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Preface

This volume contains the papers accepted for publication at LATIN 2006, the
7th Latin American Theoretical Informatics Symposium held in Valdivia, Chile,
March 20-24, 2006. The LATIN series of conferences presents recent results in
theoretical computer science. It was launched in 1992 to foster the interaction
between the Latin American community and computer scientists around the
world. LATIN 2006 was the seventh of a series, after São Paulo, Brazil (1992);
Valparaiso, Chile (1995); Campinas, Brazil (1998), Punta del Este, Uruguay
(2000), Cancún, Mexico (2002), and Buenos Aires, Argentina (2004).

In response to the call for papers, a record number of 224 submissions were re-
ceived. The Program Committee accepted 66 papers in order to meet the goal of
having five days of talks with no parallel sessions. Therefore, many good papers
could not be accepted. The Program Committee met electronically from Octo-
ber 25 to November 10, 2005. The selection of papers was based on originality,
quality, and relevance to theoretical computer science. It is expected that most
of these papers will appear in a more complete and polished form in scientific
journals in the future.

In addition to the contributed papers, this volume contains the abstracts
of seven invited plenary talks given at the conference by Ricardo Baeza-Yates,
Anne Condon, Ferran Hurtado, R. Ravi, Madhu Sudan, Sergio Verdú and Avi
Wigderson.

The Program Committee thanks all authors of submitted manuscripts for
their support of LATIN, and the many colleagues listed in pages VIII-X, who
helped reviewing the submissions.

The LATIN proceedings have been published by Springer since the first edi-
tion. We are grateful to Springer for their continuous support.

January 2006 José R. Correa (Co-organizer)
Alejandro Hevia (Co-organizer)
Marcos Kiwi (Program Chair)

LATIN 2006
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José Rafael Correa (Co-organizer) U. Adolfo Ibáñez, Chile
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Sergio Verdú Princeton U., USA
Avi Wigderson Institute for Advanced Study,

USA

Sponsors

Centro Latinoamericano de Estudios en Informática (CLEI)
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Benjamı́n René Callejas Bedregal, Santiago Figueira . . . . . . . . . . . . . . . 154

An Optimal Algorithm for the Continuous/Discrete Weighted 2-Center
Problem in Trees

Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi . . . . . . . . . . . . . . 166

An Algorithm for a Generalized Maximum Subsequence Problem
Thorsten Bernholt, Thomas Hofmeister . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Random Bichromatic Matchings
Nayantara Bhatnagar, Dana Randall, Vijay V. Vazirani,
Eric Vigoda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Eliminating Cycles in the Discrete Torus
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Iain A. Stewart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Reconfigurations in Graphs and Grids
Gruia Calinescu, Adrian Dumitrescu, János Pach . . . . . . . . . . . . . . . . . . 262

C-Varieties, Actions and Wreath Product
Laura Chaubard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Local Construction of Planar Spanners in Unit Disk Graphs with
Irregular Transmission Ranges
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Lower Bounds for Geometric Diameter Problems
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Michel Goemans, Jan Vondrák . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

Algorithms for Modular Counting of Roots of Multivariate Polynomials
Parikshit Gopalan, Venkatesan Guruswami,
Richard J. Lipton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Hardness Amplification Via Space-Efficient Direct Products
Venkatesan Guruswami, Valentine Kabanets . . . . . . . . . . . . . . . . . . . . . . . 556

The Online Freeze-Tag Problem
Mikael Hammar, Bengt J. Nilsson, Mia Persson . . . . . . . . . . . . . . . . . . . 569

I/O-Efficient Algorithms on Near-Planar Graphs
Herman Haverkort, Laura Toma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

Minimal Split Completions of Graphs
Pinar Heggernes, Federico Mancini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

Design and Analysis of Online Batching Systems
Regant Y.S. Hung, Hing-Fung Ting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Competitive Analysis of Scheduling Algorithms for Aggregated Links
Wojciech Jawor, Marek Chrobak, Christoph Dürr . . . . . . . . . . . . . . . . . . 617
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Abstract. In this paper we present the main algorithmic challenges
that large Web search engines face today. These challenges are present
in all the modules of a Web retrieval system, ranging from the gathering
of the data to be indexed (crawling) to the selection and ordering of
the answers to a query (searching and ranking). Most of the challenges
are ultimately related to the quality of the answer or the efficiency in
obtaining it, although some are relevant even to the existence of search
engines: context based advertising.

1 Introduction

The Web is the largest public collection of data, and therefore, Web search has
become one of the main challenges in the field of information retrieval. The com-
plexity is not only due to its volume, but also because of its dynamics and het-
erogeneity. In addition, as search engines are (still) free as a consequence of Web
advertising, the choice and placement of advertisements in the answer page is cru-
cial to their survival. For all these reasons, we believe that Web retrieval is one of
the main sources for interesting and challenging applied algorithmic problems.

A Web search engine has basically four software modules around an index,
as shown in Figure 1. We know detail this simplified software architecture. The
Crawling module brings new or updated pages to the Indexing module. The Index-
ing module creates a compact searchable index with key preprocessed information
for page ranking. The Searching module, using the index, finds a ranked answer to
a stream of queries from remote users. Finally, the Answering module creates the
answer page and places the right advertisement related to a query. Each of these
modules presents a different set of challenges, which motivate this paper.

The next sections summarize the main algorithmic challenges of the software
modules mentioned before, using simplified versions of each problem so that
we can (more or less) formalize them. We include recent results, although the
bibliography is by no means exhaustive. The final section mentions additional
problems related to the Web1.
1 Disclaimer: The choice of problems is biased to the preferences of the author who is

now at Yahoo! Research.
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Fig. 1. Simplified software architecture of a Web search engine

2 Crawling

A crawler is a software module that gathers Web pages to create an index,
typically using a parallel and distributed architecture. In practice a crawler never
stops as the Web keeps growing, but we simplify the problem by limiting the
crawling time and scope.

Given a set of Web sites with their bandwidth W , a period of time T , a set
of politeness rules P [14], a set of resources R (computers, crawler bandwidth,
etc.), and three functions V , Q and F (over a set of pages), a crawler has to
bring a collection of pages C ∈ W , achieving the following four main goals:

– maximize the volume V (C) of the pages,
– maximize the quality Q(C) of the pages,
– minimize the freshness F (C) of the pages, and
– maximize the use of R while satisfying the politeness rules P .

Part of the problem is how to define the three optimization functions and how
to combine them to obtain the best possible collection C that should imply the
best possible index. Each possible choice brings new problems. It is out of the
scope of this paper to present an exhaustive list of possibilities, but here are a
few examples:

– V could be the number of different pages or the total number of bytes of text.
The former brings another problem, detection of duplicated pages, while the
latter raises the question of how many bytes (or percentage) are needed to
have a good textual description of a page;

– Q could be based on the distribution of words or the link structure of the
Web (e.g. Pagerank [17]); and

– F could be the absolute time difference between the time when the page was
crawled and the last modification time. However this raises the problem of
measuring such function, as we cannot know its value until the end. Hence,
usually F is an estimation of the freshness.
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Considering the above functions as given, we could define an overall function to
optimize such as f(C) = αV (C) + βQ(C)− γF (C), for some α, β, γ > 0.

Regarding R and P , we can simplify R as the maximum bandwidth available,
B, and P as a minimum number of seconds, s, the wait time between any two
page requests to the same site. Notice that being polite to Web sites opposes the
goal of using all the bandwidth available at the search engine side.

Then we have a formal scheduling problem: find a sequence of requests for
complete pages2 at given times (p1, t1), · · · , (pn, tn), n > 0, such that we maxi-
mize f(C) (C = ∪n

i=1pi), satisfying the following:

– Crawling period: tn − t1 ≤ T ,
– Politeness: |ti − tj | ≥ s for any pair of pages pi, pj that belong to the same

Web site, and
– Overall bandwidth: for any time τ (t1 ≤ τ ≤ tn), b(Wτ ) ≤ B; where b(Wτ ) is

the bandwidth of the set of active requests at a given time τ . A request (pi, ti)
is active if pi belongs to site wi ∈ Wτ , and if ti ≤ τ ≤ ti + size(pi)/b(wi)
(b(wi) is the bandwidth of the site wi

3).

In the open scope case, finding new pages implies to find modified pages having
new links, and that implies wasting time revisiting known pages. Hence, freshness
opposes volume, given that wasted time cannot be used to crawl new pages.
But, paradoxically, the number of new pages only increase by wasting that time.
Another practical issue is dynamic pages, which can be unbounded.

Several heuristics have been used, from breadth-first to ordering pages based
on quality. Recently, a strategy based on Web site sizes (largest sites first, LSF)
has shown to be competitive with strategies that use more information [3]. One
problem is that there is no standard benchmark to compare crawling strategies,
given that we would need the same Internet location for all the experiments.

3 Indexing and Searching

These two modules are interdependent, as the search time and the quality of the
ranking will depend on the information stored in the index. Hence we present
them as one integrated problem.

The best index for searching words up to now is an inverted index, one of the
oldest data structures [1]. An inverted index basically consists of a set of unique
words (vocabulary) and a set of corresponding lists of pages where each word
occurs. However, better solutions may exist, in particular given the new condi-
tions imposed by the Web: smaller but distributed indexes, frequent updates,
and fast answer time, to name a few.

The index has to contain pre-calculated information that will be useful when
ranking the answer. This information depends on the document similarity model
2 In practice could be partial pages, and in that case we also have to add to the request

how many bytes to bring after we know the total size of the page.
3 We assume that the bandwidth for each site is constant, which in practice is not

true.
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used by the search engine and the query language used (they are not indepen-
dent). Examples would be the vector model [1] that uses information on term
distribution or a link based model such as Pagerank [17] or global Authorities
[12]. Nowadays, search engines use many sources of information for ranking: text
content, link structure, search engine usage, etc. One of the main problems is
the evaluation of the quality of the ranking, as we do not know which are the
best answers. Current evaluation techniques are based on click-through analysis
(that is, how people click on the answer pages).

Another restriction is the current Web volume, which implies that the index
must be distributed across many machines. It also implies a partial evaluation of
the query to give a fast response (in addition, as people on average looks at two
answer pages, does not make sense to do additional work). If we add to this the
current query volume, we need a parallel processing of the queries to increase
the concurrency level of the overall retrieval system.

Hence, we have a variant of the dictionary problem: design a dynamic data
structure (the index) that, given a maximum space available M , achieves at least
a throughput T of queries per second, satisfying the following requirements:

– any query must be solved using only the index (accessing secondary memory
or a remote page is too slow);

– the index should be easy to distribute across many processors without mak-
ing the search more difficult;

– the index should be easy to update frequently, maintaining its quality and
speed; and

– the query can be partially evaluated to find the best B ranked answers.

Almost all the requirements just mentioned imply some amount of extra infor-
mation to be stored in the index. Hence, compression is an important element
of current solutions. This can be approached from two directions: design a com-
pressed searchable index, or, design a compression technique that allows fast
searching [15]. In both cases, being able to search without the need of decom-
pressing the index, improves the search time. In fact, these is one of the few
cases where we can do faster search by using less space. Fast querying implies
other interesting subproblems, such as fast computation of set operations (e.g.
see [5]).

Another of the most interesting subproblems are distributed indexes. For
inverted indexes, there are two ways to distribute the index:

– document partitioning splits the document collection in pieces and builds
one partial index for each piece. Searching is achieved by merging partial
answers from the processors that store the partial indexes.

– term partitioning splits the vocabulary in pieces, and each processor holds
one subset of the index, and hence, one part of a global inverted index.
Searching is achieved by merging the answers for every word in the query.

Current search engines use the former, as the main problem of the latter is that
of building and maintaining a global index. However, new ideas may change in
the future this choice, as term partitioning allows higher concurrency.
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4 Advertising

Deciding the right advertising is one of the main tasks of the Answering module.
Context based advertising comes in two flavors: advertising shown after a query
in the answer page of a search engine (e.g. Google’s AdWords) or the advertising
shown in a syndicated page (e.g. Yahoo’s ContentMatch). The differences are
the data available for matching the advertising: in one case a query and all
its attributes, and in the second case the content of a page and the referrer
information of the visitor to that page (which in some cases could include a
query); and the number of places available (around ten in the former, two or
three in the latter). In Figure 2 we present an example for the first case.

Advertisers pay for each visit to a given site (this is called pay per click, PPC),
so the search engine is interested in maximizing the future income. Clicks depend
on the position of the ad, so the advertisers should be ranked. However, the choice
of advertisers it is not as simple as choosing the ones that match and that would
pay more for a click, as some advertisers are more clicked than others. Also, we
cannot use click frequency as a definite rule, because advertisers that have had
more exposition time, would have more clicks and new advertisers would then
never appear, without having the chance to become popular and profitable.

Then we have an on-line problem: given a set of evidences E regarding a page
p, and a database of advertisers A, find a ranked subset a ∈ A that maximizes
the expected income from clicks in p, such that |a| = n, where n is the number
of places available in p.

Fig. 2. Example of keyword-based advertisement for the query “hotel valdivia”
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Notice that we do not separate the matching part (find advertisers that satisfy
the evidence) from the ranking part (find advertisers that will maximize the
future income), so E includes the data available for the match, past history, etc.
There are few results for this problem. For example [18] explores the matching
part, while [9, 16] the placement part.

Another problem in the Answering module is the fast generation of the text
summary (snippets) for each result in the answer page.

5 Concluding Remarks

We have briefly surveyed the algorithmic challenges of Web search. Solutions to
these theoretical problems can help to find solutions to real ones, as in practice
the problems are much more complex. For example, currently the Web has many
forms of spam, including content, links and usage. So, finding the bad guys (e.g.
pages that have misleading content, links that are used just to improve the
ranking of the linked page, or clicks that come from malicious software agents)
is an interesting dynamic problem. A possible easier solution could be to help
the good guys, that is, the Web sites that do have good content and good links.
Still, we have the problem of recognizing the good from the bad, which is related
to the problem of information trust in the Semantic Web. This area is now called
adversarial information retrieval(e.g. [11]).

When we search we know what we are looking for. However, in the Web
there could be interesting answers waiting to be discovered or interesting usage
patterns that could help to improve a search engine. These are two examples of
Web mining [10], a field that is still in its infancy. One interesting case is queries
and the user actions after a query, or query mining [6]. When people formulate
queries and click on answers, they are giving away “semantic information” for
free, and with the current volume of queries per day in a search engine, the
potential of this data is still unknown. For example, it could be used for better
index design, better ranking, query optimization, query recommendation [4],
generation of pseudo-semantic resources, Web site design [7], to name a few. We
are currently building a platform to formalize Web mining tasks [8].

Finally, advertising is related to two newer fields: social networks [19] and
Internet economy [20]. The intersection of these two fields will sparkle many
interesting problems such as query incentive networks [13] or auction pricing.
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Dubbed the “architects of eukaryotic complexity” [8], RNA molecules are in-
creasingly in the spotlight, in recognition of the important catalytic and regula-
tory roles they play in our cells and their promise in therapeutics. Our goal is
to describe the ways in which algorithms can help shape our understanding of
RNA structure and function.

Computational means for prediction of the structure of RNA and DNA
molecules – collectively known as nucleic acids – are invaluable in determin-
ing the functions of molecules in the cell. Structure prediction problems, as
well as the inverse problem of designing nucleic acids with specific structural
properties, also arise in biological research aimed at creating new catalysts and
biosensors, in nanotechnology, and in efforts to recreate an RNA world that may
have preceded modern life [11].

Put simply, a DNA or RNA molecule is a sequence of units, called bases, over
a four-letter alphabet. Prediction of nucleic acid structure is easier than pre-
diction of protein structure, because the primary forces that determine nucleic
acid structure are pairings (bonds) between individual bases of the molecule,
with each base in at most one pair. This set of base pairs is called the sec-
ondary structure of the molecule. One premise is that, of the exponentially many
possibilities, an RNA molecule folds into that secondary structure which has
minimum free energy (MFE) [7]. Finding the MFE structure for a given RNA
molecule is NP-hard [6]. However, the range of structures that arise in nature
is relatively limited, making it feasible to find MFE predictions of almost all
naturally-occurring secondary structures in polynomial time [10]. There is still
much potential to advance the state of the art in MFE secondary structure
prediction of nucleic acids.

– The algorithm of Rivas and Eddy [10] is very general in terms of types of
structures that it can predict [3], but with Θ(n6) running time is limited to
relatively short inputs. One challenge is to find the sweet spot in the trade-
off between algorithmic generality and efficiency. A concrete goal is to find
MFE “kissing hairpin” structures in less than O(n6) time.

– MFE prediction algorithms can only be as good as their underlying energy
models. While experimental wet-lab work has provided hundreds of high-
quality parameters for use in RNA structure prediction [7], some model
features, including multi-loops and pseudoknots, have been parameterized in
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a somewhat ad-hoc way, and indeed the model features themselves may have
been chosen in part for algorithmic efficiency, rather than accuracy. Thus,
we believe that a reassessment of the energy model, informed by physical
principles, known nucleic acid structures, and algorithmic complexity, should
be fruitful in improving the quality of prediction algorithms.

Stepping back from our focus on MFE prediction from a single sequence,
we note that there are many other interesting computational problems relating
to nucleic acid structure prediction. Minimum free energy prediction of com-
plexes of two or more molecules is an important goal that arises, for example,
in determining the targets of anti-sense RNA’s [1]. Moreover, partition function
prediction provides additional useful information, including base pairing proba-
bilities [5]. In a different direction, the premise that molecules fold into their MFE
structures may be false for some structures, when “kinetic traps” - low energy
structures with no low-energy paths to a MFE structure - exist, or when folding
occurs co-transcriptionally [9]. Thus, also important are alternative structure
prediction approaches [9] and efficient simulation of folding kinetics [12, 13]. The
problem of predicting three-dimensional structure is largely unsolved. Finally,
although good heuristics have been developed for the design problem, which is
to determine a sequence that folds into a given input secondary structure [2, 4],
its computational complexity is still open.
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Universitat Politècnica de Catalunya

In this talk we present several results and open problems having squares, the
basic geometric entity, as a common thread. These results have been gathered
from various papers; coauthors and precise references are given in the descrip-
tions that follow.

Disassembling Sets of Colored Squares

Given a set of disjoint convex objects in the plane, it is well known that they
can be moved to infinity without collision, one at a time, using only translations
in the direction given by any vector v. If we have convex objects that have two
different colors it is always possible to obtain two vectors v1 and v2, forming
possibly an infinitesimally small angle, such that each direction is used for one of
the colors and the objects in their final far away positions are well separated, say
by a line. An infinitesimally small angle is not quite satisfactory and it is natural
to wonder whether a larger separating angle independent of n may always be
obtained. This is precisely the problem we have considered in [5]: we study in
which cases the separating angle can be guaranteed to be bounded by below,
and consider also the similar problem for c colors.

Somehow surprisingly, the shape of the objects happens to be a crucial issue;
for example, any c-colored set of isothetic squares can be separated using sepa-
rating vectors such that the angle between any two of them is at least π/(2c−2),
while for disks the situations is quite different, as the angle between separating
vectors may be required to be arbitrarily small. We will discuss as well some
algorithmic issues on these problems.

Matching with Squares

Let C be a class of geometric objects and let P be a point set with n ele-
ments p1, . . . , pn in general position, n even. A C-matching of P is a set M =
{C1, . . . , Ck} of elements of C, such that every Ci contains exactly two elements
of P . If all the elements of P belong to some Ci, M is called a perfect matching. If
in addition all the elements of M are pairwise disjoint we say that the matching
M is strong. If we define a graph GC(P ) in which the vertices are the elements
of P , two of which are adjacent if there is an element of C containing them and
no other element from P , a perfect matching in GC(P ) in the graph theory sense
corresponds naturally with our definition of GC(P )-matchings.

� Research partially supported by Projects MCYT-FEDER BFM20033-0368 and Gen.
Cat 2005SGR00692.
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If C is the set of all isothetic squares, M will be called a square-matching
and the graph GC(P ) is the Delaunay graph for the L1 (or the L∞) metric. We
prove that there is always a square-matching, which translates to these graphs to
contain a perfect matching. In fact we have obtained a stronger result, namely
that these graphs contain a Hamiltonian path, a question that remained un-
solved since it was posed by Dillencourt [4], who proved the existence of perfect
matchings in Delaunay triangulations for the Euclidean metric, i.e., that point
sets always admit circle-matchings. On the other hand, the problem of deciding
whether a point set admits a strong square-matching has recently been proved
to be NP-hard [2].

The results we present were developed in [1], where this class of problems was
introduced and studied on the light of geometric matchings.

Tiny Squares

We call a function I : Z2 → {0, 1} a binary image. We call the elements of Z2

pixels and we say that a pixel p is black (respectively, white) if I(p) = 1 (respec-
tively, I(p) = 0). Taking the pixels as vertex set and the natural definitions of
4-neighbourhood and 8-neighbourhood the graphs G4 and G8 are obtained. For a
given image I, its black and white pixels induce subgraphs that we denote B4(I)
and W4(I), and B8(I) and W8(I) respectively. For a, b ∈ {4, 8} we say that an
image I is Ba,Wb-connected if the graphs Ba(I) and Wb(I) are each connected,
that is, each has a single connected component.

In the paper [3] we consider for both graphs a local modification operation
on binary images in which a black pixel p and a white pixel q can interchange
their colours when they are neighbours, and we prove that, for any (a, b) ∈
{(4, 4), (4, 8), (8, 4), (8, 8)}, any two Ba,Wb-connected images I and J each with
n black pixels can be converted into the other with a sequence of O(n2) 8-local
interchanges if (a, b) ∈ {(4, 8), (8, 4), (8, 8)} and O(n4) 8-local interchanges if
(a, b) = (4, 4).
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Abstract. We describe a very simple idea for designing approximation
algorithms for connectivity problems: For a spanning tree problem, the
idea is to start with the empty set of edges, and add matching paths
between pairs of components in the current graph that have desirable
properties in terms of the objective function of the spanning tree prob-
lem being solved. Such matching augment the solution by reducing the
number of connected components to roughly half their original number,
resulting in a logarithmic number of such matching iterations. A logarith-
mic performance ratio results for the problem by appropriately bounding
the contribution of each matching to the objective function by that of
an optimal solution.

In this survey, we trace the initial application of these ideas to travel-
ing salesperson problems through a simple tree pairing observation down
to more sophisticated applications for buy-at-bulk type network design
problems.

1 Introduction

Approximation algorithms have been traditionally designed and taught on a
problem-by-problem basis; Surveys (e.g., [6]) and recent courses and books
(e.g., [13]) have approached the area in this way by mainly classifying key
results based on a problem-specific basis. As the field matures to provide a rich
variety of results, commonalities can be identified to highlight key techniques
that become repeatedly useful.

In this survey, we point to one such extremely simple technique that we term
MBA, an acronym for Matching Based Augmentation. The two salient features
that determine the applicability of the method are that the problem at hand
must be a connectivity problem where one tries to connect up various demands
(either among themselves or to a common root) in a network, and that the
optimal solution can be used to identify an appropriate polynomial-time solv-
able augmenting subproblem that is a variant of matching. Since the method
proceeds by finding such matching iteratively and adding them to augment the
solution, the approximation ratio is typically bounded by the number of iter-
ations of the process; Furthermore, since the cost paid by the augmentation
� Supported in part by NSF grant CCF-0430751 and ITR grant CCR-0122581 (The
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in each iteration is bounded with respect to the optimal, the method of proof
of the performance ratio is primal-based, without relying on any new (lower)
bounds on the (minimization) problem to argue the guarantee. Finally, since
each augmentation proceeds by matching up components of the current solu-
tion, the number of iterations before there is one single component and hence
a feasible solution, is logarithmic in the number of demand points that need to
be connected. This explains why most approximation algorithms based on this
method have logarithmic performance ratio.

We have structured this survey chronologically by describing the applications
of the method in the order of their first (typically conference or technical report)
publication. In this order, the classic paper of Christofides [2] is the first paper
of the sequence to contain most features of the MBA idea: the missing idea is
the iterative augmentation. The ATSP approximation of Frieze et al. [3] uses
the MBA idea in it complete form to obtain a logarithmic approximation for
metric ATSPs. We review these two results in the next section. In the following
section, we trace our own work in a series of papers [7, 10, 12, 8, 11] that use this
idea in various contexts for NP-hard undirected spanning tree problems. In the
next section, we review some more sophisticated uses of the method to solve
generalizations of basic connectivity problems so as to route flow under concave
cost functions [9, 1, 5]. We close by summarizing the method.

2 The Early Applications

The roots of the matching based augmentation method can be traced back to
Christofides’ 3

2 -approximation algorithm for the traveling salesperson problem
on undirected graphs with metric costs. Recall that in this problem, we are given
an undirected (without loss of generality, complete) graph with nonnegative costs
obeying the triangle inequality on the edges, and the goal is to find a TSP tour
(Hamiltonian cycle that visits every vertex exactly once) of minimum total edge
cost.

2.1 Christofides’ Algorithm for Metric TSP

Christofides’ heuristic [2] first computes a spanning tree T on the graph G. Next,
we observe by a simple parity argument on the sum of all degrees in any graph
that the number of odd-degree nodes is even. Applying this to the tree T , we
see that the number of nodes of odd degree in T is even. We now consider the
induced (complete) subgraph on only the odd-degree nodes of T and compute a
perfect matching M on this (even-sized) set. Now T ∪M is a connected graph
of even degree, which implies that it is Eulerian. An Euler tour of this graph
can be shortcut to yield a TSP solution of no higher value (using the triangle
inequality property of the metric costs).

While it is clear that the MST T has cost at most that of an optimal tour,
bounding the cost of M with respect to an optimal TSP tour requires a little
work. Consider an optimal tour and induce it on the odd-degree nodes of T
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(short-cutting over the even degree nodes of T ). This tour, by the triangle in-
equality, has cost no more than that of the optimal solution. This induced tour
is on an even sized set (by the earlier observation) and hence can be exactly
decomposed into two disjoint matchings. The cheaper of these two matchings
has cost at most half that of an optimal solution. This in turn upper bounds
the cost of the minimum-cost matching M we found on the odd-degree nodes.
Overall, the 3

2 performance ratio is proved.
The key step in the algorithm is to augment the initial tree T by a matching M

which can be appropriately bounded by a fraction of the cost of the optimal tour
solution. In this way, this algorithm lays out the idea of augmenting a current
solution with a matching the cost of which can be bounded by comparing it
with an optimal solution. As we shall see, this is the underlying idea of the
MBA method.

2.2 The FGM Algorithm for Metric ATSPs

Next, we consider an algorithm due to Frieze, Galbiati and Maffioli [3], hence-
forth referred to as the FGM algorithm for the asymmetric version of the TSP
problem. In this version, a complete directed graph is given with arc costs that
are not necessarily symmetric but obey the triangle inequality, and the goal is to
find a traveling salesperson directed tour (that visits each vertex exactly once)
of minimum total arc cost.

The FGM algorithm is a “greedy” augmentation algorithm that adds arcs to
the solution in iterations. It starts with an empty graph in which each node is a
singleton component. In each iteration, it adds a collection of cycles that merge
these components into larger components. In particular, in the first iteration, it
computes a minimum cost directed cycle cover of the nodes and adds it to the
solution. This merges the nodes into cycles, and for each cycle a representative
node is chosen. In the next iteration, only the induced complete digraph on
the representative nodes is considered and a minimum cost cycle cover on the
representative nodes is computed and added to the solution. This merges the
set of representative nodes (and hence their respective components) in a cycle
into a larger component. Notice that every component is strongly connected and
Eulerian (every node has indegree equal to outdegree). This proceeds in every
iteration by first identifying a representative node in each Eulerian component
and computing a minimum cost cycle cover on these representatives to merge
components into larger Eulerian components. Finally, when all nodes are in one
Eulerian component, we can shortcut an Eulerian tour on all the edges into a
Hamiltonian tour of no higher cost using the triangle inequality on the costs.

Two simple observations prove the performance guarantee of log2 n for the
FGM algorithm on a graph with n nodes: (i) In each iteration the Eulerian
components at least halve in number; This is a simple consequence of the fact
that every cycle in a cycle cover has length at least two leading to every Eulerian
component merging with at least one other such component. (ii) The cost of the
cycle cover added in any iteration is at most that of a minimum TSP tour; This
follows as a simple consequence of the fact that the minimum TSP tour induced
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on the representative nodes in any iteration (and shortcut over the other nodes)
is a feasible solution to the cycle cover problem for that iteration, and hence
the minimum cover computed has cost no more than that of this optimal TSP
solution. Putting these two observations together, we see that the approximation
ratio of the FGM algorithm is bounded by the number of iterations, which in
turn is at most log2 n.

The FGM algorithm has all the salient features of the MBA idea: (i) Construct
the solution by iterative augmentation using a matching based routine in each
iteration (Note that a cycle cover problem on a digraph G = (V,A) is solved
by an assignment problem on an auxiliary bipartite graph with node bipartition
(V1, V2), each of the parts being a copy of V , and edges u1, v2 for every arc u, v
in A). (ii) The cost of the augmenting solution in each iteration is bounded by
that of the optimal by identifying the appropriate matching subproblem to solve
the augmentation problem. The overall performance ratio is then proportional
to the number of iterations.

3 A Tree Pairing Lemma and Its Applications

In our own work, the MBA method took shape in an unintended context, namely
in deriving an approximation algorithm for the node-weighted Steiner tree prob-
lem. The conference version of our work [7] proved the performance ratio of the
greedy algorithm therein via a simple pairing argument on an even number of
nodes in a tree. We recall that here.

Lemma 1. Let T be a tree and M be an even subset of the nodes of T . There
exists a pairing (loosely a ”matching”) of the nodes of M such that the paths
between the pairs in T are edge-disjoint.

Proof: For a pair (u, v) define the length of the pair to be the number of edges
(hops) in T between u and v, The pairing that minimizes the total length has
the claimed property. Suppose for a contradiction, two pairs in such a pairing,
say (u1, v1) and (u2, v2) have a common edge e in their paths in T : Breaking
up the pairing and re-pairing them using only the paths until e results in a new
pairing that reduces the total length of the resulting pairing, contradicting our
choice of the pairing.

While being immaterial to our subsequent application of the above lemma,
the above proof suggests a constructive method for finding such a pairing: Start
with any pairing and repeatedly pick any two pairs that overlap and re-pair them
until there are no more such pairs. Since the total length of the pairing reduces
at each re-pairing, it is not hard to argue polynomial time termination. Other
alternate algorithmic approaches that work include using a minimum length
perfect matching procedure on the marked nodes.

3.1 A logarithmic Approximation for MST

We can now use the above lemma to design a simple (but somewhat ridicu-
lous) algorithm for approximating the cost of a minimum spanning tree in an
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undirected graph. While there are simple (Kruskal’ and Prim’s) and even linear
time exact algorithms for this problem, the approximation algorithm illustrates
some general principles that will explain our subsequent algorithms.

The idea for the approximation is to build the spanning tree in iterations
starting with the empty set of edges; The aim is to reduce the number of con-
nected components at the end of each iteration to a constant fraction (typically
half) of the number at the beginning of the iteration. For spanning trees, the
simplest way to accomplish this is to ensure that every component connects with
at least one other component via the edges added in a typical iteration.

How can one arrive at the polynomial time subproblem that accomplishes the
component reduction but whose solution can be bounded against an optimal
solution? This is the crux of applying the MBA method and the answer depends
on the problem at hand.

Let’s develop some common notation that will be useful for the rest of this
section. Let the total number of iterations for the MBA based algorithm be de-
noted by τ (typically, τ = O(log n)). In iteration t ∈ {1, 2, . . . , τ}, let the set of
edges added to augment the solution be denoted Et, and let the set of connected
components at the end of this iteration be denoted Ct with the connected com-
ponents labeled Ct(1), Ct(2), . . . , Ct(kt), where kt is the number of connected
components in Ct. For example, C0 = V with k0 = |V | = n, while Cτ is one single
connected component with kτ = 1.

To return to the question about the subroutine to employ at each iteration, we
reason as follows: Consider an optimal MST, T ∗ say, and at the start of iteration
t + 1, we look at the components of Ct and contract them to supernodes in T ∗.
The edges of T ∗ now form a potentially cyclic set of edges with some self loops
and multiedges on the node set Ct. We can remove cycles (and self-loops) to
finally get a tree (call it T ∗(t)) on this set of supernodes that use only edges of
T ∗ and hence of total cost no more than the optimum. Now we can apply the
tree pairing lemma to T ∗(t) (Assume for now that the number of supernodes
in T ∗(t) is even for otherwise we can omit an arbitrary supernode). The tree-
pairing lemma shows how the supernodes can be paired off using edges of T ∗

and be connected between these pairs. The resulting matching problem that can
be used to solve the resulting connection problem is to connect each component
of Ct with another at minimum total cost of all such pairwise connections. Note
that even though the original costs may not be metric, we can use a metric
completion between supernodes in solving this matching problem: Indeed, if an
edge used in the matching is not a direct edge but one in the metric completion,
we can use the path of this cost to connect the two endpoints, satisfying the
connectivity feasibility requirement of this iteration.

To summarize, in iteration t + 1, we compute the metric completion of the
supernodes in T ∗(t) and solve a minimum cost perfect matching problem (as-
suming the number of supernodes in it is even). For every edge in the matching,
we add the path in the graph of this cost during this iteration. The following
two lemmas are now immediate.

Lemma 2. The number of iterations of the MBA-based algorithm is O(log n).



18 R. Ravi

The proof follows from the observation that all but one component are paired
off in every iteration this reducing the number of components in any iteration
by at least a fraction of 2

3 . Starting with |V | = n components, the number of
iterations is bounded as above.

Lemma 3. The cost of edges added at every iteration at most that of an optimal
solution T ∗.

The proof of this lemma uses the metric completion on the components of Ct and
using the induced solution T ∗(t) and the tree-pairing lemma on it, identifies a
matching of cost at most T ∗(t) that pairs up the components. Since a minimum
cost perfect matching subroutine finds such a pairing of minimum cost, its cost
is no more that that of T ∗(t) as stated.

Putting the above two lemmas together and observing that at the end of
the last iteration, we have added a set of edges that form a single connected
component, we can delete edges as required to get a final spanning tree of cost no
more than the number of iterations times that of T ∗. Along with the observation
that the subproblem we set up at each iteration is polynomial-time solvable we
have the following theorem.

Theorem 1. The MBA-based algorithm using a minimum cost perfect matching
subroutine at each iteration outputs a spanning tree of total cost O(log n) times
the minimum.

Since the tree pairing lemma works only on a subset of nodes, the results in
the following sections all apply to finding Steiner trees that connect a subset of
the nodes (called terminals) rather than the whole node set as in a spanning
tree. We restrict our discussion to spanning trees for the sake of simplicity and
reduced notation, but note that the O(log n) factors in the treatment below is
typically reduced to O(log k) where k is the number of terminals in the Steiner
tree problem.

3.2 Degree Bounded MSTs

The first problem using the MBA framework is the degree-constrained minimum
spanning tree problem: Given integer degree budgets Bv > 0 for every vertex
v of an undirected graph with nonnegative edge costs, the goal is to find a
spanning tree of minimum total cost obeying all the degree bounds (if it exists),
i.e., the degree of node v in the tree is at most Bv. This problem generalizes
minimum-cost TSP paths by setting the budget to one at the endpoints and
two elsewhere. Furer and Raghavachari [4] used a matching based approach
to derive the first approximation algorithm for a special case of the problem
with all edge costs being either one or infinity (the unweighted graph case),
and the solution output by their method used a degree-constrained subgraph
subroutine to get an O(log n) approximation ratio for all the degree budgets
simultaneously (i.e., if Bv is feasible for all v, their solution has degree O(log n ·
Bv) at v for all v. Their algorithm can be seen as an early application of the
MBA method.
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The degree constrained MST problem was first addressed in our work [10]
where the tree-pairing lemma was used to identify a matching subproblem to
connect up components in each iteration 1.

The algorithm in [10] follows the same outline as that for MSTs in the previous
subsection. The subroutine at each iteration must be tailored to add a subgraph
that induces degree no more than about Bv at any node v, and has cost no
more than that of an optimum solution, while merging components in pairs.
The resulting matching problem turns out to be a bit more sophisticated than
that for MST as expected since it handles two different objectives, namely node
degrees and edge costs. The subroutine builds a bipartite graph with the original
nodes on the left part and the current connected components Ct on the right part.
Original graph edges are duplicated to go between each vertex endpoint on the
left part to the component on the right part containing the other endpoint. The
subroutine is now to choose a minimum cost set of edges that have at least one
edge leaving every component (on the right part) but have degree at most say
2Bv at any node v on the left part. The tree pairing lemma guarantees that
the paths between the pairings induce degree at most twice the original degree.
While the counterpart of Lemma 2 is immediate, we have the following version
of Lemma 3.

Lemma 4. The cost of edges added at every iteration at most that of an optimal
solution T ∗, while the degree added to any node v in any iteration is at most 2Bv.

Finally we get the following theorem.

Theorem 2. [10] The MBA-based algorithm using a minimum-cost degree-
constrained subgraph subroutine at each iteration outputs a spanning tree of to-
tal cost O(log n) times that of a minimum cost tree obeying the degree bounds;
Moreover, the spanning tree output has degree at most O(log n · Bv) at node v
for all vertices v.

3.3 Diameter Bounded MSTs

Next, we turn to a “cost-diameter” version of the MST problem: Given a non-
negative length le and a nonnegative cost ce for every edge e of an undirected
complete graph, the goal is to find a cheap tree (in terms of total cost) and also
low diameter (in terms of lengths). In a particular budgeted version of the prob-
lem, we are given a bound L on the total (length) diameter of the spanning tree
to be output and the goal is to find such a spanning tree of minimum total edge
cost. This minimum cost-diameter spanning tree problem can be easily shown
to be NP-hard [8], as is a cost-radius version of the problem. In the cost-radius
version, we are given a root node r, and a bound R on the total length of any
path in the output tree from r to any node (hence the name radius, in terms of

1 While this treatment has been completely worked out in the conference version of
our paper [10], the journal version [12] uses a different greedy approach that can also
handle node weights in a generalized version of the basic problem.
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the length function). We will relate this cost-radius spanning tree problem to a
cost-distance version in the next section.

Let us apply the MBA based method to find a minimum cost-diameter span-
ning tree. At each iteration, we must merge components but with two different
goals in mind: the total cost of the matching paths added in the iteration must
be at most that of an optimal solution, and the diameter of every path added
in the matching should also not exceed the bound L. A further complication
is introduced in keeping the total diameter of the final solution bounded with
respect to L. For this reason, we simple promote one of the two endpoints of the
matched pairs as a representative for its connected component in the next iter-
ation to control the growing radius of the component. Applying the tree pairing
lemma to the set of representatives in an optimal tree (of diameter L and total
cost C∗ say), we can pair the representatives using paths of length at most L
each and of total cost at most C∗.

This leads to the following matching subroutine in each iteration. We have a
set of connected components, each with a representative. We build an auxiliary
graph only on the representatives connecting every pair of representatives by
an edge that represents paths of length at most L. Furthermore, we want the
cost of these paths to be minimum under the length constraint. For this, we
solve a constrained shortest-path problem between this pair of representatives:
in particular, we find the minimum cost of a path of total length at most L
between these representatives. This problem is itself weakly NP-hard but a scaled
adaptation of Djikstra’s algorithm gives a PTAS for this path cost computation
(i.e, we can get a (1 + ε)-approximation to the minimum cost path of length at
most L in polynomial time for any fixed ε > 0). After filling in all these path
costs between representatives, we find a minimum cost perfect matching under
these costs. Note that this pairs up components via their representatives using
paths of length no more than L∗ and nearly minimum total cost.

As in Lemma 2, the guarantee on the number of iterations follows from the
pairing property of the paths added in every iteration. We also have the following
guarantee on the cost and diameter of components at the end of every iteration.

Lemma 5. The cost of edges added at every iteration at most (1 + ε) times
that of an optimal solution T ∗ for some fixed ε > 0, while the diameter of any
connected component at the end of iteration t under the length function is at
most 2tL.

The bound on the diameter follows from an inductive argument while the cost
guarantee is a consequence of the tree-pairing lemma. To obtain the final solu-
tion, we observe that even though the set of edges we may have added may form
cycles, we can choose a minimum radius tree (under the length function) rooted
at the representative of the final component. This tree obeys the bounds in the
next theorem.

Theorem 3. [8] The MBA-based algorithm using a minimum-cost length con-
strained subgraph subroutine at each iteration outputs a spanning tree of total
cost O(log n) times that of a minimum cost tree obeying the diameter bounds;
Moreover, the spanning tree output has diameter at most O(log n · L).
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3.4 Degree and Diameter Bounded Trees

A third application of the tree-pairing lemma to formulate an MBA based ap-
proximation came in the unlikely guise of minimizing the broadcast time in an
undirected graph. In this problem, we are given a undirected graph with a root
node r containing a message to be broadcast to all the nodes in the graph. At
each time step, every node that has a copy of the message can transmit it to
one of the (uninformed) neighbors, in the so-called telephone model. The goal
is to find a scheme for broadcasting the message to all nodes in the minimum
number of time steps. In the first poly-logarithmic approximation algorithm for
this problem [11], we showed how to reduce this problem to one of finding a
spanning tree with simultaneously low diameter and low maximum node degree.
The poise of a spanning tree in an undirected graph captures this notion and is
defined as the sum of the diameter and the maximum degree. A spanning tree of
an undirected graph on n nodes with poise ρ can be used to broadcast a message
from any root node within O( log n

log log n · ρ) time steps.
The problem of finding spanning trees with minimum poise can be attacked

using the MBA method. At each iteration, the matching based subroutine is re-
quire to add paths between matched components that have low diameter (num-
ber of hops) as well as induce low degree on any node in the graph. We can
use the idea of promoting representatives from the previous subsection (for min-
imum cost-diameter spanning trees) to control the diameter of the connected
components at each iteration. Applying the tree-pairing lemma to the represen-
tatives on an optimal tree, we can infer that there is a matching between them
using paths of length at most the optimal poise such that the maximum degree
induced by these paths at node is also at most the optimal poise. This motivates
a corresponding matching problem of pairing up the representatives using short
paths with low congestion at any node.

To set up this problem so as to control for the maximum degree of any node
induced by the set of matching paths, we use ideas from minimizing congestion
in routing integral multicommodity flow, and formulate a linear programming
problem to which we can apply randomized rounding. To summarize, the set of
representatives from the connected components at each iteration are the sources
of multicommodity flow that sinks at any of the other representatives. Further-
more, the length of any of these flow paths is bounded by a given budget (on
the poise). An LP solution to the resulting problem of minimizing the node con-
gestion can be rounded randomly to get a near-optimal integral solution. The
tree-pairing lemma again provides a proof that there is an integral (and hence
LP) solution for the right guess value of the poise with maximum node conges-
tion also at most this poise. The integral rounded solutions can be used to find
appropriate matching paths between components in a way that the diameter
only increases linearly with the number of iterations. A slightly more careful
choice of pairing paths still guarantees the bounds of Lemma 2 while we can get
the following analogue of the cost bounding lemma.

Lemma 6. If there is a tree of poise ρ in the input graph, the LP rounding
method with subsequent careful choice of matching paths induces degree at most
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O(ρ + log n) at any node in each iteration, while the diameter of any connected
component at the end of iteration t under the length function is at most 2tρ.

Noting that the minimum poise of any spanning tree of an n-node graph is
Ω( log n

log log n ), we get the following result.

Theorem 4. [11] The MBA-based algorithm using randomized rounding of a
length-constrained node-congestion minimizing LP at each iteration outputs a
spanning tree of poise O( log2 n

log logn ) times the minimum.

This subsequently leads to the same performance guarantee for the minimum
broadcast time problem as shown in [11].

4 Algorithms Inspired by MBA

In this section, we briefly review two lines of work that have used the MBA
technique but pushed it to a whole new level. While the underlying matching is
recognized as a vehicle to argue the cost incurred by the algorithm by charging it
against an optimal solution, these methods typically employ randomization (in
their simplest versions) to show expected guarantees on the cost of one iteration.
Logarithmic guarantees follow using the same basic line of argument as for the
MBA method.

4.1 Cost-Distance Network Design

The cost-distance network design problem is a variant of the set of distance-
constrained minimum-cost spanning tree problems introduced in Section 3.3. In
this problem, we are given a nonnegative length le and a nonnegative cost ce for
every edge e of an undirected complete graph as well as a root node r. In the
simplest version, the goal is to find a spanning tree that minimizes the sum of
the costs of the edges in the tree (under the c-function) and the distances in the
tree (under the l-function) from the root to all the nodes.

The algorithm given by Myerson et al. [9] for this simple version is to define
a composite weight function that is the sum of the cost and length for each
edge. The algorithm then finds a near-perfect minimum weight perfect matching
(ignoring the root and connecting to it only in the last iteration) and chooses one
of the two endpoints to be a representative for the whole component randomly.
As in the MBA algorithms, these paths are added and the process continues
until a tree is obtained.

As in the MBA method, the proof of performance ratio proceeds by showing
that the expected cost of eventually connecting all the vertices to the root via the
matching added in one iteration is bounded by a constant factor times that of the
optimal solution. The randomization allows one to argue that as the iterations
proceed that the subproblems on the representatives (which can be thought of
as aggregating the demand of all nodes in its component) has expected cost at
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most that of an optimal solution. Using a similar line of proof as in the MBA
method, a performance ratio of O(log n) follows for this algorithm.

A derandomization of the method along with links to the integrality gap
of a natural LP relaxation was provided in [1]. This derandomizing procedure
proceeds via the method of conditional probabilities using an LP relaxation;
The underlying matching problem is solved motivated by an argument that can
be viewed as a more sophisticated matching version of the tree pairing lemma
arising in the context of the new composite cost function.

4.2 Simultaneous Optimization for Concave Costs

A further generalization was studies by Goel and Estrin in [5]. In this version,
we are given an undirected graph with a root r and a nonnegative cost ce for
every edge e. The goal is to find an “aggregation” tree that collects information
from all the nodes to the root. The cost of the tree depends on the aggregation
functions on the edges. Let f be a real-valued function defined on non-negative
real numbers that is concave and nondecreasing. The cost of an edge e is then
cef(flowe) where flowe is the flow routed through e, in this case the total
number of nodes in the subtree under e, when the solution is rooted at r.

Goel and Estrin use a variant of the MBA method to prove a surprising result:
There is a tree that is simultaneously near-optimal for all concave aggregating
functions for a given undirected graph with costs. This tree is none other than
a MBA-based tree constructed in iterations based on the cost function c on the
edges. Assuming that the number of nodes n is a power of two. This method
simply finds a minimum-cost perfect matching on the nodes and chooses one
endpoint as a representative with probability half, and continues until all nodes
are connected in a spanning tree.

The proof of performance of this aggregating tree for any fixed concave aggre-
gating function proceeds in a similar way as for the cost-distance problem. First,
the expected cost of the rerouted instances is bounded by that of the optimal.
Second, the expected aggregated routing cost of the matching edges added in
each iteration is bounded by the cost of the optimal solution. To prove the result
for general functions, the method employed is to carry out the analysis in terms
of some basis aggregation functions (also called ”atomic” functions in [5]) that
aggregate linearly up to some power of two. Any concave aggregating function’s
cost is written as a scaled contribution from an appropriate basis function, which
are then used in a style similar to that for a fixed function to argue the final
result. At this level, while the basic algorithm and outline of the proof technique
(using an optimal solution to bound expected cost of the current augmenta-
tion) are as in the MBA based methods, this application requires a much more
involved argument.

5 Summary

We have reviewed various applications of a simple construction heuristic idea
with the augmentations coming from a matching-like subroutine that is inspired
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by a very simple tree-pairing lemma. Recent refinements replace the tree-pairing
with a randomized demand redistribution for reallocation of the cost of the
current iteration to that of an optimal solution. The simple idea of using an
optimal solution appropriately to derive an augmentation of the solution has
been effectively used in a variety of contexts, but we hope the reader is left with
a sense of commonality in these applications for network design problems.
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Modelling Errors and Recovery
for Communication

Madhu Sudan

MIT, Cambridge, USA

The theory of error-correction has had two divergent schools of thought, going
back to the works of Shannon and Hamming. In the Shannon school, error is
presumed to have been effected probabilistically. In the Hamming school, the
error is modeled as effected by an all-powerful adversary. The two schools lead
to drastically different limits. In the Shannon model, a binary channel with error-
rate close to, but less than, 50% is useable for effective communication. In the
Hamming model, a binary channel with an error-rate of more than 25% prohibits
unique recovery of the message.

In this talk, we describe the notion of list-decoding, as a bridge between the
Hamming and Shannon models. This model relaxes the notion of recovery to
allow for a ”list of candidates”. We describe results in this model, and then show
how these results can be applied to get unique recovery under ”computational
restrictions” on the channel’s ability, a model initiated by R. Lipton in 1994.

Based on joint works with Venkatesan Guruswami (U. Washington), and with
Silvio Micali (MIT), Chris Peikert (MIT) and David Wilson (MIT).
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Abstract. This plenary talk gives an overview of recent joint work with
G. Caire and S. Shamai on the use of linear error correcting codes for
lossless data compression, joint source/channel coding and interactive
data exchange.

1 Summary

Over the last five decades, significant inventions have led to data compression and
data transmission systems whose efficiency approaches Shannon’s fundamental
limits [1]. Error-correcting codes now exist (i.e. sparse-graph linear codes) that
can achieve performance close to channel capacity with complexity and delay
that are tolerable for many applications. Similarly, lossless data compression
algorithms exist (most notably the Lempel-Ziv algorithm) that can provably
achieve the entropy rate of a wide class of sources with very low complexity.
Curiously, although Shannon’s development of the theories of fundamental limits
for data compression and transmission shared very strong commonalities, there
has been essentially no intercourse between the respective constructive theories
throughout their long histories.

While Shannon’s separation principle establishes no loss in asymptotic perfor-
mance when compression and transmission are performed separately, it has long
been expected (but not fully realized) that, in the nonasymptotic regime, gains
may accrue by joint design. Furthermore, in systems such as packet-oriented
wireless high data rate systems, it is sometimes cumbersome to design systems
based on the separation principle.

Lossless data compression algorithms find numerous applications in infor-
mation technology, such us packing utilities (e.g. gzip), modem standards, fax
standards, back-end of lossy compression algorithms (e.g. JPEG and MPEG),
and compression of headers of TCP/IP packets in wireless networks.

Indeed, the field of lossless data compression has achieved a state of maturity,
with algorithms that admit fast (linear-complexity) implementations and achieve
asymptotically the fundamental information theoretic limits.

The availability of linear codes (such as the low-density parity check codes)
that allow for very efficient encoding/decoding algorithms while operating near
the Shannon limit makes their application in data compression competitive with
state-of-the-art methods while not suffering from some of their shortcomings.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 26–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A series of recent papers [2, 3, 4, 5] presents a new approach to universal noise-
less compression based on error correcting codes. The scheme is based on the
concatenation of the Burrows-Wheeler block sorting transform (BWT) with the
syndrome former of a Low-Density Parity-Check (LDPC) code. The proposed
scheme has linear encoding and decoding times and uses a new closed-loop itera-
tive doping (CLID) algorithm that works in conjunction with belief-propagation
decoding.

Alternatively, fountain codes can replace the LDPC codes [6] to provide a
streamlined design which is ideally suited for variable-length lossless compression.

One of the incentives to use error correcting codes for data compression is the
natural extension of the schemes to joint source/channel encoding and decoding.
Schemes for that purpose are explored in [7].

Building upon Slepian-Wolf coding [8] , sparse-graph codes, belief propaga-
tion, and closed-loop iterative doping, new schemes for interactive data exchange
between two agents who want to communicate losslessly their respective infor-
mation via several rounds of communication are proposed in [9].
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The Power and Weakness of Randomness in
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Humanity has grappled with the meaning and utility of randomness for centuries.
Research in the Theory of Computation in the last thirty years has enriched this
study considerably. We describe two main aspects of this research on randomness,
demonstrating its power and weakness respectively.

Randomness is Paramount to Computational Efficiency. The use of
randomness can dramatically enhance computation (and do other wonders) for a
variety of problems and settings. In particular, examples will be given of proba-
bilistic algorithms (with tiny error) which are exponentially faster than their
(best known) deterministic counterparts, and probabilistic algorithms which
achieve significant space savings over deterministic ones. Other settings in-
clude distributed algorithms where randomness (provably) achieves exponen-
tially smaller congestion than deterministic ones. Finally we’ll show that using
randomness, proof systems can be enhanced to allow properties unattainable
without it. Letting the verifier and prover toss coins, proof systems can allow
spot checking of proofs (PCPs - a central tool in the theory of approximation),
as well as zero-knowledge proofs (proofs revealing nothing except their validity
- a central tool in cryptography).

Computational Efficiency is Paramount to Understanding Random-
ness. We explain the computationally-motivated definition of randomness, and
try to argue its merits as the “right” definition. The central idea is “computa-
tional indistinguishability” - declaring a distribution pseudorandom if it cannot
be distinguished from the uniform distribution by any efficient procedure (in a
given class, say time or space bounded algorithms). It is evident, almost by def-
inition, that such pseudorandom distributions are as good as uniform as sources
of randomness for probabilistic algorithms in the given class. We then demon-
strate the remarkable fact, known as the “hardness vs. randomness paradigm”
that such pseudorandomness may be generated deterministically and efficiently,
from (appropriate) computationally difficult problems. This leads to a deter-
ministic “derandomization” of any given probabilistic algorithm, which is not
much slower. Consequently, randomness is probably not as powerful as it seems
above.

For a comprehensive text on probabilistic algorithms the reader is refered to
[MR]. For a thorough discussion of both probabilistic proof systems, as well as
pseudorandomness, the reader is refered to [G].
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Abstract. We present an algorithm to compute a greatest common di-
visor of two integers in a quadratic number ring that is a unique fac-
torization domain. The algorithm uses O(n log2 n log log n + Δ

1
2+ε) bit

operations in a ring of discriminant Δ. This appears to be the first gcd
algorithm of complexity o(n2) for any fixed non-Euclidean number ring.
The main idea behind the algorithm is a well known relationship between
quadratic forms and ideals in quadratic rings. We also give a simpler ver-
sion of the algorithm that has complexity O(n2) in a fixed ring. It uses
a new binary algorithm for reducing quadratic forms that may be of in-
dependent interest.

Keywords: gcd, quadratic number ring, quadratic form reduction.

1 Introduction

Given a squarefree integer d �= 1, let Zd denote the ring of integers in the
quadratic number field Q(

√
d). The prototypical example is the Gaussian integers

Z−1 = {a + bi | a, b ∈ Z}. When Zd is a unique factorization domain (UFD),
the greatest common divisor (gcd) of two elements in Zd always exists and is
unique up to multiplication with a unit. Zd is known to be a UFD for precisely
9 values of d < 0 (complex quadratic rings), but it is unresolved whether Zd is
a UFD for infinitely many d > 0 (real quadratic rings) [7].

We consider the following problem. On input α, β ∈ Zd, where Zd is a UFD,
compute a gcd of α and β. We consider the problem for both a fixed ring, and
when Δ the discriminant of the ring is given as part of the input (Δ is d or 4d).

1.1 Earlier Work

Greatest common divisor is a basic concept in number theory. The problem of
computing the gcd is as old as number theory since many computational number
theory problems require gcd or extended gcd. Euclid presented an algorithm to
compute the gcd of rational integers in 300 B.C. [9]. The rings in which one can
construct a similar algorithm are called Euclidean rings. These do not include
� Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation.
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all quadratic number rings that are UFD’s, but a fairly complete list of all
known Euclidean number rings can be found in [13]. However, for some of the
Euclidean rings it is not clear if the Euclidean algorithm runs in polynomial time.
For the integers, Lehmer presented an improved version of complexity O(n2)
[12], and Schönhage gave a version of complexity O(n log2 n log logn) [15]. The
latter algorithm was generalized to Euclidean complex quadratic number rings
by Weilert [21].

A different class of algorithms to compute gcd comes from the binary gcd
algorithm [19]. Simple and practical generalisations of the binary gcd algorithms
are known for some complex quadratic number rings including a non-Euclidean
ring [20,5,1]. The running time of all these algorithms is O(n2) with small con-
stants hidden under the big-oh notation. Wikström [22] has shown that one can
extend the binary gcd algorithm to all number rings that are UFD’s. The com-
plexity of the algorithm is O(n2) in a fixed ring. The dependence of the ring is
not made explicit in the runtime analysis.

Kaltofen and Rolletschek [8] gave an O(n2) algorithm to compute gcd in any
fixed quadratic ring This algorithm appears difficult to implement and the size
of constants under the big-oh notation is not small [8,20].

1.2 Results

We present a gcd algorithm applicable for all quadratic number rings that are
UFD’s. The algorithm has complexity O(n log2 n log logn) assuming a fixed ring.
If the ring is not fixed, we assume that the discriminant Δ is given as part of the
input. The complexity of the algorithm is still O(n log2 n log logn) for complex
quadratic rings, but for real quadratic rings it takes O(n log2 n log log n+Δ

1
2 +ε)

time.
For the complexity bound of O(n log2 n log logn), the algorithm needs to

use similar bounds for integer multiplication, extended integer gcd and reduc-
tion of quadratic forms [16,15,17]. Though the corresponding algorithms are the
best known with respect to asymptotic complexity, they may be impractical for
moderate input sizes. We give an alternative version of our algorithm of com-
plexity O(n2 + Δ1+ε). We believe it may be more practical than the known
general algorithms of complexity O(n2) [8,22]. It uses a “binary” algorithm of
complexity O(n2) for reducing quadratic forms, which may be of independent
interest.

1.3 Main Idea of Algorithm

Let α and β be integers in some quadratic ring that is a UFD. Computing a gcd
of α and β is the same as computing a generator of the ideal generated by α
and β. Every ideal can be viewed as a module and for every ideal there exists
a module basis such that one of the elements in the basis is a generator of the
ideal. The idea of the algorithm is to compute such a basis. All (ordered) bases
are equivalent up to multiplication by an SL2(Z) matrix, so we simply start by
some basis and look for a transformation that maps our initial basis into one
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containing a generator. To guide this search, we use that each (ordered) basis
for the ideal has an associated quadratic form of the same discriminant as the
ring. We start by finding the form corresponding to our initial basis. It turns out
that we can then easily find an SL2(Z) matrix U taking this form into a reduced
principal form. The same U is then applied to the initial module basis and will
give a basis containing a gcd for α and β.

For complex quadratic rings that are UFD’s, there is only one reduced form
of the corresponding discriminant. Therefore a standard algorithm for reducing
binary quadratic forms suffices to find U . In the case of real quadratic rings there
are in general many reduced forms of a given discriminant. Hence, for such rings,
one must in addition find an SL2(Z) matrix that takes the encountered reduced
form into a principal form.

We illustrate the idea of the algorithm by considering a concrete simple
example, namely computing gcd(α, β) in the ring of Gaussian integers Z[i] for
α = 3− i and β = 4− 2i. First, we compute an ordered module basis [α1, β1] for
the ideal I = (α, β). This may result in α1 = 3 − i and β1 = 2. The associated
quadratic form is Q1 = 5x2 + 6xy + 2y2. Using a standard reduction algorithm

one may find that U =
[
−1 1
1 −2

]
∈ SL2(Z) takes Q1 into the reduced (principal)

form Q2 = x2 + y2. When applying the same transformation U to [α1, β1], one
obtains [α2, β2], where α2 = −1 + i and β2 = −1− i, both of which are gcd’s of
α and β (and associates).

2 Preliminaries

The definitions/facts in this section are found in most books on algebra and/or
algebraic number theory (for example see [11,6,7,4,18]). Most of the concepts are
also covered in [14].

In the following, the letters Q and Z denote the set of rational numbers and
rational integers. The notation SL2(Z) is used to denote the set of all 2 × 2
matrices with entries from Z and determinant 1.

2.1 Quadratic Fields and Rings

Quadratic number fields are of the form Q = Q(
√
d) where d ∈ Z is square-free.

If Z is the ring of integers in Q, then Z = Z[ω] where

ω =

{√
d if d ≡ 2, 3 (mod 4)

1+
√

d
2 if d ≡ 1 (mod 4)

Any θ ∈ Q is of the form q1 + q2
√
d where q1, q2 ∈ Q. If θ is also an element of

Z, then θ can be written as a1 + a2ω where a1, a2 ∈ Z. The discriminant Δ of
the field Q (or the ring Z) is,

Δ =

{
4d if d ≡ 2, 3 (mod 4)
d if d ≡ 1 (mod 4)
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Let θ = q1 + q2
√
d ∈ Q. The number, θ̄ = q1 − q2

√
d is the conjugate of θ. The

norm of θ is N(θ) = θθ̄ = q2
1 − dq2

2 . An element ν ∈ Z is a unit if 1
ν ∈ Z. A unit

ν ∈ Z is also characterized by N(ν) ∈ {−1, 1}.
In the following the term “quadratic ring” will always refer to the ring of

integers in a quadratic number field.

2.2 Modules

Let Z be a quadratic ring. Any M ⊆ Z which is closed under addition and
subtraction is a module in Z. A collection of elements {α1, . . . , αk} ∈ M spans
M if for all α ∈ M there exist x1, . . . , xk ∈ Z such that α = x1α1 + · · ·+ xkαk

and we write

M = [α1, α2, . . . , αk] =
[
m11 m12 · · · mk1
m21 m22 · · · mk2

]
where αj = m1j +m2jω .

A collection of elements {α1, . . . , αk} ∈ M is linearly independent (over Z) if
x1α1 + · · ·+xkαk = 0 and x1, . . . , xk ∈ Z imply that all xi are zero. A collection
of elements {α1, . . . , αk} ∈ M is a basis for M if α1, . . . , αk span M and are
linearly independent. All bases for a module has the same number of elements
and that number is called the dimension of the module.

2.3 Ideals and Bases

Let Z be a quadratic ring. A set I ⊆ Z is an ideal of Z if I is a module and
αI ⊆ I for all α ∈ Z. A collection of elements {α1, . . . , αm} ∈ I generates I, if
for all α ∈ I there exist β1, . . . , βm ∈ Z, such that α = β1α1 + · · ·+ βmαm and
we write

I = (α1, . . . , αm) .

A principal ideal is an ideal generated by a single element. When the quadratic
ring Z is a UFD then all ideals in Z are principal.

Proposition 1. An ideal has dimension two when regarded as a module. Thus if
I is an ideal in Z, then there exists α = a1 +a2ω and β = b1 + b2ω in I such that,

I = Zα + Zβ = [α, β] =
[
a1 b1
a2 b2

]
.

Let I = [α, β] be an ideal in Z. The module basis [α, β] is an ordered basis of I if
det([α, β]) > 0. The norm of I is the number of elements in Z/I and is denoted
by N(I) and when [α, β] forms an ordered basis for I,

N(I) =
ᾱβ − αβ̄

ω − ω̄
= det[α, β].
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If I is a principal ideal generated by γ, then N(I) = |N(γ)| and [γ, ωγ] forms
a module basis for I.

There is a natural SL2(Z)-action on ordered module-bases, given by [α, β]U =

[tα + vβ, uα + wβ] for U =
[
t u
v w

]
∈ SL2(Z). The action of SL2(Z) does not

change the ideal, and all ordered bases for a specific ideal are equivalent under
the action. In particular

Proposition 2. Let [α, β] be an ordered module basis for a principal ideal I=(γ)
in Z. There exists U ∈ SL2(Z) such that [α, β]U is the ordered basis among
[γ,±ωγ].

2.4 GCD and Principal Ideals

Let Z be a quadratic ring, and let α, β ∈ Z. If αβ �= 0 then a non-zero element
γ ∈ Z is a greatest common divisor (gcd) of α and β if

i. γ|α and γ|β, and
ii. for any δ ∈ Z\{0}, if δ|α and δ|β, then δ|γ.

For any α �= 0, gcd of α and 0 is defined to be α.

Proposition 3. Let Z be any quadratic number ring that is a UFD and let
α, β ∈ Z. Then γ is a gcd of α and β iff γ is a generator of the ideal generated
by α and β.

2.5 Quadratic Forms

Let Δ ∈ Z \ {0}. A primitive integral binary quadratic form of discriminant Δ
(henceforth forms of discriminant Δ or simply forms) is a polynomial Q(A,B,C)
= Ax2 +Bxy + Cy2 ∈ Z[x, y], for which gcd(A,B,C) = 1, B2 − 4AC = Δ and
if Δ < 0 then A > 0. The form Q(A,B,C) is said to be reduced if

|
√
Δ− 2|A|| < B <

√
Δ if Δ > 0

|B| ≤ A ≤ C
B ≥ 0 if |B| = A orA = C

}
if Δ < 0

The group SL2(Z) acts on the right on Z[x, y] as a group of ring automorphisms

given by xU = tx+uy and yU = vx+wy for U =
[
t u
v w

]
∈ SL2(Z) transforming

the set of forms of discriminant Δ into itself, i.e.

(Ax2 +Bxy + Cy2) U = A(xt + uy)2 +B(xt + uy)(xv + yw) + C(xv + wy)2.

Two forms are said to be equivalent if they can be transformed into each other
by elements of SL2(Z). Every form is equivalent to a reduced form.
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3 Overview of the Algorithm

To compute the gcd of α and β, it suffices by Proposition 3 to compute a gen-
erator γ for the ideal generated by α and β. It turns out to be easy to find
an ordered module basis [α1, β1] for the ideal (α, β). We would be done, if we
could find some U ∈ SL2(Z) such that [α1, β1]U = [α2, β2], where α2 alone is
a generator of the ideal. Proposition 2 guarantees that such a U always exists.
The basic idea of the algorithm is to find a suitable U by using a well studied
relationship between ideals and quadratic forms.

Proposition 4. [14, sect. 3] or [4, ch.12] Let Z = Z[ω] be the quadratic ring of
integers with discriminant Δ. Let [α, β] be an ordered basis for an ideal I in Z.
The form

Q
(
[α, β]

)
=

N(xα + yβ)
N(I)

=
N(α)
N(I)

x2 +
N(α + β)−N(α)−N(β)

N(I)
xy +

N(β)
N(I)

y2

is a primitive integral form of discriminant Δ.

To make use of this relationship, we need several facts. Firstly, the action of
SL2(Z) commutes with the mapping from ideals to forms.

Lemma 1. Let [α, β] be an ordered basis for an ideal I in Z, the quadratic ring
of integers with discriminant Δ. Let U ∈ SL2(Z) be arbitrary. Then,

Q
(
[α, β]

)
U = Q([α, β]U) .

Proof. Let U =
[
t u
v w

]
∈ SL2(Z). It suffices to note that

Q
(
[α, β]

)
U =

N((xt + uy)α + (xv + yw)β)
N(I)

=
N(x(tα + vβ) + y(uα+ wβ))

N(I)
= Q([α, β]U)

Secondly, we can recognize a form corresponding to a module basis containing a
generator for the ideal.

Lemma 2. Let [α, β] be an ordered basis for a principal ideal I in the quadratic
ring of integers Z. Let Q

(
[α, β]

)
be the form corresponding to this basis as given

by Proposition 4. Then α is a generator of I iff the coefficient of x2 in Q
(
[α, β]

)
is ±1.

Proof. If α is a generator of I, then N(α) = ±N(I). Thus the coefficient of x2

will be ±1. Conversely if the coefficient of x2 is ±1, then N(α) = ±N(I). If δ is
any generator of I, then N(δ) = ±N(I). Since α ∈ I, α = γδ for some γ ∈ Z.
But as N(α) = ±N(δ), N(γ) = ±1 and hence γ is a unit. Thus α is also a
generator of I.
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To simplify the rest of the article, a form is a principal form if the coefficient of
x2 is ±1. Proposition 2, Lemma 1 and Lemma 2 imply that given a module basis
[α1, β1] for a (principal) ideal, there exist a transformation Up ∈ SL2(Z) such
that the form Q

(
[α, β]

)
Up is a principal form, and the basis [α, β]Up contains

a generator of the ideal, i.e. a gcd. To find such a principal form, we need only
look among reduced forms.

Lemma 3. A principal form is equivalent to a form that is both principal and
reduced.

Proof. Given a principal form Q(A,B,C), ie. A = ±1 for Δ > 0 and A = 1 for

Δ < 0, it suffices to argue that we can find U =
[
1 m
0 1

]
such that Q(A,B,C)U =

Q(A,B + 2Am,C′) is principal and reduced. Q(A,B + 2Am,C′) is clearly prin-
cipal, and using the definition of a reduced form, it follows that there is a unique
integral m such Q(A,B + 2Am,C′) is reduced.

Algorithm 1. Compute gcd in a quadratic number ring Z of discriminant Δ
Require: α, β ∈ Z with α, β �= 0
Ensure: γ = gcd(α, β).
1: Compute an ordered basis, [α1, β1] for the ideal I generated by α and β.
2: Compute a quadratic form Q(A1, B1, C1) corresponding to the basis [α1, β1] using

Proposition 4.
3: Compute a reduced form Q(A2, B2, C2) and a corresponding transformation U1 ∈

SL2(Z) such that Q(A1, B1, C1)U1 = Q(A2, B2, C2).
4: if Δ < 0 let U2 = I .
5: if Δ > 0 Let U2 be a transformation arising from applying � of Proposition 5

repeatedly such that Q(A2, B2, C2)U2 is a principal form.
6: Compute [α2, β2] = [α1, β1]U1U2.
7: return γ = α2.

As a first step towards finding Up, we apply a (standard) reduction algorithm
to the initial quadratic form Q

(
[α1, β1]

)
in order to obtain a transformation Ur

which will reduce it. Lets say that the reduced form is Q(A,B,C). We then use
the following result to find a principal reduced form among the reduced forms
that are equivalent to Q(A,B,C).

Proposition 5. [14, sect. 5] A form of discriminant Δ < 0 is equivalent to
precisely one reduced form.

Let Q(A,B,C) be a reduced form of discriminant Δ > 0. If one applies

the transformation U =
[
0 −1
1 m

]
where m is chosen such that

√
Δ − 2|C| ≤

−B+2Cm <
√
Δ then Q(A,B,C)U = Q(C,−B+2Cm,A−mB+m2C) is also

a reduced form. If we denote by � the action of applying such a U on a reduced
quadratic form, then � is a permutation on the set of all reduced quadratic forms
of discriminant Δ. Two reduced forms are equivalent precisely when they lie on
the same cycle of this permutation.
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Let Q(A,B,C) be a reduced form that is equivalent to a principal form. If
Δ < 0, then Proposition 5 and Lemma 3 imply that Q(A,B,C) is necessarily
also principal. If Δ > 0, then Proposition 5 and Lemma 3 imply that Q(A,B,C)
is on the same cycle as a principal form. Thus if one applies � repeatedly on
Q(A,B,C), one will eventually encounter a principal form.

Broadly the algorithm is as shown in Algorithm 1. In the next section we
consider step 1 and step 3 of the algorithm and the complexity analysis.

4 Implementation and Complexity Analysis

All complexity bounds refer to the number of bit operations. We define the size
of numbers as the number of bits needed for their representation (disregarding
signs). For integer m �= 0 let size(m) = 1+�log |m|�, for α = a+bω let size(α) =
size(a)+size(b) and for Q = Ax2+Bxy+Cy2 define size(Q) = size(A)+size(B)+

size(C). For M =
[
p q
r s

]
, define size(M) = size(p) + size(q) + size(r) + size(s).

4.1 Computing the Module Basis of an Ideal

If I is an ideal generated by α and β, then as a module I is spanned by α, ωα,
β and ωβ, i.e.

I = [α, ωα, β, ωβ] .

One can use a standard basis extraction method [4, sect.4.9] to get a basis for
this module. To make the time analysis explicit we present Algorithm 2.

Lemma 4. Given α and β in the quadratic ring Z[ω] of discriminant Δ, let
n = size(α)+ size(β)+ size(Δ). Algorithm 2 outputs an ordered basis [α1, β1] for
the ideal generated by α and β. Algorithm 2 uses time corresponding to O(1) mul-
tiplications, divisions and extended gcd computations on numbers with O(n) bits.

Algorithm 2. Computing Module Basis of an Ideal
Require: α, β ∈ Z
Ensure: α1, β1 satisfies that [α1, β1] is an ordered basis for the ideal (α, β)
1: Given α = a1 + a2ω and β = b1 + b2ω.
2: Compute ωα = j1 + j2ω and ωβ = k1 + k2ω.

3: Let M =
a1 j1 b1 k1

a2 j2 b2 k2
= [mij ]1≤i≤2,1≤j≤4

4: Assert m21 �= 0. Swap columns of M if needed.
5: for k = 2 to 4 do
6: Compute s, t, g such that g = gcd(m21, m2k) = sm21 + tm2k

7: Let
m11 m1k

m21 m2k
=

m11 m1k

m21 m2k

s −m2k/g
t m21/g

8: let α1 = m11 + m21ω and g1 = gcd(m12, m13, m14)
9: if m21g1 > 0 let β1 = −g1 else let β1 = g1

10: return α1, β1
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Proof. Let us first argue correctness of the algorithm. Observe that since

U =
[
s −m2k/g
t m21/g

]
has determinant 1, then the multiplication with U in step 7 does not change the
span of the first and k’th column of M . Thus M spans the same ideal after each
iteration of the for-loop. After the for-loop, M has the form

M =
[
m11 m12 m13 m14
m21 0 0 0

]
Since m12Z+m13Z+m14Z = gcd(m12,m13,m14)Z = g1Z, the module M is also
spanned by

M =
[
m11 g1
m21 0

]
By Proposition 1 an ideal has dimension 2 when regarded as a module. Thus g1
and m11 + m12ω form a module basis for the ideal generated by α and β. Step
9 ensures that the algorithm outputs an ordered basis.

The complexity bound follows by inspection of the algorithm.

4.2 “Binary” Algorithm for Reducing a Quadratic Form

Schönhage has shown how to reduce quadratic forms in time O(n log2 n log logn).
For moderate input sizes a simpler algorithm my be faster. Buchmann and Biehl
[2] has shown that the classical reduction algorithm for quadratic forms (see e.g.
Lagarias [10]) is of complexity O(n2).

We present an alternative “binary” algorithm also of complexity O(n2). In
this alternative version we seek to replace multiplications/divisions by additions,
subtractions and binary shifts. We believe the resulting algorithm is quite prac-
tical for moderate input sizes and may be of independent interest.

Lemma 5. Given a quadratic form Q(A,B,C), let n = size(Q(A,B,C)). Algo-
rithm 3 reduces the quadratic form and computes a corresponding transformation
U satisfying that size(U) = O(n) in time O(n2).

Proof. Assume for the moment that the algorithm terminates. To show that the
algorithm is correct, we just need to show that the final form returned is reduced.

Consider the case when Δ > 0. Following the outer while-loop it holds that
|B| ≤ 2|A| ≤ 2|C|. In addition it holds that 2|A| ≤

√
Δ. To see this observe that

B2−4AC = Δ > 0 combined with |B| ≤ 2|A| ≤ 2|C| implies that B2+4|A||C| =
Δ. If the form is not reduced, then the choice of m in step 13 gives a reduced
form.

Consider similarly the case of Δ < 0. By our definition of quadratic form,
A > 0 and from B2−4AC = Δ < 0 we deduce that also C > 0. Each application
of S and Tm will preserve the signs of A and C, and at step 16 it holds that
|B| ≤ 2A ≤ 2C. If A < |B| then steps 18-22 will transform Q(A,B,C) to
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Algorithm 3. Reducing a Quadratic Form (“binary” version)
Require: A quadratic form Q(A1, B1, C1) of discriminant Δ.
Ensure: Q(A, B, C) is reduced and U ∈ SL2(Z) such that Q(A1, B1, C1)U =

Q(A, B, C)
1: Let Q(A, B, C) = Q(A1, B1, C1).
2: Let U = I .

3: Let S =
0 −1
1 0 . (note that Q(A, B, C)S is Q(C, −B, A))

4: Let Tm =
1 m
0 1 . (note that Q(A, B, C)Tm is Q(A, B + 2mA,m2A + mB + C))

5: while ¬(|B| ≤ 2|A| ≤ 2|C|) do
6: while |B| > 2|A| do
7: Let j = size(B) − size(A) − 1.
8: if AB > 0 then m = −2j else m = 2j

9: Let Q(A, B, C) = Q(A, B, C)Tm and U = UTm

10: if |A| > |C| then
11: Let Q(A, B, C) = Q(A, B, C)S and U = US.
12: if Δ > 0 then
13: Let m be such that

√
Δ − 2|A| ≤ B + 2Am ≤

√
Δ

14: Let Q(A,B, C) = Q(A, B, C)Tm and U = UTm

15: if Δ < 0 then
16: Assert |B| ≤ 2A ≤ 2C.
17: if |B| > A then
18: if B > 0 then m = −1 else m = 1.
19: Let Q(A, B, C) = Q(A, B, C)Tm and U = UTm

20: Assert |B| ≤ min{A, C}.
21: if A > C then
22: Let Q(A, B, C) = Q(A, B, C)S and U = US.
23: Assert |B| ≤ A ≤ C.
24: if B < 0 and A = C then Let Q(A, B, C) = Q(A, B, C)S and U = US.
25: if B < 0 and A = −B then Let Q(A, B, C) = Q(A, B, C)T1 and U = UT1.
26: return Q(A, B, C) and U .

ensure |B| ≤ A ≤ C. The form is reduced now except possibly for the sign of B.
This part is handled in steps 24-25. Thus the form returned by the algorithm is
reduced.

Finally, consider termination and complexity. Assume for the moment that
size(U) = O(n) throughout the algorithm. Consider the while-loops. Each ap-
plication of Tm in step 9 strictly decreases size(B), and an application of S does
not change |B|. Hence, there are at most size(B) executions of step 9. Note also
that |A| never increases and |C| is bounded by the equation B2 − 4AC = Δ.
Since each application of Tm in step 9 can be done in time O(n), the total time
spent in the while-loops is O(n2). The same time bound clearly applies to the
remaining part of the algorithm.

We still need to argue that size(U) = O(n) through the entire algorithm. Let
U = {uij}. It will be enough to bound max{size(uij)}. Let t be the time interval
used on a specific execution of the inner while loop. Let j0 = size(B)−size(A)−1
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be the value of j in the first iteration of the specific execution of the while-loop.
One may verify that max{size(uij)} increases by at most j0 + 2 during all the
iterations in the time interval t, and clearly size(B) decreases by at least j0+1 in
the same time interval. Since there are at most O(n) executions of the inner while
loop, and size(B) never increases, we find that max{size(uij)} and therefore also
size(U) remains O(n) throughout.

4.3 Complexity Analysis

Let us first consider steps 1,2 and 3 of Algorithm 1. By using asymptotically
fast algorithms for integer multiplication, extended integer gcd and reduction
of quadratic forms [16,15,17], it may be done in time O(n log2 n log logn) by
Lemma 4. Though asymptotically fast, this implementation may be impractical
for moderate input sizes.

By using a simpler implementation such as naive multiplication/division, the
binary algorithm for (extended) gcd, and our binary reduction algorithm, one
may execute steps 1, 2 and 3 of Algorithm 1 in time O(n2) by Lemma 4 and
Lemma 5.

If Δ < 0 then steps 4 and 6 and hence the entire Algorithm 1 runs within
the same time bound as steps 1-3.

If Δ > 0 then we can upper bound the time for steps 5 and 6 as follows. It is
known that the number of reduced forms of discriminant Δ is O(Δ

1
2+ε) for every

ε > 0 [14]. This implies that we need to apply � repeatedly at most O(Δ
1
2 +ε)

times in step 5. The bit-size of a reduced form is O(logΔ) by definition. So the
matrix U corresponding to a single application of � of Proposition 5 has also
bit-length bounded by O(logΔ). However, we can only bound the bit-length of
the matrix U2 computed in step 5 by O(Δ

1
2+ε). Hence, using naive arithmetic for

step 5-6 and the simple implementation for steps 1-3, Algorithm 1 runs within
time O(n2 + Δ1+ε) and when using asymptotically fast arithmetic throughout,
Algorithm 1 runs within time O(n log2 n log log n+Δ

1
2+ε).

There seems to be no simple way to improve this analysis. Buchmann, Thiel
and Williams [3] state “it can be shown under reasonable assumptions that there
cannot be a polynomial time algorithm that on input of Δ and the norm of a
principal ideal inOΔ computes the standard representation of a generator of such
an ideal because the length of this representation is too big.” If this also holds
in our context, which is not general quadratic number rings, but only UFD’s, we
have that size(gcd(α, β)) may be super polynomial in size(α) + size(β) + logΔ.

We can summarize the complexity analysis as follows.

Theorem 1. Let n = size(α) + size(β) + logΔ.
For Δ < 0, Algorithm 1 runs in time O(n log2 n log logn).
For Δ > 0, Algorithm 1 runs in time O(n log2 n log logn + Δ

1
2+ε) for every

ε > 0.

Remark. Our algorithms can be augmented to compute an extended gcd. One
may also apply our algorithm in quadratic rings that are not UFD’s, provided
the inputs α, β generate a principal ideal. In the case of Δ > 0 the matrix
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U2 of step 5 of Algorithm 1 may be precomputed for all distinct reduced forms
of discriminant Δ, allowing the actual gcd algorithm to benefit from a table
look-up. These topics will be elaborated in the full version of the paper.

Acknowledgment. The first author wishes to thank Hendrik Lenstra for sug-
gesting the use of the relation between ideals and quadratic forms for gcd
computation.
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Abstract. Motivated by the computational difficulty of analyzing very
large Markov chains, we define a notion of clusters in (not necessarily
reversible) Markov chains, and explore the possibility of analyzing a clus-
ter “in vitro,” without regard to the remainder of the chain. We estimate
the stationary probabilities of the states in the cluster using only tran-
sition information for these states, and bound the error of the estimate
in terms of parameters measuring the quality of the cluster. Finally, we
relate our results to searching in a hyperlinked environment, and provide
supporting experimental results.

1 Introduction

Motivated by the computational difficulty of analyzing very large Markov chains,
we define a notion of clusters in (not necessarily reversible) Markov chains, and
explore the possibility of analyzing a cluster “in vitro,” without regard to the
remainder of the chain. Given a cluster in an aperiodic and irreducible Markov
chain, our goal is to approximate the relative stationary probabilities of the states
within the cluster; that is, while we cannot know the total probability mass of the
cluster at stationarity – this depends heavily on the rest of the chain – we may
hope to learn, for each state in the cluster, the fraction of the cluster’s mass at
stationarity held by the given state. If the cluster is much smaller than the whole
chain, then this analysis can be dramatically less expensive than, say, running
power iteration on the whole chain to find the complete stationary distribution.

Although to our knowledge we are the first to explicitly define a notion of
clusters for Markov chains, much previous work has noted a correlation between
clusters in hyperlinked media and semantic topics (see [2] for a nice summary),
and the interpretation of (a slight modification of) the WWW graph as a Markov
chain is the basis for PageRank [1]1. Given these precedents, it is a small step
� Work performed while author was visiting Microsoft Research.
1 The elegant work of Madras and Randall [7], while explicitly decomposing a Markov

chain into (not necessarily disjoint) pieces, deals with a converse problem: examine
the pieces and a crude model of their interactions to analyze the rate at which the
full chain mixes.
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to defining Markov chain clusters. In the context of web search or analysis of
other hyperlinked media, being able to analyze a cluster in isolation should give
an inexpensive method of ranking the utility of different web pages on a given
topic.

We have three contributions: the definition of a cluster, a theoretical analy-
sis of the value of the definition, and related experimental results. Our formal
measure of cluster in a Markov chain is based on the bicriteria measure used by
Kannan, Vempala, and Vetta[3]; a similar intuition to ours underlies the defini-
tion of community of Flake, Lawrence, and Giles [2]. We show that our measure
does in fact capture at least one desirable property that a cluster should intu-
itively have–namely, that the stationary distribution of a good cluster viewed as
its own self-contained small Markov chain is close to that of its induced station-
ary distribution in the larger chain. Finally, we conduct experiments on both
synthetic graphs and a large scale section of the web to test the applicability of
our measure. Our results show, perhaps surprisingly, that the PageRank Markov
chain is initially ill-suited for study by clusters, as its distinctive ε-reset param-
eter “blurs” clusters, making it difficult to isolate any one set of pages from
the web at large. However, we show that we can still accurately estimate of a
cluster’s relative stationary distribution at a fraction of the cost of computing
the global stationary distribution.

We now describe our results more fully.

A Formal Definition of Clusters in Markov Chains. There is a rich lit-
erature on measures of clusterings for graphs. Kannan, Vempala, and Vetta[3],
proposed a measure for clustering in weighted similarity graphs that seeks to
maximize the smallest conductance2 (roughly, the flow) within the individual
clusters while minimizing the fraction of total edge weight that crosses between
clusters. (This generalizes the Flake, Lawrence, and Giles definition of a web
community as “a set of pages that link (in either direction) to more pages within
a community than to pages outside the community” [2].) A partitioning of the
vertices into clusters is considered an (α, ε)-clustering if the conductance of each
cluster is at least α and the combined weight of the inter-cluster edges is at most
ε of the total edge weight.

In our applications, we will be more interested in individual clusters of states
in a large Markov chain, and not necessarily a full partition of all states into
clusters. However, we can still adapt the above definition of clustering to Markov
chains in a natural way. In particular, we say that a set of states C in a Markov
chain forms an (α, β)-cluster if the conductance within C is at least α, and the
conductance from C to the rest of the chain is at most β. Intuitively, then, a
cluster is a set of vertices within which a Markov chain mixes rapidly (due to
α), but from which it is difficult to escape (because of β). The exact definition
of an (α, β)-cluster will be given in Sect. 2.

2 Both the measure in [3] for graphs and our measure for Markov chains refer to
conductance. The concept is slightly different in the two settings, but intuitively
similar.
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Properties of Markov Chain Clusters. For our definition of clusters in
Markov chains to be interesting, we must now show that an (α, β) cluster has
useful non-trivial properties. Our main theoretical result is that clusters are well-
isolated from the larger Markov chain in terms of their stationary distributions,
in that we can obtain a relatively accurate approximation of the induced station-
ary distribution for a small cluster in a much larger Markov chain by examining
only the cluster itself.

More precisely, given a set of states C in a large Markov chain P with sta-
tionary distribution π, let πreal be the stationary probability on C induced by
π; namely πreal

i = πi/π(C), where π(C) =
∑

j∈C πj . Let πest (for “estimated”)
denote the stationary probability of C, treated as its own self-contained Markov
chain3. Our main result (Theorem 4) is that if C is an (α, β)-cluster then the
�1 difference between πreal and πest is bounded by c β

α2 log 1
πest

min
for some global

constant c > 0, where πest
min is the minimum over all πest

i for i ∈ C. This result
shows that πreal and πest will not be too far apart, so long as α is large and β
is small, as we might intuitively expect.

Experimental Results. To test the applicability of our results in real world
settings, we conducted experiments on two types of graphs. To test the basic
feasibility of our approach, we first generated a series of random Markov chains
with planted clusters. The underlying random graph model we used is well-
behaved and represents a favorable situation for our approach, and we find that
it is indeed possible to obtain a good approximation for the induced stationary
distribution of a cluster in this setting.

We next performed tests on the PageRank Markov chain applied to a large
crawl of the web with over 90 million pages and 2.4 billion links. Here we use
individual domains (such as corporate and university web sites) as clusters, and
find that the cluster’s own stationary distribution πest is a poor approximation
for the induced stationary distribution πreal. It turns out that PageRank’s ε-
reset feature has the side effect of obscuring natural clusters in the underlying
web graph by virtually guaranteeing that β will be at least ε for any set of pages.
However, we show that with a small amount of preprocessing, we can still obtain
good estimates in this setting.

2 Background and Definitions

2.1 Facts About Markov Chains

If P is a finite Markov chain over a set of n states V , we will write P as an n×n
transition matrix in which pij is the probability of moving to state j given that
the chain is in state i. We consider only chains that are finite-state and regular
i.e., the transition matrix P satisfies ∃k P k > 0. The stationary distribution
(usually denoted π) is then principal left eigenvector of P . We will use several
well-known facts about Markov chains, summarized next.
3 The exact definition of the Markov chain associated with C appears in Sect. 3.
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The fundamental matrix Z = {z}ij of a Markov chain P is the matrix

Z = {z}ij = (I − (P −B))−1,

where B = limk→∞ P k. The fundamental matrix captures effects of the choice
of starting state: as t → ∞, #(t)

ij − tπj = zij − πj , where #(t)
ij is the expected

number of times the chain starting in state i will visit state j in the first t steps
(including the initial state as one step). The entry zij thus helps measure how
many extra times the chain reaches j in the first t steps when started at i. This
quantity may be negative. See [4] for a beautiful treatment of the fundamental
matrix.

Fact 1. Let P be the transition matrix of a Markov chain with fundamental
matrix Z and stationary distribution π. Then πZ = π.

Definition 1. The discrepancy4 of a Markov chain is the quantity

Z = max
i

∑
j

|zij − πj |.

The mixing time H of a Markov chain measures how long it takes for the chain
to converge to its stationary distribution from a worse-case start state. As is well
known (see, e.g. [9]), the mixing time H is governed by the conductance, which
is defined as follows.

Let V be the state space of the Markov chain. For any disjoint subsets A,B ⊂
V , define Q(A,B) =

∑
i∈A,j∈B πipij . For any C ⊂ V we let ΦV (C) denote the

conductance (out of S to its complement in V ), ie, ΦV (C) = Q(C,V \C)
π(C) . We define

the conductance (within V ) to be ΦV = minC⊆V :π(C)≤ 1
2
ΦV (C). It is common

to omit the subscript V ; however, since we will be talking about Markov chains
induced by subsets of V , we sometimes explicitly name the state space for clarity.

Letting πmin denote the minimum stationary probability of any state, the
conductance, mixing time, and discrepancy enjoy the following relationships (see
[5, 9]):

Fact 2. Z ≤ 4H ≤ 64
Φ2 log 1

πmin
.

It follows that sets C from which it is difficult to escape limit the rate of con-
vergence. Markov chains that do not have such sets therefore mix rapidly. Note
that if there is a very well isolated cluster then the conductance is low and so
the mixing time is high. Thus, not only will our results be more meaningful
when clusters are well isolated, but they will also be more useful (because power
iteration necessarily must be run for more steps).

We will use the following deep theorem of Schweitzer.

Theorem 3 [Schweitzer]. Let P (1) and P (2) be Markov chains on the same state
space and with respective stationary distributions π(1) and π(2). Then π(1)− π(2) =
π(1)EZ(2), where E=P (1) − P (2) and Z(2) is the fundamental matrix of P (2).
4 See [5]. Discrepancy is usually defined in terms of hitting times. The definition here

is equivalent and simplifies our proof in Sect. 3.
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2.2 The PageRank Markov Chain

Consider the Web as a very large graph, in which each page is a vertex and
each link is a directed edge from the source page to the target page. Let M be
the natural transition matrix associated with the web graph; namely, if a page i
contains di links, then for each link (i, j), we have that mij = 1/di. We assume
that the Markov chain is ergodic and aperiodic. (If di = 0, we can somewhat
arbitrarily say that dii = 1, or alternatively, that dij = 1/n for all j.)

The PageRank Markov chain is then defined as P = (1− ε)M + εU , where U
is the uniform matrix (uij = 1/n for all i,j), and ε typically falls in the range
[0.1, 0.2]. Adding εU ensures that the resulting chain is regular. The stationary
distribution of P , denoted π, is called the PageRank vector, and the PageRank
of an individual page (vertex) i is its i’th coordinate πi.

2.3 Clusters in Markov Chains

Throughout, we let V denote the state space of the chain. Working from the
above definitions, we define the concept of a cluster in a Markov chain as follows:

Fix a subset C ⊆ V which will be our cluster for the rest of the discussion.
Assume without loss of generality that the vertices of C correspond to the first
|C| rows and columns of P .

Let πreal ∈ R|C| denote the projection of π onto C, normalized so that
‖πreal‖1 = 1 (from now on we let ‖ · ‖ denote the �1 norm). In other words,

πreal
i =

πi

π(C)
.

The projected vector πreal is the (normalized) exact PageRank information re-
stricted to the cluster C. (Presently we will define a small, related, Markov chain
called P real; it too will have stationary distribution πreal.) We are interested in
efficient ways to approximate πreal.

Let P ′ be the submatrix of P corresponding to the rows and columns indexed
by C. This is a substochastic matrix (the sum of the entries in each row is
bounded by, but not necessarily equal to 1). We confine our attention to the
case in which P ′ is regular (ensured for the PageRank Markov chain by the
ε-reset). In this case, by the Perron-Frobenius Theorem, P ′ has a unique non-
negative left principal eigenvector, which we denote by πest, corresponding to
an eigenvalue 0 < λ ≤ 1. We assume it is normalized (‖πest‖ = 1). In order
to obtain a stochastic matrix with the same principal eigenvector πest, we add
a nonnegative multiple of πest to each row of P ′ so that the resulting matrix,
which we denote P est, is stochastic. More precisely, if we denote the entries of
P est as pest

ij , then

pest
ij = pij + πest

j

(
1−

∑
k∈C

pik

)
.

Thus, we redistribute the probability of escaping from C according to πest.
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It is not hard to verify that πest is also the principal left eigenvector of P est

and that P est is stochastic. Let ΦC
est denote the conductance (within the small

state space C) of P est.

Definition 2. The subset of states C ⊆ V in a Markov chain is an (α, β)-cluster
if π(C) ≤ 1/2 and

ΦC
est ≥ α and ΦV (C) ≤ β .

If α is large and β is small, then C will be a cluster in the intuitive sense–a set
of states within which it is easy to move, but from which it is difficult to escape.
Also, note that the assertion ΦC

est ≥ α depends on the substochastic matrix P ′

alone, and not on the entire matrix P .
Assume that C is an (α, β) cluster with relatively few states compared to the

number of states in V . Clearly, πest is easy to compute (because the state space
is small), and πreal difficult. How good an estimate for πreal is πest? The next
section addresses this question, bounding ||πest − πreal|| in terms of α and β.

3 Bounding the Error ||πest − πreal||
To bound the error, we will consider two similar Markov chains, P real and P est,
for which πreal and πest are the respective stationary distributions, and apply
previously known techniques to obtain a bound on ‖πreal − πest‖. The Markov
chain P est was defined above. We now show how to construct P real.

Define the probability distribution

τreal
j =

∑
k/∈C πkpkj

Q(V \C,C)
.

This is the probability (at stationarity) that the chain moves to state j, given
that it moves from V \C to C in one step. P real is now defined by adding a
nonnegative multiple of τreal to each row of P ′ so that the resulting matrix
is stochastic. Denoting the entries of P real by preal

ij , this means that preal
ij =

pij + τreal
j

(
1−

∑
k∈C pik

)
. It is an easy exercise to verify that indeed the left

principal eigenvector of P real is πreal.
Thus, in both the construction of P real and of P est, we redirect probability

drained from the substochastic matrix P ′ back into the system, according to τreal

and πest respectively. For ease of notation in what follows, we let τest = πest, so
that the τ ’s always refer to redirected probability mass.

To prove Theorem 4, we must bound ‖πreal − πest‖. Naturally, we will use
Schweitzer’s Theorem. We will see that the worst case occurs when τreal is a
point distribution, namely, concentrated at some pessimal choice of a page.

Theorem 4 . If C is an (α, β)-cluster, then the �1 difference between πreal and
πest is bounded by

‖πest − πreal‖ ≤ c
β

α2 log
1

πest
min

for some global constant c > 0, where πest
min = min{πest

i | i ∈ C}.
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Proof. By Schweitzer’s Theorem, πreal − πest = πrealEZest, where E = P real −
P est. By choice of P real and P est we have eij = (1 −

∑
k∈C pik)(τreal

j − τest
j ) .

and so (πrealE)j has the form

(πrealE)j =

(∑
i∈C

πreal
i

(
1−

∑
k∈C

pik

))
(τreal

j − τest
j ) .

Note that the expression
∑

i∈C πreal
i (1 −

∑
k∈C pik) is exactly ΦV (C), so

(πrealE)j = Φ(C)(τreal
j − τest

j ).
We can therefore write

πrealEZest = ΦV (C)(τreal − τest)Zest .

Thus, using that τest = πest (by definition) and πestZest = πest (Fact 1), we get
a bound in terms of the discrepancy of P est:

‖πrealEZest‖ = ΦV (C)
∑

j

|(τrealZest)j − (τrealZest)j |

= ΦV (C)
∑

j

|(τrealZest)j − πest
j |

≤ max
i
|zest

ij − πest
j | = Zest .

The last step follows from a convexity argument:
∑

j |(τrealZest)j − πest
j | is a

convex function of τreal, maximized at a point distribution.
Applying Fact 2, we have

‖πreal − πest‖ ≤ ΦV (C)Zest ≤ 4Hest ≤ 64
(ΦC

est)2
log

1
πest

min

,

From the assumption that C is an (α, β)-cluster, we may conclude the proof:

‖πreal − πest‖ ≤ 64
β

α2 log
1

πest
min

.

4 A More Elementary Proof

The proof in this section is almost from first principles; in particular, it does not
go through Schweitzer’s Theorem. We begin by establishing some notation and
making an observation. We then give some intuition for the approach.

We decompose the transition matrix P as follows P =
(
P ′ Out
In R

)
, where

P ′ ∈ R|C|×|C| is, as above, the transition matrix restricted to the rows and
columns corresponding to our (α, β)-cluster C ⊆ V .

Consider the step evolution of P on its stationary distribution π ∈ Rn which
we decompose as π = (π(C)πreal | ε) where ε ∈ Rn−|C|, ε ≥ 0. We get, π = πP
= (π(C)πrealP ′ + εIn

∣∣ ε). Continuing inductively, we get that for all t ≥ 0,
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π = πP t =

(
π(C)πrealP ′t +

t∑
i=1

εInP ′(t−i)

∣∣∣∣∣ ε
)
.

The intuition behind this decomposition is as follows: the term π(C)πrealP ′t

corresponds to the original distribution πreal circulating in C. Some of it may
drain out due to sub-stochasticity of P ′, but the direction of this vector converges
to that of πest. The part that will eventually contribute to ‖πreal − πest‖ is the
noise term

∑t
i=1 εInP

′t−i entering C from V \C, which we will bound using the
fact that C is an (α, β) cluster.

Now, π(C)πreal = π(C)πrealP ′t +
∑t

i=1 εInP
′(t−i). Also, ‖π(C)πreal‖ = π(C)

= ‖π(C)πrealP ′t‖+
∑t

i=1 ‖εInP ′(t−i)‖. Therefore,

π(C)πreal − π(C)πest = π(C)πrealP ′t +
t∑

i=1

εInP ′(t−i)

−
(
‖π(C)πrealP ′t‖+

t∑
i=1

‖εInP ′(t−i)‖
)
πest

Taking norms, rearranging terms and applying the triangle inequality,

‖π(C)πreal − π(C)πest‖ ≤
∥∥π(C)πrealP ′t − ‖π(C)πrealP ′t‖πest

∥∥
+

t∑
i=1

∥∥∥εInP ′(t−i) − ‖εInP ′(t−i)‖πest
∥∥∥ . (1)

Lemma 1. For any lazy5 Markov chain P and subset C there exist constants
γ > 0 and 0 < μ < 1 such that for all positive vectors w ∈ R|C|∥∥wP ′t − ‖wP ′t‖πest

∥∥ ≤ γ(1− μ)t
∥∥w − ‖w‖πest

∥∥ ≤ 2γ(1− μ)t‖w‖ (2)

holds with γ =
√

1/πest
min and μ = (ΦC

est)2/4.

(The proof is sketched in Section 4.1.) In other words, the vector wP ′t tends to
‖wP ′t‖πest exponentially fast with rate (1−μ). Note that ‖wP ′t − (‖wP ′t‖)πest‖
cannot exceed 2‖wP ′t‖ ≤ 2‖w‖, therefore, by Equation (2),∥∥wP ′t − ‖wP ′t‖πest

∥∥ ≤ 2‖w‖min
{
γ(1− μ)t, 1

}
. (3)

We will use this to prove the theorem for lazy Markov chains and will argue
at the end of the section that the restriction to lazy chains is irrelevant.

Plugging (3) into (1), we get that for all t ≥ 0,

‖π(C)πreal − π(C)πest‖ ≤ 2γ(1− μ)t‖π(C)πrealP ′t‖

+ 2
t∑

i=1

‖εIn‖min{γ(1− μ)(t−i), 1} .

5 Every state has transition probability of at least 1/2 to itself. Also commonly known
as a strongly aperiodic chain.
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Now we notice that by definition, ‖εIn‖ = Q(V \C,C) = Q(C, V \C). Dividing
both sides by π(C), recalling that Q(C, V \C)/π(C) = ΦV (C) ≤ β by assump-
tion, and taking the limit as t→∞, we obtain ‖πreal−πest‖ ≤ 2β

∑∞
i=0 min{γ(1

− μ)i, 1} . Let a be the minimal integer such that γ(1 − μ)a ≤ 1. Then a ≤
� − log γ

log(1−μ)�, and

∞∑
i=0

min{γ(1− μ)i, 1} =
a−1∑
i=0

1 +
∞∑

i=a

γ(1− μ)i ≤ a +
∞∑

i=0

(1− μ)i

≤
⌈
− log γ

log(1− μ)

⌉
+

1
μ
≤ log γ

log(1 + μ)
+ 1 +

1
μ
≤ log γ/ log 2 + 2

μ

(4)

(we used the fact that μ log 2 ≤ log(1 + μ) for 0 < μ < 1). Therefore, ‖πreal

− πest‖ ≤ 2β(log γ/ log 2 + 2)/μ. Taking γ =
√

1/πest
min and μ = (ΦC

est)2/4 as
in Lemma 1, and recalling that ΦC

est ≥ α by the (α, β)-cluster assumption,
we conclude that for lazy Markov chains, ‖πreal − πest‖ ≤ 8β(1

2 log(1/πest
min)/

log 2 + 2)/α2.
If |C| > 1, then 1/πest

min ≥ 2, thus ‖πreal − πest‖ ≤ (20/ log 2)βα−2 log 1
πest

min
.

If |C| = 1 then ‖πreal − πest‖ = 0. This proves Theorem 4 for lazy Markov
chains. We now claim that the laziness requirement is non-restrictive. Indeed,
we could replace P with a lazy Markov chain 1

2P + 1
2I. The vectors πreal and

πest for this chain are the same as for the original one. However, ΦV (C) and
ΦC

est are decreased by a factor of 2. We conclude that for any Markov chain
and (α, β)-cluster C,

‖πreal − πest‖ ≤ (40/ log 2)β
α2 log

1
πest

min

. (5)

(Note that the constant 40 is conservative in the sense that we only assumed
that |C| ≥ 2, but it can replaced with 8 + δ for any small δ > 0 assuming |C| is
sufficiently large). It remains to prove Lemma 1.

4.1 A Bound on μ, γ Using Conductance

Recall that the matrix P est is obtained by adding a nonnegative multiple of πest

to each row of P ′ such that the resulting matrix is stochastic. The vector πest

is the principle left eigenvector of P est corresponding to the eigenvalue 1. Write
this as P est = P ′ + T , where the i’th row of T is πest

(
1−

∑
j∈C pij

)
. Now, for

any vector w > 0 and integer t ≥ 0,

wP ′t − ‖wP ′t‖πest = w(P est)t − w
(
(P est)t − P ′t)− ‖wP ′t‖πest (6)

Further manipulation shows:

wP ′t − ‖wP ′t‖πest = w(P est)t − ‖w(P est)t‖πest . (7)
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Bounds on the right hand expression have been extensively studied. It follows
from [8] (Sect. 3) that if P est is lazy then we get the required conclusion:

∥∥w(P est)t − ‖w(P est)t‖πest
∥∥ ≤√

1
πest

min

(
1− (ΦC

est)2/4
)t ∥∥w − ‖w‖πest

∥∥ .

5 Experimental Results

As one of our main goals was to study large real-world Markov chains, we con-
ducted a series of experiments on both synthetic and web graphs to evaluate
how applicable our theoretical results might be in practice. We present two sets
of results – first, in an idealized situation where we have planted clusters in a
set of randomly generated graphs, and second, in a large crawl (over 90 mil-
lion pages and 2.4 billion edges) of the actual web. We describe both of these
below.

5.1 Synthetic Graphs

As a simple initial test, we constructed random graphs with planted clusters.
In this Gn,p,m,q model, we first generate a graph on n vertices according to
Gn,p, where each directed edge appears with probability p. We then replace
the subgraph on m of these vertices with a graph generated according to Gm,q,
with q ≥ p; these m vertices will form our planted cluster. In these small toy
experiments, we held n at 1000 and m at 100.

We define a (non-reversible) Markov chain on this graph in the natural way
– each vertex is a state, whose outgoing transition probability is divided among
its out-neighbors. We expect the isolated stationary distribution of the planted
cluster (πest in the notation of Section 3) to be close to that induced by the
stationary distribution of the large chain (πreal) when q is large and p is small.

We generated a series of random graphs fixing q at 0.3, while varying p from
0.01 to 0.03. Here the value of β should increase as p increases, leading to an
increase in our error ‖πreal − πest‖. We generated 10 graphs for each value of p,
and show the mean error in Figure 1.
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For Figure 2, we fix p at 0.015, while varying q from 0.15 to 0.3. The value of
α should increase as q increases, leading to a decrease in approximation error.
(Note the vertical scales do not start at zero in these figures.)

The main observation here is that the approximations πest are relatively ac-
curate, even though the values of β for these clusters can actually be quite large.
We are helped here not only by the clusters themselves, but by the global struc-
ture of the graph. Since in this random graph model the induced stationary
distributions both inside and outside the cluster should not be too far from uni-
form, we are in the favorable situation where the incoming probability provided
by the larger chain to the cluster (τreal) is not far from that provided by the
cluster in isolation (τest = πest).

5.2 Web Graphs

We then conducted large-scale experiments on a crawl of the web consisting
of 90, 560, 988 web pages and 2, 419, 954, 245 links. On this graph, we analyzed
the classic vanilla PageRank Markov chain with an ε-reset of 0.1. Without the
planted clusters in the synthetic graphs, the question of how to find clusters in
the web graph becomes important. We imagine that clusters will be determined
based on external information (either through textual analysis – e.g. all pages
containing “Manchester United” or all pages belonging to a specific domain). In
our experiments, we used the latter approach – selecting all pages that belong to
yahoo.com (2,179,242 pages), microsoft.com (42,511 pages), princeton.edu
(28,486 pages), and stanford.edu (72,970 pages) as four candidate clusters.
These candidate clusters appear very promising at first, as at stationarity in the
large PageRank chain, very little probability mass is carried out of the cluster via
natural links (as opposed to the ε-reset). As the following results show, however,
the differences between πreal and πest for each of these clusters is very large:

yahoo.com microsoft.com princeton.edu stanford.edu
Error 0.624 1.761 0.700 0.739

Upon inspection, the reason for this becomes clear. Even though the actual
links in the web graph keep almost all of the probability mass of each cluster
within it, PageRank’s ε-reset guarantees that β will be at least ε(1 − η), where
η is the fraction of pages in the web graph that belong to the cluster (and
thus almost negligible). Also important is that unlike in the synthetic graphs
above, the incoming probability to the cluster from the larger web (τreal) is very
different from the cluster’s own stationary distribution, which we use for τest.
This problem will likely be present in any proposed cluster in the web.

However, our earlier analysis indicates that we should still be able to accu-
rately approximate a domain’s induced PageRank if we have some estimate of
τreal. One natural idea is to run the global PageRank Markov chain P for a
small number of iterations t, and then use the resulting probability distribution
xt to obtain an estimate τest for τreal. Specifically, for any page j in the cluster
C, τest

j will be proportional to
∑

i�∈C xt
ipij .
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The results of this approach are shown in Figures 3 and 4 for princeton.edu
and microsoft.com. In both figures, the lower solid curve indicates our approx-
imation error ‖πreal − πest‖, as a function of t, when we use xt to generate τest.
By comparison, the higher dashed curve indicates the error if we were to simply
use the distribution on C induced by xt; i.e. if we use pt

i/p
t(C) for each page

i. We see that our error is small even for very low values of t (around 0.1 for
t = 2 and 0.05 for t = 5), and much better than if we had used only the global
PageRank vector xt. (In fact, for princeton.edu, the error at t = 0 might
be reasonable, and can be obtained without any computation on the crawl.)
Thus, we can take advantage of clusters in the web even in this more challenging
setting.
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Abstract. We describe an architecture requiring very few changes to
any standard von Neumann machine that provably withstands coalitions
between a malicious operating system and other users, in the sense that:

1. If the operating system permits a program to run, then the program
produces the same outputs as it would produce if it were running
on an ideal, single-user machine; moreover, even if the operating
system behaves according to expectations only most of the time, the
programs get executed.

2. The only information leaked by a program to the malicious coalition
is the time and space requirements of the program.

3. If the malicious operating system is dynamically replaced by a good
operating system, then the latter can quickly and correctly determine
what memory resources are available for future programs, as well as
how much time is left for each of the currently executing programs,
and can distribute these resources without any restrictions. This can
be accomplished without restarting currently executing programs.

To our knowledge, ours is the first attempt to provide provable guaran-
tees along these lines, and the first treatment of any kind, provable or
otherwise, for the third property.

1 Introduction

The problem of correctness of programs is central to many fields in computer
science. In the area of formal methods, there has been extensive research on pro-
gram specification and verification; in the theory community, work on checking,
self-checking, and self-correcting programs, as well as checking memories, has
been quite influential. These efforts typically assume a well-behaved operating
system that does not, for example, tamper with the actual programs being run,
and that cannot be exploited by a malicious program, such as a virus or a Trojan
horse, to tamper with other programs or their results.

The trustworthiness of the operating system may have nothing to do with the
intentions of the designer of the software. An operating system is so complex that
many regard the task of proving correct such a large program to be infeasible in
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practice (if not in theory). Such quasi-inherent vulnerabilities can have a chilling
effect on software development.

There have been some efforts toward addressing these concerns; in particular,
trusted platforms such as the Palladium chip (or NGSCB), the Trusted Mobile
Platform [4], and the fine research on XOM (Execute Only Memory) [1–3]1.
These previous works are very holistic: they attempt to provide full program-
ming functionality, with all the capabilities of current machines and languages.
Perhaps for this reason, there is no full specification of the threat model, and no
full description of what is provided in the face of such (an unspecified) threat.
Some steps in this direction are taken in [3], which employs model checking to
assist in verifying certain aspects of XOM2.

We focus on what can provably be achieved using a slightly altered instruction
set for a von Neumann machine. Although the scope of our results is more
modest – we consider only a simple model, in which each user can submit a
single program, there is no communication and no external memory – we believe
that a theoretically sound approach is warranted, as in general it is hopeless to
prove things about extremely complex systems. The proof of concept described
here is an important step toward a completely general result.

We note that many natural modifications, for example, modifying the model
to allow programs to arrive dynamically, may be achieved without substantial
changes in the architecture or the notions of correctness and privacy. For sim-
plicity, in this extended abstract we restrict our attention to the more basic
setup.

We first define an ideal machine, which hosts a single user, by describing
an instruction set for the machine. There is nothing unusual about the ideal
machine. We then define conforming programs. These are programs that assume
the memory to which they have access is arranged in a linked list, or chain,
of blocks of a given size, and that produce the same outputs independent of
which physical blocks are organized into this chain. This is a very rich class of
programs, as any program can be written in a conforming fashion. Correctness
for conforming programs is defined by their behavior on the ideal machine. That
is, we only ensure correctness relative to behavior on the ideal machine, with no
outside notion of specification etc for the programs.

Next we define an architecture for a real-life, multi-user machine. The multi-
user machine is a von-Neumann machine with a few extra instructions and a
few compound instructions, that is, sets of a small number of instructions that
must be executed atomically (either all instructions in the set are executed or
none of them is). The heart of our work is the construction and dismantling of
the chain of memory blocks used for each program. Our programs begin with a
declaration of their time and space requirements. The architecture ensures that
execution of a program cannot begin until all its requested resources have been
allocated to it; that memory allocated to a program cannot be accessed by any

1 In these cases one of the principal applications is content protection; this is not our
goal, and our work has no bearing on that topic.

2 As the authors note, model checking does not provide a rigorous proof of correctness.
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other program – including the operating system; and that resources cannot be
taken away from the program before it has been allowed to run for its declared
time bounds. The architecture also ensures that dismantling completes; in other
words, the system ensures protection against memory leaks.

Actual allocation of resources – which programs are given memory to run in,
and which programs may take steps when – is under control of the operating
system. Thus, programs may be denied resources, and they may fail to make
progress. Intuitively, however, we ensure that any progress is good progress:
running for some number of steps on the multi-user machine yields the same
outputs as running for the same number of steps on the ideal machine.

Finally, we give a complete characterization of the adversary and a rigorous
proof that for any such adversary, our architecture protects against the following
three adversarial goals. Here P is the program of an uncompromised user.

Causing Incorrect Outputs: Program P outputs a value different from what
would be produced were P running on the ideal machine and given the same
inputs.

Compromising Program Secrecy: Intuitively, the adversary “learns some-
thing about” the program P . This is formalized by distinguishing between two
programs, P and P ′, having the same declared time and space requirements.

Poisoning the Well: A faulty operating system (possibly colluding with a sub-
set of the users) destroys the data structures used for managing memory and for
keeping track of which programs are currently executing. The adversary succeeds
if, when the faulty operating system is replaced by a good operating system, the
latter cannot in constant time find and correctly allocate new resources, assum-
ing they are available, or de-allocate existing resources, or if it cannot permit
currently executing programs to complete their execution.

To our knowledge, ours is the first work to even articulate protection against
the third adversarial goal, on which we now elaborate. We may think of the
operating system as “moody” in that sometimes it is operating (intuitively)
correctly, and sometimes not. There can be many reasons for moody behav-
ior. For example, being large and complex, certain parts of the system may be
correctly written, while others are flawed, and a change in “mood” might cor-
respond to a jump to a different part of the operating system. Alternatively,
except in some unusual combination of circumstances, or in the absence of other
malicious programs, the operating system might work correctly, but an unfor-
tunate combination of events may occur, or a malicious program might manage
to exploit a vulnerability in the system, that, for example, causes it to fail to
correctly allocate resources. Finally, an operating system in a bad state might be
re-started (without restarting the other, concurrently running, programs), which
might restore it to a good state.

We would like that when the operating system is in a bad mood it cannot
“poison the well,” that is, make things impossible or even very difficult for a
future, correct operating system. Such “poisoning” could be achieved by mali-
ciously modifying the data structures describing available resources, for example



An Architecture for Provably Secure Computation 59

by failing to return freed memory to a free list. Such a situation can frequently
be corrected by rebooting the entire machine, but this could cause all progress
to be lost on currently executing programs, which we view as unacceptable.

We prevent this situation from arising. Essentially our architecture specifies an
interface, i.e., a set of data structures and methods (functions) for manipulating
them. The architecture ensures that the operating system’s ability to manipulate
the data structures is restricted to the given set of methods. The methods in
turn ensure that a certain set of simple programs can efficiently carry out various
operating system tasks, such as accurately determining which memory blocks are
available, allocating memory, allowing programs to be loaded into the machine
and started, de-allocating memory, and enabling currently executing programs
to take steps. We can write these simple programs, given the interface. Decisions
about which ones to invoke, and when, are up to the operating system, but a
bad operating system cannot make the efficient and correct execution of these
procedures impossible; it cannot sabotage its own data structures. Thus we also
protect against memory leaks, and ensure that the operating system can always
be restarted without harming executing programs.

We close this section with some remarks about computational and physical
assumptions. Our results do not rely on any computational assumptions. We
use no cryptography; compartmentalization is ensured by the architecture. We
assume that memory cannot be tampered with or otherwise accessed except by
the CPU. We further assume that a user is connected to the machine via a
secure channel (e.g. a terminal), and that there is a known upper bound n on
the number of users. We treat the most basic case, in which each user i wishes
to run a single program Pi. We assume programs from non-malicious users are
conforming. No privacy or correctness guarantees are made for non-conforming
programs, although naturally a non-conforming program will not be able to
compromise the privacy or correctness of any conforming program. Finally, we
do not impose an artificial restriction on the distribution of the resources between
the various users; that is, we do not solve the problem by simply partitioning the
memory once and for all into disjoint blocks so that each user can access only
a single, predetermined, block. Such a solution would be inefficient, since under
this arrangement the unused memory of one user cannot be made available to
another user. We will describe a general condition on the machine which excludes
these types of inefficiencies. Intuitively, programs are allocated only the resources
they request; if a new program arrives and the resources it requests are available,
in particular, if sufficient memory is available, and the operating system is in
a good mood, then the operating system should be able to allocate the desired
amount of memory to the new program.

In the next several sections we give a bit more detail about the basic compo-
nents discussed above. To achieve the necessary degree of rigor to substantiate
our claims of provability requires extremely detailed definitions and arguments.
These are given in the full paper3.

3 To be made available on the Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc.
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2 The Ideal Machine and Conforming Programs

The goal of a user is to execute a program. We assume that the programs were
originally written for a von Neumann type random access machine with a single
input/output channel. To make this assumption more explicit we fix a machine
Nq,m of this type, consisting of m registers each containing q bits. Although
we give (in the full paper) a complete description of the instruction set of this
machine, the particular choice of the instructions is not important; our results
could be formulated with any instruction set which includes input/output in-
structions for the single channel. The only exception is the instruction INPUT
defined below. This is a special input instruction which will be able to cause a
program to begin execution. (There is another input instruction input with the
usual meaning.)

Several of the instructions for Nq,m have parameters. We assume that if the
instruction requires k parameters and the instruction is in location u, then the
arguments are in locations u+ 1, . . . , u+ k.

A program for Nq,m is a sequence of integers followed by an end-of-program
delimiter. The special single-parameter input instruction INPUT x treats x as
the starting location into which the program should be loaded (from the unique
input/output channel). The effect is a loop during which a program instruction
(integer in the sequence) is read and, if it is not the delimiter, it is stored in
location x and x is incremented to x+1. When the delimiter is reached control is
transferred to the initial instruction of the newly loaded program. More precisely,
if the INPUT instruction is in location L of Nq,m then control is transferred to
location L + 2. We therefore have the following convention for invoking the
INPUT x instruction: if the INPUT instruction is in location L of Nq,m then, on
invocation, x should have value L+2 (since INPUT is a one-parameter instruction,
with parameter x, we have that x itself is in location L+ 1).

In real machines programs are allocated memory in blocks (pages), and the
actual memory used need not occupy a single contiguous region. The same will
be true on our multi-user machine. The blocks will be organized into a linked
list, and each block will have some fixed size, or number of registers, ξ. We will
therefore make the simplifying assumption that the program originally written
for the ideal machine Nq,m is already designed to tolerate storage allocations of
this type. (We may think of the actual set of blocks allocated as a set of additional
inputs provided to the program.) Such a program is called a conforming program.
A conforming program has the property that its outcome depends only on the
program itself (including its input), and not on the choice of the blocks allocated
to it: the output of P is uniquely determined by P . Note that a conforming
program never tries to access a register not allocated to it.

When a conforming program is run on the multi-user machine our notion of
correctness will be with respect to its execution on Nq,m. If allowed to run to
completion, the outputs should be the same as those produced when the program
is run on Nq,m (because the program is conforming, it is agnostic with regard to
which blocks of Nq,m it is actually assigned.) More generally, since the program
may not be run to completion, we require, intuitively, that at any point in the
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execution on the multi-user machine, the output sequence produced is an initial
segment of the output sequence produced when run to completion on Nq,m. It
is important that in speaking about correctness, when we speak of output of
a conforming program we mean only a sequence of output bits (or integers),
without their timing.

We will discuss the privacy requirement after giving further details about the
multi-user machine.

3 The Multi-user Machine and the Adversary

The intuition behind our secure machine, calledM, is that the operating system
never exactly “does” anything, it just enables certain pre-specified sets of state
transitions to be (atomically) executed. That is, the architecture specifies an
interface – data structures and methods, or functions, for manipulating them –
and the operating system’s ability to manipulate these structures is restricted to
the given set of methods. Given the interface it is easy to write a set of simple
programs to efficiently carry out the various operating system tasks, such as
allocating memory (if and only if available) and permitting a user’s program to
take a step. Decisions about which tasks to schedule, and when, are up to the
operating system.

3.1 The Machine M
In our simple model of multi-user computation, a number n of users share the
resources of a single machine. Each user has its own dedicated input/output
channel for communicating with the machine. We treat the operating system as
a special user, who sends instructions to the machine through a special control
channel.

We assume that the machine works in discrete time units. At each time the
operating system sends an instruction, through the control channel, and as a
result the machine changes the contents of a constant number of its registers.
A compound instruction is a small number of simple instructions, to be exe-
cuted atomically; that is, either all the simple instructions are executed or none
are. We assume that the architecture supports atomic execution of compound
instructions. These compound instructions are the methods, or functions, men-
tioned earlier. A simple instruction can be executed only as a part of a compound
instruction. This restriction will ensure that, unlike in a machine with von Neu-
mann type architecture, the operating system cannot read or change the contents
of the registers in an arbitrary way. We will guarantee the desired properties of
the machine through the right choice of the set of compound instructions.

We will require three types of instructions for the operating system. One type,
roughly speaking, is needed for interacting with the user; for example, obtaining
resource requests. Instructions of this type are not at all new. A second will be
needed to enable the user’s program to take steps. These are slightly unusual, and
must ensure that the operating system does not learn the instructions executed
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by the user’s program. Also, they have “side effects” involving bookkeeping, as
the operating system monitors the number of steps taken by each program.

The third type of instruction is used in memory allocation and de-allocation.
Memory management is the key to everything we do. Proper “compartmental-
ization” of the memory is key to privacy (no program, including the operating
system, may learn the contents of memory allocated to another program), and
to correctness (no program, including the operating system, may tamper with
the contents of memory allocated to another program). Proper manipulation of
memory, including the bookkeeping data structures, is essential to efficient allo-
cation of resources (the bookkeeping data structures must accurately reflect the
allocation of memory at all times).
M will have registers of the same size as Nq,m, that is, q bits. Registers

0, 1, ...,m−1 will have the same role as in Nq,m. Apart from that, for each block
of size ξ there will be a constant number of registers reserved for bookkeeping
information regarding the block. These will be called the block registers. The
information stored in them includes the user u, whose program Pu can use the
registers in the corresponding block, and some information about the sequence
of blocks B0, ..., Bi used by Pu. (We will call such a sequence a chain.) There will
be a constant number of registers reserved for each user u as well. These registers
will be called the user registers. These will contain information of the following
types: the declared amount of necessary memory and time for program Pu, how
much time has been used up already by program Pu, and which are the first and
last blocks in the chain used by Pu. In the user registers there will be also some
information about the running program Pu, which cannot be stored in the blocks
while other programs are executed (e.g. the contents of the accumulator and the
instruction pointer; the operating system will have no instruction permitting it
to access these two registers).

We will consider the set of chains as a directed graph F , whose vertices are
the blocks. If B0, ..., Bi is a chain 〈B0, B1〉, ..., 〈Bi−1, Bi〉 are edges of F . Since
for each user there may be a chain, the graph F consists of several pairwise
disjoint paths. Some of the nodes may be outside all of the paths; we will call
these isolated nodes. We color the nodes in the chains with the integers {1, ..., n},
which represent the n users. The nodes of the chain which has been built for
user u are colored by u. The isolated nodes have color 0. The vertices are always
color coded by the contents of block registers in the corresponding blocks. One
of the instructions enables making a chain longer, that is, to attach an isolated
block at the end of a chain and color it with the appropriate color.

The attach instruction can only be issued by the operating system. Instruc-
tion attach(x, y, z) first checks that x and y are distinct block indices and that
z ∈ [n] (that is, z is a user name). If not, and if any of the following set of
conditions holds, then the instruction becomes a no-op: Program z has started
executing, block x or block y has already been allocated to another program
or both have already been allocated to Program z, the chain is non-empty and
block x is not the head of the chain. Otherwise, y is added to the chain, and
becomes the new head. The instruction is either carried out completely or not



An Architecture for Provably Secure Computation 63

at all. Therefore we may think of the operating system as being able to give
instructions for graph operations. When the chain allocated to z is empty and
both x and y are isolated, this starts a chain of color z, with x as the tail and y
as the head. Note that the above conditions ensure that the chain never contains
a loop.

Another graph operation makes it possible to dismantle a chain, by cutting off
its last node. However it does not work while the program of the corresponding
user is running. Whether this is the situation is determined by the content of
one of the user registers. If the instruction which cuts down the last node of
a chain colored u is applied at a time when the program Pu already used up
its allocated time, then the contents of all of the registers are erased in the
corresponding block.

The remaining type of instruction always relates to a specific user u. There
is one instruction for each of the following tasks:

1. Ask for the first input from user u, which is the declared amount of needed
time;

2. Ask for second input from user u, which is the declared amount of needed
memory;

3. Check whether the number of blocks in the chain colored u is the same as
the declared amount of needed memory, and if the answer is yes start the
program Pu;

4. Check whether the user u has consumed its declared amount of time, and if
not then execute the next step in program Pu.

Instructions of Type 3 can be executed quickly since one of the block registers
corresponding to the last block of a chain contains the length of the chain, and
as we have told already one of the user registers of user u contains the address
of this last block.

Recall that running a program on the multi-user machine should be “just
like” running the program on the ideal machine Nq,m. The ideal machine has an
accumulator and an instruction pointer. The secure machine will have special
registers for each user that play the role of the accumulator and the instruction
pointer (these are the first two registers in the chain assigned to the user). These
registers are colored with the color corresponding to the user, and so remain
private.

A special instruction start(u) is used to start the program of user u, as
described in Type 3 above. Let L0 be the address of the first register in the
chain assigned to u. Once the bookkeeping has been verified (checking that
the required amount of memory has been allocated and execution has not yet
begun) the value L0 is loaded into the instruction counter, the instruction INPUT
is loaded into location L0 (so the first instruction executed by user u will be the
INPUT instruction, which will read in the program), location L0 + 1 gets the
value L0 + 2 (so that the program will begin loading into location L0 + 2). As
we discussed in the previous section, once the program completes loading, the
instruction pointer will be set to 2 + the location of the INPUT instruction, that
is, location L0 + 2, which is where the program was loaded.
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Instructions of Type 4 are of the form exec(u). After testing that u is a user
(a number in [n]) and doing some bookkeeping (e.g., making sure Pu has not
exceeded its declared time), this instruction permits program Pu to take a step.
Formally, the registers allocated to Pu describe a state of Nq,m; the instruction
indicated by the program counter for u causes a state transition to a new state of
Nq,m, and hence describes what should be the new configuration of the registers
allocated to Program Pu. The effect of instruction exec(u) is to modify the
registers allocated to Program Pu accordingly – unless some register involved is
not allocated to u, in which case the instruction becomes a no-op. Note that,
since each step on the ideal machine Nq,m involves only a small number of
registers, each step of the multiuser machine also involves only a small number
of registers, so the updates that must be performed atomically in the exec(u)
instruction are not numerous (remain below some constant).

There is also a bookkeeping side effect of exec(u), which is to increase the
contents of the register, owned by the operating system, that keeps track of how
many steps Program x has executed.

The formal definition of each instruction describes exactly which registers are
involved (may be modified by the instruction) and defines how the contents are
modified. This will be important for making rigorous claims about the behavior
of M.

3.2 The Adversary

Users and the operating system are not trusted, and may collude arbitrarily
against other users. Colluding parties may communicate out of band. We there-
fore think in terms of a single adversary, denoted A. The adversary is assumed
to have access to the declared time and space requirements of all programs, as
well as knowledge of which blocks of storage they have been assigned, if any, and
how many steps they have taken. Indeed, without loss of generality all informa-
tion known to the operating system is assumed to be known to A, even if the
operating system is not faulty4. The adversary may additionally subvert users
and the operating system, in an adaptive fashion. Any information known to a
subverted user, in particular, the contents of all registers allocated to the user,
become known to A. We may also assume that the adversary learns any inputs
the subverted user’s program has received. In addition, if the operating system is
subverted then the adversary controls whether or not resources are allocated to
future programs, which memory locations will be allocated to which programs,
whether or not allocated memory will be de-allocated, and whether allocations
and de-allocations in progress when the operating system is first subverted will
be completed; and the interleaving of steps between user programs.

Our computational model is sufficiently general that it allows for the possi-
bility that the operating system may be restarted or reloaded (although we do
not define such an event in the model).

4 Even if the operating system is nonfaulty, a coalition of all users but x can gain
information about the time and memory usage of Px.



An Architecture for Provably Secure Computation 65

It is possible that the adversary subverts only a few users, leaving multiple
users not subverted. Since we have no communication between users, we state
all of our goals (apart from efficiency) from the point of view of a single, but
arbitrary, user. Therefore, when we consider the correctness or secrecy of this
user, we may assume that all of the other users are subverted and so the adversary
gets all of the information available to all of the other users.

We say an architecture is secure if it prevents an adversary from achieving any
of the three goals mentioned in the Introduction: causing incorrect output for a
program P of an uncompromised user, compromising the privacy of program P ,
or poisoning the well. Intuitively, a secure architecture limits the adversary to
temporarily mounting a denial of service attack. Service is restored as soon as
the operating system returns to good behavior, so if A does not subvert the
operating system then the programs of non-subverted users may run.

3.3 Weak Efficiency

Our efficiency requirement (see discussion of Poisoning the Well) may be stronger
than necessary. Roughly speaking, it requires not only that the operating system,
in a constant amount of time, be able to add a new register to the memory
collected for User u, provided that there is still available free memory, but it
also requires the operating system to know at all times where such an unused
register can be found. That is, the operating system has to maintain a data
structure where an unused register can be found in constant time.

Given a well-behaved operating system this can easily be done using known
techniques, and the fact that the operating system has to maintain such a data
structure is not an unreasonable requirement since something like this has to
be maintained for the efficient use of the memory. However we require that the
operating system has to do it in a secure way. That is, this data structure cannot
be destroyed even by the operating system We sketch a technique for achieving
exactly this in the next section.

On the other hand, for practical purposes, it may be sufficient that the op-
erating system maintain such a data structure in the traditional unreliable way
outside the machineM, or inside but in an “insecure” way. This would mean that
sometimes this data structure will be lost, but the operating system can always
rebuild it easily. On the average such a solution may be less expensive in terms
of resources than maintaining a secure data structure. Motivated by this, we
define a weaker version of efficiency, in which we only require that the operating
system can allocate an unused block of memory to a program in constant time,
provided that such an unused block exists and the operating system knows its
location. However weak efficiency does not guarantee that the operating system
is always able to find this location in constant time.

Theorem 1 in the full paper states that when a conforming program is run on
the machineM then both the correctness and privacy conditions are guaranteed.
Moreover, the machine is weakly efficient. The proof is a conceptionally simple
but very detailed induction on the states of the data structures. In the next
section we sketch a modification of M that, in addition, is (strongly) efficient.
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4 Achieving Strong Efficiency

We briefly sketch changes to M that will permit strong efficiency. We first de-
scribe the changes from an operational standpoint, and then remark on the
conceptual elements of the proof.

At all times the free blocks will be connected via a doubly-linked cycle, rep-
resented by 2 additional registers in each set of block registers, called forward()
and backward(). We assume that if the machine is rebooted all registers are
zeroed out, so we want that the implicit meaning of 0 as a forward, respectively
backward, pointer for block i is i + 1 mod χ, respectively i − 1 mod χ; here χ
is the total number of memory blocks in the machine. We model the available
blocks with a graph which contains at all time a single cycle. At time t the graph,
Ft is defined as follows: for all blocks 1 ≤ i, j ≤ χ, available (that is, colored
0) at time t, there is an edge from block i to block j if and only if the forward
pointer for block i contains the value j−(i+1) mod χ and the backward pointer
for j contains i− (j − 1) mod χ.

In addition, we define a new register, which can be read by the operating
system, called pick. At all times t ≥ 0 this will contain an (arbitrary) element
of the graph Ft, that is, the index of some available block.

The attach(x, y, z) instruction now also causes y (and possibly x, if it has
color 0) to be deleted from the cycle Ft, and pick to be updated. Similarly, the
detach(x, z) instruction causes x to be added to the cycle. Note that the updates
to the registers forward(), backward(), and pick are defined by the attach and
detach operations, and are therefore only indirectly under the control of the
operating system. This interface is key to ensuring that the operating system
cannot poison the well.

We remark that a block allocated to a program that has not yet begun ex-
ecuting is still considered to be available, as the operating system may change
its mind and de-allocate the block, possibly giving it instead to another user.
Thus, a block corresponding to the head of a chain under preparation for a user
whose program has not yet begun technically should also be part of the cycle Ft.
Also, to ensure availability of blocks on chain allocated to a program Pu that has
completed, we modify the exec(u) operation to take appropriate action when
timecount(u) first exceeds 2 + decltime(u).

Note that our informal description of the modified attach and detach oper-
ations involved discussion of a graph Ft that depends on the entire history of
the execution of the machine. The formal specification for the strongly efficient
M1 involves extending the instruction set of M to incorporate histories (see
Theorem 2 and its proof, in the full paper), but operationally there is no such
complication.

5 Extensions

So far we have only considered the situation when each user has a single program
to be executed. We briefly mention some other possible situations which can be
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handled with a similar but somewhat more complex set of instructions than the
one that we have provided for the solution of the basic problem. Solutions to
these problems are outlined in the full paper; however, there is much room for
future research.

1. Each user has a fixed sequence of programs to be executed. The difficulty
here is that the user may have prepared a sequence of inputs but the operating
system may refuse an early program in the sequence (perhaps because insufficient
memory is available), and the user must adapt the input sequence accordingly.
Thus, the model must be modified to incorporate additional interaction between
the machine and the user.

2. The amount of time, respecitvely, space, needed for the program is not
known in advance; that is, the program, depending on the partial results, may
ask for additional time or space.
In the two generalized problems mentioned above the notion of information
protection changes in the sense that we must consider all of the requests for
additional resources and their timing as public information that is not protected.

3. An interesting and important area is the question of communication among
users. (A related topic is the handling of interrupts, such as the firing of a timer
or the movement of a mouse.) We see many ways to address this, and several
interesting questions arise concerning the appropriate changes to the definitions
of security and efficiency. For example, in addition to information protection,
one may also want protection from wasting time on unwanted communication
initiated by others. We intend to return to these questions in another paper; see
the full paper for some specific suggestions.

4. Many programs are long-lived. Such programs are essentially virtual users.
There is no reason for these programs if they cannot communicate with other
programs. Hence, the exact implementation of this concept depends very much
on interprogram communication and signaling.
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Abstract. Scoring matrices are widely used in sequence comparisons. A
scoring matrix γ is indexed by symbols of an alphabet. The entry in γ in
row a and column b measures the cost of the edit operation of replacing
symbol a by symbol b.

For a given scoring matrix and sequences s and t, we consider two
kinds of induced scoring functions. The first function, known as weighted
edit distance, is defined as the sum of costs of the edit operations required
to transform s into t. The second, known as normalized edit distance,
is defined as the minimum quotient between the sum of costs of edit
operations to transform s into t and the number of the corresponding
edit operations.

In this work we characterize the class of scoring matrices for which
the induced weighted edit distance is actually a metric. We do the same
for the normalized edit distance.

Keywords: edit distance, normalized edit distance, metric.

1 Introduction

Comparison of sequences is an important problem in computer science which
has several applications: computational biology [4], text processing [1], pattern
recognition [7], pronunciation modeling [9], etc.

It is common to measure the distance between two sequences s and t by
computing the minimum cost of transforming s into t through a sequence of
weighted edit operations. These operations are: insertion, deletion, and substitu-
tion of symbols.

Let Σ be an alphabet and Σ∇ = Σ ∪ {∇}, where ∇ �∈ Σ. The symbol ∇ is
used to represent insertions and deletions. A scoring matrix γ for Σ is a matrix
whose elements are real numbers. The matrix γ has rows and columns indexed
by symbols in Σ∇. For a, b ∈ Σ∇, we denote by γa→b the entry of γ in row a
and column b and it represents the cost of the substitution of a for b.

A simple weighted edit distance is known as Levenshtein distance [6]. The
corresponding scoring matrix is such that γa→b = 0 if a = b and γa→b = 1
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otherwise. However, not every scoring matrix induces a scoring function that
can be properly called a weighted edit distance, in the sense that the scoring
function might not be a metric. Sellers [10] shows that a sufficient condition for
the scoring function to be a metric on Σ∗ is that γ is a metric on Σ∇. We show
in this work that this condition is not necessary. We characterize the class of
scoring matrices that induces a proper weighted edit distance. For example, it
follows from Theorem 2 that the matrix

a b c ∇
a 0 1 3 1
b 1 0 1 1
c 4 1 0 1
∇ 1 1 1 0

induces a metric on Σ∗, even though γa→c �= γc→a, γa→c �≤ γa→∇ +γ∇→c and
γc→a �≤ γc→∇ + γ∇→a.

Marzal and Vidal [7] defined another criterion to score alignments that de-
pends not only on the edit operations involved but also on the number of such
operations. This criterion is known as normalized edit distance. Similar to what
happens with the conventional weighted edit distance, not every scoring ma-
trix induces a proper normalized edit distance. We also characterize the class of
scoring matrices that induces a proper normalized edit distance.

This paper is organized as follows. Sections 2 provides a brief description of the
concepts, and we characterize the classes of matrices that induce, respectively,
normalized edit distance and weighted edit distance. In Section 3 we prove the
main result of this paper and we finalize in Section 4 with some remarks.

2 Preliminaries

We denote a sequence s over Σ by s = s(1)s(2) . . . s(n), where s(i) ∈ Σ. We
say that the length of s, denoted by |s|, is n. We denote by ε the empty sequence.
The sequence an is the sequence with length n consisting of the concatenation
of n characters a. The sequence st represents the concatenation of the sequences
s and t. The set of all sequences over Σ is denoted by Σ∗.

Let Σ∇ = Σ ∪ {∇}, where ∇ �∈ Σ. We call space the symbol ∇, which is
used to represent an insertion or a deletion. An alignment of (s, t) is a pair of
sequences (s′, t′) obtained by inserting spaces in the sequences s and t, in such
a way that |s′| = |t′| and there is no i such that s′(i) = t′(i) = ∇. We say
that s′(i) and t′(i) are aligned in (s′, t′) and that |(s′, t′)| = |s′| is the length of
the alignment (s′, t′). We denote by A(s,t) the set of all alignments of (s, t).

An alignment can be visualized placing s′ above t′, as showed in the following
examples.

a c ∇ c b ∇ b b b ∇
c ∇ a ∇ a c ∇ ∇ c b

∇ ∇ ∇ ∇ a c c b b b b
c a a c c b ∇ ∇ ∇ ∇ ∇
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The figures above represent two different alignments of (accbbbb, caaccb). The
left figure represents the alignment (ac∇cb∇bbb∇, c∇a∇ac∇∇cb), while the
right figure represents the alignment (∇∇∇∇accbbbb, caaccb∇∇∇∇∇).

Given a scoring matrix γ, we define the functions vγ and vNγ that associate
the following values for each alignment (s′, t′):

vγ (s′, t′) =
|(s′,t′)|∑

i=1

γs′(i)→t′(i)

and

vNγ (s′, t′) =

{
0 if |s| = |t| = 0,∑|(s′,t′)|

i=1
γs′(i)→t′(i)
|(s′,t′)| otherwise .

We call vγ (A) the score of the alignment A, and vNγ (A) the normalized score
of the alignment A.

We also define functions optγ and optNγ as

optγ(s, t) = min
A∈A(s,t)

{vγ (A)} and optNγ(s, t) = min
A∈A(s,t)

{vNγ (A)} .

If vγ (s′, t′) = optγ(s, t) or vNγ (s′, t′) = optNγ(s, t) we say that the align-
ment (s′, t′) of (s, t) is optimal or N-optimal, respectively.

For a given set S, we say that a function dist is a metric on S if dist satisfies
the following conditions. For each s, t, u ∈ S,

1. dist(s, t) > 0 if s �= t, and dist(s, t) = 0 if s = t;
2. dist(s, t) = dist(t, s);
3. dist(s, t) ≤ dist(s, u) + dist(u, t).

If optγ or optNγ is a metric on Σ∗ we say that the scoring matrix γ induces
a weighted edit distance or a normalized edit distance, respectively.

The most common class of scoring matrices that induces weighted edit dis-
tances is defined below. Let IMC be the class of scoring matrices for Σ that have
the following properties. For each a, b, c ∈ Σ∇,

1. γa→b > 0 if a �= b, and γa→b = 0 if a = b;
2. γa→b = γb→a;
3. γa→c ≤ γa→b + γb→c.

In other words, γ is a metric on Σ∇. Sellers [10] showed that scoring matrices
in this class induce weighted edit distances.

However, the class IMW defined below contains IMC and, as mentioned below,
it consists of all scoring matrices that induce weighted edit distance. Let IMW be
the class of scoring matrices for Σ that have the following properties. For each
a, b, c ∈ Σ,

1. γa→∇ = γ∇→a > 0;
2. γa→b > 0 if a �= b, and γa→b = 0 if a = b;
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3. if γa→b < γa→∇ + γ∇→b, then γa→b = γb→a;
4. γa→∇ ≤ γa→b + γb→∇;
5. min{γa→c, γa→∇ + γ∇→c} ≤ γa→b + γb→c.

We also define the class IMN of scoring matrices for Σ that have the following
properties. For each a, b, c ∈ Σ,

1. γa→∇ = γ∇→a > 0;
2. γa→b > 0 if a �= b, and γa→b = 0 if a = b;
3. if γa→b < γa→∇ + γ∇→b, then γa→b = γb→a;
4. γa→∇ ≤ γa→b + γb→∇;
5. min{γa→c, γa→∇ + γ∇→c} ≤ γa→b + γb→c;
6. γa→∇ ≤ 2γ∇→b.

The following theorem, proved in Section 3, states that IMN consists of all
scoring matrices that induce normalized edit distances.

Theorem 1. Let Σ be an alphabet and γ be a scoring matrix. Then optNγ is
a metric on Σ∗ if and only if γ ∈ IMN.

The similar theorem below states that IMW consists of all scoring matrices that
induce weighted edit distances. Its proof, omitted here, is an adaptation of the
proof of Theorem 1.

Theorem 2. Let Σ be an alphabet and γ be a scoring matrix. Then optγ is a
metric on Σ∗ if and only if γ ∈ IMW.

It follows from the definitions that IMC ⊆ IMW, IMN ⊆ IMW, IMC �⊆ IMN, and
IMN �⊆ IMC, as pictured in Figure 1.

IMW

IMN

IMC

Fig. 1. Relationship among the classes IMW, IMN, and IMC
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This work was motivated by the following remark made by Marzal and
Vidal [7], who depicted the scoring matrix γ below:

a b ∇
a 0 5 5
b 5 0 1
∇ 5 1 0

.

They commented that optγ is a metric on Σ∇, but optNγ is not a metric on Σ∇
since

3 = optNγ(a, b) �≤ optNγ(a, ab) + optγ(ab, b) =
1
2

+
7
3
.

It is worth noting that γ ∈ IMC but γ �∈ IMN.

3 Scoring Matrices That Induce Normalized Edit
Distances

This rather technical section is dedicated to the proof of Theorem 1, which states
that the class IMN consists of all scoring matrices that induce normalized edit
distance.

Lemmas 3, 4, 7, 8, 10, and 11 are used to prove one implication of Theorem 1,
namely, we prove that if optNγ is a metric on Σ∗, then γ ∈ IMN. More precisely,
considering that optNγ is a metric, each one of these six lemmas shows that γ
must obey one of the six properties stated in the definition of IMN.

Next we complete the proof of Theorem 1 by showing the other implication,
namely, that if γ ∈ IMN, then optNγ satisfies the properties of reflexivity and
strict positiveness (Lemma 14), symmetry (Lemma 15) and triangle inequality
(Lemma 17).

Throughout this section we consider a fixed alphabet Σ and a fixed scoring
matrix γ for Σ.

Lemma 3. Suppose that optNγ is a metric and that a is a symbol in Σ. Then
γa→∇ = γ∇→a > 0.

Proof. Observe that the score of the alignment (a,∇) is γa→∇ and that (a,∇)
is the unique alignment of (a, ε). So, γa→∇ = vNγ (a,∇) = optNγ(a, ε).

Similarly, we have that γ∇→a = optNγ(ε, a).
If optNγ is a metric, then optNγ(a, ε) > 0 and optNγ(a, ε) = optNγ(ε, a).
Therefore, γa→∇ = optNγ(a, ε) = optNγ(ε, a) = γ∇→a > 0. ��

Lemma 4. Suppose that optNγ is a metric and that a and b are symbols in Σ.
Then γa→b > 0 if a �= b, and γa→b = 0 if a = b.

Proof. Suppose that a �= b. Since (i) optNγ is a metric, (ii) the score of the
alignment (a, b) is γa→b, and (iii) vNγ (a, b) ≥ optNγ(a, b), it follows that
γa→b = vNγ (a, b) ≥ optNγ(a, b) > 0.
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Now suppose that a = b. Observe that A(a,b) = {(a, b), (a∇,∇b), (∇a, b∇)} .
It follows from Lemma 3 that vNγ (a∇,∇b) > 0 and that vNγ (∇a, b∇) > 0.
Since optNγ is a metric, it is true that optNγ(a, b) = 0. So, the only possible
case is that optNγ(a, b) = vNγ (a, b) = γa→b = 0. ��

We need the following notation to be used in the next lemmas. We denote by
G the value of maxa∈Σ{γa→∇, γ∇→a} and by g a character of Σ such that
max{γg→∇, γ∇→g} = G.

Lemma 5. Suppose that optNγ is a metric and that a and b are symbols in Σ.
Then, for each n ≥ 0, we have that

optNγ(gna, gnb) = min
{
vNγ (gna, gnb) = γa→b/(n+ 1),
vNγ (gna∇, gn∇b) = (γa→∇ + γ∇→b)/(n+ 2)

}
.

Proof. (sketch) We first comment that

vNγ (gna, gnb) =
γa→b
n+ 1

and vNγ (gna∇, gn∇b) =
γa→∇ + γ∇→b

n+ 2
.

So, to prove the lemma, we show that any alignment (s′, t′) of (gna, gnb) is such
that

vNγ (s′, t′) ≥ min {γa→b/(n+ 1), (γa→∇ + γ∇→b)/(n+ 2)} .

We examine four cases, covering all possible alignments of (gna, gnb). The
cases are: ( i) a is aligned with b in (s′, t′); ( ii) a is aligned with g in (s′, t′);
( iii) g is aligned with b in (s′, t′); and ( iv) a and b are aligned with spaces
in (s′, t′). For each one of these cases, we show that value of the alignment is as
desired. ��

We need the following property in the next lemma.

Fact 6. Let a, b, and c be numbers, with a < b+ c and n0 = a/(b+ c− a)− 1.
If n > n0, then a/(n+ 1) < (b+ c)/(n+ 2).

Lemma 7. Suppose that optNγ is a metric and that a and b are symbols in Σ
such that γa→b < γa→∇ + γ∇→b. Then γa→b = γb→a.

Proof. Let n be any integer such that n > γa→b/(γa→∇ + γ∇→b − γa→b)− 1.
As consequence of Lemma 5 and Fact 6, we have that

optNγ(gna, gnb) =
γa→b
n+ 1

<
γa→∇ + γ∇→b

n+ 2
.

Also, from Lemma 5, we have that

optNγ(gnb, gna) = min
{
γb→a
n+ 1

,
γb→∇ + γ∇→a

n+ 2

}
.

Suppose that optNγ(gnb, gna) = (γb→∇ + γ∇→a)/(n + 2). As a consequence of
Lemma 3 we have that

optNγ(gna, gnb) <
γa→∇ + γ∇→b

n+ 2
=

γb→∇ + γ∇→a
n+ 2

= optNγ(gnb, gna) ,
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which is a contradiction, since optNγ is a metric. Therefore, optNγ(gnb, gna) =
(γb→a)/(n+ 1). It follows that

γa→b
n+ 1

= optNγ(gna, gnb) = optNγ(gnb, gna) =
γb→a
n+ 1

,

which implies that γa→b = γb→a. ��

Lemma 8. Suppose that optNγ is a metric and that a and b are symbols in Σ.
Then γa→∇ ≤ γa→b + γb→∇.

Proof. Since (a,∇) is the unique alignment of (a, ε), we have that optNγ(a, ε) =
vNγ (a,∇). It is also true that optNγ(a, ε) ≤ optNγ(a, b) + optNγ(b, ε), because
optNγ is a metric. From the remarks above it follows that

γa→∇ = vNγ

(
a
∇

)
= optNγ(a, ε) ≤ optNγ(a, b) + optNγ(b, ε)

≤ vNγ

(
a
b

)
+ vNγ

(
b
∇

)
= γa→b + γb→∇ . ��

We use the following fact in the next lemma.

Fact 9. Let x �= y be real numbers and n be such that n > max
{
0, 2y−x

x−y

}
. If

x
n+2 ≤

y
n+1 then x < y.

Lemma 10. Suppose that optNγ is a metric and that a, b, and c are symbols
in Σ. Then

min {γa→c, γa→∇ + γ∇→c} ≤ γa→b + γb→c .

Proof. If γa→∇ + γ∇→c = γa→b + γb→c then the lemma is proved. So, we may
assume that γa→∇ + γ∇→c �= γa→b + γb→c.

Let n be a positive integer such that

n >
2(γa→b + γb→c)− (γa→∇ + γ∇→c)
(γa→∇ + γ∇→c)− (γa→b + γb→c)

.

As consequence of Lemma 5, we have that

optNγ(gna, gnb) ≤ γa→b
n+ 1

and optNγ(gnb, gnc) ≤ γb→c
n+ 1

. (1)

Using Lemma 5, we inspect the two possible values of optNγ(gna, gnc).
If optNγ(gna, gnc) = γa→c/(n + 1), then, since optNγ is a metric, and us-

ing (1), we have that
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γa→c
n + 1

= optNγ(gna, gnc) ≤ optNγ(gna, gnb) + optNγ(gnb, gnc)

≤ γa→b
n+ 1

+
γb→c
n + 1

,

which implies, since n ≥ 0, that γa→c ≤ γa→b + γb→c.
In a similar way, if optNγ(gna, gnc) = (γa→∇ + γ∇→c)/(n+ 2), then

γa→∇ + γ∇→c
n + 2

≤ γa→b
n + 1

+
γb→c
n+ 1

=
γa→b + γb→c

n + 1
,

which implies, from Fact 9 and by the choice of n, that γa→∇ +γ∇→c < γa→b+
γb→c. ��

Lemma 11. Suppose that optNγ is a metric and that a and b are symbols in Σ.
Then γa→∇ ≤ 2γ∇→b.

