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Abstract. In the 1.5-dimensional terrain guarding problem we are given
as input an x-monotone chain (the terrain) and asked for the minimum
set of guards (points on the terrain) such that every point on the ter-
rain is seen by at least one guard. It has recently been shown that the
1.5-dimensional terrain guarding problem is approximable to within a
constant factor [3, 7], though no attempt has been made to minimize the
approximation factor. We give a 4-approximation algorithm for the 1.5D
terrain guarding problem that runs in quadratic time. Our algorithm is
faster, simpler, and has a better worst-case approximation factor than
previous algorithms.

1 Introduction

1.1 Problem Statement

In the 1.5-dimensional terrain guarding problem we are given as input a terrain
T that is an x-monotone polygonal chain. An x-monotone polygonal chain is a
polygonal chain that intersects any vertical line at most once. It can be thought
of as an array of n vertices in 2-dimensional space sorted in ascending order of
x-coordinate, where edges ‘connect the dots’ from left to right. Note that the
x-monotonicity requires x-coordinates to be distinct.
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Fig. 1. An example of a 1.5D terrain.
d can see b, c, and e but not a or f .

We say that a point on the terrain sees
another point on the terrain if there is a
line of sight between them, i.e. the line seg-
ment connecting them is never strictly be-
low T . A guard is simply a point on the ter-
rain that we add to a ‘guarding set’. Given
a terrain T , we are asked for the smallest
possible guarding set, i.e. the smallest set
G of points on T such that every point on
T is seen by some point in G.

It is natural to consider two different
versions of the terrain guarding problem:
the discrete version and the continuous version. In the discrete version guards
must be at vertices and only the vertices of the terrain need to be guarded. In the
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continuous version guards may be anywhere on the terrain and every point on
the terrain must be guarded. The discrete version is simpler but the continuous
version is more natural to consider in a geometric context. For the rest of this
paper we will use TG to denote the discrete version of the problem and TG-C
to denote the continuous version.

Every instance of TG is an instance of Set Cover, but we know that Set

Cover is NP-complete (see, e.g., [13]) and no sub-logarithmic approximation
factor can be obtained unless NP ⊆ DTIME(nlog log n) [12]. In general it is
not particularly difficult to modify a TG algorithm to solve instances of TG-
C, though this often involves some polynomial increase in time complexity.

1.2 Related Work

The 1.5D terrain guarding problem is very similar to the art gallery problem in
which one must guard the interior of a simple polygon. The art gallery problem
and its variants are well studied [1, 6, 11, 16, 17].

It is unknown whether or not TG is NP-hard. In 1995 Chen et al. [5] proposed
an NP-hardness proof obtainable via a modification of Lee and Lin’s proof that
the art gallery problem is NP-complete [17]. However, the proof, whose details
were omitted, was never completed successfully. Since then, attempts to find a
polynomial-time algorithm for TG and attempts to prove that it is NP-hard
have both been unsuccessful.

The first constant-factor approximation algorithm for the 1.5D terrain guard-
ing problem was given by Ben-Moshe et al. [3]. Their algorithm works by first
placing guards to divide the terrain into independent subterrains. Each sub-
terrain has the property that it does not require internal guards, i.e. every un-
guarded vertex can be seen from outside the subterrain. For each such subterrain
that is not completely guarded they then proceed with steps that either reduce
the subterrain or split it into multiple independent subterrains. They made no
attempt to minimize their algorithm’s approximation factor; as such it is very
large (at least 48). It could be brought down possibly as low as 6 with some mi-
nor modifications and careful accounting, but due to the inevitable cost incurred
by repeatedly dividing the terrain it does not seem that it could be brought any
lower than 6. Their algorithm runs in O(n2) time for the discrete version. They
also provide a reduction from TG-C to TG that allows them to solve TG-C in
O(n4) time, though the approximation factor can double in this case.

