

For the induction step, assume that Theorem 4 holds for q, and let us show
that it holds for q + 1. Let A be a set of q + 1 non-cooperative K-state robots,
and let A ∈ A. By induction hypothesis, let Gq be an n-node 3-homogeneous
graph (where n is 10qK + O(q)) having two pairs of neighboring nodes {u, u′}
and {v, v′} with the edge {u, u′} labeled 0, such that, starting at u or at u′, any
robot in A \ {A} fails to traverse the edge {v, v′}. We construct a graph Gq+1

that satisfies Theorem 4 for A.
Let Â be an irreducible robot obtained from A as in Lemma 4. Consider its

footprint fp(Â) = W0W
∗, |W0W | ≤ K. We concentrate first our attention on

Â, and will come back later to the original robot A. Let us denote by pi the
i-th letter in fp(Â). Recall that since Â is irreducible, its associated undirected
graph Ḡ(Â) is edge-colored. Let us place Â at node u of Gq, and perform the
construction of the previous subsection, Lemma 6, to obtain a graph H . Then,
as in Theorem 2, construct an homogeneous graph H1 from Definition 3, and
add the tower at any of the newly added edges, say {v, v′} of height K + 1 (see
Figure 7), to obtain a graph H2. The edge {v1, v

′
1} in the gadget of the tower is

not traversed by A when starting from u.
We repeat the same construction by considering the robot Â launched from

u′ in H2. More precisely, we construct Gq+1 from H2 in the same way H2 was
constructed from Gq. In particular, there is a tower in Gq+1, and we define the
nodes v2 and v′2 of Gq+1 as the two internal nodes of the gadget at the top of
this tower. By construction Gq+1 is 3-homogeneous. Also, any robot in A fails to
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traverse the edge {v2, v
′
2} of Gq+1 when starting from u or u′. This is because by

induction hypothesis, starting from u or u′, a robot in A \ {A} never traverses
v, v′ in Gq and so will never traverse any of the edges added to obtain Gq+1,
and hence does not traverse the edge {v2, v

′
2} of Gq+1. Starting from u, A fails

to traverse the edge {v1, v
′
1} of H2. This edge being the one that is “opened” to

construct Gq+1 from H2, A fails to reach any of the two nodes v2 or v′2 in Gq+1.
Finally, by construction of Gq+1 from H2, A fails to reach any of the two nodes
v2 or v′2 in Gq+1 when starting from u′, in the same way A fails to reach any of
the two nodes w or w′ in H2 when starting from u.

To complete the proof, it just remains to compute the size of Gq+1. We claim
|Gq+1| ≤ |Gq| + 10K + O(1). We give simple upper bounds on the size of the
intermediate graphs. First, we have |H | ≤ |Gq|+ 2K + 3 by Lemma 6. Then, we
have |H1| has 13 more nodes at the most, as in Definition 3, so |H1| ≤ |Gq|+2K+
16. The tower has 2K +6 nodes (proof of Theorem 2), so |H2| ≤ |Gq|+4K +22.
The same procedure for the starting node u′ contributes to another 4K + 22
additional nodes. The result follows. Therefore, |Gq+1| ≤ 8qK + O(q), which
completes the proof of the theorem. ��

By simply rewriting Theorem 4, we derive a bound of the size of the small-
est trap for a set of q non-cooperative K-state robots, improving the one by
Rollik [16]:

Corollary 2. For any set of q non-cooperative K-state robots, there exists a
trap of size O(qK).

Corollary 3. A team of q non cooperative robots that explores all graphs of size
n requires at least Ω(log n

q ) memory bits per robot.

By simply plugging this latter bound in the construction by Rollik [16] for
team of locally-cooperative robots, we get:

Corollary 4. For any set of q locally-cooperative K-state robots, there exists a

trap of size Õ(KK···
K

), with q + 1 levels of exponential.

5 Bounds for Terminating Exploration

In this section, we consider the terminating exploration problem, in which a
robot must traverse all edges of the graph, and eventually stop once this task
has been achieved. A robot cannot solve this task in graphs with more nodes
than its number of states, by Lemma 1. Thus, the robot is given pebbles that
it can drop and take to/from any node in the graph. It is known that any finite
robot with a finite source of pebbles cannot explore all graphs [16]. On the other
hand, it is known that a robot with unbounded memory can explore all graphs,
using only one pebble [8]. An important issue is to bound the size of the robot
as a function of the size of the explored graphs.
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A δ-p-robot with a pebble or simply p-robot when δ is understood, is an
automaton A = (∆,S, f, s0), with a finite set of states S, s0 ∈ S, and

f : S × {0, 1} → S × ∆ × {pick, drop}.
Every state s ∈ S has a component p(s) ∈ {0, 1} that indicates if A has the
pebble, p(s) = 1, or not, p(s) = 0. Only if p(s) = 1 we allow f to be undefined;
in such case we say s is a stop state. For the initial state s0, p(s0) = 0. Each
node v of the graph is in some state p(v) ∈ {0, 1} that indicates if the pebble is
in v, p(v) = 1, or not, p(v) = 0. The initial state of the graph satisfies: p(v) = 1
for exactly one node v.

