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Preface

This volume contains the papers accepted for publication at LATIN 2006, the
7th Latin American Theoretical Informatics Symposium held in Valdivia, Chile,
March 20-24, 2006. The LATIN series of conferences presents recent results in
theoretical computer science. It was launched in 1992 to foster the interaction
between the Latin American community and computer scientists around the
world. LATIN 2006 was the seventh of a series, after Sao Paulo, Brazil (1992);
Valparaiso, Chile (1995); Campinas, Brazil (1998), Punta del Este, Uruguay
(2000), Cancin, Mexico (2002), and Buenos Aires, Argentina (2004).

In response to the call for papers, a record number of 224 submissions were re-
ceived. The Program Committee accepted 66 papers in order to meet the goal of
having five days of talks with no parallel sessions. Therefore, many good papers
could not be accepted. The Program Committee met electronically from Octo-
ber 25 to November 10, 2005. The selection of papers was based on originality,
quality, and relevance to theoretical computer science. It is expected that most
of these papers will appear in a more complete and polished form in scientific
journals in the future.

In addition to the contributed papers, this volume contains the abstracts
of seven invited plenary talks given at the conference by Ricardo Baeza-Yates,
Anne Condon, Ferran Hurtado, R. Ravi, Madhu Sudan, Sergio Verdu and Avi
Wigderson.

The Program Committee thanks all authors of submitted manuscripts for
their support of LATIN, and the many colleagues listed in pages VIII-X, who
helped reviewing the submissions.

The LATIN proceedings have been published by Springer since the first edi-
tion. We are grateful to Springer for their continuous support.

January 2006 José R. Correa (Co-organizer)
Alejandro Hevia (Co-organizer)

Marcos Kiwi (Program Chair)

LATIN 2006
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Algorithmic Challenges in Web Search Engines

Ricardo Baeza-Yates!:?

1 Center for Web Research, Dept. of Computer Science,
Universidad de Chile, Santiago, Chile
2 ICREA Professor, Dept. of Technology, Universitat Pompeu Fabra,
Barcelona, Catalunya, Spain
ricardo@baeza.cl

Abstract. In this paper we present the main algorithmic challenges
that large Web search engines face today. These challenges are present
in all the modules of a Web retrieval system, ranging from the gathering
of the data to be indexed (crawling) to the selection and ordering of
the answers to a query (searching and ranking). Most of the challenges
are ultimately related to the quality of the answer or the efficiency in
obtaining it, although some are relevant even to the existence of search
engines: context based advertising.

1 Introduction

The Web is the largest public collection of data, and therefore, Web search has
become one of the main challenges in the field of information retrieval. The com-
plexity is not only due to its volume, but also because of its dynamics and het-
erogeneity. In addition, as search engines are (still) free as a consequence of Web
advertising, the choice and placement of advertisements in the answer page is cru-
cial to their survival. For all these reasons, we believe that Web retrieval is one of
the main sources for interesting and challenging applied algorithmic problems.

A Web search engine has basically four software modules around an index,
as shown in Figure 1. We know detail this simplified software architecture. The
Crawling module brings new or updated pages to the Indexing module. The Index-
ing module creates a compact searchable index with key preprocessed information
for page ranking. The Searching module, using the index, finds a ranked answer to
a stream of queries from remote users. Finally, the Answering module creates the
answer page and places the right advertisement related to a query. Each of these
modules presents a different set of challenges, which motivate this paper.

The next sections summarize the main algorithmic challenges of the software
modules mentioned before, using simplified versions of each problem so that
we can (more or less) formalize them. We include recent results, although the
bibliography is by no means exhaustive. The final section mentions additional
problems related to the Web!.

! Disclaimer: The choice of problems is biased to the preferences of the author who is
now at Yahoo! Research.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 1-7, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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E query
—4 searching Hanswering .

indexing

danswer

crawling

Fig. 1. Simplified software architecture of a Web search engine

2 Crawling

A crawler is a software module that gathers Web pages to create an index,
typically using a parallel and distributed architecture. In practice a crawler never
stops as the Web keeps growing, but we simplify the problem by limiting the
crawling time and scope.

Given a set of Web sites with their bandwidth W, a period of time T, a set
of politeness rules P [14], a set of resources R (computers, crawler bandwidth,
etc.), and three functions V, @ and F (over a set of pages), a crawler has to
bring a collection of pages C' € W, achieving the following four main goals:

— maximize the volume V' (C) of the pages,

— maximize the quality Q(C') of the pages,

— minimize the freshness F'(C) of the pages, and

— maximize the use of R while satisfying the politeness rules P.

Part of the problem is how to define the three optimization functions and how
to combine them to obtain the best possible collection C' that should imply the
best possible index. Each possible choice brings new problems. It is out of the
scope of this paper to present an exhaustive list of possibilities, but here are a
few examples:

— V could be the number of different pages or the total number of bytes of text.
The former brings another problem, detection of duplicated pages, while the
latter raises the question of how many bytes (or percentage) are needed to
have a good textual description of a page;

— @ could be based on the distribution of words or the link structure of the
Web (e.g. Pagerank [17]); and

— F could be the absolute time difference between the time when the page was
crawled and the last modification time. However this raises the problem of
measuring such function, as we cannot know its value until the end. Hence,
usually F' is an estimation of the freshness.
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Considering the above functions as given, we could define an overall function to
optimize such as f(C) = aV(C) + Q(C) — vF(C), for some «, 3,7 > 0.

Regarding R and P, we can simplify R as the maximum bandwidth available,
B, and P as a minimum number of seconds, s, the wait time between any two
page requests to the same site. Notice that being polite to Web sites opposes the
goal of using all the bandwidth available at the search engine side.

Then we have a formal scheduling problem: find a sequence of requests for
complete pages? at given times (p1,t1),- -, (Pn,tn), n > 0, such that we maxi-
mize f(C) (C = U p;), satistying the following:

— Crawling period: ¢, —t; < T,

— Politeness: |¢t; —t;| > s for any pair of pages p;, p; that belong to the same
Web site, and

— Overall bandwidth: for any time 7 (¢; < 7 < t,,), b(W;) < B; where b(W) is
the bandwidth of the set of active requests at a given time 7. A request (p;, t;)
is active if p; belongs to site w; € W, and if t; < 7 < t; + size(p;)/b(w;)
(b(w;) is the bandwidth of the site w;3).

In the open scope case, finding new pages implies to find modified pages having
new links, and that implies wasting time revisiting known pages. Hence, freshness
opposes volume, given that wasted time cannot be used to crawl new pages.
But, paradoxically, the number of new pages only increase by wasting that time.
Another practical issue is dynamic pages, which can be unbounded.

Several heuristics have been used, from breadth-first to ordering pages based
on quality. Recently, a strategy based on Web site sizes (largest sites first, LSF)
has shown to be competitive with strategies that use more information [3]. One
problem is that there is no standard benchmark to compare crawling strategies,
given that we would need the same Internet location for all the experiments.

3 Indexing and Searching

These two modules are interdependent, as the search time and the quality of the
ranking will depend on the information stored in the index. Hence we present
them as one integrated problem.

The best index for searching words up to now is an inverted index, one of the
oldest data structures [1]. An inverted index basically consists of a set of unique
words (vocabulary) and a set of corresponding lists of pages where each word
occurs. However, better solutions may exist, in particular given the new condi-
tions imposed by the Web: smaller but distributed indexes, frequent updates,
and fast answer time, to name a few.

The index has to contain pre-calculated information that will be useful when
ranking the answer. This information depends on the document similarity model

2 In practice could be partial pages, and in that case we also have to add to the request
how many bytes to bring after we know the total size of the page.

3 We assume that the bandwidth for each site is constant, which in practice is not
true.
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used by the search engine and the query language used (they are not indepen-
dent). Examples would be the vector model [1] that uses information on term
distribution or a link based model such as Pagerank [17] or global Authorities
[12]. Nowadays, search engines use many sources of information for ranking: text
content, link structure, search engine usage, etc. One of the main problems is
the evaluation of the quality of the ranking, as we do not know which are the
best answers. Current evaluation techniques are based on click-through analysis
(that is, how people click on the answer pages).

Another restriction is the current Web volume, which implies that the index
must be distributed across many machines. It also implies a partial evaluation of
the query to give a fast response (in addition, as people on average looks at two
answer pages, does not make sense to do additional work). If we add to this the
current query volume, we need a parallel processing of the queries to increase
the concurrency level of the overall retrieval system.

Hence, we have a variant of the dictionary problem: design a dynamic data
structure (the index) that, given a maximum space available M, achieves at least
a throughput T' of queries per second, satisfying the following requirements:

— any query must be solved using only the index (accessing secondary memory
or a remote page is too slow);

— the index should be easy to distribute across many processors without mak-
ing the search more difficult;

— the index should be easy to update frequently, maintaining its quality and
speed; and

— the query can be partially evaluated to find the best B ranked answers.

Almost all the requirements just mentioned imply some amount of extra infor-
mation to be stored in the index. Hence, compression is an important element
of current solutions. This can be approached from two directions: design a com-
pressed searchable index, or, design a compression technique that allows fast
searching [15]. In both cases, being able to search without the need of decom-
pressing the index, improves the search time. In fact, these is one of the few
cases where we can do faster search by using less space. Fast querying implies
other interesting subproblems, such as fast computation of set operations (e.g.
see [5]).

Another of the most interesting subproblems are distributed indexes. For
inverted indexes, there are two ways to distribute the index:

— document partitioning splits the document collection in pieces and builds
one partial index for each piece. Searching is achieved by merging partial
answers from the processors that store the partial indexes.

— term partitioning splits the vocabulary in pieces, and each processor holds
one subset of the index, and hence, one part of a global inverted index.
Searching is achieved by merging the answers for every word in the query.

Current search engines use the former, as the main problem of the latter is that
of building and maintaining a global index. However, new ideas may change in
the future this choice, as term partitioning allows higher concurrency.
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4 Advertising

Deciding the right advertising is one of the main tasks of the Answering module.
Context based advertising comes in two flavors: advertising shown after a query
in the answer page of a search engine (e.g. Google’s AdWords) or the advertising
shown in a syndicated page (e.g. Yahoo’s ContentMatch). The differences are
the data available for matching the advertising: in one case a query and all
its attributes, and in the second case the content of a page and the referrer
information of the visitor to that page (which in some cases could include a
query); and the number of places available (around ten in the former, two or
three in the latter). In Figure 2 we present an example for the first case.

Advertisers pay for each visit to a given site (this is called pay per click, PPC),
so the search engine is interested in maximizing the future income. Clicks depend
on the position of the ad, so the advertisers should be ranked. However, the choice
of advertisers it is not as simple as choosing the ones that match and that would
pay more for a click, as some advertisers are more clicked than others. Also, we
cannot use click frequency as a definite rule, because advertisers that have had
more exposition time, would have more clicks and new advertisers would then
never appear, without having the chance to become popular and profitable.

Then we have an on-line problem: given a set of evidences E regarding a page
p, and a database of advertisers A, find a ranked subset a € A that maximizes
the expected income from clicks in p, such that |a| = n, where n is the number
of places available in p.
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Fig. 2. Example of keyword-based advertisement for the query “hotel valdivia”
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Notice that we do not separate the matching part (find advertisers that satisfy
the evidence) from the ranking part (find advertisers that will maximize the
future income), so E includes the data available for the match, past history, etc.
There are few results for this problem. For example [18] explores the matching
part, while [9,16] the placement part.

Another problem in the Answering module is the fast generation of the text
summary (snippets) for each result in the answer page.

5 Concluding Remarks

We have briefly surveyed the algorithmic challenges of Web search. Solutions to
these theoretical problems can help to find solutions to real ones, as in practice
the problems are much more complex. For example, currently the Web has many
forms of spam, including content, links and usage. So, finding the bad guys (e.g.
pages that have misleading content, links that are used just to improve the
ranking of the linked page, or clicks that come from malicious software agents)
is an interesting dynamic problem. A possible easier solution could be to help
the good guys, that is, the Web sites that do have good content and good links.
Still, we have the problem of recognizing the good from the bad, which is related
to the problem of information trust in the Semantic Web. This area is now called
adversarial information retrieval(e.g. [11]).

When we search we know what we are looking for. However, in the Web
there could be interesting answers waiting to be discovered or interesting usage
patterns that could help to improve a search engine. These are two examples of
Web mining [10], a field that is still in its infancy. One interesting case is queries
and the user actions after a query, or query mining [6]. When people formulate
queries and click on answers, they are giving away “semantic information” for
free, and with the current volume of queries per day in a search engine, the
potential of this data is still unknown. For example, it could be used for better
index design, better ranking, query optimization, query recommendation [4],
generation of pseudo-semantic resources, Web site design [7], to name a few. We
are currently building a platform to formalize Web mining tasks [8].

Finally, advertising is related to two newer fields: social networks [19] and
Internet economy [20]. The intersection of these two fields will sparkle many
interesting problems such as query incentive networks [13] or auction pricing.
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Dubbed the “architects of eukaryotic complexity” [8], RNA molecules are in-
creasingly in the spotlight, in recognition of the important catalytic and regula-
tory roles they play in our cells and their promise in therapeutics. Our goal is
to describe the ways in which algorithms can help shape our understanding of
RNA structure and function.

Computational means for prediction of the structure of RNA and DNA
molecules — collectively known as nucleic acids — are invaluable in determin-
ing the functions of molecules in the cell. Structure prediction problems, as
well as the inverse problem of designing nucleic acids with specific structural
properties, also arise in biological research aimed at creating new catalysts and
biosensors, in nanotechnology, and in efforts to recreate an RNA world that may
have preceded modern life [11].

Put simply, a DNA or RNA molecule is a sequence of units, called bases, over
a four-letter alphabet. Prediction of nucleic acid structure is easier than pre-
diction of protein structure, because the primary forces that determine nucleic
acid structure are pairings (bonds) between individual bases of the molecule,
with each base in at most one pair. This set of base pairs is called the sec-
ondary structure of the molecule. One premise is that, of the exponentially many
possibilities, an RNA molecule folds into that secondary structure which has
minimum free energy (MFE) [7]. Finding the MFE structure for a given RNA
molecule is NP-hard [6]. However, the range of structures that arise in nature
is relatively limited, making it feasible to find MFE predictions of almost all
naturally-occurring secondary structures in polynomial time [10]. There is still
much potential to advance the state of the art in MFE secondary structure
prediction of nucleic acids.

— The algorithm of Rivas and Eddy [10] is very general in terms of types of
structures that it can predict [3], but with ©(n°) running time is limited to
relatively short inputs. One challenge is to find the sweet spot in the trade-
off between algorithmic generality and efficiency. A concrete goal is to find
MFE “kissing hairpin” structures in less than O(n°) time.

— MFE prediction algorithms can only be as good as their underlying energy
models. While experimental wet-lab work has provided hundreds of high-
quality parameters for use in RNA structure prediction [7], some model
features, including multi-loops and pseudoknots, have been parameterized in

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 8-10, 2006.
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a somewhat ad-hoc way, and indeed the model features themselves may have
been chosen in part for algorithmic efficiency, rather than accuracy. Thus,
we believe that a reassessment of the energy model, informed by physical
principles, known nucleic acid structures, and algorithmic complexity, should
be fruitful in improving the quality of prediction algorithms.

Stepping back from our focus on MFE prediction from a single sequence,
we note that there are many other interesting computational problems relating
to nucleic acid structure prediction. Minimum free energy prediction of com-
plexes of two or more molecules is an important goal that arises, for example,
in determining the targets of anti-sense RNA’s [1]. Moreover, partition function
prediction provides additional useful information, including base pairing proba-
bilities [5]. In a different direction, the premise that molecules fold into their MFE
structures may be false for some structures, when “kinetic traps” - low energy
structures with no low-energy paths to a MFE structure - exist, or when folding
occurs co-transcriptionally [9]. Thus, also important are alternative structure
prediction approaches [9] and efficient simulation of folding kinetics [12, 13]. The
problem of predicting three-dimensional structure is largely unsolved. Finally,
although good heuristics have been developed for the design problem, which is
to determine a sequence that folds into a given input secondary structure [2, 4],
its computational complexity is still open.
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In this talk we present several results and open problems having squares, the
basic geometric entity, as a common thread. These results have been gathered
from various papers; coauthors and precise references are given in the descrip-
tions that follow.

Disassembling Sets of Colored Squares

Given a set of disjoint convex objects in the plane, it is well known that they
can be moved to infinity without collision, one at a time, using only translations
in the direction given by any vector v. If we have convex objects that have two
different colors it is always possible to obtain two vectors v; and vs, forming
possibly an infinitesimally small angle, such that each direction is used for one of
the colors and the objects in their final far away positions are well separated, say
by a line. An infinitesimally small angle is not quite satisfactory and it is natural
to wonder whether a larger separating angle independent of n may always be
obtained. This is precisely the problem we have considered in [5]: we study in
which cases the separating angle can be guaranteed to be bounded by below,
and consider also the similar problem for ¢ colors.

Somehow surprisingly, the shape of the objects happens to be a crucial issue;
for example, any c-colored set of isothetic squares can be separated using sepa-
rating vectors such that the angle between any two of them is at least 7/(2¢—2),
while for disks the situations is quite different, as the angle between separating
vectors may be required to be arbitrarily small. We will discuss as well some
algorithmic issues on these problems.

Matching with Squares

Let C be a class of geometric objects and let P be a point set with n ele-
ments pi,...,p, in general position, n even. A C-matching of P is a set M =
{C1,...,Cy} of elements of C, such that every C; contains exactly two elements
of P. If all the elements of P belong to some C;, M is called a perfect matching. If
in addition all the elements of M are pairwise disjoint we say that the matching
M is strong. If we define a graph G¢(P) in which the vertices are the elements
of P, two of which are adjacent if there is an element of C containing them and
no other element from P, a perfect matching in G¢(P) in the graph theory sense
corresponds naturally with our definition of G¢(P)-matchings.

* Research partially supported by Projects MCYT-FEDER BFM20033-0368 and Gen.
Cat 2005SGR00692.
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If C is the set of all isothetic squares, M will be called a square-matching
and the graph G¢(P) is the Delaunay graph for the Ly (or the L) metric. We
prove that there is always a square-matching, which translates to these graphs to
contain a perfect matching. In fact we have obtained a stronger result, namely
that these graphs contain a Hamiltonian path, a question that remained un-
solved since it was posed by Dillencourt [4], who proved the existence of perfect
matchings in Delaunay triangulations for the Euclidean metric, i.e., that point
sets always admit circle-matchings. On the other hand, the problem of deciding
whether a point set admits a strong square-matching has recently been proved
to be NP-hard [2].

The results we present were developed in [1], where this class of problems was
introduced and studied on the light of geometric matchings.

Tiny Squares

We call a function I : Z? — {0,1} a binary image. We call the elements of Z?2
pizels and we say that a pixel p is black (respectively, white) if I(p) =1 (respec-
tively, I(p) = 0). Taking the pixels as vertex set and the natural definitions of
4-neighbourhood and 8-neighbourhood the graphs G4 and Gg are obtained. For a
given image I, its black and white pixels induce subgraphs that we denote By(T)
and Wy(I), and Bs(I) and Ws(I) respectively. For a,b € {4,8} we say that an
image I is B,, Wp-connected if the graphs B, (I) and W,(I) are each connected,
that is, each has a single connected component.

In the paper [3] we consider for both graphs a local modification operation
on binary images in which a black pixel p and a white pixel ¢ can interchange
their colours when they are neighbours, and we prove that, for any (a,b) €
{(4,4),(4,8),(8,4),(8,8)}, any two B,, Wj-connected images I and J each with
n black pixels can be converted into the other with a sequence of O(n?) 8-local
interchanges if (a,b) € {(4,8),(8,4),(8,8)} and O(n*) 8-local interchanges if
(a,b) = (4,4).
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Abstract. We describe a very simple idea for designing approximation
algorithms for connectivity problems: For a spanning tree problem, the
idea is to start with the empty set of edges, and add matching paths
between pairs of components in the current graph that have desirable
properties in terms of the objective function of the spanning tree prob-
lem being solved. Such matching augment the solution by reducing the
number of connected components to roughly half their original number,
resulting in a logarithmic number of such matching iterations. A logarith-
mic performance ratio results for the problem by appropriately bounding
the contribution of each matching to the objective function by that of
an optimal solution.

In this survey, we trace the initial application of these ideas to travel-
ing salesperson problems through a simple tree pairing observation down
to more sophisticated applications for buy-at-bulk type network design
problems.

1 Introduction

Approximation algorithms have been traditionally designed and taught on a
problem-by-problem basis; Surveys (e.g., [6]) and recent courses and books
(e.g., [13]) have approached the area in this way by mainly classifying key
results based on a problem-specific basis. As the field matures to provide a rich
variety of results, commonalities can be identified to highlight key techniques
that become repeatedly useful.

In this survey, we point to one such extremely simple technique that we term
MBA, an acronym for Matching Based Augmentation. The two salient features
that determine the applicability of the method are that the problem at hand
must be a connectivity problem where one tries to connect up various demands
(either among themselves or to a common root) in a network, and that the
optimal solution can be used to identify an appropriate polynomial-time solv-
able augmenting subproblem that is a variant of matching. Since the method
proceeds by finding such matching iteratively and adding them to augment the
solution, the approximation ratio is typically bounded by the number of iter-
ations of the process; Furthermore, since the cost paid by the augmentation

* Supported in part by NSF grant CCF-0430751 and ITR grant CCR-0122581 (The
ALADDIN project).
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in each iteration is bounded with respect to the optimal, the method of proof
of the performance ratio is primal-based, without relying on any new (lower)
bounds on the (minimization) problem to argue the guarantee. Finally, since
each augmentation proceeds by matching up components of the current solu-
tion, the number of iterations before there is one single component and hence
a feasible solution, is logarithmic in the number of demand points that need to
be connected. This explains why most approximation algorithms based on this
method have logarithmic performance ratio.

We have structured this survey chronologically by describing the applications
of the method in the order of their first (typically conference or technical report)
publication. In this order, the classic paper of Christofides [2] is the first paper
of the sequence to contain most features of the MBA idea: the missing idea is
the iterative augmentation. The ATSP approximation of Frieze et al. [3] uses
the MBA idea in it complete form to obtain a logarithmic approximation for
metric ATSPs. We review these two results in the next section. In the following
section, we trace our own work in a series of papers [7, 10,12, 8, 11] that use this
idea in various contexts for NP-hard undirected spanning tree problems. In the
next section, we review some more sophisticated uses of the method to solve
generalizations of basic connectivity problems so as to route flow under concave
cost functions [9,1,5]. We close by summarizing the method.

2 The Early Applications

The roots of the matching based augmentation method can be traced back to
Christofides’ ‘;-approximation algorithm for the traveling salesperson problem
on undirected graphs with metric costs. Recall that in this problem, we are given
an undirected (without loss of generality, complete) graph with nonnegative costs
obeying the triangle inequality on the edges, and the goal is to find a TSP tour
(Hamiltonian cycle that visits every vertex exactly once) of minimum total edge
cost.

2.1 Christofides’ Algorithm for Metric TSP

Christofides’ heuristic [2] first computes a spanning tree T on the graph G. Next,
we observe by a simple parity argument on the sum of all degrees in any graph
that the number of odd-degree nodes is even. Applying this to the tree T, we
see that the number of nodes of odd degree in T is even. We now consider the
induced (complete) subgraph on only the odd-degree nodes of T' and compute a
perfect matching M on this (even-sized) set. Now T'U M is a connected graph
of even degree, which implies that it is Eulerian. An Euler tour of this graph
can be shortcut to yield a TSP solution of no higher value (using the triangle
inequality property of the metric costs).

While it is clear that the MST T has cost at most that of an optimal tour,
bounding the cost of M with respect to an optimal TSP tour requires a little
work. Consider an optimal tour and induce it on the odd-degree nodes of T
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(short-cutting over the even degree nodes of 7). This tour, by the triangle in-
equality, has cost no more than that of the optimal solution. This induced tour
is on an even sized set (by the earlier observation) and hence can be exactly
decomposed into two disjoint matchings. The cheaper of these two matchings
has cost at most half that of an optimal solution. This in turn upper bounds
the cost of the minimum-cost matching M we found on the odd-degree nodes.
Overall, the ‘; performance ratio is proved.

The key step in the algorithm is to augment the initial tree T' by a matching M
which can be appropriately bounded by a fraction of the cost of the optimal tour
solution. In this way, this algorithm lays out the idea of augmenting a current
solution with a matching the cost of which can be bounded by comparing it
with an optimal solution. As we shall see, this is the underlying idea of the
MBA method.

2.2 The FGM Algorithm for Metric ATSPs

Next, we consider an algorithm due to Frieze, Galbiati and Maffioli [3], hence-
forth referred to as the FGM algorithm for the asymmetric version of the TSP
problem. In this version, a complete directed graph is given with arc costs that
are not necessarily symmetric but obey the triangle inequality, and the goal is to
find a traveling salesperson directed tour (that visits each vertex exactly once)
of minimum total arc cost.

The FGM algorithm is a “greedy” augmentation algorithm that adds arcs to
the solution in iterations. It starts with an empty graph in which each node is a
singleton component. In each iteration, it adds a collection of cycles that merge
these components into larger components. In particular, in the first iteration, it
computes a minimum cost directed cycle cover of the nodes and adds it to the
solution. This merges the nodes into cycles, and for each cycle a representative
node is chosen. In the next iteration, only the induced complete digraph on
the representative nodes is considered and a minimum cost cycle cover on the
representative nodes is computed and added to the solution. This merges the
set of representative nodes (and hence their respective components) in a cycle
into a larger component. Notice that every component is strongly connected and
Eulerian (every node has indegree equal to outdegree). This proceeds in every
iteration by first identifying a representative node in each Eulerian component
and computing a minimum cost cycle cover on these representatives to merge
components into larger Eulerian components. Finally, when all nodes are in one
Eulerian component, we can shortcut an Eulerian tour on all the edges into a
Hamiltonian tour of no higher cost using the triangle inequality on the costs.

Two simple observations prove the performance guarantee of log, n for the
FGM algorithm on a graph with n nodes: (i) In each iteration the Eulerian
components at least halve in number; This is a simple consequence of the fact
that every cycle in a cycle cover has length at least two leading to every FEulerian
component merging with at least one other such component. (ii) The cost of the
cycle cover added in any iteration is at most that of a minimum TSP tour; This
follows as a simple consequence of the fact that the minimum TSP tour induced
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on the representative nodes in any iteration (and shortcut over the other nodes)
is a feasible solution to the cycle cover problem for that iteration, and hence
the minimum cover computed has cost no more than that of this optimal TSP
solution. Putting these two observations together, we see that the approximation
ratio of the FGM algorithm is bounded by the number of iterations, which in
turn is at most log, n.

The FGM algorithm has all the salient features of the MBA idea: (i) Construct
the solution by iterative augmentation using a matching based routine in each
iteration (Note that a cycle cover problem on a digraph G = (V, A) is solved
by an assignment problem on an auxiliary bipartite graph with node bipartition
(V1, Va), each of the parts being a copy of V, and edges u1, v for every arc u,v
in A). (ii) The cost of the augmenting solution in each iteration is bounded by
that of the optimal by identifying the appropriate matching subproblem to solve
the augmentation problem. The overall performance ratio is then proportional
to the number of iterations.

3 A Tree Pairing Lemma and Its Applications

In our own work, the MBA method took shape in an unintended context, namely
in deriving an approximation algorithm for the node-weighted Steiner tree prob-
lem. The conference version of our work [7] proved the performance ratio of the
greedy algorithm therein via a simple pairing argument on an even number of
nodes in a tree. We recall that here.

Lemma 1. Let T be a tree and M be an even subset of the nodes of T. There
exists a pairing (loosely a "matching”) of the nodes of M such that the paths
between the pairs in T are edge-disjoint.

Proof: For a pair (u,v) define the length of the pair to be the number of edges
(hops) in T between w and v, The pairing that minimizes the total length has
the claimed property. Suppose for a contradiction, two pairs in such a pairing,
say (u1,v1) and (ug,v2) have a common edge e in their paths in 7": Breaking
up the pairing and re-pairing them using only the paths until e results in a new
pairing that reduces the total length of the resulting pairing, contradicting our
choice of the pairing.

While being immaterial to our subsequent application of the above lemma,
the above proof suggests a constructive method for finding such a pairing: Start
with any pairing and repeatedly pick any two pairs that overlap and re-pair them
until there are no more such pairs. Since the total length of the pairing reduces
at each re-pairing, it is not hard to argue polynomial time termination. Other
alternate algorithmic approaches that work include using a minimum length
perfect matching procedure on the marked nodes.

3.1 A logarithmic Approximation for MST

We can now use the above lemma to design a simple (but somewhat ridicu-
lous) algorithm for approximating the cost of a minimum spanning tree in an
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undirected graph. While there are simple (Kruskal’ and Prim’s) and even linear
time exact algorithms for this problem, the approximation algorithm illustrates
some general principles that will explain our subsequent algorithms.

The idea for the approximation is to build the spanning tree in iterations
starting with the empty set of edges; The aim is to reduce the number of con-
nected components at the end of each iteration to a constant fraction (typically
half) of the number at the beginning of the iteration. For spanning trees, the
simplest way to accomplish this is to ensure that every component connects with
at least one other component via the edges added in a typical iteration.

How can one arrive at the polynomial time subproblem that accomplishes the
component reduction but whose solution can be bounded against an optimal
solution? This is the crux of applying the MBA method and the answer depends
on the problem at hand.

Let’s develop some common notation that will be useful for the rest of this
section. Let the total number of iterations for the MBA based algorithm be de-
noted by 7 (typically, 7 = O(logn)). In iteration ¢t € {1,2,...,7}, let the set of
edges added to augment the solution be denoted E;, and let the set of connected
components at the end of this iteration be denoted C; with the connected com-
ponents labeled Ci(1),Ct(2),...,C¢(kt), where k; is the number of connected
components in C;. For example, Cy = V with kg = |V| = n, while C, is one single
connected component with &, = 1.

To return to the question about the subroutine to employ at each iteration, we
reason as follows: Consider an optimal MST, T say, and at the start of iteration
t + 1, we look at the components of C; and contract them to supernodes in T*.
The edges of T* now form a potentially cyclic set of edges with some self loops
and multiedges on the node set C;. We can remove cycles (and self-loops) to
finally get a tree (call it T*(t)) on this set of supernodes that use only edges of
T* and hence of total cost no more than the optimum. Now we can apply the
tree pairing lemma to T7(¢) (Assume for now that the number of supernodes
in T*(t) is even for otherwise we can omit an arbitrary supernode). The tree-
pairing lemma shows how the supernodes can be paired off using edges of T
and be connected between these pairs. The resulting matching problem that can
be used to solve the resulting connection problem is to connect each component
of C; with another at minimum total cost of all such pairwise connections. Note
that even though the original costs may not be metric, we can use a metric
completion between supernodes in solving this matching problem: Indeed, if an
edge used in the matching is not a direct edge but one in the metric completion,
we can use the path of this cost to connect the two endpoints, satisfying the
connectivity feasibility requirement of this iteration.

To summarize, in iteration ¢t 4+ 1, we compute the metric completion of the
supernodes in T™*(t) and solve a minimum cost perfect matching problem (as-
suming the number of supernodes in it is even). For every edge in the matching,
we add the path in the graph of this cost during this iteration. The following
two lemmas are now immediate.

Lemma 2. The number of iterations of the MBA-based algorithm is O(logn).
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The proof follows from the observation that all but one component are paired
off in every iteration this reducing the number of components in any iteration
by at least a fraction of § Starting with |V| = n components, the number of
iterations is bounded as above.

Lemma 3. The cost of edges added at every iteration at most that of an optimal
solution T™.

The proof of this lemma uses the metric completion on the components of C; and
using the induced solution T%*(t) and the tree-pairing lemma on it, identifies a
matching of cost at most 7 (¢) that pairs up the components. Since a minimum
cost perfect matching subroutine finds such a pairing of minimum cost, its cost
is no more that that of T*(¢) as stated.

Putting the above two lemmas together and observing that at the end of
the last iteration, we have added a set of edges that form a single connected
component, we can delete edges as required to get a final spanning tree of cost no
more than the number of iterations times that of T*. Along with the observation
that the subproblem we set up at each iteration is polynomial-time solvable we
have the following theorem.

Theorem 1. The MBA-based algorithm using a minimum cost perfect matching
subroutine at each iteration outputs a spanning tree of total cost O(logn) times
the minimum.

Since the tree pairing lemma works only on a subset of nodes, the results in
the following sections all apply to finding Steiner trees that connect a subset of
the nodes (called terminals) rather than the whole node set as in a spanning
tree. We restrict our discussion to spanning trees for the sake of simplicity and
reduced notation, but note that the O(logn) factors in the treatment below is
typically reduced to O(log k) where k is the number of terminals in the Steiner
tree problem.

3.2 Degree Bounded MSTs

The first problem using the MBA framework is the degree-constrained minimum
spanning tree problem: Given integer degree budgets B, > 0 for every vertex
v of an undirected graph with nonnegative edge costs, the goal is to find a
spanning tree of minimum total cost obeying all the degree bounds (if it exists),
i.e., the degree of node v in the tree is at most B,. This problem generalizes
minimum-cost TSP paths by setting the budget to one at the endpoints and
two elsewhere. Furer and Raghavachari [4] used a matching based approach
to derive the first approximation algorithm for a special case of the problem
with all edge costs being either one or infinity (the unweighted graph case),
and the solution output by their method used a degree-constrained subgraph
subroutine to get an O(logn) approximation ratio for all the degree budgets
simultaneously (i.e., if B, is feasible for all v, their solution has degree O(logn -
B,) at v for all v. Their algorithm can be seen as an early application of the
MBA method.



Matching Based Augmentations for Approximating Connectivity Problems 19

The degree constrained MST problem was first addressed in our work [10]
where the tree-pairing lemma was used to identify a matching subproblem to
connect up components in each iteration !.

The algorithm in [10] follows the same outline as that for MST's in the previous
subsection. The subroutine at each iteration must be tailored to add a subgraph
that induces degree no more than about B, at any node v, and has cost no
more than that of an optimum solution, while merging components in pairs.
The resulting matching problem turns out to be a bit more sophisticated than
that for MST as expected since it handles two different objectives, namely node
degrees and edge costs. The subroutine builds a bipartite graph with the original
nodes on the left part and the current connected components C; on the right part.
Original graph edges are duplicated to go between each vertex endpoint on the
left part to the component on the right part containing the other endpoint. The
subroutine is now to choose a minimum cost set of edges that have at least one
edge leaving every component (on the right part) but have degree at most say
2B, at any node v on the left part. The tree pairing lemma guarantees that
the paths between the pairings induce degree at most twice the original degree.
While the counterpart of Lemma 2 is immediate, we have the following version
of Lemma 3.

Lemma 4. The cost of edges added at every iteration at most that of an optimal
solution T, while the degree added to any node v in any iteration is at most 2B,,.

Finally we get the following theorem.

Theorem 2. [10] The MBA-based algorithm using a minimum-cost degree-
constrained subgraph subroutine at each iteration outputs a spanning tree of to-
tal cost O(logn) times that of a minimum cost tree obeying the degree bounds;
Moreover, the spanning tree output has degree at most O(logn - B,) at node v
for all vertices v.

3.3 Diameter Bounded MSTs

Next, we turn to a “cost-diameter” version of the MST problem: Given a non-
negative length [, and a nonnegative cost c. for every edge e of an undirected
complete graph, the goal is to find a cheap tree (in terms of total cost) and also
low diameter (in terms of lengths). In a particular budgeted version of the prob-
lem, we are given a bound L on the total (length) diameter of the spanning tree
to be output and the goal is to find such a spanning tree of minimum total edge
cost. This minimum cost-diameter spanning tree problem can be easily shown
to be NP-hard [8], as is a cost-radius version of the problem. In the cost-radius
version, we are given a root node r, and a bound R on the total length of any
path in the output tree from r to any node (hence the name radius, in terms of

! ‘While this treatment has been completely worked out in the conference version of
our paper [10], the journal version [12] uses a different greedy approach that can also
handle node weights in a generalized version of the basic problem.
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the length function). We will relate this cost-radius spanning tree problem to a
cost-distance version in the next section.

Let us apply the MBA based method to find a minimum cost-diameter span-
ning tree. At each iteration, we must merge components but with two different
goals in mind: the total cost of the matching paths added in the iteration must
be at most that of an optimal solution, and the diameter of every path added
in the matching should also not exceed the bound L. A further complication
is introduced in keeping the total diameter of the final solution bounded with
respect to L. For this reason, we simple promote one of the two endpoints of the
matched pairs as a representative for its connected component in the next iter-
ation to control the growing radius of the component. Applying the tree pairing
lemma to the set of representatives in an optimal tree (of diameter L and total
cost C* say), we can pair the representatives using paths of length at most L
each and of total cost at most C*.

This leads to the following matching subroutine in each iteration. We have a
set of connected components, each with a representative. We build an auxiliary
graph only on the representatives connecting every pair of representatives by
an edge that represents paths of length at most L. Furthermore, we want the
cost of these paths to be minimum under the length constraint. For this, we
solve a constrained shortest-path problem between this pair of representatives:
in particular, we find the minimum cost of a path of total length at most L
between these representatives. This problem is itself weakly NP-hard but a scaled
adaptation of Djikstra’s algorithm gives a PTAS for this path cost computation
(i.e, we can get a (1 + €)-approximation to the minimum cost path of length at
most L in polynomial time for any fixed € > 0). After filling in all these path
costs between representatives, we find a minimum cost perfect matching under
these costs. Note that this pairs up components via their representatives using
paths of length no more than L* and nearly minimum total cost.

As in Lemma 2, the guarantee on the number of iterations follows from the
pairing property of the paths added in every iteration. We also have the following
guarantee on the cost and diameter of components at the end of every iteration.

Lemma 5. The cost of edges added at every iteration at most (1 + €) times
that of an optimal solution T for some fized € > 0, while the diameter of any
connected component at the end of iteration t under the length function is at
most 2t L.

The bound on the diameter follows from an inductive argument while the cost
guarantee is a consequence of the tree-pairing lemma. To obtain the final solu-
tion, we observe that even though the set of edges we may have added may form
cycles, we can choose a minimum radius tree (under the length function) rooted
at the representative of the final component. This tree obeys the bounds in the
next theorem.

Theorem 3. [8] The MBA-based algorithm using a minimum-cost length con-
strained subgraph subroutine at each iteration outputs a spanning tree of total
cost O(logn) times that of a minimum cost tree obeying the diameter bounds;
Moreover, the spanning tree output has diameter at most O(logn - L).
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3.4 Degree and Diameter Bounded Trees

A third application of the tree-pairing lemma to formulate an MBA based ap-
proximation came in the unlikely guise of minimizing the broadcast time in an
undirected graph. In this problem, we are given a undirected graph with a root
node r containing a message to be broadcast to all the nodes in the graph. At
each time step, every node that has a copy of the message can transmit it to
one of the (uninformed) neighbors, in the so-called telephone model. The goal
is to find a scheme for broadcasting the message to all nodes in the minimum
number of time steps. In the first poly-logarithmic approximation algorithm for
this problem [11], we showed how to reduce this problem to one of finding a
spanning tree with simultaneously low diameter and low maximum node degree.
The poise of a spanning tree in an undirected graph captures this notion and is
defined as the sum of the diameter and the maximum degree. A spanning tree of
an undirected graph on n nodes with poise p can be used to broadcast a message
from any root node within O(lolg?i gn - p) time steps.

The problem of finding spanning trees with minimum poise can be attacked
using the MBA method. At each iteration, the matching based subroutine is re-
quire to add paths between matched components that have low diameter (num-
ber of hops) as well as induce low degree on any node in the graph. We can
use the idea of promoting representatives from the previous subsection (for min-
imum cost-diameter spanning trees) to control the diameter of the connected
components at each iteration. Applying the tree-pairing lemma to the represen-
tatives on an optimal tree, we can infer that there is a matching between them
using paths of length at most the optimal poise such that the maximum degree
induced by these paths at node is also at most the optimal poise. This motivates
a corresponding matching problem of pairing up the representatives using short
paths with low congestion at any node.

To set up this problem so as to control for the maximum degree of any node
induced by the set of matching paths, we use ideas from minimizing congestion
in routing integral multicommodity flow, and formulate a linear programming
problem to which we can apply randomized rounding. To summarize, the set of
representatives from the connected components at each iteration are the sources
of multicommodity flow that sinks at any of the other representatives. Further-
more, the length of any of these flow paths is bounded by a given budget (on
the poise). An LP solution to the resulting problem of minimizing the node con-
gestion can be rounded randomly to get a near-optimal integral solution. The
tree-pairing lemma again provides a proof that there is an integral (and hence
LP) solution for the right guess value of the poise with maximum node conges-
tion also at most this poise. The integral rounded solutions can be used to find
appropriate matching paths between components in a way that the diameter
only increases linearly with the number of iterations. A slightly more careful
choice of pairing paths still guarantees the bounds of Lemma 2 while we can get
the following analogue of the cost bounding lemma.

Lemma 6. If there is a tree of poise p in the input graph, the LP rounding
method with subsequent careful choice of matching paths induces degree at most
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O(p +logn) at any node in each iteration, while the diameter of any connected
component at the end of iteration t under the length function is at most 2tp.

Noting that the minimum poise of any spanning tree of an m-node graph is
Q(log’fgo an)> We get the following result.
Theorem 4. [11] The MBA-based algorithm using randomized rounding of a

length-constrained node-congestion minimizing LP at each iteration outputs a
log2n

log logn ) times the minimum.

spanning tree of poise O(
This subsequently leads to the same performance guarantee for the minimum
broadcast time problem as shown in [11].

4 Algorithms Inspired by MBA

In this section, we briefly review two lines of work that have used the MBA
technique but pushed it to a whole new level. While the underlying matching is
recognized as a vehicle to argue the cost incurred by the algorithm by charging it
against an optimal solution, these methods typically employ randomization (in
their simplest versions) to show expected guarantees on the cost of one iteration.
Logarithmic guarantees follow using the same basic line of argument as for the
MBA method.

4.1 Cost-Distance Network Design

The cost-distance network design problem is a variant of the set of distance-
constrained minimum-cost spanning tree problems introduced in Section 3.3. In
this problem, we are given a nonnegative length [, and a nonnegative cost c, for
every edge e of an undirected complete graph as well as a root node r. In the
simplest version, the goal is to find a spanning tree that minimizes the sum of
the costs of the edges in the tree (under the c-function) and the distances in the
tree (under the [-function) from the root to all the nodes.

The algorithm given by Myerson et al. [9] for this simple version is to define
a composite weight function that is the sum of the cost and length for each
edge. The algorithm then finds a near-perfect minimum weight perfect matching
(ignoring the root and connecting to it only in the last iteration) and chooses one
of the two endpoints to be a representative for the whole component randomly.
As in the MBA algorithms, these paths are added and the process continues
until a tree is obtained.

As in the MBA method, the proof of performance ratio proceeds by showing
that the expected cost of eventually connecting all the vertices to the root via the
matching added in one iteration is bounded by a constant factor times that of the
optimal solution. The randomization allows one to argue that as the iterations
proceed that the subproblems on the representatives (which can be thought of
as aggregating the demand of all nodes in its component) has expected cost at
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most that of an optimal solution. Using a similar line of proof as in the MBA
method, a performance ratio of O(logn) follows for this algorithm.

A derandomization of the method along with links to the integrality gap
of a natural LP relaxation was provided in [1]. This derandomizing procedure
proceeds via the method of conditional probabilities using an LP relaxation;
The underlying matching problem is solved motivated by an argument that can
be viewed as a more sophisticated matching version of the tree pairing lemma
arising in the context of the new composite cost function.

4.2 Simultaneous Optimization for Concave Costs

A further generalization was studies by Goel and Estrin in [5]. In this version,
we are given an undirected graph with a root r and a nonnegative cost ¢, for
every edge e. The goal is to find an “aggregation” tree that collects information
from all the nodes to the root. The cost of the tree depends on the aggregation
functions on the edges. Let f be a real-valued function defined on non-negative
real numbers that is concave and nondecreasing. The cost of an edge e is then
cef(flow,) where flow. is the flow routed through e, in this case the total
number of nodes in the subtree under e, when the solution is rooted at 7.

Goel and Estrin use a variant of the MBA method to prove a surprising result:
There is a tree that is simultaneously near-optimal for all concave aggregating
functions for a given undirected graph with costs. This tree is none other than
a MBA-based tree constructed in iterations based on the cost function ¢ on the
edges. Assuming that the number of nodes n is a power of two. This method
simply finds a minimum-cost perfect matching on the nodes and chooses one
endpoint as a representative with probability half, and continues until all nodes
are connected in a spanning tree.

The proof of performance of this aggregating tree for any fixed concave aggre-
gating function proceeds in a similar way as for the cost-distance problem. First,
the expected cost of the rerouted instances is bounded by that of the optimal.
Second, the expected aggregated routing cost of the matching edges added in
each iteration is bounded by the cost of the optimal solution. To prove the result
for general functions, the method employed is to carry out the analysis in terms
of some basis aggregation functions (also called ”atomic” functions in [5]) that
aggregate linearly up to some power of two. Any concave aggregating function’s
cost is written as a scaled contribution from an appropriate basis function, which
are then used in a style similar to that for a fixed function to argue the final
result. At this level, while the basic algorithm and outline of the proof technique
(using an optimal solution to bound expected cost of the current augmenta-
tion) are as in the MBA based methods, this application requires a much more
involved argument.

5 Summary

We have reviewed various applications of a simple construction heuristic idea
with the augmentations coming from a matching-like subroutine that is inspired
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by a very simple tree-pairing lemma. Recent refinements replace the tree-pairing
with a randomized demand redistribution for reallocation of the cost of the
current iteration to that of an optimal solution. The simple idea of using an
optimal solution appropriately to derive an augmentation of the solution has
been effectively used in a variety of contexts, but we hope the reader is left with
a sense of commonality in these applications for network design problems.
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The theory of error-correction has had two divergent schools of thought, going
back to the works of Shannon and Hamming. In the Shannon school, error is
presumed to have been effected probabilistically. In the Hamming school, the
error is modeled as effected by an all-powerful adversary. The two schools lead
to drastically different limits. In the Shannon model, a binary channel with error-
rate close to, but less than, 50% is useable for effective communication. In the
Hamming model, a binary channel with an error-rate of more than 25% prohibits
unique recovery of the message.

In this talk, we describe the notion of list-decoding, as a bridge between the
Hamming and Shannon models. This model relaxes the notion of recovery to
allow for a ”list of candidates”. We describe results in this model, and then show
how these results can be applied to get unique recovery under ”computational
restrictions” on the channel’s ability, a model initiated by R. Lipton in 1994.

Based on joint works with Venkatesan Guruswami (U. Washington), and with
Silvio Micali (MIT), Chris Peikert (MIT) and David Wilson (MIT).
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Lossless Data Compression Via Error Correction
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Abstract. This plenary talk gives an overview of recent joint work with
G. Caire and S. Shamai on the use of linear error correcting codes for
lossless data compression, joint source/channel coding and interactive
data exchange.

1 Summary

Over the last five decades, significant inventions have led to data compression and
data transmission systems whose efficiency approaches Shannon’s fundamental
limits [1]. Error-correcting codes now exist (i.e. sparse-graph linear codes) that
can achieve performance close to channel capacity with complexity and delay
that are tolerable for many applications. Similarly, lossless data compression
algorithms exist (most notably the Lempel-Ziv algorithm) that can provably
achieve the entropy rate of a wide class of sources with very low complexity.
Curiously, although Shannon’s development of the theories of fundamental limits
for data compression and transmission shared very strong commonalities, there
has been essentially no intercourse between the respective constructive theories
throughout their long histories.

While Shannon’s separation principle establishes no loss in asymptotic perfor-
mance when compression and transmission are performed separately, it has long
been expected (but not fully realized) that, in the nonasymptotic regime, gains
may accrue by joint design. Furthermore, in systems such as packet-oriented
wireless high data rate systems, it is sometimes cumbersome to design systems
based on the separation principle.

Lossless data compression algorithms find numerous applications in infor-
mation technology, such us packing utilities (e.g. gzip), modem standards, fax
standards, back-end of lossy compression algorithms (e.g. JPEG and MPEG),
and compression of headers of TCP/IP packets in wireless networks.

Indeed, the field of lossless data compression has achieved a state of maturity,
with algorithms that admit fast (linear-complexity) implementations and achieve
asymptotically the fundamental information theoretic limits.

The availability of linear codes (such as the low-density parity check codes)
that allow for very efficient encoding/decoding algorithms while operating near
the Shannon limit makes their application in data compression competitive with
state-of-the-art methods while not suffering from some of their shortcomings.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 26-27, 2006.
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A series of recent papers [2, 3, 4, 5] presents a new approach to universal noise-
less compression based on error correcting codes. The scheme is based on the
concatenation of the Burrows-Wheeler block sorting transform (BWT) with the
syndrome former of a Low-Density Parity-Check (LDPC) code. The proposed
scheme has linear encoding and decoding times and uses a new closed-loop itera-
tive doping (CLID) algorithm that works in conjunction with belief-propagation
decoding.

Alternatively, fountain codes can replace the LDPC codes [6] to provide a
streamlined design which is ideally suited for variable-length lossless compression.

One of the incentives to use error correcting codes for data compression is the
natural extension of the schemes to joint source/channel encoding and decoding.
Schemes for that purpose are explored in [7].

Building upon Slepian-Wolf coding [8] , sparse-graph codes, belief propaga-
tion, and closed-loop iterative doping, new schemes for interactive data exchange
between two agents who want to communicate losslessly their respective infor-
mation via several rounds of communication are proposed in [9].
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The Power and Weakness of Randomness in
Computation
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Humanity has grappled with the meaning and utility of randomness for centuries.
Research in the Theory of Computation in the last thirty years has enriched this
study considerably. We describe two main aspects of this research on randomness,
demonstrating its power and weakness respectively.

Randomness is Paramount to Computational Efficiency. The use of
randomness can dramatically enhance computation (and do other wonders) for a
variety of problems and settings. In particular, examples will be given of proba-
bilistic algorithms (with tiny error) which are exponentially faster than their
(best known) deterministic counterparts, and probabilistic algorithms which
achieve significant space savings over deterministic ones. Other settings in-
clude distributed algorithms where randomness (provably) achieves exponen-
tially smaller congestion than deterministic ones. Finally we’ll show that using
randomness, proof systems can be enhanced to allow properties unattainable
without it. Letting the verifier and prover toss coins, proof systems can allow
spot checking of proofs (PCPs - a central tool in the theory of approximation),
as well as zero-knowledge proofs (proofs revealing nothing except their validity
- a central tool in cryptography).

Computational Efficiency is Paramount to Understanding Random-
ness. We explain the computationally-motivated definition of randomness, and
try to argue its merits as the “right” definition. The central idea is “computa-
tional indistinguishability” - declaring a distribution pseudorandom if it cannot
be distinguished from the uniform distribution by any efficient procedure (in a
given class, say time or space bounded algorithms). It is evident, almost by def-
inition, that such pseudorandom distributions are as good as uniform as sources
of randomness for probabilistic algorithms in the given class. We then demon-
strate the remarkable fact, known as the “hardness vs. randomness paradigm”
that such pseudorandomness may be generated deterministically and efficiently,
from (appropriate) computationally difficult problems. This leads to a deter-
ministic “derandomization” of any given probabilistic algorithm, which is not
much slower. Consequently, randomness is probably not as powerful as it seems
above.

For a comprehensive text on probabilistic algorithms the reader is refered to
[MR]. For a thorough discussion of both probabilistic proof systems, as well as
pseudorandomness, the reader is refered to [G].
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Abstract. We present an algorithm to compute a greatest common di-
visor of two integers in a quadratic number ring that is a unique fac-
torization domain. The algorithm uses O(nlog®nloglogn + Aé'*'e) bit
operations in a ring of discriminant A. This appears to be the first ged
algorithm of complexity o(n?) for any fixed non-Euclidean number ring.
The main idea behind the algorithm is a well known relationship between
quadratic forms and ideals in quadratic rings. We also give a simpler ver-
sion of the algorithm that has complexity O(n?) in a fixed ring. It uses
a new binary algorithm for reducing quadratic forms that may be of in-
dependent interest.

Keywords: gcd, quadratic number ring, quadratic form reduction.

1 Introduction

Given a squarefree integer d # 1, let Z; denote the ring of integers in the
quadratic number field Q( Vv d). The prototypical example is the Gaussian integers
Z1={a+bi|abeZ} When Z; is a unique factorization domain (UFD),
the greatest common divisor (gecd) of two elements in Z; always exists and is
unique up to multiplication with a unit. Z; is known to be a UFD for precisely
9 values of d < 0 (complex quadratic rings), but it is unresolved whether Z; is
a UFD for infinitely many d > 0 (real quadratic rings) [7].

We consider the following problem. On input «, 8 € Z4, where Z; is a UFD,
compute a ged of o and 3. We consider the problem for both a fixed ring, and
when A the discriminant of the ring is given as part of the input (A is d or 4d).

1.1 Earlier Work

Greatest common divisor is a basic concept in number theory. The problem of
computing the ged is as old as number theory since many computational number
theory problems require ged or extended ged. Euclid presented an algorithm to
compute the ged of rational integers in 300 B.C. [9]. The rings in which one can
construct a similar algorithm are called Euclidean rings. These do not include

* Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 30-42, 2006.
© Springer-Verlag Berlin Heidelberg 2006



A New GCD Algorithm for Quadratic Number Rings 31

all quadratic number rings that are UFD’s, but a fairly complete list of all
known Euclidean number rings can be found in [13]. However, for some of the
Euclidean rings it is not clear if the Euclidean algorithm runs in polynomial time.
For the integers, Lehmer presented an improved version of complexity O(n?)
[12], and Schénhage gave a version of complexity O(nlog® nloglogn) [15]. The
latter algorithm was generalized to Euclidean complex quadratic number rings
by Weilert [21].

A different class of algorithms to compute gcd comes from the binary ged
algorithm [19]. Simple and practical generalisations of the binary ged algorithms
are known for some complex quadratic number rings including a non-Euclidean
ring [20,5,1]. The running time of all these algorithms is O(n?) with small con-
stants hidden under the big-oh notation. Wikstrom [22] has shown that one can
extend the binary gcd algorithm to all number rings that are UFD’s. The com-
plexity of the algorithm is O(n?) in a fixed ring. The dependence of the ring is
not made explicit in the runtime analysis.

Kaltofen and Rolletschek [8] gave an O(n?) algorithm to compute ged in any
fixed quadratic ring This algorithm appears difficult to implement and the size
of constants under the big-oh notation is not small [8,20].

1.2 Results

We present a ged algorithm applicable for all quadratic number rings that are
UFD’s. The algorithm has complexity O(n log? nloglog n) assuming a fixed ring.
If the ring is not fixed, we assume that the discriminant A is given as part of the
input. The complexity of the algorithm is still O(nlog® nloglogn) for complex
quadratic rings, but for real quadratic rings it takes O(n log? nloglog n + A2 +e)
time.

For the complexity bound of O(n log® nloglog n), the algorithm needs to
use similar bounds for integer multiplication, extended integer gcd and reduc-
tion of quadratic forms [16,15,17]. Though the corresponding algorithms are the
best known with respect to asymptotic complexity, they may be impractical for
moderate input sizes. We give an alternative version of our algorithm of com-
plexity O(n? + A'*€). We believe it may be more practical than the known
general algorithms of complexity O(n?) [8,22]. It uses a “binary” algorithm of
complexity O(n?) for reducing quadratic forms, which may be of independent
interest.

1.3 Main Idea of Algorithm

Let o and (8 be integers in some quadratic ring that is a UFD. Computing a gcd
of o and [ is the same as computing a generator of the ideal generated by «
and (. Every ideal can be viewed as a module and for every ideal there exists
a module basis such that one of the elements in the basis is a generator of the
ideal. The idea of the algorithm is to compute such a basis. All (ordered) bases
are equivalent up to multiplication by an SLo(Z) matrix, so we simply start by
some basis and look for a transformation that maps our initial basis into one
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containing a generator. To guide this search, we use that each (ordered) basis
for the ideal has an associated quadratic form of the same discriminant as the
ring. We start by finding the form corresponding to our initial basis. It turns out
that we can then easily find an SLy(Z) matrix U taking this form into a reduced
principal form. The same U is then applied to the initial module basis and will
give a basis containing a gecd for a and (.

For complex quadratic rings that are UFD’s, there is only one reduced form
of the corresponding discriminant. Therefore a standard algorithm for reducing
binary quadratic forms suffices to find U. In the case of real quadratic rings there
are in general many reduced forms of a given discriminant. Hence, for such rings,
one must in addition find an SLo(Z) matrix that takes the encountered reduced
form into a principal form.

We illustrate the idea of the algorithm by considering a concrete simple
example, namely computing ged(a, 8) in the ring of Gaussian integers Z[i] for
a =3 —1iand § =4 —2i. First, we compute an ordered module basis [a1, 1] for
the ideal I = (a, 3). This may result in oty = 3 — i and $; = 2. The associated
quadratic form is Q1 = 522 + 6y + 2y>. Using a standard reduction algorithm

one may find that U = [11 _12} € SLy(Z) takes @1 into the reduced (principal)

form Q2 = 2% + y%. When applying the same transformation U to [a1, £1], one
obtains [ag, O2], where ag = —1 + i and B3 = —1 — 4, both of which are ged’s of
a and 8 (and associates).

2 Preliminaries

The definitions/facts in this section are found in most books on algebra and/or
algebraic number theory (for example see [11,6,7,4,18]). Most of the concepts are
also covered in [14].

In the following, the letters Q and Z denote the set of rational numbers and
rational integers. The notation SLy(Z) is used to denote the set of all 2 x 2
matrices with entries from Z and determinant 1.