Another constant-factor approximation algorithm is given by Clarkson and
Varadarajan [7]. Consider a partition of a 1.5D terrain into maximal intervals
such that, for any two points p and p′ in a given interval, the leftmost point that
sees p and the leftmost point that sees p′ are the same. If we label each interval
with the leftmost point that sees it and read the labels from leftmost interval to
rightmost interval, Clarkson and Varadarajan note that we end up with an (n, 2)
Davenport-Schinzel sequence [18]. Such a sequence must have length at most 2n.
This characterization of the lack of complexity in 1.5D terrains allows them to
efficiently find appropriate ε-nets [14] for instances of TG. They then apply the
Set Cover method of Brönnimann and Goodrich [4] to solve the problem using
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these ε-nets. The end result is a constant-factor approximation algorithm that
runs in polynomial time. Using efficient derandomization their algorithm could
probably be made to run deterministically in O(n2 log n) time.

The 1.5D terrain guarding problem becomes easy if, instead of being placed
on the terrain, all guards ‘float’ above the terrain at a fixed altitude that is above
the highest vertex. Eidenbenz [8] gives a linear-time algorithm for finding an op-
timal set of guards in this case. The problem also becomes easy if guards can
only look rightwards. Chen et al. [5] give a linear-time algorithm for this case.

A 2.5D terrain is a polyhedral surface that intersects every vertical line at
most once and whose projection onto the x, y-plane is a simple polygon with no
holes. The 2.5D Terrain Guarding Problem is therefore a natural extension of the
1.5D problem to the next dimension. Finding a minimum number of guards for a
2.5D terrain is NP-complete and Eidenbenz shows that it cannot be approximated
within a sub-logarithmic factor unless NP ⊆ DTIME(nlog log n) [9]. Eidenbenz et
al. show that the problem is also NP-complete and equally inapproximable when
guards ‘float’ at a given altitude that is higher than the highest point in the ter-
rain [10] (recall that this can be solved in linear time for 1.5D terrains).

1.3 Motivation

Naturally, the motivation for 1.5D terrain guarding comes from guarding or cov-
ering terrain. The 1.5D case appears, for example, when guarding or covering
a road, perhaps with security cameras or street lights. The 2.5D case has more
powerful applications, most notably for providing a wireless communication net-
work that covers a given region. Its proven intractability and inapproximability,
however, motivate us to look towards the 1.5D case for insight. The 1.5D case
is also applicable, for example, if we only need to cover the path between two
points on a polyhedral terrain. It has been pointed out [3] that the 1.5D terrain
guarding problem can be utilized in heuristic methods for the 2.5D case.

The recent results of Ben-Moshe et al. [3] and Clarkson and Varadarajan [7]
showed that constant-factor approximation algorithms exist for TG. Unfortu-
nately they do not provide a small constant guaranteed approximation factor.
Efforts to design an exact polynomial-time algorithm for TG have been unsuc-
cessful and it is very possible that no such algorithm exists. If TG is NP-hard
and P �= NP, then the best algorithm running in polynomial time will be the
approximation algorithm with the lowest approximation factor. For this reason
there is significant motivation to minimize the approximation factor.

The greedy algorithm for Set Cover, which achieves the optimal approxi-
mation factor of O(log n), repeatedly picks the set that contains the most un-
covered elements. Similarly, the natural greedy algorithm for terrain guarding
repeatedly picks the guard that sees the most unguarded vertices. There are ter-
rains for which this method achieves a logarithmic approximation factor (such
a terrain, provided by Ben-Moshe [2], is described in [15]). There are other nat-
ural greedy-like algorithms that one might consider. For example, one could
repeatedly pick the guard that maximizes the leftmost unguarded vertex or the
lowest unguarded vertex. Terrains exist for these algorithms that prove they do
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not achieve constant approximation factors. The apparent absence of simple al-
gorithms that achieve constant approximation factors motivates us to consider
more sophisticated techniques.

1.4 Our Contribution

Our result is a 4-approximation algorithm for the 1.5D terrain guarding problem.
It runs in O(n2) time for TG and can be modified slightly to run in O(n2) time
for TG-C.