The movement of a δ-p-robot A on a δ-regular graph is represented by a
sequence of configurations, each one consisting of the state of the robot and the
state of the graph. For the initial configuration, A is placed on some node of
the graph in state s0, and the pebble is in exactly one node. In general, if A is
in a node v in state s in some configuration, we compute f(s, p(v)) = (s′, i, b).
In the next configuration A will be in the node v′ such that the edge {v, v′} is
colored i, in state s′. Also in the next configuration: if b = drop then p(v) = 1
and p(s′) = 0, and if b = pick then p(v) = 0 and p(s′) = 1. It is assumed that b
can be equal to drop only if p(s) = 1 and b can be equal to pick only if p(v) = 1.

A robot A performs terminating exploration of a graph if after starting in
any node of the graph that has the pebble, it traverses all its edges and enters a
stop state. A graph which A does not succeed terminating exploration is called
a trap for A.

The next theorem shows that a p-robot that performs terminating explo-
ration in all graphs of at most n nodes requires Ω(n1/3) states, or equivalently
Ω(log n) bits of memory.

Theorem 5. For any K-state p-robot there exists a trap of size O(K3).

Proof. Let A = (∆,S, f, s0) be a K-state p-robot. We construct a trap of size
O(K3) for A. For that purpose, we consider the restriction of A to states s such
that p(s) = 0 and input 0 (on nodes with no pebble). This defines a robot (with
no pebble, as in Section 2.1) except that some states may be unreachable from
s0. For every state s of this robot, we consider the robot As that has s as initial
state, and includes only reachable states from s. Let A = {As} be the set of all
these robots. Thus, |A| ≤ K.

Let G be a graph satisfying Theorem 4 for the set A. Remove edges {u, u′}
and {v, v′} from G. Consider two copies of the resulting graph, with the four
nodes of degree 2 indexed by the index of the copy, 1 and 2. These nodes are
re-connected as follows. Let c be the color of the deleted edge {v, v′}. Create two
edges {v1, v

′
2} and {v′1, v2} with color c. The resulting graph is denoted by G1

(see Figure 10).
Consider an infinite ternary tree modified as follows. Each node is replaced

by a 6-cycle. Edges of the cycles are labeled alternatively 1 and 2. Then, edges
of the infinite tree are replaced by two “parallel” edges labeled 0, as depicted on
Figure 11. The resulting graph is denoted by T .
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Fig. 10. The graph G1

0

1

2
1

2

1
2

100

1

2
1

2

0

2
1

2

1

0

0 0

0 0

0 0

0

2

2
1

0
2

1

1
2

2
100

0 0

0

Fig. 11. The modified infinite tree T

The two graphs G1 and T are composed by replacing every pair {{x, y},
{x′, y′}} of parallel edges in T by a copy of G1. More precisely, x, y, x′, y′ are
respectively connected to nodes u1, u

′
2, u

′
1, u2 in G1. These new edges are labeled

0. The resulting graph is denoted by G2. A “meta-edge” of G2 is defined as a
copy of G1 replacing a parallel edge of T .

By definition of G and A, the p-robot A is unable to traverse a meta-edge of
G2 without the help of the pebble6. We now modify G2 to obtain a graph G3 such
that the p-robot A is unable to explore G3, even with the pebble. G3 contains
O(K) 6-cycles of T , and thus has at most O(K3) nodes. The transformation from
G2 to G3 is technical and very similar to the transformation used in [12] and
in [16]. Thus we only sketch the construction of G3, skipping technical details.
Since any p-robot cannot go from a 6-cycle to another 6-node cycle of G2 without
using the pebble, we define key steps as those for which the last time the p-robot
leaves a 6-cycle with the pebble, go through a meta-edge, and enters another 6-
cycle with the pebble. Because the number of states is finite, A will eventually
be twice in the same state at these key steps, at two nodes w and w′. With the
same technique as in [12], we identify the nodes w and w′. This leads to the

6 Since the {u, u′} edges are “open,” the proof requires to consider the last time the
p-robot is in a u node.
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graph G3 with the desired properties, that is G3 has O(K) 6-cycles, and thus
O(K) “parallel” edges. In each pair of “parallel” edges, there is a copy of G1.
Since G1 has O(K2) nodes, then G3 has O(K3) nodes. ��

Corollary 5. A robot that performs terminating exploration of all graphs of size
n requires at least Ω(log n) memory bits.

Remark. This latter bound is tight, as proved in [13].

6 Conclusions

On the one hand, we have proved that terminating exploration (using one pebble)
requires Ω(log n) bits for the family of graphs with at most n nodes. On the other
hand, we proved in [13] that there exists an terminating exploration algorithm
using a robot with O(D log ∆) bits of memory for the terminating exploration
of all graphs of diameter at most D and degree at most ∆. The design of a tight
bound for terminating exploration is still an open problem.
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