2.1 Quadratic Fields and Rings

Quadratic number fields are of the form Q@ = Q(v/d) where d € Z is square-free.
If Z is the ring of integers in Q, then £ = Z|w] where

Vd ifd=2,3 (mod 4)
w =
MY it d=1 (mod 4)

Any 0 € Q is of the form ¢; + g2v/d where ¢, g2 € Q. If 6 is also an element of
Z, then 6 can be written as ay + asw where a1, as € Z. The discriminant A of
the field Q (or the ring Z) is,

A 4d ifd=2,3 (mod 4)
ld ifd=1 (mod 4)
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Let 6 = q1 + g2v/d € Q. The number, 6 = q; — g2v/d is the conjugate of . The
norm of 0 is N(0) = 60 = ¢} — dq3. An element v € Z is a unit if | € Z. A unit
v € Z is also characterized by N(v) € {—1,1}.

In the following the term “quadratic ring” will always refer to the ring of
integers in a quadratic number field.

2.2 Modules

Let Z be a quadratic ring. Any M C Z which is closed under addition and
subtraction is a module in Z. A collection of elements {a1,...,ar} € M spans
M if for all @« € M there exist x1,...,x, € Z such that a = x1a1 + -+ - + T
and we write

myp M2 -+ M1
M = . = h S =my, w .
[, @, ..., ] Moy Mg -+ T where o; = my; + mojw
A collection of elements {ay,...,ar} € M is linearly independent (over Z) if
ria1+ -+ xar = 0and xq,...,2, € Z imply that all ; are zero. A collection
of elements {a1,...,ar} € M is a basis for M if aq,...,ax span M and are

linearly independent. All bases for a module has the same number of elements
and that number is called the dimension of the module.

2.3 Ideals and Bases

Let Z be a quadratic ring. A set I C Z is an ideal of Z if I is a module and
al C T for all a € Z. A collection of elements {aq,...,an} € I generates I, if
for all o € I there exist B1,..., 0, € Z, such that a = B1a1 + - - - + B, and
we write

I=(a1,...,am) .

A principal ideal is an ideal generated by a single element. When the quadratic
ring Z is a UFD then all ideals in Z are principal.

Proposition 1. An ideal has dimension two when regarded as a module. Thus if
I is an ideal in Z, then there exists o = a1 + asw and B = by + bsw in I such that,

IZa+Zﬂ[mﬂ]{gzj

Let I = [a, 8] be an ideal in Z. The module basis [, 5] is an ordered basis of T if
det([e, 5]) > 0. The norm of I is the number of elements in Z/I and is denoted
by N(I) and when [«, 5] forms an ordered basis for I,

af—af _

w—w

N(I) = det|a, 3].



34 S. Agarwal and G.S. Frandsen

If I is a principal ideal generated by =, then N(I) = |[N(v)| and [y, w~] forms
a module basis for I.

There is a natural Sy (Z)-action on ordered module-bases, given by [a, ]U =
[ta + vB,ua + wp] for U = Lt; lﬂ € SLy(Z). The action of SLy(Z) does not
change the ideal, and all ordered bases for a specific ideal are equivalent under
the action. In particular

Proposition 2. Let [a, (] be an ordered module basis for a principal ideal I =(7)
in Z. There exists U € SLo(Z) such that (o, BlU is the ordered basis among

[y, 2wr].

2.4 GCD and Principal Ideals

Let Z be a quadratic ring, and let «, 5 € Z. If a8 # 0 then a non-zero element
v € Z is a greatest common divisor (ged) of a and 3 if

i. v|la and 7|6, and
ii. for any § € Z\{0}, if 6|a and 6|3, then 6]y.

For any a # 0, ged of a and 0 is defined to be a.

Proposition 3. Let Z be any quadratic number ring that is a UFD and let
o, € Z. Then v is a ged of o and B iff v is a generator of the ideal generated
by a and 3.

2.5 Quadratic Forms

Let A € Z\ {0}. A primitive integral binary quadratic form of discriminant A
(henceforth forms of discriminant A or simply forms) is a polynomial Q(A, B, C)
= Ax? + Bxy + Cy? € Z[x, y], for which ged(A, B,C) = 1, B2 — 4AC = A and
if A <0 then A > 0. The form Q(A, B, C) is said to be reduced if
IVA=2/A|l < B<VA if A>0

|IBl<A<C
B>0if |Bl]=AorA=C

} if A<O0

The group SLo(Z) acts on the right on Z[z, y] as a group of ring automorphisms
given by zU = tx +uy and yU = vax +wy for U = Lt) ;ﬂ € SLy(Z) transforming
the set of forms of discriminant A into itself, i.e.

(Az? + Bay + Cy?) U = A(wt + uy)? + B(wt + uy)(zv + yw) + C(av + wy)?.

Two forms are said to be equivalent if they can be transformed into each other
by elements of SLy(Z). Every form is equivalent to a reduced form.
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3 Overview of the Algorithm

To compute the ged of a and 3, it suffices by Proposition 3 to compute a gen-
erator v for the ideal generated by a and [. It turns out to be easy to find
an ordered module basis [aq, 51] for the ideal («, 3). We would be done, if we
could find some U € SLy(Z) such that [aq, 1)U = [ag, B2], where oy alone is
a generator of the ideal. Proposition 2 guarantees that such a U always exists.
The basic idea of the algorithm is to find a suitable U by using a well studied
relationship between ideals and quadratic forms.

Proposition 4. [14, sect. 3] or [4, ch.12] Let Z = Z[w] be the quadratic ring of
integers with discriminant A. Let [«, 5] be an ordered basis for an ideal I in Z.
The form

_ N(za+yp) _ N(@) 5 N(a+p)-N(a)-N(B) N(B) o
AlleB) ="y = ™ T N(I) W

is a primitive integral form of discriminant A.

To make use of this relationship, we need several facts. Firstly, the action of
SL3(Z) commutes with the mapping from ideals to forms.

Lemma 1. Let [, 3] be an ordered basis for an ideal I in Z, the quadratic ring
of integers with discriminant A. Let U € SLo(Z) be arbitrary. Then,

Q([a, B)U = Q([or, BIU) -
Proof. Let U = Lt; Zﬂ € SLy(Z). Tt suffices to note that

N((zt + uwy)a + (zv + yw)f)
N(I)

N(z(ta +v0) + y(ua + wP))
N(I)

Q([aa ﬁ]) U=

= Q([e, IU)

Secondly, we can recognize a form corresponding to a module basis containing a
generator for the ideal.

Lemma 2. Let [, 3] be an ordered basis for a principal ideal I in the quadratic
ring of integers Z. Let Q([a, 6]) be the form corresponding to this basis as given
by Proposition 4. Then o is a generator of I iff the coefficient of x% in Q([a, 6])
is +1.

Proof. If a is a generator of I, then N(a) = &N (I). Thus the coefficient of x?
will be +1. Conversely if the coefficient of 2 is &1, then N(a) = £N(I). If § is
any generator of I, then N(§) = £N(I). Since a € I, o = 6 for some v € Z.
But as N(a) = £N(6), N(v) = £1 and hence  is a unit. Thus « is also a
generator of I.
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To simplify the rest of the article, a form is a principal form if the coefficient of
22 is £1. Proposition 2, Lemma 1 and Lemma 2 imply that given a module basis
[a1, 1] for a (principal) ideal, there exist a transformation U, € SLy(Z) such
that the form Q([a, 6])Up is a principal form, and the basis [a, 5]U, contains
a generator of the ideal, i.e. a gcd. To find such a principal form, we need only
look among reduced forms.

Lemma 3. A principal form is equivalent to a form that is both principal and
reduced.

Proof. Given a principal form Q(A, B,C), ie. A=4+1for A >0 and A =1 for
(1] T} such that Q(A, B,C)U =
Q(A, B+2Am,(C") is principal and reduced. Q(A, B+ 2Am, C") is clearly prin-
cipal, and using the definition of a reduced form, it follows that there is a unique
integral m such Q(A, B+ 2Am, ") is reduced.

A < 0, it suffices to argue that we can find U =

Algorithm 1. Compute gecd in a quadratic number ring Z of discriminant A
Require: o, € Z with o, 5 # 0
Ensure: v = ged(a, 8).
1: Compute an ordered basis, a1, 81] for the ideal I generated by « and 3.
2: Compute a quadratic form (A, B1,C1) corresponding to the basis [, £1] using
Proposition 4.
3: Compute a reduced form (A2, B2, C2) and a corresponding transformation U; €
SLQ(Z) SU.Ch that Q(Ah Bl, Cl)Ul = Q(AQ, BQ7 CQ)
4: if A<Olet Uy = 1.
5. if A > 0 Let U2 be a transformation arising from applying ¢ of Proposition 5
repeatedly such that Q(Asz, B2, C2)Us is a principal form.
6: Compute [az, 2] = [, £1]U1Us.
7: return v = ao.

As a first step towards finding U, we apply a (standard) reduction algorithm
to the initial quadratic form Q([al, ﬂl]) in order to obtain a transformation U,
which will reduce it. Lets say that the reduced form is Q(A, B, C). We then use
the following result to find a principal reduced form among the reduced forms
that are equivalent to Q(A4, B, C).

Proposition 5. [14, sect. 5] A form of discriminant A < 0 is equivalent to
precisely one reduced form.
Let Q(A,B,C) be a reduced form of discriminant A > 0. If one applies

(l)ml] where m is chosen such that vA — 2|C| <

—B+20m < VA then Q(A, B,C)U = Q(C, —B+2Cm, A—mB+m?C) is also
a reduced form. If we denote by o the action of applying such a U on a reduced
quadratic form, then o is a permutation on the set of all reduced quadratic forms
of discriminant A. Two reduced forms are equivalent precisely when they lie on
the same cycle of this permutation.

the transformation U = [
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Let Q(A, B,C) be a reduced form that is equivalent to a principal form. If
A < 0, then Proposition 5 and Lemma 3 imply that Q(A, B, C) is necessarily
also principal. If A > 0, then Proposition 5 and Lemma 3 imply that Q(A4, B, C)
is on the same cycle as a principal form. Thus if one applies ¢ repeatedly on
Q(A, B,C), one will eventually encounter a principal form.

Broadly the algorithm is as shown in Algorithm 1. In the next section we
consider step 1 and step 3 of the algorithm and the complexity analysis.

4 Implementation and Complexity Analysis

All complexity bounds refer to the number of bit operations. We define the size
of numbers as the number of bits needed for their representation (disregarding
signs). For integer m # 0 let size(m) = 1+ |log|m|], for & = a+bw let size(a) =
size(a)+size(b) and for Q = Az?+ Bzy+Cy? define size(Q) = size(A)+size(B)+

size(C). For M = {f ﬂ , define size(M) = size(p) + size(q) + size(r) + size(s).

4.1 Computing the Module Basis of an Ideal

If I is an ideal generated by « and 3, then as a module [ is spanned by «, wa,
B and wp, i.e.
I =[a,wa, B,wl] .

One can use a standard basis extraction method [4, sect.4.9] to get a basis for
this module. To make the time analysis explicit we present Algorithm 2.

Lemma 4. Given « and 8 in the quadratic ring Zlw] of discriminant A, let
n = size(a) + size(3) + size(A). Algorithm 2 outputs an ordered basis (o1, 1] for
the ideal generated by o and 3. Algorithm 2 uses time corresponding to O(1) mul-
tiplications, divisions and extended ged computations on numbers with O(n) bits.

Algorithm 2. Computing Module Basis of an Ideal
Require: o, € Z
Ensure: a1, satisfies that [«1, (1] is an ordered basis for the ideal («, 3)
Given o = a1 + asw and B = b1 + baw.
Compute wa = ji1 + jow and wf = k1 + kaw.
a1 j1 b1 k1
Let M = as js ba ko
Assert ma1 # 0. Swap columns of M if needed.
for k=2 to 4 do
Compute s,t,g such that g = ged(ma1, mog) = sma1 + tmay,
L [mn mlk:| _ [mn mlk:| [S *ka/g}
et =
Ma21 M2k ma1 mak| |t ma1/g
let a1 = m11 + mo1w and g1 = gcd(m127m13,m14)
if ma1g1 > 01let f1 = —g1 else let f1 = 1
: return o, G1

= [mijli<i<a,1<j<4a

—_
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Proof. Let us first argue correctness of the algorithm. Observe that since

U — [S —m2k/9]

t mgl/g

has determinant 1, then the multiplication with U in step 7 does not change the
span of the first and £’th column of M. Thus M spans the same ideal after each
iteration of the for-loop. After the for-loop, M has the form

_|M11 M2 T3 Mi4
M = [mgl 0 0 0 :l

Since mi2Z~+misZ+misZ = ged(mia, mis, mia)Z = g17Z, the module M is also

spanned by
M= {mu 91}
mo1 0

By Proposition 1 an ideal has dimension 2 when regarded as a module. Thus ¢;
and m1; + miow form a module basis for the ideal generated by « and 3. Step
9 ensures that the algorithm outputs an ordered basis.

The complexity bound follows by inspection of the algorithm.

4.2 “Binary” Algorithm for Reducing a Quadratic Form

Schénhage has shown how to reduce quadratic forms in time O(n log® n log log n).
For moderate input sizes a simpler algorithm my be faster. Buchmann and Biehl
[2] has shown that the classical reduction algorithm for quadratic forms (see e.g.
Lagarias [10]) is of complexity O(n?).

We present an alternative “binary” algorithm also of complexity O(n?). In
this alternative version we seek to replace multiplications/divisions by additions,
subtractions and binary shifts. We believe the resulting algorithm is quite prac-
tical for moderate input sizes and may be of independent interest.

Lemma 5. Given a quadratic form Q(A, B,C), let n = size(Q(A, B, C)). Algo-
rithm 8 reduces the quadratic form and computes a corresponding transformation
U satisfying that size(U) = O(n) in time O(n?).

Proof. Assume for the moment that the algorithm terminates. To show that the
algorithm is correct, we just need to show that the final form returned is reduced.

Consider the case when A > 0. Following the outer while-loop it holds that
|B| < 2|A| < 2|C|. In addition it holds that 2|A| < v/A. To see this observe that
B?—4AC = A > 0 combined with |B| < 2|A| < 2|C| implies that B2+4|A||C| =
A. If the form is not reduced, then the choice of m in step 13 gives a reduced
form.

Consider similarly the case of A < 0. By our definition of quadratic form,
A > 0and from B2 —4AC = A < 0 we deduce that also C' > 0. Each application
of S and T,, will preserve the signs of A and C, and at step 16 it holds that
|B| < 24 < 2C. If A < |B| then steps 18-22 will transform Q(A4, B,C) to
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Algorithm 3. Reducing a Quadratic Form (“binary” version)

Require: A quadratic form Q(A1, B1,C4) of discriminant A.

Ensure: Q(A, B,C) is reduced and U € SL2(Z) such that Q(Ai,Bi,Ch)U =
Q(A, B,C)

1: Let Q(A,B,C) = Q(A1, By, Ch).

2: Let U =1.

3: Let S = [(1) _01} (note that Q(A, B,C)S is Q(C,—B, A))

4: Let Ty, = [(1) Tﬂ (note that Q(A, B,C)Tm is Q(A, B+ 2mA,m*A+mB + C))
5: while —(|B| < 2|A] < 2|C|) do

6: while |B| > 2|A| do

T Let j = size(B) — size(A) — 1.

8: if AB > 0 then m = —2/ else m = 2/

9: Let Q(A,B,C) =Q(A,B,C)Ty, and U = UT,

10: if |A| > |C| then

11: Let Q(A,B,C) =Q(A,B,C)S and U =US.

12: if A > 0 then

13: Let m be such that VA — 2|A| < B+ 24m < VA

14: Let Q(A, B,C) = Q(A, B,C)Ty, and U = UT},

15: if A < 0 then

16: Assert |B| < 24 <2C.

17: if |B| > A then

18: if B>0thenm=—1elsem=1.

19: Let (A, B,C) = Q(A, B,C) Ty and U = UT,,

20: Assert |B| < min{A4, C}.

21: if A > C then

22: Let Q(A,B,C) =Q(A,B,C)S and U = US.

23: Assert [B|< A< C.

24: if B<0and A= C then Let Q(A,B,C) =Q(A,B,C)S and U =US.
25: if B<0and A= —B then Let Q(A,B,C) =Q(A,B,C)T} and U = UTh.

26: return Q(A, B,C) and U.

ensure |B| < A < C. The form is reduced now except possibly for the sign of B.
This part is handled in steps 24-25. Thus the form returned by the algorithm is
reduced.

Finally, consider termination and complexity. Assume for the moment that
size(U) = O(n) throughout the algorithm. Consider the while-loops. Each ap-
plication of Ty, in step 9 strictly decreases size(B), and an application of S does
not change |B|. Hence, there are at most size(B) executions of step 9. Note also
that |A| never increases and |C| is bounded by the equation B? — 4AC = A.
Since each application of T}, in step 9 can be done in time O(n), the total time
spent in the while-loops is O(n?). The same time bound clearly applies to the
remaining part of the algorithm.

We still need to argue that size(U) = O(n) through the entire algorithm. Let
U = {u;;}. It will be enough to bound max{size(u;;)}. Let ¢ be the time interval
used on a specific execution of the inner while loop. Let jo = size(B) —size(A) —1
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be the value of j in the first iteration of the specific execution of the while-loop.
One may verify that max{size(u;;)} increases by at most jo + 2 during all the
iterations in the time interval ¢, and clearly size(B) decreases by at least jo+1 in
the same time interval. Since there are at most O(n) executions of the inner while
loop, and size(B) never increases, we find that max{size(u;;)} and therefore also
size(U) remains O(n) throughout.

4.3 Complexity Analysis

Let us first consider steps 1,2 and 3 of Algorithm 1. By using asymptotically
fast algorithms for integer multiplication, extended integer gcd and reduction
of quadratic forms [16,15,17], it may be done in time O(nlog?nloglogn) by
Lemma 4. Though asymptotically fast, this implementation may be impractical
for moderate input sizes.

By using a simpler implementation such as naive multiplication/division, the
binary algorithm for (extended) ged, and our binary reduction algorithm, one
may execute steps 1, 2 and 3 of Algorithm 1 in time O(n?) by Lemma 4 and
Lemma 5.

If A < 0 then steps 4 and 6 and hence the entire Algorithm 1 runs within
the same time bound as steps 1-3.

If A > 0 then we can upper bound the time for steps 5 and 6 as follows. It is
known that the number of reduced forms of discriminant A is O(AéJFE) for every
e > 0 [14]. This implies that we need to apply o repeatedly at most O(Aé“)
times in step 5. The bit-size of a reduced form is O(log A) by definition. So the
matrix U corresponding to a single application of ¢ of Proposition 5 has also
bit-length bounded by O(log A). However, we can only bound the bit-length of
the matrix U computed in step 5 by O(Aéﬁ). Hence, using naive arithmetic for
step 5-6 and the simple implementation for steps 1-3, Algorithm 1 runs within
time O(n? + A7) and when using asymptotically fast arithmetic throughout,
Algorithm 1 runs within time O(n log? nloglogn + Aé*‘e).

There seems to be no simple way to improve this analysis. Buchmann, Thiel
and Williams [3] state “it can be shown under reasonable assumptions that there
cannot be a polynomial time algorithm that on input of A and the norm of a
principal ideal in O o computes the standard representation of a generator of such
an ideal because the length of this representation is too big.” If this also holds
in our context, which is not general quadratic number rings, but only UFD’s, we
have that size(ged(a, §)) may be super polynomial in size(«) + size(5) + log A.

We can summarize the complexity analysis as follows.

Theorem 1. Let n = size(a) + size(() + log A.

For A < 0, Algorithm 1 runs in time O(nlog® nloglogn).

For A >0, Algorithm 1 runs in time O(n log® nloglogn + A5+5) for every
e > 0.

Remark. Our algorithms can be augmented to compute an extended ged. One
may also apply our algorithm in quadratic rings that are not UFD’s,; provided
the inputs «, 3 generate a principal ideal. In the case of A > 0 the matrix
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U, of step 5 of Algorithm 1 may be precomputed for all distinct reduced forms
of discriminant A, allowing the actual gced algorithm to benefit from a table
look-up. These topics will be elaborated in the full version of the paper.

Acknowledgment. The first author wishes to thank Hendrik Lenstra for sug-
gesting the use of the relation between ideals and quadratic forms for ged
computation.
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Abstract. Motivated by the computational difficulty of analyzing very
large Markov chains, we define a notion of clusters in (not necessarily
reversible) Markov chains, and explore the possibility of analyzing a clus-
ter “in vitro,” without regard to the remainder of the chain. We estimate
the stationary probabilities of the states in the cluster using only tran-
sition information for these states, and bound the error of the estimate
in terms of parameters measuring the quality of the cluster. Finally, we
relate our results to searching in a hyperlinked environment, and provide
supporting experimental results.

1 Introduction

Motivated by the computational difficulty of analyzing very large Markov chains,
we define a notion of clusters in (not necessarily reversible) Markov chains, and
explore the possibility of analyzing a cluster “in vitro,” without regard to the
remainder of the chain. Given a cluster in an aperiodic and irreducible Markov
chain, our goal is to approximate the relative stationary probabilities of the states
within the cluster; that is, while we cannot know the total probability mass of the
cluster at stationarity — this depends heavily on the rest of the chain — we may
hope to learn, for each state in the cluster, the fraction of the cluster’s mass at
stationarity held by the given state. If the cluster is much smaller than the whole
chain, then this analysis can be dramatically less expensive than, say, running
power iteration on the whole chain to find the complete stationary distribution.

Although to our knowledge we are the first to explicitly define a notion of
clusters for Markov chains, much previous work has noted a correlation between
clusters in hyperlinked media and semantic topics (see [2] for a nice summary),
and the interpretation of (a slight modification of) the WWW graph as a Markov
chain is the basis for PageRank [1]!. Given these precedents, it is a small step

* Work performed while author was visiting Microsoft Research.

! The elegant work of Madras and Randall [7], while explicitly decomposing a Markov
chain into (not necessarily disjoint) pieces, deals with a converse problem: examine
the pieces and a crude model of their interactions to analyze the rate at which the
full chain mixes.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 43-55, 2006.
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to defining Markov chain clusters. In the context of web search or analysis of
other hyperlinked media, being able to analyze a cluster in isolation should give
an inexpensive method of ranking the utility of different web pages on a given
topic.

We have three contributions: the definition of a cluster, a theoretical analy-
sis of the value of the definition, and related experimental results. Our formal
measure of cluster in a Markov chain is based on the bicriteria measure used by
Kannan, Vempala, and Vetta[3]; a similar intuition to ours underlies the defini-
tion of community of Flake, Lawrence, and Giles [2]. We show that our measure
does in fact capture at least one desirable property that a cluster should intu-
itively have—namely, that the stationary distribution of a good cluster viewed as
its own self-contained small Markov chain is close to that of its induced station-
ary distribution in the larger chain. Finally, we conduct experiments on both
synthetic graphs and a large scale section of the web to test the applicability of
our measure. Our results show, perhaps surprisingly, that the PageRank Markov
chain is initially ill-suited for study by clusters, as its distinctive e-reset param-
eter “blurs” clusters, making it difficult to isolate any one set of pages from
the web at large. However, we show that we can still accurately estimate of a
cluster’s relative stationary distribution at a fraction of the cost of computing
the global stationary distribution.

We now describe our results more fully.

A Formal Definition of Clusters in Markov Chains. There is a rich lit-
erature on measures of clusterings for graphs. Kannan, Vempala, and Vetta[3],
proposed a measure for clustering in weighted similarity graphs that seeks to
maximize the smallest conductance? (roughly, the flow) within the individual
clusters while minimizing the fraction of total edge weight that crosses between
clusters. (This generalizes the Flake, Lawrence, and Giles definition of a web
community as “a set of pages that link (in either direction) to more pages within
a community than to pages outside the community” [2].) A partitioning of the
vertices into clusters is considered an (a, €)-clustering if the conductance of each
cluster is at least o and the combined weight of the inter-cluster edges is at most
€ of the total edge weight.

In our applications, we will be more interested in individual clusters of states
in a large Markov chain, and not necessarily a full partition of all states into
clusters. However, we can still adapt the above definition of clustering to Markov
chains in a natural way. In particular, we say that a set of states C in a Markov
chain forms an (a, 8)-cluster if the conductance within C' is at least «, and the
conductance from C' to the rest of the chain is at most . Intuitively, then, a
cluster is a set of vertices within which a Markov chain mixes rapidly (due to
«), but from which it is difficult to escape (because of (). The exact definition
of an («, B)-cluster will be given in Sect. 2.

> Both the measure in [3] for graphs and our measure for Markov chains refer to
conductance. The concept is slightly different in the two settings, but intuitively
similar.
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Properties of Markov Chain Clusters. For our definition of clusters in
Markov chains to be interesting, we must now show that an (a, ) cluster has
useful non-trivial properties. Our main theoretical result is that clusters are well-
isolated from the larger Markov chain in terms of their stationary distributions,
in that we can obtain a relatively accurate approximation of the induced station-
ary distribution for a small cluster in a much larger Markov chain by examining
only the cluster itself.

More precisely, given a set of states C' in a large Markov chain P with sta-
tionary distribution 7, let 77¢* be the stationary probability on C' induced by
7; namely 77¢ = 7, /7(C), where 7(C) = > jec - Let wet (for “estimated”)
denote the stationary probability of C| treated as its own self-contained Markov
chain®. Our main result (Theorem 4) is that if C is an (a, 3)-cluster then the
¢y difference between 77¢* and 7! is bounded by ¢ f,z log Tri,, for some global

min
est

constant ¢ > 0, where 725, is the minimum over all 7¢** for ¢ € C. This result
shows that 77¢* and 7°** will not be too far apart, so long as « is large and 3
is small, as we might intuitively expect.

Experimental Results. To test the applicability of our results in real world
settings, we conducted experiments on two types of graphs. To test the basic
feasibility of our approach, we first generated a series of random Markov chains
with planted clusters. The underlying random graph model we used is well-
behaved and represents a favorable situation for our approach, and we find that
it is indeed possible to obtain a good approximation for the induced stationary
distribution of a cluster in this setting.

We next performed tests on the PageRank Markov chain applied to a large
crawl of the web with over 90 million pages and 2.4 billion links. Here we use
individual domains (such as corporate and university web sites) as clusters, and
find that the cluster’s own stationary distribution 7¢*! is a poor approximation
for the induced stationary distribution 77¢®. It turns out that PageRank’s e-
reset, feature has the side effect of obscuring natural clusters in the underlying
web graph by virtually guaranteeing that 3 will be at least € for any set of pages.
However, we show that with a small amount of preprocessing, we can still obtain
good estimates in this setting.

2 Background and Definitions

2.1 Facts About Markov Chains

If P is a finite Markov chain over a set of n states V', we will write P as ann xn
transition matrix in which p;; is the probability of moving to state j given that
the chain is in state 7. We consider only chains that are finite-state and reqular
i.e., the transition matrix P satisfies 3k P* > 0. The stationary distribution
(usually denoted ) is then principal left eigenvector of P. We will use several
well-known facts about Markov chains, summarized next.

3 The exact definition of the Markov chain associated with C' appears in Sect. 3.
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The fundamental matriv Z = {z};; of a Markov chain P is the matrix
Z={zhij=0I—-(P-B)",

where B = limy,_. P*. The fundamental matrix captures effects of the choice
of starting state: as t — oo, #2(.;) —tmj = 7y — m;, where #2) is the expected
number of times the chain starting in state ¢ will visit state j in the first ¢ steps
(including the initial state as one step). The entry z;; thus helps measure how
many extra times the chain reaches j in the first ¢ steps when started at ¢. This
quantity may be negative. See [4] for a beautiful treatment of the fundamental

matrix.

Fact 1. Let P be the transition matriz of a Markov chain with fundamental
matriz Z and stationary distribution w. Then 72 = 7.

Definition 1. The discrepancy* of a Markov chain is the quantity
Z= miaxz |zij — mj)-
J

The mixing time H of a Markov chain measures how long it takes for the chain
to converge to its stationary distribution from a worse-case start state. As is well
known (see, e.g. [9]), the mixing time H is governed by the conductance, which
is defined as follows.

Let V' be the state space of the Markov chain. For any disjoint subsets A, B C
V., define Q(A, B) = > ,c 4 jep TiPij- For any C' C V we let &y (C) denote the

conductance (out of S to its complement in V), ie, &y (C) = Q(g’(‘é>c). We define
the conductance (within V) to be @y = mingcy.rcy<1 Pv(C). It is common
to omit the subscript V; however, since we will be talking about Markov chains
induced by subsets of V', we sometimes explicitly name the state space for clarity.

Letting 7nin denote the minimum stationary probability of any state, the
conductance, mixing time, and discrepancy enjoy the following relationships (see

[5, 9]):

Fact 2. Z<4H < g% log !

Tmin

It follows that sets C' from which it is difficult to escape limit the rate of con-
vergence. Markov chains that do not have such sets therefore mix rapidly. Note
that if there is a very well isolated cluster then the conductance is low and so
the mixing time is high. Thus, not only will our results be more meaningful
when clusters are well isolated, but they will also be more useful (because power
iteration necessarily must be run for more steps).

We will use the following deep theorem of Schweitzer.

Theorem 3 [Schweitzer]. Let P(Y) and P®) be Markov chains on the same state
space and with respective stationary distributions 7™ and 7® . Then 7)) — 7(2) =
TWEZ®)  where E=PMY — P@ and Z2) is the fundamental matriz of P2 .

4 See [5]. Discrepancy is usually defined in terms of hitting times. The definition here
is equivalent and simplifies our proof in Sect. 3.
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2.2 The PageRank Markov Chain

Consider the Web as a very large graph, in which each page is a vertex and
each link is a directed edge from the source page to the target page. Let M be
the natural transition matrix associated with the web graph; namely, if a page i
contains d; links, then for each link (7, j), we have that m;; = 1/d;. We assume
that the Markov chain is ergodic and aperiodic. (If d; = 0, we can somewhat
arbitrarily say that d;; = 1, or alternatively, that d;; = 1/n for all j.)

The PageRank Markov chain is then defined as P = (1 — )M + €U, where U
is the uniform matrix (u;; = 1/n for all 7,j), and e typically falls in the range
[0.1,0.2]. Adding €U ensures that the resulting chain is regular. The stationary
distribution of P, denoted m, is called the PageRank vector, and the PageRank
of an individual page (vertex) i is its i’th coordinate ;.

2.3 Clusters in Markov Chains

Throughout, we let V' denote the state space of the chain. Working from the
above definitions, we define the concept of a cluster in a Markov chain as follows:

Fix a subset C C V which will be our cluster for the rest of the discussion.
Assume without loss of generality that the vertices of C' correspond to the first
|C| rows and columns of P.

Let 77 ¢ RICl denote the projection of m onto C, normalized so that

|77y = 1 (from now on we let || - || denote the £; norm). In other words,
real __ T
' m(C)

The projected vector 77 is the (normalized) exact PageRank information re-
stricted to the cluster C. (Presently we will define a small, related, Markov chain
called P"¢%; it too will have stationary distribution 77¢%.) We are interested in
efficient ways to approximate w7¢%.

Let P’ be the submatrix of P corresponding to the rows and columns indexed
by C. This is a substochastic matrix (the sum of the entries in each row is
bounded by, but not necessarily equal to 1). We confine our attention to the
case in which P’ is regular (ensured for the PageRank Markov chain by the
e-reset). In this case, by the Perron-Frobenius Theorem, P’ has a unique non-
negative left principal eigenvector, which we denote by m*¢, corresponding to
an eigenvalue 0 < A < 1. We assume it is normalized (||7¢*|| = 1). In order
to obtain a stochastic matrix with the same principal eigenvector 7¢%¢, we add
a nonnegative multiple of 7¢** to each row of P’ so that the resulting matrix,
which we denote P°, is stochastic. More precisely, if we denote the entries of
Pt as pegt, then

Pt = pij + 75 (1 - Z pm)

keC

Thus, we redistribute the probability of escaping from C according to w¢*t.
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It is not hard to verify that 7¢¢ is also the principal left eigenvector of P¢%t

and that P°? is stochastic. Let &¢“*" denote the conductance (within the small
state space C) of P,

Definition 2. The subset of states C' C V in a Markov chain is an («, 3)-cluster
if m1(C) <1/2 and
Dt > and Py (C)<pB.

If « is large and [ is small, then C' will be a cluster in the intuitive sense—a set
of states within which it is easy to move, but from which it is difficult to escape.
Also, note that the assertion " > a depends on the substochastic matrix P’
alone, and not on the entire matrix P.

Assume that C is an («, 3) cluster with relatively few states compared to the
number of states in V. Clearly, ! is easy to compute (because the state space
is small), and 77¢% difficult. How good an estimate for 77¢% is 7¢*? The next
section addresses this question, bounding ||7¢** — 77%|| in terms of a and 3.

3 Bounding the Error ||west — med||

To bound the error, we will consider two similar Markov chains, P7¢* and P¢*t,
for which 77¢® and 7°* are the respective stationary distributions, and apply
previously known techniques to obtain a bound on ||77¢% — 7¢st||. The Markov
chain P®** was defined above. We now show how to construct P7¢%,

Define the probability distribution

7_74"eal _ ch TkDkj
! QV\C, C)

This is the probability (at stationarity) that the chain moves to state j, given
that it moves from V\C to C in one step. P" is now defined by adding a
nonnegative multiple of 77 to each row of P’ so that the resulting matrix

real real _

is stochastic. Denoting the entries of P"°% by pi;*, this means that pi¥*" =

Dij + T}"e“l (1 — Zkecpik) . It is an easy exercise to verify that indeed the left
principal eigenvector of PT¢% is greal,

Thus, in both the construction of P and of P, we redirect probability
drained from the substochastic matrix P’ back into the system, according to 77¢%
and ¢! respectively. For ease of notation in what follows, we let 7¢5¢ = 7¢5t,
that the 7’s always refer to redirected probability mass.

To prove Theorem 4, we must bound |77 — 7¢t|. Naturally, we will use
Schweitzer’s Theorem. We will see that the worst case occurs when 77¢* is a

point distribution, namely, concentrated at some pessimal choice of a page.

SO

Theorem 4. If C is an («, B)-cluster, then the {1 difference between w"¢* and

est
p

7% is bounded by
a?

”,n_est _ ,”real” <c log

est
min

for some global constant ¢ > 0, where w&s!, = min{r¢* |i € C}.
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Proof. By Schweitzer’s Theorem, 77¢% — ¢st = greel Bzest where E = Predt —
Pest. By choice of P and P! we have e;; = (1 — Zkecp,-k)(r;”eal — 7).
and so (7" E); has the form

(,n_realE)j _ (Z 7T27jeal (1 - Z pik)) (T;eal o T;St) )

ieC keC

Note that the expression Y, @ (1 — 3, o pir) is exactly @y (C), so
(,n_realE)j — @(C) (T}"eal _ Tjest).
We can therefore write

7_K_v"ealEvZest _ ¢V(C> (Treal _ Test>Zest )

Thus, using that 7¢5¢ = 75 (by definition) and 7¢%¢Z¢st = 1¢t (Fact 1), we get
a bound in terms of the discrepancy of P¢:

Hﬂ_realEZest” — ¢V(C> Z |(7_realZest)j _ (TrealZest>j|
J

— ¢V(C> Z |(7_realZest)j _ ﬂ-jSt‘
J

< max |2 — 75| = 25
K2

The last step follows from a convexity argument: |(rreat Zesty,; — Tt s a
convex function of 77 maximized at a point distribution.
Applying Fact 2, we have

64 1
et — 7| < By (C)Z° < AR < 108 en

= t
(@Ces )2 Tmin
From the assumption that C' is an («, §)-cluster, we may conclude the proof:

B

l t
||7Trea 771_68 || S 64a2

log

est '
mn

4 A More Elementary Proof

The proof in this section is almost from first principles; in particular, it does not
go through Schweitzer’s Theorem. We begin by establishing some notation and
making an observation. We then give some intuition for the approach.

/
We decompose the transition matrix P as follows P = <€1 Oélt), where

P’ e RICIXICl is, as above, the transition matrix restricted to the rows and
columns corresponding to our («, 3)-cluster C' C V.

Consider the step evolution of P on its stationary distribution = € R™ which
we decompose as T = (1(C)7" | ) where e € R"~!¢l ¢ > 0. We get, 7 = 7P
= (n(C)nredl P! 4 eIn| €). Continuing inductively, we get that for all ¢ > 0,
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t
7 =nPt = <7T(C’)7rrealp/t + Z eInpP't=7

i=1

The intuition behind this decomposition is as follows: the term 7(C)ree! P't
corresponds to the original distribution 77¢* circulating in C'. Some of it may
drain out due to sub-stochasticity of P’, but the direction of this vector converges
to that of 7¢!. The part that will eventually contribute to ||7"¢* — 7¢5!|| is the
noise term Z§=1 eInP"*~" entering C' from V' \ C, which we will bound using the
fact that C is an («, 8) cluster.

Now, m(C)r"e = 7(C)r"e Pt 432! elnP' =9, Also, ||7(C)n"e| = 7(C)
= |w(C)mred PE|| + 5_, [|elnP’ =9, Therefore,

t
71_((7)7T7“eal _ 71_((7),”6515 _ 7T(Cv),n_real]_)/t + ZEInP/(tfi)
i=1

t
- <||7T(C)7r’"e“lP’t|| +Y° ||61np/(t—i>||> est
i=1
Taking norms, rearranging terms and applying the triangle inequality,

||7T(C>ﬂ_real _ ﬂ_(c)ﬂ_estn < ||7T(C>ﬂ_realp/t _ HW(C)WrealP/tHWestH
t

>

=1

Lemma 1. For any lazy® Markov chain P and subset C there exist constants
v >0 and 0 < pu < 1 such that for all positive vectors w € RIC!

(1)

‘EInP/(tf’i) _ ||EInPI(t7i) ||,n_est

[wP" — wP" x| < 4(1 = ) [lw — x| < 291 = 'l (2)

holds with v = \/1/7¢t  and p = (®c°*")? /4.

min

(The proof is sketched in Section 4.1.) In other words, the vector wP’ tends to
||wP’t||rest exponentially fast with rate (1—pu). Note that ||wP’ — (||wP’t]|)west||
cannot exceed 2||wP't|| < 2||w]|, therefore, by Equation (2),

P — lwP" ]| < 2ffwl min {7(1 - p)",1}. (3)

We will use this to prove the theorem for lazy Markov chains and will argue
at the end of the section that the restriction to lazy chains is irrelevant.
Plugging (3) into (1), we get that for all ¢ > 0,

||7T(C),n.7“eal — ’/T(C)’]Test” <2v(1-— [L)t”ﬂ'(C)?TTealP't”
t
+ QZ |leIn|| min{~(1 — M)(t—i)7 1} .

i=1

® Every state has transition probability of at least 1/2 to itself. Also commonly known
as a strongly aperiodic chain.
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Now we notice that by definition, ||eln|| = Q(V\C,C) = Q(C,V\C). Dividing
both sides by 7(C), recalling that Q(C,V\C)/x(C) = &y (C) < (8 by assump-
tion, and taking the limit as t — oo, we obtain ||77¢* —7¢st|| < 283" min{y(1

1)t 1} . Let a be the minimal integer such that v(1 — p)* < 1. Then a <

(log(l(l)gZ)L and
a—1 o0 ) 00 )
Zmln{’v Q=13 = 14+ y(1—p) <a+d (1-p)
i=0 i=a =0 4
[ —log~y w 1 < log vy +1+1 Slog'y/log2—|—2
log(1—p)| p = log(1+p) Iz I

(we used the fact that plog?2 < log(1 + u) for 0 < pu < 1). Therefore, ||x"¢%
7| < 2B(logy/log?2 + 2)/p. Taking v = /1/7¢% and p = (Pc*")?/4 as
in Lemma 1, and recalling that #¢°* > a by the (o, 3)-cluster assumption,
we conclude that for lazy Markov chains, [|x7¢®! — 75| < 88(1 log(1/m:t,)/
log2 +2)/a?.
If |C| > 1, then 1/mgsf, > 2, thus |77 — x| < (20/log2)Ba?log L, -

man
If |C| = 1 then ||z"¢® — 7°st|| = 0. This proves Theorem 4 for lazy Markov
chains. We now claim that the laziness requirement is non-restrictive. Indeed,
we could replace P with a lazy Markov chain ;P + ;I . The vectors 7 and
7t for this chain are the same as for the original one. However, @y (C) and
&t are decreased by a factor of 2. We conclude that for any Markov chain
and (a, B)-cluster C,

a0/ 10g2)3, 1 o)

real ﬂ'eStH < 5
« Tnin

I

(Note that the constant 40 is conservative in the sense that we only assumed
that |C| > 2, but it can replaced with 8 4 ¢ for any small § > 0 assuming |C] is
sufficiently large). It remains to prove Lemma 1.

4.1 A Bound on pu,~ Using Conductance

Recall that the matrix P is obtained by adding a nonnegative multiple of 7¢¢
to each row of P’ such that the resulting matrix is stochastic. The vector w¢5
is the principle left eigenvector of P¢*! corresponding to the eigenvalue 1. Write

this as P¢* = P’ + T, where the i’th row of T' is 7¢% (1 e pij). Now, for

any vector w > 0 and integer ¢t > 0,
’LUP,t _ ||’LUP't||7TeSt — w(Pest)t —w ((Pest)t _ Plt) _ ”wP/tHﬂ_est (6)
Further manipulation shows:

wp/t o ”wp/t”?Test — w(Pest)t _ ||w(Pest)t||7Test . (7)
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Bounds on the right hand expression have been extensively studied. It follows
from [8] (Sect. 3) that if P*** is lazy then we get the required conclusion:

man

1
H’LU(PeSt)t _ ||w(Pest)t||7restH < \/Wes? (1 _ (¢065t>2/4)t Hw . ||’LU||7TeStH ]

5 Experimental Results

As one of our main goals was to study large real-world Markov chains, we con-
ducted a series of experiments on both synthetic and web graphs to evaluate
how applicable our theoretical results might be in practice. We present two sets
of results — first, in an idealized situation where we have planted clusters in a
set of randomly generated graphs, and second, in a large crawl (over 90 mil-
lion pages and 2.4 billion edges) of the actual web. We describe both of these
below.

5.1 Synthetic Graphs

As a simple initial test, we constructed random graphs with planted clusters.
In this Gy p,m,q model, we first generate a graph on n vertices according to
Gp,p, where each directed edge appears with probability p. We then replace
the subgraph on m of these vertices with a graph generated according to G, q,
with g > p; these m vertices will form our planted cluster. In these small toy
experiments, we held n at 1000 and m at 100.

We define a (non-reversible) Markov chain on this graph in the natural way
— each vertex is a state, whose outgoing transition probability is divided among
its out-neighbors. We expect the isolated stationary distribution of the planted
cluster (7°* in the notation of Section 3) to be close to that induced by the
stationary distribution of the large chain (77°) when ¢ is large and p is small.

We generated a series of random graphs fixing ¢ at 0.3, while varying p from
0.01 to 0.03. Here the value of 3 should increase as p increases, leading to an
increase in our error |77 — 7¢||. We generated 10 graphs for each value of p,
and show the mean error in Figure 1.
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Fig. 1. Error fOl" G1000,p,100,0,3 Fig. 2. Error fOl" G1000,0,015,100,q
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For Figure 2, we fix p at 0.015, while varying ¢ from 0.15 to 0.3. The value of
« should increase as ¢ increases, leading to a decrease in approximation error.
(Note the vertical scales do not start at zero in these figures.)

The main observation here is that the approximations 7¢! are relatively ac-
curate, even though the values of 3 for these clusters can actually be quite large.
We are helped here not only by the clusters themselves, but by the global struc-
ture of the graph. Since in this random graph model the induced stationary
distributions both inside and outside the cluster should not be too far from uni-
form, we are in the favorable situation where the incoming probability provided
by the larger chain to the cluster (77¢%) is not far from that provided by the
cluster in isolation (765t = mest).

5.2 Web Graphs

We then conducted large-scale experiments on a crawl of the web consisting
of 90,560,988 web pages and 2,419,954, 245 links. On this graph, we analyzed
the classic vanilla PageRank Markov chain with an e-reset of 0.1. Without the
planted clusters in the synthetic graphs, the question of how to find clusters in
the web graph becomes important. We imagine that clusters will be determined
based on external information (either through textual analysis — e.g. all pages
containing “Manchester United” or all pages belonging to a specific domain). In
our experiments, we used the latter approach — selecting all pages that belong to
yahoo.com (2,179,242 pages), microsoft.com (42,511 pages), princeton.edu
(28,486 pages), and stanford.edu (72,970 pages) as four candidate clusters.
These candidate clusters appear very promising at first, as at stationarity in the
large PageRank chain, very little probability mass is carried out of the cluster via
natural links (as opposed to the e-reset). As the following results show, however,
the differences between 77¢% and 7%t for each of these clusters is very large:

yahoo.commicrosoft.comprinceton.edu stanford.edu
Error 0.624 1.761 0.700 0.739

Upon inspection, the reason for this becomes clear. Even though the actual
links in the web graph keep almost all of the probability mass of each cluster
within it, PageRank’s e-reset guarantees that 5 will be at least ¢(1 — ), where
7 is the fraction of pages in the web graph that belong to the cluster (and
thus almost negligible). Also important is that unlike in the synthetic graphs
above, the incoming probability to the cluster from the larger web (77¢%!) is very
different from the cluster’s own stationary distribution, which we use for 7¢.
This problem will likely be present in any proposed cluster in the web.

However, our earlier analysis indicates that we should still be able to accu-
rately approximate a domain’s induced PageRank if we have some estimate of
77¢  One natural idea is to run the global PageRank Markov chain P for a
small number of iterations ¢, and then use the resulting probability distribution
x! to obtain an estimate 7¢%* for 77¢%!. Specifically, for any page j in the cluster
C, 7£°" will be proportional to 3, {pi;.
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10 15 10 15
terations of Global PageRank terations of Global PageRank

Fig. 3. Error for princeton.edu Fig. 4. Error for microsoft.com

The results of this approach are shown in Figures 3 and 4 for princeton.edu
and microsoft.com. In both figures, the lower solid curve indicates our approx-
imation error ||77¢% — w¢t||, as a function of ¢, when we use z to generate 7.
By comparison, the higher dashed curve indicates the error if we were to simply
use the distribution on C' induced by z‘; i.e. if we use p!/p*(C) for each page
i. We see that our error is small even for very low values of ¢ (around 0.1 for
t =2 and 0.05 for t = 5), and much better than if we had used only the global
PageRank vector z¢. (In fact, for princeton.edu, the error at ¢ = 0 might
be reasonable, and can be obtained without any computation on the crawl.)
Thus, we can take advantage of clusters in the web even in this more challenging
setting.

Acknowledgements. We thank Laci Lovasz, Frank McSherry, and Alistair
Sinclair for numerous helpful discussions.
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Abstract. We describe an architecture requiring very few changes to
any standard von Neumann machine that provably withstands coalitions
between a malicious operating system and other users, in the sense that:

1. If the operating system permits a program to run, then the program
produces the same outputs as it would produce if it were running
on an ideal, single-user machine; moreover, even if the operating
system behaves according to expectations only most of the time, the
programs get executed.

2. The only information leaked by a program to the malicious coalition
is the time and space requirements of the program.

3. If the malicious operating system is dynamically replaced by a good
operating system, then the latter can quickly and correctly determine
what memory resources are available for future programs, as well as
how much time is left for each of the currently executing programs,
and can distribute these resources without any restrictions. This can
be accomplished without restarting currently executing programs.

To our knowledge, ours is the first attempt to provide provable guaran-

tees along these lines, and the first treatment of any kind, provable or
otherwise, for the third property.

1 Introduction

The problem of correctness of programs is central to many fields in computer
science. In the area of formal methods, there has been extensive research on pro-
gram specification and verification; in the theory community, work on checking,
self-checking, and self-correcting programs, as well as checking memories, has
been quite influential. These efforts typically assume a well-behaved operating
system that does not, for example, tamper with the actual programs being run,
and that cannot be exploited by a malicious program, such as a virus or a Trojan
horse, to tamper with other programs or their results.

The trustworthiness of the operating system may have nothing to do with the
intentions of the designer of the software. An operating system is so complex that
many regard the task of proving correct such a large program to be infeasible in

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 56-67, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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practice (if not in theory). Such quasi-inherent vulnerabilities can have a chilling
effect on software development.

There have been some efforts toward addressing these concerns; in particular,
trusted platforms such as the Palladium chip (or NGSCB), the Trusted Mobile
Platform [4], and the fine research on XOM (Execute Only Memory) [1-3]!.
These previous works are very holistic: they attempt to provide full program-
ming functionality, with all the capabilities of current machines and languages.
Perhaps for this reason, there is no full specification of the threat model, and no
full description of what is provided in the face of such (an unspecified) threat.
Some steps in this direction are taken in [3], which employs model checking to
assist in verifying certain aspects of XOM?2.

We focus on what can provably be achieved using a slightly altered instruction
set for a von Neumann machine. Although the scope of our results is more
modest — we consider only a simple model, in which each user can submit a
single program, there is no communication and no external memory — we believe
that a theoretically sound approach is warranted, as in general it is hopeless to
prove things about extremely complex systems. The proof of concept described
here is an important step toward a completely general result.

We note that many natural modifications, for example, modifying the model
to allow programs to arrive dynamically, may be achieved without substantial
changes in the architecture or the notions of correctness and privacy. For sim-
plicity, in this extended abstract we restrict our attention to the more basic
setup.

We first define an ideal machine, which hosts a single user, by describing
an instruction set for the machine. There is nothing unusual about the ideal
machine. We then define conforming programs. These are programs that assume
the memory to which they have access is arranged in a linked list, or chain,
of blocks of a given size, and that produce the same outputs independent of
which physical blocks are organized into this chain. This is a very rich class of
programs, as any program can be written in a conforming fashion. Correctness
for conforming programs is defined by their behavior on the ideal machine. That
is, we only ensure correctness relative to behavior on the ideal machine, with no
outside notion of specification etc for the programs.

Next we define an architecture for a real-life, multi-user machine. The multi-
user machine is a von-Neumann machine with a few extra instructions and a
few compound instructions, that is, sets of a small number of instructions that
must be executed atomically (either all instructions in the set are executed or
none of them is). The heart of our work is the construction and dismantling of
the chain of memory blocks used for each program. Our programs begin with a
declaration of their time and space requirements. The architecture ensures that
execution of a program cannot begin until all its requested resources have been
allocated to it; that memory allocated to a program cannot be accessed by any

! In these cases one of the principal applications is content protection; this is not our
goal, and our work has no bearing on that topic.
2 As the authors note, model checking does not provide a rigorous proof of correctness.
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other program — including the operating system; and that resources cannot be
taken away from the program before it has been allowed to run for its declared
time bounds. The architecture also ensures that dismantling completes; in other
words, the system ensures protection against memory leaks.

Actual allocation of resources — which programs are given memory to run in,
and which programs may take steps when — is under control of the operating
system. Thus, programs may be denied resources, and they may fail to make
progress. Intuitively, however, we ensure that any progress is good progress:
running for some number of steps on the multi-user machine yields the same
outputs as running for the same number of steps on the ideal machine.

Finally, we give a complete characterization of the adversary and a rigorous
proof that for any such adversary, our architecture protects against the following
three adversarial goals. Here P is the program of an uncompromised user.

Causing Incorrect Outputs: Program P outputs a value different from what
would be produced were P running on the ideal machine and given the same
inputs.

Compromising Program Secrecy: Intuitively, the adversary “learns some-
thing about” the program P. This is formalized by distinguishing between two
programs, P and P’, having the same declared time and space requirements.

Poisoning the Well: A faulty operating system (possibly colluding with a sub-
set of the users) destroys the data structures used for managing memory and for
keeping track of which programs are currently executing. The adversary succeeds
if, when the faulty operating system is replaced by a good operating system, the
latter cannot in constant time find and correctly allocate new resources, assum-
ing they are available, or de-allocate existing resources, or if it cannot permit
currently executing programs to complete their execution.

To our knowledge, ours is the first work to even articulate protection against
the third adversarial goal, on which we now elaborate. We may think of the
operating system as “moody” in that sometimes it is operating (intuitively)
correctly, and sometimes not. There can be many reasons for moody behav-
ior. For example, being large and complex, certain parts of the system may be
correctly written, while others are flawed, and a change in “mood” might cor-
respond to a jump to a different part of the operating system. Alternatively,
except in some unusual combination of circumstances, or in the absence of other
malicious programs, the operating system might work correctly, but an unfor-
tunate combination of events may occur, or a malicious program might manage
to exploit a vulnerability in the system, that, for example, causes it to fail to
correctly allocate resources. Finally, an operating system in a bad state might be
re-started (without restarting the other, concurrently running, programs), which
might restore it to a good state.

We would like that when the operating system is in a bad mood it cannot
“poison the well,” that is, make things impossible or even very difficult for a
future, correct operating system. Such “poisoning” could be achieved by mali-
ciously modifying the data structures describing available resources, for example
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by failing to return freed memory to a free list. Such a situation can frequently
be corrected by rebooting the entire machine, but this could cause all progress
to be lost on currently executing programs, which we view as unacceptable.

We prevent this situation from arising. Essentially our architecture specifies an
interface, i.e., a set of data structures and methods (functions) for manipulating
them. The architecture ensures that the operating system’s ability to manipulate
the data structures is restricted to the given set of methods. The methods in
turn ensure that a certain set of simple programs can efficiently carry out various
operating system tasks, such as accurately determining which memory blocks are
available, allocating memory, allowing programs to be loaded into the machine
and started, de-allocating memory, and enabling currently executing programs
to take steps. We can write these simple programs, given the interface. Decisions
about which ones to invoke, and when, are up to the operating system, but a
bad operating system cannot make the efficient and correct execution of these
procedures impossible; it cannot sabotage its own data structures. Thus we also
protect against memory leaks, and ensure that the operating system can always
be restarted without harming executing programs.

We close this section with some remarks about computational and physical
assumptions. Our results do not rely on any computational assumptions. We
use no cryptography; compartmentalization is ensured by the architecture. We
assume that memory cannot be tampered with or otherwise accessed except by
the CPU. We further assume that a user is connected to the machine via a
secure channel (e.g. a terminal), and that there is a known upper bound n on
the number of users. We treat the most basic case, in which each user ¢ wishes
to run a single program P;. We assume programs from non-malicious users are
conforming. No privacy or correctness guarantees are made for non-conforming
programs, although naturally a non-conforming program will not be able to
compromise the privacy or correctness of any conforming program. Finally, we
do not impose an artificial restriction on the distribution of the resources between
the various users; that is, we do not solve the problem by simply partitioning the
memory once and for all into disjoint blocks so that each user can access only
a single, predetermined, block. Such a solution would be inefficient, since under
this arrangement the unused memory of one user cannot be made available to
another user. We will describe a general condition on the machine which excludes
these types of inefficiencies. Intuitively, programs are allocated only the resources
they request; if a new program arrives and the resources it requests are available,
in particular, if sufficient memory is available, and the operating system is in
a good mood, then the operating system should be able to allocate the desired
amount of memory to the new program.

In the next several sections we give a bit more detail about the basic compo-
nents discussed above. To achieve the necessary degree of rigor to substantiate
our claims of provability requires extremely detailed definitions and arguments.
These are given in the full paper®.

3 To be made available on the Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc.
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2 The Ideal Machine and Conforming Programs

The goal of a user is to execute a program. We assume that the programs were
originally written for a von Neumann type random access machine with a single
input/output channel. To make this assumption more explicit we fix a machine
Nym of this type, consisting of m registers each containing ¢ bits. Although
we give (in the full paper) a complete description of the instruction set of this
machine, the particular choice of the instructions is not important; our results
could be formulated with any instruction set which includes input/output in-
structions for the single channel. The only exception is the instruction INPUT
defined below. This is a special input instruction which will be able to cause a
program to begin execution. (There is another input instruction input with the
usual meaning.)

Several of the instructions for N, ,, have parameters. We assume that if the
instruction requires k parameters and the instruction is in location u, then the
arguments are in locations u + 1, ..., u + k.

A program for NV, ,, is a sequence of integers followed by an end-of-program
delimiter. The special single-parameter input instruction INPUT z treats x as
the starting location into which the program should be loaded (from the unique
input/output channel). The effect is a loop during which a program instruction
(integer in the sequence) is read and, if it is not the delimiter, it is stored in
location z and x is incremented to x+ 1. When the delimiter is reached control is
transferred to the initial instruction of the newly loaded program. More precisely,
if the INPUT instruction is in location L of N, then control is transferred to
location L + 2. We therefore have the following convention for invoking the
INPUT x instruction: if the INPUT instruction is in location L of N ,, then, on
invocation,  should have value L+2 (since INPUT is a one-parameter instruction,
with parameter x, we have that z itself is in location L + 1).

In real machines programs are allocated memory in blocks (pages), and the
actual memory used need not occupy a single contiguous region. The same will
be true on our multi-user machine. The blocks will be organized into a linked
list, and each block will have some fixed size, or number of registers, £. We will
therefore make the simplifying assumption that the program originally written
for the ideal machine N, ,, is already designed to tolerate storage allocations of
this type. (We may think of the actual set of blocks allocated as a set of additional
inputs provided to the program.) Such a program is called a conforming program.
A conforming program has the property that its outcome depends only on the
program itself (including its input), and not on the choice of the blocks allocated
to it: the output of P is uniquely determined by P. Note that a conforming
program never tries to access a register not allocated to it.

When a conforming program is run on the multi-user machine our notion of
correctness will be with respect to its execution on N ,,. If allowed to run to
completion, the outputs should be the same as those produced when the program
is run on N, ,,, (because the program is conforming, it is agnostic with regard to
which blocks of NV, it is actually assigned.) More generally, since the program
may not be run to completion, we require, intuitively, that at any point in the
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execution on the multi-user machine, the output sequence produced is an initial
segment of the output sequence produced when run to completion on N ,,. It
is important that in speaking about correctness, when we speak of output of
a conforming program we mean only a sequence of output bits (or integers),
without their timing.

We will discuss the privacy requirement after giving further details about the
multi-user machine.

3 The Multi-user Machine and the Adversary

The intuition behind our secure machine, called M, is that the operating system
never exactly “does” anything, it just enables certain pre-specified sets of state
transitions to be (atomically) executed. That is, the architecture specifies an
interface — data structures and methods, or functions, for manipulating them —
and the operating system’s ability to manipulate these structures is restricted to
the given set of methods. Given the interface it is easy to write a set of simple
programs to efficiently carry out the various operating system tasks, such as
allocating memory (if and only if available) and permitting a user’s program to
take a step. Decisions about which tasks to schedule, and when, are up to the
operating system.