Proof. (sketch)
By contradiction, we assume that γa→∇ > 2γ∇→b. We choose k such that

k >
2γ∇→b

γa→∇ − 2γ∇→b
,

and consider the sequences ak, b, and akb.
We can prove that optNγ(ak, b) > optNγ(ak, akb) + optNγ(akb, b), showing

that optNγ does not have the triangular inequality property. This contradicts
the assumption that optNγ is a metric. ��

Lemma 12. Let s and t be sequences in Σ∗. Then optNγ(s, t) ≤ G.

Proof. Let (s′, t′) be the alignment of (s, t) such that s′ = s∇|t| and t′ = ∇|s|t.
Then

optNγ(s, t) ≤ vNγ (s′, t′) =
|s|γs(i)→∇ + |t|γ∇→t(j)

|(s′, t′)| ≤ |(s′, t′)|G
|(s′, t′)| = G ,

where the last inequality follows from the definition of G. ��
Lemma 13. If a, b ∈ Σ are aligned in an N-optimal alignment of (s, t), then

γa→b < γa→∇ + γ∇→b .

Proof. Let (s′, t′) be an N-optimal alignment of (s, t) in which a and b are
aligned. By contradiction, assume that γa→b ≥ γa→∇ + γ∇→b. Let j be an
integer such that s′(j) = a and t′(j) = b.

Then

vNγ

(
s′(1) . . . s′(j − 1) s′(j) ∇ s′(j + 1) . . . s′(|s′|)
t′(1) . . . t′(j − 1) ∇ t′(j) t′(j + 1) . . . t′(|t′|)

)
=

vγ (s′, t′) + γa→∇ + γ∇→b − γa→b
|(s′, t′)|+ 1

≤ vγ (s′, t′)
|(s′, t′)|+ 1

< vNγ (s′, t′) ,

contradicting the optimality of (s′, t′). ��
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Lemma 14. Suppose γ ∈ IMN and that s and t are sequences in Σ∗. Then
optNγ(s, t) > 0 if s �= t, and optNγ(s, t) = 0 if s = t.

Proof. Let (s′, t′) be an N-optimal alignment of (s, t). Since γ ∈ IMN, we have
that, for each j, γs′(j)→t′(j) ≥ 0. Then

optNγ(s, t) = vNγ (s′, t′) =

∑
j γs′(j)→t′(j)

|(s′, t′)| ≥ 0 .

If s = t, then (s, t) is an alignment of (s, t) with vNγ (s, t) = 0. It follows from
the inequality above that optNγ(s, t) = 0.

If s �= t, then for any N-optimal alignment (s′, t′) of (s, t), there exists i such
that s′(i) �= t′(i), which implies, since γ ∈ IMN, that γs′(i)→t′(i) > 0. Given that
γ ∈ IMN, it holds that for any j �= i, γs′(j)→t′(j) ≥ 0. We conclude that

optNγ(s, t) = vNγ (s′, t′) =
γs′(i)→t′(i) +

∑
j �=i γs′(j)→t′(j)

|(s′, t′)| ≥
γs′(i)→t′(i)

|(s′, t′)| > 0 .

��

Lemma 15. Suppose γ ∈ IMN and that s and t are sequences in Σ∗. Then

optNγ(s, t) = optNγ(t, s) .

Proof. Let (s′, t′) be an N-optimal alignment of (s, t). For each j such that either
s′(j) = ∇ or t′(j) = ∇, it holds that γs′(j)→t′(j) = γt′(j)→s′(j) by the definition
of IMN, item 1. For each j such that s(j) �= ∇ and t(j) �= ∇, it follows from
Lemma 13 that γs′(j)→t′(j) < γs′(j)→∇ + γ∇→t′(j), which in turn implies that
γs′(j)→t′(j) = γt′(j)→s′(j) by the definition of IMN, item 3.

Using the remarks above we have that

optNγ(s, t) = vNγ (s′, t′) =

∑
j γs′(j)→t′(j)

|(s′, t′)|

=

∑
j γt′(j)→s′(j)

|(t′, s′)| = vNγ (t′, s′) ≥ optNγ(t, s) .

By analogous reasoning, we have that optNγ(t, s) ≥ optNγ(s, t), which allow
us to conclude that optNγ(t, s) = optNγ(s, t). ��

We need this remark to be used in the next lemma.

Fact 16. Let x, y, z, w be real numbers, with y, w > 0. If z/w ≥ x/y, then
(x+ z)/(y + w) ≥ x/y.

Lemma 17. Suppose that γ ∈ IMN and that s, t, and u are sequences in Σ∗.
Then

optNγ(s, u) ≤ optNγ(s, t) + optNγ(t, u) .
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Proof. Let A e B be N-optimal alignments of (s, t) and (t, u), respectively. Define

C1 = {i | s(i) is aligned with ∇ in A} ,
C2 = {k | u(k) is aligned with ∇ in B} ,
C3 = {j | t(j) is aligned with ∇ in A and t(j) is aligned with ∇ in B} ,
C4 = {(i, j) | s(i) is aligned with t(j) in A and t(j) is aligned with ∇ in B} ,
C5 = {(j, k) | t(j) is aligned with ∇ in A and t(j) is aligned with u(k) in B} ,

C6 =
{

(i, j, k) | s(i) is aligned with t(j) in A and t(j) is aligned with
u(k) in B and γs(i)→u(k) ≤ γs(i)→t(j) + γt(j)→u(k)

}
,

C7 =
{

(i, j, k) | s(i) is aligned with t(j) in A and t(j) is aligned with
u(k) in B and γs(i)→u(k) > γs(i)→t(j) + γt(j)→u(k)

}
.

So,

vγ (A) =
∑
i∈C1

γs(i)→∇ +
∑
j∈C3

γ∇→t(j) +
∑

(i,j)∈C4

γs(i)→t(j) +
∑

(j,k)∈C5

γ∇→t(j) +

∑
(i,j,k)∈C6

γs(i)→t(j) +
∑

(i,j,k)∈C7

γs(i)→t(j)

and

vγ (B) =
∑

k∈C2

γ∇→u(k) +
∑
j∈C3

γt(j)→∇ +
∑

(i,j)∈C4

γt(j)→∇ +
∑

(j,k)∈C5

γt(j)→u(k) +

∑
(i,j,k)∈C6

γt(j)→u(k) +
∑

(i,j,k)∈C7

γt(j)→u(k) .

We now define an alignment C of (s, u) according to the following three rules.
For each (i, j, k) ∈ C6, align s(i) with u(k). For each remaining s(i) not yet
aligned, align s(i) with ∇. For each remaining u(k) not yet aligned, align ∇ with
u(k). The score of such alignment is

vγ (C) =
∑
i∈C1

γs(i)→∇ +
∑

k∈C2

γ∇→u(k) +
∑

(i,j)∈C4

γs(i)→∇ +
∑

(j,k)∈C5

γ∇→u(k) +

∑
(i,j,k)∈C6

γs(i)→u(k) +
∑

(i,j,k)∈C7

(γs(i)→∇ + γ∇→u(k)) .

If (i, j) ∈ C4 then, by definition of IMN, item 4, we have that γs(i)→t(j) +
γt(j)→∇ ≥ γs(i)→∇. Thus∑

(i,j)∈C4

γs(i)→t(j) +
∑

(i,j)∈C4

γt(j)→∇ ≥
∑

(i,j)∈C4

γs(i)→∇ . (2)

Note also that if (j, k) ∈ C5 then, by Lemma 13, it is true that γt(j)→u(k) <

γt(j)→∇ + γ∇→u(k). The definition of IMN, item 3, implies that γt(j)→u(k) =
γu(k)→t(j). Thus,

γ∇→t(j) + γt(j)→u(k) = γ∇→t(j) + γu(k)→t(j) = γt(j)→∇ + γu(k)→t(j) ,
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where the last equality follows from the definition of IMN, item 1. Using again
the definition of IMN, item 4, we have that∑

(j,k)∈C5

γ∇→t(j) +
∑

(j,k)∈C5

γt(j)→u(k) ≥
∑

(j,k)∈C5

γ∇→u(k) . (3)

Using inequalities (2) and (3), we obtain that

vγ (A) + vγ (B) ≥ vγ (C) +
∑
j∈C3

γt(j)→∇ +
∑
j∈C3

γ∇→t(j)

= vγ (C) + 2
∑
j∈C3

γ∇→t(j)

≥ vγ (C) + 2
∑
j∈C3

G

2
= vγ (C) + |C3|G . (4)

The inequality (4) follows from G ≤ 2γ∇→t(j), which in turn follows from the
definition of IMN, item 6.

Next we estimate the length of the alignments.

|A| = |C1|+ |C3|+ |C4|+ |C5|+ |C6|+ |C7| ≤
∑

i

|Ci|,

|B| = |C2|+ |C3|+ |C4|+ |C5|+ |C6|+ |C7| ≤
∑

i

|Ci|,

|C| = |C1|+ |C2|+ |C4|+ |C5|+ |C6|+ 2|C7| ≥
(∑

i

|Ci|
)
− |C3| .

It follows that

optNγ(s, t) + optγ(t, s) = vNγ (A) + vNγ (B) =
vγ (A)
|A| +

vγ (B)
|B|

≥ vγ (A)∑
i |Ci|

+
vγ (B)∑

i |Ci|
≥ vγ (C) + |C3|G∑

i |Ci|

≥ vγ (C) + |C3|G
|C|+ |C3|

.

Thus, to prove the lemma we show that (vγ (C) + |C3|G)/(|C| + |C3|) ≥
optNγ(s, u). If |C3| = 0, the prove is done. So, we may assume that |C3| > 0. We
consider two cases.

If vγ (C) /|C| ≥ |C3|G/|C3|, then, by Fact 16 and Lemma 12, we have that

vγ (C) + |C3|G
|C|+ |C3|

≥ G ≥ optNγ(s, u) .

If vγ (C) /|C| < |C3|G/|C3|, then, by Fact 16 and from the observation that
vγ (C) /|C| is an upper bound on optNγ(s, u), it follows that

vγ (C) + |C3|G
|C|+ |C3|

≥ vγ (C)
|C| ≥ optNγ(s, u) . ��
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4 Final Remarks

Given a rational scoring matrix γ, the problem of deciding whether γ belongs
to IMW (or to IMN) can be easily solved by an O(|Σ|3)-time algorithm. Items 1
and 2 of the definitions can be checked in time O(|Σ|2), while items 3, 4, 5 and 6
can be checked in time O(|Σ|3).

Gusfield [5], Pevzner [8], and Bafna, Lawler and Pevzner [2] developed approx-
imation algorithms for the multiple sequence alignment problem. Such algorithms
are based on scoring matrices in IMC and they do no guarantee approximation
bounds for scoring matrices in IMW. It would be interesting to design approxima-
tion algorithms to work for matrices in IMW.

Metric indexing algorithms [3], which require a metric between strings, are
used for proximity searching. As pointed out by an anonymous referee, our char-
acterization of scoring matrices allows to decide whether such algorithms can be
used with a given scoring matrix.
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and Incremental Voronoi Diagrams
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Abstract. We consider preprocessing a set S of n points in the plane
that are in convex position into a data structure supporting queries of
the following form: given a point q and a directed line � in the plane, re-
port the point of S that is farthest from (or, alternatively, nearest to) the
point q subject to being to the left of line �. We present two data struc-
tures for this problem. The first data structure uses O(n1+ε) space and
preprocessing time, and answers queries in O(21/ε log n) time. The sec-
ond data structure uses O(n log3 n) space and polynomial preprocessing
time, and answers queries in O(log n) time. These are the first solutions
to the problem with O(log n) query time and o(n2) space.

In the process of developing the second data structure, we develop
a new representation of nearest-point and farthest-point Voronoi dia-
grams of points in convex position. This representation supports inser-
tion of new points in counterclockwise order using only O(log n) amor-
tized pointer changes, subject to supporting O(log n)-time point-location
queries, even though every such update may make Θ(n) combinatorial
changes to the Voronoi diagram. This data structure is the first demon-
stration that deterministically and incrementally constructed Voronoi
diagrams can be maintained in o(n) pointer changes per operation while
keeping O(log n)-time point-location queries.

1 Introduction

Line simplification is an important problem in the area of digital cartography
[6, 9, 13]. Given a polygonal chain P , the goal is to compute a simpler polyg-
onal chain Q that provides a good approximation to P . Many variants of this
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problem arise depending on how one defines simpler and how one defines good
approximation. Almost all of the known methods of approximation compute dis-
tances between P and Q. Therefore, preprocessing P in order to quickly answer
distance queries is a common subproblem to most line simplification algorithms.

Of particular relevance to our work is a line simplification algorithm proposed
by Daescu et al. [7]. Given a polygonal chain P = (p1, p2, . . . , pn), they show how
to compute a subchain P ′ = (pi1 , pi2 , . . . , pim), with i1 = 1 and im = n, such
that each segment [pijpij+1 ] of P ′ is a good approximation of the subchain of P
from pij to pij+1 . The amount of error is determined by the point of the subchain
that is farthest from the line segment [pijpij+1 ]. To compute this approximation
efficiently, the key subproblem they solve is the following:

Problem 1 (Halfplane Farthest-Point Queries). Preprocess n points p1, p2,
. . . , pn in convex position in the plane into a data structure supporting the fol-
lowing query: given a point q and a directed line � in the plane, report the point
pi that is farthest from q subject to being to the left of line �.

Daescu et al. [7] show that, with O(n log n) preprocessing time and space, these
queries can be answered in O(log2 n) time. On the other hand, a näıve approach
achievesO(log n) query time by using O(n3) preprocessing time and O(n3) space.
The open question they posed is whether O(log n) query time can be obtained
with a data structure using subcubic and ideally subquadratic space.

In this paper, we solve this problem with two data structures. The first, rel-
atively simple data structure uses O(n1+ε) preprocessing time and space, and
answers queries in O(21/ε logn) time. The second, more sophisticated data struc-
ture uses O(n log3 n) space and polynomial preprocessing time, and answers
queries in O(log n) time. Both of our data structures apply equally well to half-
plane farthest-point queries, described above, as well as the opposite problem of
halfplane nearest-point queries—together, halfplane proximity queries.

Dynamic Voronoi diagrams. An independent contribution of the second data
structure is that it provides a new efficient representation for maintaining the
nearest-point or farthest-point Voronoi diagram of a dynamic set of points. So
far, point location in dynamic planar Voronoi diagrams has proved difficult be-
cause the complexity of the changes to the Voronoi diagram or Delaunay triangu-
lation for an insertion can be linear at any one step. The randomized incremental
construction avoids this worst-case behavior through randomization. However,
for the deterministic insertion of points, the linear worst-case behavior cannot
be avoided, even if the points being incrementally added are in convex position,
and are added in order (say, counterclockwise). For this specific case, we give a
representation of a (nearest-point or farthest-point) Voronoi diagram that sup-
ports O(log n)-time point location in the diagram while requiring only O(log n)
amortized pointer changes in the structure for each update. So as not to over-
sell this result, we note that we do not have an efficient method of determining
which pointers to change (it takes Θ(n) time per change), so the significance
of this representation is that it serves as a proof of the existence of an encod-
ing of Voronoi diagrams that can be modified with few changes to the encod-
ings while still supporting point location queries. However, we believe that our
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combinatorial observations about Voronoi diagrams will help lead to efficient
dynamic Voronoi diagrams with fast queries.

Currently, the best incremental data structure supporting nearest-neighbor
queries (one interpretation of “dynamic Voronoi diagrams”) supports queries and
insertions in O(log2 n/ log logn). This result uses techniques for decomposable
search problems described by Overmars [14]; see [5]. Recently, Chan [4] developed
a randomized data structure supporting nearest-neighbor queries in O(log2 n)
time, insertions in O(log3 n) expected amortized time, and deletions in O(log6 n)
expected amortized time.

2 A Simple Data Structure

Theorem 2. There is a data structure for halfplane proximity queries on a
static set of n points in convex position that achieves O(21/ε logn) query time
using O(n1+ε) space and preprocessing.

Our proof is based on starting from the näıve O(n3)-space data structure men-
tioned in the introduction, and then repeatedly apply a space-reducing trans-
formation. We assume that either all queries are halfplane farthest-point queries
or all queries are halfplane nearest-point queries; otherwise, we can simply build
two data structures, one for each type of query.

Both the starting data structure and the reduction use Voronoi diagrams as
their basic primitive. More precisely, we use the farthest-site Voronoi diagram
for the case of halfplane farthest-point queries, and the nearest-site Voronoi
diagram for the case of halfplane nearest-point queries. When the points are in
convex position and given in counterclockwise order, Aggarwal et al. [1] showed
that either Voronoi diagram can be constructed in linear time. Answering point-
location queries in either Voronoi diagram of points in convex position can be
done in O(log n) time using O(n) preprocessing and space [11].

The proof of this and other results can be found in the full paper [2]:

Lemma 3. There is a static data structure for halfplane proximity queries on
a static set of n points in convex position, called Okey, that achieves O(log n)
query time using O(n3) space and preprocessing.

Transform 4. Given any static data structure D for halfplane proximity queries
on a static set of n points in convex position that achieves Q(n) query time
using M(n) space and preprocessing, and for any parameter m ≤ n, there is a
static data structure for halfplane proximity queries on a static set of n points
in convex position, called D-Dokey, that achieves 2Q(n) + O(log n) query time
using �n/m�M(m) +O(n2/m) space and preprocessing.

By starting with the data structure Okey of Lemma 3, and repeatedly applying
the Dokey transformation of Transformation 4, we obtain the structure Okey-
Dokey-Dokey-Dokey-. . . , or Okey-Dokeyk, which leads to the following:

Corollary 5. For every integer k ≥ 1, Okey-Dokeyk−1 is a data structure for
halfplane proximity queries on a static set of n points in convex position that
achieves O(2k logn) query time using O(n(2k+1)/(2k−1)) space and preprocessing.
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3 Grappa Trees

Our faster data structure for halfplane proximity queries requires the manipu-
lation of binary trees with a fixed topology determined by a Voronoi diagram.
To support efficient manipulation of such trees, we introduce a data structure
called grappa trees. This data structure is a modification of Sleator and Tarjan’s
link-cut trees [16] that supports some unusual additional operations.

Definition 6. Grappa trees solve the following data-structural problem: main-
tain a forest of rooted binary trees with specified topology subject to

T = Make-Tree(v): Create a new tree T with vertex v (not in another tree).
T = Link(v, w, d,m�,mr): Given a vertex v in some tree Tv and the root w of

a different tree Tw, add an edge (v, w) to make w a child of v, merging Tv

and Tw into a new tree T . The value d ∈ {�, r} specifies whether w becomes
a left or a right child of v; such a child should not have existed previously.
The new edge (v, w) is assigned a left mark of m� and a right mark of mr.

(T1, T2) = Cut(v, w): Delete the existing edge (v, w), causing the tree T contain-
ing it to split into two trees, T1 and T2. Here one endpoint of (v, w) becomes
the root of the tree Ti that does not contain the root of T .

Mark-Right-Spine(T,m): Set the right mark of every edge on the right spine of
tree T (i.e., the edge from the root of T to its right child, and recursively
such edges in the right subtree of T ) to the new mark m, overwriting the
previous right marks of these edges.

(e,m∗
� ,m

∗
r) = Oracle-Search(T,Oe): Search for the edge e in tree T . The data

structure can find e only via oracle queries: given two incident edges (u, v)
and (v, w) in T , the oracle Oe(u, v, w,m�,mr,m

′
�,m

′
r) determines in con-

stant time which of the subtrees of T − v contains x.1 (Note that edges (u, v)
and (v, w) are considered to exist in T−v, even though one of their endpoints
has been removed.) The data structure provides the oracle with the left mark
m� and the right mark mr of (u, v), as well as the left mark m′

� and the right
mark m′

r of (v, w), and at the end, it returns the left mark m∗
� and the right

mark m∗
r of the found edge e.

Theorem 7. There exists an O(n)-space constant-in-degree pointer-machine
data structure that maintains a forest of grappa trees and supports each operation
in O(log n) worst-case time per operation, where n is the total size of the trees
affected by the operation.

4 Rightification of a Tree: Flarbs

The fixed-topology binary search tree maintained by our faster data structure
for halfplane proximity queries changes in a particular way as we add sites to a
Voronoi diagram. We delay the specific connection for now, and instead define
1 Given the number of arguments, it is tempting to refer to the oracle as

O(A, B, D, G, I,L, S), but we will resist that temptation.
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Fig. 1. An example of a flarb. The anchored subtree is highlighted.

the way in which the tree changes: a tree restructuring operation called a “flarb”.
Then we bound the work required to implement a sequence of n flarbs by showing
that the total number of pointers changes (i.e., the total number of parent/left-
child and parent/right-child relationships that change) is O(n logn). Thus, for
the remainder of this section, we use the term cost to refer to (a constant factor
times) the number of pointer changes required to implement a tree-restructuring
operation, not the actual running time of the implementation. This bound on
cost will enable us to implement a sequence of n flarbs via O(n log n) link and
cut operations, for a total of O(n log2 n) time.

The flarb operation is parameterized by an “anchored subtree” which it trans-
forms into a “rightmost path”. An anchored subtree S of a binary search tree T
is a connected subgraph S of T that includes the root of T . A right-leaning path
in a binary search tree T is a path monotonically descending through the tree
levels, always proceeding from a node to its right child. A rightmost path in T
is a right-leaning path that starts at the root of T .

The flarb operation2 of an anchored subtree S of a binary search tree T is
a transformation of T defined as follows; refer to Figure 1. First, we create a
new root node r with no right child and whose left child subtree is the previous
instance of T ; call the resulting binary search tree T ′. We extend the anchored
subtree S of T to an anchored subtree S′ of T ′ by adding r to S. Now we re-
arrange S′ into a rightmost path on the same set of nodes, while maintaining the
binary search tree order (in-order traversal) of all nodes. The resulting binary
search tree T ′′ is the result of flarbing S in T .

Theorem 8. A sequence of n flarb operations, starting from an empty tree, can
be implemented at a cost of O(log n) amortized pointer changes per flarb.

Proof. We use the potential method of amortized analysis, with a potential func-
tion inspired by the analysis of splay trees [17]. For any node x in a tree T ,
let w(x) be the modified weight of the subtree rooted at x, which is the num-
ber of nodes in the subtree plus the number of null pointers in the tree. In

2 “Flarb” is a clever abbreviation of a long technical term whose meaning we cannot
reveal for reasons we cannot comment on at the moment, perhaps simply due to lack
of space or of the aforementioned purported meaning. Note that this notion of flarb
is different from that of [3].
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Fig. 3. A zag

other words, we add dummy nodes as leaves in place of each null pointer in T ,
for the purpose of computing subtree size. Define ϕ(x) = lg w(left(x))

w(right(x)) . Clearly
|ϕ(x)| ≤ lg(2n− 1), because the smallest possible subtree contains no real nodes
and one dummy node, and the largest possible subtree contains n− 1 real nodes
and n dummy nodes. The potential of a tree T with n nodes is Φ(T ) =

∑
x ϕ(x),

with the sum taken over the (real) nodes x in T . Therefore, |Φ(T )| = O(n log n).
For the purposes of the analysis, we use the following heavy-path decompo-

sition of the tree. The heavy path from a node continues recursively to its child
with the largest subtree, and the heavy-path decomposition is the natural decom-
position of the tree into maximal heavy paths. Edges on heavy paths are called
heavy edges, while all other edges are called light edges.

To analyze a flarb in a binary search tree T , we decompose the transformation
into a sequence of several steps, and analyze each step separately.

First, the addition of the new root node r can be performed by changing a
constant number of pointers in the tree. To implement rightification, we first
execute several simplifying steps of two types, called “zig” and “zag”,3 in no
particular order. A zig is executed whenever a light left edge is part of the
anchored subtree S′; see Figure 2. The zig operation simply involves a right
rotation on the edge in question. A zag is performed whenever there exists,
within the anchored subtree S′, a path that goes left one edge, right zero or more
edges, and then left again one edge; see Figure 3. The zag operation performs
a constant number of pointer changes to re-arrange the path in question into
a right-leaning path. The full paper [2] shows that each zig or zag has zero
amortized cost.

After all possible zigs and zags have been exhausted, we claim that the an-
chored subtree S′ must have the form shown in Figure 4. Indeed, any tree that
has no light left edge and no right-leaning path delimited by two left edges must
have this form. In particular, because the rightmost path in this tree must be
light, its length is at most lg(2n+ 1).

3 Unlike most terminology in this paper, these terms are used for no particular reason.
Cf. footnote 2.
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The final stretch operation, which com-
pletes the flarb, simply converts this tree
into a rightmost path by effectively concate-
nating the subsidiary right-leaning paths, in-
corporating them into the main path. Only
O(log n) actual pointer changes are required.
The potential does not increase because left
subtrees of every node shrink and right sub-
trees grow, if they change at all. Thus, the
amortized cost of the stretch is O(log n).

5 Transformations

We focus on the farthest-point case, but the
proofs apply to nearest-point too.

Fig. 4. S′ before the final stretch.
Thick light edges are light, and thick
black edges are heavy.

Transform 9. Given a grappa tree data structure supporting each operation in
O(log n) worst-case time, and given a data structure to incrementally maintain
a tree created by n flarbs with O(log n) amortized pointer changes per flarb, we
can construct an O(n log2 n)-space data structure that supports O(log n)-time
farthest-point queries on any prefix of a sequence of points in convex position in
counterclockwise order.

Proof. We construct an incremental data structure that supports O(log n)-time
farthest-point queries on the current sequence of points, 〈p1, p2, . . . , pn〉, and
supports appending a new point pn+1 to the sequence provided that this change
maintains the invariant that the vertices remain in convex position and in coun-
terclockwise order. Thus the insertion order equals the index order and equals
the counterclockwise traversal order of a convex polygon. The data structure
runs on a pointer machine in which each node has bounded in-degree. Thus we
can apply the partial-persistence transform of [10] and obtain the ability to sup-
port farthest-point queries on any prefix of the inserted points in O(log n) time.
The space is proportional to the number of pointer changes during insertions.

We consider the ordered tree T formed by the finite segments of the farthest-
point Voronoi diagram, ignoring their precise geometry; see Figure 5. More pre-
cisely, the farthest-point Voronoi diagram [15, Section 6.3] divides the plane into
n cells by classifying each point q in the plane according to which of p1, p2, . . . , pn

is the farthest from q. The farthest-point Delaunay triangulation [12] is the dual
of the farthest-point Voronoi diagram, i.e., it triangulates the convex polygon
with vertices p1, p2, . . . , pn by connecting two vertices whenever the correspond-
ing Voronoi cells share an edge. We consider the dual tree T of this farthest-point
Delaunay triangulation of the convex polygon, i.e., the dual graph excluding the
infinite region exterior to the convex polygon. Each edge in this tree corresponds
to (a nongeometric representation of) a finite edge of the farthest-point Voronoi
diagram, which is the bisector of two of the points pi and pj that are adjacent
in the Delaunay triangulation. Each node in the tree represents a vertex in the
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Fig. 5. Adding vertex v8 in counterclockwise order. Top: Before. Bottom: After. Left:
Farthest-point Voronoi diagram and its dual, the Delaunay triangulation. Right: Delau-
nay triangulation and its dual, the tree T with attached infinite rays drawn as dashed
lines, drawn in mirror image so that geometric left versus right matches the order in
the Voronoi diagram. The root vertex of T and its parent edge are emboldened.

farthest-point Voronoi diagram, or equivalently a triangle in the farthest-point
Delaunay triangulation, and therefore has degree d ≤ 3, where any degree deficit
corresponds to 3− d infinite rays in the farthest-point Voronoi diagram not rep-
resented in the tree T .

We can view the tree T as a binary search tree as follows. First, we root the
tree at the node corresponding to the unique triangle in the Delaunay triangu-
lation bounded by the edge connecting the first inserted point p1 and the most
recently inserted point pn. We view the infinite ray emanating from the Voronoi
vertex as the “parent edge” of this root node, defining the notion of left child
versus right child of a node according to the counterclockwise order around the
Voronoi vertex. (Note that this order is the opposite of the order defined by
the triangulation, so in Figure 5 (right), we draw T in mirror image so that its
geometric notions of left and right match that of the Voronoi diagram.) Second,
we assign keys to nodes consistent with the in-order traversal. For each tree node
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corresponding to a Delaunay triangle with vertices pi, pj , pk, where i < j < k,
we assign a key of j. In other words, we assign the median of the three vertex
labels of the Delaunay triangle to be the key of the corresponding tree node.

One way to view this key assignment is as follows. If we imagine adding
an infinite rays in place of each absent child in the tree, and add an infinite
ray in place of the absent parent of the root (the dashed lines in Figure 5,
right), matching the counterclockwise order around the Voronoi vertex, then
we decompose the plane into regions corresponding to Voronoi regions, each of
which corresponds to a single point pi. All of the nodes bounding pi’s region
correspond to triangles incident to pi. We assign the key i to the unique such
node in T that is closest to the root of T , or equivalently the least common
ancestor of such nodes, which is the inflection point between two descendant
paths that bound the region. Two exceptions are i = 1 and i = n: the vertices
incident to p1 are those on the left spine of T , and the vertices incident to pn

are those on the right spine of T .
In this view, we also define the left mark of an edge to be the label of the

region to the left of the edge, and similarly for the right mark. Thus, the two
marks of an edge define the two points pi and pj whose bisector line contains
the Voronoi edge. If an edge is the left edge of its parent node, then the edge’s
right mark is simply the key of that parent, because the right edge of the parent
creates an inflection point at the parent. Similarly, if an edge is the right edge of
its parent node, then the edge’s left mark is the key of that parent. Intuitively, in
either case, if we walk up from the edge on its “underside”, then we immediately
find a local maximum in the region. On the other hand, in either case, the other
mark of the edge is the key of the parent node of the deepest ancestor edge that
has the opposite orientation (left versus right): this bending point is the first
inflection point we encounter as we walk up the tree on the “top side” of the
edge. We use a grappa tree to represent T and the left and right marks of edges.

Next we consider the effect of inserting a new point pn+1. As in the standard
incremental algorithm for Delaunay construction [8, Section 9.3], we view the
changes to the farthest-point Delaunay triangulation as first adding a triangle
p1, pn, pn+1 and then flipping a sequence of edges to restore the farthest-point
Delaunay property. The key property of the edge-flipping process is that all
flipped edges end up incident to the newly inserted point pn+1. Therefore these
changes can be interpreted in the tree as adding a new root node, whose left
child is the previous root, and then choosing a collection of nodes to move to the
right path of the new root. This collection of nodes induces a connected subtree
because the triangles involved in the flips form a connected set. (In particular,
the flipping algorithm considers the neighbors of a triangle for flipping only
if the triangle was already involved in a flip.) Thus, the changes correspond
exactly to a flarb, with the flexibility of the flarb operation encompassing the
various possibilities of which edges get flipped to maintain the farthest-point
Delaunay property. Another way to view the addition of pn+1 is directly in the
Voronoi diagram. The point pn+1 will capture the region Rn+1 for which pn+1
is the farthest neighbor. The region Rn+1 is a convex polygon. Outside Rn+1,
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the Voronoi diagram is unchanged, so all edges of the new Voronoi diagram are
either bisectors of the same two points as before, or are edges of Rn+1. In T after
the flarb, Rn+1 corresponds to the right spine.

Each pointer change during a flarb operation can be implemented with one cut
and one link operation. Therefore the grappa tree implements theO(n logn) total
pointer updates from flarb operations in O(n log2 n) total pointer updates. It
remains to update the marks on the edges. By the incremental Voronoi/Delaunay
view above, the only edges for which these marks might change are the edges
incident to the new region Rn+1, i.e., the edges on the right spine. We update
the right marks on all of these edges by calling Mark-Right-Spine(T, n + 1).
The left mark of each edge on the right spine is simply the key of the parent
node of the edge. During the execution of the flarb, various right paths were
cut and pasted together with cuts and links to form the final right spine. The
edges on the final right spine that were originally part of a right path in T
already had a left mark equal to the key of their parent node. Any other edges
on the final right spine were just added via links, so their left marks can be set
accordingly by specifying the right m� argument to Link. Thus, the total number
of pointer updates remains O(n log2 n). This concludes the space bound of the
data structure.

To support farthest-point queries, it suffices to build an oracle for the grappa
tree’s Oracle-Search. Specifically, given two incident edges (u, v) and (v, w), the
oracle must determine which subtree of T−v has the answer to the farthest-point
query. Using the two marks on the two edges, two of which must be identical,
we can determine the three vertices pi, pj , and pk of the Delaunay triangle
corresponding to vertex v in T . The vertex of the Voronoi diagram corresponding
to v lies at the intersection of the three perpendicular bisectors between these
three vertices of the Delaunay triangle. We draw three rays from this Voronoi
vertex to each of the three corners of the Delaunay triangle. These three rays
divide the plane into three sectors, and the Voronoi regions corresponding to the
nodes in each subtree of T−v lie entirely in one of these sectors, with exactly one
subtree per sector. In constant time, we can decide which of the three sectors
contains the query point q. The farthest-point Voronoi region containing the
query point q is guaranteed to be incident to the corresponding subtree, and
therefore we obtain a suitable answer for the oracle query. At the end, Oracle-
Search will narrow the search to a specific edge of T , meaning that the query
point q is in one of the two Voronoi regions incident to the corresponding Voronoi
edge. In constant time, using the two labels on that edge of the tree, we can
determine which side of the bisector contains q, and therefore which Voronoi
region contains q, i.e., which point pi is farthest from q.

Transform 10. Given an O(n log2 n)-space data structure that supports
O(log n)-time farthest-point queries on any prefix of a sequence of n points or-
dered in convex position in counterclockwise order, we can construct an
O(n log3 n)-space data structure that supports O(log n)-time farthest-point-left-
of-line queries on n points in convex position.
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Combining Theorems 7 and 8 with Transforms 9 and 10, we obtain:

Corollary 11. There is an O(n log3 n)-space data structure that supports
O(log n)-time halfplane proximity queries on n points in convex position.

Corollary 12. There is an O(n)-space data structure for maintaining a nearest-
point or farthest-point Voronoi diagram of a sequence of points in convex position
in counterclockwise order. The data structure supports inserting a new point at
the end of the sequence, subject to preserving the invariants of convex position
and counterclockwise order, in O(log n) amortized pointer changes per insertion;
and supports point-location queries in O(log n) worst-case time.

6 Open Problems and Conjectures

Several intriguing open problems remain open. One obvious question is whether
the O(n log3 n) space of our second data structure can be improved while keeping
the optimal O(log n) query time. One specific conjecture in this direction is this:

Conjecture 13. A sequence of n flarb operations, starting from an empty tree,
can be implemented at a cost of O(1) amortized pointer changes per flarb.

We have no reason to believe that our O(log n) amortized bound is tight. Reduc-
ing the bound to O(1) amortized would shave off a O(log n) factor from our space
and preprocessing time. More importantly, it would increase our understanding
of dynamic Voronoi diagrams, reducing the O(log n) amortized update time in
Corollary 12 to O(1) amortized. The potential function we use is inherently
logarithmic; a completely new idea is needed here for further progress.

On the issue of improving our understanding of dynamic Voronoi diagrams,
we pose the following problem:

Open Problem 14. Is there a data structure for maintaining a Voronoi di-
agram of a set of points in convex position that allows point to be inserted in
logO(1) n time while supporting O(log n) point location queries?

Here we relax the condition that the points be inserted in counterclockwise
order, but maintain the restriction that they be in convex position. Although
our potential function does not give the result, it is possible that a slight variation
of it does.

Finally, it would be interesting to improve the construction time in our sec-
ond data structure, in particular so that it completely subsumes the first data
structure:

Open Problem 15. Can the pointer changes caused by a flarb be found and
implemented in o(n) time, preferably logO(1) n time?

We have not been able to fully transform our combinatorial observations about
the number of pointer changes into an efficient algorithm, because we lack ef-
ficient methods for finding which pointers change. Solving this question would
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improve our construction time by almost a linear factor, and would provide a rea-
sonably efficient dynamic Voronoi data structure for inserting points in convex
position in counterclockwise order.
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Abstract. The complexity of the visibility region formed by a point
light source after k diffuse reflections in a simple n-sided polygon is
O(n9), which is the first result polynomial in n, with no dependence on
k. This bound is an exponential improvement over the previous bound
of O(n2�(k+1)/2�+1) due to Prasad et al. [8].

1 Introduction

Visibility problems in computational and combinatorial geometry have been
studied extensively (see [3, 6, 9] and references therein). We confine our atten-
tion to results in the plane, more specifically those referring to visibility inside
a simple polygon P with n vertices. Two points are visible to each other if the
segment connecting them is contained in the polygon. The region visible from a
point in P is a star-shaped polygon with at most n edges. The set of points of
P visible from at least one point of a segment in P (the so-called “weak visibil-
ity polygon” from a segment) is a simple polygon with O(n) edges and can be
computed in linear time [5].

Aronov et al. [2, 1] and Davis [4] initiated the study of complexity of the region
lit up by a single source of light in a simple polygon if reflection is allowed. Two
models are considered. In both of them, any light incident upon a polygon corner
is absorbed rather than reflected. In the specular reflection model, a light ray
incident on a point in the interior of a polygon edge is reflected, as in geometric
optics, with the angle of reflection equaling the angle of incidence. In the diffuse
model which we consider in this paper, the light ray incident upon an interior
point of an edge reflects in all possible interior directions. Aronov et al. [2] argue
that for both diffuse and specular reflection the maximum complexity of the
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region lit up by a point light source with one reflection allowed is Θ(n2). The
results were generalized in [1] to any number k of reflections (where for simplicity
we assume k is a constant and n can be arbitrarily large) and it was shown that
for specular visibility this complexity is O(n2k) and tight (at least for constant
k). The case of multiple diffuse reflection is discussed by Prasad et al. [8], where
they gave a bound of O(n2
(k+1)/2�+1) on the complexity of the region lit up by
a point with at most k diffuse reflections. Surprisingly, even though this bound is
exponential in k (for arbitrarily large n), no constructions were known for diffuse
reflection with complexity ω(n2), irrespective of the number of reflections used.
This gave rise to the conjecture in [8] that this in fact is the correct answer,
for k ≥ 1 reflections. As the analysis in [2], among other things, proves that the
region visible from a point with one diffuse reflection is always simply connected,
it has been suggested that this remains true when more diffuse reflections are
allowed. However, Pal [7] gives an example when this conjecture fails already
when two reflections are allowed.

In this paper, we partially settle the former conjecture on multiple diffuse
reflections, namely we argue that the complexity of the region visible from a
point with at most k diffuse reflections is O(n9), for any value of k.

2 Main Result

We obtain the main result, Theorem 1, in the old-fashioned way by presenting
a sequence of lemmas that slowly lead to the theorem. A fixed simple polygon
P with n edges is implicit in all notation.

Definition 1 (Time). By time k, we mean the state of the visible region after
exactly k diffuse reflections.

Definition 2 (Edge). We use the term edge to refer exclusively to an entire
edge of the polygon P . The letter e, and its sub-and-superscripted variants, al-
ways refers to an edge.

Definition 3 (Initial visibility region). Initially, one specified point light
source p is illuminated in P. At time 0, point q is illuminated if the interior of
the segment pq is interior to the polygon P .

Definition 4 (Illumination by diffuse reflection). If point p on an edge is
illuminated at time k, then point q is illuminated at time k+ 1 if the interior of
the segment pq is interior to the polygon P . Points can only be illuminated in
the manner described in the previous and current definitions.

Definition 5 (Maximal illuminated segment). We say segment x is max-
imally illuminated iff there does not exist an illuminated segment y such that
x ⊂ y.

Definition 6 (Triple). We say (x, e, k) is illuminated if the maximally illumi-
nated segment x on e is illuminated at time k.
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Definition 7 (Fundamental triple). We say (x, e, k) is a fundamental illu-
mination, or (x, e, k)F , if (x, e, k) is illuminated with the restriction that x is the
first illuminated segment from either end of e at time k.

Definition 8 (Pentuple). We say (x, y, z, e, k) is illuminated iff x, y, and z are
maximally illuminated, adjacent, and disjoint segments of e illuminated at time
k. To avoid symmetry problems, we assume there is a clockwise total ordering
on disjoint line segments on the polygon P from an arbitrary vertex on P , and
that x < y < z with regards to this ordering.

Definition 9 (Interior triple). We say (y, e, k) is a interior triple, or (y, e,
k)I , if (x, y, z, e, k) is a pentuple.

Lemma 1. The complexity of the illuminated regions on the boundary of the
polygon at time k is at most the number of fundamentally illuminated regions
(x, e, k)F plus the number of the interiorly illuminated regions (y, e, k)I .

Proof. This is true since every triple must be either a fundamental triple or an in-
terior triple, and there is only one illuminated region in either triple. Conversely,
every segment that is lit has an associated triple.

2.1 Illuminations

Definition 10 (Illumination of triples, “→” relation, defining light). We
say (x, e, k) illuminates (x′, e′, k + 1), or (x, e, k)→ (x′, e′, k + 1) for short, if:

– e �= e′.
– (x, e, k) and (x′, e′, k + 1) are illuminated.
– If x was the only thing illuminated at time k, then at time k+ 1 there would

be a segment illuminated on edge e′, call it x′′, and x′′ ⊆ x′. We call the
light from x to x′′ the defining light of (x, e, k) → (x′, e′, k + 1). (Verbal
description: x illuminates either the whole maximally illuminated segment x′

or one part of x′.)

Definition 11 (Interior illumination, “ I→” relation). (See Figure 1.) We
say that (y, e, k)I interior illuminates (y′, e′, k + 1)I , or (y, e, k) I→ (y′, e′, k + 1)
for short, iff

– (y, e, k)→ (y′, e′, k + 1)
– ∃x,z,x′,z′(x, y, z, e, k) and (x′, y′, z′, e′, k + 1) are pentuples. These are the

defining pentuples of the interior illumination. (Note: This also implies (y, e,
k) and (y′, e′, k + 1) are interior triples.)

– (x, e, k)→ (x′′, e′, k + 1) where x′′ �= y′ and x′′ may or may not be the same
as x′

– (z, e, k)→ (z′′, e′, k + 1) where z′′ �= y′ and z′′ may or may not be the same
as z′
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x

y

z

z′′

x′′

y′

There may be
other segments
here

e e′

Fig. 1. An example of an interior illumination. The defining light of the illumination
is the pink shaded region.

– Verbal description: An interior segment y on edge e illuminates another in-
terior segment y′ on edge e′ at time k + 1. An adjacent segment of y, x,
must also illuminate an segment x′ on edge e′, but it is not necessary that
the segment x′ is an adjacent segment of y′. Another adjacent segment of y,
z, must also illuminate an segment z′ on edge e′, but it is not necessary that
the segment z′ is an adjacent segment of y′.

The defining light of an interior illumination is the union of the defining lights
of the three illuminations used in the definition.

Definition 12 (“ I
�” relation). We use I

� to represent the transitive closure
of the I→ relation on interior triple. Thus, a I

� b if there is a directed path from
a to b in GI .

Lemma 2. (x, e, k) � I� (x′, e, k′) for all k′ ≥ k+2. (Note: in this statement, and
many others to follow, all variables are universally quantified unless otherwise
noted.)

Proof. This is true because for every edge e there is always one point not on e
that can see all of e. Such a point can be found by extending a ray from the line
at a suitably small angle.

Lemma 3 (Complete illumination). At time k = n the entire polygon is
illuminated.

Proof. This would be trivial, if the corners of the polygon could be illuminated
from an incident edge in one step. However, from the definition of illumination,
this is not the case. It is trivial that if k = 2n the entire polygon is illuminated,
since there is always one point that is visible from two points on adjacent edges.
We omit the proof that the polygon is illuminated at time k = n since it is more
involved, and using the trivial 2n would not change any of the asymptotics of
our results.
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Note 1 (The end of time). From this point on we assume the time k ≤ n, since
beyond this time there is no additional complexity.

2.2 Graphs

Definition 13 (Graphs G, GF , GI). Define a directed graph G with vertices
consisting of the union of the fundamental and interior triples, and edges defined
by the “→” relation as defined in definition 10. We also define the graphs GF and
GI which is the subgraph of G induced by the nodes representing fundamental
triples and interior triples, respectively. Edges in GI are defined by definition
11. That is, a node (x, e, k)I has an outgoing edge to (x′, e′, k + 1)I in GI iff
(x, e, k) I→ (x′, e′, k + 1).

General idea: We first give an upper bound for the number of illuminated seg-
ments over all time and then we use this result to get an upper bound for the
complexity of the visibility region. The total number of illuminated segments
can be bounded by counting the number of nodes in GF and GI .

2.3 Bounding the Number of Fundamental Segments

Lemma 4. There are at most 2n2 nodes in GF .

Proof. For a given e and k, there are at most 2 different segments x such that
(x, e, k) is illuminated: Only the first segments from each end of e are fundamen-
tal triples. Since there are only n possible choices for e and the k ≤ n restriction
of Note 1, this gives the result.

2.4 Bounding the Number of Interior Segments

Lemma 5 (Each interior segment can only illuminate n others). Each
illuminated segment can only illuminate n other segments. That is, for a given
(x, e, k) there are only n segments y such that (x, e, k)→ (y, e′, k + 1).

Proof. This follows from the observation that the complexity of the region illu-
minated by an edge is at most linear, with at most one segment of each polygon
edge appearing on its boundary [5].

Definition 14 (Source node). A source node in GI is defined to be an interior
triple, (x, e, k)I , with in-degree 0 in GI .

Lemma 6 (Bounding the number of source nodes). There are only 4n3

source nodes in GI .

Proof. In graph G, the parent of a source node (x, e, k) in GI is either (1) a
fundamental triple or (2) an interior triple, (x′, e′, k − 1)I , with the restriction
that (x′, e′, k − 1) � I→ (x, e, k) in GI .
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There are at most 2n3 source nodes whose parent is a fundamental triple. This
is true because there are at most 2n2 nodes in GF (Lemma 4), each of which
can illuminate n segments (Lemma 5). Each illuminated segment can appear in
at most 1 interior triple of GI .

On the other hand, there are at most 2(n− 1)(n2) source nodes whose parent
belongs to category 2 on all edges at all time. The harder observation is that
all the illuminated segments on one edge can illuminate at most 2 source nodes
whose parent belongs to category 2 on each edge at each time. The proof proceeds
by contradiction.

e1

z

y

z

e0

Case 2

Case 3

z′

Case 3

y′

z′

Case 2

x′

z′

Case 1

Case 1
z

x

Fig. 2. No matter what the position of z is, if there are three illuminations between
two edges, one must be interior

Let (x, e0, k) illuminate the source node (x′, e1, k+1)I and (y, e0, k) illuminate
the source node (y′, e1, k + 1)I . Assume there exists the third segment (z, e0, k)
which illuminates the source node (z′, e1, k + 1)I . See Figure 2. If x < z < y,
(z′, e − 1, k + 1)I cannot be a source node in GI by definitions 14 and 11. If
z < x < y, (x′, e−1, k+1)I cannot be a source node in GI by definitions 14 and
11. If x < y < z, (y′, e−1, k+1)I cannot be a source node in GI by definitions 14
and 11. Therefore, all the illuminated segments on an edge can illuminate at most
2 source nodes whose parent belongs to category 2 on each edge at each time.
Thus, all the illuminated segments on an edge can illuminate at most 2(n− 1)
source nodes whose parent belongs to category 2 on all edges at each time. Since
there are n edges, at most 2(n−1)(n) source nodes have a parent whose belongs
to category 2 at each time. This implies there are at most 2(n − 1)(n2) source
nodes whose parent belongs to category 2 on all edges at all time.

Therefore, there are 2n3 source nodes whose parent belongs to category 1 and
2(n− 1)(n2) source nodes whose parent belongs to category 2. Totally there are
2n3 + 2(n − 1)(n2) source nodes in GI . We simply say there are at most 4n3

sources nodes in GI for simplicity.
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Definition 15 (Chord c of an illumination: I→c). We use the notion (x, e0,
k)→c(x′, e1, k+1) to indicate (x, e0, k)→(x′, e1, k+1) and that the defining light
of this illumination passes through a chord c of the polygon.

Lemma 7 (Good chord c of an interior illumination: I→
g

c). For any (y, e0,
k) I→c (y′, e1, k+ 1) there is a chord c inside the polygon such that the endpoints
of c are vertices of the polygon; one endpoint lies on the blue dashed line and
another endpoint lies on the red dotted line. See Figure 3.

We call such a chord good, and use the notation I→
g

c to indicate that c is good.
To avoid symmetry problems, if there is more than 1 vertex on the dotted blue or
dashed red line, we select the vertex which is closest to the illuminated segment,
y, to be the endpoint of the good chord. This implies a good chord is uniquely
defined for every interior illumination.

y

z

z′

y′

x′

e0

x

e1

Fig. 3. If there are no polygon vertices on the boundary of the pink shaded region, z′

or x′ will be larger

Proof. If no vertex lies on the blue line, the lower endpoint of the illuminated seg-
ment, z′, will have a different position. Similarly, if no vertex lies on the red line,
the upper endpoint of the illuminated segment, x′, will have a different position.
Therefore, a good chord must always exist for any (y, e0, k)

I→c (y′, e1, k + 1).

What is the purpose of a good chord? Through Lemma 8 to Lemma 11, We will
prove that if a light passes through a good chord, it cannot go through the good
chord in the opposite direction again in GI . Therefore, a good chord will divide
a simple polygon into two isolated regions.

Lemma 8. If (y, e0, k)
I→

g

c (y′, e1, k + 1) then for all e2 (y′, e1, k + 1) � I→c

(y′′, e2, k + 2).

Proof. We start by noting that there must be a good chord c by Lemma 7.
In Figure 4, the right endpoint of the green line is the lower endpoint of the
illuminated segment, y′. It passes through the highest point on the red line.
Based on the basic geometry concept, the left endpoint of the green line must be
located below the illuminated segment, x. Since the endpoint of the good chord
c is on the red line, y′ cannot illuminate anything through c above the green
line. Therefore, the illuminated segment, y”, cannot be above the illuminated
segment, x. This implies that e2 cannot be above e0. By symmetry, we can
conclude, e2 must be the same as e0. However, e0 is totally illuminated at time
k+2 by Lemma 2. Therefore, for all e2, (y′, e1, k + 1) � I→c (y′′, e2, k + 2).
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x

y

z

e1e0

z′

y′

x′

Fig. 4. The green shaded line goes from the bottom of y′ to the left of the red dashed
line. Its intersection with e0 represents the highest point to the left of any chord c
connecting the red dashed and blue dotted lines that can be illuminated by y′. Since
the green shaded line is protected from the edges of the polygon by the pink shaded
defining lights, it can never go to any edge above e0.

Lemma 9 (On the intersection of chords). For any two chords c and c′ of

the polygon P , if (y, e, k) I→
g

c′ (y′, e′, k + 1) and if c and c′ intersect each other,
then (y, e, k) I→c (y′, e′, k + 1).

c′

y′

e e′

y

Fig. 5. If a chord c intersects c′, the defining light from y to y′ must go through c. This
is because no endpoint of c is allowed inside the pink shaded region.

Proof. Refer to Figure 5. The endpoints of c′ must be on the the border of
the defining light of (y, e, k) I→

g

c′ (y′, e′, k + 1) by definition. The pink shaded
region(not including the boundary) must not contain any vertex. Since c inter-
sects with c′, if one endpoint of c is on the left side of the grey line above the
pink shaded region, another point of c must be on the right side of the grey line
below the pink shaded region. By symmetry, if one endpoint of c is on the left
side of the grey line below the pink shaded region, another point of c must be
on the right side of the grey line above the pink shaded region. In either case,
(y, e, k) I→c (y′, e′, k + 1).

Lemma 10. For all t ≥ 1, if (y, e0, k)
I→

g

c (y′, e1, k + 1) and if for all e2
(y′, e1, k + 1) � I�c (y′′, e2, k + t) then for all e2 (y′, e1, k) � I�c (y′′′, e2, k + t + 1).

Proof. Proof by contradiction. See Figure 6. Assume that for all e2, (y′, e1, k +
1) � I�c (y′′, e2, k + t) and (y′, e1, k + 1) I

� (y5, e5, k + t) and (y5, e5, k + t) I→c

(y7, e7, k+ t+1). Let (y′, e1, k+1) I
� (y4, e4, k+ t−1) and (y4, e4, k+ t−1) I→

g

c′

(y5, e5, k + t). The good chord c′ must exist by Lemma 7. If c′ intersects with
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c, then (y4, e4, k + t− 1) I→c (y5, e5, k + t) by Lemma 9. This is a contradiction
to the assumption that (y′, e1, k + 1) � I�c (y′′, e2, k + t) for all e2. If c′ does not
intersect with c, then e0 and e4 are on one side of the good chord c′ and e5 is on
another side of c′. By Lemma 8, for all e6 (y5, e5, k + t) � I→c′ (y6, e6, k + t + 1).
It implies (y5, e5, k + t) � I→c (y7, e7, k + t + 1). This is a contradiction to the
assumption.

c′e4
e0

e5

e7

c

Not possible

at time k + t

at time k + t + 1

by Lemma 8

Fig. 6. The edge e5 is on opposite sides of both c and c′ from e7. Since c and c′ do
not cross, no edge can be interior illuminated from e5 through chord c without going
through c′ also. Since e5 was just illuminated through c′, the next illumination can not
go though c′ because of Lemma 8.

Lemma 11 (light cannot eventually go through the same chord twice).

If there exists a good chord such that (y, e0, k)
I→

g

c (y′, e1, k + 1) then for all e2,
y′′ and k′ > k + 1 (y′, e1, k) � I�c (y′′, e2, k′).

Proof. The proof is by induction on k′, using the previous three lemmas.

The following lemma will prove that all good chords of interior illuminations
from the same node in GI are disjoint.

Lemma 12. If (y, e, k) I→
g

c′ (y′, e′, k + 1) and (y, e, k) I→
g

c (y′′, e′′, k + 1) then
(y, e, k) � I→c (y′, e′, k + 1).

Proof. Assume (y, e, k) I→c (y′, e′, k + 1). Refer to Figure 7. The pink shaded
region (not including the boundary) must not contain any vertex. Suppose both
endpoints of c are on the boundary of the pink shaded region. This implies there
are two good chords for the defining light of (y, e, k) I→ (y′, e′, k + 1). This can
never happen by definition 7. Therefore, one endpoint of c must be above or
below the pink shaded region. If that endpoint is on the right side of the grey
line, it is not visible by (y, e, k) and thus, it cannot be an endpoint of the good
chord c′ by definition 7. This is a contradiction. If that endpoint is on the left
side of the grey line, without loss of generality, we assume that endpoint is above
the pink shaded region. Since the defining light of (y, e, k) I→ (y′, e′, k+ 1) must
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pass through chord c, another endpoint of c must be on the lower boundary of
the pink shaded region or below the pink shaded region. This implies at least
one endpoint of c′ will block the defining light of (y, e, k) I→

g

c (y′′, e′′, k+1). This
is also a contradiction.

c′

y′y

e e′

Fig. 7. If the grey point is an endpoint of c, then no light can originate on y, and pass
through both the grey point and c′

Lemma 13. No two nodes reachable from the same source node in GI have the
same e value.

Proof. By Definition 7, every edge in GI must pass through a good chord. By
Lemma 12, all good chords of interior illuminations from the same node in GI

are disjoint and the light that goes through one good chord does not go through
the others. By Lemma 11, the light can never go through a good chord twice.
Thus, a good chord divides the polygon into two isolated regions, and this pro-
cess recurses (Figure 8(a)). There is no path between nodes in different isolated
regions (Figure 8(b)). Therefore, for each source node (y0, e0, k0)I , there are no
directed paths such that (y0, e0, k0)

I→ (y3, e3, k3) and (y0, e0, k0)
I
� (y4, e3, k4),

when y3 �= y4.

(x, e, k)Ic c′

(x′′, e′′, k + 1)I(x′, e′, k + 1)I

same source node
can not pass thorugh
c twice.

The light from the

(a)

(b)

Fig. 8. Illustration of the proof of Lemma 13
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Lemma 14. The graph GI has at most 4n4 nodes.

Proof. In Lemma 6 there are at most 4n3 sources in GI . By Lemma 13, there
are at most n− 1 nodes in GI reachable from each of these sources.

2.5 The Complexity of the Visibility Region

Lemma 15. The total complexity of the illuminated edges over all time is at
most 4n4 + 2n2.

Proof. Follows from Lemmas 1, 4, and 14.

Lemma 16. If x segments are illuminated in a polygon with n edges at time
k, then the complexity of the illuminated region of the polygon (including the
interior) at time k + 1 is O(nx2).

Proof. Since the region visible from one segment has complexity at most n [5],
the intersection of x such regions is trivially (xn)2. By observing that any region
visible from one segment will intersect any segment not exterior to the polygon
in exactly one place, this can be reduced to O(nx2).

Theorem 1. The total complexity of the illuminated region at time k is O(n9).

Proof. Lemma 15 gives a bound of O(n4) for the number of edges illuminated
at time k − 1. By applying Lemma 16, the O(n9) bound is obtained.

Theorem 2 ([8]). The total complexity of the illuminated region at time k is
Ω(n2).

Conjecture 1 ([8]). The total complexity of the illuminated region at time k is
Θ(n2).

We still believe this conjecture holds. Our proof over-counts in myriad ways and
surely is not tight.
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and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 973–1027.
North-Holland, 2000.



Counting Proportions of Sets: Expressive Power
with Almost Order

Argimiro Arratia1,� and Carlos E. Ortiz2,��
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As of today, all known logics that capture P need a built–in linear order as an
extra symbol, so that the capturing may take place. The main issue is that a pre–
defined ordering relation added to a logic and with its interpretation invariant
through the models, makes the syntax of such logic non recursive (a consequence
of Trahtenbrot’s Theorem [2]); and thus this logic hardly classifies as “good”
programming paradigm. On the other hand the presence of a built–in linear
order, as part of the structures representing instances of computational problems,
makes it very difficult for inexpressibility techniques from Model Theory, such
as Ehrenfeucht-Fräıssé games, to succeed in showing meaningful computational
lower bounds (e.g. see [5–§ 6.6]). To overcome this difficulty, and mindful of
finding a logic in the aforesaid terms for P, various order–free extensions of first
order logic (FO) have been proposed, most notably by the addition of some
form of counting. However the demonstrated insufficient power of expressiveness
of counting operators alone has led to the exploration (and exploitation) of some
forms of pre–defined weak order and of the local nature of first order logic. The
hope is that the logics with built-in weak form of order may have non-trivial
expressive power, may be easier to separate, and eventually may shed light into
the problem of separation of the corresponding logics with built-in order. In this
context, the paper by Libkin and Wong [6] suggests that the above mentioned
program may not be feasible because it shows an inherent expressive limitations
of counting logics in the presence of auxiliary relations, which they call preorders,
and their associated almost–linear orders. The main result of [6] is that a very
powerful extension of FO with counting, denoted L∗

∞ω(C), which subsumes all
known “pure” counting extensions of FO (meaning that fixpoint operators are
not considered), in the presence of almost–linear orders, has the bounded number
of degrees property (BNDP). The BNDP is a semantic property that limits the
expressive power of logics that have it; such logics cannot express, for example,
the transitive closure of a binary relation. (We will review all concepts in italics
later in this paper.)

The purpose of this paper is to introduce a second order counting logic with
built-in order that contains fragments whose expressive power is meaningful for
Complexity Theory, and where the replacement of the built-in order by almost
order does not yield logics with trivial expressive power, and where it should
not be hard to obtain separation results. Our proposal consists of enhancing
FO with quantifiers of the form (P (X) ≥ r) and (P (X) ≤ r) for rational r ∈
(0, 1) and second order variable X of, say, arity k > 0, and whose meaning is
that the cardinality of the set X is greater than or equal to (or less than or
equal to) r times the cardinality of the set of k–tuples in the model. The logic
obtained by adding these quantifiers, denoted by SOLP for Second Order Logic
of Proportions (or proportional quantifiers), extends its first order counterpart
LP , which was introduced and studied by us in [1]. The intuition driving the
definition of this logic is that by counting proportions as opposed to counting
exact numbers of elements, the proportional quantifiers should be less susceptible
to perturbations by the change of semantics from linear orders to almost-orders
than the standard counting quantifiers.
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Due to the proceedings’ strict page limitations we must omit most of the
proofs. The reader interested in learning all the details may request the extended
version from the first author.

2 Second Order Logic of Proportional Quantifiers

Throughout this paper we use standard notation and concepts of Finite Model
Theory as presented in the books [2] and [5]. Our vocabularies are finite and
consists of relation symbols and constant symbols. Our structures are all finite,
and if A is a structure over vocabulary τ , or τ–structure, and A is its universe,
we either use |A| or |A| to denote its size, that is, the number of elements in A.

In [1] we studied extensions of first order logic with quantifiers that count
fractions of elements in a model that satisfy a given formula, and defined ap-
proximations to their semantics by giving interpretations of the formulae on
finite structures where all predicates are restricted to act subject to an integer
modulo. A natural extension is to have the proportional quantifiers act upon
second order variables. This as we shall see gives more expressive power.

Definition 1. The Second Order Logic of Proportional quantifiers, SOLP , is
the set of formulas of the form

Q1 · · ·Quθ(x1, . . . , xs, X1, . . . , Xr) (1)

where θ(x1, . . . , xs, X1, . . . , Xr) is a first order formula over some vocabulary τ
with first order variables x1, . . . , xs and second order variables, X1, . . . , Xr;
each Qj (j ≤ u) is either (P (Xi) ≥ ti) or (P (Xi) ≤ ti), where ti is a rational in
(0, 1), for i ≤ r. Whenever we want to make the underlying vocabulary τ explicit
we will write SOLP(τ).

We also define SOLP(τ)[r1, . . . , rk], for a given vocabulary τ and sequence
r1, r2, . . . , rk of distinct natural numbers, as the sublogic of SOLP(τ) where the
proportional quantifiers can only be of the form (P (X) ≤ q/ri) or (P (X) ≥ q/ri),
for i = 1, . . . , k and q a natural number such that 0 < q < ri. Another fragment
of SOLP which will be of interest for us is the Second Order Monadic Logic of
Proportional quantifiers, denoted SOMLP, which is SOLP with the arity of
the second order variables in (1) being all equal to 1.

The interpretation for the proportional quantifiers is the natural one: Let X
be a second order variable of arity k, Y a vector of second order variables,
x = x1, . . . , xm first order variables and φ(x, Y ,X) a formula in SOLP(τ) over
some (finite) vocabulary τ , which does not contains X or any of the variables in
Y as a relation symbol. Let r be a rational in (0, 1). Then

(P (X) ≥ r)φ(x, Y ,X) and (P (X) ≤ r)φ(x, Y ,X)

have the following semantics. For appropriate finite τ–structure A, elements
a = (a1, . . . , am) in A and vector of relations B over A, we have

A |= (P (X) ≥ r)φ(a,B,X) ⇐⇒ there exists S ⊆ Ak such that
A |= φ(a,B, S) and |S| ≥ r · |A|k
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Similarly for (P (X) ≤ r)φ(x, Y ,X), substituting in the definition ≥ for ≤.

Example 1. Let τ = {R, s, t} where R is a ternary relation symbol, and s and t
are constant symbols. Let r be a rational with 0 < r < 1. We define

NOT-IN-CLOS≤r := {A = 〈A,R, s, t〉 : A has a set containing s but not t,
closed under R, and of size at most a fraction r of |A| }.

Let βnclos(X) := ∀x∀u∀v [X(s) ∧ ¬X(t)
∧ (X(u) ∧X(v) ∧R(u, v, x) −→ X(x))]

Then

A ∈ NOT-IN-CLOS≤r ⇐⇒ A |= (P (X) ≤ r)βnclos(X)

We shall see in Section 3 that for r = 1/2 this problem is P–complete under first
order reductions. (This result can be generalised to r = 1/n.) ��

For NP we have the following problem.

Example 2. Let τ = {E}, let r be a rational with 0 < r < 1. We define

CLIQUE≥r := {A = 〈A,E〉 : 〈A,E〉 is a graph and at least a fraction r
of the vertices form a complete graph }

This problem can be defined by the sentence (P (X) ≥ r)αcliq(X), where

αcliq(X) := ∀x∀y(X(x) ∧X(y) ∧ x �= y −→ E(x, y))

One can show that, for any rational r ∈ (0, 1), CLIQUE≥r is NP-complete via
logspace reducibilities.

The following remark shows that SOLP extends the (classical) logic ∃SO.

Remark 1. Any formula in ∃SO is equivalent to a formula in SOLP [k], for any
k > 1. Indeed, consider a formula of the form ∃Xφ(X), where φ(X) is a first
order formula with free second order variable X of arity r > 0. This can be
expressed in SOLP [k] by the formula:(

P (X1) ≤
k − 1
k

)(
P (X2) ≥

k − 1
k

)
φ(X1) ∨ φ(X2)

where X1 and X2 are variables of arity r.

3 Expressiveness of SOLP in the Presence of Order

By Remark 1, SOLP subsumes ∃SO. However, it adds extra information to
the description of complexity classes, provided by the computing of bounds in
the cardinality of sets in instances of problems. This we shall see in this sec-
tion, where we impose constraints to the syntax of SOLP similar to Grädel’s
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constraints for ∃SO in [4], and capture the classes P and NL, but as an extra
information we have that P (and NL) ⊆ SOLP [2] and the first order part of
the sentences describing this class is universal Horn (for NL it will be universal
Krom). Furthermore, observe that all our examples of computational problems
are definable in SOMLP , the monadic fragment of SOLP , some of them with
not known expression (or non expressible) in monadic ∃SO.

Definition 2. Let τ = {R1, . . . , Rm, C1, . . . , Cs} be some vocabulary with rela-
tion symbols R1, . . . , Rm, and constant symbols C1, . . . , Cs, and let X1, . . . ,
Xr be second order variables of arity k1, . . . , kr, respectively. A first order for-
mula α over τ ∪ {X1, . . . , Xr}, and extra binary relation symbol = (equality)
and the constant ⊥ (standing for false), is a universal Horn formula, if α is a
universally quantified conjunction of formulas over τ ∪{X1, . . . , Xr} of the form
ψ1 ∧ψ2 ∧ . . .∧ψs −→ ϕ, where ϕ is either Xi(ui) (where ui denotes a ki-tuple
of first order terms, i = 1, . . . , r) or ⊥, and ψ1, . . . , ψs are atomic or negation of
atomic (τ ∪ {X1, . . . , Xr})-formulas except that any occurrence of the variables
Xi must be positive (there are no restrictions on the predicates in τ or =). The
logic SOLPHorn is the set of formulas of the form

(P (X1) ≤ t1) · · · (P (Xr) ≤ tr)α

where each ti is a rational in (0, 1), and α is a universal Horn formula over
some vocabulary τ and second order variables X1, . . . , Xr.

By Example 1, the problem NOT-IN-CLOS≤r is definable in SOLPHorn. We
can show that to test membership for a problem definable in SOLPHorn can
be done deterministically in polynomial time.

Lemma 1. The set of finite structures that satisfy a sentence θ in SOLPHorn
is in P. ��

Thus, according to this lemma, our problem NOT-IN-CLOS≤r is in P. We can
prove that, for r = 1/2, it is complete for P via first order reductions. The idea
is to define a reduction from the problem Path System Accessibility to NOT-
IN-CLOS≤1/2 using quantifier free first order formulae. An instance of the Path
System Accessibility problem, which we abbreviate from now on as PS, is a finite
structure A = 〈A,R, s, t〉 or a path system, where the universe A consists of, say,
n vertices, a relation R ⊆ A× A× A (the rules of the system), a source s ∈ A,
and a target t ∈ A such that s �= t. A positive instance of PS is a path system
A where the target is accessible from the source, where a vertex v is accessible
if it is the source s or if R(x, y, v) holds for some accessible vertices x and y,
possibly equal. In [7] Stewart shows that PS is complete for P via quantifier free
first order reductions that include built-in order; in fact, via projections (see [7]
for definitions and also [5–§ 11.2]). We get the following result.

Lemma 2. The problem NOT-IN-CLOS≤1/2 is complete for P via quantifier
free projections (qfp’s), that include the use of built-in successor. ��
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Corollary 1. Over finite structures, ordered with a built-in successor, the logic
SOLPHorn captures P. ��
For logarithmic space bounded classes we have the following examples.

Example 3. Let τ = {E, s} where E is a binary relation symbol and s is a
constant symbol. We think of τ -structures as graphs with a specify vertex s (the
source). Let r be a rational with 0 < r < 1. We define

NCON≥r := {A = 〈A,E, s〉 : 〈A,E〉 is a graph and at least a fraction r of the
vertices are not connected to s}

Let αncon(Y ) be the following formula

αncon(Y ) := ¬Y (s) ∧ ∀x∀y(E(x, y) ∧ Y (x) −→ Y (y))

Then A ∈ NCON≥r ⇐⇒ A |= (P (Y ) ≥ r)αncon(Y ).

Again, inspired on work by Grädel [4] we define:

Definition 3. Let τ and X1, . . . , Xr be as in Definition 2. A first order for-
mula α over τ ∪ {X1, . . . , Xr} ∪ {=,⊥} is a universal Krom formula, if α is
a universally quantified conjunction of clauses, where each clause is a disjunc-
tion of literals with at most two occurrences (positive or not) of the predicates
X1, . . . , Xr, i.e. α is a 2-CNF formula with respect to the variables X1, . . . , Xr.
The logic SOLPKrom is the set of formulas of the form

(P (X1) ≥ t1) · · · (P (Xr) ≥ tr)α

where each ti is a rational in (0, 1), and α is a universal Krom formula over
some vocabulary τ and second order variables X1, . . . , Xr.

The sentence defining NCON≥r is in SOLPKrom. We can show that NCON≥r

is in NL, the class of problems decidable by non deterministic logarithmic
space bounded Turing machines; and, furthermore, that for r = 1/2 the prob-
lem NCON≥r is hard for NL via qfp’s. Then with an argument similar to the
one given for SOLPHorn one can show that satisfiability of sentences from
SOLPKrom can be decided in NL, and conclude that over finite structures,
ordered with built–in successor, SOLPKrom captures NL.

Remark 2. We can say more about the capturing of the class P by the logic
SOLP . The problem NOT-IN-CLOS≤1/2 is complete via qfp’s with order, and
expressible in SOLPHorn[2]; hence by reducing every problem K in P to NOT-
IN-CLOS≤1/2 with a quantifier free first order expressible reduction (which may
include a successor relation), we get a sentence in SOLPHorn[2] defining K.
Thus, P = SOLPHorn[2] and obviously

P ⊆ SOLP [2] ⊆ SOLP [2, 3] ⊆ PSPACE (2)

The chain (2) motivate us to study the possibility of establishing a hierarchy
in SOLP [2] ⊆ SOLP [2, 3] ⊆ SOLP [2, 3, 5] ⊆ . . . , etc. We present in this paper
the separation of fragments of these logics when a weak form of order is present,
namely an almost linear order.
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4 SOLP Restricted to Almost Orders

We begin with two preliminary definitions. The first is a slight modification of
the notion of almost linear order from [6]; for it we remind the reader that a
function g : N → N is sublinear if, for all n ∈ N, g(n) < n.

Definition 4. For a fixed positive integer k, a k-preorder over a set A is a
binary, reflexive and transitive relation P in which every induced equivalence
class of P ∩ P−1 has size at most k. An almost linear order over A, determined
by a sublinear function g : N → N, is a binary relation ≤g over A with a partition
of the universe A into two sets B,C, such that B has cardinality n− g(n) and
≤g restricted to B is a linear order, ≤g restricted to C is a 2-preorder, and for
every x ∈ C and every y ∈ B, x ≤g y.

Note that for any function g : N → N, the almost linear order ≤g over a set A
induces an equivalence relation ∼g in A defined by a ∼g b iff a ≤g b and b ≤g a.

Definition 5. Fix a sublinear g : N → N and let R be an n-ary relation on a set
A. Let ≤g be an almost-order determined by g in A. We say that R is consistent
with ≤g if for every pair of vectors (a1, . . . , an) and (b1, . . . , bn) of elements in
A with ai ∼g bi for every i ≤ n, we have that

R(a1, . . . , an) holds if and only if R(b1, . . . , bn) holds.

Let A = 〈A,RA
1 , . . . , R

A
k , C

A
1 , . . . , C

A
s 〉 be a τ-structure. We say that A is con-

sistent with ≤g if and only if for every i ≤ k, RA
i is consistent with ≤g.

By SOLP(τ)≤g , for an almost order ≤g, we understand the logic SOLP(τ)
with the almost order ≤g as additional built-in relation, and where we only
consider models A that are consistent with ≤g. Furthermore, for the formulas
of the form (P (X) ≥ r)φ(x, Y ,X) and (P (X) ≤ r)φ(x, Y ,X), we require
the following modification of the semantics: For an appropriate finite τ–model
A consistent with ≤g, for elements a = (a1, . . . , am) in A and an appropriate
vector of relations B, consistent with ≤g, we should have

A |= (P (X) ≥ r)φ(a,B,X) ⇐⇒ there exists S ⊆ Ak, consistent with ≤g,
such that A |= φ(a,B, S) and|S| ≥ r · |A|k

Similarly for (P (X) ≤ r)φ(x, Y ,X), substituting in the condition ≥ for ≤.
The property of being consistent for ≤g holds in fact for all the formulas in

SOLP(τ)≤g . The proof is an easy induction in formulas.

Lemma 3. Let A be a τ-structure which is consistent with ≤g. Then, for every
formula ψ(x) in SOLP(τ)≤g , the set ψA := {a ∈ A : A |= ψ(a)} is consistent
with ≤g. ��

Definition 6. We will use the expression “almost second order proportional
quantifier logic”, and denote this by A–SOLP , to refer to the collection of lan-
guages SOLP≤g for every almost order ≤g given by a sublinear function g.
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Likewise, we denote A–SOLP [r1, . . . , rk] the collection of all the languages
SOLP≤g [r1, . . . , rk], for naturals r1, . . . , rk, and A–SOMLP , A–SOMLP [r1,
. . . , rk] for the corresponding monadic fragments.

For an illustration of the expressive power of the almost second order propor-
tional quantifier logic, we shall give below a definition in A–SOMLP [2] of the
set of models with almost order and with universe of even cardinality.

Example 4. Fix an almost order ≤g, and consider the sentence

Θ2 :=
(
P (B) ≥ 1

2

)(
P (C) ≥ 1

2

)
[∀x(B(x) ∨ C(x)) ∧ ∀y(B(y) −→ ¬C(y))]

Then for every structure A, consistent with ≤g,

A |= Θ2 iff |A| := m is even

The direction from left to right is clear: Θ expresses that B and C constitute
a partition of A. For the opposite direction, suppose m is even. There are r ≤
g(m)/2 classes with two elements, say {a1, b1}, . . . , {ar, br}, and l = m−2r with
one element, say there are {c1}, . . . , {cl}. Hence, m = 2r+ l and since m is even,
l must be even. We proceed to construct our disjoint sets C and B. Observe
that for each i = 1, . . . , r, both elements ai and bi must go into either BA or
CA, because A is consistent with ≤g. With this in mind we do the following: If
r is even then we can construct our even partition of same cardinality without
much effort. If r is odd, then r − 1 = 2k for some k, and so we put k classes (of
two elements each) into BA, and the remaining k + 1 many 2-elements classes
into CA. To compensate we put classes {c1} and {c2} in BA, and the remaining
l− 2 1-element classes are split evenly into BA and CA. These sets BA and CA

verify the formula α(B,C) := ∀x(B(x)∨C(x))∧∀y(B(y) −→ ¬C(y)) in A and
have same cardinality. ��

In a similar way, one can prove that for every natural d > 2, there exists a
formula Θd, in the almost monadic second order proportional quantifier logic,
with quantifiers of the form P (X) ≥ 1/d and P (X) ≥ (d− 1)/d (i.e., contained
in A–SOMLP [d]), such that for structure A, consistent with almost order ≤g,
A |= Θd iff |A| is a multiple of d.

It was shown in [6] that a very powerful counting logic, L∗
∞ω(C), when re-

stricted to almost orders, has the BNDP; hence, it has a very limited expressive
power. The next example shows that this is not the case for A–SOMLP .

Example 5. A–SOMLP does not have the BNDP: For a graph G, its degree
set, deg.set(G), is the set of all possible in- and out-degrees that are realised in
G. A formula ψ(x, y) on graphs has the Bounded Number of Degrees Property
(BNDP) if there is a function f : N → N such that for any graph G with
deg.set(G) ⊆ {0, . . . , k}, |deg.set(ψ[G])| ≤ f(k), where ψ[G] is the graph with
same universe as G and edge relation given by ψG. These notions generalise to
arbitrary τ -structures,and it is shown in [6] that every formula in L∗

∞ω(C), in
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the presence of almost-linear orders, has the BNDP and thus “exhibits the very
tame behaviour tipical for FO queries over unordered structures” [6]. We shall
see later that A–SOMLP presents a tame behaviour too since we can easily
show separation results; however it differs from the counting logics considered
by Libkin and Wong in [6] in that it does not have the BNDP.

Consider the quantifier free formula path(x, y, U) in A–SOMLP({E}) that
states that:

– x �= y, x ∈ U and y ∈ U ;
– There is no element w of U such that E(w, x) and there is no element w of
U such that E(y, w);

– ∃w1, w2 ∈ U such that E(x,w1) and E(w2, y);
– For any element z in U different from x and y there exists unique a, b ∈ U

such that E(a, z) and E(z, b).

And let

ψ(x, y) :=
(
P (U) ≥ 1

2

)
path(x, y, U)

This formula does not have the BNDP property for most sublinear functions g;
for if we look at the models A consistent with ≤g and of cardinality 2n, whose
graph E(x, y) is just the natural successor relation induced by ≤g, i.e.

•
↑↓
•
→

•
↑↓
•
→ . . .

•
↑↓
•︸ ︷︷ ︸

g(2n)

→ • → • . . .→ •︸ ︷︷ ︸
2n−g(2n)

we see that E is consistent with ≤g and that deg.set(A) ⊆ {1, 2, 3, 4}. However,
the structure ψ[A] represents, for any n, the “transitive closure of length bigger
or equal to half the size of the model A”, and thus �n/2�, �n/2� + 1, . . .∈
deg.set(ψ[A]) for every g sublinear. ��

5 Playing Games in SOMLP
Definition 7. Let τ be a vocabulary and A and B be two τ–structures, with
|B| = |A| + 1. Let k and t be two positive integers. By A ≺(k,t) B we abbreviate
the following statement:

For every formula ϕ(X1, . . . , Xt) of FO(τ∪{X1, . . . , Xt}) of (first order)
quantifier rank ≤ k and unary second order variables X1, . . . , Xt, for
all subsets C1, . . . , Ct of A, there exist subsets D1, . . . , Dt of B, such
that
– |Ci| ≤ |Di| ≤ |Ci|+ 1, for i = 1, . . . , t, and
– A |= ϕ(C1, . . . , Ct) implies B |= ϕ(D1, . . . , Dt)
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The property A ≺(k,t) B basically states a first order elementary equivalence
among the extended structures 〈A, C1, . . . , Ct〉 and 〈B, D1, . . . , Dt〉 with respect
to first order formulas of the form ϕ(X1, . . . , Xt), viewing X1, . . . , Xt as extra
unary relation symbols. This condition is sufficient for extending elementary
equivalence to A and B with respect to sentences in SOMLP .

Theorem 1. Let r1, . . . , rs be distinct non zero natural numbers. Let τ be a
vocabulary and A and B be two τ–structures, with |A| = m, |B| = m + 1,
m+ 1 > ri and m ≡ri −1 for i = 1, . . . , s. If A ≺(k,t) B then, for all sentence ϕ
of SOMLP(τ)[r1, . . . , rs], of first order quantifier rank ≤ k and at most t unary
second order variables (free or not), we have

A |= ϕ implies B |= ϕ.

Our next goal is to characterise A ≺(k,t) B in terms of winning strategies for
a Ehrenfeucht–Fräıssé type of games. Recall that, for a positive integer k, a k
rounds first order Ehrenfeucht–Fräıssé game is played by two players, commonly
known as Spoiler and Duplicator, and the game board consists of two structures
D and E of the same vocabulary. The players alternatively select elements in the
structures, doing so in the opposite structure as the one selected by his opponent
and through k rounds, being Spoiler the first one to move in each round. Let d1,
. . . , dk be the elements selected in D, and e1, . . . , ek the elements selected in E .
Duplicator wins if the substructure of D induced by (d1, . . . , dk) is isomorphic
to the substructure of E induced by (e1, . . . , ek), under the function that maps
di onto ei, for i = 1, . . . , k. The fundamental link between first order elementary
equivalence and the k rounds first order Ehrenfeucht–Fräıssé game is given by
the following theorem (cf. [2–§1.2] and [5–§6.1]).

Theorem 2 (Ehrenfeucht–Fräıssé). For two structures A and B over the
same vocabulary, and integer k > 0, the following two statements are equivalent:

(i) A ≡k B (i.e., every first order sentence of quantifier rank ≤ k that is true
in A is also true in B, and vice versa).

(ii) Duplicator has a winning strategy in the k rounds first order Ehrenfeucht–
Fräıssé game played on A and B. ��

Our combinatorial game below is the classical game for monadic existential sec-
ond order logic, to which we add strong restrictions on the possible cardinalities
of both the structures upon the game is played and on the sets that the play-
ers choose as witnesses for second order variables (see [3] for definitions and a
thorough analysis of games for monadic second order logic).

Definition 8. Let τ be a relational vocabulary, s and k positive integers. Let
A and B be two τ–structures such that |B| = |A| + 1. The proportional sets
(A,B, s, k)–game (or simply the (A,B, s, k)–game) is played by Duplicator and
Spoiler on A and B as follows:
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1. Spoiler selects s subsets S1, . . . , Ss of A.
2. Duplicator selects s subsets T1, . . . , Ts of B, with |Si| ≤ |Ti| ≤ |Si|+ 1, for

i = 1, . . . , s.
3. Both players play a k rounds first order Ehrenfeucht–Fräıssé game on the

extended structures 〈A, S1, . . . , Ss〉 and 〈B, T1, . . . , Ts〉.

Theorem 3. Fix k, s ∈ N, τ a vocabulary, A and B τ-structures with |B| =
|A| + 1. A ≺(k,s) B if and only if Duplicator has a winning strategy in the
(A,B, s, k)–game. ��

Now the tool for establishing non definability in SOMLP reads as follows.

Theorem 4. Let r1, . . . , rn be distinct non zero natural numbers. Let τ be a
relational vocabulary and K be a class of τ–structures. If for all positive integers
k and s, there exists τ-structures A and B (that depend on k and s) such that
A ∈ K and B �∈ K, |B| = |A|+ 1, |A| ≡ri −1, for each i = 1, . . . , n, and Dupli-
cator has a winning strategy in the (A,B, s, k)–game, then K is not definable in
SOMLP [r1, . . . , rn]. ��

5.1 Limitations in Expressive Power for A–SOMLP
Recall that for a function g, the almost order ≤g on a universe A of a τ -structure
A, induces an equivalence relation ∼g on A. Let [a]g denote the ∼g–equivalence
class of a ∈ A, and [A]g := {[a]g : a ∈ A}. If, in addition, we ask of A to be
consistent with ≤g, then it makes sense to define the quotient structure A/∼g ,
as a τ -structure consisting of [A]g as its universe, and for a k-ary relation R ∈ τ ,

RA/∼g := {([a1]g, . . . , [ak]g) : (a1, . . . , ak) ∈ RA}

Furthermore, for a subset B ⊆ A we define its ≤g-contraction as [B]g := {[b]g :
b ∈ B}; and for a subset B ⊆ [A]g, its ≤g-expansion is (B)g := {a ∈ A : a ∈
[b]g for some [b]g ∈ B}.

Definition 9. Fix a sublinear function g and the almost order ≤g. A ≤g–cluster
of models C is a collection of finite structures over same vocabulary τ , each
consistent with ≤g, and for each pair of τ-structures A and B in C, their quotient
under the equivalence relation ∼g are isomorphic, that is, A/∼g

∼= B/∼g .
Given A and B in the ≤g-cluster C, let F be an isomorphism from A/∼g to

B/∼g . Then, for a ∈ A and b ∈ B, we write a ≡C b to indicate that F ([a]g) =
[b]g. Furthermore, for a subset S ⊆ A, the ≤g-closure of S in B is clg(S,B) :=
(F ([S]g))g where F ([S]g) := {[b]g ∈ [B]g : F−1([b]g) ∈ [S]g}.

The following example gives an infinite family of sublinear functions that define
almost orders.

Example 6. Fix k ∈ N. Then hk(n) = 2r, where r ≡k n, is a sublinear function.
E.g., take k = 3, then h3(7) = 2 and h3(8) = 4. If A7 and A8 are sets of size
7 and 8 respectively, then A7/∼h3

∼= A8/∼h3
, and hence, they belong to the

same ≤h3–cluster. ��
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The following lemma shows that pairs of structures, A and B, that are in the
same cluster and differ in one element, have the A ≺(k,s) B property.

Lemma 4. Let g be a sublinear function and C an ≤g-cluster of τ-models. Fix
A and B in C, with |A| = m and |B| = m+ 1, and say F : A/∼g → B/∼g is the
isomorphism among the quotient structures. Then:

(i) For every first order formula φ(x1, . . . , xs, Y ) in SOMLP(τ), for every a1,
. . . , as in A, for every b1, . . . , bs in B such that ai ≡C bi, and for ev-
ery sequence of subsets S1, . . . , St of A, consistent with ≤g, A |= φ(a1,
. . . , as, S1, . . . , St) iffB |= φ(b1, . . . , bs, clg(S1,B), . . . , clg(St,B));

(ii) If S ⊆ A then |S| ≤ |clg(S,B)| ≤ |S|+ 1.

Corollary 2. Let g be a sublinear function and C an ≤g-cluster of τ-models.
For A,B ∈ C, with |A| = m, |B| = m+1, and k, s ∈ N, we have A ≺(k,s) B. ��

Combining the previous corollary with Theorem 1 we get

Corollary 3. Let r1, . . . , rk be distinct non zero natural numbers. Let g be a
sublinear function, ≤g an almost order and C an ≤g-cluster of τ–structures. For
every pair of structures A, B in C, such that |A| = m, |B| = m+ 1, m+ 1 > ri

and m ≡ri −1, for every i ≤ k, we have that, A |= ϕ implies B |= ϕ, for all
sentences ϕ of SOMLP(τ)[r1, . . . , rk] ��

Theorem 5. Let r, r1, . . . , rk be distinct non zero natural numbers, pairwise rel-
atively prime. Then A–SOMLP [r1, . . . , rk] ⊂�− A–SOMLP [r1, . . . , rk, r]. ��

Corollary 4. A-SOMLP [2] ⊂�− A-SOMLP [2, 3] ⊂�− A-SOMLP [2, 3, 5] ⊂�− . . .

5.2 Limitations in Expressive Power for A–SOLP
In this section we partially extend the separation result stated in Corollary 4 to
second order variables of unbounded arity, that is, to A–SOLP . It is a partial
extension because we need to restrict our proportional quantifiers to be only
of the form (P (X) ≤ 1/2), with X of arbitrary arity r > 0. Nonetheless, the
result is interesting because it is precisely this type of quantifiers that defines
SOLPHorn[2], which in the presence of order, captures P. Our main tool is a
reshaping of Theorem 1 in the context of SOLPHorn[2].

Theorem 6. Let τ be a vocabulary and A and B be two τ–structures, with |A| =
m, |B| = m + 1, m + 1 > 2 and m ≡2 −1. If A ≺(k,t) B then, for all sentence
ϕ of SOLPHorn(τ)[2], of first order quantifier rank ≤ k and at most t second
order variables (free or not), we have A |= ϕ implies B |= ϕ ��

Theorem 7. Let τ be a relational vocabulary and K be a class of τ–structures.
If for all positive integers k and s, there exists τ-structures A and B (that de-
pend on k and s) such that: A ∈ K and B �∈ K, |B| = |A| + 1, |A| ≡2 −1,
and Duplicator has a winning strategy in the (A,B, s, k)–game. Then K is not
definable in SOLPHorn(τ)[2]. ��
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Using as benchmark query: “the size of the model is a multiple of 3”, which is
definable in A-SOLP [2, 3], we obtain

Corollary 5. A–SOLPHorn[2] ⊂�− A–SOLP [2, 3]. ��
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Abstract. Given a dictionary W consisting of n binary strings of length
m each, a d-query asks if there exists a string in W within Hamming
distance d of a given binary query string q. The problem was posed by
Minsky and Papert in 1969 as a challenge to data structure design. There
is a tradeoff between time and space in solving the problem of answering
a d-query. Recently developed time-efficient methods for text indexing
with errors can be used to answer a d-query in O(m) time. However, these
methods use O(n logd n) (or more) additional space which is not practi-
cal for large databases. We present a method for the problem assuming
the standard RAM model of computation. We process the dictionary to
construct an edge-labelled tree with distinct labels to siblings, and with
bounded branching factor and height. Storing the resulting tree does
not require asymptotically more space than the size of an ordinary trie
that stores the given dictionary. We present an algorithm for the d-query
problem that takes O(m(3 log4/3 n − 1)d(log2 n)d+1) time, and uses only
O(m) additional space. We also generalize the results for the case of the
problem when a larger alphabet, or edit distance are used. We achieve
O(m(2|Σ| − 1)d(log2|Σ|/(2|Σ|−1) n − 1)d(log2 n)d+1) time complexity for
the problem when Hamming distance is used. The time complexity in-
creases by a factor of O(d(2|Σ|−1)d(log2 n)d) when we use edit distance.
The algorithms are efficient when the approximate dictionary look-up
involves long words defined over small alphabets. The algorithm can be
modified such that it allows for words of different lengths as well as dif-
ferent lengths of query strings.

Keywords: d-query, approximate dictionary look-up, suffix tree, pre-
processing, Hamming distance, edit distance, space efficient algorithm.

1 Introduction

Consider a dictionary W consisting of n binary strings of length m each. A d-
query asks if there exists a string in W within Hamming distance d of a given
binary query string q. Hamming distance between two strings is the number of
positions at which the strings differ. The problem was originally posed by Minsky
and Papert in 1969 [12] in which they asked if there is a data structure that sup-
ports fast d-queries. Algorithms for answering d-queries and its variations have
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been a topic of interest in the literature [1–3, 5, 6, 11, 16]. Approximate dictionary
look-up is a problem of dictionary look-up within distance d to a given query
string q. It is essentially a d-query problem over a larger but finite alphabet, and
it allows for various notions of proximity. Approximate dictionary query problem
asks for not only one but all words that are close to the query string q.

A naive method for answering a d-query is to generate all possible strings
differing from q in at most d positions, and perform O(md+1) exact queries using
O(m) additional space. If we use O(mdn) additional space to store all possible
words within difference d of words in W we can answer a d-query in O(m) time
by performing one exact query. Therefore, there is a tradeoff between time and
space. We are interested in finding a solution that does not require unreasonable
space or time.

There are efficient algorithms for the 1-query problem (the d-query with d = 1)
[11, 2, 16, 3]. They do not generalize to the d-query problem when d > 1.

Arslan and Eğecioğlu [1] study the approximate dictionary look-up problem
in the standard RAM model, and they take into account all computations in the
complexity analysis. They assume a trie representation for the dictionary W .
For the approximate dictionary look-up problem they present algorithms that
use hybrid tree/dynamic programming approach [8, 13, 14] that combines tree
traversal with partial computation of distances. Their method allows for the use
of simple edit distance as well as the Hamming distance. The simple edit distance
between two strings is the minimum number of edit operations (insert,delete, and
substitute) required to transform one string into the other. The algorithm of
Arslan and Eğecioğlu [1] answers a d-query in time O(md+1) using additional
space O(m).

Recently (during the development of this paper) several results for text index-
ing with errors have been published [4, 10]. These results improve the complexity
of answering d-query. Results shown by Maaß [9] imply that when Hamming
distance is used, and the dictionary is stored in a trie, the average time of trie-
search to answer a d-query is O(logd+1 (nm)). The method presented by Cole et
al. [4] can be used to answer a d-query (where d can be the edit distance) in time
O(m+logd (nm) log log (nm)), and it requires additional space O(nm logd (nm))
for indexing. Maaß and Nowak [10] have shown two results for text indexing with
errors. Their results imply that when edit distance is used the d-query can be
answered: 1) in O(m) time using on average O(n logd n) additional space for in-
dexing. 2) in O(m) average time using O(n logd n) additional space for indexing.
Although these methods are time-efficient, they are not practical for answering
d-queries in very large databases.

In this paper we assume the standard RAM model of computation. We pre-
process W to create an edge-labelled tree whose branching factor, and height
are bounded from above by functions logarithmic in the number of words in
W , and the labels to siblings are distinct. The resulting tree does not require
more space asymptotically than that required by a trie representation of W . We
use the hybrid tree/dynamic programming technique for approximate dictionary
look-up. We assume that the alphabet Σ can be larger than a binary alphabet.
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We study the Hamming distance, and edit distance cases separately for a given
alphabet Σ. We develop algorithms similar to those presented by Arslan and
Eğecioğlu [1]. We achieveO(m(2|Σ|−1)d(log2|Σ|/(2|Σ|−1) n−1)d(log2 n)d+1) time
complexity when Hamming distance is used by our first algorithm. In the second
algorithm, the time complexity increases by a factor of O(d(2|Σ| − 1)d(log2 n)d)
when edit distance is used. Our algorithms are efficient when the problem in-
volves long words defined over a small alphabet. When we apply our algo-
rithm for the Hamming distance case, the algorithm answers a d-query in time
O(m(3 log4/3 n− 1)d(log2 n)d+1) using only O(m) space in run-time.

The outline of this paper is as follows: in Section 2 we describe how we prepro-
cess dictionary W to create the tree that we use in our algorithms. We present
our algorithms for the approximate dictionary look-up problem in Section 3. We
first present the algorithm for the Hamming distance, and then the one for the
simple edit distance. We summarize our results in Section 4.

2 Preprocessing

For simplicity we assume that dictionary W is stored as a trie TW (or a Patricia
tree, which is a trie in which the children with no siblings are merged with their
parents). Otherwise, we can always create TW for W . W has words of lengths m
each over an alphabet Σ where |Σ| ≥ 2.

For any node v in a given tree T we denote by nv the number of leaves rooted
at subtree v. We first establish the following lemma about nv.

Lemma 1. Let T be a tree of height h, and branching factor b. There exists a
node v in T such that n

2b ≤ nv ≤ n
2 .

Proof. We construct an algorithm that finds node v such that the number of
leaves nv in the subtree rooted at v satisfies the inequalities in the lemma. The
algorithm starts at the root, and throughout the entire search selects the node
with highest leaf-counts among its siblings. By the pigeon-hole principle one child
c of the root is a subtree with at least n

b leaves because the branching factor of
the tree is b, i.e. nc ≥ n

b . If the leaf-count nc is also ≤ n
2 then the search stops at

node c since c satisfies the inequalities in the lemma, i.e. v = c. Otherwise, the
algorithm continues at the subtree rooted at c with the largest leaf-count. The
search will continue as long as the leaf-count for the current node is larger than
n
2 . When the leaf-count for the current node c finally is less than or equal to n

2
then by the pigeon-hole principle the leaf-count nc is at least n

2b for c that has
the largest leaf-count among its siblings. The algorithm stops at node c and the
leaf-count nc is between n

2b and n
2 , i.e. v = c.

Corollary 1. There exists a node v in TW such that n
2|Σ| ≤ nv ≤ n

2 .

For a given node v ∈ TW we denote by pr,v the concatenation of labels of the
edges on the path from the root r to node v. Note that pr,v is the common
prefix of the words appearing in subtrie rooted at r. Another interpretation of
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Corollary 1 is that there exists a prefix pr,v that is common to nv words in W
where n

2|Σ| ≤ nv ≤ n
2 .

We preprocess TW to create an edge-labelled tree S with bounded branching
factor and height, and in S from any node to its distinct children no label is
a prefix of another. Function Convert(r, nr) in Figure 2 creates S shown in
Figure 3 and returns its root r′. The function takes as a parameter node r of
TW , and nr. It creates a node r′ in S. If r is a leaf then the function returns r′.
Otherwise, the algorithm reorganizes the tree rooted at r in TW into a tree rooted
at r′ in S. This is done by first determining the children of r′, and recursively
creating the subtrees in S rooted at these children from subtrees in TW . The
algorithm performs this in a few main steps. First, it collects into a list nodes
that are candidate to be children of r′. Second, these nodes are examined and
the list is revised so that in the list of labels of arcs from r′ to these nodes, no
label is a prefix of another.

The algorithm uses a set L to keep track of nodes that are candidate for being
children of r′ in S. It initializes L to be the empty set. At each iteration, the
algorithm finds in TW a node v of Lemma 1. The algorithm given in the proof
of the lemma shows that there exists a node v such that n

2|Σ| ≤ nv ≤ n
2 . We

may use any search algorithm which returns a node v with the leaf-count nv

satisfying these inequalities. We modify this algorithm such that it ignores any
node and its subtries when the node is marked as “deleted”. Finding a node with
the largest leaf-count less than or equal to n

2 is advantageous because it yields to
S with smaller height and branching factor. Once we find vertex v we delete the
subtrie rooted at v logically. This involves marking it as deleted in TW , and the
leaf-counts for all its ancestors in TW are updated by subtracting nv from each.
This can easily be done if there are backward arcs. We can traverse TW before
the preprocessing, and add backward arcs. These arcs can be removed after
the preprocessing is completed. Next, we iteratively find new vertices satisfying

= vc1

2c

ic

i+1c

|   |c C

ic

|   |c C

i+1c

2c

= vc1

(b)(a)

rr

u

u’u’

u

Fig. 1. (a) A sequence C = c1, c2, . . . , ck of nodes obtained from L for v. Filled nodes
are in L. (b) Filled nodes are added to F . Nodes u and u′ are removed from L along
with all nodes in C.
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Algorithm Convert(r, nr)
create a new node r′ in S
if r is a leaf then return r′

L := ∅
while (nr > 1) do {

find node v of Lemma 1
L := L ∪ {v}
mark vertex v as ‘‘deleted’’ in TW

for every vertex w on the path from the root to v in TW do
update the leaf-count nw := nw − nv

}
add to L the only (remaining) child v of r
sort L into itself in ascending label lengths
F := ∅
while (|L| > 0) do {

pick the next (shortest) node v in sorted list L; i := 1; ci := v
for every node w appearing after v ∈ L do {
if pr,ci is a prefix of pr,w then { i := i + 1; ci := w}

}
remove all nodes in C from sorted list L
for every node w ∈ L where c1 is a prefix of pr,w do {
remove w from L
clear the ‘‘deleted’’ mark on vertex w in TW

for every vertex u on the path from the root to w in TW do
update the leaf-count nu := nu + nw

}
add to F all children of all nodes in c1, c2, . . . , c|C|−1

add to F all siblings of all nodes in c2, . . . , c|C|
if c|C| is a leaf then add it to F
else add to F all children of node c|C|

}
for every v ∈ F do {

v′ := Convert(v, nv)
make r′ point to v′ on label prefix pr,v

}
return r′

Fig. 2. Function Convert(r, nr)

Lemma 1 in remaining trees, and collect them in L. The iterations continue as
long as there remain more than one leaves in TW , and finally the last leaf is
also added to L. We note that at this stage the following are true: 1) |L| ≤
log2|Σ|/(2|Σ|−1) n, and 2) For every vertex v ∈ L, nv ≤ nr

2 . Next, we create a
list F from L such that F unlike L does not contain any two distinct nodes
u,w where pr,u is a prefix of pr,w. We sort L into itself in ascending order of
label-lengths, and then initialize F := ∅. We iteratively pick the next node v
in sorted list L, and for each v we remove nodes from L, and add nodes to F .
Figure 1 illustrates possible cases on an example. We create a sequence C of
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nodes where the first element c1 = v by visiting every node in sorted list L
appearing after v, and whenever we find a node w such that the label to the last
node in the sequence pr,ci is a prefix of pr,w we set ci := w after incrementing
i. In the resulting sequence C = c1(= v), c2, . . . , c|C|, ci is a prefix of ci+1 for
all i, 1 ≤ i < |C|. We remove all the nodes in C from L. Then in new L we
find all nodes w where pr,v is a prefix of pr,w. We logically reattach the subtries
rooted at these nodes to TW by clearing the “deleted” mark, and updating for
each ancestor u, nu := nu + nw. We continue this process iteratively until no
node remains in L. After the iterations end, for every node w in C we add to
F all children of w (or only w if w is a leaf), and all siblings of w. We continue
this process by picking the first node v with the shortest label in new L as long
as |L| > 0. We note that when the iterations end, the following are true: 1)
|F | ≤ (2|Σ| − 1) log2|Σ|/(2|Σ|−1) n because for each node initially in L there are
at most 2|Σ| − 1 nodes in F , 2) For every node v ∈ F , nv ≤ nr

2 . To see this
consider a node in F . If v was also in L then the claim is immediately true.
Otherwise v is a sibling of some node w in L, nw ≤ nr

2 , and because we always
select a sibling with the largest leaf-count to place in L, nv ≤ nw. 3) There are
no two distinct nodes v and w in F such that pr,v is a prefix of pr,w. Following
the construction of F , the function creates a subtree for each node v in F by
performing a recursive call Convert(v, nv) which creates a subtree for S from
the subtrie of TW rooted at v, and returns the root v′ of the resulting subtree.
The function makes v′ a child of r′, and sets prefix pr,v as the label of the arc
connecting r′ to v′.

Figure 3 illustrates the resulting tree S. The following are true for S:

– labels from any parent to its distinct children are distinct,
– the height h is ≤ log2 n,
– the branching factor b is ≤ (2|Σ| − 1) log2|Σ|/(2|Σ|−1) n. We expect that on

average in practice we find a subtree with number of leaves close to half
of the total number of leaves, and as a result the branching factor is much
smaller in practice.

p
1

p2
pi

< n
2< n

2
< n

2

p1 pj
in { ,p2 , ... ,pk } is a prefix ofpi for i=j no

< Σ2Σ2 / ( -1)log n(2 Σ -1 )

< log2 n

T

prefix . . . . . .

has a single leaf

branching factor (b)

height  

bp

b

Fig. 3. The resulting tree, and the properties it satisfies
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The preprocessing takes time O(nmb) since each of O(n) words gives rise
to a leaf f in the resulting tree after the preprocessing spends O(mb) time for
following the edges, and for each ancestor u comparing u with its siblings to
determine prefix relation, and placing u in sets L, and F . The space requirement
is the same as that of W because in the resulting tree there are same number
of leaves, and the preprocessing does not increase the depth of the leaves in the
resulting tree compared to their depths in the original tree TW . Therefore, the
number of nodes in both trees are asymptotically the same. The total length of
the arc-labels are also the same asymptotically if we represent each label in S
by using an index to a member, and start and end positions (or pointers) in TW .

We call a function F an ordinary node-weight function for a given tree T if
F assigns non-negative integral weights to nodes such that for any node p at
most one of its children has the same weight as p, and the weights of the other
children are strictly larger than that of p.

The following is a generalization of a lemma in [1].

Lemma 2. Let T be a tree whose height is h, and whose branching factor is
b. Let the nodes of T be assigned weights by an ordinary node-weight function.
Then the number of nodes N in T with weight ≤ d is O( (b − 1)d hd+1) .

Proof. To find an upper bound for N we consider the complete tree C with
branching factor b, and height h. Since the weights are assigned by an ordinary
node-weight function, N is maximized when each parent node whose weight is
w has exactly one child with weight w, and each of its other children has weight
w + 1. Let L(l, w) denote the number of nodes with weight w at level l in C.
Then L(l, w) satisfies the recursion L(l+1, w) = L(l, w)+(b−1)L(l, w−1) with
l ≥ w and L(l, 0) = 1. The solution of this recursion is L(l, w) =

(
l
w

)
(b − 1)w.

Therefore the total number of nodes with weight w in C is (b− 1)w
∑h

l=w

(
l
w

)
=

(b− 1)w
(

h+1
w+1

)
, and therefore N =

∑d
w=0(b− 1)w

(
h+1
w+1

)
= O((b − 1)dhd+1).

3 Algorithms

Let s[i..j] represent the substring sisi+1 . . . sj of any given string s = s1s2 . . . sk

with length k. With respect to a given query string q let function f assign a
weight to each node v in the tree rooted at node r,

f(v) = H(pr,v, q[1..|pr,v|]) (1)

where H denotes the Hamming distance. We note that f is an ordinary node-
weight function for S. Consider any parent node u, and its child w. The weight
f(w) = H(pr,w, q[1..|pr,w|]) = f(u) + H(pu,w, q[(|pr,u| + 1)..(|pr,u| + |pu,w|)]).
Clearly f(w) ≥ f(u). If f(w) = f(u) then for any other child of u the weight is
larger than f(u) because over all the arc labels from u only pu,w exactly matches
q[(|pr,u|+ 1)..(|pr,u|+ |pu,w|)], and among these arc labels no label is a prefix of
another. We reach the following Corollary from Lemma 2:
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Corollary 2. Let N be the number of nodes in S with weight ≤ d as defined in
(1). Then N = O((2|Σ| − 1)d(log2|Σ|/(2|Σ|−1) n− 1)d(log2 n)d+1).

In particular when Σ is a binary alphabet N = O((3 log4/3 n− 1)d(log2 n)d+1).
We develop an algorithm shown in Figure 4 for the approximate dictionary

look-up within Hamming distance d. Algorithm DFT-LOOK-UPH(r, q, d) checks
if the tree rooted at r has a leaf whose Hamming distance from q is ≤ d. The
algorithm searches for a member in a depth-first manner. If d < 0 then it returns
false since there is no such member. If r is a leaf and q is an empty string then
the algorithm returns true since a member is found. Otherwise for each child the
algorithm calculates a weight d′ = H(pr,c, q[1..|pr,c|]), and recursively checks if
the subtree rooted at each child contains a member within an updated distance
d − d′. If any of these searches returns true then the algorithm returns true,
otherwise, it returns false.

Since f in (1) is a ordinary node-weight function for S, by Corollary 2 the
algorithm in S visits O((2|Σ| − 1)d(log2|Σ|/(2|Σ|−1) n − 1)d(log2 n)d+1) nodes,
and at each leaf spends time O(m). The time complexity of the algorithm is,
therefore, O(m(2|Σ| − 1)d(log2|Σ|/(2|Σ|−1) n − 1)d(log2 n)d+1) . We can modify
the algorithm such that the words in W as well as the query string can be of
different lengths.

Next, we describe how we develop a similar algorithm for the problem when
simple edit distances are used. Given two strings X = x1 . . . xm and Y =
y1 . . . ym, the simple edit distance ed(X,Y ) is the minimum number of edit
operations which transform X into Y using three types of operations: insert,
delete, and substitute. A common framework for computing an edit distance is
the edit graph (see [8]) for definition), and it has a simple dynamic programming
formulation [8]:

Di,j = min{ Di−1,j + 1, Di−1,j−1 +H(xi, yj), Di,j−1 + 1} (2)

for all i, j, 0 ≤ i, j ≤ m with boundary conditions Di,0 = i, D0,j = j.
With respect to a given query string q, let e be a function that assigns a

weight to a given node v in S rooted at r as described in the following:

e(v) = min{ed(pr,v, t) | t is a prefix of q} (3)

Algorithm DFT-LOOK-UPH(r, q, d)

If d < 0 return FALSE
If r is a leaf, and q is an empty string then return TRUE
for each child c of r in S do {

d′ := H(pr,c, q[1..|pr,c|])
if DFT-LOOK-UPH(c, q[(|pr,c| + 1)..|q|], d − d′) then return TRUE

}
return FALSE

Fig. 4. Algorithm DFT-LOOK-UPH for approximate dictionary look-up within Ham-
ming distance d
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where ed denotes the simple edit distance. Note that in this definition pr,v and
the prefix t of q can be of different lengths. We can see that e is not an ordinary
node-weight function because it is possible that more than one children of a node
can have the same weight as the parent node due to insert, and delete operations
that can be performed on the labels to ancestor nodes.

Lemma 3. Let N be the number of nodes in S with weight ≤ d as defined in
(3). Then N = O((2|Σ| − 1)2d(log2|Σ|/(2|Σ|−1) n− 1)2d(log2 n)2d+1).

Proof. We imagine that we traverse the tree in breath-first manner starting at
root at level 0, and consider the minimum possible weight for each node. Clearly
for any node u, the weight e(u) in (3) is less than or equal to f(u) in (1). Suppose
that initially for every node u in S, e(u) = f(u). If v is a parent node of u then
e(u) ≥ e(v), i.e. e is non-decreasing.Due to possible delete, and insert operations
on the label of the arc pv,u from v to u there may be nodes w in the subtree
rooted at u such that w has more than one children sharing the same weight
as w. When we studied an upper bound in Lemma 2 we considered that every
node v has exactly one child with the same weight as v. This time, being overly
pessimistic, we assume that all of v’s children have the same weight as v if it is
given that there are insertions, or deletions on pv,u. We consider possibility of
insertions, and deletions on all labels on arcs each connecting a node at level i−1
to a node at level i for a given i. This increases the number of nodes at level i
with the same weight as their parents (and all ≤ d) by a factor of ≤ b−1, where
b is the branching factor in S. Since there are at most d insertions, or deletions,
for each permutation of the levels they can occur, the number of nodes with the
same weight as their parents (and all ≤ d) is increased by a factor of ≤ (b− 1)d.
The number of levels where an insertion, or a deletion can occur is the same as
the height of the tree, h. Since there can be at most d such operations, we need
to consider

(
h
d

)
possibilities. Putting all together, the product of

(
h
d

)
(b− 1)d and

the upper bound in Lemma 2 gives the upper bound in this lemma.

Next we propose Algorithm DFT-LOOK-UPed for the d-query problem when
edit distance is used. The steps of the algorithm are shown in Figure 5. The
algorithm is based on depth-first traversal (DFT) of S during which the entries
of the dynamic programming matrix are partially computed. To determine if
two strings are within edit distance d it is sufficient to consider a diagonal band
of the edit graph [15]. Algorithm DFT-LOOK-UPed uses this observation (see
Figure 7).

For a given node v in S rooted at r, we define Dv,j where max{0, i−�d/2�} ≤
j ≤ min{m, i+ �d/2�}, and i = |pr,v| (see Figure 7) as follows:

Dv,j = ed(pr,v, q[1..j])

That is, Dv,j is the minimum simple edit distance between pr,v and q[1..j], and
the weight of node v defined in (3) is

e(v) = min{ Dv,j | max{0, i−�d/2�} ≤ j ≤ min{m, i+�d/2�} where i = |pr,v| }.
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Algorithm DFT-LOOK-UPed(d)

D0,j := j for all j, 1 ≤ j ≤ �d/2	
Di,0 := 0 for all i, 1 ≤ i ≤ m
D0,0 := 0
for each child v of the root r in S do

if DFT-COMPUTE-Ded(r, v) ≤ d then return YES
return NO

Fig. 5. Algorithm DFT-LOOK-UPed for dictionary look-up within edit distance d

Function DFT-COMPUTE-Ded(v, u)

istart := |pr,v|; iend := |pr,v| + |pv,u|
for i := istart to iend do

for j := max{0, i − �d/2	} to min{m, i + �d/2	} do
Di,j := min{Di−1,j + 1, Di−1,j−1 + H(pv,u[i − istart], qj), Di,j−1 + 1}

weight := min{Diend,j | max{0, i − �d/2	} ≤ j ≤ min{m, i + �d/2	}
if u is a leaf or weight > d then return weight
if weight= d then {
for j := max{0, iend − �d/2	} to min{m, iend + �d/2	} do {
if Diend,j = d and there is a path from u to a leaf in S

on q[(j + 1)..qm] then return d }
return d + 1

}
return min{DFT-COMPUTE-Ded(u, w) | w is a child of u}

Fig. 6. Function DFT-COMPUTE-Ded for computing the minimum edit distance
achieved in subtree rooted at u whose parent is v

If we process S in depth-first manner, we can compute Dv,j for all nodes using
a single matrix Di,j where 0 ≤ i ≤ m.

Algorithm DFT-LOOK-UPed starts with the initialization of scores for the
first row, and it invokes Function DFT-COMPUTE-Ded for each child v of the
root r. If any of these invocations returns a value ≤ d then the algorithm returns
YES; otherwise it returns NO.

Given a parent node v, a child node u, Function DFT-COMPUTE-Ded(v, u)
computes the shaded region of the edit graph shown in Figure 7 using pv,u, and
starting with the values in the row of parent node v. The minimum of the values
in the row of u is set as the weight e(u) of u . If this value is equal to d then the
function examines every position j in the row of u where d is achieved. These are
the only starting positions for a suffix of the query string q with which weight
d is preserved in a subtree rooted at u . That is, these are the only positions
which potentially lead to a leaf with weight d . Therefore the algorithm checks if
starting from u at each such position j if there is a path to a leaf on q[(j+1)..m] .
If the answer is yes then the algorithm returns d, otherwise it returns d+1 which
is a number sufficiently large to yield a no answer when we only consider the
subtree rooted at u . If the weight of u is smaller than d then the function
traverses recursively the subtree rooted at u in depth-first manner, computes
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Fig. 7. The hybrid tree/dynamic programming approach used by Function DFT-
COMPUTE-Ded

and returns the minimum edit distance (leaf-weight) achievable in this subtree.
Note that if the final value returned is ≤ d then it must be the weight of a leaf.

Since processing at each node takes time O(dm), the algorithm’s time com-
plexity is O(dm(2|Σ| − 1)2d(log2|Σ|/(2|Σ|−1) n − 1)2d(log2 n)2d+1) by Lemma 3,
and it requires additional space O(dm).

4 Conclusion

We present a method to preprocess a dictionary to create an edge-labelled tree
with bounded branching factor and height, and with the property that from any
node to its distinct children no label is a prefix of another. Size of the resulting
tree is asymptotically the same as the space requirement of an ordinary trie
that stores the dictionary. For approximate dictionary look-up we develop space-
efficient algorithms which are also time-efficient when the alphabet-size is small.
The main ideas in these algorithms can also be used for developing methods for
text indexing with errors.
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Abstract. This paper shows that the standard security notion for iden-
tity based encryption schemes (IBE), that is IND-ID-CCA2, captures the
essence of security for all IBE schemes. To achieve this intention, we first
describe formal definitions of the notions of security for IBE , and then
present the relations among OW, IND, SS and NM in IBE , along with
rigorous proofs. With the aim of comprehensiveness, notions of security
for IBE in the context of encryption of multiple messages and/or to mul-
tiple receivers are finally presented. All of these results are proposed with
the consideration of the particular attack in IBE , namely the adaptive
chosen identity attack.

1 Introduction

Identity based encryption (IBE) is a public key encryption mechanism where an
arbitrary string, such as the recipient’s identity, can serve as a public key. This
convenience yields the avoidance of the need to distribute public key certificates.
On the other hand, in conventional public key encryption (PKE) schemes, it is
unavoidable to access the online public key directory in order to obtain the
public keys. IBE schemes are largely motivated by many applications such as to
encrypt emails with the recipient’s email address.

Although the basic concept of IBE was proposed by Shamir [13] more than
two decades ago, it is only very recent that the first fully functional scheme was
proposed [6]. In 2001, Boneh and Franklin defined a security model and gave the
first fully functional solution provably secure in the random oracle model. The
notions of security proposed in their work are natural extensions to the standard
ones for PKE , namely indistinguishability-based ones.
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1.1 Motivation

So far in the literature, IND-ID-CCA2, is widely considered to be the “right”
security notion which captures the essence of security for IBE [6, 4, 5, 15]. How-
ever, such an issue has not been investigated rigorously, yet. This work aims to
establish such an affirmative justification. Before discussing about how to define
the “right” security notion for IBE, we first glance back to the case of PKE .

Notions of Security for PKE . A convenient way to formalize notions
of security for cryptographic schemes is considering combinations of the var-
ious security goals and possible attack models. Four essential security goals
being considered in the case of PKE are one-wayness (OW), indistinguisha-
bility (IND), semantic security (SS) [9, 11], and non-malleability (NM) [7],
i.e. Gi ∈ {OW,IND,SS,NM}. The attack models are chosen plaintext attack
(CPA) [11], non-adaptive chosen ciphertext attack (CCA1) [7] and adaptive cho-
sen ciphertext attack (CCA2) [12], i.e. Aj ∈ {CPA,CCA1,CCA2}. Their combina-
tions give nine security notions for PKE , e.g. IND-CCA2.

SS is widely accepted as the natural goal of encryption scheme because it
formalizes an adversary’s inability to obtain any information about the plaintext
from a given ciphertext. The equivalence between SS-CPA and IND-CPA has been
given [11]; and the equivalences between SS-CCA1,2 and IND-CCA1,2 are given
only recently [10,14]. On the other hand, NM formalizes an adversary’s inability,
given a challenge ciphertext y∗, to output a different ciphertext y′ in such a
way that the plaintexts x, x′, underlying these two ciphertexts, are meaningfully
related, e.g. x′ = x + 1. The implications from IND-CCA2 to NM under any
attack have been proved [3]. For these reasons, along with the convenience of
proving security in sense of IND, in almost all concrete schemes, IND-CCA2 is
considered to be the “right” standard security notion for PKE .

Towards Defining Notions of Security for IBE . Due to the particular
mechanism, the adversaries are granted more power in IBE than in PKE . Es-
sentially, the adversaries have access to the key extraction oracle, which answers
the private key of any queried public key (identity). Including this particular
adaptive chosen identity attack, 1 we formalize the security notions for IBE ,
e.g. IND-ID-CCA2, in such a way: Gi-ID-Aj , where Gi ∈ {OW,IND,SS,NM}, ID
denotes the particular attack mentioned above, and Aj ∈ {CPA,CCA1,CCA2}.
Boneh and Franklin are the first to define the security notion for IBE , by natu-
rally extending IND-CCA2 to IND-ID-CCA2.

Let us rigorously investigate whether IND-ID-CCA2 could be considered as
the “right” notion for IBE , besides the intuitive reason that it is analogous to
IND-CCA2. The natural approach to justify such an appropriateness for IBE is,
analogously to the case of PKE , to (i) first define SS and NM based security
notions for IBE , (ii) and then establish the relations among the above security
1 Actually in IBE there exists the other attack against identity, named selective chosen

identity attack. In this paper we omit presenting the formal definitions of the security
notions in this selective-ID secure sense, but it is easy to see that the implications
and separations shown here also hold in the selective-ID case.
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Fig. 1. Relations among the notions of security for IBE

notions: to be more specific, the implications from IND-ID-CCA2 to all the other
notions, i.e. IND-ID-CCA2 is the strongest notion of security for IBE .

At the first place the intuition tells us that task (i) seems to be simply achiev-
able by considering the analogy to the case of shifting IND-CCA to IND-ID-CCA
as done in [6], and task (ii) could immediately follow from the relations among
the notions as the case of PKE , since we shift all the notions with the same addi-
tional attack power (namely, the accessibility to key extraction oracle). However,
we emphasize that it will not follow simply and immediately until rigorous defi-
nitions for task (i) and rigorous proofs for task (ii) are presented. We managed
to accomplish both tasks in this paper.

1.2 Our Contributions

Our contributions are three-fold.
First, we formally presented the definitions of the notions of security for IBE

schemes. The overall definitions are built upon historical works [3, 6, 10].
Secondly, we rigorously proved the relations among these notions and achieved

our conclusion that, IND-ID-CCA2 is the “right” notion of security for IBE . It
turns out that our intuition about those relations were right: the implication
G1-ID-A1 ⇒ (�⇒)G2-ID-A2 will hold in IBE if and only if G1-A1 ⇒ (�⇒)G2-A2
holds in PKE , respectively, where the corresponding security goals Gi and attack
models Aj are mentioned above. The results of our second contribution are illus-
trated in Figure 1. An arrow is an implication, and there is path between A and
B if and only if the security notion A implies the security notion B. A hatched
arrow represents a separation which is proved in this paper. Dotted arrows re-
fer to trivial implications. For each pair of notions we obtain an implication or a
separation, which is either explicitly found in the diagram or deduced from it.

In the last place, we study the robustness of IND-ID-CCA2 secure schemes
in the context of encryption of multiple messages and/or to multiple receivers.
Concretely, inspired by [10], we propose several new attack models for the case of
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active adversaries: multiple-identity (mID-CCA2) attacks 2 (the adversary can
adaptively query for encryptions of the same plaintext under different identi-
ties); multiple-plaintext (ID-mCCA2) attacks (the adversary chooses one fixed
identity, and can adaptively query encryption of different plaintexts under that
identity) and multiple-identity-plaintext attacks (mID-mCCA) (the adversary can
adaptively query encryption of different plaintexts under different identities ). It
is shown that any IND-ID-CCA2 scheme also meets those stronger security levels.

Our results could be considered as having the same flavor as some historical
results, to name just one, the equivalence between IND-CCA2 and SS-CCA2 for
PKE . There, although IND-CPA and SS-CPA were defined and proved equivalent
in the year 1984 [11], the equivalence between IND-CCA2 and SS-CCA2 had not
been proved rigorously until the year 2003 [14]. During this long period of time,
people just simply believed that shifting the attack power from CPA to CCA2
will not affect the equivalence.

This paper is merged from two parallel works [1, 8].

1.3 Organization

The rest of the paper is organized as follows: in Section 2 we review the formal
definition of IBE schemes and several other basic terms. In Section 3 we define
the formal definitions of notions of security for IBE schemes. In Section 4 we
prove important relations among these notions, rigorously. In Section 5 we study
the multi-challenge cases.

2 Preliminary

2.1 Identity Based Encryption

Formally, an identity based encryption scheme consists of four algorithms, i.e.
IBE = (S,X , E ,D), where
– S, the setup algorithm, takes a security parameter k and outputs system

parameters param and master-key mk. The system parameters include the
message space M, and the ciphertext space C.

– X , the extract algorithm, takes triple inputs as param,mk, and an arbitrary
id ∈ {0, 1}∗, and outputs a private key sk = E(param,mk, id). Here id is
arbitrary.

– E , the encrypt algorithm, takes triple inputs as param, id ∈ {0, 1}∗ and a
plaintext x ∈M. It outputs the corresponding ciphertext y ∈ C.

– D, the decrypt algorithm, takes triple inputs as param, y ∈ C, and the
corresponding private key sk. It outputs x ∈M.

The four algorithms must satisfy the standard consistency constraint, i.e. if
and only if sk is the private key generated by the extract algorithm with the
given id as the public key, then,

∀x ∈ M : D(param, sk, y) = x, where y = E(param, id, x).
2 This security definition has been previously considered in [2], but no proof of equiv-

alence to IND-ID-CCA2 was given. Moreover, the attack we consider is stronger since
it gives more power to the adversary.
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2.2 Conventions

Notations.
⇀
x← D(param, sk,

⇀
y ) denotes that the vector

⇀
x is made up of the

plaintexts corresponding to every ciphertext in the vector
⇀
y . M̂ denotes a subset

of message space M, where the elements of M̂ are distributed according to the
distribution designated by some algorithm. Function h : M̂ → {0, 1}∗ denotes
the a-priori partial information about the plaintext and function f : M̂ → {0, 1}∗
denotes the a-posteriori partial information.

Negligible Function. We say a function ε : N → R is negligible if for every
constant c ≥ 0 there exits an integer kc such that ε(k) < k−c for all k > kc.

R-related Relation. We consider R-related relation of arity t where t will be
polynomial in the security parameter k. Rather than writing R(x1, x2, . . . , xt)
we write R(x,

⇀
x), denoting the first argument is special and the rest are bunched

into a vector
⇀
x where

∣∣ ⇀
x

∣∣ = t− 1, and for every xi ∈
⇀
x, R(x, xi) holds.

Experiments. Let A be a probabilistic algorithm, and let A(x1, . . . , xn; r) be
the result of running A on inputs (x1, . . . , xn) and coins r. Let y ← A(x1, . . . , xn)
denote the experiment of picking r at random and let y be A(x1, . . . , xn; r). If
S is a finite set then let x ← S denote the operation of picking an element at
random and uniformly from S. And sometimes we use x R← S in order to stress
this randomness. If α is neither an algorithm nor a set then let x← α denote a
simple assignment statement. We say that y can be output by A(x1, . . . , xn) if
there is some r such that A(x1, . . . , xn; r) = y.

3 Definitions of Security Notions for IBE Schemes

Let A = (A1, A2) be an adversary, and we say A is polynomial time if both
probabilistic algorithm A1 and probabilistic algorithm A2 are polynomial time.
At the first stage, given the system parameters, the adversary computes and
outputs a challenge template τ . A1 can output some state information s which
will be transferred to A2. At the second stage the adversary is issued a challenge
ciphertext y∗ generated from τ by a probabilistic function, in a manner depend-
ing on the goal. We say the adversary A successfully breaks the scheme if she
achieves her goal.

We consider four security goals, OW, IND, SS and NM. And we consider three
attack models, ID-CPA,ID-CCA1,ID-CCA2, in order of increasing strength. The
difference among the models is whether or not A1 or A2 is granted accesses to
decryption oracles.3

3 With regards to the adaptive chosen identity and selective chosen identity attacks,
we only discuss in details the former case (full-ID security), while the results can be
extended to the latter case (selective-ID security), since the strategies are similar.
Roughly speaking, the target public key id should be decided by the adversary in
advance, before the challenger runs the setup algorithm. The restriction is that the
extraction query on id is prohibited.
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Table 1. Oracle Sets O1 and O2 in the Definitions of the Notions for IBE

O1 = {XO1, EO1, DO1}
ID-CPA {X (param,mk, ·), E(param, id, ·), ε}
ID-CCA1 {X (param,mk, ·), E(param, id, ·), D(param, sk, ·)}
ID-CCA2 {X (param,mk, ·), E(param, id, ·), D(param, sk, ·)}

O2 = {XO2, EO2, DO2}
ID-CPA {X (param,mk, ·), E(param, id, ·), ε}
ID-CCA1 {X (param,mk, ·), E(param, id, ·), ε}
ID-CCA2 {X (param,mk, ·), E(param, id, ·), D(param, sk, ·)}

In Table 1, we describe the ability with which the adversary in different attack
models accesses the Extraction Oracle X (param,mk, ·), the Encryption Oracle
E(param, id, ·) and the Decryption Oracle D(param, sk, ·) . When we say Oi =
{XOi, EOi,DOi} = {X (param,mk, ·), E(param, id, ·),ε}, where i ∈ {1, 2}, we
mean DOi is a function that returns an empty string ε on any input.

Remark 1. To have meaningful definitions, we insist that the target public key
id should not be previously queried on, i.e. it is completely meaningless if the
adversary has already known the corresponding private key of id.

3.1 One-Wayness

As far as we know, only one-wayness against full-identity chosen-plaintext at-
tacks (referred to as OW-ID-CPA in the following definition) has been previously
considered in the literature. Here we define one-wayness through a two-stage
experiment. A1 is run on the system parameters param as input. At the end
of A1’s execution she outputs (s, id), such that s is state information (possibly
including param) which she wants to preserve, and id is the public key which
she wants to attack. One plaintext x∗ is randomly selected from the message
space M beyond adversary’s view. A challenge y∗ is computed by encrypting x∗

with the public key id. A2 tries to computer what x∗ was.

Definition 1 (OW-ID-CPA, OW-ID-CCA1, OW-ID-CCA2)

Let IBE = (S,X , E ,D) be an identity based encryption scheme and let A =
(A1, A2) be an adversary. For atk ∈ {id-cpa,id-cca1,id-cca2} and k ∈ N let,

Advow-atk
IBE,A(k) = Pr[Expow-atk

IBE,A(k) = 1] (1)

where, for b, d ∈ {0, 1},

Experiment Expow-atk-b
IBE,A (k)

(param,mk)← S(k); (s, id) ← AO1
1 (param);

x∗ ←M; y∗ ← E(param, id, x∗); x′ ← AO2
2 (s, y∗, id);

if x′ = x∗ then d← 1 else d← 0;
return d
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We say that IBE is secure in the sense of OW-ATK, if Advow-atk
IBE,A(k) is negli-

gible for any A.

3.2 Indistinguishability

In this scenario A1 is run on param, and outputs (x0, x1, s, id), such that x0 and
x1 are plaintexts with the same length. One of x0 and x1 is randomly selected,
say xb, beyond adversary’s view. A challenge y∗ is computed by encrypting xb

with id. A2 tries to distinguish whether y∗ was the encryption of x0 or x1.

Definition 2 (IND-ID-CPA, IND-ID-CCA1, IND-ID-CCA2)

Let IBE = (S,X , E ,D) be an identity based encryption scheme and let A =
(A1, A2) be an adversary. For atk ∈ {id-cpa,id-cca1,id-cca2} and k ∈ N let,

Advind-atk
IBE,A (k) = Pr[Expind-atk-1

IBE,A (k) = 1]− Pr[Expind-atk-0
IBE,A (k) = 1] (2)

where, for b, d ∈ {0, 1} and |x0| = |x1|,

Experiment Expind-atk-b
IBE,A (k)

(param,mk)← S(k); (x0, x1, s, id)← AO1
1 (param);

y∗ ← E(param, id, xb); d← AO2
2 (x0, x1, s, y

∗, id);
return d

We say that IBE is secure in the sense of IND-ATK, if Advind-atk
IBE,A (k) is neg-

ligible for any A.

3.3 Semantic Security

In this scenario, A1 is given param, and outputs (M̂, h, f, s, id). Here the distri-
bution of M̂ is designated by A1, and (M̂, h, f) is the challenge template τ . A2
receives an encryption y∗ of a random message x∗ drawn from M̂. The adversary
then outputs a value v. She hopes that v = f(x∗). The adversary is successful if
she can do this with a probability significantly more than any simulator does.
The simulator tries to do as well as the adversary without knowing the challenge
ciphertext y∗ nor accessing any oracle.

Definition 3 (SS-ID-CPA, SS-ID-CCA1, SS-ID-CCA2)

Let IBE = (S,X , E ,D) be an identity based encryption scheme, let A =
(A1, A2) be an adversary, and let A′ = (A′

1, A
′
2) be the simulator. For atk ∈

{id-cpa,id-cca1,id-cca2} and k ∈ N let,

Advss-atk
IBE,A,A′(k) = Pr[Expss-atk

IBE,A(k) = 1]− Pr[Expss-atk
IBE,A′(k) = 1] (3)

where, for b ∈ {0, 1},
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Experiment Expss-atk
IBE,A(k) Experiment Expss-atk

IBE,A′(k)
(param,mk) ← S(k); (M̂, h, f, s, id)← A′

1(k);
(M̂, h, f, s, id)← AO1

1 (param); x∗
R← M̂;

x∗
R← M̂; y∗ ← E(param, id, x∗); v ← A′

2(s, |x∗|, h(x∗), id);
v ← AO2

2 (s, y∗, h(x∗), id); if v = f(x∗)
if v = f(x∗) then d← 1 else d← 0;

then d← 1 else d← 0; return d
return d

We say that IBE is secure in the sense of SS-ATK, if for any adversary A
there exists a simulator such that Advss-atk

IBE,A(k) is negligible .
We comment here that it is necessary to require in both cases τ is distributed

identically, since both A and A′ generate target public key id by themselves, i.e.
τ is output by A and A′ themselves.

3.4 Non-malleability

In this scenario,A1 is given param, and outputs a triple (M̂, s, id).A2 receives an
encryption y∗ of a random message x1. The adversary then outputs a description
of a relationR and a vector

⇀
y of ciphertexts. We insist that y �∈⇀

y .4 The adversary
hopes that R(x1,

⇀
x) holds. We say she is successful if, she can do this with a

probability significantly more than that, with which R(x0,
⇀
x) holds. Here x0 is

also a plaintext chosen uniformly from M̂, independently of x1.

Definition 4 (NM-ID-CPA, NM-ID-CCA1, NM-ID-CCA2)

Let IBE = (S,X , E ,D) be an identity based encryption scheme and let A =
(A1, A2) be an adversary. For atk ∈ {id-cpa,id-cca1,id-cca2} and k ∈ N let,

Advnm-atk
IBE,A(k) = Pr[Expnm-atk-1

IBE,A (k) = 1]− Pr[Expnm-atk-0
IBE,A (k) = 1] (4)

where, for b ∈ {0, 1} and |x0| = |x1|,

Experiment Expnm-atk-b
IBE,A (k)

(param,mk) ← S(k); (M̂, s, id)← AO1
1 (param);

x0, x1
R← M̂; y∗ ← E(param, id, x1);

(R,
⇀
y ) ← AO2

2 (s, y∗, id);
⇀
x← D(param, id,

⇀
y );

if y �∈⇀
y ∧ ⊥ �∈⇀

x ∧ R(xb,
⇀
x) then d← 1 else d← 0;

return d

We say that IBE is secure in the sense of NM-ATK, if Advnm-atk
IBE,A(k) is negli-

gible for any A.

4 The adversary is prohibited from performing copying the challenge ciphertext y∗.
Otherwise, she could output the equality relation R, where R(a, b) holds if and only
if a = b, and output

⇀
y= {y∗}, and be successful, always.
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4 Relations Among the Notions of Security for IBE
Schemes

In this section, we show that security proved in the sense of IND-ID-CCA2 is
validly sufficient for implying security in any other sense in IBE . We first ex-
tend the relation (equivalence) between IND-ATK and SS-ATK into IBE envi-
ronment, and then extend the relation between IND-ATK and NM-ATK into IBE
environment. At last we study the separation between IND-ATK and OW-ATK.

We demonstrate the relations among the notions of security for IBE as follows,
where ATK ∈ {ID-CPA,ID-CCA1,ID-CCA2},

4.1 Equivalence Between IND and SS

Theorem 1 (IND-ATK ⇔ SS-ATK). A scheme IBE is secure in the sense of
IND-ATK if and only if IBE is secure in the sense of SS-ATK.

Lemma 2 (IND-ATK ⇒ SS-ATK). If a scheme IBE is secure in the sense of
IND-ATK then IBE is secure in the sense of SS-ATK.

Proof. See Lemma 2 in [1] or Theorem 7 in [8]. ��

Lemma 3 (SS-ATK ⇒ IND-ATK). If a scheme IBE is secure in the sense of
SS-ATK then IBE is secure in the sense of IND-ATK.

Proof. See Lemma 3 in [1] or Theorem 8 in [8]. ��

Proof of Theorem 1. From Lemma 2 and 3, Theorem 1 follows immediately. �

4.2 Relations Between IND and NM

Theorem 4 (IND-ID-CCA2 ⇒ NM-ID-CCA2). If a scheme IBE is secure in
the sense of IND-ID-CCA2 then IBE is secure in the sense of NM-ID-CCA2.

Proof. See Theorem 4 in [1] or Theorem 10 in [8]. ��

Theorem 5 (NM-ATK ⇒ IND-ATK). If a scheme IBE is secure in the sense
of NM-ATK then IBE is secure in the sense of IND-ATK.

Proof. See Theorem 5 in [1] or Theorem 9 in [8]. ��

Theorem 6 (IND-ID-CPA �⇒ NM-ID-CPA). If there is a scheme IBE secure
in the sense of IND-ID-CPA then there also exists a scheme IBE ′ which is secure
in the sense of IND-ID-CPA, but not secure in the sense of NM-ID-CPA.

Proof. See Theorem 11 in [8]. ��

Theorem 7 (IND-ID-CCA1 �⇐ NM-ID-CPA). If there is a scheme IBE secure
in the sense of NM-ID-CPA then there also exists a scheme IBE ′ which is secure
in the sense of NM-ID-CPA, but not secure in the sense of IND-ID-CCA1.

Proof. See Theorem 12 in [8]. ��
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4.3 Separation Between IND and OW

Theorem 8 (IND-ATK �⇐ OW-ATK). If there is a scheme IBE secure in the
sense of OW-ATK then there also exists a scheme IBE ′ which is secure in the
sense of OW-ATK, but not secure in the sense of IND-ATK.

Proof. See Theorem 6 in [8]. ��

5 Semantical Security of IBE Schemes Under
Multiple-Challenge CCA2

We present three notions of SS under multiple-challenge CCA2, following the
conventional public-key version [10]. Here an adversary is allowed to make poly-
nomially many challenge templates. Moreover each template is answered with a
challenge ciphertext immediately (not after making all the templates), and the
next challenge template can be generated according to the preceding templates
and their answers. After this stage of asking many challenge templates adap-
tively and in a related manner, the adversary tries to guess information about
the unrevealed plaintexts used in answering challenge templates.

We shall introduce three different types of multiple-challenge CCA2 attacks:
mID-CCA2, ID-mCCA2, and mID-mCCA2.

In the definition of SS-ID-CCA2 an adversary consists of two algorithms A1
and A2, in such a way that A1 outputs a challenge template, the challenger
chooses a plaintext and presents its encryption, and then A2 tries to guess in-
formation about the plaintext. In the multiple-challenge case this interaction is
modelled by providing the adversary with a “tester” algorithm Tr,param or Tr as
its oracle. Here Tr,param is given to an actual adversary (which obtains a cipher-
text in addition to information leak), while Tr is given to its benign simulator
(which only sees information leak). A challenge template5 is then sent to one of
these oracles as a query (called “challenge query”).

Algorithm Tr,param(P, id , h)
return

(
E(param , id , P (r)), h(r)

) Algorithm Tr(P, h)
return h(r)

Intuitively the parameter r of a tester is understood as the multiple-challenge
version of the coin tosses that the challenger uses to select plaintexts. It is a
sufficiently long sequence of coin tosses (r1, r2, . . . , rt) which is unrevealed to
the adversary. Given the i-th challenge template (P i, id i, hi) (or (P i, hi) from a
simulator), the challenger chooses a plaintext by P i(r1, r2, . . . , ri) using the first

5 In the previous sections a challenge template includes a distribution M̂ from which
a challenge plaintext is picked. However, in this section we prefer to work with a
deterministic “plain-text circuit” P which, given an input from Upoly(k) kept secret
for the adversary, outputs a challenge plaintext. The reason for doing so is some
technical ease in the proofs. Here and in the following Upoly(k) denotes the uniform
distribution on {0, 1}p(k) for some polynomial p.
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i coin tosses in r. Note that now h leaks information on coin tosses r rather than
plaintexts P i(r1, r2, . . . , ri).6

As discussed in [10,8], the only restriction here is that, extraction queries on
challenge identities cannot be made.

Definition 5 (Semantic security under multiple-challenge CCA2)

Let IBE = (S,X , E ,D) be an identity based encryption scheme. IBE is secure
in the sense of SS-mID-mCCA2 if the following holds. For every oracle PPT A
(“SS-mID-mCCA2 adversary”) with the following restriction on oracle queries: in
any execution of AXmk ,Dmk , Tr,param (param), for each challenge query (c, b)←
Tr,param(P, id , h) by A, A is prohibited to make (1) the extraction query Xmk (id)
regardless of before or after the challenge query, or, (2) the decryption query
Dmk(id , c) after the challenge query, there exists a PPT algorithm A′ (“benign
simulator of A”) which is equally successful as A, in the following sense.

1. The difference between the advantage of the actual adversary A and that of
the benign simulator A′, namely

Pr
[
v = f(r)

∣∣∣∣ (param ,mk)← S(k); r ← Upoly(k);
(f, v)← AXmk ,Dmk , Tr,param (param)

]
− Pr

[
v = f(r)

∣∣∣ r ← Upoly(k); (f, v) ← A′Tr(1k)
]

is negligible as a function over k.
2. The two ensemples over k ∈ Z+:

(t, f)
(param ,mk) ← S(k); r ← Upoly(k);

(f, v) ← AXmk , Dmk , Tr,param (param) with trace t
and

(t, f)
r ← Upoly(k);

(f, v) ← A′Tr (1k) with trace t

are computationally indistinguishable. Here the trace of an execution of the
actual adversary A is the sequence of (P, h)-part of the challenge queries
(P, id , h) made by A. The trace of an execution of the simulator A′ is simply
the sequence of challenge queries A′ makes.

SS-mID-CCA2 is defined analogously except that an adversary A is restricted
to have the same plaintext circuit P and the same information leakage circuit
h in all the challenge queries in the trace of an execution of A (the challenge
identity id can vary).

SS-ID-mCCA2 is analogous to SS-mID-mCCA2 except that an adversary A
must have the same challenge identity id in all the challenge queries in the trace
of an execution of A (P and h can vary).
6 As is shown in Definition 5, the same goes to the information to guess: it is about

the coin tosses r (i.e. f(r) to guess) rather than plaintexts (i.e. f(P (r)) to guess).
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Remark 2. Note that our mID-CCA2 attack is stronger than the attack consider
in [2], since in the latter case the adversary has to commit at once to the identities
on which it wants to be challenged, while in the present case the i-th identity
can be chosen depending on the challenges received so far.

Theorem 9. The three security notions under multiple-challenge CCA2 in Def-
inition 5 are all equivalent to the single-challenge security SS-ID-CCA2.

Proof. See Theorem 14 in [8]. ��
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Abstract. We consider the problem of approximately integrating a Lipschitz
function f (with a known Lipschitz constant) over an interval. The goal is to
achieve an error of at most ε using as few samples of f as possible. We use
the adaptive framework: on all problem instances an adaptive algorithm should
perform almost as well as the best possible algorithm tuned for the particular
problem instance. We distinguish between DOPT and ROPT, the performances
of the best possible deterministic and randomized algorithms, respectively. We
give a deterministic algorithm that uses O(DOPT(f, ε)·log(ε−1/DOPT(f, ε)))
samples and show that an asymptotically better algorithm is impossible. How-
ever, any deterministic algorithm requires Ω(ROPT(f, ε)2) samples on some
problem instance. By combining a deterministic adaptive algorithm and Monte
Carlo sampling with variance reduction, we give an algorithm that uses at most
O(ROPT(f, ε)4/3 + ROPT(f, ε) · log(1/ε)) samples. We also show that any
algorithm requires Ω(ROPT(f, ε)4/3 + ROPT(f, ε) · log(1/ε)) samples in ex-
pectation on some problem instance (f, ε), which proves that our algorithm is
optimal.

1 Introduction

We consider the problem of approximating a definite integral of a univariate Lipschitz
function (with known Lipschitz constant) to within ε using the fewest possible samples.
The function is given as a black box: sampling it at a parameter value is the only allowed
operation. It is easy to show that Θ(ε−1) samples are necessary and sufficient for a
deterministic algorithm in the worst case (see, e.g., [1]). The results in [2] imply a
Monte-Carlo method that requires only Θ(ε−2/3) samples in the worst case.

The Adaptive Framework. The univariate Lipschitz integration problem becomes
more interesting in the adaptive setting. The motivation is that, for a given ε, some prob-
lem instances have much lower complexity than others. For example, if f(x) = Lx,
where L is the Lipschitz constant, then evaluating f at the endpoints of the interval
over which the integral is taken is sufficient to solve the problem for any ε. Thus, it is
desirable to have an algorithm that is guaranteed to use fewer samples on easier problem
instances. Such an algorithm is called adaptive. We formalize this notion by defining

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 142–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the difficulty of a problem as the performance of the best possible algorithm on that
problem:

Definition 1. Let P be a class of problem instances. Let A be the set of all correct
algorithms for P (among some reasonable class of algorithms). Let COST(A,P ) be
the performance of algorithm A ∈ A on problem instance P ∈ P . Define OPT(P ) =
minA∈A COST(A,P ). We use DOPT when A is the set of deterministic algorithms
and ROPT whenA is the set of randomized algorithms that are correct on each P ∈ P
with probability at least 2/3.

By definition, for every problem instance P , there is an algorithm whose cost on P
is OPT(P ). A good adaptive algorithm is a single algorithm whose cost is not much
greater than OPT(P ) for every problem instance P . Therefore, an adaptive guarantee
is in general much stronger than a worst-case guarantee.

The ultimate goal of investigating a problem in the adaptive framework is to de-
sign an “optimally adaptive” algorithm. Suppose P is the set of problem instances and
each problem instance P ∈ P has certain natural parameters, v1(P ), . . . , vk(P ), with
the first parameter v1(P ) = OPT(P ). An algorithm is optimally adaptive if its perfor-
mance on every problem instanceP ∈ P is within a constant factor of every algorithm’s
worst-case performance on the family of instances with the same values for the param-
eters: {P ′ ∈ P | vi(P ′) = vi(P ) for all i}. Note that this definition depends on the
choice of parameters, so in addition to OPT, we need to choose reasonable parameters,
such as ε, the desired output accuracy.

Related Work. While approximate definite integration is well-studied both in numer-
ical analysis (see, e.g., [3]) and in information-based complexity [4], those algorithms
do not have provable guarantees about adaptivity. In that literature, the term “adaptive”
typically refers to an algorithm that is allowed to pick samples based on previous sample
values, which is quite different from our meaning.

For other problems, optimally adaptive algorithms have been previously designed in
the context of set operations [5], aggregate ranking [6], and independent set discovery
in [7]. Lipschitz functions also lend themselves well to adaptive algorithms. It is shown
in [8] that Piyavskii’s algorithm [9] for minimizing a univariate Lipschitz function per-
forms O(OPT) samples. [10] gives an adaptive algorithm for minimizing the distance
from a point to a Lipschitz curve that is within a logarithmic factor of OPT. [11] gives
adaptive algorithms for several problems on Lipschitz functions.

Our Results. In this paper we give a deterministic algorithm that makes at most
O(DOPT · log(ε−1/DOPT)) samples. We also prove a matching lower bound on
deterministic algorithms. When comparing to ROPT, however, we show that any de-
terministic adaptive algorithm uses Ω(ROPT2) samples on some problem instance.
We present a randomized adaptive algorithm, LIPSCHITZ-MC-INTEGRATE, that always
uses O(ROPT4/3 + ROPT · log(ε−1)) samples and prove a matching lower bound.

We therefore give optimally adaptive algorithms for the Lipschitz integration prob-
lem in the deterministic and randomized settings. Although the algorithms are simple,
in both cases analyzing their adaptive performance is nontrivial. To our knowledge,
LIPSCHITZ-MC-INTEGRATE is the first randomized optimally adaptive algorithm. Also,
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a simple corollary of the randomized lower bound is that the non-adaptive algorithm
based on the results in [2] is optimal in the worst case.

Some of the results in this paper, primarily in Sections 3 and 4, are based on the
first author’s master’s thesis [11]. Many of the proofs are omitted from this extended
abstract.1

2 Problem Basics

We start by giving a precise formulation of the problem we consider:
Problem LIPSCHITZ-INTEGRATION:

Given: (f, a, b, L, ε)
Such that: f : [a, b]→ R

and for x1, x2 ∈ [a, b], |f(x2)− f(x1)| ≤ L|x2 − x1|

Compute: I ∈ R such that

∣∣∣∣∣I −
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ ε

A randomized algorithm needs to be correct with probability at least 2/3.
Some input parameters can be eliminated without loss of generality. The problem

instance (f, a, b, L, ε) is equivalent to the problem instance (f̂ , 0, 1, 1, ε/L(b − a)2)
where f̂(x) = f

(
x−a
b−a

)/
L(b − a), so we can assume without loss of generality that

a = 0, b = 1, and L = 1.
We now develop some basic tools we will need for discussing and analyzing the

algorithms. Essentially, we show how to make use of the Lipschitz condition to bound
the error of our estimates.

The Lipschitz condition allows an algorithm that has sampled f at two points to
bound the value of the integral of f on the interval between them. We call the quality
of this bound area looseness, and it depends on both the length of the interval and the
values of f at the sampled points. A greater difference between values of f (a steeper
function) results in a smaller area looseness. We define area looseness as follows (see
Figure 1):

Definition 2. Given a Lipschitz function f on [0, 1], define the area looseness of a subin-
terval [x1, x2] of [0, 1] as ALf (x1, x2) = ((x2− x1)2− (f(x1)− f(x2))2)/2. When it
is clear which f we are talking about, we simply write AL(x1, x2).

Our analysis relies on area looseness being well behaved. The following proposition
shows that it has the properties one would expect a bound on integration error to have
and that an additional sample in the middle of the interval decreases total area looseness
quickly.

1 The full version of this paper is available at http://www.mit.edu/˜ibaran/papers/
intfull.{pdf,ps}
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x1 x2

f(x1)

f f(x2)

AL(x1, x2)

Fig. 1. Illustration of area looseness. Lipschitz bounds are dashed.

Proposition 1. Area-looseness has the following properties:

(1) 0 ≤ AL(x1, x2) ≤ (x2 − x1)2/2.
(2) If x′1 ≤ x1 < x2 ≤ x′2 then AL(x1, x2) ≤ AL(x′1, x

′
2).

(3) If x ∈ [x1, x2], then AL(x1, x) + AL(x, x2) ≤ AL(x1, x2).
(4) AL

(
x1,

x1+x2
2

)
+ AL

(
x1+x2

2 , x2
)
≤ AL(x1, x2)/2.

For the lower bounds, both on OPT and on adaptive algorithms, we need “extremal”
Lipschitz functions, whose integral is either maximal or minimal, given the samples.
We call these functions HI and LO . We also define looseness, the maximum difference
between HI and LO over an interval.

Definition 3. Given a Lipschitz function f , and 0 ≤ a < b ≤ 1, define the Lipschitz
functions HI b

a and LOb
a on [a, b] as: HI b

a(x) = min(f(a) + x − a, f(b) + b − x)
and LOb

a(x) = max(f(a) − x + a, f(b) − b + x). Also define Lf as Lf (a, b) =
b− a− |f(b)− f(a)|.

Proposition 2. Given a Lipschitz function f , the functions HI b
a and LOb

a have the fol-
lowing properties:

(1) If g is Lipschitz, g(a) = f(a), and g(b) = f(b), then for x ∈ [a, b], HI b
a(x) ≥

g(x) ≥ LOb
a(x).

(2) AL(a, b)/(b− a) ≤ max
x∈[a,b]

(HI b
a(x)− LOb

a(x)) = L(a, b) ≤ 2AL(a, b)/(b− a).