1.5 Organization

The rest of the paper is organized as follows. In Section 2 we introduce no-
tation and some small but fundamental lemmas. In Section 3 we give our 4-
approximation algorithm for TG; the modifications required for TG-C are ex-
plained in Section 3.6. In Section 4 we discuss open problems and suggest direc-
tions for future work regarding 1.5D terrain guarding.

2 Preliminaries

2.1 Terminology and Notation

An instance of the 1.5D terrain guarding problem is simply an x-monotone
chain T . This chain is a sequence of vertices v1, . . . , vn and edges ei = (vi, vi+1),
i = 1 . . . n− 1 such that the x-coordinate of vi is smaller than that of vj if i < j.
Given two points p and q on T (not necessarily vertices of T ), we say that p < q
if the x-coordinate of p is smaller than that of q.

For a point p we use L(p) to denote the leftmost point that sees p and R(p)
to denote the rightmost point that sees p. It is not difficult to see that L(p) and
R(p) will always be vertices, whether p is a vertex or not. We use TL(p) to denote
the terrain restricted to the interval [v1, p] and use TR(p) to denote the terrain
restricted to [p, vn]. CH(T ) is the (upper) convex hull of T . We use CHL(p) to
denote the convex hull of TL(p) and use CHR(p) for that of TR(p). If a point p
sees every unguarded point that another point q sees we say that p dominates q.
We can also say that a set S dominates a point p if every unguarded point seen
by p is also seen by some vertex in S. We say that p dominates q with respect to
a certain region of T if p sees every unguarded point in that region that q sees.

We consider a minimum guarding set GOPT for the terrain T . We assume
there is some mapping g of points of T to guards in GOPT such that, for a point
p, g(p) is a guard in GOPT that sees p. We say that g(p) is the guard responsible
for p. g is surjective but never injective (since |GOPT | < n); we use it to simplify
the explanation of our accounting scheme.

2.2 Elementary Lemmas

We will now state and prove several small but fundamental lemmas that we will
use in the rest of the paper. These lemmas and corollaries can be used with left
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and right interchanged; this is stated explicitly for Corollary 1 as an example
but is not stated for the others. Also note that these lemmas involve points on
the terrain that need not necessarily be vertices.

Lemma 1 (Order Claim [3, 5]). For
points a, b, c, d such that a ≤ b < c ≤ d,
if a sees c and b sees d then a sees d.

Proof. This becomes quite clear with
the help of a diagram (see Figure 2).
It is trivially true if a = b or c = d;
otherwise we know that a < b < c < d.
In this case b cannot be above ac and
c cannot be above bd (otherwise the
fact that a sees c and b sees d would be
violated). This means that the two line
segments must cross; we call their inter-
section point p. Considering the trian-
gle formed by a, p, and d, we note that
no point on the terrain can be above the

a

b

c
d

p

Fig. 2. The shaded areas are terrain free
and their union contains ad

lower hull and ad is the upper hull. Therefore no point on the terrain can be
above ad.

Corollary 1. For points u, v, w with u ≤ v < w, if u and v can both be seen
from TR(w) then R(v) ≤ R(u).

Corollary 1 (Symmetric Version). For points u, v, w with u < v ≤ w, if v
and w can both be seen from TL(u) then L(w) ≤ L(v).

Lemma 2. For an interval [a, b] where a sees b, any guard in (a, b) is dominated
with regard to TR(b) by a.

Proof. Let p be a guard in (a, b) and let q be some point in TR(b) seen by p.
If q = b we know that a sees q. Otherwise the order claim, applied to a, p, b, q,
states that a sees q.

Corollary 2. For points p and q such that p < q < R(p), we know that R(q) ≤
R(p).

Lemma 3 (Lip Lemma). For an interval [a, b] where a sees b, if there are no
unguarded points in (a, b) then {a, b} dominates any guard in [a, b].

Proof. This follows from Lemma 2 since a and b see each other.