3.1 The Machine M

In our simple model of multi-user computation, a number n of users share the
resources of a single machine. Each user has its own dedicated input/output
channel for communicating with the machine. We treat the operating system as
a special user, who sends instructions to the machine through a special control
channel.

We assume that the machine works in discrete time units. At each time the
operating system sends an instruction, through the control channel, and as a
result the machine changes the contents of a constant number of its registers.
A compound instruction is a small number of simple instructions, to be exe-
cuted atomically; that is, either all the simple instructions are executed or none
are. We assume that the architecture supports atomic execution of compound
instructions. These compound instructions are the methods, or functions, men-
tioned earlier. A simple instruction can be executed only as a part of a compound
instruction. This restriction will ensure that, unlike in a machine with von Neu-
mann type architecture, the operating system cannot read or change the contents
of the registers in an arbitrary way. We will guarantee the desired properties of
the machine through the right choice of the set of compound instructions.

We will require three types of instructions for the operating system. One type,
roughly speaking, is needed for interacting with the user; for example, obtaining
resource requests. Instructions of this type are not at all new. A second will be
needed to enable the user’s program to take steps. These are slightly unusual, and
must ensure that the operating system does not learn the instructions executed
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by the user’s program. Also, they have “side effects” involving bookkeeping, as
the operating system monitors the number of steps taken by each program.

The third type of instruction is used in memory allocation and de-allocation.
Memory management is the key to everything we do. Proper “compartmental-
ization” of the memory is key to privacy (no program, including the operating
system, may learn the contents of memory allocated to another program), and
to correctness (no program, including the operating system, may tamper with
the contents of memory allocated to another program). Proper manipulation of
memory, including the bookkeeping data structures, is essential to efficient allo-
cation of resources (the bookkeeping data structures must accurately reflect the
allocation of memory at all times).

M will have registers of the same size as N, that is, ¢ bits. Registers
0,1,...,m—1 will have the same role as in NV ,,,. Apart from that, for each block
of size & there will be a constant number of registers reserved for bookkeeping
information regarding the block. These will be called the block registers. The
information stored in them includes the user u, whose program P, can use the
registers in the corresponding block, and some information about the sequence
of blocks By, ..., B; used by P,. (We will call such a sequence a chain.) There will
be a constant number of registers reserved for each user u as well. These registers
will be called the user registers. These will contain information of the following
types: the declared amount of necessary memory and time for program P, , how
much time has been used up already by program P,,, and which are the first and
last blocks in the chain used by P,. In the user registers there will be also some
information about the running program P,, which cannot be stored in the blocks
while other programs are executed (e.g. the contents of the accumulator and the
instruction pointer; the operating system will have no instruction permitting it
to access these two registers).

We will consider the set of chains as a directed graph F', whose vertices are
the blocks. If By, ..., B; is a chain (By, B1), ..., (B;_1, B;) are edges of F'. Since
for each user there may be a chain, the graph F consists of several pairwise
disjoint paths. Some of the nodes may be outside all of the paths; we will call
these isolated nodes. We color the nodes in the chains with the integers {1, ...,n},
which represent the n users. The nodes of the chain which has been built for
user u are colored by u. The isolated nodes have color 0. The vertices are always
color coded by the contents of block registers in the corresponding blocks. One
of the instructions enables making a chain longer, that is, to attach an isolated
block at the end of a chain and color it with the appropriate color.

The attach instruction can only be issued by the operating system. Instruc-
tion attach(z,y, z) first checks that 2 and y are distinct block indices and that
z € [n] (that is, z is a user name). If not, and if any of the following set of
conditions holds, then the instruction becomes a no-op: Program z has started
executing, block = or block y has already been allocated to another program
or both have already been allocated to Program z, the chain is non-empty and
block z is not the head of the chain. Otherwise, y is added to the chain, and
becomes the new head. The instruction is either carried out completely or not
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at all. Therefore we may think of the operating system as being able to give
instructions for graph operations. When the chain allocated to z is empty and
both x and y are isolated, this starts a chain of color z, with x as the tail and y
as the head. Note that the above conditions ensure that the chain never contains
a loop.

Another graph operation makes it possible to dismantle a chain, by cutting off
its last node. However it does not work while the program of the corresponding
user is running. Whether this is the situation is determined by the content of
one of the user registers. If the instruction which cuts down the last node of
a chain colored u is applied at a time when the program P, already used up
its allocated time, then the contents of all of the registers are erased in the
corresponding block.

The remaining type of instruction always relates to a specific user u. There
is one instruction for each of the following tasks:

1. Ask for the first input from user u, which is the declared amount of needed
time;

2. Ask for second input from user u, which is the declared amount of needed
memorys;

3. Check whether the number of blocks in the chain colored w is the same as
the declared amount of needed memory, and if the answer is yes start the
program P,;

4. Check whether the user u has consumed its declared amount of time, and if
not then execute the next step in program P,.

Instructions of Type 3 can be executed quickly since one of the block registers
corresponding to the last block of a chain contains the length of the chain, and
as we have told already one of the user registers of user u contains the address
of this last block.

Recall that running a program on the multi-user machine should be “just
like” running the program on the ideal machine N ,,. The ideal machine has an
accumulator and an instruction pointer. The secure machine will have special
registers for each user that play the role of the accumulator and the instruction
pointer (these are the first two registers in the chain assigned to the user). These
registers are colored with the color corresponding to the user, and so remain
private.

A special instruction start(u) is used to start the program of user u, as
described in Type 3 above. Let Ly be the address of the first register in the
chain assigned to u. Once the bookkeeping has been verified (checking that
the required amount of memory has been allocated and execution has not yet
begun) the value Ly is loaded into the instruction counter, the instruction INPUT
is loaded into location Lg (so the first instruction executed by user u will be the
INPUT instruction, which will read in the program), location Lo + 1 gets the
value Lo + 2 (so that the program will begin loading into location Lo + 2). As
we discussed in the previous section, once the program completes loading, the
instruction pointer will be set to 2 + the location of the INPUT instruction, that
is, location Lg + 2, which is where the program was loaded.
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Instructions of Type 4 are of the form exec(u). After testing that u is a user
(a number in [n]) and doing some bookkeeping (e.g., making sure P, has not
exceeded its declared time), this instruction permits program P, to take a step.
Formally, the registers allocated to P, describe a state of N ,,; the instruction
indicated by the program counter for u causes a state transition to a new state of
Ny.m, and hence describes what should be the new configuration of the registers
allocated to Program P,. The effect of instruction exec(u) is to modify the
registers allocated to Program P, accordingly — unless some register involved is
not allocated to u, in which case the instruction becomes a no-op. Note that,
since each step on the ideal machine N ,, involves only a small number of
registers, each step of the multiuser machine also involves only a small number
of registers, so the updates that must be performed atomically in the exec(u)
instruction are not numerous (remain below some constant).

There is also a bookkeeping side effect of exec(u), which is to increase the
contents of the register, owned by the operating system, that keeps track of how
many steps Program x has executed.

The formal definition of each instruction describes exactly which registers are
involved (may be modified by the instruction) and defines how the contents are
modified. This will be important for making rigorous claims about the behavior

of M.

3.2 The Adversary

Users and the operating system are not trusted, and may collude arbitrarily
against other users. Colluding parties may communicate out of band. We there-
fore think in terms of a single adversary, denoted A. The adversary is assumed
to have access to the declared time and space requirements of all programs, as
well as knowledge of which blocks of storage they have been assigned, if any, and
how many steps they have taken. Indeed, without loss of generality all informa-
tion known to the operating system is assumed to be known to A, even if the
operating system is not faulty?. The adversary may additionally subvert users
and the operating system, in an adaptive fashion. Any information known to a
subverted user, in particular, the contents of all registers allocated to the user,
become known to A. We may also assume that the adversary learns any inputs
the subverted user’s program has received. In addition, if the operating system is
subverted then the adversary controls whether or not resources are allocated to
future programs, which memory locations will be allocated to which programs,
whether or not allocated memory will be de-allocated, and whether allocations
and de-allocations in progress when the operating system is first subverted will
be completed; and the interleaving of steps between user programs.

Our computational model is sufficiently general that it allows for the possi-
bility that the operating system may be restarted or reloaded (although we do
not define such an event in the model).

4 Even if the operating system is nonfaulty, a coalition of all users but z can gain
information about the time and memory usage of P.
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It is possible that the adversary subverts only a few users, leaving multiple
users not subverted. Since we have no communication between users, we state
all of our goals (apart from efficiency) from the point of view of a single, but
arbitrary, user. Therefore, when we consider the correctness or secrecy of this
user, we may assume that all of the other users are subverted and so the adversary
gets all of the information available to all of the other users.

We say an architecture is secure if it prevents an adversary from achieving any
of the three goals mentioned in the Introduction: causing incorrect output for a
program P of an uncompromised user, compromising the privacy of program P,
or poisoning the well. Intuitively, a secure architecture limits the adversary to
temporarily mounting a denial of service attack. Service is restored as soon as
the operating system returns to good behavior, so if A does not subvert the
operating system then the programs of non-subverted users may run.

3.3 Weak Efficiency

Our efficiency requirement (see discussion of Poisoning the Well) may be stronger
than necessary. Roughly speaking, it requires not only that the operating system,
in a constant amount of time, be able to add a new register to the memory
collected for User wu, provided that there is still available free memory, but it
also requires the operating system to know at all times where such an unused
register can be found. That is, the operating system has to maintain a data
structure where an unused register can be found in constant time.

Given a well-behaved operating system this can easily be done using known
techniques, and the fact that the operating system has to maintain such a data
structure is not an unreasonable requirement since something like this has to
be maintained for the efficient use of the memory. However we require that the
operating system has to do it in a secure way. That is, this data structure cannot
be destroyed even by the operating system We sketch a technique for achieving
exactly this in the next section.

On the other hand, for practical purposes, it may be sufficient that the op-
erating system maintain such a data structure in the traditional unreliable way
outside the machine M, or inside but in an “insecure” way. This would mean that
sometimes this data structure will be lost, but the operating system can always
rebuild it easily. On the average such a solution may be less expensive in terms
of resources than maintaining a secure data structure. Motivated by this, we
define a weaker version of efficiency, in which we only require that the operating
system can allocate an unused block of memory to a program in constant time,
provided that such an unused block exists and the operating system knows its
location. However weak efficiency does not guarantee that the operating system
is always able to find this location in constant time.

Theorem 1 in the full paper states that when a conforming program is run on
the machine M then both the correctness and privacy conditions are guaranteed.
Moreover, the machine is weakly efficient. The proof is a conceptionally simple
but very detailed induction on the states of the data structures. In the next
section we sketch a modification of M that, in addition, is (strongly) efficient.
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4 Achieving Strong Efficiency

We briefly sketch changes to M that will permit strong efficiency. We first de-
scribe the changes from an operational standpoint, and then remark on the
conceptual elements of the proof.

At all times the free blocks will be connected via a doubly-linked cycle, rep-
resented by 2 additional registers in each set of block registers, called forward()
and backward(). We assume that if the machine is rebooted all registers are
zeroed out, so we want that the implicit meaning of 0 as a forward, respectively
backward, pointer for block ¢ is ¢ + 1 mod ¥, respectively ¢ — 1 mod x; here x
is the total number of memory blocks in the machine. We model the available
blocks with a graph which contains at all time a single cycle. At time ¢ the graph,
F; is defined as follows: for all blocks 1 < 4,5 < y, available (that is, colored
0) at time ¢, there is an edge from block 4 to block j if and only if the forward
pointer for block ¢ contains the value j — (i+1) mod x and the backward pointer
for j contains i — (j — 1) mod ¥.

In addition, we define a new register, which can be read by the operating
system, called pick. At all times ¢ > 0 this will contain an (arbitrary) element
of the graph F}, that is, the index of some available block.

The attach(z,y, z) instruction now also causes y (and possibly z, if it has
color 0) to be deleted from the cycle F}, and pick to be updated. Similarly, the
detach(z, z) instruction causes x to be added to the cycle. Note that the updates
to the registers forward(), backward(), and pick are defined by the attach and
detach operations, and are therefore only indirectly under the control of the
operating system. This interface is key to ensuring that the operating system
cannot poison the well.

We remark that a block allocated to a program that has not yet begun ex-
ecuting is still considered to be available, as the operating system may change
its mind and de-allocate the block, possibly giving it instead to another user.
Thus, a block corresponding to the head of a chain under preparation for a user
whose program has not yet begun technically should also be part of the cycle F;.
Also, to ensure availability of blocks on chain allocated to a program P, that has
completed, we modify the exec(u) operation to take appropriate action when
timecount(u) first exceeds 2 4+ decltime(u).

Note that our informal description of the modified attach and detach oper-
ations involved discussion of a graph F; that depends on the entire history of
the execution of the machine. The formal specification for the strongly efficient
M involves extending the instruction set of M to incorporate histories (see
Theorem 2 and its proof, in the full paper), but operationally there is no such
complication.

5 Extensions

So far we have only considered the situation when each user has a single program
to be executed. We briefly mention some other possible situations which can be
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handled with a similar but somewhat more complex set of instructions than the
one that we have provided for the solution of the basic problem. Solutions to
these problems are outlined in the full paper; however, there is much room for
future research.

1. Each user has a fixed sequence of programs to be executed. The difficulty
here is that the user may have prepared a sequence of inputs but the operating
system may refuse an early program in the sequence (perhaps because insufficient
memory is available), and the user must adapt the input sequence accordingly.
Thus, the model must be modified to incorporate additional interaction between
the machine and the user.

2. The amount of time, respecitvely, space, needed for the program is not
known in advance; that is, the program, depending on the partial results, may
ask for additional time or space.

In the two generalized problems mentioned above the notion of information
protection changes in the sense that we must consider all of the requests for
additional resources and their timing as public information that is not protected.

3. An interesting and important area is the question of communication among
users. (A related topic is the handling of interrupts, such as the firing of a timer
or the movement of a mouse.) We see many ways to address this, and several
interesting questions arise concerning the appropriate changes to the definitions
of security and efficiency. For example, in addition to information protection,
one may also want protection from wasting time on unwanted communication
initiated by others. We intend to return to these questions in another paper; see
the full paper for some specific suggestions.

4. Many programs are long-lived. Such programs are essentially virtual users.
There is no reason for these programs if they cannot communicate with other
programs. Hence, the exact implementation of this concept depends very much
on interprogram communication and signaling.
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Abstract. Scoring matrices are widely used in sequence comparisons. A
scoring matrix + is indexed by symbols of an alphabet. The entry in «y in
row a and column b measures the cost of the edit operation of replacing
symbol a by symbol b.

For a given scoring matrix and sequences s and t, we consider two
kinds of induced scoring functions. The first function, known as weighted
edit distance, is defined as the sum of costs of the edit operations required
to transform s into t. The second, known as normalized edit distance,
is defined as the minimum quotient between the sum of costs of edit
operations to transform s into ¢ and the number of the corresponding
edit operations.

In this work we characterize the class of scoring matrices for which
the induced weighted edit distance is actually a metric. We do the same
for the normalized edit distance.

Keywords: edit distance, normalized edit distance, metric.

1 Introduction

Comparison of sequences is an important problem in computer science which
has several applications: computational biology [4], text processing [1], pattern
recognition [7], pronunciation modeling [9], etc.

It is common to measure the distance between two sequences s and t by
computing the minimum cost of transforming s into ¢ through a sequence of
weighted edit operations. These operations are: insertion, deletion, and substitu-
tion of symbols.

Let X' be an alphabet and Yy = X U {V}, where V ¢ Y. The symbol V is
used to represent insertions and deletions. A scoring matriz v for X' is a matrix
whose elements are real numbers. The matrix v has rows and columns indexed
by symbols in Yv. For a,b € Yy, we denote by v5_p, the entry of v in row a
and column b and it represents the cost of the substitution of a for b.

A simple weighted edit distance is known as Levenshtein distance [6]. The
corresponding scoring matrix is such that v p, = 0ifa =band y5_p =1
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otherwise. However, not every scoring matrix induces a scoring function that
can be properly called a weighted edit distance, in the sense that the scoring
function might not be a metric. Sellers [10] shows that a sufficient condition for
the scoring function to be a metric on X* is that v is a metric on Yy. We show
in this work that this condition is not necessary. We characterize the class of
scoring matrices that induces a proper weighted edit distance. For example, it
follows from Theorem 2 that the matrix

abcV
al0131
b1011
c4101
V1110

induces a metric on X*, even though va_.c # vc—a, Ya—c £ Ya—v +7v—c and
Yc—a ﬁ Ye—v +Yv-a.

Marzal and Vidal [7] defined another criterion to score alignments that de-
pends not only on the edit operations involved but also on the number of such
operations. This criterion is known as normalized edit distance. Similar to what
happens with the conventional weighted edit distance, not every scoring ma-
trix induces a proper normalized edit distance. We also characterize the class of
scoring matrices that induces a proper normalized edit distance.

This paper is organized as follows. Sections 2 provides a brief description of the
concepts, and we characterize the classes of matrices that induce, respectively,
normalized edit distance and weighted edit distance. In Section 3 we prove the
main result of this paper and we finalize in Section 4 with some remarks.

2 Preliminaries

We denote a sequence s over X by s = s(1)s(2) ... s(n), where s(i) € X. We
say that the length of s, denoted by |s|, is n. We denote by € the empty sequence.
The sequence a” is the sequence with length n consisting of the concatenation
of n characters a. The sequence st represents the concatenation of the sequences
s and t. The set of all sequences over X is denoted by X*.

Let Yy = Y U {V}, where V ¢ Y. We call space the symbol V, which is
used to represent an insertion or a deletion. An alignment of (s,t) is a pair of
sequences (s,t') obtained by inserting spaces in the sequences s and ¢, in such
a way that |s’| = |¢/| and there is no ¢ such that s'(i) = /(i) = V. We say
that s'(¢) and /(i) are aligned in (s',t') and that |(s',t')| = |¢'| is the length of
the alignment (s’,%’). We denote by A 4) the set of all alignments of (s, ).

An alignment can be visualized placing s’ above t’, as showed in the following
examples.

acVcecbVbbbV VVVVaccbbbhb
cVaVacVVecech caaccbVVVVV
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The figures above represent two different alignments of (accbbbb, caaccb). The
left figure represents the alignment (acVcbVbbbV,cVaVacVVceb), while the
right figure represents the alignment (VVVVaccbbbb, caaccbVVVVYV).

Given a scoring matrix v, we define the functions v, and vN, that associate
the following values for each alignment (s',t'):

[(s ,t)]
vy (8 8) = D Ve ()=t (1)
i=1

and
N oy Oif|s|:\t|:0,
uNy (s, 1) = Zl'(:sft N s @)~ Im otherwise .

I(s,t)

We call vy (A) the score of the alignment A, and vN, (A) the normalized score
of the alignment A.
We also define functions opt, and optN, as

opt(s,t) = emAig,,,) {vy (A)} and optN,(s,t) = Aglv‘\ig,o {vN, (4)} .

If v, (s',t') = opty(s,t) or vN, (s',t') = optN,(s,t) we say that the align-
ment (s',t') of (s,t) is optimal or N-optimal, respectively.

For a given set S, we say that a function dist is a metric on S if dist satisfies
the following conditions. For each s,t,u € S,

1. dist(s,t) > 0if s # ¢, and dist(s,t) =0 if s = ¢;
2. dist(s,t) = dist(t, s);
3. dist(s,t) < dist(s,u) + dist(u,t).

If opt, or optN, is a metric on X™* we say that the scoring matrix « induces
a weighted edit distance or a normalized edit distance, respectively.

The most common class of scoring matrices that induces weighted edit dis-
tances is defined below. Let IM® be the class of scoring matrices for X that have
the following properties. For each a,b,c € Yy,

1. Ya_p >0ifa#b, and y4_p =0 if a=b;
2. Ya—b = To—ai
3. Ya—c = Ya—b t To—c-

In other words, v is a metric on Xy. Sellers [10] showed that scoring matrices
in this class induce weighted edit distances.

However, the class IM" defined below contains IM® and, as mentioned below,
it consists of all scoring matrices that induce weighted edit distance. Let IM" be
the class of scoring matrices for Y’ that have the following properties. For each
a,b,ce X,

1. vamv =9v—a > 0;
2. yap>0ifa#Db, and v5_,1, =0 if a = b;
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3. if 74 p <Ya—v +Yv_p, then 74y = 1p_a;
5. min{va_c,va-v + Yvoc} < Va_b + Tboc-

We also define the class IM" of scoring matrices for X that have the following
properties. For each a,b,c € X,

Ya—v = Yv—a > 0;

Ya_p > 0if a # b, and v5_,, = 0 if a = b;

if 74 p <7Va—v +Yy_b, then va_p =1p_a;
Ya—-v < Ya—b + Yo—vi

min{ya—c,va-v +1v-c} < Ya_b + M_c;
Ya—v < 27y _b-

S ot L=

The following theorem, proved in Section 3, states that IM" consists of all
scoring matrices that induce normalized edit distances.

Theorem 1. Let )’ be an alphabet and v be a scoring matrix. Then optN, is
a metric on X* if and only if v € IM".

The similar theorem below states that IM" consists of all scoring matrices that
induce weighted edit distances. Its proof, omitted here, is an adaptation of the

proof of Theorem 1.

Theorem 2. Let Y be an alphabet and « be a scoring matrix. Then opt, is a
metric on X* if and only if v € IM".

It follows from the definitions that IM®¢ € MY, IM" € MY, IM® ¢ IM", and
M" ¢ IMC, as pictured in Figure 1.

MW

Fig. 1. Relationship among the classes IM", IM", and IM°
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This work was motivated by the following remark made by Marzal and
Vidal [7], who depicted the scoring matrix 7 below:

abV
al055
b501°
V510

They commented that opt, is a metric on X'y, but optN, is not a metric on Yy

since
7

1
3 = optN,(a,b) £ optN,(a, ab) + opt,(ab,b) = ) + .

It is worth noting that v € IM® but v ¢ IM".

3 Scoring Matrices That Induce Normalized Edit
Distances

This rather technical section is dedicated to the proof of Theorem 1, which states
that the class IM" consists of all scoring matrices that induce normalized edit
distance.

Lemmas 3, 4, 7, 8, 10, and 11 are used to prove one implication of Theorem 1,
namely, we prove that if optN,, is a metric on L™, then v € IM". More precisely,
considering that optN, is a metric, each one of these six lemmas shows that
must obey one of the six properties stated in the definition of IM".

Next we complete the proof of Theorem 1 by showing the other implication,
namely, that if v € IM", then optN,, satisfies the properties of reflexivity and
strict positiveness (Lemma 14), symmetry (Lemma 15) and triangle inequality
(Lemma 17).

Throughout this section we consider a fixed alphabet X' and a fixed scoring
matrix v for X.

Lemma 3. Suppose that optN, is a metric and that a is a symbol in ¥. Then
Ya—-v = Yv—a > 0.

Proof. Observe that the score of the alignment (a, V) is ya—v and that (a, V)
is the unique alignment of (a,€). So, va—.v = vN, (a, V) = optN,(a, €).
Similarly, we have that yv_a = optN, (¢, a).
If optN, is a metric, then optN,(a, €) > 0 and optN,(a, €) = optN, (¢, a).
Therefore, va—.v = optN,(a,€) = optN,(€,a) = yv—a > 0. O

Lemma 4. Suppose that optN, is a metric and that a and b are symbols in .
Then v54_p > 0ifa# b, and y5_,p, =0if a=b.

Proof. Suppose that a # b. Since (i) optN, is a metric, (#) the score of the
alignment (a,b) is v5_p, and (i) vN, (a,b) > optN,(a,b), it follows that
Ya—b = vNy (a,b) > optN,(a,b) > 0.
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Now suppose that a = b. Observe that A(a,b) ={(a,b),(aV, Vb), (Va,bV)}.
It follows from Lemma 3 that vN, (aV,Vb) > 0 and that vN, (Va,bV) > 0.
Since optN, is a metric, it is true that optN,(a,b) = 0. So, the only possible
case is that optN,(a,b) = vN, (a,b) =v5_p = 0. O

We need the following notation to be used in the next lemmas. We denote by
G the value of maxaex{va—v,v7v—a} and by g a character of X' such that

max{y,—-v,VWw—og} = G.

Lemma 5. Suppose that optN,, is a metric and that a and b are symbols in X.
Then, for each n > 0, we have that

UN'Y (g'”a_7 gnb> = ’ya_>b/(n + 1)7 } .
uNy (9"aV,g"Vb) = (va—v + Yv_b)/(n +2)

Proof. (sketch) We first comment that

optN,(¢"a, g"b) = min {

Ta—b Ya—v + Yv_b
vNy (9"a,9"p) = naJr 1 and vN, (¢"aV,g"Vb) = 42 :
So, to prove the lemma, we show that any alignment (s',¢") of (¢"a, g"b) is such
that

oN, (s/,#') > min {ya_p/(n + 1), (ay +79_p)/(n +2)} .

We examine four cases, covering all possible alignments of (¢™a, g"b). The
cases are: (1) a is aligned with b in (s/,¢); (ii) a is aligned with ¢ in (s',¢);
(iii) g is aligned with b in (s’,¢'); and (iv) a and b are aligned with spaces
in (s',"). For each one of these cases, we show that value of the alignment is as
desired. O

We need the following property in the next lemma.

Fact 6. Let a, b, and ¢ be numbers, with a < b+ c and ng =a/(b+c—a) — 1.
If n > ng, then a/(n+1) < (b+¢)/(n+ 2).

Lemma 7. Suppose that optN, is a metric and that a and b are symbols in X
such that Ya—b < Ya—-v + Tv—b- Then Ya—b = Tb—a-

Proof. Let n be any integer such that n > v5_p/(7a=v + Yv_b — Ya—b) — 1-
As consequence of Lemma 5 and Fact 6, we have that

_ ’Yaab < Ya—v +7V4>b

optN,(g"a, g"b) ntl nt2

Also, from Lemma 5, we have that

n+1’ n—+2

Suppose that optN,(¢"b, g"a) = (vp_v + Yv—a)/(n + 2). As a consequence of
Lemma 3 we have that

Ya—v +Yv_b _ Yo—v +v—a

OptN'Y(gna7 g”b) < n+2 n+2

= optN,(g"b,g"a) ,
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which is a contradiction, since optN, is a metric. Therefore, optN, (¢"b, g"a) =
("o—a)/(n+ 1). It follows that

Ya—b n n n n Tb—a
= optN b) = optN b =
n1 = OPtNy(g"2, g"b) = optN,(g"b, g"a) = "7,
which implies that v4 . = 7p_a- O

Lemma 8. Suppose that optN, is a metric and that a and b are symbols in .
Then va—v <7ab + Wb_v-

Proof. Since (a, V) is the unique alignment of (a, €), we have that optN,(a,€) =
N, (a, V). It is also true that optN,(a,€) < optN,(a,b) + optN, (b, €), because
optN, is a metric. From the remarks above it follows that

Ya—v = UN, < ; ) = optN, (a, €) < optN,(a,b) + optN, (b, €)
a b
We use the following fact in the next lemma.

Fact 9. Let x # y be real numbers and n be such that n > max {O, 2;’:; } If
o < o4, then z <y.

Lemma 10. Suppose that optN, is a metric and that a, b, and ¢ are symbols
in X. Then

min {va—c,Ya—v +7v-c} < Ya_b T Tb_c -

Proof. If ya_.v + 7v—c = Ya—Db + Yo then the lemma is proved. So, we may

assume that va—.v + 7v—oc # Ya—b + Tb_c-
Let n be a positive integer such that

2(Va—b + To—c) — (Ya—v +7v—c)

n > .
(Ya—v +7v—c) = (Va—b T Mo-c)

As consequence of Lemma 5, we have that

optN,(g"a, g"b) < Za:? and optN,(g"b,g"c) < Zb_)c . (1)

Using Lemma 5, we inspect the two possible values of optN,(g"a, g"c).
If optN,(g"a, g"c) = ya—c/(n + 1), then, since optN, is a metric, and us-
ing (1), we have that
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Zaji = optN,(g9"a, g"c) < optN,(g"a, g"b) + optN,(g"b, g"c)
< Ya—b + To—c ,
“n+l n+1

which implies, since n > 0, that va—.c < va_,b + To_c-

In a similar way, if optN,(¢"a, ¢"c) = (Yamv + Yv—c)/(n + 2), then
’YaHV + VVHC < ’Ya_>b ’Yb_>c _ pYa—>b + PYb—>C
+ =
n+2 “n+1l n+1 n+1
which implies, from Fact 9 and by the choice of n, that va_.v +7v—c < Va_b+
To—c- u

)

Lemma 11. Suppose that optN,, is a metric and that a and b are symbols in X.
Then ya—v < 2vy_pb-

Proof. (sketch)

By contradiction, we assume that ya_.v > 2yy_p. We choose k such that

2

k> Tv-b :
Ya—-v = 2Yy_b

and consider the sequences a, b, and a*b.

We can prove that optN, (a*,b) > optN.,(a*,a*b) + optN, (a*b,b), showing
that optN. does not have the triangular inequality property. This contradicts
the assumption that optN, is a metric. a

Lemma 12. Let s and t be sequences in X*. Then optN,(s,t) < G.
Proof. Let (s',t') be the alignment of (s,t) such that s’ = sV/*l and ¢’ = VI*I¢.
Then

_ Ishsy—v + [thrw—) NG _ G
I(s", )] - L))

where the last inequality follows from the definition of G. O

optN, (s, t) < uvN, (s',t)

Lemma 13. If a,b € X are aligned in an N-optimal alignment of (s, ), then

Ya—b < 7Ya-v + Tv—b -

Proof. Let (s',t') be an N-optimal alignment of (s,t) in which a and b are
aligned. By contradiction, assume that v4_ 1, > Yamv + Yv_p- Let j be an
integer such that s'(j) = a and ¢'(j) = b.

Then

N (s’(l)...s’(j—l) s'(j) V s’(j+1)...s’(|s’|)>
T\ HA) .G -1 VG EG L) . ()

Uy (8/7 t/> +Ya-v +Y¥v—b ~ Ya—b Uy (8/7 t/> 1o
()] +1 = Jy 41 <O

contradicting the optimality of (s',t). O
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Lemma 14. Suppose v € IM" and that s and t are sequences in X*. Then
optN,(s,t) > 0if s # t, and optN,(s,t) =01if s =¢.

Proof. Let (s',t') be an N-optimal alignment of (s,t). Since v € IM", we have
that, for each j, vs (j)—t (5 = 0. Then

Y (=t ()

optN, (s, t) = vN, (s',t') = >0.

(s

If s = ¢, then (s,t) is an alignment of (s, t) with vN,, (s,t) = 0. It follows from
the inequality above that optN,(s,t) = 0.

If s # t, then for any N-optimal alignment (s',¢') of (s,¢), there exists ¢ such
that s’(i) # t'(4), which implies, since v € IM", that ~, (i)—t (i) > 0. Given that
v € IM", it holds that for any j # i, v, ()=t (j) = 0. We conclude that

optN,,(s,t) = vN, (s, 1) = Vs ()=t () T 2 Vs ()=t () s Ts@=t@ o

|(s", )] RG]

Lemma 15. Suppose v € IM" and that s and ¢ are sequences in £*. Then
optN,(s,t) = optN,(t,s) .

Proof. Let (s',t') be an N-optimal alignment of (s, t). For each j such that either
s'(j) = Voor t'(j) = V, it holds that vs (jy—t (j) = Y (j)—s (j) Py the definition
of IM", item 1. For each j such that s(j) # V and t(j) # V, it follows from
Lemma 13 that vy (j)—t (j) < Vs (j)=>v T Yv—t (j)» Which in turn implies that
Vs (j)—t () = Vi (j)—s (j) Dy the definition of MY, item 3.

Using the remarks above we have that

225 Vs (=t ()
optN.,(s,t) = vN, (s',t') = (517
_ XM= 6) _

W) - oN, (', s") > optN, (¢, s) .

By analogous reasoning, we have that optN,(t,s) > optN,(s,t), which allow
us to conclude that optN, (¢, s) = optN, (s, t). |

We need this remark to be used in the next lemma.

Fact 16. Let z,y,z,w be real numbers, with y,w > 0. If z/w > x/y, then
(x+2)/(y+w) =z/y.

Lemma 17. Suppose that v € IM" and that s, t, and u are sequences in X*.
Then
optN,(s,u) < optN, (s, t) + optN, (¢, u) .
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Proof. Let A e B be N-optimal alignments of (s,t) and (¢, u), respectively. Define

Cy = {i| s(i) is aligned with V in A},
Cy = {k | u(k) is aligned with V in B},
Cs ={j | t(y) is aligned with V in A and ¢(j) is aligned with V in B},
Cy={(4,7) | s(@) is aligned with ¢(j) in A and ¢(j) is aligned with V in B},
Cs ={(j, k) | t(j) is aligned with V in A and t(j) is aligned with u(k) in B},
{ (i,7,k) | s(i) is aligned with ¢(j) in A and ¢(j) is aligned With}
Cs = : ,
u(k) in B and Ys(i)—u(k) < Vs(i)—t() T Ve(i)—u(k)
{ (i,7,k) | s(i) is aligned with ¢(j) in A and ¢(j) is aligned With}
Cr = : .
u(k) in B and Ys(i)—u(k) > Vs(i)—t() T Ve(i)—u(k)

So,
vy (A) = Z Vs(i)—v T+ Z Y-tz + Z Vs(@)—t(y) t Z Y-tz +
i€Cy jeCs (4,)€C (j,k)ECs
Z Vs(i)—t() T Z Vs(i)—t(5)
(4,3,k)€Cs (4,9,k)€C7
and
vy (B) = Z YV —uk) + Z V() —v T Z V(i) —v T+ Z V(i) —u(k) T
keC, jEeCs (4,)€C (j,k)ECs
Z V(i) —u(k) T Z V(i) —u(k) -
(4,3,k)€Cs (4,9,k)€C7

We now define an alignment C of (s, u) according to the following three rules.
For each (i,j,k) € Cs, align s(i) with u(k). For each remaining s(i) not yet
aligned, align s(7) with V. For each remaining u(k) not yet aligned, align V with
u(k). The score of such alignment is

Uy (C) = Z Vs(i)—=V + Z VWV —u(k) + Z Vs(i) =V + Z IV —u(k) +

ieCy keCy (1,7)€C4 (4,k)ECs
Z Vs(i)—u(k) T Z (Ys(i)=v + Vv—u(k)) -
(4,5,k)€Cs (4,5,k)€Cr

If (i,j) € C4 then, by definition of IM", item 4, we have that Vs(i)—t(j) T
Vt(j)—v = Vs(i)—v- Thus

Z Vs(i)—t(j) T Z MN(H—V = Z Vs(i) =V - (2)
(4,5)€Ca (4,5)€Ca (4,5)€Ca

Note also that if (j, k) € C5 then, by Lemma 13, it is true that v,jy_uwx) <
Vt(j)—v T YV —u(k)- The definition of M, item 3, implies that V() —u(k) =
Yu(k)—t(j)- Thus,

VV—t(i) T V() —ulk) = VV—t() T Yulk)—t() = Ve(G)—V T Yu(k)—t() >
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where the last equality follows from the definition of IM", item 1. Using again
the definition of IM", item 4, we have that

Z Wot(g) T Z Ve(G)—ulk) = Z YV —u(k) - (3)

(4,k)€Cs (4,k)€Cs (4,k)eCs

Using inequalities (2) and (3), we obtain that

Uy (A> + Uy ( > U’Y Z ’Yt(j —V + Z 7V~>t
j€Cs jeCs
=0, (C)+2 > Y9—u()
jECs
> v, (C) 42 Z +|C5]G . (4)
JGCs

The inequality (4) follows from G' < 2yy_.(;), which in turn follows from the

definition of IM", item 6.
Next we estimate the length of the alignments.

|A] = |C1| + |Cs| + |Cul + |C5| + |Ce| +1C7| < D |Cl,

| B = |Ca| + |C5] + [Cal + |C5| + [Cs| + [C7] < > |Cil,

IC| = |C1| + |Ca| + |C4| + |C5| +|Co| + 2|C7| > (Z@-) —|Cs] .

It follows that
A B
optN.,,(s,t) + opt,(t,s) = vN, (A) + vN, (B) = v7£1| ) + %'é” )
L w(A) 0y (B) 0, (0)+]GHG
B Zz|Cl| Zi|Ci| B Zi|Ci|
S Oy (C) +1Cs|G
G o (€]
Thus, to prove the lemma we show that (v (C) + |C3|G)/(|C| + |C3]) >
optN,(s,u). If |C5] = 0, the prove is done. So, we may assume that |C3| > 0. We

consider two cases.
If v, (C) /|C] > |C3|G/|Cs|, then, by Fact 16 and Lemma 12, we have that

0, (C) +[CslG
|C]+|Cs]
If v, (C) /|C| < |C3]G/|Cs], then, by Fact 16 and from the observation that
vy (C) /|C] is an upper bound on optN, (s, u), it follows that
0, (€) +1CHIG _ v, ()
ICl+1Cs|  — |C]|

>G> OptNW(S, u) .

> optN, (s, u) . O
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4 Final Remarks

Given a rational scoring matrix 7y, the problem of deciding whether v belongs
to IM" (or to IM") can be easily solved by an O(|X|?)-time algorithm. Ttems 1
and 2 of the definitions can be checked in time O(]|X|?), while items 3, 4, 5 and 6
can be checked in time O(|X|?).

Gusfield [5], Pevzner [8], and Bafna, Lawler and Pevzner [2] developed approx-
imation algorithms for the multiple sequence alignment problem. Such algorithms
are based on scoring matrices in IM® and they do no guarantee approximation
bounds for scoring matrices in IM". It would be interesting to design approxima-
tion algorithms to work for matrices in IM".

Metric indexing algorithms [3], which require a metric between strings, are
used for prozimity searching. As pointed out by an anonymous referee, our char-
acterization of scoring matrices allows to decide whether such algorithms can be
used with a given scoring matrix.
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Data Structures for Halfplane Proximity Queries
and Incremental Voronoi Diagrams
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Abstract. We consider preprocessing a set S of n points in the plane
that are in convex position into a data structure supporting queries of
the following form: given a point ¢ and a directed line ¢ in the plane, re-
port the point of S that is farthest from (or, alternatively, nearest to) the
point ¢ subject to being to the left of line ¢. We present two data struc-
tures for this problem. The first data structure uses O(n'") space and
preprocessing time, and answers queries in 0(21/E logn) time. The sec-
ond data structure uses O(nlog®n) space and polynomial preprocessing
time, and answers queries in O(logn) time. These are the first solutions
to the problem with O(logn) query time and o(n?) space.

In the process of developing the second data structure, we develop
a new representation of nearest-point and farthest-point Voronoi dia-
grams of points in convex position. This representation supports inser-
tion of new points in counterclockwise order using only O(logn) amor-
tized pointer changes, subject to supporting O(log n)-time point-location
queries, even though every such update may make ©@(n) combinatorial
changes to the Voronoi diagram. This data structure is the first demon-
stration that deterministically and incrementally constructed Voronoi
diagrams can be maintained in o(n) pointer changes per operation while
keeping O(log n)-time point-location queries.

1 Introduction

Line simplification is an important problem in the area of digital cartography
[6,9,13]. Given a polygonal chain P, the goal is to compute a simpler polyg-
onal chain @ that provides a good approximation to P. Many variants of this
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problem arise depending on how one defines simpler and how one defines good
approximation. Almost all of the known methods of approximation compute dis-
tances between P and (). Therefore, preprocessing P in order to quickly answer
distance queries is a common subproblem to most line simplification algorithms.

Of particular relevance to our work is a line simplification algorithm proposed
by Daescu et al. [7]. Given a polygonal chain P = (p1,pa, ..., pn), they show how
to compute a subchain P’ = (p;,, piy,- .., Pi,, ), with i3 = 1 and 4, = n, such
that each segment [p;;p;;.,,] of P'is a good approximation of the subchain of P
from p;; to p;;,,. The amount of error is determined by the point of the subchain
that is farthest from the line segment [p;,;p;; ., ,]. To compute this approximation
efficiently, the key subproblem they solve is the following:

Problem 1 (Halfplane Farthest-Point Queries). Preprocess n points p1, pa,

..y Pn In convez position in the plane into a data structure supporting the fol-
lowing query: given a point q and a directed line £ in the plane, report the point
p; that is farthest from q subject to being to the left of line L.

Daescu et al. [7] show that, with O(nlogn) preprocessing time and space, these
queries can be answered in O(log2 n) time. On the other hand, a naive approach
achieves O(log n) query time by using O(n?) preprocessing time and O(n?) space.
The open question they posed is whether O(logn) query time can be obtained
with a data structure using subcubic and ideally subquadratic space.

In this paper, we solve this problem with two data structures. The first, rel-
atively simple data structure uses O(n'*¢) preprocessing time and space, and
answers queries in 0(21/ €logn) time. The second, more sophisticated data struc-
ture uses O(nlog?’ n) space and polynomial preprocessing time, and answers
queries in O(logn) time. Both of our data structures apply equally well to half-
plane farthest-point queries, described above, as well as the opposite problem of
halfplane nearest-point queries—together, halfplane proximity queries.

Dynamic Voronoi diagrams. An independent contribution of the second data
structure is that it provides a new efficient representation for maintaining the
nearest-point or farthest-point Voronoi diagram of a dynamic set of points. So
far, point location in dynamic planar Voronoi diagrams has proved difficult be-
cause the complexity of the changes to the Voronoi diagram or Delaunay triangu-
lation for an insertion can be linear at any one step. The randomized incremental
construction avoids this worst-case behavior through randomization. However,
for the deterministic insertion of points, the linear worst-case behavior cannot
be avoided, even if the points being incrementally added are in convex position,
and are added in order (say, counterclockwise). For this specific case, we give a
representation of a (nearest-point or farthest-point) Voronoi diagram that sup-
ports O(log n)-time point location in the diagram while requiring only O(logn)
amortized pointer changes in the structure for each update. So as not to over-
sell this result, we note that we do not have an efficient method of determining
which pointers to change (it takes ©(n) time per change), so the significance
of this representation is that it serves as a proof of the existence of an encod-
ing of Voronoi diagrams that can be modified with few changes to the encod-
ings while still supporting point location queries. However, we believe that our



82 B. Aronov et al.

combinatorial observations about Voronoi diagrams will help lead to efficient
dynamic Voronoi diagrams with fast queries.

Currently, the best incremental data structure supporting nearest-neighbor
queries (one interpretation of “dynamic Voronoi diagrams”) supports queries and
insertions in O(log2 n/loglogn). This result uses techniques for decomposable
search problems described by Overmars [14]; see [5]. Recently, Chan [4] developed
a randomized data structure supporting nearest-neighbor queries in O(log2 n)
time, insertions in O(log® n) expected amortized time, and deletions in O(log® n)
expected amortized time.

2 A Simple Data Structure

Theorem 2. There is a data structure for halfplane proximity queries on a
static set of n points in convex position that achieves 0(21/5 logn) query time
using O(n'*¢) space and preprocessing.

Our proof is based on starting from the naive O(n?)-space data structure men-
tioned in the introduction, and then repeatedly apply a space-reducing trans-
formation. We assume that either all queries are halfplane farthest-point queries
or all queries are halfplane nearest-point queries; otherwise, we can simply build
two data structures, one for each type of query.

Both the starting data structure and the reduction use Voronoi diagrams as
their basic primitive. More precisely, we use the farthest-site Voronoi diagram
for the case of halfplane farthest-point queries, and the nearest-site Voronoi
diagram for the case of halfplane nearest-point queries. When the points are in
convex position and given in counterclockwise order, Aggarwal et al. [1] showed
that either Voronoi diagram can be constructed in linear time. Answering point-
location queries in either Voronoi diagram of points in convex position can be
done in O(logn) time using O(n) preprocessing and space [11].

The proof of this and other results can be found in the full paper [2]:

Lemma 3. There is a static data structure for halfplane proximity queries on
a static set of n points in convex position, called Okey, that achieves O(logn)
query time using O(n3) space and preprocessing.

Transform 4. Given any static data structure D for halfplane prozimity queries
on a static set of n points in convex position that achieves Q(n) query time
using M (n) space and preprocessing, and for any parameter m < n, there is a
static data structure for halfplane proximity queries on a static set of n points
in convex position, called D-Dokey, that achieves 2Q(n) + O(logn) query time
using [n/m] M(m) + O(n?/m) space and preprocessing.

By starting with the data structure Okey of Lemma 3, and repeatedly applying
the Dokey transformation of Transformation 4, we obtain the structure Okey-
Dokey-Dokey-Dokey-. . ., or Okey-Dokey”, which leads to the following:

Corollary 5. For every integer k > 1, Okey-Dokey*~' is a data structure for

halfplane proximity queries on a static set of n points in convex position that
achieves O(2F logn) query time using O(nk+1/Ck=1)Y space and preprocessing.
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3 Grappa Trees

Our faster data structure for halfplane proximity queries requires the manipu-
lation of binary trees with a fixed topology determined by a Voronoi diagram.
To support efficient manipulation of such trees, we introduce a data structure
called grappa trees. This data structure is a modification of Sleator and Tarjan’s
link-cut trees [16] that supports some unusual additional operations.

Definition 6. Grappa trees solve the following data-structural problem: main-
tain a forest of rooted binary trees with specified topology subject to

T = Make-Tree(v): Create a new tree T with vertex v (not in another tree).

T = Link(v, w,d, m¢, m,.): Given a vertex v in some tree T, and the root w of
a different tree Ty, add an edge (v, w) to make w a child of v, merging T,
and T, into a new tree T. The value d € {{,r} specifies whether w becomes
a left or a right child of v; such a child should not have existed previously.
The new edge (v,w) is assigned a left mark of my; and a right mark of m,..

(Th,T2) = Cut(v,w): Delete the existing edge (v, w), causing the tree T contain-
ing it to split into two trees, Ty and To. Here one endpoint of (v, w) becomes
the root of the tree T; that does not contain the root of T'.

Mark-Right-Spine(T,m): Set the right mark of every edge on the right spine of
tree T (i.e., the edge from the root of T to its right child, and recursively
such edges in the right subtree of T') to the new mark m, overwriting the
previous right marks of these edges.

(e,m},m}) = Oracle-Search(T', O.): Search for the edge e in tree T. The data
structure can find e only via oracle queries: given two incident edges (u,v)
and (v,w) in T, the oracle O.(u,v, w, m¢, m,, my, m..) determines in con-
stant time which of the subtrees of T —v contains x.' (Note that edges (u,v)
and (v, w) are considered to exist in T —v, even though one of their endpoints
has been removed.) The data structure provides the oracle with the left mark
mye and the right mark m, of (u,v), as well as the left mark mj, and the right
mark m,. of (v,w), and at the end, it returns the left mark mj and the right
mark m} of the found edge e.

Theorem 7. There exists an O(n)-space constant-in-degree pointer-machine
data structure that maintains a forest of grappa trees and supports each operation
in O(logn) worst-case time per operation, where n is the total size of the trees
affected by the operation.

4 Rightification of a Tree: Flarbs

The fixed-topology binary search tree maintained by our faster data structure
for halfplane proximity queries changes in a particular way as we add sites to a
Voronoi diagram. We delay the specific connection for now, and instead define

! Given the number of arguments, it is tempting to refer to the oracle as
O(A,B,D,G,I,L,S), but we will resist that temptation.



84 B. Aronov et al.

Fig. 1. An example of a flarb. The anchored subtree is highlighted.

the way in which the tree changes: a tree restructuring operation called a “flarb”.
Then we bound the work required to implement a sequence of n flarbs by showing
that the total number of pointers changes (i.e., the total number of parent/left-
child and parent/right-child relationships that change) is O(nlogn). Thus, for
the remainder of this section, we use the term cost to refer to (a constant factor
times) the number of pointer changes required to implement a tree-restructuring
operation, not the actual running time of the implementation. This bound on
cost will enable us to implement a sequence of n flarbs via O(nlogn) link and
cut operations, for a total of O(nlog?n) time.

The flarb operation is parameterized by an “anchored subtree” which it trans-
forms into a “rightmost path”. An anchored subtree S of a binary search tree T'
is a connected subgraph S of T that includes the root of T'. A right-leaning path
in a binary search tree T' is a path monotonically descending through the tree
levels, always proceeding from a node to its right child. A rightmost path in T
is a right-leaning path that starts at the root of T

The flarb operation? of an anchored subtree S of a binary search tree T is
a transformation of T' defined as follows; refer to Figure 1. First, we create a
new root node r with no right child and whose left child subtree is the previous
instance of T'; call the resulting binary search tree T'. We extend the anchored
subtree S of T' to an anchored subtree S’ of T” by adding r to S. Now we re-
arrange S’ into a rightmost path on the same set of nodes, while maintaining the
binary search tree order (in-order traversal) of all nodes. The resulting binary
search tree T" is the result of flarbing S in T

Theorem 8. A sequence of n flarb operations, starting from an empty tree, can
be implemented at a cost of O(logn) amortized pointer changes per flarb.

Proof. We use the potential method of amortized analysis, with a potential func-
tion inspired by the analysis of splay trees [17]. For any node z in a tree T,
let w(x) be the modified weight of the subtree rooted at z, which is the num-
ber of nodes in the subtree plus the number of null pointers in the tree. In

2 “Flarb” is a clever abbreviation of a long technical term whose meaning we cannot
reveal for reasons we cannot comment on at the moment, perhaps simply due to lack
of space or of the aforementioned purported meaning. Note that this notion of flarb
is different from that of [3].
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A A\

Fig.2. A zig: The thick edge be- Fig. 3. A zag
longs to the anchored subtree S’ and
is light

other words, we add dummy nodes as leaves in place of each null pointer in T,
for the purpose of computing subtree size. Define ¢(z) = Ig ﬁ(rlfgjzgfg) Clearly
lp(z)| <lg(2n —1), because the smallest possible subtree contains no real nodes
and one dummy node, and the largest possible subtree contains n — 1 real nodes
and n dummy nodes. The potential of a tree T' with n nodes is ¢(T") = >, ¢(x),
with the sum taken over the (real) nodes = in T'. Therefore, |2(T")| = O(nlogn).

For the purposes of the analysis, we use the following heavy-path decompo-
sition of the tree. The heavy path from a node continues recursively to its child
with the largest subtree, and the heavy-path decomposition is the natural decom-
position of the tree into maximal heavy paths. Edges on heavy paths are called
heavy edges, while all other edges are called light edges.

To analyze a flarb in a binary search tree T', we decompose the transformation
into a sequence of several steps, and analyze each step separately.

First, the addition of the new root node r can be performed by changing a
constant number of pointers in the tree. To implement rightification, we first
execute several simplifying steps of two types, called “zig” and “zag”,® in no
particular order. A zig is executed whenever a light left edge is part of the
anchored subtree S’; see Figure 2. The zig operation simply involves a right
rotation on the edge in question. A zag is performed whenever there exists,
within the anchored subtree S’, a path that goes left one edge, right zero or more
edges, and then left again one edge; see Figure 3. The zag operation performs
a constant number of pointer changes to re-arrange the path in question into
a right-leaning path. The full paper [2] shows that each zig or zag has zero
amortized cost.

After all possible zigs and zags have been exhausted, we claim that the an-
chored subtree S” must have the form shown in Figure 4. Indeed, any tree that
has no light left edge and no right-leaning path delimited by two left edges must
have this form. In particular, because the rightmost path in this tree must be
light, its length is at most lg(2n + 1).

3 Unlike most terminology in this paper, these terms are used for no particular reason.
Cf. footnote 2.
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The final stretch operation, which com-
pletes the flarb, simply converts this tree
into a rightmost path by effectively concate-
nating the subsidiary right-leaning paths, in-
corporating them into the main path. Only
O(log n) actual pointer changes are required.

The potential does not increase because left \K@ , i
subtrees of every node shrink and right sub- \X .

trees grow, if they change at all. Thus, the K

amortized cost of the stretch is O(logn).

5 Transformations Fig.4. S’ before the final stretch.

Thick light edges are light, and thick

We focus on the farthest-point case, but the pjack edges are heavy.

proofs apply to nearest-point too.

Transform 9. Given a grappa tree data structure supporting each operation in
O(logn) worst-case time, and given a data structure to incrementally maintain
a tree created by n flarbs with O(logn) amortized pointer changes per flarb, we
can construct an O(nlog®n)-space data structure that supports O(logn)-time
farthest-point queries on any prefix of a sequence of points in conver position in
counterclockwise order.

Proof. We construct an incremental data structure that supports O(log n)-time
farthest-point queries on the current sequence of points, (p1,pa2,...,Pn), and
supports appending a new point p,+1 to the sequence provided that this change
maintains the invariant that the vertices remain in convex position and in coun-
terclockwise order. Thus the insertion order equals the index order and equals
the counterclockwise traversal order of a convex polygon. The data structure
runs on a pointer machine in which each node has bounded in-degree. Thus we
can apply the partial-persistence transform of [10] and obtain the ability to sup-
port farthest-point queries on any prefix of the inserted points in O(logn) time.
The space is proportional to the number of pointer changes during insertions.
We consider the ordered tree T' formed by the finite segments of the farthest-
point Voronoi diagram, ignoring their precise geometry; see Figure 5. More pre-
cisely, the farthest-point Voronoi diagram [15, Section 6.3] divides the plane into
n cells by classifying each point ¢ in the plane according to which of p1,pa, ..., pn
is the farthest from q. The farthest-point Delaunay triangulation [12] is the dual
of the farthest-point Voronoi diagram, i.e., it triangulates the convex polygon
with vertices p1, pa, ..., pn by connecting two vertices whenever the correspond-
ing Voronoi cells share an edge. We consider the dual tree T" of this farthest-point
Delaunay triangulation of the convex polygon, i.e., the dual graph excluding the
infinite region exterior to the convex polygon. Each edge in this tree corresponds
to (a nongeometric representation of) a finite edge of the farthest-point Voronoi
diagram, which is the bisector of two of the points p; and p; that are adjacent
in the Delaunay triangulation. Each node in the tree represents a vertex in the
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Fig. 5. Adding vertex vg in counterclockwise order. Top: Before. Bottom: After. Left:
Farthest-point Voronoi diagram and its dual, the Delaunay triangulation. Right: Delau-
nay triangulation and its dual, the tree T" with attached infinite rays drawn as dashed
lines, drawn in mirror image so that geometric left versus right matches the order in
the Voronoi diagram. The root vertex of T" and its parent edge are emboldened.

farthest-point Voronoi diagram, or equivalently a triangle in the farthest-point
Delaunay triangulation, and therefore has degree d < 3, where any degree deficit
corresponds to 3 — d infinite rays in the farthest-point Voronoi diagram not rep-
resented in the tree T.

We can view the tree T as a binary search tree as follows. First, we root the
tree at the node corresponding to the unique triangle in the Delaunay triangu-
lation bounded by the edge connecting the first inserted point p; and the most
recently inserted point p,,. We view the infinite ray emanating from the Voronoi
vertex as the “parent edge” of this root node, defining the notion of left child
versus right child of a node according to the counterclockwise order around the
Voronoi vertex. (Note that this order is the opposite of the order defined by
the triangulation, so in Figure 5 (right), we draw 7' in mirror image so that its
geometric notions of left and right match that of the Voronoi diagram.) Second,
we assign keys to nodes consistent with the in-order traversal. For each tree node
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corresponding to a Delaunay triangle with vertices p;, p;, px, where i < j < K,
we assign a key of j. In other words, we assign the median of the three vertex
labels of the Delaunay triangle to be the key of the corresponding tree node.

One way to view this key assignment is as follows. If we imagine adding
an infinite rays in place of each absent child in the tree, and add an infinite
ray in place of the absent parent of the root (the dashed lines in Figure 5,
right), matching the counterclockwise order around the Voronoi vertex, then
we decompose the plane into regions corresponding to Voronoi regions, each of
which corresponds to a single point p;. All of the nodes bounding p;’s region
correspond to triangles incident to p;. We assign the key ¢ to the unique such
node in T that is closest to the root of T, or equivalently the least common
ancestor of such nodes, which is the inflection point between two descendant
paths that bound the region. Two exceptions are ¢ = 1 and 7 = n: the vertices
incident to p; are those on the left spine of T', and the vertices incident to p,,
are those on the right spine of T'.

In this view, we also define the left mark of an edge to be the label of the
region to the left of the edge, and similarly for the right mark. Thus, the two
marks of an edge define the two points p; and p; whose bisector line contains
the Voronoi edge. If an edge is the left edge of its parent node, then the edge’s
right mark is simply the key of that parent, because the right edge of the parent
creates an inflection point at the parent. Similarly, if an edge is the right edge of
its parent node, then the edge’s left mark is the key of that parent. Intuitively, in
either case, if we walk up from the edge on its “underside”, then we immediately
find a local maximum in the region. On the other hand, in either case, the other
mark of the edge is the key of the parent node of the deepest ancestor edge that
has the opposite orientation (left versus right): this bending point is the first
inflection point we encounter as we walk up the tree on the “top side” of the
edge. We use a grappa tree to represent 7" and the left and right marks of edges.

Next we consider the effect of inserting a new point p,11. As in the standard
incremental algorithm for Delaunay construction [8, Section 9.3], we view the
changes to the farthest-point Delaunay triangulation as first adding a triangle
P1, Pn, Pnt+1 and then flipping a sequence of edges to restore the farthest-point
Delaunay property. The key property of the edge-flipping process is that all
flipped edges end up incident to the newly inserted point p, 1. Therefore these
changes can be interpreted in the tree as adding a new root node, whose left
child is the previous root, and then choosing a collection of nodes to move to the
right path of the new root. This collection of nodes induces a connected subtree
because the triangles involved in the flips form a connected set. (In particular,
the flipping algorithm considers the neighbors of a triangle for flipping only
if the triangle was already involved in a flip.) Thus, the changes correspond
exactly to a flarb, with the flexibility of the flarb operation encompassing the
various possibilities of which edges get flipped to maintain the farthest-point
Delaunay property. Another way to view the addition of p,; is directly in the
Voronoi diagram. The point p,1 will capture the region R, 11 for which p, 41
is the farthest neighbor. The region R, 1 is a convex polygon. Outside R, 1,
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the Voronoi diagram is unchanged, so all edges of the new Voronoi diagram are
either bisectors of the same two points as before, or are edges of R,,+1. In T after
the flarb, R, 11 corresponds to the right spine.