(3)
∫ b

a
HI b

a(x) dx = (b − a)f(a)+f(b)
2 + AL(a, b)/2 and

∫ b

a
LOb

a(x) dx = (b −
a)f(a)+f(b)

2 −AL(a, b)/2.
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Proposition 3. Given a Lipschitz function f , looseness has the following properties:

(1) 0 ≤ L(a, b) ≤ b − a.
(2) If a′ ≤ a ≤ b ≤ b′, then L(a, b) ≤ L(a′, b′).
(3) If x1 ≤ x2 ≤ · · · ≤ xn, then

∑n−1
i=1 L(xi, xi+1) ≤ L(x1, xn).

3 Proof Sets

In order to compare the running time of an algorithm on a problem instance to DOPT,
we define the concept of a proof set for a problem instance. A set P of points in [0, 1]
is a proof set for problem instance (f, ε) and output x if for every f ′ that is equal to f
on P , x is a correct output on (f ′, ε). In other words, sampling f at a proof set proves
the correctness of the output. We say that a set of samples is a proof set for a particular
problem instance without specifying the output if some output exists for which it is a
proof set.

It is clear from the definition that sampling a proof set is the only way a deterministic
algorithm can guarantee correctness: if an algorithm doesn’t sample a proof set for
some problem instance, we can feed it a problem instance that has the same value on
the sampled points, but for which the output of the algorithm is incorrect. Conversely
an algorithm can terminate as soon as it has sampled a proof set and always be correct.
Thus, DOPT is equal to the size of a smallest proof set.

In order to analyze the deterministic algorithm, we will compare the number of sam-
ples it makes to the size of a proof set P . We will need some tools for doing this.

Let P be a nonempty finite set of points in [0, 1]. Consider the execution of an algo-
rithm which samples a function at points on the interval [0, 1) (if it samples at 1, ignore
that sample). Let s1, s2, . . . , sn be the sequence of samples that the algorithm performs
in the order that it performs them. Let It be the set of unsampled intervals after sample
st, i.e., the connected components of [0, 1) − {s1, . . . , st}, except make each element
of It half-open by adding its left endpoint, so that the union of all the elements of It is
[0, 1). Let [lt, rt) be the element of It−1 that contains st.

Then sample st is a:

split if [lt, st) ∩ P �= ∅ and [st, rt) ∩ P �= ∅
squeeze if [lt, st) ∩ P �= ∅ or [st, rt) ∩ P �= ∅, but not both

fizzle if [lt, rt) ∩ P = ∅.

These definitions are, of course, relative to P . See Figure 2. We can now bound the
number of samples of different types:

0 1
P

fizzle squeeze split

s3 s2 s1

Fig. 2. Different types of samples
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Proposition 4. The number of splits is at most |P | − 1.

Proposition 5. Suppose that for all i and j with i �= j, |si − sj | > ε and that for
all t, st = (lt + rt)/2. Then if |P | ≤ ε−1/2, the number of squeezes is at most
|P | log2(ε−1/|P |).

We now characterize proof sets for LIPSCHITZ-INTEGRATION.

Proposition 6. Let P = {x1, x2, . . . , xn} such that 0 ≤ x1 < x2 < · · · < xn ≤ 1.
Then P is a proof set for problem instance (f, ε) if and only if x2

1 + (1 − xn)2 +∑n−1
i=1 AL(xi, xi+1) ≤ 2ε.

4 Deterministic Algorithm and Analysis

Proposition 6, together with Proposition 1 immediately shows the correctness of a trivial
algorithm. Let n = �ε−1/4� and let the algorithm make n samples, at 1

2n ,
3
2n , . . . ,

2n−1
2n

and output the integralM as in the proof of Proposition 6. It is correct because the area-
looseness of every interval is at most (1/n)2/2. Because there are n − 1 intervals, the
total area-looseness of all of them is at most (n − 1)/(2n2). Also, x2

1 = (1 − xn)2 =
1/(2n)2, so x2

1+(1−xn)2+
∑n−1

i=1 AL(xi, xi+1) = n/(2n2) ≤ 2ε. Therefore,Θ(ε−1)
samples are always sufficient (and if, for instance, f is a constant, necessary).

We now give a deterministic adaptive algorithm. The algorithm maintains the total
area-looseness of the current unsampled intervals, the unsampled intervals themselves
in a linked list, and uses a priority queue to choose the unsampled interval with the
largest area-looseness at every step and sample in the middle of it.

Let L be a linked list of (PARAMETER, VALUE) pairs and let Q be a priority queue
of (AL, ELEM) pairs where the first element is a real number (and defines the order of
Q) and the second element is a pointer into an element of L. The algorithm follows:

Algorithm. LIPSCHITZ-INTEGRATE

1. Add (0, f(0)) and (1, f(1)) to L and insert (AL(0, 1), (0, f(0))) into Q
2. A-LOOSENESS ← AL(0, 1).
3. Do while A-LOOSENESS > 2ε:

4. (AL, P1) ← EXTRACT-MAX[Q]
5. P2 ← NEXT[L,P1]
6. x← (PARAMETER[P1] + PARAMETER[P2])/2
7. AL1 ← AL(PARAMETER[P1], x), AL2 ← AL(x, PARAMETER[P2])
8. Insert (x, f(x)) into L after P1 and insert (AL1, P1) and (AL2, (x, f(x))) into Q
9. A-LOOSENESS ← A-LOOSENESS− AL + AL1 + AL2

10. Compute and output M using the values stored in L as described in Proposition 6.

The correctness of the algorithm is clear from Proposition 6: the algorithm stops
precisely when the total area-looseness of the unsampled intervals is no more than 2ε.
We need to analyze the algorithm’s performance.

Theorem 1. Algorithm LIPSCHITZ-INTEGRATE makes O(DOPT · log(ε−1/DOPT))
samples on problem instance (f, ε).



148 I. Baran, E.D. Demaine, and D.A. Katz

Proof: We will actually compare the number of samples to DOPT(f, ε/2) rather than
to DOPT(f, ε). We can do this because if we take a proof set for DOPT(f, ε) and
sample in the middle of every unsampled interval, then by Proposition 1 (4), we will
obtain a proof set for DOPT(f, ε/2). Thus, DOPT(f, ε/2) ≤ 2 ·DOPT(f, ε) + 1. So
let P be a proof set for (f, ε/2) of size DOPT(f, ε/2).

First, we argue that no interval of length smaller than 4ε is ever subdivided. Suppose
for contradiction that among n intervals I1, . . . , In of lengths a1, . . . , an, interval Ik
with ak < 4ε is chosen for subdivision. By Proposition 1 (1), AL(Ii) ≤ a2

i /2, so√
AL(Ik) ≤ 2ε. On the other hand,

∑
ai = 1, so

∑√
AL(Ii) ≤ 1. Multiplying the

inequalities, we get
∑

AL(Ii) ≤
∑√

AL(Ii)AL(Ik) ≤ 2ε. But this implies that the
algorithm should have terminated, which is a contradiction.

Now, we count the number of samples relative to P . The number of splits is O(|P |)
by Proposition 4. The above paragraph shows that we can use Proposition 5 to conclude
that there are O(|P | log(ε−1/|P |)) squeezes. We now show that there areO(|P |) fizzles
and so prove the theorem.

A fizzle occurs when an interval not containing a point of P is chosen for subdivi-
sion. Consider the situation after n points have been sampled. Let the sampled points
be 0 = x1 ≤ x2 ≤ · · · ≤ xn = 1. Because the total area-looseness of intervals be-
tween points of P is at most ε, by repeated application of Proposition 1 (2,3), we have∑

[xi,xi+1)∩P=∅ AL(xi, xi+1) ≤ ε. The algorithm has not terminated, so the total area-
looseness must be more than 2ε, which implies that

∑
[xi,xi+1)∩P �=∅ AL(xi, xi+1) > ε.

Because there are at most |P | elements in the sum on the left hand side, the largest el-
ement must be greater than ε/|P |. Therefore, there exists a k such that [xk, xk+1) con-
tains a point of P and AL(xk, xk+1) > ε/|P |. So if a fizzle occurs, the area-looseness
of the chosen interval must be at least ε/|P |.

Now let St be the set of samples made by the algorithm after time t. Define At

as follows: let {y1, y2, . . . , yn} = St ∪ P with 0 = y1 ≤ y2 ≤ · · · ≤ yn and let
At =

∑n−1
i=1 AL(yi, yi+1). Clearly, At ≥ 0, At ≥ At+1 (by Proposition 1 (3)), and

therefore, At ≤ A0 ≤ 2ε. Every fizzle splits an interval between adjacent y’s into
two. Because the area-looseness of the interval before the split was at least ε/|P |, by
Proposition 1 (4),At decreases by at least ε/(2|P |) as a result of every fizzle. Therefore,
there can be at most 4|P | fizzles during an execution. �

We prove a matching lower bound, showing that the logarithmic factor is necessary and
that LIPSCHITZ-INTEGRATE is optimally adaptive:

Theorem 2. For any deterministic algorithm and for any ε > 0 and any integer k such
that 0 < k < ε−1/2, there exists a problem instance (f, ε) of LIPSCHITZ-INTEGRATION

with DOPT(f, ε) = O(k) on which that algorithm performsΩ(k log(ε−1/k)) samples.

5 Algorithm LIPSCHITZ-MC-INTEGRATE

A standard strategy in a Monte Carlo integration algorithm is to sample at a point picked
uniformly at random from an interval. The expected value of such a sample, scaled by
the length of the interval, is precisely the value of the integral over the interval, so the
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goal is to minimize the variance. When the function is Lipschitz, the variance of the inte-
gral estimate based on such a sample can be as high as a constant times the fourth power
of the length of the interval. However, if we use the fact that when the area looseness
of an interval is low, we approximately know the function, we can adjust the sample to
get an unbiased estimator of the integral over that interval whose variance is the square
of the area looseness in the worst case. Procedure MC-SAMPLE shows how to do this.

Procedure MC-SAMPLE(x1, x2):

1. Let x be a random number, uniformly chosen from [x1, x2]
2. If f(x1) ≤ f(x2), then SAMPLE ←

(
f(x)− x+ x1+x2

2

)
3. Else SAMPLE ←

(
f(x) + x− x1+x2

2

)
4. Return SAMPLE · (x2 − x1)

Proposition 7. MC-SAMPLE(x1, x2) returns an unbiased estimator of
∫ x2

x1
f(x) dx that

has variance at most AL2(x1, x2).

In order to compute the integral over [0, 1], we would like an estimator for that integral
with low variance. If we split [0, 1] into intervals whose total AL2 is small and run
MC-SAMPLE on each interval, we will get such an estimator, as shown in the following
corollary.

Corollary 1. Let 0 = x1 < x2 < · · · < xn = 1 and suppose
∑n−1

i=1 AL2(xi, xi+1) ≤
ε2/3. Let Î =

∑n−1
i=1 MC-SAMPLE(xi, xi+1). Let I =

∫ 1
0 f(x) dx. Then Pr[|Î − I| ≥

ε] ≤ 1/3.

The remaining difficulty is to find a small number of intervals whose total AL2 is
smaller than ε2/3. Note that the deterministic adaptive algorithm in Section 4 finds
a small number of intervals whose total AL is smaller than ε. We show that we can
use the same idea here. Thus, to obtain a randomized adaptive algorithm, we use a de-
terministic adaptive algorithm to get a rough idea of the function and then use Monte
Carlo sampling with variance reduction (MC-SAMPLE) to improve our estimate of the
integral.

Let L be a linked list of (PARAMETER, VALUE) pairs and let Q be a priority queue of
(AL, ELEM) pairs where the first element is a real number (and defines the order of Q)
and the second element is a pointer into an element of L. The algorithm is as follows:

Algorithm. LIPSCHITZ-MC-INTEGRATE:

1. Add (0, f(0)) and (1, f(1)) to L and insert (AL2(0, 1), (0, f(0))) into Q
2. ALSQ ← AL2(0, 1).
3. Do while ALSQ > ε2/3:

4. (AL, P1)← EXTRACT-MAX[Q]
5. P2 ← NEXT[P1]
6. x← (PARAMETER[P1] + PARAMETER[P2])/2
7. AL1 ← AL2(PARAMETER[P1], x), AL2 ← AL2(x, PARAMETER[P2])
8. Insert (x, f(x)) into L after P1 and insert (AL1, P1) and (AL2, (x, f(x))) into Q
9. ALSQ ← ALSQ − AL + AL1 + AL2
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10. Î ← 0.
11. For each element P of L except the last:

12. Î ← Î + MC-SAMPLE(PARAMETER[P ], PARAMETER[NEXT[P ]])
13. Output Î

Correctness is guaranteed by Corollary 1 because the algorithm exits the loop in lines
3-9 only when the total AL2 of intervals between points in L is no more than ε2/3.

6 Performance Analysis

For the analysis of the algorithm, let f be the Lipschitz function input to LIPSCHITZ-
MC-INTEGRATE.

Lemma 1. Given f , there exists a set of points 0 = x1 < x2 < · · · < xn = 1 such
that for 1 ≤ i ≤ n − 2, AL(xi, xi+1) = 3ε, and AL(xn−1, xn) ≤ 3ε. Furthermore,
ROPT(f, ε) ≥ (n− 2)/3.

Proof: We begin by constructing a set of points that satisfies the conditions. Obvi-
ously, x1 should be 0. Suppose we have constructed the first k points and xk �= 1. If
AL(xk, 1) ≤ 3ε, set xk+1 = 1 and we are done. Otherwise, notice that f is continuous,
so AL is also continuous. By Proposition 1 (1), AL(xk, xk) = 0. Therefore, by the
intermediate value theorem, there is an x ∈ [xk, 1] such that AL(xk, x) = 3ε and we
set xk+1 to be that x.

Consider an algorithm A that is correct with probability at least 2/3 on all inputs
and consider its executions on f . Let ei for 1 ≤ i ≤ n − 2 be the expected number
of samples A performs in (xi, xi+1). We claim that in order for A to be correct, it
must have ei ≥ 1/3 for all i and therefore, the total expected number of samples is∑n−2

i=1 ei ≥ (n− 2)/3.
Suppose for contradiction, that ei < 1/3 for some i. Then, by Markov’s inequal-

ity, the probability that A samples in (xi, xi+1) is less than 1/3. Now consider two
functions defined as follows: f̂1(x) = f̂2(x) = f(x) everywhere except (xi, xi+1)
and f̂1(x) = LOxi+1

xi
(x) and f̂2(x) = HI xi+1

xi
(x) on (xi, xi+1). By Proposition 2 (3),∫ 1

0 f̂2(x)dx−
∫ 1
0 f̂1(x) = AL(xi, xi+1) = 3ε, so no output is correct for both f̂1 and f̂2.

Suppose, that we feed f̂1 and f̂2 with probability 1/2 each as input to A. Conditioned
on A not sampling in (xi, xi+1), the output of A is independent of which function was
input. Therefore, conditioned onA not sampling in (xi, xi+1), the probability of error is
at least 1/2. Because f̂1 = f̂2 = f not on (xi, xi+1), the probability of A not sampling
on (xi, xi+1) is greater than 2/3, so the probability of error is greater than 1/3, which
implies that A is invalid. �

Because the number of samples in steps 11–13 is smaller (by 1) than the number of sam-
ples in steps 1–9, we only focus on the samples in steps 1-9. For the analysis, we split
the execution of the algorithm into two phases. The algorithm is in Phase 1 while there
is a pair of adjacent elements xi and xi+1 in L for which AL(xi, xi+1) > 3ε. When all
pairs of adjacent elements have AL at most 3ε, the algorithm is in Phase 2. Note that
by Proposition 1 (2), area looseness between adjacent points in L never increases as the
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algorithm executes, so once it enters Phase 2, it never goes back to Phase 1. We now
bound the number of samples made in steps 1–9 in the phases.

Lemma 2. In Phase 1, LIPSCHITZ-MC-INTEGRATE makes O(ROPT(f, ε) log(1/ε))
samples on problem instance (f, ε).

Proof: Let X be the set of xi’s constructed as in Lemma 1. We count the samples
made by LIPSCHITZ-MC-INTEGRATE relative to X . By Proposition 4, there are at most
O(|X |) splits. We now need a lower bound on the size of intervals in Phase 1 to count
the number of squeezes. We note that an interval whose length is smaller than

√
6ε has

area looseness at most 3ε (by Proposition 1 (1)) and will therefore never be chosen for
subdivision in Phase 1. Therefore, in Phase 1, every interval has length at least

√
6ε/2.

So by Proposition 5, there are at most |X | log((
√

6ε/2)−1/|X |) = O(|X | log(1/ε))
squeezes. There are no fizzles because any interval whose area looseness is greater
than 3ε must have a point of X (by Proposition 1 (2) and by construction of X). By
Lemma 1, |X | = O(ROPT(f, ε)), so we have the claimed bound. �

Lemma 3. In Phase 2, LIPSCHITZ-MC-INTEGRATE uses at most O(ROPT(f, ε)4/3 +
ROPT(f, ε) log(1/ε)) samples on problem instance (f, ε).

Proof: After Phase 1 is complete, L consists of points such that the area looseness
between adjacent pairs is at most 3ε. Let 0 = y1 < y2 < · · · < ym = 1 be the smallest
subset of points in L (including 0 and 1) such that AL(yi, yi+1) ≤ 3ε for all y. We
claim that m ≤ 6 ·ROPT(f, ε). Consider the set of xi’s constructed as in Lemma 1. If
yi’s are a minimal set of points with area looseness no greater than 3ε between adjacent
ones, then every interval of the form [xi, xi+1] has at most two yi’s (if there are three,
the middle one is unnecessary). Therefore there are at most twice as many yi’s as xi’s.

Now assume the algorithm makes more samples in Phase 2 than in Phase 1 be-
cause otherwise, it makes O(ROPT(f, ε) log(1/ε)) samples and we are done. We
apply Propostion 8 to prove this lemma. Let Y be the set of yi’s, let Z(0) be the
set of points in L at the end of Phase 1 and let t0 = 550 · ROPT4/3. We have
A =

∑m−1
i=1 AL(yi, yi+1) ≤ 18 · ROPT · ε. By Proposition 8, after t0 samples, the

total AL2 will be at most 4608·(6·ROPT)2·(18·ROPT)2ε2

5503ROPT4 ≤ ε2/3 so the algorithm will
stop after t0 steps. �

The following proposition shows that as our algorithm samples, the total squared area
looseness declines as the cube of the number of samples. We prove it by associating a
number with each interval that is an upper bound on its area looseness. We then show
that these numbers are within a factor of four of each other and use this to show that
that the sum of their squares decreases as the cube of the number of samples.

Proposition 8. Let Y = {y1, . . . , ym} with 0 = y1 < · · · < ym = 1, and let
A =

∑m−1
i=1 AL(yi, yi+1). Consider the sequence Z(0), Z(1), Z(2), . . . of sets of sam-

ples where Z(0) ⊇ Y is an arbitrary superset of Y and, for each t ≥ 1, Z(t) =
Z(t−1) ∪ {z(t)} where z(t) is the midpoint (x(t) + y(t))/2 of the interval (x(t), y(t))
of Z(t−1) with the largest area looseness AL(x(t), y(t)). Then, for any t0 ≥ |Z0|,∑

(x,y)∈I(Z(t)) AL2(x, y) ≤ (4608m2A)/t30.
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The upper bound follows immediately from the two lemmas we have shown.

Theorem 3. On problem instance (f, ε) algorithm LIPSCHITZ-MC-INTEGRATE per-
forms O(ROPT4/3(f, ε) + ROPT(f, ε) log(1/ε)) samples.

7 Randomized Lower Bounds

We first show that Lemma 1 is actually a tight (to within a constant factor) lower bound
on ROPT by proving the following upper bound.

Lemma 4. Given a Lipschitz function f , there is a set of points 0 = x1 < x2 < · · · <
xk = 1 such that for 1 ≤ i ≤ k − 2, AL(xi, xi+1) = ε/4, and AL(xk−1, xk) ≤ ε/4.
Furthermore, ROPT(f, ε) ≤ 2k − 1.

The above lemma implies that deterministic algorithms are not very powerful relative
to ROPT. For instance, if f(x) = 0 for all x, ROPT(f, ε) = O(ε−1/2) by Lemma 4,
but DOPT is Θ(ε−1). Therefore every deterministic algorithm requires Ω(ROPT2)
samples on some instances.

Theorem 4. Given an ε > 0 and an integer k such that 0 < k < ε−1/2, there is a fam-
ily of problem instances such that ROPT = O(k) on every member on the family, but
any algorithm requires Ω(k4/3 + k log(1/ε)) samples in expectation on some member
of that family.

A simple corollary shows that the nonadaptive method in [2] is optimal.

Corollary 2. Any algorithm requires Ω(ε−2/3) samples on some problem instance.

8 Conclusion

We gave optimally adaptive deterministic and randomized algorithms for LIPSCHITZ-
INTEGRATION. To simplify the analysis, we have been lax with constant factors in the
randomized algorithm and the related proofs. Thus, it is possible to improve both the
algorithm’s performance and its analysis by constant factors.

A more interesting open problem is to design adaptive algorithms for definite inte-
gration over two or higher-dimensional domains or to prove that good adaptive algo-
rithms do not exist. Although simple Monte Carlo methods readily extend to higher
dimensions, designing and analyzing adaptive algorithms seems difficult.
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Abstract. We work with fuzzy Turing machines (ftms) and we study
the relationship between this computational model and classical recur-
sion concepts such as computable functions, r.e. sets and universality.
ftms are first regarded as acceptors. It has recently been shown in [23]
that these machines have more computational power than classical Tur-
ing machines. Still, the context in which this formulation is valid has an
unnatural implicit assumption. We settle necessary and sufficient con-
ditions for a language to be r.e., by embedding it in a fuzzy language
recognized by a ftm and we do the same thing for difference r.e. sets,
a class of “harder” sets in terms of computability. It is also shown that
there is no universal ftm. We also argue for a definition of computable
fuzzy function, when ftms are understood as transducers. It is shown
that, in this case, our notion of computable fuzzy function coincides
with the classical one.

1 Introduction

Classical computability admits several but equivalent models. Still, the fuzzifi-
cation of these models may imply different and nonequivalent concepts of fuzzy
computability. Even the same model can be fuzzified in several ways. These facts
turn this subject very complex and interesting. A precursor of fuzzy computabil-
ity was the proper founder of fuzzy set theory, Lotfi Zadeh, who in [24] defines
the notion of fuzzy algorithm based on a fuzzification of Turing machines and
Markov algorithms. However, that work was not deep enough in the recursion
theoretical aspects of the mentioned models. Lately, Lee and Zadeh in [12] fol-
low the same setting and Santos in [17, 18] proves that these two fuzzy models
are equivalent. Unfortunately the research in this subject was not continued for
more than a decade, revisited only in the works of Harkleroad [9] (for other
works related to this topic, see for example [3, 2, 14, 7, 15]). More recently, with
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the increasing interest in extrapolating Church-Turing thesis considering other
aspects (for example interactions [8], real values [21], quantum universe [5], etc.),
the research on fuzzy computability has gain new strength, mainly because it
was shown by Wiedermann [22, 23] that it is possible to solve the halting prob-
lem (more precisely, it is possible to accept r.e. sets and co-r.e. sets) in a class
of fuzzy Turing machines.

Section 2 are preliminaries and section 3 is devoted to present nondeterminis-
tic Turing machines, and fix notation to be extended later to the fuzzy context.

In section 4.1 we work with fuzzy Turing machines, when regarded as accep-
tors. We analyze carefully Wiedermann’s statement mentioned above about the
computational power of fuzzy Turing machines. We state it in a more rigorous
manner and in Theorem 2 we impose necessary and sufficient conditions for a
set to be r.e. in terms of associated fuzzy languages recognizable by fuzzy Turing
machines. We also show that Wiedermann’s statement is not completely correct
since there are fuzzy Turing machines which could also “recognize” (in the sense
used by Wiedermann) difference r.e. sets (and it is well known that these sets
may be more complex than the r.e. or co-r.e. ones). In Theorem 3 we characterize
the class of difference r.e. sets in terms of associated fuzzy languages recognized
by fuzzy Turing machines.

In section 4.2 we deal with the recursive theoretical notion of universality.
Theorem 4 shows that there is no universal fuzzy machine for the class of all fuzzy
Turing machines. Some other narrower classes of fuzzy machines are considered
for which there are fuzzy universality.

In section 4.3, we change the optic and we regard fuzzy Turing machines
as transducers, that is as fuzzy devices computing functions, instead of just
recognizing languages. We argue for a definition of fuzzy computable function,
when this optic is taken, and in Theorem 5 we show that our proposed notion
coincides with the classical one.

2 Elements of Fuzzy Theory

Let I be the unitary closed interval, i.e. [0, 1]. A fuzzy set A in an universe UA

(a classical set) is characterized by its membership degree function

μA : UA → I .

Thus, for each x ∈ UA, μA(x) provides the belonging degree of the element x in
the fuzzy set A. For each fuzzy set A, we define their support set as

S(A) = {a ∈ UA : μA(a) > 0}

and their crisp set as

C(A) = {a ∈ UA : μA(a) = 1} .
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2.1 t-Norms

Triangular norms, or simply t-norms, were introduced by Schweizer and Sklar
[19] with the intention of modelling the distance of probabilistic metric spaces.
Moreover, Alsina, Trillas and Valverde [1] showed that this notion is adequate
to model the conjunction in fuzzy logics or equivalently the intersection of fuzzy
sets. A t-norm on I is any commutative and associative mapping T : I × I → I
such that 1 is the neutral element and is monotonic w.r.t. the natural order on I.
Sometimes t-norms will be used in infix notation instead of the functional form.
In this case, we will usually write the symbol ∗. Classical examples of t-norms
are the following: G(x, y) = min{x, y} (Gödel t-norm), P (x, y) = xy (product
t-norm) and L(x, y) = max{x+ y − 1, 0} (Lukasiewicz t-norm).

An element z ∈ (0, 1) is said a zero divisor of a t-norm ∗ if there exists
y ∈ (0, 1) such that y ∗ z = 0. For example, each z ∈ (0, 1) is a zero divisor of L.

2.2 Fuzzy Functions

Zimmerman [25] considers several ways of fuzzifying the notion of function. Some
other notions of fuzzy functions can also be found in [4, 15, 16].

In this article we propose the following one: Let A and B by fuzzy sets. A
classical partial function f : UA → UB is a fuzzy partial function from A into
B, if

∀x ∈ UA, f(x) ↑ or μB(f(x)) ≤ μA(x). (1)

This definition of fuzzy function differs from the one of Dubois and Prade ([25],
Definition 7-1), which is based on the extension principle –we use ≤ in (1) when-
ever Dubois and Prade use ≥. Moreover, we consider partial functions instead
of total functions. Our choice will be fully understood when we define the fuzzy
function computed by a fuzzy Turing machine, in section 4.3.

Notice that Dubois and Prade’s fuzzy function allows us to map an element
with degree 0 –and therefore fully out of the set–, to an element with degree
1 –hence completely inside the set. According to our definition, whenever the
input has degree 0, the output will also have degree 0. However, when the input
has a significant degree (i.e. a degree greater than 0), then the output will not
necessarily have a significant degree.

Let f be a fuzzy partial function. We define S(f) : S(A) → S(B) as the
support of f , and C(f) : C(A) → C(B) as the crisp of f in the following way:

S(f)(x) =
{
f(x) if μB(f(x)) > 0;
↑ otherwise.

C(f)(x) =
{
f(x) if μB(f(x)) = 1;
↑ otherwise.

3 Nondeterministic Turing Machines

In the literature, there are diverse definitions of nondeterministic Turing ma-
chines, ntm for short, and all of them are equivalent (see for example [10, 11, 13]).
We use the following definition: A ntm is a septuple T = 〈Q,Σ, Γ, δ, q0,�, F 〉
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where Q is a set of states, Σ is the input alphabet, Γ is the tape alphabet, q0 ∈ Q
is the starting state, � ∈ Γ is the blank symbol, F ⊆ Q is the set of final states
and δ ⊆ Q× Γ ×Q× Γ × {R,L} is the set of instructions, i.e. the set of “next
move” relation.

We will use the following string functions: head(w) returns the leftmost sym-
bol of w, headR(w) returns the rightmost symbol of w, tail(w) returns the string
w without its leftmost symbol and tailR(w) returns the string w without its
rightmost symbol.

An instantaneous description of a ntm, id for short, is a triple (u, q, v) mean-
ing that the tape content is the string uv, the current state is q and the head is
pointing at the leftmost symbol of v. For notational simplicity we will omit the
parentheses and comma of ids. A valid move from an id uqv into an id u′pv′ in
the ntm T , denoted by uqv )T u′pv′, occurs whenever

∃(q, head(v), p, b, R) ∈ δ such that u′ = u ◦ b and v′ = tail (v), or

∃(q, head(v), p, b, L) ∈ δ such that u=u′◦head(v′) and v′=headR(u)◦b◦tail(v).
As usual, an id u′pv′ is reached from an id uqv, denoted by uqv )∗T u′pv′, if
uqv = u′pv′ or there exists an id u′′rv′′ such that

uqv )T u′′rv′′ and u′′rv′′ )∗T u′pv′ .

When a ntm T is regarded as an acceptor, we say that the string w ∈ Σ∗

is accepted by T if q0w )∗T uqfv for some u, v ∈ Γ ∗ and qf ∈ F . As usual the
language accepted by a ntm T , denoted by L(T ), is the set of all strings accepted
by T .

When ntms are understood as transducers, things change a little, so it is
worth making a short digression in this point. For the same input, a ntm can
give more of one output, hence it is natural to ask which one is the function
computed by them. Some authors (for example [6]) consider that a ntm computes
a function from Σ∗ (the set of possible inputs) into P(Γ ∗) (the powerset of
possible outputs). Following this point of view, we would have a computability
notion for functions with countable domain and uncountable rang, which go
beyond Church-Turing thesis.

Other alternatives also have some problems. Therefore, we agree with Linz
when he says in [13]: “Since it is not clear what role nondeterminism plays in
computing functions, nondeterministic automata are usually viewed as accep-
tors.” Hence, we believe that ntms must only be considered as acceptors.

4 Fuzzy Turing Machines

Zadeh [24], Lee [12] and Santos [17] introduced the model of Fuzzy Turing ma-
chines and the languages accepted by this kind of machines, i.e. a class of fuzzy
languages. Classical languages are linked to fuzzy languages through the sup-
port and crisp part of a fuzzy set. It turns out that this fuzzy machine model
is computationally too powerful: in [23], Wiedermann claims that, in fact, its
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nondeterministic version accepts non recursively enumerable languages and that
they can solve undecidable problems (these assertions will be fully analysed in
section 4.1). On the other hand, the model is too restrictive from a fuzzy logic
point of view, since it only considers the Gödel t-norm. The idea of this fuzzy
Turing machine is to establish an uncertainty degree for the acceptance of a given
string or, analogously, the membership degree of the string to the language. In or-
der to compute this degree from individual degrees, a composition on the t-norm
evaluation is used. Wiedermann [22, 23] introduced the class of fuzzy Turing ma-
chines as a fuzzy extension of the nondeterministic Turing machines, where each
transition has a membership degree associated to it. In this case, he worked with
arbitrary t-norms for the evaluation. We consider this same kind of fuzzy Turing
machines:

Definition 1. A fuzzy Turing machine, ftm for short, is a triple F = 〈T , ∗, μ〉
where T = 〈Q,Σ, Γ, δ, q0,�, F 〉 is a ntm, ∗ is a t-norm and μ is a map which
assigns a membership degree to each tuple in the “next move” relation δ, i.e.
μ : δ → I.

An instantaneous description (id) of a ftm F is a pair (uqv, d) where uqv is
a classical id for a Turing machine, i.e. uv is the string in the tape, the head
is pointing to the leftmost symbol of v, the current state is q and d is the
membership degree accumulated up to this moment.

A valid move from an id (uqv, d) into and id (u′pv′, d′), denoted by (uqv, d) )F
(u′pv′, d′), occurs whenever uqv )T u′pv′ and

d′ =
{
d ∗ μ(q, head(v), p, headR(u′), R) if tailR(u′) = u;
d ∗ μ(q, head(v), p, head(tail (u′)), L) if tailR(u) = u′.

As with the ntm case, an id (u′pv′, d′) is reached from an id (uqv, d), denoted
by (uqv, d) )∗F(u′pv′, d′), if (uqv, d) = (u′pv′, d′) or there exists an id (u′′rv′′, d′′)
such that (uqv, d) )F (u′′rv′′, d′′) and (u′′rv′′, d′′) )∗F(u′pv′, d′).

4.1 Fuzzy Turing Machines as Acceptors

The degree of acceptance in a ftm F of a string w is

degF (w, k) = max{d ∈ I : (q0w, k) )∗F(uqfv, d) for some qf ∈ F} .

and degF (w, k) becomes undefined when there is no accepting path of F(w).
When k = 1 we will omit it and we will write degF (w).

Since a language is just a set of strings, a natural definition for fuzzy language
is “a fuzzy set of strings”. Thus, the fuzzy language accepted by a ftm F is

L(F) = {(w, degF(w)) : w ∈ Σ∗ ∧ (q0w, k) )∗F(uqfv, d) for some qf ∈ F} .

In [22, 23], Wiedermann claims that fuzzy Turing machines can solve unde-
cidable problems and that the languages accepted by these machines (when we
consider a computable t-norm) are exactly the union of r.e. sets and co-r.e. sets.
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Evidently there is some abuse in this terminology, since r.e. sets are ordi-
nary languages and the languages accepted by fuzzy Turing machines are fuzzy
languages. Hence, there is some kind of implicit fuzzification when he says that
fuzzy Turing machines accept nonrecursive r.e. sets. This fuzzification is some
kind of codifying the membership of an element to a set, by exploiting the degree
of acceptance.

To explain what is the exact assertion of Wiedermann, let us first define a
special way of fuzzifying ordinary sets into fuzzy sets. For any language A and
for rationals a and b (a, b ∈ I) we define the following fuzzification of the set A:

FA(a, b) = {(w, a):w ∈ A} ∪ {(w, b):w /∈ A} .

What Wiedermann actually does in the proof of Theorem 3.1 [23] is to show
that for any r.e. set A, there is a ftm F which accepts the fuzzy language
FA(1, b), where b is any rational such that 0 ≤ b < 1. In fact, it is not difficult
to see that there is a ftm which accepts FA(a, b) for any fixed a and b with
0 ≤ b < a ≤ 1. Even more, we can prove the following strongest result:

Theorem 1. Let A ⊆ Σ∗ be any set and let a, b be rationals such that 0 ≤ b <
a ≤ 1. A is r.e. iff there is a ftm which accepts the fuzzy language FA(a, b).

Proof. (⇒) Let As be the recursive approximation of A, i.e. As(w) ∈ {0, 1} and
A0(w) = 0 for any s ∈ N and w ∈ Σ∗. Besides, As(w) ≤ As+1(w), so that
As(w) changes at most one time –from 0 to 1– when we increase s, and w ∈ A
iff ∃s As(w) = 1. Let F be the ftm which on input w, it has a nondeterministic
branch starting from state q0:

– F passes from q0 to the final state qf via a transition with degree b, and
– F passes from q0 to a procedure which scans A0(w), A1(w), . . . until it finds

some t such that At(w) = 1 (all this procedure is carried on with transitions
of degree 1). If this ever happens then F goes to the final state qf via a
transition with degree a and otherwise it keeps on searching (so it never
reaches the final state).

Now, if w ∈ A then there is a least s such that As(w) = 1, so there will be two
accepting paths in F : the one coming from the first nondeterministic branch,
with accepting degree b, and the one coming from the second nondeterministic
branch, with accepting degree a. Since a > b then (w, a) ∈ L(F). On the other
hand, if w �∈ A then there is only one accepting path in the execution of F –the
one coming from the first nondeterministic branch–, and hence (w, b) ∈ L(F).

(⇐) Suppose F is a ftm which accepts FA(a, b). The following procedure
gives As, an r.e. approximation of A: search all the execution paths of F(w).
If by stage s we find that F(w) arrives to a final state with accepting degree a
then we let As(w) = 1. ��

Here, the fuzzification used to interpret an ordinary language into a fuzzy lan-
guage consists in defining w in the accepted language of F with membership
degree a, for every w ∈ A; and w with membership degree b, for every w /∈ A. It
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is worth noting that this result only applies when this particular way of fuzzify-
ing r.e. sets of strings is used –that is, when working with FA(a, b). Although one
could intuitively think that if there is a ftm which accepts FA(a, b), then there
should be another ftm which accepts a “simple” transformation of FA(a, b),
such as FA(b, a), the following proposition shows that this is not the case.

Proposition 1. Let A ⊆ Σ∗ be a nonrecursive r.e. set and let a, b be rationals
such that 0 ≤ b < a ≤ 1, then the language FA(b, a) is not accepted by any ftm.

Proof. Suppose A is as in the hypothesis and assume that there is a ftm F which
accepts FA(b, a) = {(w, b):w ∈ A} ∪ {(w, a):w /∈ A}. Then there would be an
effective decision procedure for testing the membership of any string w to the set
A, contradicting the assumption that A is nonrecursive. Here is the procedure:
In parallel, run the enumeration of A (which exists by hypothesis) and simulate
all the execution paths of F(w). Eventually we will find that either w ∈ A, or
we find an accepting path of F(w) with membership degree a. Since a > b, then
the path that we have found has maximum degree, and hence w /∈ A. ��

The above proposition shows that the fuzzification used by Wiedermann is in-
trinsically linked to the fact that A is r.e.; the result is not independent of the
fuzzification used. Indeed, when Wiedermann [23] considers co-r.e. sets A, he
changes the fuzzification, and in this case, he shows that there is a ftm which
accepts FA(b, 1), for any fixed rational b ∈ [0, 1). Hence, one has to be careful
when saying that “languages accepted by ftm with computable t-norm coin-
cide with the class of r.e. sets union co-r.e. sets”: the notion of acceptance here
involves a particular fuzzification, which differs in the r.e. case and the co-r.e.
case.

We obtain the following corollaries from Theorem 1 and Proposition 1. Both
follow immediately from the observation that FA(b, a) = FA(a, b).

Corollary 1. Let A ⊆ Σ∗ be a set and let a, b be rationals such that 0 ≤ b <
a ≤ 1. A is co-r.e. iff there is a ftm which accepts the fuzzy language FA(b, a).

Thus, A is recursive if and only if there are ftms accepting the languages FA(a, b)
and FA(b, a), respectively.

Corollary 2. Let A ⊆ Σ∗ be a nonrecursive co-r.e. set and let a, b be rationals
such that 0 ≤ b < a ≤ 1, then the language FA(a, b) is not accepted by any ftm.

It is not necessary to fix the values of the rationals a and b in the above results.
In fact, using the same strategy than in Theorem 1, it is not difficult to prove:

Theorem 2. A is r.e. if and only if there is some rational r ∈ (0, 1) and some
ftm F such that degF (w) > r iff w ∈ A.

Proof. (⇒) Follows directly from Theorem 1.
(⇐) Observe that we can simulate all the execution paths of F(w) in parallel.

Whenever we see that F reaches a final state via an execution path with accep-
tance degree d > r, then degF (w) ≥ d > r and hence it is safe to assert w ∈ A.
This procedure informally describes an effective r.e. approximation of A. ��
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So far we have been working with special fuzzifications of r.e. sets (and sym-
metrically, with co-r.e. sets). What about other sets which are more complex in
terms of computability theory?

A set A is difference r.e. (d.r.e.) if A = B \ C, for some r.e. sets B and C.
If A is d.r.e., then there is a recursive approximation of A, call it As, such that
#{s:As(w) �= As+1(w)} ≤ 2, lims→∞ As(w) = A(w), and A0(w) = 0 for all w.
In other words, As(w) starts in 0, it can only change to 1 and maybe go back to
0, when increasing s. This follows trivially from the definition of d.r.e. For more
details, see [20].

It is well-known that there are d.r.e. sets which are neither r.e. nor co-r.e.
Thus, we know that we cannot make a fuzzification of every d.r.e. set in the same
way that we did it before. However, we can fuzzificate them in another way.

Theorem 3. A is d.r.e. if and only if for any two rationals a and b, 0 ≤ b <
a ≤ 1, there is some ftm F such that b < degF(w) < a iff w ∈ A.

Proof. (⇒) Suppose As is a recursive approximation of A, i.e. As(w) changes
at most two times when s → ∞. Imagine the ftm F which on input w, it
starts from the initial state q0 and makes the following three nondeterministic
branches:

– With degree 0, F(w) goes to the accepting state qf .
– With degree a+b

2 , F(w) goes to a procedure which searches the least stage s
such that As(w) = 1. Once this happens it passes to the accepting state qf .
If that never happens, it continues searching and it gets undefined.

– With degree 1, F(w) goes to a procedure which searches least s and t such
that s < t and As(w) = 1 and At(w) = 0. Once this happens it passes to
the accepting state qf . If that never happens, it continues searching and it
gets undefined.

Now, suppose w ∈ A. Then there is a least s such that As(w) = 1. By the
properties of As, we have that ∀t ≥ s At(w) = 1. Then there is no accepting
path via the third branch. The only two accepting paths transit via the first one,
with accepting degree 0, and the second one, with accepting degree a+b

2 > 0.
Hence (w, a+b

2 ) ∈ L(F). On the other hand, suppose that w /∈ A. There are
two possibilities: either As(w) does not change or it changes two times. In the
former case, the only accepting path goes via the first nondeterministic branch
and hence (w, 0) ∈ L(F); in the latter, the three are accepting paths, but the
one with maximum degree is the third one, so (w, 1) ∈ L(F).

(⇐) Suppose a, b and F satisfy the conditions of this theorem. We simulate
F(w) in stages: define A0(w) = 0 and

As+1(w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if by stage s, all accepting paths of F(w) have degree ≤ b;

1
if by stage s, there is an accepting path of F(w) with
degree ∈ (b, a) and no accepting path with degree ≥ a;

0 if by stage s, there is an accepting path of F(w) with
degree ≥ a.
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Clearly, the approximation As(w) is recursive and changes at most two times,
when s → ∞ and hence A is d.r.e. Indeed, if w ∈ A then eventually, at some
stage s, we will find an accepting path of F with accepting degree ∈ (b, a) and
there cannot be any accepting path of ≥ a. Then ∀t ≥ s At(w) = 1. Otherwise,
if w /∈ A then either all the accepting paths of F(w) have degree ≤ b or there
is some accepting path of degree ≥ a: in both cases we will have that there is
some s such that ∀t ≥ s At(w) = 0. ��

4.2 Universal Fuzzy Turing Machines

In classical recursion theory, we have the notion of universal machine: in short a
machine capable to simulate the behavior of every other machine. If (Mi)i∈N is
an enumeration of all deterministic Turing machines (when seen as transducers),
then U is said universal when Mi(w) ↓ iff U(〈w, i〉) ↓ and if Mi(w) ↓ then
Mi(w) = U(〈w, i〉) (here 〈·, ·〉:N ×Σ∗ → Σ∗ is the usual pairing function). We
also have a universal machine, when thinking of acceptors. In this case, (Mi)i∈N

would correspond to an enumeration of all r.e. sets (identifying the domain of
Mi with the i-th r.e. set) and U is said universal when Mi(w) ↓ iff U(〈w, i〉) ↓.

Let C be the class of all ftms with rational (or finitely representable, or even
computable) degree membership and computable t-norm, i.e. fuzzy machines
F = 〈T , ∗, μ〉 where μ is computable and the range of μ is Q ∩ I (or a set
of finitely representable numbers in I). Since all the elements of each ftm are
finitely representable, we can assign Gödel numbers to each ftm, and obtain
(Fi)i∈N, an enumeration of C.

Following the notion of universality for classical computability, a fuzzy univer-
sal machine (regarded as an acceptor) UF for the class C would be a special fuzzy
machine with the ability to simulate the behavior of any other fuzzy machine in
C, that is UF (〈i, w〉) = Fi(w). This means that for each i ∈ N and w ∈ Σ∗:

1. Fi(w) ↓ iff UF (〈i, w〉) ↓, and
2. if Fi(w) ↓ then degFi

(w) = degUF
(〈i, w〉).

Although one could think that, as in the classical scenario, there should be such
UF , the following result refutes the idea:

Theorem 4. There is no universal fuzzy machine for the class C.

Proof. Suppose UF = 〈TU , ∗, μ〉 where TU = 〈Q,Σ, Γ, δ, q0,�, F 〉 is a ftm as
described above. Obviously, any computational path t1, . . . , tn of UF (ti ∈ δ)
will have degree μ(t1) ∗ . . . ∗ μ(tn) ≤ 1. Let

d = max{μ(t):w ∈ Σ∗ ∧ t ∈ δ ∧ μ(t) < 1} ∪ {0} .

Any accepting path containing some t ∈ δ with μ(t) ≤ d will have degree ≤ d,
hence UF has no computational path with degree d̃ ∈ Q such that d < d̃ < 1.
Now, let F be a ftm with Gödel number e such that L(F) = {(w, d̃):w ∈ Σ∗}.
Clearly, UF (〈w, e〉) = F(w), so UF must accept 〈w, e〉 with membership degree
d̃, and this is impossible. ��
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However, when we restrict ourselves to a smaller class, we still may have univer-
sality. Let D be a class of ftms. We say that U is an universal ftm for the class
D, when U is able to simulate any other machine in D, and U ∈ D.

For example, let B ⊂ Q and let DB be the class of ftms F = 〈T , ∗, μ〉,
where T = 〈Q,Σ, Γ, δ, q0,�, F 〉 is such that ∀t ∈ δ, μ(t) ∈ B. It is not difficult
to see that if B is finite, there is a universal fuzzy machine for the class DB.
Informally, if B = {b1, . . . , bk}, this universal machine would have k special
transitions t1, . . . , tk with μ(ti) = bi, and will use them to actually pursue the
degree of the simulated machine and input.

It is also interesting to observe that a class of ftms such as DB, with finite B,
is not the only situation where universality is admitted. For example, consider
the product t-norm P (x, y) = xy and B′ = {2−i: i ∈ N+}. We can see that
there is a universal machine for the class DB′ : A universal machine could have
a unique special transition t with μ(t) = 1/2 to actually obtain any number of
B′ by successive applications of the t-norm P .

Hence it is an interesting open question to characterize the class of ftms
which admit a universal machine.

4.3 Fuzzy Turing Machines as Transducers

We know that Turing machines have two roles: as a language acceptor machine
and as a function computer (transducer). Hence, we can think of a ftm a as
function computer, but with an additional membership degree. That is, it com-
putes a fuzzy function from Σ∗ into Γ ∗, where the input as well as the output
have a membership degree. Still, as mentioned at the end of section 3, ntms
as transducer, do not seem to be a reasonable approach, and therefore in this
section we consider only deterministic ftm, denoted dftm for short. Without
loss of generality, we can assume that a deterministic Turing machine, dtm for
short, has just a unique final state under which the machine halts when reached.

Let F = 〈T , ∗, μ〉 be a dftm. A fuzzy partial function f : Σ∗ → Γ ∗ from the
fuzzy set A into the fuzzy set B (i.e. Σ∗ and Γ ∗ are the universes of A and B,
respectively) is computed by F if f (when seen as a classical partial function) is
computed by the dtm T and for each w, if f(w) ↓, then

μB(f(w)) = μA(w) ∗ μ(t1) ∗ · · · ∗ μ(tn) (2)

where t1, . . . , tn is the computational path for q0w )∗T uqfv with uv = f(w) and
qf is the final state of T . Clearly, a dftm computes a fuzzy partial function for
each fuzzification of Σ∗.

We say that a dftm F S∗-computes a partial function f : Σ∗ → Γ ∗ if there
exists a fuzzy partial function f̃ computed by F such that S(f̃) = f . Analogously,
we say that a dftm F C-computes a partial function f : Σ∗ → Γ ∗ if there exists
a fuzzy partial function f̃ computed by F such that C(f̃) = f .

Notice that the function S∗-computed by a dftm F could change in case
another t-norm is used, whereas the function C-computed by F is the same
independently of the t-norm chosen.
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Theorem 5. Let ∗ be a t-norm without zero divisors and let f : Σ∗ → Γ ∗ be a
partial function. The following conditions are equivalent:

1. f is S∗-computable
2. f is C-computable
3. f is computable in the classical sense

Proof. (1 ⇒ 2) Let F = 〈T , ∗, μ〉 be a dftm which S∗-computes f . Then, the
dftm F ′ = 〈T , ∗, μ′〉 where for each t ∈ δ,

μ′(t) =
{

1 if μ(t) > 0;
0 otherwise.

F ′ C-computes f , thanks to the non-existence of zero divisors of ∗.
(2 ⇒ 3) Let F = 〈T , ∗, μ〉 be a dftm which C-computes f , and let T ′ =

〈Q,Σ, Γ, δ′, q0,�, F 〉 be the dtm obtained from T changing the transition rela-
tion by: t∈δ′ iff t∈δ and μ(t)=1. Clearly, the function computed by T ′ is f .

(3 ⇒ 1) Let T be a dtm which computes f . Then, the dftm F = 〈T , ∗, μ〉,
where

μ(t) =
{ 1 if t ∈ δ;

0 otherwise.
S∗-computes (and also C-computes) f . ��
Thus, in terms of classical computability, for t-norms without zero divisors, S∗-
computability and C-computability are equivalent. Clearly, the same is valid for
languages.

5 Final Remarks

The main goal of this paper is not to criticize Wiedermann’s work, but rather
to clear the context in which his result is valid. In this sense, we prove that
considering the same kind of fuzzification the principal result of Wiedermann
(Theorem 3.1 in [23]) is not valid. Other contributions are:

– To provide some results on the acceptation of d.r.e. languages via ftm. These
sets might be more complex in terms of computability theory than r.e. and
co-r.e. sets. In spite of this fact, ftms can also embed this kind of sets in a
fuzzy language (in the same way that Wiedermann embedded r.e. sets).

– To prove that it is not possible to achieve an universal fuzzy Turing machine.
The difficulty comes when we try to simulate the degree of acceptance. It is
important to notice that we are not trying to calculate the accepting degree
as a written output. Instead, a universal fuzzy machine should genuinely copy
the accepting degree of the simulated ftm, by using its own transitions.

– To provide some considerations on the notion of computability of functions
by dftms and to prove that dftms have the same computational power than
classical Turing machines (considering two ways of relating these concepts).

As further work, we pretend to establish a relationship between our results
and the ones of Gerla in [7], who provides fuzzifications of several concepts of
recursion theory –though some fuzzy notions do not coincide exactly with ours.
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Abstract. In this paper, an optimal algorithm to solve the continu-
ous/discrete weighted 2-center problem is proposed. The method gener-
alizes the “trimming” technique of Megiddo [5] in a nontrivial way. This
result allows an improved O(n log n) time algorithm for the weighted
3-center and 4-center problems.

1 Introduction

The p-center problem is defined on a weighted undirected graph G = (V,E),
where v ∈ V is associated with a non-negative weight wv and e ∈ E is associated
with a non-negative length le. Let A(G) denote the continuum set of points on
the edges of G. Px,y denotes the shortest path in G from x to y, x, y ∈ A(G), and
d(x, y) denotes the length of Px,y. Let S(X,G′) denote the maximum weighted
distance from a set X : {α1, . . . , αp} to a subgraph G′, that is,

S(X,G′) = max
v∈V (G′)

{wv · d(X, v)}, where d(X, v) = min
j=1,...,p

d(αj , v).

The p-center problem is to determine a set X of p points in A(G) so as to mini-
mize S(X,G). When all the weights wv are equal to 1, we call it the unweighted
p-center problem. When the p centers are restricted to be vertices of G, we call
it discrete p-center problem. This continuous/discrete problem has been shown
to be NP-hard on general graphs [4, 7].

Our study in this paper is restricted to tree graphs. Megiddo and Tamir
[7] provided an O(n log 2n log logn) procedure to solve the weighted p-center
problem in tree graphs, which was improved to O(n log 2n) by implementing
the results by R. Cole [1]. For the discrete weighted p-center problem, it is also
solvable in O(n log 2n) [6]. In unweighted models, Frederickson [2] presented an
O(n) algorithm, where p can be variable.

In the special case of a path graph, O(n) algorithms for the weighted models
have already known. In fact, stronger results hold for this case. Suppose that
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the nodes of the path are identified as points on the real line. The path topol-
ogy then provides the ordering of these n points. However, even without this
path topology, O(n) algorithms are known for the continuous weighted 2 and
3 center problems on the real line. Moreover, by using the Helly property and
implementing generalized linear programming (GLP), or LP-type approaches,
randomized linear time algorithms can be obtained for the continuous weighted
p-center problem and the discrete unweighted p-center problem, on the real line,
for any fixed p [3].

The main result of this paper is a significant improvement of the upper
bound of the continuous/discrete weighted p-center problem on a tree when
p = 2, 3 and 4. We have proposed a linear-time algorithm for the weighted 2-
center problem. Megiddo [5] used a “trimming” technique to solve the weighted
1-center problem in linear time. The problem of generalizing the trimming ap-
proach of Megiddo [5] to solve the p-center problem for p > 1 was open for a
long time. In this paper we have used the interactions between the two centers
to guide us in trimming the tree. As we will see that this generalization is non
trivial. The improvement of the 2-center problem can then be utilized to provide
better bounds for the 3-center and 4-center problems.

The paper is organized as follows. In Sect. 2, the properties of the weighted
2-center of a tree are established. These properties immediately give rise to an
O(n log n) algorithm. Section 3 provides the main result of this paper - a linear-
time algorithm to solve the continuous/discrete weighted 2-center problem in
a tree. Section 4 briefly describes the improved upper bounds for the weighted
p-center problem, p = 3 and 4 along with the conclusions.

2 An O(n log n) Algorithm

Let T (V ′) be the induced subtree with vertex set V ′ ⊆ V . For a subtree T ′ of
T , let V (T ′), E(T ′), A(T ′) be the vertex set, the edge set and the continuum set
of points on the edges of T ′, respectively. δT ′(v) denotes the degree of v in T ′.

Let Vv(u) denote the set of vertices v′ such that the vertex v lies on the simple
path from the vertex u to v′ (v �= u). Let Tv(u) denote the induced subtree rooted
at v with the vertex set Vv(u). See Fig. 1(a). A subtree T ′ is called a real subtree
of T if the component T \T ′ is connected. We denote by −T ′ the subtree T \T ′.
The vertex of a real subtree T ′ closest to −T ′ is called the root of T ′ and the
edge linking T ′ and −T ′ is called the root edge of T ′. For example, T1, . . . , T7 in

v

(a) Tv(u) (b) Real subtree and core subtree

T8

Tv(u)

v1

e1

T1

T3 T4

u

T7

T6

T5

T2

Fig. 1. Examples for Tv(u), real subtree, and core subtree
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Fig. 1(b) are real subtrees. v1 is the root of T1 and e1 is the root edge of T1.
A subtree T ′ is called a core subtree of T if for v ∈ V (T ′), either δT ′(v) = 1 or
δT ′ = δT (v). In Fig. 1(b), T8 is a core subtree.

The centroid of a subtree T ′, which can be found in linear time, is a vertex
u ∈ V (T ′) s.t. each subtree with removal of u has the size at most |V (T ′)|/2.

An Overview of the Weighted 1-Center. Let rT denote the weighted-radius
of T , that is, rT = minx∈A(T ) S(x, T ). The service cost function S(x, T ) is convex
on every simple path in T [4]. Based on this property, Kariv and Hakimi [4]
designed an O(n log n) algorithm to locate the 1-center in a tree. Later, Megiddo
[5] showed that it can be solved in linear time with a clever “trimming” technique.
It is carried out in two phases. The first phase is to locate the component adjacent
to the centroid o of current tree where the 1-center, say α, lies. The second
phase answers the following key question: whether or not α lies within distance
t to o. Once the answer to the key question is known, approximately 1/8 of the
vertices in the current tree are discarded. The algorithm performs O(log n) such
iterations. Each iteration takes linear time, linear in the size of the current tree.

Split-Edge. Let C = {α1, . . . , αp} ⊂ A(T ) be a set of p centers in T . Let
Vi ⊆ V be the set of vertices closest to a particular center αi ∈ C. The edges
whose endpoints belong to different subgraphs G(Vi) are called split-edges. Thus,
locating p centers in a tree is equivalent to finding a set of split-edges whose
removal defines p connected components such that the maximum service cost
of the 1-center of these components is equal to the optimal p-center cost of the
entire tree.

It’s trivial that the number of split edges is p− 1 for the p-center problem in
a tree. In our problem, we need to locate one split-edge. An edge e∗ : u∗v∗ is
called an optimal split-edge for the weighted 2-center problem in T if it satisfies

max {rTu∗ (v∗), rTv∗ (u∗)} = min
e:uv∈E

{max {rTu(v), rTv(u)}}.

The weighted 2-center problem in T can be reformulated as a problem of finding
a split-edge e ∈ E(T ) that minimizes φ(e : uv) = max {rTu(v), rTv(u)}, called
service cost function of T for split-edge e. It’s easy to see that φ(e) is convex on
every simple path of T . If a constant-size subtree contains an optimal split-edge,
then the weighted 2-center can be computed in extra linear time by testing each
edge in this subtree as a split-edge. Thus, the process will be terminated when
we find that there exists an optimal split-edge in some constant-size subtree.

We call discarding one vertex safe operation for an edge e : uv if rTu(v) and
rTv(u) stay unchanged before and after this operation. Discarding one vertex is
a safe operation for a subtree T ′ if it is a safe operation for each edge in T ′. Sup-
pose that T ′ contains an optimal split-edge. After safely discarding some vertices
for T ′, the local optimal solution of the new reduced tree with some split-edge in
T ′ is an optimal solution of T . Let Tcur denote current tree. Let Eopt denote the
set of edges containing an optimal split-edge. We always maintain the follow-
ing invariant. The component composed of all the edges in Eopt, denoted by Topt,
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is a path or a core subtree. If an optimal split-edge lies in a subtree T ′ of Topt,
clearly, all the safe operations for Topt done so far are also safe operations for T ′.

Lemma 1. Suppose that T ′
1, T

′
2 are subtrees of Topt and E(T ′

1∩T ′
2) �= ∅. If T ′

1 and
T ′

2 both contain optimal split-edges, then T ′
1 ∩ T ′

2 contains an optimal split-edge.

Lemma 2. (Refer to Fig. 2(a).) Given an edge uv ∈ Eopt, if rTu(v) ≥ rTv(u),
then an optimal split-edge lies in {uv,E(Tu(v))} ∩ Eopt.

Lemma 3. Given an internal vertex v of the core subtree Topt, suppose T1, . . . ,
Tk (k ≥ 2) are the subtrees adjacent to v. Let T1 and T2 be the two components
such that S(v, T1) ≥ S(v, T2) and S(v, Ti) ≤ S(v, T2), 3 ≤ i ≤ k. There exists an
optimal split-edge in {vv1, vv2, E(T1), E(T2)} ∩ Eopt.

Proof. See Fig. 2(b). First, all the edges vvi ∈ Eopt, i = 1, . . . , k since v is an in-
ternal vertex of the core subtree Topt. We can see that the service cost φ(vv1) is no
more than the service cost with any split-edge in Eopt \{vv1, vv2, E(T1), E(T2)}.
Hence, an optimal split-edge lies in {vv1, vv2, E(T1), E(T2)} ∩ Eopt. ��

Tv(u)

u v

Tu(v)

(a)

T1 T2 Tk

(b) (c)

v1 v2

Tv2 (v)

v Tv(v2)

Tv1 (v)

v Tv(v1)

vkv2v1

Fig. 2. Locate the component containing an optimal split-edge

The next lemma supports a binary-search technique for our problem.

Lemma 4. (Refer to Fig. 2(c).) Given a vertex v in Tcur, we can find in linear
time an optimal split-edge incident to v or find a vertex v′ adjacent to v such
that there is an optimal split-edge in {vv′, E(Tv′(v))} ∩ Eopt.

Proof. It’s trivial when v �∈ V (Topt) or v is a leaf of Topt. Suppose v is an internal
vertex of Topt. We can find two vertices v1, v2 adjacent to v such that there is
an optimal split-edge in {vv1, vv2, E(Tv1(v)), E(Tv2(v))} ∩Eopt (by Lemma 3 if
Topt is a core subtree). Apply Lemma 2 on vv1, vv2. We have the following cases:

– If rTv1 (v) ≥ rTv(v1) & rTv2 (v) ≥ rTv(v2), vv1, vv2 both are optimal split-edges.
– If rTv1 (v) ≥ rTv(v1) & rTv2 (v) < rTv(v2), there is an optimal split-edge in
{vv1, E(Tv1(v))} ∩ Eopt.

– Similarly, if rTv1 (v) < rTv(v1) & rTv2 (v) ≥ rTv(v2), then there is an optimal
split-edge in {vv2, E(Tv2(v))} ∩Eopt.

– Otherwise, at least one of vv1, vv2 is an optimal split-edge. An optimal split-
edge is selected by evaluating the value of φ(vv1) and φ(vv2). ��
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Note that when Topt is updated via Lemma 2 or Lemma 4, the new Topt is still
a path or a core subtree. Lemma 4 implies an O(n log n)-time algorithm for the
weighted 2-center problem in a tree, described as follows. Given that there is an
optimal split-edge in Topt, we test the centroid u of Topt to find a subtree T ′ of
Topt adjacent to u that contains an optimal split-edge. Since the size of T ′ is at
most half the size of Topt, the process terminates within O(log n) examinations.
The total cost is therefore O(n log n) time.

3 A Linear-Time Algorithm

Although it’s hard to find an optimal split-edge quickly, we’re able to obtain a
subtree Topt, with size no more than half-size of Tcur, in which an optimal split-
edge lies. Given this reduced subtree Topt, each connected component, with the
removal of Topt, must be served by one center. We’ll see that there always exists
a big component (at least half the size of Tcur) among them. Our objective is
to eliminate a fraction of the vertices in this big component. More precisely, at
least 1/16 of the vertices in Tcur are eliminated. The algorithm terminates after
O(log n) iterations. The total running time is, therefore, linear.

Let o denote the centroid of Tcur, and let v1, . . . , vm be the vertices adjacent
to o. If we find a real subtree Tvs(o) adjacent to o (1 ≤ s ≤ m) such that there
is an optimal split-edge in {ovs, E(Tvs(o))} (the solid bold part in Fig. 3(a)),
then To(vs) is the big component served by one center in the optimal solution
determined by some optimal split-edge in {ovs, E(Tvs(o))}. In the rest of this
section, the 1-center serving the big component To(vs) is denoted by α1, the
other 1-center is denoted by α2. As pointed out above, our goal is to safely
discard a fraction of the vertices in To(vs). Let o′ denote the centroid of To(vs).
Like in Megiddo’s method [5], the pruning stage is carried out in two phases. The
first phase is to locate the component adjacent to o′ where α1 lies. In the second
phase, the following key question is answered: does α1 lie within the distance t
to o′? The significance of t and how to determine t will be described later. It is
very similar to the approach used in [5]. The main algorithm is sketched below.

Algorithm 1. Main algorithm for the weighted 2-center problem in T
1: Topt = T, Eopt = E, Tcur = T .
2: repeat
3: Get the centroid o of Tcur. Find a vertex vs adjacent to o such that there is an

optimal split-edge in {ovs, E(Tvs(o))} ∩ Eopt. Update Eopt, Topt accordingly.
4: Get the centroid o′ of the subtree To(vs). {The optimal split-edge is in Tvs(0)}
5: Find the component adjacent to o′ that contains the center α1 that serves To(vs).
6: Compute the value of t and answer the key question.
7: Safely discard approximately 1/8 of the vertices in V (To(vs)). Update Tcur.
8: until |Eopt| ≤ c (c is a predefined number)
9: Evaluate the service cost with each split-edge e in Eopt.
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Analysis: We show in Sect. 3.1 and Sect. 3.2 that the steps in line 5 and line 6
can be implemented in linear time. Therefore,

Theorem 1. The weighted 2-center in a tree can be solved in linear time.

3.1 Phase 1: Locate the Component Adjacent to o′ Where α1 Lies

Refer to Fig. 3(a). With removal of the centroid o′ of To(vs), Tcur is split into
subtrees. Let Tv′

0
(o′) denote the subtree among them that contains the vertex o.

All the other subtrees are Tv′
1
(o′), . . . , Tv′

k
(o′). Consider o′ as the root of Tcur.

Suppose that S(o′, Tv′
1
(o′)) ≥ S(o′, Tv′

i
(o′)), 2 ≤ i ≤ k. Then, α1 must lie in the

component o′v′1 + Tv′
1
(o′) or in the component o′v′0 + Tv′

0
(o′). It can be decided

in linear time by Lemma 5. Lemma 6 provides a more general result.

Lemma 5. (Refer to Fig. 3(b).) Let T ′ be a real subtree of Tcur served by α1.
Let v denote the root of T ′ and x be a point on the root edge of T ′. Whether α1
lies in vx+ T ′ can be decided in linear time.

Lemma 6. (Refer to Fig. 3(b).) Let T ′ be a real subtree of Tcur served by one
center (either α1 or α2). Let v denote the root of T ′ and x be a point in the root
edge of T ′. Whether α1 lies in vx+ T ′ can be decided in linear time.

Proof of Lemma 5. Let Ux(S(x, T ′)) denote the set of vertices in Tcur with
larger weighted distance to x than S(x, T ′). It’s trivial to see that α1 lies in vx+T ′

if Ux(S(x, T ′)) = ∅. Suppose that Ux(S(x, T ′)) �= ∅. Clearly, Ux(S(x, T ′)) ⊆
V (−T ′). Consider x as the root of Tcur. Let T ′′ be the smallest connected real
subtree containing all the vertices in Ux(S(x, T ′)). T ′′ must be a subtree of −T ′.
Let u be the root of T ′′. Observe that α1 lies in vx + T ′ if and only if T ′′ is
served by α2. First, let us see a useful lemma. Refer to Fig. 4(a). T1 and T2
are two real subtrees rooted at u′, v′ respectively, and b is a point in the root
edge of T1. T2 contains all the vertices with larger weighted distance to b than
S(b, T1).

Lemma 7. If Eopt ∩E(T1) = Eopt ∩E(T2) = ∅, then in linear time we can find
an optimal split-edge, or find a subpath of Pu′,v′ containing an optimal split-edge.

v′
1

Tv′
k
(o′)Tv′

1
(o′)

vso

o′
v′
0

Tv′
0
(o′)To(vs)

Tvs (o)

v′
k

(a) The big compoent To(vs) is served by α1 (b) Lemma 5

(ii) x is a vertex(i) x isn’t a vertex

u

T ′′

xv

T ′

v x

u

T ′′T ′

Fig. 3. The big component To(vs) served by α1 and Lemma 5
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T1

(b)(a)

v′b

Pu′,v′Pu′,v′

T3

u2 Topt

u1

v′b

T2T1

v′b

T2

T2

f

u′ u′

u′u′

(c) (d)

Topt

T1

e Topt

u3u2

T3
T4

u1 f

T2T1

v′b

T4

u1

Fig. 4. Lemma 7

Proof. We have the following two cases.

– Eopt ∩ E(Pu′,v′) = ∅. See Fig. 4(b). Let u1 be the vertex closest to Pu′,v′

in Topt. Examine u1 using Lemma 4. In linear time, we can find an optimal
split-edge incident to u1 or find a vertex u2 adjacent to u1 such that there
is an optimal split-edge in {u1u2, E(T3)} ∩ Eopt. In the latter case, u1u2 is
an optimal split-edge since r−T3 ≥ rT3 .

– Eopt∩E(Pu′,v′) �= ∅. See Fig. 4(c)(d). Let f be the vertex closest to v′ in Topt.
f must be in Pu′,v′ . Check f using Lemma 4. In linear time, we find a vertex
u1 adjacent to f s.t. there is an optimal split-edge in {fu1, E(T4)} ∩ Eopt.
If u1 is not in Pu′,v′ , fu1 is an optimal split-edge since r−T4 ≥ rT4 (Fig.
4(c)). Otherwise, u1 is in Pu,v (Fig. 4(d)). For any split-edge e ∈ Eopt but
e �∈ E(Pu′,v′), the service cost φ(e) = max {rT3 , r−T3} ≥ S(b, T1). Let u2 be
the vertex closest to e in Pu′,v′ . Let u3 be the vertex adjacent to u2 with
d(u3, v

′) < d(u2, v
′). It’s trivial that u2u3 ∈ Eopt since f is a leaf of Topt.

Since φ(u2u3) ≤ φ(e), there is an optimal split-edge in Eopt ∩ E(Pu′,v′). ��

The linear-time checking process is briefly described as follows. Test vertex u
with Lemma 4 and update Eopt, Topt accordingly. If Topt is a subtree of T ′′, then
α1 is in vx + T ′. Otherwise, by Lemma 7, either an optimal split-edge is found
or we find that α1 is in vx+ T ′. This completes the proof of Lemma 5.

Proof of Lemma 6. Suppose that there is an edge e ∈ Eopt in Po′,v (otherwise,
use Lemma 5). Let Ux(S(x, T ′)) denote the set of vertices in Tcur with the larger
weighted distance to x than S(x, T ′). Consider two cases.

Ux(S(x, T ′)) = ∅: In this case, vx+T ′ contains α1 if and only if there doesn’t
exist an optimal split-edge in Po′,v. Let u′ be the closest vertex in Topt to o′ and
let v′ be the closest vertex in Topt to v. u′, v′ should be on the path Po′,v and
u′ �= v′. Pu′,v′ is the common subtree of Po′,v, Topt.

– Topt is a path. See Fig. 5(a). By Lemma 4 on u and v, we have two cases.
• Pu′,v′ contains an optimal split-edge. Then vx+ T ′ doesn’t contain α1.
• An optimal split-edge lies outside Pu′,v′ . Therefore vx+ T ′ contains α1.
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Tv1 (v)

u1

u2 v2 v′u′

(a) Topt is a path

v′u′

Topt

xx

(b) Topt is a core subtree

T ′

vv′′

q

o′

T ′

v

v1

o′

Tu1 (u)
Topt

Fig. 5. Lemma 6: Ux(S(x, T ′)) = ∅

– Topt is a core subtree. In this case, u′, v′ must be leaf vertices of Topt. See
Fig. 5(b). Let V ′′ denote the set of vertices z such that the simple path
Pv,z contains some edge in Eopt. Let q be a vertex in V ′′ with wqd(x, q) =
maxz∈V ′′ wzd(x, z). Then there exists an optimal split-edge on Pq,v (oth-
erwise, the service cost is larger than wqd(x, q)). Update Topt accordingly.
Now, Topt is a path. we can get the result by similar process.

Ux(S(x, T ′)) �= ∅: Consider x as the root of Tcur. Let T ′′ be the smallest real
subtree containing all the vertices in Ux(S(x, T ′)). u is the root of T ′′. Similar
to the proof of Lemma 5, we have two cases by testing u with Lemma 4:

– If updated Topt is a subtree of T ′′, then vx + T ′ can’t contain α1.
– Otherwise, Eopt ∩ E(T ′′) = ∅. Assume that we only find a subpath of Pu,v

containing an optimal split-edge by Lemma 7. If To(vs) is the subtree of T ′′,
see Fig. 6(a), then α1 can’t lie in vx + T ′. Otherwise, To(vs) and T ′′ are
disjoint (Fig. 6(b)). Let u′ be the least common ancestor of u and o. Check
u′ by Lemma 4 and update Eopt, Topt accordingly. If Topt is the subpath of
Pu,u′ , then α1 lies in vx+ T ′. Otherwise, vx+ T ′ doesn’t contain α1.

x u

o

To(vs)

x u′

T ′′ To(vs)

vs

ou

(b) To(vs) and T ′′ are disjoint(a) To(vs) is the subtree of T ′′

T ′′

T ′ T ′

v v

vs

Fig. 6. Lemma 6: Ux(S(x, T ′)) �= ∅ and Eopt ⊆ E(Pv,v)

3.2 Phase 2: Answer the Key Question

Having found the component where α1 lies: o′v′1+Tv′
1
(o′) (Case 1) or o′v′0+Tv′

0
(o′)

(Case 2), see Fig. 3(a), we need to check if α1 lies within distance t to o′. The
significance of t and the computation of t is described as follows [5]. Arbitrarily
pair the vertices in V (To(vs)) \ V (Tv′

1
(o′)) for Case 1 and pair the vertices in

V (To(vs)) \V (Tv′
0
(o′))) for Case 2. Let (u1, u

′
1), (u2, u

′
2), . . . , (ul, u

′
l) be the pairs

where wui > wu′
i
. The case when wui = wu′

i
is easy to handle. Note that there

will be at least �n/8� pairs since o′ is the centroid of To(vs). For every such pair
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(ui, u
′
i), 1 ≤ i ≤ l let ti = (wuid(ui, o

′)− wu′
i
d(u′i, o

′))/(wui − wu′
i
). t is taken to

be the median of these values. If t > ti then u′i is dominated by ui, and therefore
is discarded; otherwise, ui is discarded. In this way, we can eliminate at least
�n/16� the vertices in Tcur after the key question is answered.

Case 1. We find all the points y1, . . . , yl in Tv′
1
(o′) such that d(o′, yi) = t, i =

1, . . . , l. Let Ty1(o′), . . . , Tyl
(o′) be the subtrees rooted at y1, . . . , yl. Assume that

S(y1, Ty1(o′)) = max1≤i≤l S(yi, Tyi(o′)). See Fig. 7(a). We evaluate the point y1
and the real subtree Ty1(o′) by Lemma 5. If α1 lies in Ty1(o′), then the answer
to the key question is ”NO”; otherwise, the answer to the key question is ”YES”

Tvl
(o′)Tvk+1(o′)

(b) Case 2: α1 lies in o′v′
0 + Tv′

0
(o′)(a) Case 1: α1 lies in o′v′

1 + Tv′
1
(o′)

v′
0

T
v′
0
(o′)T

v′
m

(o′)T
v′
2
(o′)T

v′
1
(o′)

Topt

d(o′, z) = t
v′
1

y1 yly2

Ty2 (o′)Tyl
(o′)Ty1 (o′)

o′

Tvk
(o′)Tv1 (o′)

d(o′, z) = t

Topt

−T
v′
0
(o′) T

v′
0
(o′)

ylyk yk+1
vk+1 vlvkv1

y1

v′
0

o′

Fig. 7. Answer the key question: whether α1 lies within the distance t to o′

since α1 can’t lie in Ty2(o′), . . . , Tyl
(o′). Therefore, for Case 1 we can check in

linear time whether or not α1 lies within distance t to o′.
Case 2. The vertices served by α2 are contained in Tv′

0
(o′). As in Case 1, we

first find all the points y1, . . . , yl in Tv′
0
(o′) such that d(o′, yi) = t, i = 1, . . . , l.

See Fig. 7(b). Let vi be the vertex closest to yi such that d(o′, vi) ≥ t. The
subtrees rooted at the vertices v1, . . . , vl are denoted by Tv1(o′), . . . , Tvl

(o′). The
subtrees rooted at the points y1, . . . , yl are denoted by Ty1(o′), . . . , Tyl

(o′), which
contain all points z in Tv′

0
(o′) with d(o′, z) ≥ t. Let Γ = {Ty1(o′), . . . , Tyl

(o′)} and
Δ = {Tv1(o′), . . . , Tvl

(o′)}. Without loss of generality, suppose that Tv1(o′), . . . ,
Tvk

(o′) are the subtrees that do not contain any edge of Eopt and also the
path Pvi,v′

0
, 1 ≤ i ≤ k do not contain any edge of Eopt. So all the vertices

in Tvi(o′), 1 ≤ i ≤ k are served by α1. Two things make the problem in Case 2
harder:

– First situation: There may exist an optimal split-edge in some subtree in Δ.
Let Φ denote the set of subtrees in Δ containing some edges in Eopt.

– Second situation: There may exist an optimal split-edge on the path between
o′ and roots of some subtrees in Δ. Then these subtrees are served by α2.

First situation. We compute rTvi
(o′) for Tvi(o′) ∈ Φ. Since these subtrees are

pairwise disjoint, all these values can be computed in linear time. Let R =
max {rTvi

(o′), Tvi(o′) ∈ Φ}. If rTvi
(o′) < R, Tvi(o′) ∈ Φ there exists an optimal

split-edge outside subtree Tvi(o′). If rTvi1
(o′) = rTvi2

(o′) = R for some i1 �=
i2, Tvi1

(o′), Tvi2
(o′) ∈ Φ, then there exists an optimal split-edge outside of all the

subtrees in Φ. The remaining case is when there is a unique subtree Tv∗
i
(o′) ∈ Φ
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i
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j
(o′)
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i
(o′)
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i
(o′)Tv∗

j
(o′)

α1 lies in Ty∗
j
(o′)?

−Tv∗
i
(o′) o′

Fig. 8. Tv∗
i

contains an optimal split-edge

such that rTv∗
i
(o′) = R. Apply Lemma 4 on v∗i . If Tv∗

i
(o′) ∈ Δ contains an optimal

split-edge, then −Tv∗
i
(o′) is served by α1. See Fig. 8(a). Let S(y∗j , Tv∗

j
(o′)) =

maxTvs (o′)∈Δ\{Tv∗
i
(o′)} S(ys, Tvs(o′)). The possibility of having the ”NO” answer

to the key question is that α1 lies in either Ty∗
i
(o′) or Ty∗

j
(o′). The result can be

obtained from Lemma 5, i.e., apply Lemma 5 on y∗i and −Tv∗
i
(o′) served by α1,

and apply Lemma 5 on y∗j and Tv∗
j
(o′). The decision tree is shown in Fig. 8(b).

Otherwise, there is an optimal split-edge outside all the subtrees in Δ. In this
case, we encounter another problem, as described in the second situation.

Second situation. In this case, there is an optimal split-edge outside all the sub-
trees in Δ. That is, every subtree in Δ is served by 1-center (either α1 or α2).
By Lemma 6, we can decide whether or not α1 lies in Tyi(o′) ∈ Γ, i = 1, . . . , l.
However, the total cost is O(n2). We have an efficient method to achieve it. Let
Tv∗

i1
(o′), Tv∗

i2
(o′) be the subtrees in Δ s.t. S(y∗i1 , Tv∗

i1
(o′))≥ S(yi∗

2
, Tv∗

i2
(o′)) and

S(yi, Tvi(o
′)) ≤ S(yi∗

2
, Tv∗

i2
(o′)), Tvi(o

′) ∈ Δ \ {Tvi1
(o′), Tvi2

(o′)}. If α1 lies in
Ty∗

i1
(o′) or Ty∗

i2
(o′) (by Lemma 6), the answer to the key question is ”YES”. Sup-

pose that α1 does not lie in Ty∗
i1

(o′), Ty∗
i2

(o′). We need to determine whether α1

lies in some subtree Tyj (o′) in Γ \ {Ty∗
i1

(o′), Ty∗
i2

(o′)}. Two necessary conditions
for α1 to lie in Tyj(o′) ∈ Γ \ {Ty∗

i1
(o′), Ty∗

i2
(o′)} are listed below.

– Ty∗
i1

(o′), Ty∗
i2

(o′) are served by α2. Let θ be the lowest common ancestor of
v∗i1 , v

∗
i2 (o′ is the root). There is an optimal split-edge in Eopt ∩ E(Pθ,o′).

– For each vertex v served by α1, wvd(α1, v) ≤ S(yj , Tvj(o′)).

Let Es be the set of edges e ∈ Eopt∩E(Pθ,o′) such that α1 lies in some subtree
in Γ \ {Ty∗

i1
(o′), Ty∗

i2
(o′)} with split-edge e. Observe that Es contains an optimal

split-edge if a subtree in Γ \{Ty∗
i1

(o′), Ty∗
i2

(o′)} contains α1 (It follows easily from
two necessary conditions). If Es = ∅ then α1 can’t lie in Γ \ {Ty∗

i1
(o′), Ty∗

i2
(o′)}.

Suppose that Es �= ∅. Let es be the edge closest to θ in Es. See Fig. 9(a).

Lemma 8. If Es contains an optimal split-edge, then es is an optimal split-edge.

Proof. For any edge e′ ∈ Es (e′ : uiui+1, es : ujuj+1), the service cost φ(es) =
max {rTuj

(uj+1), rTuj+1 (uj)} is no more than φ(e′) = max {rTui
(ui+1), rTui+1 (ui)}.

Therefore, es is an optimal split-edge if Es contains an optimal split-edge. ��
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Fig. 9. Lemma 8 and compute costu1

Therefore, it’s enough to check if es is an optimal split-edge. Since rTuj
(uj+1) ≤

rTuj+1 (uj), there is an optimal split-edge in {ujuj+1, E(Tuj+1(uj))}∩Eopt. By
Lemma 4, we can either find es is an optimal split-edge or find that there is
an optimal split-edge outside Es. In the latter case, all the subtrees in Γ \
{Ty∗

i1
(o′), Ty∗

i2
(o′)} don’t contain α1 in the optimal solution determined by any

optimal split-edge in Eopt. Hence, the answer to the key question is ”YES”.
The last issue is to find such es in linear time if it exists. Refer to Fig. 9(b). The

path Po′,θ ∩ Topt is denoted by u1, u2, . . . , um. Let costui denote the cost needed
to cover all the vertices in subtree Tui(ui+1) for a point outside subtree Tui(ui+1)
with the distance t−d(o′, ui) to ui (= with the distance t to o′), i = 1, . . . ,m−1.
Obviously, all the values of costui , i = 1, . . . ,m − 1 can be computed in linear
time for a given t. Given a split-edge uiui+1, 1 ≤ i < m, let Γi denote the set of
subtrees served by α1 in Γ and σi = max {S(yk, Tvk

(o′)), Tyk
(o′) ∈ Γi}. α1 can’t

lie in any subtree Tyj(o′) with S(yj, Tvj (o′)) < σi for split-edge uiui+1 and, if
there are two subtrees Tyj(o′), Tyk

(o′) in Γi with S(yj, Tvj (o′)) = S(yk, Tvk
(o′)) =

σi, then α1 can’t lie in any subtree in Γi. Let T i
yk

(o′) be the unique subtree in
Γi such that S(yk, T

i
vk

(o′)) = σi. For the edge u1u2, u1u2 ∈ Es if and only if
S(y1

k, Tu1(u2)) = σ1. We can check if uiui+1 ∈ Es, i = 2, . . . ,m− 1 as follows:

– If T i
yk

(o′) ∈ Γi−1, that is, T i
yk

(o′) = T i−1
yk

(o′), then
• ui−1ui ∈ Es: All the vertices in Tui−1(ui) with the weighted distance to
yk no more than S(yk, T

i
vk

(o′)). We compute the cost needed to serve all
the vertices in Tui(ui+1) \ Tui−1(ui) by yk. If the cost is greater than σi

then uiui+1 �∈ Es. Otherwise, Es = Es ∪ {uiui+1} and es = uiui+1.
• ui−1ui �∈ Es: There is at least one vertex in Tui−1(ui) that can’t be

covered by yk within σi−1. Since σi = σi−1, α1 can’t lie in T i
yk

(o′).
Therefore, uiui+1 �∈ Es.

– Otherwise, T i
yk

(o′) ∈ Γi \ Γi−1. The cost needed to serve all the vertices
in Tui−1(ui) for yk is costui−1 . We compute the cost needed to serve all the
vertices in Tui(ui+1)\Tui−1(ui) for yk. We then compute the maximum of this
cost and costui−1 . If the maximum cost is greater than σi then uiui+1 �∈ Es,
otherwise, Es = Es ∪ {uiui+1} and es = uiui+1.

In i-th step, suppose that such subtree T i
yk

(o′) is unique. We only need
|Tui(ui+1) \ Tui−1(ui)| time to compute the cost needed to serve all the vertices
in Tui(ui+1) by yk. Thus, the running time of the algorithm is linear.
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Lemma 9. If Es �= ∅, es can be computed in linear time.

Putting everything together, we establish Theorem 1. Adapting the algorithm
for the discrete case is straightforward.

4 Conclusion

In this paper, an algorithm is given which finds weighted 2-center in trees in linear
time. The proposed method is a nontrivial generalization of the “trimming”
method of Megiddo [5]. With the linear-time algorithms for the weighted 1,2-
center problems, the upper bound of the weighted 3-center and 4-center problems
can be improved to O(n log n). It’s not hard to get a method based on binary-
search technique.

Theorem 2. The weighted 3,4-center problems can be solved in O(n log n) time
and linear space.

One challenging work is to generalize this result for the weighted p-center prob-
lems in a tree graph (any fixed p). Currently, we have proved that one big com-
ponent, defined as one connected component served by 1-center that contains a
fraction of vertices in current tree, can be found in linear time. Also, lemmas
similar to Lemma 5 and Lemma 6 are discovered.
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Informatik 2, Universität Dortmund, 44221 Dortmund, Germany
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Abstract. We consider a generalization of the maximum subsequence
problem. Given an array a1, . . . , an of real numbers, the generalized prob-
lem consists in finding an interval [i, j] such that the length and the sum
of the subsequence ai, . . . , aj maximize a given quasiconvex function f .
Problems of this type occur, e.g., in bioinformatics. We show that the
generalized problem can be solved in time O(n log n). As an example, we
show how the so-called multiresolution criteria problem can be solved in
time O(n log n).

1 Introduction and Preliminaries

The maximum subsequence problem is often used to show that different algorith-
mic approaches can lead to algorithms of varying efficiency. (See, e.g., Column 7
in [B].) Input to the problem is an array a1, . . . , an of real numbers. For an inter-
val [i, j] of array elements, the sum of the interval is defined as ai+ai+1+· · ·+aj.
The maximum subsequence problem asks for an interval which has the maximum
sum among all intervals. It is well-known that the problem can be solved by a
dynamic programming approach in time O(n).

In practice, there are other problems defined on array intervals which have to
be solved. Examples from bioinformatics are, e.g., the longest biased interval, the
longest non-negative sum interval [A], the maximum-sum segment [FLLTWY],
the length-constrained heaviest segment [LJC], the range maximum-sum seg-
ment [CC] and DNA copy number data analysis [LABLY]. An example from
statistics is the multiresolution criteria problem [DK]. All of these problems
have in common that they assign a value f(�, s) to an interval that depends
on the length � and the sum s of the interval only. To some of those problems,
our algorithm can be applied. We first describe the class of functions f that is
allowed in our problem.

Definition 1. Let D ⊆ R2 be a nonempty convex set and let f : D → R. The
function f is said to be quasiconvex if and only if for all points s1, s2 ∈ D and
all λ ∈ [0, 1], we have f(λ · s1 + (1− λ) · s2) ≤ max{f(s1), f(s2)}.
� The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, Reduction
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Thus, quasiconvex functions assume their maximum value on a line segment in an
endpoint of the segment. It is clear that for a quasiconvex function f : D → R,
one can use induction to show the following: For all λ1, . . . , λr ∈ [0, 1] with∑r

i=1 λi = 1, and all s1, . . . , sr ∈ D, we have

f(λ · s1 + · · ·+ λr · sr) ≤ max{f(s1), . . . , f(sr)}.

Thus, on a convex set, a quasiconvex function assumes its maximum on an ex-
tremal point of the convex set. In Section 2, we will give examples of quasiconvex
functions. We are now ready to formulate the generalized maximum subsequence
problem which will be considered in this paper.

Definition 2. For an interval [i, j] (with i ≤ j), we define its sum as sum(i, j)
:= ai + ai+1 + · · · + aj and its length as �(i, j) := j − i + 1. The generalized
maximum subsequence problem can be described as follows:

Input: An array a1, . . . , an and a quasiconvex function f .
Output: An interval [i, j] such that its value

w(i, j) := f
(
�(i, j), sum(i, j)

)
is maximal among all intervals. Alternatively, we are interested in the value
w(i, j) of such an interval.

Some remarks are in place: First, note that the maximum subsequence problem
is the special case where f(�, s) = s. Second, we restrict ourselves to the task of
computing the maximum value w(i, j) instead of a corresponding interval itself.
It will be obvious how such an interval can be computed as a side information
in the algorithm. Third, when analyzing running times, we will assume that the
evaluation of f(�, s) can be done in time O(1) (which is obviously the case for
functions like, e.g., |s|/

√
�).

A trivial solution of the generalized maximum subsequence problem would
be to enumerate all Θ(n2) intervals [i, j], evaluate w(i, j) for each of them and
output the maximum value. If implemented right, this can be done in timeΘ(n2).
We will show in this paper that for every quasiconvex function f , the generalized
maximum subsequence problem can be solved in time O(n log n).

2 Motivation

Our original motivation for investigating the generalized maximum subsequence
problem came from a problem in statistics, more precisely, data analysis. Here,
the so-called multiresolution criteria problem [DK] is useful for deciding whether
residuals consist of white noise. The problem is based on a parameter which for
an interval of the data is defined as f(�, s) := |s|/

√
�. As before, � is the length

and s is the sum of the interval. One then seeks for the interval with the largest
parameter (or, the largest parameter itself). It turned out that our methods
for tackling this problem could be generalized to the larger class of quasiconvex
functions.
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Let us first show that the function f(�, s) := |s|/
√
� is quasiconvex. In case

some of the used notions here should be unknown to the reader, we refer to
Section 3. The following theorem is well-known in the literature and helpful for
showing quasiconvexity (see [BV], p. 95/98):

Theorem 1. Let D ⊆ R2 be a nonempty convex set. A function f : D → R is
quasiconvex if and only if the so-called sublevel sets Dα := {x ∈ D | f(x) ≤ α}
are convex for all α ∈ R.

We obtain the following:

Lemma 1. Let g : R+ → R+ be a concave function. Then f(�, s) := |s|/g(�) is
quasiconvex.

Proof: Consider a sublevel set Dα = {(�, s) | |s| ≤ α · g(�)}. Dα is convex:
For α < 0, this is trivial since then, the sublevel set is empty. For α = 0, we
obtain a (convex) straight line and for α > 0, we have that

Dα = {(�, s) | s ≥ 0 and s ≤ α · g(�)} ∪ {(�, s) | s ≤ 0 and s ≥ −α · g(�)}.

Since g is concave and α > 0, it follows that α · g is also concave and since g is
mapping inputs to R+, it follows that Dα is convex. �
Since

√
� is a concave function, we obtain that |s|/

√
� is a quasiconvex function.

Thus, our algorithm for the generalized maximum subsequence problem can be
used to obtain the maximum parameter value for the multiresolution criteria
problem in time O(n log n).

A similar function occurs in bioinformatics. For DNA copy number data anal-
ysis [LABLY], one might wish to find an interval [i, j] which maximizes the value

1√
j−i+1 ·

∑j
k=i ak. This corresponds to choosing the function f(�, s) := s/

√
�.

Inspection of the paper [LABLY] shows that it is likely that the authors are
in fact interested in the maximization of the function |s|/

√
� instead of s/

√
�

(which would be the same function that we previously treated).
Nevertheless, one might also consider the function s/

√
� which is no longer

quasiconvex. Here, one can use a simple trick to make our algorithm applicable
in “most” cases.

When in the input, there is at least one ai ≥ 0, then the maximal value OPT
of the function s/

√
� is also at least 0. (Choose the 1-element interval [i, i] which

has the value ai ≥ 0.) We can then consider the function

f ′(�, s) :=
{
f(�, s), ifs ≥ 0.

0, otherwise.

The maximal value for this function f ′ is the same as for the function f and
it can easily be shown that f ′ is quasiconvex (the proof is similar to the one for
the function |s|/

√
�).

The assumption that not all values a1, . . . , an in the input are negative is very
likely to hold in the applications, since there, the ai basically are the deviations
of a random variable from its mean.
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[LABLY] provides a linear time approximation scheme for the DNA copy
number data analysis and provides an exact algorithm that is good for typical
inputs but which could not be shown to have a worst-case running time better
than O(n2). Thus, our approach improves upon the known worst-case bound for
this slightly restricted version of the problem.

3 Basic Definitions

In this section, we recall a few definitions that are helpful for our purposes. The
reader is also referred to, e.g., [M] or [BV].

Definition 3. Given a set P = {p1, . . . , pm} ⊆ R2, a convex linear combination
of P is any point of the form λ1 ·p1+· · ·+λm ·pm, where λi ≥ 0 for all 1 ≤ i ≤ m
and

∑m
i=1 λi = 1.

A set S ⊆ R2 is convex if for each pair of points s1, s2 ∈ S, it holds that every
convex linear combination of {s1, s2} is also in S.

Given a finite set M of points, we define the convex hull of M as the smallest
subset C of M such that the convex polytope defined by the points in C contains
all points of M . The convex hull can be split into its upper and lower part, the
upper convex hull and the lower convex hull. The following figures show a point
set M and its upper and lower convex hulls, respectively (marked by crosses).

Definition 4. Let S be a nonempty convex set. A function f in n variables is
called convex on S if for all s, s′ ∈ S and all λ ∈ [0, 1] it holds that

f(λ · s+ (1 − λ) · s′) ≤ λ · f(s) + (1 − λ) · f(s′).

A function g is called concave if −g is convex.

We remark that every convex function is also quasiconvex.

Definition 5. Let p = (px, py) be a point and A be a set of points. We say that
p is upper-dominated by A if there is a point pup such that

i) pup = (px, py + c) with c ≥ 0, and
ii) pup can be written as a convex linear combination of the points in A.

(For a more informal view of upper-domination, see below).
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In a completely analogous fashion, it is possible to define lower-domination of
a point p by a set of points A, where in the definition, we replace pup by a point
pbelow = (px, py − c).

For a set A of points, the upper convex hull of A upper-dominates every point
of A and, in fact, is the smallest such set of points.

We need a few simple properties of upper-domination (and lower-domination)
which we prove for the sake of completeness. First, we show that upper-domi-
nation satisfies a certain “transitivity” property, more precisely:

Lemma 2. If p is upper-dominated by the set A, and there is a point q ∈ A which
is upper-dominated by the set B, then p is upper-dominated by (A \ {q}) ∪B.

Proof: Let p = (px, py). By assumption, there is a point pup = (px, py + c)
such that c ≥ 0 and

pup = λq · q +
∑

a∈A\{q}
λa · a

and there is a point qup = (qx, qy + c′) such that c′ ≥ 0 and qup =
∑

b∈B λ′b · b.
Consider now the point

p∗ := λq · qup +
∑

a∈A\{q}
λa · a.

It holds that p∗− pup = λq · (qup − q) = λq · (0, c′). This means that p∗ agrees
in the x−coordinate with pup and p, and the y−coordinate of p∗ is at least as
large as py. Writing p∗ = λq · (

∑
b∈B λ′b · b) +

∑
a∈A\{q} λa · a shows that it is a

convex linear combination of the points in (A \ {q}) ∪B. �

Definition 6. For two points p = (px, py) and q = (qx, qy) with px < qx, we
define the slope between p and q as

inc(p, q) :=
qy − py

qx − px
.

Definition 7. A sequence p1 = (x1, y1), . . . , pn = (xn, yn) with x1 < · · · < xn is
called concave if and only if inc(p1, p2) ≥ · · · ≥ inc(pn−1, pn), i.e., the sequence
of slopes is monotone decreasing.

Definition 8. Given a concave sequence of points p1 = (x1, y1), . . . , pn =
(xn, yn), the graph f of the sequence is defined as a (continous) function f de-
fined on [x1, xn]. The function f is defined by setting f(x) := yi+

yi+1−yi

xi+1−xi
·(x−xi)

if xi ≤ x ≤ xi+1.

The figure below shows the graph of the upper convex hull and the graph of the
lower convex hull of our example point set M .

Informally, one can say that a point p is upper-dominated by a set A if it lies
below (or on) the graph of the upper convex hull of A.
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The following lemma should be rather obvious which is why we just give an
informal sketch of the proof:

Lemma 3. Let t1, . . . , tn be a concave sequence of points. Define the sequence
diff1, . . . ,diffn−1 by diffi := ti+1 − ti and let diff�(1), . . . ,diff�(r) (with �(1) <
· · · < �(r)) be a subsequence of diff1, . . . ,diffn−1. Then the following holds:

Every point of the sequence s1, . . . , sr+1, defined by s1 := t1 and si+1 :=
si + diff�(i) is upper-dominated by {t1, . . . , tn}.

Proof: (Informally): Let f be the graph of t1, . . . , tn and g be the graph of
s1, . . . , sr+1. Then f(x) − g(x) ≥ 0 for all x in the domain of g, since in every
point x, the increase of f in x is larger than the increase of g in x. �
The following figure provides a visualization of Lemma 3.
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4 Joining Two Concave Sequences

In this section, we describe the main operation that our algorithm is based on.
For two point sets P and Q, we define the set P +Q of points by

P +Q := {p+ q | p ∈ P, q ∈ Q}.

This addition operation is also known under the name “Minkowski sum”. (See,
e.g., [dBvKOS]).

P + Q may contain up to |P | · |Q| points. Given two point sets A and B, by
joining A and B, we mean computing a concave sequence t1, . . . , tm of points
from A+B such that {t1, . . . , tm} upper-dominates every point of A+B. Note
that this notion is different from the notion of “merging two (upper) convex
hulls”. Joining the sequences is basically the same as computing the upper convex
hull of A +B (which upper-dominates every point of A+ B). The only (rather
unimportant) difference is that the set {t1, . . . , tm} is not required to be minimal.
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Example: Let A = {(1, 1), (2, 3), (3, 4)}, B = {(1, 1), (3, 5), (4, 6)}, then

A+B = {(2, 2), (4, 6), (5, 7), (3, 4), (5, 8), (6, 9), (4, 5), (6, 9), (7, 10)}

and the set {(2, 2), (3, 4), (5, 8), (6, 9), (7, 10)} upper-dominates every point in
A+B. The upper convex hull of A+B is given by (2, 2), (5, 8) and (7, 10).

The trivial approach to computing a set which upper-dominates every point
of A+B would be to first compute all points in A+B and to apply a convex hull
algorithm to the resulting set. This would take time at least |A| · |B| which would
be too slow for our purposes. Instead, we apply an algorithm for computing the
Minkowski sum of two convex polygons (see [dBvKOS], Theorem 13.11) to our
setting. As a consequence, we can join A and B in time O(|A| + |B|), if upper-
dominating sets for A and B are already given. For the sake of completeness, we
describe the algorithm for joining A and B below.

Let p1, . . . , pr and q1, . . . , qs be two concave sequences. We show how these
two sequences can be joined in time O(r + s). Define the two slope sequences
Δ1, . . . , Δr−1 and Δ′

1, . . . , Δ
′
s−1 by

Δi := inc(pi, pi+1) and Δ′
i := inc(qi, qi+1).

The two sequences are monotone decreasing. Thus, we can merge them in time
O(r + s) into one sequence Δ′′

1 , . . . , Δ
′′
r+s−2 which is also monotone decreasing.

For this purpose, the well-known merge step from the mergesort algorithm can
be used. We can define the sequence t by the following algorithm. The algorithm
works as follows: The points t1, . . . , tr+s−1 are chosen one by one. When t� =
pi + qj is already chosen, then it is checked whether the slope from t� to the
point pi+1 + qj or to the point pi + qj+1 is larger and the corresponding point is
chosen as the next point t�+1. Here is the procedure in algorithmic notation:

JOINING(p1, . . . , pr, q1, . . . , qs) # Output is the sequence t1, . . . , tr+s−1.
i := 1; j := 1; t1 := p1 + q1;

while i+ j ≤ r + s− 1 do
begin # The next run through the loop will define ti+j .

if i = r then j := j + 1; goto (*)
if j = s then i := i+ 1; goto (*)
# Now the test whether Δi ≥ Δ′

j :
if inc(pi + qj , pi+1 + qj) ≥ inc(pi + qj , pi + qj+1)
then i := i+ 1 else j := j + 1;
(*) ti+j−1 := pi + qj .

end;

Theorem 2. Every point in {p1, . . . , pr} + {q1, . . . , qs} is upper-dominated by
{t1, . . . , tr+s−1}. The running time of the algorithm is O(r + s).

Proof: The statement on the running time is obvious. For the proof of the upper-
domination, let us first note a few trivial properties of the t-sequence:
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I) t1 = p1 + q1 and tr+s−1 = pr + qs.
II) If ti = pk + q�, then either ti+1 = pk+1 + q� or ti+1 = pk + q�+1.

III) The t-sequence is concave.

We claim that for every 1 ≤ i ≤ r and 1 ≤ j ≤ s, the point pi + qj is upper-
dominated by {t1, . . . , tr+s−1}. To show this, choose t� = pi′ + qj′ in such a way
that � is the smallest index where i′ = i or j′ = j. I.e., t� is the first point in
the sequence which is of the form pi + q··· or p··· + qj . W.l.o.g., we can assume
that t� = pi + qj′ , where (due to property II)), j′ ≤ j. Consider the sequence of
points

sj′ := t� = pi + qj′ , sj′+1 := pi + qj′+1, . . . , sj := pi + qj .

The sequence of differences (sj′+1−sj′ , . . . , sj−sj−1) = (qj′+1−qj′ , . . . , qj−qj−1)
is a subsequence of t�+1 − t�, . . . , tr+s−1 − tr+s−2: This is due to properties I)
and II) and the fact that t� = pi + qj′ .

Thus, we can apply Lemma 3 to obtain that the points sj′ , . . . , sj are upper-
dominated by {t�, . . . , tr+s−1} and thus upper-dominated by {t1, . . . , tr+s−1}.
Since sj = pi + qj , the claim follows. �
It should also be clear that an analogous joining operation for lower-domination
and convex sequences can be defined and that an analogous algorithm for im-
plementing this joining operation exists.

5 The Algorithm for Solving the Generalized Maximum
Subsequence Problem

The basic idea of our algorithm is the following: There are Θ(n2) intervals of the
form [i, j] with i ≤ j.

Each of them can be mapped to a point pi,j := (�(i, j), sum(i, j)) in R2.
For the divide-and-conquer step that we use, it is important to realize that
pi,j = pi,k + pk+1,j for every k with i ≤ k ≤ j − 1.

Let M := {pi,j | 1 ≤ i ≤ j ≤ n} be the set of all these points. The generalized
maximum subsequence problem asks for the maximum of f(m) where m ∈M .

Since f is a quasiconvex function, it assumes its maximum value on M on a
point in the convex hull of M . Since |M | = Ω(n2) is possible, it is prohibitive to
compute M first and then compute the convex hull of M by a standard approach.

Our algorithm (in its current form) does not explicitly construct the convex
hull of M , but it evaluates f on a subset of M which is a superset of the convex
hull of M . Thus, it finds a point where f assumes its maximum value. We obtain
an overall running time of O(n logn).

Note that with the help of extra merge steps, one could also use our algorithm
for computing the convex hull of M in time O(n log n). Although |M | = Ω(n2)
is possible, this does not contradict the known lower bound for convex hull
algorithms as the set M is given implicitly.

Before we describe our algorithm, let us state another two simple properties
of upper- and lower-domination:
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Lemma 4

i) If a is upper-dominated by A and b is upper-dominated by B, then a + b is
upper-dominated by A+B.

ii) If p is upper-dominated by A and lower-dominated by B, then p is a convex
linear combination of A ∪B.

The proof of i) is an easy exercise which uses that a point a which is a convex
linear combination of A and a point b which is a convex linear combination of
B satisfy that a+ b is a convex linear combination of A+B.

The proof of ii) uses the fact that pup is a convex linear combination of A,
pbelow is a convex linear combination of B and that p is a point on the line
between pup and pbelow.

Our algorithm uses a divide-and-conquer approach. If the array length n is equal
to 1, it is easy to compute the maximum.

For n > 1, we divide the array into two halves of lengths �n/2� and �n/2�
each, then solve the problem recursively in both halves. These two recursive
calls take care of all intervals that are completely contained in the left half of
the array and those that are completely contained in the right half of the array.
Let OPTleft be the maximal function value in the left half and OPTright be the
maximal function value in the right half.

It remains to compute OPTcrossing, the maximal function value of intervals
that contain at least one element from the first half and at least one element
from the second half. The final result is then the maximum of those three values,
i.e., max{OPTleft,OPTright,OPTcrossing}.

Computing OPTcrossing is the part where the joining procedure from Section 4
comes into play.

Figure 1 on the next page provides the algorithm ALGO(i, j) in algorithmic
notation. In order to avoid notational mess caused by rounding, it is assumed in
the description that the length of the input array is a power of two.

Theorem 3. ALGO(1, n) solves the generalized maximum subsequence problem
in time O(n logn).

Proof: By induction on the length of the array. The induction base is trivial.
In the induction step, we know that OPTleft yields the maximal f -value for all
intervals that lie completely in the subarray ai, . . . , amiddle and that OPTright
yields the maximal f -value for all intervals that lie completely in the subarray
amiddle+1, . . . , aj. We call an interval crossing if it starts in the first half and ends
in the second half. The set of points that crossing intervals are mapped to, is
given by

M := {
(
�(g, h), sum(g, h)

)
| i ≤ g ≤ middle and middle + 1 ≤ h ≤ j}.

By definition, we have OPTcrossing = max{f(m) | m ∈ M}. Since the algo-
rithm computes max{f(m) | m ∈ T } in its last three lines, it remains to show
that

max{f(m) | m ∈ T } = max{f(m) | m ∈M}.
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ALGO(i, j) # find the maximal value of f on the subarray ai, . . . , aj

begin
if i = j then return f(1, ai); # Trivial case. Length is 1 and sum is ai.
middle := (j + i − 1)/2;
length := middle − i + 1; # Length of a half.
OPTleft := ALGO(i, middle);
OPTright := ALGO(middle + 1, j);

# Now treat the crossing intervals. First treat the left half.
b1 := (1, amiddle); for k = 2 to length, set bk = bk−1 + (1, amiddle−k+1).

# Thus, bk = (k, sum(middle − k + 1, middle)),
# i.e., the first coordinate of bk is k and its
# second coordinate is the sum of the interval that ends
# with array index middle and has length k.
# Now the right half.

In a similar fashion, compute b′
k = (k, sum(middle + 1, middle + k)),

for all k = 1, . . . , length.
# I.e., the second coordinate of b′

k is the sum of the interval that
# begins with array index middle + 1 and has length k.

(*)
Compute the upper convex hull p1, . . . , pr of the points b1, . . . , blength.
Compute the upper convex hull q1, . . . , qs of the points b′

1, . . . , b
′
length.

Join the two (concave) sequences p1, . . . , pr and q1, . . . , qs, using
the joining algorithm from Section 4.
The joining algorithm outputs a sequence t1, . . . , tr+s−1.

(**)
Repeat steps (*) to (**), with the lower instead of the upper convex hull and
the analogous joining algorithm. Call the output sequence t′

1, . . . , t
′
r′+s′−1.

Set T := {t1, . . . , tr+s−1} ∪ {t′
1, . . . , t

′
r′+s′−1}.

Evaluate f on all points in T and set OPTcrossing := max{f(x) | x ∈ T}.
return max{OPTleft, OPTright, OPTcrossing}

end

Fig. 1. The algorithm for the generalized maximum subsequence problem

We first show that “≤” holds by showing that T ⊆M :
Each crossing interval can be divided into two intervals, the first of which ends

with position middle and the second of which starts with position middle + 1.
Hence, it is clear that M is exactly the set {b1, . . . , blength}+ {b′1, . . . , b′length}.

The points p1, . . . , pr are elements from {b1, . . . , blength}, the points q1, . . . , qs

are elements from {b′1, . . . , b′length}, thus {t1, . . . , tr+s−1} ⊆ M . In an analogous
fashion, {t′1, . . . , t′r′+s′−1} ⊆M can be shown. It follows that T ⊆M .

We now show that “≥” holds. Consider a point m from M , i.e., a point of the
form m = bu + b′v for some u and v.

Assume that bu + b′v is upper-dominated by T and lower-dominated by T . We
will show in a moment that this does indeed hold.



188 T. Bernholt and T. Hofmeister

From Lemma 4, we then obtain that bu + b′v is a convex linear combination of
T and by the property of quasiconvex functions mentioned before Definition 2,
it follows that f(m) = f(bu + b′v) ≤ max{f(x) | x ∈ T }.

We now show that bu + b′v is upper-dominated by T : {p1, . . . , pr} is an up-
per convex hull for b1, . . . , blength, i.e., bu is upper-dominated by {p1, . . . , pr}.
Likewise, b′v is upper-dominated by {q1, . . . , qs}.

By Lemma 4, bu + b′v is upper-dominated by {p1, . . . , pr} + {q1, . . . , qs}. By
Theorem 2, every point in {p1, . . . , pr}+ {q1, . . . , qs} is upper-dominated by the
computed set {t1, . . . , tr+s−1}. By “transitivity”, every point in bu + b′v is thus
upper-dominated by {t1, . . . , tr+s−1}.

In a similar fashion, one can show that every bu + b′v is lower-dominated by
{t′1, . . . , t′r′+s′−1}. Thus, every bu + b′v is upper-dominated and lower-dominated
by T , and we are done.

Now for the running time. In the algorithm, we compute the lower and upper
convex hulls of the points b1, . . . , blength and b′1, . . . , b

′
length. This can be achieved

in linear time O(n), since the x-coordinates of the sequences are already in sorted
order.

Define V (n) as the time our algorithm takes on inputs of length n. We then
have the recursive inequality

V (n) ≤ V (�n/2�) + V (�n/2�) + c · n,

for some constant c > 0. The first two terms stem from the recursive calls, the
term c · n estimates the time spent in computing the upper and lower hulls,
joining the hulls and evaluating f on the candidate set. Here, we use the fact
that the candidate set contains at most n points. It is well-known that the above
inequality can be estimated by V (n) = O(n log n). �

6 Open Problems

It is a natural question whether the generalized maximum subsequence problem
can also be solved in linear time O(n) or whether it is so general that one can
show a lower bound of Ω(n log n) for at least one quasiconvex function f .
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Abstract. Given a graph with edges colored Red and Blue, we wish
to sample and approximately count the number of perfect matchings
with exactly k Red edges. We study a Markov chain on the space of all
matchings of a graph that favors matchings with k Red edges. We show
that it is rapidly mixing using non-traditional canonical paths that can
backtrack, based on an algorithm for a simple combinatorial problem.
We show that this chain can be used to sample dimer configurations on
a 2-dimensional toroidal region with k Red edges.

1 Introduction

Counting the number of matchings in a graph is a well-studied problem in com-
binatorics and computer science. Counting the number of perfect matchings in
a bipartite graph is equivalent to computing the permanent of a matrix with
0, 1 entries. This problem is also of interest in statistical physics in the context
of understanding the thermodynamic properties of a dimer system [3, 4]. Moti-
vated by this application, Kastelyn showed that for planar graphs the number
of perfect matchings can be computed exactly [9]. Recently Jerrum, Sinclair
and Vigoda [6] gave an fpras (fully polynomial approximation scheme) approxi-
mating the number of perfect matchings in any bipartite graph, which is based
on an fpaus (fully polynomial almost uniform sampler) for generating random
perfect matchings.

A natural generalization of the matching problem is when the edges of the
graph are colored Red or Blue:

Problem: Given a graph G(V,E), a partition E = R ∪ B, and k ≤ |V |
2 , count

the number of perfect matchings in G with exactly k edges in R.

The decision version of this problem is to find a matching with exactly k Red
edges. These problems have been studied in combinatorial optimization [12] as
well as statistical physics [2]. There are several open questions regarding both
the decision and the counting versions of this problem. For the decision version
of this problem, known as exact matchings, Mulmuley, Vazirani and Vazirani
[11] give a randomized algorithm for general graphs. A deterministic algorithm
is known only when the graph is complete or complete bipartite [8, 14].
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A special case of the counting problem, of interest in statistical physics, is
where G is the

√
n ×

√
n 2-dimensional lattice and the horizontal edges are

Red, while the vertical edges are Blue. We wish to count the number of dimer
coverings with exactly k horizontal edges, as well as solve the sampling problem.
Fisher [2] gave a closed form solution for the limiting distribution (as the size
of the lattice tends to infinity) of configurations in terms of the activities λ and
μ of horizontal and vertical dimers, where the weight of a configuration with k
horizontal edges and k′ vertical edges is given by λkμk′

. To our knowledge, ours
is the first work to address the sampling/counting problem for general graphs.

We make progress on this problem for general graphs and solve the problem
in some natural special cases. Our results for general graphs are best viewed in
terms of the partition function for matchings. Throughout, letM denote the set
of all matchings of an input graph G, and P denote the set of perfect matchings.
The standard partition function on matchings

Z(λ) =
∑

M∈M
λ|M|

can be approximated for all λ by the algorithm of Jerrum and Sinclair [5]. We
show that we can approximate a modified partition function which puts most
weight on (k, �)-matchings, i.e. matchings of size � with exactly k Red edges.

Theorem 1. For any G(V,E) with a partition of the edges E = R∪B, activities
λ, μ ≤ 1, any � ≤ |V |/2 and k ≤ �, there is an fpras for estimating the following
partition function over weighted matchings:

Zk,�(λ, μ) =
∑

M∈M
λ||M∩R|−k|μ||M|−�|. (1)

An n-vertex graph is dense if it has minimum degree dmin > n/2. A bipartite
graph with each partition of size n is dense if it has dmin > n/4.

Theorem 2. For any dense graph G(V,E), activity λ ≤ 1, and k ≤ |V |/2, there
is an fpras for estimating the following partition function:

Ẑk(λ) =
∑
P∈P

λ||P∩R|−k|. (2)

We approximate the partition functions within a factor (1±ε) w.p. ≥ 1− δ. The
running time in each case is polynomial in 1/λ, 1/μ, 1/ε, log(1/δ) and the size of
the graph.

We demonstrate the significance of these results on the 2-dimensional torus
Zm1 × Zm2 for even m1,m2, taking the horizontal edges to be Red and the
vertical edges to be Blue. In particular, we present a polynomial time algorithm
for approximately sampling and counting the set of perfect matchings (or dimer
coverings) with exactly k Red edges. We note that there are algorithms to
exactly count the number of perfect matchings on the 2-d torus [9] which can
be extended to bichromatic matchings. However, our proof can be extended to
the monomer-dimer model in which we approximately sample and count (k, �)-
matchings of the 2-d torus, giving the first solution to this problem.
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Theorem 3. Given any torus Zm1 × Zm2 with m1 and m2 even, any non-
negative integer k ≤ m1m2/2 and any � ≥ k, there is an fpaus for generating a
random (k, �)-matching of the torus and an fpras for estimating the number of
such matchings that run in time polynomial in m1 and m2.

Theorem 1 uses a Markov chain defined on the set of all matchings of the graph
which puts most weight on (k, �)-matchings. We use the canonical paths technique
to bound the convergence rate of the Markov chain. Here, these paths are non-
trivial to define, in contrast to the usual matching problem where the analysis
of the path congestion was the harder task.

The combinatorial fact that enables us to define our paths is as follows. Con-
sider a graph with edges colored Red and Blue. For any k and for all perfect
matchings P, P ′ with exactly k Red edges, there is a polynomial length path
between P and P ′ along almost perfect matchings, with successive matchings
differing by only a few edges, such that each contains close to k Red edges. We
can reduce the problem of finding such a path to a combinatorial problem about
moving two points along a two-dimensional landscape in a co-ordinated manner
so that the sum of their heights stays constant. The canonical path from P to
P ′ defined in [5] starts at the matching P and alternately deletes an edge of
P ′ and adds an edge of P ′ along an alternating cycle. An interesting aspect of
our canonical paths is that they may backtrack along portions of the alternating
cycle, for instance we might delete edges of P ′ that were previously added.

Our second technical contribution is proving combinatorial inequalities that
allow us to approximate the number of (k, �)-matchings on the torus. Kenyon,
Randall and Sinclair [10] showed that the number of near perfect matchings in
the d-dimensional torus is polynomially related to the number of perfect match-
ings, thereby yielding polynomial time algorithms for approximately counting
and uniformly sampling perfect matchings. In this paper, we generalize their re-
sult to show that, on the 2-d torus, this relationship holds even when we restrict
to sets of matchings with exactly k Red edges. Our result builds on ideas of
Temperley [13] and Burton and Pemantle [1] for constructing augmenting paths
where every horizontal and vertical segment has even length.

2 Approximately Counting Bichromatic Matchings

We outline the proof of Theorem 1 in this section; similar ideas are used to
prove Theorem 2. By a standard reduction, approximating the partition function
Zk,�(λ, μ) can be reduced to approximate sampling [7], so we concentrate on the
sampling problem and defer the details of the fpras to the full version.

To solve the sampling problem we define a Markov chain on the set of match-
ings M which puts most weight on (k, �)-matchings. The same chain was used
by Jerrum and Sinclair [5], with the transition probabilities defined so that the
stationary distribution was uniform over all matchings.

The Markov Chain T . The state space is M, the set of all matchings of G.
Let � ≤ |V |/2, 0 ≤ k ≤ � and 0 < λ, μ ≤ 1. Define the weight of a matching M ,
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as w(M) = λ|k−|M∩R||μ|�−|M||. The transitions Mt →Mt+1 of T are defined as
follows.

From a matching Mt, choose a random edge e = (u, v) ∈ E.

1) If e ∈Mt set M ′ = Mt \ {e}.
2) If M ∈ N (u, v), (i.e. u, v are unmatched), set M ′ = Mt ∪ {e}.
3) If for z �= v, Mt ∈ N (u, z) and (w, v) ∈Mt, set M ′ = (Mt ∪ {e}) \ (w, v). Set
Mt+1 = M ′ with probability 1

2 min(1, w(M ′)/w(M)), else set Mt+1 = Mt.

It is straightforward to verify that the Markov chain is connected, aperiodic
and reversible and has stationary distribution proportional to w(M).

Intuition for the Canonical Paths
In the canonical path method for bounding the mixing time of a Markov chain,
for each pair of matchings I, F , we define a path from I to F along transitions
of the chain. We need to bound the congestion of these paths through every
transition to show that the Markov chain converges quickly.

The approach of Jerrum and Sinclair [5] to obtain this bound is to focus on a
specific transition T . For each pair (I, F ) whose path uses the transition T , we
define an “encoding” E, which is also a matching; T and E let us recover (I, F ),
so E can be viewed as an injective map. Then the number of (I, F ) pairs whose
path uses T is at most the number of matchings, which is |Ω|. This is sufficient
to bound the congestion for unweighted matchings. For weighted matchings, we
also need to show that w(I)w(F ) ≤ w(T )w(E)poly(n). The encoding is defined
as E = (I ∪ F ) \ (M ∪M ′) where T = M → M ′, so E can be viewed as the
complementary matching of T with respect to (I, F ).

Suppose that � = |V |/2 so that we favor perfect matchings. If I and F are
perfect matchings with k Red edges, they have maximum weight. The weight
of transitions and encodings along the canonical path from I to F must be
comparable to the weight of I and F . Hence, both T and E need to contain
close to k Red edges, and simultaneously be close to a perfect matching (i.e.,
have only a constant number of unmatched vertices or “holes”).

Consider the perfect matchings I, F , and suppose I ⊕ F (the symmetric dif-
ference of I and F ) consists of a single alternating cycle. The transitions of the
chain allow us to easily “unwind” this alternating cycle: remove one of the edges
of I on the cycle, then perform a series of shifts (moves of type 3), and then add
the final edge of the cycle of F .

To see the difficulty, suppose, as in Figure 1, this cycle alternates Red on
I and Blue on F on one half of the cycle, and Blue on I and Red on F on

w0

v0

BLUE,

BLUE, RED, I

RED,

I

F F

Fig. 1. An alternating cycle in I ⊕ F

wv

G

00

S

Fig. 2. Landscape for cycle
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the other. Then, no matter where we start the unwinding there will be some
intermediate matching with far more (or far less) Red edges than the intended
k. Notice that in this example there are two vertices v0, w0 so that if we unwind
from these two points simultaneously then we can ensure that the number of
Red edges differs from k by at most a constant. It turns out that we can always
choose two such positions to begin the unwinding of the cycle. To define the
unwinding, it is helpful to look at the alternating cycle together with a function
representing the number of Red edges gained along the cycle.

However, the protocol for unwinding is not straightforward and we may need
need to backtrack (switch edges back from F to I) from one position to continue
unwinding at the other. Hence, it is not obvious whether our paths can always
make progress. Additionally, the picture is more complicated when I⊕F consists
of multiple cycles and paths with varying lengths and numbers of Red edges.
We focus on formalizing the problem of unwinding a single alternating cycle and
defer the general case to the full version.

Paired Mountain Climbing
Consider the case that I ⊕ F is a single alternating cycle and I and F both
contain exactly k Red edges. We would like to transform the cycle from I to F
so that all the intermediate matchings have close to k Red edges.

For every other vertex v on the alternating cycle, assign −1, 0 or +1 to denote
the change in the number of Red edges. Thus, for e = (u, v) ∈ I, e′ = (v, w) ∈ F ,
f(v) = 1e′∈R − 1e∈R, where 1 is the indicator function. Fix a start vertex on
the cycle, say v0, and a direction for unwinding the cycle. For every vertex v2�+1

on the cycle, let G(v2�+1) =
∑�

i=0 f(v2i+1), where v0 → v1 → · · · → v� is the
alternating path from v0 to v�. The function G defines a “landscape”, as shown
in Figure 2.

It can be shown that if |I ∩ R| = |F ∩ R| = k, then there always exists a
vertex v0 so that G(v0) = 0, G(v�) ≥ 0 for all �, and 0 again at the last vertex.
We choose a companion start vertex for v0 which is a (global) maximum, denote
this vertex as w0. Let S = G(v0)+G(w0). We break the alternating cycle into a
pair of alternating paths, P = {v0, v1, . . . , vn} and Q = {w0, . . . , wm}, where vn

is the vertex before w0 and wm is the vertex before v0.
We now start unwinding the cycle at the vertices v0 and w0. If unwinding

from one of the positions adds a Red edge, then from the other position we
need to remove a Red edge by moving forward or backwards as necessary. Thus,
if at some intermediate step we are at vertices vi and wj , we need that (G(vi)−
G(v0)) + (G(wj)−G(w0)) = 0, i.e. G(vi) +G(wj) = S. The mountain climbing
problem is to determine a (short) trajectory from (v0, w0) to (vn, wm) so that
at each intermediate step (vi, wj) we have G(vi) +G(wj) = S. We may need to
move backwards on one path in order to move forward on the other path, and
this corresponds to rewinding the cycle.

We defer the details of the canonical paths for general I, F to the full version
and focus instead on the algorithm for the mountain climbing problem which
has all the ideas necessary to solve the problem in general.
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The Algorithm for Mountain Climbing
A landscape is a function P : [n] → Z≥0 such that for 1 ≤ i ≤ n − 1, |P (i +
1)− P (i)| = 1 (see Figure 3). For n,m > 1, given landscapes P : [n]→ Z≥0 and
Q =: [m]→ Z≥0, we say P and Q are S-matched if there is an integer S s.t.

i) P (1) +Q(m) = P (n) +Q(1) = S
ii) P (1) = mini{P (i)}, P (n) = maxi{P (i)}, Q(1) = maxj{Q(j)}, Q(m) =

minj{Q(j)}.

A traversal of S-matched landscapes P,Q is a sequence (i1, j1), · · · , (i�, j�), s.t.

i) i1 = 1, j1 = 1, i� = n, j� = m
ii) For 1 ≤ k ≤ �− 1, |ik+1 − ik| = 1, |jk+1 − jk| = 1 and P (ik) +Q(jk) = S.

Lemma 1. Let P and Q be S-matched landscapes on [n] and [m] respectively.
Then, there exists a traversal of P and Q of length at most O(nm) and it can
be found in time O(nm).

Proof. The proof is by induction on n + m. Let S = min + max, where f1 =
gm = min and fn = g1 = max. Assume that the min < max, otherwise, the
problem is trivial. Also, we use “(1, n, 1,m)” as shorthand for the problem of
determining a traversal for P,Q. We start by showing the inductive step and
conclude with the base cases.

Case I: P has a maximum or minimum at i where 1 < i < n.

0

S

P

1 ni j j’

Q

S

0
1 m

h
S−h

Fig. 3. Case Ia

Case Ia: Suppose that the first such point i is a maximum (Figure 3). Let h be
the lowest value taken by P from i to n. Let j be the first point between i and n
such that P (j) = h. Since both i and n are maxima of P , i < j < n. Let j′ be the
first point going from m to 1 (the direction here is important) such that Q(j′) =
S−P (j). Note that it may be that j′ = 1, but since m is a minimum ofQ, j′ < m.
To find a traversal of P,Q, it is enough to concatenate the traversals for the
following subproblems, in the given order: (1, i, 1,m), (i, j,m, j′), (j, n, j′,m).
The functions on the shorter intervals take their values from P and Q. It can be
verified that in each case, we obtain a problem of finding a traversal for smaller
S-matched landscapes.

Case Ib: The first such point i is a minimum (Figure 4). Let h be the maximum
value taken by P from 1 to i. Let j be the first point between 1 and i such that
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0
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11 n mij j’

h
S−h

Fig. 4. Case Ib

P (j) = h. Since both 1 and i are minima of P , 1 < j < i. Let j′ be the first
point after 1 where Q(j′) = S − h. Since j is not a minimum of P , j′ > 1. In
this case, concatenate the traversals for the following subproblems in the given
order to obtain a traversal of P,Q: (1, j, 1, j′), (j, i, j′, 1), (i, n, 1,m).

Case II: Q has a maximum or minimum at i where 1 < i < m. This case follows
by symmetry from Case I.

Case III: The last case is when there is a unique maximum and minimum
on P and Q. We concatenate the traversals for the subproblems (1, 2, 1, 2) and
(2, n, 2,m), both of which are smaller problems than (1, n, 1,m). It can be verified
that in both cases we are reduced to the problem of finding a traversal for S-
matched landscapes. Note that to show this, it is crucial to use the fact that P
and Q have a unique minimum and maximum.

For the base case, let n = 2. Then, m = 2 since we may assume the paths
have unique maximum and minimum, otherwise we go by induction. Since the
paths are S-matched, the only possibility (upto a reversal of direction) is that
P is a landscape going ’up’, and Q is a landscape going ’down’. The traversal is
the obvious one.

Finally, we show by induction that there is a traversal of P,Q of length at
most O(nm) and it can be found in time O(nm). If n = 2, the traversal is
obvious and is of length O(m). If n,m > 2, in each of the three cases above, the
traversal restricted to P is obtained by traversing edge-disjoint ’sublandscapes’.
Hence, the length of the traversal is at most O(nm) by induction. The proof
above gives an O(nm) algorithm. ��

Our solution to the mountain climbing problem allows us to define the canonical
paths for matchings I, F . The canonical paths are defined so that every pair of
successive matchings along the path is a transition of the Markov chain and the
size of an intermediate matching lies between the sizes of I and F and consists
of [IR − 5, FR + 1] Red edges, where IR = |I ∩R|, FR = |F ∩ R| and IR ≤ FR.
Essentially, we think of the concatenation of all the paths and cycles of I ⊕ F
as one long landscape, and apply Lemma 1 without ever unwinding more than
constantly many cycles or paths at any time. By the previous argument, the
paths are at most of polynomial length. With standard machinery it is now
straightforward to show that the Markov chain mixes in polynomial time. The
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details can be found in the full version. This completes the outline of the proof
of Theorem 1.

3 Bichromatic Matchings on the Torus

Let Gm1,m2 be the torus Zm1 ×Zm2 with horizontal edges colored Red and ver-
tical edges Blue. It is known that the total number of near perfect matchings is
polynomially related to the number of perfect matchings [10]. We first generalize
this result to relate near-perfect matchings restricted to k Red edges and perfect
matchings on close to k Red edges. Our goal will be to show that the number
of matchings with k red edges does not vary much as we change the size of the
matching. We will show this by defining maps from one set of matchings to the
other that are invertible with a small amount of additional information. This will
allow us to define an fpras for counting the number of (k, �)-matchings of the
torus. Let N i

k be the set of (k,m1m2/2− i)-matchings of Gm1,m2 . Let Pk = N 0
k .

Let Nk(u, v) be the set of (k,m1m2/2− 1) matchings with holes at u and v.
Let m1,m2 be even. Let V0 (white vertices) and V1 (black vertices) be the even

and odd sublattices of Gm1,m2 . Further refining these sets, let V00 be the set of
vertices both of whose co-ordinates are even: the sets V01, V10 and V11 are defined
analogously (Figure 5) . Note that if u, v are the holes of any near-perfect match-
ing of Gm1,m2 , then one of them is white while the other is black. Also, if m1,m2
are even, the number of Red edges in any perfect matching of Gm1,m2 is even.

Theorem 4. Let m1,m2 ∈ Z be even and N = m1m2/2. For 0 ≤ i ≤ N − 1
and 1 ≤ k ≤ N − 1 − i, there is a map fi : N i+1

k → N i
k ∪ N i

k+1 such that no
matching of N i

k ∪ N i
k+1 is mapped to by more than O(N3) matchings of N i+1

k .

Proof. We first prove the theorem for i = 0. Let N ∈ Nk(u, v) and assume wlog
that u = (u1, u2) is in V00. Define an alternating path Lu

1 in N as follows: start at
z0 = u, and follow the unmatched Red edge to the vertex z1 = (u1, u2+1). Now,
iteratively, if at an odd vertex z2i−1, follow the unique matched edge to z2i (see
figure 6). From each even vertex z2i along the path, take the unmatched edge in
the same direction as the edge (z2i−1, z2i), so each segment (in the horizontal or
vertical direction) of the path after the first step has even length. Continue in

1

1

1

111

0

0

0

000

Fig. 5. The sublattice V00
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v

1
u
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u
2L

Fig. 6. Alternating paths Lu
I , Lu

2
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this way until reaching v or revisiting a vertex, thus forming a cycle. The vertex
set is finite, so one of these will occur. Define an alternating path Lu

2 similarly,
except, start with the edge from u to (u1, u2 − 1). Note that every black vertex
on these paths is in V01, while the white vertices along the horizontal segments
are in V00, and those on the vertical segments are in V11. Finally, define the paths
Ku

1 ,K
u
2 similarly, so that the first edges are to the vertices (u1±1, u2). In this

case, the black vertices on the path are in V10, the white vertices on the vertical
segments are in V00 and those on the horizontal segments are in V11.

Let v = (v1, v2) ∈ V01. We use these four paths to define an alternating path
from u to v where the number of Red unmatched edges on the path is one more
than the number of Red matched edges. Inverting along this path gives a perfect
matching in Pk+1. Given a perfect matching obtained in this way, we will be able
to recover the near perfect matching with polynomial amount of information. We
define the alternating path from u to v, by considering these cases.

x

v

u
1

u
L

u
2L

Fig. 7. Lu
1 meets v

u

w

v

1

u
L

v
1

K

Fig. 8. The path Kv
1 meets C1

1. If one of the paths Lu
1 or Lu

2 reaches the vertex v before it cycles (Figure 7),
then this is the alternating path. Say the path Lu

1 reaches v. By construction,
the number of unmatched Red edges along Lu

1 is exactly one more than the
number of matched Red edges, hence inverting along the path gives P ∈ Pk+1.
To invert the map, given P ∈ Pk+1, start at v, if v is matched by a Blue (Red)
edge to the vertex x, the next unmatched edge along the path is taken to be the
other Blue (Red) edge incident with x. Continue in this way until u is reached.
2. If both paths Lu

1 , L
u
2 cycle without reaching v, we consider the following cases

based on whether these cycles are contractible.
(a) At least one of the paths, say Lu

1 , ends with a contractible cycle C1 on the
surface of the torus. It is easy to show that the interior of C1 contains an odd
number of vertices, and the number of black vertices exceeds the white vertices
by 1. Hence, the interior of C1 must contain an odd number of unmatched ver-
tices and the unmatched vertex in the interior cannot be white: in particular, it
cannot be u itself. So, v must lie in the interior of C1. Consider the path Kv

1 (see
Figure 8). SinceKv

1 cannot cycle in the interior of C1 or end at an unmatched ver-
tex, it must meet C1. By construction, the white vertices of Kv

1 are in V11, hence
the path meets the cycle on a vertical segment, say at the vertex w. The alternat-
ing path from u to v is defined by taking the subpath of Lu

1 from u to w, and the
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subpath of Kv
1 from v to w. The number of unmatched Red edges in the alter-

nating path is one more than the number of matched Red edges, and so inverting
along the path gives P ∈ Pk+1 as required. Moreover, given P , and the edge in-
cident to w in the original matching, the alternating path can be reconstructed.
(b) Both paths Lu

1 , L
u
2 end in non-contractible cycles on the surface of the torus.

There are two possibilities, and we give a sketch of the arguments.

i) The cycles C1 and C2 are disjoint. This implies that the paths Lu
1 and Lu

2
are disjoint except at u. When a torus is cut along an incontractible simple
cycle, we are left with a cylinder. If we cut along the cycles C1 and C2, we
are left with 2 cylinders, one of which contains u and the paths Lu

1 , L
u
2 . The

other cylinder can be shown to have an even number of vertices. Since the
union of the two paths Lu

1 , L
u
2 is odd, the cylinder containing the paths has

an odd number of vertices, and hence contains the vertex v. As before, Kv
1

must hit one of the paths Lu
1 or Lu

2 since it cannot cycle on the cylinder.
ii) The cycles C1, C2 are not disjoint. In this case it can be shown that there

exists a contractible cycle on the surface of the torus which can be cut out
by starting at u along Lu

1 , and ending at u along Lu
2 (some edges may be

used twice, once from above and once from below). As before, the inte-
rior contains an odd number of vertices which must be matched with each
other, and hence must contain the vertex v. Since the cycle containing v is
contractible, the path Kv

1 must hit one of Lu
1 , L

u
2 .

In each case Kv
1 hits the path from u on a vertical segment at a white vertex

in V11 Given a matching in Pk+1, u, v and the vertex at which the paths from u
and v meet, we can invert the map as described before.

In the case that v ∈ V10, the same arguments can be made, except that we
consider the paths Ku

1 ,K
u
2 , L

v
1, L

v
2 instead of Lu

1 , L
u
2 ,K

v
1 ,K

v
2 respectively. The

difference is that the alternating paths constructed have one unmatched Blue
edge more than the number of matched Blue edges along the path, so inverting
edges with non-edges along the alternating path from u to v gives a matching
in Pk. This completes the proof for i = 0.

In the case that i �= 0, suppose that N ∈ N i+1
k . Let u be the lexicographically

first unmatched white vertex of N , and assume that u ∈ V00. If one of Lu
1 , L

u
2

meets a black unmatched vertex v, then switching edges along the path from u
to v gives a matching in N i

k+1. If not, then both Lu
1 , L

u
2 cycle.

Suppose Lu
1 ends in a contractible cycle C1. The interior of C1 contains an odd

number of vertices, including the vertices possibly on a segment of Lu
1 starting

at u. Hence, the interior contains an odd number of unmatched vertices. Since
black vertices outnumber white vertices by one, the number of black unmatched
vertices outnumber white unmatched vertices by one. In particular, the interior
contains at least one black unmatched vertex, call it v.

Consider the paths Kv
1 ,K

v
2 . If either one reaches a white unmatched vertex in

the interior (including u), then switching edges along that path gives a match-
ing in N i

k. Otherwise, if either one hits Lu
1 , say at a vertex w, then we can

switch edges along Lu
1 from u to w, and then along Kv

1 from v to w to obtain a
matching either in N i

k+1 or N i
k depending on whether v is in V01 or V10. If the
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paths Ku
1 ,K

v
2 do not hit a white unmatched vertex or Lu

1 , they must cycle in
a contractible cycle in the interior. Consider one of the paths, say Kv

1 . Repeat
the same argument as before, except now we consider white vertices u′ in the
interior of the cycle, and consider the paths Lu′

1 , L
u′

2 . Depending on whether u′

is in V00 or V11 and the sublattice of v, alternating along the paths as before
gives a matching either in N i

k or N i
k+1. We can repeat this argument until we

obtain an alternating path between a black and a white vertex, or, the interior
of some cycle created by a vertex contains only one unmatched vertex. Since the
single unmatched vertex cannot be the same as the vertex from which the cycle
was created, this case can be solved in the same manner as the case when i = 0.

The remaining case, when Lu
1 , L

u
2 end in incontractible cycles, is similar to

Case 2 above. ��
Corollary 1. Let m1,m2 be even, N = m1m2/2. There is an algorithm to es-
timate the partition function Ẑk given in Equation (2) for every λ ≤ 1 and k to
within (1 ± ε) w.p. ≥ 1− δ in time polynomial in N,λ, 1/ε and log(1/δ).

We can use similar arguments to relate the number of perfect matchings with k
or k + 2 Red edges.

Theorem 5. Let m,n be even, N = mn/2. For every 0 ≤ k ≤ N − 2 even,
|Pk+2|/p(N) ≤ |Pk| ≤ p(N)|Pk+2|, where p is a polynomial.

Proof. It suffices to show the upper bound for all k since the lower bound follows
by switching the colors.

We construct a map from Pk to Pk+2 as follows. Let P ∈ Pk. Delete any verti-
cal edge (u, v). Since k ≤ N −2, there must be such an edge. Consider the paths
Lu

1 , L
u
2 in P \(u, v). By parity, neither can reach v, and hence they must cycle on

the surface of the torus. Since u is adjacent to v on the torus, neither path can
end in a contractible cycle containing v in the interior. Hence both Lu

1 , L
u
2 end in

incontractible cycles. By the arguments of Case 2 of the previous theorem, the
path Lv

1 must hit one of the paths Lu
1 , L

u
2 at a white vertex w ∈ V11, i.e., on a ver-

tical segment. Then, switching along the alternating path from u to v through w
as before, we gain two Red edges, giving a matching in Pk+2. The mapping is in-
vertible given the vertex w and the vertices u, v, hence |Pk| ≤ O(N3)|Pk+2|. ��
Using this Theorem and the estimator given by Corollary 1, we obtain an esti-
mator for the set of perfect matchings of the torus with exactly k Red edges.
The proof follows from standard arguments.

Theorem 6. There is an algorithm to estimate |Pk| to within 1 ± ε for every
0 < ε < 1 with probability ≥ 1− δ in time polynomial in N, 1/ε and log(1/δ).

These results can be generalized to approximating the size of the set of (k, �)-
matchings for any �. By Theorem 1, we can approximate the partition function
Ẑk,� given in Equation (1) for every λ, μ ≤ 1 and 0 ≤ k ≤ � ≤ n. This estimator,
together with the relations among sets of restricted matchings of arbitrary size
(stated below) and the theorem of Kenyon, Randall and Sinclair [10] that the
sizes of the sets N i and N i+1 are polynomially related, gives an approximate
counter for sets of restricted matchings of any size.
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Theorem 7. Let m1,m2 be even, N = m1m2/2. For every 1 ≤ i ≤ N − 1,
and 0 ≤ k ≤ N − i − 1, then for some polynomial p, |N i

k+1|/p(N) ≤ |N i
k| ≤

p(N)|N i
k+1|.

The proof follows by constructing alternating paths as in Theorem 4.

Corollary 2. There is an algorithm to estimate |N i
k| to within 1 ± ε for every

0 < ε < 1 with probability ≥ 1− δ in time polynomial in N, 1/ε and log(1/δ).

Acknowledgements. Thanks to a referee for suggesting a simplification of the
statement of Lemma 1.
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Abstract. In this paper we consider the following question: how many
vertices of the discrete torus must be deleted so that no topologically
nontrivial cycles remain?

We look at two different edge structures for the discrete torus. For
(Zd

m)1, where two vertices in Zm are connected if their �1 distance is 1,
we show a nontrivial upper bound of dlog2(3/2)md−1 ≈ d0.6md−1 on the
number of vertices that must be deleted. For (Zd

m)∞, where two vertices
are connected if their �∞ distance is 1, Saks, Samorodnitsky and Zosin [8]
already gave a nearly tight lower bound of d(m− 1)d−1 using arguments
involving linear algebra. We give a more elementary proof which improves
the bound to md − (m − 1)d, which is precisely tight.

1 Introduction

In this paper we consider a “vertex multicut” problem on discrete torus graphs.
Let us begin by defining the two graphs of interest to us.

Definition 1. The �1 discrete torus of width m and dimension d, denoted
(Zd

m)1, is the undirected graph on vertex set Zd
m in which two vertices are con-

nected if their �1 distance is 1.
The �∞ discrete torus of width m and dimension d, denoted (Zd

m)∞, is the
undirected graph on vertex set Zd

m in which two vertices are connected if their
�∞ distance is 1.

We will also write (Zd)1 and (Zd)∞ for the similarly defined infinite graphs
on vertex set Zd.

In each of these tori we are interested in the set of cycles that “wrap around”
the torus in at least one dimension. Let us define this notion formally.

Definition 2. A cycle in (Zd
m)1 (respectively, (Zd

m)∞) is said to be noncontractible
if, when regarded as a loop inside the solid torus, it is homotopically nontrivial.

Main Problem. In this paper we want to study the minimal number of vertices
in either discrete torus that must be deleted so that every noncontractible cycle
is broken. In other words, we consider the problem of finding the set of vertices
of minimal size that intersects every noncontractible cycle in (Zd

m)1 or (Zd
m)∞.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 202–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We denote the minimal number for (Zd
m)1 by S1(m, d) and the minimal number

for (Zd
m)∞ by S∞(m, d).

We note that there are some obvious bounds that hold for both S1(m, d) and
S∞(m, d). A lower bound of md−1 follows by considering, in either graph, the
md−1 noncontractible cycles which are parallel to the first axis. These cycles
are vertex-disjoint, so at least one vertex must be deleted from each of them.
An obvious upper bound of md − (m − 1)d is obtained by deleting the union
of d “walls”, one in each dimension; by a “wall” we mean a set of the form
{x : xi = a} for some i ∈ [d], a ∈ Zm.

1.1 History and Motivation

The problem discussed in this paper is a natural one in the context of the com-
binatorics of the discrete torus (see e.g. [2, 1, 3]), but it has other motivations
as well.

Discrete Foams. Our problem is related to the isoperimetry of periodic tilings
of space. The connection is apparent from the following formulation of our prob-
lem. We say that a finite set S in Zd generates a discrete foam for (Zd)1 with
periodicity m · Zd if the set

Zd \ {S + v}v∈m·Zd

contains no paths in (Zd)1 of infinite length. (We can give a similar definition for
(Zd)∞.) It can easily be verified that our problem is identical to that of finding
the minimal size of a set generating a discrete foam with periodicity m · Zd.

This problem can be essentially regarded as that of finding a tiling of Zd with
periodicity m ·Zd that has minimal vertex boundary; this is a discrete version of
the problem of finding a (continuous) closed foam in Rd with periodicity Zd and
minimal surface area. Although there has been a lot of work on soap bubble and
foam problems in Rd and even on the flat torus — see e.g. [7] — very little is
known. We hope that discrete versions of the problem may prove to be a useful
source for new observations regarding foams.

Directed Minimum Multicut. Another area in which our problem arises is in
theoretical computer science, as was noted in a paper of Saks, Samorodnitsky
and Zosin [8]. This paper studied the integrality gap of the natural linear pro-
gramming formulation of the “directed minimum multicut” problem. This is the
problem in which one is given a directed graph and d “source-sink” pairs of ver-
tices (s1, t1), . . . , (sd, td), and one is required to delete as few edges as possible so
that there is no longer any si-to-ti path. To obtain their integrality gap bound,
Saks et al. translated the directed minimum multicut problem on a certain graph
to an undirected vertex-deletion problem. Specifically, they looked at the graph
([m]d)∞ — i.e., the d-dimensional, width m grid with �∞ edges — and studied
the following quantity:

Definition 3. S′
∞(m, d) is the minimum number of vertices in ([m]d)∞ that

need to be deleted to disconnect all d pairs of opposing walls.
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Clearly S′
∞(m, d) ≥ S∞(m, d). Saks et al. proved a lower bound of d(m−1)d−1 on

S′
∞(m, d), but their proof immediately gives the same lower bound for S∞(m, d).

This result yielded an integrality gap arbitrarily close to d (which is the best
possible) for the directed multicut problem. In this paper we improve the lower
bound for S∞(m, d) (and thus for S′

∞(m, d)) to md − (m − 1)d, which exactly
matches the upper bound mentioned earlier.

Parallel Repetition on Odd Cycles. Our original motivation came from a problem
in the study of parallel repetition of two-prover one-round games [4, 6], and in
particular a question due to Feige [5] about how the max-cut problem on odd
cycles behaves under parallel repetition.

The details of this problem are beyond the scope of this paper; suffice it to
say that it can be reduced to a problem very similar to that of eliminating cycles
in (Zd

m)∞ (we give more details in Section 3). However, it seems that solving
that problem requires a proof of a lower bound on S∞(m, d) that is “robust”, in
the sense that it should imply a nontrivial bound even under a certain relaxed
hypothesis. The lower bound of Saks et al. relies on a linear algebraic argument,
and this seems too fragile to give anything once hypotheses are relaxed. Our lower
bound, on the other hand, is proven using more elementary methods; hence it
seems to have more of a chance to be generalizable.

1.2 Our Results

We have two main results. Our first result is an improved upper bound on
S1(m, d).

Theorem 1. S1(m, d) ≤ dlog2(3/2)md−1.

As far as we know, no nontrivial upper bound on S1(m, d) was previously known.
Our second result is a lower bound on S∞(m, d) that precisely matches the

obvious upper bound already discussed. This result improves on the lower bound
of Saks, Samorodnitsky and Zosin [8] and eliminates their use of linear algebra.

Theorem 2. S∞(m, d) ≥ md− (m−1)d, and hence S∞(m, d) = md− (m−1)d.

2 The Upper Bound on S1(m, d)

Our main goal in this section is to prove Theorem 1, showing an upper bound
for S1(m, d). Before doing this, we will motivate our bound by giving a tight
construction in two dimensions which has size about (3/2)m.

2.1 A Tight Bound for (Z2
m)1

It is easy to see that the following set of size at most (3/2)m blocks all noncon-
tractible cycles in (Z2

m)1:

S = {(x, x) : x ∈ Zm} ∪ {(x,−x) : 0 ≤ x ≤ k/2}.
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Let us sketch a proof of this fact. It is well-known that in two dimensions, (Z2
m)∞

is dual to (Z2
m)1. The set S contains a cycle in (Z2

m)∞ that winds once in the first
dimension and no times in the second dimension — call such a cycle a (1, 0)-
cycle. This blocks all cycles in (Z2

m)1 except those of type (c, 0). But S also
contains a (0, 1)-cycle in (Z2

m)∞, thus blocking all (c, 0)-cycles in (Z2
m)1, c �= 0.

If we count precisely, we see that S actually has size (3/2)m − 1 when m
is even and size (3/2)m − 1/2 when m is odd. We will now show these upper
bounds are optimal by showing that (3/2)m− 1 is a lower bound.

So suppose S ⊂ Z2
m blocks all noncontractible cycles. To block all (1, 0)-cycles

S must contain some (a, b)-cycle, C, in (Z2
m)∞ with b �= 0. If either |a| or |b| is at

least 2 then C contains at least 2m points. So we may assume that C is of type
either (0, 1) or (1, 1). But now to block all cycles in (Z2

m)1 that are parallel to C
(i.e., have the same type as C), S must contain some other nontrivial cycle C′ in
(Z2

m)∞ not parallel to C. Hence we can conclude without loss of generality that
one of the following three cases occurs in (Z2

m)∞: (i) S has a (1, 0)-cycle and a
(0, 1)-cycle; (ii) S has a (1, 0)-cycle and a (1, 1)-cycle; or, (iii) S has a (1, 1)-cycle
and a (1,−1)-cycle.

For case (i), let C be the (1, 0)-cycle and C′ the (0, 1)-cycle. Suppose that
C contains t steps with vertical displacement of 1. Then it must also contain
exactly t steps with vertical displacement −1, because its type is (1, 0). Thus
C has length at least max(m, 2t). Also, C is contained in the union of t + 1
horizontal lines, so it follows that C′ must have at least m− t− 1 points not in
C, since it has type (0, 1). Thus S has size at least max(m, 2t)+m− t−1, which
is at least (3/2)m− 1, as claimed.

The argument for case (ii) is identical. For case (iii) things are even easier. In
this case let C be the (1, 1)-cycle, and note that C travels up at least m steps
and right at least m steps. If C is to have fewer than (3/2)m points by itself,
then at least m/2 of these steps must be shared; i.e., C must have at least m/2
(1, 1)-steps. Now let C′ be the (1,−1)-cycle. Then C′ needs to take at least m
steps that are either horizontal, vertical, or (1,−1)-steps. Since none of these
are the m/2 (1, 1)-steps of C, we conclude that C and C′ together have at least
(3/2)m vertices, as claimed.

2.2 Proof of Theorem 1

Having analyzed the case of d = 2, we will prove Theorem 1 by generalizing the
example from the previous subsection to higher dimensions. Our proof uses the
foam perspective described in Section 1. That is, we show a set that generates a
discrete foam with periodicity m · Zd and has the size claimed in the theorem.
To define the discrete foam boundary, it will help to first define a continuous
foam.

We define inductively a set B(r) in Euclidean space Rd, where d = 2r. The
set B(0) will be the set of all x1 ∈ R1 satisfying

0 ≤ x1 < m.



206 B. Bollobás et al.

In other words, B(0) = [0,m). The inductive definition of B(r) ⊂ Rd is

(x1, . . . , xd) ∈ B(r) ⇔ (x1 + x2, . . . , xd−1 + xd) ∈ B(r − 1) and
(x1−x2

2 , . . . ,
xd−1−xd

2 ) ∈ B(r − 1).

Thus we have that B(1) ⊂ R2 is the set of points (x1, x2) satisfying

0 ≤ x1 + x2 < m

0 ≤ x1 − x2 < 2m,

and B(2) ⊂ R4 is the the set of points (x1, x2, x3, x4) satisfying

0 ≤ x1 + x2 + x3 + x4 < m

0 ≤ x1 − x2 + x3 − x4 < 2m

0 ≤ x1 + x2 − x3 − x4 < 2m

0 ≤ x1 − x2 − x3 + x4 < 4m,

and it can easily be checked that B(r) is the set of points x ∈ Rd satisfying
0 ≤ Hrx < mur, where Hr denotes the standard 2r × 2r Hadamard matrix and
ur denotes the rth tensor power of the vector (1, 2).

Let us also introduce the following notation: Let L(r) denote the “lower
boundary” of B(r), containing all the points in B(r) for which one of the in-
equalities hold as an equality; and, let B(r) be the closure of B(r), which can
also be obtained by replacing all strict inequalities by non-strict inequalities.

Since the Hadamard matrix is orthogonal, it is easy to see that B(r) is a
closed rectangular box in Rd (although it is not axis-parallel). We will show that
B(r) tiles Rd with periodicity m ·Zd. This is a consequence of the following two
propositions:

Proposition 1. No two points of B(r) are the same modulo m · Zd.

Proposition 2. The volume of B(r) is md.