Lemma 4. For a point q, any guard p in TL(q) is dominated with regard to
TR(q) by a guard in CHL(q). In particular, p is dominated by the rightmost
point in TL(p) ∩ CHL(q).
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Proof. Let u be the rightmost point in TL(p) ∩ CHL(q). If p is on CHL(q) then
p = q and the lemma clearly holds. Otherwise let w be the first point on CHL(q)
to the right of u. Now u sees w, so u dominates p with regard to TR(q) ⊆ TR(w)
by Lemma 2.

Corollary 3. For points p and q, if L(q) ≤ p ≤ q then L(q) is on CHL(p).

3 The Algorithm

Our algorithm works by repeatedly finding an unguarded point u and a set S of
up to 4 points such that S must dominate g(u). By doing so, we achieve an ap-
proximation factor of 4, since we charge at most 4 guards to each guard in GOPT .
Our algorithm does not require any knowledge of previously placed guards other
than which points are unguarded. The rest of this section basically deals with
how to find an appropriate unguarded point. We first explain the algorithm as
applied to TG, and in Section 3.6 we explain the minor modifications required
for TG-C.

3.1 Introduction to GuardRight

Consider an unguarded vertex p not on CH(T ) along with a vertex c that can
see every unguarded vertex in the range [L(R(p)), p). c is like a good potential
guard that lets us focus on the unguarded points in [p, R(p)]. Note that if we
place a guard at c, no unguarded vertex in [L(R(p)), R(p)) can be seen from
outside [L(R(p)), R(p)]. For this reason we say that the interval [L(R(p)), R(p)]
is pseudo-independent. Our algorithm repeatedly finds appropriate (p, c) pairs or
advances trivially if such points are not available. If there is only one unguarded
vertex s, we place a guard there that dominates g(s). Otherwise consider the two
leftmost unguarded vertices s and t with s < t. If s ∈ CH(T ) and t ∈ CH(T ) we
just place a guard at R(s) that must dominate g(s). If s /∈ CH(T ) then p ← s
and c ← s. If s ∈ CH(T ) but t /∈ CH(T ) then p ← t and c ← s.

If an appropriate (p, c) pair is found, our algorithm calls a recursive sub-
routine GuardRight(p, c). GuardRight will either find an unguarded vertex
u ∈ [p, R(p)) for which g(u) can be dominated by 4 guards or will find a pseudo-
independent subinterval of [p, R(p)], i.e. a pseudo-independent ‘pocket’ of the
terrain that it can recurse into with new parameters p′ and c′. At this point
we introduce some new terminology and notation that depends on the parame-
ters of GuardRight. It should be emphasized that this notation applies only
to a particular call to GuardRight. We say that a left vertex is a vertex in
CH([L(R(p)), p])−{p}. A right vertex is a vertex in [p, R(p)]. An exposed vertex
is an unguarded vertex in [p, R(p)) that can be seen by a left vertex. A sheltered
vertex is an unguarded vertex in [p, R(p)) that cannot be seen by a left vertex.
For an exposed vertex v we provide additional notation: R′(v) is the rightmost
left vertex that sees v and L′(v) is the leftmost right vertex that sees v. R′(v)
and L′(v) are undefined unless v is an exposed vertex.
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Lemma 5. (a) If v is a sheltered vertex then L(R(p)) ≤ p ≤ L(v) ≤ v ≤ R(v) ≤
R(p). (b) If v is an exposed vertex then L(R(p)) ≤ L(v) ≤ R′(v) < p ≤ L′(v) ≤
v ≤ R(v) ≤ R(p).

Proof. (a) L(R(p)) ≤ p since R(p) sees p. p ≤ L(v) otherwise v would be
an exposed vertex. L(v) ≤ v by definition. R(v) ≤ R(p) by Corollary 2. (b)
L(R(p)) ≤ L(v) by Corollary 1 if p < v and by the Order Claim otherwise.
L(v) ≤ R′(v) < p ≤ L′(v) ≤ v by definition. R(v) ≤ R(p) by Corollary 2.

Lemma 6. For an exposed vertex v, L′(v) sees R(v).