Each pointer change during a flarb operation can be implemented with one cut
and one link operation. Therefore the grappa tree implements the O(nlogn) total
pointer updates from flarb operations in O(n log2 n) total pointer updates. It
remains to update the marks on the edges. By the incremental Voronoi/Delaunay
view above, the only edges for which these marks might change are the edges
incident to the new region R, 1, i.e., the edges on the right spine. We update
the right marks on all of these edges by calling Mark-Right-Spine(T,n + 1).
The left mark of each edge on the right spine is simply the key of the parent
node of the edge. During the execution of the flarb, various right paths were
cut and pasted together with cuts and links to form the final right spine. The
edges on the final right spine that were originally part of a right path in T
already had a left mark equal to the key of their parent node. Any other edges
on the final right spine were just added via links, so their left marks can be set
accordingly by specifying the right m, argument to Link. Thus, the total number
of pointer updates remains O(nlog2 n). This concludes the space bound of the
data structure.

To support farthest-point queries, it suffices to build an oracle for the grappa
tree’s Oracle-Search. Specifically, given two incident edges (u,v) and (v, w), the
oracle must determine which subtree of T'—wv has the answer to the farthest-point
query. Using the two marks on the two edges, two of which must be identical,
we can determine the three vertices p;, p;, and p, of the Delaunay triangle
corresponding to vertex v in T'. The vertex of the Voronoi diagram corresponding
to v lies at the intersection of the three perpendicular bisectors between these
three vertices of the Delaunay triangle. We draw three rays from this Voronoi
vertex to each of the three corners of the Delaunay triangle. These three rays
divide the plane into three sectors, and the Voronoi regions corresponding to the
nodes in each subtree of T'—v lie entirely in one of these sectors, with exactly one
subtree per sector. In constant time, we can decide which of the three sectors
contains the query point ¢q. The farthest-point Voronoi region containing the
query point ¢ is guaranteed to be incident to the corresponding subtree, and
therefore we obtain a suitable answer for the oracle query. At the end, Oracle-
Search will narrow the search to a specific edge of T, meaning that the query
point g is in one of the two Voronoi regions incident to the corresponding Voronoi
edge. In constant time, using the two labels on that edge of the tree, we can
determine which side of the bisector contains ¢, and therefore which Voronoi
region contains ¢, i.e., which point p; is farthest from g.

Transform 10. Given an O(n log? n)-space data structure that supports
O(logn)-time farthest-point queries on any prefix of a sequence of n points or-
dered in conver position in counterclockwise order, we can construct an
O(nlog® n)-space data structure that supports O(logn)-time farthest-point-left-
of-line queries on n points in convexr position.
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Combining Theorems 7 and 8 with Transforms 9 and 10, we obtain:

Corollary 11. There is an O(n log® n)-space data structure that supports
O(logn)-time halfplane proximity queries on n points in convex position.

Corollary 12. There is an O(n)-space data structure for maintaining a nearest-
point or farthest-point Voronoi diagram of a sequence of points in conver position
i counterclockwise order. The data structure supports inserting a new point at
the end of the sequence, subject to preserving the invariants of convex position
and counterclockwise order, in O(logn) amortized pointer changes per insertion;
and supports point-location queries in O(logn) worst-case time.

6 Open Problems and Conjectures

Several intriguing open problems remain open. One obvious question is whether
the O(n log3 n) space of our second data structure can be improved while keeping
the optimal O(log n) query time. One specific conjecture in this direction is this:

Conjecture 13. A sequence of n flarb operations, starting from an empty tree,
can be implemented at a cost of O(1) amortized pointer changes per flarb.

We have no reason to believe that our O(logn) amortized bound is tight. Reduc-
ing the bound to O(1) amortized would shave off a O(log n) factor from our space
and preprocessing time. More importantly, it would increase our understanding
of dynamic Voronoi diagrams, reducing the O(logn) amortized update time in
Corollary 12 to O(1) amortized. The potential function we use is inherently
logarithmic; a completely new idea is needed here for further progress.

On the issue of improving our understanding of dynamic Voronoi diagrams,
we pose the following problem:

Open Problem 14. Is there a data structure for maintaining a Voronoi di-
agram of a set of points in convex position that allows point to be inserted in
logo(l) n time while supporting O(logn) point location queries?

Here we relax the condition that the points be inserted in counterclockwise
order, but maintain the restriction that they be in convex position. Although
our potential function does not give the result, it is possible that a slight variation
of it does.

Finally, it would be interesting to improve the construction time in our sec-
ond data structure, in particular so that it completely subsumes the first data
structure:

Open Problem 15. Can the pointer changes caused by a flarb be found and
implemented in o(n) time, preferably 10g®M i time?

We have not been able to fully transform our combinatorial observations about
the number of pointer changes into an efficient algorithm, because we lack ef-
ficient methods for finding which pointers change. Solving this question would
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improve our construction time by almost a linear factor, and would provide a rea-
sonably efficient dynamic Voronoi data structure for inserting points in convex
position in counterclockwise order.
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Abstract. The complexity of the visibility region formed by a point
light source after k diffuse reflections in a simple n-sided polygon is
O(n?), which is the first result polynomial in n, with no dependence on
k. This bound is an exponential improvement over the previous bound
of O(n?I*F+1/214+1) due to Prasad et al. [g].

1 Introduction

Visibility problems in computational and combinatorial geometry have been
studied extensively (see [3,6,9] and references therein). We confine our atten-
tion to results in the plane, more specifically those referring to visibility inside
a simple polygon P with n vertices. Two points are wisible to each other if the
segment connecting them is contained in the polygon. The region visible from a
point in P is a star-shaped polygon with at most n edges. The set of points of
P visible from at least one point of a segment in P (the so-called “weak visibil-
ity polygon” from a segment) is a simple polygon with O(n) edges and can be
computed in linear time [5].

Aronov et al. [2,1] and Davis [4] initiated the study of complexity of the region
lit up by a single source of light in a simple polygon if reflection is allowed. T'wo
models are considered. In both of them, any light incident upon a polygon corner
is absorbed rather than reflected. In the specular reflection model, a light ray
incident on a point in the interior of a polygon edge is reflected, as in geometric
optics, with the angle of reflection equaling the angle of incidence. In the diffuse
model which we consider in this paper, the light ray incident upon an interior
point of an edge reflects in all possible interior directions. Aronov et al. [2] argue
that for both diffuse and specular reflection the maximum complexity of the
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region lit up by a point light source with one reflection allowed is @(n?). The
results were generalized in [1] to any number k of reflections (where for simplicity
we assume k is a constant and n can be arbitrarily large) and it was shown that
for specular visibility this complexity is O(n?*) and tight (at least for constant
k). The case of multiple diffuse reflection is discussed by Prasad et al. [8], where
they gave a bound of O(ngﬁkﬂ)/ﬂﬂ) on the complexity of the region lit up by
a point with at most k diffuse reflections. Surprisingly, even though this bound is
exponential in k (for arbitrarily large n), no constructions were known for diffuse
reflection with complexity w(n?), irrespective of the number of reflections used.
This gave rise to the conjecture in [8] that this in fact is the correct answer,
for k > 1 reflections. As the analysis in [2], among other things, proves that the
region visible from a point with one diffuse reflection is always simply connected,
it has been suggested that this remains true when more diffuse reflections are
allowed. However, Pal [7] gives an example when this conjecture fails already
when two reflections are allowed.

In this paper, we partially settle the former conjecture on multiple diffuse
reflections, namely we argue that the complexity of the region visible from a
point with at most k diffuse reflections is O(n?), for any value of k.

2 Main Result

We obtain the main result, Theorem 1, in the old-fashioned way by presenting
a sequence of lemmas that slowly lead to the theorem. A fixed simple polygon
P with n edges is implicit in all notation.

Definition 1 (Time). By time k, we mean the state of the visible region after
exactly k diffuse reflections.

Definition 2 (Edge). We use the term edge to refer exclusively to an entire
edge of the polygon P. The letter e, and its sub-and-superscripted variants, al-
ways refers to an edge.

Definition 3 (Initial visibility region). Initially, one specified point light
source p is illuminated in P. At time 0, point q is illuminated if the interior of
the segment pq is interior to the polygon P.

Definition 4 (Illumination by diffuse reflection). If point p on an edge is
tlluminated at time k, then point q is illuminated at time k + 1 if the interior of
the segment pq is interior to the polygon P. Points can only be illuminated in
the manner described in the previous and current definitions.

Definition 5 (Maximal illuminated segment). We say segment x is maz-
mally illuminated iff there does not exist an illuminated segment y such that
rCy.

Definition 6 (Triple). We say (z, e, k) is illuminated if the maximally illumi-
nated segment x on e is illuminated at time k.
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Definition 7 (Fundamental triple). We say (z,e, k) is a fundamental illu-
mination, or (x,e, k), if (z,e, k) is illuminated with the restriction that x is the
first illuminated segment from either end of e at time k.

Definition 8 (Pentuple). We say (z,y, z, e, k) is illuminated iff x, y, and z are
mazximally illuminated, adjacent, and disjoint segments of e illuminated at time
k. To avoid symmetry problems, we assume there is a clockwise total ordering
on disjoint line segments on the polygon P from an arbitrary vertex on P, and
that x < y < z with regards to this ordering.

Definition 9 (Interior triple). We say (y,e, k) is a interior triple, or (y,e,
k)L, if (x,y, 2, e, k) is a pentuple.

Lemma 1. The complexity of the illuminated regions on the boundary of the
polygon at time k is at most the number of fundamentally illuminated regions
(x,e, k)T plus the number of the interiorly illuminated regions (y, e, k)!.

Proof. This is true since every triple must be either a fundamental triple or an in-
terior triple, and there is only one illuminated region in either triple. Conversely,
every segment that is lit has an associated triple.

2.1 Illuminations

Definition 10 (Illumination of triples, “—” relation, defining light). We
say (x,e, k) illuminates (z', e’k + 1), or (x,e,k) — (a', ¢,k + 1) for short, if:

—e#e.

— (x,e,k) and (2' €',k + 1) are illuminated.

— If x was the only thing illuminated at time k, then at time k+ 1 there would
be a segment illuminated on edge €', call it ", and " C z'. We call the
light from x to x' the defining light of (x,e,k) — («/,¢/,k+1). (Verbal
description: x illuminates either the whole mazximally illuminated segment x'
or one part of x’.)

Definition 11 (Interior illumination, Ly relation). (See Figure 1.) We
say that (y,e, k) interior illuminates (y,e',k + 1)1, or (y,e, k) ER (y', e, k+1)
for short, iff

- (ya €, k) - (yla 6/3 k+ 1)

— 2w 2 (2,y,2,e,k) and (2',y', 2 ¢/, k + 1) are pentuples. These are the
defining pentuples of the interior illumination. (Note: This also implies (y, e,
k) and (y', €',k + 1) are interior triples.)

— (x,e,k) — (2",€',k + 1) where 2" #y' and 2" may or may not be the same
as x'

— (z,e,k) = (2", ¢/, k+ 1) where 2" #y' and 2" may or may not be the same
as z'
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e e
x Z/I
There may be
other segments
Y Y here

w0
8

Fig.1. An example of an interior illumination. The defining light of the illumination
is the pink shaded region.

— Verbal description: An interior segment y on edge e illuminates another in-
terior segment y' on edge € at time k + 1. An adjacent segment of y, x,
must also illuminate an segment ' on edge €', but it is not necessary that
the segment x’ is an adjacent segment of y'. Another adjacent segment of vy,
z, must also illuminate an segment 2’ on edge €', but it is not necessary that
the segment z' is an adjacent segment of y'.

The defining light of an interior illumination is the union of the defining lights
of the three illuminations used in the definition.

Definition 12 (“«I»” relation). We use L to represent the transitive closure

of the L, relation on interior triple. Thus, a Ly if there is a directed path from
a tobin GT.

Lemma 2. (z,e, k) 7%» (2, e k") for all k' > k+2. (Note: in this statement, and
many others to follow, all variables are universally quantified unless otherwise
noted.)

Proof. This is true because for every edge e there is always one point not on e
that can see all of e. Such a point can be found by extending a ray from the line
at a suitably small angle.

Lemma 3 (Complete illumination). At time k = n the entire polygon is
illuminated.

Proof. This would be trivial, if the corners of the polygon could be illuminated
from an incident edge in one step. However, from the definition of illumination,
this is not the case. It is trivial that if £ = 2n the entire polygon is illuminated,
since there is always one point that is visible from two points on adjacent edges.
We omit the proof that the polygon is illuminated at time k = n since it is more
involved, and using the trivial 2n would not change any of the asymptotics of
our results.
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Note 1 (The end of time). From this point on we assume the time k& < n, since
beyond this time there is no additional complexity.

2.2 Graphs

Definition 13 (Graphs G, G, G'). Define a directed graph G with vertices
consisting of the union of the fundamental and interior triples, and edges defined
by the “—” relation as defined in definition 10. We also define the graphs G and
G which is the subgraph of G induced by the nodes representing fundamental
triples and interior triples, respectively. Edges in G are defined by definition
11. That is, a node (x,e,k)! has an outgoing edge to (x',e' k + 1)I in GT iff

(x,e, k) LR (' e k+1).

General idea: We first give an upper bound for the number of illuminated seg-
ments over all time and then we use this result to get an upper bound for the
complexity of the visibility region. The total number of illuminated segments
can be bounded by counting the number of nodes in G* and G'.

2.3 Bounding the Number of Fundamental Segments
Lemma 4. There are at most 2n> nodes in G¥'.

Proof. For a given e and k, there are at most 2 different segments x such that
(z, e, k) is illuminated: Only the first segments from each end of e are fundamen-
tal triples. Since there are only n possible choices for e and the k < n restriction
of Note 1, this gives the result.

2.4 Bounding the Number of Interior Segments

Lemma 5 (Each interior segment can only illuminate n others). Fach
illuminated segment can only illuminate n other segments. That is, for a given
(x,e, k) there are only n segments y such that (x,e, k) — (y,e’, k+1).

Proof. This follows from the observation that the complexity of the region illu-
minated by an edge is at most linear, with at most one segment of each polygon
edge appearing on its boundary [5].

Definition 14 (Source node). A source node in G is defined to be an interior
triple, (x, e, k)!, with in-degree 0 in G*.

Lemma 6 (Bounding the number of source nodes). There are only 4n3
source nodes in GT.

Proof. In graph G, the parent of a source node (z,e,k) in G is either (1) a
fundamental triple or (2) an interior triple, (2’,¢’,k — 1)!, with the restriction

that (z/,¢/,k —1) EA (z,e,k) in GT.
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There are at most 2n3 source nodes whose parent is a fundamental triple. This
is true because there are at most 2n? nodes in G¥' (Lemma 4), each of which
can illuminate n segments (Lemma 5). Each illuminated segment can appear in
at most 1 interior triple of G'.

On the other hand, there are at most 2(n — 1)(n?) source nodes whose parent
belongs to category 2 on all edges at all time. The harder observation is that
all the illuminated segments on one edge can illuminate at most 2 source nodes
whose parent belongs to category 2 on each edge at each time. The proof proceeds
by contradiction.

€0 €1

z P4
Case 1 Case 3

x y

z P4
Case 2 Case 2

y '

z K4
Case 3 Case 1

Fig. 2. No matter what the position of z is, if there are three illuminations between
two edges, one must be interior

Let (x, e, k) illuminate the source node (', e1, k+1)% and (y, o, k) illuminate
the source node (y',e1, k + 1)!. Assume there exists the third segment (z, eg, k)
which illuminates the source node (2/,e1,k + 1)I. See Figure 2. If z < z < v,
(2',e — 1,k + 1)! cannot be a source node in G! by definitions 14 and 11. If
z<x <y, (2 e—1,k+1)! cannot be a source node in G! by definitions 14 and
1.Ifxr <y <z, (y,e—1,k+1)! cannot be a source node in G by definitions 14
and 11. Therefore, all the illuminated segments on an edge can illuminate at most
2 source nodes whose parent belongs to category 2 on each edge at each time.
Thus, all the illuminated segments on an edge can illuminate at most 2(n — 1)
source nodes whose parent belongs to category 2 on all edges at each time. Since
there are n edges, at most 2(n — 1)(n) source nodes have a parent whose belongs
to category 2 at each time. This implies there are at most 2(n — 1)(n?) source
nodes whose parent belongs to category 2 on all edges at all time.

Therefore, there are 2n® source nodes whose parent belongs to category 1 and
2(n — 1)(n?) source nodes whose parent belongs to category 2. Totally there are
2n3 + 2(n — 1)(n?) source nodes in G!. We simply say there are at most 4n3
sources nodes in G! for simplicity.
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Definition 15 (Chord ¢ of an illumination: LC) We use the notion (z, e,
k)—c(a',e1, k+1) to indicate (z,eq, k)— (2, e1,k+1) and that the defining light
of this illumination passes through a chord c of the polygon.

g
Lemma 7 (Good chord c of an interior illumination: i>c). For any (y, e,

k) i>c (y',e1,k+1) there is a chord c inside the polygon such that the endpoints
of ¢ are vertices of the polygon; one endpoint lies on the blue dashed line and
another endpoint lies on the red dotted line. See Figure 3.

We call such a chord good, and use the notation Lf to indicate that c is good.
To avoid symmetry problems, if there is more than 1 vertex on the dotted blue or
dashed red line, we select the vertex which is closest to the illuminated segment,
y, to be the endpoint of the good chord. This implies a good chord is uniquely
defined for every interior illumination.

€p €]

x z

z

Fig. 3. If there are no polygon vertices on the boundary of the pink shaded region, 2’
or =’ will be larger

Proof. If no vertex lies on the blue line, the lower endpoint of the illuminated seg-
ment, 2z, will have a different position. Similarly, if no vertex lies on the red line,
the upper endpoint of the illuminated segment, z’, will have a different position.

Therefore, a good chord must always exist for any (y, eg, k) i)c (v, e, k+1).

What is the purpose of a good chord? Through Lemma 8 to Lemma 11, We will
prove that if a light passes through a good chord, it cannot go through the good
chord in the opposite direction again in G'. Therefore, a good chord will divide
a simple polygon into two isolated regions.

Lemma 8. If (y,eo, k) Li (y',e1,k + 1) then for all ex (y',e1,k + 1) 7£>C
(y", ea, k+2).

Proof. We start by noting that there must be a good chord ¢ by Lemma 7.
In Figure 4, the right endpoint of the green line is the lower endpoint of the
illuminated segment, y’. It passes through the highest point on the red line.
Based on the basic geometry concept, the left endpoint of the green line must be
located below the illuminated segment, z. Since the endpoint of the good chord
c is on the red line, 3’ cannot illuminate anything through ¢ above the green
line. Therefore, the illuminated segment, y”, cannot be above the illuminated
segment, x. This implies that es cannot be above eg. By symmetry, we can
conclude, es must be the same as eg. However, eq is totally illuminated at time

k+2 by Lemma 2. Therefore, for all eq, (v, e1,k+ 1) 7£>C (y’, ea, k + 2).
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€p €1

Fig. 4. The green shaded line goes from the bottom of 4’ to the left of the red dashed
line. Its intersection with ey represents the highest point to the left of any chord ¢
connecting the red dashed and blue dotted lines that can be illuminated by %’. Since
the green shaded line is protected from the edges of the polygon by the pink shaded
defining lights, it can never go to any edge above eg.

Lemma 9 (On the intersection of chords). For any two chords ¢ and ¢’ of
g

the polygon P, if (y,e, k) LC (y', e, k+1) and if ¢ and ¢ intersect each other,

then (y,e, k) L. (y' e, k+1).

Fig. 5. If a chord c intersects ¢/, the defining light from ¥ to ¢’ must go through c. This
is because no endpoint of ¢ is allowed inside the pink shaded region.

Proof. Refer to Figure 5. The endpoints of ¢’ must be on the the border of
the defining light of (y,e, k) Lf (y',€e',k + 1) by definition. The pink shaded
region(not including the boundary) must not contain any vertex. Since ¢ inter-
sects with ¢, if one endpoint of ¢ is on the left side of the grey line above the
pink shaded region, another point of ¢ must be on the right side of the grey line
below the pink shaded region. By symmetry, if one endpoint of ¢ is on the left
side of the grey line below the pink shaded region, another point of ¢ must be
on the right side of the grey line above the pink shaded region. In either case,

(e, k) S (€, k+1).

9
Lemma 10. For all t > 1, if (y,eo,k) i)c (v',e1,k + 1) and if for all es
(v, e1,k+1) 7£>C (y", ea, k +t) then for all ea (y',e1,k) 7£>c (y", e, k+t+1).

Proof. Proof by contradiction. See Figure 6. Assume that for all es, (y/,e1,k +

1) 7;’}0 (y//7827k + t) and (y/7617k + 1) /\IA (y57e57k + t) and (y57e57k + t) i)C
g
(y", er,k+t+1). Let (y/,e1,k+1) 4 (y*, eq, k+t—1) and (y*, eq, k+t—1) Lc

(y°, es,k +t). The good chord ¢’ must exist by Lemma 7. If ¢ intersects with
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c, then (y* eq, kb +t—1) Lc (y°, es,k +t) by Lemma 9. This is a contradiction

to the assumption that (y',e1,k + 1) 7£>c (y",ea, k + t) for all es. If ¢’ does not
intersect with ¢, then ey and e4 are on one side of the good chord ¢’ and es is on

another side of ¢/. By Lemma 8, for all eg (y°, 5,k + 1) 7£>C (y8,e6, k +t+1).

It implies (y°, es5,k + t) 7£>C (y",er,k +t+ 1). This is a contradiction to the
assumption.

€o

at time k + ¢

er < at time k + ¢+ 1

€5
\ Not possible
by Lemma 8

Fig. 6. The edge e5 is on opposite sides of both ¢ and ¢’ from e7. Since ¢ and ¢ do
not cross, no edge can be interior illuminated from es through chord ¢ without going
through ¢’ also. Since e5 was just illuminated through ¢’, the next illumination can not
go though ¢’ because of Lemma 8.

Lemma 11 (light cannot eventually go through the same chord twice).
g

If there exists a good chord such that (y, e, k) Lc (y',e1,k + 1) then for all e,

y'and k' > k+1 (v, e, k) 7£>C (y", ea, k).

Proof. The proof is by induction on k', using the previous three lemmas.

The following lemma will prove that all good chords of interior illuminations
from the same node in G! are disjoint.

Lemma 12. If (y,e, k) Lf (v, e,k +1) and (y,e, k) LZ (y",e", k + 1) then
(ye.k) Fro (4 €k +1).

Proof. Assume (y, e, k) L (y',€,k + 1). Refer to Figure 7. The pink shaded
region (not including the boundary) must not contain any vertex. Suppose both
endpoints of ¢ are on the boundary of the pink shaded region. This implies there

are two good chords for the defining light of (y, e, k) ER (y',€e’',k+ 1). This can
never happen by definition 7. Therefore, one endpoint of ¢ must be above or
below the pink shaded region. If that endpoint is on the right side of the grey
line, it is not visible by (y, e, k) and thus, it cannot be an endpoint of the good
chord ¢’ by definition 7. This is a contradiction. If that endpoint is on the left
side of the grey line, without loss of generality, we assume that endpoint is above

the pink shaded region. Since the defining light of (y, e, k) ER (y' e, k+1) must
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pass through chord ¢, another endpoint of ¢ must be on the lower boundary of
the pink shaded region or below the pink shaded region. This implies at least

g
one endpoint of ¢’ will block the defining light of (y, e, k) i>C (y”,e”,k+1). This
is also a contradiction.

Fig. 7. If the grey point is an endpoint of ¢, then no light can originate on y, and pass
through both the grey point and ¢’

Lemma 13. No two nodes reachable from the same source node in G' have the
same e value.

Proof. By Definition 7, every edge in G! must pass through a good chord. By
Lemma 12, all good chords of interior illuminations from the same node in G
are disjoint and the light that goes through one good chord does not go through
the others. By Lemma 11, the light can never go through a good chord twice.
Thus, a good chord divides the polygon into two isolated regions, and this pro-
cess recurses (Figure 8(a)). There is no path between nodes in different isolated
regions (Figure 8(b)). Therefore, for each source node (yo, €o, ko)”, there are no

directed paths such that (yo, eo, ko) L (ys, €3, k3) and (yo, €o, ko) 5 (Ya, €3, ka),
when y3 # y.

[ ]
(z//7 8”, k4 1)/
The light frjpm th
same source\pod
can not pass \horugh
¢ twice.

(a)

(b)

Fig. 8. Illustration of the proof of Lemma 13
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Lemma 14. The graph G' has at most 4n* nodes.

Proof. In Lemma 6 there are at most 4n> sources in G!. By Lemma 13, there
are at most n — 1 nodes in G! reachable from each of these sources.

2.5 The Complexity of the Visibility Region

Lemma 15. The total complexity of the illuminated edges over all time is at
most 4n* + 2n2.

Proof. Follows from Lemmas 1, 4, and 14.

Lemma 16. If x segments are illuminated in a polygon with n edges at time
k, then the complezity of the illuminated region of the polygon (including the
interior) at time k + 1 is O(nz?).

Proof. Since the region visible from one segment has complexity at most n [5],
the intersection of o such regions is trivially (xn)2. By observing that any region
visible from one segment will intersect any segment not exterior to the polygon
in exactly one place, this can be reduced to O(nz?).

Theorem 1. The total complexity of the illuminated region at time k is O(n%).

Proof. Lemma 15 gives a bound of O(n*) for the number of edges illuminated
at time k& — 1. By applying Lemma 16, the O(n®) bound is obtained.

Theorem 2 ([8]). The total complexity of the illuminated region at time k is
2(n?).

Congecture 1 ([8]). The total complexity of the illuminated region at time k is
O(n?).

We still believe this conjecture holds. Our proof over-counts in myriad ways and
surely is not tight.
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Power

Abstract. We present a second order logic of proportional quantifiers,
SOLP, which is essentially a first order language extended with quanti-
fiers that act upon second order variables of a given arity r, and count
the fraction of elements in a subset of r—tuples of a model that satisfy a
formula. Our logic is capable of expressing proportional versions of dif-
ferent problems of complexity up to NP-hard, and fragments within our
logic capture complexity classes as NL and P, with auxiliary ordering
relation. When restricted to monadic second order variables our logic
of proportional quantifiers admits a semantic approximation based on
almost linear orders, which is not as weak as other known logics with
counting quantifiers, for it does not has the bounded number of degrees
property. Moreover, we show in this almost ordered setting the existence
of an infinite hierarchy inside our monadic language. We extend our
inexpressibility result to an almost ordered (not necessarily monadic)
fragment of SOLP, which in the presence of full order captures P. To
obtain all our inexpressibility results we developed combinatorial games

appropriate for these logics.
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1 Introduction

An important open problem in Descriptive Complexity is to establish the exis-
tence of a logic, with recursive syntax and semantic, for describing all polynomial
time computable problems, that is, for capturing the class P. The bottom line
is that a solution to this problem should lead to a better understanding of the
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As of today, all known logics that capture P need a built—in linear order as an
extra symbol, so that the capturing may take place. The main issue is that a pre—
defined ordering relation added to a logic and with its interpretation invariant
through the models, makes the syntax of such logic non recursive (a consequence
of Trahtenbrot’s Theorem [2]); and thus this logic hardly classifies as “good”
programming paradigm. On the other hand the presence of a built—in linear
order, as part of the structures representing instances of computational problems,
makes it very difficult for inexpressibility techniques from Model Theory, such
as Ehrenfeucht-Fraissé games, to succeed in showing meaningful computational
lower bounds (e.g. see [5-§ 6.6]). To overcome this difficulty, and mindful of
finding a logic in the aforesaid terms for P, various order—free extensions of first
order logic (FO) have been proposed, most notably by the addition of some
form of counting. However the demonstrated insufficient power of expressiveness
of counting operators alone has led to the exploration (and exploitation) of some
forms of pre—defined weak order and of the local nature of first order logic. The
hope is that the logics with built-in weak form of order may have non-trivial
expressive power, may be easier to separate, and eventually may shed light into
the problem of separation of the corresponding logics with built-in order. In this
context, the paper by Libkin and Wong [6] suggests that the above mentioned
program may not be feasible because it shows an inherent expressive limitations
of counting logics in the presence of auxiliary relations, which they call preorders,
and their associated almost—linear orders. The main result of [6] is that a very
powerful extension of FO with counting, denoted £ ,(C'), which subsumes all
known “pure” counting extensions of FO (meaning that fixpoint operators are
not considered), in the presence of almost—linear orders, has the bounded number
of degrees property (BNDP). The BNDP is a semantic property that limits the
expressive power of logics that have it; such logics cannot express, for example,
the transitive closure of a binary relation. (We will review all concepts in italics
later in this paper.)

The purpose of this paper is to introduce a second order counting logic with
built-in order that contains fragments whose expressive power is meaningful for
Complexity Theory, and where the replacement of the built-in order by almost
order does not yield logics with trivial expressive power, and where it should
not be hard to obtain separation results. Our proposal consists of enhancing
FO with quantifiers of the form (P(X) > r) and (P(X) < r) for rational r €
(0,1) and second order variable X of, say, arity k > 0, and whose meaning is
that the cardinality of the set X is greater than or equal to (or less than or
equal to) r times the cardinality of the set of k—tuples in the model. The logic
obtained by adding these quantifiers, denoted by SOLP for Second Order Logic
of Proportions (or proportional quantifiers), extends its first order counterpart
LP, which was introduced and studied by us in [1]. The intuition driving the
definition of this logic is that by counting proportions as opposed to counting
exact numbers of elements, the proportional quantifiers should be less susceptible
to perturbations by the change of semantics from linear orders to almost-orders
than the standard counting quantifiers.
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Due to the proceedings’ strict page limitations we must omit most of the
proofs. The reader interested in learning all the details may request the extended
version from the first author.

2 Second Order Logic of Proportional Quantifiers

Throughout this paper we use standard notation and concepts of Finite Model
Theory as presented in the books [2] and [5]. Our vocabularies are finite and
consists of relation symbols and constant symbols. Our structures are all finite,
and if A is a structure over vocabulary 7, or 7-structure, and A is its universe,
we either use |A| or |A| to denote its size, that is, the number of elements in A.
In [1] we studied extensions of first order logic with quantifiers that count
fractions of elements in a model that satisfy a given formula, and defined ap-
proximations to their semantics by giving interpretations of the formulae on
finite structures where all predicates are restricted to act subject to an integer
modulo. A natural extension is to have the proportional quantifiers act upon
second order variables. This as we shall see gives more expressive power.

Definition 1. The Second Order Logic of Proportional quantifiers, SOLP, is
the set of formulas of the form

Q1 Qui(x1,..., w5, X1,..., X;) (1)
where 0(x1, ..., 25, X1,...,X;) is a first order formula over some vocabulary T
with first order variables x1,...,xs and second order variables, X1, ..., X,;

each Q; (7 < u) is either (P(X;) > t;) or (P(X;) <t;), where t; is a rational in
(0,1), for i < r. Whenever we want to make the underlying vocabulary T explicit
we will write SOLP(T).

We also define SOLP(7)[r1,...,7%], for a given vocabulary T and sequence
T1, T2, ..., rg of distinct natural numbers, as the sublogic of SOLP (1) where the
proportional quantifiers can only be of the form (P(X) < q/r;) or (P(X) > q/r:),
fori=1,....k and q a natural number such that 0 < q < r;. Another fragment
of SOLP which will be of interest for us is the Second Order Monadic Logic of
Proportional quantifiers, denoted SOMLP, which is SOLP with the arity of
the second order variables in (1) being all equal to 1.

The interpretation for the proportional quantifiers is the natural one: Let X
be a second order variable of arity k, Y a vector of second order variables,
X =2,...,Ty first order variables and ¢(z,Y, X) a formula in SOLP () over
some (finite) vocabulary 7, which does not contains X or any of the variables in
Y as a relation symbol. Let r be a rational in (0,1). Then

(P(X) Z7r)o(x, Y, X) and (P(X) <r)¢(z,Y, X)

have the following semantics. For appropriate finite 7—structure A, elements
a=(ai,...,an) in A and vector of relations B over A, we have

A= (P(X) > r)p(a, B,X) <= there exists S C A¥ such that
Al ¢(a,B,S) and |S| > r - |A["
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Similarly for (P(X) < r)é(z,Y, X), substituting in the definition > for <.

Ezample 1. Let 7 = {R, s,t} where R is a ternary relation symbol, and s and ¢
are constant symbols. Let r be a rational with 0 < r < 1. We define

NOT-IN-CLOS<, := {A=(A,R,s,t): A has a set containing s but not ¢,
closed under R, and of size at most a fraction r of |A] }.

Let Breios(X) := VaVuVo [X(s) A X (t)
A (X (u) A X(0)AR(u,v,2) — X(x))]
Then
A € NOT-IN-CLOS<, <= A= (P(X) < 7)Bnelos(X)

We shall see in Section 3 that for » = 1/2 this problem is P—complete under first
order reductions. (This result can be generalised to r = 1/n.) O

For NP we have the following problem.
Ezample 2. Let 7 = {E}, let r be a rational with 0 < r < 1. We define

CLIQUE>, := {A=(A,E): (A E) is a graph and at least a fraction r
of the vertices form a complete graph }

This problem can be defined by the sentence (P(X) > r)aciiq(X), where
Oelig(X) =VaVy(X () AX(y) Ne #y — E(x,y))

One can show that, for any rational r € (0,1), CLIQUE>, is NP-complete via
logspace reducibilities.
The following remark shows that SOLP extends the (classical) logic 3SO0.

Remark 1. Any formula in 3SO is equivalent to a formula in SOLPIk], for any
k > 1. Indeed, consider a formula of the form IX¢(X), where ¢(X) is a first
order formula with free second order variable X of arity » > 0. This can be
expressed in SOLPk] by the formula:

(p()g) < 1) (p<x2) > kgl) $(X1) V p(Xa)

where X; and X5 are variables of arity r.

3 Expressiveness of SOLP in the Presence of Order

By Remark 1, SOLP subsumes 3SO. However, it adds extra information to
the description of complexity classes, provided by the computing of bounds in
the cardinality of sets in instances of problems. This we shall see in this sec-
tion, where we impose constraints to the syntax of SOLP similar to Gradel’s
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constraints for 3SO in [4], and capture the classes P and NL, but as an extra
information we have that P (and NL) C SOLP|2] and the first order part of
the sentences describing this class is universal Horn (for NL it will be universal
Krom). Furthermore, observe that all our examples of computational problems
are definable in SOMLP, the monadic fragment of SOLP, some of them with
not known expression (or non expressible) in monadic 3SO.

Definition 2. Let 7 = {Ry,...,Rp,C1,...,Cs} be some vocabulary with rela-
tion symbols Ry, ..., R,,, and constant symbols Cy, ..., Cs, and let X1, ...,
X, be second order variables of arity k1, ..., k., respectively. A first order for-
mula o over 7 U {X1,...,X,}, and extra binary relation symbol = (equality)
and the constant L (standing for false), is a universal Horn formula, if « is a
universally quantified conjunction of formulas over TU{X1,..., X, } of the form
V1AV N ANy — @, where p is either X;(u;) (where u; denotes a k;-tuple
of first order terms, i =1,...,7) or L, and 1, ..., ¥, are atomic or negation of
atomic (1 U{X1,..., X, })-formulas except that any occurrence of the variables
X, must be positive (there are no restrictions on the predicates in T or =). The
logic SOLP Horn is the set of formulas of the form

(P(X1) <t1)--(P(X,) < t,)a

where each t; is a rational in (0,1), and o is a universal Horn formula over
some vocabulary T and second order variables X1, ..., X,.

By Example 1, the problem NOT-IN-CLOS«, is definable in SOLP Horn. We
can show that to test membership for a problem definable in SOLP Horn can
be done deterministically in polynomial time.

Lemma 1. The set of finite structures that satisfy a sentence 6 in SOLP Horn
15 in P. 0O

Thus, according to this lemma, our problem NOT-IN-CLOS<, is in P. We can
prove that, for r = 1/2, it is complete for P via first order reductions. The idea
is to define a reduction from the problem Path System Accessibility to NOT-
IN-CLOS<; /> using quantifier free first order formulae. An instance of the Path
System Accessibility problem, which we abbreviate from now on as PS, is a finite
structure A = (A, R, s,t) or a path system, where the universe A consists of, say,
n vertices, a relation R C A x A x A (the rules of the system), a source s € A,
and a target t € A such that s # t. A positive instance of PS is a path system
A where the target is accessible from the source, where a vertex v is accessible
if it is the source s or if R(z,y,v) holds for some accessible vertices x and v,
possibly equal. In [7] Stewart shows that PS is complete for P via quantifier free
first order reductions that include built-in order; in fact, via projections (see [7]
for definitions and also [5-§ 11.2]). We get the following result.

Lemma 2. The problem NOT-IN-CLOS<; /5 is complete for P via quantifier
free projections (qfp’s), that include the use of built-in successor. O
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Corollary 1. Over finite structures, ordered with a built-in successor, the logic
SOLPHorn captures P. O

For logarithmic space bounded classes we have the following examples.

Ezample 3. Let 7 = {FE,s} where E is a binary relation symbol and s is a
constant symbol. We think of 7-structures as graphs with a specify vertex s (the
source). Let 7 be a rational with 0 < r < 1. We define

NCONs, := {A=(A,E,s): (A E)is a graph and at least a fraction r of the
vertices are not connected to s}

Let cneon(Y) be the following formula
Aneon(Y) 1= =Y (s) AVavy(E(z,y) ANY (z) — Y(y))
Then A € NCON>, <= A= (P(Y) > r)ancon(Y).

Again, inspired on work by Grédel [4] we define:

Definition 3. Let 7 and X1, ..., X, be as in Definition 2. A first order for-
mula o over U {X1,..., X} U{=,1} is a universal Krom formula, if a is
a universally quantified conjunction of clauses, where each clause is a disjunc-
tion of literals with at most two occurrences (positive or not) of the predicates
X1,..., X, i.e. a is a 2-CNF formula with respect to the variables X1, ..., X,.
The logic SOLP Krom is the set of formulas of the form

(P(X1) > t1)-- (P(X,) >t

where each t; is a rational in (0,1), and « is a universal Krom formula over
some vocabulary T and second order variables X1, ..., X,.

The sentence defining NCON>,. is in SOLP Krom. We can show that NCON>,.
is in NL, the class of problems decidable by non deterministic logarithmic
space bounded Turing machines; and, furthermore, that for » = 1/2 the prob-
lem NCON>, is hard for NL via qfp’s. Then with an argument similar to the
one given for SOLPHorn one can show that satisfiability of sentences from
SOLPKrom can be decided in NL, and conclude that over finite structures,
ordered with built—in successor, SOLP Krom captures NL.

Remark 2. We can say more about the capturing of the class P by the logic
SOLP. The problem NOT-IN-CLOS<, /5 is complete via qfp’s with order, and
expressible in SOLP Horn|2]; hence by reducing every problem K in P to NOT-
IN-CLOS<; /2 with a quantifier free first order expressible reduction (which may
include a successor relation), we get a sentence in SOLP Horn[2] defining K.
Thus, P = SOLP Horn[2] and obviously

P C SOLP[2] C SOLP[2,3] C PSPACE (2)

The chain (2) motivate us to study the possibility of establishing a hierarchy
in SOLP[2] C SOLP[2,3] C SOLPI[2,3,5] C ... ,etc. We present in this paper
the separation of fragments of these logics when a weak form of order is present,
namely an almost linear order.
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4 SOLP Restricted to Almost Orders

We begin with two preliminary definitions. The first is a slight modification of
the notion of almost linear order from [6]; for it we remind the reader that a
function g : N — N is sublinear if, for all n € N, g(n) < n.

Definition 4. For a fized positive integer k, a k-preorder over a set A is a
binary, reflexive and transitive relation P in which every induced equivalence
class of PN P~ has size at most k. An almost linear order over A, determined
by a sublinear function g : N — N, is a binary relation <, over A with a partition
of the universe A into two sets B,C, such that B has cardinality n — g(n) and
<g restricted to B is a linear order, <, restricted to C is a 2-preorder, and for
every x € C and every y € B, x <, y.

Note that for any function g : N — N, the almost linear order <, over a set A
induces an equivalence relation ~, in A defined by a ~4 b iff a <, b and b <, a.

Definition 5. Fiz a sublinear g : N — N and let R be an n-ary relation on a set
A. Let <, be an almost-order determined by g in A. We say that R is consistent
with <4 if for every pair of vectors (ai,...,an) and (b1,...,by,) of elements in
A with a; ~¢ b; for every i <n, we have that

R(a1,...,an) holds if and only if R(b1,...,by) holds.

Let A= (AR{,...,R}CH,...,CH) be a T-structure. We say that A is con-
sistent with <4 if and only if for every i <k, R;“ is consistent with <.

By SOLP(7)<,, for an almost order <,, we understand the logic SOLP(7)
with the almost order <, as additional built-in relation, and where we only
consider models A that are consistent with <,. Furthermore, for the formulas
of the form (P(X) > r)¢(z,Y,X) and (P(X) < r)¢é(z,Y,X), we require
the following modification of the semantics: For an appropriate finite 7—model
A consistent with <,, for elements a = (ai,...,a,,) in A and an appropriate
vector of relations B, consistent with <,, we should have

AE (P(X) > r)¢(a, B, X) <= there exists S C A*, consistent with <,
such that A = ¢(a, B, S) and|S| > r - |A|®

Similarly for (P(X) < r)¢(z,Y, X), substituting in the condition > for <.
The property of being consistent for <, holds in fact for all the formulas in
SOLP(7)<,. The proof is an easy induction in formulas.

Lemma 3. Let A be a T-structure which is consistent with <,. Then, for every
formula (z) in SOLP(7)<,, the set YA :={a € A: A= (a)} is consistent
with <g. O

Definition 6. We will use the expression “almost second order proportional
quantifier logic”, and denote this by A—-SOLP, to refer to the collection of lan-
guages SOLP<, for every almost order <, given by a sublinear function g.
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Likewise, we denote A-SOLP[ry,...,1x] the collection of all the languages
SOLP< [r1, ..., rk], for naturalsry, ..., 1%, and A-SOMLP , A-SOMLPIry,
.., 1] for the corresponding monadic fragments.

For an illustration of the expressive power of the almost second order propor-
tional quantifier logic, we shall give below a definition in A-SOMLP|2] of the
set of models with almost order and with universe of even cardinality.

Ezample 4. Fix an almost order <, and consider the sentence

1 1
62— (P(B) 2 3 ) (PIO) 2 ) ) Wa(Bla) v Cla) A W(BY) — ~C))
Then for every structure A, consistent with <,
A =0, iff |A| :=m is even

The direction from left to right is clear: @ expresses that B and C' constitute
a partition of A. For the opposite direction, suppose m is even. There are r <
g(m)/2 classes with two elements, say {a1,b1}, ..., {ar, b}, and | = m—2r with
one element, say there are {¢1}, ..., {¢;}. Hence, m = 2r+1 and since m is even,
[ must be even. We proceed to construct our disjoint sets C' and B. Observe
that for each i = 1,...,r, both elements a; and b; must go into either B4 or
C4, because A is consistent with <g. With this in mind we do the following: If
r is even then we can construct our even partition of same cardinality without
much effort. If r is odd, then » — 1 = 2k for some k, and so we put k classes (of
two elements each) into B, and the remaining k + 1 many 2-elements classes
into CA. To compensate we put classes {c;} and {co} in B4, and the remaining
[ — 2 l-element classes are split evenly into B and CA. These sets BA and CA
verify the formula a(B, C) := Va(B(z) VC(x)) AVy(B(y) — —C(y)) in A and
have same cardinality. O

In a similar way, one can prove that for every natural d > 2, there exists a
formula @4, in the almost monadic second order proportional quantifier logic,
with quantifiers of the form P(X) > 1/d and P(X) > (d — 1)/d (i.e., contained
in A-SOMLP[d]), such that for structure A, consistent with almost order <4,
A = 0, iff |A] is a multiple of d.

It was shown in [6] that a very powerful counting logic, £* _(C), when re-
stricted to almost orders, has the BNDP; hence, it has a very limited expressive
power. The next example shows that this is not the case for A~-SOMLP.

Ezample 5. A—-SOMLP does not have the BNDP: For a graph G, its degree
set, deg.set(G), is the set of all possible in- and out-degrees that are realised in
G. A formula ¢(z,y) on graphs has the Bounded Number of Degrees Property
(BNDP) if there is a function f : N — N such that for any graph G with
deg.set(G) C {0,...,k}, |deg.set(¢[G])] < f(k), where 9[G] is the graph with
same universe as G and edge relation given by 1“. These notions generalise to
arbitrary 7-structures,and it is shown in [6] that every formula in £} (C), in
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the presence of almost-linear orders, has the BNDP and thus “ezhibits the very
tame behaviour tipical for FO queries over unordered structures” [6]. We shall
see later that A—-SOMLP presents a tame behaviour too since we can easily
show separation results; however it differs from the counting logics considered
by Libkin and Wong in [6] in that it does not have the BNDP.

Consider the quantifier free formula path(z,y,U) in A—-SOMLP({E}) that
states that:

—xz#y, €U andye U,

— There is no element w of U such that F(w,z) and there is no element w of
U such that E(y, w);

— Jw;,we € U such that E(zr,w;) and E(ws, y);

For any element z in U different from x and y there exists unique a,b € U

such that E(a,z) and E(z,b).

And let
1
vl = (PO) 2 5 ) path(a.0)
This formula does not have the BNDP property for most sublinear functions g;

for if we look at the models A consistent with <, and of cardinality 2n, whose
graph E(z,y) is just the natural successor relation induced by <, i.e.

° ° °
b i i 2n—g(2n)
~ ~ -

g(2n)

we see that E is consistent with <, and that deg.set(A) C {1,2,3,4}. However,
the structure ¢[.A] represents, for any n, the “transitive closure of length bigger
or equal to half the size of the model A”, and thus [n/2], |n/2| + 1, ...€
deg.set(1p[A]) for every g sublinear. |

5 Playing Games in SOMLP

Definition 7. Let 7 be a vocabulary and A and B be two T-structures, with
|B| = |A| 4 1. Let k and t be two positive integers. By A < (i) B we abbreviate
the following statement:

For every formula o(X1,...,Xt) of FO(tU{X1,...,X:}) of (first order)

quantifier rank < k and unary second order variables X1, ..., X, for
all subsets C1, ..., Cy of A, there exist subsets Dy, ..., Dy of B, such
that

— |G| < |Di| <|Ci| + 1, fori=1,...,t, and
— AE ¢(Ch,...,Ct) implies B = o(D1,...,Dy)
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The property A <) B basically states a first order elementary equivalence
among the extended structures (A, C1,...,Cy) and (B, Dy,..., D;) with respect
to first order formulas of the form ¢(X,..., X;), viewing X1, ..., X; as extra
unary relation symbols. This condition is sufficient for extending elementary
equivalence to A and B with respect to sentences in SOMLP.

Theorem 1. Let rq, ..., rs be distinct non zero natural numbers. Let T be a
vocabulary and A and B be two T-structures, with |A| = m, |B| = m + 1,
m+1>r; andm =, —1 fori=1,...,s. If A <4y B then, for all sentence ¢
of SOMLP(T)[r1,...,rs|, of first order quantifier rank < k and at most t unary
second order variables (free or not), we have

A | ¢ implies B = .

Our next goal is to characterise A < B in terms of winning strategies for
a Ehrenfeucht—Fraissé type of games. Recall that, for a positive integer k, a k
rounds first order FEhrenfeucht—Fraissé game is played by two players, commonly
known as Spoiler and Duplicator, and the game board consists of two structures
D and &€ of the same vocabulary. The players alternatively select elements in the
structures, doing so in the opposite structure as the one selected by his opponent
and through k rounds, being Spoiler the first one to move in each round. Let dy,
..., di be the elements selected in D, and ey, ..., e; the elements selected in &.
Duplicator wins if the substructure of D induced by (di, ..., di) is isomorphic
to the substructure of £ induced by (eq, ..., ex), under the function that maps
d; onto e;, for i = 1,..., k. The fundamental link between first order elementary
equivalence and the k rounds first order Ehrenfeucht—Fraissé game is given by
the following theorem (cf. [2-§1.2] and [5-§6.1]).

Theorem 2 (Ehrenfeucht—Fraissé). For two structures A and B over the
same vocabulary, and integer k > 0, the following two statements are equivalent:

(i) A =g B (i.e., every first order sentence of quantifier rank < k that is true
in A is also true in B, and vice versa).

(i¢) Duplicator has a winning strategy in the k rounds first order Ehrenfeucht—
Fraissé game played on A and B. O

Our combinatorial game below is the classical game for monadic existential sec-
ond order logic, to which we add strong restrictions on the possible cardinalities
of both the structures upon the game is played and on the sets that the play-
ers choose as witnesses for second order variables (see [3] for definitions and a
thorough analysis of games for monadic second order logic).

Definition 8. Let 7 be a relational vocabulary, s and k positive integers. Let
A and B be two T-structures such that |B| = |A| + 1. The proportional sets
(A, B, s, k)-game (or simply the (A, B, s, k)—game) is played by Duplicator and
Spoiler on A and B as follows:
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1. Spoiler selects s subsets Sy, ..., Ss of A.
2. Duplicator selects s subsets Tv, ..., Ts of B, with |S;| < |T;| < |Si| + 1, for
i1=1,...,s.

3. Both players play a k rounds first order Ehrenfeucht—Fraissé game on the
extended structures (A, S1,...,Ss) and (B,T1,...,Ts).

Theorem 3. Fiz k,s € N, 7 a vocabulary, A and B 7-structures with |B| =
Al + 1. A <@ B if and only if Duplicator has a winning strategy in the
(A, B, s, k)-game. O

Now the tool for establishing non definability in SOMLP reads as follows.

Theorem 4. Let ry, ..., r, be distinct non zero natural numbers. Let T be a
relational vocabulary and K be a class of T—structures. If for all positive integers
k and s, there exists T-structures A and B (that depend on k and s) such that
Ae K and B¢ K, |B = |A|+1, |A| =, —1, for eachi=1,...,n, and Dupli-
cator has a winning strategy in the (A, B, s, k)—game, then K is not definable in

SOMLP[ry, ..., ). 0

5.1 Limitations in Expressive Power for A—-SOMLP

Recall that for a function g, the almost order <, on a universe A of a T-structure
A, induces an equivalence relation ~, on A. Let [a], denote the ~g—equivalence
class of a € A, and [A], := {[a], : @ € A}. If, in addition, we ask of A to be
consistent with <,, then it makes sense to define the quotient structure A/~ e
as a T-structure consisting of [A], as its universe, and for a k-ary relation R € 7,

RY o= {([a1]y, - - -, [ak]y) : (a1,...,ax) € R}

Furthermore, for a subset B C A we define its <,-contraction as [B], := {[b], :
b € B}; and for a subset B C [A],, its < -expansion is (B)? :=={a € A:a €
[b]4 for some [b], € B}.

Definition 9. Fiz a sublinear function g and the almost order <,. A <,—cluster
of models C is a collection of finite structures over same vocabulary T, each
consistent with <4, and for each pair of T-structures A and B in C, their quotient
under the equivalence relation ~, are isomorphic, that is, A/~, = B/~,.

Given A and B in the <,-cluster C, let F' be an isomorphism from A/~ to
B/~,. Then, for a € A and b € B, we write a =c b to indicate that F([a],) =
[blg. Furthermore, for a subset S C A, the <,-closure of S in B is cly(S,B) :=
(F([S],))? where F([S]y) == {[V]y € [Bly : F~1([bly) € [],}-

The following example gives an infinite family of sublinear functions that define
almost orders.

Ezample 6. Fix k € N. Then hg(n) = 2r, where r = n, is a sublinear function.
E.g., take k = 3, then h3(7) = 2 and h3(8) = 4. If A7 and Ag are sets of size
7 and 8 respectively, then A7/, = As/~,., and hence, they belong to the
same <p,—cluster. O
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The following lemma shows that pairs of structures, A and B, that are in the
same cluster and differ in one element, have the A <(;, ;) B property.

Lemma 4. Let g be a sublinear function and C an <,-cluster of T-models. Fix
A and B in C, with |A] = m and |B| =m+1, and say F': A/, — B/~ is the
isomorphism among the quotient structures. Then:

(i) For every first order formula ¢(x1,...,25,Y) in SOMLP(T), for every aq,

.., as i A, for every by, ..., bs in B such that a; =c b;, and for ev-

ery sequence of subsets Si,...,S; of A, consistent with <,, A E ¢(a1,
ey U5, S1, .., SE) B = @b, ... bs, clg(S1,B), ..., clg(St, B));

() If S C A then |S| < |cly(S, B)| < |S] + 1.

Corollary 2. Let g be a sublinear function and C an <g-cluster of T-models.
For A,B € C, with |[A| =m, |B| =m+1, and k,s € N, we have A <, 5 B. O

Combining the previous corollary with Theorem 1 we get

Corollary 3. Let rq, ..., ri be distinct non zero natural numbers. Let g be a
sublinear function, <4 an almost order and C an <g4-cluster of T—structures. For
every pair of structures A, B in C, such that |[A| =m, |Bl=m+1, m+1>r;
and m =,, —1, for every i < k, we have that, A |= ¢ implies B |= ¢, for all
sentences ¢ of SOMLP(T)[r1, ..., Tk O

Theorem 5. Letr,ry,...,r, be distinct non zero natural numbers, pairwise rel-
atively prime. Then A~SOMLPry,..., 1] - A-SOMLP[r, ..., 1%, r]. O

Corollary 4. A-SOMLP[2] © A-SOMLP[2,3] © A-SOMLP[2,3,5] © ...

5.2 Limitations in Expressive Power for A-SOLP

In this section we partially extend the separation result stated in Corollary 4 to
second order variables of unbounded arity, that is, to A-SOLP. It is a partial
extension because we need to restrict our proportional quantifiers to be only
of the form (P(X) < 1/2), with X of arbitrary arity » > 0. Nonetheless, the
result is interesting because it is precisely this type of quantifiers that defines
SOLPHorn[2], which in the presence of order, captures P. Our main tool is a
reshaping of Theorem 1 in the context of SOLP Hornl2].

Theorem 6. Let T be a vocabulary and A and B be two T—structures, with |A| =
m, |[Bl=m+1, m+1>2and m =y —1. If A <41y B then, for all sentence
¢ of SOLPHorn(T)[2], of first order quantifier rank < k and at most t second
order variables (free or not), we have A = ¢ implies B = ¢ 0

Theorem 7. Let 7 be a relational vocabulary and K be a class of T—structures.
If for all positive integers k and s, there exists T-structures A and B (that de-
pend on k and s) such that: A€ K and B ¢ K, |B| = |A| +1, |A| =2 -1,
and Duplicator has a winning strategy in the (A, B, s, k)—game. Then K is not
definable in SOLP Horn(7)[2]. O
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Using as benchmark query: “the size of the model is a multiple of 3”, which is
definable in A-SOLP[2, 3], we obtain

Corollary 5. A-SOLPHorn[2] © A-SOLP[2,3]. 0
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for Long Words over Small Alphabets
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Abstract. Given a dictionary W consisting of n binary strings of length
m each, a d-query asks if there exists a string in ¥/ within Hamming
distance d of a given binary query string gq. The problem was posed by
Minsky and Papert in 1969 as a challenge to data structure design. There
is a tradeoff between time and space in solving the problem of answering
a d-query. Recently developed time-efficient methods for text indexing
with errors can be used to answer a d-query in O(m) time. However, these
methods use O(nlog?n) (or more) additional space which is not practi-
cal for large databases. We present a method for the problem assuming
the standard RAM model of computation. We process the dictionary to
construct an edge-labelled tree with distinct labels to siblings, and with
bounded branching factor and height. Storing the resulting tree does
not require asymptotically more space than the size of an ordinary trie
that stores the given dictionary. We present an algorithm for the d-query
problem that takes O(m(3log,/;n — 1)%(log, n)*™') time, and uses only
O(m) additional space. We also generalize the results for the case of the
problem when a larger alphabet, or edit distance are used. We achieve
o(m(2|X] — 1)d(log2|2‘/(2|2‘_1) n — 1)%(logy n)*™") time complexity for
the problem when Hamming distance is used. The time complexity in-
creases by a factor of O(d(2|%|—1)%(log, n)?) when we use edit distance.
The algorithms are efficient when the approximate dictionary look-up
involves long words defined over small alphabets. The algorithm can be
modified such that it allows for words of different lengths as well as dif-
ferent lengths of query strings.

Keywords: d-query, approximate dictionary look-up, suffix tree, pre-
processing, Hamming distance, edit distance, space efficient algorithm.

1 Introduction

Consider a dictionary W consisting of n binary strings of length m each. A d-
query asks if there exists a string in VW within Hamming distance d of a given
binary query string ¢. Hamming distance between two strings is the number of
positions at which the strings differ. The problem was originally posed by Minsky
and Papert in 1969 [12] in which they asked if there is a data structure that sup-
ports fast d-queries. Algorithms for answering d-queries and its variations have
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been a topic of interest in the literature [1-3, 5, 6,11, 16]. Approzimate dictionary
look-up is a problem of dictionary look-up within distance d to a given query
string q. It is essentially a d-query problem over a larger but finite alphabet, and
it allows for various notions of proximity. Approximate dictionary query problem
asks for not only one but all words that are close to the query string q.

A naive method for answering a d-query is to generate all possible strings
differing from ¢ in at most d positions, and perform O(m?*!) exact queries using
O(m) additional space. If we use O(m‘n) additional space to store all possible
words within difference d of words in W we can answer a d-query in O(m) time
by performing one exact query. Therefore, there is a tradeoff between time and
space. We are interested in finding a solution that does not require unreasonable
space or time.

There are efficient algorithms for the 1-query problem (the d-query with d = 1)
[11,2,16,3]. They do not generalize to the d-query problem when d > 1.

Arslan and Egecioglu [1] study the approximate dictionary look-up problem
in the standard RAM model, and they take into account all computations in the
complexity analysis. They assume a trie representation for the dictionary W.
For the approximate dictionary look-up problem they present algorithms that
use hybrid tree/dynamic programming approach [8,13,14] that combines tree
traversal with partial computation of distances. Their method allows for the use
of simple edit distance as well as the Hamming distance. The simple edit distance
between two strings is the minimum number of edit operations (insert,delete, and
substitute) required to transform one string into the other. The algorithm of
Arslan and Egecioglu [1] answers a d-query in time O(m*!) using additional
space O(m).