Proof. (Proposition 1.) The proof is by induction; the statement is clearly true
for r = 0. For larger r, suppose x is in B(r) and x + m · (a1, . . . , ad) is also
in B(r), where the ai’s are integers. We wish to show that all ai’s equal 0. By
definition, we know that

(x1 + x2, . . . , xd−1 + xd) ∈ B(r − 1),

(x1 + x2 +m · (a1 + a2), . . . , xd−1 + xd +m · (ad−1 + ad)) ∈ B(r − 1).

By induction, then, we get

a1 + a2 = · · · = ad−1 + ad = 0. (1)

It follows that a1 − a2, . . . , ad−1 − ad are all even and thus (a1 − a2)/2, . . . ,
(ad−1 − ad)/2 are all integers. But by definition we also know that
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(x1−x2
2 , . . . , xd−1−xd

2 ) ∈ B(r − 1),

(x1−x2
2 +ma1−a2

2 , . . . ,
xd−1−xd

2 +m
ad−1−ad

2 ) ∈ B(r − 1),

so by induction,

(a1 − a2)/2 = · · · = (ad−1 − ad)/2 = 0. (2)

Combining (1) and (2) we get that all ai’s are 0. This completes the induction.

Proof. (Proposition 2.) As mentioned, B(r) is a rectangular box, so its volume
is simply the product of its side lengths. The normal vectors to its sides are the
rows of the Hadamard matrix Hr, which have length

√
d. Thus B(r)’s sides have

length (m/
√
d) · (ur)1, . . . , (m/

√
d) · (ur)d, where we recall the vector ur is the

rth tensor product of (1, 2). So to complete the proof it suffices to show that∏d
i=1(ur)i = dd/2. This follows by induction since it is easy to see we have the

recurrence u0 = 1,
∏d

i=1(ur)i = 2d/2(
∏d/2

i=1(ur−1)i)2.

We have now shown that B(r) tiles Rd with periodicity m·Zd. It follows easily
that L(r) generates a continious closed foam in Rd with preriodicity m · Zd.

Let us now return to the discrete problem in which we are interested. A natural
approach would be to show that L(r) ∩ Zd generates a discrete foam in (Zd)1
with periodicity m · Zd, which it indeed does, and to upper-bound S1(m, d) by
counting the lattice points on L(r). However, to avoid the need to approximate
the number of lattice points on L(r), we take a slightly different tack.

Let L′(r) denote a thickening of L(r) to width 1/
√
d; in other words, L′(r) =

{x ∈ B(r) : dist(x, L(r)) ≤ 1/
√
d}. Note that L(r) + v generates a continuous

foam in Rd with periodicity m·Zd for any vector v ∈ Rd. From this it’s easy to see
that (L′(r)+v)∩Zd generates a discrete foam in (Zd)1 with periodicity m·Zd; the
reason is that the normals to the faces of L(r) are of the form (±1,±1, . . . ,±1),
and so every edge of (Zd)1 travels length at most 1/

√
d perpendicular to L(r)’s

faces. Thus any infinite path in (Zd)1 would have to pass through L′(r).
We can now upper-bound S1(m, d) by counting the number of points in

(L′(r) + v) ∩ Zd for any particular v. By volume considerations, it is clear that
there exists a vector v such that

#((L′(r) + v) ∩ Zd) ≤ vol(L′(r)) ≤ area(L(r))/
√
d.

Thus to prove Theorem 1 it suffices to show that the surface area of L(r) is
at most dlog2(3/2)md−1 ·

√
d. Since B(r) is a rectangular box, the surface area

of L(r) is equal to the sum of the reciprocals of B(r)’s side lengths times its
volume (i.e., md, by Proposition 2). B(r)’s side lengths equal (m/

√
d) · (ur)i,

as was mentioned in the proof of Proposition 2, where the vector ur is the
rth tensor power of (1, 2). Thus to complete the proof we need to show that∑d

i=1 1/(ur)i = dlog2(3/2) = (3/2)r. This can be proven by induction, as one can
easily derive the recurrence 1/u0 = 1,

∑d
i=1 1/(ur)i = (3/2)

∑d/2
i=1 1/(ur−1)i.
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3 The Lower Bound on S∞(m, d)

In this section we prove Theorem 2. Our proof begins with the same strategy
used by Saks et al. in [8], which involves sections and tubes.

Definition 4 (sections and tubes). Given a direction i ∈ [d] and a point
x ∈ Zd

m, we define the section based at x and perpendicular to direction i to be
the (d− 1)-dimensional hypercube containing the points

{x+ f : f ∈ {0, 1}i−1 × {0} × {0, 1}d−i}.

A tube in direction i is the union of a section perpendicular to direction i with
all of its translates by multiples of the vector ei = (0, . . . , 0, 1, 0, . . . , 0). A tube
is therefore a union of m parallel sections.

The lower bound of Saks et al., as well as our tight lower bound, is based on the
following observation:

Observation 3. If S is any set of vertices in (Zd
m)∞ that touches all noncon-

tractible cycles, then S must contain at least one complete section from every tube.

The proof of this observation is clear: if there were some tube for which every sec-
tion had a vertex missed by S, then these vertices would form a noncontractible
cycle, since all pairs of consecutive sections are completely mutually connected
in (Zd

m)∞.
Given the observation above, we will now prove a lower bound of md−(m−1)d

on the size of any subset S that contains a full section in every tube. In fact
it suffices to forget about the tubes which “wrap around” the torus and think
instead of the graph ([m]d)∞, which only contains the d(m − 1)d−1 tubes that
are inside the grid. We prove the lower bound for any S ⊆ [m]d which contains
a complete section from each one of these tubes.

The proof of Saks et al. showed that any S ⊆ [m]d containing at least one
full section in each of these tubes contains at least d(m − 1)d−1 points. Their
proof used a linear algebraic argument; it considered the dimension of the space
spanned by indicators of the sections contained in S. We provide a more ele-
mentary argument, which gives a tight lower bound and seems to have more
potential for generalizations. In particular, we would like to generalize the lower
bound to the case where S is only known to contain a fixed fraction of the points
of one section per tube. A good lower bound in this regime would translate to
an advancement in the parallel repetition problem discussed briefly in Section 1.

Our proof goes by induction, where the key is to take a stronger induction
statement. For this purpose, we define a cube to be a set of the form

{x+ f : f ∈ {0, 1}d} ⊆ [m]d;

in other words, a cube is the union of two consecutive sections. Theorem 2 follows
immediately from the following:

Theorem 3. Let S be a subset of the vertices of [m]d containing at least one
complete section per tube and also containing at least c cubes. Then the cardi-
nality of S is at least md − (m− 1)d + c.
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Proof. Let us first argue about the case d = 2 and c = 0. In this case we are
considering the two-dimensional grid [m]2. Tubes can be thought of as the m−1
vertical columns between the vertices and the m−1 horizontal rows between the
vertices; sections can be thought of as horizontal edges and vertical edges (more
accurately, as the pair of vertices making up these edges). Suppose S contains at
least one horizontal edge per column and one vertical edge per row. When taken
together, its clear that these 2m−2 edges cannot form any cycle since they never
have two edges “one above the other” (or “one to the left of the other”). Since
an acyclic graph with 2m− 2 has exactly 2m− 1 = m2 − (m− 1)2 vertices, the
proof of the d = 2, c = 0 case is complete.

We next consider the d = 2 case for general c. In this case, we know that
S contains at least m − 1 vertical edges (sections) and it is clear that it must
contain at least c more vertical edges because of the presence of c cubes (cubes
are squares, in two dimensions). We have so far identified m − 1 + c vertical
edges contained in S. Now consider adding the m− 1 horizontal sections that S
must contain. The resulting set of 2m − 2 + c edges must still be acyclic since
it has no two horizontal edges in the same tube. Thus it contains 2m− 1 + c =
m2 − (m− 1)2 + c vertices as required by the induction.

With the case d = 2 completely proven, we move to the induction on the
dimension d. So suppose S is a subset of [m]d with at least one section per
tube and also at least c cubes. Consider the set of sections perpendicular to the
dth direction. We know that there are at least (m − 1)d−1 of these which are
contained in S — one per tube going the dth direction. There must also be at
least c tubes in the dth direction where S contains an additional section, because
of the c cubes it contains. Let us stratify these sections according to what level
1, . . . ,m they are on in the dth direction. Specifically, say we have ci of them on
level i, where c1 + · · ·+ cm ≥ (m− 1)d−1 + c.

We now view the ith level as an inductive instance in dimension d−1. Because
S has at least one section per tube in [m]d, it is easy to see that it also has at
least one (lower-dimensional) section per (lower-dimensional) tube in [m]d−1. It
also has at least ci cubes. So by induction, S has at least md−1− (m−1)d−1 + ci
vertices on the ith level of [m]d. Summing this over i yields at least

m(md−1 − (m− 1)d−1) + (m− 1)d−1 + c = md − (m− 1)d + c

as a lower bound for the number of points in S.

Theorem 2 follows from Theorem 3 by taking c = 0.
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Abstract. This work obtains truthful mechanisms that aim at maxi-
mizing both the revenue and the economic efficiency (social welfare) of
unit-demand auctions. In a unit-demand auction a set of k items is auc-
tioned to a set of n consumers, and although each consumer bids on all
items, no consumer can purchase more than one item.

We present a framework for devising polynomial-time randomized
truthful mechanisms that are based on a new variant of the Vickrey-
Clarke-Groves (VCG) mechanism. Instead of using reserve prices, this
variant of VCG uses the number of objects that we wish to sell as a
parameter. Our mechanisms differ in their selection of the number of
items to be sold, and allow an interesting trade-off between revenue and
economic efficiency, while improving upon the state-of-the-art results for
the Unit-Demand Auctions problem (Guruswami et. al.[SODA 2005]).

Our probabilistic results depend on what we call the competitive-
ness of the auction, i.e., the minimum number of items that need to
be sold in order to obtain a certain fraction of the maximum efficiency.
We denote by T the optimal efficiency achieved by the VCG mecha-
nism. Our efficiency-oriented mechanism achieves Ω(T ) efficiency and
Ω(T / ln(min{k, n}) revenue with probability that grows with the com-
petitiveness of the auction. We also show that no truthful mechanism can
obtain an ω(T / ln(min{k, n}) expected revenue on every set of bids. In
fact, the revenue-oriented mechanism we present achieves Ω(T /
ln(min{k, n}) efficiency and Ω(T / ln(min{k, n}) revenue, but the rev-
enue can actually be much higher, even as large as Ω(T ) for some bid
distributions.

1 Introduction

Auction mechanism design has long been a field of interest in the Economics
and Game Theory communities [13]. In recent years, with the rise in electronic
commerce and high-profile auctions such as the Google IPO and FCC spectrum
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auctions, the field of mechanism design for auctions has drawn a lot of attention
from theoretical Computer Science researchers [8, 6, 11, 1, 4].

This paper deals with Unit-Demand Auctions (UDA) where k distinct items
are sold to a group of n consumers but at most one item can be sold to each con-
sumer. This can reflect consumer preferences, say, in a real estate market, where
consumers want to buy a single house to live in. A perhaps more realistic set-
ting for UDA is a government license auction, in which the government imposes
regulatory quotas on the outcome of the auction, so as to foster a competitive
market.

We assume that no previous knowledge of the bid distribution is known, so
that in fact the traditional Bayesian approach that relies on prior knowledge is
not applicable.

1.1 The Model

Let C = {1, 2, . . . , n} be a set of consumers and let I be a set of k distinct
items1. The auctions considered in this paper are sealed-bid auctions where
each consumer submits a bid for each item in I. An auction mechanism is a
function that maps any possible set of bids into a pair (A,p), where A is an
allocation that defines which item is sold to each consumer and p is the vector
of prices determining the sale price of each allocated item. A consumer i can
only be allocated to item j if his (her) bid for j is not smaller than j’s price. We
assume that the mechanism employed by the auctioneer is publicly known and
the following assumptions are made about the consumers.

– Each consumer has |I| private valuations, one for each item in I. The valu-
ation of consumer i for item j, indicated by vi,j ≥ 0, is the maximum price
for which i would be willing to buy item j.

– If consumer i buys item j, then his profit(utility) is ui = vi,j − pj .
– Consumers are rational and will submit bids that try to maximize their

utilities.
– Consumers do not collude.
– The consumers in the auction are indistinguishable from the perspective of

the auctioneer.

Depending on the mechanism used by the auctioneer, the consumers might
be able to increase their utility by presenting bids that misrepresent their valua-
tions. An auction mechanism A is truthful if the best strategy for each consumer
is to submit his own valuations regardless of his beliefs on the bidding strategies
employed by the other consumers. Consumers cannot benefit from price specula-
tion in a truthful auction and indeed rational consumers will bid their valuations
in any auction that employs a truthful mechanism. By avoiding pricing games
between the consumers and receiving the true valuations of the consumers as its

1 We disregard the situation in which a number of copies of each item is available, but
it can easily be modeled.
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input, truthful auction mechanisms are in a much better position to optimize
the outcome of the auction.

The revenue attained by an auction mechanism for a given set of bids is
the sum of all prices paid as a result of the auction. The economic efficiency
attained by an auction mechanism for a given set of bids is defined as the sum
over all consumers of the valuations that each consumer attributes to the item he
acquires. It relates to the social value of the auction and often enough, say, on the
FCC spectrum auctions, maximizing the efficiency is or probably should be more
important than maximizing the revenue even from the auctioneer’s perspective.

A randomized auction mechanism is a probability distributions over deter-
ministic auctions mechanisms. Following [6], we adopt a notion of randomized
truthfulness in which a randomized truthful auction mechanism is a probability
distribution over the set of deterministic truthful auction mechanisms.

The concepts presented so far can also be understood in terms of graphs. The
matrix valuation v = (vi,j)

j=1,...,k
i=1,...,n , which is the input of a truthful mechanism,

can be viewed in terms of a weighted complete bipartite graph G among con-
sumers and items, where the cost c(ei,j) of edge ei,j associating the i-th consumer
with the j-th item is vi,j . Thus, a truthful deterministic auction mechanism A is
a function that maps each weighted bipartite graph G onto a pair (M,p), where
M = ∪|M|

i=1ei is a matching of G and p = (p1, . . . , p|M|) is a vector defining the
sale price of every item allocated by M , that is, pi is the sale price of the item
touched by edge ei. We must have pi ≤ c(ei), for i = 1, . . . , |M |. The revenue
and the efficiency of A, for input G, are the sum of the prices assigned to the
items of M and the sum of the costs of the edges of M , respectively. Clearly, for
a fixed graph, the revenue cannot exceed the efficiency.

1.2 Our Results

Unlike most recent work on auction mechanisms, we design randomized truthful
mechanisms that simultaneously concern with maximizing the revenue and the
economic efficiency. The approach employed by our mechanisms consists of ran-
domly dividing consumers in two groups, and using one group’s bids to estimate
a suitable number of items to sell to the consumers of the other group. It then
uses a novel variant of the generalized VCG [15, 5, 9] mechanism that takes this
limited number of items as a parameter to decide both the allocation and the
sale prices. By adjusting our estimate of how many items should be sold we
either obtain a efficiency-oriented mechanism or a revenue-oriented mechanism.

In order to quantify our results we introduce some definitions. For a valuation
matrixv, let T (v) be the maximum possible efficiency attained by a truthful mech-
anism. T (v) is exactly the cost of the maximum cost matching in the graph associ-
ated with v and, clearly, is an upper bound on both the revenue and the efficiency
achieved by any truthful mechanism for input v. In addition, letF(v) be the maxi-
mum possible revenue obtained by an ’omniscient’ auctioneer, under the constraint
that a single price must be used to sell all items. The probability that the mecha-
nisms proposed in this paper attain a certain efficiency or revenue depends on the
notion of δ-competitiveness of the valuation matrix v, which is defined below.
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Definition 1. The δ-competitiveness of a valuation matrix v is the minimum
number of items, or equivalently consumers, that can generate revenue at least
T (v)/δ. In terms of the graph G associated with v, the δ-competitiveness is the
size of the smallest cardinality matching in G with cost at least T (v)/δ.

This notion captures how the auction is dominated by a certain group of con-
sumers. The higher the δ-competitiveness of v is, the higher is the number of
consumers needed to dominate the auction, that is, to generate a 1/δ fraction
of the maximum possible efficiency. We remark that there is no connection
between this measure and the notion of competitive ratio employed to analyze
online algorithms [3].

Let s denotes min{n, k}. Our efficiency-oriented mechanism simultaneously
achieves Ω(T (v)/ ln s) revenue and Ω(T (v)) efficiency with failure probability
that exponentially decreases with the growing of the 8-competitiveness of v. In
addition, we show that for every randomized truthful auction mechanismA there
exists a valuation matrix v, for whichA attains expected revenue O(T (v))/ ln s),
which is matched by our mechanism.

On the other hand, our revenue-oriented mechanism simultaneously achieves
revenue and efficiency Ω(F(v)) with failure probability that exponentially de-
creases with the growing of the (ln s)-competitiveness of v. We note that prov-
ing an Ω(F(v)) bound is stronger than proving an Ω(T (v)/ ln s) bound, since
the inequality F(v) ≥ T (v)/ ln s always holds and, in fact, we may even have
F(v) = Ω(T (v)).

By combining this last mechanism with the VCG mechanism for UDA and
with a mechanism that only sells one item, we obtain a mixed auction mecha-
nism that achieves Ω(F(v)) expected revenue and Ω(T (v)) expected efficiency.
However, in this case we do not have high concentration around the mean.

For a completely arbitrary valuation matrix v where, say, a single valuation
is much higher than all the others, the maximum attainable revenue by truthful
mechanisms can be arbitrarily far from both T (v) and F(v). This is a well
known fact for single item auctions but it also applies to UDA . Some conditions
on the valuation matrix are usually imposed in order to obtain any meaningful
results. That’s the same rationale behind the conditions that we impose on the
competitiveness of the valuation matrix v so as to be able to prove bounds on
the revenue achieved by truthful mechanisms (as a function of T (v) and F(v)).

Finally, we shall mention that all mechanisms proposed in this paper run
in polynomial time and, in addition, our results extend to bounded demand
combinatorial auctions where every consumer may purchase a bundle with at
most d items, where d is a constant which does not depend on n or k. In this case,
however, our mechanisms require exponential time. A discussion on bounded
demand combinatorial auctions is deferred to an extended version of this paper.

1.3 Related Work

If maximizing the efficiency is the unique goal in UDA then the generalized
Vickrey-Clarke-Groves(VCG) mechanism [15, 5, 9] is the right choice. It attains
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the optimal efficiency T (v), for every input valuation v, while giving incentive
for truth-telling. However, this mechanism falls short in that it can have very
poor revenue.

The problem of maximizing the revenue in UDA is mentioned as an open
problem in [7]. In [10], Guruswami et. al. propose an interesting mechanism for
maximizing the revenue in UDA. Their mechanism relies on previous knowledge
on the range of bids and achieves Ω(T (v)/ log h)) revenue, where h is the ratio
between the largest and lowest bid values. Basically, it consists of randomly
selecting reserve prices for a VCG mechanism.

All our mechanisms compare favorably with the one proposed in [10]. Our
efficiency-oriented mechanism assures an Ω(T (v)/ ln s) lower bound on the rev-
enue and simultaneously guarantees efficiency which is a constant factor of the
optimal one. On the other hand, our revenue-oriented mechanism simultaneously
assures Ω(F(v)) revenue and efficiency. As we have already mentioned the in-
equality F(v) ≥ T (v)/ ln s always holds and, in fact, for some auctions we may
even have F(v) = Ω(T (v)). In addition, as opposed to the one proposed in [10],
both these mechanisms do not rely on previous knowledge about the range of
the bids and, most importantly, they guarantee high concentration around the
mean. In all fairness, we should be mention that the mechanism of [10] produces
envy-free allocations whereas ours do not. The table below summarizes how our
results compare to the one presented in [10].

Method Expected
Revenue

Expected
Efficiency

High Con-
centration

Envy-free
allocations

Efficiency-oriented Ω(T (v)/ ln s) Ω(T (v)) yes no
Revenue-oriented Ω(F(v)) Ω(F(v)) yes no
Guruswami et.al. [10] Ω(T (v)/ ln h) Ω(T (v)/ ln h) no yes

The economic efficiency and revenue are traded-off in [12] in the auctioning of
multiple units of the same object. The resulting auction maximizes the expected
economic efficiency while ensuring a minimum level of revenue in the auction.
We obtain a similar trade-off for the UDA.

Finally, we shall mention that UDA can also be viewed as a combinatorial
auction where only bundles (set of items) of size one can be sold. Some of the
papers in combinatorial auctions that focus on maximizing the efficiency also
discuss revenue issues [11, 1, 2, 4]. What is usually done is to compare the revenue
achieved by the proposed auction mechanisms with that achieved by the VCG
mechanism. However, the revenue achieved by VCG can be rather low, and even
0, thus making it a less desirable benchmark.

2 Graph Theoretical Results

In this section, we present some graph theoretical results that are important for
the design and the analysis of the mechanisms proposed in this paper.

Let G be a weighted bipartite graph. For a consumer i, we use G−i to denote
the subgraph induced in G by the removal of i from its set of vertices. Let e′ be
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the lowest weight edge in a matching M of G. We define F(M) = |M | × c(e′)
and T (M) =

∑
e∈M c(e). We use MT

G (MF
G ) to denote the largest matching of G

that maximizes T (·) (F(·)). We define FG = F(MF
G ) and TG = T (MT

G ). Thus,
the δ-competitiveness of G is the size of the smallest matching M that satisfies
T (M) ≥ TG/δ. The following propositions relate the metrics T (·), F(·) and the
competitiveness of a graph. A similar result to the next proposition appears in
[10]. Its proof, and that of Proposition 2 are omited here.

Proposition 1. For every graph G, we have FG ≥ TG/ ln s.

Proposition 2. For every graph G, the (ln s)-competitiveness of G is at
most |MF

G |.

The next proposition shows that there exists a single matching M that has ’high’
values for both T (·) and F(·). The existence of such a matching is key for our
efficiency-oriented mechanism.

Proposition 3. For every graph G, there is a matching M in G such that
F(M) ≥ TG/(2 ln s) and T (M) ≥ TG/2.

Proof. Let e1, . . . , es be the edges of MT
G sorted in non-increasing order of

weights and let i∗ be the largest number such that i∗ × c(ei∗) ≥ TG/2 ln s.
The existence of such an i∗ is ensured in the proof of Proposition 1. Define M
as ∪i∗

j=1ej . Clearly, F(M) ≥ TG/2 ln s.
For j > i∗, we have that c(ej) < TG

2j×ln s . By adding these inequalities we
obtain that

s∑
j=i∗+1

c(ej) ≤
TG × (ln s− ln i∗)

2 ln s
≤ TG

2

Thus, T (M) =
∑i∗

j=1 c(ej) ≥ TG/2 ��

2.1 Approximation Matchings

Next, we introduce the concept of an approximation matching for a sequence
of matchings. This is used in Section 3.2 as a technical tool bounding the
probability of our efficiency-oriented mechanism. Roughly speaking, given a
sequence S of matchings in a graph G, the approximation matching A for S
has the property that for every matching S of S there is a sub-matching A′

of A whose size is within a constant factor of the size of S and, moreover,
F(A′) ≥ minS∈S{F(S)}/2 and T (A′) ≥ minS∈S{T (S)}.

For an increasing sequence of integers J , let min(J)=min{j|j∈J}, max(J)=
max{j|j ∈ J} and pred(j) be the largest integer of J smaller than j, for j ∈
J \min(J).

Definition 2. Let (Mj)j∈J be a sequence of matchings in G, where |Mj| = j,
for every j ∈ J . We define the sequence (Aj)j∈J as follows:
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Aj =
{
Mj if j = min(J)
Apred(j) ∪ {e|e ∈Mj and Apred(j) ∪ e is a matching}, otherwise

We call Amax(J) the approximation matching for the sequence (Mj)j∈J .

Example 1. Let G = (V1 ∪ V2, E) be a complete bipartite graph where V1 =
{1, 3, 5, 7, 9} and V2 = {2, 4, 6, 8, 10}. Let us consider the sequence of matchings
M2,M3,M5, where M2 = {(1, 2), (3, 6)}, M3 = {(1, 2), (3, 8), (5, 10)} and M5 =
{(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)}.

Then, we have A2 = {(1, 2), (3, 6)}, A3 = {(1, 2), (3, 6), (5, 10)} and A5, the
approximation matching, is {(1, 2), (3, 6), (5, 10), (7, 8)}.

We ommit the proof of the next lemma which states crucial properties regarding
the approximation matching.

Lemma 1. Let (Mj)j∈J be a sequence of matchings in G, where |Mj |= j, for
every j ∈ J . Furthermore, let A be the approximation matching of (Mj)j∈J .
Then, for every j∈J , there is a sub-matching A′ of A such that: (i) max{min(J),
j/2} ≤ |A′| ≤ 2j ; (ii) T (A′) ≥ T (Mmin(J)) ; (iii) F(A′) ≥ min{F(Mi)|i ∈ J}/2
and (iv) If e′ is the edge of lowest cost in A′, then c(e′) ≥ c(e), for every edge e
that belongs to the matching A \A′.

3 Truthful Mechanisms for Unit-Demand Auctions

In this section we introduce a family of mechanisms for UDA that we denote by
UDAF (Unit Demand Auctions Family). The mechanism Al presented below is
employed by all mechanisms of UDAF . Al is a variation of the VCG auction
mechanism where the parameter l determines the number of items that can
be sold. The VCG mechanism for UDA coincides with mechanism Al, when
l = s = min{n, k}.

Mechanism Al(H: Graph)

1. Compute a matching M of H that maximizes T (·) among all the matchings
in H of size l, and assign consumers to items according to M .

2. If M assigns the consumer i to the item j, then the sale price of j is pj =
c(ei,j)− T (M) + T (M−i), where M−i is the matching that maximizes T (·)
among all the matchings in H−i of cardinality l.

The next lemma allows us to bound the revenue achieved by Al.

Lemma 2. Let H be a weighted complete bipartite graph in which there is a
matching M ′ with exactly 2l edges, all of them with weights at least y. Then the
revenue of Al for input H is at least l× y.
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Proof. Let M be the matching determined by Al(H). It suffices to argue that
pj = c(ei,j)− T (M) + T (M−i) ≥ y, for every consumer i touched by M .

Since |M ′| ≥ 2l, it follows that there is e ∈ M ′ such that M ∪ e − eij is a
matching in H−i. Thus, T (M−i) ≥ T (M ∪ e− eij) ≥ T (M)− c(ei,j)+ y and, as
a consequence, pj = c(ei,j)− T (M) + T (M−i) ≥ y ��
Lemma 2 implies that for a suitable choice of l the revenue of Al is Ω(FG).
This lemma, along with Proposition 3, also guarantees the existence of a value
l for which Al has Ω(TG/ ln s) revenue and Ω(TG) efficiency. Unfortunately we
do not know how to compute the optimum l without losing truthfulness.

Instead, our UDAF mechanisms first randomly splits the consumers into two
groups and then uses one group to estimate a suitable (depending on the pursued
goal) value of l. Finally, Al is run for the consumers of the other group. What
distinguishes one mechanism in UDAF family from the other is the function f
employed to determine the number l of items to be sold. The definition of f will
determine the economic efficiency, the revenue and the time complexity attained
by the resulting mechanism.

Mechanism UDAFf

1. Flip a fair coin n times to split the consumers into two groups, say, L (left)
and R (right). Let GL (GR) be the bipartite graph induced by the consumers
of L (R) and the set of all items.

2. Run Af(GL) on the graph GR.

Lemma 3. UDAFf is truthful for every choice of f .

We note that the idea of randomly selecting a group of consumers to determine
the prices of the items to be sold for the consumers in the remaining group has
appeared before in the context of unlimited-supply auctions [7]. While this is a
relatively simple concept, its successful application to UDA and the correspond-
ing analysis are not as simple as one would assume at first glance. As an example,
we devised the concept of approximation matchings (Secion 2.1) to help us deal
with the technical aspects of this.

3.1 A Revenue-Oriented Mechanism

First, we investigate Rev, a definition for f that favors revenue. Rev estimates
the size of the matching in G that maximizes F(·).

Rev(GL:graph)

1. Let Mrev be the largest (w.r.t. the number of edges) matching in GL such
that F(Mrev) ≥ FGL/3.

2. Return �|Mrev|/6�.

The next theorem gives a bound on the revenue attained by UDAFRev . The
assumption in the theorem about the O(ln s) competitiveness of G being at least
500 is only used to assure that |MF

G | ≥ 500. In this case, the proof Theorem 1
ensures that UDAFRev achieves an expected revenue of Ω(FG).
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Theorem 1. Let G be a graph that has (ln s)-competitiveness larger than 500.
Then, UDAFRev simultaneously attains revenue Ω(FG) and efficiency Ω(FG)
with probability at least 1− 74

ecp/108 , where cp is the (ln s)-competitiveness of G.

Proof. For every j, let Mj be a matching of size j in G which maximizes F(·).
The matching Mj is said to be good if j ≥ |MF

G |/3 and F(Mj) ≥ FG/9. Let J
be the set of integers defined as J = {j|Mj is a good matching }.

For every j ∈ J , let Cj be the set of consumers of matching Mj . With respect
to Step 1 of the UDAF mechanism, we define the event Ej as the event in which
the number of consumers of Cj that lie in the left group is at least j/3 and at
most 2j/3. Furthermore, let E =

⋃
j∈J Ej .

In what follows we make some observations under the assumption that E oc-
curs. Recall that we use MF

G to denote the largest matching of G that maximizes
F(·). Let M ′ be the sub-matching of MF

G induced by the consumers of MF
G that

lie in GL. Then, M ′ has at least |MF
G |/3 edges and F(M ′) ≥ FG/3 ≥ FGL/3.

This implies that FGL ≥ FG/3 and |Mrev| ≥ |MF
G |/3.

Since F(Mrev) ≥ FGL/3 it follows that F(Mrev) ≥ FG/9 and, as a conse-
quence, |Mrev| ∈ J . Therefore, there are at least �|Mrev|/3� consumers of C|Mrev |
in the right group, which implies on the existence of a matching in GR, say M2,
of size �|Mrev|/3�, where every edge costs at least FG/(9|Mrev|). Thus, it follows
from Lemma 2 that the revenue of A�|Mrev |/6�, for input GR, is at least

�|Mrev|/6� × FG/(9|Mrev|) = Ω(FG).

Since Proposition 1 guarantees that FG ≥ TG/ ln s, it follows that the efficiency
is Ω(TG/ ln s).

Now, we obtain a bound on the probability of event E happening. A direct
application of the Chernoff Bound [14] ensures that the probability of event Ej

not happening is at most 2e−j/36. Applying the union bound we get that the
probability of failure of E is at most

∑
j∈J 2e−j/36.

Now, we use the condition on the competitiveness of G. Since the (ln s)-
competitiveness of G is cp it follows from Proposition 2 that |MF

G | ≥ cp. This
implies that the minimum integer in J is at least �cp/3�. Thus,

∑
j∈J

2e−j/36 ≤
∞∑

j=
cp/3�
2e−j/36 ≤ 2e−cp/108

1− e−1/36 ≤
74

ecp/108 ��

With respect to the previous theorem, we note that the more competitive G is,
the higher the probability of attaining the bounds for the revenue and for the
efficiency.

If we do not concern ourselves with proving bounds on the probability of at-
taining a certain revenue and a certain efficiency we can obtain a simple mech-
anism that attains Ω(FG) expected revenue and Ω(TG) expected efficiency for
every graph G with ln s-competitiveness larger than 1.

Theorem 2. Let Mixed be the auction mechanism that executes one of the fol-
lowing mechanisms with uniform probability: UDAFRev, A1 and V CG. Then,
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for every graph G with ln s-competitiveness larger than 1, Mixed achieves ex-
pected revenue Ω(FG) and expected efficiency Ω(TG).

Proof. Omitted. ��

3.2 Favoring the Efficiency

Now, we investigate Eff, a definition of f that favors the efficiency. Eff estimates
the size of the matching in G that satisfies the conditions in Proposition 3.

Eff(GL: graph )

1. Let e1, . . . , e|MT
GL

| be the edges of MT
GL

listed by non-increasing order of

costs. Let s∗ be the largest integer such that s∗× c(es∗) ≥ TGL/(2 ln |MT
GL
|).

2. Return �s∗/12�.

The main result of this section is the following theorem.

Theorem 3. Let K′ be the 8−competitiveness of a graph G. Then, for input
G, UDAFEff simultaneously attains revenue Ω(TG/ ln s) and efficiency Ω(TG)
with probability at least 1− 148

eK′/36 .

The proof consists of showing that with the probability stated above there is
a matching M∗ in GR such that: (i) s∗/6 ≤ |M∗| ≤ (4 · s∗)/3; (ii) F(M∗) =
Ω(TG/ ln s) and (iii) T (M∗) = Ω(TG).

The next lemma shows that the existence of such a matching indeed ensures
that the mechanism performs as desired.

Lemma 4. If there is a matching M∗ in GR that satisfies properties (i)-(iii)
above, then AEff(GL) simultaneously attains efficiency Ω(TG) and revenue
Ω(TG/ ln s) on GR.

Proof. Let M2 be the matching of size �s∗/12� computed by AEff(GL) on GR.
Since M∗ has at most (4 · s∗)/3 edges, the sum of the costs of the �s∗/12� most
expensive edges of M∗ is at least �s∗/12� × 3T (M∗)/(4 · s∗). It follows that
T (M2) = Ω(TG).

On the other hand, since F(M∗) = Ω(TG/ ln s), then all the edges of M∗

cost at least KTG/(|M∗| ln s), where K is the constant hidden in the asymptotic
notation. Since 2|M2| = 2�s∗/12� ≤ s∗/6 ≤ |M∗|, it follows from Lemma 2
that the revenue is at least �s∗/12� × KTG/(|M∗| ln s). By using the fact that
|M∗| ≤ (4 · s∗)/3, we conclude that the revenue is Ω(TG/ ln s) ��

Thus, it suffices to bound the probability that such a matching exists. The
following definition is useful in our proofs.

Definition 3. Given a matching M in G, let Cj be the set of consumers asso-
ciated with the j most expensive edges of M . Let Ej be the event where at least



On Behalf of the Seller and Society: Bicriteria Mechanisms for UDA 221

j/3 consumers of Cj lie in the left group and at least j/3 lie in the right one.
Finally, let EM =

⋃|M|
j=K′ Ej, where K′ is the 8-competitiveness of G.

Two properties of EM are useful for our analysis: the failure probability of EM

decreases exponentially with the increase of K′ and if EM occurs then the edges
of M are “evenly” distributed between GL and GR in the sense that the sub-
matching of M induced by the consumers that lie in GL has approximately the
same cost (w.r.t. F and T ) as the subgraph induced by the consumers that lie
in GR. The following two propositions formalize these observations.

Proposition 4. The probability that EM does not occur is at most 74e−K′/36.

Proposition 5. Let M be a matching in G, with |M |>K′. If EM occurs then
the sub-matching M ′ of M induced by the consumers of M that lie in GL (GR)
satisfies the following properties: F(M ′) ≥ F(M)/3 and T (M ′) ≥ T (M)/3 −
TG/24.

Proposition 4 follows from a direct application of Chernoff bounds [14]. The proof
of Proposition 5 is not as immediate but we defer it to an extended version of
this paper.

We say that a matching M of G is efficiency-good if F(M) ≥ TG/(7 ln s)
and T (M) ≥ TG/7. The existence of at least one efficiency-good matching is
guaranteed by Proposition 3. Let J be an increasing sequence of integers such
that j ∈ J if and only if there is an efficiency-good matching in G of cardinality j.
For every j ∈ J , let Mj be an arbitrary efficiency-good matching of size j. Note
that the definition of efficiency-good matchings and the assumption over K′ in
Theorem 3 imply that min(J) > K′.

Proposition 6. Let A be the approximation matching of (Mj)j∈J . If the event
EMT

G
∪ EA happens then there is a matching in GR that meets the conditions

(i)-(iii).

Proof. First, we show that if EMT
G

occurs then there is an efficiency-good match-
ing of size s∗ in G. Let M be the matching formed by the s∗ largest-weight edges
of MT

GL
. Let M ′ be the sub-matching of MT

G induced by the consumers of MT
G

that lie in GL. It follows from Proposition 5 that T (M ′) ≥ TG/3 − TG/24 ≥
7 × TG/24. Thus, T (MT

GL
) ≥ T (M ′) ≥ 7 × TG/24. The definition of M and

Proposition 3 imply that T (M) ≥ 7 × TG/48 and F(M) ≥ 7 × TG/(48 ln s).
Thus, M is an efficiency-good matching in G.

Since there is a efficiency-good matching in G of size s∗, it follows from
Lemma 1 that there is a sub-matching A′ of the approximation matching A such
that max{min(J), s∗/2} ≤ |A′| ≤ 2 · s∗, T (A′) ≥ TG/7 and F(A′) ≥ TG/14 ln s.

Since EA occurs, |A′| ≥ min(J) > K′, and A′ contains the |A′| largest-weight
edges of A then EA′ also happens. Let A′′ be the sub-matching of A′ induced by
the consumers of A′ that lie in GR. It follows from Proposition 5 and the previous
observation about A′ that s∗/6 ≤ |A′′| ≤ (4 · s∗)/3, T (A′′) ≥ TG/168 and
F(A′′) ≥ TG/42 ln s. Thus, A′′ meets the conditions (i)-(iii), which establishes
our result. ��
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Proof of Theorem 3. If the event EMT
G
∪EA happens, it follows from Proposition 6

and from Lemma 4 that, for input GR, AEff(GL) simultaneously achieves Ω(TG)
efficiency and Ω(TG/ ln s) revenue.

On the other hand, it follows from Proposition 4 that EMT
G
∪ EA fails with

probability at most 148e−K′/36. Thus, EMT
G
∪ EA happens with probability at

least 1− 148e−K′/36. ��

4 Final Remarks

The mechanisms described here can be efficiently implemented. We also men-
tion without proof a relatively straightforward upper bound for truthful Unit-
Demand auctions.

Theorem 4. For every randomized truthful mechanism A there is a graph GA
such that the expected revenue achieved by A on GA is O(TGA/ ln s).
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Abstract. In pattern matching algorithms, two characteristic parame-
ters play an important rôle : the number of occurrences of a given pattern,
and the number of positions where a pattern occurrence ends. Since there
may exist many occurrences which end at the same position, these two
parameters may differ in a significant way. Here, we consider a general
framework where the text is produced by a probabilistic source, which
can be built by a dynamical system. Such “dynamical sources” encom-
pass the classical sources –memoryless sources, and Markov chains–, and
may possess a high degree of correlations. We are mainly interested in
two situations : the pattern is a general word of a regular expression, and
we study the number of occurrence positions – the pattern is a finite set
of strings, and we study the number of occurrences. In both cases, we de-
termine the mean and the variance of the parameter, and prove that its
distribution is asymptotically Gaussian. In this way, we extend methods
and results which have been already obtained for classical sources [for
instance in [9] and in [6]] to this general “dynamical” framework. Our
methods use various techniques: formal languages, and generating func-
tions, as in previous works. However, in this correlated model, it is not
possible to use a direct transfer into generating functions, and we mainly
deal with generating operators which generate... generating functions.

1 Introduction

The problem of searching for a particular pattern in a text is an important
problem in information theory. It is crucial to study precisely the number of
occurrences of a given pattern in a typical text. Here, “typical” essentially means
that the text is a random text produced by a probabilistic model that follows
as far as possible the real complexity of the studied sequences. It is also very
interesting to consider positions of occurrence, i.e., positions (in a text) where
an occurrence of the pattern can terminate.

The two parameters – the number of occurrences, denoted in the following
by Ω, and the number of occurrence positions, denoted by C – may differ in a
significant way, since the number of occurrence positions is always bounded by
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the text length, whereas this is not true for the number of occurrences. [There
may exist many occurrences which end at the same occurrence position].

With a precise probabilistic study of these two parameters, one obtains sharp
statistical heuristics (like Z-scores) which permit to describe the related algo-
rithms, and perhaps improve them.

Various pattern matching problems. There are also different pattern match-
ing problems, which differ according to the nature of the pattern.

String matching. This is the basic pattern matching problem. Here, a string w
is a block of (consecutive) symbols w = w1w2 . . . ws (of length s).

Set of strings. Previously, the string w should appear exactly in the text, while,
in the approximate case, a few mismatches are considered acceptable. The ap-
proximate string matching is then expressed as a matching against a set L of
words which contains all the valid approximations of the string.

Sequence of patterns. Here, the symbols no longer need to be consecutive in the
text: we are interested in occurrences of the string w as a subsequence of the
text T . The problem is different, and it is called the hidden word problem.

Regular expressions. Searching words from a regular language is surely the most
general pattern matching problem, since all the three previous pattern matching
problems all consist in finding words of a given regular language.

Motivations. Molecular biology [12, 17, 18] provides an important source of
applications. As a rule, there, one searches for subsequences, not consecutive
strings. There are plenty of examples: split genes where exons are interrupted
by introns, starting and stopping signal in genes, etc. . . . In general, for gene
searching [8], regular expressions are used as a general pattern model (such as
the prosite format used to scan in protein databases).

In this general context, it is of obvious interest to discern what constitutes
meaningful information from what is statistically unavoidable phenomenon. This
leads to a probabilistic study. In information theory context, a source is a mech-
anism which emits symbols from an alphabet Σ. A text of length n is just an
element of Σn, and the various models of sources are related to the choice of a
probabilistic model on Σn. When the probabilistic model has been chosen, the
main variables of interest — the number of occurrences Ω, and the number of
occurrence positions C— become random variables, and it is crucial to study
their distribution, in order to set thresholds from which appearance of a pattern
becomes meaningful.

Previous results. The two classical models of sources are the memoryless
sources (where each symbol m is always emitted with the same probability,
and independently of the previous history) and Markov chains (where the prob-
ability of emitting m only depends on the unique symbol emitted before m). In
both cases, these sources have a “bounded” memory and only provide idealized



226 J. Bourdon and B. Vallée

models, while real-life sources are often complex objects. Most of the results are
obtained only for such idealized sources.

Number of occurrences Ω. The number of string occurrences in a random text
has been intensively studied over the last two decades. Guibas and Odlyzko have
revealed in 1981 the fundamental rôle played by autocorrelation. Régnier and
Szpankowski [10, 11] established that the number of occurrences of a string is
asymptotically normal under a diversity of models that include Markov chains.
The number of occurrences of finite sets of (finite) strings also obeys the “Guibas
and Odlyzko” principle, which now deals with correlation matrices.

In the case of the hidden word problems, Flajolet, Szpankowski and Vallée
show that the distribution of Ω is asymptotically Gaussian for memoryless
sources [6].

Number of occurrence positions C. Nicodème, Salvy, and Flajolet [9] showed
that, for a simple1 regular expression E , the variable Cn(E) is asymptotically
normally distributed, both for memoryless sources and Markov chains.

Our results. We use here a general framework of sources related to dynamical
systems theory which goes beyond the cases of memoryless and Markov sources
[16, 4]. This model can describe non-Markovian processes, where the dependency
on past history is unbounded, and as such, they attain a high level of generality.
A probabilistic dynamical source is defined by two objects: a symbolic mecha-
nism and a density. The mechanism, related to symbolic dynamics, associates
an infinite word M(x) to a real number x ∈ [0, 1], and generalizes numeration
systems. Once the mechanism has been fixed, the density f on the [0, 1] interval
can vary. This induces different probabilistic behaviors for sources of words.

In this context, string matching problems have been already considered: In [1],
the authors study the parameter Ω(L) when L is a particular regular expression
(namely, a generalized pattern), which provides a generalization for the hidden
word problem. The mean and the variance of Ωn are shown to be polynomial in
n, and the exponent r depends on the number of freedom degrees of L. However,
the asymptotic distribution – expected to be Gaussian– is not obtained.

Here, we obtain two new results in this correlated model of dynamical sources.
We prove here that many variablesR defined on some setR follow asymptotically
a gaussian law. We first provide a precise definition:

Definition [Asymptotic gaussian law]. Consider a cost R defined on a set R and
its restriction Rn to the subset Rn of size n. The cost R asymptotically follows
a gaussian law if there exist three sequences an, bn, rn, with rn → 0, for which

Pr
[
(u, v) ∈ Rn

∣∣ Rn(u, v)− an√
bn

≤ y

]
=

1√
2π

∫ y

−∞
e−t2/2 dt +O(rn) .

The sequence rn defines the speed of convergence, denoted also by r[Rn]. The
expectation E[Rn] and the variance V[Rn] satisfy E[Rn] ∼ an, V[Rn] ∼ bn.
The triple (E[Rn],V[Rn], rn) is a characteristic triple for the gaussian law of R.
1 See Section 2.4 for a definition.
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We now state our main result:2

Theorem. Let S be a nice dynamical source.

(i) Consider a simple regular expression E whose useful part of the automaton is
primitive. The number of occurrence positions of E in a word of length n built by
S, denoted by Cn(E), follows an asymptotic gaussian law with a characteristic
triple given by r[Cn(E)] = O(1/

√
n),

E[Cn(E)] = γE · n+ γ′E +O(μn
E ), V[Cn(E)] = νE · n+ ν′E + O(μn

E ),

The constants γE and νE are expressible with the pression Λ(t) of the operator
R(et) defined in (8), namely γE = Λ′(0), νE = Λ′′(0), while μE < 1 is any real
number strictly larger than the subdominant eigenvalue of R.
(ii) Consider a finite set of words W ⊂ Σ�. The number of occurrences of W in
a text of length n built by S, denoted by Ωn(W), follows an asymptotic gaussian
law with a characteristic triple given by r[Ωn(W)] = O(1/

√
n),

E[Ωn(W)] = αW · n+ α′
W +O(ηn

W ), V[Ωn(W)] = βW · n + β′
W +O(ηn

W ).

The constants αW et βW are expressible with the pression Λ(t) of the operator
B(et) defined in (9), namely αW = Λ′(0), βW = Λ′′(0), while ηW < 1 is any real
number strictly larger than the subdominant eigenvalue of B.

Methodology. For studying the parameter C(E), Nicodème, Salvy and Flajolet
describe in [9] a general method which directly translates a regular expression
into rational generating functions. They use, as a main tool, the transition matrix
of the automaton which recognizes the regular languageΣ�·E , and the occurrence
positions are related to the final states of the automaton. In [6], the authors also
use similar methods, namely the de Bruijn graph, to study the parameter Ω(W).
These two previous works, based on the “generating function methodology”, as
in the main books of the area [14, 13], operate a systematic translation of each
language into its generating function. Due to correlations of a dynamical source,
such a direct approach is no longer possible here. Instead, we perform what
we call a “dynamical analysis” and we first operate a systematic translation
into generating operators. In dynamical systems theory, an important tool is
the density transformer; here, we give it the role of a “generating operator”.
Now, there are many instances of this methodology, applied in two main areas:
text algorithms as in [2, 5, 16], or arithmetical algorithms as in [15]. Here, we
deal with a mixed structure, where we insert generating operators inside the
transition matrix of the automaton. We obtain an operator matrix which takes
into account both the complexity of the source and the algebraic structure of
the problem (namely an automaton).

2 The word “nice” is defined in Def. 4, Section 3.3, the words “simple” and “useful”
are defined in Def. 1, Section 2.4, the word “primitive” in Section 3.3.
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2 Various Tools

We first introduce the languages and the related generating functions that inter-
vene in the analysis of the characteristic parameters C and Ω. Next, we precise
the probabilistic model. We define dynamical sources and introduce the gener-
ating operators that are a basic ingredient associated to our correlated sources.

2.1 Probabilistic Model and Generating Functions

As regards the probabilistic model, we consider a source that creates the text
by emitting symbols from a finite alphabet Σ. For a given length n, a random
text, denoted by Tn is an element of Σn which is drawn according to the in-
duced probability on Σn, and, for any word w of length n, we denote by pw the
probability that the source emits a prefix equal to w. A language L is then a set
of words. For any language, we denote by Ln the language formed with all the
words w of L with length n. We aim at studying the random variables Y = C
(the number of occurrence positions) and Y = Ω (the number of occurrences). In
both cases, we consider the restriction of Y to Σn, denoted by Yn, and analyze
its probabilistic behavior for n → ∞. Our main tool is the moment generating
function of Yn, defined as

E[exp(tYn)] :=
∑

w∈Σn

pw · exp[tY (w)], (1)

and the main challenge is to show that it behaves as a “quasi-power”. Then, it
will be possible to obtain an asymptotic Gaussian law:

Theorem 0. [Hwang] Let Yn be a sequence of variables whose moment generat-
ing functions satisfies E[exp(tYn)] = [exp(nU(t)+V (t))]·[1+O(Wn)], Wn →∞,
with a uniform error term on the complex closed disk |t| ≤ t0, t0 > 0. Suppose
that U(t) and V (t) are analytic in |t| ≤ t0 and U(t) satisfies U ′′(0) �= 0. Then,
Yn follows an asymptotic gaussian law, with a characteristic triple given by

E[Yn] = U ′(0) · n+ V ′(0) +O(Wn), V[Yn] = U ′′(0) · n+ V ′′(0) +O(Wn),

r[Yn] = O (max(1/
√
n,Wn)) .

2.2 Bivariate Generating Functions

The so–called probability generating function FY (z, u) relative to parameter Y
is defined as

FY (z, u) =
∑

w∈Σ�

pw · uY (w) · z|w|,

where |w| denotes the length of w, the variables z and u respectively mark the
length of the word and the parameter Y (w). Remark that the moment generating
function of parameter Yn is closely related to FY (z, u) via the relation

E[exp(tYn)] = [zn]FY (z, et) (2)



Pattern Matching Statistics on Correlated Sources 229

where the notation [zn]G(z) denotes the coefficient of zn inG(z). Previous works,
which deal with non correlated sources, directly work with the generating func-
tions. Here, we cannot operate a direct translation from the problem into gen-
erating functions, and we mainly use generating operators.

2.3 Language vs Automaton

Let us first recall that an automaton is defined by (Σ,Q,F , s, δ), where Σ is an
alphabet, Q is the (finite) set of states, F ⊂ Q corresponds to the final states,
s ∈ Q is the initial state and δ : Q × Σ → Q is the transition function of the
automaton. In the following, the set Q will be always {0, . . . , r − 1}, and the
state 0 will be the initial state.

The automaton recognizes a language L if, for all word w := m1 . . .mn of L,
there exists a path q1, q2, . . . , qn−1 of states and a final state f such that

δ(s,m1) = q1, δ(qi,mi+1) = qi+1, [for 1 ≤ i ≤ n− 2], δ(qn−1,mn) = f.

In this case, the language L is said to be a regular language. Every regular lan-
guage can be described by a regular expression, composed of singletons and a
finite number of unions, Cartesian products and star operations on those sin-
gletons. Conversely, it is possible to operate a direct translation from a regular
expression to a deterministic finite automaton.

The transition matrix T := (Ti,j) is the r × r matrix whose element of index
(i, j) is the set of symbols m ∈ Σ for which there exists an edge from state i to
state j labeled by m, namely Ti,j := {m ∈ Σ; δ(i,m) = j}.

This matrix plays a fundamental rôle in the sequel. Thus, the component (i, j)
of the matrix T n is the language formed by all the words which allow to reach
state j from state i in n steps. And, the component (i, j) of the matrix T � is the
language formed by all the words which allow to reach state j from state i in an
arbitrary number of steps. Finally, Ln = S · T n · F, L = S · T � · F, where
F :=t (f1, . . . , fr) is a {0, 1} column vector such that fi equals 1 iff i ∈ F , called
the final vector and S is a row vector equal to ( 1 0 · · · 0 ).

2.4 Automata of Interest

To each parameter [C(E) or Ω(W)], we associate an automaton which will be
central in the study of this parameter.

Case C(E)- Automaton for the language L = Σ� · E associated to a
regular expression E. We consider the minimal automaton A which recognizes
Σ� · E , and its decomposition into the acyclic graph of its strongly connected
components (SCC):

Definition 1. The expression E is simple if the minimal automaton A which
recognizes Σ� · E possesses a unique SCC which contains all the final states.
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a a

a

a,c
b

b

b

b

c
c

c

0

1

2

3

tR :=
{b} {b} {b}

{a, c} {c} {c}
� {a} {a}

,

tM := ( {a} ) , tU :=
{b}
{c}
�

.

M := (G[a] ) , R(u) :=
G[b] G[b] G[b]

G[a] + G[c] G[c] G[c]

0 u · G[a] u · G[a]

, U(u) :=
G[b]

G[c]

0

Fig. 1. The automaton relative to Σ�.E with E = (ba|c)+a+, the transition matrices,
and the marked operators

Generally speaking, it is possible that all final states do not belong to the same
SCC. Here, we mainly consider the case when E is simple3. However, we explain
(in the conclusion) how our method extends to the general case.

Proposition 1. Let E be a simple regular expression and A be the minimal
automaton which recognizes Σ� · E . Then, there exists a partition of its set
of states Q into two sets X and Y for which the transition matrix T of this
automaton can be written as

T =
(
M U
0 R

)
;

Here, M is the matrix restricted to X , R is the matrix restricted to Y, and U
is the matrix from X to Y. If X is non empty, it contains the initial state, while
the graph (Y,R) is the SCC of the automaton, which contains all the final states
and is called the useful part of the automaton.

Remarks. Then, the language L decomposes as L = SX ·M� ·U ·R� ·FY , where
SX is the initial row vector restricted to X , and FY is the final column vector
restricted to Y. Note that the language L+ of the words which contain at least
one occurrence of the regular expression E satisfies L+ ⊂ SX · M� · U · R� · 1Y ,
where 1Y is a column vector, indexed with Y, whose all components equal 1.

Example. See Figure 1 (at the end) for E := (ba|c)+a+.

Case Ω(W)- The de Bruijn automaton relative to an alphabet Σ and a
length �. In the sequel, � will be the maximum length of a word ofW , minus 1.
We consider a “sliding window” of length � that scans a text of Σ� and, at each
stage, keeps in its (finite) memory the last � letters read from the text. Formally,
the de Bruijn graph is a finite automaton with state space Q = Σ�; when the
symbol m is read, in a state b ∈ Σ�, one erases the left symbol of b, which
provides a word denoted by τ(b), and m is added on the right of τ(b), so that
the new state is δ(b,m) = τ(b) ·m. A text of length n ≥ � is then associated to a
3 This is also the only case which is considered in [9].
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aa

bbab

ba

b

a

a a

b

bb
a

tB =

aa ab ba bb

aa
ab
ba
bb

{a} � {a} �
{b} � {b} �
� {a} � {a}
� {b} � {b}

.

B =

G[a] 0 G[a] 0
G[b] 0 G[b] 0
0 G[a] 0 G[a]

0 G[b] 0 G[b]

. B(u) =

G[a] 0 G[a] 0
u2 · G[b] 0 u · G[b] 0

0 G[a] 0 G[a]

0 u · G[b] 0 G[b]

.

Fig. 2. The De Bruijn automaton, with its transition matrix, the operator, with its
use for W = {ab, aab, aba} and the marked operator

path of length n− � that begins at the state b formed with the first � symbols of
the text. This transition matrix is denoted by B. Let us define the initial vector
S as a row vector whose components are all the words of Σ�, and the final vector
as a column vector whose components are all equal to 1. Then

Σn = S · Bn−� · F, Σ≥� = S · B� · F.

Example. See Fig. 2 (at the end) for the de Bruijn graph with Σ :={a, b}, �=2.

We now present the probabilistic model for symbol generation. This model is
based on dynamical systems. Here, probabilities are “generated” by operators,
and the main generating functions of interest can be generated themselves by
operators. Furthermore, unions and Cartesian products of sets translate into
sums and compositions of the associated operators. This allows us to define a
matrix generating operator related to a regular language.

2.5 Dynamical Sources

We first recall the definition of a dynamical system (of the interval). We refer
to [16, 4] for more details. See Fig. 3 for an example.

Definition 2. A dynamical system (I,S) is defined by four elements:

(a) a finite alphabet Σ,
(b) a topological partition of I :=]0, 1[ with disjoint open intervals Im,m ∈ Σ,
(c) an encoding mapping σ which is constant and equal to m on each Im,
(d) a shift mapping S whose restriction to Im is a bijection of class C2 from

Im to Jm := S(Im). The local inverse of S|Im is denoted by hm.

Such a dynamical system can be viewed as a “dynamical source”, since, on an
input x of I, it outputs the word M(x) formed with the sequence of symbols
σSj(x), i.e., M(x) := (σx, σSx, σS2x, . . .).
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The branches of Sk, and also its inverse branches, are then indexed by Σk,
and, for any w = m1 . . .mk ∈ Σk, the mapping hw := hm1 ◦ hm2 ◦ · · · ◦ hmk

is a
C2 bijection from Jw onto Iw. It is possible that the word w cannot be produced
by the source: this means that Jw is empty, and the inverse branch hw does
not exist. All the words that begin with the same prefix w correspond to real
numbers x that belong to the same interval Iw.

Such sources may possess a high degree of correlations, due to the geometry
of the branches [i.e., the respective positions of intervals Im and J� := S(I�)]
and also to the shape of branches. [See [4] for more details]. For instance, the
classical sources correspond to dynamical systems with affine branches, for which
the derivatives are constant. Generally speaking, the probability of emitting a
symbol m is closely related to the shape of branches, as we now see.

2.6 Probabilities and Generating Operators

When the interval I is endowed with some density g, this induces a probabilistic
model on ΣN, and the probability pw that a word begins with prefix w is the
measure of the interval Iw. Such a probability pw is easily generated by an
operator G[w], defined as

G[w][f ](x) = |h′w(x)| f ◦ hw(x)1IJw (x), (3)

since one has pw =
∫
Iw

g(x)dx =
∫
Jw

|h′w(x)|g ◦ hw(x)dx =
∫ 1

0
G[w][g](x)dx.

Then, the operator G[w] is called the generating operator of the prefix w. The
generating operator L relative to a collection L of words is defined as the sum of
all the generating operators relative to the words of L, namely L :=

∑
w∈L G[w],

and the generating operator G of the alphabet Σ

G :=
∑
m∈Σ

G[m]. (4)

plays a fundamental rôle here, since it is the density transformer of the dynamical
system; it describes the evolution of densities on I under iterations of S: if X is
a random variable with density g, then SX has density G[g].

For two prefixes w,w′, the relation pw.w′ = pwpw′ is no longer true when the
source has some memory, and is replaced by the following composition property

G[w.w′] = G[w′] ◦G[w], (5)

so that unions and Cartesian products of collections of words translate into sums
and compositions of the associated generating operators. Remark just that, due
to (5), the generating operator of L×M is M ◦ L.

2.7 Matrix Generating Operators

Here, we transform the transition matrix of an automaton into a matrix gener-
ating operator that combines both information from the dynamical source and
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Fig. 3. The original source S , the automaton A relative to Σ�E , and the mixed sources
SA, SR when the states are restricted to be in Y := {1, 2, 3}

the automaton. We associate to each element Tj,i of the matrix T , its generating
operator Ti,j

Ti,j :=
∑

w∈Tj,i

G[w]. (6)

Then, T is a matrix generating operator which is related to tT , due to (5).

Examples. In the case when L is Σ� · E , there are three matrix operators,
M,U,R, respectively associated to matrices M,U ,R [See Prop. 1]. For the de
Bruijn graph, the generating operator is denoted by B. See Figures 1 and 2 for
examples.

2.8 The Mixed Source

We now build a source ST that combines both a transition matrix T of an
automaton A, and the original source S. The set of states of A is Q and the
matrix T has order r. The initial source S is defined by an interval I, an alphabet
Σ, a topological partition (Im)m∈Σ and a shift S whose each local inverse hm :=
(S

Im
)−1 maps Jm :=]cm, dm[ on Im :=]am, bm[. The source ST [see Fig. 3 (at

the end) for an example] is defined with the interval I [r] = [0, r], the alphabet
Γ := Σ×Q, a topological partition (Im,i)(m,i)∈Γ and a shift function that maps
I [r] on I [r]. Each local inverse hm,i maps Jm,i on Im,i. More precisely, Im,i =
Im + i :=]am + i, bm + i[, Jm,i = Jm + δ(i,m) :=]cm + δ(i,m), dm + δ(i,m)[,
and hm,i(x) = hm(x− δ(i,m)) + i. The density transformer G of the source ST
defined, as in (4), by

G[f ](x) :=
∑

(m,i)∈Σ×Q
|h′m,i(x)| · f ◦ hm,i(x) · 1IJm,i(x), (7)

is conjugated to the matrix operator T defined in (6) via a mapping Ψ [namely
G = Ψ−1 ◦ T ◦ Ψ ] which associates to g (defined on I [r]) the vector t[g1, . . . , gr]
where each gi is defined on I by gi(x) := g

[i−1,1]
(x+ i).
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3 Probabilistic Behavior of Parameters C and Ω

Now, we come back to the two situations of interest. The next step consists in
weighting operator matrices T in order to study our parameters C(E) and Ω(W).

3.1 Case of C(E)

We consider here the language L := Σ�E and the three matrix operators M,U,R.
We now mark the transitions which arrive at final states and define three new
operators R(u), U(u),X(u) by the relations.

R(u)j,i = u[[j∈F ]] · Rj,i, U(u)j,i = u[[j∈F ]] ·Uj,i, ([[·]]is Iverson’s bracket) (8)

X(z, u) := z ·U(u) ◦ (I − zM)−1.SX ,

where the vector SX is a column vector (of length |X |) equal to t(1, 0, . . . , 0).

Example. Figure 1 describes the marked matrix operators for E = (ba|c)+a+.

3.2 Case of Ω(W)

We consider here a set of finite words W , and we choose the length � of the
de Bruijn graph to be equal to the maximal length of a word of W , minus 1.
this de Bruijn automaton is weighted with a counter that gets incremented each
time a transition is effected, so that the value of the counter will contain at the
end of the text the number Ω(W). A transition of the automaton, of the form
c = δ(b,m) requires b ·m ∈ Σ · c. When this transition is effected, one can “cash
in” all the “new” occurrences of W which arise when reading the last letter m,
i.e., all the occurrences of the pattern that end at the letter m. Precisely, for
a transition c = δ(b,m) of the automaton, the number of occurrences of the
pattern W contained in b ·m and ending at the letter m is determined by either
the pair (b,m) or the pair (b, c); we denote this number by φ(b,m) or ψ(b, c),
depending on context, so that φ(b,m) = ψ(b, c) whenever c = δ(b,m). Since the
length of word b ·m exactly equals �+ 1 that is the maximum length of a word
of W , all the occurrences of W that end at m are contained in a text of the form
b ·m with b ∈ Σ� so that the relation φ(b,m) = Ω(b ·m)−Ω(b) holds. We build
a operator matrix B(u) indexed by Q×Q as follows

B(u)c,b := uφ(b,m) · [[ bm ∈ Σc ]] ·G[m] = uΩ(bm)−Ω(b) · [[ bm ∈ Σc ]] ·G[m], (9)

and the initial vector X(z, u) is a column vector defined by

(X(z, u))b = z� · uΩ(b) ·G[b] . (10)

Example. Figure 2 describes the matrix B(u) relative to W := {ab, aab, aba}.
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In both cases, the operator FY (z, u) := (I−zT(u))−1◦X(z, u), with T(u) = R(u)
or T(u) = B(u) itself generates, with (3), the generating function FY (z, u), and
we obtain, with (1):

Proposition 2. The probability generating functions of parameters Y = C and
Y = Ω are expressible with the quasi-inverse of a matrix operator T(u),

E[uYn ] = [zn] ·
(∫ 1

0

(
1X · (I − zT(u))−1 ◦ X(z, u)

)
[g](t)dt

)
.

In the case Y = C, the operator T(u) equals R(u), and R(u),X(z, u) involve
the decomposition of Proposition 1 [see (8)]. In case Y = Ω, the operator T(u)
equals B(u) and B(u),X(z, u) involve the de Bruijn graph [see (9,10)].

In the sequel, we prove that, provided that the source S and the transition matrix
T possesses good properties, it is the same for the source ST .

3.3 Nice Sources and Convenient Sources

Under quite general hypotheses, and on a convenient functional space, the den-
sity transformer admits λ = 1 as an eigenvalue of largest modulus. But, generally
speaking, this is not a unique dominant eigenvalue isolated from the remainder
of the spectrum.

Definition 3. A dynamical source is said to be decomposable if, when acting on
a convenient Banach space F , the density transformer G [defined in (4)] possesses
a unique dominant eigenvalue (equal to 1) separated from the remainder of the
spectrum by a spectral gap, i.e., ρ := sup{|λ| ; λ ∈ SpG, λ �= 1} < 1.

Remarks. Let us explain the terminology: Consider the dominant eigenfunc-
tion ϕ which is an invariant function for G. Under the normalization condition∫ 1
0 ϕ(t)dt = 1, this last object is unique too, and it is also the (unique) stationary

density. Due to the existence of the spectral gap, the operator G decomposes
into two parts, namely G = λP + N, where P is the projection of G onto the
dominant eigenspace generated by ϕ, and N, relative to the remainder of the
spectrum, has a spectral radius equal to ρ, which is strictly less than 1. The
operator N describes the correlations of the source. A decomposable dynamical
source is ergodic and mixing with an exponential rate equal to ρ.

Most of the classical sources – memoryless sources, or primitive Markov
chains – are easily proven to be decomposable. We now present sufficient condi-
tions under which a general dynamical source will be proven to be decomposable,
together with all its associated mixed sources ST [the proofs are omitted here].

Definition 4. A dynamical source (on a finite alphabet) is said to be “nice” if
it satisfies the two conditions

(i) [Expansiveness] There exist two constants C,D with D > 1 for which one
has, for any m ∈ Σ, for any x ∈ Im, D < |S′(x)] < C.
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(ii) [Topologically mixing] For any pair of two nonempty open sets (V,W ), there
exists n0 ≥ 1 such that S−nV ∩W �= ∅ for all n ≥ n0.

Proposition 3. A nice dynamical system is decomposable, with respect to
the space BV (I) of functions with bounded variation, endowed with the norm
||f || := sup |f |+ V (f) [Here, V (f) is the total variation of f on I].

We consider now the mixed source ST . Recall that a transition matrix T is
primitive if there exists a power of the matrix T whose coefficients are never the
empty language. A strongly connected graph gives rise to a matrix T which is
primitive if and only if the gcd of the lengths of its cycles equals 1. If it is not
primitive, the gcd d of its cycle lengths is called the period, and T d is primitive.

Proposition 4. If S is a nice dynamical source, then the following holds:

(i) the mixed source ST relative to any primitive graph T is nice too.
(ii) The mixed source SB relative to a de Bruijn graph B is always nice.
(iii) Define the period of a regular expression E to be equal to the period of

the useful part of R of its automaton. Then, for any regular language E of period
d, the source Sd

R (whose shift equals T d
R) is nice.

3.4 Our Main Result

We are now ready for the proof of our main result.

Proof. We consider two graphs of interest: (i) in the case when we study Y =
C(E), the useful part R of the automaton A which recognizes the language Σ� ·E
– (ii) in the case when we study Y = Ω(W), where �+ 1 is the maximal length
of the words of W , the de Bruijn graph B of length �.

With hypotheses of the present theorem, Propositions 3 and 4, and
Definition 3, the density transformer G has dominant spectral properties, and,
by conjugation and perturbation theory, this transmits to the quasi-inverses of
marked operators R(u) or B(u), when u is near 1, which admit a spectral de-
composition too. Then, with Proposition 2, the moment generating functions
of cost Yn behave as approximate n-th powers. We end with Theorem 0 [7]
(See 2.1).

4 Conclusions

In this paper, as in [9], we restrict ourselves to the case when the expres-
sion E is simple. In the case when there does not exist a unique FSCC [see
Section 2.4], all these FSCC’s may play a rôle in the asymptotics, via their dom-
inant eigenvalues. Our theorem extends to the general case by dealing with the
super-dominant eigenvalues (which dominate the others).
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Abstract. Formal verification of timed systems is well understood, but
their implementation is still challenging. Raskin et al. have recently
brought out a model of parameterized timed automata in which the
transitions might be slightly delayed or expedited. This model is used
to prove that a timed system is implementable with respect to a safety
property, by proving that the parameterized model robustly satisfies the
safety property. We extend here the notion of implementability to the
broader class of linear-time properties, and provide PSPACE algorithms
for the robust model-checking of Büchi-like and LTL properties. We also
show how those algorithms can be adapted in order to verify bounded-
response-time properties.

Keywords: Implementability, robust verification, timed systems.

1 Introduction

Verification and control of real-time systems. In the last thirty years, for-
mal verification of systems has become a very active field of research in computer
science, with numerous success stories. Formal verification aims at checking that
(the model of) a system satisfies (a formula expressing) its specifications. The
importance of taking real-time constraints into account in verification has quickly
been understood, and the model of timed automata (defined by Alur & Dill [2])
has become one of the most established models for real-time systems, with well
studied underlying theory and development of mature model-checking tools, such
as Uppaal [13] and Kronos [7].

Implementation of real-time systems. Implementing mathematical models
on physical machines is an important step for applying theoretical results on
practical examples. This step is well understood for many untimed models that
have been studied (e.g. finite automata, pushdown automata). In the timed
setting, while timed automata are widely-accepted as a framework for modelling
the real-time aspects of timed systems, it is known that they cannot be faithfully
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implemented on finite-speed CPUs (e.g,. the authors of [8] provide an example
of a timed automaton that performs transitions exactly at dates n and n+1/n).

Studying the “implementability” of timed automata is thus a challenging
question of obvious theoretical and practical interest.

A semantical point of view. In [10], a new semantics, called the AASAP-
semantics (AASAP stands for “Almost ASAP”), has been introduced for timed
automata. It takes into account the inherent digital aspect of hardware, the
non-instancy of hardware communication, and several characteristics of a real
processor. The point is then to decide whether a given classical controller cor-
rectly supervises the system under the AASAP-semantics. In [10], solving this
problem is reduced to that of checking whether there exists a delay reaction Δ for
the controller to supervise the system: given a system Sys and a controller Cont,
their interaction is denoted �Sys ‖ Cont�Δ where Δ is the parameter representing
the reaction delay of the controller (and in practice this is the classical parallel
composition where clock constraints are enlarged by Δ).

The problem is then to decide, given a property P to be satisfied, whether
there exists some Δ ∈ Q≥0 s.t. �Sys ‖ Cont�Δ satisfies P . It is thus a problem
of robust model-checking. The special case of safety properties (stating that a
set of bad configurations cannot be reached) has been solved in [9] through a
region-based algorithm.

Our contribution. In this paper, we solve the robust model-checking prob-
lem for more general specifications like Büchi and LTL properties (e.g., that
“something occurs infinitely often”, or that “a request is eventually granted”).
The algorithm we propose is based on an extension of the classical region au-
tomaton construction which roughly captures all behaviors of the system, even
those which may deviate due to constraint enlargement. Our algorithm is in
PSPACE, which appears to be optimal. We also develop a PSPACE algorithm
for verifying simple timed properties (namely, the bounded-response-time and
bounded-invariance properties). Our algorithm is ad hoc, but it is a first step
towards the verification of more general timed specifications.

Related work. Our approach contrasts with another modeling-based solu-
tion [1], where the behavior of the platform is modeled as a timed automaton.
This framework is very expressive, but suffers from not verifying the “faster-
is-better” property (“if an automaton can be implemented on some hardware,
it can also be implemented on faster hardwares”). A notion of robust timed
automata has been proposed and studied in [11,14], where not all traces are
accepted, but only those belonging to an accepting tube. This approach is topo-
logical, and is not related to ours (in fact, it drops some behaviors of the system
while we add some), though this is also a semantical approach to robustness.
Finally, in [16,4,9], a small perturbation on slopes of clocks is allowed. In the
case of safety properties and under some natural assumptions, this approach is
equivalent to constraint enlargement, as proved in [9].

Outline of the paper. In Section 2, we introduce basic definitions, we define
the problem of robust model-checking, and we make clear the link between our
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work and the results of [10,9]. Then, we provide in Section 3 our model-checking
algorithm for co-Büchi properties, and in Section 4 its application to LTL prop-
erties. Finally, we present in Section 5 our first results for timed properties, and
conclude with a landscape on possible future works.

Only sketches of the proofs are done in this paper. The complete proofs are
available in the associated technical report [6].

2 Definitions

2.1 Timed Automata

Timed automata. Let C be a finite set of variables, named clocks. We denote
by G the set of clock contraints generated by the following grammar:

G , g ::= g ∧ g | c ∼ n

where c ranges over C, n ranges over N and 1 ∼ ∈ {≤,≥}.
A timed automaton is a tuple A = (L, �0, C, Σ, δ) where L is a finite set

of locations, �0 ∈ L is the initial location, C is a finite set of clocks, Σ is a finite
set of actions, and δ ⊆ L× G ×Σ × 2C × L is the set of transitions. We assume
w.l.o.g. that transitions are labeled by their name, and we identify Σ with δ.

We define a parameterized semantics for A which we denote by �A�Δ. Notice
that, in the definitions below, the standard semantics of timed automata can be
recovered by letting Δ = 0. In that case, we omit the subscript Δ.

Given a parameter Δ ∈ Q≥0, whether a clock valuation v : C → R+ satisfies
a constraint g within Δ, written v |=Δ g, is defined inductively as follows:⎧⎨⎩

v |=Δ c ≤ n iff v(c) ≤ n + Δ
v |=Δ c ≥ n iff v(c) ≥ n−Δ
v |=Δ g1 ∧ g2 iff v |=Δ g1 and v |=Δ g2

A state of �A�Δ is a pair (�, v) where � ∈ L and v : C → R+ assigns to
each clock its current value. Intuitively, in a given position (�, v), there are two
possible behaviors for �A�Δ:

– it can either perform an action transition, namely a transition of δ. This
requires that there exists (�, g, σ, r, �′) ∈ δ s.t. v |=Δ g. In that case, the
automaton ends up in state (�′, v[r ← 0]), where v[r ← 0] is the valuation
mapping clocks in r to 0 and the other clocks to their valuation given by v;

– or it can perform a delay transition, i.e. let a certain amount of time t elapse.
In that case, the automaton ends up in state (�, v + t) where v + t represents
the valuation c -→ v(c) + t for all c ∈ C.

In the first case we write (�, v) σ−−→Δ (�′, v[r ← 0]), whereas we write (�, v) t−−→Δ

(�, v+t) in the second case. The graph �A�Δ is thus an infinite transition system.
1 We simplify the notations by assuming that all inequalities are non-strict. As argued

in [9], this does not change the expressive power of the model under the enlarged
semantics.
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Paths in timed automata. A trace in a timed automaton A = (L, �0, C, Σ, δ)
is a (finite or infinite) sequence of consecutive transitions (δi)i∈I .

A path of �A�Δ over a trace (δi)i∈I is a sequence (�0, v0)
d0−−→Δ (�0, v0 +

d0)
δ0−−→Δ (�1, v1)

d1−−→Δ (�1, v1 + d1) . . . where for each i ∈ I, di ∈ R+. The
(unique) trace corresponding to a path π is referred to as trace(π).

Let T = (δi)i∈I be a trace of A. A state (�′, v′) is said to be reachable from a
set of states S following T in �A�Δ if there exists a path over T in �A�Δ starting
in some (�, v) ∈ S and containing (�′, v′). We write ReachT

Δ(S) for the set of
states that are reachable from S following trace T . We note ReachΔ(S) for the
union over all possible traces T of ReachT

Δ(S). This set represents all states that
are reachable in �A�Δ from S.

Region automaton. In order to symbolically reason about the infinite state
space of timed automata, [2] defines an equivalence relation (of finite index) as
follows. Let A be a timed automaton, and M be the largest integer occuring
in A. Two valuations v and v′ are equivalent iff the following conditions hold on
valuations v and v′:2

– for all c ∈ C, either v(c) and v′(c) are greater than M , or �v(c)� = �v′(c)�;
– for all c, c′ ∈ C, if both v(c) and v(c′) are lower than M , then

• 〈v(c)〉 ≤ 〈v(c′)〉 iff 〈v′(c)〉 ≤ 〈v′(c′)〉;
• 〈v(c)〉 = 0 iff 〈v′(c)〉 = 0.

This defines an equivalence relation, whose equivalence classes are referred to
as regions. We write [v] for the region containing v, and r for the topological
closure of the region r. The set of regions is finite and exponential in the size of
the timed automaton. We define the region automaton as the finite automaton
R(A) = (Γ, γ0,→) where

– Γ is the set {(�, r) | � ∈ L, r region},
– γ0 is the initial state (�0, r0) where r0 is the region which contains the valu-

ation v0 with v0(c) = 0 for every c ∈ C,
– → ⊆ Γ × (Σ ∪ {τ})× Γ and ((�, r), σ, (�′, r′)) ∈→ iff (�, r) �= (�′, r′) and

• either σ ∈ Σ and (�, v) σ−−→ (�′, v′) is a transition of �A� for some v ∈ r
and v′ ∈ r′,

• or σ is the symbol τ , and there exists t ∈ R+ s.t. (�, v) t−−→ (�′, v′) is a
transition of �A� for some v ∈ r and v′ ∈ r′.

The notions of path in the region automaton, trace of a path, ... are defined in the
usual way. It is well known that this automaton is time-abstract bisimilar to the
original timed automaton, which implies that, under the standard semantics,
all reachability and Büchi-like properties can be checked equivalently on the
original timed automaton or on the region automaton. We assume that classical
properties of region automata are known, and refer to [2] for more details.

2 �v(c)	 represents the integer part of v(c) and 〈v(c)〉 represents its fractional part.
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2.2 Robust Verification of Linear-Time Properties

In this section, after several remarks on the implementability of timed systems,
we present the problem of robust verification for linear-time properties.

Implementability of timed systems. Controllers of programs built using a
classical synthesis algorithm may be seen as idealized controllers which are dif-
ficult to implement. We should be able to guarantee that a controller built for
satisfying some property P can be implemented in such a way that an implemen-
tation of the controller also satisfies the property P . In [10], a simplified model of
hardware is given, with specifications (the frequency of the clock and the speed
of the CPU) given as characteristic parameters of the platform on which the con-
troller will be implemented. Two important properties are then proved: 1) first,
“faster is better”, which means that if a program behaves correctly (w.r.t. the
property P) on a given hardware, then it will also behave correctly on a faster
hardware, 2) for a program A to be correctly implemented on a platform as
the one described above, it is sufficient to prove its correctness on �A�Δ for
some Δ > 0. This naturally leads to the definition of robust satisfaction below.

Robust model-checking. We assume that we are given a property P for paths
of timed automata, and we note |= the classical satisfaction relation for P . Given
a timed automaton A, with initial state (�0, v0), we define the robust satisfaction
relation |≡ as follows:

A |≡ P def⇐⇒ ∃Δ > 0 s.t. for all paths π of �A�Δ starting in (�0, v0), π |= P .

Intuitively, if the property P holds robustly, then it is possible to find a suffi-
ciently fast hardware (somehow given by the parameter Δ) to implement the
automaton A correctly w.r.t. P , because, as explained above and proved in [10],

A |≡ P =⇒ A implementable w.r.t. P .

This result holds for properties quantifying universally over paths, and thus holds
for LTL properties, but not for CTL properties.

In the sequel we address the robust model-checking problem: “given a timed
automaton A and a path property P , can we decide whether A |≡ P?” This
problem has been solved in [9] for basic safety properties of the type “avoid bad
states”, with several restrictions on timed automata.

Restrictions on timed automata. A progress cycle in the region automaton
of A is a cyclic path along which all the clocks are reset, and that does not only
contain the initial region (i.e. the region where all the clocks are set to 0). We
do the following hypotheses on timed automata:

Restriction 1. We assume timed automata A satisfy the following require-
ments:

– clocks are bounded by some constant M ,
– all the cycles in the region automaton R(A) are progress cycles.
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The first hypothesis is not really restrictive since bounded timed automata are as
expressive as standard timed automata (see for example [5]). Note that it entails
that any time-divergent path contains infinitely many action transitions. In the
following we will only consider such infinite time-divergent paths. The second
point is a classical restriction [16], and in the framework of bounded timed
automata, it is less restrictive than classical strong non-Zenoness assumptions.

Robust model-checking of safety properties. The following result has then
been proved in [9]: let A be a timed automaton (satisfying Restriction 1) with
initial state (�0, v0), let Bad be a set of bad locations of A, and define the set
Reach∗(S) =

⋂
Δ>0 ReachΔ(S), where S denotes a set of states, then:

1. checking whether ∃Δ > 0 s.t. ReachΔ(�0, v0) ∩ Bad = ∅ is equivalent to
check whether Reach∗(�0, v0) ∩ Bad = ∅,

2. checking whether Reach∗(�0, v0) ∩ Bad = ∅ is decidable, and PSPACE-
complete.

These results rely on the classical region automaton construction where a
strongly connected component (SCC for short) of the region automaton is added
to the set Reach∗(�0, v0) as soon as it can be reached: indeed, if an SCC can be
partly reached, then by iterating the SCC, all points of the SCC can also be
reached.

Example 1 ([16,9]). Consider the automaton depicted on Figure 1. For this au-
tomaton, it is possible to compute the sets Reach(�0, v0) and Reach∗(�0, v0). We
obtain, for locations �1 and �2, the two sets described on Figure 2. The difference
is due to the iteration of the cycle around �1 and �2.

�1 �2�0
x=1

y:=0

x≤2

x:=0

y:=0

y≥2

x=0 ∧ y≥2

Fig. 1. A timed automaton A

Reach(�0, v0)

0
x

y

1

1

2

2

�2

�1

Reach∗(�0, v0)

0
x

y

1

1

2

2

�2

�1

Fig. 2. Differences between Reach(�0, v0) and Reach∗(�0, v0)
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In the next sections, we solve the robust model-checking for co-Büchi, LTL, and
bounded-response-time properties.

3 Robust Model-Checking of Co-Büchi Conditions

In this section, we are interested in co-Büchi conditions: given a set B of locations
in the timed automaton, a path π satisfies co-Büchi(B) iff its trace contains
finitely many transitions entering a location in B. Following Section 2.2, this
immediately defines the notion of robust satisfaction for a co-Büchi condition in a
timed automaton. We also recall the notion of satisfying a co-Büchi condition for
the region automaton: it satisfies a co-Büchi condition B iff every path starting
in γ0 (the initial state) only runs in states of B finitely often.

Extended region automaton R∗. We build an extension of the region au-
tomaton that takes into account the possible “deviations” of the underlying
timed automaton. Let A be a timed automaton, and R(A) be its corresponding
region automaton. We define the extended region automaton R∗(A) as follows:

– states of R∗(A) are states of R(A), i.e. pairs (�, r) where � is a location of
A and r is a region for automaton A

– transitions of R∗(A) are transitions of R(A) (we assume labels of transitions
are names of transitions in A), and transitions (�, r)

γ−−→ (�, r′) when r∩r′ �=
∅ and (�, r′) is in an SCC of R(A).

The γ-transitions which are added to the classical region automaton indicate
that an SCC can be reached and iterated, and then, as already written in Sub-
section 2.2, all configurations along the SCC can be reached.

Decidability of the robust model-checking for co-Büchi conditions. The
following result is the main result of this paper. The extension from simple reach-
ability to repeated reachability is not trivial since the method used in [9], based
on the distance between new reachable states, is not sufficient in our context.
Instead, we prove that the extended region automaton roughly recognizes all
paths of the system, even those which deviate from standard semantics.

Theorem 2. Let A be a timed automaton and B a set of locations of A. Then

A |≡ co-Büchi(B) ⇐⇒ R∗(A) |= co-Büchi(B)

Proof (Sketch). We first prove the left-to-right implication by contradiction. As-
sume that A |≡ co-Büchi(B), and that R∗(A) �|= co-Büchi(B). We can thus pick
some Δ > 0 s.t. every path of �A�Δ starting in (�0, v0) satisfies the co-Büchi
condition, and pick a path π in R∗(A) not satisfying the co-Büchi condition. We
will build from π a path in �A�Δ not satisfying the co-Büchi condition, and thus
obtain a contradiction. To this aim we state the following Lemma:
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Lemma 3. Let π be a path in R(A) labelled by T , starting in (�, r), and ending
in (�′, r′) such that there is a transition (�′, r′)

γ−−→ (�′, r′′) in R∗(A) (due to a
cyclic path over some trace τ). Then, for every Δ > 0,

1. for every valuation v′ ∈ r′, there exists a valuation v ∈ r and a path in �A�Δ

from (�, v) to (�′, v′) over trace T ;
2. for every valuation v′ ∈ r′ ∩ r′′, for every valuation v′′ ∈ r′′, there exists a

path in �A�Δ over trace τk (for some k ≥ 0) from (�′, v′) to (�′, v′′).

Splitting the path π into subpaths not containing γ-transitions, we can apply
the first point of the above lemma to each subpath. We thus obtain real paths
in �A�Δ, which we can glue together using the second point.

Conversely, assume that A �|≡ co-Büchi(B). This entails that, for any posi-
tive Δ, there is a path in �A�Δ entering infinitely many times a state in B. Since
B is finite, there exists a location f ∈ B that witnesses the Büchi condition for
paths πΔ for arbitrarily small Δ. We will build a path of R∗(A) satisfying the
Büchi condition {f}, using the following lemma:

Lemma 4. Given a timed automaton A, there exists a positive value Δ s.t. for
any (finite) path ρ in �A�Δ, there exists a path in R∗(A) whose trace, when
removing γ-transitions, is the same as the trace of ρ.

The proof is done by induction on the length of ρ. Using this lemma, we can
fix such a value of Δ and apply it to any prefix of the corresponding path π,
which satisfies the Büchi condition {f}. We can take a prefix of π containing
k + 1 times the discrete state f , which leads to a path of R∗(A) satisfying the
Büchi condition {f}. ��

As a corollary, and using the PSPACE-hardness of the robust model-checking of
safety properties [9], we get:

Corollary 5. The robust model-checking for co-Büchi acceptance conditions is
PSPACE-complete.

Remark 1. We prove Theorem 2 for co-Büchi conditions, because we need those
conditions for verifying LTL properties (see Section 4). However, we could have
adapted our construction to Büchi conditions (this would require to unfold once
the SCCs in R∗(A)), or other standard acceptance conditions on infinite runs.

4 Robust Model-Checking of LTL

We now show how our results on robust model-checking of co-Büchi conditions
can be used to robustly model-check LTL properties on timed automata. We use
the classical construction of Büchi automata which recognize exactly the models
of LTL formulae, and then apply the results of the previous section.

Definition 6 (Logic LTL). The logic LTL over finite set of actions Σ is defined
by the following grammar: (a ranges over the set of actions Σ)

LTL , ϕ ::= a | ϕ ∨ ϕ | ¬ϕ | X ϕ | ϕU ϕ
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Semantics of LTL. We define the semantics of LTL over traces of timed au-
tomata, which naturally induces a semantics over paths of timed automata:
a path π will satisfy an LTL formula if and only if its trace trace(π) satisfies
this formula. We thus assume we are given an infinite path π and denote by
T = (δi)i∈N ∈ Σω its trace. Given a natural number j ∈ N, we denote by T j

the trace (δi)i≥j . The satisfaction relation for LTL over traces is denoted |= and
is defined inductively as follows (we omit the semantics of standard boolean
operators):

T |= a ⇐⇒ δ0 = a
T |= X ϕ ⇐⇒ T 1 |= ϕ
T |= ϕ1 U ϕ2 ⇐⇒ ∃ i ≥ 0 s.t. T i |= ϕ2 and ∀ 0 ≤ j < i, T j |= ϕ1

In the following, we equivalently write π |= ϕ for trace(π) |= ϕ and use classical
shortcuts like F ϕ (which holds for .U ϕ where . denotes the “true” formula)
or G ϕ (which holds for ¬(F (¬ϕ)).

Remark 2. It is worth noticing that the semantics we consider is the so-called
pointwise semantics where formulae are interpreted only when an action occurs,
which is quite different from the interval-based semantics where formulae can be
interpreted at any time (see [17,15] for a discussion on these semantics).

Robust model-checking of LTL. The robust satisfaction relation for LTL is
thus derived from the general definition given in Section 2.2:

A |≡ ϕ ⇐⇒ ∃Δ > 0 s.t. ∀π path of �A�Δ starting in (�0, v0), π |= ϕ.

We recall the following classical result on LTL:

Proposition 7 ([18]). Given an LTL formula ϕ, we can build a Büchi au-
tomaton Bϕ (with initial state qϕ and repeated states Qϕ) which accepts the set
{T ∈ Σω | T |= ϕ}.

We now state that the robust model-checking of LTL is decidable.

Theorem 8. Given a timed automaton A, and an LTL formula ϕ, we denote by
C = A × B¬ϕ the timed Büchi automaton obtained by a strong synchronization
over actions of automata A and B¬ϕ. We then have the following equivalence:

A |≡ ϕ ⇐⇒ C |≡ co-Büchi(L×Q¬ϕ).

It remains to notice that the timed Büchi automaton A × B¬ϕ satisfies all Re-
strictions 1 (bounded clocks and only progress cycles) as soon as A does. Since
we have shown in Section 3 how to robustly model-check co-Büchi properties,
we get the following result:

Corollary 9. The robust model-checking of LTL over timed automata is decid-
able and PSPACE-complete.
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Classically, the verification of LTL over finite structures is PSPACE-complete,
but the complexity is only NLOGSPACE in the size of the system we analyze. In
the case of timed automata, both standard and robust model-checking problems
for LTL are PSPACE-complete, but they are PSPACE in both the size of the
structure and the size of the formula.

5 Towards Robust Model-Checking of Timed Properties

The logic MTL [12,3] extends the logic LTL with time restrictions on “until”
modalities. We present here a first positive step towards the robust model-
checking of MTL formulae. We consider the following bounded-response-time
property ϕ = G (a → F≤c b). where a and b denote actions (elements of Σ),
c belongs to Q+, and → denotes the classical “imply” operator. This formula
expresses that event a is always followed in less than c time units by a b. This
property thus constrains the reaction delays of the system. The robust satisfac-
tion of such a property (defined as in Subsection 2.2) ensures that the system,
even under small perturbations, will satisfy this quantitative property given by
the bounded delay c.

To formally define the satisfiability of ϕ over a path, we need timing infor-
mations about the path. We thus define the time length of a path between two
actions as follows. Let consider an infinite path π:

(�0, v0)
d0−−→ (�0, v0 + d0)

δ0−−→ (�1, v1) · · · (�k, vk) dk−−−→ (�k, vk + dk) δk−−→ · · ·

Given two indices i1 < i2, we define the time length of π between actions δi1 and
δi2 , denoted by time(δi1 , δi2) by the value

∑i2
j=i1+1 dj . We then say that path π

satisfies the formula ϕ, denoted by π |= ϕ, whenever:

∀ i ≥ 0, if δi = a, then ∃ j > i s.t. δj = b and time(δi, δj) ≤ c.

In particular, if π satisfies ϕ then π also satisfies the LTL property G (a → F b).
We now state the following result:

Theorem 10. The robust model-checking of bounded-response-time properties
is decidable in PSPACE over timed automata.

Proof (Sketch). Let ϕ = G (a → F≤c b). We assume A is a timed automaton
which satisfies the untimed property G (a → F b). The proof is based on the
following equivalence:

A �|≡ ϕ ⇐⇒ there is a state α in Reach∗(�0, v0) s.t. there is a finite path in �A�
from α starting with an a, ending after the first b such that the
time elapsed between these two actions is greater than c.

The right hand-side of the above equivalence is decidable, one solution is to
use corner-points because paths with maximal time length always run through
corner-points [5]. Such an algorithm has a PSPACE complexity. ��
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Remark 3. The above proof is somehow ad-hoc, as it is very specific to the
formula which is considered. However it can for example be adapted to bounded-
invariance properties like G (a → G ≤c¬b).

6 Conclusion

In this paper, we have extended the results of [9] in order to decide a suffi-
cient condition for the implementability of a timed automaton. To that aim, we
have defined a notion of robust satisfaction for linear-time properties and pro-
vided PSPACE algorithms for the robust model-checking of Büchi-like and LTL
properties (these algorithms are b.t.w. optimal). We have also made a first step
towards the robust model-checking of MTL formulae, through the verification of
bounded-response-time property.

It is worth noticing that our results may extend easily to another case of
perturbations: in [16], Puri considers drifts in the rates of clocks, instead of
enlarging guards. In fact, both extensions happen to have the same impact on
the set of reachable states [16,9], and it seems quite natural to think that our
proofs may be adapted to the case of drifts on clocks. Furthermore, the case of
bounded-response-time properties is encouraging and we are trying to extend
it to more general timed properties. Another direction to be studied is that of
semantics: indeed we have pointed out that we consider in this paper a pointwise
semantics for LTL. It could be interesting to study whether our results extend
to the more involved interval-based semantics. Finally, it could also be a great
challenge to extend this approach to branching-time properties. This requires to
adapt the robust semantics, and also to bring new keys to make the link with
implementability. This may lead to robust model-checking of logics like CTL, or
even TCTL.
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Abstract. We consider computational complexity questions related
to parallel knock-out schemes for graphs. In such schemes, in each
round, each remaining vertex of a given graph eliminates exactly one
of its neighbours. We show that the problem of whether, for a given
graph, such a scheme can be found that eliminates every vertex is
NP-complete. Moreover, we show that, for all fixed positive integers
k ≥ 2, the problem of whether a given graph admits a scheme in which
all vertices are eliminated in at most k rounds is NP-complete. For
graphs with bounded tree-width, however, both of these problems are
shown to be solvable in polynomial time.

Keywords: Parallel knock-out; graphs; computational complexity.

1 Introduction

In this paper, we consider parallel knock-out schemes for finite undirected sim-
ple graphs. These were introduced by Lampert and Slater [5]. Such a scheme
proceeds in rounds: in the first round each vertex in the graph selects exactly
one of its neighbours, and then all the selected vertices are eliminated simultane-
ously. In subsequent rounds this procedure is repeated in the subgraph induced
by those vertices not yet eliminated. The scheme continues until there are no
vertices left, or until an isolated vertex is obtained (since an isolated vertex will
never be eliminated).

A graph is reducible if there exists a parallel knock-out scheme that eliminates
the whole graph. The parallel knock-out number of a graphG, denoted by pko(G),
is the minimum number of rounds in a parallel knock-out scheme that eliminates
every vertex of G. If G is not reducible, then pko(G) =∞. Consider the following
decision problem.

Parallel Knock-Out (PKO)
Instance: A graph G.
Question: Is G reducible?

In [5], it was claimed that PKO is NP-complete even when restricted to the
class of bipartite graphs. No proof was given; the reader was referred to a paper

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 250–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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that was in preparation. Our attempts to obtain and verify this proof have been
unsuccessful. We shall obtain the result as a corollary to a stronger theorem
(Theorem 1 below) by considering a related problem, which is defined for each
positive integer k.

Parallel Knock-Out (k) (PKO(k))
Instance: A graph G.
Question: Is pko(G) ≤ k?

That there is a polynomial algorithm to decide PKO(1) follows easily from a
piece of graph theory folklore (see [1] for details). Our first result classifies the
complexity of PKO(k), k ≥ 2.

Theorem 1. For k ≥ 2, PKO(k) is NP-complete even if instances are restricted
to the class of bipartite graphs.

In [1], it was shown, using a dynamic programming approach, that the parallel
knock-out number for trees can be computed in polynomial time. It was asked
whether this result could be extended to graphs with bounded tree-width. In
our second result, we give an affirmative answer.

Theorem 2. The problem PKO(k) can be solved in linear time on graphs with
bounded tree-width.

We will also show that PKO can be solved in polynomial time on graphs with
bounded tree-width.

The paper is organised as follows. In the next two sections we introduce a
number of definitions and simple results. In Section 4 and Section 5 are the
proofs and corollaries of Theorems 1 and 2 respectively.

2 Preliminaries

Graphs in this paper are denoted by G = (V,E). An edge joining vertices u
and v is denoted uv. In the null graph, V = E = ∅. For graph terminology not
defined below, refer to [2].

For a vertex u ∈ V we denote its neighbourhood, that is, the set of adjacent
vertices, by N(u) = {v |uv ∈ E}. The degree of a vertex is the number of edges
incident with it, or, equivalently, the size of its neighbourhood.

For a graph G, a KO-selection is a function f : V → V with f(v) ∈ N(v) for
all v ∈ V . If f(v) = u, we say that vertex v fires at vertex u, or that vertex u is
knocked out by vertex v.

For a KO-selection f , we define the corresponding KO-successor of G as the
subgraph of G that is induced by the vertices in V \ f(V ); if H is the KO-
successor of G we write G � H . Note that every graph without isolated vertices
has at least one KO-successor. A graph G is called KO-reducible, if there exists
a finite sequence

G � G1 � G2 � · · · � Gr,
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where Gr is the null graph. If no such sequence exists, then pko(G) = ∞. Oth-
erwise, the parallel knock-out number pko(G) of G is the smallest number r for
which such a sequence exists. A sequence of KO-selections that transform G into
the null graph is called a KO-reduction scheme. A single step in this sequence
is called a round of the KO-reduction scheme. A subset of V is knocked out in a
certain round if every vertex in the subset is knocked out in that round.

We make some simple observations that we will use later on.

Observation 1. Let G be a graph on at least three vertices. If G contains two
vertices of degree 1 that share the same neighbour, then G is not KO-reducible.

Observation 2. Let u1, u2, u3, u4 be four vertices of a KO-reducible graph G
such that N(u2) = {u1, u3}, N(u3) = {u2, u4} and N(u4) = {u3}. If u1 is
knocked out in the first round of a KO-reduction scheme, then u1 fires at u2 in
the first round.

An odd path u1u2 . . . u2k+1 is called a centred path of G with centrevertex
uk+1 if G − {uk+1} contains as components the path u1u2 . . . uk and the path
uk+2uk+3 . . . u2k+1.

Observation 3. Let P = u1u2 . . . u7 be a centred path of a KO-reducible
graph G. In the first round of any KO-reduction scheme u1 and u2 fire at each
other, u3 fires at u2, u6 and u7 fire at each other, u5 fires at u6, u4 fires at u3
or u5, and u4 will not be knocked out. In the second round of any KO-reduction
scheme u4 and its remaining neighbour in P fire at each other.

3 NP-Complete Problems

In this section, we consider two NP-complete problems that we will use in the
proof of Theorem 1. We refer to [4] and [6] for further details.

Dominating Set (DS)
Instance: A graph G = (V,E) and a positive integer p.
Question: Does G have a dominating set of size at most p, that is, is there a
subset V ′ ⊆ V such that |V ′| ≤ p and every vertex of G is in V ′ or adjacent to
a vertex in V ′?

A hypergraph J = (Q,S) is a pair of sets where Q = {q1, . . . , qm} is the vertex
set and S = {S1, . . . , Sn} is the set of hyperedges. Each member Sj of S is a
subset of Q.

Hypergraph 2-Colourability (H2C)
Instance: A hypergraph J = (Q,S).
Question: Is there a 2-colouring of J = (Q,S), that is, a partition of Q into
sets B and W such that, for each S ∈ S, B ∩ S �= ∅ and W ∩ S �= ∅.

The incidence graph I of a hypergraph J = (Q,S) is a bipartite graph with
vertex set Q ∪ S where (q, S) forms an edge if and only if q ∈ S.
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With a hypergraph J = (Q,S) we can associate another hypergraph J ′ =
(X,Z) called the triple of J ; triples of hypergraphs will play a crucial role in our
NP-completeness proofs in the next section. It requires a little effort to define
the vertices X and hyperedges Z of the triple of J .

Recall that Q = {q1, . . . , qm} and S = {S1, . . . , Sn}. For 1 ≤ i ≤ m, let �(i)
be the number of hyperedges in S that contain qi, let Qi = {q1

i , . . . , q
�(i)
i } and

let Ui = {u1
i , . . . , u

�(i)
i }. The union of all such sets is the vertex set of J ′, that is

X =
m⋃

i=1

(Qi ∪ Ui).

Now the hyperedges:

• for 1 ≤ i ≤ m, for 1 ≤ k ≤ �(i), let P k
i = {qk

i , u
k
i },

• for 1 ≤ i ≤ m, for 1 ≤ k ≤ �(i)− 1, let Rk
i = T k

i = {uk
i , q

k+1
i }, and

• for 1 ≤ i ≤ m, let R�(i)
i = T

�(i)
i = {u�(i)

i , q1
i }.

Let Pi = {P 1
i , . . . , P

�(i)
i }, Ri = {R1

i , . . . , R
�(i)
i }, and Ti = {T 1

i , . . . , T
�(i)
i }, and

let

P =
m⋃

i=1

Pi, R =
m⋃

i=1

Ri, T =
m⋃

i=1

Ti.

For 1 ≤ j ≤ n, there is also a hyperedge S′
j . If in J , Sj contains qi, then in J ′, S′

j

contains a vertex of Qi. In particular, if Sj is the kth hyperedge that contains qi

in J , then S′
j contains qk

i . For example, if q1 is in S1, S4 and S7 in J , then �(1) = 3
and in J ′ there are vertices q1

1 , q
2
1 , q

3
1 with q1

1 ∈ S′
1, q2

1 ∈ S′
4, and q3

1 ∈ S′
7.

Let S′ = {S′
1, . . . , S

′
n}. The set of hyperedges for J ′ is

Z = S′ ∪ P ∪R ∪ T .

We denote the incidence graph of the triple J ′ by I ′. See Figure 1 for an example
that illustrates the case where q1 belongs to S1, S4 and S7.

Proposition 1. J = (Q,S) has a 2-colouring B ∪W if and only if J ′ = (X,Z)
has a 2-colouring B′ ∪W ′ such that for each 1 ≤ i ≤ m either Qi ⊆ B′ and
Ui ⊆W ′, or Qi ⊆W ′ and Ui ⊆ B′.

Proof. Suppose B ∪W is a 2-colouring of J . Define a partition B′ ∪W ′ of X as
follows. If qi is in B, then each qk

i is in B′ and each uk
i is in W ′. If qi is in W ,

then each qk
i is in W ′ and each uk

i is in B′. Obviously, B′ ∪W ′ is a 2-colouring
of J ′ with the desired property.

Suppose we have a 2-colouring B′ ∪ W ′ of J ′ such that for each 1 ≤ i ≤
m either Qi ⊆ B′ and Ui ⊆ W ′, or Qi ⊆ W ′ and Ui ⊆ B′. Then let qi ∈
B if and only if Qi ⊆ B′, and let W = Q \ B. Clearly, if Sj contains only
elements from B (respectively W ), then S′

j would contain only elements from B′

(respectively W ′). Hence B ∪W is a 2-colouring of J . ��
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q1
1

R2
1R1

1 S′
7

T2
1

S′
1 P1

1 P2
1S′

4 P3
1 R3

1

T3
1T1

1

u3
1q3

1u2
1q2

1u1
1

Fig. 1. Part of the incidence graph of the triple of a hypergraph

4 Complexity Classification

Theorem 1. For k ≥ 2, PKO(k) is NP-complete even if instances are restricted
to the class of bipartite graphs.

Proof. The proof is in three cases.

Case 1. k = 2. We use reduction from DS. Given G = (V,E) and a positive
integer p ≤ |V |, we shall construct a bipartite graph B such that pko(B) = 2 if
and only if G has a dominating set D where |D| ≤ p.

Let the vertex set of B be the disjoint union of V = {v1, . . . , vn}, V ′ =
{v′1, . . . , v′n} and W = {w1, . . . , wn−p}. Let the edge set of B contain

• viv
′
i, 1 ≤ i ≤ n,

• viv
′
j and v′ivj , for each edge vivj ∈ E, and

• viwh, 1 ≤ i ≤ n, 1 ≤ h ≤ n− p.

Suppose that G has a dominating set D = {v1, . . . , vd} where d ≤ p. Note that
every vertex in V ′ is adjacent to a vertex of D in B. We shall describe a 2-round
KO-reduction scheme for B. In round 1

• for 1 ≤ i ≤ n, vi fires at v′i,
• for 1 ≤ j ≤ p, v′j fires at vj ,
• for p+ 1 ≤ j ≤ n, v′j fires at a vertex in D, and
• for 1 ≤ h ≤ n− p, wh fires at a vertex in D.

Thus each vertex in {v1, . . . , vp} and V ′ is eliminated, and each vertex in V \
{v1, . . . , vp} and W survives to round 2. As the surviving vertices induce the
balanced complete bipartite graph Kn−p,n−p in B, it is clear that every surviving
vertex can be eliminated in one further round.

Now suppose that B has a 2-round KO-reduction scheme. Let D be the subset
of V containing vertices that are fired at in round 1. As every vertex in V ′ fires
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at — and so is adjacent to — a vertex in D, D is a dominating set in G (since
each vertex in V ′ is joined only to copies of itself and its neighbours). We must
show that |D| ≤ p. Let VS = V \D and V ′

S ⊂ V ′ ∪W be the sets of vertices that
survive round 1. As round 2 is the final round,

|VS | = |V ′
S |. (1)

As |V ′ ∪W | = 2n− p and at most n vertices in V ′ ∪W are fired at in round 1,
|V ′

S | ≥ n− p. Thus, by (1), |VS | ≥ n− p. Therefore

|D| = |V | − |VS |
≤ n− (n− p)
= p.

Case 2. k = 3. Let J = (Q,S) be an instance of H2C. Let I ′ be the incidence
graph of its triple J ′ = (X,Z). Recall that Z = S′ ∪ P ∪ R ∪ T . From I ′, we
obtain a further bipartite graph G by connecting each vertex with a path as
follows:

• For each vertex x in X , w add a path Hx = yx
1y

x
2y

x
3 and join x to yx

1 .
• For each vertex R in R, add a path HR = yR

1 . . . yR
4 and join R to yR

1 .
• For each vertex T in T , add a path HT = yT

1 . . . yT
4 and join T to yT

1 .
• For each vertex P in P , add a path HP = yP

1 . . . yP
7 and join P to the

centrevertex yP
4 .

• For each vertex S′ in S′, add a path HS′
= yS′

1 . . . yS′

7 and join S′ to the
centrevertex yS′

4 .

Figure 2 illustrates G. We shall prove that J is 2-colourable if and only if
pko(G) ≤ 3. Throughout the proof, G1 and G2 denote the graphs induced by the
surviving vertices after, respectively, 1 and 2 rounds of a KO-reduction scheme.

I ′

R

HS′

q
yq
1

HP

HR

HT

T

HuHq

S′ P

u

Fig. 2. The graph G in Case 2
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Suppose B ∪ W is a 2-colouring of J . By Proposition 1, J ′ has a 2-colouring
B′ ∪W ′. We define a three-round KO-reduction scheme for G.

Round 1. Vertices of degree 1 and their neighbours fire at each other. Each HP

with P ∈ P and each HS′
with S′ ∈ S′ is a centred path of G, and the vertices

fire as in Observation 3. For each z ∈ R ∪ T , vertex yz
1 fires at yz

2 and yz
2 fires

at yz
3 . Each vertex in Z fires at one of its neighbours in B′. Each vertex x in X

fires at its neighbour yx
1 in Hx. Each yx

1 with x ∈ B′ fires at x. Each yx
1 with

x ∈ W ′ fires at yx
2 .

Thus every vertex in W ′ and no vertex in B′ survives. Also every vertex in Z
survives. Each vertex z ∈ R∪ T is adjacent to a vertex yz

1 of degree 1, and each
vertex z ∈ S′ ∪ P is adjacent to a vertex yz

4 whose only other neighbour is a
vertex yz

3 of degree 1.

Round 2. Because B′∪W ′ is a 2-colouring of J = (X,Z), every vertex in Z has
a neighbour in W ′ in G1. For each S′

j ∈ S′ we choose one neighbour in W ′ and
let W ′′ be the set of selected vertices. Since no two vertices in S′ have a common
neighbour in X , |W ′′| = n. The vertices in G1 fire as follows. Vertices of degree 1
and their neighbours fire at each other. Each vertex P ∈ P with a neighbour in
W ′\W ′′ fires at this neighbour. Otherwise P fires at yP

4 . Each x ∈ X fires at its
neighbour in P . Each S′ ∈ S′ fires at yS′

4 .
Thus the vertex set of G2 is W ′′ ∪ S′.

Round 3. Each S′ ∈ S′ and its unique neighbour in W ′′ fire at each other,
which leaves us with the null graph.

Now we suppose that pko(G) ≤ 3. We assume that a particular KO-reduction
scheme for G is given and prove that J has a 2-colouring.

Claim 1. If a vertex in a set Qi is knocked out in the first round, then all vertices
in Qi are knocked out in the first round.

Suppose that vertex qk
i ∈ Qi is knocked out in the first round. We show that qk+1

i

(with q
�(i)+1
i = q1

i ) is also knocked out in the first round.
If qk

i ∈ Qi is knocked out in the first round, then, by Observation 2, qk
i fires

at yqk
i

1 . Suppose qk+1
i is not knocked out in the first round. Observation 3 implies

that P k+1
i must fire at uk+1

i and P k
i must fire at either qk

i or uk
i . If P k

i fires

at uk
i , then by Observation 2 uk

i fires at y
qk

i
1 . Since vertices in HP k

i must fire
as in Observation 3, this means that G1 contains a component isomorphic to
a path on three vertices. By Observation 1 G1 is not KO-reducible. Hence, P k

i

fires at qk
i .

For the same reason Rk+1
i or T k+1

i cannot fire at uk
i , and consequently, fire

at yRk+1
i

1 and y
T k+1

i
1 respectively. Due to Observation 2 this implies that yRk+1

i
1

fires at yRk+1
i

2 , and y
T k+1

i
1 fires at yT k+1

i
2 .

In G1 both T k
i and Rk

i have exactly the same neighbours, namely uk
i and qk+1

i .
If T k

i and Rk
i fire at a different neighbour in the second round, then due to

Observation 2 both will be isolated vertices in G2. Suppose T k
i and Rk

i fire at
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the same neighbour. Then in all possible schemes G2 will contain two vertices
of degree 1 having the same neighbour. Observation 1 implies that G2 is not
KO-reducible. We conclude that qk+1

i must be knocked out in the first round as
well, and this proves the claim.

Claim 2. If a vertex in a set Ui is knocked out in the first round, then all vertices
in Ui are knocked out in the first round.

This claim is proven by using the same arguments as in Claim 1.

By Claim 1 and Claim 2 we may define a set B′ ⊆ X as follows. All vertices of
a set Qi or Ui are in B′ if and only if the set is knocked out in the first round.
Let W ′ = X\B′.

Claim 3. For all 1 ≤ i ≤ m, either Qi ⊆ B′ and Ui ⊆ W ′, or Qi ⊆ W ′

and Ui ⊆ B′.

Let 1 ≤ i ≤ m. By Observation 3, each vertex P k
i ∈ Pi must fire at either qk

i

or uk
i in the first round. The previous two claims imply that Qi or Ui is knocked

out in the first round. Suppose both sets are knocked out in the first round. Then,
by Observation 2, u1

i fires at yu1
i

1 and q1
i fires at yq1

i
1 . Then, by Observation 3, P 1

i

will not be knocked out in any round. The claim is proved.

By Claim 3, all vertices in Z\S′ have one neighbour in B′ and one neighbour
in W ′. Let S′

j be a vertex in S. By Observation 3, S′
j fires at a neighbour in⋃m

i=1 Qi. By definition, this neighbour is in B′. By both Observation 2 and
Observation 3, S′

j is knocked out by a neighbour in
⋃m

i=1 Qi that is not knocked
out in the first round. By definition, this neighbour is in W ′. It is now clear that
B′ ∪W ′ is a 2-colouring of J ′ such that for each 1 ≤ i ≤ m either Qi ⊆ B′

and Ui ⊆ W ′, or Qi ⊆ W ′ and Ui ⊆ B′. Hence, by Proposition 1, J also has a
2-colouring.

Case 3. k ≥ 4. We use reduction from H2C. From an instance J = (Q,S) we
construct the graph G as in the previous case. We claim that J is 2-colourable
if and only if pko(G) ≤ k.

Suppose that J is 2-colourable. As we have seen in the previous case this
implies that pko(G) ≤ 3 ≤ k.

Suppose that pko(G) ≤ k. Then G is KO-reducible. Note that in the proof of
the previous case we only assume that G is KO-reducible. Hence we can copy
the proof of the previous case. This completes the proof of Theorem 1. ��
Corollary 1. The PKO problem is NP-complete, even if instances are restricted
to the class of bipartite graphs.

Proof. We use reduction from H2C. From an instance J = (Q,S) we construct
the graph G as in the proof of Theorem 1. We claim that J is 2-colourable if
and only if G is KO-reducible.

Suppose that J is 2-colourable. As we have seen in the proof of Theorem 1
this implies that pko(G) ≤ 3. Hence G is KO-reducible.

Suppose that G is KO-reducible. We copy the proof of Case 2 of Theorem 1.
��
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Exact Parallel Knock-Out (k) (EPKO(k))
Instance: A graph G.
Question: Is pko(G) = k?

Corollary 2. The EPKO(k) problem is polynomially solvable for k = 1 and is
NP-complete for k ≥ 2, even if instances are restricted to the class of bipartite
graphs.

Proof. For the case k = 1 we only have to exclude the null graph. Let k ≥ 2. In
[1] a family of trees Y� is constructed with pko(Y�) = � for � ≥ 1. For the case
k = 2 we only have to add a disjoint copy of the tree Y2 (a path on 7 vertices)
to the graph B in the proof of Case 1 in Theorem 1. For k ≥ 3 it suffices to add
a disjoint copy of the tree Yk to the graph G constructed in the proof of Case 2
in Theorem 1. Note that the size of a tree Yk only depends on k and not on
the size of our input graph G (so we do not need the exact description of this
family). ��

5 Bounded Tree-Width

In this section we use monadic second-order logic; that is, that fragment of
second-order logic where quantified relation symbols must have arity 1. For ex-
ample, the following sentence, which expresses that a graph (whose edges are
given by the binary relation E) can be 3-coloured, is a sentence of monadic
second-order logic:

∃R∃W∃B
{
∀x

(
(R(x) ∨W (x) ∨B(x)) ∧ ¬(R(x) ∧W (x))

∧¬(R(x) ∧B(x)) ∧ ¬(W (x) ∧B(x))
)
∧ ∀x∀y

(
E(x, y)⇒

(¬(R(x) ∧R(y)) ∧ ¬(W (x) ∧W (y)) ∧ ¬(B(x) ∧B(y)))
)}

(the quantified unary relation symbols are R, W and B, and should be read as
sets of ‘red’, ‘white’ and ‘blue’ vertices, respectively). Thus, in particular, there
exist NP-complete problems that can be defined in monadic second-order logic.

A seminal result of Courcelle [3] is that on any class of graphs of bounded
tree-width, every problem definable in monadic second-order logic can be solved
in time linear in the number of vertices of the graph. Moreover, Courcelle’s result
holds not just when graphs are given in terms of their edge relation, as in the
example above, but also when the domain of a structure encoding a graph G
consists of the disjoint union of the set of vertices and the set of edges, as well as
unary relations V and E to distinguish the vertices and the edges, respectively,
and also a binary incidence relation I which denotes when a particular vertex is
incident with a particular edge (thus, I ⊆ V × E). The reader is referred to [3]
for more details and also for the definition of tree-width which is not required
here. To prove Theorem 2, we need only prove the following proposition.
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Proposition 2. For k ≥ 1, PKO(k) can be defined in monadic second order
logic.

Proof. Recall that a parallel knock-out scheme for a graph G = (V,E) is a
sequence of graphs

G � G1 � G2 � · · · � Gr,

where Gr is the null graph. Let W0 = V and, for 1 ≤ i ≤ r, let Wi be the vertex
set of Gi. If we can write a formula Φ(Wi,Wi+1) of monadic second-order logic
that says

there exists a KO-selection fi on Wi such that the vertex set of the KO-
successor is Wi+1,

then we could prove the proposition with the following sentence Ωk which is
satisfied if and only if G is in PKO(k):

∃W0∃W1 · · · ∃Wk(∀v(W0(v) ⇔ V (v))
∧Φ(W0,W1) ∧ Φ(W1,W2) ∧ · · · ∧ Φ(Wk−1,Wk)
∧(∀v(¬Wk(v) ⇔ V (v))).

(Here and elsewhere we have presupposed that each Wi is a set of vertices; we
could easily include additional clauses to check this explicitly.)

The following claim will help us write Φ(Wi,Wi+1).

Claim 4. There is a KO-selection fi on Wi such that Wi+1 is the vertex set of
the KO-successor if and only if there is a partition V1, V2, V3 of Wi and subsets
E1, E2, E3 of E such that

(a) for j = 1, 2, 3, each vertex in Vj is incident with exactly one edge of Ej , this
edge joins it to a vertex in Wi \ Vj , and this accounts for every edge in Ej

(so |Vj | = |Ej |).
(b) Wi+1 ⊂ Wi and, for j = 1, 2, 3, Wi+1 ∩ Vj is the set of vertices in Vj not

incident with edges in Ej′ for any j′ �= j.

We will prove the claim later. First we use it to write Φ(Wi,Wi+1).
The following formula ψ(V1, E1, V2, E2, V3, E3,Wi) checks that the sets V1, V2

and V3 partition Wi, that the sets E1, E2, E3 are edges in the graph, and that
(a) is satisfied.

∀v((V1(v) ∨ V2(v) ∨ V3(v)) ⇔Wi(v)) ∧ ∀v(¬(V1(v) ∧ V2(v))
∧¬(V1(v) ∧ V3(v)) ∧ ¬(V2(v) ∧ V3(v)))
∧∀x((E1(x) ∨ E2(x) ∨E3(x)) ⇒ E(x))
∧∀x(E1(x) ⇒ ∃u∃v(V1(u) ∧ (V2(v) ∨ V3(v)) ∧ I(u, x) ∧ I(v, x)))
∧∀x(E2(x) ⇒ ∃u∃v(V2(u) ∧ (V1(v) ∨ V3(v)) ∧ I(u, x) ∧ I(v, x)))
∧∀x(E3(x) ⇒ ∃u∃v(V3(u) ∧ (V1(v) ∨ V2(v)) ∧ I(u, x) ∧ I(v, x)))
∧∀v(V1(v) ⇒ ∃!x(I(v, x) ∧ E1(x)))
∧∀v(V2(v) ⇒ ∃!x(I(v, x) ∧ E2(x)))
∧∀v(V3(v) ⇒ ∃!x(I(v, x) ∧ E3(x)))
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(The semantics of ∃! is ‘there exists exactly one’; clearly, this abbreviates a more
complex though routine first-order formula.) The following formula checks that
(b) is satisfied and is denoted χ(V1, E1, V2, E2, V3, E3,Wi,Wi+1).

∀v(Wi+1(v) ⇔ (Wi(v) ∧ ((V1(v) ∧ ¬∃x((E2(x) ∨ E3(x)) ∧ I(v, x)))
∨(V2(v) ∧ ¬∃x((E1(x) ∨ E3(x)) ∧ I(v, x)))
∨(V3(v) ∧ ¬∃x((E1(x) ∨ E2(x)) ∧ I(v, x)))).

And now we can write Φ(Wi,Wi+1):

∃V1∃E1∃V2∃E2∃V3∃E3(ψ(V1, E1, V2, E2, V3, E3,Wi)
∧χ(V1, E1, V2, E2, V3, E3,Wi,Wi+1)).

It only remains to prove Claim 4. Suppose that we have sets V1, V2, V3, E1, E2
and E3 that satisfy the conditions of the claim. Then to define the KO-
selection fi, for j = 1, 2, 3, for each vertex v ∈ Vj , let v fire at the unique
neighbour joined to v by an edge in Ej . It is easy to check that Wi+1 is the
vertex set of the KO-successor.

Now suppose that we have a KO-selection fi. Let Hi be the spanning subgraph
of Gi with edge set {vfi(v) | v ∈ Wi}. The firing can be represented as an
orientation of H : orient each edge from v to fi(v) (some edges may be oriented
in both directions). As each vertex has exactly one edge oriented away from it,
each component of the oriented graph contains one directed cycle, of length at
least 2, with a pendant in-tree attached to each vertex of the cycle; see Figure 3.

We find the sets V1, V2, V3, E1, E2, E3; the edge sets contain only edges of Hi.
We may assume that Hi is connected (else we can find the sets componentwise).
Let the vertices of the unique cycle in the orientation be v1, . . . , vc where the
edges are vlvl+1, 1 ≤ l ≤ c− 1, and vcv1. So Hi contains vertices v1, . . . , vc with
a pendant tree (possibly trivial) attached to each.

Fig. 3. A representation of vertices firing
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For 1 ≤ l ≤ c, let U l
e be the set of vertices in the pendant tree attached to vl

whose distance from vl is even (but not zero), and let U l
o be the vertices in the

tree at odd distance from vl. Let

V1 =
⋃

l odd
U l

o ∪
⋃

l even
U l

e ∪ {vl : l is even, l �= c},

V2 =
⋃

l odd
U l

e ∪
⋃

l even
U l

o ∪ {vl : l is odd, l �= c}, and

V3 = {vc},

and, for i = 1, 2, 3, let Ei contain vfi(v) for each v ∈ Vi. It is clear that the sets
we have chosen satisfy the conditions of the claim.

This completes the proof of the claim and of the proposition. ��

Theorem 2 follows from the proposition. And, noting that EPKO(k) is defined
by the monadic second-order sentence Ωk ∧¬Ωk−1, we have the following result.

Corollary 3. For k ≥ 1, EPKO(k) is solvable in linear time on any class of
graphs with bounded tree-width.

Finally, we note that to check whether a graph G is reducible it is sufficient to
check whether pko(G) = k, for 1 ≤ k ≤ Δ, where Δ is the maximum degree
of G. Thus G is reducible if and only if the sentence ΩΔ ∨ ΩΔ−1 ∨ · · · ∨ Ω1 is
satisfied. This gives us our last result.

Corollary 4. On any class of graphs with bounded tree-width, PKO can be
solved in polynomial time.
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Abstract. Let G be a connected graph, and let V and V ′ two n-element
subsets of its vertex set V (G). Imagine that we place a chip at each
element of V and we want to move them into the positions of V ′ (V
and V ′ may have common elements). A move is defined as shifting a
chip from v1 to v2 (v1, v2 ∈ V (G)) on a path formed by edges of G
so that no intermediate vertices are occupied. We give upper and lower
bounds on the number of moves that are necessary, and analyze the
computational complexity of this problem under various assumptions:
labeled versus unlabeled chips, arbitrary graphs versus the case when the
graph is the rectangular (infinite) planar grid, etc. We provide hardness
and inapproximability results for several variants of the problem. We
also give a linear-time algorithm which performs an optimal (minimum)
number of moves for the unlabeled version in a tree, and a constant-ratio
approximation algorithm for the unlabeled version in a graph. The graph
algorithm uses the tree algorithm as a subroutine.

1 Introduction

Consider a set system (set) of n pairwise disjoint objects in the Euclidean space
that need to be brought from a given start (initial) configuration S into a desired
goal (target) configuration T . In many cases, the problem admits the following
abstraction: we have an underlying finite or infinite graph, the start configuration
is represented by a set of n chips at n start vertices and the target configuration
by another set of n target vertices. A vertex can be both a start and target
position. The case when the chips are labeled or unlabeled give two different
variants of the problem. In one move a chip can follow an arbitrary path in
the graph and end up at another vertex, provided the path (including the end
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vertex) is free of other chips. The motion planning problem for such a system
is that of computing a sequence of object motions (schedule) that achieves this
task. If such a sequence of motions exists, we say that the problem is feasible
and we say that it is infeasible otherwise. To avoid trivial questions, we always
assume the graph is connected.

In certain applications, objects are indistinguishable, therefore the chips are
unlabeled; for instance, a modular robotic system consists of a number of identical
modules (robots), each of which having identical capabilities [9, 10]. In another
application, the chips are indivisible packets (copies) of the same data that need to
be moved from one site to another of a wide-area communication network without
ever exceeding the capacities of the communication buffers at each site [5, 14].

In this variant with unlabeled chips, the problem is easier and always feasible;
therefore we are interested in minimizing the number of moves. For the variant
with labeled chips it may be the case that the problem is infeasible: it is known
for instance that the 15-puzzle on a 4 × 4 grid — introduced by Sam Loyd in
1878 — has a solution if and only if the start permutation is an even permutation
[13, 18] (see [3] for a recent approach).

Other reconfiguration rules (models) for systems of disks in the plane have
been examined recently: [1, 8, 7]. These models do not fall in the graph recon-
figuration framework in this paper, because a disk may partially overlap several
target positions. A model that fits in the graph reconfiguration framework has
been analyzed in [9]: it deals with reconfiguration of modular systems acting in
a grid-like environment, where moves must maintain connectivity of the whole
system, and the motion rules are very local: a chip can only move to an adjacent
position in one move.

The general form of the reconfiguration problem we consider is to find a recon-
figuration sequence with a minimum number of moves. Depending on whether we
refer to the graph or grid version, or to the labeled or unlabeled version, we call
the problem U-GRAPH-RP, L-GRAPH-RP, U-GRID-RP or L-GRID-RP.

Consider for example the reconfiguration problem in the infinite grid with
unlabeled (or labeled) chips. The following simple algorithm does 2n moves
for reconfiguration of n objects (chips). In the first step (n moves), move in
a suitable order all the chips away in the free grid space. In the second step (n
moves), bring the chips “back” to target positions. We will show that minimizing
the number of moves is intractable in both (labeled and unlabeled) variants. A
move is a target move if it moves a chip to a final target position. Otherwise it
is a non-target move. Our lower bounds use the the following argument: if no
target chip coincides with a start chip (so each chip must move), a schedule with
x non-target moves consists of at least n + x moves.

Previous related work. Most of the work done so far concerns labeled versions
of the reconfiguration problem, and we give here only a very brief survey.

For the generalization of the 15-puzzle on an arbitrary graph (with k = v− 1
labeled chips in a graph on v vertices), Wilson gave an efficiently checkable
characterization of the solvable instances of the problem, depending on whether
the graph is bipartite or not [19]. Kornhauser et al. have extended his result to
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any k ≤ v − 1 and provided bounds on the number of moves for solving any
solvable instance [14].

Ratner and Warmuth have shown that finding a solution with minimum num-
ber of moves for the (N × N)-extension of the 15-puzzle is intractable [17], so
the reconfiguration problem in graphs with labeled chips is NP-hard.

Auletta et al. gave a linear time algorithm for the pebble motion on a tree
[5]. This problem is the labeled variant of the same reconfiguration problem we
study here, however each move is along one edge only.

Papadimitriou et al. studied a problem of motion planning on a graph in
which there is a mobile robot at one of the vertices s, that has to reach to
a designated vertex t using the smallest number of moves, in the presence of
obstacles (pebbles) at some of the other vertices [15]. Robot and obstacle moves
are done along edges, and obstacles have no destination assigned and may end up
in any vertex of the graph. The problem has been shown to be NP-complete even
for planar graphs, and a ratio O(

√
n) polynomial time approximation algorithm

was given in [15].
Dumitrescu et al. have addressed several basic questions in the analysis of

modular metamorphic systems [10]. In particular the next two questions have
been shown to be decidable: (i) whether a given set of motion rules maintains
connectivity; (ii) whether a goal configuration is reachable from a given initial
configuration (at specified locations) using a given set of motion rules. Other
seemingly similar questions have been shown to be undecidable.

Our results are:

(1) The reconfiguration problem in graphs with unlabeled chips U-GRAPH-RP
is NP-hard, and even APX-hard.

(2) The reconfiguration problem in graphs with labeled chips L-GRAPH-RP
is APX-hard.

(3) For the infinite planar rectangular grid, both the labeled and unlabeled vari-
ants L-GRID-RP and U-GRID-RP are NP-hard.

(4) There exists a ratio 3 approximation algorithm for the unlabeled version in
graphs U-GRAPH-RP. Thereby we get a ratio 3 approximation algorithm
for the unlabeled version U-GRID-RP in the (infinite) rectangular grid.

(5) We show that n moves are always enough (and sometimes necessary) for
the reconfiguration of n unlabeled chips in graphs. For the case of trees,
we present a linear time algorithm which performs an optimal (minimum)
number of moves.

(6) We show that 7n/4 moves are always enough, and 3n/2 are sometimes nec-
essary, for the reconfiguration of n labeled chips in the infinite planar rect-
angular grid (L-GRID-RP).

2 Unlabeled Chips in Graphs and Trees

Let G be a connected graph, and let V and V ′ two n-element subsets of its
vertex set V (G). Imagine that we place a chip at each element of V and we want
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to move them into the positions of V ′ (V and V ′ may have common elements).
A move is defined as shifting a chip from v1 to v2 (v1, v2 ∈ V (G)) along a path
in G so that no intermediate vertices are occupied.

Theorem 1. In G one can get from any n-element initial configuration V to any
n-element final configuration V ′ using at most n moves, so that no chip moves
twice. Moreover, for the case of a tree T with r vertices, there is a O(r)-time
algorithm which performs the optimal (minimum) number of moves.

Proof. It is sufficient to prove the theorem for trees. We argue by induction on
the number of chips. Take the smallest tree T containing V and V ′, and consider
an arbitrary leaf l of T . Assume first that the leaf l belongs to V : say l = v.
If v also belongs to V ′, the result trivially follows by induction, so assume that
this is not the case. Choose a path P in T , connecting v to an element v′ of V ′

such that no internal point of P belongs to V ′. Apply the induction hypothesis
to V \ {v} and V ′ \ {v′} to obtain a sequence of at most n− 1 moves, and add
a final (unobstructed) move from v to v′.

The remaining case when the leaf l belongs to V ′ is symmetric: say l = v′;
choose a path P in T , connecting v′ to an element v of V such that no internal
point of P belongs to V . Move first v to v′ and append the sequence of at most
n−1 moves obtained from the induction hypothesis applied to V \{v} and V ′\{v′}.

We further refine this algorithm so as to minimize the number of moves. We
call a vertex that is both a start and target position an obstacle. We have four
types of vertices: free vertices, chip-only vertices, target-only vertices, and obsta-
cles. Denote by c (resp. t) the number of chip-only (resp. target-only) vertices,
and by o the number of obstacles. We have c + o = o + t = n. We call a tree
balanced if it contains an equal number of chip-only and target-only vertices.
Clearly, the initial tree T is balanced. If there exists an obstacle whose removal
from T breaks T into balanced subtrees, we keep this obstacle fixed and proceed
recursively (by induction) on the subtrees. If no obstacle removal breaks T into
balanced subtrees, then all obstacles must move (each at least once), hence the
number of moves necessary is at least o + c = n, and the algorithm in the first
part of our proof can be used to obtain an optimal schedule.

The above observation together with postorder traversal keeping additional
information for every node, form the basis of the linear time reconfiguration
algorithm (omitted due to lack of space). ��

Remark. Theorem 1 implies that in the infinite rectangular grid, we can get
from any starting position to any ending position of the same size n in at most
n moves. It is perhaps interesting to compare this to the problem of sliding
congruent unlabeled disks in the plane: here one can come up with “cage-like”
constructions that require at least about 16n

15 moves [7].

3 Hardness Results for the Variants on Graphs

Theorem 2. The unlabeled version in graphs U-GRAPH-RP is NP-complete.
Moreover, assuming P �= NP, there is an absolute constant ε1 > 0 such that no
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Fig. 1. The “broom” graph G corresponding to a set cover instance with |U | = 12,
and |F| = 6. The vertices occupied only by chips are white, those occupied by both
chips and targets are black, and those occupied only by targets are shaded. An optimal
reconfiguration takes 15 moves (an optimal set cover has size 3).

polynomial-time algorithm has approximation guarantee at most 1 + ε1. That is,
U-GRAPH-RP is APX-hard.

Proof. The decision version of U-GRAPH-RP is clearly in NP, so we only have
to prove its NP-hardness. We reduce the set cover problem SC to U-GRAPH-
RP. An instance of the set cover problem consists of a family F of subsets of a
finite set U . The problem is to decide whether there is a set cover of size k for
F , i.e., a subset F ′ ⊆ F , with |F ′| ≤ k, such that every element in U belongs to
at least one member of F ′. SC is known to be NP-complete [11].

Consider an instance of SC represented by a bipartite graph (B ∪ C,E),
where U = C, F = B, and edges describe the membership relation. Construct
the undirected graph G shown in Fig. 1, with |A| = |C|. The chips are S = A∪B
and the targets are T = B ∪ C. Clearly, G can be constructed in polynomial
time. The reduction is complete once we establish the following claim (proof
omitted).

Claim. There is a set cover consisting of at most q sets if and only if reconfigu-
ration in G can be done using at most |A|+ q moves.

To prove the approximation hardness we use the same reduction, and the fact
that 3-SC, the set cover problem in which the size of each set in F is bounded
from above by 3 is APX-hard [16, 2]. We omit the details. ��

Remark. A similar reduction can be made for the labeled version. The chips in
A have targets in C, labeled as in Fig. 2 (here |A| = |C| = m).

The obstacle chips in B coincide with their targets. Each vertex in B is
adjacent to a “twin” free vertex. The reduction follows from the next claim
(proof omitted).
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Fig. 2. The graph constructed in the reduction for labeled chips. Free vertices are
drawn as squares. An optimal reconfiguration takes 18 moves (an optimal set cover has
size 3).

Claim. There is a set cover consisting of at most q sets if and only if reconfigu-
ration in G can be done using at most |A|+ 2q moves.

We thus obtain:

Theorem 3. The labeled version in graphs L-GRAPH-RP is APX-hard.

4 An Approximation Algorithm for the Unlabeled
Version in Graphs

Theorem 4. There exists a 3-approximation algorithm for U-GRAPH-RP.

Proof. The algorithm is obtained by applying the local ratio method of Bar-
Yehuda [6] to a graph H whose construction we describe below.

The vertex set of the input graph G is partitioned into four sets:

C = V \ V ′, the chip-only vertices
A = V ′ \ V , the target-only vertices
B = V ∩ V ′, the obstacles
F = V (G) \ (V ∪ V ′), the free vertices

Then V (H) = A ∪ B ∪ C. For every pair of vertices u and v of H we put in
E(H) the edge uv if uv ∈ E(G) or there is a path in G from u to v having all
the internal vertices from F .

In H , we use the local ratio method to find a set of edges Q such that every
connected component D of (V (H), Q) has an equal number of chip-only and
target-only vertices. We call this the U-Steiner problem. U-Steiner is a net-
work design problem given by a 0-1 proper function [12], problem for which both
the primal-dual schema and the local ratio method give a 2-approximation. The
function, defined over all sets of vertices, is one if the set is unbalanced and zero
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otherwise. Recall that a set is balanced if it contains an equal number of chip-only
and target-only vertices. It can be shown that this is a proper function, however
this fact is not needed in the ratio 3 approximation algorithm, whose proof is
self-contained. From the next claim, one can easily obtain a 4-approximation for
U-GRAPH-RP, as shown after the proof of claim.

One more piece of notation: given a solution Q for U-GRAPH-RP in G,
consider the edges of G traversed by the moving chips during the reconfigu-
ration process. These edges, together with their endpoints (including the free
vertices through which chips pass through) form a number k ≥ 1 of connected
components. We say that Q has k connected components. Write c = |C| = |A|.
Claim 1. Given a feasible solution Q for U-GRAPH-RP in G with m moves
and k connected components, there is a feasible solution for U-Steiner in H
with at most m + c − k edges. Conversely, given a feasible solution Q for U-
Steiner in H with e edges, there is a feasible solution for U-GRAPH-RP in G
with at most e− c + k moves, where k is the number of connected components
of Q which intersect A (and C).

Proof of Claim 1. For the first part, let S be the set of vertices of G involved
in the moves of Q, and let Si, for i = 1, 2, . . . , k, be the connected components
of S. Then the number of moves inside Si is at least |Si ∩ C| + |Si ∩ B|. Let
S′

i = Si ∩ V (H) and note that S′
i is also connected. In each S′

i pick a tree Ti;
the union of the trees Ti is the feasible solution of U-Steiner. In each Ti, the
number of edges is |V (Ti)| − 1 = |V (Ti) ∩ C| + |V (Ti) ∩ B| + |V (Ti) ∩ A| − 1.
Summing over i gives the needed equality.

For the second part, let Ti, for i = 1, . . . , k, be one such connected component
with ei edges. Then |A ∩ V (Ti)| = |C ∩ V (Ti)| and using Theorem 1 one can
move all the chips of V (Ti), including those sitting on obstacles, to all the targets
of V (Ti) using |V (Ti)| − |C ∩ Ti| moves: the chips from (C ∪ B) ∩ V (Ti) move
along the edges of Ti, passing if necessary through vertices of F (in G). Since
|V (Ti)| = |E(Ti)| + 1, this second part of the claim follows by adding up over
the components, since no move puts a chip on a vertex of F . (As a side remark,
if Q is an optimal solution in H , each Ti is a tree intersecting A and C). ��

Here is a short account for the ratio 4 approximation algorithm: By the first part
of Claim 1 applied to an optimal solution for U-GRAPH-RP in G with mOPT

moves and kOPT components, the number of edges eOPT in an optimal solution
for U-Steiner in H satisfies

eOPT ≤ mOPT + c− kOPT ≤ mOPT + c ≤ 2mOPT .

Therefore, by the second part of Claim 1, the number of moves m in the solution
for U-GRAPH-RP in G returned by the algorithm satisfies (since k1 ≤ c, where
k1 is the number of components in the solution for U-Steiner in H)

m ≤ e− c+ k1 ≤ e ≤ 2eOPT ≤ 4mOPT .

We now present the ratio 3 approximation algorithm. We have to enter the
details of the local ratio method to get this ratio (instead of 4). The local ratio
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algorithm approximately solves U-Steiner instances with non-negative weight
δ on the edges. The algorithm below, given in [6], is recursive. Each recursive call
is given a set S of already selected edges and a non-negative edge weight function,
and it returns a set of edges (in step 8). Given a set of edges F ⊆ E(H), call a
connected component X of (V (H), F ) balanced if |V (X)∩A| = |V (X)∩C| and
unbalanced otherwise. For the first call of the algorithm, S = ∅, and δ = 1 on all
edges. By feasible solution we mean feasible solution for the original U-Steiner
instance.

1. The input parameters are the set of edges S ⊆ E(H) and non-negative
weight δ on E(H).

2. If all the connected components of (V (H), S) are balanced, return ∅.
3. Define weight function δ1 on edges of E(H)\S as follows: edges going between

two unbalanced components of (V (H), S) get weight 1, edges going between
one unbalanced component of (V (H), S) and one balanced component of
(V (H), S) get weight 1/2, and all the other edges get weight 0.

4. Compute a positive real number α such that the weight function δ2 on edges
of H given by δ2 = δ − α · δ1 is non-negative and for at least one edge e, we
have δ2(e) = 0 < δ(e).

5. Let M = {e | δ2(e) = 0}.
6. recursively solve the instance with parameters S∪M and weight δ2 on E(H),

producing set of edges L such that S ∪M ∪ L is a feasible solution.
7. Obtain minimal M ′ ⊆M such that S ∪M ′ ∪ L is a feasible solution.
8. Return L ∪M ′.

We are guaranteed that M �= ∅ and thus the algorithm terminates. For the
approximation ratio, we need the following claim.

Claim 2. During the execution of a recursive call of the algorithm, let k be
the number of unbalanced components of (V (H), S). Then δ1(P ) ≥ k/2 for
any feasible solution P . The set of edges Q returned by the recursive call of the
algorithm satisfies δ1(Q) ≤ k−q, where q is the number of connected components
of (V (H), Q ∪ S).

Proof of Claim 2. Consider a feasible solution P . If an edge of P goes between two
unbalanced components of (V (H), S) we assign 1/2 to each such component, and
if it goes from one unbalanced component of (V (H), S) to one balanced compo-
nent of (V (H), S), we assign 1/2 to the unbalanced component. Each unbalanced
component of (V (H), S) must have at least one edge of P going to some other
component, and thus it is assigned at least 1/2. Therefore δ1(P ) ≥ k/2.

Consider now the edges Q selected (returned) by one recursive call of the algo-
rithm and let Qi, for i = 1, . . . , q be the connected components of (V (H), Q∪S).
Fix one component Qi. Inside Qi, contract to a single vertex the vertices from
the same component of (V (H), S), obtaining Q̄i. The minimal property of Q as
ensured by Step 7 of the algorithm ensures that Q̄i is acyclic (and thus it is a
tree) and every leaf of Q̄i is an unbalanced component of S. Note that all the
edges of Qi with positive δ1-weight are in Q̄i. Root Q̄i at an arbitrary vertex v
given by an unbalanced component of S.
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For every u ∈ (V (Q̄i) \ {v}) given by an unbalanced component of S, charge
to u either one or two edges, of total δ1-weight 1, as follows: consider the path
from u to v in Q̄i and let u′ be the next vertex on this path given by an un-
balanced component of S. If the path has only one edge, charge this edge to u.
If this path has more than one edge, charge to u the first and last edge of the
path. It is easy to check that every edge of positive δ1-weight of Q̄i is charged at
least once. Thus δ1(Qi) = δ1(Q̄i) ≤ si−1, where si is the number of unbalanced
component of S included in Qi; here we used that v is not being charged.

Summing over i yields the second part of the claim. ��

We continue with the proof of Theorem 4. First we note that, by using Claim 2
and induction, the local ratio algorithm ensures that its output LR satisfies, for
any feasible solution P , the following:

δ(LR) = αδ1(LR) + δ2(LR) ≤ α2δ1(P ) + 2δ2(P ) = 2δ(P ). (1)

Let OPT be a solution with a minimum number of moves, m(OPT ) be the
number of moves of OPT , and OP be the set of edges of the U-Steiner feasible
solution obtained from OPT in Claim 1. Let LR be the set of edges selected
by the local ratio approximation algorithm when applied to the U-Steiner in-
stance, k(LR) be the number of connected components of LR which intersect
A, and m(LR) be the number of moves of the solution obtained in Claim 1 from
LR. The weight functions δ, δ1, and δ2 refer to the first call of the local ratio
algorithm, as does the real α, which we note is at least 1. We have:

m(LR) ≤ |LR|+ k(LR)− c by Claim 1
= δ(LR) + k(LR)− c

= αδ1(LR) + δ2(LR) + k(LR)− c

≤ α(2δ1(OP )− k(LR)) + δ2(LR) + k(LR)− c by Claim 2
≤ 2αδ1(OP ) − k(LR) + δ2(LR) + k(LR)− c since α ≥ 1
≤ 2αδ1(OP ) + 2δ2(OP )− c by Equation 1
≤ 2δ(OP )− c

= 2|OP | − c

≤ 2(m(OPT ) + c)− c by Claim 1
= 2m(OPT ) + c

≤ 3m(OPT ), since m(OPT ) ≥ c.

This concludes the proof of Theorem 4. ��

Remark. In the graph version with unlabeled chips, if we count as a move every
edge traversed by a chip, minimizing the number of moves can be solved in
polynomial time, as described below. Construct a complete weighted bipartite
graph B = (V ∪V ′, F ) with bipartition V : the vertices containing chips and V ′:
the vertices containing targets (with obstacles in both sides of the bipartition).
The weight of an edge in F is equal to the length of the shortest path connecting
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the endpoints of the edge in G. Now apply an algorithm for Minimum Weight
Perfect Matching in B, and move accordingly: if the path a chip c1 would take
to reach its destination has another chip c2 on it, have the two chips switch
destinations and continue moving c2. One can check that the number of moves
does not exceed the weight of the perfect matching. On the other side, the
optimum solution must move chips to targets and cannot do better than the
total length of the shortest paths in a minimum matching.

5 Chips in Grids

In this section we analyze the reconfiguration problem with labeled, respectively
unlabeled chips, in an infinite grid. However a finite section of the grid clearly
suffices for this purpose. Due to lack of space, we omit the proofs of the following
two theorems. The reductions are from Rectilinear Steiner Tree.

Theorem 5. The unlabeled version in the grid U-GRID-RP is NP-complete.

Theorem 6. The labeled version in the grid L-GRID-RP is NP-complete.

5.1 Labeled Chips: Bounds on the Number of Moves

Theorem 7. Given a pair of start and target configurations S and T , each with
n labeled chips, one can move chips from S to T using at most 7n/4 moves. On
the other hand, 3n/2 moves are sometimes necessary (for n even).

Proof. The lower bound is trivial (however it does not appear to be trivial to
improve on it!): take a pair of chips labeled 1 and 2, say next to each other,
and have the target positions switch them; that is t1 = s2 and t2 = s1. Clearly
three moves are needed to rearrange this group of two, and by repeating it (with
different labels), one gets a pair of configurations which require 3n/2 moves.

We now describe a reconfiguration algorithm which executes no more than
7n/4 moves (as mentioned in the introduction, the problem can be solved trivially
in 2n moves).

Let S and T be the start and target configurations. Consider the directed
graph G with n edges (loops allowed) given by S → T . Vertices are grid points
of S ∪ T (the number of vertices is between n and 2n). Each edge originates
at a start chip and ends at some (free or occupied) target cell. Note that each
in-degree and out-degree is at most one, so G can be partioned into a collection
of disjoint paths and cycles (and loops).

Consider the rows of S numbered from top to bottom: 1, 2, . . . , r. Let D (resp.
E) be the set of odd (resp. even) rows; we can assume without loss of generality
that |D| ≤ |E|, thus |D| ≤ n/2. Let A be the set of elements of E whose target
lie in E, and let B (resp. C) be the the set of elements of E whose target lie in
rows of D congruent to 1 (resp. to 3) modulo 4. Write a = |A|, b = |B|, c = |C|.
We can assume without loss of generality that c ≤ b.
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1. Move (far) away the elements of D (row by row, and for each row, move
elements one by one, say from left to right) to form a set of corridors.

2. Move away the elements of C (elements of the even rows are adjacent to
corridors, therefore any subset of chips of an even row can be moved away).

3. Select and move away an element from each cycle of the directed graph G
remaining among the elements of A (not from the loops).

4. Fill (say, from left to right) the odd rows congruent to 1 modulo 4 with the
elements of B and elements far away as follows: note that each even row is
adjacent to an odd row congruent to 3 modulo 4; take out an element of B
from the even row through the empty corridor congruent to 3 modulo 4, and
then back in the target odd row congruent to 1 modulo 4.

5. Fill the even rows using the adjacent empty corridors (congruent to
3 modulo 4), with elements from A and elements far away. The elements
of A move directly to their destination and such a move is possible as long
as some elements of A still need to move, since we moved away one element
from each cycle of the directed graph G contained in A.

6. Fill (say, from left to right) the odd rows congruent to 3 modulo 4 (the
corridors) with elements far away.

The number of non-target moves is at most

n− (a+ b+ c) +
a

2
+ c ≤ n− a

2
− b ≤ 3n

4
,

since a+ 2b ≥ a+ b+ c ≥ n/2. Therefore the total number of moves is not more
than n+ 3n/4 = 7n/4. ��

Remark. The above lower bound clearly holds even in the stronger lifting model,
when chips can be lifted and placed back in the plane (see [7, 8] for related
aspects of disk reconfiguration problems).

Acknowledgement. The authors thank Sergey Bereg and Marius Zimand for
several conversations on the topic.
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Abstract. Motivated by open problems in language theory, logic and
circuit complexity, Straubing generalized Eilenberg’s variety theory, in-
troducing the C-varieties. As a further contribution to this theory, this
paper first studies a new C-variety of languages, lying somewhere be-
tween star-free and regular languages. Then, continuing the early works
of Esik-Ito, we extend the wreath product to C-varieties and general-
ize the wreath product principle, a powerful tool originally designed by
Straubing for varieties. We use it to derive a characterization of the op-
erations L → LaA∗ and L → La on languages. Finally, we investigate
the decidability of the operation V → V ∗ LI (the wreath product by
locally trivial semigroups) and solve it explicitely in several non-trivial
cases.

1 Introduction

Algebraic methods in automata theory were introduced soon after Kleene’s sem-
inal paper on automata, but became fully recognized after the pioneering works
of Schützenberger, Eilenberg, Simon, Brzozowski-Simon and McNaughton (see
[2, 10]). In particular, Eilenberg’s theory of varieties gives an appealing frame-
work to study classes of recognizable languages closed under Boolean operations,
quotients, and inverse morphisms. The success of this algebraic approach goes far
beyond automata and formal languages. It sheds a new light on an increasing
number of research fields, including model theory and logic, circuits, commu-
nication complexity, discrete dynamic systems, etc. Naturally, along with this
enlargment of the scope, comes a strong need for theoretical developments.

Motivated by open problems in language theory as well as in logic and circuit
complexity [16], Straubing [17] recently introduced the notion of C-varieties.
A similar notion was introduced independently by Esik and Ito [4]. The formal
definition of a C-variety of languages is quite similar to Eilenberg’s except that it
only requires closure under inverse of morphisms belonging to some natural class
C. Typically, this class C can be the class of all length-preserving morphisms, of
all length-multiplying morphisms, of all non-erasing morphisms, etc. The main
advantage of this latter approach is to cover families of languages that could not
be studied in Eilenberg’s theory. Examples include languages occurring in circuit
complexity, temporal logic [3, 4, 5], and languages of generalized star height ≤ n
for a given n. On the algebraic side, Eilenberg considered finite semigroups or
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monoids, while Straubing considers stamps, which are surjective morphisms from
a free monoid onto a finite monoid.

Although this new framework offers a theoretical correspondence between
stamps and languages, only few examples have been so far studied on both
aspects. Our first result is a new example of C-variety, lying between star-free
and rational languages, which admits a natural algebraic description.

The new-born theory of C-varieties also badly needs algebraic tools. Early
papers by Kunc [7], Pin-Straubing [11], and Esik-Ito [4] have already shown the
way by introducing the equational theory for C-varieties, the Mal’cev product
and the cascade product. This paper is a further contribution to the theory.
Elaborating on [4], we propose a more general definition of the wreath product
and an extended version of the Wreath Product Principle (WPP), a powerful
tool originally designed by Straubing [14, 12] for Eilenberg varieties.

The classical WPP provides a description of the languages recognized by a
wreath product of monoids. This looks like a rather technical result but it has
far-reaching consequences. To give a few examples, it can be used to characterize
the languages expressible by first order formulas of Büchi’s sequential calculus or
by various fragments of temporal logic [17]. Here, we use our extended version to
derive a characterization of the operations L→ LaA∗ and L→ La on languages,
extending a result of [10]. These operations play an important role in the study
of the so-called polynomial operations, but are also used in linear temporal logic.