Proof. If v = p this is clearly true since p = L′(p). Otherwise, it is easy to see
that this is true as long as v is not above the line passing through L′(v) and R(v).
L′(v) cannot be below the line passing through p and v otherwise v would be
seen by a vertex in [p, L′(v)) which contradicts the definition of L′(v). Similarly,
R(v) cannot be below the line passing through v and R(p). It should now be
clear that v is not above the line passing through L′(v) and R(v) (see Figure 3).
The rest follows trivially.

p

v

L’(v)

R(p)

R(v)

Fig. 3. L′(v) and R(v) must be in the
shaded region

p

v

L(v)

R’(v)

Fig. 4. The shaded region is ter-
rain free, so every left vertex in
[L(v), R′(v)] must see v

Lemma 7. For an exposed vertex v the set of left vertices that see v is contigu-
ous, i.e. every left vertex in [L(v), R′(v)] sees v.

Proof. Consider CH([L(v), R′(v)]). This is a subset of CH([L(R(p)), p]) − {p}
since L(v) and R′(v) are both on CH([L(R(p)), p]). So we can see that CH([L(v),
R′(v)]) is a set of left vertices and we know that no left vertex not in the set
can see v. Now we will show that if w is a vertex in the set, w �= L(v), w sees
v, and w′ is the first vertex in the set to the left of w, then w′ also sees v. w′

must be above the line passing through v and w since w �= L(v). Since w′ and w
are consecutive points on the convex hull, w sees w′. Now we can see that w′w
and wv are line segments that do not interfere with the terrain, so w′v cannot
interfere with the terrain since it is above w′w and wv. Therefore w′ sees v. It
is easy to extend this into an induction proof for the lemma. See Figure 4.
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Lemma 8. For any vertex v in [L(R(p)), p), if w is the rightmost left vertex in
TL(v) then {c, w} dominates v.

Proof. By Lemma 4 we know that w dominates v with regard to TR(p). If w �= v
then v cannot see any vertex to the left of w so w dominates v with regard to
TL(w). c can see every unguarded vertex in [L(R(p)), p). Since L(R(p)) ≤ w, we
can see that TL(w) ∪ [L(R(p)), p) ∪ TR(p) = T . Therefore {c, w} dominates v.

3.2 Finding a Good Left Vertex

Lemma 8 tells us that, as long as we place a guard at c when we place other
guards, we needn’t place any guard in [L(R(p)), p) unless it is on a left vertex.
The first thing we note is that there must be at least one exposed vertex in
[p, R(p)), namely p. There may or may not be a sheltered vertex in [p, R(p)). We
define b as the leftmost left vertex such that some exposed vertex v is seen by
b but not by any left vertex to the right of b. In other words, b is the leftmost
R′(v) over all exposed vertices v. We define d as the leftmost exposed vertex for
which R′(d) = b.

Lemma 9. Every exposed vertex in (L′(d), R(p)) is seen by L(d).

Proof. If d = p then the proof follows easily from the symmetric version of
Corollary 1, so we will assume this is not the case. First we will prove that
there are no exposed vertices in (L′(d), d). Assume for the sake of contradiction
that there is an exposed vertex v in (L′(d), d). We can apply the order claim to
R′(v), L′(d), v, d to see that R′(v) sees d. This tells us that R′(v) ≤ R′(d), which
violates the definition of d, so there cannot be any such vertex v. Now we show
that L(d) sees every exposed vertex in (d, R(p)). Let w be an exposed vertex in
(d, R(p)). We have L(w) < d < w so by the symmetric version of Corollary 1
we know that L(w) ≤ L(d). By the definition of d we know that R′(d) ≤ R′(w).
Therefore L(d) ∈ [L(w), R′(w)], so by Lemma 7 we know that L(d) sees w.

Lemma 10. Any guard in [L(R(p)), p) that sees d is dominated by {L(d), c}.