Recently (during the development of this paper) several results for text index-
ing with errors have been published [4, 10]. These results improve the complexity
of answering d-query. Results shown by Maafl [9] imply that when Hamming
distance is used, and the dictionary is stored in a trie, the average time of trie-
search to answer a d-query is O(log*™" (nm)). The method presented by Cole et
al. [4] can be used to answer a d-query (where d can be the edit distance) in time
O(m~+1log? (nm) loglog (nm)), and it requires additional space O(nm log? (nm))
for indexing. Maafl and Nowak [10] have shown two results for text indexing with
errors. Their results imply that when edit distance is used the d-query can be
answered: 1) in O(m) time using on average O(n log® n) additional space for in-
dexing. 2) in O(m) average time using O(n log? n) additional space for indexing.
Although these methods are time-efficient, they are not practical for answering
d-queries in very large databases.

In this paper we assume the standard RAM model of computation. We pre-
process W to create an edge-labelled tree whose branching factor, and height
are bounded from above by functions logarithmic in the number of words in
W, and the labels to siblings are distinct. The resulting tree does not require
more space asymptotically than that required by a trie representation of WW. We
use the hybrid tree/dynamic programming technique for approximate dictionary
look-up. We assume that the alphabet X' can be larger than a binary alphabet.
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We study the Hamming distance, and edit distance cases separately for a given
alphabet Y. We develop algorithms similar to those presented by Arslan and
Egecioglu [1]. We achieve O(m/(2|X]—1)%(logy s /(2|55 —1) n—1)%(logy n)?+1) time
complexity when Hamming distance is used by our first algorithm. In the second
algorithm, the time complexity increases by a factor of O(d(2|X| — 1)%(log, n)9)
when edit distance is used. Our algorithms are efficient when the problem in-
volves long words defined over a small alphabet. When we apply our algo-
rithm for the Hamming distance case, the algorithm answers a d-query in time
O(m(3logy/zn — 1)?(log, n)4*1) using only O(m) space in run-time.

The outline of this paper is as follows: in Section 2 we describe how we prepro-
cess dictionary W to create the tree that we use in our algorithms. We present
our algorithms for the approximate dictionary look-up problem in Section 3. We
first present the algorithm for the Hamming distance, and then the one for the
simple edit distance. We summarize our results in Section 4.

2 Preprocessing

For simplicity we assume that dictionary W is stored as a trie 7y (or a Patricia
tree, which is a trie in which the children with no siblings are merged with their
parents). Otherwise, we can always create Ty for W. W has words of lengths m
each over an alphabet X where |X| > 2.

For any node v in a given tree 7 we denote by n, the number of leaves rooted
at subtree v. We first establish the following lemma about n,.

Lemma 1. Let T be a tree of height h, and branching factor b. There exists a
node v in T such that 5, <mn, < 7.

Proof. We construct an algorithm that finds node v such that the number of
leaves n,, in the subtree rooted at v satisfies the inequalities in the lemma. The
algorithm starts at the root, and throughout the entire search selects the node
with highest leaf-counts among its siblings. By the pigeon-hole principle one child
c of the root is a subtree with at least | leaves because the branching factor of
the tree is b, i.e. n. > ’bL. If the leaf-count n. is also < g then the search stops at
node c since c¢ satisfies the inequalities in the lemma, i.e. v = ¢. Otherwise, the
algorithm continues at the subtree rooted at ¢ with the largest leaf-count. The
search will continue as long as the leaf-count for the current node is larger than
5. When the leaf-count for the current node c finally is less than or equal to §
then by the pigeon-hole principle the leaf-count n. is at least J, for ¢ that has
the largest leaf-count among its siblings. The algorithm stops at node ¢ and the
leaf-count n.. is between J; and 7, i.e. v =c.

Corollary 1. There exists a node v in Ty such that 2|"E| <n, <79.

For a given node v € Ty we denote by p,, the concatenation of labels of the
edges on the path from the root 7 to node v. Note that p;, is the common
prefix of the words appearing in subtrie rooted at r. Another interpretation of
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Corollary 1 is that there exists a prefix p,, that is common to n, words in W
where 2|n2| <n, <73

We preprocess Ty to create an edge-labelled tree S with bounded branching
factor and height, and in S from any node to its distinct children no label is
a prefix of another. Function Convert(r,n,) in Figure 2 creates S shown in
Figure 3 and returns its root r’. The function takes as a parameter node r of
Tw, and n,.. It creates a node 7’ in S. If r is a leaf then the function returns r’.
Otherwise, the algorithm reorganizes the tree rooted at r in 7y into a tree rooted
at ' in §. This is done by first determining the children of 7/, and recursively
creating the subtrees in S rooted at these children from subtrees in 7y . The
algorithm performs this in a few main steps. First, it collects into a list nodes
that are candidate to be children of 7’. Second, these nodes are examined and
the list is revised so that in the list of labels of arcs from r’ to these nodes, no
label is a prefix of another.

The algorithm uses a set L to keep track of nodes that are candidate for being
children of 7’ in S. It initializes L to be the empty set. At each iteration, the
algorithm finds in 7y a node v of Lemma 1. The algorithm given in the proof
of the lemma shows that there exists a node v such that 2|”E| <n, < 5. We
may use any search algorithm which returns a node v with the leaf-count n,
satisfying these inequalities. We modify this algorithm such that it ignores any
node and its subtries when the node is marked as “deleted”. Finding a node with
the largest leaf-count less than or equal to 7 is advantageous because it yields to
S with smaller height and branching factor. Once we find vertex v we delete the
subtrie rooted at v logically. This involves marking it as deleted in 7y, and the
leaf-counts for all its ancestors in 7y are updated by subtracting n, from each.
This can easily be done if there are backward arcs. We can traverse 7y before
the preprocessing, and add backward arcs. These arcs can be removed after
the preprocessing is completed. Next, we iteratively find new vertices satisfying

T I
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Fig.1. (a) A sequence C = ¢, c¢g,...,c, of nodes obtained from L for v. Filled nodes
are in L. (b) Filled nodes are added to F. Nodes u and u' are removed from L along
with all nodes in C.
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Algorithm Convert(r,n;,)
create a new node r’ in S
if r is a leaf then return 7’
L:=0
while (n, > 1) do {
find node v of Lemma 1
L:=LuU{v}
mark vertex v as ‘‘deleted’’ in Tw
for every vertex w on the path from the root to v in 7w do
update the leaf-count ny (= Ny — N
}

add to L the only (remaining) child v of r
sort L into itself in ascending label lengths
F:=0
while (]L| > 0) do {
pick the next (shortest) node v in sorted list L; i:=1; ¢;:=v
for every node w appearing after v € L do {
if prc, is a prefix of pr. then { i:=i+1;¢ = w}
}

remove all nodes in C from sorted list L
for every node w € L where c¢; is a prefix of pr. do {
remove w from L
clear the ‘‘deleted’’ mark on vertex w in Tw
for every vertex u on the path from the root to w in 7w do
update the leaf-count 7y = Ny + Ny

}

add to F' all children of all nodes in C1,C2,...,CC|-1
add to F' all siblings of all nodes in c2,...,c| |
if c¢j¢) is a leaf then add it to F
else add to F' all children of node C|c|
}

for every v € F do {
v’ := Convert(v,ny)
make 7’ point to v’ on label prefix p;.

}

return 1’
Fig. 2. Function Convert(r,n;,)

Lemma 1 in remaining trees, and collect them in L. The iterations continue as
long as there remain more than one leaves in 7y, and finally the last leaf is
also added to L. We note that at this stage the following are true: 1) |L| <
10gs| /(2 5|-1) > and 2) For every vertex v € L, n, < "y. Next, we create a
list F' from L such that F' unlike L does not contain any two distinct nodes
u,w where p,,, is a prefix of p,,,. We sort L into itself in ascending order of
label-lengths, and then initialize F' := (). We iteratively pick the next node v
in sorted list L, and for each v we remove nodes from L, and add nodes to F'.
Figure 1 illustrates possible cases on an example. We create a sequence C' of



Efficient Approximate Dictionary 123

nodes where the first element ¢; = v by visiting every node in sorted list L
appearing after v, and whenever we find a node w such that the label to the last
node in the sequence p, ., is a prefix of p,,, we set ¢; := w after incrementing
i. In the resulting sequence C' = ci1(= v),ca,...,¢|c|, ¢ is a prefix of ¢;4; for
all 3,1 < ¢ < |C|. We remove all the nodes in C' from L. Then in new L we
find all nodes w where p, , is a prefix of p,,,. We logically reattach the subtries
rooted at these nodes to 7y by clearing the “deleted” mark, and updating for
each ancestor u, m, := n, + n,. We continue this process iteratively until no
node remains in L. After the iterations end, for every node w in C' we add to
F all children of w (or only w if w is a leaf), and all siblings of w. We continue
this process by picking the first node v with the shortest label in new L as long
as |L] > 0. We note that when the iterations end, the following are true: 1)
|F'] < (2|X] = 1) logy 5 /(2)5:—1) * because for each node initially in L there are
at most 2|X| — 1 nodes in F', 2) For every node v € F, n, < "y . To see this
consider a node in F. If v was also in L then the claim is immediately true.
Otherwise v is a sibling of some node w in L, n,, < "5, and because we always
select a sibling with the largest leaf-count to place in L, n, < n,,. 3) There are
no two distinct nodes v and w in F such that p,., is a prefix of p,,,. Following
the construction of F, the function creates a subtree for each node v in F' by
performing a recursive call Convert(v,n,) which creates a subtree for S from
the subtrie of 7y rooted at v, and returns the root v’ of the resulting subtree.
The function makes v’ a child of »’, and sets prefix p,, as the label of the arc
connecting 7’ to v'.
Figure 3 illustrates the resulting tree S. The following are true for S:

— labels from any parent to its distinct children are distinct,

— the height h is <logyn,

— the branching factor b is < (2|2 — 1) logy 5 /(2)x|-1) n- We expect that on
average in practice we find a subtree with number of leaves close to half
of the total number of leaves, and as a result the branching factor is much
smaller in practice.

Ty, has a single leaf

in{p,,Py: Py} no p, is a prefix of p, for if
height < log,n

branching factor (b) < (2|2

-1) 108,51 15"

Fig. 3. The resulting tree, and the properties it satisfies
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The preprocessing takes time O(nmb) since each of O(n) words gives rise
to a leaf f in the resulting tree after the preprocessing spends O(mb) time for
following the edges, and for each ancestor v comparing u with its siblings to
determine prefix relation, and placing u in sets L, and F'. The space requirement
is the same as that of W because in the resulting tree there are same number
of leaves, and the preprocessing does not increase the depth of the leaves in the
resulting tree compared to their depths in the original tree 7y, . Therefore, the
number of nodes in both trees are asymptotically the same. The total length of
the arc-labels are also the same asymptotically if we represent each label in S
by using an index to a member, and start and end positions (or pointers) in Ty .

We call a function F' an ordinary node-weight function for a given tree T if
F' assigns non-negative integral weights to nodes such that for any node p at
most one of its children has the same weight as p, and the weights of the other
children are strictly larger than that of p.

The following is a generalization of a lemma in [1].

Lemma 2. Let T be a tree whose height is h, and whose branching factor is
b. Let the nodes of T be assigned weights by an ordinary node-weight function.
Then the number of nodes N in T with weight < d is O( (b — 1) hd+1) .

Proof. To find an upper bound for N we consider the complete tree C' with
branching factor b, and height h. Since the weights are assigned by an ordinary
node-weight function, N is maximized when each parent node whose weight is
w has exactly one child with weight w, and each of its other children has weight
w + 1. Let L(I,w) denote the number of nodes with weight w at level [ in C.
Then L(l, w) satisfies the recursion L(I+1,w) = L(l,w)+ (b—1)L(l,w —1) with
I > w and L(I,0) = 1. The solution of this recursion is L(I,w) = (i) b—1)v.
Therefore the total number of nodes with weight w in C is (b—1)* 37 ()=

I=w \w

(b—1)*("*1) , and therefore N = 320 _(b— 1)*(I11) = O((b — 1)?hd+1).

3 Algorithms

Let s[i..j] represent the substring s;s;+1...s; of any given string s = sys2... s
with length k. With respect to a given query string ¢ let function f assign a
weight to each node v in the tree rooted at node r,

f(v) = H(pr,m Q[1-~|pr,v

D (1)

where H denotes the Hamming distance. We note that f is an ordinary node-
weight function for S. Consider any parent node u, and its child w. The weight
fw) = Hprw, a1 -[prwl]) = fw) + H@uw a[([pru] + 1)-(Pru| + [Pu,w])])-
Clearly f(w) > f(u). If f(w) = f(u) then for any other child of u the weight is
larger than f(u) because over all the arc labels from w only p,, ., exactly matches
q[(|pr.ul + 1)--(|prw] + |Puwl)], and among these arc labels no label is a prefix of
another. We reach the following Corollary from Lemma 2:
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Corollary 2. Let N be the number of nodes in S with weight < d as defined in
(1). Then N = O((2|2| — 1)*(logy s /(2| z)-1y 7 — 1)*(logy ) *+1).

In particular when X' is a binary alphabet N = O((3logy 31 — 1)?(logy n)4+1).

We develop an algorithm shown in Figure 4 for the approximate dictionary
look-up within Hamming distance d. Algorithm DFT-LOOK-UPy (1, q,d) checks
if the tree rooted at r has a leaf whose Hamming distance from ¢ is < d. The
algorithm searches for a member in a depth-first manner. If d < 0 then it returns
false since there is no such member. If r is a leaf and ¢ is an empty string then
the algorithm returns true since a member is found. Otherwise for each child the
algorithm calculates a weight d' = H (pr.¢, q[1..|pr.c|]), and recursively checks if
the subtree rooted at each child contains a member within an updated distance
d — d'. If any of these searches returns true then the algorithm returns true,
otherwise, it returns false.

Since f in (1) is a ordinary node-weight function for S, by Corollary 2 the
algorithm in S visits O((2|X] — 1)d(log2|2|/(2|2|71)n — 1)4(logy n)?*1) nodes,
and at each leaf spends time O(m). The time complexity of the algorithm is,
therefore, O(m(2|X| — 1)d(10g2|2|/(2|2|_1) n — 1)4(log, n)4*1) . We can modify
the algorithm such that the words in W as well as the query string can be of
different lengths.

Next, we describe how we develop a similar algorithm for the problem when
simple edit distances are used. Given two strings X = zy...7, and ¥ =
Y1 ...Ym, the simple edit distance ed(X,Y’) is the minimum number of edit
operations which transform X into Y using three types of operations: insert,
delete, and substitute. A common framework for computing an edit distance is
the edit graph (see [8]) for definition), and it has a simple dynamic programming
formulation [8]:

D;;=min{ D;_1; +1, Di—1 -1+ H(xs,y;), Dij—1+1} (2)

for all 4,7, 0 <4, j < m with boundary conditions D; g =7, Do ; = j.
With respect to a given query string ¢, let e be a function that assigns a
weight to a given node v in S rooted at r as described in the following:

e(v) = min{ed(p,.,t) | t is a prefix of ¢} (3)

AMgorithm DFT-LOOK-UPgu(r,q,d)

If d <0 return FALSE
If r is a leaf, and ¢ is an empty string then return TRUE
for each child ¢ of r in S do {
d := H(pr.c,q[L..|pr.c|])
if DFT-LOOK-UPy(c,q[(|pr,c| + 1)..lq]],d — d’) then return TRUE
}

return FALSE

Fig. 4. Algorithm DFT-LOOK-UPp for approximate dictionary look-up within Ham-
ming distance d
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where ed denotes the simple edit distance. Note that in this definition p,, and
the prefix ¢ of ¢ can be of different lengths. We can see that e is not an ordinary
node-weight function because it is possible that more than one children of a node
can have the same weight as the parent node due to insert, and delete operations
that can be performed on the labels to ancestor nodes.

Lemma 3. Let N be the number of nodes in S with weight < d as defined in
(3). Then N = O((2| 2| = 1)*!(logy 5221y — 1) (logy n)**).

Proof. We imagine that we traverse the tree in breath-first manner starting at
root at level 0, and consider the minimum possible weight for each node. Clearly
for any node u, the weight e(u) in (3) is less than or equal to f(u) in (1). Suppose
that initially for every node u in S, e(u) = f(u). If v is a parent node of u then
e(u) > e(v), i.e. e is non-decreasing.Due to possible delete, and insert operations
on the label of the arc p,, from v to u there may be nodes w in the subtree
rooted at u such that w has more than one children sharing the same weight
as w. When we studied an upper bound in Lemma 2 we considered that every
node v has exactly one child with the same weight as v. This time, being overly
pessimistic, we assume that all of v’s children have the same weight as v if it is
given that there are insertions, or deletions on p, .. We consider possibility of
insertions, and deletions on all labels on arcs each connecting a node at level 1 —1
to a node at level ¢ for a given 4. This increases the number of nodes at level 4
with the same weight as their parents (and all < d) by a factor of < b—1, where
b is the branching factor in S. Since there are at most d insertions, or deletions,
for each permutation of the levels they can occur, the number of nodes with the
same weight as their parents (and all < d) is increased by a factor of < (b—1)4.
The number of levels where an insertion, or a deletion can occur is the same as
the height of the tree, h. Since there can be at most d such operations, we need
to consider (Z) possibilities. Putting all together, the product of (g) (b—1)% and
the upper bound in Lemma 2 gives the upper bound in this lemma.

Next we propose Algorithm DFT-LOOK-UP,,; for the d-query problem when
edit distance is used. The steps of the algorithm are shown in Figure 5. The
algorithm is based on depth-first traversal (DFT) of S during which the entries
of the dynamic programming matrix are partially computed. To determine if
two strings are within edit distance d it is sufficient to consider a diagonal band
of the edit graph [15]. Algorithm DFT-LOOK-UP,; uses this observation (see
Figure 7).

For a given node v in S rooted at r, we define D, ; where max{0,i— [d/2]} <
j <min{m,i+ |d/2]}, and i = |p, .| (see Figure 7) as follows:

D, ; = ed(pr.v,q[l..j])

That is, D, ; is the minimum simple edit distance between p,.,, and g[1..j], and
the weight of node v defined in (3) is

e(v) = min{ D, ; | max{0,i—|d/2|} < j < min{m,i+|d/2]|} where i = |p, .| }.
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Algorithm DFT-LOOK-UP ;(d)
Do j:=j for all j, 1<j<1(d/2]
Dio:=0 for all ¢, 1<i<m
Do :=0
for each child v of the root r in S do
if DFT-COMPUTE-D 4(r,v) < d then return YES
return NO

Fig.5. Algorithm DFT-LOOK-UP,; for dictionary look-up within edit distance d

Function DFT-COMPUTE-D q(v,u)

Istart ‘= |p7‘,'u|; lend = ‘pr,vl + |pv,u|
for 7 := istart tO %eng do

for j:=max{0,i— |d/2|} to min{m,:+ |d/2]} do

D :=min{Di—1,; + 1, Di—1,j—1 + H(Pou[i —istart),q;), Dij—1+ 1}

weight := min{D;_, ,; | max{0,i— |d/2]} < j < min{m,i+ |d/2]}
if u is a leaf or weight > d then return weight
if weight=d then {

for j := max{0,iecna — [d/2]} to min{m,icna + [d/2]} do {

if Ds,,,; =d and there is a path from u to a leaf in S

on ¢[(j+1)..gm] then return d }
return d+1

}
return min{ DFT-COMPUTE-D ,4(u,w) | w is a child of u}

Fig.6. Function DFT-COMPUTE-D,; for computing the minimum edit distance
achieved in subtree rooted at u whose parent is v

If we process S in depth-first manner, we can compute D, ; for all nodes using
a single matrix D; ; where 0 < ¢ < m.

Algorithm DFT-LOOK-UP,; starts with the initialization of scores for the
first row, and it invokes Function DFT-COMPUTE-D . for each child v of the
root r. If any of these invocations returns a value < d then the algorithm returns
YES; otherwise it returns NO.

Given a parent node v, a child node u, Function DFT-COMPUTE-D ,4(v, u)
computes the shaded region of the edit graph shown in Figure 7 using p, ,, and
starting with the values in the row of parent node v. The minimum of the values
in the row of w is set as the weight e(u) of u . If this value is equal to d then the
function examines every position j in the row of u where d is achieved. These are
the only starting positions for a suffix of the query string ¢ with which weight
d is preserved in a subtree rooted at u . That is, these are the only positions
which potentially lead to a leaf with weight d . Therefore the algorithm checks if
starting from u at each such position j if there is a path to a leaf on ¢[(j+1)..m] .
If the answer is yes then the algorithm returns d, otherwise it returns d+ 1 which
is a number sufficiently large to yield a no answer when we only consider the
subtree rooted at u . If the weight of u is smaller than d then the function
traverses recursively the subtree rooted at u in depth-first manner, computes
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Fig.7. The hybrid tree/dynamic programming approach used by Function DFT-
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and returns the minimum edit distance (leaf-weight) achievable in this subtree.
Note that if the final value returned is < d then it must be the weight of a leaf.

Since processing at each node takes time O(dm), the algorithm’s time com-
plexity is O(dm(2|X| — 1)**(logy) 5| /(a1 31-1) 7 — 1)**(logy n)?**!) by Lemma 3,
and it requires additional space O(dm).

4 Conclusion

We present a method to preprocess a dictionary to create an edge-labelled tree
with bounded branching factor and height, and with the property that from any
node to its distinct children no label is a prefix of another. Size of the resulting
tree is asymptotically the same as the space requirement of an ordinary trie
that stores the dictionary. For approximate dictionary look-up we develop space-
efficient algorithms which are also time-efficient when the alphabet-size is small.
The main ideas in these algorithms can also be used for developing methods for
text indexing with errors.
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Abstract. This paper shows that the standard security notion for iden-
tity based encryption schemes (ZBE), that is IND-ID-CCA2, captures the
essence of security for all ZBE schemes. To achieve this intention, we first
describe formal definitions of the notions of security for ZBE, and then
present the relations among OW, IND, SS and NM in ZBE, along with
rigorous proofs. With the aim of comprehensiveness, notions of security
for ZBE in the context of encryption of multiple messages and/or to mul-
tiple receivers are finally presented. All of these results are proposed with
the consideration of the particular attack in ZBE, namely the adaptive
chosen identity attack.

1 Introduction

Identity based encryption (ZBE) is a public key encryption mechanism where an
arbitrary string, such as the recipient’s identity, can serve as a public key. This
convenience yields the avoidance of the need to distribute public key certificates.
On the other hand, in conventional public key encryption (PXE) schemes, it is
unavoidable to access the online public key directory in order to obtain the
public keys. ZBE schemes are largely motivated by many applications such as to
encrypt emails with the recipient’s email address.

Although the basic concept of ZBE was proposed by Shamir [13] more than
two decades ago, it is only very recent that the first fully functional scheme was
proposed [6]. In 2001, Boneh and Franklin defined a security model and gave the
first fully functional solution provably secure in the random oracle model. The
notions of security proposed in their work are natural extensions to the standard
ones for PICE, namely indistinguishability-based ones.
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1.1 Motivation

So far in the literature, IND-ID-CCA2, is widely considered to be the “right”
security notion which captures the essence of security for ZBE [6,4,5,15]. How-
ever, such an issue has not been investigated rigorously, yet. This work aims to
establish such an affirmative justification. Before discussing about how to define
the “right” security notion for ZBE, we first glance back to the case of PKE.

NOTIONS OF SECURITY FOR PKE. A convenient way to formalize notions
of security for cryptographic schemes is considering combinations of the var-
ious security goals and possible attack models. Four essential security goals
being considered in the case of PKE are one-wayness (OW), indistinguisha-
bility (IND), semantic security (SS) [9,11], and non-malleability (NM) [7],
ie. G; € {OW,IND,SS,NM}. The attack models are chosen plaintext attack
(CPA) [11], non-adaptive chosen ciphertext attack (CCAL) [7] and adaptive cho-
sen ciphertext attack (CCA2) [12], i.e. A; € {CPA,CCA1,CCA2}. Their combina-
tions give nine security notions for PKE, e.g. IND-CCA2.

SS is widely accepted as the natural goal of encryption scheme because it
formalizes an adversary’s inability to obtain any information about the plaintext
from a given ciphertext. The equivalence between SS-CPA and IND-CPA has been
given [11]; and the equivalences between SS-CCAL,2 and IND-CCAL,2 are given
only recently [10,14]. On the other hand, NM formalizes an adversary’s inability,
given a challenge ciphertext y*, to output a different ciphertext 3’ in such a
way that the plaintexts x, z’, underlying these two ciphertexts, are meaningfully
related, e.g. ' = z + 1. The implications from IND-CCA2 to NM under any
attack have been proved [3]. For these reasons, along with the convenience of
proving security in sense of IND, in almost all concrete schemes, IND-CCA2 is
considered to be the “right” standard security notion for PICE.

ToOwARDS DEFINING NOTIONS OF SECURITY FOR ZBE. Due to the particular
mechanism, the adversaries are granted more power in ZBE than in PKE. Es-
sentially, the adversaries have access to the key extraction oracle, which answers
the private key of any queried public key (identity). Including this particular
adaptive chosen identity attack, ' we formalize the security notions for ZBE,
e.g. IND-ID-CCA2, in such a way: G;-ID-A;, where G, € {OW,IND,SS,NM}, ID
denotes the particular attack mentioned above, and A; € {CPA,CCA1,CCA2}.
Boneh and Franklin are the first to define the security notion for ZBE, by natu-
rally extending IND-CCA2 to IND-ID-CCA2.

Let us rigorously investigate whether IND-ID-CCA2 could be considered as
the “right” notion for ZBE, besides the intuitive reason that it is analogous to
IND-CCA2. The natural approach to justify such an appropriateness for ZBE is,
analogously to the case of PXE, to (i) first define SS and NM based security
notions for ZBE, (ii) and then establish the relations among the above security

1 Actually in ZBE there exists the other attack against identity, named selective chosen
identity attack. In this paper we omit presenting the formal definitions of the security
notions in this selective-ID secure sense, but it is easy to see that the implications
and separations shown here also hold in the selective-ID case.
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Fig. 1. Relations among the notions of security for ZBE

notions: to be more specific, the implications from IND-ID-CCA2 to all the other
notions, i.e. IND-ID-CCA2 is the strongest notion of security for ZBE.

At the first place the intuition tells us that task (i) seems to be simply achiev-
able by considering the analogy to the case of shifting IND-CCA to IND-ID-CCA
as done in [6], and task (ii) could immediately follow from the relations among
the notions as the case of PKE, since we shift all the notions with the same addi-
tional attack power (namely, the accessibility to key extraction oracle). However,
we emphasize that it will not follow simply and immediately until rigorous defi-
nitions for task (i) and rigorous proofs for task (ii) are presented. We managed
to accomplish both tasks in this paper.

1.2 Owur Contributions

Our contributions are three-fold.

First, we formally presented the definitions of the notions of security for ZBE
schemes. The overall definitions are built upon historical works [3,6, 10].

Secondly, we rigorously proved the relations among these notions and achieved
our conclusion that, IND-ID-CCA2 is the “right” notion of security for ZBE. It
turns out that our intuition about those relations were right: the implication
G1-ID-A; = (#)Ga-ID-As will hold in ZBE if and only if G1-A; = (#)Ga-Ag
holds in PICE, respectively, where the corresponding security goals G; and attack
models A; are mentioned above. The results of our second contribution are illus-
trated in Figure 1. An arrow is an implication, and there is path between A and
B if and only if the security notion A implies the security notion B. A hatched
arrow represents a separation which is proved in this paper. Dotted arrows re-
fer to trivial implications. For each pair of notions we obtain an implication or a
separation, which is either explicitly found in the diagram or deduced from it.

In the last place, we study the robustness of IND-ID-CCA2 secure schemes
in the context of encryption of multiple messages and/or to multiple receivers.
Concretely, inspired by [10], we propose several new attack models for the case of
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active adversaries: multiple-identity (mID-CCA2) attacks ? (the adversary can
adaptively query for encryptions of the same plaintext under different identi-
ties); multiple-plaintext (ID-mCCA2) attacks (the adversary chooses one fixed
identity, and can adaptively query encryption of different plaintexts under that
identity) and multiple-identity-plaintext attacks (mID-mCCA) (the adversary can
adaptively query encryption of different plaintexts under different identities ). It
is shown that any IND-ID-CCA2 scheme also meets those stronger security levels.

Our results could be considered as having the same flavor as some historical
results, to name just one, the equivalence between IND-CCA2 and SS-CCA2 for
PKE. There, although IND-CPA and SS-CPA were defined and proved equivalent
in the year 1984 [11], the equivalence between IND-CCA2 and SS-CCA2 had not
been proved rigorously until the year 2003 [14]. During this long period of time,
people just simply believed that shifting the attack power from CPA to CCA2
will not affect the equivalence.

This paper is merged from two parallel works [1,8].

1.3 Organization

The rest of the paper is organized as follows: in Section 2 we review the formal
definition of ZBE schemes and several other basic terms. In Section 3 we define
the formal definitions of notions of security for ZBE schemes. In Section 4 we
prove important relations among these notions, rigorously. In Section 5 we study
the multi-challenge cases.

2 Preliminary

2.1 Identity Based Encryption

Formally, an identity based encryption scheme consists of four algorithms, i.e.
IBE = (S,X,&,D), where

— &S, the setup algorithm, takes a security parameter k and outputs system
parameters param and master-key mk. The system parameters include the
message space M, and the ciphertext space C.

— X, the extract algorithm, takes triple inputs as param, mk, and an arbitrary
id € {0,1}*, and outputs a private key sk = E(param, mk,id). Here id is
arbitrary.

— &, the encrypt algorithm, takes triple inputs as param, id € {0,1}* and a
plaintext x € M. It outputs the corresponding ciphertext y € C.

— D, the decrypt algorithm, takes triple inputs as param, y € C, and the
corresponding private key sk. It outputs x € M.

The four algorithms must satisfy the standard consistency constraint, i.e. if
and only if sk is the private key generated by the extract algorithm with the
given id as the public key, then,

Vax € M : D(param, sk,y) = x, where y = E(param,id, ).

2 This security definition has been previously considered in [2], but no proof of equiv-
alence to IND-ID-CCA2 was given. Moreover, the attack we consider is stronger since
it gives more power to the adversary.
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2.2 Conventions

Notations. z— D(param, sk, 5) denotes that the vector z is made up of the
plaintexts corresponding to every ciphertext in the vector 5 M denotes a subset
of message space M, where the elements of M are distributed according to the
distribution designated by some algorithm. Function k : M — {0,1}* denotes
the a-priori partial information about the plaintext and function f : M- {0,1}*
denotes the a-posteriori partial information.

Negligible Function. We say a function € : N — R is negligible if for every
constant ¢ > 0 there exits an integer k. such that e(k) < k~¢ for all k£ > k..

R-related Relation. We consider R-related relation of arity ¢ where ¢ will be
polynomial in the security parameter k. Rather than writing R(x1,zo,...,x¢)
we write R(z, 5), denoting the first argument is special and the rest are bunched
into a vector & where ’ T ’ =t —1, and for every z; €x, R(z,z;) holds.

Experiments. Let A be a probabilistic algorithm, and let A(z1,...,z,;7) be
the result of running A on inputs (x1, ..., %, ) and coins r. Let y — A(z1,...,2,)
denote the experiment of picking r at random and let y be A(xy,...,xn;7). If
S is a finite set then let © « S denote the operation of picking an element at

random and uniformly from S. And sometimes we use x £ S in order to stress
this randomness. If « is neither an algorithm nor a set then let x < a denote a
simple assignment statement. We say that y can be output by A(x1,...,x,) if
there is some 7 such that A(xy,...,z,;7) = y.

3 Definitions of Security Notions for ZBE Schemes

Let A = (A1, As) be an adversary, and we say A is polynomial time if both
probabilistic algorithm A; and probabilistic algorithm As are polynomial time.
At the first stage, given the system parameters, the adversary computes and
outputs a challenge template 7. A; can output some state information s which
will be transferred to As. At the second stage the adversary is issued a challenge
ciphertext y* generated from 7 by a probabilistic function, in a manner depend-
ing on the goal. We say the adversary A successfully breaks the scheme if she
achieves her goal.

We consider four security goals, OW, IND, SS and NM. And we consider three
attack models, ID-CPA,ID-CCAL,ID-CCA2, in order of increasing strength. The
difference among the models is whether or not A; or A, is granted accesses to
decryption oracles.?

3 With regards to the adaptive chosen identity and selective chosen identity attacks,
we only discuss in details the former case (full-ID security), while the results can be
extended to the latter case (selective-ID security), since the strategies are similar.
Roughly speaking, the target public key id should be decided by the adversary in
advance, before the challenger runs the setup algorithm. The restriction is that the
extraction query on id is prohibited.
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Table 1. Oracle Sets @1 and O in the Definitions of the Notions for ZBE

01 ={X0,,£0:,DO:}

ID-CPA  {X(param,mk,-),E(param,id,-),e}

ID-CCA1 {X(param,mk,-),E(param,id, ), D(param, sk,-)}

ID-CCA2 {X(param,mk,-),E(param,id,-), D(param, sk, -)}
Oy ={X02,E02, DO}

ID-CPA  {X(param,mk,-), E(param,id, ), e}

ID-CCA1 {X(param,mk,-),E(param,id,-),e}

ID-CCA2  {X(param,mk,-),E(param,id, ), D(param, sk,-)}

In Table 1, we describe the ability with which the adversary in different attack
models accesses the Extraction Oracle X(param,mk,-), the Encryption Oracle
E(param,id,-) and the Decryption Oracle D(param, sk,-) . When we say O; =
{X0;,£0,;,D0;} = {X(param,mk,-),E(param,id,-)c}, where i € {1,2}, we
mean DQO; is a function that returns an empty string € on any input.

Remark 1. To have meaningful definitions, we insist that the target public key
id should not be previously queried on, i.e. it is completely meaningless if the
adversary has already known the corresponding private key of id.

3.1 One-Wayness

As far as we know, only one-wayness against full-identity chosen-plaintext at-
tacks (referred to as OW-ID-CPA in the following definition) has been previously
considered in the literature. Here we define one-wayness through a two-stage
experiment. A; is run on the system parameters param as input. At the end
of A;’s execution she outputs (s,id), such that s is state information (possibly
including param) which she wants to preserve, and id is the public key which
she wants to attack. One plaintext z* is randomly selected from the message
space M beyond adversary’s view. A challenge y* is computed by encrypting x*
with the public key id. As tries to computer what x* was.

Definition 1 (OW-ID-CPA, OW-ID-CCA1, OW-ID-CCA2)

Let ZBE = (S, X,&,D) be an identity based encryption scheme and let A =
(A1, A3) be an adversary. For atk € {id-cpa,id-ccal,id-cca2}and k € N let,

AdvTET (k) = Pr[Expgpeta (k) = 1] (1)
where, for b,d € {0,1},
Experiment ExpS5g™i® (k)
(param, mk) — S(k); (s,id) — AP (param);
¥ — M;  y* — E(param,id, z*); x — AgQ(s,y*,id);

if 2’ =2* then d« 1 else d+« O;
return d
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We say that ZBE is secure in the sense of OW-ATK, if Advy2% (k) is negli-
gible for any A.

3.2 Indistinguishability

In this scenario A; is run on param, and outputs (zg, z1, s, id), such that zg and
x1 are plaintexts with the same length. One of x¢ and z1 is randomly selected,
say xp, beyond adversary’s view. A challenge y* is computed by encrypting x;
with id. Ao tries to distinguish whether y* was the encryption of zy or x;.

Definition 2 (IND-ID-CPA, IND-ID-CCA1, IND-ID-CCA?2)

Let ZBE = (S, X,&,D) be an identity based encryption scheme and let A =
(A1, Az) be an adversary. For atk € {id-cpa,id-ccal,id-cca2}and k € N let,

Advyss (k) = Pr{Exp7is i (k) = 1] — Pr[Exprigs2i (k) = 1] (2)

where, for b,d € {0,1} and |zo| = |z1],

Experiment Exp75:*4" (k)

(param,mk) — S(k); (zo,x1,s,id) — A9 (param);
y* — E(param,id, xp); d— A;DQ (0,21, 8,y*, id);
return d

We say that ZBE is secure in the sense of IND-ATK, if Advizl}gg‘jk(k) is neg-
ligible for any A.

3.3 Semantic Security

In this scenario, A; is given param, and outputs (M, h, f, s,id). Here the distri-
bution of M is designated by A;, and (M, h, f) is the challenge template 7. A
receives an encryption y* of a random message z* drawn from M. The adversary
then outputs a value v. She hopes that v = f(a*). The adversary is successful if
she can do this with a probability significantly more than any simulator does.
The simulator tries to do as well as the adversary without knowing the challenge
ciphertext y* nor accessing any oracle.

Definition 3 (SS-ID-CPA, SS-ID-CCA1, SS-ID-CCA2)

Let ZBE = (S,X,E,D) be an identity based encryption scheme, let A =
(A1, A3) be an adversary, and let A" = (A}, A}) be the simulator. For atk €
{id-cpa,id-ccal,id-cca2} and k € N let,

AdviEEs 4 (k) = Pr[ExpiagTi (k) = 1] - Pr(Expfugty (k) =1 (3)

where, for b € {0,1},
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Experiment Exp5%2™; (k) Experiment Exp532™ (k)
(M,h, fys,id) — A?l (param); o & M;
o & M; y* — E(param, id, x*); v — AL(s, |z*|, h(z*),id);
v — A2 (s, y*, h(x*), id); if v = f(z*)
if v = f(z*) then d < 1 else d « 0;
then d < 1 else d « O; return d
return d

We say that ZBE is secure in the sense of SS-ATK, if for any adversary A

there exists a simulator such that Adv%sggffl(k) is negligible .

We comment here that it is necessary to require in both cases 7 is distributed
identically, since both A and A’ generate target public key id by themselves, i.e.
7 is output by A and A’ themselves.

3.4 Non-malleability

In this scenario, A; is given param, and outputs a triple (M, s,id). As receives an
encryption y* of a random message x1. The adversary then outputs a description
of arelation R and a vector E of ciphertexts. We insist that y ¢§.4 The adversary
hopes that R(z1, E) holds. We say she is successful if, she can do this with a
probability significantly more than that, with which R(xo, E) holds. Here zq is
also a plaintext chosen uniformly from M, independently of z;.

Definition 4 (NM-ID-CPA, NM-ID-CCA1, NM-ID-CCA?2)

Let ZBE = (S, X,£,D) be an identity based encryption scheme and let A =
(A1, Az) be an adversary. For atk € {id-cpa,id-ccal,id-cca2}and k € N let,

AdviygTi (k) = Pr[Exprpe i (k) = 1] — Pr(Exp7pei°(k) =1 (4)

where, for b € {0,1} and |zg| = |21,

Experiment ExpTjg™i ° (k)

(param,mk) — S(k); (M, 8,id) — A?l (param);

Zo,T1 E M; y* — E(param,id, x,);

(R, 5) — AgQ(s,y*, id); T D(param, id, 5),

ifydy A L¢gx A R(zp,z) thend«— 1 elsed— 0;
return d

We say that ZBE is secure in the sense of NM-ATK, if Adv73g% (k) is negli-
gible for any A.

4 The adversary is prohibited from performing copying the challenge ciphertext y*.
Otherwise, she could output the equality relation R, where R(a,b) holds if and only
if a = b, and output y= {y"}, and be successful, always.
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4 Relations Among the Notions of Security for ZBE
Schemes

In this section, we show that security proved in the sense of IND-ID-CCA2 is
validly sufficient for implying security in any other sense in ZBE. We first ex-
tend the relation (equivalence) between IND-ATK and SS-ATK into ZBE envi-
ronment, and then extend the relation between IND-ATK and NM-ATK into ZBE
environment. At last we study the separation between IND-ATK and OW-ATK.

We demonstrate the relations among the notions of security for ZBE as follows,
where ATK € {ID-CPA,ID-CCA1,ID-CCA2},

4.1 Equivalence Between IND and SS

Theorem 1 (IND-ATK < SS-ATK). A scheme IBE is secure in the sense of
IND-ATK if and only if ZBE is secure in the sense of SS-ATK.

Lemma 2 (IND-ATK = SS-ATK). If a scheme IBE is secure in the sense of
IND-ATK then IBE is secure in the sense of SS-ATK.

Proof. See Lemma 2 in [1] or Theorem 7 in [8]. ]

Lemma 3 (SS-ATK = IND-ATK). If a scheme IBE is secure in the sense of
SS-ATK then IBE is secure in the sense of IND-ATK.

Proof. See Lemma 3 in [1] or Theorem 8 in [8]. |

Proof of Theorem 1. From Lemma 2 and 3, Theorem 1 follows immediately. W

4.2 Relations Between IND and NM

Theorem 4 (IND-ID-CCA2 = NM-ID-CCA2). If a scheme ZBE is secure in
the sense of IND-ID-CCA2 then ZBE is secure in the sense of NM-ID-CCA2.

Proof. See Theorem 4 in [1] or Theorem 10 in [8]. O

Theorem 5 (NM-ATK = IND-ATK). If a scheme ZBE is secure in the sense
of NM-ATK then ZBE is secure in the sense of IND-ATK.

Proof. See Theorem 5 in [1] or Theorem 9 in [8]. O

Theorem 6 (IND-ID-CPA # NM-ID-CPA). If there is a scheme IBE secure
in the sense of IND-ID-CPA then there also exists a scheme IBE' which is secure
in the sense of IND-ID-CPA, but not secure in the sense of NM-ID-CPA.

Proof. See Theorem 11 in [8]. |

Theorem 7 (IND-ID-CCA1 += NM-ID-CPA). If there is a scheme IBE secure
in the sense of NM-ID-CPA then there also exists a scheme IBE' which is secure
in the sense of NM-ID-CPA, but not secure in the sense of IND-ID-CCAL.

Proof. See Theorem 12 in [8]. |
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4.3 Separation Between IND and OW

Theorem 8 (IND-ATK +# OW-ATK). If there is a scheme IBE secure in the
sense of OW-ATK then there also exists a scheme IBE' which is secure in the
sense of OW-ATK, but not secure in the sense of IND-ATK.

Proof. See Theorem 6 in [8]. O

5 Semantical Security of ZBE Schemes Under
Multiple-Challenge CCA2

We present three notions of SS under multiple-challenge CCA2, following the
conventional public-key version [10]. Here an adversary is allowed to make poly-
nomially many challenge templates. Moreover each template is answered with a
challenge ciphertext immediately (not after making all the templates), and the
next challenge template can be generated according to the preceding templates
and their answers. After this stage of asking many challenge templates adap-
tively and in o related manner, the adversary tries to guess information about
the unrevealed plaintexts used in answering challenge templates.

We shall introduce three different types of multiple-challenge CCA2 attacks:
mID-CCA2, ID-mCCA2, and mID-mCCA2.

In the definition of SS-ID-CCA2 an adversary consists of two algorithms A;
and Ao, in such a way that A; outputs a challenge template, the challenger
chooses a plaintext and presents its encryption, and then A tries to guess in-
formation about the plaintext. In the multiple-challenge case this interaction is
modelled by providing the adversary with a “tester” algorithm T;. poram or T as
its oracle. Here T poram is given to an actual adversary (which obtains a cipher-
text in addition to information leak), while T, is given to its benign simulator
(which only sees information leak). A challenge template® is then sent to one of
these oracles as a query (called “challenge query”).

Algorithm T} param (P, id, h) AMgorithm T, (P,h)
return (&(param, id, P(r)),h(r)) return h(r)

Intuitively the parameter r of a tester is understood as the multiple-challenge
version of the coin tosses that the challenger uses to select plaintexts. It is a
sufficiently long sequence of coin tosses (r!,r?,...,7!) which is unrevealed to
the adversary. Given the i-th challenge template (P?,id", h?) (or (P?, h') from a

simulator), the challenger chooses a plaintext by P?(r!,r2, ... r?) using the first

5 In the previous sections a challenge template includes a distribution M from which
a challenge plaintext is picked. However, in this section we prefer to work with a
deterministic “plain-text circuit” P which, given an input from U, () kept secret
for the adversary, outputs a challenge plaintext. The reason for doing so is some
technical ease in the proofs. Here and in the following U,y (1) denotes the uniform
distribution on {0, l}p(k> for some polynomial p.
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1 coin tosses in r. Note that now h leaks information on coin tosses r rather than
plaintexts Pé(rt,r2, ... r").6

As discussed in [10,8], the only restriction here is that, extraction queries on
challenge identities cannot be made.

Definition 5 (Semantic security under multiple-challenge CCA2)

Let ZBE = (S, X, &, D) be an identity based encryption scheme. ZBE is secure
in the sense of SS-mID-mCCA?2 if the following holds. For every oracle PPT A
(“SS-mID-mCCA2 adversary”) with the following restriction on oracle queries: in
any execution of AXmis Dinkes T param (param), for each challenge query (c,b) «—
Ty param (P id, h) by A, A is prohibited to make (1) the extraction query X (id)
regardless of before or after the challenge query, or, (2) the decryption query
Dok (id, ¢) after the challenge query, there exists a PPT algorithm A’ (“benign
simulator of A”) which is equally successful as A, in the following sense.

1. The difference between the advantage of the actual adversary A and that of
the benign simulator A’, namely

Pr [v = f(r)

(param, mk) — S(k); 7 Upoty(k);
(f, 1)) — A‘kaa Dmka Tr,param (pamm)

—Pr {v = f(r) ‘T = Upoy(ry:  (f,v) < AlTr(lk) ]

is negligible as a function over k.
2. The two ensemples over k € ZT:

pamm mk) — S(k); 7 Upoty (k)3 d
an
— AXmk, Dk, T param (param) with trace ¢
T Upoly(k)7
— A T( *) with trace ¢

are computationally indistinguishable. Here the trace of an execution of the
actual adversary A is the sequence of (P, h)-part of the challenge queries
(P, id, h) made by A. The trace of an execution of the simulator A’ is simply
the sequence of challenge queries A’ makes.

SS-mID-CCA2 is defined analogously except that an adversary A is restricted
to have the same plaintext circuit P and the same information leakage circuit
h in all the challenge queries in the trace of an execution of A (the challenge
identity id can vary).

SS-ID-mCCA2 is analogous to SS-mID-mCCA2 except that an adversary A
must have the same challenge identity id in all the challenge queries in the trace
of an execution of A (P and h can vary).

5 As is shown in Definition 5, the same goes to the information to guess: it is about
the coin tosses r (i.e. f(r) to guess) rather than plaintexts (i.e. f(P(r)) to guess).
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Remark 2. Note that our mID-CCA2 attack is stronger than the attack consider
in [2], since in the latter case the adversary has to commit at once to the identities
on which it wants to be challenged, while in the present case the i-th identity
can be chosen depending on the challenges received so far.

Theorem 9. The three security notions under multiple-challenge CCA2 in Def-
nition 5 are all equivalent to the single-challenge security SS-1D-CCA2.

Proof. See Theorem 14 in [8]. |
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Abstract. We consider the problem of approximately integrating a Lipschitz
function f (with a known Lipschitz constant) over an interval. The goal is to
achieve an error of at most e using as few samples of f as possible. We use
the adaptive framework: on all problem instances an adaptive algorithm should
perform almost as well as the best possible algorithm tuned for the particular
problem instance. We distinguish between DOPT and ROPT, the performances
of the best possible deterministic and randomized algorithms, respectively. We
give a deterministic algorithm that uses O(DOPT( f, €)-log(¢ ™' /DOPT(f, ¢)))
samples and show that an asymptotically better algorithm is impossible. How-
ever, any deterministic algorithm requires 2(ROPT(f, 6)2) samples on some
problem instance. By combining a deterministic adaptive algorithm and Monte
Carlo sampling with variance reduction, we give an algorithm that uses at most
O(ROPT(f,€)*/3 + ROPT(f,€) - log(1/€)) samples. We also show that any
algorithm requires 2(ROPT(f, €)*/? + ROPT(f,¢) - log(1/¢)) samples in ex-
pectation on some problem instance (f, €), which proves that our algorithm is
optimal.

1 Introduction

We consider the problem of approximating a definite integral of a univariate Lipschitz
function (with known Lipschitz constant) to within € using the fewest possible samples.
The function is given as a black box: sampling it at a parameter value is the only allowed
operation. It is easy to show that ©(¢~!) samples are necessary and sufficient for a
deterministic algorithm in the worst case (see, e.g., [1]). The results in [2] imply a
Monte-Carlo method that requires only ©(¢~2/3) samples in the worst case.

The Adaptive Framework. The univariate Lipschitz integration problem becomes
more interesting in the adaptive setting. The motivation is that, for a given ¢, some prob-
lem instances have much lower complexity than others. For example, if f(z) = Lz,
where L is the Lipschitz constant, then evaluating f at the endpoints of the interval
over which the integral is taken is sufficient to solve the problem for any e. Thus, it is
desirable to have an algorithm that is guaranteed to use fewer samples on easier problem
instances. Such an algorithm is called adaptive. We formalize this notion by defining

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 142-153, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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the difficulty of a problem as the performance of the best possible algorithm on that
problem:

Definition 1. Let P be a class of problem instances. Let A be the set of all correct
algorithms for P (among some reasonable class of algorithms). Let COST(A, P) be
the performance of algorithm A € A on problem instance P € P. Define OPT(P) =
minge 4 COST(A, P). We use DOPT when A is the set of deterministic algorithms
and ROPT when A is the set of randomized algorithms that are correct on each P € P
with probability at least 2 /3.

By definition, for every problem instance P, there is an algorithm whose cost on P
is OPT(P). A good adaptive algorithm is a single algorithm whose cost is not much
greater than OPT(P) for every problem instance P. Therefore, an adaptive guarantee
is in general much stronger than a worst-case guarantee.

The ultimate goal of investigating a problem in the adaptive framework is to de-
sign an “optimally adaptive” algorithm. Suppose P is the set of problem instances and
each problem instance P € P has certain natural parameters, vy (P), ..., v, (P), with
the first parameter v1 (P) = OPT(P). An algorithm is optimally adaptive if its perfor-
mance on every problem instance P € P is within a constant factor of every algorithm’s
worst-case performance on the family of instances with the same values for the param-
eters: {P' € P | v;(P") = v;(P) forall i}. Note that this definition depends on the
choice of parameters, so in addition to OPT, we need to choose reasonable parameters,
such as ¢, the desired output accuracy.

Related Work. While approximate definite integration is well-studied both in numer-
ical analysis (see, e.g., [3]) and in information-based complexity [4], those algorithms
do not have provable guarantees about adaptivity. In that literature, the term “adaptive”
typically refers to an algorithm that is allowed to pick samples based on previous sample
values, which is quite different from our meaning.

For other problems, optimally adaptive algorithms have been previously designed in
the context of set operations [5], aggregate ranking [6], and independent set discovery
in [7]. Lipschitz functions also lend themselves well to adaptive algorithms. It is shown
in [8] that Piyavskii’s algorithm [9] for minimizing a univariate Lipschitz function per-
forms O(OPT) samples. [10] gives an adaptive algorithm for minimizing the distance
from a point to a Lipschitz curve that is within a logarithmic factor of OPT. [11] gives
adaptive algorithms for several problems on Lipschitz functions.

Our Results. In this paper we give a deterministic algorithm that makes at most
O(DOPT - log(e~!/DOPT)) samples. We also prove a matching lower bound on
deterministic algorithms. When comparing to ROPT, however, we show that any de-
terministic adaptive algorithm uses Q(ROPTQ) samples on some problem instance.
We present a randomized adaptive algorithm, LIPSCHITZ-MC-INTEGRATE, that always
uses O(ROPT*® + ROPT - log(e 1)) samples and prove a matching lower bound.
We therefore give optimally adaptive algorithms for the Lipschitz integration prob-
lem in the deterministic and randomized settings. Although the algorithms are simple,
in both cases analyzing their adaptive performance is nontrivial. To our knowledge,
LIPSCHITZ-MC-INTEGRATE is the first randomized optimally adaptive algorithm. Also,
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a simple corollary of the randomized lower bound is that the non-adaptive algorithm
based on the results in [2] is optimal in the worst case.

Some of the results in this paper, primarily in Sections 3 and 4, are based on the
first author’s master’s thesis [11]. Many of the proofs are omitted from this extended
abstract.!

2 Problem Basics

We start by giving a precise formulation of the problem we consider:
Problem LIPSCHITZ-INTEGRATION:

Given: (f,a,b,L,e)
Such that: fila,b] = R

and for x1,z2 € [a,b],

f(z2) — f(21)| < Llwg — 21

I/abf(x)dx

A randomized algorithm needs to be correct with probability at least 2/3.
Some input parameters can be eliminated without loss of generality. The problem
instance (f,a,b, L,¢) is equivalent to the problem instance (f,0,1,1,¢e/L(b — a)?)

Compute: I € R such that <e

where f (x) = f (gg:g) / L(b — a), so we can assume without loss of generality that
a=0,b=1,and L = 1.

We now develop some basic tools we will need for discussing and analyzing the
algorithms. Essentially, we show how to make use of the Lipschitz condition to bound
the error of our estimates.

The Lipschitz condition allows an algorithm that has sampled f at two points to
bound the value of the integral of f on the interval between them. We call the quality
of this bound area looseness, and it depends on both the length of the interval and the
values of f at the sampled points. A greater difference between values of f (a steeper
function) results in a smaller area looseness. We define area looseness as follows (see
Figure 1):

Definition 2. Given a Lipschitz function f on [0, 1], define the arealooseness of a subin-
terval [x1, 2] of [0,1] as AL (w1, 22) = (w2 — 21)? — (f(21) — f(22))?)/2. When it
is clear which [ we are talking about, we simply write AL(x1, x2).

Our analysis relies on area looseness being well behaved. The following proposition
shows that it has the properties one would expect a bound on integration error to have
and that an additional sample in the middle of the interval decreases total area looseness
quickly.

! The full version of this paper is available athttp: //www.mit .edu/~ibaran/papers/
intfull.{pdf, ps}
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T T2

Fig. 1. Tllustration of area looseness. Lipschitz bounds are dashed.

Proposition 1. Area-looseness has the following properties:

(])0 S AL(Q?1,.’L‘2) S (l‘g — $1)2/2.

(2)If oy < 1 < 19 < afy then AL(x1,x2) < AL(x), ).
(3)If x € [x1, 2], then AL(x1, ) + AL(x, x2) < AL(x1, z2).
(4) AL(.’L‘l, xl;xQ) + AL(wlng 5 xg) < AL(.’IJl, 3’52)/2.

For the lower bounds, both on OPT and on adaptive algorithms, we need “extremal”
Lipschitz functions, whose integral is either maximal or minimal, given the samples.
We call these functions HI and LO. We also define looseness, the maximum difference
between HI and LO over an interval.

Definition 3. Given a Lipschitz function f, and 0 < a < b < 1, define the Lipschitz
functions HI® and LO® on [a,b] as: HI'(x) = min(f(a) + = — a, f(b) + b — x)
and LO%(z) = max(f(a) — = + a, f(b) — b + x). Also define Ly as L¢(a,b) =
b—a—|[f(b) - fla)l

Proposition 2. Given a Lipschitz function f, the functions HI Z and LOZ have the fol-
lowing properties:

(1) If g is Lipschitz, g(a) = f(a), and g(b) = f(b), then for x € [a,b], HI"(x) >
g(z) > LOY(x).
(2) AL(a,b)/(b—a) < rél[a%:)](HIZ(x) — LO%(z)) = L(a,b) < 2A4L(a,b)/(b — a).

(3) [} HI (@) dz = (b — a)! LY+ AL(a.b)/2 and [} LOY(x)dx = (b -
a) OO AL(a,b)/2.
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Proposition 3. Given a Lipschitz function f, looseness has the following properties:

(1)0 < L(a,b) <b—a.
(2)Ifa’ <a <b<¥,then L(a,b) < L(a’, V).
(3)Ifry < a9 <--- <y, then Z:’L:_f L(xi, xit1) < Lz, xp).

3 Proof Sets

In order to compare the running time of an algorithm on a problem instance to DOP'T,
we define the concept of a proof set for a problem instance. A set P of points in [0, 1]
is a proof set for problem instance (f, €) and output x if for every f’ that is equal to f
on P, x is a correct output on (f’, €). In other words, sampling f at a proof set proves
the correctness of the output. We say that a set of samples is a proof set for a particular
problem instance without specifying the output if some output exists for which it is a
proof set.

It is clear from the definition that sampling a proof set is the only way a deterministic
algorithm can guarantee correctness: if an algorithm doesn’t sample a proof set for
some problem instance, we can feed it a problem instance that has the same value on
the sampled points, but for which the output of the algorithm is incorrect. Conversely
an algorithm can terminate as soon as it has sampled a proof set and always be correct.
Thus, DOPT is equal to the size of a smallest proof set.

In order to analyze the deterministic algorithm, we will compare the number of sam-
ples it makes to the size of a proof set P. We will need some tools for doing this.

Let P be a nonempty finite set of points in [0, 1]. Consider the execution of an algo-
rithm which samples a function at points on the interval [0, 1) (if it samples at 1, ignore
that sample). Let s1, so, . . ., s, be the sequence of samples that the algorithm performs
in the order that it performs them. Let I; be the set of unsampled intervals after sample
s, 1.e., the connected components of [0,1) — {s1, ..., s:}, except make each element
of I; half-open by adding its left endpoint, so that the union of all the elements of I; is
[0,1). Let [l¢, ) be the element of I;_ that contains s;.

Then sample s; is a:

split if  [ly,8,) NP # Qand [s¢, 7)) NP #£ 0
squeeze if |lt,s¢) NP # () or [s¢, ) N P # (), but not both
fizzle it [l ) NP =0.

These definitions are, of course, relative to P. See Figure 2. We can now bound the
number of samples of different types:

fizzle squeeze split

L |

I S S' * S ¢ I
0o 2 \TJ 1
P

Fig. 2. Different types of samples
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Proposition 4. The number of splits is at most |P| — 1.