Next, we consider a particular instance of wreath product. Let us first de-
scribe its algebraic background. Recall that in a semigroup S, an element e is
idempotent if e2 = e. Idempotents play a crucial role in semigroup theory. In
particular, the set eSe = {ese | s ∈ S} is a subsemigroup of S called the local
semigroup at e. We are interested in the class called LI (which stands for “lo-
cally trivial”) of finite semigroups whose local semigroups are all trivial (that is,
eSe = {e} for each idempotent e). The operation V→ V ∗LI (where ∗ denotes
the wreath product) is essential in Eilenberg’s theory since several major results
in language theory [1, 10, 12, 18] boil down to particular instances of this opera-
tion. It is somewhat connected with Hanf’s locality lemma in model theory [6]
and has also motivated pure semigroup developments, culminating in the proof
of the Delay Theorem [15, 19]. A crucial consequence of this latter result is that
if V is a decidable variety of finite semigroups then V ∗LI is also decidable. Ex-
tending the Delay Theorem to C-varieties appears to be a challenging problem.
In this paper, we offer a positive solution in a few nontrivial particular cases.

Our approach to the WPP led us to modify the ground algebraic objects and
to consider actions, which are very close to automata, rather than stamps. It can
be shown that the two approaches are essentially equivalent [4]. However, the
use of actions makes the definition of the wreath product far more transparent.

Our paper is organised as follows. Definitions and standard results on
varieties and C-varieties are presented in Section 2. Section 3 characterizes
thoroughly the lp-variety defined by the single identity aω = aω+1. Section 4.1
introduces sequential and wreath products, whereas the wreath product principle
itself is stated in Section 4.2. Section 5 gives a characterization of the operations
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L → LaA∗ and L → La on languages. Section 6 describes languages in V ∗ LI
and finally Section 7 gathers examples of C-varieties of the form V ∗ LI where
V is defined by a single identity.

2 Varieties

2.1 Eilenberg’s Variety Theory

Varieties of Finite Monoids. A (finite) monoid is a finite set equipped with
a binary associative operation and a unit element. Given two monoids M and
N , a monoid morphism is a map ϕ : M → N satisfying ϕ(1) = 1 and ϕ(uv) =
ϕ(u)ϕ(v) for all u, v in M . A monoid M is a submonoid of a monoid T if there
exists an injective morphism ϕ : M → T . A monoid N is a quotient of a monoid
M if there exists an onto morphism ϕ : M → N . A monoid N divides a monoid
T if N is a quotient of a submonoid of T . The product of two monoids M1 and
M2 is the set M1×M2 equipped with the product (x1, x2)(y1, y2) = (x1y1, x2y2).
A variety of (finite) monoids is a class of finite monoids closed under division
and finite product. Throughout the paper, all monoids are either finite or free.

Varieties of Languages. Monoids can be seen as language recognizers in the
following way. Given a finite alphabet A, a language L ⊆ A∗ is recognized by a
monoid M if there exist a subset F ⊆ M and a morphism ϕ : A∗ → M such
that L = ϕ−1(F ). The syntactic monoid of a language L is the quotient A∗/∼L

where the congruence ∼L is defined on A∗ by u ∼L v iff for all x, y in A∗, xuy ∈
L ⇔ xvy ∈ L. It is the smallest monoid that recognizes L. A language is said
to be recognizable if it is recognized by some finite monoid, or equivalently, if its
syntactic monoid is finite. The famous Kleene theorem asserts that recognizable
and regular languages coincide. A Boolean algebra is a class of languages that is
closed under finite union, finite intersection, and complement. A class of recog-
nizable languages V assigns to each finite alphabet A a set V(A∗) of recognizable
languages of A∗. A variety of languages is a class of recognizable languages V
such that

(1) for every alphabet A, V(A∗) is a Boolean algebra,
(2) if L ∈ V(A∗) and a ∈ A then a−1L and La−1 are in V(A∗),
(3) if ϕ : A∗ → B∗ is a morphism, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

Eilenberg’s Theorem. Given a variety of finite monoids V, the class V of all
languages recognized by a monoid in V is a variety of languages. Eilenberg’s
theorem asserts that the correspondence V→ V is one-to-one and onto [2].

Eilenberg developed a similar theory for varieties of finite semigroups. In this
case, the corresponding languages never contain the empty word and condition
(3) is restricted to non-erasing morphisms. The theory of C-varieties enables to
unify these two notions.

Example 1. Commutative monoids in which all elements are idempotent form
the variety J1. The corresponding variety of languages J1 is such that for each



C-Varieties, Actions and Wreath Product 277

alphabet A, J1(A∗) is the Boolean algebra generated by the languages B∗, where
B ⊆ A.

Example 2. R is the variety of all monoids in which right division is a partial
order. In other words, a monoid M is in R iff for all x, u, v, y in M , x = yu and
y = xv imply x = y. For each alphabet A, R(A∗) is the smallest Boolean algebra
closed under the operation L→ LaA∗, for each a in A.

Example 3. LI is the variety of locally trivial semigroups. In other words, S is
in LI iff eSe = {e} for each idempotent e. The associated class of languages are
the prefix-suffix testable languages, that is, finite unions of finite languages or
languages of the form pA∗ ∩A∗s with p, s in A∗.

2.2 C-Varieties

Actions. C-varieties were originally defined with stamps, but actions are more
appropriate to the purpose of this paper. Since both theories are essentially
equivalent [4], we adopt the point of view of actions here and refer the reader
to [17, 11] for a presentation of stamps. Let P be a finite set and let A be a
finite alphabet. A (right) action from A on P is a map P × A → P , denoted
(p, a) �→ p· a. An action (P,A) can therefore be viewed as the transition function
of a deterministic finite automaton (DFA) with set of states P on the alphabet
A. The action of A on P can be recursively extended into an action of A∗ on P
by setting p· 1 = p and p·ua = (p·u)· a, for all p ∈ P , u ∈ A∗ and a ∈ A. Let
μ : A∗ → PP be the function which maps the word u onto the transformation
p �→ p·u. The set μ(A∗) (resp. μ(A+)) is called the transformation monoid
(resp. transformation semigroup) of the action (P,A). A constant action on the
alphabet A is an action (P,A) such that p· a = p, for each p ∈ P and a ∈ A.

C-Varieties of Actions. Straubing [17] generalized the variety theory in order
to study classes of recognizable languages that are not varieties in Eilenberg’s
sense. His definition involves classes of morphisms between free monoids, closed
under composition and containing all length-preserving morphisms. Examples
include the classes of all length-preserving morphisms (the image of each letter
is a letter), of all length-multiplying morphisms ( for some integer k, the length of
the image of a word is k times the length of the word), all non-erasing morphisms
(the image of each letter is a nonempty word), all length-decreasing morphisms
(the image of each letter has length at most 1) and all morphisms.

Let C be a fixed class of morphisms satisfying the above conditions. An action
(P,A) C-divides an action (Q,B) if there is a pair (η, f) where f : A∗ → B∗ is in
C and η : Q→ P is a surjective partial function such that for each q ∈ Dom(η)
and each a ∈ A, η(q)· a = η(q · f(a)). Such a pair (η, f) is called a C-division. The
(restricted) product of two actions (P1, A) and (P2, A) is the action (P1 ×P2, A)
defined by (p1, p2)· a = (p1 · a, p2 · a). A C-variety of actions is a class of actions
containing all constant actions and closed under C-division and product. When
C is the class of all (resp. length-preserving, length-multiplying, non-erasing)
morphisms, we use the term all-variety (resp. lp-variety, lm-variety, ne-variety).
Notice that if C′ ⊆ C, each C-variety of actions is also a C′-variety of actions.
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C-Varieties of Languages. A C-variety of languages shares the same defining
properties as a variety of languages except that Condition (3) is weakened to:

(3′) If ϕ : A∗ → B∗ is a morphism of C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A language L ⊆ A∗ is recognized by an action (Q,A) if there exist an initial state
q0 in Q and a set of final states F ⊆ Q such that L = {u ∈ A∗ | q0 ·u ∈ F}.

Straubing’s Theorem. Given a C-variety of actions W, we denote by W(A∗)
the set of languages recognized by some action (P,A) in W. Straubing’s theorem
states that the class W is a C-variety of languages and the correspondence W→
W is one-to-one and onto [17].

As was mentioned before, Eilenberg’s varieties can actually be considered as
a particular case of C-varieties. Indeed, given a variety of monoids V, the class
of actions whose transformation monoid is in V is an all-variety of actions [17].
In the sequel, both varieties will be denoted by V. Likewise, given a variety of
semigroups V, the class of actions whose transformation semigroup is in V is an
ne-variety of actions.

Example 4. The class of all actions (Q,A) such that for each a ∈ A and q ∈ Q,
q · a = q · a2 is an lp-variety of actions. The corresponding languages are the
stutter invariant languages and appear in connection with temporal logic [8].
Given such a language L, a word uav is in L if and only if ua+v ⊆ L.

Example 5. Let MOD be the class of all actions (Q,A) whose transition monoid
is a cyclic group and such that for a, b ∈ A and q ∈ Q, q · a = q · b. Then MOD is
an lm-variety. The corresponding lm-variety of languages Mod satisfies that for
each alphabet A, Mod(A∗) is the Boolean algebra generated by the languages
of the form Ak(An)∗, for 0 ≤ k < n.

2.3 Identities

Both varieties of finite monoids and C-varieties of actions have an equational
characterization [13, 7, 11]. The formal definition of identities requires the in-
troduction of profinite topologies. For the sake of simplicity, we shall only con-
sider a weaker notion on a few basic examples, which will be sufficient for our
purpose.

An ω-term is built from letters of an alphabet using the usual concatenation
product and a unary operator ω. Thus abc, aω and (abωc)ωab are examples of
ω-terms. Given an ω-term t on the alphabet B, an action (Q,A) and a morphism
f : B∗ → A∗, the action of f(t) on Q is defined recursively as follows. Let q ∈ Q.
If t is a letter, then f(t) is a word, and q · f(t) has its usual value. If t and t′ are
ω-terms, q · f(tt′) = (q · f(t))· f(t′). If t = uω, then q · f(t) = q · f(u)n, where n is
the least integer such that q · f(u)n = q · f(u)2n. In other words, the map from
Q to Q defined by uω is the unique idempotent power of the map from Q to Q
defined by u.

Let u, v be ω-terms on a finite alphabet B. An action (Q,A) is said to satisfy
the identity u = v with respect to C if, for every morphism f : B∗ → A∗ in C and
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each q in Q, q · f(u) = q · f(v). A C-variety V satisfies a given identity if every
action in V satisfies this identity with respect to C. The class of all actions sat-
isfying the identity u = v (wrt C) is a C-variety denoted by [u = v]. A language
L ⊆ A∗ satisfies the identity u = v wrt C if for every C-morphism f : B∗ → A∗,
f(u) ∼L f(v). Note that the interpretation of the symbols occurring in the iden-
tities depends on the choice of C. For instance, if C is the class of all morphisms,
symbols should be interpreted as words, as in the classical Eilenberg’s setting.
For lp-varieties, on the contrary, they should be interpreted as letters, while for
lm-varieties they stand for words of the same length.

Example 6. We can now describe all examples given before by identities. Indeed,
J1 is the all-variety satisfying x = x2 and xy = yx. Assuming C = lp, the stutter-
invariant variety is defined by a = a2, whereas MOD is defined by the identity
aω−1b = 1.

Example 7. For an integer k, the ne-variety of actions LIk (respectively Dk) is
defined by the identity x1 · · ·xkyx1 · · ·xk = x1 · · ·xk (respectively yx1 · · ·xk =
x1 · · ·xk). Thus Dk ⊂ LIk. The languages corresponding to LIk are the prefix-
suffix k-testable languages, which are finite unions of languages of the form {u}
with |u| < k, or pA∗ ∩A∗s with |p| = |s| = k.

3 The lp-Variety [aω = aω+1]

In this section we describe the lp-variety of languages U associated to the lp-
variety [aω = aω+1].

Given a deterministic automaton A = (Q,A,E, i, F ), and a letter a ∈ A, a
path (q0, a, q1)(q1, a, q2) · · · (qn, a, q0) is a letter-counter if n > 0 and for 0 < i ≤
n, qi �= q0. An automaton is said to be letter-counter free if it does not contain
any letter-counter. The following lemma is straightforward.

Lemma 1. A language is in U(A∗) if and only if its minimal (deterministic)
automaton is letter-counter free.

Recall that a language X ⊆ A∗ is a code if X∗ is free. The language X is a
prefix code if, for all words u, v in A∗, u and uv in X∗ implies v in X∗. In
accordance with the terminology pure codes [9], a code will be said to be letter-
pure if it contains no word of the form an with a in A and n > 1. The identity
aω = aω+1 may be reminiscent of the identity defining aperiodic semigroups,
but our description of the languages is rather similar to Kleene theorem.

Theorem 1. The family U(A∗) is the smallest family of languages containing
the singletons and closed under finite union, product and star operation restricted
to letter-pure prefix codes.

4 Wreath Product Principle

4.1 Sequential Products and Wreath Products

The sequential product of actions corresponds to the notion of cascade product
of automata in the work of Esik and Ito [4]. It mimics the composition on actions.
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The sequential product of two actions (P,Q×A) and (Q,A), denoted by (P,Q×
A)◦(Q,A), is the action (P ×Q,A) defined by (p, q)· a = (p· (q, a), q · a). Observe
that for u = a1 · · · an, (p, q)·u =

(
p· (q, a1)(q · a1, a2) · · · (q · a1 · · ·an−1, an), q ·u

)
.

The sequential product can be extended to C-varieties of actions. In accor-
dance with the traditional terminology on varieties, we call it the wreath product.
Let C be a class of morphisms and let V and W be two C-varieties. A (V,W)-
sequential product is an action of the form (P,Q×A)◦ (Q,A) with (P,Q×A) in
V and (Q,A) in W. We define V∗W to be the class of all actions that C-divide
a (V,W)-sequential product.

For technical reasons, we restrict ourselves to some specific classes of mor-
phims, that nevertheless include all classical examples.

Definition 1. A class C of morphisms between finitely generated free monoids is
called convenient if it is closed under composition, contains all length-preserving
morphisms, and satisfies that membership of a morphism f : A∗ → B∗ in C
depends only on the set of integers {|f(a)| | a ∈ A}.

We did not find any natural example of nonconvenient classes. The simplest,
though already quite artificial, example of a nonconvenient class we can think
of is the class of all morphisms ϕ : A∗ → B∗ such that, for each letter a in A,
there exists b in B such that f(a) ∈ b+.

Although the definition of the wreath product depends on the class C, the
following proposition shows that one can write V ∗W without referring to C, as
soon as C is convenient. Indeed, in this case V ∗W appears to be the class of all
actions that lp-divide a (V,W)-sequential product.

Proposition 1. Let C be a convenient class of morphisms and let V and W
be two C-varieties. An action (P,A) is in V ∗ W if and only if there exist a
(V,W)-sequential product (T,Q × A) ◦ (Q,A) and a lp-division (η, IdA∗) from
(P,A) into (T,Q×A) ◦ (Q,A).

Proof. Let (P,A) be an action in V ∗W. By definition, there exist a (V,W)-
sequential product (T,Q × B) ◦ (Q,B) and a C-division (η, f) from (P,A) into
(T,Q × B) ◦ (Q,B). Define a morphism g : (Q × A)∗ → (Q × B)∗ by g(q, a) =
(q, b1)(q · b1, b2) · · · (q · b1 · · · bk−1, bk), where b1 · · · bk = f(a). Define an action
(T,Q × A) by t· (q, a) = t· g(q, a). The map g is in C because f is in C and
C is convenient. The pair (IdT , g) is a C-division from (T,Q×A) into (T,Q×B)
and thus (T,Q×A) is in V. In the same way, define an action (Q,A) by setting
q · a=q · f(a). This action is in W since (IdQ, f) is a C-division from (Q,A) into
(Q,B). Consider now the (V,W)-sequential product S = (T,Q × A) ◦ (Q,A).
One verifies easily that (η, IdA∗) is a C-division from (P,A) into S. ��
Assuming C convenient leads to the following “convenient” properties of V ∗W.

Theorem 2. Let C be a convenient class of morphisms and let V,W be two C-
varieties of actions. Then, the class V∗W is a C-variety of actions that contains
W. Further, the wreath product is an associative operation on C-varieties of
actions which extends the classical wreath product on Eilenberg’s varieties.



C-Varieties, Actions and Wreath Product 281

4.2 Wreath Product Principle

The wreath product principle gives a description of languages recognized by an
action of V ∗W. Proposition 1 enables us to readily extend the results of [4]
on lp-varieties to all C-varieties, for C convenient. Therefore, from now on we
assume that C is convenient.

Recall that a transducer is a 7-tuple T = (Q,A,B, q0, · , ∗, F ) where A =
(Q,A, q0, · , F ) is a DFA, B is a finite alphabet called the output alphabet, and
(q, a) �→ q ∗ a ∈ B∗ is called the output function. The function realized by the
transducer T is the partial function σ : A∗ → B∗ defined by σ(u) = q0 ∗ u, for
each word u accepted by A. The transducer T is a C-transducer if the output
morphism (q, a) �→ q∗a belongs to C. A C-sequential function is a partial function
that can be realized by a C-transducer. Notice that if C = lp, an lp-transducer is
just a Mealy automaton. The following proposition illustrates the natural links
between sequential products and C-sequential functions.

Proposition 2. Let V,W be C-varieties of actions. Let V (resp. U) be the C-
variety of languages associated to V (resp. V ∗W). Then, if L is a language
of V(B∗) and σ : A∗ → B∗ is a sequential function realized by a transducer T
(denoted as above) whose input function (q, a) �→ q · a is an action of W, then
σ−1(L) is in U(A∗).

We now focus on specific lp-sequential functions in order to state the WPP.
Given an action (Q,A) and q0 ∈ Q, define the function σq0 : A∗ → (Q×A)∗ by

σq0 (a1 · · · an) = (q0, a1)(q0 · a1, a2) · · · (q0 · a1 · · · an−1, an) (∗)
The function σq0 is realized by a Mealy automaton with initial state q0, input

action (Q,A), output function defined by q ∗ a = (q, a) and all states final. Now,
a sequential function σ is said to be associated with (Q,A) if σ = σq for some
q in Q. Recall that a positive Boolean algebra on A∗ is a set of languages of A∗

that is closed under finite intersection and finite union.

Proposition 3. (WPP) Let U be the C-variety of languages associated with
V ∗W.

(1) For each alphabet A, U(A∗) is the smallest positive Boolean algebra con-
tainingW(A∗) and the languages of the form σ−1(V ), where σ is associated
with an action (Q,A) in W and V is in V

(
(Q×A)∗

)
.

(2) Each language in U(A∗) is a finite union of languages of the form W ∩
σ−1(V ) where W is in W(A∗), σ is associated with an action (Q,A) in W
and V is in V

(
(Q×A)∗

)
.

We now specialize the WPP.

5 Operations on Languages

5.1 The Operation L → LaA∗

We extend here a standard result of [10]. Consider the all-variety J1 of actions
whose transition monoid is idempotent and commutative.
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Proposition 4. Let V be a C-variety of actions, and let V (resp. U) be the
C-variety of languages corresponding to V (resp. J1 ∗ V). Then, U(A∗) is the
Boolean algebra generated by the languages L and LaA∗ with L in V(A∗), a ∈ A.

Now, since R is the closure of J1 under wreath product, the following holds.

Corollary 1. Let V be a C-variety of actions, and let V (resp. U) be the C-
variety of languages corresponding to V (resp. R∗V). Then, U(A∗) is the small-
est Boolean algebra containing V(A∗) and closed under the operation L �→ LaA∗.

5.2 The Operation L → La

Recall that D1 is an ne-variety of actions defined by the identity xy = y. We
give here a characterization of languages corresponding to the C-variety D1 ∗V,
extending a result of [15].

Proposition 5. Let V be a C-variety of actions, where C ⊆ ne. Let V (resp. U)
be the C-variety of languages corresponding to V (resp. D1 ∗V). Then, for each
alphabet A, U(A∗) is the Boolean algebra generated by the languages L and La
with L in V(A∗) and a in A.

Since D =
⋃

k Dk is the closure of D1 under wreath product, the following holds.

Corollary 2. Let V be a C-variety of actions, where C ⊆ ne. Let V (resp. U)
be the C-variety of languages corresponding to V (resp. D ∗V). Then, for any
alphabet A, U(A∗) is the smallest Boolean algebra containing V(A∗) and closed
under the operation L �→ Lu, for each word u in A∗.

6 Wreath Products of the Form V ∗ LIk

This section points out differences between C-varieties and varieties of monoids.
As an example, given a C-variety V, it is not true in general that V∗LIk = V∗Dk,
whereas it holds for non-trivial varieties of semigroups. For instance, if C = lp,
ba1 · · · ak = ca1 · · · ak is an identity of [a = b] ∗Dk but not of LIk. Besides, the
standard characterization of V ∗ LIk is still a necessary condition but there is
no evidence that it should also remain sufficient, because the “spelling function”
used is not non-erasing, preventing us from using Proposition 2 . This explains
some of the obstacles that arise when exploring wreath products of the form
V ∗ LIk.

We now introduce the “spelling function” δk. Let A be an alphabet and for
each k > 0, let Ck = Ak. The function δk : A+ → C∗

k is defined on Ak−1A∗ by:

δk(a1 · · · an) =

{
1 if n = k − 1
[a1 · · ·ak][a2 · · · ak+1] · · · [an−k+1 · · ·an] if n ≥ k

Theorem 3. Let V be a C-variety of actions, where C ⊆ ne and let A an alpha-
bet. Denote by V (resp. U) the C-variety of languages corresponding to V (resp.
V∗LIk). Then, any language in U(A∗) is a finite union of languages of the form
{u} with |u| < k or pA∗ ∩ δ−1

k+1(K)∩A∗s, where p, s ∈ Ak and K is in V(C∗
k+1).
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Sketch of the proof. By Proposition 3, a language L in U(A∗) is a finite union
of languages of the form W ∩ σ−1(V ), where W is prefix-suffix k-testable, σ is
associated with an action (Q,A) in LIk, and V is in V((Q × A)∗). Let q ∈ Q
and denote by σ the lp-sequential function asociated with q and the action
(Q,A) (see Formula (∗)). Define a length-preserving morphism αq from C∗

k+1
into (Q×A)∗ by setting αq([a1 · · · ak+1]) = (q · a1 · · ·ak, ak+1). Let u = a1 · · · an

be a word of length n ≥ k and set p = a1 · · ·ak. Since (Q,A) is in LIk,
for each i ≥ k we have q · a1 · · · ai = q · pai−k+1 · · · ai. Thus, for each i ≥ k,
(q · a1 · · ·ai, ai+1) = αq·p([ai−k+1 · · · ai+1]) and finally, σ(u) = σ(p)αq·p(δk+1(u)).
Therefore, u ∈ σ−1(V )∩pA∗ ⇔ u ∈ δ−1

k+1(Kp)∩pA∗, with Kp = α−1
q·p(σ(p)−1V ).

One then verifies that Kp is in V(C∗
k+1). Finally, denoting by F the finite set of

words of length < k in σ−1(V ), the following suffices to conclude:

σ−1(V ) = F ∪
( ⋃
p∈Ak

σ−1(V ) ∩ pA∗) = F ∪
( ⋃
p∈Ak

δ−1
k+1(Kp) ∩ pA∗). ��

7 Wreath Products of the Form V ∗ LI

As in the case of semigroups, V ∗ LI =
⋃

k>0 V ∗ LIk. Thus, Theorem 3 can be
extended as follows:

Proposition 6. Let U be the C-variety of languages corresponding to V ∗ LI.
Then, U(A∗) is contained in the smallest Boolean algebra containing the prefix-
suffix testable languages and those of the form δ−1

k (K) for k > 0 and K ∈ V(C∗
k).

From now on, assume that C = lp. We will use small capital letters “A,B, U, V ,X”
to denote letters of Ck and words of C∗

k . Let A = [a1 · · · ak],B = [b1 · · · bk] be two
letters in Ck. The transition AB is said to be correct if and only if a2 · · · ak =
b1 · · · bk−1. It is incorrect otherwise. Finally, let Pk be the set {[ak] | a ∈ A}.

7.1 The lp-Variety [a = a2] ∗ LI

Theorem 4. [a = a2] ∗ LI = [aω = aω+1].

Sketch of the proof. Let V (resp. U ,W) be the lp-variety of languages associated
with [a = a2] (resp. [a = a2] ∗ LI, [aω = aω+1]) and let A be an alphabet. If
A = {a}, the result is trivial, so assume that |A| ≥ 2. By Proposition 6, U(A∗) is
included in the smallest Boolean algebra B containing the prefix-suffix testable
languages and those of the form δ−1

k (K) where K ∈ V(C∗
k) and k > 0. One

verifies that W contains B, which yields U(A∗) ⊆ B ⊆ W(A∗). Conversely, let L
in W(A∗). Since L satisfies aω = aω+1, there exists an integer k ≥ 2 such that L
satisfies ak = ak+1. Let p be a word of Ak. We define an lp-sequential function
σp : A∗ → C∗

k+1 by σp(u) = δk+1(pu). Note that σp is injective and that its range
consists of words with no incorrect transition. Further, σp can be realized by a
Mealy automaton whose transition semigroup is in Dk. Now, denote by Kp the
language σp(L) and let τ : Ck+1 → C∗

k+1 be the rational substitution defined,
for each letter B in Ck+1, by τ(B) = B

+. The rest of the proof relies on the two
following lemmas, whose technical proofs we omit.
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Lemma 2. Let p = p1 · · · pk be a word in Ak such that pk−1 �= pk. Then the
language τ(Kp) satisfies the identity a = a2.

Lemma 3. Let u = u1 · · ·un be a word in A∗ and let p = p1 · · · pk be a word in
Ak such that pk �= u1. If σp(u) is in τ(Kp), then u is in L.

Let F = {p1 · · · pk ∈ Ak | pk−1 �= pk}. Elaborating on Lemma 3, one can show
that L =

⋂
p∈F σ−1

p (τ(Kp)). Then, by Proposition 2 and Lemma 2, the language
σ−1

p (τ(Kp)) is in U(A∗) for each p ∈ F , and thus L is also in U(A∗). ��

Using the same techniques as in Theorem 4, one can prove additional results.

Proposition 7
(1) Let n, � be positive integers. Then [an = an+�] ∗ LI = [aω = aω+�].
(2) The lp-variety [abω = bωa] ∗ LI is the lp-variety of all actions.

7.2 Wreath Products of the Form [u = v] ∗ LI

The following theorem enables to treat simple particular cases.

Theorem 5. Let u and v be words in {a, b}∗ of respective length n and n + �.
Assume that each of the words u and v has at least three distinct factors of length
2. Then [u = v] ∗ LI = [aω = aω+�]. In particular, if u and v have the same
length, [u = v] ∗ LI is the lp-variety of all actions.

Sketch of the proof. Let B = {a, b} and let A be a finite alphabet. For a word
x in A∗ we denote by F2(x) the set of its factors of length 2.

Lemma 4. Let k be an integer ≥ 2 and let x be a word in B∗ such that
|F2(x)| ≥ 3. Then for each lp-morphism λ : B∗ → C∗

k , λ(x) has no incorrect
transition if and only if λ(a) = λ(b) ∈ Pk.

Let V (resp. U , W) be the lp-variety of languages associated with [u = v] (resp.
[u = v] ∗ LI, [aω = aω+�]). Let L ∈ W(A∗) and choose an integer k ≥ 2 such
that for each c ∈ A, ck ∼L ck+�. Let p = p1 · · · pk be a word in Ak such that
pk−1 �= pk. As before, define σp : A∗ → C∗

k+1 by σp(x) = δk+1(px), and set
Kp = σp(L) = δk+1(pL). Thanks to Lemma 4, we obtain that for each lp-
morphism λ : B∗ → C∗

k+1, λ(u) ∼Kp λ(v), which is equivalent to saying that
Kp is in V(C∗

k+1). Finally, since σp is injective, we have L = σ−1
p (Kp), and

Proposition 2 enables us to conclude that L is in U(A∗). The reverse inclusion
is trivial since [u = v] ⊆ [an = an+�]. ��

8 Conclusion

This paper first studies thoroughly a new C-variety that admits a natural char-
acterization both algebraically and in terms of languages. It extends the notion
of wreath product as well as the characterization of languages associated with
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a wreath product, and then deals with non-trivial examples of wreath prod-
ucts of the form [u = v] ∗ LI. It would be no surprise if these varieties could
be characterized thanks to combinatorial arguments similar to the one used in
Theorem 5. Further, a challenging prospect would be to adapt the Delay Theo-
rem to C-varieties. Unfortunately, the classical proof [15] does not carry over to
C-varieties because of the restriction made on the class C.
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Abstract. We give an algorithm for constructing a connected spanning
subgraphs(panner) of a wireless network modelled as a unit disk graph
with nodes of irregular transmission ranges, whereby for some parameter
0 < r ≤ 1 the transmission range of a node includes the entire disk
around the node of radius at least r and it does not include any node
at distance more than one. The construction of a spanner is distributed
and local in the sense that nodes use only information at their vicinity,
moreover for a given integer k ≥ 2 each node needs only consider all
the nodes at distance at most k hops from it. The resulting spanner has
maximum degree at most 3 + 6

πr
+ r+1

r2 , when 0 < r < 1 (and at most
five, when r = 1). Furthermore it is shown that the spanner is planar
provided that the distance between any two nodes is at least

√
1 − r2. If

the spanner is planar then for k ≥ 2 the sum of the Euclidean lengths of
the edges of the spanner is at most kr+1

kr−1 times the sum of the Euclidean
lengths of the edges of a minimum weight Euclidean spanning tree.

1 Introduction

The problem of constructing connected spanning subgraphs(spanners) (e.g., min-
imum cost spanning trees, triangulated spanners, planar spanners) for “various
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types” of geometric graphs has been considered extensively in the current liter-
ature due to its many applications ranging from VLSI design, to efficient com-
munication in networks and medical imaging (see Eppstein [8]). A variety of
optimization results have been derived that considered tradeoffs among weight,
diameter, dilation, and max degree between the original graph and the resulting
spanner. Nevertheless the majority of these results (e.g., Eppstein [8], Arya, Das,
Mount, Salowe, and Smid [1], Arya and Smid [2], Narasimhan and Smid [18],
Bose, Gudmundsson and Smid [4]) consider only centralized, non-distributed al-
gorithms that do not take into account the dynamic changes taking place in a
communication network.

In recent years, the problem of producing efficiently a planar spanner has been
given new research impetus in communication networks due to its applicability
in more dynamically changing environments consisting of wireless interconnected
nodes. In this case, in addition to considering the previously mentioned param-
eters of weight, diameter, dilation, and max degree, a new condition of locality
of communication becomes important: nodes should take into account informa-
tion by consulting only other nodes within their “close” geographic vicinity. In
fact, locality in wireless networking is a necessity imposed by the geographic
limitations of the networking environment.

Moreover, there are two important issues in wireless networking. The first
one is to be able to perform locally and efficiently important communication
tasks, like routing. Ultimately, this is easily resolved if the underlying graph is
planar using face routing (see Kranakis, Singh, and Urrutia [11]). The second
one is a “local” construction of a “simple” planar spanner from the given wireless
network. In fact, Bose, Morin, Stojmenovic, and Urrutia [5] address this problem
for wireless networks corresponding to unit disk graphs by constructing a planar
spanner in a local and distributed manner using the Gabriel test (see Gabriel
and Sokal [9]).

In addition to the Gabriel test, there are known algorithms for constructing
locally and distributively a planar subgraph of bounded degree and constant
stretch factor for unit disk graphs. However the resulting degree is rather high
(more than 25), the constructions are relatively complicated, and the cost of
such graph can be much higher than the cost of a Minimum cost Spanning
Tree (MST) (e.g., see Li, Calinescu, and Wan [15], Wang and Li [20], Li and
Wang [16]). In a recent paper Li, Wang, and Song [17] give an algorithm for
constructing a spanner from the relative neighborhood graph [19] of a unit disk
graph. This spanner has maximum degree at most six, and its total weight is a
constant multiple of the total weight of the MST, where the weight of a graph is
defined as the sum of Euclidean lengths of the edges. In this paper we consider
the problem of constructing a spanner of networks which are more general than
those represented by a unit disk graph.

A unit disk graph is a representation of a wireless network in which all nodes
have the same circular transmission range. Clearly, this is an idealized repre-
sentation and it does not need to correspond to actual situations. Typically,
the nodes in a network are not exactly identical and some obstacles in the ter-
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rain containing the nodes may result in the transmission ranges of nodes to be
irregular. In this paper we are taking into consideration the fact that the trans-
mission range of each node of a network could be irregular to “some degree”

1r

u

Fig. 1. The irregular trans-
mission area of node u

(see Figure 1). We assume that in a given network
there is an additional parameter r, a positive real
number less than or equal 1. The transmission range
of a node in the network is assumed to be a re-
gion contained within the unit disk around the node,
but this region contains all points at distance less
than r. Thus any two nodes at distance at most
r can communicate directly, but no nodes at dis-
tance more than 1 can communicate directly. Two
nodes at distance more than r and at most 1 may
or may not communicate directly. An example of
a transmission range of node u is shown in Figure
1 as the darker area. We shall consider the static
case in which the irregularity of each node is fixed
and does not change with time. We call the geo-
metric representation of such a network a unit disk graph with irregularity r.
This class of unit disk graphs with irregular transmission ranges was first intro-
duced by Barrière, Fraigniaud, Narayanan, and Opatrny [3] in order to propose
robust position-based routing. The problem of constructing a spanner for unit
disk graphs with irregular transmission ranges is more complex, for example the
usual planarization algorithms like the Gabriel test or the relative neighborhood
graph algorithm do not work for them.

1.1 Results and Outline of the Paper

We give an algorithm for constructing a spanner of a connected unit disk graph
with irregularity r. The construction is local in the sense that nodes use only
information at their vicinity: given k ≥ 2, each node needs only to consider all the
nodes at distance at most k hops from it, i.e., nodes joined to it by paths of length
at most k. The resulting spanner has maximum degree at most 3 + 6

πr + r+1
r2 ,

when 0 < r < 1 (and at most five, when r = 1). Moreover, it is shown that
the spanner is planar provided that the distance between any two nodes is at
least

√
1− r2. For k ≥ 2 the sum of the euclidean lengths of the edges of the

spanner is at most kr+1
kr−1 times the sum of the euclidean lengths of the edges of

a minimum weight euclidean spanning tree if the spanner is planar. The class of
graphs whereby the distance between any two nodes is at least λ (in our graphs
λ =

√
1− r2) were first called civilized by Doyle and Snell [7][page 136] and have

also been referred to as λ-precision by Hunt, Marathe, Radhakrishnan, Ravi,
Rosenkrantz, and Stearns [10], and Ω(1)-constant by Kuhn, Wattenhofer, and
Zollinger [14] (see also Kuhn, Wattenhofer, Zhang, and Zollinger [13]).

Our results extend work of Li, Wang, and Song [17] mentioned above from
the case r = 1 to arbitrary irregularity factor r. Note that even in the special
case r = 1, we obtain explicit bounds on degree and cost of the spanner rather
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that asymptotic bounds. Also, our proofs use only elementary techniques and
do not rely on [6].

An outline of the paper is as follows. Section 2 gives definitions needed for
the algorithm, the main one being a definition of a linear order of the edges of
the graph, while Section 3 gives the main result on constructing a spanner and
proves the correctness of our algorithm.

2 Preliminaries

A graph G is geometric if it is embedded into the Euclidean plane and the
edges are straight line segments between the nodes. The edge selection in our
algorithms will depend on a linear order on edges of the input geometric graphG.

2.1 Linear Order on Edges

Let |u, v| denote the Euclidean distance between nodes u and v. Intuitively, we
can define a linear order on the edges of G

– by first considering the Euclidean length,
– if two edges have the same length, the one with rightmost, topmost endnode

is larger, and finally
– if two edges of same length share their rightmost, topmost node, then their

second endnode is considered; the edge with the right most, top most second
endnode is defined as larger.

Formally, we have the following definition.

Definition 1 (Compatible Linear Order). Each edge {u, v} is assigned a
5-tuple (|u, v|, x1, y1, x2, y2), where x1, y1 and x2, y2 are the coordinates of the
endnodes of the edge with either x1 > x2 or x1 = x2 and y1 > y2. Clearly this
gives a unique 5-tuple to any edge, and 5-tuples assigned to any two edges are
distinct. The linear order ≺ is defined by using the lexicographical ordering of
the assigned 5-tuples.

Notice that in the order ≺, we first consider the Euclidean length of edges and
the coordinates are used for ordering edges of the same length. The input graph
G may have many minimum cost spanning trees (MSTs) when the Euclidean
length of edges is the cost function. However, if we break the ties by the linear
order ≺, then G has a unique MST T≺ which can be computed for example by
Kruskal’s algorithm.

Definition 2. For a given geometric graph H, define cost(H) as the sum of
Euclidean lengths of the edges of H.

Definition 3. Given a graph G and a vertex v of G, we denote by Nk[v] the
distance k closed neighborhood of v, i.e. the nodes of G reachable from v by a
path with at most k edges. Note that v ∈ Nk[v]. Sometimes, the graph induced
by vertices in Nk[v] will be denoted by the same symbol Nk[v].
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3 Constructing a Spanner

This section is the core of our paper. Subsection 3.1 gives the main algorithm
for constructing spanners directly from a unit disk graph, while Subsection 3.2
states the main theorem (Theorem 1) and its complete proof.

3.1 Spanner Algorithm

Consider algorithm LocalMSTk, for k ≥ 2, which was presented by Li, Wang,
and Song in [17].

Algorithm. LocalMSTk

Input. A connected geometric graph G with the linear order ≺;
Output. Graph G≺

k

Run the following algorithm at each node v of G:

1. Learn your distance k neighborhood Nk[v].
2. Construct locally the unique MST Tk(v) of Nk[v].
3. Broadcast in N1[v] the edges of N1[v] which have been retained in Tk(v)

(i.e. N1[v] ∩ Tk(v)).
4. The output graph G≺

k is defined as follows: an edge is selected into G≺
k if

and only if it was retained by both of its incident nodes.

Clearly, this is a distributed algorithm. To learn its distance k neighborhood, v
first broadcasts its coordinates to all its neighbors. After having learnt its dis-
tance k neighborhood it broadcasts it to all its neighbours. It can then construct
the unique MST Tk(v) (which is selected using Kruskal’s algorithm [12] and the
linear order ≺) of Nk[v] and broadcasts edges in N1[v] ∩ T (v) to all nodes in
N1[v]. The parameter k determines the desired locality of our algorithm, and
thus the resulting graph G≺

k is constructed “locally”, each node v uses only
knowledge of Nk[v] and the results of its neighbours.

3.2 Main Result and Proof of Correctness

Let G be a unit geometric graph with irregularity r and k ≥ 2. We show that
the graph G≺

k constructed by the above algorithm has interesting properties
summarized in the following theorem.

Theorem 1. If G is a connected geometric unit disk graph with irregularity r
and k ≥ 2, then the graph G≺

k has the following properties.

a) G≺
k is connected;

b) if the distance between any two nodes of the graph is at least
√

1− r2, then
the graph G≺

k is planar;

c) Δ(G≺
k ) ≤

{
5 if r = 1,
3 + 6

πr + r+1
r2 if 0 < r < 1;

d) If G≺
k is planar and kr > 1, then cost(G≺

k ) ≤ kr+1
kr−1 × cost(T≺).
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(a) Path p from u to v

t

u

v

w

(b) Two crossing edges in G≺
k

Fig. 2.

Proof. The proof of part a) follows from the following claim.

Claim. T≺ ⊆ G≺
k .

Proof. We argue by contradiction. Let the edge {u, v} be retained in T , but
rejected in G≺

k . Without loss of generality we may assume it was rejected in
Tk(v). Since {u, v} was retained in T , there is no other path in T joining u and
v. Since {u, v} was rejected by Tk(v), there exists a path, say p, in Tk(v) joining
u and v and using only edges smaller than {u, v}.

Let {w,w′} be an edge in p such that {w,w′} /∈ T (see Figure 2(a)). It follows
that there is a path in T joining w and w′ and using only edges smaller than the
edge {w,w′}. As this argument applies to each such edge of p, there must be a
path in T joining u and v using only edges smaller then {u, v}. This contradicts
the fact that the edge {u, v} was retained in T .

To prove part b), assume by way of contradiction, that G≺
k is not planar and

let {u, v} and {w, t} be two crossing edges in G≺
k . Without loss of generality we

may assume that the angle � uwv is the largest angle in the quadrilateral uwut
(see Figure 3.2). Clearly, this angle is at least π/2.

Since |u, v| ≤ 1 we have |u,w|2 + |w, v|2 ≤ 1. Thus |u,w|2 ≤ 1− |w, v|2 ≤ r2

since |w, v| ≥
√

1− r2 by our assumption. Therefore, {u,w} is an edge in G.
The same argument shows that {w, v} is an edge in G.

We will show that the diagonal {u, v} will not be selected into G≺
k by u.

Assume u computes Tk(u) using Kruskal’s algorithm. Either {u,w} is retained
in Tk(u), or there already exists a path in Tk(u) consisting of smaller edges
connecting u and w. Analogously, the same is true for {w, v}. This means that
at the moment {u, v} is considered by u for inclusion into Tk(u), there already
exists a path in Tk(u) connecting u and v and hence {u, v} will be rejected by
u, which contradicts the fact that edge {u, v} is in G≺

k . Note that from our
assumption on distance between vertices of G and the assumption that G is

connected, we have
√

1− r2 ≤ r and thus r ≥
√

1
2 .

To prove part c), let u be any vertex of G. Partition the unit circle around
u into six equal size sectors each with angle at u equal to π/3. Figure 3 depicts
such a sector by the dark shaded area. Since G is finite, we may assume that the
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edges of these sectors do not pass through any neighbor of u. Hence, for any two
neighbors v and w of u inside any fixed sector, the angle � wuv is less that π/3.
Then |v, w| < max{|u, v|, |u,w|}. If |v, w| ≤ r, then one of {u, v}, {u,w} would
have been replaced in G≺

k by {v, w}. Thus, we conclude |v, w| > r. If r = 1, it
follows that u can have at most one neighbor inside of each sector. So u has at
most six neighbors in G≺

k . Suppose u has six neighbors. However, this may only
occur if u is in the center of a perfect hexagon formed by its neighbors. However,
in this case only two incident edges will be retained, as four of the incident edges
will be deleted as the largest edges of an incident equilateral triangle. Hence u
has at most five neighbors as claimed.

Suppose now, r < 1. Consider a fixed sector S defined above. Draw a circle of
radius r/2 around every neighbor of u in this sector. It follows that these circles
are disjoint and all are inside the region determined by the union of the circle of
radius r/2 centred at u, the sector of radius 1 + r/2 centred at u and containing
the sector S, and two rectangles with sides 1 + r/2 and r/2 (see Figure 3).

u

π/3 r/2
r/2

Fig. 3. The light shaded area contains all disjoint circles of radius r/2 around all
neighbors of u inside the dark shaded area

Hence an upper bound on the number of neighbors of u in the sector S is the
number of circles of radius r/2 that can be packed into this area. This number
is at most

π(r/2)2 + π(1+r/2)2

6 + 2(1 + r/2)r/2
πr2

<
1
2

+
1
πr

+
r + 1
6r2

.

Summing up through all six sectors, we obtain that u has at most 3 + 6
πr + r+1

r2

neighbors.
The following claim captures a crucial property of the graph G≺

k that helps
to prove part d).

Claim. Every cycle C in G≺
k has the Euclidean length greater than

max{(k+1)r, kr + l}, where l is the length of a longest edge in C.

Proof. Let C be a cycle in G≺
k and l be the Euclidean length of the largest

edge, say {u, v}, of this cycle. Without loss of generality we may assume that
v in counterclockwise from u (see Figure 5(b)). Since C was retained in G≺

k ,
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the edge {u, v} must have been retained in Tk(u). However, this means that
there exists a node z ∈ C such that z /∈ Nk[u], otherwise u would have seen
the whole cycle C and therefore rejected edge {u, v} as the largest edge of C.
Since z �∈ Nk[u], the path from u to z clockwise around C contains a vertex
of Ni[u] \ Ni−1[u] for all 1 ≤ i ≤ k. Let wi be the furthest such a vertex in
Ni[u] \Ni−1[u]. Similarly, also the path from u to z counter clockwise around C
contains a vertex of Ni[u] \Ni−1[u] for all 1 ≤ i ≤ k, and let xi be the furthest
such a vertex in Ni[u] \ Ni−1[u]. It follows that w1, w2, . . . , wk are in clockwise
order around C while x1, x2, . . . , xk are is counter clockwise order.

By definition, if k ≥ 2 then the Euclidean distances |u,w2|, |u, x2|, |z, wk−1|,
|z, xk−1|, and for all 1 ≤ i ≤ k − 2 |wi, wi+2| and |xi, xi+2| are all greater than
r. From the triangle inequality, we have.

If k is odd then the Euclidean length

|C| ≥ |u,wk−1|+ |wk−1, z|+ |u, xk−1|+ |xk−1, z|

>
k − 1

2
r + r +

k − 1
2

r + r

= (k + 1)r,

or similarly

|C| ≥ |u,w2|+ |w2, wk−1|+ |wk−1, z|+ |u, xk−1|+ |xk−1, z|

> l +
k − 3

2
r + r +

k − 1
2

r + r

= kr + l,

If k is even then the Euclidean length

|C| ≥ |w1, x1|C + |w1, wk−1|+ |wk−1, z|+ |x1, xk−1|+ |xk−1, z|

> |w1, x1|+
k − 2

2
r + r +

k − 2
2

r + r + r

= |w1, x1|C + kr

≥ kr + l,

where |w1, x1|C denotes the Euclidean length of the counterclockwise path from
w1 to x1 on the cycle C. To complete the proof it remains to show that
|w1, x1|C > r. Let w′

1 be the clockwise successor of w1 along C. By definition of
w1 and the fact that z �∈ Nk[u], the vertex w′

1 �∈ N1[u]. Let |w1, w
′
1| = l1. We

have |w1, u|C ≥ r − ε1 and |u, x1|C ≥ r − ε2 for some ε1 > 0 and ε2 > 0.
From the triangle inequality and the fact that w′

1 �∈ N1[u], we get r−ε1+l1 >
r. From this and the fact that l is the largest edge in C, we get l ≥ l1 > ε1. Since
v is reachable from u, we know that r − ε2 ≥ l. Combining with l > ε1 we get
ε1 + ε2 < r and thus |w1, x1|C ≥ r − ε1 + r − ε2 > r.

Finally we prove that if G≺
k is planar, then cost(G≺

k ) ≤ kr+1
kr−1 × cost(T≺).

Let C1, C2, . . . , Cf be the faces in G≺
k . First note that the sum of the Euclidean
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lengths of the faces is equal to twice the sum of the Euclidean lengths of all edges.
This implies that cost(G≺

k ) is equal to half the sum of the Euclidean lengths of
the faces, which by Claim 3.2 is bounded from below by (krf +

∑f
i=1 li)/2 where

li is the longest edge in Ci.
Since, T≺ ⊆ G≺

k , it follows from the well-known Euler’s formula that the span-
ning tree T≺ can be obtained by deleting some f − 1 edges e1, e2, . . . , ef−1 from
G≺

k . Therefore we obtain that cost(G≺
k ) ≤ cost(T≺) +

∑f−1
j=1 |ej|. We want to up-

per bound the last sum by
∑f

i=1 li. To do this, we need to assign each edge ej to a
unique face Ci so that ej ∈ Ci. For this, consider the bipartite graph H with par-
tite sets X = {e1, e2, . . . , ef−1} and Y = {C1, C2, . . . , Cf} in which a vertex in X
is joined by an edge to the two faces it is incident on. Consider a subset X ′ ⊆ X .
We claim that |N(X ′)| > |X ′|. Indeed, if for some X ′, the edges in X ′ are incident
only to |X ′| faces, then after removal of these edges we obtain a new planar graph
which will have the same number of nodes, will have |X ′| less edges and |X ′| − 1
less faces that G≺

k , which is a contradiction with Euler’s formula. It follows from
the well-known Hall’s matching theorem that H has a matching saturating X .
Now, assign the edge ej to the face determined by the matching. We may assume
(after appropriate relabelling) that ej is assigned to Cj for j = 1, . . . , f − 1. Since
the length of a longest edge in Cj is lj, we have

∑f−1
j=1 |ej | ≤

∑f−1
j=1 lj, and hence

cost(G≺
k ) ≤ cost(T≺) +

∑f−1
j=1 lj . This implies that

cost(T≺) ≥ krf/2−
f−1∑
i=1

li/2 ≥ (krf − f + 1)/2).

Notice that by the assumption, kr > 1 and hence the last expression is positive.
Consequently, cost(G≺

k )
cost(T ≺) is at most

cost(T≺) +
∑f−1

j=1 lj

cost(T≺)
≤ 1 +

f − 1
cost(T≺)

≤ 1 +
f

(krf − f + 1)/2
≤ kr + 1

kr − 1

This completes the proof of the theorem.

To see that G≺
k is not necessarily planar, consider the example of a graph G

on Figure 4 for which any connected spanner must retain all edges. As a corollary
we also obtain the following result.

Corollary 1. If G is a connected geometric unit disk graph and k ≥ 2, then the
graph G≺

k has the following properties.

a) G≺
k is connected;

b) G≺
k is planar;

c) Δ(G≺
k ) ≤ 5;

d) cost(G≺
k ) ≤ k+1

k−1 × cost(T≺).

This corollary gives identical results as those of Li, Wang, and Song [17] as far as
the connectedness and the planarity is concerned, but it improves the maximum
degree to 5 and gives an explicit value of the cost factor of the spanner.
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u v

w

t

1
r

Fig. 4. Configuration of vertices that gives a non-planar spanner

Observe that without the ordering on the edges of the geometric graph, the
algorithm to obtain G does not work, because it could produce a disconnected
graph.
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(b) Cycle C

Fig. 5.

A simple counterexample with four nodes is depicted in Figure 5(a). It con-
sists of four nodes v1, v2, v3, v4 such that the distance between any pair of them,
but one (say v1 and v4) is equal to 1. Our nodes are the vertices of two equilateral
triangles with disjoint interiors that share an edge (in this case {v2, v3}). With-
out a total ordering induced on the edges of this graph, we can get a disconnected
graph.

4 Conclusions

In this paper, we gave a new local, distributed algorithm for constructing a planar
spanner of a connected unit disk graph with nodes having irregular transmission
ranges, give bounds on the degree of the spanner, and a sufficient condition on
the graph to obtain a planar spanner. When the spanner is planar, we give an
explicit bound on the the cost factor of the spanner. Examples that compare our
result to the well-known RNG (Relative Neighborhood [19]) and GG (Gabriel [9])
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graphs can be found in the full paper. It would be interesting to derive a cost
factor in case when the spanner is not planar. Another interesting problem is to
see whether our techniques can be extended to obtain a distributed algorithm
that constructs a low cost spanner of a given geometric unit graph (possibly
with irregular transmission range) which in addition guarantee a low geometric
stretch factor of edges.
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Abstract. Point pattern matching problems are of fundamental importance in
various areas including computer vision and structural bioinformatics. In this pa-
per, we study one of the more general problems, known as LCP (largest common
point set problem): Let P and Q be two point sets in R3, and let ε ≥ 0 be a
tolerance parameter, the problem is to find a rigid motion μ that maximizes the
cardinality of subset I of Q, such that the Hausdorff distance dist(P, μ(I)) ≤ ε.
We denote the size of the optimal solution to the above problem by LCP(P, Q).
The problem is called exact-LCP for ε = 0, and tolerant-LCP when ε > 0 and
the minimum interpoint distance is greater than ε. A β-distance-approximation
algorithm for tolerant-LCP finds a subset I ⊆ Q such that |I | ≥ LCP(P, Q) and
dist(P, μ(I)) ≤ βε for some β ≥ 1.

This paper has three main contributions. (1) We introduce a new algo-
rithm, called T-hashing, which gives the fastest known deterministic 4-distance-
approximation algorithm for tolerant-LCP. (2) For the exact-LCP, when the
matched set is required to be large, we give a simple sampling strategy that
improves the running times of all known deterministic algorithms, yielding the
fastest known deterministic algorithm for this problem. (3) We use expander
graphs to speed-up the T-hashing algorithm for tolerant-LCP when the size of
the matched set is required to be large, at the expense of approximation in the
matched set size. Our algorithms also work when the transformation μ is allowed
to be scaling transformation.

1 Introduction

The general problem of finding large similar common substructures in two point sets
arises in many areas ranging from computer vision to structural bioinformatics. In this
paper, we study one of the more general problems, known as the largest common point
set problem (LCP), which has several variants to be discussed below.

Problem Statement. Given two point sets in R3, P = {p1, . . . , pm} and Q =
{q1, . . . , qn}, and an error parameter ε ≥ 0, we want to find a rigid motion μ that
maximizes the cardinality of subset I ⊆ Q, such that dist(P, μ(I)) ≤ ε. For an opti-
mal set I , denote |I| by LCP(P,Q). There are two commonly used distance measures
between point sets: Hausdorff distance and bottleneck distance. The Hausdorff dis-
tance dist(P,Q) between two point sets P and Q is given by maxq∈Q minp∈P ||pq||.
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The bottleneck distance dist(P,Q) between two point sets P and Q is given by
minf maxq∈Q ||f(q) − q||, where f : Q → P is an injection. Thus we get two ver-
sions of the LCP depending on which distance is used.

Another distinction that is made is between the exact-LCP and the threshold-LCP.
In the former we have ε = 0 and in the latter we have ε > 0. The exact-LCP is compu-
tationally easier than the threshold-LCP; however, it is not useful when the data suffers
from round-off and sampling errors, and when we wish to measure the resemblance
between two point sets and do not expect exact matches. These problems are better
modelled by the threshold-LCP, which turns out to be harder, and various kinds of
approximation algorithms have been considered for it in the literature (see below). A
special kind of threshold-LCP in which one assumes that the minimum interpoint dis-
tance is greater than the error parameter 2ε is called tolerant-LCP. Tolerant-LCP is
nicer to deal with than threshold-LCP and at the same time it appears to captures many
problems arising in practice. Notice that for the tolerant-LCP, the Hausdorff and bot-
tleneck distances are the same and thus there is no need to specify which distance is
in use. In practice, it is often the case that the size of the solution set I to the LCP is
required to be at least a certain fraction of the minimum of the sizes of the two point
sets: |I| ≥ 1

α min(|P |, |Q|), where α is a positive constant. This version of the LCP is
known as the α-LCP. A special case of the LCP which requires matching the entire set
Q is called Pattern Matching (PM) problem. Again, we have exact-PM, threshold-PM,
and tolerant-PM versions.

In this paper, we focus on approximation algorithms for tolerant-LCP and tolerant-α-
LCP. There are two natural notions of approximation. (1) Distance approximation: The
algorithm may find a transformation that brings a set I ⊆ Q of size at least LCP(P,Q)
within distance ε′ for some constant ε′ > ε. (2) Size-approximation: The algorithm
guarantees that |I| ≥ (1− δ)LCP(P,Q), for constant δ ∈ [0, 1).

Previous work. The LCP has been extensively investigated in computer vision (e.g.
[27]), computational geometry (e.g. [7]), and also finds applications in computational
structural biology (e.g. [29]). For the exact-LCP problem, there are four simple and pop-
ular algorithms: alignment (e.g. [22, 4]), pose clustering (e.g. [27]), geometric hashing
(e.g. [26]) and generalized Hough transform (GHT) (e.g. [19]). These algorithms are
often confused with one another in the literature. A brief description of these algorithms
can be found in the full version of this paper. Among these four algorithms, the most
efficient algorithm is GHT.

As we mentioned above, the tolerant-LCP (or more generally, threshold-LCP) is a
better model of many situations that arise in practice. However, it turns out that it is
considerably more difficult to solve the tolerant-LCP than the exact-LCP. Intuitively, a
fundamental difference between the two problems lies in the fact that for the exact-LCP
the set of rigid motions, that may potentially correspond to the solution, is discrete and
can be easily enumerated. Indeed, the algorithms for the exact-LCP are all based on the
(explicit or implicit) enumeration of rigid motions that can be obtained by matching
triplets to triplets. On the other hand, for the tolerant-LCP this set is continuous, and
hence the direct enumeration strategies do not work. Nevertheless, the optimal rigid
motions can be characterized by a set of high degree polynomial equations as in [8].
A similar characterization was made by Alt and Guibas in [6] for the 2D tolerant-PM
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problem and by the authors in [13] for the 3D tolerant-PM. All known algorithms for the
threshold-LCP use these characterizations and involve solving systems of high degree
equations which leads to “numerical instability problem” [6]. Note that exact-LCP and
the exact solution for tolerant-LCP are two distinct problems. (Readers are cautioned
not to confuse these two problems as in Gavrilov et al. [15].) Ambühl et al. [8] gave an
algorithm for tolerant-LCP with running time O(m16n16√m + n). The algorithm in
[13] for threshold-PM can be adapted to solve the tolerant-LCP in O(m6n6(m+n)2.5)
time. Both algorithms are for bottleneck distances. These algorithms can be modified
to solve threshold-LCP under Hausdorff distance with a better running time by replac-
ing the maximum bipartite graph matching algorithm which runs in O(n2.5) with the
O(n log n) time algorithm for nearest neighbor search. Both of these algorithms are for
the general threshold-LCP, but to the best of our knowledge, these algorithms are the
only known exact algorithms for the tolerant-LCP also.

Goodrich et al [16] showed that there is a small discrete set of rigid motions
which contains a rigid motion approximating (in distance) the optimal rigid motion
for the threshold-PM problem, and thus the threshold-PM problem can be solved ap-
proximately by an enumeration strategy. Based on this idea and the alignment ap-
proach of enumerating all possible such discrete rigid motions, Akutsu [3], and Biswas
and Chakraborty [10, 9] gave distance-approximation algorithms with running time
O(m4n4√m + n) for the threshold-LCP under bottleneck distance, which can be mod-
ified to give O(m3n4 logm) time algorithm for the tolerant-LCP.

Similar to the tolerant-LCP, the exact algorithm for tolerant-PM is difficult, even in
2D (see [6]). For this reason, Heffernan and Schirra [20] introduced approximate de-
cision algorithms to approximate the minimum Hausdorff distance between two point
sets. Given ε > 0, their algorithm answers correctly (YES/NO) if ε is not too close to
the optimal value ε∗ (which is the minimum Hausdorff distance between the two point
sets) and DON’T KNOW if the answer is too close to the optimal value. Notice that this
approximation framework can not be directly adopted to the LCP problem because in
the LCP case there are two parameters – size and distance – to be optimized. This ap-
pears to be mistaken by Indyk et al. in [21, 15] where their approximation algorithm for
tolerant-LCP is not well defined. Cardoze and Schulman [11] gave an approximation
algorithm (with possible false positives) but the transformations are restricted to transla-
tions for the LCP problem. Given α, let εmin(α) denote the smallest ε for which α-LCP
exists; given ε, let αmin(ε) denote the smallest α for which α-LCP exists. Biswas and
Chakraborty [10, 9] combined the idea from Heffernan and Schirra and the algorithm
of Akutsu [3] to give a size-approximation algorithm which returns αu > αl such that
min{α : ε > 8ε(α)} ≥ αu ≥ αmin(ε) and αmin(ε) > αl ≥ max{α : ε < 1

8εmin(α)}.
However, all these approximation algorithms still take high running time of Õ(m3n4)
(the notation Õ hides poly log factors in m and n).

In practice, the tolerant-LCP is solved heuristically by using the geometric hashing
and GHT algorithms for which rigorous analyses are only known for the exact-LCP. For
example, the algorithms in [14, 27] are for tolerant-LCP but the analyses are for exact-
LCP only. Because of its practical performance, the exact version of GHT was carefully
analyzed by Akutsu et al. [4], and a randomized version of the exact version of geomet-
ric hashing in 2D was given by Irani and Raghavan [22]. The tolerant version of GHT
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(and geometric hashing) is based on the corresponding exact version by replacing the
exact matching with the approximate matching which requires a distance measure to
compare the keys. We can no longer identify the optimal rigid motion by the maximum
votes as in the exact case. Instead, the tolerant version of GHT clusters the rigid mo-
tions (which are points in a six-dimensional space) and heuristically approximates the
optimal rigid motion by a rigid motion in the largest cluster. Thus besides not giving
any guarantees about the solution, this heuristic requires clustering in six dimensions,
which is computationally expensive.

Other Related Work. There is some closely related work that aims at computing the
minimum Hausdorff distance for PM (see, e.g., [12] and references therein). Also, the
problems we are considering can be thought of as the point pattern matching problem
under uniform distortion. Recently, there has been some work on point pattern matching
under non-uniform distortion [24, 5].

Our results. There are three results in this paper. First, we introduce a new distance-
approximation algorithm for tolerant-LCP algorithm, called T-hashing.

Theorem 1. T-hashing (see Algorithm 1.) finds a rigid motion μ such that there is a
subset I of Q that is at least as large as LCP(P,Q) with error parameter ε and each
point of μ(I) is within distance 4ε from some point of P .

T-hashing is simple and more efficient than the known distance-approximation algo-
rithms (which are alignment-based) for tolerant-LCP. The running time of T-hashing
is O(m3n3 logm) in the worst case. For general input, we expect the algorithm to be
much faster because it is simpler and more efficient than the previous heuristics that
are known to be fast in practice. This is because our clustering step is simple (sorting
linearly ordered data) while the clustering step in those heuristics requires clustering
high-dimensional data.

Second, based on a combinatorial observation, we improve the algorithms for exact-
α-LCP by a linear factor for pose clustering or GHT and a quadratic factor for alignment
or geometric hashing. This also corrects a mistake by Irani and Raghavan [22].

Finally, we achieve a similar speed-up for T-hashing using a sampling approach
based on expander graphs at the expense of approximation in the matched set size.
We remark that this result is mainly of theoretical interest because of the large constant
factor involved. Expander graphs have been used before in geometric optimization for
fast deterministic algorithms [1, 23]; however, the way we use these graphs appears to
be new. Our results also hold when we extend the set of transformations to scaling; for
simplicity we restrict ourselves to rigid motions in this paper.

Terminology and Notation. For a transformation μ, denote by Iμ the set of points in
μ(Q) that are within distance ε of some point in P . We call Iμ the matched set of μ
and say that μ is an |Iμ|-matching. We call the transformation μ that maximizes |Iμ|
the maximum matching transformation. A basis is a minimal (for containment relation)
ordered tuple of points which is required to uniquely define a rigid motion. For example,
in 2D every ordered pair is a basis; while in 3D, every non-collinear triplet is a basis.
In Figure 1, a rigid motion in 3D is specified by mapping a basis (q1, q2, q3) to another
basis (p1, p2, p3). We call a key used to represent an ordered tuple S a rigid motion
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Fig. 1. In this example, the rigid motion is obtained by matching CQ = {q1, q2, . . . , q5} in Q to
CP = {p1, p2, . . . , p5} in P . We have LCP(P, Q) = |CP | = |CQ| = 5. The corresponding 5-
matching transformation μ can be discovered by matching (q1, q2) to (p1, p2), the rigid motions
μi that transform (q1, q2, qi) to (p1, p2, pi) for i = 3, 4, 5 are all the same and thus μ = μ3 =
μ4 = μ5 will get 3 votes, which is the maximum.

invariant key if it satisfies the following: (1) the key remains the same for all μ(S)
where μ is any rigid motion, and (2) for any two ordered tuples S and S′ with the
same rigid motion invariant key there is a unique rigid motion μ such that μ(S) = S′.
For example, as rigid motion preserves orientation and distances among points, given
a non-degenerate triangle Δ, the 3 side lengths of Δ together with the orientation (the
sign of the determinant of the ordered triplet) form a rigid motion invariant key for Δ
in R3. Henceforth, for simplicity of exposition, in the description of our algorithms we
will omit the orientation part of the key.

Outline. The paper is organized as follows. In Section 2, we introduce our new distance-
approximation algorithm for tolerant-LCP, called T-hashing. In Section 3, we show
how a simple deterministic sampling strategy based on the pigeonhole principle yields
speed-ups for the exact-α-LCP algorithms. In Section 4, we show how to use expander
graphs to further speed up the T-hashing algorithm for tolerant-α-LCP at the expense
of approximation in the matched set size.

2 T-Hashing

In this section, we introduce a new distance-approximation algorithm, called T-hashing,
for tolerant-LCP. The algorithm is based on a simple geometric observation. It can
be seen as an improvement of a known GHT-based heuristic such that the output has
theoretical guarantees.

2.1 Review of GHT

First, we review the idea of the pair-based version of GHT for exact-LCP. See the full ver-
sion of this paper for more details. For each congruent pair, say (p1, p2) in P and (q1, q2)
in Q, and for each of the remaining points p ∈ P and q ∈ Q, if (q1, q2, q) is congruent
to (p1, p2, p), compute the rigid motion μ that matches (q1, q2, q) to (p1, p2, p). We then
cast one vote for μ. The rigid motion that receives the maximum number of votes corre-
sponds to the maximum matching transformation sought. See Figure 1 for an example.
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2.2 Comparable Rigid Motions by Dihedral Angles

For the exact-LCP, one only needs to compare rigid motions by equality (for voting).
For the tolerant-LCP, one needs to measure how close two rigid motions are. In R3, each
rigid motion can be described by 6 parameters (3 for translations and 3 for rotations).
How to define a distance measure between rigid motions? We will show below that the
rigid motions considered in our algorithm are related to each other in a simple way that
enables a natural notion of distance between the rigid motions.

Observation. In the pair-based version of GHT as described above, the rigid motions
to be compared have a special property: the rigid motions transform a common pair
— they all match (q1, q2) to (p1, p2) in Figure 1. Two such transformations no longer
differ in all 6 parameters but differ in only one parameter. To see this, we first recall
that a dihedral angle is the angle between two intersecting planes; see Figure 2 for an
example. In general, we can decompose the rigid motion for matching (q1, q2, q3) to
(p1, p2, p3) into two parts: first, we transform (q1, q2) to (p1, p2) by a transformation
φ1; then we rotate the point φ1(q3) about

−→
p1p2 by an angle θ, where θ is the dihedral

angle between the planes (p1, p2, p3) and (φ1(q1), φ1(q2), φ1(q3)). This will bring q3
to coincide with p3. Thus, we have the following lemma:

Lemma 1. Let (p1, p2, p3) and (q1, q2, q3) be two congruent non-collinear triplets,
and let φ1 be a rigid motion that takes qi to pi for i = 1, 2. Let φ2 be the rotation
about

−→
p1p2 by an angle θ, where θ is the dihedral angle between the planes (p1, p2, p3)

and (φ1(q1), φ1(q2), φ1(q3)). Then the unique rigid motion that takes (p1, p2, p3) to
(q1, q2, q3) is equal to φ2 ◦ φ1.

We now state another lemma that will be useful in the description and proof of correct-
ness of T-hashing. Let (p1, p2, p) and q be four points as shown in Figure 2. Consider
the rotations about

−→
p1p2 that take q to within ε of p. The rotation angles of these trans-

formations form a subinterval of [0, 2π). This is because a circle C (corresponding to
the trajectory of p) intersects with the sphere B (around p with radius ε) at at most two
points (corresponding to a subinterval of [0, 2π)), as shown in Figure 2. That is, we
have the following lemma:

Lemma 2. Let p1, p2, p, q ∈ R3 be four points (not necessarily non-collinear), then
the rotation angles of transformations that rotate q about

−→
p1p2 to within ε of p form a

subinterval of [0, 2π).

p

1p p

q

C − a circle 

subinterval

2

B − a ball around p with radius = ε

dihedral angle

Fig. 2. The dihedral angle is the angle between planes formed by (p1, p2, q) and (p1, p2, p). The
rotation angles of transformations that rotate q about

−→
p1p2 to within ε of p form a subinterval of

[0, 2π).
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2.3 Approximating the Optimal Rigid Motion by the “Diametric” Rigid Motion

For a point set S ⊂ R3, we call a pair of points {p, q} ∈ S2 diameter-pair if ||p− q|| =
diameter(S). A rigid motion of Q that takes q1 to p1 and q2 on the line p1p2 and closest
possible to p2 is called a (p1, p2, q1, q2)-rigid motion. Based on an idea similar to the
one behind Lemma 2.4 in Goodrich et al. [16], we have the following lemma:

Lemma 3. Let μ be a rigid motion such that each point of μ(S), where S ⊆ Q, is
within distance ε of a point in P . Let {q1, q2} be a diameter-pair of S. Let pi ∈ P be
the closest point to μ(qi) for i = 1, 2. Then we have a (p1, p2, q1, q2)-rigid motion μ′

of Q such that each point of μ′(S) is within 4ε of a point in P .

Proof Sketch. Translate μ(q1) to p1; this translation shifts each point by at most ε. Next,
rotate about p1 such that μ(q2) is closest to p2 (which implies μ′(q1), μ′(q2) and p2 are
collinear). Since {q1, q2} is a diameter-pair, this rotation moves each point by at most
2ε. Thus, each point is at most ε + ε+ 2ε = 4ε from its matched point.

2.4 Approximation Algorithm for Tolerant-LCP

We first describe the idea of our algorithm T-hashing. Input is two point sets in R3,
P = {p1, . . . , pm} and Q = {q1, . . . , qn} with m ≥ n, and ε ≥ 0. Suppose that the
optimal rigid motion μ0 was achieved by matching a set Iμ0 = {q1, q2, . . . , qk} ⊆ Q to
Jμ0 = {p1, p2, . . . , pk} ⊆ P . WLOG, assume that {q1, q2} is the diameter pair of Iμ0 .
Then by Lemma 3, there exists a (p1, p2, q1, q2)-rigid motion μ of Q such that μ(Iμ0)
is within 4ε of a point in P . Since we do not know the matched set, we do not know
a diameter-pair for the matched set either. Therefore, we exhaustively go through each
possible pair. Namely, for each pair (q1, q2) ∈ Q and each pair (p1, p2) ∈ P , if they
are approximately congruent then we find a (p1, p2, q1, q2)-rigid motion μ of Q that
matches as many remaining points as possible. Note that (p1, p2, q1, q2)-rigid motions
are determined up to a rotation about the line p1p2. By Lemma 2, the rotation angles
that bring μ(qi) to within 4ε of pi form a subinterval of [0, 2π). And the number of
non-empty intersection subintervals corresponds to the size of the matched set. Thus, to
find μ, for each pair (p, q) ∈ P \{p1, p2}×Q\{q1, q2}, we compute the dihedral angle
interval according to Lemma 2. The rigid motion μ sought corresponds to an angle φ
that lies in the maximum number of dihedral intervals. The details of the algorithm are
described in Algorithm 1.

Time Complexity. For each triplet in Q, using kd-tree for range query, it takes
O(m3·(1− 1

3 )+m3+m3 logm2) = O(m3 logm) for lines 11–20. For each pair (q1, q2)
and (p1, p2), we spend time O(mn) to find the subintervals for the dihedral angles, and
time O(mn logm) to sort these subintervals and do the scan to find an angle that lies in
the maximum number of subintervals. Thus the total time is O(m3n3 logm).

3 Improvement by Pigeonhole Principle

In this section we show how a simple deterministic sampling strategy based on the
pigeonhole principle yields speed-ups for the four basic algorithms for exact-α-LCP.
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Algorithm 1. T-hashing

1: procedure PREPROCESSING

2: for each pair (p1, p2) of P do
3: Compute and insert the key of ||p1p2|| into a dictionary D1;
4: end for
5: for each triplet (p1, p2, p3) of P do
6: Compute and insert the rigid motion invariant key for (p1, p2, p3) into a dictionary

D2;
7: end for
8: end procedure
9: procedure RECOGNITION

10: for each pair (q1, q2) of Q
2 do � This can be reduced by the edge set of an expander

of Q.
11: if [||q1q2|| − 2ε, ||q1q2|| + 2ε] exists in D1 then
12: Initialize an empty dictionary D3 of pairs;
13: for each remaining point q ∈ Q do
14: Compute and search the range [||q1q2|| − 2ε, ||q1q2|| + 2ε] × [||qq1|| −

2ε, ||qq1|| + 2ε] × [||qq2|| − 2ε, ||qq2|| + 2ε] of (q1, q2, q) in D2; � e.g.
using a kd-tree.

15: for each entry (p1, p2, p) found do
16: If (p1, p2) exists in D3, increase its vote; otherwise insert (p1, p2) into

D3 with one vote;
17: Append the matched pair (q, p) to the list associated with (p1, p2);
18: end for
19: end for
20: end if � Compute the maximum transformation that matches (q1, q2) to (p1, p2).
21: for each pair (p1, p2) in the dictionary D3 do
22: Compute a transformation φ that brings q1 to p1 and q2 closest to p2;
23: For each matched pair (q, p) of the associated list of (p1, p2), compute an inter-

val of dihedral angles such that φ(q) is within 4ε of p;
24: Sort all the intervals of dihedral angles; and find a dihedral angle ψ that occurs

in the largest number V of intervals;
25: Compute the transformation μ by the composition of φ and the rotation about

p1p2 by angle ψ; � μ brings V + 2 points of Q to within 4ε of some
matched points in P .

26: Keep the maximum matched set size and the corresponding transformation;
27: end for
28: end for
29: end procedure

Specifically, we get a linear speed-up for pose clustering and GHT, and quadratic speed-
up for alignment and geometric hashing. It appears to have been erroneously concluded
previously that no such improvements were possible deterministically [22].

In pose clustering or GHT, suppose we know a pair (q1, q2) in Q that is in the sought
matched set, then the transformation sought will be the one receiving the maximum
number of votes among the transformations computed for (q1, q2). Thus if we have
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chosen a pair (q1, q2) that lies in the matched set, then the maximum matching trans-
formation will be found. We are interested in the question “can we find a pair in the
matched set without exhaustive enumeration”? The answer is yes: we only need to try
a linear number of pairs (q1, q2) to find the maximum matching transformation or con-
clude that there is none that matches at least n

α points.
We are given a set Q = {q1, . . . , qn}, and let I ⊆ Q be an unknown set of size

≥ n
α for some constant α > 1. We need to discover a pair (p, q) with p, q ∈ I by using

queries of the following type. A query consist of a pair (a, b) with a, b ∈ Q. If we have
a, b ∈ I , the answer to the query is YES, otherwise the answer is NO. Thus our goal is
to devise a deterministic query scheme such that as few queries are needed as possible
in the worst case (over the choice of I) before a query is answered YES. Similarly, one
can ask the question about querying triplets to discover a triplet entirely in I .

Theorem 2. For an unknown set I ⊆ Q with |I| ≥ n
α and |Q| = n using queries as

described above,

(1) it suffices to query O(αn) pairs to discover a pair in I;
(2) it suffices to query O(α2n) triplets to discover a triplet in I .

The simple proof, which is based on the pigeonhole principle, can be found in the
full version of this paper. Consequently, pose clustering or GHT can be sped up by a
linear factor; alignment or geometric hashing can be sped up by a quadratic factor.

4 Expander-Based Sampling

While for the exact-α-LCP the simple pigeonhole sampling served us well, for the
tolerant-α-LCP we do not know any such simple scheme for choosing pairs. The reason
is that now we not only need to guarantee that each large set contain some sampled pairs,
but also that each large set contain a sampled pair with large length (diameter-pair)
as needed for the application of Lemma 3 in the T-hashing algorithm. Our approach
is based on expander graphs (see, e.g., [2]). Informally, expander graphs have linear
number of edges but the edges are “well-spread” in the sense that there is an edge
between any two sufficiently large disjoint subsets of vertices. Let G be an expander
graph with Q as its vertex set. We show that for each S ⊆ Q, if |S| is not too small,
then there is an edge (u, v) in G such that (u, v) ∈ S2 and ||uv|| approximates the
diameter of S.

By choosing the pairs for the T-hashing algorithm from the edge set of G (the rest
of the algorithm is same as before), we obtain a bicriteria – distance and size – approx-
imation algorithm as stated in Theorem 4 below. We first give a few definitions and
recall a result about expander graphs that we will need to prove the correctness of our
algorithm.

Definition 1. Let S be a finite set of points of Rr for r ≥ 1, and let 0 ≤ k ≤ n. Define
diameter(S, k) = minT :|T |=k diameter(S \ T ).

That is, diameter(S, k) is the minimum of the diameter of the sets obtained by deleting
k points from S. Clearly, diameter(S, 0) = diameter(S).
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Let U and V be two disjoint subsets of vertices of a graph G. Denote by e(U, V )
the set of edges in G with one end in U and the other in V . We will make use of the
following well-known theorem about the eigenvalues of graphs (see, e.g. [25], for the
proof and related background).

Theorem 3. Let G be a d-regular graph on n vertices. Let d = λ1 ≥ λ2 ≥ . . . ≥ λn

be the eigenvalues of the adjacency matrix of G. Denote λ = max2≤i≤n |λi|. Then for
every two disjoint subsets U,W ⊂ V ,∣∣∣∣|e(U,W )| − d|U ||W |

n

∣∣∣∣ ≤ λ
√
|U ||W |. (1)

Corollary 1. Let U,W ⊂ V be two disjoint sets with |U | = |W | > λn
d . Then G has an

edge in U ×W .

Proof. It follows from (1) that if d|U||W |
n > λ

√
|U ||W | then |e(U,W )| > 0, and since

|e(U,W )| is integral, |e(U,W )| ≥ 1. But the above condition is clearly true if we take
U and W as in the statement of Corollary 1.

There are efficient constructions of graph families known with λ < 2
√
d (see, e.g., [2]).

Let us call such graphs good expander graphs. We can now state our main result for
this section.

Theorem 4. For an α-LCP instance (P,Q) with LCP(P,Q) > n
α , the T-hashing

algorithm with expander-based sampling using a good expander graph of degree
d > 2500α2 finds a rigid motion μ in time O(m3n2 logm) such that there is a subset I
satisfying the following criteria:

(1) size-approximation criterion: |I| ≥ LCP(P,Q)− 50√
d
n;

(2) distance-approximation criterion: each point of μ(I) is within distance 6ε from a
point in P .

Thus by choosing d large enough we can get as good size-approximation as desired.
The constants in the above theorem have been chosen for simplicity of the proof and
can be improved slightly.

For the proof we first need a lemma showing that choosing the query pairs from a
graph with small λ(G) (the second largest eigenvalue of G) gives a long (in a well-
defined sense) edge in every not too small subset of vertices.

Lemma 4. Let G be a d-regular graph with vertex set Q ⊂ R3, and |Q| = n. Let
S ⊆ Q be such that |S| > 25λ(G)n

d . Then there is an edge {s1, s2} ∈ E(G) ∩ S2 such

that ||s1s2|| ≥ diameter(S, 25λ(G)
d n)

2 .

Proof. For a positive constant c to be chosen later, remove cn pairs from S as follows.
First remove a diameter pair, then from the remaining points remove a diameter pair,
and so on. Let T be the set of points in the removed pairs and T p the set of removed
pairs. The remaining set S \ T has diameter ≥ diameter(S, 2cn) by the definition of
diameter(S, 2cn), and hence each of the removed pairs has length≥ diameter(S, 2cn).
For B,C ⊂ S let ||B,C|| = minb∈B,c∈C ||bc||.
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Claim. The set T defined above can be partitioned into three sets B, C, E, such that
|B|, |C| ≥ cn

6 , and ||B,C|| ≥ diameter(S,2cn)
2 .

Proof. Fix a Cartesian coordinate system and consider the projections of the pairs in
T p on the x-, y- ,and z-axes. It is easy to see that for at least one of these axes, at least
cn
3 pairs have projections of length≥ diameter(S,2cn)√

3
. Suppose without loss of generality

that this is the case for the x-axis, and denote the set of projections of pairs on the x-
axis with length ≥ diameter(S,2cn)√

3
by T p

x , and the set of points in the pairs in T p
x by

Tx. We have |Tx| ≥ 2cn/3. Now consider a sliding window W on the x-axis of length
diameter(S,2cn)

2 , initially at −∞, and slide it to +∞. At any position of W , each pair in
T p

x has at most 1 point in W , as the length of any pair is more than the length of W .
Thus at any position, W contains ≤ |T p

x | = |Tx|/2 points. It is now easy to see by a
standard continuity argument that there is a position of W , call it W̄ , where there are
≥ |Tx|

4 ≥ cn
6 points of Tx both to the left and to the right of W̄ .

Now, B is defined to be the set of points in T whose projection is in Tx and is
to the left of W̄ ; similarly C is the set of points in T whose projection is in Tx and
is to the right of W̄ . Clearly any two points, one from B and the other from C, are
diameter(S,2cn)

2 -apart.

Coming back to the proof of Lemma 4, the property that we need from the query-graph
is that for any two disjoint sets B,C ⊂ S of size δ|S|, where δ is a small positive
constant, the query-graph should have an edge in B × C.

By Corollary 1 if |B| ≥ cn
6 > λn

d , and |C| ≥ cn
6 > λn

d , that is, if c > 6λ
d , then G

has an edge in B × C. Taking c = 12.5λ
d completes the proof of Lemma 4.

Proof of Theorem 4. If we take G to be a good expander graph then Lemma 4 gives

that G has an edge of length≥
diameter(S, 50√

d
n)

2 . Let S also be a solution to tolerant-LCP
for input (P,Q) with error parameter ε > 0. We have that one of the sampled pairs

has length at least
diameter(S, 50√

d
n)

2 . Thus applying an appropriate variant (replacing the
diameter pair by the sampled pair with large length as guaranteed by Lemma 4) of
Lemma 3, we get a rigid motion μ such that there is a subset I satisfying the following:

(1) |I| ≥ |S| − 50√
d
n for any d > 2500α2;

(2) Each point of I is within 6ε(= ε+ ε+ 4ε) of a point in M .
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Abstract. Following Mettu and Plaxton [22, 21], we study oblivious
algorithms for the k-medians problem. Such an algorithm produces an
incremental sequence of facility sets. We give improved algorithms, in-
cluding a (24 + ε)-competitive deterministic polynomial algorithm and
a 2e ≈ 5.44-competitive randomized non-polynomial algorithm. Our ap-
proach is similar to that of [18], which was done independently.

We then consider the competitive ratio with respect to size. An al-
gorithm is s-size-competitive if, for each k, the cost of Fk is at most the
minimum cost of any set of k facilities, while the size of Fk is at most
sk. We present optimally competitive algorithms for this problem.

Our proofs reduce oblivious medians to the following online bidding
problem: faced with some unknown threshold T ∈ R+, an algorithm must
submit “bids” b ∈ R+ until it submits a bid b ≥ T , paying the sum of its
bids. We describe optimally competitive algorithms for online bidding.

Some of these results extend to approximately metric distance func-
tions, oblivious fractionalmedians, and oblivious bicriteria approximation.

When the number of medians takes only two possible values k or l,
for k < l, we show that the optimal cost-competitive ratio is 2 − 1/l.

1 Introduction and Summary of Results

An instance of the k-median problem is specified by a finite set C of customers,
a finite set F of facilities, and, for each customer u and facility f , a distance
duf ≥ 0 from u to f representing the cost of serving u from f . The cost of a
set of facilities X ⊆ F is cost(X) =

∑
u∈C duX , where duX = minf∈X duf . For a

given k, the (offline) k-median problem is to compute a k-median, that is, a set
X ⊆ F of cardinality k for which cost(X) = optk is minimum (among all sets of
cardinality k). Metric k-median refers to the case where the distance function is
metric (the shortest u-to-f path has length duf for each u and f).

The k-median problem is a well-known NP-hard facility location problem.
Substantial work has been done on efficient approximation algorithms that, given
k, find a set Fk of k medians of approximately minimum cost [2, 1, 6, 5, 13, 12, 24].
In particular, for the metric version Arya et al. show that, for any ε > 0, a set
Fk of cost at most (3 + ε)optk can be found in polynomial time [2].
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problem: cost-competitive metric size-competitive bidding
time: polynomial non-polynomial polynomial non-polynomial polynomial

deterministic 24 + ε 8 O(logn) 4 4
randomized 6e + ε < 16.31 2e < 5.44 O(logn) e < 2.72 e < 2.72

Fig. 1. Competitive ratios shown for oblivious medians and online bidding. Ratios in
bold are optimal.

Oblivious medians is an online version of the k-median problem where k is
not specified in advance [22, 21]. Instead, authorizations for additional facili-
ties arrive over time. A (possibly randomized) oblivious algorithm produces a
sequence F̄ = (F1, F2, . . . , Fn) of facility sets which must satisfy the oblivious
constraint F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ F . In general, in an oblivious solution, the
Fk’s cannot all simultaneously have minimum cost. The algorithm is said to be
c-cost-competitive, or to have cost-competitive ratio of c, if it produces a (possibly
random) sequence F̄ of sets which is c-cost-competitive, that is, such that for
each k, the set Fk has size at most k and (expected) cost at most c · optk. For
offline solutions we use the term “approximate” instead of “competitive”.

Mettu and Plaxton [22, 21] give a c-cost-competitive linear time oblivious
algorithm with c ≈ 30. Our first contribution is to improve this ratio. The
problem is difficult both because (1) the solution must be oblivious, and (2)
even the offline problem is NP-hard. To study separately the effects of the two
difficulties, we consider both polynomial and non-polynomial algorithms.

Theorem 1. (a) Oblivious metric medians has non-polynomial deterministic
and randomized algorithms that are 8-cost-competitive and 2e-cost-competitive,
respectively. (b) If metric k-median has a polynomial c-cost-approximation algo-
rithm, then the oblivious problem has polynomial deterministic and randomized
algorithms that are 8c-cost-competitive and 2ec-cost-competitive, respectively.

As it is known that there is a polynomial (3 + ε)-cost-approximation algorithm
for the offline metric medians [2], Theorem 1 implies the cost-competitive ratios
shown in Fig. 1. Theorem 1 was recently and independently discovered by Lin,
Nagarajan, Rajaraman and Williamson [18]. For polynomial algorithms, they
improved the result further using a Lagrangian-multiplier-preserving approxi-
mation algorithm for facility location; they obtained 16-cost-competitive and
randomized 4e-competitive polynomial algorithms for metric medians.

We also consider here oblivious algorithms that are s-size-competitive: they
are allowed to use extra medians, but must achieve the optimal cost for each k.
An algorithm is s-size-competitive if it produces a sequence F̄ such that each set
Fk has cost at most optk and size at most sk. (If the algorithm is randomized, it
must produce a random sequence such that each set Fk costs at most optk and
has expected size at most sk.)

To our knowledge, size-competitive algorithms for oblivious medians have not
been studied, although other online problems have been analyzed in an analogous
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setting of resource augmentation (e.g. [14, 7, 17]). We completely characterize the
optimal size-competitive ratios for oblivious medians:

Theorem 2. (a) Oblivious medians has non-polynomial deterministic and ran-
domized oblivious algorithms that are 4-size-competitive and e-size-competitive,
respectively. (b) No deterministic or randomized oblivious algorithm is less than
4-size-competitive or e-size-competitive, respectively. (c) If offline k-median has
a polynomial c-size-competitive algorithm, then the oblivious problem has poly-
nomial deterministic and randomized algorithms that are 4c-size-competitive and
ec-size-competitive, respectively.

The upper and lower bounds in Theorem 2 hold for both the metric and non-
metric problems. Part (c) on polynomial algorithms is included for completeness,
as is the following result for offline k-medians (proof omitted):

Theorem 3. Offline k-medians has a polynomial O(log(n))-size-approximation
algorithm.

This improves the best previous result — a bicriteria approximation algorithm
that finds a facility set of size ln(n+n/ε)k and cost (1+ε)optk [24]. Our algorithm
finds a true (not bicriteria) approximate solution: a facility set of size O(log k)
and cost at most optk.

Theorems 2 and 3 imply the size-competitive ratios shown in Fig. 1. Note also
that no polynomial algorithm (oblivious or offline) is o(log n)-size-competitive
unless P=NP, even for the metric case.

To analyze oblivious medians, we reduce the size- and cost-competitive obliv-
ious problems to the following folklore “online bidding problem”: An algorithm
repeatedly submits “bids” b ∈ R+, until it submits a bid b that is at least as
large as some unknown threshold T ∈ R+. Its cost is the total of the submitted
bids. The algorithm is β-competitive if, for any T ∈ R+, its cost is at most βT
(or, if the algorithm is randomized, its expected cost is at most βT ). More gen-
erally, the algorithm may be given in advance a closed universe U ⊆ R+, with a
guarantee that the threshold T is in U and a requirement that all bids be in U .

For U = R+, it is known that an optimal deterministic strategy bids increasing
powers of 2, and that there is a better randomized strategy which bids (randomly
translated) powers of e. We complete this characterization by proving that the
randomized strategy is optimal.

Theorem 4. (a) Online bidding has deterministic and randomized algorithms
that are 4-competitive and e-competitive, respectively. Furthermore, if U is finite,
the algorithms run in time polynomial in |U|. (b) No deterministic or randomized
algorithm is less than 4-competitive or e-competitive, respectively, even when
restricted to instances of the form U = {1, 2, ..., n} for some integer n.

Weighted medians. All of our results extend to the weighted version, where
we allow the facilities and the customers to have non-negative weights w. In this
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case, for a facility set X , one constrains the total weight
∑

f∈X w(f) to be at
most k, and one takes cost(X) =

∑
u∈C w(u)duX .

Approximate triangle inequality. Mettu and Plaxton show that their obliv-
ious median algorithm also works in “λ-approximate” metric spaces, achieving
cost-competitive-ratio O(λ4) [22, 21]. We reduce this ratio to O(λ2). We say
that the cost function d is a λ-relaxed metric if dfy ≤ λ(dfx + dxg + dgy) for
any f, g ∈ F and x, y ∈ C. (This condition is somewhat less restrictive than the
one in [22, 21]. A related concept was studied in [10].) Theorem 1 generalizes as
follows (proofs omitted):

Theorem 5. (a) Oblivious λ-relaxed metric medians has (non-polynomial) de-
terministic and randomized algorithms that are 8λ2-cost-competitive and
2eλ2-cost-competitive, respectively. (b) If offline λ-relaxed metric k-median has
a polynomial c-cost-approximation algorithm, then the oblivious problem has de-
terministic and randomized polynomial algorithms that are 8λ2c-cost-competitive
and 2eλ2c-cost-competitive, respectively.

The kl-medians problem. A natural question to ask is whether better com-
petitive ratios are possible if the number of medians can take only some limited
number of values. As shown in [22, 21], no algorithm can be better than 2-
competitive even when there are only two possible numbers of medians, either
1 or k, for some large k. Here, we solve the deterministic kl-median problem
(where the number of medians is either k or l > k).

Theorem 6. For any k < l, there is a deterministic oblivious algorithm for
kl-medians with competitive ratio 2− 1/l, and no better ratio is possible.

Oblivious fractional medians. A fractional k-median is a solution to the
linear program which is the relaxation of the standard integer program for the
k-median problem. The natural oblivious version of this fractional problem is to
find a c ≥ 1 and, for every integer k ∈ [n] simultaneously, a pair (x(k)

if ), (y(k)
f )

meeting the constraints of the linear program, as well as y(k)
f ≤ y

(k+1)
f (for all f)

and
∑

u

∑
f xufduf ≤ c · optk (where optk is the minimum cost of any fractional

k-median). The goal is to minimize the competitive ratio c.
The proof of the theorem below (omitted) extends the proof of Theorem 1,

along with the observation that the randomized algorithm for the fractional
problem can be derandomized without increasing the competitive ratio.

Theorem 7. Oblivious fractional metric medians has a deterministic polyno-
mial algorithm that is 2e-cost-competitive.

Bicriteria approximations. Combining Theorem 2, Theorem 8, and offline
bicriteria results from [2, 19, 20, 16], we can obtain oblivious, polynomial algo-
rithms with the following bicriteria (c, s)-competitiveness guarantees for obliv-
ious metric medians. The first quantity c is the cost-competitive ratio and the
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second quantity s is the size-competitive ratio: (a) (3 + ε, 4), for any ε > 0, (b)
(2 + ε, 4(1 + 2ε−1)), for any ε > 0, (c) (1 + ε, 4(3 + 5ε−1)), for any ε > 0.

Notation. Throughout we use the following terminology for online bidding.
Given the universe U , the algorithm outputs a bid set B ⊆ U . Against a particular
threshold T , the algorithm pays for the bids {b ∈ B : b ≤ T+}, where T+ =
min{b ∈ B : b ≥ T }. The bid set B is β-competitive if, for any T ∈ U , this
payment is at most βT . Also, R+ denotes the set of non-negative reals, Z the set
of integers, and N+ the set of positive integers. For n ∈ N+, let [n] = {1, 2, . . . , n}.
Plan of the paper. We prove our upper bounds on competitive algorithms for
oblivious medians (Theorem 1 for cost-competitive algorithms and Theorem 2(a)
for size-competitive algorithms) by reducing oblivious medians to online bidding
(Theorem 8, below) and then proving the upper bounds for online bidding (The-
orem 4). We prove our lower bounds on size-competitive algorithms for oblivious
medians (Theorem 2(b)) by reducing online bidding to size-competitive medians
(Theorem 9, below) and then proving the lower bounds for online bidding in
Theorem 4. We prove the reductions in Section 2 and analyze online bidding in
Section 3. In Section 4 we prove Theorem 6.

2 Oblivious Medians and Online Bidding

We start by showing that oblivious medians can be reduced to online bidding.
We show that (a) 2cβ-cost-competitive oblivious metric medians reduces (in
polynomial time) to β-competitive online bidding and c-cost-approximate offline
medians, and (b) sβ-size-competitive oblivious medians reduces (in polynomial
time) to β-competitive online bidding and s-size-approximate offline medians.

Note that part (b) holds even for non-metric medians. Also, if allowing non-
polynomial time, one can take F ∗

k to be the optimal k-median in Theorem 8,
which is both 1-cost-approximate and 1-size-approximate; then the oblivious
solution F̄ is (a) 2β-cost-competitive or (b) β-size-competitive.

Theorem 8. Let β ≥ 1 and assume that there exists a polynomial β-competitive
algorithm for online bidding. Fix an instance of k-median.

(a) In the metric case, suppose that for each i ∈ [n] we have a set of facilities
F ∗

i with |F ∗
i | ≤ i and cost(F ∗

i ) ≤ c · opti. Then in polynomial time we can
compute an oblivious solution (Fi)i where |Fi| ≤ i and cost(Fi) ≤ 2cβ · opti.

(b) Suppose that for each i ∈ [n], we have a set of facilities F ∗
i with |F ∗

i | ≤ s·i
and cost(F ∗

i ) ≤ opti. Then in polynomial time we can compute an oblivious
solution (Fi)i where |Fi| ≤ sβ · i and cost(Fi) ≤ opti.

If the algorithm for online bidding is randomized, then the computations in
(a) and (b) are also randomized.

Proof. We first prove part (a) of Theorem 8 in the deterministic case. The proof
in the randomized setting is similar and we omit it.

For convenience, we introduce distances between facilities: given two f, g ∈ F ,
let d′fg = minx∈C(dfx + dxg). This extension satisfies the triangle inequality. By
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assumption, each F ∗
k is c-cost-approximate: |F ∗

k | ≤ k and cost(F ∗
k ) ≤ c · optk.

Assume without loss of generality that cost(F ∗
k ) ≤ cost(F ∗

k+1) for all k.
The algorithm constructs the oblivious solution (Fi)i from (F ∗

i )i in several
steps. First, fix some index set K ⊆ [n], with 1 ∈ K, by a method to be described
later, and let κ(1), κ(2), . . . , κ(m) denote the indices in K in increasing order.
Next, compute Fk just for k ∈ K. Start by defining Fκ(m) = F ∗

κ(m). Then, working
backwards, inductively define Fκ(i) to contain the facilities within Fκ(i+1) that
are “closest” to F ∗

κ(i).
More precisely, given two subsets A,B of F , let Γ (A,B) denote a subset

Γ of B, minimal with respect to inclusion, and such that d′μΓ = d′μB for all
μ ∈ A (breaking ties arbitrarily). Obviously, |Γ (A,B)| ≤ |A|, and Γ (A,B) can
be computed in polynomial time given A and B. Then Fκ(i) = Γ (F ∗

κ(i), Fκ(i+1)).
Finally, define Fk for k ∈ [n] \ K as follows. Let k− = max{i ∈ K : i ≤ k} (it

is well defined, since 1 ∈ K.) Define Fk = Fk− . To complete the construction, it
remains to describe how to compute K, which we momentarily defer.

To analyze the size, note that |Fk| ≤ k, because for k ∈ K, by definition of Γ
we have |Fk| ≤ |F ∗

k | ≤ k, while for k �∈ K, we have |Fk| = |Fk− | ≤ k− < k.
To analyze the cost, we use the following lemma. (The proof can be found in

[8] and is also implicit in [13].)

Lemma 1. Assume that the distance function is metric. Consider two sets
A,B ⊆ F and let Γ = Γ (A,B). Then for every x ∈ X we have cxΓ ≤ 2cxA+cxB.

We now claim that
cost(Fk) ≤ 2

∑
�≥k−,�∈K

cost(F ∗
� ). (1)

Indeed, for indices k ∈ K, we have k = k−, and (1) follows from Lemma 1
summed over all x and from the construction of Fk (for k = κ(m), . . . , κ(1)). For
k �∈ K, inequality (1) holds as well, simply because Fk = Fk− , the bound holds
for k = k−, and (k−)− = k−.

Since cost(F ∗
k ) ≤ c optk, to make F 2cβ-cost-competitive we will choose K so

that, for all k, ∑
�≥k−,�∈K

cost(F ∗
� ) ≤ β cost(F ∗

k ). (2)

To compute the setK, let U = {cost(F ∗
n ), cost(F ∗

n−1), . . . , cost(F
∗
1 )} and take B

to be any β-competitive bid set for universe U . Define K = {κ(m),
κ(m − 1), . . . , κ(1)} to be a minimal set (containing 1) such that the bid set is
B = {cost(F ∗

κ(m)), cost(F
∗
κ(m−1)), . . . , cost(F

∗
κ(1))}. Then the left-hand side of (2)

is exactly the sum of the bids paid from the bid set for threshold T = cost(F ∗
k ).

Since the bid set is β-competitive, this is at most β cost(F ∗
k ), so (2) holds. This

completes the proof of part (a).
We now prove part (b) of Theorem 8. By assumption each F ∗

k is s-size-
approximate, that is, |F ∗

k | ≤ sk and cost(F ∗
k ) ≤ optk.

Fix some β-competitive bid set B. Let Bk be the set of bids in B paid against
threshold T = k with U = [n]. Define Fk =

⋃
b∈Bk

F ∗
b . Then F̄ = (F1, F2, ..., Fn)
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is an oblivious solution because Bk ⊆ B� for � ≥ k. Further, cost(Fk) ≤ optk
because Fk contains F ∗

b for some b ≥ k, so cost(Fk) ≤ cost(F ∗
b ) ≤ optb ≤ optk.

Since B is β-competitive, we have |Fk| ≤
∑

b∈Bk
|F ∗

b | ≤
∑

b∈Bk
sb ≤ sβk.

Our next reduction shows that competitive online bidding reduces to size-
competitive oblivious medians. Note that, together with Theorem 8(b), this im-
plies that online bidding and size-competitive oblivious medians are equivalent.

Theorem 9. Let s ≥ 1 and assume that, for oblivious medians ( metric or
not), there is a (possibly randomized) s-size-competitive algorithm. Then, for
any integer n, there is a (randomized) s-competitive algorithm for online bidding
with U = [n].

Proof. We give the proof in the deterministic setting. (The proof in the ran-
domized setting is similar and we omit it.) For any arbitrarily large m, we
construct sets C of customers and F of facilities, a metric distance function
duf , for u ∈ C and f ∈ F . The facility set F will be partitioned into sets
M1,M2, . . . ,Mm, where |Mk| = k for each k, with the following properties: (i)
For all k, cost(Mk) > cost(Mk+1), and (ii) For all k, and for every set F of fa-
cilities, if cost(F ) ≤ cost(Mk) then there exists � ≥ k such that M� is contained
in F . These conditions imply that each Mk is the unique optimum k-median.

Assume for the moment that there exists such a metric space, and consider an
s-size-competitive oblivious median F̄ for it. Let B = {k : Mk ⊆ Fk}. We show
that B is an s-competitive bid set for universe U = [m]. Against any threshold
T ∈ [m], the total of the bids paid will be

X =
∑
{k : k < T,Mk ⊆ Fk} + min{� : � ≥ T,M� ⊆ F�} (3)

Now,
∑
{k : k < T,Mk ⊆ Fk} ≤

∑
{k : k < T,Mk ⊆ FT } since F̄ is a nested

sequence. Similarly, we have

min{� : � ≥ T,M� ⊆ F�} ≤ min{� : � ≥ T,M� ⊆ FT }

(By (ii), M� ⊆ FT for some � ≥ T , so the minimum on the right is well-defined
for T ∈ [m].) Thus:

X ≤
∑
{k : k < T,Mk ⊆ FT }+ min{� : � ≥ T,M� ⊆ FT }

=
∑
{|Mk| : k < T,Mk ⊆ FT }+ min{|M�| : � ≥ T,M� ⊆ FT } since |Mk|= k

≤
∑
{|Mk| : Mk ⊆ FT }

≤ |FT | since the Mk’s are disjoint
≤ sT since F̄ is s-size-competitive.

Thus, the bid set B is s-competitive for universe U = [m].

We now present the construction of the metric space satisfying conditions (i) and
(ii). Let C be the set of integer vectors ū = (u1, u2, . . . , um) where u� ∈ [1, �] for
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all � = 1, 2, . . . ,m. For each � ∈ [1,m], introduce a set M� = {μ�,1, μ�,2, . . . , μ�,�},
and for each node ū in C, connect ū to μ�,u�

with an edge of length δ� = 1 +
(m!)−�. The set of facilities is F =

⋃
� M�. All distances between points in C ∪F

other than those specified above are determined by shortest-path distances. The
resulting distance function satisfies the triangle inequality.

We have cost(Mj) = m!δj for each j ∈ [1,m], so (i) holds. We prove (ii) by
contradiction. Fix some index j and consider a set F ⊆ F that does not contain
M� for any � ≥ j: for each � ≥ j there is i� ≤ � such that μ�,i�

/∈ F . Define a
customer ū as follows: ui = 1 for � = 1, . . . , j − 1 and ui = i� for � = j, . . . ,m.
Then the facility μ�,i ∈ F serving this ū must have � < j or i �= i�. Either way, it
is at distance at least δj−1 from ū. Since each other customers pays strictly more
than 1, we get cost(F ) > m!− 1 + δj−1 = m!δj = cost(Mj) – a contradiction.

3 Online Bidding

In this section we prove Theorem 4. For completeness, we give proofs of the
(folklore) deterministic and randomized upper bounds and deterministic lower
bound. The upper bound uses a doubling algorithm that has been used in several
papers, first in [15, 23] and later in [11, 3, 4, 9]. Our main new contribution in this
section is a new randomized lower bound that matches the upper bound. (The
proof of Lemma 3 was communicated to us by Yossi Azar.)

Lemma 2. For online bidding, there is a deterministic 4-competitive algorithm.
If U is finite, the algorithm runs in time polynomial in |U|.

Proof. First consider the case U = R+. Define the algorithm to produce the set
of bids {0} ∪ {2j : j ∈ N}. Let i = �log2 T �, where T > 0 is the threshold: the
algorithm pays

∑
j≤i 2j = 2i+1 ≤ 4T , hence is 4-competitive.

Next, we reduce the general case to the case U = R+. Knowing that T ∈ U ,
the algorithm, when it would have bid b �∈ U , will instead bid the next smaller
bid in U (if there is one, and otherwise the bid is skipped). This only decreases
the cost the algorithm pays against any threshold T ∈ U . Note that the modified
algorithm can be implemented in time polynomial in |U| if U is finite.

Lemma 3. For online bidding, no deterministic algorithm can be better than
4-competitive, even for U = N+.

Proof. let xn be the nth bid, sn =
∑n

1 xi and yn = sn+1/sn. Suppose, for a
contradiction, that there exists a < 4 such that sn+1/xn < a for all n. Rewriting,
we get yn+1 ≤ (1 − 1/yn)a. Since 1 − 1/z < z/4, this implies yn+1 < (yn/4)a;
thus yn < (a/4)ny0, and so eventually sn+1 < sn, which is a contradiction.

Lemma 4. For online bidding, there is a randomized e-competitive algorithm.
If U is finite, then the algorithm runs in time polynomial in |U|.

Proof. First we consider the case U = R+. Pick a real number ξ ∈ (0, 1] uniformly
at random, then choose the set of bids B = {0} ∪ {ei+ξ : i ∈ N}.
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For the analysis, let random variable b be the largest bid paid by the algorithm
against threshold T > 0. The total paid by the algorithm is less than

∑∞
i=0 be

−i =
be/(e − 1). Since b/T is distributed like eξ where ξ is distributed uniformly in
[0, 1), the expectation of b is T

∫ 1
0 ez dz = T (e − 1). Thus, the expected total

payment is eT , and the algorithm is e-competitive.
The general case reduces to the case U = R+ just as in the proof of Lemma 2.

Lemma 5. Fix any n ∈ N+. Suppose μ : [n]→ R+ and π : [n]→ R+ satisfy

n∑
T=t

1
T
π(T ) ≥ 1

b

b∑
T=t

μ(T ) (∀b, t : 1 ≤ t ≤ b ≤ n). (4)

For online bidding with U = [n], there is no randomized algorithm with compet-
itive ratio better than

∑n
T=1 μ(T ) /

∑n
T=1 π(T ).

Proof. Consider a random set B of bids generated by any β-competitive ran-
domized algorithm when U = [n]. Without loss of generality, the maximum bid
in B is n.

Let B = {b1, b2, . . . , bm = n} be the ordered sequence of bids in B. Consider
the sequence of intervals ([1, b1], [b1 +1, b2], [b2 +1, b3], . . . , [bm−1 +1, bm]), which
exactly covers the points 1, 2, . . . , n. Let x(t, b) denote the probability (over all
random B) that [t, b] is one of these intervals. The algorithm pays bid b against
threshold T if and only if, for some integer t ≤ T , [t, b] is one of these intervals.
Thus, for any threshold T and bid b,

∑T
t=1 x(t, b) is the probability that bid b is

made against threshold T . (We will use this below.)
We claim that β, x form a feasible solution to the following linear program

(LP):

minimizeβ,x β subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
β −

n∑
b=1

b

T

T∑
t=1

x(t, b) ≥ 0 (∀T ∈ [n])

n∑
b=T

T∑
t=1

x(t, b) ≥ 1 (∀T ∈ [n])

x(t, b) ≥ 0 (∀t, b ∈ [n]).

The first constraint is met because, for any threshold T ,
∑

t≤T ;b b x(t, b) is the
expected sum of the bids made by the algorithm if T is the threshold. This is at
most βT because the algorithm has competitive ratio β. The second constraint
is met because for any threshold T , the algorithm must have at least one bid
above the threshold, hence at least one [t, b] with t ≤ T ≤ b.

Thus, the value of this linear program (LP) is a lower bound on the optimal
competitive ratio of the randomized algorithm. To get a lower bound on the
value of (LP), we use the dual (DLP) (where the dual variables μ(T ) correspond
to the first set of constraints and π(T ) to the second set of constraints):
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maximizeμ,π

n∑
T=1

μ(T ) subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
T=1

π(T ) ≤ 1

b∑
T=t

μ(T ) −
n∑

T=t

b

T
π(T ) ≤ 0 (∀t, b ∈ [n])

μ(T ), π(T ) ≥ 0 (∀T ∈ [n]).

Now, given any μ and π meeting the condition of the lemma, if we scale μ
and π by dividing by

∑
T π(T ), we get a feasible dual solution whose value is∑

T μ(T ) /
∑

T π(T ). Since the value of any feasible dual solution is a lower
bound on the value of any feasible solution to the primal, it follows that the
competitive ratio β of the randomized algorithm is at least

∑
T μ(T ) /

∑
T π(T ).

Lemma 6. There exists μ : [n]→ R+ and π : [n]→ R+ satisfying Condition (4)
of Lemma 5 and such that

∑
T μ(T )/

∑
T π(T ) ≥ (1− o(1))e.

Proof. Fix U arbitrarily large and let n = �U2 logU�. Let α > 0 be a constant
to be determined later: We will choose α so that Condition (4) holds, and then
show that the corresponding lower bound is e(1− o(1)) as U →∞. Define

μ(T ) =

{
α/T if U ≤ T ≤ U2

0 otherwise
and π(T ) =

{
1/T if U ≤ T ≤ U2 logU
0 otherwise.

.

If T ≥ U2, then the right-hand side of Condition (4) has value 0, so the
condition holds trivially. On the other hand, since π(T ) and μ(T ) are zero for
T < U , if the condition holds for T = U , then it also holds for T < U . So, we
need only verify the condition for T in the range U ≤ T ≤ U2. The expression
on the left-hand side of (4) then has value

U2 log U∑
T=t

1
T 2 ≥

∫ 1+U2 log U

t

1
T 2 dT =

1
t
− 1

1 + U2 logU
≥ 1

t
(1− o(1)).

In comparison, the expression on the right-hand side has value at most

max
b≥t

1
b

b∑
T=t

α

T
≤ αmax

b≥t

1
b

∫ b

t−1

1
T

dT = αmax
b≥t

1
b

ln
b

t− 1
=

α

e t(1− o(1))
.

(The second equation follows by calculus, for the maximum occurs when b =
e(t− 1).) Thus, Condition (4) is met for α = (1− o(1))e. Then, Lemma 5 gives
a lower bound on the competitive ratio of∑

T μ(T )∑
T π(T )

=
∑U2

T=U α/T∑U2 log U
T=U 1/T

= (1 − o(1))α
ln(U2/U)

ln((U2 logU)/U)
= (1− o(1))e.

Theorem 4 follows directly from Lemmas 2, 3, 4, 5, and 6.
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4 Oblivious Algorithms for kl-Medians

In this section we sketch the proof of Theorem 6. Formally, in the kl-median
problem we need to compute two sets Fk ⊆ Fl with |Fk| = k and |Fl| = l,
minimizing the competitive ratio R = max {cost(Fk)/optk, cost(Fl)/optl}.

The lower bound is a slight refinement of the one in [22, 21]. The metric space
contains l customers, where customers j is connected to facility gj by an edge
of length δ = 1/l. All customers are also connected to a facility f with edges of
length 1.

Let G = {g1, . . . , gl}. Then G is the optimal l-median. We have cost(f) = l,
cost(G) = lδ, cost(gi) = δ + (l − 1)(2 + δ), and cost(G − gi + f) = (l − 1)δ + 1.
So for δ = 1/l, we get:

cost(gi)
cost(f)

= 2− 1/l and
cost(G− gi + f)

cost(G)
= 2− 1/l.

The upper bound is achieved as follows. Let F and G denote, respectively,
the optimum k-median and the optimum l-median. The algorithm choosese the
better of two options: either (a) Fk = F and Fl = F ∪ G − X , where X ⊆ G
is a set of cardinality k that minimizes cost(F ∪ G−X), or (b) Fk = Y , where
Y ⊆ G is a set of cardinality k that minimizes cost(Y ), and Fl = G.

The competitive analysis of this algorithm is based on a probabilistic argu-
ment and will appear in the full version of this paper.

Acknowledgments. We are grateful to anonymous referees for suggestions to im-
prove the presentation. We also wish to thank Yossi Azar for pointing out refer-
ences to previous work on online bidding and simplifying the proof of Lemma 3.
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Abstract. The problem of the efficient computation of the relative
entropy of two distributions represented by deterministic weighted au-
tomata arises in several machine learning problems. We show that this
problem can be naturally formulated as a shortest-distance problem over
an intersection automaton defined on an appropriate semiring. We
describe simple and efficient novel algorithms for its computation and
report the results of experiments demonstrating the practicality of our al-
gorithms for very large weighted automata. Our algorithms apply to un-
ambiguous weighted automata, a class of weighted automata that strictly
includes deterministic weighted automata. These are also the first al-
gorithms extending the computation of entropy or of relative entropy
beyond the class of deterministic weighted automata.

1 Introduction

The relative entropy, or Kullback-Leibler divergence, is used in a variety of con-
texts as a measure of the discrepancy of two distributions p and q [5]. It is an
asymmetric difference that, from the point of view of coding theory, measures
the number of additional bits needed to encode p, when using an optimal code
for q in place of an optimal code for p.

The problem of the efficient computation of the relative entropy of two dis-
tributions represented by weighted automata arises in several machine learning
problems. Weighted automata are used extensively in text and speech processing
to model different aspects of language such as morphology, phonology, or syntax
[12]. The output of a large-vocabulary speech recognition system or that of a com-
plex information extraction system is typically represented as a weighted automa-
ton compactly representing a large set of alternative sequences [17]. Weighted
automata are also used in other applications such as image processing [6].

When a weighted automaton is obtained as a result of training on a large
data set, the quality of the learning algorithm can be measured by computing
the relative entropy of the automaton inferred and that of the target automaton.
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Similarly, in some grammar inference applications, the convergence of an itera-
tive algorithm relies on the magnitude of the relative entropy of two consecutive
weighted automata. The relative entropy is also often used for clustering large
sets of automata, such as those output by a speech recognition or information
extraction system.

This motivates the design of efficient algorithms for the computation of the
relative entropy of two weighted automata. One approximate solution would
consist of sampling sequences from the distributions represented by each of the
automata and of using those to compute the KL-divergence by simply summing
their contributions. But, sample sizes guaranteeing a small approximation error
could be very large, which would significantly increase the computation, while
still providing only an approximate solution.

We present a detailed analysis of the problem of the computation of the
relative entropy of weighted automata in the case where they are deterministic
or, more generally, unambiguous, i.e., no two successful paths are labeled with the
same string. We show that the problem can be formulated naturally as a single-
source shortest-distance problem over an intersection automaton defined on an
appropriate semiring that we will refer to as the entropy semiring. We describe
simple and efficient algorithms for the computation of relative entropy and report
the results of experiments demonstrating the practicality of our algorithms for
very large weighted automata.

A procedure for the approximate computation of the relative entropy was
given by [3]. The procedure applies to deterministic weighted automata and
cannot be generalized to the case of unambiguous weighted automata because
of the specific sum decomposition it is based on (the partitioning assumed in [3]
[eq. 15, page 6] does not hold for unambiguous automata). Our algorithms apply
to the larger class of unambiguous weighted automata. For some unambiguous
weighted automata, the size of any equivalent deterministic weighted automaton
is exponentially larger. Since the size of the machine directly affects the com-
plexity of the computation, it is important to be able to compute the entropy
directly from the unambiguous automaton. We give the first exact algorithms
for the computation of the relative entropy. We also describe approximate algo-
rithms that are conceptually simpler than the procedure of [3] and have a better
time and space complexity.

The paper is organized as follows. Section 2 introduces the preliminary semir-
ing and automata definitions used in the remaining of the paper. Section 3
introduces the entropy semiring and formulates the computation of the relative
entropy in terms of shortest-distances over that semiring. Section 4 describes
both an exact and a fast approximate algorithm for the computation of the rel-
ative entropy. Section 5 briefly reports the results of experiments demonstrating
the practicality of our algorithms for very large weighted automata.

2 Preliminaries

Weighted automata are automata in which each transition carries some weight
in addition to the usual alphabet symbol [7, 18, 1]. For various operations to be
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well-defined, the weight set must have the algebraic structure of a semiring [10].
A semiring is a ring that may lack negation.

Definition 1. A semiring is a system (K,⊕,⊗, 0, 1) such that: (K,⊕, 0) is a
commutative monoid with 0 as the identity element for ⊕; (K,⊗, 1) is a monoid
with 1 as the identity element for ⊗; ⊗ distributes over ⊕: for all a, b, c in K:
(a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c) and c⊗ (a⊕ b) = (c⊗ a) ⊕ (c⊗ b), and 0 is
an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

Some familiar semirings are the Boolean semiring ({0, 1},∨,∧, 0, 1) or the trop-
ical semiring (R+ ∪ {∞},min,+,∞, 0) related to classical shortest-paths prob-
lems and algorithms. A semiring is idempotent if for all a ∈ K, a⊕ a = a. It is
commutative when ⊗ is commutative.

Definition 2. A weighted automaton A = (Σ,Q, I, F,E, λ, ρ) over a semiring
(K,⊕,⊗, 0, 1) is a 7-tuple where: Σ is the finite alphabet of the automaton, Q is
a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of final states,
E ⊆ Q×Σ ∪ {ε}×K×Q a finite set of transitions, λ : I → K the initial weight
function mapping I to K, and ρ : F → K the final weight function mapping F
to K.

The weighted automata considered in this paper are assumed not to contain
ε-transitions. A pre-processing ε-removal algorithm can be used to remove such
transitions for the automata considered here [14]. Furthermore, it is assumed
that the automata are trim, i.e. all states in the automata are both accessible
and co-accessible.

We denote by |A| = |E|+|Q| the size of an automatonA = (Σ,Q, I, F,E, λ, ρ),
that is the sum of the number of states and transitions of A. Given a transition
e ∈ E, we denote by i[e] its input label, p[e] its origin or previous state and
n[e] its destination state or next state, w[e] its weight (weighted automata case).
Given a state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:
n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]
and p[π] = p[e1]. We denote by P (q, q′) the set of paths from q to q′ and by
P (q, x, q′) the set of paths from q to q′ with input label x ∈ Σ∗. The labeling
functions i and the weight function w can also be extended to paths by defining
the label of a path as the concatenation of the labels of its constituent transitions,
and the weight of a path as the ⊗-product of the weights of its constituent
transitions: i[π] = i[e1] · · · i[ek], w[π] = w[e1]⊗ · · · ⊗ w[ek].

The output weight associated by an automaton A to an input string x ∈ Σ∗

is defined by:
[[A]](x) =

⊕
π∈P (I,x,F )

λ[p[π]]⊗ w[π] ⊗ ρ[n[π]]. (1)

Our algorithms for the computation of the entropy of a weighted automata or
the computation of the relative entropy of two automata apply to unambiguous
weighted automata. A weighted automaton is said to be unambiguous if for any
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x ∈ Σ∗ it admits at most one accepting path labeled with x. Thus, the class
of unambiguous weighted automata includes deterministic weighted automata.
A weighted automaton A is said to be deterministic or subsequential if it has a
deterministic input, that is if it has a unique initial state and if no two transitions
leaving the same state share the same input label.

Fig. 1 (a) shows an unambiguous weighted automaton that does not admit
an equivalent deterministic weighted automaton (the proof will be included in a
future journal version). Previous work on the computation of the relative entropy
[3] was limited to deterministic finite automata. We present the first algorithms
for the computation of the relative entropy of unambiguous weighted automata.

Let s[A] denote the ⊕-sum of the weights of all successful paths of A when it
is defined and in K. s[A] can be viewed as the shortest-distance from the initial
states to the final states. When the sum of the weights of all paths from any
state p to any state q is well-defined and in K, we can define the shortest distance
from p ∈ Q to q ∈ Q as:

d[p, q] =
⊕

π∈P (p,q)

w[π], (2)

where the summation is defined to be 0 when P (p, q) = ∅. Let A be a weighted
automaton defined over the probability semiring (R+,+,×, 0, 1). We will say that
A is probabilistic if for any state q ∈ Q,

⊕
π∈P (q,q) w[π], the sum of the weights

of all cycles at q, is well-defined and in K and
∑

x∈Σ∗ [[A]](x) = 1. Stochastic
automata are probabilistic automata such that at each state the weights of the
outgoing transitions and the final weight sum to one.

Let A1 and A2 be two weighted automata with Ai = (Σ,Qi, Ii, Fi, Ei, λi, ρi)
for i = 1, 2. The intersection A of A1 and A2 is denoted by A = A1 ∩A2. It is a
weighted automaton accepting the language L(A1) ∩ L(A2) and defined by the
tuple A = (Σ,Q1×Q2, I1×I2, F1×F2, E, (λ1, λ2), (ρ1, ρ2)), where the transitions
E are defined according to the following rule:

(q1, a, w1, q2) ∈ E1 and (q′1, a, w
′
1, q

′
2) ∈ E2 ⇒ ((q1, q′1), a, (w1⊗w′

1), (q2, q
′
2)) ∈ E.

There exists a general algorithm for the computation of the intersection over an
arbitrary semiring, even in presence of ε-transitions [16]. The time complexity
of the algorithm is quadratic O(|A1||A2|) since in the worst case the outgoing
transitions of each state of A1 match all those of each state of A2.

3 Formulation of the Problem

The problem that we are interested in is that of computing D(A‖B), the relative
entropy of two unambiguous probabilistic automata A and B.

3.1 Relative Entropy

The entropy H(p) of a probability mass function p defined over a discrete set X
is defined as [5]:

H(p) = −
∑
x∈X

p(x) log p(x), (3)
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where by convention 0 log 0 = 0. The relative entropy, or Kullback-Leibler diver-
gence of two probability mass functions defined over a discrete set X is defined as:

D(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

= Ep[log
p(X)
q(X)

], (4)

where we use the standard conventions: 0 log 0
q = 0 and p log p

0 = ∞. It is easy
to show using Jensen’s inequality and the concavity of the log function that the
relative entropy is a non-negative number and that D(p‖q) = 0 if and only if
p = q. Note that D(p‖q) is not a metric because it is not symmetric and does
not satisfy the triangle inequality.

These definitions can be naturally extended to probabilistic automata which
define distributions over sets of strings. The relative entropy of A and B can be
written as the sum of two terms:1

D(A‖B) =
∑

x

[[A]](x) log[[A]](x) −
∑

x

[[A]](x) log[[B]](x). (5)

The next section introduces a semiring, the entropy semiring, showing that each
term can be viewed as a single-source shortest-distance for an automaton defined
over that semiring.

3.2 Entropy Semiring

Let K denote (R∪{+∞,−∞})×(R∪{+∞,−∞}). For pairs (x1, y1) and (x2, y2)
in K, define the following :

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2) (6)
(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + x2y1) (7)

Lemma 1. The system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semiring.

Proof. The proof is rather straightforward and will be included in the journal
version. ��

We call the semiring just defined the entropy semiring due to its relevance in
the computation of the entropy and the relative entropy. This semiring arises in
other contexts and can be defined in terms of an S-module [2, 8].

3.3 Semiring Formulation

The unambiguous weighted automata A and B are not necessarily complete: at
some states, there may be no outgoing transition labeled with a given element
of the alphabet a ∈ Σ. We can however make them complete in a way similar
to the standard construction in the unweighted case. We introduce a new state
q0 with final weight 0, add self-loops with weight 0 at that state labeled with all
1 The first term is simply −H(A), where H(A) is the entropy of A.
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0

a/.33
b/.33

1/.5a/.33

b/.5

q q’b/w

q0

a/0 a/0
b/0

(a) (b)

Fig. 1. (a) An unambiguous weighted finite automaton that cannot be determinized.
0 is the initial state and 1 the final state. The automaton accepts the set of strings
(a∗b∗)∗ab∗. (b) Illustration of the completion operation.

elements of the alphabet, and for any a ∈ Σ and q ∈ Q, add a transition from
state q to q0 labeled with a with weight 0 when q does not have an outgoing
transition labeled with a (see Figure 1 (b)). This construction leads to a complete
and unambiguous weighted automaton equivalent to the original one since the
transitions added have all weight 0. The completion operation is only applied to
handle the boundary case when there exists a string x ∈ Σ∗ such that [[B]](x) = 0
and [[A]](x) �= 0. In this case, the completion operation ensures that the future
computation of the relative entropy would correctly lead to ∞. Note that the
completion operation can be done on-demand. States and transitions can be
created only when necessary for the application of other operations. We can thus
assume thatA andB are unambiguous and complete. At the cost of introducing a
super-initial and a super-final state, we can also assume in the following, without
loss of generality, that the initial weight λ and the final weights ρ(q) are all equal
to 1 in A and B.

Let logA denote the weighted automaton derived from A by replacing each
weight w ∈ R+ by logw and let Φ1(A) (Φ2(A)) denote the weighted automaton
over the entropy semiring derived from A by replacing each weight w by the
pair (w, 0) (resp. (1, w)). The construction of logA, Φ1(A), or Φ2(A) from A is
straightforward and can be done in linear time.

Proposition 1. The relative entropy of A and B satisfies the following identity
in the entropy semiring:

(0, D(A‖B)) = s[Φ1(A) ∩ Φ2(logA)]− s[Φ1(A) ∩ Φ2(logB)]. (8)

Thus, the relative entropy is expressed in terms of single-source shortest-distance
computations over the entropy semiring.

Proof. Since A is unambiguous and complete, both Φ1(A) and Φ2(logA) are
also unambiguous and complete. Thus, for a given string x, there is at most
one accepting path in Φ1(A) or Φ2(logA) labeled with x. Then, by definition of
intersection, the weight associated by Φ1(A) ∩ Φ2(logA) to a string x is

([[A]](x), 0) ⊗ (1, log[[A]](x)) = ([[A]](x), [[A]](x) log[[A]](x)). (9)
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Thus, the shortest-distance from the initial states to the final states in Φ1(A) ∩
Φ2(logA) is

s[Φ1(A) ∩ Φ2(logA)] =
⊕

x

([[A]](x), [[A]](x) log[[A]](x)) (10)

= (
∑

x

[[A]](x),
∑

x

[[A]](x) log[[A]](x)) (11)

= (1,
∑

x

[[A]](x) log[[A]](x)). (12)

Similarly, we can show that

s[Φ1(A) ∩ Φ2(logB)] = (1,
∑

x

[[A]](x) log[[B]](x)). (13)

The statement of the proposition follows directly from the identities 12 and 13
and Equation 5. ��
Thus, the computation of the relative entropy is reduced to two single-source
shortest-distance computations over the entropy semiring. The next section dis-
cusses two general algorithms for computing these distances.

4 Algorithms

This section describes two algorithms for computing a single-source shortest
distance over the entropy semiring, an exact algorithm, and a more efficient and
more practical approximate algorithm.

4.1 Exact Solution

A generalization of the classical Floyd-Warshall algorithm can be used to com-
pute all-pairs shortest distances d[p, q] (p, q ∈ Q) over a closed semiring not
necessarily idempotent [13, 15]. This algorithm can thus also be used to com-
pute s[A] for a weighted automaton A over a non-idempotent semiring, which is
needed for our purpose.

In what follows, we assume a definition of closed semirings [11] that is more
general than the classical one used by Cormen et al. [4] in that it does not
assume idempotence. This is because idempotence is not necessary for the proof
of the correctness of the generic all-pairs shortest-distance algorithms of Floyd-
Warshall and Gauss-Jordan [13, 15]. More generally, given a graph or automaton
A, we introduce the following definition.

Definition 3. A semiring is closed for A if the infinite sum (closure) is defined
for any cycle weight c of A and if associativity, commutativity, and distributivity
apply to countable sums of cycle weights.

Clearly, the generic Floyd-Warshall algorithm can also be applied to any au-
tomaton A for which the semiring considered is closed. The following lemma
shows that the entropy semiring has the desired property.
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Lemma 2. Let A be a weighted automaton over the entropy semiring such that
for any cycle weight w = (x, y), 0 ≤ x < 1. Then, the entropy semiring is closed
for A.

Proof. For any (x, y) ∈ K and k ≥ 0, define Rk as:

Rk =

k times︷ ︸︸ ︷
(x, y)⊗ . . .⊗ (x, y) . (14)

with R0 = (1, 0). We can show by induction that Rk = (xk, kyxk−1). The base
case is readily established for k = 0. Assume that the hypothesis holds for all
i < k. Then

Rk = Rk−1 ⊗ (x, y) (15)
= (xk−1, (k − 1)yxk−2)⊗ (x, y)
= (xk, kyxk−1).

For N ≥ 0, define SN by: SN =
N⊕

i=0

Ri. It is easy to prove by induction as above

that SN verifies

SN =
(1− xN+1

1− x
, y ·

[ 1− xN

(1 − x)2
− NxN

1− x

])
. (16)

Thus, for 0 ≤ x < 1, the closure of (x, y) is well-defined and in K:2

(x, y)∗ = lim
N→∞

SN = (
1

1− x
,

y

(1 − x)2
). (17)

The associativity, commutativity, and distributivity properties follow the asso-
ciativity, commutativity, and distributivity of the sums SN with other elements
of the entropy semiring and the corresponding properties of their pointwise
limits. ��

Let A be a probabilistic automaton, then the weight u of a cycle must verify
0 ≤ u < 1, otherwise the automaton is not closed. The weight of a cycle of
Φ1(A) ∩ Φ2(logA) is (u, u logu) (see Equation 9), where u is the weight of a
cycle of A, and similarly, the weight of a cycle of Φ1(A) ∩ Φ2(logB) is of the
form (u, u log v), where v is the weight of a matching cycle in B.

Thus, the entropy semiring is closed both for Φ1(A) ∩Φ2(logB) and Φ1(A)∩
Φ2(logA) and the generic Floyd-Warshall algorithm can be applied to compute
the shortest-distances s[Φ1(A) ∩ Φ2(logB)] and s[Φ1(A) ∩ Φ2(logA)].

The generic Floyd-Warshall admits an in-place implementation [13]; the fol-
lowing gives the corresponding pseudocode.

2 The right-hand side can be written as: (x∗, y(x∗)2), if we denote by x∗ = ∞
n=0 xn.
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1 for i← 1 to |Q|
2 do for j ← 1 to |Q|
3 do d[i, j]←

⊕
e∈P (i,j)

w[e]

4 for k ← 1 to |Q|
5 do for i← 1 to |Q|
6 do for j ← 1 to |Q|
7 do d[i, j]← d[i, j]⊕ (d[i, k]⊗ d[k, k]∗ ⊗ d[k, j])
8 return d

The ⊕- and ⊗-operations of the entropy semiring can be performed in constant
time. For (x, y) with 0 ≤ x < 1, the closure (x, y)∗ = ( 1

1−x ,
y

(1−x)2 ) can also be
computed in constant time. Thus, the running time complexity of the algorithm
is Θ(|E|+ |Q|3) and its space complexity is Ω(|Q|2) when applied to a weighted
automaton A = (Q, I, F,Σ, δ, σ, λ, ρ) over the tropical semiring.

The intersection Φ1(A) ∩ Φ2(logA) can be computed in linear time O(|A|)
but the worst cost computation of Φ1(A) ∩ Φ2(logB) is quadratic, O(|A||B|).
The total time complexity of the computation of the relative entropy is thus in
Θ(|A ∩B|3). Its space complexity is in Θ(|A ∩B|2).

This provides an exact algorithm for the computation of the relative entropy.
The cubic time complexity of the algorithm with respect to the size of the inter-
section automaton makes it rather slow for large automata.

Its quadratic lower bound complexity with respect to the size of the inter-
section machine makes it prohibitive for use in many applications. In text and
speech processing applications, a weighted automaton may have several hun-
dred million states and transitions. Even, if A has only about 100,000 states and
A∩B has about the same number of states, the algorithm requires maintaining
a matrix d with 10 billion entries.

The next section presents an algorithm that exploits the sparseness of the
graph and does not impose these space requirements.

4.2 Approximate Solution

A generic single-source shortest-distance algorithm was presented for directed
graphs defined over a k-closed semiring in [15]. The algorithm can be viewed as
a generalization to these semirings of classical shortest-paths algorithms. This
generalization is not trivial and does not require the semiring to be idempotent.
The algorithm is also generic in the sense that it works with any queue discipline.

Definition 4. Let k ≥ 0 be an integer. A semiring (K,⊕,⊗, 0, 1) is k-closed if:

∀a ∈ K,
k+1⊕
n=0

an =
k⊕

n=0

an. (18)

More generally, we will say that K is k-closed for a graph G or automaton A, if
Equation 18 holds for all cycle weights a ∈ K.
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By definition, the entropy semiring is k-closed for any acyclic automaton A
and thus the generic single-source shortest distance can be used to compute the
relative entropy exactly in such cases. But, in general, the entropy semiring is
not k-closed for a non-acyclic automaton A since by definition of SN ,

∀k > 0, Sk+1 − Sk = Rk+1 = (xk+1, (k + 1)yxk). (19)

But, given a weighted automaton A over the entropy semiring such that all cycle
weights w = (x, y) verify 0 ≤ x < 1, there exists KA sufficiently large such that
for all k ≥ KA, ||Sk+1−Sk||∞ ≤ ε. Indeed, let X denote the maximum value of x
for all cycles and Y the maximum |y|. Then, for k ≥ log(Y/ε)

log(1/X) , ||Sk+1−Sk||∞ ≤ ε

for all (x, y). This leads us to consider an approximate version of the generic
single-source shortest distance algorithm in non-acyclic cases, where the equality
test is replaced by an ε-equality: u =ε v if ||u− v||∞ ≤ ε. The following gives the
pseudocode of the modified algorithm.

1 for i← 1 to |Q|
2 do d[i]← r[i] ← 0
3 d[s]← r[s] ← 1
4 S ← {s}
5 while S �= ∅
6 do q ← head(S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q] ← 0
10 for each e ∈ E[q]
11 do if d[n[e]] �=ε d[n[e]]⊕ (r′ ⊗ w[e])
12 then d[n[e]]← d[n[e]]⊕ (r′ ⊗ w[e])
13 r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])
14 if n[e] �∈ S
15 then Enqueue(S, n[e])

d[q] denotes the tentative shortest distance from the source s to q. r[q] keeps
track of the sum of the weights added to d[q] since the last queue extraction
of q. The attribute r is needed for the shortest-distance algorithm to work in
non-idempotent cases. The algorithm uses a queue S to store the set of states to
consider for the relaxation steps of lines 11-15 [15]. Any queue discipline, e.g.,
FIFO, shortest-first, topological (in the acyclic case), can be used. The test of
line 11 is based on an ε-equality.

Different queue disciplines yield different running times for our algorithm.
The choice of the best queue discipline to use can be based on the structure of
the two automata, which can be exploited to obtain a more efficient algorithm to
compute the relative entropy. More specifically, let Q,E denote (respectively) the
set of states and edges in the intersection automata. Further, let N(q) denote the
number of times a state q is inserted in the queue. Then, using the Fibonacci heap
with a shortest first queue discipline (as in Dijkstra’s algorithm), the complexity
of the algorithm is given by:
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O(|Q|+ |E|max
q∈Q

N(q) + log |Q|
∑
q∈Q

N(q)). (20)

If the underlying automata are acyclic, then using the queue discipline cor-
responding to the topological order yields the best time complexity, and the
problem can be solved in linear time: O(|Q|+ |E|).

Using a breadth-first queue discipline (as in the Bellman-Ford shortest dis-
tance algorithm), updates to the shortest distance estimates in iteration k can be
formulated as Dk = MDk−1, where M is the matrix associated to the automaton,
that is the matrix representing the weighted graph defined by the automaton.
Note that the matrix multiplication here is over the ⊕ and ⊗ operations of the
semiring, so that Dk[i] = ⊕|Q|

j=1M [i, j]⊗Dk−1[j].
We now analyze the convergence rate of the approximate algorithm with the

breadth-first queue discipline. Let us focus only on the first component of the
distance pair. Let M1 be the matrix obtained by taking the first part of each
element of M . Assume that the matrix M is a stochastic matrix.

By the Perron-Frobenius theorem, we know that the largest eigenvalue is 1
and has a multiplicity of 1. Furthermore, all other eigenvalues λ are such that
|λ| < 1. Using the Jordan canonical form of M , it is not hard to show that the
matrix multiplication operation converges in O(|λ2|k), where λ2 is the second
largest eigenvalue of M (see [9] for a similar analysis). Thus, the updates in
the kth iteration are proportional to λk

2 , hence, k = log(1/ε)
log(1/|λ2|) . Plugging in this

expression for N(q), the overall complexity of the approximate algorithm is:

O(|Q|+ (|E|+ |Q|) log(1/ε)
log(1/|λ2|)

). (21)

For ε exponentially smaller than |λ2| (ε = |λ2|d), the cost in complexity is only
linear: O(|Q|+ d(|E|+ |Q|)).

It is possible to use different queue disciplines in different parts of the graph
and improve the running time of the algorithm. For example, for a large graph
with several strongly connected components, one can use a topological order
on the component graph, with shortest-first queue discipline in each strongly
connected component [15]. If there are k strongly connected components, with
the ith component having ni vertices, then the running time is given by O(|Q|+
|E|maxq∈Q N(q)+log |maxi ni|

∑
q∈Q N(q)). If the largest component has O(n/

k) vertices, then this improves the general complexity by an additive factor of∑
q∈Q N(q) log k. Our experience with such computations for very large graphs of

several million states shows that the generic topological order with the shortest-
fist queue discipline within each strongly connected component often leads to
the most efficient results in practice.

4.3 Comparison with Previous Work

In [3], the author describes a procedure for an approximate computation of the
relative entropy of two deterministic stochastic automata. The procedure is based
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on an iterative method (which can be viewed as approximating the inverse of
a matrix) for computing, for a stochastic automaton A, the probability of each
state q, that is the sum of the weights of all paths going through q. The con-
vergence is claimed but not proved and no bound is indicated on the maximum
number of iterations.

The author reports no complexity result for the procedure described, which
makes it difficult to compare with our algorithm. Our most favorable estimate of
its complexity is Ω(|A|2|B|2(T + |Σ|)), where T denotes the maximum number
of iterations executed. This is because the procedure requires using a matrix of
size |A|2|B|2. The complexity of the procedure also depends on the size of the
alphabet, which, in some applications such as natural language processing ap-
plications, may be very large. Furthermore, the lower bound space complexity of
this procedure is Ω(|A|2|B|2). This makes it unsuitable for computing the rela-
tive entropy of large weighted automata. Note that the experiments reported by
the author were carried out with very small grammars of about 30 rules. Never-
theless, the procedure bears some resemblance with our approximate algorithm.
It can be viewed as an alphabet-dependent non-sparse implementation of that
algorithm for the particular case of a FIFO queue discipline.

5 Experiments

We implemented both the generic Floyd-Warshall algorithm and the approx-
imate algorithm for the computation of the relative entropy of unambiguous
probabilistic automata.

To avoid the numerical instability issues related to the multiplications of prob-
abilities, we used instead negative log probabilities. This corresponds to taking
the image of the entropy semiring by the semiring morphism log×I where I is
the identity over the second element of the weights.

To evaluate the efficiency of our approximate algorithm for computing the
relative entropy we created two n-gram statistical models trained on a large
corpus – one a bigram model (n = 2) and one a trigram model (n = 3). The
minimal deterministic weighted automaton representing the bigram model had
about 200,000 transitions, that of the trigram model about 400,000 transitions.
It took about 3s on a single 2GHz Intel processor with 128MB of RAM to com-
pute the relative entropy of these large weighted automata using a FIFO queue
discipline. With a shortest-first queue discipline, the time was reduced to 2s.

6 Conclusion

We described several algorithms for the computation of the relative entropy of
two deterministic weighted automata or the entropy of a single deterministic
weighted automaton by formulating the problem as a shortest-distance compu-
tation over the entropy semiring. We presented both an exact algorithm and an
approximate algorithm that was shown to be very efficient even for very large
automata of several hundred thousand transitions. The results demonstrate the



Efficient Computation of the Relative Entropy 335

benefit of a semiring-theory formulation of the problem. Our algorithms can be
used similarly to compute the so-called unnormalized relative entropy of two
weighted automata, which is defined by:

D(A‖B) =
∑

x

[[A]](x) log
[[A]](x)
[[B]](x)

− [[A]](x) + [[B]](x) (22)

simply by replacing Φ1 and Φ2 by Φ′
1 and Φ′

2, where Φ′
1(A) (Φ′

2(A)) is the
weighted automaton over the entropy semiring derived from A by replacing each
weight w with the pair (w, 1) (resp (w,w)). The entropy semiring can also be
used to give a conceptually simple formulation of the computation of the relative
entropy of tree automata and to derive similar computation algorithms.
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Abstract. Efficient algorithms for finding multiple contiguous subse-
quences of a real-valued sequence having large cumulative sums, in addi-
tion to its combinatorial appeal, have widely varying applications such as
in textual information retrieval and bioinformatics. A maximum contigu-
ous subsequence of a real-valued sequence is a contiguous subsequence
with the maximum cumulative sum. A minimal maximum contiguous
subsequence is a minimal contiguous subsequence (with respect to sub-
sequential containment) among all maximum ones of the sequence. We
present a logarithmic-time and optimal linear-work parallel algorithm
on the parallel random access machine model that finds all successive
minimal maximum subsequences of a real-valued sequence.

1 Introduction

Combinatorial and algorithmic problems in sequences and trees arise in widely
varying applications such as in textual information retrieval and bioinformatics.
The area of large-scale (sub)sequence comparison, alignment, and
analysis is central in computational biology. Efficient algorithms for finding mul-
tiple contiguous subsequences of a real-valued sequence having large cumulative
sums, in addition to its combinatorial appeal, can help identify multiple statisti-
cally significant subsequences (with respect to a scoring scheme) in biomolecular
sequences.

Given a sequence X = (xη)n
η=1 of n real-valued terms, the cumulative sum

of a non-empty contiguous subsequence (xη)j
η=i, where i and j are in the in-

dex range [1, n] and i ≤ j, is
∑j

η=i xη (and that of the empty sequence is
0). All subsequences addressed in our study are contiguous in real-valued
sequences; the terms “subsequence” and “supersequence” will hereafter abbre-
viate “contiguous subsequence” and “contiguous supersequence”, respectively.
A maximum subsequence of X is one with the maximum cumulative sum. A
minimal maximum subsequence of X is a minimal subsequence (with respect
to subsequential containment) among all maximum subsequences of X . Note
that: (1) X is non-positively valued if and only if the empty subsequence is the

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 337–348, 2006.
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unique minimal maximum subsequence of X , and (2) the minimality constraint
on the maximum cumulative sum translates into that all non-empty prefixes
and suffixes of a minimal maximum subsequence of X have positive cumulative
sums.

Very often in practical applications it is not sufficient to find just a single or
even all maximum subsequences of a sequence X , what is rather required is to
find many or all pairwise disjoint subsequences having cumulative sums above
a prescribed threshold. Observe that subsequences having major overlap with a
maximum subsequence tend to have good cumulative sums. Intuitively, we define
the sequence of all successive minimal maximum subsequences (S1, S2, . . .) of X
inductively as follows:

1. The sequence S1 is a (non-empty) minimal maximum subsequence of X , and
2. Assume that the sequence (S1, S2, . . . , Si) of non-empty subsequences of X ,

where i ≥ 1, has been constructed, the subsequence Si+1 is a (non-empty)
minimal subsequence (with respect to subsequential containment) among all
non-empty maximum subsequences (with respect to cumulative sum) that
are disjoint from each of {S1, S2, . . . , Si}.

As in the definition of minimal maximum subsequence, the minimality con-
straint on the maximum cumulative sums of S1, S2, . . . is equivalent to the non-
existence of non-empty prefixes nor suffixes with non-positive cumulative sums
in each of {S1, S2, . . .}.

Efficient algorithms for computing the sequence of all successive minimal
maximum subsequences of a given sequence are essential for statistical infer-
ence in large-scale biological sequence analysis. In biomolecular sequences, high
(sub)sequence similarity usually implies significant structural or functional sim-
ilarity (the first fact of biological sequence analysis in [5]). When incorporating
good scoring schemes, this provides a powerful statistical paradigm for identi-
fying biologically significant functional regions in biomolecular sequences (see
[7], [10], [8], and [12]), such as transmembrane regions [3] and deoxyribonucleic
acid-binding domains [9] in protein analyses.

A common approach is to employ an application-dependent scoring scheme
that assigns a score to each single constituent of an examined biomolecular
sequence, and then find all successive minimal maximum subsequences of the
underlying score sequence having large cumulative sums above a prescribed
threshold. A theory of logarithmic odds ratios, developed in [7], yields an effective
logarithmic likelihood-ratio scoring function in this context. The non-positivity
of the expected score of a random single constituent tends to delimit unrealistic
long runs of contiguous positive scores.

We present a logarithmic-time and optimal linear-work parallel algorithm on
the parallel random access machine (PRAM) model that finds all successive min-
imal maximum subsequences of a real-valued sequence. Our study is motivated
by the linear-time sequential algorithm for this computation problem [12], which
introduces an equivalent non-procedural characterization of the sequence of all
successive minimal maximum subsequences.
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2 Related Work and Structural Characterization of
Successive Minimal Maximum Subsequences

For computing a single (minimal) maximum subsequence of a length-n real-
valued sequence of X , a simple sequential algorithm solves this problem in O(n)
optimal time. The algorithm maintains/updates two subsequences (their index
ranges) and their corresponding cumulative sums of each successive prefix of X :
a maximum subsequence and the maximum suffix of the prefix in an inductive
and on-line fashion.

A parallel algorithm [1] on the PRAM model solves the problem in O(log n)
parallel time using a total of O(n) operations (work-optimal). The algorithm
computes the delimiting indices α, β ∈ [1, n] (index range [α, β]) of a maximum
subsequence of X by using prefix sums as follows. For the input sequence X =
(xη)n

η=1, let (sη)n
η=1 denote the sequence of prefix sums of X (that is, si =∑i

η=1 xη for i ∈ [1, n]) and (smη)n
η=1 denote the sequence of suffix maxima: for

i ∈ [1, n], smi = max{sη | η ∈ [i, n]} and β(i) = min arg max{sη | η ∈ [i, n]} (the
least index at which the maximum sη is attained). The knowledge of (smη)n

η=1
and (β(η))n

η=1 allows us to compute the maximum cumulative sum, denoted by
mi, of a subsequence with starting index i (and ending index β(i)): for i ∈ [1, n],
mi = smi − si + xi. Hence the (maximum) cumulative sum m of a maximum
subsequence of X is given by m = max{mη | η ∈ [1, n]} with delimiting indices
α = max arg max{mη | η ∈ [1, n]} (the greatest index at which the maximum
mη is attained) and β = β(α).

The prefix-sums algorithm can be adapted to compute the statistics: (sη)n
η=1,

((smη, β(η)))n
η=1, (mη)n

η=1, and (m,α, β) on the exclusive-read exclusive-write
PRAM model in the stated time- and work-bounds. The algorithm is also im-
plemented on the PRAM model augmented with broadcasting with selective re-
duction [1], which is an additional form of concurrent access to shared memory
in three phases: concurrent broadcasting to all memory locations, and concur-
rent selection and reduction of selected data into a single datum in all memory
locations. With appropriate broadcast instruction, selection rule, and reduction
operator, the algorithm on the augmented PRAM model runs in O(1) parallel
time using a total of O(n) operations (work-optimal).

For the problem of finding the sequence of all successive minimal maxi-
mum subsequences of a length-n real-valued sequence X , a recursive divide-
and-conquer strategy can apply the linear-time sequential algorithm above to
compute a minimal maximum subsequence of X whose deletion results in a pre-
fix and a suffix for recursion. The algorithm has a (worst-case) time complexity
of Θ(n2). Empirical analyses of the algorithm [12] on synthetic data sets (se-
quences of independent and identically distributed uniform random terms with
negative mean) and score sequences of genomic data indicate that the running
time grows at Θ(n log n).

In order to circumvent the iterative dependency in computing the sequence
of all successive minimal maximum subsequences, Ruzzo and Tompa [12] prove
a structural characterization of the sequence as follows. Denote by MAX(X) the
set of all successive minimal maximum subsequences of a real-valued sequence X .
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Theorem 1. [12] For a non-empty real-valued sequence X, a non-empty subse-
quence S of X is in MAX(X) if and only if:

1. [Monotonicity; see Lemma 3 below] The subsequence S is monotone: every
proper subsequence of S has its cumulative sum less than that of S, and

2. [Maximality of Monotonicity] The subsequence S is maximal in X with re-
spect to monotonicity, that is, every proper supersequence of S contained in
X is not monotone.

Hence, we also term MAX(X) as the set of all maximal monotone subsequences
of X .

The following lemma gives a structural decomposition of X into MAX(X).

Lemma 2. [12] Let X be a non-empty real-valued sequence. Then:

1. Every non-empty monotone subsequence of X is contained in a maximal
monotone subsequence in MAX(X); in particular, every positive term of X
is contained in a maximal monotone subsequence in MAX(X), and

2. The set MAX(X) is a pairwise disjoint collection of all maximal monotone
subsequences of X.

Based on the structural characterization of MAX(X), they present a sequential
algorithm that computes MAX(X) in O(n) optimal sequential time and O(n)
space (worst case). The algorithm generalizes the one above for computing a
single maximum subsequence in a similar inductive and on-line fashion. For each
successive prefix Pi = (xη)i

η=1 of X for i ∈ [1, n−1], the algorithm maintains the
prefix sum of X ending at index i and a complete list Li of k(i) pairwise disjoint
subsequences of Pi in MAX(Pi): S1, S2, . . . , Sk(i). The sufficient statistics for each
S ∈MAX(Pi) are its index range [α(S), β(S)] and its starting and ending prefix
sums (prefix sums of X ending at indices α(S)− 1 and β(S), respectively). For
a positive term xi+1, the augmented list Li+1 = (S1, S2, . . . , Sk(i), (xi+1)) does
not constitute the desired MAX(Pi+1) in general — due to the violation of the
maximality of monotonicity from integrating the monotone subsequence (xi+1)
into Li. The algorithm restores the maximality of monotonicity by a sequence of
merges, each merging backward as many trailing terms of Li+1 as possible into
a single monotone trailing term of Li+1 using the sufficient statistics above.

3 Parallel Algorithm on PRAM Model Computing MAX

We now devise a parallel algorithm on the PRAM model that computes MAX(X)
for a real-valued sequence X in logarithmic parallel time and optimal linear work.

3.1 Characterization of Monotonicity Via Prefix Sums

For a real-valued sequence X = (xη)n
η=1, denote by si(X) the i-th prefix sum∑i

η=1 xη of X for i ∈ [1, n], and s0(X) = 0. For a subsequence Y of X , denote
by σ(Y ) the cumulative sum of Y (σ(Y ) = 0 if Y is empty). The following
characterization of monotonicity leads to an effective computation of the index
range of a non-trivial monotone subsequence containing a given term of X .
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Lemma 3. Let X be a non-empty real-valued sequence and Y be a non-empty
subsequence of X with index range [α, β]. The following statements are
equivalent:

1. Y is monotone.
2. The starting prefix sum sα−1(X) of Y is the unique minimum and the ending

prefix sum sβ(X) of Y is the unique maximum of all si(X) for all i ∈
[α− 1, β].