Proof. Let v be a guard in [L(R(p)), p) that sees d. Since c sees every unguarded
vertex in [L(R(p)), p) it suffices to prove that L(d) dominates v with regard to
TR(p). L(d) ≤ v, so by Lemma 2 L(d) dominates v with regard to TR(d). Now
we show that no left vertex that sees d can see any exposed vertex to the left
of d. It follows from the definition of b = R′(d) and from Lemma 7 that any
exposed vertex seen from the left of R′(d) must be seen by R′(d). However, d is
the leftmost exposed vertex seen by R′(d), so no exposed vertex to the left of
d can be seen by R′(d). In other words, no exposed vertex to the left of d can
be seen by a left vertex that sees d. This, along with Lemma 4, tells us that
v cannot see any unguarded vertices in [p, d). Since v cannot see any sheltered
vertices at all, this means that L(d) dominates v with regard to TR(p). v cannot
see anything left of L(R(p)) except possibly if v = L(d), so {L(d), c} dominates
v over the entire terrain.
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Recall that, while searching for a suitable vertex u for which we can dominate
g(u) with 4 guards, either we find one right away or we find some pseudo-
independent pocket (i.e. a subinterval of [p, R(p))) that we can recurse upon.

3.3 The Terminal Case

We first consider the case where there are no sheltered vertices in (L′(d), R(d)).
We place guards at {c, L(d), L′(d), R(d)} and claim that these guards dominate
any guard that sees d. Lemma 9 tells us that every exposed vertex in (L′(d), R(d))
is seen by L(d), and since there are no sheltered vertices in (L′(d), R(d)) there are
no longer any unguarded vertices in (L′(d), R(d)). L′(d) sees R(d) by Lemma 6.
Therefore, by Corollary 3, any guard in [L′(d), R(d)] is dominated by {L(d),
L′(d), R(d), c}. By Lemma 10 any guard in [L(R(p)), p] that sees d is dominated
by {L(d), L′(d), R(d), c}. Any guard that sees d must either be in [L(R(p)), p] or
in [L′(d), R(d)], so {L(d), L′(d), R(d), c} dominates any guard that can see d.

3.4 The Recursive Case

If there are sheltered vertices in (L′(d), R(d)) our job is slightly more complicated
and requires recursion (this is where we find our pseudo-independent pocket).
We require another subroutine, GuardLeft, that is simply a mirror image
of GuardRight. For a call to GuardLeft(p′, c′) the condition that c′ must
satisfy is flipped horizontally: every unguarded vertex in (p′, R(L(p′))] must be
seen by c′. Also, p′ cannot be on CH(T ).

Let q be the rightmost sheltered vertex (note that q is not necessarily in
the interval (L′(d), R(d)), but it must be in (L′(d), R(p))). We will show that
the preconditions are satisfied if we call GuardLeft(q, L(d)). By Corollary 2
R(L(q)) ≤ R(p) and by the definition of q any unguarded vertex in (q, R(p)) is an
exposed vertex. Therefore by Lemma 9 every unguarded vertex in (q, R(L(q))) is
seen by L(d). If R(L(q)) < R(p) then either R(L(q)) is already guarded or it is an
exposed vertex and is seen by L(d). If R(L(q)) = R(p) then L(d) sees R(L(q))
since every vertex in CH([L(R(p)), p]) sees R(p). Therefore every unguarded
vertex in (q, R(L(q))] is seen by L(d). We know q is unguarded and q ∈ (p, R(p))
(and is therefore not on CH(T )), so the preconditions are satisfied.

In this way we can do a sort of recursive zig-zagging where each call to
GuardRight will spawn a call to GuardLeft and each call to GuardLeft

will spawn a call to GuardRight. It is not difficult to see that eventually, after
at most a linear number of these zig-zagging steps, we will arrive at a terminal
case. At this point we can simply place our 4 guards and, if we need to, start a
brand new call to GuardRight.