Proposition 5. Suppose that for all i and j with i # j, |s; — sj| > € and that for
all t, sy = (I + 1¢)/2. Then if |P| < € '/2, the number of squeezes is at most
|P|log,(e7"/|P]).

We now characterize proof sets for LIPSCHITZ-INTEGRATION.

Proposition 6. Let P = {x1,22,...,2,} such that 0 < x1 < 29 < -+ < z, < 1.
Then P is a proof set for problem instance (f,¢) if and only if 3 + (1 — x,)? +
Sy AL(wi, i) < 2e

4 Deterministic Algorithm and Analysis

Proposition 6, together with Proposition 1 immediately shows the correctness of a trivial
algorithm. Letn = [¢~! /4] and let the algorithm make n samples, at ,* , ;> ..., 5!
and output the integral M as in the proof of Proposition 6. It is correct because the area-
looseness of every interval is at most (1/n)?/2. Because there are n — 1 intervals, the
total area-looseness of all of them is at most (n — 1)/(2n?). Also, 23 = (1 — z,,)? =
1/(2n)2%,s0 23+ (1 —2x,,)? +Z?;11 AL(z;, 7i11) = n/(2n?) < 2. Therefore, O(¢~1)
samples are always sufficient (and if, for instance, f is a constant, necessary).

We now give a deterministic adaptive algorithm. The algorithm maintains the total
area-looseness of the current unsampled intervals, the unsampled intervals themselves
in a linked list, and uses a priority queue to choose the unsampled interval with the
largest area-looseness at every step and sample in the middle of it.

Let L be a linked list of (PARAMETER, VALUE) pairs and let ) be a priority queue
of (AL, ELEM) pairs where the first element is a real number (and defines the order of
@) and the second element is a pointer into an element of L. The algorithm follows:

Algorithm. LIPSCHITZ-INTEGRATE

1. Add (0, f(0)) and (1, f(1)) to L and insert (AL(0, 1), (0, £(0))) into Q
2. A-LOOSENESS < AL(0,1).
3. Do while A-LOOSENESS > 2¢:
4. (AL, P;) < EXTRACT-MAX|[Q)]
5. P, «+ NEXT[L, P]
6. z < (PARAMETER|[P;] + PARAMETER[P;])/2
7. ALy < AL(PARAMETER[P!], z), ALy < AL(x, PARAMETER[P,])
8. Insert (x, f(x)) into L after P; and insert (ALy, Py) and (AL, (z, f(x))) into Q
9. A-LOOSENESS < A-LOOSENESS — AL + AL; + AL2
10. Compute and output M using the values stored in L as described in Proposition 6.

The correctness of the algorithm is clear from Proposition 6: the algorithm stops
precisely when the total area-looseness of the unsampled intervals is no more than 2e.
We need to analyze the algorithm’s performance.

Theorem 1. Algorithm LIPSCHITZ-INTEGRATE makes O(DOPT - log(e~1/DOPT))
samples on problem instance ([, €).
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Proof: We will actually compare the number of samples to DOPT( f, ¢/2) rather than
to DOPT(f,e). We can do this because if we take a proof set for DOPT(f,¢) and
sample in the middle of every unsampled interval, then by Proposition 1 (4), we will
obtain a proof set for DOPT(f,¢/2). Thus, DOPT(f,¢/2) <2-DOPT(f,¢) + 1. So
let P be a proof set for (f, e/2) of size DOPT(f,¢/2).

First, we argue that no interval of length smaller than 4e is ever subdivided. Suppose
for contradiction that among n intervals I, ..., I, of lengths aq,...,a,, interval I
with a, < 4e is chosen for subdivision. By Proposition 1 (1), AL(I;) < a?/2, so
VAL(I},) < 2e. On the other hand, 3" a; = 1,0 > \/AL(I;) < 1. Multiplying the
inequalities, we get > AL(L;) < 3" \/AL(I;)AL(I}) < 2e. But this implies that the
algorithm should have termmated which is a contradlctlon.

Now, we count the number of samples relative to P. The number of splits is O(|P|)
by Proposition 4. The above paragraph shows that we can use Proposition 5 to conclude
that there are O(|P|log(e~1 /| P|)) squeezes. We now show that there are O(| P|) fizzles
and so prove the theorem.

A fizzle occurs when an interval not containing a point of P is chosen for subdivi-
sion. Consider the situation after n points have been sampled. Let the sampled points
be) =21 <20 < --- < x, = 1. Because the total area-looseness of intervals be-
tween points of P is at most ¢, by repeated application of Proposition 1 (2,3), we have
Z[%xiﬂmpzm AL(z;,z;41) < €. The algorithm has not terminated, so the total area-
looseness must be more than 2¢, which implies that >, .\~ psp AL(i, Tig1) > €.
Because there are at most | P| elements in the sum on the left hand side, the largest el-
ement must be greater than ¢/|P|. Therefore, there exists a k such that [z, xx11) con-
tains a point of P and AL(zy, xk11) > €/|P|. So if a fizzle occurs, the area-looseness
of the chosen interval must be at least /| P|.

Now let Sy be the set of samples made by the algorithm after time ¢. Define A,
as follows: let {y1,y2,...,yn} = St UP with 0 = y1 < yo < -+ < y,, and let
A = Z?;ll AL(yi,yi+1). Clearly, Ay > 0, Ay > Ay41 (by Proposition 1 (3)), and
therefore, A; < Ag < 2e. Every fizzle splits an interval between adjacent y’s into
two. Because the area-looseness of the interval before the split was at least €/|P|, by
Proposition 1 (4), A; decreases by at least €/(2|P|) as a result of every fizzle. Therefore,
there can be at most 4| P| fizzles during an execution. O

We prove a matching lower bound, showing that the logarithmic factor is necessary and
that LIPSCHITZ-INTEGRATE is optimally adaptive:

Theorem 2. For any deterministic algorithm and for any € > 0 and any integer k such
that0 < k < e~1/2, there exists a problem instance ( f, €) of LIPSCHITZ-INTEGRATION
with DOPT(f, €) = O(k) on which that algorithm performs Q(k log(e 1 /k)) samples.

5 Algorithm LIPSCHITZ-MC-INTEGRATE

A standard strategy in a Monte Carlo integration algorithm is to sample at a point picked
uniformly at random from an interval. The expected value of such a sample, scaled by
the length of the interval, is precisely the value of the integral over the interval, so the
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goal is to minimize the variance. When the function is Lipschitz, the variance of the inte-
gral estimate based on such a sample can be as high as a constant times the fourth power
of the length of the interval. However, if we use the fact that when the area looseness
of an interval is low, we approximately know the function, we can adjust the sample to
get an unbiased estimator of the integral over that interval whose variance is the square
of the area looseness in the worst case. Procedure MC-SAMPLE shows how to do this.

Procedure MC-SAMPLE(z1, Z2):

1. Let 2 be a random number, uniformly chosen from [x1, x2]
2.1f f(x1) < f(x2), then SAMPLE « (f(z) —x + “*5*2)
3. Else SAMPLE « (f(z) 4z — “13%?)

4. Return SAMPLE - (22 — 21)

Proposition 7. MC-SAMPLE(z1, x) returns an unbiased estimator of [;"* f(x) dx that
has variance at most AL*(x1, z2).

In order to compute the integral over [0, 1], we would like an estimator for that integral
with low variance. If we split [0, 1] into intervals whose total AL is small and run
MC-SAMPLE on each interval, we will get such an estimator, as shown in the following
corollary.

A\

Corollary 1. Let0 = z1 < x3 < - -+ < x,, = 1 and suppose Z?:_ll AL (x4, i41) <
/3. Let [ = Y17 MC-SAMPLE(z;, ;4 1). Let [ = fol f(x) dx. Then Pr[|I — 1| >
€] <1/3.

The remaining difficulty is to find a small number of intervals whose total AL? is
smaller than ¢2/3. Note that the deterministic adaptive algorithm in Section 4 finds
a small number of intervals whose total AL is smaller than e. We show that we can
use the same idea here. Thus, to obtain a randomized adaptive algorithm, we use a de-
terministic adaptive algorithm to get a rough idea of the function and then use Monte
Carlo sampling with variance reduction (MC-SAMPLE) to improve our estimate of the
integral.

Let L be a linked list of (PARAMETER, VALUE) pairs and let () be a priority queue of
(AL, ELEM) pairs where the first element is a real number (and defines the order of Q)
and the second element is a pointer into an element of L. The algorithm is as follows:

Algorithm. LIPSCHITZ-MC-INTEGRATE:

1. Add (0, £(0)) and (1, f(1)) to L and insert (AL*(0,1), (0, £(0))) into Q
2. ALSQ «— AL?*(0,1).
3. Do while ALSQ > €2/3:
4. (AL, P1) < EXTRACT-MAX[Q]
5. P, «— NEXT[P]
6. x <+ (PARAMETER|P;] + PARAMETER|[P%])/2
7. ALy < AL?(PARAMETER|[P],z), ALy < AL*(x, PARAMETER[P,))
8. Insert (z, f(x)) into L after P; and insert (AL1, P1) and (ALs, (z, f(2))) into @
9. ALSQ < ALSQ — AL + AL + ALy
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10. 1 — 0.
11. For each element P of L except the last:

12. [ — I + MC-SAMPLE(PARAMETER[P], PARAMETER [NEXT[P]])
13. Output I

Correctness is guaranteed by Corollary 1 because the algorithm exits the loop in lines
3-9 only when the total AL? of intervals between points in L is no more than € /3.

6 Performance Analysis

For the analysis of the algorithm, let f be the Lipschitz function input to LIPSCHITZ-
MC-INTEGRATE.

Lemma 1. Given f, there exists a set of points 0 = x1 < o < -+ < x, = 1 such
that for 1 < i <n —2, AL(x;,x;41) = 3¢, and AL(xp—1,2,) < 3e. Furthermore,
ROPT(f,¢) > (n—2)/3.

Proof: We begin by constructing a set of points that satisfies the conditions. Obvi-
ously, z1 should be 0. Suppose we have constructed the first k& points and xj # 1. If
AL(zg, 1) < 3¢, set 441 = 1 and we are done. Otherwise, notice that f is continuous,
so AL is also continuous. By Proposition 1 (1), AL(xy,xx) = 0. Therefore, by the
intermediate value theorem, there is an © € [z, 1] such that AL(x,x) = 3e and we
set x4 to be that x.

Consider an algorithm A that is correct with probability at least 2/3 on all inputs
and consider its executions on f. Let e; for 1 < ¢ < n — 2 be the expected number
of samples A performs in (x;,x;+1). We claim that in order for A to be correct, it
must have e; > 1/3 for all ¢ and therefore, the total expected number of samples is
Y e > (n—2)/3.

Suppose for contradiction, that e; < 1/3 for some 7. Then, by Markov’s inequal-
ity, the probability that A samples in (z;,2;11) is less than 1/3. Now consider two
functions defined as follows: fi(z) = fo(z) = f(z) everywhere except (2, ;1)
and f)(z) = LOZ " (x) and folz) = HIZ " (x) on (24, x;11). By Proposition 2 (3),
fol fg Ydz— fol fl AL(mZ, xi11) = 3¢, 50 no outputis correct for both f1 and fo.
Suppose, that we feed f1 and f2 with probability 1/2 each as input to A. Conditioned
on A not sampling in (x;, ;41 ), the output of A is independent of which function was
input. Therefore, conditioned on A not sampling in (z;, ;1), the probability of error is
at least 1/2. Because f1 = f, = f noton (z;, x;11), the probability of A not sampling
on (x;,x;y1) is greater than 2/3, so the probability of error is greater than 1/3, which
implies that A is invalid. o

Because the number of samples in steps 11-13 is smaller (by 1) than the number of sam-
ples in steps 1-9, we only focus on the samples in steps 1-9. For the analysis, we split
the execution of the algorithm into two phases. The algorithm is in Phase 1 while there
is a pair of adjacent elements x; and x;1 in L for which AL(x;, x;41) > 3e. When all
pairs of adjacent elements have AL at most 3¢, the algorithm is in Phase 2. Note that
by Proposition 1 (2), area looseness between adjacent points in L never increases as the
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algorithm executes, so once it enters Phase 2, it never goes back to Phase 1. We now
bound the number of samples made in steps 1-9 in the phases.

Lemma 2. In Phase I, LIPSCHITZ-MC-INTEGRATE makes O(ROPT(f, €)log(1/e€))
samples on problem instance (f, €).

Proof: Let X be the set of x;’s constructed as in Lemma 1. We count the samples
made by LIPSCHITZ-MC-INTEGRATE relative to X . By Proposition 4, there are at most
O(]X) splits. We now need a lower bound on the size of intervals in Phase 1 to count
the number of squeezes. We note that an interval whose length is smaller than /6e has
area looseness at most 3¢ (by Proposition 1 (1)) and will therefore never be chosen for
subdivision in Phase 1. Therefore, in Phase 1, every interval has length at least V6e /2.
So by Proposition 5, there are at most | X |log((v/6¢/2)71/|X|) = O(|X|log(1/e))
squeezes. There are no fizzles because any interval whose area looseness is greater
than 3¢ must have a point of X (by Proposition 1 (2) and by construction of X). By
Lemma 1, | X| = O(ROPT(f,¢)), so we have the claimed bound. O

Lemma 3. In Phase 2, LIPSCHITZ-MC-INTEGRATE uses at most O(ROPT(f, €)*/3 +
ROPT(f, €)log(1/€)) samples on problem instance (f, €).

Proof: After Phase 1 is complete, L consists of points such that the area looseness
between adjacent pairs is at most 3e. Let 0 = y; < yo < - -+ < y,,, = 1 be the smallest
subset of points in L (including 0 and 1) such that AL(y;,y:+1) < 3¢ for all y. We
claim that m < 6 - ROPT(f, €). Consider the set of a;’s constructed as in Lemma 1. If
y;’s are a minimal set of points with area looseness no greater than 3¢ between adjacent
ones, then every interval of the form [x;, 2:;11] has at most two y;’s (if there are three,
the middle one is unnecessary). Therefore there are at most twice as many y;’s as x;’s.

Now assume the algorithm makes more samples in Phase 2 than in Phase 1 be-
cause otherwise, it makes O(ROPT(f,¢)log(1/¢)) samples and we are done. We
apply Propostion 8 to prove this lemma. Let Y be the set of y;’s, let Z(©) be the
set of points in L at the end of Phase 1 and let t; = 550 - ROPT*/®. We have
A= Z:i_ll AL(yi,yiv1) < 18- ROPT - e. By Proposition 8, after ¢y samples, the

2 2 2
total AL? will be at most 4608'(6'13‘?;?%6%?5 OPT)e < €2 /3 so the algorithm will

stop after ¢y steps. a

The following proposition shows that as our algorithm samples, the total squared area
looseness declines as the cube of the number of samples. We prove it by associating a
number with each interval that is an upper bound on its area looseness. We then show
that these numbers are within a factor of four of each other and use this to show that
that the sum of their squares decreases as the cube of the number of samples.

Proposition8. Let Y = {y1,...,ym} with0 = y1 < -+ < ym = 1, and let
A= Z:i_ll AL(y;,yit1). Consider the sequence Z\®, 71 Z(2) . of sets of sam-
ples where Z®) D Y is an arbitrary superset of Y and, for each t > 1, Z(H) =
ZWD U {20) where 21 is the midpoint (2 + y®))/2 of the interval (z),y ")
of Z=Y with the largest area looseness AL(x®) y®)). Then, for any to > |Zo
> (eyyez(zny AL (x,y) < (4608m>A) /t].

s
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The upper bound follows immediately from the two lemmas we have shown.

Theorem 3. On problem instance (f,¢€) algorithm LIPSCHITZ-MC-INTEGRATE per-
forms OROPT3(f, €) + ROPT(, €) log(1/€)) samples.

7 Randomized Lower Bounds

We first show that Lemma 1 is actually a tight (to within a constant factor) lower bound
on ROPT by proving the following upper bound.

Lemma 4. Given a Lipschitz function f, there is a set of points 0 = 21 < x5 < -+ <
xp = lsuch thatfor 1 < i <k —2, AL(x;,x;41) = €/4, and AL(xp_1,21) < €/4.
Furthermore, ROPT(f,e) < 2k — 1.

The above lemma implies that deterministic algorithms are not very powerful relative
to ROPT. For instance, if f(x) = 0 for all z, ROPT(f,¢) = O(¢~/?) by Lemma 4,
but DOPT is @(¢~'). Therefore every deterministic algorithm requires 2(ROPT?)
samples on some instances.

Theorem 4. Given an ¢ > 0 and an integer k such that 0 < k < ¢~1/2, there is a fam-
ily of problem instances such that ROPT = O(k) on every member on the family, but
any algorithm requires 2(k*/® + klog(1/€)) samples in expectation on some member
of that family.

A simple corollary shows that the nonadaptive method in [2] is optimal.

Corollary 2. Any algorithm requires 9(6_2/ 3) samples on some problem instance.

8 Conclusion

We gave optimally adaptive deterministic and randomized algorithms for LIPSCHITZ-
INTEGRATION. To simplify the analysis, we have been lax with constant factors in the
randomized algorithm and the related proofs. Thus, it is possible to improve both the
algorithm’s performance and its analysis by constant factors.

A more interesting open problem is to design adaptive algorithms for definite inte-
gration over two or higher-dimensional domains or to prove that good adaptive algo-
rithms do not exist. Although simple Monte Carlo methods readily extend to higher
dimensions, designing and analyzing adaptive algorithms seems difficult.
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Abstract. We work with fuzzy Turing machines (FTMs) and we study
the relationship between this computational model and classical recur-
sion concepts such as computable functions, r.e. sets and universality.
FTMs are first regarded as acceptors. It has recently been shown in [23]
that these machines have more computational power than classical Tur-
ing machines. Still, the context in which this formulation is valid has an
unnatural implicit assumption. We settle necessary and sufficient con-
ditions for a language to be r.e., by embedding it in a fuzzy language
recognized by a FTM and we do the same thing for difference r.e. sets,
a class of “harder” sets in terms of computability. It is also shown that
there is no universal FTM. We also argue for a definition of computable
fuzzy function, when FTMs are understood as transducers. It is shown
that, in this case, our notion of computable fuzzy function coincides
with the classical one.

1 Introduction

Classical computability admits several but equivalent models. Still, the fuzzifi-
cation of these models may imply different and nonequivalent concepts of fuzzy
computability. Even the same model can be fuzzified in several ways. These facts
turn this subject very complex and interesting. A precursor of fuzzy computabil-
ity was the proper founder of fuzzy set theory, Lotfi Zadeh, who in [24] defines
the notion of fuzzy algorithm based on a fuzzification of Turing machines and
Markov algorithms. However, that work was not deep enough in the recursion
theoretical aspects of the mentioned models. Lately, Lee and Zadeh in [12] fol-
low the same setting and Santos in [17, 18] proves that these two fuzzy models
are equivalent. Unfortunately the research in this subject was not continued for
more than a decade, revisited only in the works of Harkleroad [9] (for other
works related to this topic, see for example [3,2, 14,7, 15]). More recently, with
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the increasing interest in extrapolating Church-Turing thesis considering other
aspects (for example interactions [8], real values [21], quantum universe [5], etc.),
the research on fuzzy computability has gain new strength, mainly because it
was shown by Wiedermann [22, 23] that it is possible to solve the halting prob-
lem (more precisely, it is possible to accept r.e. sets and co-r.e. sets) in a class
of fuzzy Turing machines.

Section 2 are preliminaries and section 3 is devoted to present nondeterminis-
tic Turing machines, and fix notation to be extended later to the fuzzy context.

In section 4.1 we work with fuzzy Turing machines, when regarded as accep-
tors. We analyze carefully Wiedermann’s statement mentioned above about the
computational power of fuzzy Turing machines. We state it in a more rigorous
manner and in Theorem 2 we impose necessary and sufficient conditions for a
set to be r.e. in terms of associated fuzzy languages recognizable by fuzzy Turing
machines. We also show that Wiedermann’s statement is not completely correct
since there are fuzzy Turing machines which could also “recognize” (in the sense
used by Wiedermann) difference r.e. sets (and it is well known that these sets
may be more complex than the r.e. or co-r.e. ones). In Theorem 3 we characterize
the class of difference r.e. sets in terms of associated fuzzy languages recognized
by fuzzy Turing machines.

In section 4.2 we deal with the recursive theoretical notion of universality.
Theorem 4 shows that there is no universal fuzzy machine for the class of all fuzzy
Turing machines. Some other narrower classes of fuzzy machines are considered
for which there are fuzzy universality.

In section 4.3, we change the optic and we regard fuzzy Turing machines
as transducers, that is as fuzzy devices computing functions, instead of just
recognizing languages. We argue for a definition of fuzzy computable function,
when this optic is taken, and in Theorem 5 we show that our proposed notion
coincides with the classical one.

2 Elements of Fuzzy Theory

Let I be the unitary closed interval, i.e. [0,1]. A fuzzy set A in an universe Uz
(a classical set) is characterized by its membership degree function

/LA:UA—>I.

Thus, for each « € Uy, pa(x) provides the belonging degree of the element = in
the fuzzy set A. For each fuzzy set A, we define their support set as

S(A)={acUg4:pa(a) >0}
and their crisp set as

C(A)={a€Ua:pal(a)=1}.
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2.1 t-Norms

Triangular norms, or simply t-norms, were introduced by Schweizer and Sklar
[19] with the intention of modelling the distance of probabilistic metric spaces.
Moreover, Alsina, Trillas and Valverde [1] showed that this notion is adequate
to model the conjunction in fuzzy logics or equivalently the intersection of fuzzy
sets. A t-norm on [ is any commutative and associative mapping T : [ x I — [
such that 1 is the neutral element and is monotonic w.r.t. the natural order on I.
Sometimes t-norms will be used in infix notation instead of the functional form.
In this case, we will usually write the symbol *. Classical examples of t-norms
are the following: G(z,y) = min{z,y} (Godel t-norm), P(z,y) = xy (product
t-norm) and L(z,y) = max{z 4+ y — 1,0} (Lukasiewicz t-norm).

An element z € (0,1) is said a zero divisor of a t-norm = if there exists
y € (0,1) such that y* z = 0. For example, each z € (0, 1) is a zero divisor of L.

2.2 Fuzzy Functions

Zimmerman [25] considers several ways of fuzzifying the notion of function. Some
other notions of fuzzy functions can also be found in [4,15, 16].

In this article we propose the following one: Let A and B by fuzzy sets. A
classical partial function f : Usx — Up is a fuzzy partial function from A into
B, if

Vo € Ua, f(2) 1 or pp(f(2) < pa(@). (1)

This definition of fuzzy function differs from the one of Dubois and Prade (]25],
Definition 7-1), which is based on the extension principle —we use < in (1) when-
ever Dubois and Prade use >. Moreover, we consider partial functions instead
of total functions. Our choice will be fully understood when we define the fuzzy
function computed by a fuzzy Turing machine, in section 4.3.

Notice that Dubois and Prade’s fuzzy function allows us to map an element
with degree 0 —and therefore fully out of the set—, to an element with degree
1 —hence completely inside the set. According to our definition, whenever the
input has degree 0, the output will also have degree 0. However, when the input
has a significant degree (i.e. a degree greater than 0), then the output will not
necessarily have a significant degree.

Let f be a fuzzy partial function. We define S(f) : S(A) — S(B) as the
support of f, and C(f): C(A) — C(B) as the crisp of f in the following way:

S<f><x>={f(“") if s (£(2) > 0 c<f><x>={f<x> it u(f(2) = 1

T otherwise. 1 otherwise.

3 Nondeterministic Turing Machines

In the literature, there are diverse definitions of nondeterministic Turing ma-
chines, NTM for short, and all of them are equivalent (see for example [10,11, 13]).
We use the following definition: A NTM is a septuple 7 =(Q, X, I, 6, qo, 0, F)
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where () is a set of states, X' is the input alphabet, I" is the tape alphabet, ¢y € Q
is the starting state, [J € I" is the blank symbol, F' C @ is the set of final states
and 6 CQ x I' x Q x I' x {R, L} is the set of instructions, i.e. the set of “next
move” relation.

We will use the following string functions: head(w) returns the leftmost sym-
bol of w, headR(w) returns the rightmost symbol of w, tail(w) returns the string
w without its leftmost symbol and tail™(w) returns the string w without its
rightmost symbol.

An instantaneous description of a NTM, ID for short, is a triple (u, ¢, v) mean-
ing that the tape content is the string uwv, the current state is ¢ and the head is
pointing at the leftmost symbol of v. For notational simplicity we will omit the
parentheses and comma of 1Ds. A valid move from an ID uqu into an ID u/pv’ in
the NTM 7, denoted by uqv 7 u/pv’, occurs whenever

I(q, head(v),p,b, R) € 6 such that v’ = uob and v' = tail(v), or

3(q, head (v), p,b, L) € 6 such that u=1u'ohead(v') and v' = head ™ (u)obo tail(v).

As usual, an 1D u/pv’ is reached from an ID uqu, denoted by ugv Fru'pv', if
uqu = u’'pv’ or there exists an 1 u”rv” such that

uqu F7 urv” and urv” Heu'pu’ .

When a NTM 7 is regarded as an acceptor, we say that the string w € X*
is accepted by T if gow Hyrugsv for some u,v € I'* and ¢y € F. As usual the
language accepted by a NTM 7T, denoted by L(7T), is the set of all strings accepted
by 7.

When NTMs are understood as transducers, things change a little, so it is
worth making a short digression in this point. For the same input, a NTM can
give more of one output, hence it is natural to ask which one is the function
computed by them. Some authors (for example [6]) consider that a NTM computes
a function from X* (the set of possible inputs) into P(I'*) (the powerset of
possible outputs). Following this point of view, we would have a computability
notion for functions with countable domain and uncountable rang, which go
beyond Church-Turing thesis.

Other alternatives also have some problems. Therefore, we agree with Linz
when he says in [13]: “Since it is not clear what role nondeterminism plays in
computing functions, nondeterministic automata are usually viewed as accep-
tors.” Hence, we believe that NTMs must only be considered as acceptors.

4 Fuzzy Turing Machines

Zadeh [24], Lee [12] and Santos [17] introduced the model of Fuzzy Turing ma-
chines and the languages accepted by this kind of machines, i.e. a class of fuzzy
languages. Classical languages are linked to fuzzy languages through the sup-
port and crisp part of a fuzzy set. It turns out that this fuzzy machine model
is computationally too powerful: in [23], Wiedermann claims that, in fact, its
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nondeterministic version accepts non recursively enumerable languages and that
they can solve undecidable problems (these assertions will be fully analysed in
section 4.1). On the other hand, the model is too restrictive from a fuzzy logic
point of view, since it only considers the Godel t-norm. The idea of this fuzzy
Turing machine is to establish an uncertainty degree for the acceptance of a given
string or, analogously, the membership degree of the string to the language. In or-
der to compute this degree from individual degrees, a composition on the t-norm
evaluation is used. Wiedermann [22, 23] introduced the class of fuzzy Turing ma-
chines as a fuzzy extension of the nondeterministic Turing machines, where each
transition has a membership degree associated to it. In this case, he worked with
arbitrary t-norms for the evaluation. We consider this same kind of fuzzy Turing
machines:

Definition 1. A fuzzy Turing machine, FTM for short, is a triple F = (T, %, u)
where T = (Q, X, I,6,q0,0, F) is a NTM, * is a t-norm and p is a map which
assigns a membership degree to each tuple in the “next move” relation 0, i.e.
w:d—1I.

An instantaneous description (ID) of a FTM F is a pair (uqu,d) where uqu is
a classical ID for a Turing machine, i.e. uv is the string in the tape, the head
is pointing to the leftmost symbol of v, the current state is ¢ and d is the
membership degree accumulated up to this moment.

A walid move from an 1D (uqv, d) into and 1D (u'pv’, d’), denoted by (uqv, d) Fx
(u'pv’,d"), occurs whenever uqv F7 u'pv” and

d = d * u(q, head(v), p, headR(u’), R) if tailR(u') = u;
d * (g, head (v), p, head (tail(v')), L) if tail™(u) = u’.

As with the NTM case, an 1D (u'pv’,d’) is reached from an 1D (uqu,d), denoted
by (uqu,d) Br(u'pv’, d'), if (uqu,d) = (u'pv’,d’) or there exists an 1D (u”rv"”,d")
such that (uqu,d) Fx (u"rv”,d") and (u"rv”,d") Ee(u'pv', d').

4.1 Fuzzy Turing Machines as Acceptors
The degree of acceptance in a FTM F of a string w is
degr(w, k) = max{d € I : (qow, k) Fr(ugsv,d) for some gy € F'} .

and degr(w, k) becomes undefined when there is no accepting path of F(w).
When &k =1 we will omit it and we will write degz(w).

Since a language is just a set of strings, a natural definition for fuzzy language
is “a fuzzy set of strings”. Thus, the fuzzy language accepted by a FTM F is

L(F) = {(w,deg r(w)) : w € X" A (qow, k) Er(ugyv, d) for some g5 € F} .

In [22,23], Wiedermann claims that fuzzy Turing machines can solve unde-
cidable problems and that the languages accepted by these machines (when we
consider a computable t-norm) are exactly the union of r.e. sets and co-r.e. sets.
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Evidently there is some abuse in this terminology, since r.e. sets are ordi-
nary languages and the languages accepted by fuzzy Turing machines are fuzzy
languages. Hence, there is some kind of implicit fuzzification when he says that
fuzzy Turing machines accept nonrecursive r.e. sets. This fuzzification is some
kind of codifying the membership of an element to a set, by exploiting the degree
of acceptance.

To explain what is the exact assertion of Wiedermann, let us first define a
special way of fuzzifying ordinary sets into fuzzy sets. For any language A and
for rationals @ and b (a,b € I) we define the following fuzzification of the set A:

Fa(a,b) = {(w,a):w e A} U{(w,b):w ¢ A} .

What Wiedermann actually does in the proof of Theorem 3.1 [23] is to show
that for any r.e. set A, there is a FTM F which accepts the fuzzy language
F4(1,b), where b is any rational such that 0 < b < 1. In fact, it is not difficult
to see that there is a FTM which accepts Fa(a,b) for any fixed a and b with
0 <b < a<1. Even more, we can prove the following strongest result:

Theorem 1. Let A C X* be any set and let a,b be rationals such that 0 < b <
a <1. A is r.e. iff there is a FTM which accepts the fuzzy language Fa(a,b).

Proof. (=) Let As be the recursive approximation of 4, i.e. A;(w) € {0,1} and
Ap(w) = 0 for any s € IN and w € X*. Besides, As(w) < Ast1(w), so that
As(w) changes at most one time —from 0 to 1- when we increase s, and w € A
iff 3s A;(w) = 1. Let F be the FTM which on input w, it has a nondeterministic
branch starting from state qq:

— F passes from qp to the final state g¢ via a transition with degree b, and

— F passes from ¢g to a procedure which scans Ag(w), A1 (w), ... until it finds
some ¢ such that A;(w) =1 (all this procedure is carried on with transitions
of degree 1). If this ever happens then F goes to the final state gy via a
transition with degree a and otherwise it keeps on searching (so it never
reaches the final state).

Now, if w € A then there is a least s such that As(w) = 1, so there will be two
accepting paths in F: the one coming from the first nondeterministic branch,
with accepting degree b, and the one coming from the second nondeterministic
branch, with accepting degree a. Since a > b then (w,a) € L(F). On the other
hand, if w & A then there is only one accepting path in the execution of F —the
one coming from the first nondeterministic branch—, and hence (w,b) € L(F).
(<) Suppose F is a FTM which accepts F4(a,b). The following procedure
gives Ag, an r.e. approximation of A: search all the execution paths of F(w).
If by stage s we find that F(w) arrives to a final state with accepting degree a
then we let Ag(w) = 1. O

Here, the fuzzification used to interpret an ordinary language into a fuzzy lan-
guage consists in defining w in the accepted language of F with membership
degree a, for every w € A; and w with membership degree b, for every w ¢ A. It
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is worth noting that this result only applies when this particular way of fuzzify-
ing r.e. sets of strings is used —that is, when working with F4 (a, b). Although one
could intuitively think that if there is a FTM which accepts F4(a,b), then there
should be another FTM which accepts a “simple” transformation of Fa(a,b),
such as F4(b, a), the following proposition shows that this is not the case.

Proposition 1. Let A C X* be a nonrecursive r.e. set and let a,b be rationals
such that 0 < b < a < 1, then the language F4(b,a) is not accepted by any FTM.

Proof. Suppose A is as in the hypothesis and assume that there is a FTM F which
accepts Fa(b,a) = {(w,b):w € A} U {(w,a):w ¢ A}. Then there would be an
effective decision procedure for testing the membership of any string w to the set
A, contradicting the assumption that A is nonrecursive. Here is the procedure:
In parallel, run the enumeration of A (which exists by hypothesis) and simulate
all the execution paths of F(w). Eventually we will find that either w € A, or
we find an accepting path of F(w) with membership degree a. Since a > b, then
the path that we have found has maximum degree, and hence w ¢ A. O

The above proposition shows that the fuzzification used by Wiedermann is in-
trinsically linked to the fact that A is r.e.; the result is not independent of the
fuzzification used. Indeed, when Wiedermann [23] considers co-r.e. sets A, he
changes the fuzzification, and in this case, he shows that there is a FTM which
accepts Fu(b,1), for any fixed rational b € [0,1). Hence, one has to be careful
when saying that “languages accepted by FTM with computable t-norm coin-
cide with the class of r.e. sets union co-r.e. sets”: the notion of acceptance here
involves a particular fuzzification, which differs in the r.e. case and the co-r.e.
case.

We obtain the following corollaries from Theorem 1 and Proposition 1. Both
follow immediately from the observation that F,(b,a) = Fa(a,b).

Corollary 1. Let A C X* be a set and let a,b be rationals such that 0 < b <
a < 1. A is co-r.e. iff there is a FTM which accepts the fuzzy language Fa(b,a).

Thus, A is recursive if and only if there are FTMs accepting the languages F4(a, b)
and F4(b,a), respectively.

Corollary 2. Let A C X* be a nonrecursive co-r.e. set and let a,b be rationals
such that 0 < b < a < 1, then the language Fa(a,b) is not accepted by any FTM.

It is not necessary to fix the values of the rationals a and b in the above results.
In fact, using the same strategy than in Theorem 1, it is not difficult to prove:

Theorem 2. A is r.e. if and only if there is some rational r € (0,1) and some
FTM F such that degz(w) > r iff w € A.

Proof. (=) Follows directly from Theorem 1.

(<) Observe that we can simulate all the execution paths of F(w) in parallel.
Whenever we see that F reaches a final state via an execution path with accep-
tance degree d > r, then degr(w) > d > r and hence it is safe to assert w € A.
This procedure informally describes an effective r.e. approximation of A. a
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So far we have been working with special fuzzifications of r.e. sets (and sym-
metrically, with co-r.e. sets). What about other sets which are more complex in
terms of computability theory?

A set A is difference r.e. (d.r.e.)if A= B\ C, for some r.e. sets B and C.
If A is d.r.e., then there is a recursive approximation of A, call it Ay, such that
#{s: As(w) # Ast1(w)} < 2, lims_00 As(w) = A(w), and Ag(w) = 0 for all w.
In other words, As(w) starts in 0, it can only change to 1 and maybe go back to
0, when increasing s. This follows trivially from the definition of d.r.e. For more
details, see [20].

It is well-known that there are d.r.e. sets which are neither r.e. nor co-r.e.
Thus, we know that we cannot make a fuzzification of every d.r.e. set in the same
way that we did it before. However, we can fuzzificate them in another way.

Theorem 3. A is d.r.e. if and only if for any two rationals a and b, 0 < b <
a <1, there is some FTM F such that b < degr(w) < a iff w € A.

Proof. (=) Suppose A; is a recursive approximation of A, i.e. A;(w) changes
at most two times when s — oo. Imagine the FTM F which on input w, it
starts from the initial state gy and makes the following three nondeterministic
branches:

— With degree 0, F(w) goes to the accepting state gy.

— With degree a;rb, F(w) goes to a procedure which searches the least stage s
such that As(w) = 1. Once this happens it passes to the accepting state gy.
If that never happens, it continues searching and it gets undefined.

— With degree 1, F(w) goes to a procedure which searches least s and ¢ such
that s < t and As(w) = 1 and A¢(w) = 0. Once this happens it passes to
the accepting state gy. If that never happens, it continues searching and it

gets undefined.

Now, suppose w € A. Then there is a least s such that As(w) = 1. By the
properties of A, we have that V¢t > s Ai(w) = 1. Then there is no accepting
path via the third branch. The only two accepting paths transit via the first one,
with accepting degree 0, and the second one, with accepting degree “erb > 0.
Hence (w, “t?) € L(F). On the other hand, suppose that w ¢ A. There are
two possibilities: either As(w) does not change or it changes two times. In the
former case, the only accepting path goes via the first nondeterministic branch
and hence (w,0) € L(F); in the latter, the three are accepting paths, but the
one with maximum degree is the third one, so (w, 1) € L(F).

(<) Suppose a, b and F satisfy the conditions of this theorem. We simulate
F(w) in stages: define Ag(w) = 0 and

0 if by stage s, all accepting paths of F(w) have degree < b;
if by stage s, there is an accepting path of F(w) with
Asi1(w) = degree € (b, a) and no accepting path with degree > a;

if by stage s, there is an accepting path of F(w) with
degree > a.
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Clearly, the approximation A,(w) is recursive and changes at most two times,
when s — oo and hence A is d.r.e. Indeed, if w € A then eventually, at some
stage s, we will find an accepting path of F with accepting degree € (b, a) and
there cannot be any accepting path of > a. Then Vt > s A;(w) = 1. Otherwise,
if w ¢ A then either all the accepting paths of F(w) have degree < b or there
is some accepting path of degree > a: in both cases we will have that there is
some s such that Vt > s As(w) = 0. m]

4.2 Universal Fuzzy Turing Machines

In classical recursion theory, we have the notion of universal machine: in short a
machine capable to simulate the behavior of every other machine. If (M;);en is
an enumeration of all deterministic Turing machines (when seen as transducers),
then U is said universal when M;(w) | iff U((w,4)) | and if M;(w) | then
M;(w) =U((w, 1)) (here (-,-):IN x Z* — X* is the usual pairing function). We
also have a universal machine, when thinking of acceptors. In this case, (M;);cn
would correspond to an enumeration of all r.e. sets (identifying the domain of
M, with the i-th r.e. set) and U is said universal when M;(w) | iff U((w, 7)) |.

Let C be the class of all FTMs with rational (or finitely representable, or even
computable) degree membership and computable t-norm, i.e. fuzzy machines
F = (T,*,u) where p is computable and the range of u is Q NI (or a set
of finitely representable numbers in I). Since all the elements of each FTM are
finitely representable, we can assign Godel numbers to each FTM, and obtain
(Fi)ien, an enumeration of C.

Following the notion of universality for classical computability, a fuzzy univer-
sal machine (regarded as an acceptor) U for the class C would be a special fuzzy
machine with the ability to simulate the behavior of any other fuzzy machine in
C, that is Up((i,w)) = F;(w). This means that for each i € N and w € X*:

1. Fi(w) | iff Up((i,w)) |, and
2. if Fi(w) | then degr (w) = degy,, ((i,w)).

Although one could think that, as in the classical scenario, there should be such
Ur, the following result refutes the idea:

Theorem 4. There is no universal fuzzy machine for the class C.

Proof. Suppose Up = (Ty,*, 1) where Ty = (Q, X, I,6,q0,0, F) is a FTM as
described above. Obviously, any computational path ¢1,...,t, of Up (t; € 6)
will have degree u(t1) * ... % u(t,) < 1. Let

d=max{u(t):we X" ANtedApu(t) <1iu{0}.

Any accepting path containing some ¢ € ¢ with u(t) < d will have degree < d,
hence Ur has no computational path with degree d € Q such that d < d < 1.
Now, let F be a FTM with Gédel number e such that L(F) = {(w,d):w € X*}.
Clearly, Ur ((w, e)) = F(w), so Ur must accept (w,e) with membership degree

d, and this is impossible. a
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However, when we restrict ourselves to a smaller class, we still may have univer-
sality. Let D be a class of FTMs. We say that U is an universal FTM for the class
D, when U is able to simulate any other machine in D, and U € D.

For example, let B C Q and let Dp be the class of FTMs F = (T, x*, u),
where 7 = (Q, X, I, 6,q0,0, F) is such that Vt € 6, u(t) € B. It is not difficult
to see that if B is finite, there is a universal fuzzy machine for the class Dpg.
Informally, if B = {b1,...,bx}, this universal machine would have k special
transitions ¢y, ...,t; with u(t;) = b;, and will use them to actually pursue the
degree of the simulated machine and input.

It is also interesting to observe that a class of FTMs such as Dg, with finite B,
is not the only situation where universality is admitted. For example, consider
the product t-norm P(x,y) = zy and B’ = {27%4i € INT}. We can see that
there is a universal machine for the class D : A universal machine could have
a unique special transition ¢ with u(t) = 1/2 to actually obtain any number of
B’ by successive applications of the t-norm P.

Hence it is an interesting open question to characterize the class of FTMs
which admit a universal machine.

4.3 Fuzzy Turing Machines as Transducers

We know that Turing machines have two roles: as a language acceptor machine
and as a function computer (transducer). Hence, we can think of a FTM a as
function computer, but with an additional membership degree. That is, it com-
putes a fuzzy function from X* into I'*, where the input as well as the output
have a membership degree. Still, as mentioned at the end of section 3, NTMs
as transducer, do not seem to be a reasonable approach, and therefore in this
section we consider only deterministic FTM, denoted DFTM for short. Without
loss of generality, we can assume that a deterministic Turing machine, DTM for
short, has just a unique final state under which the machine halts when reached.

Let F = (7T ,%, 1) be a DFTM. A fuzzy partial function f: X* — I'* from the
fuzzy set A into the fuzzy set B (i.e. X* and I'* are the universes of A and B,
respectively) is computed by F if f (when seen as a classical partial function) is
computed by the bT™M 7 and for each w, if f(w) |, then

p(f(w) = paw) s« p(tr) * - -+ p(tn) (2)

where t1,...,t, is the computational path for gow Hrugrv with wv = f(w) and
gr is the final state of 7. Clearly, a DFTM computes a fuzzy partial function for
each fuzzification of X*.

We say that a DFTM F S,-computes a partial function f : X* — I'* if there
exists a fuzzy partial function f computed by F such that S(f) = f. Analogously,
we say that a DFTM F C-computes a partial function f : X* — I'* if there exists
a fuzzy partial function f computed by F such that C(f) = f.

Notice that the function S,-computed by a DFTM F could change in case
another t-norm is used, whereas the function C-computed by F is the same
independently of the t-norm chosen.
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Theorem 5. Let x be a t-norm without zero divisors and let f : X* — I'* be a
partial function. The following conditions are equivalent:

1. f is Si-computable
2. f is C-computable
3. f is computable in the classical sense

Proof. (1 = 2) Let F = (7 ,*,u) be a DFTM which S,-computes f. Then, the
DFTM F' = (7T, *, ') where for each ¢ € 6,

o 1 p(t) > 0;
) = {O otherwise.
F' C-computes f, thanks to the non-existence of zero divisors of .

(2 = 3) Let F = (7,%,u) be a DFTM which C-computes f, and let 7/ =
(Q,X,I,6,q0,0, F) be the DTM obtained from 7 changing the transition rela-
tion by: t€é’ iff t€b and p(t)=1. Clearly, the function computed by 77 is f.

(3= 1) Let 7 be a DTM which computes f. Then, the DFTM F = (T, *, ),

h
where M(t):{l if t € 6;
0 otherwise.
S.-computes (and also C-computes) f. O

Thus, in terms of classical computability, for t-norms without zero divisors, S,-
computability and C-computability are equivalent. Clearly, the same is valid for
languages.

5 Final Remarks

The main goal of this paper is not to criticize Wiedermann’s work, but rather
to clear the context in which his result is valid. In this sense, we prove that
considering the same kind of fuzzification the principal result of Wiedermann
(Theorem 3.1 in [23]) is not valid. Other contributions are:

— To provide some results on the acceptation of d.r.e. languages via FTM. These
sets might be more complex in terms of computability theory than r.e. and
co-r.e. sets. In spite of this fact, FTMs can also embed this kind of sets in a
fuzzy language (in the same way that Wiedermann embedded r.e. sets).

— To prove that it is not possible to achieve an universal fuzzy Turing machine.
The difficulty comes when we try to simulate the degree of acceptance. It is
important to notice that we are not trying to calculate the accepting degree
as a written output. Instead, a universal fuzzy machine should genuinely copy
the accepting degree of the simulated FTM, by using its own transitions.

— To provide some considerations on the notion of computability of functions
by DFTMs and to prove that DFTMs have the same computational power than
classical Turing machines (considering two ways of relating these concepts).

As further work, we pretend to establish a relationship between our results
and the ones of Gerla in [7], who provides fuzzifications of several concepts of
recursion theory —though some fuzzy notions do not coincide exactly with ours.
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Abstract. In this paper, an optimal algorithm to solve the continu-
ous/discrete weighted 2-center problem is proposed. The method gener-
alizes the “trimming” technique of Megiddo [5] in a nontrivial way. This
result allows an improved O(nlogn) time algorithm for the weighted
3-center and 4-center problems.

1 Introduction

The p-center problem is defined on a weighted undirected graph G = (V, E),
where v € V' is associated with a non-negative weight w, and e € F is associated
with a non-negative length I.. Let A(G) denote the continuum set of points on
the edges of G. P, denotes the shortest path in G from x to y, z,y € A(G), and
d(z,y) denotes the length of P, ,. Let S(X,G’) denote the mazimum weighted
distance from a set X : {a1,...,ap} to a subgraph G', that is,

S(X,G") = max {w,-d(X,v)}, where d(X,v) = min d(a;,v).
veV(G) j=1,...,p

The p-center problem is to determine a set X of p points in A(G) so as to mini-
mize S(X,G). When all the weights w, are equal to 1, we call it the unweighted
p-center problem. When the p centers are restricted to be vertices of G, we call
it discrete p-center problem. This continuous/discrete problem has been shown
to be NP-hard on general graphs [4,7].

Our study in this paper is restricted to tree graphs. Megiddo and Tamir
[7] provided an O(nlog?nloglogn) procedure to solve the weighted p-center
problem in tree graphs, which was improved to O(nlog?n) by implementing
the results by R. Cole [1]. For the discrete weighted p-center problem, it is also
solvable in O(nlog?n) [6]. In unweighted models, Frederickson [2] presented an
O(n) algorithm, where p can be variable.

In the special case of a path graph, O(n) algorithms for the weighted models
have already known. In fact, stronger results hold for this case. Suppose that

* Research of the second author was partially supported by MITACS and NSERC.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 166-177, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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the nodes of the path are identified as points on the real line. The path topol-
ogy then provides the ordering of these n points. However, even without this
path topology, O(n) algorithms are known for the continuous weighted 2 and
3 center problems on the real line. Moreover, by using the Helly property and
implementing generalized linear programming (GLP), or LP-type approaches,
randomized linear time algorithms can be obtained for the continuous weighted
p-center problem and the discrete unweighted p-center problem, on the real line,
for any fixed p [3].

The main result of this paper is a significant improvement of the upper
bound of the continuous/discrete weighted p-center problem on a tree when
p = 2,3 and 4. We have proposed a linear-time algorithm for the weighted 2-
center problem. Megiddo [5] used a “trimming” technique to solve the weighted
1-center problem in linear time. The problem of generalizing the trimming ap-
proach of Megiddo [5] to solve the p-center problem for p > 1 was open for a
long time. In this paper we have used the interactions between the two centers
to guide us in trimming the tree. As we will see that this generalization is non
trivial. The improvement of the 2-center problem can then be utilized to provide
better bounds for the 3-center and 4-center problems.

The paper is organized as follows. In Sect. 2, the properties of the weighted
2-center of a tree are established. These properties immediately give rise to an
O(nlogn) algorithm. Section 3 provides the main result of this paper - a linear-
time algorithm to solve the continuous/discrete weighted 2-center problem in
a tree. Section 4 briefly describes the improved upper bounds for the weighted
p-center problem, p = 3 and 4 along with the conclusions.

2 An O(nlogn) Algorithm

Let T(V’) be the induced subtree with vertex set V/ C V. For a subtree T” of
T, let V(T'), E(T"), A(T") be the vertex set, the edge set and the continuum set
of points on the edges of T”, respectively. é7 (v) denotes the degree of v in T".
Let V,,(u) denote the set of vertices v’ such that the vertex v lies on the simple
path from the vertex u to v’ (v # u). Let T, (u) denote the induced subtree rooted
at v with the vertex set V,(u). See Fig. 1(a). A subtree T” is called a real subtree
of T if the component T\ T” is connected. We denote by ~T"” the subtree T\ T".
The vertex of a real subtree T” closest to ~T" is called the root of T” and the
edge linking 77 and ~T" is called the root edge of T'. For example, T4, ...,T7 in

(a) Ty (u) (b) Real subtree and core subtree

Fig. 1. Examples for T, (u), real subtree, and core subtree
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Fig. 1(b) are real subtrees. vy is the root of T} and e; is the root edge of Tj.
A subtree T is called a core subtree of T if for v € V(T"), either 67 (v) =1 or
by = ér(v). In Fig. 1(b), Ts is a core subtree.

The centroid of a subtree 7', which can be found in linear time, is a vertex
u € V(T'") s.t. each subtree with removal of u has the size at most |V (T")|/2.

An Overview of the Weighted 1-Center. Let 71 denote the weighted-radius
of T, that is, ¢ = minge o(p) S(z, T). The service cost function S(z,T") is convex
on every simple path in T [4]. Based on this property, Kariv and Hakimi [4]
designed an O(nlogn) algorithm to locate the 1-center in a tree. Later, Megiddo
[5] showed that it can be solved in linear time with a clever “trimming” technique.
It is carried out in two phases. The first phase is to locate the component adjacent
to the centroid o of current tree where the 1-center, say «, lies. The second
phase answers the following key question: whether or not « lies within distance
t to 0. Once the answer to the key question is known, approximately 1/8 of the
vertices in the current tree are discarded. The algorithm performs O(logn) such
iterations. Each iteration takes linear time, linear in the size of the current tree.

Split-Edge. Let C = {aq,...,a,} C A(T) be a set of p centers in T. Let
Vi C V be the set of vertices closest to a particular center o; € C. The edges
whose endpoints belong to different subgraphs G(V;) are called split-edges. Thus,
locating p centers in a tree is equivalent to finding a set of split-edges whose
removal defines p connected components such that the maximum service cost
of the 1-center of these components is equal to the optimal p-center cost of the
entire tree.

It’s trivial that the number of split edges is p — 1 for the p-center problem in
a tree. In our problem, we need to locate one split-edge. An edge e* : u*v* is
called an optimal split-edge for the weighted 2-center problem in T if it satisfies

max {rTu ) TT, (u )} = e:IgQE {max {TTu(v)7 TTU(u)}}-

The weighted 2-center problem in T" can be reformulated as a problem of finding
a split-edge e € E(T) that minimizes ¢(e : uv) = max{rr, (), 77, ()}, called
service cost function of T for split-edge e. It’s easy to see that ¢(e) is convex on
every simple path of T'. If a constant-size subtree contains an optimal split-edge,
then the weighted 2-center can be computed in extra linear time by testing each
edge in this subtree as a split-edge. Thus, the process will be terminated when
we find that there exists an optimal split-edge in some constant-size subtree.

We call discarding one vertex safe operation for an edge e : uv if rg, () and
TT,(u) Stay unchanged before and after this operation. Discarding one vertex is
a safe operation for a subtree T” if it is a safe operation for each edge in T". Sup-
pose that T” contains an optimal split-edge. After safely discarding some vertices
for T, the local optimal solution of the new reduced tree with some split-edge in
T’ is an optimal solution of T'. Let T, denote current tree. Let E,,; denote the
set of edges containing an optimal split-edge. We always maintain the follow-
ing invariant. The component composed of all the edges in E,;, denoted by T},
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is a path or a core subtree. If an optimal split-edge lies in a subtree T” of Ty,
clearly, all the safe operations for T,,; done so far are also safe operations for T".

Lemma 1. Suppose that T{, T4 are subtrees of Tope and E(T{NTY) # 0. If T| and
T} both contain optimal split-edges, then Ty N'Ty contains an optimal split-edge.

Lemma 2. (Refer to Fig. 2(a).) Given an edge uv € Eopt, if 11, (v) = 77, (u)s
then an optimal split-edge lies in {uv, E(Ty(v))} N Egpt.

Lemma 3. Given an internal vertex v of the core subtree T,p:, suppose 11, . . .,
Ty (k > 2) are the sublrees adjacent to v. Let Ty and Ts be the two components
such that S(v,T1) > S(v,T3) and S(v,T;) < S(v,T»),3 < i < k. There exists an
optimal split-edge in {vvi,vve, E(Th), E(T2)} N Eop:-

Proof. See Fig. 2(b). First, all the edges vv; € Epps, @ = 1,.. .,k since v is an in-
ternal vertex of the core subtree T,,,. We can see that the service cost ¢(vv) is no
more than the service cost with any split-edge in Eop \ {vvy, vve, E(Th), E(T2)}.
Hence, an optimal split-edge lies in {vvy, vva, E(TY), E(T2)} N Eopt. O

T (v Ty (u

(@)

Fig. 2. Locate the component containing an optimal split-edge

The next lemma supports a binary-search technique for our problem.

Lemma 4. (Refer to Fig. 2(c).) Given a vertex v in Teyr, we can find in linear
time an optimal split-edge incident to v or find a verter v’ adjacent to v such
that there is an optimal split-edge in {vv', E(T, (v))} N Eopt-

Proof. 1t’s trivial when v & V (Tpp) or v is a leaf of Ty, Suppose v is an internal
vertex of Tpp:. We can find two vertices vy, vy adjacent to v such that there is
an optimal split-edge in {vvy, vva, E(Ty, (v)), E(Ty,(v))} NEept (by Lemma 3 if
Topt is a core subtree). Apply Lemma 2 on vy, vvy. We have the following cases:

= If rp, L(0) =TTy (v1) & T, (v) = TT,(v3)> VU1, VV2 both are optimal split-edges.

— I rr, ) 2 T1,00) & T, (v) < TT,(vy), there is an optimal split-edge in
{oo1, B(T, ()} O Eopr

— Similarly, if 77, () < r7,(0;) & 1, () = TT,(v,), then there is an optimal
split-edge in {vvg, (T, (v))} ﬁEopt

— Otherwise, at least one of vvy, vvs is an optimal split-edge. An optimal split-

edge is selected by evaluating the value of ¢(vv1) and ¢(vve). O
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Note that when T,,; is updated via Lemma 2 or Lemma 4, the new 715, is still
a path or a core subtree. Lemma 4 implies an O(nlogn)-time algorithm for the
weighted 2-center problem in a tree, described as follows. Given that there is an
optimal split-edge in Tpp:, we test the centroid u of Ty to find a subtree T of
Topt adjacent to u that contains an optimal split-edge. Since the size of T is at
most half the size of Ty, the process terminates within O(logn) examinations.
The total cost is therefore O(nlogn) time.

3 A Linear-Time Algorithm

Although it’s hard to find an optimal split-edge quickly, we’re able to obtain a
subtree T,,;, with size no more than half-size of T,,, in which an optimal split-
edge lies. Given this reduced subtree T, each connected component, with the
removal of T,,:, must be served by one center. We'll see that there always exists
a big component (at least half the size of Ti,,) among them. Our objective is
to eliminate a fraction of the vertices in this big component. More precisely, at
least 1/16 of the vertices in T, are eliminated. The algorithm terminates after
O(logn) iterations. The total running time is, therefore, linear.

Let o denote the centroid of Te,.., and let vy, ..., v, be the vertices adjacent
to o. If we find a real subtree T),_(0) adjacent to o (1 < s < m) such that there
is an optimal split-edge in {ovs, E(T,,(0))} (the solid bold part in Fig. 3(a)),
then T, (vs) is the big component served by one center in the optimal solution
determined by some optimal split-edge in {ovs, E(T,,(0))}. In the rest of this
section, the 1-center serving the big component T,(vs) is denoted by aj, the
other 1-center is denoted by «s. As pointed out above, our goal is to safely
discard a fraction of the vertices in T, (vs). Let o’ denote the centroid of T, (vs).
Like in Megiddo’s method [5], the pruning stage is carried out in two phases. The
first phase is to locate the component adjacent to o’ where ay lies. In the second
phase, the following key question is answered: does « lie within the distance ¢
to o'? The significance of ¢t and how to determine ¢ will be described later. It is
very similar to the approach used in [5]. The main algorithm is sketched below.

Algorithm 1. Main algorithm for the weighted 2-center problem in 7'

1: Topt =T, Eopt = E,Tewr =T.

2: repeat

3: Get the centroid o of T¢y.. Find a vertex vs adjacent to o such that there is an
optimal split-edge in {ovs, E(Ty,(0))} N Eopt. Update Eopt, Tope accordingly.
Get the centroid o’ of the subtree Ty (vs). {The optimal split-edge is in T, (0)}
Find the component adjacent to o’ that contains the center oy that serves T}, (vs).
Compute the value of ¢ and answer the key question.

Safely discard approximately 1/8 of the vertices in V (T, (vs)). Update Teyr.
8: until |Eop| < ¢ (¢ is a predefined number)
9: Evaluate the service cost with each split-edge e in E,p;.
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Analysis: We show in Sect. 3.1 and Sect. 3.2 that the steps in line 5 and line 6
can be implemented in linear time. Therefore,

Theorem 1. The weighted 2-center in a tree can be solved in linear time.

3.1 Phase 1: Locate the Component Adjacent to o’ Where «; Lies

Refer to Fig. 3(a). With removal of the centroid o' of T, (vs), Teur is split into
subtrees. Let T, (o) denote the subtree among them that contains the vertex o.
All the other subtrees are T), (o), ... Ty, (0"). Consider o' as the root of Tey,.
Suppose that S(o’, T, (0')) > S(o', Ty, (0')),2 < i < k. Then, a; must lie in the
component o'vy + T, (o') or in the component o'vy + T}, (0'). It can be decided
in linear time by Lemma 5. Lemma 6 provides a more general result.