3. All non-empty prefixes and non-empty suffixes of Y have positive cumulative
prefix sums.

Proof. We prove that statement 1 implies statement 2 by contrapositive. If
sα−1(X) is not the unique minimum of all si(X) for all i ∈ [α − 1, β], that
is, there exists i ∈ [α, β] such that sα−1(X) ≥ si(X), we consider the proper
subsequence Y ′ of Y with index range [i + 1, β]. The cumulative sum of Y ′ is
σ(Y ′) = sβ(X) − si(X) (note that Y ′ is empty with zero cumulative sum if
i = β). Now, σ(Y ′) = sβ(X)− si(X) ≥ sβ(X)− sα−1(X) = σ(Y ). The existence
of such Y ′ gives that Y is not monotone. If sβ(X) is not the unique maximum
of all si(X) for all i ∈ [α − 1, β], then an analogous argument leads also to the
non-monotonicity of Y .

To prove that statement 2 implies statement 1, we assume that the starting
prefix sum sα−1(X) and the ending prefix sum sβ(X) are the unique minimum
and unique maximum, respectively, of all si(X) for all i ∈ [α−1, β]. Note that the
assumption implicitly gives that sα−1(X) < sβ(X), or equivalently σ(Y ) > 0.
Let Y ′ be an arbitrary proper subsequence of Y with index range [α′, β′]. If Y ′

is empty, then σ(Y ′) = 0 < σ(Y ), as desired. Therefore, we may assume that
α ≤ α′ ≤ β′ ≤ β, and α < α′ or β′ < β. Observe that:

σ(Y ) = sβ(X)− sα−1(X)
= (sβ(X)− sβ′(X)) + (sβ′(X)− sα′−1(X)) + (sα′−1(X)− sα−1(X))
= (sβ(X)− sβ′(X)) + σ(Y ′) + (sα′−1(X)− sα−1(X)) .

The terms sβ(X) − sβ′(X) and sα′−1(X) − sα−1(X) represent the cumulative
sums of the suffix and the prefix of Y that immediately follows and precedes
Y ′, respectively. The unique maximality of sβ(X) and the unique minimality of
sα−1(X) of all si(X) for all i ∈ [α − 1, β], together with α < α′ or β′ < β, give
that both terms are non-negative but at least one of them is positive. Hence
σ(Y ) > σ(Y ′), which establishes the monotonicity of Y .

The equivalence of statements 2 and 3 follows from that of the uniqueness
of minimality of sα−1(X) (maximality of sβ(X)) and the absence of non-empty
prefixes (non-empty suffixes, respectively) of Y with non-positive cumulative
sums. ��

The monotonicity constraint applies only to the delimiting indices of a monotone
subsequence, but not to the entire index range.
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3.2 Computation of a Refinement of MAX

The parallel algorithm above for finding a single maximum subsequence focuses
on computing the primary statistics for locating concurrently the delimiting
indices of a maximum subsequence with each possible starting index, but it
disregards the monotonicity condition of all such subsequences. More work is
required to process the secondary statistics in order to reveal the structural
decomposition of X into MAX(X).

The key to a parallel implementation of finding MAX(X) for a length-n se-
quence X = (xη)n

η=1 lies in the concurrent computation of the ending index of the
maximal monotone subsequence constrained with the starting index i ∈ [1, n].
Lemma 3 suggests to consider only positive terms xi of X for the desired com-
putation. We abbreviate the prefix sums sη(X) to sη for all η ∈ [0, n].

Let ε : {i ∈ [1, n] | xi > 0} → [1, n] be the function that ε(i) denotes the
ending index of the maximal monotone subsequence of X constrained with the
starting index i. We show that the function ε is composed of the following two
functions:

1. The function ε′ : {i ∈ [1, n] | xi > 0} → [2, n+ 1] defined by:

ε′(i) =
{

min{η ∈ [i+ 1, n] | si−1 ≥ sη} if the minimum exists,
n + 1 otherwise,

locates the least index η ∈ [i, n] (closest to i), effectively η ∈ [i + 1, n] since
xi > 0, such that si−1 ≥ sη if it exists.

2. The function ε′′ : {(i, j) ∈ [1, n]2 | i ≤ j} → [1, n] defined by:

ε′′(i, j) = min argmax{sη | η ∈ [i, j]} ,

locates the least index η ∈ [i, j] (closest to i) such that sη is the maximum
prefix sum of those of X over the index range [i, j].

Figure 1 illustrates the computation of the two functions ε′ and ε′′ and their
composition to yield ε, as stated in the following lemma.

Lemma 4. For the functions ε, ε′, and ε′′ defined above, ε(i) = ε′′(i, ε′(i) − 1)
for all i ∈ [1, n].

Proof. We first show that the subsequence of X with the index range [i, ε′′(i, ε′(i)
− 1)] is monotone. Since xi > 0, we have si−1 < si (= si−1 + xi). By the
definition of ε′, the prefix sum si−1 of X is the unique minimum of all sη for all
η ∈ [i− 1, ε′(i)− 1]. Observe that ε′′(i, ε′(i)− 1) ∈ [i, ε′(i)− 1] ⊆ [i− 1, ε′(i)− 1],
thus si−1 is the unique minimum of all sη for all η ∈ [i − 1, ε′′(i, ε′(i) − 1)].
As si−1 < si and by the definition of ε′′, sε′′(i,ε′(i)−1) is the unique maximum
of all sη for all η ∈ [i − 1, ε′(i) − 1]. This establishes the monotonicity of the
subsequence over the index range [i, ε′′(i, ε′(i)− 1)]. Hence ε(i) ≥ ε′′(i, ε′(i)− 1)
by the definition of ε.

To prove that ε(i) ≤ ε′′(i, ε′(i)−1), we notice that: (1) the maximal monotone
subsequence ofX constrained with the starting index i ends at the index ε(i), and
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Fig. 1. (a) For each index i ∈ [1, n] with xi > 0, ε′ computes the least index η ∈ [i+1, n]
such that si−1 ≥ sη if it exists; (b) For all indices i, j ∈ [1, n] with i ≤ j, ε′′ computes
the least index η ∈ [i, j] such that sη is the maximum prefix sum of those of X over
the index range [i, j]; (c) For each index i ∈ [1, n] with xi > 0, ε computes the ending
index of the maximal monotone subsequence constrained with the starting index i
(ε(i) = ε′′(i, ε′(i) − 1))

(2) Lemma 3 says that si−1 is the unique minimum of all sη for all η ∈ [i−1, ε(i)].
The definition of ε′ gives that [i−1, ε(i)] ⊆ [i−1, ε′(i)−1], that is, ε(i) ≤ ε′(i)−1.
Moreover, this results in max{sη | η ∈ [i− 1, ε(i)]} ≤ max{sη | η ∈ [i− 1, ε′(i)−
1]}, which implies that min arg max{sη | η ∈ [i − 1, ε(i)]} ≤ min arg max{sη |
η ∈ [i − 1, ε′(i) − 1]}. Lemma 3 indicates that sε(i) is the unique maximum of
all sη for all η ∈ [i − 1, ε(i)], which gives that ε(i) = min arg max{sη | η ∈
[i− 1, ε(i)]} ≤ min arg max{sη | η ∈ [i− 1, ε′(i)− 1]} = ε′′(i, ε′(i) − 1), and this
completes the proof. ��
The concurrent computation of ε, when applied to all the positive terms xi in
X , generates the statistics MON(X) = {[i, ε(i)] | i ∈ [1, n] with xi > 0} for the
set of all index ranges of all maximal monotone subsequences of X constrained
with given positive starting terms. The following lemma reveals the structural
decomposition of X into MON(X), which refines MAX(X) and provides a basis
for a parallel computation of MAX(X) from MON(X).

Lemma 5. For a real-valued sequence X, MON(X) respects the following paren-
thesis structure:

1. Every positive term of X has its index as the starting index of a unique index
range in MON(X),

2. For every pair of index ranges in MON(X), either they are disjoint or one
is contained in another, and

3. For every maximal monotone subsequence of X in MAX(X), its index range
is in MON(X).

Proof. Parts 1 and 3 follow from the definition of ε. For part 2, consider two
index ranges [i, ε(i)], [j, ε(j)] ∈ MON(X) such that i < j ≤ ε(i). We show that
[j, ε(j)] ⊆ [i, ε(i)].
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Since i < j ≤ ε(i) and si−1 is the unique minimum of all sη for all η ∈
[i − 1, ε(i)], we have si−1 < sj−1. Also, sj−1 is the unique minimum of all sη

for all η ∈ [j − 1, ε′(j)]. (Note that if ε(i) > ε′(j), then ε(i) > ε′(j) > ε(j)
by Lemma 4 — as desired in part (2). Hence we may assume that ε(i) ≤ ε′(j).)
Combining these with the assumption that i < j ≤ ε(i) ≤ ε′(j) yields that si−1 is
the unique minimum of all sη for all η ∈ [i− 1, ε(i)]∪ [j− 1, ε′(j)] = [i− 1, ε′(j)].
The definition of ε′ gives that ε′(i) ≥ ε′(j), which implies that max{sη | η ∈
[i, ε′(i)− 1]} ≥ max{sη | η ∈ [j, ε′(j)− 1]}.

Consider the candidate index position for min argmax{sη | η ∈ [i, ε′(i)− 1]}
(= ε(i)) over the index range [i, ε′(i) − 1] when partitioned into three disjoint
subranges [i, j) ∪ [j, ε′(j)− 1] ∪ (ε′(j)− 1, ε′(i)− 1].

Case when ε(i) ∈ [i, j): This can not occur due to the assumption that i <
j ≤ ε(i).

Case when ε(i) ∈ [j, ε′(j)− 1]: When both min arg max{sη | η ∈ [i, ε′(i)− 1]}
(= ε(i)) and min arg max{sη | η ∈ [j, ε′(j) − 1]} (= ε(j)) are in [j, ε′(j) − 1], we
have ε(i) = ε(j).

Case when ε(i) ∈ (ε′(j)− 1, ε′(i)− 1]: Clearly ε(j) ≤ ε(i).
Combining the three cases gives that ε(j) ≤ ε(i), as desired. This completes

the proof of part 2. ��

3.3 Computation of MAX from MON

For a real-valued sequence X , we compute MAX(X) based on the statistics of
MON(X) via an appropriately defined function on the parenthesis structure of
MON(X). Let I be a set of (some) index ranges of [1, n] such that for every pair
of index ranges of I, either they are disjoint or one is contained in another. We
define the function (range-composition) ◦ : I2 → I that selects the rightmost or
outmost index range from its two operands in I: for all [i1, j1], [i2, j2] ∈ I,

[i1, j1] ◦ [i2, j2] =

⎧⎪⎪⎨⎪⎪⎩
[i2, j2] if j1 < i2 ([i1, j1] ∩ [i2, j2] = ∅) ,
[i1, j1] if j2 < i1 ([i1, j1] ∩ [i2, j2] = ∅) ,
[i2, j2] if [i1, j1] ⊆ [i2, j2] ,
[i1, j1] if [i1, j1] ⊇ [i2, j2] .

The function ◦ is associative since, for all I1, I2, I3 ∈ I, both (I1 ◦ I2) ◦ I3 and
I1 ◦ (I2 ◦ I3) compute the same index range in {I1, I2, I3}: the outmost one if I1,
I2, and I3 are nested, or the rightmost and then outmost one otherwise.

Lemma 6. Let X be a length-n real-valued sequence (xη)n
η=1 with m positive

terms, and I = (Iη)m
η=1 be the length-m sequence that enumerates all m index

ranges of MON(X), Iη = [iη, ε(iη)] (with xiη > 0) for all η ∈ [1,m], according to
the starting index iη (i1 < i2 < · · · < im). Denote by Tk the k-th prefix sum of
I (with respect to the range-composition ◦), that is, Tk = I1 ◦ I2 ◦ · · · ◦ Ik for k ∈
[1,m]. Then, for every k ∈ [1,m], Tk gives the index range of the unique maximal
monotone subsequence in MAX(X) that contains the positive ik-th term xik

of X.

Proof. We prove the statement in the lemma by an induction on k. For the basis
of the induction that k = 1, we notice that xik

= xi1 is the first positive term



A Parallel Algorithm 345

in X , and xj ≤ 0 for all j ∈ [1, i1). Thus, according to Lemma 3, a monotone
subsequence of X containing xi1 can not have a starting index in [1, i1). The
maximal monotone subsequence of X constrained with the starting index i1
(with index range [i1, ε(i1)] (= I1 = T1)) must be the (unconstrained) maximal
monotone subsequence containing the i1-th term xi1 of X . This proves the basis.

For the induction step, assume that the statement is true for all l ≤ k, where
k ≥ 1. We show that Tk+1 is the index range of the (unconstrained) maximal
monotone subsequence I in MAX(X) that contains the positive term xik+1 of
X . Denote by [α, β] the index range of I. By Lemma 3, xα is a positive term of
X , which gives that α ∈ {i1, i2, . . . , ik, ik+1}. Let α = ij for some j ∈ [1, k + 1].

We claim that the j-th prefix sum Tj (= I1 ◦I2 ◦· · ·◦Ij−1 ◦Ij) = Ij . The case
when j = 1 is immediate. To prove the claim when j > 1, we first notice that,
similar to the basis, the maximal monotone subsequence of X constrained with
the starting index ij (with index range Ij = [ij , ε(ij)] is the (unconstrained) max-
imal monotone subsequence containing the ij-th term xij of X . This gives that
[α, β] = [ij , ε(ij)] = Ij . Applying the induction hypothesis (in the case of l = j−1
with 1 ≤ l ≤ k), the (j−1)-th prefix sum Tj−1 = I1◦I2◦· · ·◦Ij−1 computes the in-
dex range of the (unconstrained) maximal monotone subsequence I ′ in MAX(X)
that contains the ij−1-th term xij−1 of X . By the partitioning structure of X
into MAX(X) stated in Lemma 2, the two (unconstrained) maximal monotone
subsequences I ′ and I (with index ranges Tj and [α, β] (= [ij, ε(ij)] = Ij), respec-
tively) are disjoint, and [α, β] is the rightmost index range of the two. Therefore
we have Tj = Tj−1 ◦ Ij = Ij , as desired in the claim.

We now have the (k+1)-th prefix sum Tk+1 =Tj ◦(Ij+1◦Ij+2◦· · ·◦Ik+1)=Ij ◦
(Ij+1 ◦Ij+2 ◦· · ·◦Ik+1). Notice that all the indices ij , ij+1, . . . , ik+1 ∈ [α, β] = Ij ,
the parenthesis structure of MON(X) stated in Lemma 5 gives that Iη ⊆ Ij for
all η ∈ [j + 1, k + 1]. Hence Tk+1 = Ij ◦ (Ij+1 ◦ Ij+2 ◦ · · · ◦ Ik+1) = Ij since
Ij is the outmost index range of all Iη for all η ∈ [j, k + 1]; that is, Tk+1 =
[α, β], as desired. This completes the induction step. By induction, the lemma is
proved. ��

3.4 PRAM Algorithm for Computing MAX Within the Work-Time
Framework

We present the overall algorithm within the work-time framework, and provide al-
gorithmic details and analysis. Improvements to the algorithm are also addressed.

algorithm Compute MAX
input: A length-n real-valued sequence X in an array x[1..n].
output: The sequence of all successive minimal maximum subsequences

(that is, all maximal monotone subsequences) of X occupying the
low-order subarray of an array M [1..�n

2 �] (|MAX(X)| ≤ �n
2 �).

begin
1. Compute the prefix sums of X in an array s[1..n] such that s[i] =∑i

η=1 x[η] for all i ∈ [1, n];
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2. Compute the function ε in an array ε[1..n] such that ε[i] denotes
the ending index of the maximal monotone subsequence of X con-
strained with the starting index i as follows:
2.1. Compute the function ε′ in an array ε′[1..n], in which ε′[i] is the

least index η ∈ [i+1, n] such that s[i−1] ≥ s[η] if it exists, and
n+ 1 otherwise;

2.2. Compute the function ε′′ in an array ε′′[1..n, 1..n], in which
ε′′[i, j] is the least index η ∈ [i, j] such that s[η] = max{s[k] |
k ∈ [i, j]};

2.3. Compose ε from ε′ and ε′′ as follows:
for all i ∈ [1, n] in parallel do
ε[i] := ε′′[i, ε′[i]− 1];

end for;
3. Compute MON(X) = {[i, ε[i]] | i ∈ [1, n] with x[i] > 0} (ordered

according to the starting index) and pack all the index ranges
of MON(X) in the low-order subarray of the array M [1..�n

2 �]
(|MON(X)| ≤ �n

2 �);
4. Compute MAX(X) in the array M [1..�n

2 �] as follows:
4.1. Compute the prefix sums of the (non-trivial) low-order subar-

ray of M [1..�n
2 �] using the range-composition function ◦ for the

prefix computation;
4.2. Pack all the distinct elements (pairwise disjoint index ranges)

in the (non-trivial) low-order subarray of M [1..�n
2 �] in place,

while maintaining their relative order (according to the starting
index);

end Compute MAX;

Step 1 is implemented by the prefix-sums algorithm [11] that runs in O(log n)
time, usingO(n) operations on the exclusive-read exclusive-write (EREW)PRAM.

As for step 2, the computation of ε′ (in step 2.1) is reduced to (within the
resource bounds of O(log n) time and O(n) operations) the problem of all nearest
smaller values of the sequence (sη−1 | xη > 0)n

η=1, which can be solved by an
algorithm (see [2] and [4]) that runs in O(log n) time, using O(n) operations on
the EREW PRAM. The computation of ε′′ (in step 2.2) is reduced to (within
the same resource bounds) the problem of range-minima, which can be solved
by an algorithm (see [6]) that runs in O(log n) time, using O(n) operations on
the EREW PRAM. The composition of ε (in step 2.3) is executed in O(1) time,
using O(n) operations on the EREW PRAM.

Step 3 is reduced to the problem of array packing, which can be solved by the
prefix-sums algorithm.

As for step 4, step 4.1 is a direct application of the prefix-sums algorithm,
and step 4.2 is reduced to array packing as in step 3.

Theorem 7. For a length-n real-valued sequence X, the algorithm
Compute MAX computes the set MAX(X) of all successive minimal maximum
subsequences (that is, all maximal monotone subsequences) of X in O(log n) time
using O(n) operations (work-optimal) on the EREW PRAM model.
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A few potential performance improvements can be applied to the algorithm
without any asymptotic increase in the complexity bounds. A pre-processing
step can compress the sequence X into an alternating one X◦ by summing up
contiguous positive terms and contiguous non-positive terms into single terms,
and maintains the correspondence between the compressed index ranges and sin-
gle indices. The two structures MAX(X) and MAX(X◦) are essentially identical
via the correspondence due to Lemma 3. The work can be implemented by the
prefix-sums algorithm within the resource bounds.

A generalization to the computation of ε is its bidirectional extension to ε :
{i ∈ [1, n] | xi > 0} → [1, n]2 such that ε(i) = (ε−(i), ε+(i)), where ε+(i) is ε(i)
and ε−(i) denotes the starting index of the maximal monotone subsequence of
X constrained with the ending index i. The computation of ε− is analogous to
that of ε+, and ε yields a coarser partition of MAX(X).

The task of computing MAX(X) can be partitioned into independent ones
based on the existence of positive terms xi > 0, where i ∈ [1, n], which satisfy
at least one of the following conditions that mirror the computation of ε′:

term partition
condition discarded (X ′, X ′′)

c1 : non-existence of max{η ∈ [0, i− 2] | si−1 > sη} xi−1 [1, i− 2], [i, n]
c2 : non-existence of max{η ∈ [0, i− 2] | si > sη} xi−1 [1, i− 2], [i, n]
c3 : non-existence of min{η ∈ [i + 1, n] | si < sη} xi+1 [1, i], [i+ 2, n]
c4 : non-existence of min{η ∈ [i + 1, n] | si−1 < sη} xi+1 [1, i], [i+ 2, n]

Since c2 implying c1 and c4 implying c3, the condition c1 ∨ c2 ∨ c3 ∨ c4 is
logically equivalent to c1 ∨ c3. If either c1 or c3 is met, then Lemma 3 gives
that no monotone subsequence of X can overlap with both X ′ and X ′′ non-
trivially, which establishes that MAX(X) is the disjoint union of MAX(X ′) and
MAX(X ′′). The detection of the condition c1 (c3) can be reduced to the prob-
lem of all nearest smaller values (all nearest larger values, respectively) of the
sequence (sη−1 | xη > 0)n

η=1 ((sη | xη > 0)n
η=1, respectively).

4 Conclusion

The problem of computing the set of all successive minimal maximum sub-
sequences of a real-valued sequence has wide applications such as in textual
information retrieval and bioinformatics. The MAX-computation has real prac-
tical importance as it appears as a subroutine in biological sequence analysis.
Hence there is a natural need for computing MAX in parallel and its implemen-
tation on practical parallel systems. Our parallel algorithm computes MAX in
logarithmic parallel time and optimal linear work on the EREW PRAM model.
The MAX-computation has linear sequential complexity, and is solved very ef-
ficiently by an optimal linear-time sequential algorithm, hence achieving good
speed-ups on a practical parallel system is a challenge. For biomolecular sequence
analysis, alternative definitions of maximum subsequences and more complex
scoring schemes exist in the literature. Another direction for research is to adapt
or modify the optimal (sequential and parallel) algorithms accordingly.
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Abstract. We develop dynamic dictionaries on the word RAM that use
asymptotically optimal space, up to constant factors, subject to inser-
tions and deletions, and subject to supporting perfect-hashing queries
and/or membership queries, each operation in constant time with high
probability. When supporting only membership queries, we attain the
optimal space bound of Θ(n lg u

n
) bits, where n and u are the sizes of

the dictionary and the universe, respectively. Previous dictionaries ei-
ther did not achieve this space bound or had time bounds that were only
expected and amortized. When supporting perfect-hashing queries, the
optimal space bound depends on the range {1, 2, . . . , n + t} of hash-
codes allowed as output. We prove that the optimal space bound is
Θ(n lg lg u

n
+n lg n

t+1 ) bits when supporting only perfect-hashing queries,
and it is Θ(n lg u

n
+ n lg n

t+1 ) bits when also supporting membership
queries. All upper bounds are new, as is the Ω(n lg n

t+1) lower bound.

1 Introduction

The dictionary is one of the most fundamental data-structural problems in com-
puter science. In its basic form, a dictionary allows some form of “lookup” on a
set S of n objects, and in a dynamic dictionary, elements can be inserted into
and deleted from the set S. However, being such a well-studied problem, there
are many variations in the details of what exactly is required of a dictionary,
particularly the lookup operation, and these variations greatly affect the best
possible data structures. To enable a systematic study, we introduce a unified
view consisting of three possible types of queries that, in various combinations,
capture the most common types of dictionaries considered in the literature:

Membership: Given an element x, is it in the set S?
� A full version of this paper is available as arXiv:cs.DS/0512081.
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Retrieval: Given an element x in the set S, retrieve r bits of data associated
with x. (The outcome is undefined if x is not in S.) The associated data can
be set upon insertion or with another update operation. We state constant
time bounds for these operations, which ignore the Θ(r) divided by word
size required to read or write r bits of data.

Perfect hashing: Given an element x in the set S, return the hashcode of x.
The data structure assigns to each element x in S a unique hashcode in
[n + t],1 for a specified parameter t (e.g., t = 0 or t = n). Hashcodes are
stable: the hashcode of x must remain fixed for the duration that x is in S.
(Again the outcome is undefined if x is not in S.)

Standard hash tables generally support membership and retrieval. Some hash
tables with open addressing (no chaining) also support perfect hashing, but the
expected running time is superconstant unless t = Ω(n). However, standard hash
tables are not particularly space efficient if n is close to u: they use O(n) words,
which is O(n lg u) bits for a universe of size u, whereas only log2

(
u
n

)
= Θ(n lg u

n )
bits (assuming n ≤ u/2) are required to represent the set S.2

Any dictionary supporting membership needs at least log2
(

u
n

)
bits of space.

But while such dictionaries are versatile, they are large, and membership is not
always required. For example, Chazelle et al. [3] explore the idea of a static
dictionary supporting only retrieval, with several applications related to Bloom
filters. For other data-structural problems, such as range reporting in one di-
mension [10, 1], the only known way to get optimal space bounds is to use a
dictionary that supports retrieval but not membership. The retrieval operation
requires storing the r-bit data associated with each element, for a total of at
least rn bits. If r is asymptotically less than lg u

n , then we would like to avoid
actually representing the set S. However, as we shall see, we still need more than
rn bits even in a retrieval-only dictionary.

Perfect hashing is stronger than retrieval, up to constant factors in space,
because we can simply store an array mapping hashcodes to the r-bit data for
each element. Therefore we focus on developing dictionaries supporting perfect
hashing, and obtain retrieval for free. Conversely, lower bounds on retrieval apply
to perfect hashing as well. Because hashcodes are stable, this approach has the
additional property that the associated data never moves, which can be useful,
e.g. when the data is large or is stored on disk.

Despite substantial work on dictionaries and perfect hashing (see Section 1.2),
no dynamic dictionary data structure supporting any of the three types of queries
simultaneously achieves (1) constant time bounds with high probability and
(2) compactness in the sense that the space is within a constant factor of optimal.

1.1 Our Results

We characterize the optimal space bound, up to constant factors, for a dy-
namic dictionary supporting any subset of the three operations, designing data
1 The notation [k] represents the set {0, 1, . . . , k − 1}.
2 Throughout this paper, lg x denotes log2(2 + x), which is positive for all x ≥ 0.
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structures to achieve these bounds and in some cases improving the lower bound.
To set our results in context, we first state the two known lower bounds on the
space required by a dictionary data structure. First, as mentioned above, any
dictionary supporting membership (even static) requires Ω(n lg u

n ) bits of space,
assuming that n ≤ u/2. Second, any dictionary supporting retrieval must satisfy
the following recent and strictly weaker lower bound:

Theorem 1. [10] Any dynamic dictionary supporting retrieval (and therefore
any dynamic dictionary supporting perfect hashing) requires Ω(n lg lg u

n ) bits of
space in expectation, even when the associated data is just r = 1 bit.

Surprisingly, for dynamic dictionaries supporting perfect hashing, this lower
bound is neither tight nor subsumed by a stronger lower bound. In Section 5, we
prove our main lower-bound result, which complements Theorem 1 depending
on the value of t:

Theorem 2. Any dynamic dictionary supporting perfect hashing with hashcodes
in [n+t] must use Ω(n lg n

t+1 ) bits of space in expectation, regardless of the query
and update times, assuming that u ≥ n+ (1 + ε)t for some constant ε > 0.

Our main upper-bound result is a dynamic dictionary supporting perfect hashing
that matches the sum of the two lower bounds given by Theorems 1 and 2.
Specifically, Section 4 proves the following theorem:

Theorem 3. There is a dynamic dictionary that supports updates and perfect
hashing with hashcodes in [n+t] (and therefore also retrieval queries) in constant
time per operation, using O(n lg lg u

n +n lg n
t+1 ) bits of space. The query and space

complexities are worst-case, while updates are handled in constant time with high
probability.

To establish this upper bound, we find it necessary to also obtain optimal results
for dynamic dictionaries supporting both membership and perfect hashing. In
Section 3, we find that the best possible space bound is a sum of two lower
bounds in this case as well:

Theorem 4. There is a dynamic dictionary that supports updates, membership
queries, and perfect hashing with hashcodes in [n+t] (and therefore also retrieval
queries) in constant time per operation, using O(n lg u

n + n lg n
t+1 ) bits of space.

The query and space complexities are worst-case, while updates are handled in
constant time with high probability.

In the interest of Theorems 3 and 4, we develop a family of quotient hash func-
tions. These hash functions are permutations of the universe; they and their in-
verses are computable in constant time given a small-space representation; and
they have natural distributional properties when mapping elements into buckets.
(In contrast, we do not know any hash functions with these properties and, say,
4-wise independence.) These hash functions may be of independent interest.

Table 1 summarizes our completed understanding of the optimal space bounds
for dynamic dictionaries supporting updates and any combination of the three
types of queries in constant time with high probability. All upper bounds are
new, as are the lower bounds for perfect hashing with or without membership.
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Table 1. Optimal space bounds for all types of dynamic dictionaries supporting oper-
ations in constant time with high probability. The upper bounds supporting retrieval
without perfect hashing can be obtained by substituting t = n. The Θ(n lg u

n
) bounds

assume n ≤ u/2; more precisely, they are Θ(log2
u
n

).

Dictionary queries supported Optimal space Reference
retrieval Θ(n lg lg u

n
+ nr) O §4; Ω [10]

retrieval+perfect hashing Θ(n lg lg u
n

+ n lg n
t+1 + nr) O §4; Ω §5, [10]

membership Θ(n lg u
n
) O §3; Ω std.

membership+retrieval Θ(n lg u
n

+ nr) O §3; Ω std.
membership+retrieval+perfect hashing Θ(n lg u

n
+ n lg n

t+1 + nr) O §3; Ω §5

1.2 Previous Work

There is a huge literature on various types of dictionaries, and we do not try to
discuss it exhaustively. A milestone in the history of constant-time dictionaries
is the realization that the space and query bounds can be made worst case
(construction and updates are still randomized). This was achieved in the static
case by Fredman, Komlós, and Szemerédi [7] with a dictionary that usesO(n lg u)
bits. Starting with this work, research on the dictionary problem evolved in two
orthogonal directions: creating dynamic dictionaries with good update bounds,
and reducing the space.

In the dynamic case, the theoretical ideal is to make updates run in con-
stant time per operation with high probability. After some work, this was finally
achieved by the high-performance dictionaries of Dietzfelbinger and Meyer auf
der Heide [4]. However, this desiderate is usually considered difficult to achieve,
and most dictionary variants that have been developed since then fall short of it,
by having amortized and/or expected time bounds (not with high probability).

As far as space is concerned, the goal was to get closer to the information
theoretic lower bound of log2

(
u
n

)
bits for membership. Brodnik and Munro [2]

were the first to solve static membership using O(n lg u
n ) bits, which they later

improved to (1+o(1)) log2
(

u
n

)
. Pagh [11] solves the static dictionary problem with

space log2
(

u
n

)
plus the best lower-order term known to date. For the dynamic

problem, the best known result is by Raman and Rao [13], achieving space
(1 + o(1)) log2

(
u
n

)
. Unfortunately, in this structure, updates take constant time

amortized and in expectation (not with high probability). These shortcomings
seem inherent to their technique.

Thus, none of the previous results simultaneously achieve good space and
update bounds, a gap filled by our work. Another shortcoming of the previ-
ous results lies in the understanding of dynamic dictionaries supporting perfect
hashing. The dynamic perfect hashing data structure of Dietzfelbinger et al. [5]
supports membership and a weaker form of perfect hashing in which hashcodes
are not stable, though only an amortized constant number of hashcodes change
per update. This structure achieves a suboptimal space bound of O(n lg u) and
updates take constant time amortized and in expectation. No other dictionaries
can answer perfect hashing queries except by associating an explicit hashcode
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with each element, which requires Θ(n lg n) additional bits. Our result for mem-
bership and perfect hashing is the first achieving O(n lg u

n ) space, even for weak
update bounds. A more fundamental problem is that all dynamic data struc-
tures supporting perfect hashing use Ω(n lg u

n ) space, even when we do not desire
membership queries so the information theoretic lower bound does not apply.

Perfect hashing in the static case has been studied intensely, and with good
success. There, it is possible to achieve good bounds with t = 0, and this has
been the focus of attention. When membership is required, a data structure
using space (1+ o(1)) lg

(
u
n

)
was finally developed by [12]. Without membership,

the best known lower bound is n log2 e+ lg lg u+O(lg n) bits [6], while the best
known data structure uses n log2 e+lg lg u+O(n (lg lg n)2

lg n +lg lg lg u) bits [8]. Our
lower bound depending on t shows that in the dynamic case, even t = O(n1−ε)
requires Ω(n lgn) space, making the problem uninteresting. Thus, we identify
an interesting hysteresis phenomenon, where the dynamic nature of the problem
forces the data structure to remember more information and use more space.

Retrieval without membership was introduced as “Bloomier filters” by Chazelle
et al. [3]. The terminology is by analogy with the Bloom filter, a static structure
supporting approximate membership (a query we do not consider in this paper).
Bloomier filters are static dictionaries supporting retrieval using O(nr + lg lg u)
bits of space. For dynamic retrieval of r = 1 bit without membership, Chazelle
et al. [3] show that Ω(n lg lg u) bits of space can be necessary in the case
n3+ε ≤ u ≤ 2nO(1)

. Their bound is improved in [10], giving Theorem 1. On
the upper-bound side, the only previous result is that of [10]: dynamic perfect
hashing for t = Θ(n/ lg u) using space O(n lg lg u). Our result improves lg lg u to
lg lg u

n , and offers the full tradeoff depending on t.

1.3 Details of the Model

A few details of the model are implicit throughout this paper. The model of
computation is the Random Access Machine with cells of lg u bits (the word
RAM). Because we ignore constant factors, we assume without loss of generality
that u, t, and b are all exact powers of 2.

In dynamic dictionaries supporting perfect hashing, n is not the current size
of the set S, but rather n is a fixed upper bound on the size of S. Similarly,
t is a fixed parameter. This assumption is necessary because of the problem
statement: hashcodes must be stable and the hashcode space is defined in terms
of n and t. This assumption is not necessary for retrieval queries, although we
effectively assume it through our reduction to perfect hashing. Our results leave
open whether a dynamic dictionary supporting only retrieval can achieve space
bounds depending on the current size of the set S instead of an upper bound n;
such a result would in some sense improve the first row of Table 1.

On the other hand, if we want a dynamic dictionary supporting membership
but not perfect hashing (but still supporting retrieval), then we can rebuild the
data structure whenever |S| changes by a constant factor, and change the upper
bounds n and t then. This global rebuilding can be deamortized at the cost of
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increasing space by a constant factor, using the standard tricks involving two
copies of the data structure with different values of n and t.

Another issue of the model of memory allocation. We assume that the dynamic
data structure lives in an infinite array of word-length cells. At any time, the
space usage of the data structure is the length of the shortest prefix of the array
containing all nonblank cells. This model charges appropriately for issues such as
external fragmentation (unlike, say, assuming that the system provides memory-
block allocation) and is easy to implement in practical systems. See [13] for a
discussion of this issue.

Finally, we prove that our insertions work in constant time with high probabil-
ity, that is, with probability 1− 1/nc for any desired constant c > 0. Thus, with
polynomially small probability, the bounds might be violated. For a with-high-
probability bound, the data structure could fail in this low-probability event. To
obtain the bounds also in expectation and with zero error, we can freeze the high-
performance data structure in this event and fall back to a simple data structure,
e.g., a linked list of any further inserted elements. Any operations (queries or
deletions) on the old elements are performed on the high-performance data struc-
ture, while any operations on new elements (e.g., insertions) are performed on
the simple data structure. The bounds hold in expectation provided that the
data structure is used for only a polynomial amount of time.

2 Quotient Hash Functions

We define a quotient hash function in terms of three parameters: the universe
size u, the number of buckets b, and an upper bound n on the size of the sets of
interest. A quotient hash function is simply a bijective function h : [u]→ [b]×[u

b ].
We interpret the first output as a bucket, and the second output as a “quotient”
which, together with the bucket, uniquely identifies the element. We write h(x)1
and h(x)2 when we want to refer to individual outputs of h.

We are interested in sets of elements S ⊂ [u] with |S| ≤ n. For such a set S and
an element x, define Bh(S, x) = {y ∈ S | h(y)1 = h(x)1}, i.e. the set of elements
mapped to the same bucket as x. For a threshold t, define Ch(S, t) = {x ∈ S |
#Bh(S, x) ≥ t}, i.e. the set of elements which map to buckets containing at least
t elements. These are elements that “collide” beyond the allowable threshold.

Theorem 5. There is an absolute constant α < 1 such that for any u, n and
b, there exists a family of quotient hash functions H = {h : [u] → [b] × [u

b ]}
satisfying:

– an h ∈ H can be represented in O(nα) space and sampled in O(nα) time.
– h and h−1 can be evaluated in constant time on a RAM;
– for any fixed S ⊂ [u], |S| ≤ n and any δ < 1, the following holds with high

probability over the choice of h:{
if b ≥ n, #Ch(S, 2) ≤ 2n2

b + nα

if b < n, #Ch(S, (1 + δ)n
b + 1) ≤ 2ne−δ2n/(3b) + nα
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It is easy to get an intuitive understanding of these bounds. In the case b ≥ n,
the expected number of collisions generated by universal hashing (2-independent
hashing) would be n2

b . For b < n, we can compare against a highly independent
hash function. Then, the expected number of elements that land in overflowing
buckets is ne−δ2n/(3b), by a simple Chernoff bound. Our family matches these two
bounds, up to a constant factor and an additive error term of O(nα), which are
both negligible for our purposes. The advantage of our hash family is two-fold.
First, it gives quotient hash functions, which is essential for our data structure.
Second, the number of overflowing elements is guaranteed with high probability,
not just in expectation.

Construction of the hash family. Due to space limitations, we only sketch the
construction, without proofs. First, we reduce the universe to nc, for some big
enough c, by applying a random 2-independent permutation on the original
universe. We keep only the first c lg n bits of the result, and make the rest part
of the quotient.

We now interpret the universe as a two-dimensional table, with n3/4 columns,
and u

n3/4 rows. The plan is to use this column structure as a means of generating
independence. Imagine a hash function that generates few collisions in expecta-
tion, but not necessarily with high probability. However, we can apply a different
random hash function inside each column. The expectation is unchanged, but
now Chernoff bounds can be used to show that we are close to the expectation
with high probability, because the behavior of each column is independent.

However, to put this plan into action, we need to guarantee that the elements
of S are spread rather uniformly across columns. We do this by applying a
random circular shift to each row: consider a highly independent hash function
mapping row numbers to [n3/4]; inside each row, apply a circular shift by the
hash function of that row. Note that the number of rows can be pretty large
(larger than n), so we cannot afford a truly random shift for each row. However,
the number of rows is polynomial, and we can use Siegel’s family of highly
independent hash functions [14] to generate highly independent shifts, which
turns out to be enough.

In the case b ≥ n, our goal is to get close to the collisions generated by
a 2-independent permutation, but with high probability. As explained above,
we can achieve this effect through column independence: apply a random 2-
universal permutation inside each column. To complete the construction, break
each column into b

n3/4 equal-sized buckets. The position within a bucket is part of
the quotient. A classic Chernoff bound (using column independence), can show
that imposing the bucket granularity does not generate too many collisions.

In the case b < n, the ideal size of each bucket is n
b elements. We are inter-

ested in buckets of size exceeding (1 + δ)n
b , and want to bound the number of

elements in such buckets close to the expected number for a highly independent
permutation. As explained already, we do not know any family of highly inde-
pendent permutations that can be represented with small space and evaluated
efficiently. Instead, we will revert to the brute-force solution of representing truly
random permutations. To use this idea and keep the space small, we need two
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tricks. The first trick is to generate and store fewer permutations than columns.
It turns out that re-using the same permutation for multiple columns still gives
enough independence.

Note, however, that we cannot even afford to store a random permutation
inside a single column, because columns might have more than n elements. How-
ever, we can reduce columns to size

√
n as follows. Use the construction from

above for b′ = n5/4. This puts elements into n5/4 first-order buckets (
√
n buckets

per column), with a negligible number of collisions. Thus, we can now work at
the granularity of first-order buckets, and ignore the index within a bucket of an
element. We now group columns into n1/4 equal-sized groups. For each group,
generate a random permutation on

√
n positions, and apply it to the first-order

buckets inside each column of the group.
In the full version, we also describe how our construction can be used to get

good concentration bounds for dynamic sets S.

3 Solution for Membership and Perfect Hashing

There are two easy cases. First, if u = Ω(n1.5), then the space bound is Θ(n lg u).
In this case, a solution with hashcode range exactly [n] can be obtained by using
a high-performance dictionary [4]. We store an explicit hashcode as the data
associated with each value, and maintain a list of free hashcodes. This takes
O(n lg n + n lg u) = O(n lg u) bits. Second, if t = O(nα), for α < 1, then the
space bound is Θ(n lg n). Because u = O(n1.5), we can use the same brute-force
solution. In the remaining cases, we can assume t ≤ n2

u (we are always free to
decrease t), so that the space bound is dominated by Θ(n lg n

t ).
The data structure is composed of three levels. An element is inserted into the

first level that can handle it. The first-level filter outputs hashcodes in the range
[n + t

3 ], and handles most elements of S: at most c1t elements (for a constant
c1 ≤ 1

3 to be determined) are passed on to the second level, with high probability.
The goal of the second-level filter is to handle all but O( n

lg n ) elements with high
probability. If c1t ≤ n

lg n , this filter is not used. Otherwise, we use this filter,
which outputs hashcodes in the range [ t

3 ]. Finally, the third level is just a brute-
force solution using a high-performance dictionary. Because it needs to handle
only min{O( n

lg n ), c1t} elements, the output range can be [ t
3 ] and the space is

O(n) bits. This dictionary can always be made to work with high probability in
n (e.g. by inserting dummy elements up to Ω(

√
n) values).

A query tries to locate the element in all three levels. Because all levels can
answer membership queries, we know when we’ve located an element, and we
can just obtain a hashcode from the appropriate level. Similarly, deletion just
removes the element from the appropriate level.

The first-level filter. Let μ = c2(n
t )3, for a constant c2 to be determined. We use

a quotient hash function mapping the universe into b = n
μ buckets. Then, we

expect μ elements per bucket, but we will allow for an additional μ2/3 elements.
By Theorem 5, the number of elements that overflow is with high probability at
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most ne−Ω( 3√μ) + nα. For big enough c2, this is at most c1
2 t (remember that we

are in the case when nα is negligible).
Now we describe how to handle the elements inside each bucket. For each

bucket, we have a hashcode space of [μ + μ2/3]. Then, the code space used
by the first-level filter is n + n

3√μ ≤ n + t
3 for big enough c2. We use a high-

performance dictionary inside each bucket, which stores hashcodes as associated
data. We also store a list of free hashcodes to facilitate insertions. To analyze the
space, observe that a hashcode takes only O(lg n

t ) bits to represent. In addition,
the high-performance dictionary need only store the quotient of an element.
Indeed, the element is uniquely identified by the quotient and the bucket, so to
distinguish between the elements in a bucket we only need a dictionary on the
quotients. Thus, we need O(lg uμ

n ) = O(lg u
n + lg n

t ) bits per element.
The last detail we need to handle is what happens when an insertion in the

bucket’s dictionary fails. This happens with probability μ−c3 for each insertion,
where c3 is any desired constant. We can handle a failed insertion by simply
passing the element to the second level. The expected number of elements whose
insertion at the first level failed is nμ−c3 ≤ c1

4 t for big enough c3. Since we
can assume t = Ω(n5/6), we have μ = O(

√
n) and b = Ω(

√
n). This means we

have Ω(
√
n) dictionaries, which use independent random coins. Thus, a Chernoff

bound guarantees that we are not within twice this expectation with probability
at most e−Ω(t/

√
n) = e−nΩ(1)

because t = Ω(nα). Thus, at most c1t elements in
total are passed to the second level with high probability.

The second-level filter. We first observe that this filter is used only when lg u
n =

O( 4
√

lg n). Indeed, t ≤ n2

u , so when lg u
n = Ω( 4

√
lgn), we have t = o( n

lg n ), and we
can skip directly to the third level.

We use a quotient hash function mapping the universe to b = c1t
4√lg n

buck-
ets. We allow each bucket to contain up to 2 4

√
lgn elements; overflow elements

are passed to the third level. By Theorem 5, at most n/2Ω( 4√lg n) = o(n/ lg n)
elements are passed to the third level, with high probability. Because buckets
contain O( 4

√
lg n) elements of O( 4

√
lg n) bits each, we can use word-packing tricks

to handle buckets in constant time. However, the main challenge is space, not
time. Observe that we can afford only O(lg u

n ) bits per element, which can be
much smaller than O( 4

√
lgn). This means that we cannot even store a permuta-

tion of the elements inside a bucket. In particular, it is information-theoretically
impossible even to store the elements of a bucket in an arbitrary order!

Coping with this challenge requires a rather complex solution: we employ
O(lg lg n) levels of filters and permutation hashing inside each bucket. Let us
describe the level-i filter inside a bucket. First, we apply a random permutation
to the bucket universe (the quotient of the elements inside the bucket). Then,
the filter breaks the universe into c4

4√lg n
2i equal-sized tiles. The filter consists of

an array with one position per tile. Such a position could either be empty, or
it stores the index within the tile of an element mapped to that tile (which is
a quotient induced by the permutation at this level). Observe that the size of
the tiles doubles for each new level, so the number of entries in the filter array
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halves. In total, we use h = 1
8 lg lg n filters, so that the number of tiles in any

filter is Ω( 8
√

lg n). Conceptually, an insertion traverses the filters sequentially
starting with i = 0. It applies permutation i to the element, and checks whether
the resulting tile is empty. If so, it stores the element in that tile; otherwise,
it continues to the next level. Elements that cannot be mapped in any of the
h levels are passed on to the third level of our big data structure. A deletion
simply removes the element from the level where it is stored. A perfect-hash
query returns the identifier of the tile where the element is stored. Because the
number of tiles decreases geometrically, we use less than 2c4 4

√
lg n hashcodes per

bucket. We have c1t
4√lg n

buckets in total and we can make c1 as small as we want,
so the total number of hashcodes can be made at most t

3 .
We now analyze the space needed by this construction. Observe that the size

of the bucket universe is v = u ·
4√lg n
c1t . Thus, at the first level, the filter requires

lg v
c4

4√lg n
bits to store an index within each tile. At each consecutive level, the

number of bits per tile increases by one (because tiles double in size), but the
number of tiles halves. Thus, the total space is dominated by the first level, and
it is O(lg u

t ) = O(lg u
n + lg n

t ) bits per element.
The full version of the paper contains the proof that the number of unfiltered

elements is small, as well as further implementation details.

4 Solution for Perfect Hashing

The data structure supporting perfect hashing but not membership consists of
one quotient hash function, selected from the family of Theorem 5, and two
instances of the data structure of Theorem 4 supporting perfect hashing and
membership. The quotient hash function divides the universe into b buckets,
and we set b = c n2

t+1 for a constant c ≥ 1 to be determined.
The first data structure supporting perfect hashing and membership stores the

set B of buckets occupied by at least one element of S. An entry in B effectively
represents an element of S that is mapped to that bucket. However, we have no
way of knowing the exact element. The second data structure supporting perfect
hashing and membership stores the additional elements of S, which at the time
of insertion were mapped to a bucket already in B.

Insertions check whether the bucket containing the element is in B. If not, we
insert it. Otherwise, we insert the element into the second data structure. Dele-
tions proceed in the reverse order. First, we check whether the element is listed
in the second data structure, in which case we delete it from there. Otherwise,
we delete the bucket containing the element from the first data structure.

The range of the first perfect hash function should be [n+ t
2 ]. For the second

one, it should be [ t
2 ]; we show below that this is sufficient with high probability.

Thus, we use [n+t] distinct hashcodes in total. To perform a query, we first check
whether the element is listed in the second data structure. If it is, we return the
label reported by that data structure (offset by n + t

2 to avoid the hashcodes
from the first data structure). Otherwise, because we assume that the element
is in S, it must be represented by the first data structure. Thus, we compute
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the bucket assigned to the element by the quotient hash function, look up that
bucket in the first data structure, and return its label.

It remains to analyze the space requirement. We are always free to reduce t,
so we can assume t = O(n/ lg u

n ), simplifying our space bound to O(n lg n
t+1 ).

Because |B| ≤ n, the first data structure needs space O(lg
(

b
n

)
+ n lg n

t/2+1 ) =
O(n lg b

n + n lg n
t+1 ) = O(n lg n

t+1 ). Because b ≥ n, our family of hash functions
guarantees that, with high probability, the number of elements of S that were
mapped to a nonempty bucket at the time of their insertion is at most 2n2

b +nα =
2(t+1)

c +nα. If nα < t
8 , this is at most t

4 for sufficiently large c. If t = O(nα), we
can use a brute-force solution: first, construct a perfect hashing structure with
t = n (this is possible through the previous case); then, relabel the used positions
in the [2n] range to a minimal range of [n], using O(n lg n) memory bits. Given
this bound on the number of elements in the second structure, note that the
number of hashcodes allowed (t/2) is double the number of elements. Thus the
space required is O(lg

(
u

t/4

)
+ t) = O(t lg u

t ) = O( n
lg(u/n) lg u

n/ lg(u/n) ) = O(n).

5 Lower Bound for Perfect Hashing

This section proves Theorem 2 assuming u ≥ 2n. We defer case of smaller u to the
full version. Our lower bound considers the dynamic set S which is initially {n+
1, . . . , 2n} and is transformed through insertions and deletions into {1, . . . , n}.
More precisely, we consider n

2t stages. In stage i, we pick a random subset Di ⊆
S ∩ {n + 1, . . . , 2n}, of cardinality 2t. Then, we delete the elements in Di, and
we insert elements Ii = {(i− 1)2t+ 1, . . . , i · 2t}. Note than, in the end, the set
is {1, . . . , n}. By the easy direction of Yao’s minimax principle, we can fix the
random bits of the data structure, such that it uses the same expected space
over the input distribution.

Our strategy is to argue that the data structure needs to remember a lot
of information about the history, i.e. there is large hysteresis in the output of
the perfect hash function. Intuitively, the 2t elements inserted in each stage
need to be mapped to only 3t positions in the range: the t positions free at the
beginning of the stage, and the 2t positions freed by the recent deletes. These
free positions are quite random, because we deleted random elements. Thus,
this choice is very constrained, and the data structure needs to remember the
constraints.

Let h be a function mapping each element in [2n] to the hashcode it was
assigned; this is well defined, because each element is assigned a hashcode ex-
actly once (though for different intervals of time). We argue that the vector of
sets (h(I1), . . . , h(In/2t)) has entropy Ω(n lg n

t ). One can recover this vector by
querying the final state of the data structure, so the space lower bound follows.

We first break up the entropy of the vector by: H(h(I1), . . . , h(In/2t)) =∑
j H(h(Ij) | h(I1), . . . , h(Ij−1)). Now observe that the only randomness up to

stage j is in the choices of D1, . . . , Dj−1. In other words, D1, . . . , Dj−1 determine
h(I1), . . . , h(Ij−1). Then, H(h(I1), . . . , h(In/2t)) ≥

∑
j H(h(Ij) | D1, . . . , Dj−1).

To alleviate notation, let D<j be the vector (D1, . . . , Dj−1).
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Now we lower bound each term of the sum. Let Fj be the set of free positions
in the range at the beginning of stage j. Because we made the data structure
deterministic, Fj is fixed by conditioning on D<j. Because Ij can be mapped to
free positions only after Dj is deleted, we find that h(Ij) ⊂ Fj ∪ h(Dj). Note
that |h(Ij)| = 2t, but |Fj | = t. Thus, |h(Dj) \ h(Ij)| ≤ t.

Now we argue that the entropy of h(Dj) is large. Indeed, Dj is chosen ran-
domly from S ∩ {n+ 1, . . . , 2n}, a set of cardinality n− 2t(j − 1). Conditioned
on D<j , the set S ∩ {n + 1, . . . , 2n} is fixed, so its image through h is fixed.
Then, choosing Dj randomly is equivalent to choosing h(Dj) randomly from a
fixed set of cardinality n− 2t(j − 1). So H(h(Dj) | D<j) = lg

(
n−2t(j−1)

2t

)
. Now

consider h(Dj) \ h(Ij). This is a set of cardinality at most t from the same set
of n− 2t(j − 1) positions. Thus, H(h(Dj) \ h(Ij) | D<j) ≤ lg

(
n−2t(j−1)

t

)
+ t.

Using H(a, b) ≤ H(a) +H(b), we have H(h(Dj) | D<j) ≤ H(h(Dj) ∩ h(Ij) |
D<j) +H(h(Dj) \ h(Ij) | D<j). Of course, H(h(Ij) | D<j) ≥ H(h(Ij) ∩ h(Dj) |
D<j). This implies H(h(Ij) | D<j) ≥ H(h(Dj) | D<j) − H(h(Dj) \ h(Ij) |
D<j) ≥ lg

(
n−2t(j−1)

2t

)
− lg

(
n−2t(j−1)

t

)
− t. Using

(
a
b

)
/
(
a
c

)
=

(
a−c

b

)
, we have

H(h(Ij) | D<j) ≥ lg
(
n−t(2j−1)

2t

)
− t. For j ≤ n

3t , we have H(h(Ij) | D<j) =
Ω(t lg n

t ). We finally obtain H(h(I1), . . . , h(Ij)) = Ω(n lg n
t ).
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Abstract. Broadcasting has been proved to be an efficient means of
disseminating data in wireless communication environments (such as
Satellite, mobile phone networks; other typical broadcast networks
are Videotext systems). Recent works provide strong evidence that
correlation-based broadcast can significantly improve the average service
time of broadcast systems. Most of the research on data broadcasting was
done under the assumption that user requests are for a single item at
a time and are independent of each other. However in many real world
applications, such as web servers, dependencies exist among the data
items, for instance: web pages on a server usually share a lot of items
such as logos, style sheets, title-bar... and all these components have to
be downloaded together when any individual page is requested. Such web
server could take advantage of the correlations between the components
of the pages, to speed up the broadcast of popular web pages. This pa-
per presents a theoretical analysis of data dependencies and provides a
polynomial time 4-approximation as well as theoretical proofs that our
correlation-based approach can improve by an arbitrary factor the per-
formances of the system. To our knowledge, our solutions are the first
provably efficient algorithms to deal with dependencies involving more
than two data items.

Topics: Approximation algorithms, Wireless and Push-based broadcast
scheduling, Bluetooth and Satellite networks.

1 Introduction

Motivations. Broadcasting has been proved to be an efficient means of dissem-
inating data in wireless communication environments (such as Satellite, mobile
phone networks; other typical broadcast networks are Videotext systems). Re-
cent works [15, 14, 10] provide strong evidence that correlation-based broadcast
can significantly improve the average service time of broadcast systems. Most
of the research on data broadcasting was done under the assumption that user
requests are for a single item at a time and are independent of each other. How-
ever in many real world applications, such as web servers, dependencies exist
among the data items, for instance: web pages on a server usually share a lot
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of items such as logos, style sheets, titlebar..., and all these components have to
be downloaded together when any individual page is requested. Such web server
could take advantage of the correlations between the components of the pages,
to speed up the broadcast of popular web pages.

This paper presents a theoretical analysis of data dependencies and provides
theoretical proofs that a correlation-based approach can improve arbitrarily the
performance of the system. To our knowledge, our solutions are the first prov-
ably efficient algorithms to deal with dependencies involving more than two data
items. Our results rely essentially on the construction of a new lower bound,
based on a non-linear convex minimization program, in combination with exist-
ing heuristics.

Background. Broadcast (or push-based) server usually maintains a profile of
the typical users, i.e., the popularity of each item (see [1]), and schedules the
broadcasts of each item accordingly, obliviously of the effective requests made
by the users, so as to minimize the average service time for the users. The
users connect at random instants and monitor the broadcast channel until the
information they are interested in is broadcast. The user profiles can easily be
obtained by analyzing the log files of the server or by asking the user to list its
interests at the subscription to the service (see [1]). Such profiles provide not
only informations on the popularity of each item, but also informations on their
correlations. Several heuristics [15, 14, 18] have been proposed to take advantage
of these dependencies.

Very little is known theoretically on the performance of these algorithms. As
far as we know, the only papers that addressed this question theoretically are
[8, 6]. In [8], the authors give optimal polynomial time algorithms for broadcast-
ing a set of n = 2 items given arbitrary user profiles. In [6], the authors design
lower bounds and constant factor approximation algorithms to design cyclic
schedules (i.e., schedules where each item is broadcast exactly once per cycle) for
the case where correlations are restricted to dependencies between pairs of items.

Earlier theoretical work, including NP-hardness results and approximation
algorithms, on the databroadcast problem with independent requests can be
found in [2, 5, 17, 19, 16, 7]. Related work on on-demand broadcast where request
asks for a single item, can be found in [11, 4]. Current results in this last setting
include intractability results as well as competitive algorithms with resource
augmentation. As far as we know, introducing explicit dependencies is still an
unexplored question in this setting.

The Customized Newspaper Broadcast Problem. We adopt the following setting.
n unit length news items are made available on a broadcast server, e.g.: Weather,
Sport, Stock exchange, International,... Each user is interested in a given subset
of the news items with some probability, e.g.: {Weather, Stock exchange, Sport},
{Weather, International}, or {International, Stock exchange},... He then connects
at a random time, monitors the broadcast channel until he is served, i.e., until
all the news items he is interested in have been broadcast, e.g.: Weather and
International. The goal for the server is to find a schedule of the news items that
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minimizes the average service time of the user, given the request probability
for each available subset of items. These probabilities are naturally obtained by
asking the user to check its topics of interests in the list of available items when
subscribing to the news system (which is now a widespread practice over the
Internet). In the terms of [6] and [15, 14], our model of user requests is refered as
“AND” and “unordered” requests, respectively. Note that the constraint that all
news item have unit length is not restrictive, since any longer news item can be
split into a set of unit length packets, which furthermore, fits the actual situation
of a web server on Internet where all files are cut into equal size packets before
been sent.

Our Contribution. Our main contribution consists in providing a new lower
bound for the cost of an optimum schedule (Propositions 3 and 4), which is
shown to be tight up to a constant factor. This lower bound is expressed as a
non-linear convex minimization problem and is solved to obtain polynomial time
4-approximation algorithms (Theorems 2 and 3). These are, as far as we know,
the first algorithms with bounded guarantee when dependencies involve more
than two items. We also use this lower bound to show that correlation-based
schedulers can indeed improve the quality of the previously known solutions by
an arbitrary factor with respect to the optimum cost (Example 1). Our algo-
rithms use previously known heuristics as subroutines. In particular, perfectly
periodic schedules introduced in [7, 9] find here a new interesting application
since their regularity can solve efficiently dependencies between items by forc-
ing an order on them. Our algorithms yield significant improvements to system
performances by managing correlations and are also not too complicated to im-
plement (and would be in particular well adapted to time multiplexing environ-
ments such as Bluetooth networks). Interestingly enough, the classic randomized
algorithm is shown to be inefficient in this setting (Theorem 1 and Example 2).

The next section gives a formal description of the problem and states its NP-
hardness. Then, Section 3 presents our new lower bound, and shows that previous
approaches ignoring correlations can lead to arbitrarily bad performances. Sec-
tion 4 analyzes a classic randomized algorithm and shows that it achieves an
approximation ratio of 2Hn exactly. Our deterministic 4-approximation algo-
rithm is given in Section 5. Finally in Section 6, we extend our results to the
setting where the broadcast of each item has a cost (e.g., see [5]).

2 Notations and Preliminaries

The problem. The input consists of:

– n unit length news items M1, . . . ,Mn,
– ζ = {S1, . . . , Sk} a set of k non-empty distinct sets of news items,
Sj ⊆ {1, . . . , n}, and

– positive request probabilities (pS)S∈ζ for each set S in ζ, such that∑
S∈ζ pS = 1.
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A schedule S is an infinite sequence S = S(0)S(1)S(2)S(3) . . ., where S(t) ∈
{⊥, 1, . . . , n} for all t. If S(t) = i, we say that news item Mi is broadcast at time
t in schedule S, i.e., between time t and t + 1; if S(t) = ⊥, no item is broadcast
at time t. A schedule S is periodic with period T if S(t + T ) = S(t), for all time
t. Such a periodic schedule is completely determined by its cycle, i.e., the finite
sequence S(0)S(1) . . . S(T − 1).

The cost, COST(S), of a schedule S is defined as the average service time to
a random request, where the average is taken over the moments when requests
occur and over the type Sj of news items subset requested. In our model, each
client asks for news item set S ∈ ζ with probability pS , connects at a random
(integer) instant t according to some Poisson process, and is served when all the
news items Mi, i ∈ S, have been broadcast. We denote by ST(S, S, t) the service
time of schedule S to a request for news items set S arriving at time t.

t
M1 M2 M1 M3 M5 M2 M4 M3 M1 M4 M1 M5 M2 

{ M1,M2,M3,M4 } Service time for { M1,M2,M3,M4 }

If ti � t is the first instant when news item Mi is broadcast on or after time t
in S, then ST(S, S, t) = maxi∈S(ti+1) (we consider that a request is served when
the broadcast of the last requested item ends). Abusing the notation, ST(S,Mi, t)
will refer to 1+ ti. The average service time to a random request arriving at time
t is then

AST(S, t) =
∑
S∈ζ

pS · ST(S, S, t).

Since the requests arrive according to some Poisson process, requests are uni-
formly distributed over any given time interval I (see [12]). Thus, the average
service time AST(S, I) of the schedule S during time interval I = [t1, t2] is

AST(S, I) =
1

t2 − t1

t2−1∑
t=t1

AST(S, t).

The cost of schedule S is then defined as the asymptotic value of this quantity
as t goes to infinity:

COST(S) = lim sup
t→∞

AST(S, [0, t]).

Note that if S is periodic with period T , its cost is simply defined as:

COST(S) =
1
T

T−1∑
t=0

AST(S, t).

Our goal is to compute a schedule with minimum cost. We denote by OPT =
infS COST(S) the optimum cost of a schedule for a given instance.

The customized newspaper problem is a generalization of the preemptive data-
broadcast setting which is shown to be strongly NP-hard in [19]. Thus,

Proposition 1 ([19]). The customized newspaper problem is strongly NP-hard.
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Reduction to periodic schedules. General schedules are hard to handle since the
frequency of each item may vary widely over time. The following lemma shows
that we can restrict our study to periodic schedules which are much simpler to
deal with. The following proposition follows the lines of [16].

Proposition 2. OPT = inf
S periodic

COST(S).

3 Lower Bounding Optimal Cost

We present now a new lower bound on which our approximation algorithms rely.
This lower bound takes into account the correlations between the requests, i.e.,
the fact that a given item might be requested by different types of requests for
different sets of news items. As opposed to previous approaches (e.g., [2, 5]), our
lower bound cannot be solved by means of Lagrangian relaxation but can be
expressed as a convex minimization program and solved by using the ellipsoid
algorithm [13].

Section 3.2 shows that taking into account these correlations is indeed needed
to estimate correctly the optimum cost, by showing that previously known meth-
ods (e.g., [2, 5, 16, 19]), that only used the probability that a given item is re-
quested (ignoring possible correlations), can construct schedules with cost as
large as Ω(

√
n) times the optimum value.

3.1 Lower Bound

According to Proposition 2, any lower bound on the cost of periodic schedules
is a lower bound on the optimum cost. We now focus on periodic schedules.

Lemma 1. Let S be a periodic schedule with period T , such that each news item
Mi is broadcast exactly ni times per cycle. Then

COST(S) � LB(τ),

where LB(τ) =
1
2

+
1
2

∑
S∈ζ

pS max
i∈S

τi , with τi = T/ni and 1/τ1 + · · ·+ 1/τn � 1.

Proof. Consider a request for a set S ∈ ζ arriving at time t. Since, this request
waits for the broadcast of each news item Mi with i ∈ S, its service time is at
least:

ST(S, S, t) � ST(S,Mi, t), for all i ∈ S.

Then, by taking the average over t, the average service time to a request for set
S is at least:

AST(S, S) � AST(S,Mi), for all i ∈ S,

where AST(S,Mi) denotes the average service time to a request that would ask
for news item Mi alone. It is known from previous work (e.g., [2, 5]) that if Mi

is broadcast ni times in a periodic schedule with period T , then AST(S,Mi) �
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1
2 + T

2ni
. Consider indeed t1, . . . , tni the time elapsed between the ends of each of

the ni broadcasts of Mi during a cycle of S. With probability tj/T , the request
for Mi falls in an interval of length tj , waits on average

( 1
tj

∑tj

t=1(tj − t)
)

= tj−1
2

time for the broadcast of Mi to begin, and is finally served one unit of time later,
when the download of Mi is completed. Thus, AST(S,Mi) = 1 +

∑ni

j=1
tj(tj−1)

2T .

But t1 + · · ·+ tni = T , then AST(S,Mi) = 1
2 +

∑ni

j=1
t2j
2T . Furthermore, the sum

of the square of the tjs is classically minimized when they are all equal to T/ni,
which finally yields:

AST(S,Mi) � 1
2

+
T

2ni
=

1
2

+
τi
2
,

where τi = T/ni. Since, this holds for all i ∈ S,

AST(S, S) � max
i∈S

AST(S,Mi) � 1
2

+
1
2

max
i∈S

τi.

Finally, summing over all S ∈ ζ gives

COST(S) =
∑
S∈S

pS AST(S, S) � 1
2

+
1
2

∑
S∈ζ

pS max
i∈S

τi = LB(τ).

As no more than T news items can be broadcast in a time interval of length T ,
we have

∑n
i=1 ni � T , i.e.,

n∑
i=1

1
τi

� 1.

We now state our lower bound, on which the algorithms presented in Sec-
tions 4 and 5 rely.

Proposition 3. The following non-linear convex minimization problem LB is a
lower bound on the optimum cost OPT.

LB =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Minimize
τ > 0

1
2

+
1
2

∑
S∈ζ

pS max
i∈S

τi

such that:
1
τ1

+ · · ·+ 1
τn

� 1

(1)

There exists a unique solution τ∗ to the minimization problem LB, and one can
compute in polynomial time a feasible solution τ ′ such that LB(τ ′) � LB + 1

4 .

Proof. By Proposition 2 and Lemma 1, clearly LB � OPT. Now, the objective
function LB(τ) is a continuous convex function, and is minimized over a strictly
convex closed domain D = {τ ∈ (R∗

+)n : 1/τ1 + · · ·+ 1/τn � 1}. Note that the
Round Robin schedule that broadcasts cyclicallyM1 to Mn, shows that OPT � n
and then LB � n. Since, LB(τ) > n as soon as for some S ∈ ζ and some
i ∈ S, τi > n/pS, the minimum of LB(τ) is in fact obtained on the compact
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set D′ = D ∩ (0, n
minS∈ζ pS

]n. Since LB(τ) is continuous, there exists τ∗ ∈ D′

such that LB(τ∗) = LB. Assume that two such optimal solutions exist, say τ1
and τ2. Since the objective function and the domain are convex, τ ′ = τ1+τ2

2 is
also an optimal solution. But τ ′ lies in the interior of the domain, and then
scaling it down by some factor λ < 1 allows to obtain a better feasible solution:
LB(λτ ′) < LB(τ ′) = LB, contradiction. The optimal solution τ∗ to LB is then
unique. Furthermore, 1/τ∗1 + · · ·+ 1/τ∗n = 1.

A feasible solution τ ′ within an additive error of 1
4 of the optimum value can

be computed in polynomial time using the ellipsoid method (e.g., see [13]). The
only ingredient needed is a separation oracle. Note that non-linear minimization
problem LB can be restated as follows:

LB =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Minimize
τ1, . . . , τn > 0

σS1 , . . . , σSk
> 0

1
2

+
∑
S∈ζ

pSσS

such that: τi � σS ∀S, ∀i ∈ S

1
τ1

+ · · ·+ 1
τn

� 1

(2)

We just need to provide a separation oracle for each of these constraints.
Only the last one is non-linear. But, for any solution τ̃ violating this con-
straint, the tangent hyperplane to the differentiable convex surface ∂D = {τ :
1
τ1

+ · · ·+ 1
τn

= 1} at the projection of τ̃ on ∂D, provides in polynomial time a
separation oracle for τ̃ .

3.2 Requests Correlations Mislead Previous Approaches

We show in this section that previously known algorithms (e.g., [2, 3, 5, 17, 19, 7])
can generate schedules with cost arbitrarily larger than the optimum value when
requests are correlated.

In previous approaches, only the requests probability πi for each individual
item Mi are used. Since item Mi is requested for each request for a set S con-
taining i, the probability πi that an individual item Mi is requested by some
user, is proportional to

∑
S:i∈S pS , i.e.,

πi =
∑

S:i∈S

pS

〈ζ〉 , where 〈ζ〉 denotes the average size of a set 〈ζ〉 =
∑
S∈ζ

|S|pS .

All previous approaches (e.g., [2, 5, 17, 19]) then construct a schedule such that
each item Mi is broadcast every Θ(ϑi) where ϑ is given by the “square-root rule”
(e.g., [2, 5]):

ϑi =

∑n
j=1

√
πj

√
πi

.

The example bellow shows that previously known solutions using these ϑis can
generate schedules with cost arbitrarily large with respect to the optimum.
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Example 1. Consider 2n news items A1, . . . , An, B1, . . . , Bn and n sets:

ζ = {{A1, . . . , An, B1}, . . . , {A1, . . . , An, Bn}},

where each set is requested with probability 1
n . The request probability for each

individual item is then πA = 1
n+1 for the Ais and πB = 1

n(n+1) for the Bjs. Thus,

for all Ais, ϑA = n
√

πA+n
√

πB√
πA

= Θ(n) and, for all Bjs, ϑB = n
√

πA+n
√

πB√
πB

=
Θ(n

√
n). Consider now a schedule that broadcasts each Ai every Θ(ϑA) and

each item Bj every Θ(ϑB), as in previous approaches.

Assuming that the requests were independent, each item Ai and each item Bj

are respectively requested with probabilities πA and πB, and the average service
time of this schedule would be:

n · πA ·Θ(ϑA) + n · πB ·Θ(ϑB) = Θ(n · 1
n
· n+ n · 1

n2 · n
√
n) = Θ(n).

But, since the requests are not independent, the cost of any schedule that broad-
casts each item every Θ(ϑ), is at least, according to Lemma 1:

LB(Θ(ϑ)) =
1
2

+
1
2
· n · 1

n
·max(Θ(ϑA), Θ(ϑB)) = Ω(n

√
n).

In fact, the cost of the Round Robin schedule that broadcasts each item in turn
cyclically, is only Θ(n) (every request is served after at most 2n time units).

We conclude that treating correlated requests individually can yield schedules
with cost as large as Ω(

√
n) times the optimum, where n is the number of items.

�

As a consequence, considering the dependencies between requests for different
items is essential to obtain good performances to data broadcast systems. The
next sections show how we use our lower bound to compute efficient broadcast
schedules.

4 Randomized Approximation

The lower bound in Proposition 3 suggests that each news item Mi should be
broadcast every τ∗i , which is approximated by τ ′i given by the ellipsoid method.
We analyze here a classic randomized scheduler that chooses the next item Mi

to be broadcast with probability 1/τ ′i . We show that it achieves a 2Hn factor
approximation, and that our analysis is tight by providing a family of tight
instances.

Lemma 2. The expected cost of the random schedule S output by Algorithm 1
is at most

E[COST(S)] � Hn

∑
S∈ζ

pS max
i∈S

τ ′i ,

where Hn = 1 + 1
2 + · · ·+ 1

n .
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Algorithm 1. Randomized scheduler
Computes τ ′ given by Proposition 3.
for all t � 0 do

Pick i ∈ {1, . . . , n} with probability 1/τ ′
i .

Broadcast Mi at time t.
end for

Proof. The proof relies on a classic coupon collector argument (e.g., see [12]).
Consider a request for a set S of size q. At any time t, each news item in S
is broadcast with probability at least ρS = mini∈S 1/τ ′i . Let tj be the random
variable for the time elapsed since the issue of the request until j distinct items
of S have been downloaded. The expected service time to the request is clearly
E[tq]. Let Tj = tj−tj−1 for j = 1, . . . , q, with t0 = 0. Clearly, E[tq] =

∑q
j=1 E[Tj ].

Since after time tj−1, j−1 distinct items have been downloaded, the probability
to get a new item from S in each time slot between tj−1 and tj is at least
ρS,j = (q − j + 1)ρS . Thus,

E[Tj ] �
∑
t�0

(t + 1)(1− ρS,j)tρS,j =
1

(q − j + 1)ρS
=

maxi∈S τ
′
i

q − j + 1
.

The expected service time to a request for S in the random schedule S is then
at most:

E[AST(S, S)] �
q∑

j=1

1
q − j + 1

max
i∈S

τ ′i � Hn max
i∈S

τ ′i .

Then summing over all the sets S ∈ ζ yields the result.

Theorem 1. Algorithm 1 is a polynomial time randomized 2Hn-approximation
for the customized newspaper problem.

The next example shows that our analysis of the randomized scheduler is tight.

Example 2. Consider k disjoint sets S1, . . . , Sk of q news items each, Sj =
{M1,j, . . . ,Mq,j} for j = 1, . . . , k. Each set is requested with probability 1/k.
By symmetry of the instance, the unique solution to LB is obviously τ∗i,j = kq
for all 1 � i � q and 1 � j � k. Since each item of each set Sj is broadcast
independently in each time slot with probability 1/kq, by the classic coupon
collector argument (e.g., see [12]), the expected cost of the random schedule S

is then exactly:
E[COST(S)] = Hq · k · q.

Now consider the Round Robin schedule R that broadcasts each item of each
set cyclically as follows: M1,1 . . .Mq,1M1,2 . . .Mq,2 . . .M1,k . . .Mq,kM1,1 . . .. Tak-
ing k = lnm and q = m, we get for m→∞:

E[COST(S)] ∼ Hm ·m lnm and COST(R) ∼ m lnm
2

,

which implies that the optimum cost is at least at a factor 2Hn of the optimum
value where n = m lnm is the number of news items. �
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Algorithm 2. Determistic 4-approximation algorithm
Computes τ ′ given by Proposition 3.
for all i ∈ {1, . . . , n} do

βi ← 2�log2 τ ′
i�

end for
Broadcast the news items (Mi) according to a perfectly periodic schedule built on
the periods (βi).

5 Deterministic 4-Approximation

The main issue with the randomized algorithm above is that items of a given
set appear in a random order which is inefficient and introduces a Hn factor to
the cost (due to a “coupon collector phenomenon”). A special type of sched-
ules, known as perfectly periodic schedules, is of particular interest here. These
schedules were implicitly introduced in [3] in a very simple setting and studied
in details by [7, 9] in the context of bluetooth and sensor networks. In these
networks, the clients access to a communication channel by means of time mul-
tiplexing. In these protocols, the ith client is given a period βi and an offset oi,
and can emit only during time slots oi + kβi, with k = 1, 2, . . ., each of these
slots being different for each client. Such a schedule is said to be perfectly peri-
odic since each client i gets access to the channel exactly every βi time. These
perfectly periodic schedules find an interesting new application here: their reg-
ularity solves efficiently the dependencies between items by forcing an order on
them.

In [3, 7], the authors show the following lemma that states that if the requested
periods βis are power of 2 and satisfies the maximum bandwidth constraint
1/β1 + · · ·+ 1/βn � 1, then one can construct in polynomial time a perfectly
periodic schedule for this set of periods.

Lemma 3 (Perfectly periodic schedules [3, 7]). Given a set of periods (βi)
such that for all i, βi = 2ji for some integer ji, and 1/β1 + · · ·+ 1/βn � 1, one
can construct in polynomial time a perfectly periodic schedule that broadcasts
each news item Mi exactly every βi, for all i.

Algorithm 2 follows the lines of the “power-of-two” heuristic given in [3]: first
round up each period τ ′i (given by Proposition 3) to the closest power of 2, βi,
and then constructs a perfectly periodic schedules for the set of periods (βi).

The next theorem shows that with our choice of τ ′ given by our lower bound,
this algorithm achieves an approximation ratio of 4. This algorithm is, to our
knowledge, the first to obtain a constant factor approximation for the data broad-
cast problem with dependencies involving more than two items.

Theorem 2. Algorithm 2 is a polynomial time deterministic 4-approximation
for the customized newspaper problem.

Proof. Since the periods τ ′i are rounded up to the closest power of 2, βi, we have
τ ′i � βi � 2τ ′i . Then 1/β1 + · · · + 1/βn � 1 and Lemma 3 gives in polynomial
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time a perfectly periodic schedule S that broadcasts each item Mi exactly every
βi. Every request for a set S ∈ ζ then waits at most βi before downloading each
Mi, with i ∈ S. The average service time to a request for S is then bounded by

AST(S, S) � 1 + max
i∈S

βi � 1 + 2 max
i∈S

τ ′i .

Summing over S ∈ ζ yields finally the following bound on the cost of S:

COST(S) � 1 + 2
∑
S∈ζ

pS max
i∈S

τ ′i � 1 + 4
(
LB(τ ′)− 1

2
)

� 1 + 4
(
LB−1

4
)

� 4 OPT .

6 Adding Broadcast Costs

A classic extension of data broadcast problem includes broadcast costs (e.g., see
[5]). An instance of the customized newspaper broadcast problem with broadcast
costs associates a cost ci to each news item Mi, which is applied every time Mi

is broadcast. The goal is now to find a schedule S that minimizes to sum of
two quantites: the average service time to a random request, COST(S), and
the average broadcast cost, BC(S). The average broadcast cost of S over a time
interval I = [t1, t2] is defined as:

BC(S, I) =
1

t2 − t1

t2−1∑
t=t1

cS(t)

The average broadcast cost of S is then defined as the asymptotic value of this
quantity:

BC(S) = lim sup
t→∞

BC(S, [0, t]).

The cost of a schedule is then defined as COSTBC(S) = COST(S) + BC(S). We
denote by OPTBC the optimum cost: OPTBC = infS COSTBC(S). As before,
the following lower bound is obtained by bounding the cost of periodic schedules
from which we derive a deterministic 4-approximation (proofs are omitted due
to space constraints).

Proposition 4. LBBC is a lower bound on the optimum cost OPTBC , where:

LBBC =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Minimize
τ > 0

1
2

+
1
2

∑
S∈ζ

(
pS max

i∈S
τi
)

+
n∑

i=1

ci
τi

such that:
1
τ1

+ · · ·+ 1
τn

� 1

There exists a unique solution τ∗BC to the convex minimization problem LBBC ,
and one can compute in polynomial time a feasible solution τ ′BC such that
LBBC(τ ′BC) � LBBC + 1

4 .

Theorem 3. Using periods τ ′BC instead of τ ′ in Algorithms 1 and 2 yields re-
spectively a randomized 2Hn-approximation and a deterministic 4-approximation
for the customized newspaper problem with broadcast costs.
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optimal partitions of permutations. From these models we derive an LP
rounding algorithm which is a 2-approximation for minimum monotone
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this problem. In computational experiments we see that the rounding
algorithm performs even better in practice. For the associated online
problem, in which the permutation becomes known to an algorithm
sequentially, we derive a logarithmic lower bound on the competitive
ratio for minimum monotone partitions, and we analyze two (bin
packing) online algorithms. These findings immediately apply to online
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1 Introduction

Given a sequence S of distinct integers, we seek a partition into a minimum
number of subsequences (not necessarily consecutive elements in S) with partic-
ular monotony properties. Research in this direction dates back to the famous
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Erdős/Szekeres theorem of 1935 stating that every sequence of n distinct reals
contains a monotone subsequence of length �

√
n�, see the review [11]. Greedily

extracting longest monotone subsequences in an iterative way yields a partition
into at most 2�√n� monotone subsequences in O(n1.5), see [2]. However, finding
a minimum size partition into monotone subsequences is NP-hard [12]. For fixed
k and l (not part of the input), a partition into exactly k increasing and l decreas-
ing subsequences can be computed in O(nk+l), see [4]. A minimum monotone
partition can be approximated within a factor of 1.71 in O(n2.5), see [8].

A natural generalization asks for partitions into k-modal subsequences; that
are sequences having at most k internal local extrema. In particular for 1-modal,
or unimodal, subsequences Chung [5] proves that any permutation of length n
contains such a subsequence of length �

√
3(n− 1/4)−1/2�. Chung also mentions

the guaranteed length of �
√

2n+ 1/4− 1/2� for contained upper unimodal sub-
sequences, i.e., subsequences with no internal minimum. She refers to a simple
proof obtained by Steele and Chvátal (among others, unpublished, but see [6]
for a proof). For the guaranteed length of contained k-modal subsequences,
Chung [5] gives the upper bound

√
(2k + 1)n. Steele [10] proves that the av-

erage length of k-modal subsequences of a permutation of size n asymptotically
grows as 2

√
(k + 1)n. Based on these bounds, one can derive results on the size

of the partitions generated by recursively extracting a respective longest subse-
quence. In particular, this greedy approach yields an upper unimodal partition
of size O(

√
n) in O(n2.5) time [6]. Even though a more general discussion is

possible, we only consider k-modal sequences where the first internal extremum
is a maximum, i.e., a generalization of upper unimodal sequences.

Our Contribution. We show that partitioning a permutation into a minimum
number of k-modal (in particular: unimodal) subsequences is NP-hard. On the
positive side, we propose a linear programming (LP) rounding algorithm which
is the first approximation algorithm for this problem: Its approximation factor is
k+1 for upper k-modal partitions. In fact, an easy observation allows us to derive
a 1.71(k + 1)-approximation first. Not only because of the practical motivation
described below, we are interested in actually computing optimum partitions.
To this end we introduce mixed integer programming (MIP) formulations which
can be easily extended to respect a variety of practical side constraints. We
further give the first negative and (weakly) positive results concerning online
algorithms for minimum monotone partitions. These findings immediately apply
to cocoloring of permutation graphs, for which no online algorithms were known
either.

Motivation and Application. In railroad shunting yards incoming freight trains
are split up and re-arranged according to their destinations. In stations and
depots passenger trains and trams are parked overnight or during low traffic
hours. In either case we are given an ordering of arriving units, and we have
to decide for each unit on which track it will be stored [3, 6, 13]. Our choice is
limited by the fixed number of available tracks and by the mode tracks may be
accessed: Entrance and exit may be on one or on both ends. The parked units
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have to leave each track one by one without additional reordering. Our task is
to choose a track for each unit, and the goal is to use as few tracks as possible.

The relation to our problems is that units on each track represent a subse-
quence of the incoming sequence of units. The different entry/exit combinations
lead in particular to monotone and unimodal subsequences [6]. This relation may
seem to be artificial, and we concede that the purpose of this paper primarily is
to study the more theoretical background; however, the MIP models we propose
can be tailored to fully capture the “real-world” situation, see our conclusions.

2 Preliminaries

Our results hold for any sequence S = [s1, s2, . . . , sn] of n distinct reals, but we
assume S to be a permutation of the first n integers. A subsequence σ of S is a
sequence σ = [si1 , si2 , . . . , sim ] with 1 ≤ ij < ih ≤ n for all j < h. A sequence is
called increasing if si < sj for i < j. It is called decreasing if si > sj for i < j.
These two cases are also subsumed under monotone. An internal extremum of S
is an index i with 2 ≤ i ≤ n− 1 and si−1 < si, si+1 < si or si−1 > si, si+1 > si.
A sequence is k-modal if is has at most k internal extrema; in particular in this
paper, usually the first extremum should be a maximum, i.e., the first sequence
is increasing (then we speak of upper k-modal). Particularly well known is the
case of 1-modal (i.e., unimodal) sequences.

We use an intuitive set notation and language to work with sequences; e.g.,
when referring to all the elements contained in two sequences we speak of their
union. A partition of S of size m is a collection P of m disjoint subsequences
of S, the union of which is precisely S. For a given S we are interested in
finding a partition P of minimum size. The type of subsequences allowed in
P gives the name of the resulting minimization problem, that is, (monotone),
(unimodal), or (upper k-modal). A cover of S is a collection of subsequences, the
union of which contains each element in S at least once. Eliminating multiply
covered elements, one can turn a cover into a partition without increasing the
number of subsequences. This is why our problems are also known as covering a
permutation [12].

Related Concepts. The easiest of our partitions are well studied in a graph theo-
retical context. The permutation graph G = (S,E) associated with a permutation
S has an edge (si, sj) if and only if si > sj and i < j. An increasing subsequence
in S corresponds to an independent set in G, and a decreasing subsequence in
S corresponds to a clique in G.

A partition of the vertices of a graph into independent sets is called a color-
ing. A minimum partition of a permutation graph into either independent sets
or cliques can be given in O(n logn) (see e.g., [9]). Cocoloring a graph asks for
partitioning its vertex set into a minimum number of parts in which each part is
either an independent set or a clique (so the partition may contain a mixture of
both). Thus, in problem (monotone) we compute an optimal cocoloring of a per-
mutation graph. Problem (k-modal) can be interpreted as a particular coloring
problem on hypergraphs [6].
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3 Complexity

In this extended abstract we present all statements for (upper k-modal), but
for the sake of brevity proofs are given only for (upper unimodal). Restricting
attention to this case essentially captures the necessary ideas needed for the
generalization; all details are in the full paper.

Theorem 1. Problem (k-modal) is strongly NP-hard.

m decreasing starters

� increasing
starters

Fig. 1. Point map of the construction used in the proof of Theorem 1; m = 4, � = 3

Proof. Clearly, (upper unimodal) is inNP ; we will drop the attribute upper in the
remainder. We use a reduction from (monotone) which is strongly NP-hard [12].
In fact, one can solve (monotone) by solving a series of p restricted problems of
partitioning S into at most � = 1, . . . , p increasing and at most m = p − �
decreasing subsequences. We reduce to this restricted version.

We represent elements and subsequences as points and lines. Having arranged
the points corresponding to the elements of a given permutation S, we construct
an extended arrangement of points which can be covered by p unimodal lines
if and only if the original set of points can be covered by � increasing and m
decreasing lines. In fact, there always is an optimal solution to our construction
which uses monotone lines only. We briefly use the notion bounding rectangle
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for an axis-parallel rectangle containing the points corresponding to the given
permutation, and no other points of our construction.

Above and to the left of the bounding rectangle we introduce m sets of points
called the decreasing starters. Each of them contains 2p points which form a
strictly decreasing line. The decreasing starters themselves are arranged in a
chain going upwards and rightwards such that their respective ranges of x- and
y-coordinates are disjoint. Above them and to the right of the bounding rec-
tangle we introduce � sets of points called the increasing starters. Each of them
contains 2p points which form a strictly increasing line. The increasing starters
themselves are arranged in a chain going downwards and rightwards such that
their respective ranges of x- and y-coordinates are disjoint. Since p ≤ n, this
construction is polynomial.

If there is a cover of the given permutation’s points with m decreasing and �
increasing lines, then these lines can be extended to p = �+m unimodal, in fact
monotone, lines as indicated in the figure such that all starters are covered.

On the other hand, assume that we are given a cover of p unimodal lines for
the extended point set. The decreasing starters have to be covered by m distinct
decreasing lines, and the increasing starters have to be covered by � distinct
increasing lines. Actually, since the increasing starters are above the decreasing
starters, the arrangement enforces that all of these p = � + m lines have to
be distinct. These can pass through the bounding rectangle, and we obtain the
claimed solution to the original problem. ��

4 Exact Approaches: Mixed Integer Programs

In this section we develop mixed integer programs (MIPs) for computing optimal
partitions (see e.g., [9] for background on linear and integer programming). We
first solve the problem of partitioning into increasing subsequences via a linear
program (LP) which in fact is a minimum cost flow model. We embark on this
expensive approach because we can extend this model to monotone and k-modal
covers by means of additional binary variables. We describe the construction of
the respective directed graphs from which the MIP models can be easily derived.
When we speak of inserting a directed edge e = (i, j), we imply inserting the
tail node i of e, and the head node j of e, if they are not already present. Unless
otherwise stated, there are no capacity bounds on edges except non-negativity.
We denote the source of the respective graph by s and denote the sink by t.

A Network Flow Linear Program. We construct a directed graph as follows.
Corresponding to element si, i = 1, . . . , n, we introduce an edge ei with a lower
capacity bound of 1 and zero cost. We connect the source s to the tail of each
ei with unit cost edges. The head of each ei is connected to the sink t with zero
cost edges. Additionally, we insert a zero cost edge going from the head of ei

to the tail of ej if and only if i < j and si < sj (that is, we model increasing
subsequences; the decreasing case is similar).

We seek a minimum cost flow from s to t. Since our graph is acyclic, an optimal
flow can be decomposed into s-t-paths [1]. By construction, each of these paths
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uses exactly one edge incident to s, and the objective value is the number of
paths. Each path uses a subset of the edges ei. Our construction ensures that
the sequence of the elements si corresponding to the edges ei in each path is an
increasing subsequence of S. Since the lower bound on the edges ei is 1, all these
edges must be contained in some s-t-path; the subsequences of S corresponding
to the paths form a minimum partition into increasing subsequences.

ts

e1 e2 e3 e4 e5

3 1 5 2 4

Fig. 2. The graph for the network flow model in the increasing case, S = [3, 1, 5, 2, 4]

A Flow Based MIP for Monotone Partitions. One can easily find a minimum
monotone cover if we fix for each element whether it occurs in an increasing or in
a decreasing subsequence: This results in two independent instances. We use this
fact to model the monotone case. We use two complementary copies of the above
network flow model, one part corresponding to increasing subsequences, and one
complemented part for decreasing subsequences. For each ei in the increasing
part there is a corresponding copy e′i in the decreasing part. The increasing part
remains as before, and in the decreasing part there is an edge going from the
head of e′i to the tail of e′j if and only if i < j and si > sj . The two parts share
the source s and the sink t. We introduce binary variables xi and x′i and set
the lower bound on the edges ei to xi and of e′i to x′i in the increasing and the
decreasing part, respectively, where we require that xi + x′i = 1.

Again, an optimal flow decomposes into s-t-paths; these correspond to
monotone subsequences of S, and the objective function value gives the number
of paths. Since exactly one of ei or e′i has a lower bound of 1 these subsequences
form a minimum monotone cover.

ts

e1 e2 e3 e4 e5

3 1 5 2 4

e′1 e′2 e′3 e′4e′5
“decreasing”

“increasing”

Fig. 3. The graph for the network flow based MIP model in the monotone case, S =
[3, 1, 5, 2, 4]
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A Flow Based MIP for (Upper) Unimodal Partitions. For the unimodal case,
we start with the graph constructed for the monotone case. From the increasing
part we omit the edges incident to t. From the decreasing part we omit the edges
incident to s. For each i we add an edge connecting the head of ei to the head
of e′i. Again, ei and e′i each get a lower bound of xi and x′i, respectively, where
xi and x′i are binary variables with xi + x′i = 1.

In this graph an s-t-path uses exactly one edge incident to s, at least one
edge ei in the increasing part (corresponding to an increasing subsequence) and
possibly some edges e′i in the decreasing part (corresponding to a decreasing
subsequence). Together, a path represents an upper unimodal subsequence. The
variables xi and x′i control whether si occurs in the increasing part of such a
sequence (including its maximum) or in its decreasing part. Note that also de-
generate cases are considered, that is, monotone sequences are possible parts of a
solution. The binary variables ensure that each si occurs in at least one unimodal
sequence, therefore an optimal solution to this MIP gives a minimum unimodal
cover. This construction generalizes to (upper k-modal) via the construction of
an extended network of k + 1 layers.

e1 e2 e3 e4 e5

e′1 e′2 e′3 e′5

3 1 5 2 4

“decreasing”

“increasing”

ts

e′4

Fig. 4. The graph for the network flow based MIP model in the upper unimodal case,
S = [3, 1, 5, 2, 4], “upper unimodal” meaning—as always in this extended abstract—at
most one internal maximum

5 Approximation Algorithms

Fomin, Kratsch, and Novelli [8] give a factor 1.71 approximation algorithm for
finding a minimum partition of a partially ordered set into chains and antichains.
In particular, this is a 1.71 approximation algorithm for the (monotone) problem.
It is an open question whether there exists a polynomial time approximation
scheme (PTAS). We derive a 1.71(k+1)-approximation algorithm for (k-modal).

Lemma 1. An α-approximate solution for (monotone) is a (k+1)α-approximate
solution for (k-modal). An α-approximate solution for (k-modal) can be converted
to a (k + 1)α-approximate solution for (monotone).

Proof. Denote by zα
mon and by zα

k the size of an α-approximate partition for
(monotone) and for (k-modal), respectively. Since any k-modal sequence can be
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split into at most k+1 monotone subsequences, the optimal partition sizes zmon
and zk relate as zmon ≤ (k + 1) · zk. This gives

zα
mon ≤ α · zmon ≤ (k + 1) · α · zk,

proving the first part of the lemma. Any monotone sequence is k-modal, and
therefore zk ≤ zmon. Together with the above mentioned splitting of a k-modal
sequence we immediately obtain

(k + 1) · zα
k ≤ (k + 1) · α · zk ≤ (k + 1) · α · zmon,

which proves the second part. ��

Using our network flow MIP models from the preceeding section, we are able to
improve on this factor. We obtain a (k + 1)-approximation algorithm for (upper
k-modal). We state the result and the proof for (monotone) only.

Algorithm LP Rounding for (monotone)
Solve the LP relaxation of the MIP model for (monotone). For each el-
ement i = 1, . . . , n, fix xi = 0 if xi < 0.5, and fix xi = 1 if xi ≥ 0.5.
Solve the resulting “fixed” LP again, and output the subsequences of S
corresponding to the s-t-paths in an optimal solution.

Lemma 2. LP Rounding is a 2-approximation algorithm for (monotone).

Proof. For each i = 1, . . . , n, if we fix xi = 1 we increase the lower bound on
ei from at least 0.5 to 1.0. If we fix xi = 0, this implies to fix x′i = 1, and we
increase the lower bound on e′i from at least 0.5 to 1.0. The respective lower
bound is at most doubled.

Denote by z the objective function value of an optimal solution x to the linear
programming relaxation. Doubling the flow value of every s-t-flow in x gives a
feasible solution to the fixed problem with objective function value at most 2z.
This is an upper bound for the optimal flow’s objective function value in the
fixed problem, yielding the claimed approximation factor.

This result generalizes to (upper k-modal) since we have k + 1 variables per
element, so at least one has fractional value at least 1/(k + 1). Polynomial time
solvability of linear programs follows from the ellipsoid method [9]. ��

We note that the integrality gap of our MIP model for (monotone) is at least
3
2 as is shown e.g., by the sequence [6, 2, 1, 4, 3, 5]: The optimal LP value is 2.0,
the optimal integral objective is 3.0. From our computational experience we
conjecture that the correct gap is smaller than 2, and that the analysis of the
performance of LP Rounding can be improved.

6 Online Algorithms

Not only in view of our practical motivation it is natural to ask for the online
version of our problems in which the permutation becomes known sequentially.
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We have to assign elements to subsequences without looking at the remaining
elements of the permutation, see e.g., [7] for background on online algorithms.
For partitions into increasing subsequences the (optimal) greedy algorithm is
in fact an online algorithm [6]. Already for (monotone) the situation is much
worse.

Theorem 2. There is no constant factor competitive online algorithm for
(monotone).

Proof. Consider any online algorithm A. Depending on the decisions made by
A we construct a sequence S with n = 2h− 1 elements. We start with the range
of numbers a = 1 to b = n. The first element of S is (a + b)/2 = 2h−1, and A
has to open a subsequence. We arbitrarily set a = 2h−1 + 1 or b = 2h−1− 1, and
serve (a + b)/2 as second element. In general, A has three options (of which in
fact only two are actually possible). We describe this for the second iteration.
First note that a decision to append to an existing subsequence decides upon
whether that sequence is increasing or decreasing.

If A decides to append in an increasing way we set b = 2h−1− 1. If A decides
to append in a decreasing way we set a = 2h−1 + 1. In either case we have
a connected range of 2h−1 − 1 numbers none of which can be appended to an
already existing subsequence. If a new subsequence is opened we adapt either
a or b arbitrarily as above. We iterate with the new values of a and b, and it
follows by induction that A generates at least h/2 subsequences for the first h
elements of S (since each subsequence contains at most two elements).

Let a1, . . . , ah and b1, . . . , bh be the values of a and b throughout the first h
iterations described above. The ith element of S is either ai+1 − 1 or bi+1 + 1.
Since the sequences ai, . . . , ah and b1, . . . , bh are increasing and decreasing, re-
spectively, the first h elements of S can be covered by an increasing subsequence
of a1 − 1, . . . , ah − 1 and by a decreasing subsequence of b1 + 1, . . . , bh + 1.

If the remaining elements of S are arranged in an increasing way the opti-
mal solution contains 3 subsequences. However, the solution determined by A
contains at least h subsequences. Therefore, A is log2(n + 1)/6-competitive at
best. ��

Since we are not aware of any previous results on online algorithms for cocoloring,
it is interesting in its own right to restate this result in graph theoretical terms.

Restatement of Theorem 2. The problem of cocoloring a permutation graph
does not allow an online algorithm with constant competitive ratio.

We next discuss the performance of two online algorithms for (monotone) and
(unimodal). Both are reminiscent of simple bin packing online algorithms.

Online algorithm Next Fit
Keep adding elements to one and the same subsequence as long as
monotony (unimodularity) is not violated. Then start a new subsequence
and leave the previous ones unchanged.
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Lemma 3. Next Fit is n/4-competitive for (monotone) and (unimodal).

Proof. Any two elements of the input sequence S form a monotone (unimodal)
subsequence. Thus, we have n/2 as a trivial upper bound for the number of
subsequences determined by Next Fit. If S itself is monotone (unimodal) the
algorithm finds the optimal solution. Otherwise, the optimal solution consists
of at least two subsequences giving a competitive ratio of n/4. To see that this
bound is tight consider the sequence S = [n, 1, n − 1, 2, . . . ]. In the monotone
and the unimodal case Next Fit will determine a solution consisting of n/2
subsequences with two elements each. The optimal solution consists of two se-
quences in both cases. Therefore, Next Fit is exactly n/4-competitive. ��

Next we make use of the fact that we know the set of pending elements, which are
the numbers in 1, . . . , n we have not yet seen in the input sequence. Interestingly,
this does not help the competitive ratio.

Online algorithm Best Fit
We start with n increasing and n decreasing subsequences with an initial
dummy element of 0 and n+1, respectively, that will be removed when the
respective first element is added. An iteration is as follows. Let s be the
current element of the input sequence and let ti be the last element of the
ith subsequence. Select an index i such that s can feasibly be added to the
ith subsequence and such that the number of pending elements that are
between s and ti is minimum. Resolve ties arbitrarily but prefer already
started subsequences. In the end, throw away all unused subsequences.

Lemma 4. Best Fit is n/4-competitive for (monotone) and (unimodal).

Proof. If the input permutation is itself feasible, Best Fit is optimal. Other-
wise, by definition, it generates at most n/2 feasible subsequences and is thus
at least n/4-competitive. To see that the upper bound is tight, we consider the
permutation S = [2, 1, 4, 3, . . . , 2k, 2k− 1, . . .]. The algorithm generates decreas-
ing two-element subsequences [2k, 2k − 1] for all k, but the optimal partition
contains only the two increasing subsequences [2, 4, . . .], [1, 3, . . .]. ��

7 Conclusions

We studied partitions of permutations into subsequences with particular mono-
tony properties. The theoretical hardness legitimates applying computationally
expensive algorithms like solving (probably large scale) mixed integer programs.
These, in addition to their practical usefulness, yield (small) constant factor
approximation algorithms via LP rounding.

In the full paper we computationally evaluate our proposals for random per-
mutations. As a brief summary at this point, permutations of more than 100
elements can be partitioned optimally within a few seconds or minutes by solv-
ing our MIPs. The greedy algorithm, which iteratively extracts a longest sub-
sequence of the requested type, runs in a split second and yields an acceptable
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solution quality on the average and also in the (empirical) worst case. The qual-
ity of solutions obtained with the LP Rounding algorithm significantly stays
below the theoretically guaranteed approximation factor. However, the simple
Next Fit online algorithm also empirically performs as poorly as predicted by
the competitive analysis, whereas the Best Fit online algorithm gives somewhat
better results on average, as was to be expected.

There are several extensions motivated from practice which we did not ex-
plicitly consider in this more theoretical study, but which can be easily incor-
porated in our models. One such extension is a bounded track length, that is,
subsequences must not contain more than a fixed number of elements. Solutions
to our network flow based models become resource constrained shortest paths
in this case which may be of independent theoretical interest. In particular, we
have developed a set covering model which is most flexible in terms of (practical)
extendibility. It is able to capture more “dirty” side constraints which do not
directly fit into the context of this extended abstract.

There remain several open questions, spawned by our work:

– What is the exact approximability status of (monotone) and (k-modal), in
particular, does there exist a PTAS? Can our LP techniques lead to an
improvement over the 1.71 approximation for (monotone)? Such a result
would be quite fascinating since the known algorithm [8] already elegantly
exploits the combinatorial nature of the problem.

– Considering the competitiveness lower bound of Theorem 2 one would be in-
terested in an online algorithm matching this bound. Which competitiveness
ratio is possible when look-ahead is allowed?

– The crucial property we use in the construction of the graphs underlying
our MIP models, and which ensures that paths correspond to increasing
or decreasing subsequences, is the transitivity of the ordering of elements.
We would have liked to generalize our positive results for permutations to
partially ordered sets (corresponding to comparability graphs). However, in
general, this property is lost for the complement of a comparability graph. Is
there a network flow based model similar to ours which allows LP rounding,
thus yielding a constant factor approximation?

Acknowledgment. We would like to thank Laura Heinrich-Litan for pointing us
to the literature on cocoloring.
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Abstract. In this paper we introduce semi-nice tree-decompositions
and show that they combine the best of both branchwidth and treewidth.
We first give simple algorithms to transform a given tree-decomposition
or branch-decomposition into a semi-nice tree-decomposition. We then
give two templates for dynamic programming along a semi-nice tree-
decomposition, one for optimization problems over vertex subsets and
another for optimization problems over edge subsets. We show that the
resulting runtime will match or beat the runtimes achieved by doing dy-
namic programming directly on either a branch- or tree-decomposition.
For example, given a graph G on n vertices with path-, tree- and branch-
decompositions of width pw, tw and bw respectively, the Minimum Dom-
inating Set problem on G is solved in time O(n2min{1.58 pw,2 tw,2.38 bw})
by a single dynamic programming algorithm along a semi-nice tree-
decomposition.

1 Introduction

The three graph parameters treewidth, branchwidth and pathwidth were all
introduced by Robertson and Seymour as tools in their seminal proof of the
Graph Minors Theorem. The treewidth tw(G) and branchwidth bw(G) of a graph
G satisfy the relation bw(G) ≤ tw(G) + 1 ≤ 3

2 bw(G) [16], and thus whenever
one of these parameters is bounded by some fixed constant on a class of graphs,
then so is the other. Tree-decompositions have traditionally been the choice
when solving NP-hard graph problems by dynamic programming to give FPT
algorithms when parameterized by treewidth, see e.g. [5, 15] for overviews. Of
the various algorithmic templates suggested for this over the years the nice tree-
decompositions [14] with binary Join and unary Introduce and Forget operations
are preferred for their simplicity and have been widely used both for showing new
results, for pedagogical purposes, and in implementations. Tree-decompositions
are in fact moving into the computer science curriculum, e.g. twenty pages of a
new textbook on Algorithm Design [13] is devoted to this topic.

Recently there have been several papers [10, 7, 6, 12, 11, 8] showing that for
graphs of bounded genus the base of the exponent in the running time of these
FPT algorithms could be improved by instead doing the dynamic program-
ming along a branch-decomposition of optimal branchwidth. Dynamic program-
ming along either a branch- or tree-decomposition of a graph both share the
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property of traversing a tree bottom-up and combining solutions to problems
on certain subgraphs that overlap in a bounded-size separator of the original
graph. But there are also important differences, e.g. the subgraphs mentioned
above are for tree-decompositions usually induced by subsets of vertices and
for branch-decompositions by non-overlapping sets of edges. Various optimiza-
tion tricks have been presented to speed up the algorithms, some of these come
from the field of tree-decompositions [3, 2] and others from the field of branch-
decompositions [10, 7]. As already mentioned it seems that for planar graphs
the branchwidth parameter is the better choice, at least for worst-case runtime.
There are other graph classes where treewidth is better. In most situations the
input graphs contain some graphs where branchwidth is better and others where
treewidth is better. If we already have implementations of heuristic algorithms
for both branchwidth and treewidth, then the better choice for the dynamic
programming stage will rely on the output of these heuristics for a given graph.
Both from a theoretical and also applied viewpoint it therefore seems necessary,
for each optimization problem, to design and possibly implement two separate
dynamic programming algorithms, one for tree-decompositions and another for
branch-decompositions. In this paper we show that a single dynamic program-
ming algorithm will suffice to get the best of both treewidth and branchwidth.

For this purpose we introduce semi-nice tree-decompositions that maintain
much of the simplicity of the nice tree-decompositions. However, the vertices
of a Join are partitioned into 3 sets D,E,F and the binary Join operation treat
vertices in each set differently in order to improve runtime. Symmetric Difference
vertices D are those that appear in only one of the children, Forget vertices F are
those for which all their neighbors have already been considered, and Expensive
vertices E are the rest (the formal definitions follow later.) We first show how to
transform a given branch-decomposition or tree-decomposition into a semi-nice
tree-decomposition. We then give two templates for dynamic programming on
semi-nice tree-decompositions, one for vertex subset problems and the other for
edge subset problems.

For vertex subset problems we improve the runtime for the Join update op-
eration during dynamic programming. Along the way we also simplify the proof
of monotonicity of table entries for domination-type problems of [2] by a slight
change in the definition of the vertex states used. Our results are also a step
towards meeting the ’research challenge’, first proposed in [3], of lowering to
O(nλk) the runtime of dynamic programming on treewidth k graphs for solving
a problem having λ vertex-states. For edge subset problems the two subgraphs
for whom solutions are combined in the Join operation are defined to not over-
lap at all in edges. Edges on vertices common to the two subgraphs are instead
introduced in a later Forget operation. In their paper [6] on heuristics for TSP
(travelling salesman problem) Cook and Seymour state that when carrying out
dynamic programming to solve optimization problems that deal with edge sets
branchwidth is a more natural framework than treewidth. We claim that our tem-
plate shares this property of being a natural framework for edge set problems.
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We employ this approach to various problems, such as dominating set prob-
lems, some of which had previously been solved for tree-decompositions in [17, 3]
and for branch-decompositions in [10], to TSP solved for branch-decompositions
in [6] and tree-decompositions in [4], and in the long version to this paper [9] to
(k, r)-center solved for branch-decompositions in [7]. In each case we match or
improve the running time of the algorithms given in those papers. We do this
by combining and extending the various optimization tricks for branchwidth
and treewidth used in those papers into our dynamic programming algorithm
on semi-nice tree-decompositions. Table 1 gives the resulting worst-case runtime
on various domination-type problems that are NP-hard for general graphs. For
treewidth the previous best results [3] arise from treating all vertices in the
Join as Expensive vertices, thus tw = E in column Join of Table 1 instead of
tw = D+E+F as we have. For branchwidth the entry for Minimum Dominating
set in the first row of Table 1 matches the previous best [10], while the results
for each of the other problems are new. We emphasize that for any problem this
is the first time that a single dynamic programming algorithm achieves the best
of both treewidth and branchwidth.

Table 1. The number of vertex states and time for a Join operation with Expensive
vertices E, Forgettable vertices F and Symmetric Difference vertices D. Worst-case
runtime expressed also by treewidth tw and branchwidth bw of the input graph, and
the cutoff point at which treewidth is the better choice. To not clutter the table, we
leave out pathwidth pw, allthough for each problem there is a cutoff at which pathwidth
would have been best.

States Join Total time tw faster
Min Dom set 3 O(3D+F 4E) O(n2min{2tw,2.38bw}) tw ≤ 1.19bw

Min/Max Ind Dom set 3 O(3D+F 4E) O(n2min{2tw,2.38bw}) tw ≤ 1.19bw

∃/Min/Max Perfect Code 3 O(3D4E+F ) O(n2min{2tw,2.58bw}) tw ≤ 1.29bw

Min Perfect Dom set 3 O(3D4E+F ) O(n2min{2tw,2.58bw}) tw ≤ 1.29bw

Max 2-Packing 3 O(3D4E+F ) O(n2min{2tw,2.58bw}) tw ≤ 1.29bw

Min Total Dom set 4 O(4D+F 6E) O(n2min{2.58tw,3bw}) tw ≤ 1.16bw

∃/Min/Max Perf Total Dom 4 O(4D5F 6E) O(n2min{2.58tw,3.16bw}) tw ≤ 1.22bw

2 Semi-nice Tree-Decompositions

We use standard graph notation and terminology, e.g. for a subset S ⊆ V (G) of
the vertices of a graph G we let N(S) = {v �∈ S : ∃u ∈ S∧uv ∈ E(G)} be the set
of vertices not in S that are adjacent to some vertex in S. For clarity we speak
of nodes of a tree and vertices of a graph. To simplify expressions involving the
cardinality of a set X , we write e.g. 2X when we actually mean 2|X|.

A tree-decomposition (T,X ) of a graph G is an arrangement of the vertex
subsets X of G, called bags, as nodes of the tree T such that for any two adjacent
vertices in G there is some bag containing them both, and for each vertex of G
the bags containing it induce a connected subtree. When we say bag we may
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refer both to the tree node and the associated vertex subset, sometimes even
both at the same time, e.g. ’the intersection of two adjacent bags’. The width of
the tree-decomposition (T,X ) is simply the size of the largest bag minus one.

A branch-decomposition (T, μ) of a graph G is a ternary tree T , i.e. with all
inner nodes of degree three, together with a bijection μ from the edge-set of G
to the leaf-set of T . For every edge e of T define a vertex subset of G called
mid(e) consisting of those vertices v ∈ V (G) for which e lies on the path in T
between two leaves whose mapped edges are incident to v (note that this is a
non-standard but equivalent way of defining these so-called middle sets.) The
width of (T, μ) is the size of the largest mid(e) thus defined.

For a graph G its treewidth and branchwidth is the smallest width of any tree-
decomposition and branch-decomposition of G, respectively, while its pathwidth
is the smallest width of a tree-decomposition (T,X ) where T is a path.

We introduce semi-nice tree-decompositions and two lemmas on transforming
a given branch- or tree-decomposition into a semi-nice tree-decomposition. A
tree-decomposition (T,X ) is semi-nice if T is a rooted binary tree with each
non-leaf of T being either a:

– Introduce node X with a single child C and C ⊂ X .
– Forget node X with a single child C and X ⊂ C.
– Join node X with two children B,C and X = B ∪ C.

For an Introduce node we call X \ C the ’introduced vertices’ and for a
Forget node C \ X the ’forgotten vertices’. It follows by properties of a tree-
decomposition that a vertex can be introduced in several nodes but is forgotten
in at most one node. Note that the nice tree-decompositions [14] require that
a Join node has X = B = C, Introduce has |X | = |C| + 1, and Forget has
|X | = |C| − 1, but are otherwise identical to the semi-nice tree-decompositions.

For a Join node X with children B,C and parent A (the root node being its
own parent) we define a partition of X = B ∪ C into 3 sets D,E, F :

– Symmetric Difference D = (C \B) ∪ (B \ C)
– Expensive E = A ∩B ∩ C
– Forgettable F = (B ∩ C) \A

ED D

B C

E

F

D

D

D

D

B C

A

Fig. 1. Two Venn diagrams illustrating the children B,C of a Join node X = B ∪ C
and its partition D, E, F . On the right the parent A is a Forget node represented by
the part of B ∪ C above the dashed line. On the left the parent A is not a Forget node
and we then have B ∪ C ⊂ A and F = ∅. In both cases what we call the New edges go
between B \ C and C \ B.
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Fig. 2. Algorithm: 1) Transform branch-decomposition into a tree-decomposition on the
same tree, 2) Transform tree-decomposition into a small tree-decomposition having O(n)
nodes, 3) Transform tree-decomposition into a sparse semi-nice tree-decomposition. We
illustrate the algorithm with above figure. On the upper left a 3×3 grid graph G. On the
upper right an optimal branch-decomposition with leaves labeled by edges of G as given
by μ and the sets mid(e). Step 1) is well-known (see e.g. [10] for a correctness proof):
On the lower left a tree-decomposition formed with leaf-bags given by μ−1 and inner
bags given by the union of adjacent mid(e). In step 2) all nodes outside the bold line are
then removed. The edges drawn in a dashed line are contracted. For step 3) we apply
Lemma 1. On the lower right the resulting semi-nice tree-decomposition with new nodes
emphasized rectangularly and arranged below arbitrary root node r.

D,E, F is a partition of X by definition. Note that if the parent A of X =
B ∪ C is an Introduce or Join node then B ∪ C ⊂ A and we get F = ∅. See
Figure 1. The Forgettable vertices are useful for any node whose parent is a
Forget node, and their definition for an Introduce or leaf node X with parent
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A is simply F = X \ A. We say that a neighbor u of a vertex v ∈ X has been
considered at node X of T if u ∈ X or if u ∈ X ′ for some descendant node X ′ of
X . Clearly, if X is a Forget node forgetting v then all neighbors of v must have
been considered at X . For fast dynamic programming we want sparse semi-nice
tree-decompositions where vertices are forgotten as soon as possible.

Definition 1. A semi-nice tree-decomposition is sparse if whenever a node X
containing a vertex v ∈ X has the property that all neighbors of v have been
considered, then the parent of X is a Forget node forgetting v.

Note that for a Join node with Forget parent A and children B,C of a sparse
semi-nice tree-decomposition any vertex in B \A∪C has a neighbor in C \A∪B
and vice-versa.

Lemma 1. Given a tree-decomposition (T,X ) of width k of a graph G with n
vertices, we can make it into a sparse semi-nice tree-decomposition (T ′,X ′) of
width k in time O(k2n) while keeping the E-sets in the partition of each Join
node as small as the given tree-decomposition allows.

For proofs see [9]. See Figure 2 for an illustration of the transformation from a
given branch-decomposition to a semi-nice tree-decomposition described in the
next lemma.

Lemma 2. Given a branch-decomposition (T, μ) of a graph G with n vertices
and m edges we can compute a sparse semi-nice tree-decomposition (T ′,X )
with O(n) nodes in time O(m) such that for any bag X of T ′ we have some
t ∈ V (T ) with incident edges e, f, g such that X ⊆ mid(e)∪mid(f)∪mid(g) and
if X is a Join node with partition D,E, F then E ⊆ mid(e) ∩mid(f) ∩mid(g)
and F ⊆ mid(f) ∩mid(g) \mid(e) and D ⊆ mid(e) \mid(f) ∩mid(g).

3 Dynamic Programming for Vertex Subset Problems

In this section we give the algorithmic template for doing fast dynamic pro-
gramming on a semi-nice tree-decomposition (T,X ) of a graph G to solve an
optimization problem related to vertex subsets on G. The runtime will in this
section be given simply as a function of the D,E, F partition of the Join bags,
and X \ F, F partition of the other bags. In the final section we will then ex-
press the runtimes by pathwidth, branchwidth or treewidth of the graph. We
introduce the template by giving a detailed study of the algorithm for Mini-
mum Dominating sets, and then consider generalizations to various other vertex
subset problems like Perfect Code, 2-Packings. We study these variants and the
(k, r)-center problem in the long version of this paper where we also give all
ommitted proofs [9].

As usual, we compute in a bottom-up manner along the rooted tree T a table
of solutions for each node X of T . Let GX denote the subgraph of G induced
by vertices {v ∈ X ′ : X′ = X or X ′ a descendant of X in T }. The table TableX

at X will store solutions to the optimization problem on GX indexed by certain
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equivalences classes of solutions. The solution to the problem on G is found by
an optimization over the table at the root of T . To develop a specific algorithm
one must define the tables involved and then show how to Initialize the table at
a leaf node of T , how to compute the tables of Introduce, Forget and Join nodes
given that their children tables are already computed, and finally how to do the
Optimization at the root.

We use the Minimum Dominating Set problem as an example, whose tables
are described by the use of three so-called vertex states:

– Dom (Dominating)
– NbrD (Neighbor is Dominating)
– Free (Temporary state)

Each index s of TableX at a node X represents an assignment of states to vertices
in the bag X . For index s : X → {Dom,NbrD, Free} the vertex subset S of
GX is legal for s if:

– V (GX) \X = (S ∪N(S)) \X
– {v ∈ X : s(v) = Dom} = X ∩ S
– {v ∈ X : s(v) = NbrD} ⊆ X ∩N(S)

TableX(s) is defined as the cardinality of the smallest S legal for s, or we have
TableX(s) = ∞ if no S is legal for s.

Informally, the 3 constraints are that S is a dominating set of GX \X , that
vertices with state Dom are exactlyX∩S, and that vertices with state NbrD have
a neighbor in S. Note that vertices with state Free are simply constrained not
to be in S. Since this is also a constraint on vertices with state NbrD a subset
S which is legal for an index s would still be legal even if some vertex with
state NbrD instead had state Free. This immediately implies the monotonicity
property TableX(t) ≤ TableX(s) for pairs of indices t and s where ∀v ∈ X either
t(v) = s(v) or t(v) = Free and s(v) = NbrD.

Let us also remark that the TableX data structure should be an array. To
simplify the update operations we should associate integers 0,1,2 with each ver-
tex state so that an index is a 3-ary string of length |X |. Moreover, the ordering
of vertices in the indices of TableX should respect the ordering in TableC for
any child node C of X and in case C is the only child of X then all vertices
in the larger bag should precede those in the smaller bag. We find this by com-
puting a total order on V (G) respecting the partial order given by the ances-
tor/descendant relationship of the Forget nodes forgetting vertices v ∈ V (G).

The table TableX at a Forget node X will have 3X indices, one for each of
the possible assignments s : X → {Dom,NbrD, Free}. We assume a machine
model with words of length 3X , to avoid complexity issues related to fast array
accesses. Assume Forget node X has child C with TableC already computed. The
correct value for TableX(s) is the minimum of {TableC(s+)} over all indices s+

where s+(v) = s(v) if v ∈ X and s+(v) ∈ {Dom,NbrD} otherwise. For this
reason we call the state Free a Temporary state. The Forget update operation
takes time O(3X2C\X).
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Note that the Forget update operation had no need for the indices of the table
at the child where a forgotten vertex in C \X had state Free. This observation
allows us to save some space and time for the Forgettable vertices of a bag having
a Forget parent.

If X is a leaf node with Forgettable vertices F then TableX has only 3X\F 2F

indices, in accordance with the above observation, and is computed in a brute-
force manner. This takes time O(X3X\F 2F ), since for each index s we must
check if TableX(s) should be equal to the number of vertices in state Dom, or
if there is a vertex in state NbrD with no neighbor in state Dom in which case
TableX(s) = ∞.

If X is an Introduce node with Forgettable vertices F and child C then TableX

has 3X\F 2F indices and the correct value at TableX(s) is:

– ∞ if TableC(s) = ∞ or if ∃x ∈ X \C with s(x) = NbrD but no neighbor of
x in state Dom.

– TableC(s) + |{v ∈ X \ C : s(v) = Dom}| otherwise

The Introduce update operation thus takes time O(X3X\F 2F ).
The correct values for TableX at a Join node X with partition D,E, F and

children B,C are computed in three steps, where the last three steps account for
new adjacencies that have not been considered in any child table (we call these
’new edges’):

1. ∀s : TableX(s) = min{TableB(sb)+TableC(sc)−|B∩C∩{v : s(v) = Dom}|}
over (sb, sc) such that triple (s, sb, sc) is necessary (see below).

2. New = {uv ∈ E(G) : u ∈ B \ C ∧ v ∈ C \B}
3. ∀R ⊆ D : New(R) = {u ∈ D \R : ∃v ∈ R ∧ uv ∈ New}
4. ∀s : TableX(s) = TableX(s′) where s′(v) = Free if v ∈ D ∧ s(v) = NbrD ∧

v ∈ New({u : s(u) = Dom}) and otherwise s′(v) = s(v).

We describe and count the necessary triples of indices (s, sb, sc) for the Join
update using the method of [10], by first considering the number of necessary
vertex state triples (s(v), sb(v), sc(v)) such that vertex state sb(v) and sc(v) in
B and C respectively will yield the vertex state s(v) in X :

– v ∈ B \ C ⊆ D: 3 triples (Dom,Dom,-), (NbrD,NbrD,-), (Free,Free,-)
– v ∈ C \B ⊆ D: 3 triples (Dom,-,Dom), (NbrD,-,NbrD), (Free,-,Free)
– v ∈ F : 3 triples (Dom,Dom,Dom), (NbrD,Free,NbrD), (NbrD,NbrD,Free)
– v ∈ E: 4 triples (Dom,Dom,Dom), (NbrD,Free,NbrD), (NbrD,NbrD,Free),

(Free,Free,Free)

Lemma 3. The Join update just described for a node X with partition D,E, F
is correct and takes time O(3D+F 4E).

For a proof see [9]. Finally, at the root node R of T we compute the smallest
dominating set of G by the minimum of {TableR(s) : s(v) ∈ {Dom,NbrD}∀v ∈
R}. This takes time O(2R). Correctness of the algorithm follows by induction
on the tree-decomposition, in the standard way for such dynamic program-
ming algorithms. For the timing we have the Join operation usually being the
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most expensive, although there are graphs, e.g. when pathwidth=treewidth, for
which the leaf Initialization or Introduce operations are the most expensive.
However, the Forget and Root optimization operations will never be the most
expensive.

Theorem 1. Given a semi-nice tree-decomposition (T,X ) of a graph G on n
vertices we can solve in time O(n(max{4E3D+F } + max{X3X\F2F })) the Min
Dominating Set Problem on G with maximization over Join nodes of T with
partition D,E, F and over Initialization and Introduce nodes with bag X and
Forgettable set F , respectively.

For problems over vertex subsets having other domination-type constraints we
get slightly different runtimes. A general class of such constraints are parame-
terized by two subsets of natural numbers σ and ρ. A subset of vertices S is a
(σ, ρ)-set if ∀v ∈ S we have |N(v) ∩ S| ∈ σ and ∀v �∈ S we have |N(v) ∩ S| ∈ ρ
[17]. Some well-studied and natural types of (σ, ρ)-sets are when σ is either
all natural numbers N, all positive numbers N+, or {0}, and with ρ being ei-
ther all positive numbers, or {1}. The six resulting constraints are Dominating
set (σ = N, ρ = N+); Perfect Dominating Set (σ = N,ρ = {1}); Independent
Dominating set (σ = {0},ρ = N+); Perfect Code (σ = {0},ρ = {1}); Total Dom-
inating set (σ = N+, ρ = N+); Total Perfect Dominating set (σ = N+,ρ = {1}).
For Perfect Code and Total Perfect Dom set it is NP-complete simply to de-
cide if a graph has any such set, for Ind Dom set it is NP-complete to find
either a smallest or largest such set, while for the remaining three problems it
is NP-complete to find a smallest set. The thesis [1] considers these six con-
straints, and give dynamic programming algorithms on nice tree-decompositions
that take into account monotonicity properties to arrive at fast runtimes. See
column Join in Table 1 for an overview of our results and [9] for exact calcula-
tions. The previous best results for these problems [1] correspond to our results
when treating all vertices as Expensive, so we have moved closer to the goal of
λD+E+F time for a problem with λ vertex states. These algorithms can of course
be extended also to more general (σ, ρ)-sets. For example, if σ = {0, 1, ..., p} and
ρ = {0, 1, ..., q} we are asking for a subset S ⊆ V (G) such that S induces a
subgraph of maximum degree at most p with each vertex in V (G) \ S having at
most q neighbors in S. For this case we would use p+ q+2 vertex states and get
runtime O((p + q + 2)D(s(p) + s(q))E+F ), where s(i) is the number of pairs of
ordered non-negative integers summing to i. Thus, for the Maximum 2-Packing
problem (also known as Max Strong Stable set), which is of this form with p = 0
and q = 1, we get an O(3D4E+F ) algorithm.

4 Dynamic Programming for Edge Subset Problems

Problems like Hamiltonian cycle and Travelling Salesman ask for a subset of
edges of the input graph with a given property. An index of the table storing
solutions to subproblems will likewise represent a class of edge subsets of the
subgraph considered so far. Consider a Join node X with children B,C, and
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assume that B and C store solutions for the subgraphs G′
B and G′

C . For these
edge subset problems the Join operation at X is simplified if we can assume that
the two subgraphs G′

B and G′
C do not overlap in edges. To accomplish this we

define the subgraph G′
X for edge subset problems to be the graph we get from

taking the subgraph GX as used for vertex subset problems and removing all
edges having both endpoints in the set X .

Definition 2. For edge subset problems the subgraph G′
X of G for which solu-

tions are stored in a table at node X of the tree T is the graph on vertex set
V (G′

X) = {v ∈ X ′ : X ′ = X or X ′ a descendant of X in T } and edge set
E(G′

X) = {uv ∈ E(G) : {u, v} ⊆ V (G′
X) and at most one of u and v in X}.

The implication is that the Join update is simplified, since there is no overlap
of edges in the two subgraphs. The Introduce operation becomes trivial, simply
adding isolated vertices to the existing subgraph. Likewise, the Initialize-Table
operation is trivial since it considers a subgraph without edges. On the other
hand the Forget operation becomes more complicated. Let X be a Forget node
with child B, thus with B \X the forgotten vertices. Note that an edge between
a forgotten vertex u ∈ B \ X and a vertex v ∈ X has not been considered so
far in the algorithm, since it does not belong to G′

B. However, such an edge
does belong to G′

X and it will in fact be considered for the first time during
the Forget operation at X . This consideration of new adjacencies performed by
the Forget operation for edge problems is almost identical to what is performed
by the Introduce operation for vertex problems. The Root-Optimization step at
root node X becomes trivial since we simply ensure that |X | = 1, by a preceding
Forget operation.

A comparison with the template given for vertex problems and the one just
described shows that for edge problems the Forget-operation is more compli-
cated but the other operations are less complicated. However, note that the gain
we get in the runtime of the Join operation for vertex subset problems from
the Forgettable vertices F is no longer easily achieved under the edge subset
template, since the vertices in F have not had all their adjacencies considered
at the time of the Join.

Cook and Seymour [6] give a heuristic algorithm for the Traveling Salesman
Problem (TSP). Their paper contains a subroutine which for a subgraph of the
input graph solves the TSP problem exactly by dynamic programming along
a branch-decomposition. Their paper is not focused on runtime but we can
estimate the running time of their dynamic programming algorithm for exact
solution of TSP on a heuristically generated branch-decomposition of width k
as O(c1.5 k logkm) for some constant c. Their update operation on middle sets
of the branch-decomposition is directly transferred as the update we need for
our Join operation, as the subgraphs we are considering do not overlap in edges.
When forgetting vertex v we have to consider all neighbors of v in X since these
edges have not been accounted for earlier. In the Forget-operation we do this
independently for every index of TableX and every forgotten vertex. Compared
to their algorithm, the runtime for our more complicated Forget-operation gives
only an additional polynomial factor in the size of the Forget node X . Without
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going into details in this extended abstract we claim that a dynamic program-
ming algorithm solving TSP on a semi-nice tree-decomposition can in this way
be developed exactly as in the paper [6] and with the same exponential runtime.

5 Runtime by Branchwidth, Treewidth or Pathwidth

In this section we assume that we are given a branch-decomposition of width
bw or a tree-decomposition of width tw and first transform these into a semi-
nice tree-decomposition by the algorithms of Section 2. We then run any of the
algorithms described in Sections 3 or 4 to express the runtime to solve those
problems as a function of bw or tw. This runtime will match or improve the
best results achieved by dynamic programming directly on the branch- or tree-
decompositions. For a proof see the long version [9].

Theorem 2. We can solve Minimum Dominating set by dynamic program-
ming on a semi-nice tree-decomposition in time: O(23 log4 3bwn) = O(22.38 bwn)
if given a branch-decomposition (T, μ) of width bw; O(22 twn) if given a tree-
decomposition of width tw; O(21.58 pwn) if given a path-decomposition of width
pw; and O(2min{1.58 pw,2 tw,2.38 bw}) if given all three. For other domination-type
problems we get runtimes as in Table 1.

For certain classes of graphs, e.g. grid graphs, pathwidth is indeed the best
parameter. The runtime we get for Minimum Dominating set as a function of
branchwidth bw is essentially the same as that achieved by the algorithm of [10]
working directly on the branch-decomposition (the runtime there is expressed
with multiplicative factor m instead of our n but for a graph with branchwidth
bw we have m = O(n bw).) See Table 1 for a summary of the results for each
domination-type problem. For the TSP problem we have already argued in Sec-
tion 4 that our algorithm matches the runtime of the algorithm of [6] that works
directly on a branch-decomposition.

Acknowledgements. We would like to thank Jochen Alber and Rolf Nieder-
meier for suggesting the comparison of dynamic programming approaches on
tree-decompositions and branch-decompositions.
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Abstract. We study a queueing network where customers go through
several stages of processing, with the class of a customer used to indicate
the stage of processing. The customers are serviced by a set of flexible
servers, i.e., a server may be capable of serving more than one class of
customer and the sets of classes that the servers are capable of serving
may overlap. We would like to choose an assignment of servers that
achieves the maximal capacity of the given queueing network, where
the maximal capacity is λ∗ if the network can be stabilized for all
arrival rates λ < λ∗ and cannot possibly be stabilized for all λ > λ∗.
We examine the situation where there is a restriction on the number of
servers that are able to serve a class, and reduce the maximal capacity
objective to a maximum throughput allocation problem of independent
interest: the Total Discrete Capacity Constrained Problem
(TDCCP). We prove that solving TDCCP is in general NP-complete,
but we also give exact or approximation algorithms for several important
special cases.

Keywords: Queueing networks, scheduling, approximation algorithms.

1 Introduction

Consider a system (which we will henceforth call a queueing network), in which
discrete entities (or customers) progress through a series of operations (referred
to as classes). At each class, a processing step must be performed that requires
an amount of time that can be modelled as a random variable. There is infinite
waiting room in a queue at each class. Processing at a class is performed by one
or more servers. In a traditional queueing network, servers are dedicated to a
class. If the queue at a class is empty, the dedicated server(s) there is forced to
idle. In the operations research literature, there has been much recent interest
in a generalization of this model, in which the servers are flexible, i.e. the cus-
tomers progress through the network as before, but servers may be capable of
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performing processing at more than one class (and as such, a decision must be
made at each point in time as to where a server is located). A typical example
of this is a production system where the classes are machines performing manu-
facturing steps, customers are the parts being produced, and the flexible servers
are workers cross-trained to operate multiple machines (see Hillier and So [12],
for example). Such models also arise in areas such as power control for wireless
networks (Armony and Bambos [4]) and parallel computer systems (Squillante
et al. [17]). For an extensive overview of the literature, see Andradóttir et al. [3]
and Hopp and van Oyen [13]. A precise mathematical definition of the model is
given in the next section.

The design problem in which we are interested is to choose a (dynamic) as-
signment of servers to classes to address a particular performance objective. In
this paper, we are interested in determining the maximal capacity of a given
network, where we define the maximal capacity to be λ∗ if the network can
be stabilized for all arrival rates λ < λ∗ and cannot possibly be stabilized for
any λ > λ∗. A number of authors have examined flexible server systems with
throughput as a performance measure. In addition to [3] and [8], these include
Tassiulas and Ephremides [19], Tassiulas and Bhattacharya [18], Andradóttir,
Ayhan, and Down [2], Andradóttir and Ayhan [1], Bischak [6], Zavadlav, Mc-
Clain, and Thomas [20].

The above references do not constrain the number of servers that may be at
a class. This is not a realistic assumption for most settings, as for example, one
may have budgetary constraints for training and as a result, one would like to
restrict the amount of cross-training, but still achieve reasonable throughput (as
compared to a system with no such constraints). In order to address this issue,
we need a means to calculate the maximal capacity of a constrained network.
We believe that this is the first attempt to address such a problem.

In the area of queueing networks, the use of fluid limits to characterize stability
is a standard technique, originating in the work of Rybko and Stolyar [15] and
Dai [7]. The central idea in this approach is that one can equate stability of a
(stochastic) queueing network with that of a related deterministic model (the
fluid model). We emphasize here that determining stability conditions for the
original stochastic queueing network is typically extremely difficult. The fluid
model approach provides a rigorous connection between the two models and one
hopes that the deterministic model is easy (or at the very least easier) to analyze.
For the flexible server setting, the fluid limit methodology has been used to break
down the determination of maximal capacity to two steps (see [3] and Dai and
Lin [8]).

1. Determine the maximal capacity of the fluid model and an optimal allocation
of each server’s effort.

2. Use the allocation to construct a scheduling policy for the original network.

The framework in [3] gives a standard means by which to perform the second
step. Also, if there is no constraint on the number of servers that can be at a class
at any one time, it is shown in [3] that the first step reduces to solving a linear
programming problem, so as a result the entire problem has been reduced to one
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that is very tractable. For the more realistic constrained problem considered here,
we find that the analysis of the deterministic fluid model is much more difficult.
We shall call such a problem the Total Discrete Capacity Constrained
Problem (TDCCP). For this problem, the second step in the above procedure
is unchanged. It is the first step in the procedure which sees the most significant
change, and the resulting optimization problem is the focus of this paper.

We show that this problem is NP-complete even for special cases. Hence
we look for approximation algorithms for such hard special cases and for the
general problem. We achieve an approximation factor of 1/10 for the important
case of service rates that depend only on the servers (and not on the classes)1,
and these approximation techniques extend also to the general case (but with a
worse approximation factor.) Even more importantly, some of these techniques
give exactly the same approximation factors for the budgetary constraint version
of the problem. In this generalization, a per service unit cost of assigning a
particular server to a particular class is given, as well as a budget that our
total assignment cost should not exceed. Some of our approximation algorithms
produce solutions that are within the previous approximation factors without
violating the budget.

2 Queueing Network Model

The model we consider is a generalization of that in Andradóttir, Ayhan, and
Down [3]. For completeness, we present the model in its entirety.

2.1 Network Topology

Consider a network where the location of a customer is given by its class k.
We assume that there are K distinct classes, with a buffer of infinite size for
each class. Arrivals to a class may occur from inside or outside of the network.
Customers arriving from outside of the network do so according to an arrival
process with independent and identically distributed (i.i.d.) interarrival times
{ξ(n)}. The associated arrival rate is λ = 1/E[ξ(1)]. An arrival from outside
of the network is routed to class k with probability p0,k, with

∑K
k=1 p0,k = 1.

Within the network, customers circulate as follows. Upon completion of service
at class i, a customer becomes one of class k with probability pi,k. The customer
leaves the network with probability 1−

∑K
k=1 pi,k. We define the routing matrix

P to have (i, k) entry pi,k for i, k = 1, . . . ,K and I to be the K × K identity
matrix. We assume that all customers eventually leave the network, which is
equivalent to (I − P ′) being invertible. (Note that the (i, k) entry of (I − P ′)−1

is the expected number of future visits to class k of a class i customer.)
For technical reasons, we assume that the interarrival times are unbounded

and spread out. For more details see [3].

1 In Section 4.1 we show that the special case of service rates which depend only on
the classes can be solved optimally.
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2.2 Service Mechanism

The network is populated by M servers which service customers within a class
according to First Come, First Served order. When switching from class i to class
k for the nth time, server j incurs a (possibly zero) switching time of ζj

i,k(n).
It is assumed that the sequence {ζj

i,k(n)} is i.i.d. for every j = 1, . . . ,M and
i, k = 1, . . . ,K. Further, we assume that {ζj

i,i(n)} is identically zero for all i
and j.

Several servers may be simultaneously at a class, in which case they work in
parallel. If server j is capable of working at class k, the service time of the nth
customer served by server j at class k is given by ηj,k(n), where the sequence
{ηj,k(n)} is assumed to be i.i.d. for each j and k. The associated mean service
time for server j at class k is mj,k = E[ηj,k(1)], with associated service rate
μj,k = 1/mj,k. If server j cannot work at class k, we set μj,k = 0. We only
consider nonpreemptive policies.

The difference between the model in [3] and that considered here is that we
put an upper limit, ck ≤M , on the number of servers that can be assigned to a
class (a server is assigned to a class if it spends any time at class k).

3 Total Discrete Capacity Constrained Problem

We are first interested in computing the capacity. A network operating under a
service policy π is said to have capacity λπ if the system is stable for all values
of the arrival rate λ < λπ. We wish to calculate a tight upper bound on the
capacity that a given system can achieve (called the maximal capacity). In the
course of doing so, we identify a means to construct server assignment policies
that have capacity that is arbitrarily close to the maximal capacity.

3.1 The Allocation Program

First, we solve the traffic equations for the network, which give the total arrival
rate to class k, λk, if the network is stable. Here we have

λk = p0,kλ+
K∑

i=1

pi,kλi,

for k = 1, . . . ,K. This system of equations is known to have a unique solution if
(I − P ′) is invertible. If we let ai, 1 ≤ i ≤ K be the unique solution with λ = 1,
then λk = λak is the unique solution of the traffic equations for an arbitrary
value of λ.

Let δj,k be the proportion of time that server j is working at class k. These
proportions exist under the policies considered below. The resulting optimization
problem (with variables δj,k and λ) that will give us the assignment of servers
to classes is:
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maxλ (MP)

s.t.
M∑

j=1

μj,kδj,k ≥ λak, k = 1, . . . ,K (1)

K∑
k=1

δj,k ≤ 1, j = 1, . . . ,M, (2)

δj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M, (3)

M∑
j=1

χ{δj,k > 0} ≤ ck, k = 1, . . . ,K, (4)

where χ{·} is the indicator function. The constraints in (MP) have the following
interpretations. The first, (1), says that the service rate allocated to class k must
be greater than the arrival rate. The second and third constraints, (2) and (3),
prevent over allocations and negative allocations of a server, respectively. Finally,
the constraint (4) limits the flexibility, by only allowing ck servers to be assigned
to work at class k. Let a solution of (MP) be given by λ∗, {δ∗j,k}. We will see
that λ∗ is the desired maximal capacity and {δ∗j,k} is the set of proportional
allocations of server j to classes k required to achieve λ∗.

Obviously, the difficulty in solving (MP) comes from the integral con-
straints (4). Note that in these constraints, although the allocation variables
δj,k are fractional, the capacity each one is allocated is either 0 or 1 (depending
on whether δj,k is 0 or not). To the best of our knowledge, we are not aware of
other scheduling problems with such constraints. In Section 6 we show that even
a simpler variant of the problem is NP-complete. First we consider special cases
in Section 4: If the μj,k’s are independent of j, i.e., μj,k = μk for all j, then the
problem can be solved in polynomial time. If the μj,k’s are independent of k, i.e.,
μj,k = μj for all k, then the problem is NP-complete, but can be approximated
within a factor 1/10, or better under certain assumptions. For the general case,
we show in Section 5 that in polynomial time one can find a solution within a
factor 1/10wmax, where wmax := maxj maxk1,k2,μj,k2 �=0

μj,k1
μj,k2

. The bulk of the
remainder of the paper is concerned with how one can solve (MP). Before do-
ing this, we complete the connection between solving (MP) and the problem of
finding the maximal capacity in the original queueing network.

For the original queueing network, we consider the set of generalized round
robin policies. A generalized round robin policy π is given by a set of integers
{�πj,k} and an ordered list of classes V π

j . Server j servers classes in V π
j in cyclic

order, with server j performing �πj,k services at each class in V π
j (unless server j

idles, in which case the server moves to the next class in V π
j ). If the classes in V π

j

are all empty, the server idles at an arbitrary class in V π
j . The details of how to

construct a generalized round robin policy π given a set of required proportional
allocations {δ∗j,k} is given in Section 3.3 of [3]. As this can be used directly, we
give no further discussion of the construction here.



Maximizing Throughput in Queueing Networks with Limited Flexibility 403

Define Qk(t) to be the number of class k customers present at time t and Q(t)
be a vector with kth entry Qk(t). The following theorem gives the strong con-
nection between maximizing capacity in the queueing network and the solution
to (MP).

Theorem 1. (i) Any capacity less than λ∗ may be achieved. More specifically,
for an arrival process with rate λ < λ∗, there exists a dynamic server
assignment policy such that the distribution of the queue length process
{Q(t)} converges to a steady-state distribution ϕ as t→∞.

(ii) A capacity larger than λ∗ cannot be achieved. More specifically, for an arrival
process with rate λ > λ∗, as t→∞, P (|Q(t)| → ∞) = 1.

The proof of this theorem is a trivial extension of that of Theorem 1 in [3] and is
thus omitted. The derivation of the additional constraint (4) is a straightforward
exercise, the remainder of the proof is unchanged.

Theorem 1 says that the difficult stochastic optimization problem can be con-
verted into a deterministic optimization problem. The mapping of the solution
to the deterministic problem back to a solution to the original stochastic prob-
lem does not depend on the complexity of the deterministic problem (it simply
uses the resulting solution). For the remainder of the paper, we thus focus on
solving (MP). In [3], the deterministic problem is simply (MP), with the con-
straint (4) removed. This is easily seen to be a linear programming problem,
and so there is the appealing result that a difficult stochastic problem becomes a
simple deterministic problem. However, in our case, the resulting deterministic
problem can also be difficult, as will be seen below. From this point, we refer
to the required deterministic optimization problem as the TOTAL DISCRETE
CAPACITY CONSTRAINED PROBLEM (TDCCP).

4 Solving TDCCP - Special Cases

It is instructive to first look at several special cases of TDCCP that give an idea
of the inherent complexity.

4.1 The Case μj,k = μk for all j

Suppose that the service rates are independent of the server and that each server
is capable of working at every class, so μj,k = μk for j = 1, . . . ,M . Here, (MP)
can be rewritten as

max λ s.t.∑M
j=1 δj,k ≥ λak/μk, k = 1, . . . ,K∑K
k=1 δj,k ≤ 1, j = 1, . . . ,M,

δj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M,∑M
j=1 χ{δj,k > 0} ≤ ck, k = 1, . . . ,K,

where χ{·} is the indicator function.
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Proposition 1. If μj,k ≡ μk, the maximal capacity is

λ∗ = min

(
M∑K

k=1 ak/μk

, min
1≤k≤K

ckμk

ak

)
.

The proof of Proposition 1 appears in the full version.

4.2 The Case μj,k = μj for all k

Suppose now that the service rates depend only on the server and that each
server is capable of working at every class, so μj,k = μj for k = 1, . . . ,K. In this
case (MP) can be written as

max λ s.t.∑M
j=1 xj,k ≥ λak, k = 1, . . . ,K∑K
k=1 xj,k ≤ μj , j = 1, . . . ,M

xj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M∑M
j=1 χ{xj,k > 0} ≤ ck, k = 1, . . . ,K

(MP′)

where we performed the substitution xj,k := μjδj,k, ∀j, k. This case is already
NP-complete, as is shown in Theorem 2 in Section 6.

(MP′) actually is an instance of the maximum concurrent multicommodity
k-splittable flow problem which can be stated as follows: Let G = (V,E) be a
directed or undirected graph with integral edge capacities ue > 0, for all e ∈ E.
There are l source-sink pairs (si, ti), i = 1, . . . , l, one for each of l different
commodities. For each commodity i there is also a demand di, and a bound ki

on the number of different paths allowed for this commodity. Then the maxi-
mum concurrent multicommodity k-splittable flow problem is asking for a flow
assignment to paths in G that respects the edge capacities and the splittability
bounds for the commodities, and routes the maximum possible fraction of all
commodity demands simultaneously. This, together with several other versions
of k-splittable problems, are studied in [5]. Also, when ki = 1, ∀i, then these
problems are called just unsplittable (instead of 1-splittable).

Problem (MP′) is a special case of the multicommodity k-splittable flow prob-
lem: the K classes can be seen as K commodities of demand ak, k = 1, . . . ,K,
each with a splittability upper bound of 0 < ck ≤ M . These commodities are
routed on the network of Figure 1. All commodities have the same source s,
but commodity i has its own sink ti. Each of the vertices ti, i = 1, . . . ,K is
connected to all vertices uj , j = 1, . . . ,M , and s is connected to all vertices
vj , j = 1, . . . ,M . The edge (vj , uj) has capacity μj for all j = 1, . . . ,M , while
the rest of the edges have infinite capacity. Note that a solution to the maximum
concurrent multicommodity k-splittable flow problem on this instance will also
give a solution to our original problem (MP′), since every flow path that carries
flow f of commodity k through edge (vj , uj) corresponds to setting δj,k := f . And
vice versa, a solution to (MP′) gives us also a path flow assignment that achieves
the same value for the minimum fraction of commodity demand that is satisfied
in the maximum concurrent multicommodity k-splittable flow problem above.
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Fig. 1. The graph for our special k-splittable flow instance

Baier et al. [5] show that any ρ-approximation algorithm for the maximum
concurrent unsplittable flow problem yields a ρ/2-approximation algorithm for
the maximum concurrent k-splittable flow problem. Dinitz et al. [9] present an
algorithm that achieves an approximation factor of ρ = 1/5 in running time
O(KM(K + M)), using ideas by Kolliopoulos and Stein [14]. Therefore the
solution we get for our problem has a guaranteed worst-case performance of at
least 1/10 of the optimum. Note that in our case, the usual balancing assumption

max demand ≤ min capacity

does not hold, hence the somewhat worse approximation ratios achieved, as
compared to the ratios achieved if this assumption holds.

A Different Approximation Algorithm. The previous algorithm cannot
take advantage of the better approximation factor of 2 for congestion in the un-
splittable flow problem, because the balancing assumption doesn’t hold in our
case. Here we follow a different path, in order to provide an approximation algo-
rithm that under certain assumptions achieves a factor better than 1/10 for the
case μj,k = μj for all k. We will reduce our problem to the generalized assign-
ment problem, and then we will use the approximation algorithm by Shmoys
and Tardos [16].

The first step of the new algorithm is the same as before: we transform the
given problem into an exactly-k-splittable flow problem, with a loss of a factor
of 1/2. Hence commodity k is split into ck commodities (k, i), i = 1, . . . , ck, each
with demand ak/ck.

During the second step, we solve the following concurrent flow problem in the
network defined above, which in turn is a relaxation of the concurrent unsplit-
table flow:

max λ s.t.∑M
j=1 xj,(k,i) ≥ λak

ck
, ∀k, i∑

(k,i) xj,(k,i) ≤ μj , ∀j
xj,(k,i) ≥ 0, ∀i, j, k

(LP-NEW)



406 D.G. Down and G. Karakostas

If x∗, λ∗ is the optimal solution for (LP-NEW), then define λ(k,i) :=
(
∑M

j=1 x
∗
j,(k,i))/(ak/ck). Obviously λ(k,i) ≥ λ∗ > 0, ∀(k, i). Also, we define

yj,(k,i) := ck

λ(k,i)ak
x∗j,(k,i) and pj,(k,i) := ak

ckμj
, ∀i, j, k. Then y satisfies the following

system of inequalities: ∑M
j=1 yj,(k,i) = 1, ∀k, i∑

(k,i) pj,(k,i)yj,(k,i) ≤ 1/λ∗, ∀j
yj,(k,i) ≥ 0, ∀i, j, k

This is exactly the relaxation of the problem (without costs) of scheduling
unrelated parallel machines that [16] studies. We can think of the commodities
(k, i) as jobs, the edges of capacities μ as machines, pj,(k,i) as the processing time
of job (k, i) on machine j, 1/λ∗ as the makespan, and y as a feasible (fractional)
assignment of jobs to machines that achieves this makespan. Suppose that there
is some ρ > 0 such that pj,(k,i) ≤ ρ/λ∗, ∀i, j, k. Then Theorem 2.1 of [16] implies
that their algorithm produces an (integral) assignment of jobs to machines ŷ with
makespan at most (1 + ρ)/λ∗. This algorithm is the third step of our algorithm.

Our solution assigns x̂j,(k,i) := λ(k,i)ak

ck
ŷj,(k,i) (note that for every (k, i), these

values are going to be 0 for all j except one.) It is easy to prove the following:

Lemma 1. The solution produced by the algorithm above is within 1/2(1 + ρ)
of the optimum.

Proof. The solution x̂ satisfies the constraints of (LP-NEW) for λ := λ∗/(1+ρ).
Hence it approximates the maximum concurrent unsplittable flow within a factor
of 1/2. Together with the approximation factor of 1/2 from the first step, this
implies the lemma.

4.3 The Case μ = α · βT

This case can be generalized to any M × K matrix μ which is the product of
an M × 1 vector α and the transpose of a K × 1 vector β, i.e., μ = α · βT (in
other words, the service rates satisfy μj,k = αjβk). Then it is easy to see that
the initial problem (MP) is equivalent to

max λ s.t.∑M
j=1 xj,k ≥ λbk, k = 1, . . . ,K∑K
k=1 xj,k ≤ αj , j = 1, . . . ,M

xj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M∑M
j=1 χ{xj,k > 0} ≤ ck, k = 1, . . . ,K

(MP′′)

where xj,k := αjδj,k, for all j, k, and bk := ak/βk. (MP′′) then falls into the case
of Section 4.2.

4.4 Extension to TDCCP with Costs

We can extend TDCCP by introducing costs to the assignment of servers to
classes. Let cj,k be the per unit cost of assigning server j to class k. Hence, if δj,k
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is the fraction of its effort dedicated by j to k, then the cost incurred is cj,kδj,k.
For example, the assignment of a worker to a machine where he has no expertise
may incur a bigger cost (because of training needs, damages because of deficient
products he produces etc.) than the cost of an experienced worker to the same
machine. Together with these costs cj,k, we are also given a budget that cannot
be exceeded by our final assignment. Hence we are asked for an assignment of
servers to classes that respect the given budget and maximizes the throughput.

The algorithms of [5], [16] used in Section 4.2 are cost preserving. When in
the first step we transform the budget-constrained k-splittable flow problem
into a budget-constrained exactly-k-splittable flow problem, [5] proves that the
optimal solution of the latter is not only an 1/2 approximation of the former,
but it also respects the initial budget constraint. Also the algorithm of [16] we
use in Section 4.2 produces an assignment that always respects the budgetary
constraint (although it may not produce the optimal makespan).2

5 Solving TDCCP - General Case

For the general case, let

wj :=
μmax

j

μmin
j

, j = 1, 2, . . . ,M

where μmax
j := maxk{μj,k} and μmin

j := mink{μj,k}. Note that μj,k = 0 implies
that δj,k = 0, so we will assume that μj,k > 0 for all j, k. Also, let wmax :=
maxj{wj}, and let δ∗, λ∗ be the optimal solution to (MP). Instead of the original
problem (MP), we will try to solve (approximately) the following problem:

max λ s.t.∑M
j=1 μj,kδj,k ≥ λak, k = 1, . . . ,K∑K
k=1 μj,kδj,k ≤ μmax

j , j = 1, . . . ,M
δj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M∑M

j=1 χ{δj,k > 0} ≤ ck, k = 1, . . . ,K.