3.5 Time Complexity

It is clear that at most O(n) initial calls to GuardRight can be made. For TG
it is also easy to see that an initial call to GuardRight will result in a number
of guards being placed in O(n2) time. We can therefore give an upper bound of
O(n3) for the running time of TG.
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R(p)

L(R(p))

p
q

L(q)

R(L(q))

Fig. 5. The nested interval [L(q), R(L(q))] can be handled independently with the help
of a dominant outside vertex

If we want TG to be more efficient, we can make GuardRight(p, c) con-
tinue placing guards until [p, R(p)) has been completely guarded. This changes
things slightly; on a given iteration, p is not necessarily unguarded so there is
not necessarily an exposed vertex. If there is no exposed vertex, however, we can
just recurse immediately by calling GuardLeft(q, c) so this is not a problem.
To increase efficiency, we can sort the exposed vertices v by R′(v) (breaking
ties using the x-coordinates of exposed vertices) to find an appropriate b and d
faster in each iteration. A call to GuardRight(p, c), ignoring all recursive calls
that it spawns, can now run in O(n + m log m) time, where m is the number of
exposed vertices in [p, R(p)). It is easy to see that the ‘n’ terms, added up over
the entire course of the algorithm, will cost O(n2) time since there will be at
most O(n) calls to GuardRight. Any vertex will be an exposed vertex for at
most one call to GuardRight, so the sum of all m log m factors encountered
will actually be bounded by O(n log n). All other overhead incurred by the al-
gorithm can be dealt with in O(n2) time, so the running time of TG is bounded
by O(n2).

3.6 Modifications for TG-C

No real modifications need to be made to apply our TG algorithm to TG-C.
However, we need to keep track of more information if we want our algorithm to
run as efficiently as possible. When dealing with TG-C the only real problem is
finding b and d at each iteration of a call to GuardRight. Instead of exposed
vertices and sheltered vertices, we consider exposed edge sections and sheltered
edge sections. It is not difficult to see that for each edge of the terrain, at most
one contiguous section will be exposed and at most one will be sheltered. From
left to right on an edge, we can have a guarded section, a sheltered section, an
exposed section, and another guarded section, though not all of these sections
will necessarily exist. For an exposed section, the leftmost point will have the
leftmost R′.
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L(p) is always a vertex regardless of where p is. If we keep track of the tran-
sition points for the function L(p) (there are only O(n) of them [7]) then we
can know where exposed sections end and sheltered sections begin. For every
edge, our algorithm also keeps track of where the unguarded section starts and
ends (it must be contiguous). After placing a guard, updating the unguarded
section on every edge can be done quite easily in linear time. Assume we have
just placed a guard at g. To the left of g call the first vertex v1 and consider the
edge e1 whose left endpoint is v1. Mark down that every point on e1 is guarded.
Now, moving left from v1, find the first vertex above the line going through g
and v1; call this v2, define e2 appropriately and mark down that every point on
e2 above the line going through g and v1 is guarded. It is easy to see how we
can proceed to update the unguarded section of each edge in linear time. Since
we place O(n) guards the total cost of updating guarded edge sections of the
terrain is O(n2).

If we do all of the aforementioned maintenance, we will only need to consider
the leftmost point in each exposed section when looking for b and d. Therefore
we do not need to worry about asymptotically more points in TG-C than in TG.
The running time therefore remains O(n2).

4 Conclusions and Future Work

The 1.5D terrain guarding problem is not known to be in P. Constant-factor
approximation algorithms for the problem have only recently been developed.
We have provided an O(n2) time 4-approximation algorithm for both the discrete
and continuous versions of the problem. Ours is the best known algorithm for
the 1.5D terrain guarding problem.

The most pressing and obvious question regarding the 1.5D terrain guard-
ing problem is whether or not it is NP-complete. All of our attempts at an
NP-hardness proof have been stymied by the Order Claim. On the other hand,
attempts at designing an exact polynomial-time algorithm have also been unsuc-
cessful. If the problem is not NP-hard, we would be interested in a polynomial-
time algorithm. If the problem is NP-hard, we would be interested in approx-
imability thresholds, e.g. whether it is APX-complete or admits a PTAS or even
an FPTAS. If the problem is APX-complete, the approximation factor should
be lowered as much as possible.
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