Lemma 5. (Refer to Fig. 3(b).) Let T' be a real subtree of Teyr served by o .
Let v denote the root of T' and = be a point on the root edge of T'. Whether ay
lies in vx + T can be decided in linear time.

Lemma 6. (Refer to Fig. 3(b).) Let T' be a real subtree of Ty, served by one
center (either a1 or ag). Let v denote the root of T' and x be a point in the root
edge of T'. Whether ay lies in vx + T’ can be decided in linear time.

Proof of Lemma 5. Let U,(S(z,T")) denote the set of vertices in Ti,, with
larger weighted distance to « than S(z, T"). It’s trivial to see that «; lies in va+T"
if Uy(S(z,T")) = 0. Suppose that U,(S(z,T")) # 0. Clearly, U,(S(z,T")) C
V(~T"). Consider z as the root of T.,,. Let T” be the smallest connected real
subtree containing all the vertices in U, (S(x,T”)). T” must be a subtree of ~T".
Let u be the root of T”. Observe that a; lies in vz + 7" if and only if T" is
served by aq. First, let us see a useful lemma. Refer to Fig. 4(a). T1 and T%
are two real subtrees rooted at u’,v’ respectively, and b is a point in the root
edge of Ti. Ty contains all the vertices with larger weighted distance to b than
S(b,T1).

Lemma 7. If E,,y NE(T1) = Eop N E(T) = 0, then in linear time we can find
an optimal split-edge, or find a subpath of P, , containing an optimal split-edge.

(i) = isn’t a vertex (ii) = is a vertex

(a) The big compoent T, (vs) is served by aj (b) Lemma 5

Fig. 3. The big component T, (vs) served by ai and Lemma 5
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Fig. 4. Lemma 7

Proof. We have the following two cases.

— E,pt NE(P, ) = 0. See Fig. 4(b). Let uy be the vertex closest to P, ,
in T,p:. Examine u; using Lemma 4. In linear time, we can find an optimal
split-edge incident to u; or find a vertex us adjacent to uy such that there
is an optimal split-edge in {ujug, E(T3)} N Eope. In the latter case, ujug is
an optimal split-edge since r—p, > rr,.

— EoNE(P, ) # 0. See Fig. 4(c)(d). Let f be the vertex closest to v’ in T,,.
f must be in P, , . Check f using Lemma 4. In linear time, we find a vertex
up adjacent to f s.t. there is an optimal split-edge in {fui, E(T4)} N Eopt.
If uy is not in P, ,, fu; is an optimal split-edge since -7, > rp, (Fig.
4(c)). Otherwise, uq is in P, , (Fig. 4(d)). For any split-edge e € E,,; but
e ¢ E(P, , ), the service cost ¢(e) = max {rp,, 77, } > S(b,T1). Let uy be
the vertex closest to e in P, , . Let uz be the vertex adjacent to us with
d(us,v") < d(ug,v"). It’s trivial that ugus € Eope since f is a leaf of Top.
Since ¢(ugug) < ¢(e), there is an optimal split-edge in Eyp N E(Py ). O

The linear-time checking process is briefly described as follows. Test vertex u
with Lemma 4 and update E,p;, Tope accordingly. If T, is a subtree of T, then
a1 is in vz + T’. Otherwise, by Lemma 7, either an optimal split-edge is found
or we find that a; is in vz + T”. This completes the proof of Lemma 5.

Proof of Lemma 6. Suppose that there is an edge e € E, in P, ,, (otherwise,
use Lemma 5). Let U, (S(z,T")) denote the set of vertices in T, with the larger
weighted distance to x than S(z,T"). Consider two cases.

Uy (S(z,T")) = 0: In this case, vz + 71" contains «; if and only if there doesn’t
exist an optimal split-edge in P, .. Let ' be the closest vertex in Ty, to o and
let v’ be the closest vertex in Tpp; to v. w/,v" should be on the path P, , and
u' #v'. P, , is the common subtree of P, ., Top:.

— Topt is a path. See Fig. 5(a). By Lemma 4 on v and v, we have two cases.
e P, , contains an optimal split-edge. Then va +T" doesn’t contain ;.
e An optimal split-edge lies outside P, , . Therefore vz 4+ T" contains o .
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(a) Topt is a path (b) Topt is a core subtree

Fig. 5. Lemma 6: U, (S(z,T")) =0

— Topt is a core subtree. In this case, v/, v" must be leaf vertices of T,y See
Fig. 5(b). Let V" denote the set of vertices z such that the simple path
P, . contains some edge in Eoy. Let ¢ be a vertex in V" with wed(z,q) =
max,cy w,d(x,z). Then there exists an optimal split-edge on P, , (oth-
erwise, the service cost is larger than wyd(x,q)). Update Tp,: accordingly.
Now, Tyt is a path. we can get the result by similar process.

Uz (S(x,T")) # : Consider z as the root of Tey,. Let T” be the smallest real
subtree containing all the vertices in U,(S(z,T")). u is the root of T"”. Similar
to the proof of Lemma 5, we have two cases by testing v with Lemma 4:

— If updated Top is a subtree of T, then vz + 1" can’t contain o.

— Otherwise, Eop N E(T") = (0. Assume that we only find a subpath of P, ,
containing an optimal split-edge by Lemma 7. If T, (v) is the subtree of T,
see Fig. 6(a), then aq can’t lie in v + T". Otherwise, T,(vs) and T are
disjoint (Fig. 6(b)). Let v’ be the least common ancestor of v and o. Check
u’ by Lemma 4 and update Eop, Tope accordingly. If Ty, is the subpath of
P, , then aq lies in vx + T". Otherwise, vz + 1" doesn’t contain o;.

-------------- [ EEEEE R R R R RS, SRS
//,, \\\\v§ “ ,—‘ ’
// o \\\\
: 3 T Ty (vY)
LA ——
(a) To(vs) is the subtree of T' (b) To(vs) and T are disjoint

Fig. 6. Lemma 6: U, (S(z,T")) # 0 and Eopr C E(Py )

3.2 Phase 2: Answer the Key Question

Having found the component where a4 lies: o'v} +T;, (o) (Case 1) or o'v+T5, (o)
(Case 2), see Fig. 3(a), we need to check if ay lies within distance t to o’. The
significance of ¢ and the computation of ¢ is described as follows [5]. Arbitrarily
pair the vertices in V(Ty(vs)) \ V(T (0')) for Case 1 and pair the vertices in
V(T (vs)) \ V(Ty,(0"))) for Case 2. Let (u1,u}), (u2,u3), ..., (w,u;) be the pairs
where wy, > w,, . The case when w,, = w,, is easy to handle. Note that there
will be at least [n/8] pairs since o’ is the centroid of T, (vs). For every such pair
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(uiyu), 1 <i < llet t; = (wy,d(ui, o) —wy, d(u,0'))/(wy;, —w,, ). tis taken to
be the median of these values. If ¢ > ¢; then v} is dominated by u;, and therefore
is discarded; otherwise, u; is discarded. In this way, we can eliminate at least
[n/16] the vertices in T, after the key question is answered.

Case 1. We find all the points y1,...,y in T, (o') such that d(o',y;) = t,i =
1,...,01. Let T,), (0'), ..., Ty, (o) be the subtrees rooted at y1, ..., y;. Assume that
S(y1, Ty, (")) = maxi<i<i S(yi, Ty, (0')). See Fig. 7(a). We evaluate the point y;
and the real subtree Ty, (0') by Lemma 5. If ¢ lies in Ty, (0'), then the answer
to the key question is "NO”; otherwise, the answer to the key question is " YES”

(o) T, ) T, ()T, ()

- 0 -
(a) Case 1: ay liesino v, + 7, (o) (b) Case 2: aj lies in o vy + T, (o)
1 0
Fig. 7. Answer the key question: whether o lies within the distance ¢ to o

since oy can’t lie in T, (0'), ..., Ty, (0'). Therefore, for Case 1 we can check in
linear time whether or not a; lies within distance ¢ to o’.

Case 2. The vertices served by as are contained in T, (o'). As in Case 1, we
first find all the points y1,...,y in T, (o) such that d(o’,y;) = t,i =1,...,1.
See Fig. 7(b). Let v; be the vertex closest to y; such that d(o’,v;) > t. The
subtrees rooted at the vertices vy, ..., v; are denoted by T, (0'),. .., Ty, (0"). The
subtrees rooted at the points y1, ..., y; are denoted by Ty, (o), ..., Ty, (0"), which
contain all points z in T, (o) with d(o', z) > t. Let I' = {T}, (¢), ..., T}, (o)} and
A=A{T,, (0),..., Ty (0")}. Without loss of generality, suppose that T, (¢'),...,
T, (0") are the subtrees that do not contain any edge of E,, and also the
path P, ., ,1 < ¢ < k do not contain any edge of Eop;. So all the wvertices
in Ty, (0"),1 <i <k are served by a;. Two things make the problem in Case 2
harder:

— First situation: There may exist an optimal split-edge in some subtree in A.
Let @ denote the set of subtrees in A containing some edges in Fop.

— Second situation: There may exist an optimal split-edge on the path between
o' and roots of some subtrees in A. Then these subtrees are served by as.

First situation. We compute rr, (o) for T,,(0’) € ®. Since these subtrees are
pairwise disjoint, all these values can be computed in linear time. Let R =
max {rr, (o), 2v;(0') € }. If r7, (o) < R, Ty, (0') € @ there exists an optimal
split-edge outside subtree Ty, (0"). If T, (o) = T, (o) = R for some i; #
iz, Ty, (0'), Ty, (0") € @, then there exists an optimal split-edge outside of all the
subtrees in @. The remaining case is when there is a unique subtree T, (o) € @
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ap lies iny, u, +~ T, (0)?
es No °

aq lies in T}, (0 )? The answer to the
es key question is ”N0O”

The answer to the The answer to the
key question is ”NO’key question is ”YES”

(b)

Fig. 8. T, contains an optimal split-edge

such that r, (,) = R. Apply Lemma 4 on v If T, (') € A contains an optimal
split-edge, then “T,, (o) is served by 1. See Fig. 8(a). Let S(yj, T, (o)) =
Maxr, (o)ea\(T, (o)} SWs;Tv,(0")). The possibility of having the "NO” answer
to the key question is that a; lies in either Ty, (o') or T,y (o). The result can be
obtained from Lemma 5, i.e., apply Lemma 5 on y; and ~T;, (¢') served by ai,
and apply Lemma 5 on yj and T, (o). The decision tree is shown in Fig. 8(b).
Otherwise, there is an optimal split-edge outside all the subtrees in A. In this
case, we encounter another problem, as described in the second situation.

Second situation. In this case, there is an optimal split-edge outside all the sub-
trees in A. That is, every subtree in A is served by 1-center (either oy or as).
By Lemma 6, we can decide whether or not o lies in T),(0') € Ii =1,...,1.
However, the total cost is O(n?). We have an efficient method to achieve it. Let
Tvil(o’),Tvi (0') be the subtrees in A s.1. S(yz‘l,Tvi1 (0")> S(yi2,Tvi2 (0')) and
S(yi, Ty, (") < S(y,-2,Tvi2 (0'), Ty, (") € ANATy, ('), Ty, (0")}. If ay lies in
T, (o) or Ty, (') (by Lemma 6), the answer to the key question is ”"YES”. Sup-
pose that a; does not lie in T, (o), Ty, (0'). We need to determine whether oy

lies in some subtree 77, (0') in I"\ {Tyi1 (0"), Ty, (0')}. Two necessary conditions

for ay to lie in Ty, (o') € I"\ {Tyi1 (o), Ty, (")} are listed below.
- Ty, (o), Ty, (0') are served by as. Let 6 be the lowest common ancestor of
v ,v;, (0" is the root). There is an optimal split-edge in E,,; N E(FPp,o ).
— For each vertex v served by ai, wyd(a1,v) < S(y;, Ty, (0')).

Let E be the set of edges e € Eop NE(Py,, ) such that o lies in some subtree
in I\ {Tyi1 (0'), Ty, (0')} with split-edge e. Observe that Es contains an optimal
split-edge if a subtree in I"\ {Tyi1 (o), Ty, (')} contains «; (It follows easily from

two necessary conditions). If Fx = () then a; can’t lie in I"\ {Tyi1 (o), T, (o)}
Suppose that Es # 0. Let es be the edge closest to 6 in Fs. See Fig. 9(a).

Lemma 8. If E; contains an optimal split-edge, then es is an optimal split-edge.

Proof. For any edge ¢’ € E; (€ : ujuit1,€s : ujujt1), the service cost ¢(es) =
max {TTuj (qu),rTqu(uj)} is no more than ¢(e’) = max {TTui (Ui+1)7rTui+1(ui)}'
Therefore, es is an optimal split-edge if F/s contains an optimal split-edge. O



176 B. Ben-Moshe, B. Bhattacharya, and Q. Shi

T, (vo)

(a) Lemma 8 (b) costyy

Fig. 9. Lemma 8 and compute costy,

Therefore, it’s enough to check if es is an optimal split-edge. Since TT0, (uj11) <
TT,,,, (u;); there is an optimal split-edge in {ujujp1, E(Ty,,, (uj)) JNEop. By
Lemma 4, we can either find es is an optimal split-edge or find that there is
an optimal split-edge outside E,. In the latter case, all the subtrees in I\
{T, . (o), T,, (0')} don’t contain ay in the optimal solution determined by any
optimal split-edge in E,,;. Hence, the answer to the key question is ”"YES”.
The last issue is to find such e, in linear time if it exists. Refer to Fig. 9(b). The
path P, 9 N1,y is denoted by ui,us,. .., un. Let cost,, denote the cost needed
to cover all the vertices in subtree T, (u;+1) for a point outside subtree Ty, (u;+1)
with the distance t —d(0’, u;) to u; (= with the distance t to o’), i =1,...,m—1.
Obviously, all the values of cost,,,i = 1,...,m — 1 can be computed in linear
time for a given t. Given a split-edge w;u;v+1,1 < i < m, let I; denote the set of
subtrees served by a1 in I" and o; = max {S(yx, Ty, (0")), Ty, (') € I;}. aq can’t
lie in any subtree T}, (0o") with S(y;,T,,;(0")) < oy for split-edge u;u;11 and, if
there are two subtrees Ty, (0'), Ty, (o) in I with S(y;, To; (0')) = S(yk, Tu, (0')) =
i, then oy can’t lie in any subtree in ;. Let T} (o) be the unique subtree in
I; such that S(yk,Tjk (0")) = o0y. For the edge ujua, ujus € Fy if and only if
S(y,ﬁ,Tu1 (uz)) = 01. We can check if uw;u; 41 € Es,i =2,...,m — 1 as follows:

— I T, (o) € Iy, that is, T, (o') = T;;~"(0'), then

° u2 1u; € Eg: All the Vertlces in Ti _, (u;) with the weighted distance to
yx no more than S(yx, Ty, (0')). We compute the cost needed to serve all
the vertices in Ty, (u1+1) \Tur1 (u;) by yk. If the cost is greater than o;
then w;u; 1 € Es. Otherwise, Es = Eg U {u;u;+1} and eg = u;uiqq.

o u;_ju; ¢ Es: There is at least one vertex in Ty, , (u;) that can’t be
covered by y, within ;1. Since o; = 0;_1, a1 can’t lie in Tyik (o).
Therefore, usu; 41 & Es.

— Otherwise, T}, (o) € I\ Ii—1. The cost needed to serve all the vertices
in Ty, (u;) for yi is costy,_,. We compute the cost needed to serve all the
vertices in Ty, (wi+1)\Tu,_, (u;) for yi. We then compute the maximum of this
cost and cost,,_, . If the maximum cost is greater than o; then w,u;+1 € Es,
otherwise, Es = Fs U {u;u;11} and es = uju;y1.

In i-th step, suppose that such subtree T, yik (') is unique. We only need
|Tw; (wit1) \ Tu,—, (u;)| time to compute the cost needed to serve all the vertices
in Ty, (ui+1) by yk. Thus, the running time of the algorithm is linear.
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Lemma 9. If E, # 0, es can be computed in linear time.

Putting everything together, we establish Theorem 1. Adapting the algorithm
for the discrete case is straightforward.

4 Conclusion

In this paper, an algorithm is given which finds weighted 2-center in trees in linear
time. The proposed method is a nontrivial generalization of the “trimming”
method of Megiddo [5]. With the linear-time algorithms for the weighted 1,2-
center problems, the upper bound of the weighted 3-center and 4-center problems
can be improved to O(nlogn). It’s not hard to get a method based on binary-
search technique.

Theorem 2. The weighted 3,4-center problems can be solved in O(nlogn) time
and linear space.

One challenging work is to generalize this result for the weighted p-center prob-
lems in a tree graph (any fixed p). Currently, we have proved that one big com-
ponent, defined as one connected component served by 1-center that contains a
fraction of vertices in current tree, can be found in linear time. Also, lemmas
similar to Lemma 5 and Lemma 6 are discovered.
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Abstract. We consider a generalization of the maximum subsequence
problem. Given an array ai, ..., a, of real numbers, the generalized prob-
lem consists in finding an interval [z, j] such that the length and the sum
of the subsequence as, . ..,a; maximize a given quasiconvex function f.
Problems of this type occur, e.g., in bioinformatics. We show that the
generalized problem can be solved in time O(nlogn). As an example, we
show how the so-called multiresolution criteria problem can be solved in
time O(nlogn).

1 Introduction and Preliminaries

The maximum subsequence problem is often used to show that different algorith-
mic approaches can lead to algorithms of varying efficiency. (See, e.g., Column 7
in [B].) Input to the problem is an array ay, ..., a, of real numbers. For an inter-
val [4, j] of array elements, the sum of the interval is defined as a;+a;41+- - - +a;.
The maximum subsequence problem asks for an interval which has the maximum
sum among all intervals. It is well-known that the problem can be solved by a
dynamic programming approach in time O(n).

In practice, there are other problems defined on array intervals which have to
be solved. Examples from bioinformatics are, e.g., the longest biased interval, the
longest non-negative sum interval [A], the maximum-sum segment [FLLTWY],
the length-constrained heaviest segment [LJC], the range maximum-sum seg-
ment [CC] and DNA copy number data analysis [LABLY]. An example from
statistics is the multiresolution criteria problem [DK]. All of these problems
have in common that they assign a value f(¢,s) to an interval that depends
on the length ¢ and the sum s of the interval only. To some of those problems,
our algorithm can be applied. We first describe the class of functions f that is
allowed in our problem.

Definition 1. Let D C R? be a nonempty convex set and let f : D — R. The
function f is said to be quasiconvez if and only if for all points s1,s2 € D and
all X € [0,1], we have f(A-s1+ (1 —A)-s2) < max{f(s1), f(s2)}

* The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, Reduction
of complexity in multivariate data structures) is gratefully acknowledged.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 178-189, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Thus, quasiconvex functions assume their maximum value on a line segment in an
endpoint of the segment. It is clear that for a quasiconvex function f: D — R,
one can use induction to show the following: For all Ay,..., A, € [0,1] with
Sy A =1, and all sq,...,s, € D, we have

f-s1 4+ A - sp) <max{f(s1),...,f(sr)}.

Thus, on a convex set, a quasiconvex function assumes its maximum on an ex-
tremal point of the convex set. In Section 2, we will give examples of quasiconvex
functions. We are now ready to formulate the generalized maximum subsequence
problem which will be considered in this paper.

Definition 2. For an interval [i,j] (with i < j), we define its sum as sum(i, j)
= a; + aiy1 + -+ + aj and its length as £(i,5) := j — i+ 1. The generalized
mazximum subsequence problem can be described as follows:

Input: An array ay,...,a, and a quasiconvex function f.
Output: An interval [i,j] such that its value

w(i,j) == f(€(i, ), sum(i, j))

18 mazximal among all intervals. Alternatively, we are interested in the value
w(i, j) of such an interval.

Some remarks are in place: First, note that the maximum subsequence problem
is the special case where f(¢,s) = s. Second, we restrict ourselves to the task of
computing the maximum value w(i, j) instead of a corresponding interval itself.
It will be obvious how such an interval can be computed as a side information
in the algorithm. Third, when analyzing running times, we will assume that the
evaluation of f(¢,s) can be done in time O(1) (which is obviously the case for
functions like, e.g., |s|/v/¢).

A trivial solution of the generalized maximum subsequence problem would
be to enumerate all ©(n?) intervals [i, j], evaluate w(i, j) for each of them and
output the maximum value. If implemented right, this can be done in time ©(n?).
We will show in this paper that for every quasiconvex function f, the generalized
maximum subsequence problem can be solved in time O(nlogn).

2 Motivation

Our original motivation for investigating the generalized maximum subsequence
problem came from a problem in statistics, more precisely, data analysis. Here,
the so-called multiresolution criteria problem [DK] is useful for deciding whether
residuals consist of white noise. The problem is based on a parameter which for
an interval of the data is defined as f(/,s) := |s|/v/{. As before, £ is the length
and s is the sum of the interval. One then seeks for the interval with the largest
parameter (or, the largest parameter itself). It turned out that our methods
for tackling this problem could be generalized to the larger class of quasiconvex
functions.
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Let us first show that the function f(¢,s) := |s|/v/¢ is quasiconvex. In case
some of the used notions here should be unknown to the reader, we refer to
Section 3. The following theorem is well-known in the literature and helpful for
showing quasiconvexity (see [BV], p. 95/98):

Theorem 1. Let D C R? be a nonempty convex set. A function f : D — R is
quasiconvez if and only if the so-called sublevel sets D, := {x € D | f(z) < a}
are convex for all o € R.

We obtain the following:

Lemma 1. Let g : Ry — Ry be a concave function. Then f(¢,s) :=|s|/g(f) is
quasiconvez.

Proof: Consider a sublevel set Dy, = {(¢,5) | |s| < a-g(£)}. Dy is convex:
For a < 0, this is trivial since then, the sublevel set is empty. For a = 0, we
obtain a (convex) straight line and for o > 0, we have that

Do={(,s)|s>0and s<a-g(l)}U{({s)|s<0and s> —-a-g(¢)}.

Since g is concave and « > 0, it follows that « - g is also concave and since g is
mapping inputs to R, it follows that D, is convex. ([l
Since /¢ is a concave function, we obtain that |s|/v// is a quasiconvex function.
Thus, our algorithm for the generalized maximum subsequence problem can be
used to obtain the maximum parameter value for the multiresolution criteria
problem in time O(nlogn).

A similar function occurs in bioinformatics. For DNA copy number data anal-
ysis [LABLY], one might wish to find an interval [¢, j] which maximizes the value
\/j—1i+1 -39 _, aj. This corresponds to choosing the function f(¢,s) := s/V//.

Inspection of the paper [LABLY] shows that it is likely that the authors are
in fact interested in the maximization of the function |s|/v/¢ instead of s/v/f
(which would be the same function that we previously treated).

Nevertheless, one might also consider the function s/v/¢ which is no longer
quasiconvex. Here, one can use a simple trick to make our algorithm applicable
in “most” cases.

When in the input, there is at least one a; > 0, then the maximal value OPT
of the function s/v/¢ is also at least 0. (Choose the 1-element interval [i, i] which
has the value a; > 0.) We can then consider the function

F(t,s) = {f(& s), ifs > 0.

0, otherwise.

The maximal value for this function f’ is the same as for the function f and
it can easily be shown that f’ is quasiconvex (the proof is similar to the one for
the function |s|/v/¢).

The assumption that not all values a1, ..., a, in the input are negative is very
likely to hold in the applications, since there, the a; basically are the deviations
of a random variable from its mean.
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[LABLY] provides a linear time approzimation scheme for the DNA copy
number data analysis and provides an exact algorithm that is good for typical
inputs but which could not be shown to have a worst-case running time better
than O(n?). Thus, our approach improves upon the known worst-case bound for
this slightly restricted version of the problem.

3 Basic Definitions

In this section, we recall a few definitions that are helpful for our purposes. The
reader is also referred to, e.g., [M] or [BV].

Definition 3. Given a set P = {p1,...,pm} C R?, a convex linear combination
of P is any point of the form A1 -p1+- -+ X Pm, where \; >0 for alll1 <i<m
and Y ;" N = 1.

A set S C R? is convez if for each pair of points s1, s € S, it holds that every
convex linear combination of {s1,s2} is also in S.

Given a finite set M of points, we define the convex hull of M as the smallest
subset C' of M such that the convex polytope defined by the points in C contains
all points of M. The convex hull can be split into its upper and lower part, the
upper convex hull and the lower convex hull. The following figures show a point
set M and its upper and lower convex hulls, respectively (marked by crosses).

x % e °
° ..x ° ..‘
x. [ ] b .0 0..
X . o ° o X X o . o X
° . ® °
e O e o
° %
¢ e © x x %

Definition 4. Let S be a nonempty convex set. A function f in n variables is
called convex on S if for all s,s' € S and all X € [0,1] it holds that

FOvs+(@=2) ) <A fs)+ (1 =) f(s).
A function g is called concave if —g is conver.
We remark that every convex function is also quasiconvex.

Definition 5. Let p = (ps,py) be a point and A be a set of points. We say that
p is upper-dominated by A if there is a point p,, such that

i) pup = (Pa, py +¢) with ¢ > 0, and
ii) pup can be written as a conver linear combination of the points in A.

(For a more informal view of upper-domination, see below).
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In a completely analogous fashion, it is possible to define lower-domination of
a point p by a set of points A, where in the definition, we replace p,; by a point
Poelow = (pxypy - C)~

For a set A of points, the upper convex hull of A upper-dominates every point
of A and, in fact, is the smallest such set of points.

We need a few simple properties of upper-domination (and lower-domination)
which we prove for the sake of completeness. First, we show that upper-domi-
nation satisfies a certain “transitivity” property, more precisely:

Lemma 2. Ifp is upper-dominated by the set A, and there is a point ¢ € A which
is upper-dominated by the set B, then p is upper-dominated by (A\ {q}) U B.

Proof: Let p = (py,py)- By assumption, there is a point pyp = (pz, Dy + €)
such that ¢ > 0 and

pup:Aq'q+ Z Ao

and there is a point qup = (¢x,qy + ¢’) such that ¢’ > 0 and qup = > 5 Aj - b-
Consider now the point

P* =g Qup + Z Ag - Q.
a€A\{q}

It holds that p* —pup = Ag - (qup — q) = Aq - (0,¢’). This means that p* agrees
in the x—coordinate with p,, and p, and the y—coordinate of p* is at least as
large as py. Writing p* = Aq - (Xpep A - 0) + 2 4e 4\ (g) Aa - @ shows that it is a
convex linear combination of the points in (A4 \ {¢}) U B. O

Definition 6. For two points p = (pg,py) and ¢ = (Gz,qy) With py < ¢z, we
define the slope between p and q as

qy — Py

inc(p, q) =
4z — Pz

Definition 7. A sequence p1 = (x1,Y1),- .-, Pn = (Tn, Yn) with x1 < -+ < Xy, is
called concave if and only if inc(p1,p2) > « -+ > inc(pn—-1,pn), i.e., the sequence
of slopes is monotone decreasing.

Definition 8. Given a concave sequence of points pr = (T1,Y1),...,Dn =
(Zn,Yn), the graph f of the sequence is defined as a (continous) function f de-
fined on [x1,xy]. The function f is defined by setting f(x) := y;+ gi:ayc@ (z—a;)
ifx; <o <xit1.

The figure below shows the graph of the upper convex hull and the graph of the
lower convex hull of our example point set M.

Informally, one can say that a point p is upper-dominated by a set A if it lies
below (or on) the graph of the upper convex hull of A.
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The following lemma should be rather obvious which is why we just give an
informal sketch of the proof:

Lemma 3. Let tq,...,t, be a concave sequence of points. Define the sequence
diffy, ..., diff ,_1 by diff; := tiv1 — t; and let diﬂg(l), cay diﬁg(r) (wzth f(l) <
- < L(r)) be a subsequence of diffy, ..., diff,,_1. Then the following holds:

Every point of the sequence $1,...,Sr41, defined by s1 = t1 and s;y1 =
s; + diff ;) is upper-dominated by {t1,...,tn}.

Proof: (Informally): Let f be the graph of t1,...,¢, and g be the graph of
S1y.+-38r41. Then f(x) — g(x) > 0 for all = in the domain of g, since in every
point z, the increase of f in x is larger than the increase of ¢ in z. O
The following figure provides a visualization of Lemma 3.

diff,

t,=s Sr+1

4 Joining Two Concave Sequences

In this section, we describe the main operation that our algorithm is based on.
For two point sets P and @, we define the set P + @ of points by

P+Q:={p+q|pePqec}

This addition operation is also known under the name “Minkowski sum”. (See,

e.g., [dBvKOS]).
P 4+ @ may contain up to |P| - |Q| points. Given two point sets A and B, by
joining A and B, we mean computing a concave sequence ti, ..., &, of points

from A + B such that {t1,...,t,} upper-dominates every point of A+ B. Note
that this notion is different from the notion of “merging two (upper) convex
hulls”. Joining the sequences is basically the same as computing the upper convex
hull of A + B (which upper-dominates every point of A + B). The ouly (rather
unimportant) difference is that the set {¢1,...,,,} is not required to be minimal.
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Example: Let A = {(1,1),(2,3), (3,4)}, B = {(1,1),(3,5), (4,6)}, then
A+ B=1{(2,2),(4,6),(5,7),(3,4),(5.8),(6,9), (4,5), (6,9),(7,10)}

and the set {(2,2),(3,4),(5,8),(6,9),(7,10)} upper-dominates every point in
A+ B. The upper convex hull of A + B is given by (2,2), (5,8) and (7, 10).

The trivial approach to computing a set which upper-dominates every point
of A+ B would be to first compute all points in A+ B and to apply a convex hull
algorithm to the resulting set. This would take time at least |A|-|B| which would
be too slow for our purposes. Instead, we apply an algorithm for computing the
Minkowski sum of two convex polygons (see [dBvKOS], Theorem 13.11) to our
setting. As a consequence, we can join A and B in time O(|A| + |B|), if upper-
dominating sets for A and B are already given. For the sake of completeness, we
describe the algorithm for joining A and B below.

Let p1,...,p and ¢1,...,qs be two concave sequences. We show how these
two sequences can be joined in time O(r + s). Define the two slope sequences
Al,...7Ar,1 and All,...,A;_l by

A; = inc(pi, pi+1) and A; := inc(qi, ¢iv1)-

The two sequences are monotone decreasing. Thus, we can merge them in time
O(r + s) into one sequence AY,..., A, _, which is also monotone decreasing.
For this purpose, the well-known merge step from the mergesort algorithm can
be used. We can define the sequence ¢ by the following algorithm. The algorithm
works as follows: The points t1,...,t,4s—1 are chosen one by one. When t, =
p; + q; is already chosen, then it is checked whether the slope from t; to the
point p; 41 + g; or to the point p; 4+ g;j41 is larger and the corresponding point is
chosen as the next point t,41. Here is the procedure in algorithmic notation:

JOINING(p1, ..., Pr,q1,---,qs) F# Output is the sequence t1,...,trys—1.
=17 =1; ti=p1 4

whilei+j <r+s—1do

begin # The next run through the loop will define ¢;;.
if i = r then j := j + 1; goto (¥*)
if j = s then i := i+ 1; goto (*)
# Now the test whether A; > A;-:
if inc(p; + ¢;, pi+1 + ;) = inc(p; + ¢;, pi + ¢j+1)
then i :==i+1else j:=j+1;
(*) tivj—1 :=pi + q;.

end;

Theorem 2. Every point in {p1,...,pr} + {q1,...,qs} is upper-dominated by
{t1,...,tr4+s—1}. The running time of the algorithm is O(r + s).

Proof: The statement on the running time is obvious. For the proof of the upper-
domination, let us first note a few trivial properties of the t-sequence:
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Dt =p1+q and trys 1 =pr 4 gs.
IT) If ¢; = pr + qe, then either t;41 = pr+1 + qe or tit1 = pr + Got1-
IIT) The ¢-sequence is concave.

We claim that for every 1 < ¢ < 7 and 1 < j < s, the point p; + g; is upper-
dominated by {t1,...,tr+s—1}. To show this, choose t; = p; +¢; in such a way
that £ is the smallest index where i = i or j' = j. Le., t; is the first point in
the sequence which is of the form p; + ¢... or p... + ¢;. W.l.o.g., we can assume
that t¢ = p; + ¢; , where (due to property II)), j' < j. Consider the sequence of
points

Sji=te=pi+qi, Sj+1:=Di+ g +1,-.., Sj:i=Dpi+g;.
The sequence of differences (s; +1—58; ,...,8;—8j-1) = (¢ +1—Gj ;- --,q;—¢j—1)
is a subsequence of tyy1 — tg, ..., tr4rs—1 — trys—2: This is due to properties I)
and II) and the fact that t, = p; + ¢; -
Thus, we can apply Lemma 3 to obtain that the points s; ,...,s; are upper-
dominated by {t¢s,...,t,+s—1} and thus upper-dominated by {t1,...,tr4s-1}-
Since s; = p; + gj, the claim follows. O

It should also be clear that an analogous joining operation for lower-domination
and convex sequences can be defined and that an analogous algorithm for im-
plementing this joining operation exists.

5 The Algorithm for Solving the Generalized Maximum
Subsequence Problem

The basic idea of our algorithm is the following: There are ©(n?) intervals of the
form [i, 5] with ¢ < j.

Each of them can be mapped to a point p;; := (£(i,j),sum(i,5)) in R%
For the divide-and-conquer step that we use, it is important to realize that
Dij = Pik + Di+1,; for every k with ¢ <k <j—1.

Let M :={p;; | 1 <i<j<n} be the set of all these points. The generalized
maximum subsequence problem asks for the maximum of f(m) where m € M.

Since f is a quasiconvex function, it assumes its maximum value on M on a
point in the convex hull of M. Since |M| = 2(n?) is possible, it is prohibitive to
compute M first and then compute the convex hull of M by a standard approach.

Our algorithm (in its current form) does not explicitly construct the convex
hull of M, but it evaluates f on a subset of M which is a superset of the convex
hull of M. Thus, it finds a point where f assumes its maximum value. We obtain
an overall running time of O(nlogn).

Note that with the help of extra merge steps, one could also use our algorithm
for computing the convex hull of M in time O(nlogn). Although |M| = 2(n?)
is possible, this does not contradict the known lower bound for convex hull
algorithms as the set M is given implicitly.

Before we describe our algorithm, let us state another two simple properties
of upper- and lower-domination:
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Lemma 4

i) If a is upper-dominated by A and b is upper-dominated by B, then a + b is
upper-dominated by A+ B.

ii) If p is upper-dominated by A and lower-dominated by B, then p is a convex
linear combination of AU B.

The proof of i) is an easy exercise which uses that a point a which is a convex
linear combination of A and a point b which is a convex linear combination of
B satisfy that a + b is a convex linear combination of A + B.

The proof of ii) uses the fact that p,, is a convex linear combination of A,
Prelow 1S a convex linear combination of B and that p is a point on the line
between p,;, and ppelow-

Our algorithm uses a divide-and-conquer approach. If the array length n is equal
to 1, it is easy to compute the maximum.

For n > 1, we divide the array into two halves of lengths |n/2] and [n/2]
each, then solve the problem recursively in both halves. These two recursive
calls take care of all intervals that are completely contained in the left half of
the array and those that are completely contained in the right half of the array.
Let OPTiest be the maximal function value in the left half and OPTyigne be the
maximal function value in the right half.

It remains to compute OPTcrossing, the maximal function value of intervals
that contain at least one element from the first half and at least one element
from the second half. The final result is then the maximum of those three values,
i.e., max{OPTleft, OPTrighta OPTcrossing}~

Computing OPT¢ossing is the part where the joining procedure from Section 4
comes into play.

Figure 1 on the next page provides the algorithm ALGO(i, j) in algorithmic
notation. In order to avoid notational mess caused by rounding, it is assumed in
the description that the length of the input array is a power of two.

Theorem 3. ALGO(1,n) solves the generalized mazimum subsequence problem
in time O(nlogn).

Proof: By induction on the length of the array. The induction base is trivial.
In the induction step, we know that OPT)es yields the maximal f-value for all
intervals that lie completely in the subarray a;, ..., amiddie and that OPTyignt
yields the maximal f-value for all intervals that lie completely in the subarray
Gmiddle+1; - - -, 6. We call an interval crossing if it starts in the first half and ends
in the second half. The set of points that crossing intervals are mapped to, is
given by

M :={(¢(g,h),sum(g, h)) | i < g < middle and middle + 1 < h < j}.

By definition, we have OPT¢yossing = max{f(m) | m € M}. Since the algo-
rithm computes max{f(m) | m € T} in its last three lines, it remains to show
that

max{f(m) | m € T} = max{f(m) | m € M}.
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ALGO(%,7) # find the maximal value of f on the subarray ai,...,a;
begin
if i = j then return f(1,a;); # Trivial case. Length is 1 and sum is a;.
middle := (j +4—1)/2;
length := middle — ¢ + 1; # Length of a half.
OPTiete := ALGO(z, middle);
OPTyight := ALGO(middle + 1, 5);

# Now treat the crossing intervals. First treat the left half.
b1 := (1, amidate); for k = 2 to length, set by, = bi—1 + (1, Amiddle—k+1)-

# Thus, br = (k,sum(middle — k + 1, middle)),

# i.e., the first coordinate of by is k and its

# second coordinate is the sum of the interval that ends
# with array index middle and has length k.

# Now the right half.

In a similar fashion, compute bj, = (k,sum(middle + 1, middle + k)),
for all Kk =1,...,length.

# Le., the second coordinate of b}, is the sum of the interval that

# begins with array index middle + 1 and has length k.

™)
Compute the upper convex hull pi,...,p, of the points b1, ..., biength-
Compute the upper convex hull q1,...,gs of the points by, ..., bleygmn-
Join the two (concave) sequences pi,...,pr and qi, ..., gs, using
the joining algorithm from Section 4.
The joining algorithm outputs a sequence ¢1,...,tr4s—1.
**)
Repeat steps (*) to (**), with the lower instead of the upper convex hull and
the analogous joining algorithm. Call the output sequence ¢1,..., ¢, s —1-

Set T :={t1,...,trys—11 U {tll, o ,tlr +s 1}
Evaluate f on all points in T" and set OPTcrossing := max{f(z) | z € T}.
return max{OPTier;, OPTright, OPTcrossing }

end

Fig. 1. The algorithm for the generalized maximum subsequence problem

We first show that “<” holds by showing that T C M:

Each crossing interval can be divided into two intervals, the first of which ends
with position middle and the second of which starts with position middle + 1.
Hence, it is clear that M is exactly the set {b1,...,biengtn} + {01, . .-, b{ength}.

The points p1, ..., p, are elements from {b1, ..., biengtn }, the points gi, ..., gs
are elements from {0}, ..., b, }» thus {t1,...,t45—1} € M. In an analogous
fashion, {t|,...,t,. ., _;} € M can be shown. It follows that 7' C M.

We now show that “>” holds. Consider a point m from M, i.e., a point of the
form m = b, + b/, for some v and wv.

Assume that b, + b}, is upper-dominated by T" and lower-dominated by 7'. We
will show in a moment that this does indeed hold.
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From Lemma 4, we then obtain that b, 4 0] is a convex linear combination of
T and by the property of quasiconvex functions mentioned before Definition 2,
it follows that f(m) = f(b, + b)) < max{f(x) |z € T}.

We now show that b, + b/ is upper-dominated by T: {p1,...,p,} is an up-
per convex hull for by, ..., biengtn, i-€., by is upper-dominated by {p1,...,pr}.
Likewise, b!, is upper-dominated by {q1,...,qs}-

By Lemma 4, b, + b/, is upper-dominated by {p1,...,pr} +{q1,...,¢s}. By
Theorem 2, every point in {p1,...,pr} +{q1,...,¢s} is upper-dominated by the
computed set {t1,...,t,45—1}. By “transitivity”, every point in b, + b} is thus
upper-dominated by {t1,...,tr4s-1}-

In a similar fashion, one can show that every b, + b/ is lower-dominated by
{th,.. . t. s _1}. Thus, every b, + b/, is upper-dominated and lower-dominated
by T, and we are done.

Now for the running time. In the algorithm, we compute the lower and upper
convex hulls of the points b1, ..., biengtn and b7, ..., b{ength. This can be achieved
in linear time O(n), since the z-coordinates of the sequences are already in sorted
order.

Define V(n) as the time our algorithm takes on inputs of length n. We then
have the recursive inequality

V(n) <V(In/2]) +V([n/2]) +c-n,

for some constant ¢ > 0. The first two terms stem from the recursive calls, the
term c¢ - n estimates the time spent in computing the upper and lower hulls,
joining the hulls and evaluating f on the candidate set. Here, we use the fact
that the candidate set contains at most n points. It is well-known that the above
inequality can be estimated by V(n) = O(nlogn). O

6 Open Problems

It is a natural question whether the generalized maximum subsequence problem
can also be solved in linear time O(n) or whether it is so general that one can
show a lower bound of {2(nlogn) for at least one quasiconvex function f.
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Abstract. Given a graph with edges colored RED and BLUE, we wish
to sample and approximately count the number of perfect matchings
with exactly k& RED edges. We study a Markov chain on the space of all
matchings of a graph that favors matchings with ¥ RED edges. We show
that it is rapidly mixing using non-traditional canonical paths that can
backtrack, based on an algorithm for a simple combinatorial problem.
We show that this chain can be used to sample dimer configurations on
a 2-dimensional toroidal region with £ RED edges.

1 Introduction

Counting the number of matchings in a graph is a well-studied problem in com-
binatorics and computer science. Counting the number of perfect matchings in
a bipartite graph is equivalent to computing the permanent of a matrix with
0,1 entries. This problem is also of interest in statistical physics in the context
of understanding the thermodynamic properties of a dimer system [3,4]. Moti-
vated by this application, Kastelyn showed that for planar graphs the number
of perfect matchings can be computed exactly [9]. Recently Jerrum, Sinclair
and Vigoda [6] gave an fpras (fully polynomial approximation scheme) approxi-
mating the number of perfect matchings in any bipartite graph, which is based
on an fpaus (fully polynomial almost uniform sampler) for generating random
perfect matchings.

A natural generalization of the matching problem is when the edges of the
graph are colored RED or BLUE:

Problem: Given a graph G(V, E), a partition E = RU B, and k < |‘2/|, count
the number of perfect matchings in G with exactly k edges in R.

The decision version of this problem is to find a matching with exactly k¥ RED
edges. These problems have been studied in combinatorial optimization [12] as
well as statistical physics [2]. There are several open questions regarding both
the decision and the counting versions of this problem. For the decision version
of this problem, known as ezact matchings, Mulmuley, Vazirani and Vazirani
[11] give a randomized algorithm for general graphs. A deterministic algorithm
is known only when the graph is complete or complete bipartite [8, 14].
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A special case of the counting problem, of interest in statistical physics, is
where G is the y/n x /n 2-dimensional lattice and the horizontal edges are
RED, while the vertical edges are BLUE. We wish to count the number of dimer
coverings with exactly k horizontal edges, as well as solve the sampling problem.
Fisher [2] gave a closed form solution for the limiting distribution (as the size
of the lattice tends to infinity) of configurations in terms of the activities A and
w of horizontal and vertical dimers, where the weight of a configuration with k
horizontal edges and k' vertical edges is given by A*u* . To our knowledge, ours
is the first work to address the sampling/counting problem for general graphs.

We make progress on this problem for general graphs and solve the problem
in some natural special cases. Our results for general graphs are best viewed in
terms of the partition function for matchings. Throughout, let M denote the set
of all matchings of an input graph G, and P denote the set of perfect matchings.
The standard partition function on matchings

ZA) = Y A

MeM

can be approximated for all A by the algorithm of Jerrum and Sinclair [5]. We
show that we can approximate a modified partition function which puts most
weight on (k, £)-matchings, i.e. matchings of size £ with exactly k¥ RED edges.

Theorem 1. For any G(V, E) with a partition of the edges E = RUB, activities
A <1, any £ < |V|/2 and k < ¢, there is an fpras for estimating the following
partition function over weighted matchings:

ZisOwp) = 3 NIMOR vl (1)
MeM

An n-vertex graph is dense if it has minimum degree dy,;, > n/2. A bipartite
graph with each partition of size n is dense if it has dyuim > n/4.

Theorem 2. For any dense graph G(V, E), activity A < 1, and k < |V'|/2, there
s an fpras for estimating the following partition function:

Zi(\) = Y NIPOEIZH, (2)

Pep

We approximate the partition functions within a factor (1+¢) w.p. > 1 —6. The
running time in each case is polynomial in 1/X, 1/, 1/e,10g(1/6) and the size of
the graph.

We demonstrate the significance of these results on the 2-dimensional torus
Lny X Lo, for even mi, ma, taking the horizontal edges to be RED and the
vertical edges to be BLUE. In particular, we present a polynomial time algorithm
for approximately sampling and counting the set of perfect matchings (or dimer
coverings) with exactly k RED edges. We note that there are algorithms to
exactly count the number of perfect matchings on the 2-d torus [9] which can
be extended to bichromatic matchings. However, our proof can be extended to
the monomer-dimer model in which we approximately sample and count (k, £)-
matchings of the 2-d torus, giving the first solution to this problem.
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Theorem 3. Given any torus Zp,, X Zm, with m; and mo even, any non-
negative integer k < myms/2 and any £ > k, there is an fpaus for generating a
random (k,{)-matching of the torus and an fpras for estimating the number of
such matchings that run in time polynomial in m1 and ms.

Theorem 1 uses a Markov chain defined on the set of all matchings of the graph
which puts most weight on (k, £)-matchings. We use the canonical paths technique
to bound the convergence rate of the Markov chain. Here, these paths are non-
trivial to define, in contrast to the usual matching problem where the analysis
of the path congestion was the harder task.

The combinatorial fact that enables us to define our paths is as follows. Con-
sider a graph with edges colored RED and BLUE. For any k and for all perfect
matchings P, P’ with exactly k¥ RED edges, there is a polynomial length path
between P and P’ along almost perfect matchings, with successive matchings
differing by only a few edges, such that each contains close to k RED edges. We
can reduce the problem of finding such a path to a combinatorial problem about
moving two points along a two-dimensional landscape in a co-ordinated manner
so that the sum of their heights stays constant. The canonical path from P to
P’ defined in [5] starts at the matching P and alternately deletes an edge of
P’ and adds an edge of P’ along an alternating cycle. An interesting aspect of
our canonical paths is that they may backtrack along portions of the alternating
cycle, for instance we might delete edges of P’ that were previously added.

Our second technical contribution is proving combinatorial inequalities that
allow us to approximate the number of (k, ¢)-matchings on the torus. Kenyon,
Randall and Sinclair [10] showed that the number of near perfect matchings in
the d-dimensional torus is polynomially related to the number of perfect match-
ings, thereby yielding polynomial time algorithms for approximately counting
and uniformly sampling perfect matchings. In this paper, we generalize their re-
sult to show that, on the 2-d torus, this relationship holds even when we restrict
to sets of matchings with exactly & RED edges. Our result builds on ideas of
Temperley [13] and Burton and Pemantle [1] for constructing augmenting paths
where every horizontal and vertical segment has even length.

2 Approximately Counting Bichromatic Matchings

We outline the proof of Theorem 1 in this section; similar ideas are used to
prove Theorem 2. By a standard reduction, approximating the partition function
Zy0(A, 1) can be reduced to approximate sampling [7], so we concentrate on the
sampling problem and defer the details of the fpras to the full version.

To solve the sampling problem we define a Markov chain on the set of match-
ings M which puts most weight on (k, ¢)-matchings. The same chain was used
by Jerrum and Sinclair [5], with the transition probabilities defined so that the
stationary distribution was uniform over all matchings.

The Markov Chain 7. The state space is M, the set of all matchings of G.
Let £ < |V|/2,0<k <?and 0< A\ pu < 1. Define the weight of a matching M,
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as w(M) = ME=IMORI =M The transitions M; — M, of T are defined as
follows.
From a matching M, choose a random edge e = (u,v) € E.

1) If e € My set M' = M\ {e}.

2) If M € N(u,v), (i.e. u,v are unmatched), set M’ = M; U {e}.

3) If for z # v, My € N(u,2) and (w,v) € My, set M’ = (M;U{e})\ (w,v). Set
M1 = M’ with probability ;min(l,w(M’)/w(M)), else set Myy1 = M;.

It is straightforward to verify that the Markov chain is connected, aperiodic
and reversible and has stationary distribution proportional to w(M).

Intuition for the Canonical Paths

In the canonical path method for bounding the mixing time of a Markov chain,
for each pair of matchings I, F', we define a path from I to F' along transitions
of the chain. We need to bound the congestion of these paths through every
transition to show that the Markov chain converges quickly.

The approach of Jerrum and Sinclair [5] to obtain this bound is to focus on a
specific transition T'. For each pair (I, F') whose path uses the transition 7', we
define an “encoding” E, which is also a matching; T' and E let us recover (I, F'),
so E can be viewed as an injective map. Then the number of (I, F') pairs whose
path uses 7' is at most the number of matchings, which is |2|. This is sufficient
to bound the congestion for unweighted matchings. For weighted matchings, we
also need to show that w(l)w(F) < w(T)w(E)poly(n). The encoding is defined
as E = (TUF)\ (MUM') where T = M — M’, so E can be viewed as the
complementary matching of T with respect to (I, F).

Suppose that ¢ = |V|/2 so that we favor perfect matchings. If I and F are
perfect matchings with & RED edges, they have maximum weight. The weight
of transitions and encodings along the canonical path from I to F' must be
comparable to the weight of I and F'. Hence, both T and F need to contain
close to k RED edges, and simultaneously be close to a perfect matching (i.e.,
have only a constant number of unmatched vertices or “holes”).

Consider the perfect matchings I, F', and suppose I @ F' (the symmetric dif-
ference of I and F) consists of a single alternating cycle. The transitions of the
chain allow us to easily “unwind” this alternating cycle: remove one of the edges
of I on the cycle, then perform a series of shifts (moves of type 3), and then add
the final edge of the cycle of F.

To see the difficulty, suppose, as in Figure 1, this cycle alternates RED on
I and BLUE on F on one half of the cycle, and BLUE on I and RED on F' on

W
— e S - - - — I
W W —W— W
W)
mmm RBIUE,] — RED, /
WWW  BLUE.F ~  oenn RED. F Vo Wo

Fig. 1. An alternating cycle in I & F Fig. 2. Landscape for cycle
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the other. Then, no matter where we start the unwinding there will be some
intermediate matching with far more (or far less) RED edges than the intended
k. Notice that in this example there are two vertices vg, wg so that if we unwind
from these two points simultaneously then we can ensure that the number of
RED edges differs from & by at most a constant. It turns out that we can always
choose two such positions to begin the unwinding of the cycle. To define the
unwinding, it is helpful to look at the alternating cycle together with a function
representing the number of RED edges gained along the cycle.

However, the protocol for unwinding is not straightforward and we may need
need to backtrack (switch edges back from F' to I) from one position to continue
unwinding at the other. Hence, it is not obvious whether our paths can always
make progress. Additionally, the picture is more complicated when I @ F' consists
of multiple cycles and paths with varying lengths and numbers of RED edges.
We focus on formalizing the problem of unwinding a single alternating cycle and
defer the general case to the full version.

Paired Mountain Climbing

Consider the case that I & F' is a single alternating cycle and I and F' both
contain exactly & RED edges. We would like to transform the cycle from [ to F
so that all the intermediate matchings have close to k¥ RED edges.

For every other vertex v on the alternating cycle, assign —1,0 or +1 to denote
the change in the number of RED edges. Thus, for e = (u,v) € I, = (v,w) € F,
f(v) = 1c er — leer, where 1 is the indicator function. Fix a start vertex on
the cycle, say vg, and a direction for unwinding the cycle. For every vertex vas41
on the cycle, let G(vgp41) = Zf:o f(v2i41), where vg — v3 — -+ — vy is the
alternating path from vg to vs. The function G defines a “landscape”, as shown
in Figure 2.

It can be shown that if |[I N R| = |F N R| = k, then there always exists a
vertex vg so that G(vg) = 0, G(vg) > 0 for all £, and 0 again at the last vertex.
We choose a companion start vertex for vg which is a (global) maximum, denote
this vertex as wg. Let S = G(vg) + G(wp). We break the alternating cycle into a
pair of alternating paths, P = {vg, v1,...,v,} and Q = {wo, ..., w,, }, where v,
is the vertex before wg and w,, is the vertex before vy.

We now start unwinding the cycle at the vertices vy and wg. If unwinding
from one of the positions adds a RED edge, then from the other position we
need to remove a RED edge by moving forward or backwards as necessary. Thus,
if at some intermediate step we are at vertices v; and w;, we need that (G(v;) —
G(v)) + (G(w;) — G(wp)) =0, i.e. G(v;) + G(wj) = S. The mountain climbing
problem is to determine a (short) trajectory from (vg,wg) to (v, wy,) so that
at each intermediate step (v;, w;) we have G(v;) + G(w;) = S. We may need to
move backwards on one path in order to move forward on the other path, and
this corresponds to rewinding the cycle.

We defer the details of the canonical paths for general I, F' to the full version
and focus instead on the algorithm for the mountain climbing problem which
has all the ideas necessary to solve the problem in general.
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The Algorithm for Mountain Climbing

A landscape is a function P : [n] — Z>o such that for 1 < i <n—1, |[P(i+
1) — P(i)| = 1 (see Figure 3). For n,m > 1, given landscapes P : [n] — Z>( and
Q =:[m] — Z>o, we say P and @ are S-matched if there is an integer S s.t.

) P+ Qm) = P)+ Q) =S |
i) P(1) = min{P()}, P(n) = maxi{P()}, Q(1) = max;{Q(j)}, Q(m) =
min; {Q(5)}-
A traversal of S-matched landscapes P, Q is a sequence (i1, j1),- - , (i¢, je), s.t.
1) ilzlajlzlaif:najfzm
i) For 1 <k <l—1, [igy1 —ix| =1, [jrs1 — jxl = 1 and P(ix) + Q(jk) = S.
Lemma 1. Let P and Q be S-matched landscapes on [n] and [m] respectively.

Then, there exists a traversal of P and Q of length at most O(nm) and it can
be found in time O(nm).

Proof. The proof is by induction on n + m. Let S = min + max, where f; =
gm = min and f,, = g1 = max. Assume that the min < maz, otherwise, the
problem is trivial. Also, we use “(1,m,1,m)” as shorthand for the problem of
determining a traversal for P, ). We start by showing the inductive step and
conclude with the base cases.

Case I: P has a maximum or minimum at ¢ where 1 < i < n.

P 0
S

S-h

0

h 1 j om

Fig. 3. Case la

Case Ia: Suppose that the first such point 7 is a maximum (Figure 3). Let h be
the lowest value taken by P from ¢ to n. Let j be the first point between ¢ and n
such that P(j) = h. Since both ¢ and n are maxima of P, i < j < n. Let j’ be the
first point going from m to 1 (the direction here is important) such that Q(j) =
S—P(j). Note that it may be that 57/ = 1, but since m is a minimum of @, j/ < m.
To find a traversal of P,Q, it is enough to concatenate the traversals for the
following subproblems, in the given order: (1,i,1,m), (i,7,m,5"), (j,n,j",m).
The functions on the shorter intervals take their values from P and Q. It can be
verified that in each case, we obtain a problem of finding a traversal for smaller
S-matched landscapes.

Case Ib: The first such point ¢ is a minimum (Figure 4). Let i be the maximum
value taken by P from 1 to i. Let j be the first point between 1 and ¢ such that
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Fig. 4. Case Ib

P(j) = h. Since both 1 and 4 are minima of P, 1 < j < i. Let j/ be the first
point after 1 where Q(j’) = S — h. Since j is not a minimum of P, 7/ > 1. In
this case, concatenate the traversals for the following subproblems in the given
order to obtain a traversal of P,Q: (1,4,1,75"), (4,4,5',1), (i,n,1,m).

Case II: (Q has a maximum or minimum at ¢« where 1 < i < m. This case follows
by symmetry from Case I.

Case III: The last case is when there is a unique maximum and minimum
on P and Q. We concatenate the traversals for the subproblems (1,2, 1,2) and
(2,7n,2,m), both of which are smaller problems than (1,n,1,m). It can be verified
that in both cases we are reduced to the problem of finding a traversal for S-
matched landscapes. Note that to show this, it is crucial to use the fact that P
and @ have a unique minimum and maximum.

For the base case, let n = 2. Then, m = 2 since we may assume the paths
have unique maximum and minimum, otherwise we go by induction. Since the
paths are S-matched, the only possibility (upto a reversal of direction) is that
P is a landscape going 'up’, and @ is a landscape going ’down’. The traversal is
the obvious one.

Finally, we show by induction that there is a traversal of P,Q of length at
most O(nm) and it can be found in time O(nm). If n = 2, the traversal is
obvious and is of length O(m). If n,m > 2, in each of the three cases above, the
traversal restricted to P is obtained by traversing edge-disjoint ’sublandscapes’.
Hence, the length of the traversal is at most O(nm) by induction. The proof
above gives an O(nm) algorithm. O

Our solution to the mountain climbing problem allows us to define the canonical
paths for matchings I, F'. The canonical paths are defined so that every pair of
successive matchings along the path is a transition of the Markov chain and the
size of an intermediate matching lies between the sizes of I and F' and consists
of [Ir — 5, Fr + 1] RED edges, where I = |[INR|,Fr = |[F N R| and Ig < Fpg.
Essentially, we think of the concatenation of all the paths and cycles of I & F
as one long landscape, and apply Lemma 1 without ever unwinding more than
constantly many cycles or paths at any time. By the previous argument, the
paths are at most of polynomial length. With standard machinery it is now
straightforward to show that the Markov chain mixes in polynomial time. The
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details can be found in the full version. This completes the outline of the proof
of Theorem 1.