(NEW MP)

It is clear that, as in Section 4.2, we can set xj,k := μj,kδj,k in (NEW MP) to get
exactly the same formulation as (MP′). Hence we can apply the same techniques
we applied in Section 4.2, to obtain an approximate solution x̂, λ̂, which is within
1/10 of the optimum solution (of (MP′)). Then we output the following solution
to the original problem:

δj,k :=
x̂j,k

wjμj,k
, ∀j, k. (5)

The following proposition is proven in the full version:

Proposition 2. Solution (5) is a feasible solution for (MP), and achieves a λ
of value at least λ∗/10wmax.
2 Obviously the costs in the budgetary constraint in each of the LP formulations above

are scaled following the scaling of the assignment variables.
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This result extends to the case of a budgetary constraint problem, i.e. the ap-
proximation factor can be achieved without violating the (given) budget (cf.
Section 4.4.)

6 NP-Completeness

We reduce a slight variation of the classical PARTITION problem (see [SP12]
in [10]) to the version of our problem that is studied in Section 4.2, which, by
abusing the terminology a little bit, we will call problem (MP′):

MP′

Instance: We are given (MP′) and λ∗ ∈ R.
Question: Is the solution of (MP′) greater than or equal to λ∗?

Obviously this problem is in NP (given λ∗ and a solution to MP′, one can easily
check whether its objective is greater than or equal to λ∗). The PARTITION
problem variation we reduce it to is the following:

PARTITION
Instance: Finite set A of even cardinality and a size s(a) ∈ Z+ for each item
a ∈ A.
Question: Is there a subset A′ ⊆ A of cardinality |A|/2 and such that∑

a∈A′ s(a) =
∑

a∈A\A′ s(a)?

Given the PARTITION instance, we identify the elements of A with the
numbers 1, 2, . . . , |A|. Let S :=

∑|A|
j=1 s(j) be the total size. We set K := 2,M :=

|A| and μj := s(j), j = 1, . . . , |A|. We also set c1 = c2 := |A|/2, and a1 = a2 := 1.
Finally we set λ∗ := S/2. Therefore we get an instance of (MP′) in polynomial
time. From now on, when we refer to (MP′), we actually refer to this specific
instance we constructed. We can prove (proof in the full version) the following

Theorem 2. PARTITION has a solution iff (MP′) achieves λ ≥ λ∗.
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Abstract. In this paper, motivated by applications of ordinary (dis-
tance) spanners in communication networks and to address such issues
as bandwidth constraints on network links, link failures, network sur-
vivability, etc., we introduce a new notion of flow spanner, where one
seeks a spanning subgraph H = (V, E′) of a graph G = (V, E) which
provides a “good” approximation of the source-sink flows in G. We for-
mulate few variants of this problem and investigate their complexities.
A special attention is given to the version where H is required to be a
tree.

1 Introduction

Given a graph G = (V,E), a spanning subgraph H = (V,E′) of G is called a
spanner if H provides a “good” approximation of the distances in G. More for-
mally, for t ≥ 1, H is called a t–spanner of G [5, 21, 20] if dH(u, v) ≤ t · dG(u, v)
for all u, v ∈ V, where dG(u, v) is the distance in G between u and v. Sparse
spanners (where |E′| = O(|V |)) found a number of applications in various areas;
especially, in distributed systems and communication networks. In [21], close re-
lationships were established between the quality of spanners (in terms of stretch
factor t and the number of spanner edges |E′|), and the time and communica-
tion complexities of any synchronizer for the network based on this spanner. Also
sparse spanners are very useful in message routing in communication networks;
in order to maintain succinct routing tables, efficient routing schemes can use
only the edges of a sparse spanner [22]. It is well-known that the problem of
determining, for a given graph G and two integers t,m ≥ 1, whether G has a
t-spanner with m or fewer edges, is NP-complete (see [20]).

The sparsest spanners are tree spanners. They occur in biology and can be
used as models for broadcast operations. Tree t-spanners were considered in [3].
It was shown that, for a given graph G, the problem to decide whether G has a
spanning tree T such that dT (u, v) ≤ t ·dG(u, v) for all u, v ∈ V is NP–complete
for any fixed t ≥ 4 and is linearly solvable for t = 1, 2. For more information on
spanners consult [1, 2, 3, 5, 6, 7, 18, 20, 21].

In this paper, motivated by applications of spanners in communication net-
works and to address such issues as bandwidth constraints on network links, link
failures, network survivability, etc., we introduce a new notion of flow spanner,
where one seeks a spanning subgraph H = (V,E′) of a graph G which provides a

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 410–422, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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“good” approximation of the source-sink flows in G. We formulate few variants
of this problem and investigate their complexities. In this preliminary investi-
gation, a special attention is given to the version where H is required to be a
tree.

2 Problem Formulations and Results

A network is a 4-tuple N = (V,E, c, p) where G = (V,E) is a connected, finite,
and simple graph, c(e) are nonnegative edge capacities, and p(e) are nonnegative
edge prices. We assume that graphG is undirected in this paper, although similar
notions can be defined for directed graphs, too. In this case, c(e) indicates the
maximum amount of flow edge e = (v, u) can carry (in either v to u direction
or in u to v direction), p(e) is the cost that the edge will incur if it carries a
non-zero flow. Given a source s and a sink t in G, an (s, t)-flow is a function
f defined over the edges that satisfies capacity constraints, for every edge, and
conservation constraints, for every vertex, except the source and the sink. The
net flow that enters the sink t is called the (s, t)-flow. Denote by FG(s, t) the
maximum (s, t)-flow in G. Note that, since G is undirected, f(v, u) = −f(u, v)
for any edge e = (v, u) ∈ E and FG(x, y) = FG(y, x) for any two vertices (source
and sink) x and y (by reversing the flow on each edge).

Let H = (V,E′) be a subgraph of G, where E′ ⊆ E. For any two vertices u, v ∈
V (G), define flow stretch(u, v) = FG(u,v)

FH(u,v) to be the flow–stretch factor between
u and v. Define the flow–stretch factor of H as fsH = max{flow stretch
(u, v) : u, v ∈ V (G)}. When the context is clear, the subscript H will be omitted.
Similarly, define the average flow–stretch factor of the subgraph H as follows
afsH = 2

n(n−1)

∑
u,v∈V

FG(u,v)
FH(u,v) .

The general problem, we are interested in, is to find a light flow–spanner H of
G, that is a spanning subgraph H such that fsH (or afsH) is as small as possible
and at the same time the total cost of the spanner, namely P(H) =

∑
e∈E′ p(e),

is as low as possible. The following is the decision version of this problem.

Problem: Light Flow–Spanner

Instance: An undirected graph G = (V, E), non-negative edge capacities c(e), non-
negative edge costs p(e), e ∈ E(G), and two positive numbers t and B.

Output: A light flow–spanner H = (V, E′) of G with flow–stretch factor fsH ≤ t and
total cost P(H) ≤ B, or ”there is no such spanner”.

We distinguish also few special variants of this problem.

Problem: Sparse Flow–Spanner

Instance: An undirected graph G = (V, E), non-negative edge capacities c(e), unit
edge costs p(e) = 1, e ∈ E(G), and two positive numbers t and B.

Output: A sparse flow–spanner H = (V, E′) of G with flow–stretch factor fsH ≤ t
and P(H) = |E′| ≤ B, or ”there is no such spanner”.
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Problem: Sparse Edge-Connectivity–Spanner

Instance: An undirected graph G = (V, E), unit edge capacities c(e) = 1, unit edge
costs p(e) = 1, e ∈ E(G), and two positive numbers t and B.

Output: A sparse flow–spanner H = (V, E′) of G with flow–stretch factor fsH ≤ t
and P(H) = |E′| ≤ B, or ”there is no such spanner”.

Note that here the maximum (s, t)-flow in H is actually the maximum number
of edge-disjoint (s, t)-paths in H , i.e., the edge-connectivity of s and t in H .
Thus, this problem is named the Sparse Edge-Connectivity–Spanner problem.
Spanning subgraph H provides a “good” approximation of the vertex-to-vertex
edge-connectivities in G. The following is the version of this Edge-Connectivity
Spanner problem with arbitrary costs on edges.

Problem: Light Edge-Connectivity–Spanner

Instance: An undirected graph G = (V, E), unit edge capacities c(e) = 1, arbitrary
non-negative edge costs p(e), e ∈ E(G), and two positive numbers t and B.

Output: A light flow–spanner H = (V, E′) of G with flow–stretch factor fsH ≤ t and
total cost P(H) ≤ B, or ”there is no such spanner”.

In Section 4, using a reduction from the 3-dimensional matching problem,
we show that the Sparse Edge-Connectivity–Spanner problem is NP-complete,
implying that all other three problems are NP-complete as well.

Replacing in all four formulations “fsH ≤ t“ with “afsH ≤ t“, we obtain four
more variations of the problem: Light Average Flow–Spanner, Sparse Average
Flow–Spanner, Sparse Average Edge-Connectivity–Spanner and Light Average
Edge-Connectivity–Spanner, respectively. These four problems are topics of our
current investigations.

In Section 5, we investigate two simpler variants of the problem: Tree Flow–
Spanner and Light Tree Flow–Spanner problems.

Problem: Tree Flow–Spanner

Instance: An undirected graph G = (V, E), non-negative edge capacities c(e), e ∈
E(G), and a positive number t.

Output: A tree t-flow–spanner T = (V, E′) of G, that is a spanning tree T of G with
flow–stretch factor fsT ≤ t, or ”there is no such tree spanner”.

Problem: Light Tree Flow–Spanner

Instance: An undirected graph G = (V, E), non-negative edge capacities c(e), non-
negative edge costs p(e), e ∈ E(G), and two positive numbers t and B.

Output: A light tree t-flow–spanner T = (V, E′) of G, that is a spanning tree T of G
with flow–stretch factor fsT ≤ t and total cost P(T ) ≤ B, or ”there is no such
tree spanner”.

In a similar way one can define also the Tree Average Flow–Spanner and Light
Tree Average Flow–Spanner problems. Notice that our tree t-flow-spanners are
different from the well-known Gomory-Hu trees [14]. Gomory-Hu trees represent
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the structure of all s-t maximum flows of undirected graphs in a compact way,
but they are not necessarily spanning trees.

We show that the Tree Flow–Spanner problem has easy polynomial time so-
lution while the Light Tree Flow–Spanner problem is NP-complete. In Section 6,
we propose two approximation algorithms for the Light Tree Flow–Spanner
problem.

3 Related Work

In [11], a network design problem, called smallest k-ECSS problem is considered,
which is close to our Sparse Edge-Connectivity–Spanner problem. In that prob-
lem, given a graph G along with an integer k, one seeks a spanning subgraph
H of G that is k-edge-connected and contains the fewest possible number of
edges. The problem is known to be MAX SNP-hard [9], and the authors of [11]
give a polynomial time algorithm with approximation ratio 1 + 2/k (see also [4]
for an earlier approximation result). It is interesting to note that a sparse k-
edge-connected spanning subgraph (with O(k|V |) edges) of a k-edge-connected
graph can be found in linear time [19]. In our Sparse Edge-Connectivity–Spanner
problem, instead of trying to guarantee the k-edge-connectedness in H for all
vertex pairs, we try to closely approximate by H the original (in G) levels of
edge-connectivities.

Paper [12] deals with the survivable network design problem (SNDP) which
can be considered as a generalization of our Light Edge-Connectivity–Spanner
problem. In SNDP, we are given an undirected graph G = (V,E), a non-negative
cost p(e) for every edge e ∈ E and a non-negative connectivity requirement
rij for every (unordered) pair of vertices i, j. One needs to find a minimum-
cost subgraph in which each pair of vertices i, j is joined by at least rij edge-
disjoint paths. The problem is NP-complete since the Steiner Tree Problem is
a special case, and [13] gives an efficient approximate solution. If connectivity
requirements are at most k (for some integer k), then a solution found is within
a factor 2H(k) = 2(1 + 1

2 + 1
3 + . . . + 1

k ) of optimal. See also [10, 12, 16, 24] for
some earlier results. By setting rij := �FG(i, j)/t� for each pair of vertices i, j,
our Light Edge-Connectivity–Spanner problem (with given flow–stretch factor
t) can be reduced to SNDP.

Another related problem, which deals with the maximum flow, is investigated
in [8, 17]. In that problem, called MaxFlowFixedCost, given a graph G = (V,E)
with non-negative capacities c(e) and non-negative costs p(e) for each edge
e ∈ E, a source s and a sink t, and a positive number B, one must find an
edge subset E′ ⊆ E of total cost

∑
e∈E′ p(e) ≤ B, such that in spanning graph

H = (V,E′) of G the flow from s to t is maximized. Paper [8] shows that
this problem, even with uniform edge-prices, does not admit a 2log1−εn-ratio ap-
proximation for any constant ε > 0 unless NP ⊆ DTIME(npolylog n). In [17],
a polynomial time F ∗-approximation algorithm for the problem is presented,
where F ∗ denotes the maximum total flow. In our Sparse Flow–Spanner problem
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we require from spanning subgraph H to approximate maximum flows for all
vertex pairs simultaneously.

To the best of our knowledge our spanner-like all-pairs problem formulations
are new.

4 Hardness of the Flow–Spanner Problems

This section is devoted to the proof of the NP-completeness of the Sparse Edge-
Connectivity–Spanner problem and other Flow–Spanner problems.

Theorem 1. Sparse Edge-Connectivity–Spanner problem is NP-complete.

Proof. It is obvious that the problem is in NP. To prove its NP-hardness, we will
reduce the 3-dimensional matching (3DM) problem to this one, by extending a
reduction idea from [10].

Let M ⊆W ×X×Y be an instance of 3DM, with |M | = p and W = {wi|i =
1, 2, · · · , q}, X = {xi|i = 1, · · · , q} and Y = {yi|i = 1, · · · , q}. One needs to check
if M contains a matching, that is, a subset M ′ ⊆M such that |M ′| = q and no
two triples of M ′ share a common element from W ∪X ∪ Y .

Define Deg(a) to be the number of triples in M that contain a, a ∈ W ∪
X ∪ Y . We construct a graph G = (V,E) as follows (see Fig. 1). For each triple
(wi, xj , yk) ∈ M , there are four corresponding vertices aijk, aijk, dijk and dijk

in V . dijk and dijk are called dummy vertices. Denote D := {dijk|(wi, xj , yk) ∈
M}, D := {dijk|(wi, xj , yk) ∈M}, A := {aijk|(wi, xj , yk) ∈M}, A := {aijk|(wi,
xj , yk) ∈ M}. Additionally, for each a ∈ X ∪ Y , we define a vertex a and
2Deg(a)− 1 dummy vertices d1(a), · · · , d2Deg(a)−1(a) of a. For each wi ∈W , we
define a vertex wi and 4Deg(wi)−3 dummy vertices d1(wi), · · · , d4Deg(wi)−3(wi)

w1 a 111

a 111

a 222

a 222

a 122

a 122

w2

x1

x2

1
y

y
2

d 111

d 111

d 222

d 222

d 122

d122

v

Fig. 1. Graph created for a 3DM instance: M = {(w1, x1, y1), (w2, x2, y2), (w1, x2, y2)},
W = (w1, w2), X = (x1, x2) and Y = (y1, y2). The edges from Ed are shown in bold.
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of wi. There is an extra vertex v in V . Let Nd be the dummy vertices (note that
D,D ⊂ Nd). So, the vertex set V of G is V = {v} ∪W ∪X ∪ Y ∪A ∪A ∪Nd.

For each dummy vertex di(a) ∈ Nd (a ∈ W ∪X ∪ Y ) put (a, di(a)), (v, di(a))
into Ed. Also put (wi, dijk), (dijk , aijk), (wi, dijk), (dijk, aijk) into Ed. Now, the
edge set E of G is E = Ed ∪ {(aijk, aijk), (aijk , xj), (aijk, yk)|(wi, xj , yk) ∈ M}.
This completes the description of G = (V,E). Clearly, each dummy vertex has
exactly two neighbors in G, and each vertex of A∪A has exactly 3 neighbors in
G. Also, each wi has 4Deg(wi) − 3 + 2Deg(wi) = 6Deg(wi) − 3 neighbors and
each a ∈ X ∪ Y has 2Deg(a)− 1 +Deg(a) = 3Deg(a)− 1 neighbors in G.

Set t = 3/2 and B = |Ed|+ p+ q. We claim that M contains a matching M ′

if and only if G has a flow–spanner H = (V,E′) with flow–stretch factor ≤ t and
with B edges. Proof of this claim is presented in the journal version. ��

Corollary 1. The Light Flow–Spanner, the Sparse Flow–Spanner and the Light
Edge-Connectivity–Spanner problems are NP-complete.

5 Tree Flow–Spanners

In this section, we show that the Light Tree Flow–Spanner problem is NP-
complete while the Tree Flow–Spanner problem can be solved efficiently by any
Maximum Spanning Tree algorithm.

Theorem 2. The Light Tree Flow–Spanner problem is NP-complete.

Proof. The problem is obviously in NP. One can non-determenistically choose
a spanning tree and test in polynomial time whether it satisfies the cost and
the flow–stretch bounds. To prove its NP-hardness, we will reduce the 3SAT
problem to this one.

Let xi be a variable in the 3SAT instance. Without loss of generality, assume
that the 3SAT instance does not have clause of type (xi ∨ xi ∨ xj) (note j may
be equal to i). Since such a clause is always true no matter what value xi gets,
it can be eliminated without affecting the satisfiability.

From a 3SAT instance one can construct a graph G = (V,E) as follows. Let
x1, x2, · · · , xn be the variables and C1, · · · , Cq be the clauses of 3SAT. Let ki be
the number of clauses containing either literal xi or literal xi. Create 2ki vertices
for each variable xi in G. Denote those vertices by V (xi) = {x1

i , x
2
i , · · · , xki

i } and
V (xi) = {x1

i , · · · , xki

i }. All these vertices are called variable vertices. Put an edge
(xl

i, x
l
i) into E(G), for 1 ≤ l ≤ ki. Set p(xl

i, x
l
i) = c(xl

i, x
l
i) = 1. For each integer

l, where 1 ≤ l < ki, put (xl
i, x

l+1
i ) and (xl

i, x
l+1
i ) into E(G) and set their prices

and capacities to be 2.
For each clause Cj , create a clause vertex Cj in G. At the beginning, mark

all the vertices corresponding to the variables as “free”. Do the following for j =
1, 2, . . . , q. If xi (or xi) is in Cj , then find the smallest integer l such that xl

i (or
xl

i) is “free” and put (Cj , x
l
i) ((Cj , x

l
i), respectively) into E(G). Mark xl

i and xl
i

as “busy”. Set c(Cj , x
l
i) = p(Cj , x

l
i) = 3 (respectively, c(Cj , x

l
i) = p(Cj , x

l
i) = 3).
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Graph G has also an extra vertex v. For each variable xi, put edges (v, x1
i )

and (v, x1
i ) into E(G). Set their prices and capacities to 2. This completes the

description of G. Obviously, the transformation can be done in polynomial time.
For each variable xi, let Hi be the subgraph of G induced by vertices {v, x1

i ,
· · · , xki

i , x1
i , · · · , xki

i }. Name all the edges with capacity 2 assignment edges, the
edges with capacity 1 connection edges and the edges with capacity 3 consistent
edges. The path (v, x1

i , x
2
i , · · · , xki

i ) is called positive path of Hi and the path
(v, x1

i , · · · , xki

i ) is called negative path of Hi.
Let N = k1 + k2 + · · ·+ kn. Set B = 3N + 3q and fsT = 8. We need to show

that the 3SAT is satisfiable if and only if the graph G has a tree flow–spanner
with total cost less than or equal to B and flow–stretch factor at most 8. Here,
we prove the “only if” direction. A proof for the “if” direction is presented in
the journal version.

Let T be a tree flow–spanner of G such that fsT ≤ 8 and
∑

e∈E(T ) p(e) ≤ B.
Obviously, T must have at least q consistent edges. Assume T has r assignment
edges, s connection edges and t+q consistent edges. Clearly, r, s, t ≥ 0 and, since
T has 2N + q edges (because G has 2N + q + 1 vertices), r + s+ t = 2N . From∑

e∈E(T ) p(e) ≤ B = 3N + 3q we conclude also that 2r + s + 3t ≤ 3N . Hence,
2r + s + 3t − 2(r + s + t) ≤ −N , i.e., t ≤ s − N . If s < N , then t < 0, which
is impossible. Therefore, T must include all N connection edges of G, implying
s = N and r + t = N , 2r + 3t ≤ 2N . From 2r + 3t − 2(r + t) ≤ 0 we conclude
that t ≤ 0. So, t must be 0, and therefore, T contains exactly q consistent edges,
exactly N assignment edges and all N connection edges. This implies that, for
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every variable xi, exactly one edge from {(x1
i , v), (x

1
i , v)} is in E(T ). Since in T

each clause vertex must be adjacent to at least one variable vertex and there are
q consistent edges in T , each clause vertex is a pendant vertex of T (is adjacent
in T to exactly one variable vertex). By construction of G, for each variable
vertex xl

i, any path between xl
i and v in G either totally lies in Hi or has to use

at least one clause vertex. Since all clause vertices are pendant in T , the path
between xl

i and v in T must totally lie in Hi. Similarly, the path between xl
i and

v in T must totally lie in Hi.
Now, we show how to assign true/false to the variables of the 3SAT instance to

satisfy all its clauses. For each variable xi, if (x1
i , v) ∈ E(T ) then assign true to xi,

otherwise assign false to xi. We claim that, if a clause vertex Cj is adjacent to a
variable vertex xl

i (or to a variable vertex xl
i) in T , then xi is assigned true (false,

respectively). The claim can be proved by contradiction. Assume xi is assigned
false, i.e., (x1

i , v) ∈ E(T ) and (x1
i , v) /∈ E(T ), but Cj is adjacent to a variable

vertex xl
i in T . As it was mentioned in the previous paragraph, the path PT (xl

i, v)
between xl

i and v in T must totally lie in Hi. Since (x1
i , v) /∈ E(T ), edge (x1

i , v)
cannot be in PT (xl

i, v). By construction of Hi, any path in Hi from xl
i to v not

using edge (x1
i , v) must contain at least one connection edge. This means that the

path PT (Cj , v) contains at least one connection edge, too. Since all connection
edges have capacity 1, FT (Cj , v) = 1. On the other hand, FG(Cj , v) = 9. Hence,
flow stretch(Cj , v) = 9 > 8, contradicting with fsT ≤ 8. This contradiction
proofs the claim. Now, since every clause contains at least one true literal (note
(xl

i, Cj) ∈ E(G) implies clause Cj contains xi), the 3SAT instance is satisfiable.
This completes the proof of the theorem. ��

Let G = (V,E) be graph of an instance of the Light Tree Flow–Spanner problem.
Let c∗ be the maximum edge capacity of G and c∗ be the minimum edge capacity
of G. Note that, if c∗

c∗
= 1, then the Light Tree Flow–Spanner problem can be

solved in polynomial time by simply finding a minimum spanning tree Tp of G,
where the weight of an edge e ∈ E(G) is p(e). From the proof of Theorem 2,
one concludes that when c∗

c∗
≥ 3, the Light Tree Flow–Spanner problem is NP-

complete.
Now we turn to the Tree Flow-Spanner problem on a graph G = (V,E) (recall

that in this problem p(e) = 1 for any e ∈ E).

Lemma 1. Let Tc be a maximum spanning tree of a graph G (with edge weights
c(·)) and T be an arbitrary spanning tree of G. Then, for any two vertices u, v ∈
V (G), FTc(u, v) ≥ FT (u, v).

Lemma 1 implies that a maximum spanning tree Tc of a graph G, where the
edge capacities are interpreted as edge weights, is an optimal tree flow–spanner
of G. Hence, the following theorem holds.

Theorem 3. Given an undirected graph G = (V,E), with non-negative capaci-
ties on edges, and a number t > 0, whether G admits a tree flow–spanner with
flow–stretch factor at most t can be determined in polynomial time (by any max-
imum spanning tree algorithm).
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6 Approximation Algorithms

In this section, we present some approximation algorithms for the Light Tree
Flow–Spanner problem. Let G = (V,E) be an undirected graph with non-
negative edge capacities c(e) and non-negative edge costs p(e), e ∈ E(G). For
given two positive numbers t and B we want to check if a spanning tree T ∗ of
G with flow–stretch factor fsT ∗ ≤ t and total cost P(T ∗) ≤ B exists or not.
If such a tree exists then we say that the Light Tree Flow–Spanner problem on
G has a solution. We will say that a spanning tree T of a graph G gives an
(α, β)-approximate solution to the Light Tree Flow–Spanner problem on G if
the inequalities fsT ≤ αt and P(T ) ≤ βB hold for T . A polynomial time algo-
rithm producing an (α, β)-approximate solution to any instance of the Light Tree
Flow–Spanner problem admitting a solution is called an (α, β)-approximation al-
gorithm for the Light Tree Flow–Spanner problem.

Lemma 2. If c∗

c∗
≤ k, where c∗ := max{c(e) : e ∈ E} and c∗ := min{c(e) :

e ∈ E}, then there is a (k, 1)-approximation algorithm for the Light Tree Flow–
Spanner problem.

This result will be used in our main approximation algorithm. Let G = (V,E)
be an undirected graph with non-negative edge capacities c(e) and non-negative
edge costs p(e), e ∈ E(G). Assume that G has a spanning tree T ∗ with fsT ∗ ≤ t
and P(T ∗) ≤ B. In what follows, we describe a polynomial time algorithm
which, given a parameter (any real number) r larger than 1 and smaller than
t (1 < r ≤ t − 1), produces a spanning tree T of G such that fsT ≤ r(t − 1)t
and P(T ) ≤ 1.55 logr(r(t − 1))B. Thus, it is an (r(t − 1), 1.55 logr(r(t − 1)))-
approximation algorithm for the Light Tree Flow–Spanner problem.

Assume that the edges of G are ordered in a non-decreasing order of their
capacities, i.e., we have an ordering e1, e2, · · · , em of the edges of G such that
c(e1) ≤ c(e2) · · · ≤ c(em). Let 1 < r ≤ t − 1. If c(em)/c(e1) ≤ r(t − 1), then
Lemma 2 suggests to construct a minimum spanning tree of G using p(e)s as the
edge weights. This tree is an (r(t − 1), 1)-approximate solution, and hence we
are done. Assume now that c(em)/c(e1) > r(t−1). We cluster all the edges of G
into groups as follows. First group consists of all the edges whose capacities are
in the range [l1 = c(em)/r, h1 = c(em)]. Then, we find the largest capacity c(ei)
such that c(ei) < c(em)/r and form the second group of edges. It consists of all
edges whose capacities are in the range [l2 = c(ei)/r, h2 = c(ei)]. We continue
this process until a group of edges whose capacities are in the range [lk, hk] with
c(e1) ≥ lk is formed.

Let Gi = (V,Ei) be a subgraph of G formed by Ei = {e ∈ E(G) : li ≤ c(e) ≤
h1}. Let Gi

1, G
i
2, · · · , Gi

pi
be those connected components of Gi which contain

at least two vertices. Consider another subgraph G′
i = (V,E′

i) of G formed by
E′

i = {e ∈ E(G) : hi/(r(t−1)) ≤ c(e) ≤ h1}. G′i
1 , G

′i
2 , · · · , G′i

qi
are used to denote

those connected components of G′
i which contain at least two vertices.

Let u, v ∈ V (G) be two arbitrary vertices. Choose the minimum i such that u
and v are connected in Gi and let Gi

j be the connected component of Gi which



Network Flow Spanners 419

contains u and v. Let G′i
j′ be the connected component of G′

i such that Gi
j ⊆ G′i

j′

(clearly, such a connected component exists). The following lemma holds (proof
is presented in the journal version).

Lemma 3. If G has a tree flow–spanner T ∗ with flow–stretch factor ≤ t, then
the path PT ∗(u, v) connecting u and v in T ∗ must totally lie in G′i

j′ .

From Lemma 3, our approximation algorithm for the Light Tree Flow–Spanner
problem is obvious.

PROCEDURE 1. Construct a light tree flow–spanner for a graph G

Input: An undirected graph G with non-negative edge capacities c(e) and
non-negative edge costs p(e), e ∈ E(G); positive real numbers t and 1 < r ≤ t − 1.

Output: A spanning tree T of G.

Method:
set Gf := (V, Ef ), where Ef = {e ∈ E(G) : p(e) = 0};
for i = 1 to k do

let Gi := (V, Ei) be a subgraph of G with Ei := {e ∈ E(G) : li ≤ c(e) ≤ h1};
let Gi

1, · · · , Gi
pi

be those conn. comp. of Gi which contain at least two vertices;
let G′

i := (V, E′
i) be a subgraph of G with E′

i := {e ∈ E(G) : hi
r(t−1) ≤ c(e) ≤ h1};

let G′i
1 , · · · , G′i

qi
be those conn. comp. of G′

i which contain at least two vertices;
set Vt := 1≤j≤pi

V (Gi
j);

in each conn. comp. G′i
j (1 ≤ j ≤ qi), find an approximate minimum weight

Steiner tree T ′i
j where terminals are V (G′i

j ) ∩ Vt and p(e)s are the edge weights;
set Ef := Ef { 1≤j≤qi

{e ∈ E(T ′i
j ) : p(e) > 0}};

for each edge e ∈ 1≤j≤pi
E(Gi

j), set p(e) := 0;
find a maximum spanning tree T of Gf using the capacities as the edge weights;
return T .

Below, the quality of the tree T constructed by above procedure is analyzed.

Lemma 4. If G admits a tree t-flow–spanner, then fsT ≤ r(t− 1)t.

Proof. Let u, v ∈ V (G) be two arbitrary vertices and T ∗ be a tree t-flow–spanner
of G. Choose the smallest integer i such that u and v are connected in Gi. Let
PG(u, v) be an arbitrary path between u and v in G and e ∈ PG(u, v) be an edge
on the path with smallest capacity. By the choice of i, we have c(e) ≤ hi.

Without loss of generality, assume u, v ∈ Gi
j . According to Procedure 1, u and

v will be connected by a path PT ′i
j

(u, v) in T ′i
j . Let e′ ∈ PT ′i

j
(u, v) be an edge

with minimum capacity in PT ′i
j

(u, v). It is easy to see that c(e′) ≥ hi/(r(t− 1)).
We claim that after iteration i, there is a path PGf

(u, v) between u and v in
Gf such that for any edge e ∈ PGf

(u, v), the inequality c(e) ≥ hi/(r(t−1)) holds.
We prove this claim by induction on i. All edges of PT ′i

j
(u, v) with current p(e)

greater than 0 are added to Ef . Ef contains also each edge for which original p(e)
was 0. Therefore, if Gf does not contain an edge e = (a, b) ∈ E(PT ′i

j
(u, v)), then

current p(e) of e was 0, and this implies c(e) > hi. According to Procedure 1, a,
b must be in a connected component of Gl where 1 ≤ l < i. Hence, by induction,
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at lth iteration, a and b must be connected by a path PGf
(a, b) such that, for

each edge e ∈ PGf
(a, b), the inequality c(e) ≥ hl/(r(t−1)) > hi/(r(t−1)) holds.

By concatenating such paths and the edges put into Gf during ith iteration, one
can find a path between u and v which satisfies the claim.

Since T is a maximum spanning tree of Gf (where the edge weights are their
capacities), similarly to the proof of Lemma 1, one can show that for any edge
e ∈ PT (u, v), c(e) ≥ hi/(r(t − 1)) holds. This implies FT ∗(u, v) ≤ hi ≤ r(t −
1)FT (u, v). Since T ∗ has flow–stretch factor ≤ t, we have FG(u, v) ≤ tFT ∗(u, v),
and therefore FG(u,v)

FT (u,v) ≤ r(t − 1)t. This concludes our proof. ��

Lemma 5. If G has a tree t-flow–spanner T ∗ with cost P(T ∗), then P(T ) ≤
1.55 logr(r(t − 1))P(T ∗).

Proof. By Lemma 3, one knows that for any two vertices u, v of Gi
j , PT ∗(u, v)

totally lies in G′i
j′ where Gi

j ⊆ G′i
j′ . Hence, the smallest subtree of T ∗ spanning

all vertices of Vt ∩ G′i
j′ is totally contained in G′i

j′ . We can use in Procedure 1
an 1.55-approximation algorithm of Robins and Zelikovsky [23] to construct
an approximation to a minimum weight Steiner tree in G′i

j′ spanning terminals
Vt ∩ V (G′i

j′ ). It is easy to see that Pi(Gf ) ≤ 1.55 Pi(T ∗), where Pi(Gf ) is the
total cost of the Steiner trees constructed by Procedure 1 on ith iteration and
Pi(T ∗) is the total cost of the edges from T ∗ which have capacities in the range
[hi/(r(t − 1)), hi] and are used to connect vertices in Vt. Therefore, P(Gf ) ≤∑

1≤i≤k Pi(Gf ) ≤ 1.55
∑

1≤i≤k Pi(T ∗). We will prove that
∑

1≤i≤k Pi(T ∗) ≤
logr(r(t− 1))P(T ∗). To see this, we show that each edge of T ∗ appears at most
l times in

∑
1≤i≤k Pi(T ∗), where 1

rl ≥ 1
r(t−1) . Then l ≤ logr(r(t−1)) will follow.

Consider an edge e ∈ G′
i with p(e) �= 0. We have hi/(r(t − 1)) ≤ c(e) ≤ hi.

According to Procedure 1, after ith iteration, all the edges with capacity in
[hi/r, hi] have 0 cost. After (i + 1)th iteration, all the edges with capacity in
[hi/r

2, hi] have 0 cost. After (i+ l−1)th iteration, all the edges with capacity in
[hi/r

l, hi] have 0 cost. To have p(e) > 0, the inequality hi/r
l ≥ hi/(r(t−1)) must

hold. So, l ≤ logr(r(t − 1)) and therefore P(Gf ) ≤ 1.55 logr(r(t − 1)) P(T ∗).
Since T is a spanning tree of Gf , the lemma clearly follows. ��

In the remaining part, we describe how to get a tree flow–spanner T of G with
flow–stretch factor ≤ t and total cost at most (n − 1)P(T ∗), provided G has a
tree t-flow–spanner T ∗. The algorithm is as follows.

PROCEDURE 2. Construct a light tree t-flow–spanner for a graph G

Input: An undirected graph G with non-negative edge capacities c(e) and
non-negative edge costs p(e), e ∈ E(G); a positive real number t.

Output: A tree t-flow–spanner T of G.

Method:
set Gf := (Vf , Ef ), where Vf = V, Ef = ∅;
construct a complete graph G′ = (V, E′);
for each (u, v) ∈ E′, let w(u, v) := FG(u, v) be the weight of the edge;
construct a maximum spanning tree T ′ of the weighted graph G′;
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for each edge (u, v) ∈ E(T ′) do
let Gw(u,v) be a subgraph of G obtained from G by removing all edges e with

c(e) < w(u, v)/t;
find a connected component Gu,v of Gw(u,v) such that u, v ∈ V (Gu,v);
if we cannot find such a connected component, then

return ”G does not have any flow tree t-spanner”;
find a shortest (w.r.t. the costs of the edges) path PGu,v (u, v) between u and v;
set Ef := Ef ∪ E(PGu,v (u, v));

find a maximum spanning tree T of Gf using the edge capacities as their weights;
return T .

The following lemma is true (proof is presented in the journal version).

Lemma 6. fsT ≤ t and P(T ) ≤ (n− 1) P(T ∗).

Summarizing the discussion of this section, we state

Theorem 4. There exist (r(t−1), 1.55 logr(r(t−1)))-approximation and (1, n−
1)-approximation algorithms for the Light Tree Flow–Spanner problem.
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Abstract. Let D be a database of transactions on n attributes, where
each attribute specifies a (possibly empty) real closed interval I =
[a, b] ⊆ R. Given an integer threshold t, a multi-dimensional interval
I = ([a1, b1], . . . , [an, bn]) is called t-frequent, if (every component in-
terval of) I is contained in (the corresponding component of) at least t
transactions of D and otherwise, I is said to be t-infrequent. We consider
the problem of generating all minimal t-infrequent multi-dimensional
intervals, for a given database D and threshold t. This problem may
arise, for instance, in the generation of association rules for a database
of time-dependent transactions. We show that this problem can be solved
in quasi-polynomial time. This is established by developing a quasi-
polynomial time algorithm for generating maximal independent elements
for a set of vectors in the product of lattices of intervals, a result which
may be of independent interest. In contrast, the generation problem for
maximal frequent intervals turns out to be NP-hard.

1 Introduction

Consider a database in which each transaction is associated with a time stamp
indicating the start and end times of the transaction. For instance, [15] gives an
example of a cellular phone company (or more generally a service provider) which
records the time and length for each phone call made by each customer. Then it is
useful, for the purpose of both improving the service and making more profit, to
determine the intervals of time during which the number of calls exceeds a given
threshold (frequent intervals), or the intervals of time during which the number
of calls lies below some threshold (infrequent intervals). Clearly, the property of
an interval being infrequent is monotone: if an interval I was occupied by less
than t customers’ phone calls, then the same is true for any interval containing I.
Thus we may restrict our attention to maximal frequent and minimal infrequent
intervals. In [15] an algorithm was proposed to enumerate all maximal frequent
intervals from a given database.

More generally, one may consider a database of transactions, each of which
describes an episode of events appearing over time. For instance, in the above
example, we may store in the database the different calls made by each customer
in different days. Then an interesting observation, that may be deduced from
the database, can take the form “Fewer than 10% of the customers make calls on
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Saturday between 1-2 AM, on Sunday between 1-2 AM, and on Monday between
9-10 AM”, or ”At least 60% of the customers who use the service between 5-
9 PM in the first 5 days of the month tend also to use the service between
5-9 PM in the last five days”. These examples illustrate the requirement for
discovering correlation or association rules [1] between occurrences of events
over time. As in the case of mining association rules between sets of items in a
database (see e.g. [1, 2, 3]), a fundamental problem that arises in our case is the
generation of frequent and infrequent multi-dimensional intervals (as opposed
to frequent and infrequent sets in [1]). As was suggested in [12, 16, 17] for the
case of frequent itemsets, it might be much more economical to represent the
frequent and infrequent intervals by their boundary, defined as the union of
maximal frequent and minimal infrequent intervals, since typically the number
of intervals in such a boundary is much smaller. This motivates us to investigate
the complexities of the problems of jointly and separately generating these two
families. It turns out that they exhibit the same behavior as that, discovered
in [5], for maximal frequent and minimal infrequent sets. More precisely, let
FD,t and GD,t denote respectively the families of maximal frequent and minimal
infrequent multi-dimensional intervals for a given database D and an integer
threshold t. Then it will be shown that we can generate, in incremental quasi-
polynomial time 1, the union FD,t ∪ GD,t (in some mixed way, and we do not
control the order in which the elements of these two families are generated).
It will be also illustrated that this result implies that the family of minimal
infrequent intervals can also be generated in incremental quasi-polynomial time.
Finally, we show also that the problem of incrementally generating the family
FD,t separately is NP-hard in general.

The paper is organized as follows. In the next section, we formally define the
problems considered and state our results, and in Section 3, we briefly survey
some related work. Following this, Section 4 explains how to view our problem as
that of generating maximal frequent/minimal infrequent vectors in the product
of lattices of intervals, constructed from the given database D. In section 5, we
reduce the problem of generating minimal infrequent intervals into the so called
dualization problem in products of lattices of intervals. Finally, In Section 6 we
show that this latter problem can be solved in quasi-polynomial time.

2 Problem Definition and Our Results

Let D be a database of records each of which has n attributes, where each
attribute specifies a (possibly empty) real closed interval I = [a, b] ⊆ R,
a, b ∈ R. Denote by Bn the set of all n-dimensional intervals (or boxes, or
hyper-rectangles): Bn

def= {(I1, . . . , In) : I1, . . . , In are closed intervals of R}.
Henceforth, we shall refer to an n-dimensional interval simply as an interval
when it is understood from the context that it has n dimensions. Let us denote

1 i.e. given a partial list X of elements that have been already generated, generating
a new element requires time O(kpolylog(k)), where k = n + |D| + |X |.
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by “1” the precedence relation of the partial order defined on Bn, that is, given
two intervals I = (I1, . . . , In) and (J1, . . . , Jn) in Bn, let us say that I 1 J if and
only if Ii ⊆ Ji for all i = 1, . . . , n. For I ∈ Bn, let SD(I) be the set of transactions
of D that support I, i.e. SD(I) def= {J ∈ D : J 2 I}. Given an integer threshold
0 ≤ t ≤ |D|, an interval I is said to be t-frequent if |SD(I)| ≥ t and maximal
t-frequent if |SD(J)| ≤ t − 1 for all J 3 I. Similarly an interval I is called t-
infrequent if |SD(I)| ≤ t− 1 and minimal t-infrequent if decreasing any interval
component of I makes it t-frequent. Denote by FD,t and GD,t respectively the
families of maximal frequent and minimal infrequent multi-dimensional inter-
vals for a given database D and an integer threshold t, and by F−

D,t and G+
D,t the

families of t-frequent and t-infrequent intervals. In this paper, we consider the
following problem of incrementally generating all minimal infrequent intervals:

SEP-GEN-(GD,t,X ): Given a sublist X ⊆ GD,t of minimal t-infrequent intervals,
either find a new element in GD,t\X or declare that the given sublist is complete:
X = GD,t.

Similarly problem SEP-GEN-(FD,t,X ) of separately generating all maximal
t-frequent intervals can be defined. We prove the following positive and negative
results.

Theorem 1. Problem SEP-GEN-(GD,t,Y) can be solved in incremental quasi-
polynomial time kO(log2 k), where k = n + |D|+ |Y|.

Proposition 1. There exist instances of problem SEP-GEN-(FD,t,X ) which
are NP-hard.

On our way to proving Theorem 1, we also investigate the complexity of the
joint generation of minimal infrequent and maximal frequent intervals:

JOINT-GEN(D, t,X ,Y): Given two collections X ⊆ FD,t and Y ⊆ GD,t, either
find a new element in (FD,t \ X ) ∪ (GD,t \ Y), or declare that these collections
are complete: (X ,Y) = (FD,t,GD,t).

Theorem 2. Problem JOINT-GEN(D, t,X ,Y) can be solved in incremental
quasi-polynomial time.

Theorems 1 and 2 indicate that problems SEP-GEN-(GD,t,Y) and JOINT-
GEN(D, t,X ,Y) are, most likely, not NP-hard, since no NP-complete problem
is known to be solvable in quasi-polynomial time.

In contrast to these results, we can show that the separate generation problems
SEP-GEN-(F−

D,t,X ) and SEP-GEN-(G+
D,t,X ) for t-frequent and t-infrequent in-

tervals can be solved with (amortized) polynomial delay (i.e. the average time
required to generate an element of F−

D,t is bounded by a polynomial in n and
|D|). This follows, for instance, from a straightforward generalization of the well-
known Apriori algorithm [3], applied to a product of lattices constructed from
the database in a certain way. We omit the proof of the following theorem from
this abstract.
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Theorem 3. Given a database D of transactions each of which is composed of
n time intervals, and an integer t, all t-frequent intervals can be computed with
amortized delay of O(n3|D|

∑n
i=1 |Pi|) per generated interval, and a total number

of O(
∑

i=1 |Pi|) scans of the database, where Pi is the set of distinct end-points
appearing in the ith column of the database. All t-infrequent intervals can be also
computed with the same amortized delay.

We remark that we can also obtain a polynomial delay algorithm for generating
G+
D,t and F−

D,t, but at the cost of increasing the number of scans of the database.

3 Some Related Work

The problem of enumerating frequent sets arises in the context of mining asso-
ciation rules from binary data, see e.g. [1], mining correlations [6], episodes [18],
and many other applications. In [3], an algorithm called Apriori was suggested
to find all frequent sets from a binary database. Improvements on this algorithm
as well as other methods were subsequently proposed, see e.g. [21, 22]. Further
work had also considered non-binary databases, for example, databases where
items belong to sets of taxonomies (or is-a hierarchies) [13, 14, 19], and databases
with categorical or quantitative attributes [13, 20]. While the Apriori algorithm
generates all frequent sets with amortized polynomial delay, it was shown in [5]
that the generation of maximal frequent sets is NP-hard. It was also shown in
the same paper that the generation of minimal infrequent sets can be solved in
incremental quasi-polynomial time. In this paper, we establish similar results for
the case of multi-dimensional intervals.

The problem of finding frequent 1-dimensional intervals, in a discrete domain,
was considered in [23], where an Apriori-based algorithm was suggested. In [15],
an algorithm for finding maximal frequent 1-dimensional intervals, in a continu-
ous domain, was proposed. Another related problem is the generation of empty
or sparse boxes in multi-dimensional data, considered in [4, 9]. In this problem,
it is required to generate all inclusion-wise maximal hyper-rectangles that con-
tain no point of the database in their interior. A polynomial-time algorithm was
presented in [9] to solve the problem in 2-dimensions. This problem was shown
to be solvable in quasi-polynomial time in [4] using a similar approach to the one
used in this paper. The main difficulty that arises in dealing with frequent in-
tervals is that they may contain some components representing empty intervals,
a problem which did not appear in the case of maximal sparse boxes.

4 Embedding the Problem into the Products of Lattices
of Intervals

4.1 The Lattice of Intervals

Let I1, . . . , In ⊆ Rn be n sets of real closed intervals. For i = 1, . . . , n, let
Li be the lattice of intervals whose elements are all possible intersections and



Finding All Minimal Infrequent Multi-dimensional Intervals 427

I

I

I

I

I

I I =Intersection(I  , I  )

3

4

5

6

1

2

23

2

32

Span(I   , I  )3

I

I

I I I I

II
I

I I I I

I I I

I

Span( )

Span( ) Span( )

0

13

1 23
34

5

43
2

2 3

2 3 4

3 4

6

,,

, ,

=empty interval

a: A set of intervals I1. b: The corresponding lattice of intervals L1.

Fig. 1. The lattice of intervals

spans defined by the intervals in Ii, and ordered by containment: The meet of
any two intervals in Li is their intersection, and the join is their span, i.e., the
minimum interval containing both of them (see Figure 1 for an example). Let
L def= L1 × · · · × Ln be the Cartesian product of these n lattices. Throughout
we shall denote by 2 the precedence relation in L (and also in L1, . . . ,Ln, i.e.
if p = (p1, . . . , pn) ∈ L and q = (q1, . . . , qn) ∈ L, then p 1 q in L if and only if
p1 1 q1 in L1, . . . , pn 1 qn in Ln) and use ∨ and ∧ to denote the join and meet
operators over L. We shall also denote by l = (l1, . . . , ln) and u = (u1, . . . , un)
the minimum and maximum elements of L, respectively. For x ∈ Li, denote by
x⊥ the set of immediate predecessors of x, i.e.

x⊥ = {y ∈ Li | y ≺ x, (�z ∈ Li : y ≺ z ≺ x)}.

Similarly, denote by x� the set of immediate successors of x. The following is a
simple property satisfied by any lattice of intervals.

Proposition 2. Let Li be a lattice of intervals. Then (i) |x�| ≤ 2 for all x �= li
in Li, and (ii) |x⊥| ≤ 2 for all x ∈ Li.

It is easy to see that |Li| = O(|Ii|2) and that, if li represents the empty interval,
then |l�i | ≤ |Ii|. Clearly every element in L represents an n-dimensional interval
in Bn, and the precedence relation in L corresponds to that in Bn, i.e. if p 1 q
in L, then the corresponding intervals I, J ∈ Bn satisfy I 1 J . Although L is a
proper subset of Bn, for our purposes the elements of L represent the set of all
possible extremal intervals that are of interest to us, as we shall see in the next
subsection.

4.2 Lattices of Intervals Defined by the Database

Given a database of n-dimensional intervals D, and i ∈ [n], let Pi = {p1
i , p

2
i , . . . ,

pki

i } be the set of end-points of intervals appearing in the ith column of D.
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Clearly ki ≤ 2|D|, and assuming that p1
i < p2

i < . . . < pki

i , we obtain a set
Ii = {[p1

i , p
2
i ], [p

2
i , p

3
i ], . . . , [p

ki−1
i , pki

i ]} of at most 2|D| intervals. Now we let Li

be the lattice of intervals defined by the set Ii, for i = 1, . . . , n, and let L =
L1 × · · · ×Ln. Clearly, each record in D appears as an element in L, i.e. D ⊆ L.
For x ∈ L, let S(x) = {y ∈ D | y 2 x}. Given an integer threshold t, let us
say that an element x ∈ L is t-frequent (with respect to D) if |S(x)| ≥ t and
maximal t-frequent if |S(y)| < t for all y 3 x. Similarly we define t-infrequent
and minimal t-infrequent elements of L.

Now, it is easy to see that the maximal t-frequent elements of L are in one-to-
one correspondence with the maximal t-frequent intervals defined by D, in the
obvious way: if x = (x1, . . . , xn) ∈ L is a maximal frequent element, then the
corresponding interval (I1, . . . , In) (where Ii corresponds to xi, for i = 1, . . . , n)
is the corresponding maximal frequent interval. The situation with minimal in-
frequent intervals is just a bit more complicated: if x = (x1, . . . , xn) ∈ L is a
minimal infrequent element then the corresponding minimal infrequent interval
(I1, . . . , In) is computed as follows. For i = 1, . . . , n, if xi = li is the minimum
element of Li, then Ii = ∅. If xi represents a point pi ∈ R then Ii = [pi, pi].
Otherwise, let [ai, bi] and [ci, di] be the two intervals corresponding to the two
immediate predecessors of xi, where we assume ai < ci (note that ci ≤ bi). If
ai = bi and ci = di then xi corresponds to the interval [ai, ci] and we have an
infinite number of minimal infrequent intervals defined (uniquely) by Ii, namely
Ii = [pi, pi] for all points pi in the open interval (ai, ci). Finally, if ai < bi
and ci < di, then Ii = [ci − ε, bi + ε] for an infinitesimal constant ε > 0. Conse-
quently, in all cases, our problems reduce to finding maximal t-frequent/minimal
t-infrequent elements in the lattice product L.

5 Enumerating Minimal Infrequent Intervals

5.1 Dualization Problem in Products of Lattices of Intervals

For a subset A ⊆ L of n-dimensional intervals in L, denote by A+ = {x ∈
L | x 2 a, for some a ∈ A} and A− = {x ∈ L | x 1 a, for some a ∈ A}. Any
element in L\A+ is called independent of A. Let I(A) be the set of all maximal
independent elements for A (also referred to as the dual of A):

I(A) def= {p ∈ L | p �∈ A+ and (q ∈ L, q 2 p, q �= p ⇒ q ∈ A+)}.

Given A ⊆ L, we consider the problem of incrementally generating I(A):

DUAL(L,A,B): Given subsets A ⊆ L and B ⊆ I(A), either find a new element
x ∈ I(A) \ B, or prove that A and B form a dual pair: B = I(A).

Clearly, the entire set I(A) can be generated by initializing B = ∅ and iteratively
solving the above problem |I(A)| + 1 times. When each lattice Li = {0, 1}, the
problem reduces to the well-known hypergraph transversal problem, for which
the best-known algorithm [10] runs in time ko(log k), where k = |A| + |B|. An
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extension of this algorithm, for solving the dualization problem for general lat-
tices was given in [8], and runs in time poly(n, μ(L)) +mγ(W (L))·o(log m), where
m = |A| + |B|, γ(W ) = O(W 2 lnW ), μ = μ(L) def= max{|Li| : i ∈ [n]}, and
W = W (L) def= maxi∈[n]{W (Li)} is the maximum width of the n lattices, i.e.
the maximum size of an antichain in the n lattices. Note that for the lattice
of intervals Li, defined by a set of intervals Ii, we have W (Li) = O(|Ii|) and
|Li| = O(|Ii|2). Thus, for this special case, the result of [8] gives an exponential
algorithm in the total number of intervals of

∑n
i=1 |Ii|. Here, we shall strengthen

this result, in the case of products of lattices of intervals, as follows:

Theorem 4. Problem DUAL(L,A,B) can be solved in kO(log2 k) time, if L is a
product of interval lattices, where k = |A|+ |B|+

∑n
i=1 |Li|.

The proof of Theorem 4 will be given in Section 6. In the next section, we show
how to use this result to prove Theorems 1 and 2.

5.2 Proof of Theorems 1 and 2

In this section, we argue that the generation problems JOINT-GEN(D, t,X ,Y)
and SEP-GEN(GD,t,X ) reduce in polynomial time to dualization in products
of lattices of intervals. For the former problem, the reduction follows from a
straightforward generalization of a known result, relating the time complexity of
joint generation to that of dualization:

Proposition 3 ([7, 11]). Problem JOINT-GEN(D, t,X ,Y) can be solved in
time poly(n, |D|, |X |, |Y|) +Tdual where Tdual denotes the time required to solve
problem DUAL(L,A,B).

For the latter problem, we use Proposition 3 together with a combinatorial
Lemma from [5], to show that the family GD,t is uniformly dual-bounded in the
sense that

|I(X ) ∩ I(GD,t)| ≤ |D||X |, (1)

for any non-empty X ⊆ GD,t. Inequality (1) implies that, if we apply joint gen-
eration to problem SEP-GEN(GD,t,X ), we generate, in addition to the elements
of the required family GD,t, only a polynomial number of unrequired elements
belonging to the family FD,t = I(GD,t). This proves Theorem 1. It remains to
show (1), which follows from the following Lemma:

Lemma 1 ([5]). Let t ∈ R+ be a given positive threshold, and S �= ∅ and T be
two families of subsets of a finite set V such that (i) for all X ∈ S and Y ∈ T ,
we have |Y | ≥ t > |X |, (ii) for every Y ′ �= Y ′′ ∈ T there exists an X ∈ S such
that X ⊇ Y ′ ∩ Y ′′. Then |T | ≤ |V ||S|.

To apply the lemma to get (1), let V = D, S = {S(x) : x ∈ X} and T =
{S(y) : y ∈ I(X )∩ I(GD,t)}, and observe that |S(y)| ≥ t > |S(x)| for all x ∈ X
and all y ∈ Y def= I(X ) ∩ I(GD,t), since X ⊆ GD,t and Y ⊆ FD,t. Furthermore,
given two distinct elements y′, y′′ ∈ Y, it follows by their maximality in L \ X+

that y′∨y′′ 2 x, for some x ∈ X , and thus S(y′)∩S(y′′) = S(y′∨y′′) ⊆ S(x) ∈ S.
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6 Dualization Algorithm

6.1 Preliminaries

Let L = L1 × · · · × Ln where each Li is a lattice defined by a set of intervals
Ii. We denote respectively by li and ui the minimum and maximum elements
of Li. Given two subsets A ⊆ L, and B ⊆ I(A), we say that B is dual to A if
B = I(A). Given any Q ⊆ L, let us denote by

A(Q) = {a ∈ A | a+ ∩Q �= ∅}, B(Q) = {b ∈ B | b− ∩ Q �= ∅},

the subsets of A,B whose ideal and filter respectively intersect Q.
To solve problem DUAL(L,A,B), we decompose it into a number of smaller

subproblems which are solved recursively. In each such subproblem, we start with
a sub-latticeQ = Q1×· · ·×Qn ⊆ L (initiallyQ = L), and two subsetsA(Q) ⊆ A
and B(Q) ⊆ B, and we want to check whether A(Q) and B(Q) are dual in Q.
To estimate the reduction in problem size from one level of the recursion to
the next, we measure the change in the ”volume” of the problem defined as
v = v(A,B,L) def= |A||B|

∑n
i=1 |Li|. Since B ⊆ I(A) is assumed, the following

condition holds for the original problem and all subsequent subproblems:

a �1 b, for all a ∈ A, b ∈ B. (2)

We stop decomposing a problem when one of the sets A or B becomes sufficiently
small, in which case the problem is easily solvable in polynomial time.

Let us say that a coordinate i ∈ [n] is essential for an element a ∈ A (b ∈ B),
if ai 3 li (respectively, bi ≺ ui). Let us denote by E(x) the set of essential
coordinates of a element x ∈ A ∪ B. The following lemma generalizes a known
fact for dual Boolean functions [10].

Lemma 2. If A,B ⊆ L, then either (i) there exists an element x ∈ A ∪ B with
few essential coordinates: |E(x)| ≤ logm, where m = |A|+|B|, or (ii) an element
x ∈ L \ (A+ ∪ B−) can be found in polynomial time.

Lemma 3. Let A,B be a pair of dual subsets of L with |A||B| ≥ 1. Then there
exists a coordinate i ∈ [n] and a element z ∈ Li, such that either:

(i) |{a ∈ A | ai 2 z}| ≥ 1 and |{b ∈ B | bi �2 z}| ≥ |B|
log m , or

(ii) |{b ∈ B | bi 1 z}| ≥ 1 and |{a ∈ A | ai �1 z}| ≥ |A|
log m .

6.2 The Algorithm - Proof of Theorem 4

Given subsets A,B ⊆ L that satisfy (2), we proceed as follows:

Step 1. If max{|A|, |B|} ≤ 1, the problem can be solved in poly(
∑n

i=1 |Li|) time.
Step 2. For each k ∈ [n]: if ak �∈ Lk for some a ∈ A (bk �∈ Lk for some b ∈ B),
set ak ←

∧
{x | x ∈ a+

k ∩ Lk} (respectively, set bk ←
∨
{x | x ∈ b−k ∩ Lk}).
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Step 3. Check if there is an x ∈ A∪B with at most logm essential coordinates.
If no such x can be found, a new element in L \ (A+ ∪ B−) can be obtained as
described in Lemma 2. Otherwise, we proceed to the next step.
Step 4. If x = ao ∈ A, find an i ∈ E(ao), and a z = ao

i ∈ Li, for which condition
(i) of Lemma 3 is satisfied. Assume without loss of generality that i = 1.

In the following steps, we shall decompose L1 into two (not necessarily
disjoint) sub-lattices L′

1 and L′′
1 , and let L′ = L′

1 × L2 × · · · × Ln, and
L′′ = L′′

1 × L2 × · · · × Ln be the sub-lattices of L induced by this decompo-
sition. It will follow then that A and B are dual in L if and only if

A(L′),B(L′) are dual in L′, and A(L′′),B(L′′) are dual in L′′, (3)

each of which is a dualization problem over the product of lattices of intervals.
Note that A(L′) = {a ∈ A | a+

1 ∩ L′
1 �= ∅} and B(L′) = {b ∈ B | b−1 ∩ L′

1 �= ∅};
A(L′′) and B(L′′) are defined similarly. Let ε = 1/ logm.
Step 4.1. If L1 is a total order (chain), then use the following decomposition
of L1: L′

1 ← z+ ∩ L1, L′′
1 ← L1 \ L′

1. Then |B(L′)| ≤ (1 − ε)|B| by the selection
of ao, and |A(L′′)| ≤ |A| − 1 since (ao)+ ∩ L′′ = ∅. This reduces the original
problem, of volume v = |A||B|

∑n
i=1 |Li| into two subproblems (3) of volumes

v′ ≤ |A||B|(1− ε)(
n∑

i=1

|Li| − 1) ≤ (1 − ε)v,

v′′ ≤ (|A| − 1|)|B|(
n∑

i=1

|Li| − 1) ≤ v − 1.

Step 4.2. Otherwise (L1 is not a chain), let w be the largest element, with
respect to the precedence relation “ 1′′ on the lattice L1, such that |w⊥| = 2
(see Figure 2–a). Denote respectively by q and y the two immediate predecessors
of w. Let Iq = [a, b] and Iy = [c, d] be the two intervals represented by q and y
respectively, and assume that a < c (and therefore b < d). It is not hard to see
that q− is a lattice of intervals and that L1 \ q− is a chain. Now we consider
three cases:

(i) if z 3 w, we use the decomposition L′
1 ← z+∩L1, L′′

1 ← L1 \L′
1. Otherwise,

the choice of z implies that either cases (ii) or (iii) hold.
(ii) |{b ∈ B | b1 ∈ q−}| ≥ ε

2 |B|: in this case, we decompose L1 as L′
1 ← L1 ∩ q−,

L′′
1 ← L1 \ q−.

(iii) |{b ∈ B | b1 ∈ y−| ≥ ε
2 |B|: in this case, we decompose L1 as L′

1 ← L1 ∩ y−,
L′′

1 ← L1 \ y−.

In case (i), we get again that |B(L′)| ≤ (1 − ε)|B| and |A(L′′)| ≤ |A| − 1, and
consequently, the resulting problems are of respective volumes v′ ≤ (1− ε)v and
v′′ ≤ v − 1. In case (ii), we get |B(L′′)| ≤ (1 − ε/2)|B| and |L′

1| ≤ |L1| − 1, and
therefore, the resulting two problems have volumes v′ ≤ v−1 and v′′ ≤ (1−ε/2)v.
Similarly, in case (iii), we get also that v′ ≤ v − 1 and v′′ ≤ (1− ε/2)v.
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a: Decomposition rule used in Step 4.2. b: Decomposition rule used in Step 5.1.

Fig. 2. Decomposing the lattice L1

Step 5. Now assume that x = bo ∈ B, and find an i ∈ E(bo), and a z = boi ∈ Li,
for which condition (ii) of Lemma 3 is satisfied. Assume again, without loss of
generality, that i = 1.
Step 5.1. If min(L1) = l1 does not represent the empty interval, or z 3 l1,
then let Iz = [a, b] be the interval corresponding to z, and let LL ⊆ L1 be the
lattice of intervals I = [c, d] for which c < a, and likewise, LR ⊆ L1 be the
lattice of intervals I = [e, f ] for which f > b (see Figure 2–b). Note that these
definitions imply that (LL ∪ {l1}) ∩ z− = {l1}, (LR ∪ {l1}) ∩ z− = {l1}, and
LL ∪ z− ∪LR = L. Note also that LL ∪LR �= ∅ since z �= u1 = max(L1). By our
selection of z, either

(i) |{a ∈ A | a1 ∈ LL \ {l1}} ≥
ε

2
|A|, or (ii) |{a ∈ A | a1 ∈ LR \ {l1}} ≥

ε

2
|A|.

In case (i), we decompose L1 as follows: L′
1 ← LL, L′′

1 ← (L1 \ L′
1) ∪ {l1}. Note

that both L′
1 and L′′

1 are also lattices of intervals, that |L′
1| ≤ |L1| − 1 since

z �∈ L′
1, and that A(L′′) ≤ (1 − ε/2)|A|, since w �1 y for all w ∈ L′

1 \ {l1} and
y ∈ L′′

1 \ {l1} (indeed, if Iw = [c, d] is the interval corresponding to w ∈ L′
1 \ {l1}

and Iy = [e, f ] is the interval corresponding to y ∈ L′′
1 \ {l1}, then c < a while

e ≥ a and thus Iw �⊆ Iy). Therefore, we get, in this case, two subproblems of
volumes v′ ≤ v − 1 and v′′ ≤ (1 − ε/2)v. In case (ii), we let similarly L′

1 ← LR

and L′′
1 ← (L1 \ L′

1) ∪ {l1}, and we decompose the original problem into two
subproblems of volumes v′ ≤ v − 1 and v′′ ≤ (1− ε/2)v, respectively.
Step 5.2. If z = l1 represents the empty interval, then we let z′ be any immediate
successor of z, and let LL and LR be the lattices of intervals as defined in Step 5.1,
but with respect to Iz′ = [a, b] instead of Iz. Note in this case that any interval
[c, d] in LL either must be strictly to the left of Iz′ , i.e. with d < a, or must
contain Iz′ . Similarly, any interval [e, f ] in LR either must be strictly to the
right of Iz′ , i.e. with e > b, or must contain Iz′ . We consider four cases:
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(i) No interval of I1, corresponding to an element of L1, lies strictly to the
left or strictly to the right of Iz′ : the choice of z, in this case, implies that
|{a ∈ A | a1 2 z′} ≥ ε|A|. Thus using the decomposition L′

1 ← (z′)+ and
L′′

1 ← {z} results in two subproblems of volumes v′ ≤ v−1 and v′′ ≤ (1−ε)v.
(ii) No interval lies strictly on the right of Iz′ , but there is at least one that lies

strictly to its left: by our choice of z, one of the sets {a ∈ A : a1 ∈ LL}
or {a ∈ A | a1 2 z′} have size at least ε

2 |A|. In the former case we use the
decomposition L′

1 ← LL, L′′
1 ← L1 \L′

1, and get two subproblems of volumes
v′ ≤ v − 1 and v′′ ≤ (1 − ε)v. In the latter case, we let L′′

1 be the lattice of
intervals lying strictly to the left of Iz′ and L′

1 ← (z′)+ ∪ {z}, and get two
subproblems of volumes v′ ≤ v − 1 and v′′ ≤ (1− ε)v.

(iii) No interval lies strictly on the left of Iz′ , but there is at least one that lies
strictly to its right: we use a similar decomposition as in case (ii) above.

(iv) There is at least one interval that lies strictly to the left of Iz′ , and at least one
interval strictly to its right: in this case, we know that either |{a ∈ A | a1 ∈
LL ∪ (z′)+}| ≥ ε|A|/2 or |{a ∈ A | a1 ∈ LR ∪ (z′)+}| ≥ ε|A|/2. In the former
case, we use the decomposition L′

1 ← LL ∪ (z′)+ ∪ {z}, L′′
1 ← L1 \ L′

1 ∪ {z},
and in the latter case, we use the decomposition L′

1 ← LR ∪ (z′)+ ∪ {z},
L′′

1 ← L1 \ L′
1 ∪ {z}. In both cases, we get two subproblems of volumes

v′ ≤ v − 1 and v′ ≤ (1− ε/2)v.

Thus, in all cases, we apply the algorithm recursively to the resulting sub-
problems, and obtain the recurrence

C(v) ≤ 1 + C((1 − ε/2)v) + C(v − 1),

where C(v) is the number of recursive calls required to solve a problem of
volume v. Together with C(v) = 1, this recurrence evaluates to C(v) ≤
v2 log v/ε. Since v ≤ m2nμ, we get that the running time of the algorithm is
O((m2nμ)2 log m log(m2nμ)).
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Abstract. We study budgeted variants of classical cut problems: the
Multiway Cut problem, the Multicut problem, and the k-Cut problem,
and provide approximation algorithms for these problems. Specifically,
for the budgeted multiway cut and the k-cut problems we provide
constant factor approximation algorithms. We show that the budgeted
multicut problem is at least as hard to approximate as the sparsest cut
problem, and we provide a bi-criteria approximation algorithm for it.

1 Introduction

Given an undirected graph G = (V,E) with a positive cost function on the
edges c : E → ZZ+, and a subset of vertices S ⊆ V , called terminals, the well-
known multiway cut problem is to find a minimum cost subset of edges whose
removal disconnects the terminals from each other. The study of the multiway
cut problem was initiated by Dahlhaus et al. [6], who proved that it is MAX-
SNP-hard even when restricted to instances with 3 terminals and unit edge cost.
They also gave a (2− 2

k )-approximation algorithm for the problem, where |S| = k.
In [4], Călinescu et al. introduced a (1.5− 1

k )-approximation algorithm. They
considered a linear programming relaxation for the multiway cut problem which
embeds the given graph into the (k − 1)-dimensional simplex. The algorithm of
[4] rounds an optimal solution to the linear programming relaxation; its bound
was later improved to ∼ 1.3438 by [11].

In this paper we study two budgeted variants of the multiway cut problem that
differ in their objective function. In the budgeted variants, given an instance of the
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multiway cut problem together with an additional positive integer B, the budget,
the problem is to find a subset of edges whose cost is within the given budget and
whose removal maximizes the value of the given objective function.

We say that a pair of terminals (si, sj) is separated if there is no path be-
tween si and sj , and that a terminal si is isolated if there is no path between
si and any other terminal. The number of isolated terminals is the objective
function of the first budgeted variant of the multiway cut problem, referred to
as the budgeted isolating multiway cut (BIMC ) problem. In the second budgeted
variant, referred to as the budgeted separating multiway cut (BSMC ) problem,
the objective function is the number of separated pairs of terminals. We also
consider the weighted versions of both BSMC and BIMC.

An application of the weighted BSMC problem is network design against
denial-of-service attacks in networks. In [3], Aura et al. suggest a formal frame-
work for the study of the single-server inhibition attack, which is a common
scenario for modelling a denial of service attack. One of the problems they con-
sider is finding the best attack whose cost is within a given budget constraint.
In this problem, every client has a non-zero weight denoting its importance.
The cost of an attack is the total cost of the disconnected links in the network,
and the value of the attack is the total weight of the clients separated from the
given server. This problem can be considered as a weighted BSMC by setting
the weight of every (server, client) pair to be the client’s weight.

A well known generalization of the multiway cut problem is the multicut
problem, which is the problem of finding a minimum cost cut separating a given
set of source-sink pairs of vertices. Indeed, the multiway cut problem is a special
case of the multicut problem in which the set of source-sink pairs consists of all
the pairs of a given set of terminals. Consider the following budgeted variant of
the multicut problem. Given is a set of source-sink pairs of vertices together with
a budget. Let the source-sink pairs be associated with a non-negative weight. The
goal is to find a cut whose cost is within the budget that separates a maximum
weight set of source-sink pairs. Thus, this budgeted multicut problem is precisely
the weighted version of the BSMC problem.

Finally, given an undirected graph, we consider the problem of finding a set
of edges whose cost is within a given budget and whose removal partitions the
graph into a maximum number of connected components. This problem, referred
to as the budgeted graph disconnection (BGD) problem, can be thought of as
the budgeted version of the k-cut problem. In the k-cut problem, an integer k is
given and the goal is to find a minimum cost edge set whose removal partitions
the graph into at least k connected components.

1.1 Our Results

The hardness of the multiway cut problem implies that both BIMC and BSMC
cannot be efficiently solved unless P = NP . Although the problem definitions
of BIMC and BSMC are closely related, they capture different aspects of the
theory of cuts, and therefore differ in their level of hardness. Thus, we study
each of the problems independently.
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For the BIMC and weighted BIMC problems we give constant factor ap-
proximation algorithms that match some of the lower bounds we prove. Our
algorithms basically use a greedy approach. In the weighted case we improve on
the greedy approach by using an FPTAS for the knapsack problem.

We show that weighted BSMC/budgeted multicut is at least as hard to ap-
proximate as the Sparsest Cut problem is.1 We show that a natural linear pro-
gramming relaxation has an unbounded integrality gap. Nevertheless, based on
this relaxation, we introduce a constant factor approximation algorithm for the
weighted BSMC on trees, which implies a constant integrality gap of the re-
laxation for tree instances. We further note that a better constant factor ap-
proximation can be obtained for the weighted BSMC on trees through the work
of Sviridenko [15]. We then consider the weighted BSMC problem on general
graphs. We achieve a bi-criteria approximation of ( e

e−1 , O(log2 n log logn)) us-
ing a recent hierarchical decomposition of graphs by Räcke (see [13] and [9]).

Interestingly, we show that BSMC is related to the budgeted variant of the
Sparsest Cut problem. Specifically, we prove that for certain weight functions,
an approximation algorithm for BSMC can be used to derive an approximation
algorithm for the budgeted sparsest cut problem, and vice versa.

Finally, we give a constant factor approximation algorithm for BGD by using
the Gomory-Hu tree (see [8]). Our algorithm uses ideas similar to those of the
algorithm of Saran and Vazirani [14] for the k-cut problem.

1.2 Related Work

To the best of our knowledge, all of the above mentioned budgeted cut prob-
lems are studied for the first time here. Nevertheless, there is a vast litera-
ture on budgeted optimization problems and we mention the following relevant
works.

Vohra and Hall [16] considered a budgeted variant for the classical set cover
problem, while Khuller et al. [12] studied its weighted variant. They gave a
constant factor approximation algorithm for the problem that is based on the
greedy approach, and showed that their result is tight under a (weak) assumption
on the hardness of NP . Their result points out the possible gap between the
hardness of a problem and the hardness of its budgeted variant, as the set cover
problem cannot be approximated within a factor of (1 − ε) lnn for any ε > 0
under the same assumption on the hardness of NP . By improving a former work
by Wolsey [17], Sviridenko [15] generalized the result of Khuller et al. for the
problem of maximizing any submodular function subject to a budget constraint.
We note that this framework does not capture most of the problems we deal
with in this paper, but it does capture the weighted BSMC on trees.

1 For the sake of comparison, we note the recent series of results regarding the sparsest
cut problem. In [1] an O(

√
log n) approximation is presented for the uniform case.

For the general sparsest cut problem, [5] gave an O(log
3
4 k)-approximation, which

was improved to an O(
√

log k log log k)-approximation by [2].
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2 Preliminaries

In this section we formally define the problems considered in this paper. In all
of these problems, we are given an undirected graph G = (V,E) with a positive
cost function on the edges c : E → ZZ+, and a positive budget B.

Problem 1 (Budgeted Graph Disconnection (BGD)). Find a subset of edges C ⊆
E of cost at most B whose removal partitions the graph into the maximum
number of connected components.

In the following problems, we are additionally given a subset of vertices S ⊆ V
(let k = |S|), called terminals.

Definition 1 (Separation and Isolation). Let S ⊆ V be a set of terminals.
Given a subset of edges C ⊆ E, we say that vertices s and s′ (s′ �= s) are
separated by C, or, equivalently, that C is a separating cut of (s, s′), if every
path between s and s′ contains at least one edge from C. We say that a vertex
s ∈ S is isolated by C, or equivalently, that C is an isolating cut of s, if for
every s′ ∈ S, s′ �= s, s and s′ are separated by C.

Definition 2. Given a weight function on the terminals, w : S → ZZ+, the
isolation weight of a given subset of edges C ⊆ E, is the sum of the weights of
the terminals isolated by C. Given a weight function on the pairs of terminals,
w : S×S → ZZ+, the separation weight of a given subset of edges C ⊆ E, is the
sum of the weights of the pairs of terminals separated by C.

Problem 2 (Weighted Budgeted Isolating Multiway Cut (weighted BIMC)).
Given a weight function on the terminals, w : S → ZZ+, find a subset of edges
C ⊆ E of cost at most B whose isolation weight is maximized.

Without loss of generality we assume that there exists s ∈ S such that the cost
of the minimum cost isolating cut of s is at most B. We denote by BIMC the
special case of weighted BIMC where w(s) = 1 for every s ∈ S.

Problem 3 (Weighted Budgeted Separating Multiway Cut (weighted BSMC)).
Given a weight function on the pairs of terminals, w : S × S → ZZ+, find a
subset of edges C ⊆ E of cost at most B whose separation weight is maximized.

Without loss of generality we assume that for every pair s, s′ ∈ S, the cost of
the minimum cost separating cut of s and s′ is at most B. We denote by BSMC
the special case of weighted BSMC where w(s, s′) = 1 for every s, s′ ∈ S.

With respect to the same input, we define the Sparsest Cut problem. Given
a non-empty subset of vertices U ⊂ V , the cut associated with U , denoted by
(U,U), is {e = (u, v) ∈ E : u ∈ U, v �∈ U}. The Sparsity of the cut (U,U) is given
by c(U,U)

w(U,U)
, where w(·) is the separation weight.

Problem 4 (Sparsest Cut). Find a non-empty subset of vertices U ⊂ V such that
the sparsity of its associated cut is minimized.
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Lastly, we say that an algorithm ALG is a bi-criteria approximation with param-
eters (α, β) for a given maximization budget problem Π , or simply an (α, β)-
approximation for Π , if for every instance of Π with budget B, ALG outputs a
solution whose value is at least |OPT |/α and whose cost is at most βB, where
|OPT | is the value of the optimal solution with respect to the given budget B.

3 The Budgeted Isolating Multiway Cut Problem

In this section, we study BIMC and weighted BIMC problems. First we show
some hardness results, including integrality gaps of two possible linear relax-
ations. These integrality gaps suggest that an approximation algorithm which is
based on them cannot outperform the constant factor approximation algorithm
we give for BIMC. Finally, we give two approximation algorithms for weighted
BIMC, the second of which matches one of the lower bounds we show.

3.1 Hardness Results

The proof of the next two propositions is given in the full version of this paper.

Proposition 1. Unless P = NP , there is no α-approximation for the BIMC
problem for all α > 1/3.

Proposition 2. Unless P = NP there is no α-approximation for the BIMC
problem for every α > 1 − 2/OPT , where OPT > 2 is the number of isolated
terminals in an optimal solution. Moreover, there is no α-approximation for
every α > 1− 2/k, when the number of terminals is a fixed k.

Integrality Gap of Linear Programming Relaxations. We consider two
linear programming relaxations for the BIMC problem, and show in the full
version of this paper that their integrality gap is at least 2. Hence, we argue that
using these relaxations, one cannot achieve an approximation factor for BIMC
better than the constant factor approximation presented in the next subsection.

In what follows we assume that for every s ∈ S, the cost of the minimum cost
isolating cut of s is at most B (if not, a slight modification can be made in the
relaxations and the relevant claims still hold). The first relaxation is a straight
forward formulation.

max
∑

s∈S xs (N-ISO-LP)
s.t.

xs −
∑

e∈Ps,s′ ye ≤ 0 for every s, s′ ∈ S (s �= s′)
and path Ps,s′ from s to s′∑

e∈E c(e) · ye ≤ B
0 ≤ xs ≤ 1 for every s ∈ S
0 ≤ ye for every e ∈ E

The second formulation we consider is derived from the linear programming re-
laxation of the multiway cut problem presented in [4]. We assume that
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S = {s1, . . . , sk}, and embed the given graph into the k-dimensional simplex.
We “reserve” the 0-coordinate for the connected component that contains all the
terminals not isolated by the solution, and the ith coordinate for the connected
component that contains terminal si, if terminal si is isolated by the solution.
Thus, we only allow terminal si to be mapped to either the “0” component, or
the ith component.

max
∑

si∈S x
i
si

(CKR-ISO-LP)
s.t.

xi
si

+ x0
si

= 1 for 1 ≤ i ≤ k∑k
i=0 x

i
v = 1 for every v ∈ V \ S

xi
v ≥ 0 for every v ∈ V and 0 ≤ i ≤ k

ye = 1
2

∑k
i=0 |xi

u − xi
v| for every e = (u, v) ∈ E∑

e∈E c(e) · ye ≤ B

3.2 A Greedy Approximation Algorithm for BIMC

The following greedy algorithm for BIMC is a variant of the algorithm presented
in [6] for the multiway cut problem. As [6] mentioned, note that a minimum cost
isolating cut for si ∈ S can be computed efficiently by merging the terminals in
S \ {si} into a single node r and computing a minimum cut separating r and si.

Algorithm GR-ISO: First, for each s ∈ S, find a minimum cost isolating cut
for s, and denote it by Cs. Then, sort the cuts in a non-decreasing order of their
cost. Output the maximal sequence of cuts, starting from the cheapest, whose
total cost is at most B.

Lemma 1. Let l denote the value of an optimal solution. Algorithm GR-ISO
achieves an approximation factor of 1

2 if l is even, and 1
2 −

1
2l if l is odd.2

Proof. Let OPT be an optimal solution, and let I denote the set of terminals
isolated by OPT . We assume without loss of generality that there is no edge in
OPT that can be removed without changing the set of isolated terminals. Let
G′ = (V,E \ OPT ). For s ∈ I, let OPTs be the edges in OPT that have an
endpoint in the connected component of s in G′.

Consider the following charging scheme for the terminals in I. Charge the
cost of every edge e ∈ OPT as follows: if there exist two distinct terminals s ∈ I
and s′ ∈ I such that e ∈ OPTs and e ∈ OPTs′ , charge each of the terminals
with c(e)/2; else, charge the terminal s ∈ I such that e ∈ OPTs with c(e).
Denote by c(s) the total cost charged to terminal s. Obviously,

∑
s∈I c(s) =

c(OPT ) ≤ B (every edge in OPT is clearly paid for by the charging scheme)
and c(Cs) ≤ c(OPTs) ≤ 2c(s) for every s ∈ I (OPTs is an isolating cut for s).
Let Al be the set of the first l terminals as sorted by the algorithm. Notice that∑

s∈Al
c(Cs) ≤

∑
s∈I c(Cs) ≤ 2

∑
s∈I c(s) ≤ 2B. Thus, the cost of the first �l/2�

terminals is ≤ B, and the lemma follows from the definition of GR-ISO. ��
The above analysis is tight as we show in the full version of this paper.
2 For the trivial case in which l = 1 the algorithm finds an optimal solution.
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3.3 Approximation Algorithms for the Weighted BIMC Problem

We present two algorithms for the weighted BIMC problem. The first one is a
generalization of algorithm GR-ISO.

Algorithm GR-ISOw. First, for each s ∈ S, find a minimum cost isolating cut
for s, and denote it by Cs. Then, sort the cuts with c(Cs) ≤ B in a non-decreasing
order of the ratio between their cost and their terminal’s weight (c(Cs)/w(s)).
Let {Ci}k

i=1 be the resulting sequence of cuts. Let {Ci}m
i=1 be the maximal prefix

of {Ci}k
i=1 with a total cost of at most B. Output the heavier cut (with respect

to isolation weight) between
⋃m

i=1 Ci and Cm+1 (if m = k then
⋃m

i=1 Ci is an
optimal solution). In the full version of this paper we prove that Algorithm
GR-ISOw achieves an approximation factor of 1

4 .

A (1
3 − ε)-Approximation. The analysis of algorithm GR-ISOw hints that

improving the approximation factor requires an efficient use of the given budget.
To this end, we use the FPTAS for the Knapsack problem [10], denoted by
A(π, ε), where π is the Knapsack instance.

Algorithm PACKw(ε). For each s ∈ S, find a minimum cost isolating cut
for s, and denote it by Cs. Construct an instance of the Knapsack problem, π:
treat each terminal s ∈ S such that c(Cs) ≤ B as an item whose profit is w(s)
and whose size is c(Cs), and let B be the ”knapsack capacity”. Run A(π, ε) and
denote by P the resulting subset of terminals. Finally, Output

⋃
s∈P Cs.

Let OPT be an optimal solution for the weighted BIMC instance. Since every
terminal s with c(Cs) > B cannot be isolated by either OPT or PACKw(ε),
we ignore such terminals in what follows. Let I denote the set of the terminals
isolated by OPT and l be the isolation weight of OPT , i.e., the value of the
optimal solution. Denote by |OPT (π)| the value of the optimal solution for the
Knapsack instance π.

Lemma 2. |OPT (π)| ≥ 1
3 l.

Proof. Let U = {X ⊆ I |
∑

s∈X w(s) ≥ 1
3 l}, i.e., U is the set of the subsets

of I of profit ≥ 1
3 l. Let Y be a set in U of minimum size in π (notice that

there must exist such a subset). Assume to the contrary that |OPT (π)| < 1
3 l,

and in particular that
∑

s∈Y c(Cs) > B. It follows from our assumption, that
for every s ∈ S, w(s) < 1

3 l. Thus, there are at least two terminals in Y , and
moreover,

∑
s∈Y w(s) < 2

3 l (otherwise, by taking off a terminal from Y we get
a contradiction for the minimality of Y in U with respect to size). By similar
arguments to those used in the proof of Lemma 1, we get that

∑
s∈I c(Cs) ≤ 2B.

Thus,
∑

s∈I\Y c(Cs) < B and
∑

s∈I\Y w(s) > 1
3 l and thus I \ Y is a feasible

solution to π with the desired value. ��

It follows from Lemma 2 and the FPTAS for Knapsack that Algorithm PACKw(ε)
achieves an approximation factor of 1

3 − ε. We can show that Lemma 2 is tight
for arbitrarily large values of k by constructing appropriate examples.
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4 Weighted Budgeted Separating Multiway Cut

In this section, we study weighted BSMC. We show that approximating it is at
least as hard as the sparsest cut problem. We present a natural linear program-
ming relaxation for the problem and show that it has an unbounded integrality
gap for general graphs. However, we give a constant factor approximation algo-
rithm for weighted BSMC on trees, which is based on this relaxation. We further
note that a better approximation is achieved by Sviridenko’s [15] framework.
Finally, we use a hierarchical decomposition of graphs by Räcke [13, 9] to obtain
a bi-criteria approximation of ( e

e−1 , O(log2 n log logn)) for arbitrary graphs.

4.1 Hardness Results

Hardness with Respect to the Sparsest Cut Problem. We firstly prove a
lemma and a corollary whose proofs are given in the full version of this paper.

Lemma 3. Given a non-empty cut C ⊆ E that partitions G into r > 2 con-
nected components, there is an algorithm that finds a cut C′ ⊂ C such that
c(C′)/w(C′) ≤ c(C)/w(C) and C′ partitions G into r−1 connected components.

Corollary 1. Given a non-empty cut C ⊆ E, there is an algorithm that finds a
non-empty subset of vertices U ⊆ V such that the sparsity of the cut associated
with U is at most c(C)/w(C).

The following theorem shows that the weighted BSMC problem is at least as
hard to approximate as the sparsest cut problem is (up to a constant).

Theorem 1. Let ALG be an (α, β)-approximation for weighted BSMC. Then,
there exists a (1 + ε)αβ-approximation for Sparsest Cut, for every ε > 0.

Proof. Assume we are given an instance of the Sparsest Cut problem, denote it
by π, and let OPTπ denote its optimal solution, and |OPTπ| = c(OPTπ,OPTπ)

w(OPTπ,OPTπ)
de-

note the optimal solution’s sparsity. Denote by (π,B) the input for the weighted
BSMC problem that consists of the instance π and the budget B, and let OPTπ,B

be a corresponding optimal solution. Then, since (OPTπ, OPTπ) is a feasible so-
lution for the weighted BSMC problem on (π,B) for every B ≥ c(OPTπ, OPTπ),
then w(OPTπ , OPTπ) ≤ w(OPTπ,B) for every B ≥ c(OPTπ, OPTπ).

For �log1+ε c(Cmin)� ≤ i ≤ �log1+ε c(E)�, where Cmin is the minimum cost
cut in G, let CBi be the cut returned by ALG(π,Bi = (1 + ε)i). Then, by
applying Corollary 1 on each CBi we can obtain a non-empty subset of ver-
tices Ui ⊆ V where the sparsity of the cut associated with Ui is at most
c(CBi

)
w(CBi

) ≤
βBi

w(OPTπ,Bi
)/α = αβ Bi

w(OPTπ,Bi
) . Let j = �log1+ε c(OPTπ , OPTπ)�.

Then, Bj

w(OPTπ,Bj
) ≤ (1 + ε) c(OPTπ ,OPTπ)

w(OPTπ,OPTπ)
= (1 + ε)|OPTπ|. We conclude that

the sparsity of (Uj , Uj) is at most (1 + ε)αβ|OPTπ |, and the theorem follows by
choosing the sparsest cut among {(Ui, Ui)}
log1+ε c(Cmin)�≤i≤
log1+ε c(E)�. ��
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Integrality Gap of a Linear Programming Relaxation. We present a
natural linear programming relaxation for the weighted BSMC problem, and
in the full version of the paper we show that its integrality gap of is Ω(n).
This implies that an algorithm based on this linear relaxation would have poor
performance. Nevertheless, in what follows we show an approximation algorithm
for the special case of trees based on the same relaxation. In what follows we
assume w.l.o.g. that c(e) ≤ B for every e ∈ E.

max
∑

si,sj∈S w(si, sj) · xij (SEP-LP)
s.t.

xij −
∑

e∈Pi,j
ye ≤ 0 for every si, sj ∈ S

and path Pi,j from si to sj∑
e∈E c(e) · ye ≤ B

0 ≤ xij ≤ 1 for every si, sj ∈ S
0 ≤ ye for every e ∈ E

4.2 Approximation Algorithms for Weighted BSMC in Trees

Let Pij denote the unique path in the tree between si and sj . The dual LP of
SEP-LP is:

min B · γ +
∑

si,sj∈S βij (SEP-DLP)
s.t.

c(e) · γ −
∑

i,j:e∈Pij
αij ≥ 0 for every e ∈ E

αij + βij ≥ w(si, sj) for every si, sj ∈ S
γ, αij , βij ≥ 0 for every si, sj ∈ S

We define the worthiness of an edge e with respect to C, a feasible solution, as

ΓC(e) = i,j:e∈Pij
w(si,sj)·(1−xij)

c(e) , where x is the corresponding solution of SEP-
LP. The following algorithm greedily updates the solution as long as the budget
is not exceeded, while maintaining the corresponding solution of SEP-LP.

Algorithm GR-SEP. Initialize: h = 0, C0 = ∅, ∀ si, sj ∈ S, xij = 0, and
∀ e ∈ E, ye = 0. While there exists an edge e ∈ E \ Ch, execute the following
loop: Let eh be a lowest cost edge among the edges with the maximum value of
ΓCh

. If c(eh) > B−c(Ch), output the better solution between {eh} and C = Ch.
Otherwise, Ch+1 ← Ch ∪ {eh}, set yeh

= 1 and xij = 1 for all the pairs (si, sj)
separated by eh, and let h← h+ 1. If E \ Ch is empty, output C = Ch.

Observation 1. By the definition of the worthiness of an edge, and the fact
that edges are only added to the solution during the algorithm, for every e ∈ E
and 0 < h ≤ |C|, ΓCh

(e) ≤ ΓCh−1(e), i.e. the worthiness of an edge can only
decrease during the algorithm.

Corollary 2. If C �= E, then c(e|C|) ·ΓC(e|C|) ≤ c(e|C|) ·ΓC0(e|C|) = w({e|C|}),
i.e., adding the edge e|C| to C increases its separation weight by at most the
separation weight of {e|C|}.
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Theorem 2. Algorithm GR-SEP achieves an approximation factor of 1
3 .

Proof. If the algorithm outputs C = E, the solution is optimal. Otherwise, it
is the case that

∑|C|−1
h=0 c(eh) + c(e|C|) > B. Denote by w(GR-SEP) the value

of the solution output by GR-SEP. Consider the following dual solution: βij =
w(si, sj) ·xij , αij = w(si, sj) · (1−xij), γ = ΓC(e|C|). Since ΓC(e|C|) ≥ ΓC(e) for
every e �∈ C, this is a feasible dual solution. Let z denote its value. Then,

z = B · γ +
∑

si,sj∈S

βij = B · ΓC(e|C|) +
∑

si,sj∈S

w(si, sj) · xij (1)

<

⎛⎝|C|−1∑
h=0

c(eh) + c(e|C|)

⎞⎠ · ΓC(e|C|) + w(C) (2)

≤
|C|−1∑
h=0

c(eh) · ΓC(e|C|) + w({e|C|}) + w(C) (3)

≤
|C|−1∑
h=0

c(eh) · ΓCh
(eh) + w({e|C|}) + w(C) (4)

= w(C) + w({e|C|}) + w(C) ≤ 3w(GR-SEP), (5)

Where: Inequality (2) follows from the definition of the algorithm GR-SEP , (3)
follows from Corollary 2, and (4) follows by noticing that for every 0 < h ≤ |C|,
ΓCh

(eh) ≤ ΓCh−1(eh−1). Thus, the theorem follows by weak duality. ��

Remark 1. In [15], Sviridenko introduces a greedy e−1
e -approximation algorithm

for the problem of maximizing a submodular function subject to a budget con-
straint. We note that on tree instances (unlike general graphs), the separation
weight is a submodular function and thus the weighted BSMC problem on trees
can be solved using Sviridenko’s algorithm. We note that Sviridenko’s algo-
rithm’s running time is Ω(n3), while the running time of GR-SEP is O(n2).

4.3 Weighted BSMC - General Graphs

In this subsection we introduce an ( e
e−1 , O(log2 n log logn))-approximation al-

gorithm for weighted BSMC. Since the weighted budgeted variant of Multicut
is equivalent to weighted BSMC, we conclude that a ( e

e−1 , O(log2 n log logn))-
approximation exists for this problem as well.

In [13], Räcke describes a hierarchical decomposition of any undirected graph
G = (V,E) into a tree TG, where there is a 1− 1 correspondence between V and
the leaves of TG. TG has the property that any feasible multi-commodity flow
function in TG can be routed in G causing a congestion bounded by a function
of G’s parameters, denoted by β. By min-cut-max-flow theorems this implies a
corresponding bounded ratio between the cost of cuts in G and the cost of cuts
in TG. In [9], Harrelson et al. give a polynomial-time construction of TG with
β = O(log2 n log logn), which we use in the following algorithm.
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Algorithm SEP. Let B′ = 2βB. Construct a decomposition tree, TG, of G.
For every e = (u, v) ∈ TG with a cost > B′, merge the vertices u and v. Let
T ′

G be the resulted tree. Run Sviridenko’s algorithm on T ′
G with budget B′, and

output the associated cut in G.

Theorem 3. Algorithm SEP is a ( e
e−1 , O(log2 n log logn))-approximation for

the weighted BSMC problem.

Proof. Let OPT be an optimal solution, and let I denote the set of pairs of
terminals separated by OPT . Let OPTTG be a minimum cost cut separating
I in TG. By [7], c(OPTTG) ≤ 2MCFI(TG), where MCFI(TG) is the value of
the maximum multi-commodity flow in TG between the pairs in I. By the con-
struction of TG and its property, MCFI(TG) ≤ βMCFI(G). Since MCFI(G)
lower bounds the cost of any cut separating I in G, MCFI(G) ≤ c(OPT ), and
thus we get c(OPTTG) ≤ 2βc(OPT ) ≤ 2βB = B′. Particularly, OPTTG does
not contain any edge with cost more than B′, and thus OPTTG is a feasible
solution for the weighted BSMC problem on T ′

G with budget B′, with value
w(OPTTG) ≥ w(OPT ). From [15], running Sviridenko’s algorithm will return a
solution C whose cost is at most B′ and whose value is at least e−1

e w(OPTTG).
By the properties of the decomposition tree, the associated cut in G has a
cost of at most B′ and a separation weight of at least w(C) and the theorem
follows.

��
4.4 Further Discussion

Although it remains an open question whether it is possible to improve upon the
bi-criteria approximation, or even achieve a uni-criteria approximation, in this
subsection we review some related ideas and point out some possible directions
towards solving the problem. First, consider the following budget problem, whose
input is the same as the input for the weighted BSMC problem.

Problem 5 (Budgeted Sparsest Cut). Find a non-empty subset of vertices U ⊂ V
such that c(U,U) ≤ B and the sparsity of (U,U) is minimized.

In order to understand the relationship between weighted BSMC and Budgeted
Sparsest Cut, we look for results similar to those of Subsection 4.1. Notice that
the algorithm of Corollary 1 actually finds a cut whose cost is at most c(C).
Hence, Theorem 1 can be easily generalized to obtain the following.

Theorem 4. Let ALG be an (α, β)-approximation for weighted BSMC. Then,
there exists a ((1+ε)αβ, β)-approximation for the Budgeted Sparsest Cut problem
for every ε > 0.

Specifically, notice that a uni-criteria approximation for weighted BSMC implies
a uni-criteria approximation for the Budgeted Sparsest Cut problem. This result
suggests that the budgeted sparsest cut is not harder than BSMC. Nevertheless,
it seems that the budgeted sparsest cut is not much easier, as we argue in the
full paper, and we prove for certain weight functions that this is indeed the
case.
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5 The Budgeted Graph Disconnection Problem

The following algorithm for BGD is a variant of the algorithm presented in [14]
for the k-cut problem.

Algorithm GR-PAR. First, compute a Gomory-Hu tree T for G. Then, sort the
edges of T in a non-decreasing order of their cost. Finally, choose the maximal
sequence of edges starting from the cheapest whose cost is at most B, and
output the union of the cuts in G corresponding to these edges. Let l be the
value of an optimal solution. We can prove that Algorithm GR-PAR achieves an
approximation factor of 1

2 + 1
l if l is even, and of 1

2 + 1
2l if l is odd.
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[4] G. Călinescu, H. Karloff and Y. Rabani. An Improved Approximation Algorithm
for Multiway Cut. JCSS, 60(3):564–574, 2000.
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Abstract. We show new lower bounds for collision-free transmissions in Radio
Networks. Our main result is a tight lower bound of Ω(log n log(1/ε)) on the
time required by a uniform randomized protocol to achieve a clear transmission
with success probability 1 − ε in a one-hop setting. This result is extended to
non-uniform protocols as well. A new lower bound is proved for the important
multi-hop setting of nodes distributed as a connected Random Geometric Graph.
Our main result is tight for a variety of problems.
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1 Introduction

Any network where transmissions may collide needs a protocol for collision-free trans-
missions. Different networks provide different information about collisions. For exam-
ple, on some hardware, transmitters can distinguish amongst three states at each time
step: no transmission, single transmission, and collision, whereas on other hardware,
transmitters can not distinguish between no transmission and collisions. In some net-
works, transmitters know an upper bound on their number. Sometimes, transmitters
may not snoop, i.e., listen to the channel when not transmitting; whereas at the other
extreme, transmitters may only snoop, i.e., they get no information on the channel when
they are transmitting. In some networks collisions are transitive. The properties of a
shared channel have a profound impact on the protocols usable on such a channel.

Sensor networks are a heavily studied example of a shared-channel network. A sen-
sor network consists of small devices with processing, sensing and communication ca-
pabilities. These sensor nodes are randomly deployed over an area in order to achieve
sensing tasks after self-organizing as a wireless radio network. Sensor nodes have strong
limitations and operate under harsh conditions. Some of the important limitations of

� This research was supported in part by DIMACS, Center for Discrete Mathematics & Theoret-
ical Computer Science, grants numbered NSF CCR 00-87022, NSF EIA 02-05116 and Alfred
P. Sloan Foundation 99-10-8.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 447–454, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



448 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

sensor nodes include: lack of collision detection hardware, non-simultaneous transmis-
sion and reception, and one channel of communication. We call any such network a Ra-
dio Network. Additionally, nodes in sensor networks wake up at arbitrary times. Sensor
networks are even more restricted in various ways that will not concern us here. The
Radio Network restrictions, along with these further restrictions, are part of the Weak
Sensor Model presented in [1].

Algorithms for achieving a clear, that is, uncolliding, transmission have been stud-
ied in several shared-channel contention settings1. Hayashi, Nakano and Olariu [3]
presented the first O(log2 n) algorithm for clear transmission with high probability in
one-hop Radio Networks. A O(log n log(1/ε))-time algorithm for a clear transmission
with probability 1 − ε in a one-hop Radio Network was introduced in [2]. Strikingly,
when ε = 1/n the same time bound can be obtained for the much more complicated
problem of computing a Maximal Independent Set (MIS) in the multi-hop Weak Sensor
Model [7]. Kushilevitz and Mansour [5] proved the first lower bound of Ω(log n) on
the expectation of the running time of any randomized algorithm for clear transmis-
sions in radio networks. A lower bound of Ω(logn log(1/ε)/(log logn+ log log(1/ε))
for achieving a clear transmission with probability 1 − ε in a one-hop, globally-
synchronized Radio Network was proved in [4]. The latter lower bound is tighter than
the previous one if ε is o(1/ logn).

Our Results: The gap between the lower bound for achieving something so simple as
a clear transmission and upper bounds for more complicated problems such as MIS
is tantalizingly narrow: respectively Ω(log2 n/ log logn) and O(log2 n), when ε is
Θ(1/nc). In this paper, we close this gap by proving a stronger lower bound: it takes
time Ω(logn log(1/ε)) to solve the problem of achieving a clear transmission with
probability 1 − ε in a one-hop setting, which implies, for example, the Ω(log n) lower
bound on the expectation of any randomized algorithm for clear transmission. Our lower
bounds apply to any network with the following characteristics:

– Shared channel of communication: All nodes communicate with their neighbors
using broadcasts that are transmitted on a shared channel.

– Lack of a collision detection mechanism: Nodes do not have the ability to distin-
guish between a collision on the channel or lack of a transmission.

– Non-simultaneous transmission and reception: Nodes cannot snoop on the channel
while transmitting.

– Local synchronization: Time is assumed to be divided into slots and all nodes have
the same clock frequency.

– Adversarial wake-up schedule: Nodes are woken up by an adversary.

Indeed, we will prove our lower bound with the following weak adversary: the adver-
sary may chose an i ∈ [1, logn], and 2i nodes wake up at time 0. Our techniques

1 In a one-hop Radio Network, the clear transmission problem is equivalent to the so-called
wake-up and leader election problems. These problems differ in multi-hop networks, although,
a clear transmission is necessary to achieve wake-up and leader election since, indeed, a clear
transmission is necessary to solve any problem on a Radio Network. Since we are interested in
lower bounds, we will cite bounds for the clear transmission problem in previous papers, even
when the bounds were originally stated for the other problems.



Lower Bounds for Clear Transmissions in Radio Networks 449

also give us a lower bound of Ω(log logn log(1/ε)) on clear transmissions in the well-
studied case of sensor nodes distributed uniformly at random with enough nodes to
ensure connectivity, and thus for more complicated problems such as MIS. There was
no non-trivial lower bound known for this problem, and the best upper bound known
is O(log2 n) with high probability, proved for the more complicated problem of sensor
network initialization in the Weak Sensor Model [1].

1.1 Roadmap

In Section 2, we show the main lower bound, for uniform protocols in one-hop net-
works. In Section 3, we extend this result in two ways. We show a lower bound for
nonuniform protocols, and a lower bound for nodes distributed geometrically.

2 Uniform Protocols in One-Hop Radio Networks

In this section, we prove a lower bound on randomized uniform protocols and extend
the result to nonuniform protocols in Section 3.

We first define what the clear transmission problem is in the one-hop setting. The
nodes are all connected to a common broadcast channel and each transmission is avail-
able for snooping to all non-transmitting nodes. The connectivity of the nodes can be
modelled as a clique. In this case we assume that all nodes know an upper bound on
the number of their neighbors. In this setting, a clear transmission is achieved if exactly
one node transmits in a time slot.

As explained in Section 1, we prove our lower bounds under the assumption of the
existence of a weak adversary that, at a given time, wakes up (i.e. turns on) some sub-
set of nodes. We call them active nodes. Upon waking up, the active nodes start the
execution of a protocol to achieve a clear transmission. All non-active nodes do not
participate in the protocol.

We define a randomized uniform protocol for clear transmission to be a sequence
p1, p2, . . . where each node transmits with probability p� in the �th time step after wak-
ing up. Given our adversary, this means that all active nodes transmits with same prob-
ability as each other in each time slot.

We seek a lower bound on the number of time-slots required to achieve a clear trans-
mission with probability (1− ε). We simplify the analysis in two ways. First, we further
weaken the adversary by requiring that the number of nodes participating can only be
one of {2i|0 ≤ i ≤ log2 n}. Secondly, we assume that all p� ∈ {2−j|1 ≤ j ≤ log2 n}.
If this assumption is not true of a particular algorithm A, we can always produce an
algorithm A′ from A by replacing one attempt in A by a constant number of attempts
in A′ where the probabilities of transmission in A′ have been rounded off to the closest
power of 1/2.

One of the principal benefits of our weak adversary is that, the probability P� of a
clear transmission by time � is the same for any permutation of p1, p2, . . . , p�. There-
fore, we need not bother with what order the steps are taken in, but only how many
times the protocol fires with each probability.

Let tj be the number of time-slots that nodes are transmitting with probability 2−j .
Let pij denote the probability that 2i nodes fail to clear when they all transmit with
probability 2−j . Thus we know that:
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pij = 1− 2i 1
2j

(
1− 1

2j

)2i−1

= 1− 2i−j(1− 2−j)2
i−1

The total probability of failure for any number of active nodes, 2i, needs to be
bounded by: ∏

j

p
tj

ij ≤ ε

⇐⇒
∑

j

tj ln(pij) ≤ ln(ε).

A lower bound is achieved by minimizing the total number of time-slots needed to
satisfy the previous constraints. This can be formulated as the following primal linear
program:

Minimize 1T t,

subject to:

Pt ≥ ε

t ≥ 0
where:

t � [tj ],

ε � [− ln(ε)],

P � [− ln(pij)],

which yields the following dual:

Maximize εT u,

subject to:

PT u ≤ 1
u ≥ 0.

The primal linear program has a finite minimum solution, and hence its dual has a
finite maximum solution. The value of the objective function for every feasible solution
of the dual is a lower bound on the minimum value of the objective function for the
primal. Thus any feasible solution for the dual will give a lower bound on the number
of time-slots required to achieve a clear transmission with failure probability ε.

Suppose that the jth row, PT
j , of PT has the maximum row sum, and let r(PT ) =

PT
j 1. Now we set u = [1/r(PT )]. This value of u satisfies all constraints of the dual.

The value of the objective function of the dual is simply εT u. To obtain the value of the
objective function of the dual we need to find the row of PT with the largest row sum
which is the same as the column of P with the largest column sum.

Lemma 1. The trace of every column vector of the constraint matrix P of the primal is
in O(1).
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Proof. We begin by stating the following useful inequality [6, §2.68]:

e−x/(1−x) ≤ 1− x ≤ e−x, 0 < x < 1. (1)

The sum of the elements of a column j of P is:

Sj ≤
∑

i

− ln(1 − 2i−j(1− 2−j)2
i−1)

≤
∑

i

− ln
(
e−2i−j(1−2−j)2

i−1/(1−2i−j(1−2−j)2
i−1)

)
(By Inequality 1)

=
∑

i

2i−j(1− 2−j)2
i−1

1− 2i−j(1− 2−j)2i−1 .

Let yij � 2i−j(1− 2−j)2
i−1.

Sj =
∑

i

yij

1− yij

≤
∑

i

yij

1− ymax
(where ymax = max

ij
{yij}).

Now we derive an upper bound on ymax:

ymax = max
ij

yij

= max
ij

2i−j(1− 2−j)2
i−1

≤ max
ij

2i−je−2i−j+2−j

(By Inequality 1)

≤ max
ij

√
e

2i−j

e2i−j (∵ j ≥ 1)

≤ 1√
e

(The function is maximized, when i = j).

Therefore:

Sj ≤
√
e√

e− 1

∑
i

yij

We derive an upper bound on the right hand side sum.∑
i

yij =
∑

i

2i−j(1− 2−j)2
i−1

≤
∑

i

2i−j(e−2−j

)2
i−1 (By Inequality 1)

=
∑

i

2i−je−2i−j+2−j
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≤
√
e

⎛⎝∑
i≥j

2i−je−2i−j

+
∑
i<j

2i−je−2i−j

⎞⎠ (∵ j ≥ 1)

≤
√
e

⎛⎝∑
k≥0

2ke−2k

+
∑
k≥1

2−ke−2−k

⎞⎠
≤
√
e

⎛⎝∑
k≥0

2ke−2k

+
∑
k≥1

2−k

⎞⎠
∈ O(1) (Because both the sums are bounded by a constant)

=⇒ Sj ∈ O(1).

Theorem 1. Every uniform randomized algorithm to achieve a clear transmission with
probability 1− ε in a one-hop Radio Network requires Ω(log n log(1/ε)) time-slots.

Proof. From lemma 1, we know that r(PT ) ∈ O(1), then εT u = [− ln(ε)] ·
[1/PT

max1] ∈ O(log n log(1/ε)). From this we can conclude that the dual linear pro-
gram has a feasible solution with objective function evaluating to Ω(log n log(1/ε)).
Since we showed earlier that the solution to the primal linear program gives a lower
bound on the number of time-slots required to achieve a clear transmission with proba-
bility 1− ε, the statement of the theorem holds.

3 Extensions

In this section, we show how to obtain lower bounds for nonuniform protocols and for
geometric distributions of nodes.

3.1 Randomized Nonuniform Protocols in One Hop Radio Networks

In this section we prove our lower bound for the case in which processors may run dif-
ferent algorithms using their unique ID’s to break symmetry. We call this a nonuniform
protocol. Recall that we model a randomized protocol to achieve a clear transmission as
a schedule, or temporal sequence, of probabilities of transmission such that, at time slot
i an active node transmits with probability pi. In the case of the randomized uniform
protocols, we assume that nodes either have no ID or the protocol does not make use of
it to break symmetry. Then, given that no information can be obtained from a shared-
channel before a clear transmission, all active nodes transmit with the same probability
in the same time slot. On the other hand, if nodes have unique ID’s, they may use dif-
ferent schedules of probabilities of transmission and achieve a clear transmission faster.
We prove in this section that in fact having unique ID’s does not help.

As in [5], we prove our lower bound by showing a reduction from a nonuniform
protocol to a uniform one. We first state our result formally.

Theorem 2. Every randomized nonuniform protocol to achieve a clear transmission
with probability 1 − ε in a one-hop Radio Network requires Ω(logn log(1/ε)) time
slots.
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Proof. For the sake of contradiction, assume that there exists a randomized nonuniform
protocol A that achieves a clear transmission with probability 1 − ε in T time slots,
where T ∈ o(log n log(1/ε)). Then, we can define a randomized uniform protocol A′

that achieves the same running time as follows.

For each node
Choose uniformly at random an integer i ∈ [1, n2/ε]. 2

Simulate protocolA using i as ID.

Each node running the protocolA′ obtains a unique ID with probability at least 1−ε.
This is true because the probability that some pair of nodes chooses the same ID is ε/n2

and there are
(
n
2

)
possible pairs. Given that the random choice of the ID can be done in

constant time, the protocol A′ is a randomized uniform protocol that achieves a clear
transmission with probability 1− 2ε in o(log n log 1/ε) = o(logn log 1/2ε) time slots,
which is a contradiction with Theorem 1.

3.2 Randomized Protocols for Geometrically Distributed Nodes

We begin with some preliminaries on geometrically distributed nodes, before getting
to the lower bound. In the Random Geometric Graph Model Gn,r,�, n nodes are dis-
tributed uniformly at random in [0, �]2, and nodes are connected by an edge iff they are
at Euclidean distance at most r, the connectivity radius. The node density depends on
the relative values of n,r and �. A specific instance of Gn,r,� is a Random Geometric
Graph (RGG), also referred to as G(n, r, �). In a G(n, r, �), the asymptotic behavior of
route stretch is studied as �→∞ while maintaining sufficient density to preserve con-
nectivity. In this paper we will assume that parameter conditions to ensure connectivity
are always satisfied [8].

Here we consider the problem of achieving a clear transmission under the following
conditions:

The nodes are connected by a broadcast channel to some subset of nodes and each
transmission made by a node is available to its neighbors only, but it can interfere with
all transmissions originating in a two-hop neighborhood. The specific case we will de-
rive a lower bound for is the case of nodes consistent with the Weak Sensor Model
distributed randomly in the plane with limited transmission range but adequate density
to ensure connectivity. The connectivity of the nodes can be modelled as a Random
Geometric Graph (RGG). In this case, we assume that nodes know an upper bound on
the number of their neighbors with a probability given by the parameter conditions for
connectivity.

In this setting, we say that a clear transmission occurred if exactly one node is trans-
mitting and no other nodes within two hops of it are transmitting. Then, the clear trans-
mission problem in a multi-hop setting is solved after every node either produces or
receives a clear transmission.

In a G(n, r, �) satisfying the connectivity conditions explained previously, the num-
ber of nodes contained in any circle of radius Θ(r) is Θ(log n) with high probability.

2 Under the assumptions of the Weak Sensor Model, nodes have only O(log n) bits of memory.
Therefore, this lower bound applies also to sensor networks when ε ≥ 1/nγ , for some constant
γ > 0.



454 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

This can be proved by a simple application of the Chernoff-Hoeffding bounds. Then,
we complete our lower bounds with the following corollary, which can be obtained as
a simple application of Theorems 1 and 2 to this setting.

Corollary 1. Every randomized protocol to solve the clear transmission problem with
probability 1 − ε in a Radio Network with geometrically distributed nodes requires
Ω(log logn log(1/ε)) time slots, where ε ≥ 1/nγ for some constant γ > 0.

Proof. Replacing the appropriate density for any one-hop neighborhood in this setting,
i.e. Θ(log n) instead of n, in theorem 2 the corollary follows.
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Abstract. In this paper we propose a probabilistic analysis of the re-
laxation time of elementary finite cellular automata (i.e., {0, 1} states,
radius 1 and unidimensional) for which both states are quiescent (i.e.,
(0, 0, 0) �→ 0 and (1, 1, 1) �→ 1), under α-asynchronous dynamics (i.e.,
each cell is updated at each time step independently with probabil-
ity 0 < α � 1). This work generalizes previous work in [1], in the sense
that we study here a continuous range of asynchronism that goes from
full asynchronism to full synchronism. We characterize formally the sensi-
tivity to asynchronism of the relaxation times for 52 of the 64 considered
automata. Our work relies on the design of probabilistic tools that enable
to predict the global behaviour by counting local configuration patterns.
These tools may be of independent interest since they provide a con-
venient framework to deal exhaustively with the tedious case analysis
inherent to this kind of study. The remaining 12 automata (only 5 after
symmetries) appear to exhibit interesting complex phenomena (such as
polynomial/exponential/infinite phase transitions).

1 Introduction

The aim of this article is to analyze the asynchronous behavior of unbounded finite
cellular automata. Cellular automata are widely used to model systems involv-
ing a huge number of interacting elements such as agents in economy, particles
in physics, proteins in biology, distributed systems, etc. In most of these appli-
cations, in particular in many real system models, agents are not synchronous.
Depending on the transition rules, the behaviour of the system may vary widely
when asynchronism increases in the dynamics. More generally one can ask how
much does asynchronous in real system perturbs computation. In spite of this
lack of synchronism, real living systems are very resilient over time. One might
then expect the cellular automata used to model these systems to be robust to
asynchronism and to other kind of failure as well (such as misreading the states
of the neighbors). It turns out that the resilience to asynchronism widely varies
from one automata to another (e.g., [2, 3]). Only few theoretical studies exist on
the influence of asynchronism. Most of them usually focus on one specific cellular

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 455–466, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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automata (e.g., [4, 5, 6]) and do not address the problem globally. Recently, Gács
shows in [7] that it is undecidable to determining if in a given automota, the se-
quences of changes of states followed by a given cell is independent of the history
of the updates. Related work on the existence of stationary distribution on infinite
configurations for probabilistic automata can be found in [8].

One can see cellular automata as physical systems where cell states change ac-
cording to local constraints (the transition rules). One typical example consists
of a network where each cell have two states, e.g., “I have a token” and “I don’t
have a token”, and where transitions from one state to the other depends on the
states of the neighbours, e.g., “I get a token if both of my neighbors have one” or
“I have a token if and only if my right neighbor has one”, etc. One natural ques-
tion for such systems, ask for the relaxation time, i.e. the time needed to reach a
stable configuration (e.g., “everyone has a token” or “no one has a token”). As
opposed to classic work in asynchronous distributed computing, where one tries
to design efficient transitions rules that guarantees fast convergence to a stable
configuration (e.g., [9]), we study here how asynchrony affects the global evolu-
tion of the system given an arbitrary set of local constraints, and in particular
how does asynchronicity affects its relaxation time. In [1], the authors carried out
a complete analysis of the class of one-dimensional double quiescent elementary
cellular automata (DQECA), where each cell has two states 0 and 1 which are
quiescent (i.e., where each cell for which every cell in its neighbourhood are in the
same state, remains in the same state) and where each cell updates according to its
state and the states of its two immediate neighbours. They study the behaviour of
these automata under fully asynchronous dynamics, where only one random cell
is updated at each time step. They show that one can classify the 64 DQECAs in
six categories according to their relaxation times under full asynchronism (either
constant, logarithmic, linear, quadratic, exponential or infinite) and furthermore
that the relaxation time characterizes their behaviour, i.e., that all automata with
equivalent relaxation times present the same kind of space-time diagrams.

The present paper extends this study to a continuous range of asynchyro-
nism from fully asynchronous dynamics to fully synchronous dynamics: the α-
asynchronous dynamics, with 0 < α � 1. In this setting, each cell is updated
independently with probability α at each time step. When α varies from 1 down
to 0, the α-asynchronous dynamics evolves from the fully synchronous regime to
a more and more asynchronous regime. As α approaches 0, the probability that
the updates involve at most one cell tends to 1, and the dynamics gets closer and
closer to a kind of fully asynchronous dynamics up to a time rescaling by a factor
1/α. Abusing of the notation, we thus refer the fully asynchronous dynamics as
the 0-asynchronous regime.

Figure 1 page 457 presents the space-time diagrams of the 24 representatives
of the DQECAs as α increases (by steps of 0.25) starting from the same random
configuration of length n = 100. The last column plots the density of black cells
at time step t = 1000/α on one single random configuration. This class exhibits
a rich variety of behaviours. Thirteen representatives of the DQECAs (ECAs 204
to 128, 198, and 142 on Fig. 1) appear to be marginally sensitive to asynchronism.
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Fig. 1. Behaviour of DQECAs as a function of the synchronicity rate α

Six of them (ECAs 242 to 170, 194, and 138 on Fig. 1) present a brutal transition
from the synchronous to asynchronous dynamics: they converge in polynomial
time to an all-zero or all-one configuration as soon as (even a small amount of)
asynchronism is introduced, while diverge under synchronous dynamics. One can
observed that their space-time diagrams exhibit random walks like behaviour.
The most interesting behaviour are observed on the remaining five representa-
tives. The relaxation time of ECAs 210 and 214 are respectively exponential and
infinite under fully asynchronous dynamics, and both infinite under synchronous
dynamics, but appears to be polynomial under α-asynchronous dynamics. The
relaxation time as well as the time-space diagrams of ECAs 178 and 146 evolve
continuously as α increases, but seem to present an interesting phase transition
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at some αc and α′
c, respectively, such that the relaxation time appears to be

polynomial for α < α′
c, and exponential for α > α′

c. Finally, the relaxation time
of ECA 150 appears to be exponential when 0 < α < 1, and is infinite otherwise.

Section 2 introduces the main definitions and presents our main result. Sec-
tion 3 presents the key phenomena that differentiate the different dynamics: fully
synchronous, α-asynchronous (studied here), and fully asynchronous (studied in
[1]). These observations will guide the design of probabilistic tools that are pre-
sented in Section 4 and used in Section 5 to bound the relaxation times. Finally,
Section 6 sums up the intuitions, hints and conjectures on the behaviours of the
remaining automata that could not be treated theoretically here, leaving the
determination of their relaxation times open.

2 Definitions, Notations and Main Results

In this paper, we consider the class of the two-state cellular automata on finite
size configurations with periodic boundary conditions.

Definition 1. An Elementary Cellular Automata (ECA) is given by its transi-
tion function {δ : {0, 1}3 → {0, 1}}. We denote by Q = {0, 1} the set of states.
A state q is quiescent if δ(q, q, q) = q. An ECA is double-quiescent (DQECA)
if both states 0 and 1 are quiescent.

We denote by U = Z/nZ the set of cells. A finite configuration with periodic
boundary conditions x ∈ QU is a word indexed by U with letters in Q.

Definition 2. For a given pattern w ∈ Q∗, we denote by |x|w = #{i ∈ U :
xi+1 . . . xi+|w| = w} the number of occurrences of w in configuration x.

We will use the following labels introduced in [1] which will simplify the analysis
of the probabilistic evolution of the ECAs.

Notation 1. We say that a transition is active if it changes the state of the cell
where it is applied. Each ECA is fully determined by its active transitions. We
label each active transition by a letter as follow:

label A B C D E F G H
x y z 000 001 100 101 010 011 110 111

δ(x, y, z) 1 1 1 1 0 0 0 0

We label each ECA by the set of its active transitions. Note that with these
notations, the DQECAs are exactly the ECAs having a label containing neither
A nor H.

We consider three kinds of dynamics for ECAs: the synchronous dynamics, the α-
asynchronous dynamics and the fully asynchronous dynamics. The synchronous
dynamics is the classic dynamics of cellular automata, where the transition func-
tion is applied at each (discrete) time step on each cell simultaneously.

Definition 3 (Synchronous Dynamics). The synchronous dynamics
Sδ : QU → QU of an ECA δ, associates deterministically to each configuration
x the configuration y, such that for all i ∈ U , yi = δ(xi−1, xi, xi+1).
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Definition 4 (Asynchronous Dynamics). An asynchronous dynamics ASδ

of an ECA δ associates to each configuration x a random configuration y, such
that yi = xi for i �∈ S, and yi = δ(xi−1, xi, xi+1) for i ∈ S, where S is a
random subset of U chosen by a daemon. We consider two types of asynchronous
dynamics:

– in the α-asynchronous dynamics, the daemon selects at each time step each
cell i in S independently with probability α where 0 < α � 1. The random
function which associates the random configuration y to x according to this
dynamics is denoted ASα

δ .
– in the fully asynchronous dynamics, the daemon chooses a cell i uniformly at

random and sets S = {i}. The random function which associates the random
configuration y to x according to this dynamics is denoted ASF

δ .

For a given ECA δ, we denote by xt the random variable for the configuration
obtained after t applications of the asynchronous dynamics function ASδ on con-
figuration x, i.e., xt = (ASδ)t(x). Note that (xt)t∈N is an homogeneous Markov
chain on Qn. Remark that ASδ could equivalently be seen as a function with two
arguments, the configuration x and the random subset S ⊆ U chosen according
to the processes listed above.

Definition 5 (Fixed point). We say that a configuration x is a fixed point
for δ under asynchronous dynamics if ASδ(x) = x whatever the choice of S is
(the cells to be updated). Fδ denotes the set of fixed points for δ.

The set of fixed points for the considered asynchronous dynamics is clearly iden-
tical to {x : Sδ(x) = x} the set of fixed points of the synchronous dynamics.
The set of fixed points of an automaton can be easily deduce from its labeling
as shown in [1]. Every DQECA admits two trivial fixed points, 0n and 1n.

Definition 6 (Relaxation Time). Given an ECA δ and a configuration x,
we denote by Tδ(x) the random variable for the time elapsed until a fixed point
is reached from configuration x under an asynchronous dynamics, i.e., Tδ(x) =
min{t : xt ∈ Fδ}. The relaxation time of ECA δ is maxx∈QU E[Tδ(x)].

If α < 1 the process (xt)t∈N converges to a stationary distribution, but we
will abusively say that an ECA diverges from an initial configuration x if the
probability to reach a fixed point from x is 0. We can now state our main theorem.

Theorem 1 (Main result). Under α-asynchronous dynamics, among the
sixty-four DQECAs, we can determine the behaviour of 52 of them:

– forty-eight converge almost surely to a random fixed point from any ini-
tial configuration, and the relaxation times of these forty-eight convergent
DQECAs are 0, Θ( ln n

ln(1−α) ), Θ(n
α ), Θ(n

α + 1
α(1−α) ), O( n

α(1−α) ), O( n
α2(1−α) ),

Θ( n2

α(1−α) ).
– two diverge from any initial configuration that is neither 0n, nor 1n, nor

(01)n/2 when n is even.
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Table 1. DQECAs under asynchronous and synchronous dynamics (see Section 2)
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– two converge with a small probability from few initial configurations when n
is even and diverge otherwise.

The twelves others (5 after symetries) have different behaviours that we cannot
prove presently. Some seem to exhibit a phase transition but their mathematical
analysis remains a challenging problem. All the results and the conjectures (with
question marks) are summed up in table 1.

3 Key Observations

Due to 0/1 and reversal symmetries of configurations, we shall w.l.o.g. only
consider the 24 DQECAs listed in Tab. 1 among the 64 DQECAs. For each of
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these 24 DQECAs, the number of the equivalent automata under symmetries is
written within parentheses after their classic ECA code in the table.

From now on, we only consider the α-asynchronous dynamics; this will be
implicit in all the following propositions. Our results rely on the study of the
evolution of the 0-regions and 1-regions in the space-time diagram (i.e., of the
intervals of consecutive 0s or consecutive 1s in configuration xt). We will now
enumerate the different ways the regions can be affected.

First we consider the cases where a cell updates and none of its two neighbours
update:

– Transitions D and E are thus responsible for decreasing the number of regions
in the space-time diagram: D “erases” the isolated 1s and E the isolated 0s.

– Transitions B and F act on patterns 01. Intuitively, transition B moves a
pattern 01 to the left, and transition F moves it to the right. In particular,
patterns 01 perform a kind of random walk for DQECA with both transitions
B and F if no others phenomena occurs. The arrows in Tab. 1 represent the
different behavior of the patterns: ← or →, for left or right moves of the
patterns 01 or 10; 	, for random walks of these patterns.

– Similarly, transitions C and G act on patterns 10. Transition C moves a
pattern 10 to the right, and transition G moves it to the left.

One important observation made during the study of the fully asynchronous dy-
namics in [1] is that the number of regions can only decrease and each activation
of D or E makes the number of regions decrease by one. This statement is not true
anymore under the α-asynchronous dynamics, as we will see now. Here are the
new phenomena when two or three neighboring cells update at the same time:

B F B E C F GB E

time t+1

time t

Shift Spawn Fork Annihilation

– Shift phenomenon occurs with the activation of rules B and E, or C and E,
or F and D, or G and D together: in this case an isolated 0 or an isolated 1
is shifted. Here even if a transition D or E is activated, no regions is erased.

– Spawn phenomenon occurs with the activation of rules B and F, or C and
G together: a pattern 0011 can create a new region. This is an important
phenomenon because it increases the number of regions by one each time it
occurs.

– Fork phenomenon occurs with the activation of rules B, C and E or F, G
and D together: here three neighboring cellules update at the same time and
an isolated point is duplicated. This phenomenon increases the number of
regions by one each time it occurs.

– Annihilation phenomenon occurs with the activation of rules B and C or F
and G together: the activation of these two rules erases a region of length 2.
This is a very important new phenomenon because it is another way to
decrease the number of region. In particular, it is the only way to decrease the
number of regions in automaton where neither D nor neither E is activated.
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The next section is devoted to the tools which will be used to prove our main
theorem.

4 Lyapunov Functions Based on Local Neighbourhoods

Definition 7 (Mask). A mask ṁ is a word on {0, 1, 0̇, 1̇} containing exactly
one dotted letter in {0̇, 1̇}. We say that the cell i in configuration x matches the
mask ṁ = m−k . . .m−1ṁ0m1 . . .ml if xi−k . . . xi . . . xi+l = m−k . . .m0 . . .ml.
We denote by m the undotted word m−k . . .m0 . . .ml.

Fact 2. The number of cells matching a given mask ṁ in a configuration x is
exactly |x|m, the number of occurrences of the undotted word m.

Definition 8 (Masks basis). A masks basis B is a finite set of masks such
that for any configuration x and any cell i, there exists an unique ṁ ∈ B that
matches cell i.

A masks basis B can be represented by a binary tree where the children of
a node are labelled by adding 0 and 1 to the node label, on the right or the
left (the children of the root receive 0̇ and 1̇), and where the masks of B are
the labels of the leaves. Reciprocally, any binary tree observing these prop-
erties defines a unique masks basis by taking the labels of its leaves. Fig-
ure 2b page 463 illustrates the construction of the tree for the masks ba-
sis B = {11̇, 001̇0, 001̇1, 0101̇, 1101̇, 0̇0, 00̇10, 00̇11, 010̇1, 110̇1}.

Masks bases will be used to define Lyapunov weight functions from local
patterns. It provides an efficient tool to validate exhaustive case analysis.

Definition 9 (Local weight function). A local weight function f is a func-
tion from a masks basis B to Z. The local weight of the cell i in configuration x
given by f is F (x, i) = f(ṁ) where ṁ is the unique mask in B matching cell i.
The weight of a configuration x given by f is defined as F (x) =

∑
i F (x, i).

Fact 3. Given a local weight function f : B → Z, the weight of configuration x
is equivalently defined as: F (x) =

∑
ṁ∈B f(ṁ) · |x|m.

Notation 2. For a given random sequence of configurations (xt)t∈N and a
weight function F on the configurations, we denote by (ΔF (xt))t∈N the random
sequence ΔF (xt) = F (xt+1)− F (xt).

The next lemma provides upper bounds on stopping times for the markovian
sequence of configurations (xt)t∈N subject to a weight function F decreasing or
remaining constant on average (a Lyapunov function). Its proof can be found
in [1].

Lemma 1. Let m ∈ Z+ and ε > 0. Consider (xt) a random sequence of con-
figurations, and F a weight function such that (∀x) F (x) ∈ {0, . . . ,m}. Assume
that if F (xt) > 0, then E[ΔF (xt)|xt] � −ε. Let T = min{t : F (xt) = 0} de-
note the random variable for the first time t where F (xt) = 0. Then, E[T ] �
m+F (x0)

ε .
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5 Relaxation Times

Due to space constraints, we only present the theorem for the relaxation time of
the DQECA BEF. The results for Identity, E, EF, EFG, DE, B, BC, BDE,
BE, BCDE, BCE, BCDEF, BEFG, BDEG, BEG, BDEF, BF, BG are
given in Tab. 1 (check our websites for the full version of the paper).

5.1 Automaton BEF(194)

The fixed points of this automaton are 0n and 1n. Fixed point 1n cannot be
reached from any other configuration. Under fully asynchronous dynamics, the
length of any 1-region follows a random walk, and thus converges in O(n3) in
expectation. Here, the Spawn phenomenon (rule B and F applied together to
cells i − 1 and i) can transform the pattern 0001̇11 into the pattern 001011
with probability α2. Even if the number of 0s and 1s are the same in these
two patterns, in the pattern 001011 two 1s can become 0s at the next step
(by applying rules E and F), while only one 0 can become a 1 at the next
step (by applying rule B). So the creation of isolated 0s tends to decrease the
number of 1s at the next step, leading to a speed up from a cubic relaxation time
under fully asynchronous dynamics to a linear relaxation time in α-asynchronous
dynamics with the respect of the size of the configuration. We consider the
following variant. Let a = −2c + 2, b = −1, c = −

⌊ 3
α

⌋
− 1. We use the masks

basis and local weight function f given on page 463. We have: F (x) = a|xt|1 +
b|xt|011 + c|xt|101. For all configuration x, F (x) ∈ {0, . . . , 2n(

⌊ 3
α

⌋
+ 4)} and

F (x) = 0 if and only if x = 0n.

Lemma 2. For all non-fixed point configuration xt,
E[ΔF (xt)] � −α(1 − α)|xt|01.

Proof. By linearity of expectation: E[ΔF (x)] =
∑n−1

i=0 E[ΔF (x, i)]. We evaluate
the variation of F (x, i) using the masks basis of Figure 2b.

11
011

111

10
010

1101

00
100

000

01
101

001
0

masks 10̇1 00̇0, 00̇1, 10̇0 01̇1 11̇0, 11̇1, 01̇0
f(ṁ) c 0 a + b a

(a) Weight function

11

01

101
1101

0101

001
0011

0010

1

00

01

101
1101

0101

001
0011

0010

0

(b) Analysis

Fig. 2. Mask basis for BEF
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Consider that at step t, cell i matches:

– mask 11̇: F (xt, i) = a. With probability 1 at the step t + 1, cell i matches
mask 1̇. So F (xt+1, i) ∈ {a, a + b}. Since b < 0, F (xt+1, i) � F (xt, i).
Thus, E[(ΔF (xt, i)] � 0.

– mask 0̇0: F (xt, i) = 0. With probability 1 at the step t + 1, cell i
matches mask 0̇. So F (xt+1, i) ∈ {0, c}. Since c < 0, F (xt+1, i) � F (xt, i).
Thus, E[(ΔF (xt, i)] � 0.

– mask 001̇0 (and 00̇10 together):

With probability α(1 − α) α(1 − α) (1 − α)2 α2

At the step t + 1, cell i matches mask 00̇ 11̇ 01̇ 10̇
and ΔF (xt, i − 1) = 0 = a + b = 0 = a

and ΔF (xt, i) = −a = 0 = 0 = −a

Thus, E[ΔF (xt, i)+ΔF (xt, i−1)] = −aα(1−α)+(a+b)α(1−α) = bα(1−α) =
−α(1− α).

– mask 001̇1 (and 00̇11 together):

With probability α(1 − α) α(1 − α) (1 − α)2 α2

at the step t + 1, cell i matches mask 00̇ 11̇ 01̇ 10̇
and ΔF (xt, i − 1) = 0 = a + b = 0 = c − a − b

and ΔF (xt, i) = −a − b = −b = 0 = a

Thus, E[ΔF (xt, i)+ΔF (xt, i−1)] = (−a−b)α(1−α)+aα(1−α)+(c−b)α2 �
α(1 − α)− 2α � −α(1 − α).

– mask 1101̇ (and 110̇1 together):

With probability α (1 − α)
at the step t + 1, the cell i matches mask 00̇ 01̇

and ΔF (x, i − 1) = −c = 0
and ΔF (x, i) = −a − b = 0

Thus, E[ΔF (xt, i) +ΔF (xt, i− 1)] = (−a− b− c)α(1 − α) � −α(1 − α).
– mask 0101̇ (and 010̇1 together):

With probability α (1 − α)2 α(1 − α)
at the step t + 1, the cell i matches mask 00̇ 101̇ 001̇

and ΔF (xt, i − 1) = −c = 0 = −c

and ΔF (xt, i) = −a − b = 0 = 0

Thus, E[ΔF (xt, i) + ΔF (xt, i − 1)] = (−a − b − c)α(1 − α) − cα(1 − α) �
−α(1− α).

Finally
∑n−1

i=0 E[ΔF (xt, i)] � −α(1−α)(|xt|0010+|xt|0011+|xt|1011+|xt|0101) �
−α(1 − α)|xt|01. So, as long as xt is not a fixed point, we have E[ΔF (xt)] �
−α(1− α)|xt|01 � −α(1− α).

Theorem 4. Under α-asynchronous dynamics, DQECA BEF converges a.s. to
a fixed point from any initial configuration. The relaxation time is O

(
n

α2(1−α)

)
.

Proof. Using Lemma 1 and Lemma 2, automaton BEF converges a.s. from any
intial configuration (except 1n) to 0n. The relaxation time is O

(
n
α ×

1
α(1−α)

)
=

O
(

n
α2(1−α)

)
.
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6 Conjectures

This section presents the remaining twelve DQECAs for which the mathematical
analysis is not achieved yet. However by means of simulation and by the study of
special patterns, we can give some insights of the phenomena which guide their
dynamics and differentiate them from the other DQECAs.

Automaton BCDEFG(178). The fixed points of this automaton are exactly 0n

and 1n. Simulations show a phase transition concerning the relaxation time,
which can be also clearly observed on time-space diagrams and seems to occur
at α = αc ≈ 0, 5. If α < αc, the overall behaviour of the automaton does not
drastically change when α varies: 0- and 1-regions merge into larger regions
reducing their number, and it seems to converge to 0n or 1n with an O(n2/α)
expected time. While if α > αc, large 0- and 1-regions crumble quickly at their
frontiers and patterns of 0101 · · ·01 fill the space between the regions. The closer
α is to 1, the smaller is the probability of formation of large regions. In that case,
we conjecture that the relaxation time is exponential in n.

Automaton BCEFG(146). The fixed points of this automaton are exactly 0n

and 1n. This automaton shows a phase transition which seems to appear when
α = α′

c ≈ 0, 67. When α < α′
c, 1-regions quickly disappear and the expected

convergence time is conjectured to be polynomial in n. When α is close to 1,
like the automaton BCDEFG, large 1-regions do not survive because they tend
to crumble very quickly. On the other hand, isolated 1s are easily deleted and
seem to multiply faster than they disappear. In that case, we conjecture that
the relaxation time is exponential in n.

Automaton BCF(214). The fixed points of this automaton are 0n, 1n

and (01)n/2 (if n is even). When starting from another configuration, it is impos-
sible to reach one of these fixed points in the fully asynchronous dynamics, since
the number of regions remains constant. With the α-asynchronous dynamics,
due to the Annihilation phenomenon, any configuration converges a.s. to a fixed
point within a finite time. The sizes of large 0-regions decrease quickly. Only re-
gions with two 0s may disappear, but 10011 patterns may evolve into 11111 or
10101 with the same probability. This could lead to an increase of small regions,
tending to slow down the convergence. However a sequence of consecutive small
0-regions slows down the spawning phenomenon: in a 1001001 pattern, the first
00 region can not split. Thus the number of regions tends to decrease. We con-
jecture that the relaxation time is polynomial in n and contains an O( 1

α2(1−α) )
term corresponding to the deletion of 00 regions.

Automaton BCFG(150). The fixed points of this automaton are 0n, 1n

and (01)n/2 (if n is even). In the fully asynchronous dynamics, this automa-
ton does not converge to a fixed point since it is impossible to suppress a region.
However in the α-asynchronous dynamics, due to the Annihilation phenomenon,
this automaton converges a.s. to a fixed point within a finite time. Simulations
suggest that the relaxation time is exponential in n.



466 N. Fatès et al.

Automaton BCEF(210). The fixed points of this automaton are exactly 0n

and 1n. In the fully asynchrnous dynamics, this automaton converges to 0n with
a exponential expected time. In both fully asynchrounous and α-asynchronous,
dynamics, the sizes of regions of 0 tend to decrease quickly. However in the
fully asynchronous dynamics, they may only disappear by merging, and the
size of the last 0-region will converge to 0 in exponential expected time. The
α-asynchronous dynamics introduces the Annihilation phenomenon. On simula-
tions, the convergence to fixed points seems to be polynomial. This case seems
similar to the BCF automaton, but the analysis is a bit more complicated since
0-regions may merge, and this must be taken into account in the proof of bounds
for the relaxation time.
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7. Gács, P.: Deterministic computations whose history is independent of the order of
asynchronous updating. http://arXiv.org/abs/cs/0101026 (2003)

8. Louis, P.Y.: Automates Cellulaires Probabilistes : mesures stationnaires, mesures
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Abstract. The diameter of a set P of n points in Rd is the maximum
Euclidean distance between any two points in P . If P is the vertex set of a
3–dimensional convex polytope, and if the combinatorial structure of this
polytope is given, we prove that, in the worst case, deciding whether the
diameter of P is smaller than 1 requires Ω(n log n) time in the algebraic
computation tree model. It shows that the O(n log n) time algorithm
of Ramos for computing the diameter of a point set in R3 is optimal
for computing the diameter of a 3–polytope. We also give a linear time
reduction from Hopcroft’s problem of finding an incidence between points
and lines in R2 to the diameter problem for a point set in R7.

Keywords: Computational geometry; Lower bound; Diameter; Convex
polytope; Hopcroft’s problem.

1 Introduction

The diameter problem for a set P of n points in Rd is to compute the largest
distance between any two points in P . In other words, if we denote by d(·, ·)
the Euclidean distance in Rd, it consists in finding diam(P ) = max{d(x, y) |
x, y ∈ P}. It is a fundamental problem in computational geometry and has
been studied extensively [3, 5, 12, 13, 16, 17]. If P ⊂ R2, then its diameter can be
computed in O(n logn) time [16], which is optimal in the algebraic computation
tree model [2, 4]. The three dimensional case remained open for a much longer
time, but eventually Clarkson and Shor [8] designed an optimal O(n logn) time
randomized algorithm to compute the diameter of a set of n points in R3, and
Ramos [17] found a deterministic counterpart.

The Ω(n logn) lower bound for computing the diameter of P ⊂ R2 can be
broken if P is given as the sequence of the vertices of a convex polygon sorted
along its boundary, in which case an O(n) time algorithm is known [16]. Our
main result (Theorem 1) is to show that the same speed–up cannot be achieved
in R3, when P is the vertex set of a convex polytope, and the combinatorial
structure of this polytope is given. In the worst case Ω(n log n) time is required
to compute the diameter of P . More precisely, we show that deciding whether
the diameter of P is smaller than 1 requires an algebraic computation tree with
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depth Ω(n logn). We prove this result by applying Ben–Or’s technique [2, 4, 16]
to a suitable family of polytopes. Our lower bound implies that the algorithm
by Ramos [17] is optimal for computing the diameter of a 3–polytope.

Similar problems of closing the gap between an Ω(n) lower bound and an
O(n log n) upper bound have been studied recently. Chazelle et al. [6] mention
that it is possible to compute the convex hull of two 3–polytopes in linear time,
and it is not known whether the convex hull of a subset of the n vertices of
a convex polytope can be computed in O(n) time. On the other hand, given
the Delaunay triangulation of a set P of n points in R2 (which is a special
case of 3–dimensional convex hulls [9]), it is possible to compute the Delaunay
triangulation of any subset of P in O(n) time.

Hopcroft posed the following well known problem [11]. Given n lines and n
points in R2, decide whether there is a point contained in a line. Matoušek [14]
gave an O

(
n4/32O(log∗ n)

)
time algorithm for this problem, but no O(n4/3) time

algorithm has been found so far. The only lower bound known for an algebraic
computation tree is Ω(n log n), and Erickson gave an Ω(n4/3) lower bound in
a weaker model of computation [11]. Thus finding a reduction from Hopcroft’s
problem to any other problem suggests that this problem is difficult to solve in
o(n4/3) time. Erickson gave several such reductions to various geometric prob-
lems [10], for instance he showed that ray shooting in polyhedral terrains and
halfspace emptiness checking in R5 are harder than Hopcroft’s problem. In this
paper, we show that the same is true for the diameter problem in R7. More
precisely, we show that there is a linear time reduction from Hopcroft’s problem
to the diameter problem in R7 using a real random access machine [16] (real–
RAM). We give a similar reduction to the red–blue diameter problem in R6.
Our approach is based on a linearization argument. Using the lifting transfor-
mation and advanced data structures for ray shooting [15], the diameter of a set
of n points in Rd can be computed in O(n2−2/(
d/2�+1) logO(1) n) time, which is
O(n1.6 logO(1) n)) for d = 7.

2 Notation and Preliminary

We work in fixed dimension d, so d is an integer such that d = O(1). When
d = 3, we use an orthonormal coordinate frame Oxyz of R3. For all a, b ∈ Rd,
we denote by d(a, b) the Euclidean distance between a and b. For any set P of
n points in Rd, the diameter of P , that we denote by diam(P ), is given by

diam(P ) = max
a,b∈P

d(a, b).

Given two finite point sets A,B ⊂ Rd, where the points in A are called the red
points and the points in B are called the blue points, the red–blue diameter of
(A,B) is

diam(A,B) = max
a∈A,b∈B

d(a, b).

The convex hull of P is denoted by CH(P ). For any a ∈ Rd and r > 0, we
denote by B(a, r) the open Euclidean ball with center a and radius r. If B is a



Lower Bounds for Geometric Diameter Problems 469

non–empty subset of Rd, we denote by d(a,B) the distance between a and B,
that is

d(a,B) = inf
b∈B

d(a, b).

We denote by m(a, b) the midpoint of the line segment ab. We use the notation
‖ · ‖ for the L2 norm. In other words, for all a, b ∈ Rd, we have ‖a− b‖ = d(a, b).
We denote by 〈a, b〉 the inner product of a and b. We use the notation ū =
(u1, u2, . . . , um) to denote a sequence, and the concatenation of two sequences is
written with a coma: ((1, 2), (3, 4)) = (1, 2, 3, 4).

A 3–polytope is a 3–dimensional convex polytope. The combinatorial structure
of a 3–polytope P is the set of all inclusion relations between its vertices, edges
and facets. In our lower bound arguments, we assume that the combinatorial
structure of P is given together with the following information: the coordinates
of the vertices of P and, for each facet f of P , the edges of f are given as a
sequence ordered along the boundary of f .

2.1 Models of Computation

The real–RAM model is the model of computation that is most commonly used
to analyze geometric algorithms [16]. It is a random access machine that can
store a real number in each register, and access it in constant time. It can per-
form comparisons and arithmetic operations (+,−,×, /) between real numbers
at unit cost.

In order to prove lower bounds under the real–RAM model, we will prove
lower bounds using an algebraic computation tree [4], which is a stronger model of
computation. We will only use the algebraic computation tree model for decision
problems, so following Ben–Or [2], we use the following definition where leaves
are labeled by YES or NO. We denote by x = (x1, x2, . . . , xn) ∈ Rn the input to
our problem. An algebraic computation tree T is a binary tree where each node
is either a computation node (a degree one node, with one son), a branching
node (a degree two node, with two sons), or a leaf. A computation node u is
either labeled by an input number xi, or it is associated with an arithmetic
operation. Each such operation can either be taken in {+,−,×, /,

√
·}, or it

can be a multiplication by a real constant; the operands are values obtained
at computation nodes that are ancestors of u. At each branching node v, we
compare with 0 the value obtained at a computation node that is an ancestor
of v; each comparison can be taken in {>,�,=}. According to the result of this
comparison, the program branches to one son of v or the other. So, according to
the value of the input point x, the program follows a path in T that leads to leaf
labeled YES or NO. We say that that T decides the set W ⊂ Rn if, for all x ∈ W ,
we reach a leaf labeled YES, and for all x /∈W , we reach a leaf labeled NO.

The depth of T gives an upper bound on the number of arithmetic and branch-
ing instructions it needs to decide whether a given x ∈ Rn is in W . On the other
hand, a lower bound on the depth of all algebraic computation trees that decide
W gives a lower bound on the worst case running time of any real–RAM that
decides W .
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3 Diameter of a 3-Polytope

In this section, we show that computing the diameter of a 3–polytope requires
Ω(n logn) time in the algebraic computation tree model. Our approach is the
following. We first construct a family of 3–polytopes that have the same com-
binatorial structure, but do not all have the same diameter. Then we apply
Ben–Or’s technique [2, 4, 16].

We will use the inequalities

∀θ ∈
[
−π

2
,
π

2

]
,
θ2

4
� 1− cos θ � θ2

2
, (1)

with strict inequalities if θ �= 0.
Let n > 0 be an integer. Let α and ϕ denote two real numbers such that

0 < α � 1
4 and 0 < ϕ � 1

4 . Both are to be thought of as small enough, to be
chosen later. Then we define ψ = ϕ

n , γ = α
n , t =

(
1− cos

( 1
2ψ

))
/
(
1 + cos

( 1
2ψ

))
and r = 1− t. The length r has the following property (see Fig. 1): if e, f , g and
h are four points such that ef = eg = r, ∠feg = ∠feh = 1

2ψ and ∠efh = π
2 ,

then the midpoint m(g, h) is at distance 1 from e.
Now we define three sets of points in R3 (see Fig. 2). For all i ∈ {−n,−n+

1, . . . , n}, we define

ai =

⎛⎝ 1
2 (1− cos(iγ))
0
1
2 sin(iγ)

⎞⎠
and we denote A = {ai | − n � i � n}. For all i ∈ {−n,−n+ 1, . . . , n− 1} and
s ∈ {−1, 1}, let

csi =

⎛⎝ r cos
((
i+ 1

2

)
ψ
)

r sin
((
i+ 1

2

)
ψ
)

1
2sα

⎞⎠

h

r

1
2ψ

r t t

1

e
g

f

Fig. 1. Geometric interpretation of r and t
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a0 = O

b2

b−2

c−1
−3

c−1
−2

c−1
−1

b0

c−1
0

c−1
1

c1
−1

c1
0

c1
1

c1
2

c−1
2

c1
−3

b−1

b1
y

ψ

a−3

a−2

γ
a−1

α

a3

a2

a1

c1
−2

2ϕ− ψ

z

x

Fig. 2. The sets A, B(β̄) and C when n = 3 and β̄ ∈ [−α, α]2n−1

and C = {csi | − n � i < n, s ∈ {−1, 1}}. Now for a parameter β ∈ R and for
all j ∈ {−n+ 1,−n+ 2, . . . , n− 1}, we define

bj(β) =

⎛⎝ cos(jψ)− 1
2 (1− cosβ)

sin(jψ)
1
2 sin(β)

⎞⎠
For all β̄ = (β−n+1, β−n+2, . . . , βn−1) ∈ R2n−1, we define B(β̄) = {bj(βj) | −
n+ 1 � j � n− 1}.

The following lemma shows that, for α small enough and β̄ ∈ [−α, α]2n−1,
the graph of CH(A ∪B(β̄) ∪ C) does not depend on the angle sequence β̄.

Lemma 1. Assume that α < 2t cos(1
2ψ) and β̄ ∈ [−α, α]2n−1. Then the graph

of CH(A ∪B(β̄) ∪C) is the the union of the graph of CH(A ∪C) and the set of
the edges connecting each bj(βj) to the points c1j−1, c

−1
j−1, c

1
j and c−1

j (see Fig. 3).

Proof. Let Hj be the vertical plane containing {c1j , c−1
j } and normal to

(O,m(c1j , c
−1
j )) (see Fig. 4). Let H ′

j be the vertical plane containing the points
c1j−1, c

−1
j−1, c

1
j and c−1

j . Let H+ (resp. H−) be the horizontal plane with equation
z = 1

2α (resp. z = − 1
2α). Let Δj be the interior of the polytope defined by the

planes Hj−1, Hj , H
′
j , H

+ and H−. By elementary trigonometry (see also Fig. 1),
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a3

c1
2

c−1
2

c−1
−3

c1
−3

b0b−2(β−2)

b2(β2)

a−3

c−1
−2

c−1
−1

c−1
0

c−1
1

a2
a1
a0

a−1
a−2

Fig. 3. This figure shows CH(A ∪ B(β̄) ∪ C). The graph of CH (A ∪ C) is obtained by
removing all the vertices in B(β̄) and the adjacent edges.

O

r

r
1
2ψ

1

c±1
j

bj(0)

c±1
j−1

HjH ′
j

Hj−1

y

x

1
2ψ

Fig. 4. The shaded area is Δj , seen from above

we can show that⎧⎪⎪⎨⎪⎪⎩
bj(0) ∈ Δj ,
d(bj(0), H+) = d(bj(0), H−) = 1

2α,
d(bj(0), H ′

j) > t, and
d(bj(0), Hj−1) = d(bj(0), Hj) = t cos(1

2ψ).
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Our assumption that 1
2α < t cos(1

2ψ) implies that B(bj(0), 1
2α) ⊂ Δj . For all j,

we have βj ∈ [−α, α], so bj(βj) ∈ B(bj(0), 1
2α) and thus bj(βj) ∈ Δj . Therefore,

the only facet of CH(A∪C) that is visible from bj(βj) is the facet c−1
j−1c

1
j−1c

1
jc

−1
j ,

and no point in B(β̄) \ {bj(βj)} is visible from bj(βj); the result follows.

Lemma 2. Assume that ϕ � 1
4n and j ∈ {−n+ 1,−n+ 2, . . . , n− 1}. Then the

set {bj(β) | β ∈ [−α, α] and diam(A, {bj(β)}) < 1} has at least 2n connected
components.

Proof. Let us first compute d2(ai, bj(β)). By developing the sum of squares and
factoring, we obtain

d2(ai, bj(β)) =
1
4

(2− (cos(iγ) + cosβ)− 2 cos(jψ))2 + sin2(jψ)

+
1
4
(sin(iγ)− sinβ)2

= 1 +
1
4
(cos(iγ) + cosβ)2 + cos2(jψ)− (cos(iγ) + cosβ)

−2 cos(jψ) + (cos(iγ) + cosβ) cos(jψ) + sin2(jψ)

+
1
4
(sin(iγ)− sinβ)2

=
5
2

+
1
2
(cos(iγ) cosβ − sin(iγ) sinβ)− (cos(iγ) + cosβ)

−2 cos(jψ) + (cos(iγ) + cosβ) cos(jψ),

and thus

d2(ai, bj(β)) = 1− 1
2
(1− cos(iγ + β)) + (1− cos(jψ))(2− cos(iγ)− cosβ). (2)

The result follows directly from the following two claims:

Claim 1. Let i ∈ {−n,−n+ 1, . . . , n} and β = −iγ. Then d(ai, bj(β)) � 1.
This is obvious from equation (2) since the second term evaluates to 0.