3 Bichromatic Matchings on the Torus

Let Gy, m, be the torus Z,, X Z,,, with horizontal edges colored RED and ver-
tical edges BLUE. It is known that the total number of near perfect matchings is
polynomially related to the number of perfect matchings [10]. We first generalize
this result to relate near-perfect matchings restricted to & RED edges and perfect
matchings on close to £k RED edges. Our goal will be to show that the number
of matchings with k£ red edges does not vary much as we change the size of the
matching. We will show this by defining maps from one set of matchings to the
other that are invertible with a small amount of additional information. This will
allow us to define an fpras for counting the number of (k, ¢)-matchings of the
torus. Let NV} be the set of (k,mims/2 —i)-matchings of Gy, m,. Let Py = NP.
Let Mg (u,v) be the set of (k,mima/2 — 1) matchings with holes at u and v.
Let mq, mg be even. Let V) (white vertices) and V; (black vertices) be the even
and odd sublattices of Gy, m,. Further refining these sets, let Voo be the set of
vertices both of whose co-ordinates are even: the sets V1, V1o and V1, are defined
analogously (Figure 5) . Note that if u, v are the holes of any near-perfect match-
ing of G, ,m,, then one of them is white while the other is black. Also, if mq, ms
are even, the number of RED edges in any perfect matching of Gy, m, is even.

Theorem 4. Let my,mg € Z be even and N = mime/2. For 0 < i< N —1
and 1 < k < N —1—1, there is a map f; : Ni™' — NfUN}, such that no
matching of N UN]_, is mapped to by more than O(N?®) matchings of N L.

Proof. We first prove the theorem for i = 0. Let N € Nj(u,v) and assume wlog
that u = (uy, ug) is in Vpo. Define an alternating path LY in N as follows: start at
2o = u, and follow the unmatched RED edge to the vertex z; = (u1,u2+1). Now,
iteratively, if at an odd vertex z9;_1, follow the unique matched edge to za; (see
figure 6). From each even vertex z,; along the path, take the unmatched edge in
the same direction as the edge (z2;—1, 22;), so each segment (in the horizontal or
vertical direction) of the path after the first step has even length. Continue in

0o 1 0 1 0 1 o e e O e O @ O ,
0 [C] e [O] @ [O] o o n—e—o—e—ouﬁ-]
/I e O e O e O ° ° e O e O
0 O] @ [O] @ [0 e q o} ]i O @ O e
I @ 0O @ O ® O L e O o e'c e o
0 O] @ [O] @ [0 e MD G O e o e
/I e O e O e O O € O e O e O e O

Fig. 5. The sublattice Vpo Fig. 6. Alternating paths L7, L%
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this way until reaching v or revisiting a vertex, thus forming a cycle. The vertex
set is finite, so one of these will occur. Define an alternating path L% similarly,
except, start with the edge from u to (u1,u2 — 1). Note that every black vertex
on these paths is in Vj;, while the white vertices along the horizontal segments
are in Vjyo, and those on the vertical segments are in V11. Finally, define the paths

1, K% similarly, so that the first edges are to the vertices (u;=£1,usz). In this
case, the black vertices on the path are in Vi, the white vertices on the vertical
segments are in Vpo and those on the horizontal segments are in V7.

Let v = (v1,v2) € V1. We use these four paths to define an alternating path
from u to v where the number of RED unmatched edges on the path is one more
than the number of RED matched edges. Inverting along this path gives a perfect
matching in Py41. Given a perfect matching obtained in this way, we will be able
to recover the near perfect matching with polynomial amount of information. We
define the alternating path from u to v, by considering these cases.

¢} ulel G— e}
° °

: -

° °

: -

° °

o o

Fig. 7. L} meets v Fig. 8. The path K7 meets Cy

1. If one of the paths LY or LY reaches the vertex v before it cycles (Figure 7),
then this is the alternating path. Say the path L} reaches v. By construction,
the number of unmatched RED edges along L} is exactly one more than the
number of matched RED edges, hence inverting along the path gives P € Py1.
To invert the map, given P € Pyy1, start at v, if v is matched by a BLUE (RED)
edge to the vertex x, the next unmatched edge along the path is taken to be the
other BLUE (RED) edge incident with z. Continue in this way until u is reached.

2. If both paths L}, LY cycle without reaching v, we consider the following cases
based on whether these cycles are contractible.

(a) At least one of the paths, say L} , ends with a contractible cycle C; on the
surface of the torus. It is easy to show that the interior of C; contains an odd
number of vertices, and the number of black vertices exceeds the white vertices
by 1. Hence, the interior of C; must contain an odd number of unmatched ver-
tices and the unmatched vertex in the interior cannot be white: in particular, it
cannot be w itself. So, v must lie in the interior of C;. Consider the path K7} (see
Figure 8). Since KV cannot cycle in the interior of C or end at an unmatched ver-
tex, it must meet C'1. By construction, the white vertices of K7 are in V1, hence
the path meets the cycle on a vertical segment, say at the vertex w. The alternat-
ing path from u to v is defined by taking the subpath of L} from u to w, and the
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subpath of K7 from v to w. The number of unmatched RED edges in the alter-
nating path is one more than the number of matched RED edges, and so inverting
along the path gives P € Py as required. Moreover, given P, and the edge in-
cident to w in the original matching, the alternating path can be reconstructed.

(b) Both paths LY, L¥ end in non-contractible cycles on the surface of the torus.
There are two possibilities, and we give a sketch of the arguments.

i) The cycles C; and Cy are disjoint. This implies that the paths LY} and LY
are disjoint except at u. When a torus is cut along an incontractible simple
cycle, we are left with a cylinder. If we cut along the cycles C; and Cs, we
are left with 2 cylinders, one of which contains w and the paths L%, L. The
other cylinder can be shown to have an even number of vertices. Since the
union of the two paths LY, LY is odd, the cylinder containing the paths has
an odd number of vertices, and hence contains the vertex v. As before, K¢
must hit one of the paths L} or L since it cannot cycle on the cylinder.

i) The cycles Cy,Cy are not disjoint. In this case it can be shown that there
exists a contractible cycle on the surface of the torus which can be cut out
by starting at u along LY, and ending at u along LY (some edges may be
used twice, once from above and once from below). As before, the inte-
rior contains an odd number of vertices which must be matched with each
other, and hence must contain the vertex v. Since the cycle containing v is
contractible, the path K} must hit one of L}, LY.

In each case K7 hits the path from u on a vertical segment at a white vertex
in V11 Given a matching in Pxy1,u,v and the vertex at which the paths from
and v meet, we can invert the map as described before.

In the case that v € Vi, the same arguments can be made, except that we
consider the paths K7, K3, L7, Ls instead of LY}, LYy, K7, K3 respectively. The
difference is that the alternating paths constructed have one unmatched BLUE
edge more than the number of matched BLUE edges along the path, so inverting
edges with non-edges along the alternating path from w to v gives a matching
in P. This completes the proof for ¢ = 0.

In the case that i # 0, suppose that N € N,ﬁ“. Let u be the lexicographically
first unmatched white vertex of IV, and assume that u € Vyo. If one of LY, LY
meets a black unmatched vertex v, then switching edges along the path from u
to v gives a matching in Nli+1- If not, then both LY, LY cycle.

Suppose LY ends in a contractible cycle C. The interior of C'; contains an odd
number of vertices, including the vertices possibly on a segment of L} starting
at u. Hence, the interior contains an odd number of unmatched vertices. Since
black vertices outnumber white vertices by one, the number of black unmatched
vertices outnumber white unmatched vertices by one. In particular, the interior
contains at least one black unmatched vertex, call it v.

Consider the paths K7, K3. If either one reaches a white unmatched vertex in
the interior (including u), then switching edges along that path gives a match-
ing in A}. Otherwise, if either one hits LY, say at a vertex w, then we can
switch edges along L} from u to w, and then along K7 from v to w to obtain a
matching either in Nli+1 or N,z depending on whether v is in Vi1 or Vig. If the
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paths K}, K3 do not hit a white unmatched vertex or LY, they must cycle in
a contractible cycle in the interior. Consider one of the paths, say K7. Repeat
the same argument as before, except now we consider white vertices v’ in the
interior of the cycle, and consider the paths L% | LY . Depending on whether u’
is in Vpo or Vi; and the sublattice of v, alternating along the paths as before
gives a matching either in N, ,2 or N, ,z +1- We can repeat this argument until we
obtain an alternating path between a black and a white vertex, or, the interior
of some cycle created by a vertex contains only one unmatched vertex. Since the
single unmatched vertex cannot be the same as the vertex from which the cycle
was created, this case can be solved in the same manner as the case when i = 0.

The remaining case, when L}, L% end in incontractible cycles, is similar to
Case 2 above. O

Corollary 1. Let my, mg be even, N = myms/2. There is an algorithm to es-

timate the partition function Zy given in Equation (2) for every A <1 and k to
within (1 £¢) w.p. > 1—6 in time polynomial in N, X\, 1/ and log(1/6).

We can use similar arguments to relate the number of perfect matchings with &
or k 4+ 2 RED edges.

Theorem 5. Let m,n be even, N = mn/2. For every 0 < k < N — 2 cwven,
|Prral/p(N) < |Pr| < p(N)|Prta|, where p is a polynomial.

Proof. Tt suffices to show the upper bound for all k£ since the lower bound follows
by switching the colors.
We construct a map from Py to P2 as follows. Let P € Py,. Delete any verti-
cal edge (u,v). Since k < N — 2, there must be such an edge. Consider the paths
Y LY in P\ (u,v). By parity, neither can reach v, and hence they must cycle on
the surface of the torus. Since u is adjacent to v on the torus, neither path can
end in a contractible cycle containing v in the interior. Hence both L}, LY end in
incontractible cycles. By the arguments of Case 2 of the previous theorem, the
path L} must hit one of the paths LY, Ly at a white vertex w € Vi1, i.e., on a ver-
tical segment. Then, switching along the alternating path from v to v through w
as before, we gain two RED edges, giving a matching in Pg2. The mapping is in-
vertible given the vertex w and the vertices u, v, hence |Px| < O(N3)|Prya|. O

Using this Theorem and the estimator given by Corollary 1, we obtain an esti-
mator for the set of perfect matchings of the torus with exactly k& RED edges.
The proof follows from standard arguments.

Theorem 6. There is an algorithm to estimate |Py| to within 1 £ & for every
0 < e <1 with probability > 1 — 6 in time polynomial in N,1/e and log(1/6).

These results can be generalized to approximating the size of the set of (k,¢)-
matchings for any ¢. By Theorem 1, we can approximate the partition function
ZAM given in Equation (1) for every A\, u < 1 and 0 < k < £ < n. This estimator,
together with the relations among sets of restricted matchings of arbitrary size
(stated below) and the theorem of Kenyon, Randall and Sinclair [10] that the
sizes of the sets N and A**! are polynomially related, gives an approximate
counter for sets of restricted matchings of any size.
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Theorem 7. Let my, mg be even, N = mymsy/2. For every 1 < 4
and 0 < k < N — i — 1, then for some polynomial p, |N,§+1|/p(N)
P(N) N4l

N —

< L,
< V| <

The proof follows by constructing alternating paths as in Theorem 4.

Corollary 2. There is an algorithm to estimate |N}| to within 1+ for every
0 < e < 1 with probability > 1 — 6 in time polynomial in N,1/e and log(1/6).

Acknowledgements. Thanks to a referee for suggesting a simplification of the
statement of Lemma 1.
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Abstract. In this paper we consider the following question: how many
vertices of the discrete torus must be deleted so that no topologically
nontrivial cycles remain?

We look at two different edge structures for the discrete torus. For
(an)h where two vertices in Z,, are connected if their ¢; distance is 1,
we show a nontrivial upper bound of d'°%2G3/2 =1 x~ ¢%6m?=1 on the
number of vertices that must be deleted. For (Z%,)o, where two vertices
are connected if their o distance is 1, Saks, Samorodnitsky and Zosin [§]
already gave a nearly tight lower bound of d(m — 1)*~! using arguments
involving linear algebra. We give a more elementary proof which improves
the bound to m® — (m — 1)¢, which is precisely tight.

1 Introduction

In this paper we consider a “vertex multicut” problem on discrete torus graphs.
Let us begin by defining the two graphs of interest to us.

Definition 1. The /¢y discrete torus of width m and dimension d, denoted
(Z2))1, is the undirected graph on vertez set Z<, in which two vertices are con-
nected if their {1 distance is 1.

The (o discrete torus of width m and dimension d, denoted (Z%))o, is the
undirected graph on verter set Z%, in which two vertices are connected if their
{s distance is 1.

We will also write (Z%); and (Z%)s for the similarly defined infinite graphs
on vertex set 72,

In each of these tori we are interested in the set of cycles that “wrap around”
the torus in at least one dimension. Let us define this notion formally.

Definition 2. A cyclein (Z4)); (respectively, (Z2,) oo ) is said to be noncontractible
if, when regarded as a loop inside the solid torus, it is homotopically nontrivial.

Main Problem. In this paper we want to study the minimal number of vertices
in either discrete torus that must be deleted so that every noncontractible cycle
is broken. In other words, we consider the problem of finding the set of vertices
of minimal size that intersects every noncontractible cycle in (Z%,); or (Z%)s.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 202-210, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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We denote the minimal number for (ZZ,); by S1(m, d) and the minimal number
for (Z2))oo by Seo(m, d).

We note that there are some obvious bounds that hold for both Sy (m,d) and
Soo(m,d). A lower bound of m?9~1 follows by considering, in either graph, the
m?~! noncontractible cycles which are parallel to the first axis. These cycles
are vertex-disjoint, so at least one vertex must be deleted from each of them.
An obvious upper bound of m? — (m — 1)? is obtained by deleting the union
of d “walls”, one in each dimension; by a “wall” we mean a set of the form
{z:z; =a} for some i € [d], a € Zy,.

1.1 History and Motivation

The problem discussed in this paper is a natural one in the context of the com-
binatorics of the discrete torus (see e.g. [2,1,3]), but it has other motivations
as well.

Discrete Foams. Our problem is related to the isoperimetry of periodic tilings
of space. The connection is apparent from the following formulation of our prob-
lem. We say that a finite set S in Z? generates a discrete foam for (Z4), with
periodicity m - Z¢ if the set

Zd \ {S + U}vem-Zd

contains no paths in (Z%); of infinite length. (We can give a similar definition for
(Z%)«.) Tt can easily be verified that our problem is identical to that of finding
the minimal size of a set generating a discrete foam with periodicity m - Z¢.

This problem can be essentially regarded as that of finding a tiling of Z¢ with
periodicity m-Z? that has minimal vertex boundary; this is a discrete version of
the problem of finding a (continuous) closed foam in R? with periodicity Z? and
minimal surface area. Although there has been a lot of work on soap bubble and
foam problems in R? and even on the flat torus — see e.g. [7] — very little is
known. We hope that discrete versions of the problem may prove to be a useful
source for new observations regarding foams.

Directed Minimum Multicut. Another area in which our problem arises is in
theoretical computer science, as was noted in a paper of Saks, Samorodnitsky
and Zosin [8]. This paper studied the integrality gap of the natural linear pro-
gramming formulation of the “directed minimum multicut” problem. This is the
problem in which one is given a directed graph and d “source-sink” pairs of ver-
tices (s1,%1),-..,(Sd,td), and one is required to delete as few edges as possible so
that there is no longer any s;-to-t; path. To obtain their integrality gap bound,
Saks et al. translated the directed minimum multicut problem on a certain graph
to an undirected vertex-deletion problem. Specifically, they looked at the graph
([m]?)oe — i.e., the d-dimensional, width m grid with £, edges — and studied
the following quantity:

Definition 3. S/_(m,d) is the minimum number of vertices in ([m]%)o that
need to be deleted to disconnect all d pairs of opposing walls.
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Clearly S’_(m,d) > So(m,d). Saks et al. proved a lower bound of d(m—1)4=1 on
S’ (m,d), but their proof immediately gives the same lower bound for S (m, d).
This result yielded an integrality gap arbitrarily close to d (which is the best
possible) for the directed multicut problem. In this paper we improve the lower
bound for S (m,d) (and thus for S’_(m,d)) to m% — (m — 1), which exactly
matches the upper bound mentioned earlier.

Parallel Repetition on Odd Cycles. Our original motivation came from a problem
in the study of parallel repetition of two-prover one-round games [4, 6], and in
particular a question due to Feige [5] about how the max-cut problem on odd
cycles behaves under parallel repetition.

The details of this problem are beyond the scope of this paper; suffice it to
say that it can be reduced to a problem very similar to that of eliminating cycles
in (Z%) (we give more details in Section 3). However, it seems that solving
that problem requires a proof of a lower bound on S (m, d) that is “robust”, in
the sense that it should imply a nontrivial bound even under a certain relaxed
hypothesis. The lower bound of Saks et al. relies on a linear algebraic argument,
and this seems too fragile to give anything once hypotheses are relaxed. Our lower
bound, on the other hand, is proven using more elementary methods; hence it
seems to have more of a chance to be generalizable.

1.2 Our Results

We have two main results. Our first result is an improved upper bound on
Sl (m,d)

Theorem 1. S;(m,d) < d'°823/2)md-1,

As far as we know, no nontrivial upper bound on S7(m, d) was previously known.

Our second result is a lower bound on S (m,d) that precisely matches the
obvious upper bound already discussed. This result improves on the lower bound
of Saks, Samorodnitsky and Zosin [8] and eliminates their use of linear algebra.

Theorem 2. S, (m,d) > m?— (m—1)¢, and hence Soo(m,d) = m? — (m —1)4.

2 The Upper Bound on S;(m,d)

Our main goal in this section is to prove Theorem 1, showing an upper bound
for S1(m,d). Before doing this, we will motivate our bound by giving a tight
construction in two dimensions which has size about (3/2)m.

2.1 A Tight Bound for (Z2),

It is easy to see that the following set of size at most (3/2)m blocks all noncon-
tractible cycles in (Z2)1:

S={(z,z) v €L} U{(r,—2):0 <z <k/2}.
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Let us sketch a proof of this fact. It is well-known that in two dimensions, (Z2,)
is dual to (Z2,)1. The set S contains a cycle in (Z2,)s that winds once in the first
dimension and no times in the second dimension — call such a cycle a (1,0)-
cycle. This blocks all cycles in (Z2,); except those of type (c,0). But S also
contains a (0, 1)-cycle in (Z2,)wo, thus blocking all (¢, 0)-cycles in (Z2,)1, ¢ # 0.

If we count precisely, we see that S actually has size (3/2)m — 1 when m
is even and size (3/2)m — 1/2 when m is odd. We will now show these upper
bounds are optimal by showing that (3/2)m — 1 is a lower bound.

So suppose S C Z2, blocks all noncontractible cycles. To block all (1, 0)-cycles
S must contain some (a,b)-cycle, C, in (Z2,)s with b # 0. If either |a| or |b] is at
least 2 then C' contains at least 2m points. So we may assume that C' is of type
either (0,1) or (1,1). But now to block all cycles in (Z2,); that are parallel to C
(i.e., have the same type as C'), S must contain some other nontrivial cycle C’ in
(Z2,) o not parallel to C. Hence we can conclude without loss of generality that
one of the following three cases occurs in (Z2,)oo: (i) S has a (1,0)-cycle and a
(0,1)-cycle; (ii) S has a (1,0)-cycle and a (1, 1)-cycle; or, (iii) S has a (1, 1)-cycle
and a (1, —1)-cycle.

For case (i), let C be the (1,0)-cycle and C’ the (0, 1)-cycle. Suppose that
C' contains t steps with vertical displacement of 1. Then it must also contain
exactly ¢ steps with vertical displacement —1, because its type is (1,0). Thus
C has length at least max(m,2t). Also, C' is contained in the union of ¢ + 1
horizontal lines, so it follows that C’ must have at least m — t — 1 points not in
C, since it has type (0,1). Thus S has size at least max(m, 2t) +m —t — 1, which
is at least (3/2)m — 1, as claimed.

The argument for case (ii) is identical. For case (iii) things are even easier. In
this case let C be the (1,1)-cycle, and note that C travels up at least m steps
and right at least m steps. If C' is to have fewer than (3/2)m points by itself,
then at least m/2 of these steps must be shared; i.e., C' must have at least m /2
(1,1)-steps. Now let C’ be the (1, —1)-cycle. Then C’ needs to take at least m
steps that are either horizontal, vertical, or (1, —1)-steps. Since none of these
are the m/2 (1,1)-steps of C, we conclude that C' and C’ together have at least
(3/2)m vertices, as claimed.

2.2 Proof of Theorem 1

Having analyzed the case of d = 2, we will prove Theorem 1 by generalizing the
example from the previous subsection to higher dimensions. Our proof uses the
foam perspective described in Section 1. That is, we show a set that generates a
discrete foam with periodicity m - Z% and has the size claimed in the theorem.
To define the discrete foam boundary, it will help to first define a continuous
foam.

We define inductively a set B(r) in Euclidean space R?, where d = 2". The
set B(0) will be the set of all z; € R! satisfying

0< 21 <m.
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In other words, B(0) = [0,m). The inductive definition of B(r) C R? is

(x1,...,24) € B(r) & (x1 +22,...,24—1 +x4) € B(r —1) and

(M7, L, T e Bir—1).

Thus we have that B(1) C R? is the set of points (z1, 7o) satisfying
0<z1+22 <M

0< 21 — 22 <2m,

and B(2) C R* is the the set of points (z1, 22, x3,74) satisfying
0<zi+z2+23+T4 <M

0<x1—22+x3—24 <2mM
0<x14+2x2—23—24 <2mM
0< 21 — 29 — a3+ 24 < 4m,

and it can easily be checked that B(r) is the set of points € R? satisfying
0 < H,.x < mu,, where H, denotes the standard 2" x 2" Hadamard matrix and
u, denotes the rth tensor power of the vector (1,2).

Let us also introduce the following notation: Let L(r) denote the “lower
boundary” of B(r), containing all the points in B(r) for which one of the in-
equalities hold as an equality; and, let B(r) be the closure of B(r), which can
also be obtained by replacing all strict inequalities by non-strict inequalities.

Since the Hadamard matrix is orthogonal, it is easy to see that B(r) is a
closed rectangular box in R? (although it is not axis-parallel). We will show that
B(r) tiles R? with periodicity m - Z?. This is a consequence of the following two
propositions:

Proposition 1. No two points of B(r) are the same modulo m - 7.

Proposition 2. The volume of B(r) is m?.

Proof. (Proposition 1.) The proof is by induction; the statement is clearly true
for r = 0. For larger r, suppose z is in B(r) and z 4+ m - (a1,...,aq) is also
in B(r), where the a;’s are integers. We wish to show that all a;’s equal 0. By
definition, we know that

(x1 + z2,...,24-1 + x4) € B(r — 1),
(x1+x2+m- (a1 +az),...,24-1 +xq+m- (ag—1+aq)) € B(r —1).
By induction, then, we get
a1 +ay=---=aqg—1+aq=0. (1)

It follows that a1 — a9, ..., ag—1 — aq are all even and thus (a1 — a2)/2, ...,
(adg—1 — aq)/2 are all integers. But by definition we also know that



Eliminating Cycles in the Discrete Torus 207

(71572, Ty ) e B(r— 1),

(D157 fm@ge, L P ) € B(r - 1),

so by induction,
(a1 —a2)/2="---=(ag—1 —aq)/2 =0. (2)
Combining (1) and (2) we get that all a;’s are 0. This completes the induction.

Proof. (Proposition 2.) As mentioned, B(r) is a rectangular box, so its volume
is simply the product of its side lengths. The normal vectors to its sides are the
rows of the Hadamard matrix H,, which have length v/d. Thus B(r)’s sides have
length (m/Vd) - (uy)1, ..., (m/vd) - (u,)a, where we recall the vector u, is the
rth tensor product of (1,2). So to complete the proof it suffices to show that
Hf.l:l(ur)i = d%/2. This follows by induction since it is easy to see we have the

recurrence ug = 1, H?Zl(ur)i = Qd/z(ijl (ur—1):)2.

We have now shown that B(r) tiles R? with periodicity m-Z%. It follows easily
that L(r) generates a continious closed foam in R¢ with preriodicity m - Z.

Let us now return to the discrete problem in which we are interested. A natural
approach would be to show that L(r) N Z¢ generates a discrete foam in (Z¢);
with periodicity m - Z%, which it indeed does, and to upper-bound Si(m,d) by
counting the lattice points on L(r). However, to avoid the need to approximate
the number of lattice points on L(r), we take a slightly different tack.

Let L'(r) denote a thickening of L(r) to width 1/v/d; in other words, L'(r) =
{x € B(r) : dist(z, L(r)) < 1/+/d}. Note that L(r) + v generates a continuous
foam in R? with periodicity m-Z? for any vector v € R, From this it’s easy to see
that (L'(r)+v)NZ? generates a discrete foam in (Z%); with periodicity m-Z<; the
reason is that the normals to the faces of L(r) are of the form (+1,£1,...,+1),
and so every edge of (Z?); travels length at most 1/v/d perpendicular to L(r)’s
faces. Thus any infinite path in (Z%); would have to pass through L’(r).

We can now upper-bound Si(m,d) by counting the number of points in
(L'(r) +v) N Z% for any particular v. By volume considerations, it is clear that
there exists a vector v such that

#((L'(r) +v) N Z%) < vol(L'(r)) < area(L(r))/Vd.

Thus to prove Theorem 1 it suffices to show that the surface area of L(r) is
at most d'°&2(3/2md=1./d. Since B(r) is a rectangular box, the surface area
of L(r) is equal to the sum of the reciprocals of B(r)’s side lengths times its
volume (i.e., m?, by Proposition 2). B(r)’s side lengths equal (m/vd) - (u,);,
as was mentioned in the proof of Proposition 2, where the vector u, is the
rth tensor power of (1,2). Thus to complete the proof we need to show that
Zle 1/(u,); = d°82(3/2) = (3/2)". This can be proven by induction, as one can
easily derive the recurrence 1/ug = 1, Z?Zl 1/(ur)i = (3/2) Zfﬁ 1/(ur—1);-
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3 The Lower Bound on S, (m,d)

In this section we prove Theorem 2. Our proof begins with the same strategy
used by Saks et al. in [8], which involves sections and tubes.

Definition 4 (sections and tubes). Given a direction i € [d] and a point
x € 72, we define the section based at x and perpendicular to direction i to be

the (d — 1)-dimensional hypercube containing the points
{z+f:fe{0,1}7 x {0} x {0,1}47"}.

A tube in direction i is the union of a section perpendicular to direction i with
all of its translates by multiples of the vector e; = (0,...,0,1,0,...,0). A tube
1s therefore a union of m parallel sections.

The lower bound of Saks et al., as well as our tight lower bound, is based on the
following observation:

Observation 3. If S is any set of vertices in (Z%)o that touches all noncon-
tractible cycles, then S must contain at least one complete section from every tube.

The proof of this observation is clear: if there were some tube for which every sec-
tion had a vertex missed by .S, then these vertices would form a noncontractible
cycle, since all pairs of consecutive sections are completely mutually connected
in (Z4) -

Given the observation above, we will now prove a lower bound of m¢— (m—1)%
on the size of any subset S that contains a full section in every tube. In fact
it suffices to forget about the tubes which “wrap around” the torus and think
instead of the graph ([m]9)s, which only contains the d(m — 1)?~! tubes that
are inside the grid. We prove the lower bound for any S C [m]? which contains
a complete section from each one of these tubes.

The proof of Saks et al. showed that any S C [m]¢ containing at least one
full section in each of these tubes contains at least d(m — 1)4~1 points. Their
proof used a linear algebraic argument; it considered the dimension of the space
spanned by indicators of the sections contained in S. We provide a more ele-
mentary argument, which gives a tight lower bound and seems to have more
potential for generalizations. In particular, we would like to generalize the lower
bound to the case where S is only known to contain a fixed fraction of the points
of one section per tube. A good lower bound in this regime would translate to
an advancement in the parallel repetition problem discussed briefly in Section 1.

Our proof goes by induction, where the key is to take a stronger induction
statement. For this purpose, we define a cube to be a set of the form

{w+f:fe{0,1}% C [m]*;
in other words, a cube is the union of two consecutive sections. Theorem 2 follows
immediately from the following:

Theorem 3. Let S be a subset of the vertices of [m]? containing at least one
complete section per tube and also containing at least ¢ cubes. Then the cardi-
nality of S is at least m? — (m — 1)¢ + c.
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Proof. Let us first argue about the case d = 2 and ¢ = 0. In this case we are
considering the two-dimensional grid [m]?. Tubes can be thought of as the m — 1
vertical columns between the vertices and the m — 1 horizontal rows between the
vertices; sections can be thought of as horizontal edges and vertical edges (more
accurately, as the pair of vertices making up these edges). Suppose S contains at
least one horizontal edge per column and one vertical edge per row. When taken
together, its clear that these 2m —2 edges cannot form any cycle since they never
have two edges “one above the other” (or “one to the left of the other”). Since
an acyclic graph with 2m — 2 has exactly 2m — 1 = m? — (m — 1)? vertices, the
proof of the d = 2, ¢ = 0 case is complete.

We next consider the d = 2 case for general c. In this case, we know that
S contains at least m — 1 vertical edges (sections) and it is clear that it must
contain at least ¢ more vertical edges because of the presence of ¢ cubes (cubes
are squares, in two dimensions). We have so far identified m — 1 + ¢ vertical
edges contained in S. Now consider adding the m — 1 horizontal sections that S
must contain. The resulting set of 2m — 2 + ¢ edges must still be acyclic since
it has no two horizontal edges in the same tube. Thus it contains 2m — 1 4+ ¢ =
m? — (m — 1)? + ¢ vertices as required by the induction.

With the case d = 2 completely proven, we move to the induction on the
dimension d. So suppose S is a subset of [m]? with at least one section per
tube and also at least ¢ cubes. Consider the set of sections perpendicular to the
dth direction. We know that there are at least (m — 1)?~1 of these which are
contained in S — one per tube going the dth direction. There must also be at
least ¢ tubes in the dth direction where S contains an additional section, because
of the ¢ cubes it contains. Let us stratify these sections according to what level
1,...,m they are on in the dth direction. Specifically, say we have ¢; of them on
level i, where ¢y + -+ + ¢ > (m — 1)1 + ¢

We now view the ith level as an inductive instance in dimension d— 1. Because
S has at least one section per tube in [m]?, it is easy to see that it also has at
least one (lower-dimensional) section per (lower-dimensional) tube in [m]?~!. It
also has at least ¢; cubes. So by induction, S has at least m?¢=1 — (m —1)471 4 ¢;
vertices on the ith level of [m]?. Summing this over i yields at least

mmét —(m -1+ m-1D""re=m?—(m—-1)4+c
as a lower bound for the number of points in S.

Theorem 2 follows from Theorem 3 by taking ¢ = 0.
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Abstract. This work obtains truthful mechanisms that aim at maxi-
mizing both the revenue and the economic efficiency (social welfare) of
unit-demand auctions. In a unit-demand auction a set of k items is auc-
tioned to a set of n consumers, and although each consumer bids on all
items, no consumer can purchase more than one item.

We present a framework for devising polynomial-time randomized
truthful mechanisms that are based on a new variant of the Vickrey-
Clarke-Groves (VCG) mechanism. Instead of using reserve prices, this
variant of VCG uses the number of objects that we wish to sell as a
parameter. Our mechanisms differ in their selection of the number of
items to be sold, and allow an interesting trade-off between revenue and
economic efficiency, while improving upon the state-of-the-art results for
the Unit-Demand Auctions problem (Guruswami et. al.[SODA 2005]).

Our probabilistic results depend on what we call the competitive-
ness of the auction, i.e., the minimum number of items that need to
be sold in order to obtain a certain fraction of the maximum efficiency.
We denote by 7 the optimal efficiency achieved by the VCG mecha-
nism. Our efficiency-oriented mechanism achieves 2(7) efficiency and
(7 /In(min{k, n}) revenue with probability that grows with the com-
petitiveness of the auction. We also show that no truthful mechanism can
obtain an w(7/In(min{k,n}) expected revenue on every set of bids. In
fact, the revenue-oriented mechanism we present achieves (2(7/
In(min{k,n}) efficiency and 2(7 /In(min{k,n}) revenue, but the rev-
enue can actually be much higher, even as large as £2(7") for some bid
distributions.

1 Introduction

Auction mechanism design has long been a field of interest in the Economics
and Game Theory communities [13]. In recent years, with the rise in electronic
commerce and high-profile auctions such as the Google IPO and FCC spectrum
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auctions, the field of mechanism design for auctions has drawn a lot of attention
from theoretical Computer Science researchers [8,6,11,1,4].

This paper deals with Unit-Demand Auctions (UDA) where k distinct items
are sold to a group of n consumers but at most one item can be sold to each con-
sumer. This can reflect consumer preferences, say, in a real estate market, where
consumers want to buy a single house to live in. A perhaps more realistic set-
ting for UDA is a government license auction, in which the government imposes
regulatory quotas on the outcome of the auction, so as to foster a competitive
market.

We assume that no previous knowledge of the bid distribution is known, so
that in fact the traditional Bayesian approach that relies on prior knowledge is
not applicable.

1.1 The Model

Let C = {1,2,...,n} be a set of consumers and let I be a set of k distinct
items'. The auctions considered in this paper are sealed-bid auctions where
each consumer submits a bid for each item in I. An auction mechanism is a
function that maps any possible set of bids into a pair (A,p), where A is an
allocation that defines which item is sold to each consumer and p is the vector
of prices determining the sale price of each allocated item. A consumer ¢ can
only be allocated to item j if his (her) bid for j is not smaller than j’s price. We
assume that the mechanism employed by the auctioneer is publicly known and
the following assumptions are made about the consumers.

— Each consumer has |I| private valuations, one for each item in I. The valu-
ation of consumer ¢ for item j, indicated by v; ; > 0, is the maximum price
for which ¢ would be willing to buy item j.

— If consumer ¢ buys item j, then his profit(utility) is u; = v; ; — p;.

— Consumers are rational and will submit bids that try to maximize their
utilities.

— Consumers do not collude.

The consumers in the auction are indistinguishable from the perspective of

the auctioneer.

Depending on the mechanism used by the auctioneer, the consumers might
be able to increase their utility by presenting bids that misrepresent their valua-
tions. An auction mechanism A is truthful if the best strategy for each consumer
is to submit his own valuations regardless of his beliefs on the bidding strategies
employed by the other consumers. Consumers cannot benefit from price specula-
tion in a truthful auction and indeed rational consumers will bid their valuations
in any auction that employs a truthful mechanism. By avoiding pricing games
between the consumers and receiving the true valuations of the consumers as its

1 We disregard the situation in which a number of copies of each item is available, but
it can easily be modeled.
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input, truthful auction mechanisms are in a much better position to optimize
the outcome of the auction.

The revenue attained by an auction mechanism for a given set of bids is
the sum of all prices paid as a result of the auction. The economic efficiency
attained by an auction mechanism for a given set of bids is defined as the sum
over all consumers of the valuations that each consumer attributes to the item he
acquires. It relates to the social value of the auction and often enough, say, on the
FCC spectrum auctions, maximizing the efficiency is or probably should be more
important than maximizing the revenue even from the auctioneer’s perspective.

A randomized auction mechanism is a probability distributions over deter-
ministic auctions mechanisms. Following [6], we adopt a notion of randomized
truthfulness in which a randomized truthful auction mechanism is a probability
distribution over the set of deterministic truthful auction mechanisms.

The concepts presented so far can also be understood in terms of graphs. The
matrix valuation v = (v”)f;lg, which is the input of a truthful mechanism,
can be viewed in terms of a weighted complete bipartite graph G among con-
sumers and items, where the cost c(e; ;) of edge e; ; associating the i-th consumer
with the j-th item is v; ;. Thus, a truthful deterministic auction mechanism A is
a function that maps each weighted bipartite graph G onto a pair (M, p), where
M = Uifllei is a matching of G and p = (p1,...,pja) is a vector defining the
sale price of every item allocated by M, that is, p; is the sale price of the item
touched by edge e;. We must have p; < c(e;), for ¢ = 1,...,|M]|. The revenue
and the efficiency of A, for input G, are the sum of the prices assigned to the
items of M and the sum of the costs of the edges of M, respectively. Clearly, for
a fixed graph, the revenue cannot exceed the efficiency.

1.2 Our Results

Unlike most recent work on auction mechanisms, we design randomized truthful
mechanisms that simultaneously concern with maximizing the revenue and the
economic efficiency. The approach employed by our mechanisms consists of ran-
domly dividing consumers in two groups, and using one group’s bids to estimate
a suitable number of items to sell to the consumers of the other group. It then
uses a novel variant of the generalized VCG [15, 5, 9] mechanism that takes this
limited number of items as a parameter to decide both the allocation and the
sale prices. By adjusting our estimate of how many items should be sold we
either obtain a efficiency-oriented mechanism or a revenue-oriented mechanism.
In order to quantify our results we introduce some definitions. For a valuation
matrix v, let 7 (v) be the maximum possible efficiency attained by a truthful mech-
anism. 7 (v) is exactly the cost of the maximum cost matching in the graph associ-
ated with v and, clearly, is an upper bound on both the revenue and the efficiency
achieved by any truthful mechanism for input v. In addition, let F(v) be the maxi-
mum possible revenue obtained by an ’omniscient’ auctioneer, under the constraint
that a single price must be used to sell all items. The probability that the mecha-
nisms proposed in this paper attain a certain efficiency or revenue depends on the
notion of 6-competitiveness of the valuation matrix v, which is defined below.
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Definition 1. The §-competitiveness of a valuation matrix v is the minimum
number of items, or equivalently consumers, that can generate revenue at least
T (v)/6. In terms of the graph G associated with v, the 6-competitiveness is the
size of the smallest cardinality matching in G with cost at least T (v)/6.

This notion captures how the auction is dominated by a certain group of con-
sumers. The higher the §-competitiveness of v is, the higher is the number of
consumers needed to dominate the auction, that is, to generate a 1/6 fraction
of the maximum possible efficiency. We remark that there is no connection
between this measure and the notion of competitive ratio employed to analyze
online algorithms [3].

Let s denotes min{n, k}. Our efficiency-oriented mechanism simultaneously
achieves 2(7 (v)/Ins) revenue and 2(7 (v)) efficiency with failure probability
that exponentially decreases with the growing of the 8-competitiveness of v. In
addition, we show that for every randomized truthful auction mechanism A there
exists a valuation matrix v, for which A attains expected revenue O(7 (v))/In s),
which is matched by our mechanism.

On the other hand, our revenue-oriented mechanism simultaneously achieves
revenue and efficiency 2(F(v)) with failure probability that exponentially de-
creases with the growing of the (In s)-competitiveness of v. We note that prov-
ing an £2(F(v)) bound is stronger than proving an £2(7 (v)/In s) bound, since
the inequality F(v) > 7(v)/Ins always holds and, in fact, we may even have
F(v) = 2(T (v)).

By combining this last mechanism with the VCG mechanism for UDA and
with a mechanism that only sells one item, we obtain a mized auction mecha-
nism that achieves £2(F(v)) expected revenue and £2(7 (v)) expected efficiency.
However, in this case we do not have high concentration around the mean.

For a completely arbitrary valuation matrix v where, say, a single valuation
is much higher than all the others, the maximum attainable revenue by truthful
mechanisms can be arbitrarily far from both 7 (v) and F(v). This is a well
known fact for single item auctions but it also applies to UDA . Some conditions
on the valuation matrix are usually imposed in order to obtain any meaningful
results. That’s the same rationale behind the conditions that we impose on the
competitiveness of the valuation matrix v so as to be able to prove bounds on
the revenue achieved by truthful mechanisms (as a function of 7 (v) and F(v)).

Finally, we shall mention that all mechanisms proposed in this paper run
in polynomial time and, in addition, our results extend to bounded demand
combinatorial auctions where every consumer may purchase a bundle with at
most d items, where d is a constant which does not depend on n or k. In this case,
however, our mechanisms require exponential time. A discussion on bounded
demand combinatorial auctions is deferred to an extended version of this paper.

1.3 Related Work

If maximizing the efficiency is the unique goal in UDA then the generalized
Vickrey-Clarke-Groves(VCG) mechanism [15,5,9] is the right choice. It attains
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the optimal efficiency 7 (v), for every input valuation v, while giving incentive
for truth-telling. However, this mechanism falls short in that it can have very
poor revenue.

The problem of maximizing the revenue in UDA is mentioned as an open
problem in [7]. In [10], Guruswami et. al. propose an interesting mechanism for
maximizing the revenue in UDA. Their mechanism relies on previous knowledge
on the range of bids and achieves £2(7 (v)/logh)) revenue, where h is the ratio
between the largest and lowest bid values. Basically, it consists of randomly
selecting reserve prices for a VCG mechanism.

All our mechanisms compare favorably with the one proposed in [10]. Our
efficiency-oriented mechanism assures an 2(7 (v)/In s) lower bound on the rev-
enue and simultaneously guarantees efficiency which is a constant factor of the
optimal one. On the other hand, our revenue-oriented mechanism simultaneously
assures £2(F(v)) revenue and efficiency. As we have already mentioned the in-
equality F(v) > 7 (v)/In s always holds and, in fact, for some auctions we may
even have F(v) = (7 (v)). In addition, as opposed to the one proposed in [10],
both these mechanisms do not rely on previous knowledge about the range of
the bids and, most importantly, they guarantee high concentration around the
mean. In all fairness, we should be mention that the mechanism of [10] produces
envy-free allocations whereas ours do not. The table below summarizes how our
results compare to the one presented in [10].

Method Expected Expected High Con- Envy-free
Revenue Efficiency centration allocations
Efficiency-oriented 2(T(v)/Ins) 2T (v)) yes no
Revenue-oriented N(FWv)) R(F(v)) yes no
Guruswami et.al. [10] (7 (v)/Inh) $2(7(v)/Inh) no yes

The economic efficiency and revenue are traded-off in [12] in the auctioning of
multiple units of the same object. The resulting auction maximizes the expected
economic efficiency while ensuring a minimum level of revenue in the auction.
We obtain a similar trade-off for the UDA.

Finally, we shall mention that UDA can also be viewed as a combinatorial
auction where only bundles (set of items) of size one can be sold. Some of the
papers in combinatorial auctions that focus on maximizing the efficiency also
discuss revenue issues [11, 1, 2, 4]. What is usually done is to compare the revenue
achieved by the proposed auction mechanisms with that achieved by the VCG
mechanism. However, the revenue achieved by VCG can be rather low, and even
0, thus making it a less desirable benchmark.

2 Graph Theoretical Results

In this section, we present some graph theoretical results that are important for
the design and the analysis of the mechanisms proposed in this paper.

Let G be a weighted bipartite graph. For a consumer i, we use G_; to denote
the subgraph induced in G by the removal of i from its set of vertices. Let ¢’ be
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the lowest weight edge in a matching M of G. We define F(M) = |M| x c(¢)
and T(M) =3,y c(e). Weuse MZ (MZ) to denote the largest matching of G
that maximizes 7 (-) (F(-)). We define Fg = F(MZ) and T = T(MZ). Thus,
the 6-competitiveness of G is the size of the smallest matching M that satisfies
T(M) > 1g/6. The following propositions relate the metrics 7(-), F(-) and the
competitiveness of a graph. A similar result to the next proposition appears in
[10]. Its proof, and that of Proposition 2 are omited here.

Proposition 1. For every graph G, we have Fg > T¢/lns.

Proposition 2. For every graph G, the (Ins)-competitiveness of G is at
most |MZ|.

The next proposition shows that there exists a single matching M that has "high’
values for both 7(-) and F(-). The existence of such a matching is key for our
efficiency-oriented mechanism.

Proposition 3. For every graph G, there is a matching M in G such that
F(M)>Tg/(2lns) and T(M) > 1/2.

Proof. Let e1,...,es be the edges of MZ sorted in non-increasing order of
weights and let i* be the largest number such that i* x c(e; ) > Z¢/2lns.
The existence of such an ¢* is ensured in the proof of Proposition 1. Define M
as Ui_e;. Clearly, F(M) > Tg/21ns.

For j > i*, we have that c(e;) <
obtain that

Tc

9jxins By adding these inequalities we

S .
Z T X (Ins—1ni*) 7o
cles) < 2lns = 2
j=i +1

Thus, 7(M) = 3_; c(e;) > Tcz/2 O

2.1 Approximation Matchings

Next, we introduce the concept of an approximation matching for a sequence
of matchings. This is used in Section 3.2 as a technical tool bounding the
probability of our efficiency-oriented mechanism. Roughly speaking, given a
sequence S of matchings in a graph G, the approximation matching A for S
has the property that for every matching S of S there is a sub-matching A’
of A whose size is within a constant factor of the size of S and, moreover,
F(A") > minges{F(9)}/2 and T(A") > minges{7T(S5)}.

For an increasing sequence of integers J, let min(J)=min{j|j€ J}, max(J)=
max{j|j € J} and pred(j) be the largest integer of J smaller than j, for j €
J\min(J).

Definition 2. Let (M;);cs be a sequence of matchings in G, where |M;| = j,
for every j € J. We define the sequence (Aj)jes as follows:
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A= M; if j = min(J)
T | Apredy) U {ele € My and Ayyeqqjy U e is a matching}, otherwise

We call Ayyaz(sy the approzimation matching for the sequence (Mj)je .

Ezample 1. Let G = (V1 U V5, E) be a complete bipartite graph where V; =
{1,3,5,7,9} and Vo = {2,4,6,8,10}. Let us consider the sequence of matchings
Mz, Mg, ]\457 where Mg = {(1, 2), (3, 6)}, M3 = {(17 2), (37 8), (5, 10)} and M5 =
{(1,2),(3,4), (5,6),(7,8), (9,10)}.

Then, we have A2 = {(1,2),(3,6)}, A3 = {(1,2),(3,6),(5,10)} and As, the
approximation matching, is {(1,2), (3,6), (5, 10), (7,8)}.

We ommit the proof of the next lemma which states crucial properties regarding
the approximation matching.

Lemma 1. Let (M;);ecs be a sequence of matchings in G, where |M;|=j, for
every j € J. Furthermore, let A be the approzimation matching of (Mj)jcs.
Then, for every j € J, there is a sub-matching A" of A such that: (i) max{min(.J),
32 < A < 25 ; (i) T(AY) > T(Mpan) : (i) F(A') > mindF(M,)i € J}/2
and (i) If €' is the edge of lowest cost in A’, then c(e') > c(e), for every edge e
that belongs to the matching A\ A’.

3 Truthful Mechanisms for Unit-Demand Auctions

In this section we introduce a family of mechanisms for UDA that we denote by
UDAF (Unit Demand Auctions Family). The mechanism .4; presented below is
employed by all mechanisms of UDAF . A4; is a variation of the VCG auction
mechanism where the parameter [ determines the number of items that can
be sold. The VCG mechanism for UDA coincides with mechanism A;, when
l = s =min{n, k}.

Mechanism A;(H: Graph)

1. Compute a matching M of H that maximizes 7 (-) among all the matchings
in H of size [, and assign consumers to items according to M.

2. If M assigns the consumer ¢ to the item j, then the sale price of j is p; =
cle; ;) —T(M)+ T (M_;), where M_; is the matching that maximizes 7 (-)
among all the matchings in H_; of cardinality (.

The next lemma allows us to bound the revenue achieved by A;.

Lemma 2. Let H be a weighted complete bipartite graph in which there is a
matching M’ with exactly 21 edges, all of them with weights at least y. Then the
revenue of Ay for input H is at least | X y.
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Proof. Let M be the matching determined by A;(H). It suffices to argue that
pj =cle;;) —T(M)+T(M_;) >y, for every consumer i touched by M.

Since |M’| > 2l, it follows that there is e € M’ such that M Ue — ¢;; is a
matching in H_;. Thus, 7(M_;) > T(MUe—e;;) > T (M) —c(e;;)+y and, as
a consequence, p; = c(e; ;) —T(M)+T(M_;) >y O

Lemma 2 implies that for a suitable choice of I the revenue of A; is 2(F¢).
This lemma, along with Proposition 3, also guarantees the existence of a value
I for which A; has 2(7¢/Ins) revenue and £2(7¢) efficiency. Unfortunately we
do not know how to compute the optimum ! without losing truthfulness.

Instead, our UDAF mechanisms first randomly splits the consumers into two
groups and then uses one group to estimate a suitable (depending on the pursued
goal) value of [. Finally, A; is run for the consumers of the other group. What
distinguishes one mechanism in UDAF family from the other is the function f
employed to determine the number [ of items to be sold. The definition of f will
determine the economic efficiency, the revenue and the time complexity attained
by the resulting mechanism.

Mechanism UDAFy

1. Flip a fair coin n times to split the consumers into two groups, say, L (left)
and R (right). Let G1 (GRr) be the bipartite graph induced by the consumers
of L (R) and the set of all items.

2. Run Af(g,) on the graph Gg.

Lemma 3. UDAFYy is truthful for every choice of f.

We note that the idea of randomly selecting a group of consumers to determine
the prices of the items to be sold for the consumers in the remaining group has
appeared before in the context of unlimited-supply auctions [7]. While this is a
relatively simple concept, its successful application to UDA and the correspond-
ing analysis are not as simple as one would assume at first glance. As an example,
we devised the concept of approximation matchings (Secion 2.1) to help us deal
with the technical aspects of this.

3.1 A Revenue-Oriented Mechanism

First, we investigate Rev, a definition for f that favors revenue. Rev estimates
the size of the matching in G that maximizes F(-).

Rev(G:graph)

1. Let M, be the largest (w.r.t. the number of edges) matching in G, such
that F(Myey) > Fa, /3.
2. Return || M,ey|/6].

The next theorem gives a bound on the revenue attained by UDAFRe,. The
assumption in the theorem about the O(In s) competitiveness of G being at least
500 is only used to assure that |[MZ| > 500. In this case, the proof Theorem 1
ensures that UDAFg., achieves an expected revenue of 2(Fq).
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Theorem 1. Let G be a graph that has (In s)-competitiveness larger than 500.
Then, UDAFge, simultaneously attains revenue 2(Fg) and efficiency 2(Fg)
with probability at least 1 — ecz/ﬁog , where cp 1is the (In s)-competitiveness of G.

Proof. For every j, let M; be a matching of size j in G which maximizes F(-).
The matching M, is said to be good if j > |MZ|/3 and F(M;) > F/9. Let J
be the set of integers defined as J = {j|M; is a good matching }.

For every j € J, let C; be the set of consumers of matching M;. With respect
to Step 1 of the UDAF mechanism, we define the event £; as the event in which
the number of consumers of C; that lie in the left group is at least j/3 and at
most 2j/3. Furthermore, let £ = {J; ; ;.

In what follows we make some observations under the assumption that £ oc-
curs. Recall that we use Mg to denote the largest matching of G that maximizes
F(-). Let M’ be the sub-matching of MZ induced by the consumers of MZ that
lie in G. Then, M’ has at least |[MZ|/3 edges and F(M') > Fg/3 > Fa, /3.
This implies that Fg, > Fe/3 and [M,e,| > |MZ|/3.

Since F(Myen) > Fa, /3 it follows that F(M,ep) > Fe/9 and, as a conse-
quence, |M¢,| € J. Therefore, there are at least [|M,.,|/3] consumers of Cjyy, ., |
in the right group, which implies on the existence of a matching in G'r, say M?2,
of size [|Myey|/3], where every edge costs at least F/(9|Myey|). Thus, it follows
from Lemma 2 that the revenue of A\ yy,.,|/6/, for input Gg, is at least

|_|Mrev‘/6J X fG/(g‘MrevD = “Q(]:G)

Since Proposition 1 guarantees that Fg > 7/ In s, it follows that the efficiency
is 2(7¢/1ns).

Now, we obtain a bound on the probability of event £ happening. A direct
application of the Chernoff Bound [14] ensures that the probability of event &;
not happening is at most 2e /36, Applying the union bound we get that the
probability of failure of £ is at most ZjeJ 2e—7/36,

Now, we use the condition on the competitiveness of G. Since the (Ins)-
competitiveness of G is cp it follows from Proposition 2 that [MZ| > cp. This
implies that the minimum integer in J is at least [¢p/3]. Thus,

) e ) 26—0])/108 74
—3/36 —j/36
D27 B 2O T e S s E
jed j=lep/3]

With respect to the previous theorem, we note that the more competitive G is,
the higher the probability of attaining the bounds for the revenue and for the
efficiency.

If we do not concern ourselves with proving bounds on the probability of at-
taining a certain revenue and a certain efficiency we can obtain a simple mech-
anism that attains §2(F¢q) expected revenue and §2(7¢) expected efficiency for
every graph G with In s-competitiveness larger than 1.

Theorem 2. Let Mixed be the auction mechanism that executes one of the fol-
lowing mechanisms with uniform probability: UDAFge,, A1 and VCG. Then,
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for every graph G with In s-competitiveness larger than 1, Mized achieves ex-
pected revenue 2(Fq) and expected efficiency 2(7¢).

Proof. Omitted. O

3.2 Favoring the Efficiency

Now, we investigate Eff, a definition of f that favors the efficiency. Eff estimates
the size of the matching in G that satisfies the conditions in Proposition 3.

Eff(Gr: graph )

1. Let eq,.. SO | be the edges of MgL listed by non-increasing order of

costs. Let s* be the largest integer such that s* x c(es ) > 7, /(2In|MZ ).
2. Return |s*/12].

The main result of this section is the following theorem.

Theorem 3. Let K/ be the 8—competitiveness of a graph G. Then, for input
G, UDAFgy; simultaneously attains revenue $2(7¢/Ins) and efficiency 2(7¢)
with probability at least 1 — 61}4/836 .
The proof consists of showing that with the probability stated above there is
a matching M* in Gg such that: (i) s*/6 < |[M*| < (4-s*)/3; (ii) F(M*) =
2(7g/1ns) and (iii) 7 (M*) = 2(7¢).

The next lemma shows that the existence of such a matching indeed ensures
that the mechanism performs as desired.

Lemma 4. If there is a matching M* in G that satisfies properties (i)-(iii)
above, then Agyssc,) simultaneously attains efficiency £2(1g) and revenue
2(7g/1ns) on Gg.

Proof. Let M? be the matching of size |s*/12] computed by Agfsar) on GRr.
Since M* has at most (4 - s*)/3 edges, the sum of the costs of the |s*/12]| most
expensive edges of M* is at least |s*/12] x 37 (M*)/(4 - s*). It follows that
T(M?) = 2(Tg).

On the other hand, since F(M*) = §2(7¢/Ins), then all the edges of M*
cost at least K7 /(|M*|Ins), where K is the constant hidden in the asymptotic
notation. Since 2|M?| = 2[s*/12] < s*/6 < |M*|, it follows from Lemma 2
that the revenue is at least |s*/12] x K7¢/(|]M*|1ns). By using the fact that
|M*| < (4-5*)/3, we conclude that the revenue is 2(7¢/1Ins) O

Thus, it suffices to bound the probability that such a matching exists. The
following definition is useful in our proofs.

Definition 3. Given a matching M in G, let C; be the set of consumers asso-
ciated with the j most expensive edges of M. Let £; be the event where at least
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j/3 consumers of C; lie in the left group and at least j/3 lie in the right one.
Finally, let Epp = UJ _x, i, where K1 is the 8-competitiveness of G.

Two properties of £y are useful for our analysis: the failure probability of £y
decreases exponentially with the increase of K/ and if £y, occurs then the edges
of M are “evenly” distributed between G and Gp in the sense that the sub-
matching of M induced by the consumers that lie in G, has approximately the
same cost (w.r.t. F and 7) as the subgraph induced by the consumers that lie
in Gg. The following two propositions formalize these observations.

Proposition 4. The probability that Ey; does not occur is at most T4eK'/36,
Proposition 5. Let M be a matching in G, with |M|> K/. If Eyp occurs then
the sub-matching M’ of M induced by the consumers of M that lie in Gy, (GRr)
satisfies the following properties: F(M') > F(M)/3 and T(M') > T(M)/3 —
Ta/24.

Proposition 4 follows from a direct application of Chernoff bounds [14]. The proof
of Proposition 5 is not as immediate but we defer it to an extended version of
this paper.

We say that a matching M of G is efficiency-good if F(M) > T¢/(71ns)
and T (M) > 7¢/7. The existence of at least one efficiency-good matching is
guaranteed by Proposition 3. Let J be an increasing sequence of integers such
that j € J if and only if there is an efficiency-good matching in G of cardinality j.
For every j € J, let M; be an arbitrary efficiency-good matching of size j. Note
that the definition of efficiency-good matchings and the assumption over K/ in
Theorem 3 imply that min(J) > K.

Proposition 6. Let A be the approzimation matching of (M;);cr. If the event
5MT U €4 happens then there is a matching in Ggr that meets the conditions

(i)-(ii).

Proof. First, we show that if £ MT occurs then there is an efﬁmency good match-
ing of size s* in G. Let M be the matchlng formed by the s* largest-weight edges
of MgL. Let M’ be the sub-matching of Mg induced by the consumers of MT
that lie in G. It follows from Proposition 5 that 7 (M') > 7¢/3 — T /24 2
7 x Tg/24. Thus, T(MZ, ) > T(M') > 7 x T/24. The definition of M and
Proposition 3 imply that 7 (M) > 7 x 7¢/48 and F(M) > 7 x 7¢/(481n3s).
Thus, M is an efficiency-good matching in G.

Since there is a efficiency-good matching in G of size s*, it follows from
Lemma 1 that there is a sub-matching A’ of the approximation matching A such
that max{min(J),s*/2} < |A'| <2.-s*, T(A") > 1g/7 and F(A") > 1¢/141ns.

Since £4 occurs, |A’| > min(J) > K1, and A’ contains the |A’| largest-weight
edges of A then £4 also happens. Let A” be the sub-matching of A’ induced by
the consumers of A’ that lie in Gg. It follows from Proposition 5 and the previous
observation about A’ that s*/6 < |A”| < (4-s%)/3, T(A") > Tg/168 and
F(A") > T /421Ins. Thus, A” meets the conditions (i)-(iii), which establishes
our result. O
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Proof of Theorem 3. If the event £ M U&4 happens, it follows from Proposition 6
and from Lemma 4 that, for input Gr, Agy s, ) simultaneously achieves 2(7¢)
efficiency and 2(7g/In s) revenue.

On the other hand, it follows from Proposition 4 that & Mz U &4 fails with

probability at most 148e~5//36, Thus, £ Mz U €4 happens with probability at
least 1 — 148e~K//36, 0

4 Final Remarks

The mechanisms described here can be efficiently implemented. We also men-
tion without proof a relatively straightforward upper bound for truthful Unit-
Demand auctions.

Theorem 4. For every randomized truthful mechanism A there is a graph G 4
such that the expected revenue achieved by A on G 4 is O(Tga/Ins).
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