Claim 2. Let k ∈ {−n + 1,−n + 2, . . . , n} and β = (k − 1
2 )γ. Then diam

(A, {bj(β)}) < 1.
Let i ∈ {−n,−n+ 1, . . . , n}. Let ν = β + iγ. From equation 2 we get

d2(ai, bj(β)) = 1− 1
2
(1− cos ν) + (1− cos(jψ))(2 − cos(iγ)− cosβ).

Note that |ν| � 2α � 1
2 < π

2 . Moreover, by the choice of β, we have |ν| �
1
2γ. Thus Equation (1) yields 1 − cos ν > 1

4ν
2 � 1

16γ
2. Besides we have 1 −

cos(jψ) � 1− cosϕ < 1
2ϕ

2 and 2− cos(iγ)− cos(β) < 1
2 (iγ)2 + 1

2β
2 � α2. These

inequalities imply that d2(ai, bj(β)) < 1− 1
32γ

2+ 1
2ϕ

2α2. Remember that α = nγ,
so we obtain d2(ai, bj(β)) < 1 + 1

2α
2
(
ϕ2 − 1

16n2

)
. As ϕ � 1

4n , we conclude that
d(ai, bj(β)) < 1.
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Lemma 3. Assume that α � 1
2 t. Then for any β̄ ∈ [−α, α]2n−1, we have

diam(A ∪B(β̄) ∪ C) = diam(A,B(β̄)).

Proof. Clearly we have d(ai, aj) � α � 1
4 and d(csi , c

s′

i′ ) � 2rϕ + α � 3
4 . In the

same way, d(bj(β), bj′ (β′)) � 2ϕ + α � 3
4 and d(ai, c

s
j) � r + α. Similarly we

have

d(bj(β), csi ) � d(bj(0), bj(β)) + d(bj(0), csi ) � α

2
+ 2rϕ+

α

2
+ t � 2rϕ+

3
2
t.

By our assumption that ϕ � 1
4 and by Equation (1), we have t � 1

128 so
d(bj(β), csi ) � 3

4 . On the other hand, d(ai, bj(β)) � d(a0, bj(0)) − d(a0, ai) −
d(bj(0), bj(β)) > 1 − 1

2α −
1
2α = 1 − α. The result follows from the facts that

1− α � 3
4 and 1− α � r + α.

In order to be able to apply lemmas 1, 2 and 3, we need to find values of α ∈ (0, 1
4 ]

and ϕ ∈ (0, 1
4 ] such that the following three conditions hold simultaneously:

α < 2t cos(1
2ψ), ϕ � 1

4n and α � 1
2 t. We achieve it as follows. We first choose

ϕ = ϕn = 1
4n , so as to satisfy the second condition. Notice that ψ and t are

now fixed. Then, choosing α = αn > 0 small enough1 ensures that the other two
conditions are met.

From now on, we assume that α = αn and ϕ = ϕn have been chosen as above.
We define the sequences ā = (a−n, a−n+1, . . . , an) and c̄ = (c−n, c−n+1, . . . , cn−1).
For any β̄ ∈ R2n−1 we also define the sequence

b̄(β̄) = (b−n+1(β−n+1), b−n+2(β−n+2), . . . , bn−1(βn−1)).

We define the set of sequences

Sn = {(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1} ⊂ R24n.

Thus, each element of Sn is a sequence of 8n points in R3.

Lemma 4. The set Sn can be decided by an algebraic computation tree with
depth O(n).

Proof. Given three sequences ū, v̄ and w̄ of respectively 2n + 1, 2n− 1 and 4n
points in R3, we want to check in linear time if there exists β̄ ∈ [−α, α]2n−1

such that (ū, v̄, w̄) = (ā, b̄(β̄), c̄). As this computation tree is allowed to use
real parameters, it is trivial to check that ū = ā and w̄ = c̄. Now it remains
to check that there exists β̄ ∈ [−α, α]2n−1 such that v̄ = b̄(β̄). We denote
v̄ = (v−n+1, v−n+2, . . . , vn−1). For each integer j ∈ {−n+ 1,−n+ 2, . . . , n− 1},
we only need to check that vj belongs to:

– the sphere of center (cos(jψ)− 1
2 , sin(jψ), 0) and radius 1

2 ,
– the plane y = sin(jψ),
– and the halfspace x � cos(jψ)− 1

2 + cos(α).

1 Notice that αn can be taken as large as 2−10n−4: since t = (1 − cos( 1
2ψ))/(1 +

cos( 1
2ψ)) � 1

2 ( 1
4 ( 1

2ψ2)2), it implies that αn < 1
2 t.
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This can obviously be decided by a computation tree of linear depth.

Now we consider the following subset of Sn:

En =
{
(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1 and diam(A ∪B(β̄) ∪ C) < 1

}
.

Lemma 5. An algebraic computation tree that, given a sequence s̄ of 8n points
in R3, decides whether s̄ ∈ En, has depth Ω(n logn).

Proof. By Lemma 3 we have

En =
{
(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1 and diam(A,B(β̄)) < 1

}
,

and thus

En = {ā} ×
n−1∏

j=−n+1

{bj(β) | β ∈ [−α, α] and diam(A, {bj(β)}) < 1} × {c̄}.

By Lemma 2 we know that En has at least (2n)2n−1 connected components. We
conclude by applying Ben–Or’s bound [2, 4, 16] to En.

The graph of a 3–polytope is planar, so a 3–polytope with n vertices has
O(n) edges and facets. Therefore, we can encode its combinatorial structure, the
coordinates of its n vertices, and the ordering of the edges of each facet around
its boundary, using O(n) real numbers—for instance, using a doubly–connected
edge list [9]. In the theorem below, we assume that the input is given using this
encoding.

Theorem 1. Assume that an algebraic computation tree Tn decides whether the
diameter of a 3–polytope with n vertices is smaller than 1. Then Tn has depth
Ω(n logn).

Proof. We denote by (s̄, ḡ) the input of the tree T8n, where s̄ = (s1, s2, . . . , s8n)
denotes a sequence of 8n points in R3, and ḡ encodes the graph of the convex
hull of S = {s1, s2, . . . , s8n}. By Lemma 4, there is an algebraic computation
tree Un with depth O(n) that decides whether s̄ ∈ Sn. By plugging Un to each
accepting leaf of T8n, we obtain an algebraic computation tree T ′

8n that accepts
3–polytopes (s̄, ḡ) such that s̄ ∈ Sn and diam(S) < 1. In other words, T ′

8n accepts
3–polytopes (s̄, ḡ) such that s̄ ∈ En. By Lemma 1, all 3-polytopes (s̄, ḡ) accepted
by T ′

8n have the same graph ḡ = ḡ0. Therefore, substituting the input part ḡ
with ḡ0 in this tree gives an algebraic computation tree T ′′

8n that decides whether
s̄ ∈ En. If we denote by dn the depth of Tn, then the depth of T ′′

8n is d8n +O(n).
On the other hand, Lemma 5 tells us that T ′′

8n has depth Ω(n logn). It follows
that dn = Ω(n logn).

Ramos gave an O(n logn) upper bound on the complexity of computing the
diameter of a 3-polytope in the real–RAM model [17]. So Theorem 1 implies
that the complexity of deciding if the diameter of a 3–polytope is smaller than
1 is Θ(n logn), and it implies that the complexity of computing the diameter of
a 3–polytope is Θ(n log n). This is true both in the (non-uniform) computation
tree model and in the (uniform) real–RAM model.
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4 Diameter is Harder Than Hopcroft’s Problem

Hopcroft posed the following problem: given a set L of lines and a set P of
points in R2, decide whether there is a line � ∈ L and a point p ∈ P such that
p ∈ �. We will show that the diameter problem for a point set in R7 is harder
than Hopcroft’s problem. We first show a reduction to the red–blue diameter
problem. In the following two propositions, we deal with a real–RAM that can
use the constant

√
2. We will explain at the end of this section how we can avoid

using this constant.

Proposition 1. There is a linear-time reduction from Hopcroft’s problem to the
red–blue diameter problem in R6 using a real–RAM that uses the constant

√
2.

Proof. Let (a1, . . . , an, b1, . . . , bp) be an instance of Hopcroft’s problem. For all i,
the point ai = (ui, vi, wi) corresponds to the line with equation uix+viy+wi = 0.
Each point bi is given by its coordinates (xi, yi) ∈ R2. We denote ci = (xi, yi, zi =
1). So our instance of Hopcroft’s problem has a positive answer if and only if
〈ai, cj〉 = 0 for some i and j.

We denote a′i = ai/‖ai‖ and c′i = ci/‖ci‖. We define the function θ : R3 → R6

by

θ(x, y, z) =
1

x2 + y2 + z2 (x2, y2, z2,
√

2xy,
√

2xz,
√

2yz).

Now let the points given by fi = θ(ai) be the red points, and let the points gi =
θ(ci) be the blue points. Notice that ‖fi‖2 = ‖ai‖4/‖ai‖4 = 1, and ‖gi‖2 = 1. It
implies that ‖fi − gj‖2 = ‖fi‖2 + ‖gj‖2 − 2〈fi, gj〉 = 2 − 2‖ai‖−2‖cj‖−2(uixj +
viyj +wizj)2 = 2− 2〈a′i, c′j〉2. Thus, the red–blue diameter of the 6 dimensional
point sets {fi | 1 � i � n} and {gi | 1 � i � p} is 2 if and only if our instance of
Hopcroft’s problem is positive.

A simple modification of the proof of Proposition 1 gives a reduction to the
diameter problem in R7.

Proposition 2. There is a linear-time reduction from Hopcroft’s problem to the
diameter problem in R7 using a real–RAM that uses the constant

√
2.

Proof. With the notations from the previous proposition, we define f̂i = (fi, 1) ∈
R7 and ĝj = (gj ,−1) ∈ R7. One have ‖f̂i−f̂j‖2 = ‖fi−fj‖2 � (‖fi‖+‖fj‖)2 � 4,
and ‖ĝi − ĝj‖2 � 4 in the same way. But ‖f̂i − ĝj‖2 = ‖fi − gj‖2 + 4 � 4. Thus,
the diameter of {f̂1, . . . , f̂n, ĝ1, . . . , ĝp} is realized by a couple of points of the
form (f̂i, ĝj).

In propositions 1 and 2, we allowed the use of the constant
√

2 by the real–
RAM machine. It can be avoided at the expense of increasing the dimension if
we replace our function θ : R3 → R6 in the proof of Proposition 1 by the function
θ′ : R3 → R9 defined as follows:

θ′(x, y, z) =
1

x2 + y2 + z2 (x2, y2, z2, xy, xy, xz, xz, yz, yz).

Thus we obtain the following result:
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Proposition 3. Using a real–RAM without constant, there are linear–time re-
ductions from Hopcroft’s problem to the red–blue diameter problem in R9 and to
the diameter problem in R10.

5 Concluding Remarks

Our lower bounds naturally apply to other computational geometry problems
that the diameter problem reduces to, for instance the problems of computing the
all–pairs farthest neighbors, the external farthest neighbors and the maximum
Euclidean spanning tree [1]. Cheong, Shin and Vigneron [7] gave randomized
algorithms to solve these three problems in near linear time when the input
points are in R3 and are in convex position. Our results show that, even if the
graph of the convex hull of the input points is known, these problems require
Ω(n logn) time in the algebraic computation tree model.

As we noted earlier, our lower bound for computing the diameter of a con-
vex polytope leaves no room for improvement. Our results on the diameter for
point sets in higher dimension, however, are not known to be optimal. First
there is no lower bound other than Ω(n logn) for Hopcroft’s problem in the
algebraic computation model. Second, even assuming that Hopcroft’s problem
cannot be solved in o(n4/3) time, our result is not entirely satisfactory because
the best known algorithm for the red–blue diameter problem [15] in R6 runs
in O(n1.5 logO(1) n) time. On the other hand, the red–blue diameter in R4 can
be computed in O(n4/3 logO(1) n) time, so it would be interesting to prove that
this problem is harder than Hopcroft’s problem. (Similarly, Erickson [10] asked
whether the diameter in R4 is harder than halfspace emptiness checking in R5.)

Another intriguing question is the following. In propositions 1 and 2 we find
reductions from Hopcroft’s problem to diameter problems using a real–RAM
that can use the constant

√
2. In proposition 3, we use a real–RAM without

constant, and we obtain reductions to diameter problems in 3 dimensions higher.
Is it possible to find such a reduction without increasing the dimension?
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14. J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete and
Computational Geometry, 10(2):157–182, 1993.
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Abstract. We give a constructive proof of the equality between
treewidth and connected treewidth. More precisely, we describe an O(nk3)-
time algorithm that, given any n-node width-k tree-decomposition of
a connected graph G, returns a connected tree-decomposition of G of
width ≤ k. The equality between treewidth and connected treewidth
finds applications in graph searching problems. First, using equality be-
tween treewidth and connected treewidth, we prove that the connected
search number cs(G) of a connected graph G is at most log n + 1 times
larger than its search number. Second, using our constructive proof
of equality between treewidth and connected treewidth, we design an
O(log n

√
log OPT )-approximation algorithm for connected search, run-

ning in time O(t(n) + nk3 log3/2 k + m log n) for n-node m-edge con-
nected graphs of treewidth at most k, where t(n) is the time-complexity
of the fastest algorithm for approximating the treewidth, up to a factor
O(

√
log OPT ).

1 Introduction

The treewidth of a graph is a central concept in the theory of Graph Mi-
nors developped by Robertson and Seymour. Roughly speaking, the treewidth,
tw(G), of a graph G measures “how far” the graph G is from a tree. More for-
mally, a tree-decomposition of graph G is a pair (T,X) where T is a tree, and
X = {Xv, v ∈ V (T )} is a collection of subsets of V (G) satisfying the following
three conditions:

– C1: V (G) = ∪v∈V (T )Xv;
– C2: For any edge e of G, there is a set Xv such that both end-points of e

are in Xv;
– C3: For any triple u, v, w of nodes in V (T ), if v is on the path from u to w

in T , then Xu ∩Xw ⊆ Xv.
� Additional supports from the INRIA Project “Grand Large”, and from the Project

PairAPair of the ACI “Masse de Données”.
�� Additional supports from the Project Fragile of the ACI “Sécurité & Informatique”.
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Condition C3 can be rephrased as: for any node x of G, {v ∈ V (T ) | x ∈ Xv} is
a subtree of T . The sets Xv, v ∈ V (T ), are often called bags. The width, ω(T,X),
of a tree-decomposition (T,X) is defined as maxv∈V (T ) |Xv|−1, i.e., the width of
(T,X) is roughly the maximum size of its bags. The treewidth tw(G) is defined
as minω(T,X) where the minimum is taken over all tree-decompositions (T,X)
of G. Hence the treewidth of any tree is 1, the treewidth of outerplanar graphs
is ≤ 2, and the treewidth of an n-node complete graph is n− 1.

Treewidth is related to other types of graph-decompositions. In particular,
Seymour and Thomas [15] introduced the concept of carving. For the sake of
simplicity, we restrict ourself to edge-carving, i.e., branch-decomposition [14]. A
branch-decomposition of a graph G is a pair (T, f) where T is a tree with all
its internal nodes of degree 3, and f is a one-to-one mapping between the leaves
of T and the edges of G. Given an edge e of T , removing e from T results in
two trees T (e)

1 and T
(e)
2 . An e-cut of a branch-decomposition is defined as the

pair {E(e)
1 , E

(e)
2 }, where E(e)

i ⊂ E(G) is the set of leaves of T (e)
i for i = 1, 2. For

any edge-set E ⊆ E(G), let δ(E) denote the set of nodes of G with one incident
edge in E and another in E(G) \E. The width of a branch decomposition (T, f)
is defined as ω(T, f) = maxe |δ(E(e)

1 )| where the maximum is taken over all e-
cuts in T . The branchwidth, bw(G), of G is then defined as minω(T, f) where
the minimum is taken over all branch-decompositions (T, f) of G. It was proved
in [14] that: bw(G)− 1 ≤ tw(G) ≤ 3 bw(G)/2.

Both tree-decomposition and branch-decomposition can be requested to be
connected. An e-cut of a tree-decomposition (T,X) of a graph G is defined as the
pair {X(e)

1 , X
(e)
2 }, where X(e)

i ⊆ V (G) is the set of nodes of G in
⋃

v∈V (T (e)
i ) Xv

for i = 1, 2.

– A tree-decomposition is connected if, for any of its e-cuts, the two subgraphs
of G, induced by X

(e)
1 and X

(e)
2 are connected. The connected treewidth,

ctw(G), of a connected graph G, is defined as the minimum width of any
connected tree-decomposition of G.

– A branch-decomposition is connected if, for any of its e-cut, the two sub-
graphs of G induced by E

(e)
1 and E

(e)
2 are connected. The connected branch-

width, cbw(G), of a connected graph G, is defined as the minimum width
of any connected branch-decomposition of G.

A major result about branchwidth is that if a 2-edge-connected graph G has a
branch-decomposition of width k, then it has a connected branch-decomposition
of width ≤ k (see [15]). Therefore:

For any 2-edge-connected graph G, cbw(G) = bw(G). (1)

The proof of (1) in [15] is non constructive, but it can be transformed into a
constructive one (cf. [8]). The same result as (1) was proved for treewidth, by
combining results in [9] and [11]. Indeed, on one hand, it was shown in [9] that
a “clique tree” of a minimal triangulation H of a connected graphG is an optimal
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tree-decomposition of G (i.e., of width tw(G)). On the other hand, [11] proved
that the set ΔH of the minimal separators of H is exactly the set of pairwise
“parallel” minimal separators in G, and for any S ∈ ΔH , S induces the same
connected components in H and G, which implies that the clique tree is in fact
a connected tree-decomposition. As a consequence:

For any connected graph G, tw(G) = ctw(G). (2)

Note that the equality ctw = tw holds for any connected graph, whereas the
equality cbw = bw holds for 2-edge-connected graphs. The proof of (2) by
combination of [9] and [11] is non constructive.

One of the contributions of this paper is the description of a constructive proof
of (2). This result has an impact on the design of connected search strategies.
Indeed, treewidth is related to several variants of the graph searching problem
(see, e.g., [3, 6, 10, 12]). In graph searching, a fugitive is hidden in a graph G. A
team of searchers is aiming at capturing this fugitive. These searchers can be
placed at nodes, removed from nodes, and moved along the edges. The fugitive
is assumed to be arbitrary fast, and permanently aware of the positions of the
searchers. The graph searching problem asks for the design of search strategies
using a minimum number of searchers. The search number of a graph G varies
depending on the relative power of the fugitive and the searchers. If the searchers
are permanently aware of the position of the fugitive, then the optimal size
of the team is essentially tw(G) [3]. On the other hand, if the searchers are
unaware of the position of the fugitive, then the optimal size of the team, s(G),
is essentially the pathwidth pw(G) of G [3]. (A path-decomposition of G is a
tree-decomposition (T,X) of G, where T is a path. The pathwidth is defined as
minω(T,X) where the minimum is taken over all path-decompositions (T,X)
of G.) For any graph G, we have [3]: pw(G) ≤ s(G) ≤ pw(G) + 2. For instance,
s(Pn) = 1 for the n-node path Pn, s(Cn) = 2 for the n-node cycle Cn, s(Kn) = n
for the n-node clique Kn, and s(T ) ≤ log3(n− 1)+ 1 for any n-node tree T [10].

It has been argued (cf., e.g., [1] and the references therein) that several prac-
tical applications (e.g., network security, speleological rescue [5], etc.) require
the search strategy be connected, i.e., at any time of the search strategy, the
portion of the searched graph is a connected subgraph. All searchers are initially
placed at the same node, and clear the graph by moving along the edges from
that initial node. In [1] is described a polynomial-time algorithm for comput-
ing the connected search number, cs, of trees. There are n-node graphs G for
which cs(G) > s(G). (For instance, there are trees with connected search number
�log2 n�). A major challenge regarding the connected search number is actually
to bound the “cost of connectedness”, that is to bound the ratio connected search
number over search number. In [2], it is proved that the connected search number
of a tree is at most twice its search number, and this bound is tight. Deriving
bounds for arbitrary graphs is more complex, for at least two reasons. First,
the set of graphs with connected search number at most k is not minor-closed,
as opposed to the non-connected setting. Second, there are graphs for which no
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optimal connected search strategy is monotone [16], as opposed to the non-
connected setting [4]. (Roughly, a search strategy is monotone if the fugitive
cannot “recontaminate” a part of the graph that has been cleared). Nevertheless,
using the concept of branchwidth, [8] shows that, for arbitrary connected m-edge
graphG, the connected search number, cs(G), satisfies cs(G)/s(G) ≤ �logm�+1.
In [8] is also described an O(t(n) + m3)-time O(log n logOPT )-approximation
algorithm for connected search in arbitrary graphs, where t(n) is the time com-
plexity of the fastest algorithm for approximating the treewidth of an n-node
graph, up to a factor O(logOPT ).

Our Results

1. We give a constructive proof of the equality between the treewidth and
the connected treewidth of connected graphs. This proof is obtained via
the design of a polynomial-time algorithm transforming an n-node tree-
decomposition of width k into a connected tree-decomposition of width ≤ k,
in time O(nk3).

2. We prove that cs(G)/s(G) ≤ log n+ 1 via the design of a connected search
strategy based on a connected tree-decomposition of the graph.

3. We combine this design with our algorithm for connected tree-decomposition,
resulting in an O(t(n) + nk3 log3/2 k + m logn)-time O(log n

√
logOPT )-

approximation algorithm for connected search, where t(n) is the time com-
plexity of the fastest algorithm for approximating the treewidth of an n-node
graph, up to a factor O(

√
logOPT ), and k is the treewidth of the graph.

The two latter results improve [8].

2 Subconnected Tree-Decomposition

Given a tree-decomposition (T,X) of a graph G, and u ∈ V (T ), we denote by
(T,X, u) the tree-decomposition (T,X) rooted at node u. For v ∈ V (T ), we
denote by Tv the subtree of (T,X, u) rooted at v. The subgraph of G induced
by the nodes in the bags of Tv is denoted by G[Tv].

Definition 1. A rooted tree-decomposition (T,X, u) is subconnected at v ∈
V (T ) if, for any w ∈ V (Tv), G[Tw] is a connected graph. (T,X, u) is subcon-
nected if it is subconnected at u.

Note that, alternatively, one can define the subconnectedness of (T,X, u) in
v as: (1) G[Tv] is connected, and (2) for any child w of v in Tv, (T,X, u) is
subconnected at w.

We now describe an elementary procedure, called split, whose iterative appli-
cation transforms a tree-decomposition into a subconnected tree-decomposition.
The procedure split takes as input (1) a rooted tree-decomposition (T,X, u)
of a connected graph G, and (2) a node v ∈ V (Tu), v �= u, such that, for ev-
ery child w of v in Tu, (T,X, u) is subconnected at w. split returns a rooted
tree-decomposition (T ′, X ′, u) of G that is equal to (T,X, u), except at node v.
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Roughly speaking, node v in (T,X, u) is replaced by several nodes v1, . . . , v� in
(T ′, X ′, u). The vi’s have the parent of v in (T,X, u) as parent in (T ′, X ′, u).
The children of v in (T,X, u) are distributed among the vi’s. Procedure split
satisfies that (T ′, X ′, u) is subconnected at every vi, i = 1, . . . , �. Hereafter, we
describe formally this procedure:

Procedure split: Let (T,X, u) be a rooted tree-decomposition of a connected
graph G, of width k. Let v ∈ V (Tu), v �= u, such that:

– (T,X, u) is not subconnected at v;
– for every child w of v, (T,X, u) is subconnected at w.

Since G is connected, and since (T,X, u) is not subconnected at v but subcon-
nected at every child of v, the subgraph of G induced by the nodes in the bag Xv

is not connected. Let Yi, i = 1, . . . , r be the decomposition of Xv in connected
components (i.e., the G[Yi]’s are the connected components of G[Xv]). Let v′ be
the parent of v in Tu. Procedure split proceeds as follows:

Case 1: v is a leaf of Tu. split replaces v by r nodes v1, . . . , vr, all connected
to v′, and every corresponding bag Xvi is set to Yi.

Case 2: v has s children w1, . . . , ws, s ≥ 1. Let Zi, i = 1, . . . , t, be the con-
nected components of G[Tv]. As we will prove later, there is a partition
{Ii, i = 1, . . . , t} of {1, . . . , r}, and a partition {Ji, i = 1, . . . , t} of {1, . . . , s}
such that, for every i = 1, . . . , t:

Zi =
(
∪j∈Ii Yj

)
∪
(
∪j∈Ji G[Twj ]

)
. (3)

Procedure split replaces v by t nodes v1, . . . , vt, all connected to v′ (cf.
Fig. 1). For every i = 1, . . . , t, node vi is the parent of wj for all j ∈ Ji, and
the bag Xvi corresponding to vi is set to ∪j∈IiYj .

Using the same notations as in the description of Procedure split, we have:

Lemma 1. Procedure split applied to node v returns a rooted tree-
decomposition (T ′, X ′, u) of G, of width ≤ k. The tree-decomposition (T ′, X ′, u)
differs from (T,X, u) only at v, which is replaced by some nodes v1, . . . , v�.
(T ′, X ′, u) is subconnected at vi, i = 1, . . . , �. Moreover, for every node z such
that (T,X, u) is subconnected at z, (T ′, X ′, u) remains subconnected at z.

Proof. The lemma clearly holds in Case 1. Hence we concentrate our attention to
Case 2. In this case, � = t. Obviously, since the modification of T occurs at node
v only, for every node z such that (T,X, u) is subconnected at z, (T ′, X ′, u)
remains subconnected at z. Hence, we focus on the transformation of v into
v1, . . . , vt. First, let us show that Equation (3) holds. Let H be the bipartite
graph whose one partition consists of r nodes Y1, . . . , Yr, and the other partition
consists of s nodes w1, . . . , ws (cf. Fig. 1). There is an edge between Yi and wj

if and only if there is a node x of G that belongs to Yi ∩ Xwj . By construc-
tion, there is a one-to-one correspondence between the connected components of
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w1 w2 ws

Y1 Y2 Yrv1 v2 vt

v’

Fig. 1. The procedure split replaces node v by t nodes v1, . . . , vt. The Yi’s form a
partition of Xv in connected components. The wi’s are the children of v. Node v′ is
the parent of v.

G[Tv] and the connected components of H . Equation (3) follows from this corre-
spondence. From the construction of the vi’s, based on Equation (3), (T ′, X ′, u)
is subconnected at vi, i = 1, . . . , t. Thus, it remains to prove that (T ′, X ′) is a
tree-decomposition of G, of width ≤ k.

Since X ′
vi

= ∪j∈IiYj , and the Ii’s form a partition of {1, . . . , r}, we get that
∪i=1,...,rX

′
vi

= ∪j=1,...,rYj = Xv.
Thus every node of G appears in at least one bag, i.e., C1 holds. Every edge of

G appears in at least one bag too, because the Yi’s are the connected components
of Xv, and thus there is no edge between nodes that belong to two different Yi’s.
I.e., C2 holds.

Non surprisingly, Condition C3 of tree-decomposition is the most tricky to
check. Let x, y, z be three pairwise distinct nodes of T ′ with y on the path
between x and z. Let us show that X ′

x ∩X ′
z ⊆ X ′

y. Obviously, this claim holds
if vi /∈ {x, y, z} for all i = 1, . . . , r, because, in this case, the considered bags
of T ′ are exactly those of T . The claim also holds if the path P from x to z
contains two vi’s, because, in this case, X ′

x ∩ X ′
z = ∅. Thus, in the following,

we consider the case where the path P contains exactly one vi. There are two
subcases, depending on whether the node of P that belongs to {v1, . . . , vt} is y,
or one of the two end-points x or z.

Assume that x = vi for some i ∈ {1, . . . , r}, and that vj /∈ {y, z} for all j �= i.
Then, X ′

x∩X ′
z ⊆ Xv∩X ′

z = Xv∩Xz ⊆ Xy = X ′
y, and thus Condition C3 holds.

Assume that y = vi for some i ∈ {1, . . . , r}, and that vj /∈ {x, z} for all j �= i.
Assume, w.l.o.g., that x ∈ V (T ′

vi
). Node z then belongs either to V (T ′

vi
), or to the

subtree of T containing v′, obtained after removing the edge {v, v′} from T . In
both cases, X ′

x∩X ′
z = Xx∩Xz ⊆ Xv. Moreover, by construction of the bipartite

graph H (cf. Fig. 1), X ′
x ∩Xv ⊆ ∪j∈IiYj . Therefore, X ′

x ∩X ′
z ⊆ ∪j∈IiYj = X ′

vi
,

and thus Condition C3 holds.
To complete the proof, observe that applying Procedure split can only de-

crease the width of the tree-decomposition since one bag is split into several
smaller bags. Hence, the width of (T ′, X ′, u) is ≤ k. ��
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3 Connected Treewidth

In this section, we mainly prove the following result:

Theorem 1. There exists a O(nk3)-time algorithm that, given any n-node tree-
decomposition of a connected graph G, of width k, returns a an O(nk)-node
connected tree-decomposition of G, of width ≤ k.

Corollary 1. For any connected graph G, ctw(G) = tw(G).

Proof of Theorem 1. We prove that Algorithm make-it-connected described
on Figure 2 satisfies the statement of the theorem. This algorithm proceeds in
two phases. Phase 1 proceeds upward the tree (rooted in an arbitrary node u).
Phase 2 proceeds downward the tree. Let k be the width of the input tree-
decomposition (T,X). Let us first prove the following:

Claim 1. At the end of Phase 1, the tree-decomposition (T,X, u) is subconnected,
and its width is ≤ k.

At every application of the while-loop in Phase 1, the selected node v ∈ W
satisfies the condition of application of Procedure split. The while-loop stops

Input: A tree-decomposition (T, X) of a connected graph G.
begin

Pick any node u of T , and root T at u;
/* Phase 1 */
W ← {v ∈ V (Tu) | v �= u and (T, X, u) is not subconnected at v};
while W �= ∅ do

Let v ∈ W such that, for every child w of v, w /∈ W ;
(T, X, u) ← split(G, (T, X, u), v);
W ← W \ {v};

endwhile
/* Phase 2 */
r ← u; /* r is the root of T */
C ← {e ∈ E(T ) | the e-cut of T is not connected}
while C �= ∅ do

Let e = {v, w} ∈ C where v is the parent of w, and
no edge on the path from r to v is in C;

r ← w; /* the root is modified */
(T, X, r) ← split(G, (T, X, r), v);
C ← C \ {e};
for all children wj �= w of v such that {v, wj} ∈ C do

Let vi be the new parent of wj after application of split;
Replace {v, wj} by {vi, wj} in C;

endfor
endwhile
return (T, X, r);

end.

Fig. 2. Algorithm make-it-connected



486 P. Fraigniaud and N. Nisse

after W = ∅. Therefore, by Lemma 1, for every node v �= u, (T,X, u) is subcon-
nected at v. It remains to check that (T,X, u) is subconnected at u. The bags
in Tu contain all nodes of G. Therefore, since G is connected, Tu is connected
as well, and thus (T,X, u) is subconnected at u, i.e., (T,X, u) is subconnected.
By Lemma 1, the application of Procedure split does not increase the width
of the current tree-decomposition, therefore the width of the tree-decomposition
resulting from Phase 1 has width ≤ k.

The aim of Phase 2 is to transform the current subconnected tree-decomposi-
tion (T,X, u) into a connected tree-decomposition (possibly rooted at another
node r).

Claim 2. At the end of Phase 2, the tree-decomposition (T,X, r) is connected,
and its width is ≤ k.

To prove that claim, we will prove the following invariant, satisfied after every
application of the while-loop in Phase 2:

– I1: (T,X, r) is subconnected;
– I2: C is the set of edges e of T corresponding to non connected e-cuts.

These two statements are satisfied before the first application of the while-
loop. Let e = {v, w} be as specified in Algorithm make-it-connected. If v �= r,
let v′ be the parent of v in Tr, possibly r = v′. (If v = r, then there is simply
no need to define node v′.) Let S be the subtree of T containing v′ obtained

wj

Sj

wj

Sj

vi

w

v’

r

R

S

(b)

r

v’

w

v

S

R

(a)

Fig. 3. In the second phase of Algorithm make-it-connected, the tree-decomposition
is re-rooted at w before application of Procedure split at node v. (a) represents the
tree rooted at r, and (b) represents the same tree, re-rooted at w, after application of
Procedure split at v.
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after removing {v, v′} from T (cf. Fig. 3). From the choice of e, {v, v′} /∈ C, and
thus G[S] is connected. Let w1, . . . , ws be the children of v in Tr, different from
w, and let Si be the subtree of Tr rooted at wi, i = 1, . . . , s. Since (T,X, r) is
subconnected, G[Si] is connected for every i. Finally, let R be the subtree of Tr

rooted at w. Again, since (T,X, r) is subconnected, G[R] is connected. Before
application of Procedure split at v, (T,X) is re-rooted at w. Since {v, w} ∈ C,
(T,X,w) is not subconnected at v. However, (T,X,w) is subconnected at every
child v′, w1, . . . , ws of v in (T,X,w). Therefore, we are in the condition of the
application of Procedure split.

Invariant I1 is satisfied. Indeed, after application of Procedure split at v
in (T,X,w), (T,X,w) becomes subconnected at the new nodes v1, . . . , v�. The
only other nodes in which subconnectivity is questionable is along the path
between r and v′. Since all edges of this path corresponds to a connected cut
(from the choice of {v, w}), the subconnectivity remains satisfied along this path.
((T,X,w) is subconnected at w because G is connected.)

Now we prove that Invariant I2 is also satisfied, that is all non-connected cuts
in (T,X,w) are in C. Let us first consider the edge f = {vi, v

′} introduced by
Procedure split in (T,X,w). On one side of f , there is S, and on the other side
there is T \ S. Both G[S] and G[T \ S] are connected because they correspond
to the {v, v′}-cut, which is connected.

Next, we consider an edge f = {vi, w} introduced by Procedure split in
(T,X,w). On one side of f , there is the subtree Tvi of (T,X,w) rooted at vi.
Since Procedure split makes (T,X,w) subconnected at vi, we get that G[Tvi ]
is connected. Let us show that G[T \Tvi ] is also connected. Let j �= i. Since G is
connected, let us consider an edge {x, y} where x ∈ G[Tvj ], and y /∈ G[Tvj ]. By
the property of tree-decomposition, there is a bag of T \ Tvj containing {x, y},
and thus x ∈ Xw. Therefore, for any j �= i, V (Tvj )∩R �= ∅. Since R is connected,
we get that G[T \Tvi ] is connected. Therefore, the considered f -cut is connected.

Finally, we consider an edge f = {vi, wj}. On one side of f , there is Sj, and on
the other side there is T \Sj. G[Sj ] is connected because (T,X, r) is subconnected
at wj . G[T \ Sj ] is not necessarily connected. However, if it is not connected,
then is was not connected before the application of the Procedure split. In
other words, if the f -cut is not connected, then the f ′-cut corresponding to
f ′ = {v, wj} is not connected. Algorithm make-it-connected takes this into
account by replacing {v, wj} by {vi, wj} in C. This completes the proof that
Invariant I2 is satisfied.

We focus now on the time complexity of Algorithm make-it-connected. Be-
fore starting Phase 1, one can decompose all bags of the tree-decomposition
(T,X) in connected components. This takes time O(

∑
v∈V (T ) |Xv|2) ≤ O(nk2).

Let v be a node where Procedure split is applied during Phase 1. Assume
that, when this occurs, v has dv children in the current tree-decomposition.
The corresponding bipartite graph H has thus one partition with dv nodes
w1, . . . , wdv . The other has r nodes Y1, . . . , Yr. For each pair (Yi, wj), it takes
time O(|Xwj |·|Yi|) to determine whether the edge {Yi, wj} belongs to H , because
one just needs to check whether or not Yi ∩ Xwj �= ∅. H can be constructed
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in time O(
∑

i,j |Xwj | · |Yi|) ≤ O(
∑

j k · |Xwj |) ≤ O(
∑

j k
2) ≤ O(k2dv). The

connected components of H can be computed in parallel with its construc-
tion. Therefore, applying procedure split at node v takes a total time of
O(k2dv). Now, observe that, after v has been split in � nodes v1, . . . , v�, we
have dv =

∑�
i=1 dvi . Therefore, summing up the costs of all applications of pro-

cedure split during Phase 1 results in time O(k2 ∑
v∈V (T ) dv) = O(|V (T )|k2)

where T is the tree-decomposition after Phase 1. Starting from an n-node tree-
decomposition, Phase 1 produces a tree-decomposition with at most kn nodes.
Therefore, Phase 1 takes time O(nk3). By similar arguments, one can show that
Phase 2 takes time O(nk3) too, which completes the proof. ��

4 Connected Graph Searching

In this section, we apply Theorem 1 to the design of an approximation algorithm
for graph searching. Formally, a search strategy for a graph G is an ordered
sequence of search steps where each step is an operation that consists in one of
the following: (1) “placing a searcher at u ∈ V (G)”, (2) “removing a searcher
from u ∈ V (G)”, or (3) “moving a searcher along an edge from one extremity to
the other”. Initially, all the edges of the graph are said to be “contaminated”.
When a searcher moves from u to and adjacent node v, the edge {u, v} becomes
clear. A clear edge e is preserved from recontamination if every path between e
to a contaminated edge e′ has a searcher occupying some of its nodes. A search
strategy completes when all edges are clear. The search number s(G) of a graph
G is a minimum number of searchers required to clear G. A search strategy is
connected if, at every step, the set of clear edges induces a connected subgraph.
The connected search number cs(G) of a connected graph G is a minimum
number of searchers required to clear G by a connected search strategy.

Let t(n) be the time-complexity of the fastest algorithm for approximating
the treewidth of an n-node graph, up to a factor O(

√
logOPT ) (the best bound

known so far is in [7]). From now on, all graphs are supposed to be simple (i.e.,
without loops and double edges).

Theorem 2. – For any connected n-node graph G, cs(G)
s(G) ≤ logn + 1.

– There exists an O(t(n) + nk3 log3/2 k + m logn)-time O(log n
√

logOPT )-
approximation algorithm for connected search in n-node m-edge graphs of
treewidth k. More precisely, given any connected graph G, the algorithm re-
turns a connected search strategy for G using at most
O(cs(G) log n log cs(G)) searchers.

Proof. We use the notion of crusade, introduced by Bienstock and Seymour [4].
Let G be a graph. For E ⊆ E(G), let δ(E) be the set of vertices which are
endpoints of an edge in E and an edge in E(G) \ E. A k-crusade in G is a
sequence (E0, E1, · · · , Er) of subsets of E(G), such that E0 = ∅, Er = E(G),
|Ei \ Ei−1| ≤ 1 for 1 ≤ i ≤ r, and |δ(Ei)| ≤ k for 0 ≤ i ≤ r. If k denotes the
smallest number for which there is a k-crusade in G, then k ≤ s(G) ≤ k + 1
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(cf. [3]). A crusade (E0, E1, · · · , Er) in a graph G is connected if Ei induces a
connected subgraph of G for every i = 1, . . . , r. It is easy to check that if k
denotes the smallest number for which there is a connected k-crusade in G, then
cs(G) ≤ k + 1.

Claim 3. For any connected n-nodes graph G, and for any e ∈ E(G), there exists
a connected k-crusade (E0, E1, . . . , Er) of G with k ≤ tw(G) logn and E1 = {e}.

The proof of Claim 3 is by induction on n. If n ∈ {1, 2}, the result obviously
holds. Let n ≥ 3 and let us assume that, for any n′ < n, Claim 3 holds. Let
G be an n-node connected graph, and let e ∈ E(G). Let (T,X) be a connected
tree decomposition of G, of width tw(G). For a subtree T ′ of T , let us denote
by G[T ′] the subgraph of G induced by the nodes in the bags of T ′. Theorem
2.5 in [13] specifies that, for any tree-decomposition:

– either there exists u ∈ V (T ) such that removing u from T results in subtrees
T1, · · · , Tq of T , with |V (G[Ti])| ≤ n/2 for every 1 ≤ i ≤ q,

– or there exists {u, u′} ∈ E(T ) such that removing {u, u′} from T results in
subtrees T1, · · · , Tq of T , with |V (G[Ti])| ≤ n/2 for every 1 ≤ i ≤ q.

We consider the two cases (”node-centroid” and ”edge-centroid”) separatly.
Let us first consider the former case. Let u ∈ V (T ) such that for all 1 ≤ i ≤ q,

|V (G[Ti])| ≤ n/2. By definition of connected tree decomposition, G[Ti] is a
connected subgraph of G. Assume, w.l.o.g., that there exists v ∈ V (T1) such
that e ∈ Xv. By induction, let (E(1)

0 , E
(1)
1 , . . . , E

(1)
r1 ) be a connected k-crusade

of G[T1], with k ≤ tw(G[T1]) log |G[T1]|, and E
(1)
1 = {e}. We set Ei = E

(1)
i for

i = 0, . . . , r1. Since tw(G[T1]) ≤ tw(G) and |G[T1]| ≤ n/2, we get |δ(Ei)| ≤
tw(G)(log n− 1) for i = 0, . . . , r1. Since G is connected, there is f ∈ E(G) \Er1

such that the subgraph induced by Er1 ∪ {f} is connected.

– If f ∈ Xu, then let Er1+1 = Er1 ∪ {f}. For computing |δ(Er1+1)|, consider
any node x ∈ δ(Er1+1). This node is incident to an edge in Er1+1 and to an
edge in E(G) \Er1+1. Therefore x ∈ Xu ∪ (∪v∈T1Xv) and x ∈ ∪v/∈T1Xv. As
a consequence, by the third property of a tree-decomposition, x ∈ Xu and
thus |δ(Er1+1)| ≤ |Xu| ≤ tw(G).

– If f /∈ Xu, then there exists i ∈ {2, · · · , q} and v ∈ V (Ti) such that f ∈ Xv.
Assume, w.l.o.g., that i = 2. Let (E(2)

0 , E
(2)
1 , . . . , E

(2)
r2 ) be a connected k-

crusade of G[T2], with k ≤ tw(G[T2]) log |G[T2]| ≤ tw(G)(log n − 1) and
E

(2)
1 = {f}. For every 1 ≤ i ≤ r2, we set Er1+i = Er1 ∪ E

(2)
i . By con-

struction, for any 1 ≤ i ≤ r2, G[Er1+i] is a connected subgraph of G. Let
i ∈ {1, . . . , r2}, and x ∈ δ(Er1+i). We have x ∈ δ(E(2)

i ) ∪ Xu, and thus
|δ(Er1+i)| ≤ tw(G)(log n− 1) + tw(G) ≤ tw(G) log n.

We iterate the process until all edges of G are in the crusade, completing the
analysis of the first case, i.e., where the “centroid” is a node. Due to lack of
space, the second case, where the “centroid” is an edge, is omitted, but can be
treated similarly as above. This completes the proof of Claim 3.

Item 1 of Theorem 2 is a direct consequence of Claim 3. Indeed, let k be
the smallest integer such that there exists a connected k-crusade in G. We have
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seen that cs(G) ≤ k + 1. Thus, by Claim 3, cs(G) ≤ tw(G) logn + 1. Since
tw(G) ≤ s(G), we get cs(G) ≤ s(G) log n + 1 and thus cs(G)/s(G) ≤ log n+ 1.
Item 2 is obtained by combining claim 3 with the algorithm of Feige et al. [7]. ��
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Abstract. An algorithm is presented for finding a maximum indepen-
dent set in a connected graph with n vertices and m edges in time
O(poly(n)1.2365m−n). As a consequence, we find a maximum indepen-
dent set in a graph of degree 3 in time O(poly(n)1.1120n), which improves
the currently best results of O(1.1254n) of Chen, Kanj and Xia.

Keywords: Maximum independent set, exponential time algorithm,
sparse graph, NP-hard.

1 Introduction

Pioneering more efficient algorithms for exponential time problems, Tarjan and
Trojanowski [1] have shown that maximum independent sets can be found in
time O(2n/3) = O(1.2599n) for worst case graphs, a drastic improvement over
the previous trivial upper bound of O(poly(n)2n). Actually, as they remark,
their running time is slightly faster. If τ(s, t) is the positive root of

x−s + x−t = 1

then their running time is O(τ(1, 7)n) = O(1.255n). After improvements by Jian
[2] and Robson [3] for arbitrary graphs, Beigel [4] improved the running time for
sparse graphs. For a graph with m edges his running time is O(1.082m), implying
a running time of O(1.126n) for degree 3 graphs. Later, Robson [5] has improved
the running time for arbitrary graphs to O(1.1888n). Finally, Chen, Kanj and
Xia [6] have obtained a running time of O(1.1254n) for degree 3 graphs.

Our new algorithm runs in time O(poly(n)1.2365m−n) and polynomial space,
resulting in improved running times for very sparse graphs. In particular, our
running time is O(poly(n)1.1120n) for finding a Maximum Independent Set in a
graph with degree 3. Our improvement is obtained mainly by a novel handling
of small separators, cutting off a constant size subgraph. We don’t require the
existence of such separators, but if we find them, we can use them as an asset
rather than obstacle (as in previous algorithms).
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2 The Algorithm

Our algorithm is based on recursive decomposition. As usual, we view the com-
putation as a tree, where at each branching node some vertex v is either included
or not included in the independent set being chosen.

We also solve some simple cases not producing any branching. This allows us
to assume without loss of generality that the input graph G has the following
properties.

– G is connected.
– Every vertex of G has degree at least 3.

We now present a recursive description of our algorithm to find a maximum
independent set on an input graph G = (V,E). Whenever we say some set V ′

of vertices is deleted, we mean to continue with the subgraph of G induced by
V − V ′. Merging an independent set V ′ of vertices means replacing them by
one new vertex v and replacing every edge to a vertex of V ′ by an edge to v.
Often when we say, the algorithm does something with a vertex fulfilling some
condition, it is possible that several vertices fulfill such a condition. In such
a case, the algorithm may just pick anyone of them. The neighborhood N(v)
of a vertex v is the set of vertices u with an edge from v. We define N̄(v) as
N(v) ∪ {v}.

We start with a number of steps that are always done when possible.

2.1 Simple Non-branching Steps

– If the graph is not connected, do a recursive call for each connected
component.

– If there is just one vertex v, return the independent set I = {v}.
– If there is a vertex v of degree 1, delete it and its neighbor. Make a recursive

call and add v to the returned independent set.
– If there is a vertex v of degree 2 with two adjacent neighbors, then delete v

and its neighbors. Make a recursive call and add v to the returned indepen-
dent set.

– If there is a vertex v of degree 2 with two non-adjacent neighbors u and u′,
then delete v and merge its neighbors u and u′ (replacing them by a new
vertex w). Make a recursive call. If the returned independent set I contains
w, then return I ∪ {u, u′} − {w}, else return I ∪ {v}.

– If u dominates v, i.e., N̄(u) ⊆ N̄(v), then delete v. (In case of equality, delete
either one.)

If u dominates v, then deletion of v is justified, because every solution con-
taining v can be modified into an equally good solution with v replaced by u.
The cases of v having degree 1, and v having exactly two neighbors, which are
adjacent, are actually special cases of domination.

The handling of the cases with v having exactly 2 neighbors is justified by
the fact that a single chosen neighbor of v can always be replaced by v. The
procedure can also be described in 2 steps as follows. If the degree of any vertex
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v of G is 2, we construct a new graph G′ obtained by deleting v and merging
the 2 neighbors of v into one vertex. If the two neighbors of v are adjacent, then
the new vertex has a self-loop, meaning it cannot participate in any independent
set and should be deleted. Every independent set in G′ of size k can easily be
modified to an independent set in G of size k + 1 and vice versa.

2.2 Handling Separators of Size Two or Less

Our algorithm introduces a new way of handling small separators. These compu-
tation steps are not always done when possible, but only when their applicability
is discovered (while pursuing another goal). Alternatively, we could always test
for the applicability of these steps without doing any harm to the complexity of
our algorithm.

Handling of separators includes a pretty obvious step for non-biconnected
graphs and a novel extension to non-triconnected graphs. Doing these steps
whenever possible would always be beneficial, but it would not improve the
worst case time bound. Therefore, we only do these steps when they can be
done in constant time, because the component in question is so small.

– If our algorithm discovers an articulation point v (a vertex whose deletion
makes the remaining graph disconnected), then it has also found a small
(size bounded by a constant) non-trivial (size at least 2) subset V ′ ⊆ V
containing v with the property that there are no edges between V ′−{v} and
V − V ′. Determine both, a maximum independent set I ′ in the subgraph
induced by V ′ − {v} and a maximum independent set I ′′ in the subgraph
induced by V ′. The sizes of I ′ and I ′′ differ by at most 1.

If they differ by 1, then make a recursive call with the subgraph induced
by (V − V ′) ∪ {v} (the remaining graph including v). After returning from
this call with an independent set I, the algorithm returns I∪(I ′′−{v}). If the
sizes of I and I ′ are the same, then make a recursive call with the subgraph
induced by V − V ′ (the remaining graph excluding v). After returning from
this call with an independent set I, the algorithm returns I ∪ I ′.

– If there is a vertex separator {u, v} of size 2 (a pair of vertices whose deletion
makes the remaining graph disconnected), then it has also found a small
(size bounded by a constant) nontrivial (size at least 3) subset V ′ ⊆ V
containing u and v and having the property that there are no edges between
V ′ − {u, v} and V − V ′. Form the four graphs induced by the vertex sets
V ′ − {u, v}, V ′ − {v}, V ′ − {u}, and V ′. Make a recursive call for each to
obtain independent sets I ′, I ′′, I ′′′, and I ′′′′. Now, there are several cases to
consider. Let s be the size of I ′, the base size.
Case A: |I ′′′′| = s+2. In this case |I ′′| = |I ′′′| = s+1. Make a recursive call

with the graph induced by (V − V ′)∪ {u, v}. When the independent set
I is returned, let J be either I ′, I ′′, I ′′′, or I ′′′′, whichever agrees with I
on {u, v}. Now the algorithm returns I ∪ J .

Case B: |I ′′| = |I ′′′| = |I ′′′′| = s + 1. Make a recursive call with the
graph induced by (V −V ′)∪{u, v} and an edge {u, v} added. When the
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independent set I is returned, let J be either I ′, I ′′, or I ′′′, whichever
agrees with I on {u, v}. Now the algorithm returns I ∪ J .

Case C: |I ′′| = s and |I ′′′| = |I ′′′′| = s + 1. Make a recursive call with
the graph induced by (V − V ′) ∪ {v}. When the independent set I is
returned, let J be either I ′, or I ′′′, whichever agrees with I on {v}. Now
the algorithm returns I ∪ J . (There is a symmetric case with u and v
interchanged.)

Case D: |I ′′| = |I ′′′| = s and |I ′′′′| = s + 1. Form the graph induced by
(V − V ′) ∪ {u, v} and merge the vertices u and v into a new vertex w.
Make a recursive call with this graph. When the independent set I is
returned, two cases are considered. If w ∈ I then the algorithm returns
(I − {w}) ∪ I ′′′′. In this case {u, v} ⊆ I ′′′′. Otherwise, the algorithm
returns I ∪ I ′.

Case E: |I ′′| = |I ′′′| = |I ′′′′| = s. Make a recursive call with the graph
induced by V −V ′. When the independent set I is returned, the algorithm
returns I ∪ I ′.

We have not yet specified what the algorithm does when no small separator
is discovered.

Lemma 1. If the algorithm is correct when no small separator is discovered,
then it is always correct.

Proof. The proof is by induction on the number of times a small separator is
discovered. It is based on the obvious fact that by removing one vertex from a
graph, the size of a maximum independent set can decrease by at most 1. ��

The main part of the algorithm consists of picking some vertex of maximal
degree, branching on including or not including this vertex, and doing recursive
calls on the two resulting smaller graphs.

Our measure of progress is m−n, the difference between the number of edges
and the number of vertices. This is also equal to half the number of vertices of
degree 3 in a graph with degrees 2 and 3 only.

If branching causes the creation of two graphs with the measure m − n de-
creased by s and t respectively, then we say the branching number is τ(s, t),
where τ(s, t) is defined as the positive root of

x−s + x−t = 1

Standard arguments imply a running time of O(poly(n)τ(s, t)m−n), if τ(s, t) is
the maximal branching number of a computation tree.

2.3 The Degree 3 Case

We use the notation N(v) for the neighborhood of v, i.e., the set of vertices of
distance 1 from v. We also use Nk(v) to denote the set of vertices of distance k
from v.
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First we describe the algorithm for a degree 3 graph. We have already elimi-
nated all vertices of degree less than 3. The elimination of degree 2 vertices can
produce higher degree vertices. That case will be treated in Section 2.4. Here,
we assume the degree is 3. Thus the graph is regular of degree 3, and we pick
any vertex r as a candidate for branching. If there are 2 edges within N(r), then
one neighbor x of r has no connection to N2(r). In this simple case, we actually
delete r as it is dominated by x (Figure 1). m− n decreases without branching.
If there is just one edge within N(r), then we actually branch on the neighbor x
of r not incident to this edge (Figure 2). On the branch with x not selected, we
have the great advantage of selecting r by domination. The resulting branching
number is at most τ(4, 4).

From now on, we assume there are no edges within N(r). When handling a
vertex r, the algorithm only looks at a bounded number of levels Nk(r). When-
ever the algorithm investigates any level Nk(r), then we assume that there are
still vertices at the next level Nk+1(r). Otherwise the size of the graph is con-
stant, immediately guaranteeing a good running time.

x

r

x
N(r)

N2(r)

N3(r)

Fig. 1. Two edges within N(r)

r

N(r)

N2(r)

x (x is in N(r)  too)

Fig. 2. Just one edge within N(r)
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x

r

N(r)

N2(r)r’

y z

Fig. 3. Every vertex of N2(r) − {r′} is connected to N2(r)

(r)

r

N(r)

N2

Fig. 4. The simplest case

Another special case occurs when the vertex r has a mirror image r′ with
the same neighbors x, y, z as r (Figure 3). The bipartite subgraph induced by
{r, r′, x, y, z} has only two maximal independent sets, {r, r′} and {x, y, z}. One
of them is part of a maximum independent set. This implies a simple reduction
of deleting {r, r′} and merging {x, y, z} into one vertex.

Now we come to the interesting cases. The simplest case occurs when all 3
of r’s neighbors have 2 distinct neighbors in N2(r) (Figure 4). When r is not
selected, then we delete 3 edges and 1 vertex, when r is selected, then we delete
9 edges and 4 vertices, resulting in a branching number of τ(2, 5). We want to
argue now that we obtain the same branching number, not just in this simple
case, but in all remaining cases.

We consider the process of selecting r, deleting N̄(r), and deleting any degree
1 vertices for as long as possible. The difficult part is to show that in this process
the number of deleted edges is 5 more than the number of deleted vertices. For
this purpose, we introduce the notion of a live edge, which is any edge that is
deleted in this process. As we assume there are no edges within N(r), we have
at least the following live edges: All 3 edges from r to N(r), and all 6 edges from
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N(r) to N2(r). Furthermore, the 4 vertices of N̄(r) are deleted resulting in the
desired temporary balance of 5 for the difference of edge deletions and vertex
deletions.

We think of the life edges being directed away from r to visualize the direction
of further deletions. Whenever any vertex x outside N̄(r) is reached by only one
live edge, we are happy. The degree of x is decreased from 3 to 2, but x is not
deleted and the process stops there. If two live edges reach the same vertex x,
they make x a singleton. Thus x and the third edge e incident on x are deleted,
maintaining the desirable balance, but making e live. We direct e away from
x (Figure 5). Finally, when 3 live edges point to the same vertex x, then x is

x

e
Problem

Fig. 5. Live edges

deleted and we have a problem. To avoid it, we actually don’t branch on r if this
would happen, as we will discuss it below.

Now we do the analysis in more detail. Because of previous handling of the
other cases, we assume there are no edges within N(r). Obviously, every vertex
of N2(r) has at least one edge from a vertex of N(r). Because of the degree
bound 3 of G, the subgraph induced by N2(r) has a degree of at most 2, and is
of size at most 6.

If there is any connected component within N2(r) not connected to N3(r),
then it is a path of length k − 3 or a cycle of length k with k connections from
N(r) for some k in the range 3 ≤ k ≤ 6. The case of a cycle is fine, as all incom-
ing live edges are stopped (Figure 6). The case of a path of length 0 has already
been handled: The single vertex r′ on the path is the mirror image of r. The
remaining case of a longer path P is not good (3 live edges point to the same
vertex) and requires special treatment. In this case, instead of branching at r, we
handle the separator of size 6− k ≤ 2 consisting of the complement of the path
P in N2(r) (Figure 7). In this case, a small separator cuts off a constant size
piece of the graph. We have described its handling in the previous subsection.

If a connected component in N2(r) is connected to N3(r), then this compo-
nent is a path P connected at one or both of its endpoints to N3(r). If it is
connected at both end points, then there is exactly 1 live edge entering from
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N(r)

N2(r)

Fig. 6. A cycle in level 2 has no connection to N3(r)

(r)

(r)N2Cut

Problem

N1

Fig. 7. One component is not connected to N3(r)

(r)

N2(r)

N(r)

N3

Fig. 8. Both ends are connected to N3(r)

N(r) into each vertex of this component. So each such edge decreases a degree
from 3 to 2 in a vertex of N2(r) (Figure 8). If only 1 endpoint of P is connected
to a vertex x ∈ N3(r), then the opposite end point has 2 edges from N(r), while
all other vertices of the path have one such edge. If the whole path has length
0, then its only vertex has two edges from N(r) and one to x. Now the whole
path consists of live edges directed towards x (Figure 9). There are at most 3
live edges reaching level 3. If 2 life edges e, e′ meet in a vertex x of N3(r), then
the other edge {x, y} is live and directed towards y. All is fine if this is the only
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(r)

N2(r)

N(r)

x N3

Fig. 9. One end is connected to N3(r)

(r)

(r)

N3z

N
yx

e e’

3

N2(r)

(r)  or  N4

Fig. 10. Three live edges reaching N3(r)

live edge reaching y. Otherwise, y is still on level 3, and the third live edge from
level 2 reaches y too (Figure 10). Then the third edge {y, z} of y is the only live
edge reaching z. This leave just one trivial case: All 3 live edges from level 2
point to the same vertex x on level 3. In this case, x is the only vertex on level 3,
and the whole graph is of size 8.

2.4 The Higher Degree Case

We assume now the degree is greater than 3. We also assume the degree of every
vertex is at least 3. Pick any vertex r of maximum degree. If at most 3 vertices of
N2(r) are connected to N3(r), then branch on one of them (which has w.l.o.g. at
least 2 edges to N3(r)) and use the remaining 2 (or fewer) vertices as a separator.
The branching number is at most τ(6, 6).

In the remaining case, N(r) ≥ 4, N2(r) ≥ 4, and every vertex has degree at
least 3. Branching on r results in a branching number of at most τ(3, 5), which
can be seen as follows.
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Let eij be the number of edges between N i(r) and N j(r). Then e01 =
|N(r)| ≥ 4, e12 ≥ |N2(r)| ≥ 4, and 2e11 + e12 ≥ 2|N(r)| ≥ 8. When r is selected,
we delete Δv = |N(r)|+1 vertices and e01+e11+e12 = e01+ 1

2e12+
1
2 (2e11+e12) ≥

|N(r)|+ 2 + 4 = Δv + 5 edges. When r is not selected, we delete Δv = 1 vertex
and |N(r)| ≥ 4 = Δv + 3 edges.

2.5 Putting Things Together

There remains one important problem to be dealt with. When we branch on a
vertex r in a connected graph, either selecting or not selecting r, the remain-
ing graph might actually be disconnected. For most complexity measures, these
would just be lucky cases speeding up the running time, as each connected com-
ponent can be handled separately.

With our m − n measure, we have to be more careful. There is a potential
problem, when some connected components are trees. The tree components can
be handled fine. For example, by maintaining a list of degree one vertices, trees
can be handled in time O(m) = O(mcm−n) for any c, because m−n = −1. The
problem is with the remaining components, because for some of them m − n
might be greater than in the whole graph.

When branching on a vertex r, not selecting r, then no tree can ever be
cut off. Otherwise, instead of branching at r the algorithm would actually have
proceeded with selecting vertices of degree 1.

When branching on a vertex r, selecting r, then some trees can actually be cut
off. In this situation, we just delete such a tree, before we look at our measure
m − n. To cut off a tree of size k, we need k + 2 edges from N(r), because of
our lower bound of 3 for all vertex degrees. Furthermore, the tree itself has k−1
edges. We compare this situation with the one where pairs of edges {u1, v1},
{u2, v2} with u1, u2 ∈ N(r) and v1, v2 on the tree, are replaced by internal edges
u1, u2 inside N(r). Thus these edges to the tree only count 1/2 each. Therefore,
a tree of size k (causing the deletion of k vertices) is also responsible for⌊

k − 1 +
k + 2

2

⌋
=

⌊
3k
2

⌋
extra edge deletions, a surplus of �k

2 � ≥ 0 edge deletions over vertex deletions.
As a result, splitting off a tree is still a good case. The excess of vertices in a

tree is not balanced by an excess of edges in another component, but compen-
sated by an excess of edge deletions during the split off.

We have seen that the worst case branching number of the whole algorithm
is τ(2, 5) = 1.237 implying the following result on the running time.

Theorem 1. The running time of our independent set algorithm is at most
O(poly(n)τ(2, 5)m−n) = O(poly(n)1.237m−n).

This result is of interest in very sparse graphs. It greatly improves the running
time for degree 3 graphs (with m ≤ 1.5n).

Corollary 1. For degree 3 graphs, the running time of our independent set al-
gorithm is O(poly(n)

√
τ(2, 5)

n
) = O(poly(n)τ(4, 10)n) = O(poly(n)1.112n).
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3 Final Remarks

In a separate paper, we will combine this algorithm with the ideas of [7] to obtain
better running times for graphs of degree greater than three.

As the simplest case of an induced tree in N̄(r)∪N2(r) is also our worst case, it
seems very hard to get any further improvement for degree 3. On the other hand,
it seems that the degree 2 vertices produced in every step of the algorithm almost
never group pairwise. At least, one can conjecture that by selecting the branching
point r appropriately, one can always avoid such pairing. As a consequence, the
elimination of the degree 2 vertices would then always produce some higher
degree vertices implying a better running time.
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Abstract. We introduce the (b, n)-Committee Decision Problem
(CD) - a generalization of the consensus problem. While set agreement
generalizes consensus in terms of the number of decisions allowed, the
CD problem generalizes consensus in the sense of considering many in-
stances of consensus and requiring a processor to decide in at least one
instance. In more detail, in the CD problem each one of a set of n pro-
cesses has a (possibly distinct) value to propose to each one of a set of
b consensus problems, which we call committees. Yet a process has to
decide a value for at least one of these committees, such that all pro-
cesses deciding for the same committee decide the same value. We study
the CD problem in the context of a wait-free distributed system and an-
alyze it using a combination of distributed algorithmic and topological
techniques, introducing a novel reduction technique.

We use the reduction technique to obtain the following results. We
show that the (2, 3)-CD problem is equivalent to the musical benches
problem introduced by Gafni and Rajsbaum in [10], and both are equiv-
alent to (2, 3)-set agreement, closing an open question left there. Thus, all
three problems are wait-free unsolvable in a read/write shared memory
system, and they are all solvable if the system is enriched with objects
capable of solving (2, 3)-set agreement. While the previous proof of the
impossibility of musical benches was based on the Borsuk-Ulam (BU)
Theorem, it now relies on Sperner’s Lemma, opening intriguing ques-
tions about the relation between BU and distributed computing tasks.

Keywords: Asynchronous distributed system, Wait-free computing,
Shared memory, Consensus, Set Agreement, Musical benches.

1 Introduction

In a distributed asynchronous system of n processes where at most t of them
can fail by stopping, the (k, n)-set agreement problem [7] abstracts away a basic
coordination problem: processes have input values, and they must agree on at
most k of these values. The problem has no solution if the shared-memory has
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only read/write registers when k ≤ t [4, 17, 21] but is solvable if either k > t
or else more powerful communication primitives are available in the system. Set
agreement and consensus, when k = 1, have motivated a lot of research (e.g., [2,
18]) and helped to expand our understanding of distributed computing. The wait-
free case of t = n−1 has been shown to be fundamental (e.g., [12, 13, 17]), because
from this case results can be derived for any value of t [4, 6], and the wait-free
techniques can be generalized to other synchronous and partially synchronous
models (e.g., [15, 16]), and even models with stronger communication primitives
(e.g., [14]). In this paper we concentrate on the wait-free model.

One of the important uses of consensus arises in a distributed state machine
(e.g., [20]): the processes are executing a sequence of operations, and they need
to agree on the result of each one of the operations, before they can execute the
next one. This and other forms of long-lived versions of consensus (e.g., [3]) that
we are aware of are sequential, in that processes propose values, then they agree
on one of them, and only then they proceed to the next instance of consensus and
propose another value. However, it is also very natural to consider concurrent
versions of the problem, where a process pi proposes a vector Vi of values, and
each one of them is intended to one of b different consensus problems, called
committees. We require that processes deciding on the same committee must
decide the same value for that committee. Thus, if the processes participate
concurrently in b different applications, we can guarantee wait-free progress in
at least one application, without using strong communication objects.

We call this generalization of consensus the committee decision problem (CD).
Notice that the usual termination requirement of consensus is weakened: a pro-
cess has to decide a value v for only one of the committees, which it can choose;
that is, if its decision is the pair (j, v), then all processes choosing to decide for
the j-th committee decide the same value v. The decisions should satisfy the
standard agreement and validity requirements of consensus: the value decided
for a committee was proposed by some process to that committee, and every
process deciding on the committee decides the same value. In addition to its
possible applications, there seem to be various interesting generalizations that
may motivate new research, such as:

• The number of different committees that are decided is at most k.
• At most k different values are decided for each committee.
• A process that decides must decide in at least k committees.

The CD problem cannot be solved when n = 2 and b = 1, since this is exactly
equal to consensus for two processes, which has no solution [12]. On the other
hand, it is easily solvable when b ≥ n: pi decides on its own proposal, for the
i-th committee, (i, Vi[i]). In this paper we concentrate on the binary (2, 3)-CD
problem, where the proposals are taken from the set V = {0, 1}, and there are
b = 2 committees, and n = 3 processes. We state our results for this fundamental
case to simplify the presentation (avoiding more algebraic topology notation),
and defer the most general phrasing to the full version. We prove that the (2, 3)-
CD problem is equivalent to the musical benches problem of Gafni and Rajsbaum
[10], and both are equivalent to (2, 3)-set agreement, closing an open question left
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there. Thus, all three problems are wait-free unsolvable in a read/write shared
memory system, and they are all solvable if the system is enriched with objects
capable of solving (2, 3)-set agreement (such as Test&Set).

Our paper is a follow up to [10], that introduced the musical benches problem,
and showed the first connection between distributed computing and the Borsuk-
Ulam theorem.1 In the musical benches problem there are 3 processes, the first
two, p−1, p1, wake up in the first bench (consensus instance), while a third one
wakes up in the 2nd bench, either p−2 or p2, but not both. In executions without
conflict, namely when only one of p−1, p1 wakes up, each process decides its own
index. Otherwise, the only requirement is that processes decide at most one
index in {−1, 1} and one index in {−2, 2}.

The musical benches problem tries to model a new distributed coordination
difficulty: processes jump from bench to bench trying to find one in which they
may be alone or not in conflict with one another. It resembles the consensus
problem in the sense that at least two processes must agree on the value for
one committee. However, it is not as clean a generalization as the CD is. Our
first aim was to show that the two problems are equivalent, but while investigat-
ing the CD problem, we found that both are equivalent to (2, 3)-set agreement,
while in [10] we only knew that musical benches is somewhere in between (2, 3)-
set agreement and read-write memory in terms of difficulty. We believe these
equivalences are interesting, because although the problems are equivalent in
the sense that one can be reduced to any other, they are not the same, a situa-
tion reminiscent of NP-complete problems. Having an arsenal of problems that
we know are not solvable in read-write memory allows us to judge other prob-
lems unsolvable through reductions [9], rather than only through direct topo-
logical arguments. Indeed, distributed computing theory development has been
promoted by the identification of problems that capture essential coordination
difficulties.

The results in this paper are obtained through a novel reduction technique
that combines distributed algorithmic ideas with topological intuition. The re-
duction technique consists of taking a read/write shared memory wait-free pro-
tocol, A, and identifying one or more executions, at the end of which an object
solving some problem B is invoked. If the resulting protocol solves a problem
C (for any object that implements a solution to problem B), we have shown
that a solution to B implies a solution to C. Although reducing one problem
to another is an old idea, our version here has some novel features that stem
from the topological perspective of papers such as [15, 16, 17, 21]. We first con-
sider the set of executions of A as a geometric object, called a complex. In
the case of n = 3, each execution is drawn as a triangle, or simplex, where its
corner vertices are labeled with the views (local states) of each one of the pro-
cesses at the end of the execution. We then identify the triangles (or sometimes
edges corresponding to 2-process executions) on which we are going to invoke

1 Although we do not use it in this paper, the reader may be interested to know
that the theorem is “one of the most useful tools offered by by elementary algebraic
topology to the outside world”[19]. It implies Sperner’s lemma, but not the opposite.
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the object B. Then we replace these triangles by the complex representing the
set of possible responses of an implementation instance of B, and obtain the
combined complex representing the protocol reduction. The goal is to obtain a
protocol whose complex gives enough flexibility2 to associate a decision function
with each one of its vertices and solve the desired problem, C. See for example
Figure 1, where we start with the simplex representing the inputs to the (2, 3)-
set agreement problem, we then execute a wait-free protocol where we identify
two triangles to be removed and replaced by the set of possible responses of
an arbitrary musical benches implementation, and the vertices of the resulting
complex (obtained by gluing in the later complex into the hole of the former),
can be colored with decisions (placed in the figure by each one of the vertices)
that map into the (2, 3)-set agreement outputs, represented by a hollow tri-
angle. We have thus created a hole, which gives the desired flexibility to the
final complex, and allows for an appropriate decision function to be designed.
More details appear in Section 3.1, that includes more formal topology defini-
tions and explanations about Figure 1. A good introduction to basic topology
is [1].

The rest of the paper is organized as follows. Section 2 defines the problems
of CD, set agreement and musical benches, and some additional preliminaries.
Section 3 describes an algorithm to solve (2, 3)-set agreement using a musical
benches object, and an algorithm to solve (2, 3)-set agreement using a CD object.
Section 4 shows that the CD problem is wait-free solvable using a (2, 3)-set
agreement object. Due to space limitation, proofs are omitted. Additional details
and full proofs can be found in [11].
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Fig. 1. Solving (2, 3)-set agreement using (one example of) a musical benches object

2 The actual complex obtained depends on the actual solution to B used, but any
such complex should exhibit that flexibility. Two features add flexibility: holes and
more vertices.
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2 Three Problems and Preliminaries

This paper considers the usual asynchronous shared memory model, composed
of single-writer/multi-reader registers, and studies wait-free algorithms, where
any number of processes can fail by crashing. A full description of these concepts
can be found in textbooks such as [2, 18].

2.1 The Problems

The usual notion of task is a one-shot decision problem specified in terms of
an input/output relation Δ. The processes start with private input values, and
must eventually decide on output values, by writing to a write-once variable. An
input vector I specifies in its i-th entry, I[i], the input value of process pi, and
we say pi proposes I[i] in the execution; similarly, an output vector J specifies
a decision value J [i] for each process pi. The task defines a set of legal input
vectors, and for each one, Δ specifies a set of legal output vectors. Thus, given
input vector I, the processes decide a vector J such that individually pi decides
J [i]. It is sometimes convenient to consider inputless tasks, where a process has
only one possible input value, namely its own id.

Set Agreement. The k-set agreement problem is a generalization of consensus
where processes must decide on at most k different values, out of the input
values. The corresponding inputless version for three processes, p1, p2, p3, and
k = 2, denoted (2, 3)-set agreement, is illustrated in Figure 2 (ids associated to
each output value are omitted for clarity). It is defined by the set of input vectors
consisting of (p1, p2, p3) and all its subvectors, and the relations: Δ(pi) = {(i)},
Δ(pi, pj) = {(i, i), (j, j), (i, j), (j, i)} and, Δ(pi, pj, pk) equal to all vectors of
i, j, k with at most two different values (this requirement is represented in the
figure by the hole; the possible outputs have no triangle, only edges and vertices).
Set agreement is not wait-free solvable [4, 17, 21], due to a generalization of the
consensus impossibility connectivity argument to higher dimensions; wait-free
executions induce a “flat structure” subdividing the input triangle, and in the
figure one can see that a flat triangle is required to be mapped to a hollow one
(preserving the boundary), which is impossible.

Committee Decision Problem. In the (b, n)-committee decision (CD) prob-
lem n processes are trying to solve b consensus instances, called committees, and

p 1

p 2

p 3

1

2

3

Fig. 2. The inputless (2, 3)-set agreement problem (some arrows of Δ omitted)
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each process is required to make a decision for at least one of them. More ex-
plicitly, in an execution, each process pi proposes a vector Vi of b entries: Vi[�] is
the value proposed by pi for committee �. A process decides a pair (�, v) where
�, 1 ≤ � ≤ b denotes a committee, and v a value proposed by a process for
committee �. The problem is defined by the three requirements:

• Termination. No process takes infinitely many steps without deciding.
• Validity. If a process decides (�, v) then ∃ j such that v = Vj [�].
• Agreement. Assume pi, pj decide (�i, vi) and (�j , vj) respectively. Then

�i = �j ⇒ vi = vj .

We concentrate our attention on the binary (2, 3)-CD problem, where n = 3,
b = 2 and the proposed values are taken from V = {0, 1}. We refer to this
version as the CD problem.

Musical Benches. We can think of 2-process binary consensus as a bench with
two places, designated 1 and −1. Processes p1 and p−1, wake up at places 1 and
−1, respectively. In a solo execution a process must return the place it wakes
up in. Otherwise, in an execution where both participate, they return the same
place. We add a second bench, with places 2,−2, and wake up either process p2
at slot 2, or p−2 at slot −2, but not both. In executions with no conflict, i.e.,
either p−1 or p1 wake up but not both, the participating processes return the
places they wake up in. Only if both p−1 and p1 wake up, then any participating
process can go to any seat. This is the musical benches problem of [10], shown
there to have no wait-free solution.

The musical benches problem is illustrated in Figure 3, disregarding ids and
omitting the dotted arrows of Δ for single vertices, to avoid cluttering the figure.
In the figure there is also an example of an object implementing the musical
benches problem. Each vertex is labeled on the inside with a process pi, and
on the outside with the value d returned from the object to pi. The corner
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vertices correspond to executions where the process invokes the object alone, and
therefore, a pi vertex is labeled with value i. An edge joining two such vertices
represents an execution where both processes invoke the object alone. Notice
that there are two paths connecting the corners p1, p−1, with vertices labeled
p1 or p−1, representing executions where only these processes invoke the object.
For example, they are two edges incident to the p1 corner, one representing an
execution where the object returns 1 to p−1 and another where it returns −2 to
p−1. Executions where p−2 participates appear on the left side of the hole, while
executions where p2 participates appear on the right side of the hole. Notice also
that no two vertices with the same id have the same value. One can check that
this object indeed satisfies the musical benches specification given by Δ.

2.2 Participating Set Problem

Preparing for the next section we recall the k-participating set problem [10],
a generalization of the one in [5] that can access a set agreement object. We
present here the case of 3 levels, and either k = 2, that has access to (2, 3)-
set agreement, or k = 3, the original problem of [5] that has no access to set
agreement. That is, we have our first simple example of a reduction, in this case
from the 2-participating set problem to (2, 3)-set agreement. The 3-participating
set problem shows that read write shared memory complex can be flattened to
a subdivided simplex, as in the left side of Figure 4. Using a (2, 3)-set agreement
implementation, as in the right side of the figure, the center triangle is removed
and we can create a subdivided simplex with a hole. A process pi computes a
set of ids Si, such that

1. ∀i : i ∈ Si, 2. ∀i, j : Si ⊆ Sj ∨ Sj ⊆ Si,
3. ∀i, j : i ∈ Sj ⇒ Si ⊆ Sj, 4. |{j : |Sj | = 3}| ≤ k.

The first three are the requirements of the participating set problem in [5]. Sets
satisfying these properties correspond to the subdivided simplex in Figure 4.

For completeness a protocol solving the k-participating set appears in
Figure 5. The 4-th property is achieved through the set agreement object, in-
voked by pi with the operation setAg(i), when k = 2. Invoking the set agreement
operation has the effect of removing the simplex in the center of the subdivision

Fig. 4. The k-participating set views for k = 3; when k = 2 the center triangle is
removed
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Initially: Level[j] = 4 ∀j ∈ {1, 2, 3}; k = 2 or k = 3;
Function k-ParticipatingSet(i)
(01) Init OKi ← false;
(02) repeat Level[i] ← Level[i] − 1;
(03) for j = 1 to 3 do leveli[j] ← Level[j] enddo
(04) Si ← {j : leveli[j] ≤ Level[i], j ∈ {1, 2, 3}};
(05) if |Si| = 3 and k = 2 then ansi ← (2, 3)-SetAg(i);
(06) if ansi = i then OKi ← true endif
(07) else OKi ← true endif
(08) until (|Si| ≥ Leveli[i]) ∧ OKi;
(09) return(Si)

Fig. 5. From (2, 3)-set agreement to k-Participating set (code for pi)

(impossible that the three processes produce sets of size 3), and leaving just its
boundary (at most two processes may produce sets of size 3).

3 Solving (2, 3)-Set Agreement

An algorithm to solve musical benches using (2, 3)-set agreement is described in
[10]. In Section 3.1 we describe an algorithm to solve (2, 3)-set agreement using a
musical benches object. Therefore, the musical benches problem is equivalent to
(2, 3)-set agreement. In Section 3.2 we describe an algorithm to solve (2, 3)-set
agreement using a CD object.

3.1 Solving (2, 3)-Set Agreement with Musical Benches

Informally, the idea is very simple. In the musical benches one of two combina-
tions of 3 processors start with 3 distinct inputs. They eventually halt with at
most 2 distinct outputs. Thus the problem possess that “narrowing of choices”
property that set agreement exhibit. The only problem we face is how to inter-
face between the requirement of set agreement and those of musical benches.
Resolving this is the crux of the paper: Employ read-write first and then glue
the musical benches to replace two adjacent simplexes.

A protocol that solves (2, 3)-set agreement using musical benches appears in
Figure 6, and it is illustrated in Figure 1. Each process pi starts by invoking
the participating set protocol of Figure 5 with k = 3. Once it gets back a set
Si, it invokes a musical benches protocol with a parameter hmb(i, Si) defined as
follows:

hmb(i, Si) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if i = 1 and Si = {1, 2, 3}
+1 if i = 3 and Si = {1, 2, 3}
+2 if i = 2 and Si = {1, 2, 3}
−2 if i = 2 and Si = {2}
⊥ otherwise
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That is, the musical benches protocol is invoked only when hmb(i, Si) �= ⊥, and
if so, each process pi makes a decision, fmb(bench), that depends on the answer
bench returned by the musical benches protocol, as follows

fmb(bench) =

⎧⎨⎩
1 if bench = 1 or bench = −2
2 if bench = −1
3 if bench = 2

or if pi did not invoke the musical benches protocol, then it returns g(i, Si). The
only requirement is that g(i, Si) returns an id in Si, to satisfy the validity re-
quirement of the set agreement problem (a decision was proposed by somebody).

Each vertex on the left of Figure 1 is labeled in the inside with the corre-
sponding process pi, and on the outside with its decision. The boundary of the
removed triangles fits the boundary of the musical benches object. We stress
that the object in the figure is just an example of one possible implementation
of the musical benches problem; the protocol works for any implementation.
Each of the vertices of the musical benches object is labeled in the inside with
the corresponding process pi, and on the outside with the value returned by the
object. Thus, if we consider a vertex on the boundary of the hole (left side of
the figure), say the corner p2, it corresponds to an execution where p2 runs solo,
gets S2 = {2} from the participating set object, invokes the musical benches
with hmb(2, {2}) = −2, and gets back −2 (the label by the corresponding vertex
on the right side of the figure) and decides fmb(−2) = 2 (the label by p2’s corner
vertex on the left side of the figure). A pi vertex of the left side of the figure
where the musical benches object is not invoked is labeled with g(i, Si) (this
particular g is just an example).

Function (2, 3)-SetAg-from-Benches(i)
(01) Si ← 3-ParticipatingSet(i);
(02) if hmb(i, Si) �= ⊥ then
(03) benchi ← MusicalBenches(hmb(i, Si));
(04) return fmb(benchi)
(05) else return g(i, Si) endif

Fig. 6. From Musical Benches to (2, 3)-Set Agreement (code for pi)

Lemma 1. The (2, 3)-SetAg-from-Benches protocol solves (2, 3)-set agree-
ment using any musical benches implementation.

3.2 Solving (2, 3)-Set Agreement with Committee Decision

The technique of Section 3.1 can be used to solve (2, 3)-set agreement with CD.
The SetAg-from-CD protocol of Figure 8 is similar to the one in Figure 6,
except that a CD object is invoked instead of invoking a musical benches object,
and the the functions hmb, fmb and g change.
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Each process pi starts by invoking the participating set protocol of Figure 5
with k = 3. Once it gets back a set Si, it checks if hcd(i, Si) = ⊥. If so it decides
according to the function gcd(i, Si) (values by the vertices on the left side of
Figure 7):

gcd(i, Si) =

⎧⎪⎪⎨⎪⎪⎩
i if |Si| = 1 else:
1 if (i = 1 and 2 ∈ Si) or (i = 2 and 1 ∈ Si) or (i = 3 and 1 ∈ Si),
2 if i = 3 and 2 ∈ Si,
3 otherwise.

Else, hcd(i, Si) �= ⊥, and it invokes a CD protocol with the parameter hcd(i, Si)
defined as follows. This is illustrated in the right side of Figure 7, where an
example of a CD object is presented (not all the object is depicted, only the
values returned for the proposed input vectors).

hcd(i, Si) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1,−2) if i = 1 and Si = {1, 2, 3},
(+1,+2) if i = 3 and Si = {1, 2, 3},
(−1,+2) if i = 2 and Si = {1, 2, 3},
(+1,−2) if i = 2 and Si = {2},
⊥ otherwise.

Once the CD object returns a value the process pi stores it in a local variable
bench. In the right side of Figure 7, the vectors proposed to the CD are depicted
only in the 4 corners for lack of space; every vertex is labeled with the value
returned by the object. Notice that no two vertices with the same id and proposed
vectors have the same returned value associated (this is why the boundary can
be subdivided here, but not in a musical benches object). The process then
computes a decision fcd(i, bench), defined as follows:
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Fig. 7. To solve set agreement each process pi invokes a CD object. On the left figure,
decisions are the values by the vertices; on the right figure values by the vertices are
returned by the object.
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fcd(i, bench) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = 1 and bench = 1 or bench = 2 ,
2 if i = 1 and bench = −2,
3 if i = 1 and bench = −1,
1 if i = 3 and bench = 1 or bench = 2,
2 if i = 2 and bench = 1 or bench = −2,
3 if i = 2 and bench = −1 or bench = 2,
2 if i = 3 and bench = −2.
3 if i = 3 and bench = −1,

Function (2, 3)-SetAg-from-CD(i)
(01) Si ← 3-ParticipatingSet(i);
(02) if hcd(i, Si) �= ⊥ then
(03) benchi ← CD(hcd(i, Si));
(04) return fcd(benchi)
(05) else return gcd(i, Si) endif

Fig. 8. From CD to (2, 3)-Set Agreement (code for pi)

Lemma 2. The (2, 3)-SetAg-from-CD protocol solves (2, 3)-set agreement us-
ing any CD implementation.

4 Solving Committee Decision with (2, 3)-Set Agreement

This section shows that the (2, 3)-CD problem is wait-free solvable using a (2, 3)-
set agreement object. Since in Section 3.2 we showed the opposite reduction, we
have that both problems are equivalent. The wait-free impossibility of solving
(2, 3)-set agreement [4, 17, 21] implies that (2, 3)-CD is wait-free unsolvable. In
[10] a protocol that solved the musical benches problem with access to a (2, 3)-
set agreement object is described. This protocol can be adapted to solve the
CD problem; the main difference is the decision function. The protocol works
as follows. Each process pi gets a vector Vi as input to the CD problem. It

Function (2, 3)-CD-from-SetAg(Vi)
Init viewi ← ∅; idi ← [⊥, ⊥,⊥];
(01) Prop[i] ← Vi;
(02) Si ← 2-ParticipatingSet(i);
(03) if |Si| = 3 then id[i] ← i;
(04) for j = 1 to 3 do idi[j] ← id[j] enddo
(05) viewi ← {j : idi[j] �= ⊥, j ∈ {1, 2, 3}}
(06) endif
(07) return f(Si, viewi)

Fig. 9. From (2, 3)-set agreement to (2, 3)-CD (code for pi)
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first writes it to a shared array, Prop, in position Prop[i]. Then pi invokes the
2-ParticipatingSet(i) function of Figure 5, and gets back a set Si of process
ids, satisfying the 2-ParticipatingSet properties (see section 2.2): Once pi gets
a set Si back from the 2-ParticipatingSet object, if |Si| = 3 it executes lines
(03)–(05) which have the effect of proposing its id to a read/write object, and
gets back a set viewi of ids, of processes that invoked the object. The aim is
to subdivide the boudary of removed center triangle of the protocol complex.
Finally, process pi decides a value f(Si, viewi). Due to space limitation, the
corresponding figure and the definition of the decision function are omitted.
More details can be found in the technical report [11].

Lemma 3. The (2, 3)-CD-from-SetAg protocol solves (2, 3)-CD using any
(2, 3)-set agreement object.

As a consequence of Lemmas 1, 2, and 3 we have our main result.

Theorem 1. Musical benches can be wait-free solved iff CD can be wait-free
solved iff (2, 3)-set agreement can be wait-free solved.
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Abstract. Lazy bureaucrat scheduling is a new class of scheduling prob-
lems introduced by Arkin et al. [1]. In this paper we focus on the case
where all the jobs share a common deadline. Such a problem is denoted
as CD-LBSP, which has been considered by Esfahbod et al. [2]. We first
show that the worst-case ratio of the algorithm SJF (Shortest Job First)
is two under the objective function [min-time-spent], and thus answer
an open question posed in [2]. We further present two approximation
schemes Ak and Bk both having worst-case ratio of k+1

k
, for any given

integer k > 0, under the objective function [min-makespan] and [min-
time-spent] respectively. Finally, we prove that the problem CD-LBSP
remains NP-hard under several objective functions, even if all jobs share
the same release time.

1 Introduction

Scheduling has been studied extensively for decades. Generally in a scheduling
problem the workers are required to stay in their peak level to minimize the total
cost or maximize the throughput, etc. However, in some different situation, the
worker (we call him/her a bureaucrat) may not want to do much work, which
motivates a new kind of scheduling problems, called lazy bureaucrat schedul-
ing, introduced by Arkin et al. [1]. In this problem, the bureaucrat wants to
do things as little (or easy) as possible, which is in the reverse objective of the
classical scheduling problem. Of course there is a basic assumption, called the
busy requirement, that the bureaucrat must keep working as long as there are
some executable jobs, otherwise the problem would become trivial and the opti-
mal strategy for the bureaucrat would be just stay idle without doing anything.
Arkin et al. [1] studied the problem extensively and many complexity and algo-
rithmic results were obtained. An interesting example was given in [1], in which
the “lazy bureaucrat” tries to minimize the amount of the jobs done so that he
is able to go home earlier or have more free time. We refer to [1] for more details.
Hepner and Stein [5] recently dealt with several problems in the preemptive case
where the jobs can be paused and restarted later. In the literature one can also
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find the general optimization problems in reverse, such as the maximum TSP [4],
the maximum cut problem [3] and the longest path problem [6], which may lead
to a better understanding of the structure and algorithmic complexity of the
original problem.

In this paper we focus on the case where all the jobs share the same deadline.
Such a lazy bureaucrat scheduling problem is denoted as CD-LBSP, which was
first considered in [2]. More precisely, there is a set of jobs J1, . . . , Jn. Job Ji

arrives at time ai and has processing time of pi, for i = 1, 2, . . . , n. Each job is
associated with a weight. There is a common deadline D for all jobs. Job Ji can
be executed only if its starting time is in between ai and D−pi. In other words, a
job can only be started at or after its release time, and once it is started, it cannot
be interrupted and must be completed by the common deadline D. At any time a
job is called executable if it can be executed. Throughout the paper we will alter-
natively use the terms machine and bureaucrat without causing any confusion.

Basically there are four objective functions [1, 2]:

1. [min-time-spent]: Minimize the total amount of time spent working.
2. [min-weighted-sum]: Minimize the weighted sum of completed jobs.
3. [min-makespan]: Minimize the makespan, the maximum completion time of

the jobs.
4. [min-number-jobs]: Minimize the total number of completed jobs.

It is easy to see that objective functions 1 and 4 are special cases of 2. If all jobs
arrive at the same time, objective functions 1 and 3 are the same.

Previous Results. Arkin et al. [1] proved that the general LBSP is NP-hard in
the strong sense under all objective functions and is not approximable to within
any fixed factor. Esfahbod et al. [2] considered the problem CD-LBSP where all
deadlines are the same. They showed CD-LBSP is NP-hard under all objective
functions. It was also proved that the objective function [min-number-of-jobs]
(and thus [min-weighted-sum]) is not approximable within any fixed factor unless
P=NP. For [min-makespan] they presented an approximation algorithm SJF
(Shortest Job First) with worst-case ratio of 2.

Our Contribution. In this paper, we concentrate on the problem CD-LBSP.
We first show that algorithm SJF has a worst-case ratio of 2 under the objective
function [min-time-spent], and thus answer an open question in [2]. Then we
devise a new algorithm Ak under objective function [min-makespan] and show
that the worst-case ratio is at most (k + 1)/k, for any given integer k > 0. This
result implies the existence of a PTAS and significantly improves the previous
result. Furthermore, we give another algorithm Bk which leads to a PTAS for
objective function [min-time-spent] by employing algorithm Ak a polynomial
number of times. Finally we show the special case that all jobs arrive at the
same time is still NP-hard under several objective functions.

Organization of the Paper. The remainder of the paper is organized as fol-
lows. Section 2 gives the worst-case analysis of algorithm SJF for the objective
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function [min-time-spent]. The new algorithms Ak and Bk are shown in Section 3
and Section 4, respectively. Section 5 presents the NP-hardness proof for the
special case where all jobs arrive at the same time.

2 Algorithm SJF

The algorithm SJF works as follows. Whenever the machine is idle and there
are some executable jobs, schedule the one (among the executable jobs) with the
shortest processing time (ties broken arbitrarily). Esfabhod et al. [2] showed that
SJF is a 2-approximation algorithm under the objective function [min-makespan]
and this bound is tight. In the same paper they left an open question which asks
for the worst-case ratio of algorithm SJF under the objective function [min-
time-spent]. We will answer this question by showing that SJF has the same
worst-case ratio of 2. The instance in [2], devoted to the objective function [min-
makespan], still applies to the objective function [min-time-spent]. For the sake
of completeness we present a simple instance to show the lower bound of 2. Just
take three jobs, two of processing time 1 and the other of 1 + ε, where ε > 0 is
an arbitrarily small number. The common deadline is 2. The algorithm SJF will
produce a schedule of time spent 2 while the optimum is just 1 + ε. It implies a
lower bound of 2 for algorithm SJF. In the following we only need to show

TSJF (I)
T ∗(I)

≤ 2 (1)

holds for any instance I, where T ∗(I) and TSJF (I) are the total time spent in an
optimal schedule and in the schedule generated by algorithm SJF, respectively. If
it is not true, namely, if there exists some instance violating the above inequality,
consider a minimum counterexample Is in terms of the number of jobs. The
instance Is has two properties:

1. TSJF (Is)/T ∗(Is) > 2.
2. For any instance I where |I| < |Is|, i.e., the number of jobs in I is smaller

than that in Is, we have TSJF (I)/T ∗(I) ≤ 2.

Since TSJF (Is) ≤ D, we have T ∗(Is) < D/2. Let σ∗ be an optimal schedule and
σ be the schedule generated by SJF on instance Is, respectively. Consider the
first time point t1 at which the machine becomes idle in schedule σ∗. Clearly
t1 < D/2. Let t2 be the first time point at which the machine becomes idle in
schedule σ. We want to show that t1 = t2. If this does not hold, there could be
two cases.

Case 1. t1 > t2. Consider those jobs scheduled in σ∗, that arrive before time t2.
Clearly the total processing time of them is greater than t2 (otherwise t1 ≤ t2).
Thus there must be some job J that is started before time t2 in σ∗ but is not
scheduled in σ. Let p be the processing time of job J . Then p > D−t2 > D−t1 >
t1, since J cannot fit in the schedule σ within the interval [t2, D]. This conflicts
with the fact that p ≤ t1. Thus this case cannot happen.
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Case 2. t2 > t1. In this case there must be some job J of processing time p that
is started before time t1 in σ but is not scheduled in σ∗. Clearly p + t1 > D.
This shows that p > D/2 and J is the largest job scheduled in σ. Moreover
there is some job J ′ ∈ σ∗ − σ (i.e., J ′ ∈ σ∗ but J ′ /∈ σ). At the time t that J
is started in σ, there are no small executable jobs (with processing time of at
most D/2). Thus the release time of J ′ is larger than t, since otherwise J ′ should
be scheduled instead of job J by the rule of algorithm SJF. It follows that the
machine must become idle at time t < t1 in schedule σ∗. This is a contradiction
with the definition of t1.

Therefore we have proved that t1 = t2 < D/2. Clearly in σ any job scheduled
by t1 has a processing time less than D/2, that must also be scheduled in σ∗,
and vice versa. This implies that σ and σ∗ schedule the same jobs by time t1.
Consider a new instance I by removing all jobs arriving before time t1. Note
that TSJF (I)/T ∗(I) = (TSJF (Is) − t1)/(T ∗(Is)− t1) > 2. It implies that I is a
counterexample with less jobs than Is. This conflicts with the assumption that Is
is a minimum counterexample. Hence the inequality (1) holds for any instances.
We conclude that

Theorem 1. The worst-case ratio of algorithm SJF is 2 for CD-LBSP under
objective function [min-time-spent]. ��

3 A PTAS for Minimizing Makespan

Esfahbod et al. [2] showed a 2-approximation algorithm under the objective [min-
makespan]. In the following, we will show that for any fixed integer k, there is
an approximation algorithm with a bound of (k + 1)/k. We first investigate the
following property for an optimal schedule.

Lemma 1. There must exist an optimal schedule that obeys the first come first
serve rule (FCFS) for minimizing makespan.

Proof. It is easy to show with an exchanging strategy. We start with an optimal
schedule that does not obey the FCFS rule. There must exist two adjacent
jobs Ji and Jj with release times ai < aj , while job Jj is scheduled before
job Ji in the optimal schedule. Swapping two such jobs does not disturb the
remaining schedule and the optimality remains. Continue this process until any
two adjacent jobs satisfy the property that the job arriving later is started later.
Finally we get an optimal schedule obeying FCFS. ��

For any given integer k > 0, distinguish the jobs as follows: A job is called big if
the job processing time is larger than D/(k+1); otherwise it is called small. Let
S be the set of small jobs and L be the set of big jobs. Suppose that |L| = m ≤ n.
Clearly in any schedule at most k big jobs can be executed. Consider all subsets
of L that consists of up to k big jobs. The number of such subsets is bounded
from above by Nk =

(
m
k

)
+

(
m

k−1

)
+ · · · +

(
m
1

)
+

(
m
0

)
= O(mk+1). Denote them

by Li, for i = 1, 2, . . . , Nk.



Common Deadline Lazy Bureaucrat Scheduling Revisited 519

Algorithm Ak

1. Sort the jobs in nondecreasing order of release times. Schedule the ordered
jobs one by one as long as it is executable (i.e., apply FCFS rule to the jobs)
and obtain a schedule σ0.

2. For i = 1, 2, . . . , Nk, schedule the jobs in Li ∪ S with FCFS. Denote the
schedule by σi. Discard schedule σi if
– some job ∈ Li ∪S cannot be scheduled by the common deadline D with

FCFS, or
– at some point t where the machine is idle a job Jj �∈ Li ∪ S could be

started, namely pj ≤ D − t.
3. Select the best one (with the least makespan) among all remaining schedules

including σ0.

The discarding strategy at Step 2 ensures that a schedule is kicked out if and
only if it is not feasible (not satisfying the busy requirement).

Theorem 2. For any given k, Ak is an approximation algorithm with worst-
case ratio of at most 1 + 1/k under objective function [min-makespan].

Proof. Consider an optimal schedule σ∗ satisfying the FCFS rule, i.e., the exe-
cuted jobs are in the order of their arrivals. If σ∗ does not execute all small jobs,
then the optimal makespan C∗ is at least D − D/(k + 1) = kD/(k + 1). Note
that the makespan CAk

given by Ak is at most D. Thus CAk
/C∗ ≤ 1 + 1/k.

Now assume that σ∗ executes all small jobs together with k1 ≤ k big jobs. More
precisely, σ∗ schedules those jobs with the FCFS rule. Obviously there must be a
feasible schedule identical to σ∗ in Step 2. In this case we get an optimal schedule
with algorithm Ak.

The combination of the two cases implies that the worst-case ratio of algo-
rithm Ak is 1 + 1/k.

Finally we estimate the running time of algorithm Ak. It takes time O(n log n)
to schedule jobs with FCFS. The running time of the algorithm is determined at
Step 2. It takes time O(nk+2 logn). As k is a fixed integer (constant), algorithm
Ak is polynomial. ��

For any fixed small number ε > 0, let k = �1/ε�, we get an approximation scheme
with worst-case ratio of at most 1 + ε. Thus we reach the following conclusion.

Corollary 1. There is a PTAS under objective function [min-makespan]. ��

4 A PTAS for Minimizing Time Spent

In this section, we will show that for any fixed integer k, there exists an ap-
proximation algorithm Bk with a bound of 1 + 1/k under objective function
[min-time-spent].

Suppose that there are m distinct release times 0 = T1 < T2 < · · · < Tm. Ob-
viously ifm = 1 the two objective functions [min-time-spent] and [min-makespan]
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are equivalent. If m > 1, the two objective functions may make difference since
some idle space may be introduced in a schedule. To deal with [min-time-spent]
our main idea is to analyze a schedule phase by phase. We will recursively apply
algorithm Ak in each phase and try to figure out the configuration of an optimal
schedule.

Based on algorithm Ak we define a series of algorithms Ai
k, for i = 1, 2, . . . ,m.

Algorithm Ai
k works exactly as algorithm Ak under the following two conditions:

(1) Only the jobs arriving at or after Ti are scheduled by Ak, and (2) a job is
big if its processing time is larger than (D − Ti)/(k + 1) and small otherwise.

Let M(i, j) denote the makespan produced by algorithm Ai
k in scheduling all

jobs arriving in the closed interval [Ti, Tj ], while the corresponding schedule is
denoted by S(i, j), for 0 ≤ i ≤ j ≤ m. For simplicity denote M(i, i) as M(i).
Let P (j) be the time spent by applying algorithm Bk (to be defined recursively
below) to the jobs arriving at or before Tj, while the corresponding schedule is
denoted by σj , for j = 1, . . . ,m.

Algorithm Bk

1. P (0) = 0, P (1) = M(1); Let σ1 be the corresponding schedule.
2. For j = 2, . . . ,m do:

P (j) = min{P (j − 1) + M(j), P (j − 2) + M(j − 1, j)), · · · , P (1) + M(2, j),
M(1, j)}; Suppose that P (j) is determined by P (h) +M(h + 1, j) for some
1 ≤ h ≤ j − 1. Let Mh be the makespan of schedule σh, i.e., the completion
time of the jobs arriving before Th+1. We construct σj as follows.
– If Mh ≤ Th+1, then σh has no intersection with S(h+1, j), the schedule of

jobs arriving in [Th+1, Tj]. Combining the two schedules we get a feasible
schedule σj .

– If Mh > Th+1, we keep schedule σh and delay the schedule S(h + 1, j)
(without changing the job order and schedule the jobs as early as possi-
ble) to time Mh. We thus get a feasible schedule σj .

3. The final schedule σ = σm.

Before analyzing the above algorithm we need to show, if Mh > Th+1 for some
h, schedule σj is feasible. In other words, the jobs scheduled in S(h+1, j) can be
completed by time D after the delay. If it is not true, then Mh +M(h+ 1, j) ≥
Mh +

∑
Ji∈S(h+1,j) pi > D. Let Tl be the ending time of the last idle interval

of schedule σh (if no idle time, Tl = T1). Obviously Tl + M(l, j) ≤ D , thus
P (h) +M(h+ 1, j) ≥ P (l− 1) + (Mh− Tl) +M(h+ 1, j) > P (l− 1) +D− Tl ≥
P (l − 1) + M(l, j). This conflicts with the assumption that P (j) is determined
by P (h) +M(h+ 1, j). Thus σj is feasible.

Algorithm Bk employs algorithm Ak as a subroutine. To calculate P (m) we
need to run Ak for O(m2) times. The running time of Bk is O(nk+4 logn). It is
polynomial for any fixed integer k > 0.

Theorem 3. For any given k, the worst-case ratio of algorithm Bk is at most
1 + 1/k under objective function [min-time-spent].
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Proof. We prove this theorem by induction. If there is only one (common) release
time T1, i.e., m = 1, Bk works exactly the same as Ak and the makespan M(1)
is equal to the time spent P (1). By Theorem 2 we get the bound of 1 + 1/k.

Assume the theorem holds for l distinct release times, i.e., holds for m = l.
We want to show it is still true for m = l + 1. Consider an optimal schedule σ∗.
If there is no idle time before all its jobs are completed, we have already get the
conclusion with the following two points:

– In σ∗, the time spent is equal to the makespan.
– The time spent by algorithm Bk is at most M(1, l + 1) which is at most

1 + 1/k times the makespan of σ∗, by Theorem 2.

Now assume that there is indeed some idle time before all its jobs (of σ∗) are
completed. Denote the last idle interval by [x, y]. Obviously y must be some job
release time (otherwise the job that starts at time y would have been scheduled
earlier due to the busy requirement). Let y = Th, h ≤ l+1. The optimal schedule
σ∗ is divided into two parts σ∗

1 and σ∗
2 , where σ∗

1 is an optimal schedule for those
jobs arriving before Tl+1, and σ∗

2 is an optimal schedule for the jobs arriving at
or after Tl+1. Denote by OPT1 and OPT2 the two objective values of σ∗

1 and
σ∗

2 , respectively. Then OPT = OPT1 + OPT2 is the objective value of σ∗. By
induction we have P (h − 1) ≤ (1 + 1/k)OPT1. Note that there is no idle time
in σ∗

2 . Thus M(h, l + 1) ≤ (1 + 1/k)OPT2 by Theorem 2. On the other hand,
P (l + 1) ≤ P (h− 1) +M(h, l + 1). Therefore we have

P (l + 1) ≤ (1 + 1/k)(OPT1 +OPT2) = (1 + 1/k)OPT.

The theorem is proved. ��
Analogously as Corollary 1 we have

Corollary 2. There is a PTAS under objective function [min-time-spent]. ��

5 NP-Hardness for Common Release Time

It has been shown in the literature [1, 2] that the lazy bureaucrat scheduling
problem is NP-hard if all jobs have the same release time or have the same
deadline. In this section we improve the above result by considering a special
case that jobs come at the same time and have to be done by the same deadline
if scheduled.

Theorem 4. Even when the jobs share the same release time, the CD-LBSP is
still NP-hard under objective functions [min-number-jobs] and [min-weighted-
sum].

Proof. We only need to prove the NP-hardness for [min-number-jobs]. The re-
duction is from the subset sum problem: Given a set of integers S = {x1, . . . , xn}
and a target integer k, does there exist a subset S′ ⊆ S, such that

∑
xi∈S′

xi = k?

Without loss of generality, we assume that k > 1.
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For any given instance of the subset sum problem we construct an instance
of CD-LBSP containing 2n + 1 jobs, all having the same release time 0 and
the common deadline D = k. Corresponding to each integer xi ∈ S, define an
element job mi with processing time pi = xi, for i = 1, 2, . . . , n. Moreover we
introduce n + 1 tiny jobs, each with a processing time of 1/(n + 1). One can
easily verify that the answer to the subset sum problem is “yes” if and only if
the number of the executed jobs is at most n. ��

As for the other two objective functions [min-makespan] and [min-time-spent]
we give the following remark. Instead of the original scheduling problem we will
show the NP-hardness for a slightly different problem, namely the CD-LBSP
with multiplicities of jobs where some jobs are replicable.

Note that for the special problem in any schedule there will be no idle time
before the schedule ends. Therefore, the two objective functions [min-makespan]
and [min-time-spent] are equivalent. We consider [min-makespan] with a reduc-
tion from the subset sum problem (see above). For any given instance of the subset
sum problem we construct an instance of CD-LBSP containing n + k + 1 jobs,
all having the same release time 0 and the common deadline D = k + 1− 2/k2.
Corresponding to each integer xi ∈ S, define an element job mi with processing
time pi = xi, for i = 1, 2, . . . , n. Moreover we introduce k + 1 tiny jobs, each
with a processing time of 1− 1/k2.

Although we create an exponential number of jobs (n + k + 1 jobs) in the
scheduling problem, the length of the input is still polynomial, since all of the
k + 1 tiny jobs have the same processing time. Thus the reduction can be done
in polynomial time.

The bureaucrat aims at minimizing the makespan. We claim that the answer
to the subset sum problem is “yes” if and only if there exists a feasible schedule in
which the bureaucrat executes only element jobs and the makespan is exactly k.

If the answer to the subset sum problem is “yes”, then there exists a subset of
element jobs, the sum of whose processing times is k. Schedule these jobs one by
one and finish them at time k. The length of the remaining time interval [k,D]
is smaller than any job processing time in the instance. Thus the schedule ends
with a makespan of k.

If the answer to the subset sum problem is “no”, we will show that the
makespan of any feasible schedule of the scheduling problem is larger than k.
Assume that the total processing time of the element jobs executed is smaller
than k. In this case, the bureaucrat must execute some tiny jobs. Note that
the total processing time of k + 1 tiny jobs is k + 1 − (k + 1)/k2 > k (since
k > 1). There must be some tiny jobs unscheduled, since otherwise the makespan
is already over k. Thus the makespan of any feasible schedule is larger than
D − (1 − 1/k2) = k − 1/k2. Note that any job processing time in the instance
can be divided by 1/k2. It means that the makespan can be divided by 1/k2,
namely, the makespan is at least k. However, the total processing time of any
number k1 (1 ≤ k1 ≤ k + 1) of tiny jobs is not an integer. In other words the
makespan is not an integer and thus it is larger than k.
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Abstract. We show that any comparison based, randomized algorithm
to approximate any given ranking of n items within expected Spearman’s
footrule distance n2/ν(n) needs at least n (min{log ν(n), log n} − 6) com-
parisons in the worst case. This bound is tight up to a constant
factor since there exists a deterministic algorithm that shows that
6n(log ν(n) + 1) comparisons are always sufficient.

Keywords: Sorting, Ranking, Spearman’s footrule metric, Kendall’s tau
metric.

1 Introduction

Our motivation to study approximate sorting comes from the following mar-
ket research application. We want to find out how a respondent ranks a set of
products. In order to simulate real buying situations the respondent is presented
pairs of products out of which he has to choose one that he prefers, i.e., he has
to perform paired comparisons. The respondent’s ranking is then reconstructed
from the sequence of his choices. That is, a procedure that presents a sequence
of product pairs to the respondent in order to obtain the product ranking is
nothing else than a comparison based sorting algorithm. We can measure the
efficiency of such an algorithm in terms of the number of (pairwise) comparisons
needed in order to obtain the ranking. The information theoretic lower bound
on sorting [7] states that there is no procedure that can determine a ranking
by posing less than n log n

e paired comparison questions to the respondent, i.e.,
in general Ω(n log n) comparisons are needed. Even for only moderately large
n that easily is too much since respondents often get worn out after a certain
number of questions and do not answer further questions faithfully anymore.
On the other hand, it might be enough to know the respondent’s ranking ap-
proximately. In this paper we pursue the question of how many comparisons are
necessary and sufficient in order to approximately rank n products.
� Partly supported by the Swiss National Science Foundation under the grant “Ro-
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In order to give sense to the term “approximately” we need some metric
to compare rankings. Assume that we are dealing with n products. Since a
ranking is a permutation of the products, this means that we need a metric on
the permutation group Sn. Not all of the metrics, e.g., the Hamming distance
that counts how many products are ranked differently, are meaningful for our
application. For example, if in the respondent’s ranking one exchanges every
second product with its predecessor, then the resulting ranking has maximal
Hamming distance to the original one. Nevertheless, this ranking still tells a
lot about the respondent’s preferences. In marketing applications Kendall’s tau
metric [4] is frequently used since it seems to capture the intuitive notion of
closeness of two rankings and also arises naturally in the statistics of certain
random rankings [8].

Our results. Instead of working with Kendall’s metric we use Spearman’s footrule
metric [4] which essentially is equivalent to Kendall’s metric, since the two met-
rics are within a constant factor of each other [4]. The maximal distance be-
tween any two rankings of n products in Spearman’s footrule metric is less
than n2. We show that in order to obtain a ranking at distance n2/ν(n) to
the respondent’s ranking with any strategy, a respondent has in general to per-
form at least n (min{log ν(n), log n} − 6) comparisons in the worst case, i.e.,
there is an instance for which any comparison based algorithm performs at least
n (min{log ν(n), logn} − 6) comparisons. Moreover, if we allow the strategy to
be randomized such that the obtained ranking is at expected distance n2/ν(n)
to the respondent’s ranking, we can show that the same bound on the minimum
number of comparisons holds.

On the other hand, there is a deterministic strategy (algorithm), suggested
in [2], that shows that 6n(log ν(n) + 1) comparisons are always sufficient.

Related work. At first glance our work seems related to work done on pre-sorting.
In pre-sorting the goal is to pre-process the data such that fewer comparisons
are needed afterwards to sort them. For example in [5] it is shown that with
O(1) pre-processing one can save Θ(n) comparisons for Quicksort on average.
Pre-processing can be seen as computing a partial order on the data that helps
for a given sorting algorithm to reduce the number of necessary comparisons.
The structural quantity that determines how many comparisons are needed in
general to find the ranking given a partial order is the number of linear exten-
sions of the partial order, i.e., the number of rankings consistent with the partial
order. Actually, the logarithm of this number is a lower bound on the number
of comparisons needed in general [6]. Here we study another structural measure,
namely, the maximum diameter in the Spearman’s metric of the set of rankings
consistent with a partial order. Our results shows that with o(n logn) compar-
isons one can make this diameter asymptotically smaller than the diameter of
the set of all rankings. That is not the case for the number of linear extensions
which stays in Θ(2n log n).

Notation. The logarithm log in this paper is assumed to be binary, and by id
we denote the identity (increasing) permutation of [n].
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2 Algorithm

The idea of the ASort algorithm is to partition the products into a sorted
sequence of equal-sized bins such that the elements in each bin have smaller
rank than any element in subsequent bins. This approach was suggested by
Chazelle [2] for near-sorting. The output of the algorithm is the sequence of
bins. Note that we do not specify the ordering of elements inside each bin, but
consider any ranking consistent with the ordering of the bins. We will show that
any such ranking approximates the actual ranking of the elements in terms of
Spearman’s footrule metric

D(π, id) = D(π) =
n∑

i=1

|i− π(i)|,

where π(i) is the rank of the element of rank i in an approximate ranking, i.e.,
|i − π(i)| measures deviation of the approximated rank from the actual rank.
Note that for any ranking the distance in the Spearman’s footrule metric to id
is at most n2

2 .
Since for every i the value |i− π(i)| is bounded by n divided by the number

of bins, we see that the approximation quality depends on the number of bins.
The algorithm ASort iteratively performs a number of median searches, each

time placing the median into the right position in the ranking. Here the median
of n elements is defined to be the element of rank �n+1

2 �.

ASort (B : set, m : int)
1 B01 := B // Bij is the j’th bin in the i’th round
2 for i := 1 to m do
3 for j := 1 to 2i−1 do
4 compute the median of B(i−1)j
5 Bi(2j−1) := {x ∈ B(i−1)j | x ≤ median}
6 Bi(2j) := {x ∈ B(i−1)j | x > median}
7 end for
8 end for
9 return Bm1, . . . , Bm(2m)

To compute the median in line 4 and to partition the elements in line 5
and 6 we use the deterministic algorithm by Blum et al. [1] that performs at
most 5.73n comparisons in order to compute the median of n elements and to
partition them according to the median. We note that in putting the algorithm
ASort to practice one may want to use a different median algorithm, like, e.g.,
RandomizedSelect [3].

In the following we determine the number of comparisons the algorithm
ASort needs on input B with |B| = n in order to guarantee a prescribed
approximation error of the actual ranking for any ranking consistent with the
ordering of the bins Bm1, . . . , Bm(2m) computed by the algorithm.



Approximate Sorting 527

Lemma 1. For every x ∈ Bij, where 0 ≤ i ≤ m and 1 ≤ j ≤ 2i, it holds

j−1∑
k=1

|Bik|+ 1 ≤ rank(x) ≤
j∑

k=1

|Bik|.

Proof. The lemma can be proven by induction on the number of rounds. By
construction, the elements in B01 have rank at least 1 and at most n = |B01| =∑1

k=1 |B0k|. The claim for i = 0 follows if we set the empty sum
∑0

k=1 |B0k| to 0.
Now assume that the statement holds after the (i − 1)’th round. The algo-

rithm partitions every bin B(i−1)j into two bins Bi(2j−1) and Bi(2j). Again by
construction the elements in bin Bi(2j−1) have rank at least

j−1∑
k=1

|B(i−1)k|+ 1 =
j−1∑
k=1

(|Bi(2k−1)|+ |Bi(2k)|) + 1 =
(2j−1)−1∑

k=1

|Bik|+ 1,

and at most
(2j−1)−1∑

k=1

|Bik|+ |Bi(2j−1)| =
2j−1∑
k=1

|Bik|.

Similarly, the elements in bin Bi(2j) have rank at least
∑2j−1

k=1 |Bik| + 1 and at
most

∑j
k=1 |B(i−1)k| =

∑2j
k=1 |Bik|. ��

Lemma 2. � n
2i � ≤ |Bij | ≤ � n

2i � for 0 ≤ i ≤ m and 1 ≤ j ≤ 2i.

Proof. We prove by induction that in any round i the sizes of any two bins differ
by at most 1, i.e.,

∣∣|Bij | − |Bik|
∣∣ ≤ 1 for 0 ≤ i ≤ m and 1 ≤ j, k ≤ 2i. The

statement of the lemma then follows since by an averaging argument and the
integrality of the bin sizes, the size of each bin must be of size either � n

2i � or
� n

2i �.
For i = 0 all n elements of B are in bin B01. The claim for i = 0 follows since

�n� ≤ n ≤ �n�.
Now assume that the statement holds for i − 1. Take two bins B(i−1)j and

B(i−1)k. We distinguish two cases.

Case 1. B(i−1)j and B(i−1)k have the same size c. If c is even, then both bins get
split up into two bins each and the resulting four bins all have the same size. If
c is odd, then each of the bins gets split up into two bins of sizes � c

2� and � c
2�,

respectively, which differ by 1.

Case 2. Without loss of generality, |B(i−1)j | = c and |B(i−1)k| = c + 1. If c is
even, then B(i−1)j gets split up into two bins both of size c

2 and B(i−1)k gets
split up into two bins of size c

2 and c
2 + 1, respectively. If c is odd, then B(i−1)j

gets split up into two subsets of size c+1
2 and c+1

2 − 1, respectively, and B(i−1)k

gets split up into two bins of size c+1
2 . In any case the bins differ in size by at

most 1. ��
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Lemma 3. In m rounds the algorithm ASort performs less than 6nm
comparisons.

Proof. The algorithm by Blum et al. [1] needs at most 5.73n comparisons to
find the median of n elements and to partition the elements with respect to the
median. In the i’th round ASort partitions the elements in every bin Bij , 1 ≤
j ≤ 2i with respect to their median. Thus the i’th round needs at most

2i∑
j=1

5.73|Bij| = 5.73
2i∑

j=1

|Bij | = 5.73n ≤ 6n

comparisons. As the algorithm runs for m rounds the overall number of compar-
isons is less than 6nm. ��

Theorem 1. Let r = n2

ν(n) . Any ranking consistent with the ordering of the bins
computed by ASort in log ν(n) + 1 rounds, i.e., with less than
6n(log ν(n) + 1) comparisons, has a Spearman’s footrule distance of at most
r to the actual ranking of the elements from B.

Proof. Using the definition of Spearman’s footrule metric and Lemmas 1 and 2
we can conclude that the distance of the ranking of the elements in B to any
ranking consistent with the ordering of the bins computed by ASort inm rounds
can be bounded by

2m∑
j=1

|Bmj |2
2

≤ 2m (� n
2m �)2
2

≤ 2m−1
( n

2m
+ 1

)2

≤ 2m−1
(

2n
2m

)2

, since 2m ≤ n

=
n2

2m−1 .

Plugging in log ν(n) + 1 for m gives a distance less than r as claimed in the
statement of the theorem. The claim for the number of comparisons follows
from Lemma 3. ��

3 Lower Bound

For r > 0, by BD(id, r) we denote the ball centered at id of radius r with respect
to the Spearman’s footrule metric, so

BD(id, r) := {π ∈ Sn : D(π, id) ≤ r}.

Next we estimate the number of permutations in a ball of radius r.
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Lemma 4 ( r

en

)n

≤ |BD(id, r)| ≤
(

2e(r + n)
n

)n

.

Proof. Every permutation π ∈ Sn is uniquely determined by the sequence {π(i)−
i}i. Hence, for any sequence of non-negative integers di, i = 1, . . . , n, there are
at most 2n permutations π ∈ Sn satisfying |π(i)− i| = di.

If dD(π, id) ≤ r, then
∑

i |π(i) − i| ≤ r. Since the number of sequences of n
non-negative integers whose sum is at most r is

(
r+n

n

)
, we have

|BD(id, r)| ≤
(
r + n

n

)
2n ≤

(
2e(r + n)

n

)n

.

Next, we give a lower bound on the size of BD(id, r). Let s := �n2

r �, and let
us first assume that n is divisible by s. We divide the index set [n] into s blocks
of size n/s, such that for every i ∈ {1, 2, . . . , s} the ith block consists of elements
(i− 1)n

s + 1, (i− 1)n
s + 2, . . . , in

s . For every s permutations π1, π2, . . . , πs ∈ Sn/s

we define the permutation ρ ∈ Sn to be the concatenation of the permutations
applied to corresponding blocks, so ρ := π1(b1)π2(b2) . . . πs(bs). Note that the
distance of ρ to id with respect to Spearman’s footrule metric is at most n ·
n/s ≤ r, since |ρ(i) − i| ≤ n/s, for every i ∈ [n]. Obviously, for every choice
of π1, π2, . . . , πs we get a different permutation ρ, which means that we have at
least ((n

s

)
!
)s

≥
( r

en

)n

different permutations in BD(id, r).
If n is not divisible by s, we divide [n] into s blocks of size either �n/s� or

�n/s�, again apply an arbitrary permutation on each of them and we can obtain
the same bound in an analogous fashion. �

Using the upper bound from the last lemma, we now give a lower bound for the
worst case running time of any comparison based approximate sorting algorithm.

Theorem 2. Let A be a randomized approximate sorting algorithm based on
comparisons, let ν = ν(n) be a function, and let r = r(n) = n2

ν(n) .
If for every input permutation π ∈ Sn the expected Spearman’s footrule dis-

tance of the output to id is at most r, then the algorithm performs at least
n (min{log ν, logn} − 6) comparisons in the worst case.

Proof. Let k be the smallest integer such that A performs at most k comparisons
for every input. For a contradiction, let us assume that

k < n (min{log ν, logn} − 6) .

First, we are going to prove

1
2
n! > 2k

(
2e(2r + n)

n

)n

. (1)
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Since log ν − 6 > k/n, we have ν
26 > 2k/n and since ν = n2

r we get

n

2e
> 2k/n 2e · 2r

n
. (2)

On the other hand, from logn− 6 > k/n we get n
26 > 2k/n implying

n

2e
> 2k/n 2e · n

n
. (3)

Putting (2) and (3) together, we obtain

n

e
> 2k/n 2e(2r + n)

n
.

Hence
1
2
n! ≥

(n
e

)n

> 2k

(
2e(2r + n)

n

)n

,

proving (1).
We denote by R the source of random bits for A. One can see R as the set

of all infinite 0-1 sequences, and then the algorithm is given a random element
of R along with the input. For a permutation π ∈ Sn and α ∈ R, we denote by
A(π, α) the output of the algorithm with input π and random bits α.

We fix α̃ ∈ R and run the algorithm for every permutation π ∈ Sn. Note that
with the random bits fixed the algorithm is deterministic. For every comparison
made by the algorithm there are two possible outcomes. We partition the set
of all permutations Sn into classes such that all permutations in a class have
the same outcomes of all the comparisons the algorithm makes. Since there is
no randomness involved, we have that for every class C there exists a σ ∈ Sn

such that for every π ∈ C we have A(π, α̃) = σ ◦π, where ◦ is the multiplication
in the permutation group Sn. In particular, this implies that the set {A(π, α̃) :
π ∈ C} is of size |C|. On the other hand, since the algorithm in this setting
is deterministic and the number of comparisons of the algorithm is at most k,
there can be at most 2k classes. Hence, each permutation in Sn is the output for
at most 2k different input permutations. From Lemma 4 we have |BD(id, 2r)| ≤(

2e(2r+n)
n

)n

, and this together with (1) implies that at least

n!− 2k

(
2e(2r + n)

n

)n

>
1
2
n!

input permutations have output at distance to id more than 2r.
Now, if both the random bits α ∈ R and the input permutation π ∈ Sn

are chosen at random, the expected distance of the output A(π, α) to id is more
than r. Therefore, there exists a permutation π0 such that for a randomly chosen
α ∈ R the expected distance dD(A(π0, α), id) is more than r. Contradiction. �
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4 Conclusion

Motivated by an application in market research we studied the problem to ap-
proximate a ranking of n items. The metric we use to compare rankings is Spear-
man’s footrule metric, which is within a constant factor to Kendall’s tau metric
that is frequently used in marketing research. We showed that any comparison
based, randomized algorithm in the worst case needs at least

n (min{log ν(n), logn} − 6)

comparisons to approximate a given ranking of n items within expected dis-
tance n2/ν(n) . This result is complemented by an algorithm that shows that
6n(log ν(n) + 1) comparisons are always sufficient.

In particular, this means that in some cases substantially less comparisons
have to be performed than for sorting exactly, provided that a sufficiently large
error is allowed. That is, as long as the desired expected error is of order n2−α

for constant α one needs Ω(n logn) comparisons, which asymptotically is not
better than sorting exactly. But to achieve expected error of order n2−o(1) only
o(n logn) comparisons are needed.

Acknowledgments. We are indebted to Jǐŕı Matoušek for comments and insights
that made this paper possible.
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Abstract. We introduce a class of “stochastic covering” problems where
the target set X to be covered is fixed, while the “items” used in the cov-
ering are characterized by probability distributions over subsets of X.
This is a natural counterpart to the stochastic packing problems intro-
duced in [5]. In analogy to [5], we study both adaptive and non-adaptive
strategies to find a feasible solution, and in particular the adaptivity gap,
introduced in [4].

It turns out that in contrast to deterministic covering problems, it
makes a substantial difference whether items can be used repeatedly or
not. In the model of Stochastic Covering with item multiplicity, we show
that the worst case adaptivity gap is Θ(log d), where d is the size of the
target set to be covered, and this is also the best approximation factor we
can achieve algorithmically. In the model without item multiplicity, we
show that the adaptivity gap for Stochastic Set Cover can be Ω(d). On
the other hand, we show that the adaptivity gap is bounded by O(d2),
by exhibiting an O(d2)-approximation non-adaptive algorithm.

1 Introduction

Stochastic optimization deals with problems involving uncertainty on the input.
We consider a setting with multiple stages of building a feasible solution. Initially,
only some information about the probability distribution of the input is avail-
able. At each stage, an “item” is chosen to be included in the solution and the
precise properties of the item are revealed (or “instantiated”) after we commit to
selecting the item irrevocably. The goal is to optimize the expected value/cost
of the solution. This model follows the framework of Stochastic Packing [4, 5]
where the problem is to select a set of items with random sizes, satisfying given
capacity contraints. We obtain profit only for those items that fit within the ca-
pacity; as soon as a capacity constraint is violated, the procedure terminates and
we do not receive any further profit. It is an essential property of this model that
once an item is selected, it cannot be removed from the solution. The objective
is to maximize the expected profit obtained.
� Research Supported in part by NSF grants CCR-0098018 and ITR-0121495, and
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In this paper, we study a class of problems in a sense dual to Stochastic
Packing: Stochastic Covering. Here, items come with random sizes again but the
goal is to select sufficiently many items so that given covering constraints are
satisfied. An example is the Stochastic Set Cover problem where the ground set
X is fixed, while the items are characterized by probability distributions over
subsets of X . We select items knowing only these distributions. Each item turns
out to be a certain subset of X and we repeat this process until the entire set
X is covered. For each item used in the solution, we have to pay a certain cost.
The objective is then to minimize the expected cost of our solution.

A central paradigm in this setting is the notion of adaptivity. Knowing the
instantiated properties of items selected so far, we can make further decisions
based on this information. We call such an approach an adaptive policy. Alter-
natively, we can consider a model where this information is not available and we
must make all decisions beforehand. This means, we choose an ordering of items
to be selected, until a feasible solution is obtained, only based on the known
probability distributions. Such an approach is called a non-adaptive policy. A
fundamental question is, what is the benefit of being adaptive? We measure this
benefit quantitatively as the ratio of expected costs incurred by optimal adaptive
vs. non-adaptive policies (the adaptivity gap). A further question is whether a
good adaptive or non-adaptive policy can be found efficiently.

1.1 Definitions

Now we define the class of problems we are interested in. The input comes in
the form of a collection of items. Item i has a scalar value vi and a vector size
S(i). Unless otherwise noted, we assume that S(i) is a random vector with
nonnegative components, while vi is a deterministic nonnegative number. The
random size vectors of different items are assumed independent.

We start with the deterministic form of a general covering problem, which is
known under the name of a Covering Integer Program (see [17]). The forefather
of these problems is the well-known Set Cover.

Definition 1 (CIP). Given a collection of sets F = {S(1), S(2), . . . , S(n)},⋃n
i=1 S(i) = X, Set Cover is the problem of selecting as few sets as possible so

that their union is equal to X.
More generally, given a nonnegative matrix A ∈ Rn×d

+ and vectors b ∈ Rd
+,v ∈

Rn
+, a Covering Integer Program (CIP) is the problem of minimizing v ·x subject

to Ax ≥ b and x ∈ {0, 1}d. Set Cover corresponds to the case where A is a 0/1
matrix, with columns representing the sets S(1), . . . , S(n).

We define a Stochastic Covering problem as a stochastic variant of CIP where the
columns of A, representing items sizes S(i), are random. The “demand vector” b
is considered deterministic. By scaling, we can assume that b = 1 = (1, 1, . . . , 1).

Definition 2 (Stochastic Covering). Stochastic Covering (SP) is a stochas-
tic variant of a CIP where A is a random matrix whose columns are independent
random nonnegative vectors, denoted S(1), . . .S(n). Stochastic Set Cover is a
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special case where the S(i) are random 0/1 vectors. A given instantiation of a
set of items F is feasible if

∑
i∈F S(i) ≥ 1. The value of S(i) is instantiated

and fixed once we include the item i in F . Once this decision is made, the item
cannot be removed.

When we refer to a stochastic optimization problem “with multiplicity”, it means
that each item on the input comes with an unlimited number of identical copies.
This makes sense for deterministic CIP as well, where we could allow arbitrary
integer vectors x ∈ Zn

+. In the stochastic case, this means that the probability
distributions for the copies of each item are identical; their instantiated sizes are
still independent random variables.

We require a technical condition that the set of all items is feasible with
probability 1. For Stochastic Covering with multiplicity, it is sufficient to require
that the set of all items is feasible with positive probability.

For all variants of Stochastic Covering problems, we consider adaptive and
non-adaptive policies.

Definition 3 (Adaptive and non-adaptive policies.). A non-adaptive pol-
icy is a fixed ordering of items to be inserted.

An adaptive policy is a function P : 2[n] × Rd
+ → [n]. The interpretation of

P is that given a configuration (I, b) where I represents the items still available
and b the remaining demand, P(I, b) determines which item should be chosen
next among the items in I.

The cost incurred by a policy is the total value of the items used until a feasible
covering is found. For an instance of a Stochastic Covering problem, we define

– ADAPT = minimum expected cost incurred by an adaptive policy.
– NONADAPT = minimum expected cost incurred by a non-adaptive policy.
– α = NONADAPT/ADAPT is the adaptivity gap.

For a class of Stochastic Covering problems, we define α∗ as the maximum pos-
sible adaptivity gap.

1.2 Our Results

We present several results on Stochastic Covering problems. We develop an LP
bound on the adaptive optimum, based on the notion of “mean truncated size”.
For Stochastic Covering with multiplicity, we show that the worst case adap-
tivity gap is Θ(log d). We prove the upper bound by presenting an efficient
non-adaptive O(log d)-approximation algorithm, based on the LP bound.

For Stochastic Covering without multiplicity, we have results in the special
case of Stochastic Set Cover. We show that the adaptivity gap in this case can
be Ω(d) and it is bounded by O(d2). Again, the upper bound is constructive, by
an efficient non-adaptive approximation algorithm. Also, we show an adaptive
O(d)-approximation algorithm for Stochastic Set Cover. This, however, does not
bound the worst-case adaptivity gap which could be anywhere between Ω(d)
and O(d2). We leave this as an open question.
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1.3 Previous Work

Stochastic Optimization with Recourse. Recently, stochastic optimization
has come to the attention of the computer science community. An optimization
model which has been mainly under scrutiny is the two-stage stochastic opti-
mization with recourse [10, 8, 15]. In the first stage, only some information about
the probability distribution of possible inputs is available. In the second stage,
the precise input is known and the solution must be completed at any cost.
The goal is to minimize the expected cost of the final solution. This model has
been also extended to multiple stages [9, 16]. However, an essential difference
between this model and ours is whether the randomness is in the properties of
items forming a solution or in the demands to be satisfied. Let’s illustrate this
on the example of Set Cover: Shmoys and Swamy consider in [15] a Stochastic
Set Cover problem where the sets to be chosen are deterministic and there is
a random target set A to be covered. In contrast, we consider a Stochastic Set
Cover problem where the target set is fixed but the covering sets are random.
This yields a setting of a very different flavor.

Stochastic Knapsack. The first problem analyzed in our model of multi-stage
optimization with adaptivity was the Stochastic Knapsack [4]. The motivation
for this problem is in the area of stochastic scheduling where a sequence of jobs
should be scheduled on a machine within a limited amount of time. The goal
is to maximize the expected profit received for jobs completed before a given
deadline. The jobs are processed one by one; after a job has been completed, its
precise running time is revealed - but then it is too late to remove the job from
the schedule. Hence the property of irrevocable decisions, which is essential in
the definition of our stochastic model.

In [4, 6], we showed that adaptivity can provide a certain benefit which is,
however, bounded by a constant factor. A non-adaptive solution which achieves
expected value at least 1/4 of the adaptive optimum is achieved by a greedy
algorithm which runs in polynomial time. Thus the adaptivity gap is upper-
bounded by 4. Concerning adaptive approximation, we showed that for any
ε > 0, there is a polynomial-time adaptive policy achieving at least 1/3 − ε
of the adaptive optimum.

Stochastic Packing. Stochastic Packing problems generalize the Stochastic
Knapsack in the sense that we allow multidimensional packing contraints. This
class contains many combinatorial problems: set packing, maximum matching,
b-matching and general Packing Integer Programs (PIP, see e.g. [14]). In the
stochastic variants of these problems we consider items with random vector sizes
which are instantiated upon inclusion in the solution. Our motivation for this
generalization is scheduling with multiple resources.

The analysis of Stochastic Packing in [5] reveals a curious pattern of re-
sults. Let us present it on the example of Stochastic Set Packing. Here, each
item is defined by a value and a probability distribution over subsets A ⊆ X
where X is a ground set of cardinality |X | = d. A feasible solution is a collec-
tion of disjoint sets. It is known that for deterministic Set Packing, the greedy
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algorithm provides an O(
√
d)-approximation, and there is a closely matching in-

approximability result which states that for any fixed ε > 0, a polynomial-time
d1/2−ε-approximation algorithm would imply NP = ZPP [2].

For Stochastic Set Packing, it turns out that the adaptivity gap can be as large
as Θ(

√
d). On the other hand, this is the worst case, since there is a polynomial-

time non-adaptive policy which gives an O(
√
d)-approximation of the adaptive

optimum. Note that even with an adaptive policy, we cannot hope for a better
approximation factor, due to the hardness result for deterministic Set Packing.

These results hint at a possible underlying connection between the quantities
we are investigating: deterministic approximability, adaptivity gap and stochas-
tic approximability. Note that there is no reference to computational efficiency
in the notion of adaptivity gap, so a direct connection with the approximability
factor would be quite surprising.

In this paper, we are investigating the question whether such phenomena
appear in the case of covering problems as well.

Covering Integer Programs. Stochastic Covering problems can be seen as
generalizations of Covering Integer Programs (CIP, see [17]). The forefather of
Covering Integer Programs is the well-known Set Cover problem. For Set Cover,
it was proved by Johnson [11] that the greedy algorithm gives an approximation
factor of ln d. This result was extended by Chvátal to the weighted case [3].
The same approximation guarantee can be obtained by a linear programming
approach, as shown by Lovász [13]. Finally, it was proved by Uriel Feige [7]
that these results are optimal, in the sense that a polynomial-time (1 − ε) ln d
approximation algorithm for Set Cover would imply NP ⊂ TIME(nO(log log n)).

Note. Usually the cardinality of the ground set is denoted by n, but to be consis-
tent with Stochastic Packing problems, we view this parameter as “dimension”
and denote it by d.

For general Covering Integer Problems, the optimal approximation has been
found only recently [1, 12]. The approximation factor turns out to be again
O(log d) but the approximation algorithm is more sophisticated. Also, the nat-
ural LP can have an arbitrarily large integrality gap.

2 Stochastic Covering with Multiplicity

Let’s start with the class of Stochastic Covering problems where each item can
be used arbitrarily many times.

Lemma 1. There are instances of Stochastic Set Cover with multiplicity where
the adaptivity gap is at least 0.45 lnd.

Proof. Consider item types for i = 1, 2, . . . , d where S(i) = 0 or ei with prob-
ability 1/2. All items have unit values. An adaptive policy inserts an expected
number of 2 items of each type until the respective component is covered;
ADAPT ≤ 2d.
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Assume that a nonadaptive policy at some point has inserted ki items of type
i, for each i. Denote the total size at that point by S. We estimate the probability
that this is a feasible solution:

Pr[S ≥ 1] =
d∏

i=1

Pr[Si ≥ 1] =
d∏

i=1

(1− 2−ki) ≤ exp

(
−

d∑
i=1

2−ki

)
.

Assume that k =
∑d

i=1 ki = d log2 d. By convexity, the probability of covering is
maximized for a given d when ki = k/d = log2 d, and then still Pr[S ≥ 1] ≤ 1/e.
Thus whatever the non-adaptive policy does, there is probability 1− 1/e that it
needs more than d log2 d items, which means NONADAPT ≥ (1−1/e)d log2 d >
0.9d lnd.

Now we would like to prove that O(log d) is indeed the worst possible adaptiv-
ity gap, not only for Stochastic Set Cover with multiplicity but for all Stochastic
Covering problems with multiplicity. First, we need a bound on the adaptive
optimum. For this purpose, we define the mean truncated size of an item, in
analogy to [4].

Definition 4. We define the mean truncated size of an item with random size
S by components as

μj = E[min{Sj, 1}].
For a set of items A, we let μj(A) =

∑
i∈A μj(i).

We prove that in expectation, the mean truncated size of the items inserted by
any policy must be at least the demand required for each coordinate.

Lemma 2. For a Stochastic Covering problem and any adaptive policy, let A
denote the (random) set of items which the policy uses to achieve a feasible
covering. Then for each component j,

E[μj(A)] ≥ 1.

Proof. Consider component j. Denote by Mj(c) the minimum expected μj(A)
for a set A that an adaptive policy needs to insert in order to satisfy remaining
demand c in the j-th component. We prove, by induction on the number of
available items, that Mj(c) ≥ c. Suppose that an optimal adaptive policy, given
remaining demand c, inserts item i. Denote by cover(i, c) the indicator variable
of the event that item i covers the remaining demand (i.e., Sj(i) ≥ c, and in
that case the policy terminates). We denote by s̃j(i) the truncated size s̃j(i) =
min{Sj(i), 1}:

Mj(c) = μj(i) + E[(1− cover(i, c))Mj(c− s̃j(i))]

= E[s̃j(i) + (1− cover(i, c))Mj(c− s̃j(i))]

and using the induction hypothesis,

Mj(c) ≥ E[s̃j(i) + (1 − cover(i, c))(c− s̃j(i))] = c−E[cover(i, c)(c− s̃j(i))] ≥ c

since cover(i, c) = 1 only if s̃j(i) ≥ c.
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Note that this lemma does not depend on whether multiplicity of items is
allowed or not. In any case, having this bound, we can write an LP bounding
the expected cost of the optimal adaptive policy. We introduce a variable xi for
every item i which can be interpreted as the probability that a policy ever inserts
item i. For problems with item multiplicities, xi represents the expected number
of copies of item i inserted by a policy. Then the expected cost of the policy can be
written as

∑
i vixi. Due to Lemma 2, we know that E[μj(A)] =

∑
i xiμj(i) ≥ 1

for any policy. So we get the following lower bound on the expected cost of any
adaptive policy.

Theorem 1. For an instance of Stochastic Covering with multiplicity, ADAPT
≥ LP where

LP = min

{∑
i

xivi :
∑

i xiμ(i) ≥ 1
xi ≥ 0

}
.

For a problem without multiplicity, xi ≥ 0 would be replaced by xi ∈ [0, 1].

Now we are ready to prove an upper bound on the adaptivity gap, for d ≥ 2.
(The case d = 1 can be viewed as a special case of d = 2.)

Theorem 2. For Stochastic Covering with multiplicity in dimension d ≥ 2,

NONADAPT ≤ 12 lnd ADAPT

and the corresponding non-adaptive policy can be found in polynomial time.

Proof. Consider the LP formulation of Stochastic Covering with multiplicity:

LP = min

{∑
i

xivi :
∑

i

xiμ(i) ≥ 1, xi ≥ 0

}
.

We know from Theorem 1 that ADAPT ≥ LP . Let xi be an optimal solution.
We inflate the solution by a factor of c lnd (hence the need to be able to repeat
items) and we build a random multiset F where item i has an expected number
of copies yi = xi c ln d. This can be done for example by including �yi� copies of
item i deterministically and another copy with probability yi − �yi�. Then the
total size of set F in component j can be seen as a sum of independent random
[0, 1] variables and the expected total size is

E[Sj(F)] =
∑

i

yiE[Sj(i)] ≥
∑

i

yiμj(i) ≥ c ln d.

By Chernoff bound, with μ = E[Sj(F)] ≥ c ln d and δ = 1− 1/μ:

Pr[Sj(F) < 1] = Pr[Sj(F) < (1− δ)μ] < e−μδ2/2 ≤ e−μ/2+1 ≤ e

dc/2 .
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We choose c = 9 and then by the union bound

Pr[∃j;Sj(F) < 1] <
e

d3.5 .

For d ≥ 2, F is a feasible solution with a constant nonzero probability at least
1− e/23.5. Its expected cost is

E[v(F)] =
∑

i

yivi = 9 lnd LP ≤ 9 ln d ADAPT.

If F is not a feasible solution, we repeat; the expected number of iterations is
1/(1− e/23.5) < 4/3. Therefore

NONADAPT ≤ 12 lnd ADAPT.

This randomized rounding algorithm can be derandomized using pessimistic es-
timators in the usual way.

3 General Stochastic Covering

Now we turn to the most general class of Stochastic Covering problems, where
each item can be used only once (unless the input itself contains multiple copies
of it) and the random item sizes are without any restrictions. Unfortunately, in
this setting there is little that we are able to do. We can write a linear program
bounding the adaptive optimum, analogous to Theorem 1:

LP = min

{∑
i

xivi :
∑

i xiμ(i) ≥ 1
xi ∈ [0, 1]

}
.

However, this LP can be far away from the actual adaptive optimum, even for
d = 1. Consider one item of size S(1) = 1 − ε and an unlimited supply of items
of size S(2) = 1 with probability ε and S(2) = 0 with probability 1 − ε. I.e.,
μ(1) = 1 − ε, μ(2) = ε. All items have unit values. We can set x1 = x2 = 1
and this gives a feasible solution with LP = 2. However, in the actual solution
the item of size 1 − ε does not help; we need to wait for an item of the second
type to achieve size 1. This will take an expected number of 1/ε items, therefore
ADAPT = 1/ε.

This example illustrates a more general issue with any approach using mean
truncated sizes. As long as we do not use other information about the probability
distribution, we would not distinguish between the above instance and one where
the actual sizes of items are μ(1) = 1− ε and μ(2) = ε. Such an instance would
indeed have a solution of cost 2. Thus using only mean truncated sizes, we
cannot prove any approximation result in this case. It would be necessary to
use a more complete description of the distributions of S(i), but we leave this
question outside the scope of this paper.
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4 Stochastic Set Cover

Perhaps the circumstances are more benign in the case of Set Cover, i.e. 0/1 size
vectors. However, the adaptivity gap is certainly not bounded by O(log d), when
items cannot be used repeatedly.

Lemma 3. For Stochastic Set Cover without multiplicity, the adaptivity gap can
be d/2.

Proof. Consider S(0) = 1 − ek, where k ∈ {1, 2, . . . , d} is uniformly random,
v0 = 0, and S(i) = ei deterministic, vi = 1, for i = 1, 2, . . . , d. An adaptive
policy inserts item 0 first; assume its size is S(0) = 1− ek. Then we insert item
k which completes the covering for a cost equal to 1. An optimal non-adaptive
policy still inserts item 0 first, but then, for any ordering of the remaining items
that it chooses, the expected cost incurred before it hits the one which is needed
to complete the covering is d/2.

The question is whether this is the worst possible example. First, let’s consider
the problem in dimension 1, where the size of each item is just a Bernoulli random
variable. Thus the instance is completely characterized by the mean size values.
In this case, a greedy algorithm yields the optimal solution.

Lemma 4. For Stochastic Set Cover of one element (d = 1), assume the items
are ordered, so that

v1

μ(1)
≤ v2

μ(2)
≤ v3

μ(3)
≤ . . .

vn

μ(n)

(call such an ordering “greedy”). Then inserting items in a greedy ordering
yields a covering of minimum expected cost. The adaptivity gap in this case is
equal to 1.

Proof. First, note that in this setting, adaptivity cannot bring any advantage.
Until a feasible solution is obtained, we know that all items must have had size 0.
An adaptive policy has no additional information and there is only one possible
configuration for every subset of available items. Thus there is an optimal item
to choose for each subset of available items and an optimal adaptive policy is in
fact a fixed ordering of items.

For now, we assume that the items are not ordered and we consider any
ordering (not necessarily the greedy ordering), say (1, 2, 3, . . .). The expected
cost of a feasible solution found by inserting in this order is

C =
n∑

k=1

vk

k−1∏
j=1

(1− μ(j)).

Let’s analyze how switching two adjacent items affects C. Note that switching
i and i + 1 affects only the contributions of these two items - the terms corre-
sponding to k < i and k > i + 1 remain unchanged. The difference in expected
cost will be
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ΔC = vi

⎛⎝i−1∏
j=1

(1− μ(j))

⎞⎠ (1 − μ(i+ 1)) + vi+1

⎛⎝i−1∏
j=1

(1− μ(j))

⎞⎠
− vi

⎛⎝i−1∏
j=1

(1− μ(j))

⎞⎠ − vi+1

⎛⎝ i∏
j=1

(1 − μ(j))

⎞⎠
=

⎛⎝μ(i)μ(i + 1)
i−1∏
j=1

(1− μ(j))

⎞⎠(
vi+1

μ(i+ 1)
− vi

μ(i)

)
.

Therefore, we can switch any pair of elements such that vi

μ(i) ≥
vi+1

μ(i+1) and obtain
an ordering whose expected cost has not increased.

Assume that O is an arbitrary greedy ordering and O∗ is a (possibly different)
optimal ordering. If O �= O∗, there must be a pair of adjacent items in O∗ which
are swapped in O. By switching these two items, we obtain another optimal
ordering O′. We repeat this procedure, until we obtain O which must be also
optimal.

The Adaptive Greedy Algorithm. For Stochastic Set Cover in dimension
d, we generalize the greedy algorithm in the following way: For each component
i ∈ [d], we find an optimal ordering restricted only to component i; we denote this
by Oi. Then our greedy adaptive algorithm chooses at any point a component
j which has not been covered yet, and inserts the next available item from
Oj . Observe that this algorithm is adaptive as the decision is based on which
components have not been covered yet.

Corollary 1. For Stochastic Set Cover in dimension d, the greedy adaptive pol-
icy achieves expected cost

GREEDY ≤ d · ADAPT.

Proof. When the policy chooses an item from Oj , we charge its cost to a random
variable Xj . Note that items from Oj can be also charged to other variables but
an item which is charged to Xj can be inserted only after all items preceding it in
Oj have been inserted already. Thus the value ofXj is at most the cost of covering
component j, using the corresponding greedy ordering, and E[Xj ] ≤ ADAPT .
Consequently, GREEDY =

∑d
i=1 E[Xi] ≤ d · ADAPT .

Thus we have a d-approximation, but this approximation algorithm is adaptive
so it doesn’t settle the adaptivity gap for Stochastic Set Packing. The final answer
is unknown. The best upper bound we can prove is the following.

Theorem 3. For Stochastic Set Cover,

NONADAPT ≤ d2 · ADAPT

and the corresponding non-adaptive policy can be found in polynomial time.
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Proof. Consider the greedy ordering Oj for each component j. We interleave
O1,O2, . . . ,Od in the following way: We construct a single sequence O∗ =
(i(1), i(2), i(3), . . .) where i(t) is chosen as the next available item fromOj(t); j(t)
to be defined. We set Xi(0) = 0 for each 1 ≤ i ≤ d, Xj(t)(t) = Xj(t)(t− 1)+ vi(t)
and Xk(t) = Xk(t − 1) for k �= j(t). In other words, we charge the cost of i(t)
to Xj(t) which denotes the “cumulative cost” of component j(t). At each time t,
we choose the index j(t) in order to minimize Xj(t)(t) among all possible choices
of j(t).

Consider a fixed component k and the time τ when component k is covered.
This is not necessarily by an item chosen from Ok, i.e. j(τ) doesn’t have to be
k. If j(τ) = k, denote by q the item from Ok covering component k: q = i(τ).
If j(τ) �= k, denote by q the next item to be chosen from Ok if component k
had not been covered yet. We denote by Qk the prefix of sequence Ok up to
(and including) item q. We claim that for any j, Xj(τ) is at most the cost of
Qk: If there is some Xj(τ) > v(Qk), the last item that we charged to Xj should
not have been chosen; we should have chosen an item from Ok which would
have kept Xk still bounded by v(Qk) and thus smaller than Xj(τ). Therefore
Xj(τ) ≤ v(Qk). For the total cost Zk spent up to time τ when component k is
covered, we get

Zk =
d∑

j=1

Xj(τ) ≤ d v(Qk).

Now consider the set of items Qk which is a prefix ofOk. The probability thatQk

has length at least l is at most the probability that an (optimal) policy covering
component k using the ordering Ok needs to insert at least l items from Ok; this
is the probability that the first l − 1 items in Ok attain size 0 in component k.
If ADAPTk denotes the minimum expected cost of an adaptive policy covering
component k, we get E[v(Qk)] ≤ ADAPTk ≤ ADAPT and E[Zk] ≤ d·ADAPT .

Finally, the total cost spent by our policy is Z = maxk Zk, since we have to
wait for the last component to be covered. Therefore,

E[Z] = E[ max
1≤k≤d

Zk] ≤
d∑

k=1

E[Zk] ≤ d2 ADAPT.

5 Concluding Remarks

We have seen that allowing or not allowing items to be used repeatedly makes a
significant difference in Stochastic Covering. The case where items can be used re-
peatedly is basically solved, with the worst-case adaptivity gap and polynomial-
time approximation factor being both on the order of Θ(log d). This would sup-
port the conjecture that there is some connection between the adaptivity gap
and the optimal approximation factor for the deterministic problem. However,
the general class of Stochastic Covering problems without item multiplicity does
not follow this pattern. The adaptivity gap for Set Cover can be Ω(d), while the
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optimal approximation in the deterministic case, as well as the integrality gap
of the associated LP, is O(log d).

Our main open question is what is the worst possible adaptivity gap for Set
Cover. We conjecture that it is Θ(d) but we are unable to prove this. Also, it
remains to be seen what can be done for general Stochastic Covering when the
complete probability distributions of item sizes are taken into account.
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Abstract. Given a multivariate polynomial P (X1, · · · , Xn) over a finite
field Fq, let N(P ) denote the number of roots over Fn

q . The modular root
counting problem is given a modulus r, to determine Nr(P ) = N(P )
mod r. We study the complexity of computing Nr(P ), when the poly-
nomial is given as a sum of monomials. We give an efficient algorithm
to compute Nr(P ) when the modulus r is a power of the characteristic
of the field. We show that for all other moduli, the problem of comput-
ing Nr(P ) is NP-hard. We present some hardness results which imply
that that our algorithm is essentially optimal for prime fields. We show
an equivalence between maximum-likelihood decoding for Reed-Solomon
codes and a root-finding problem for symmetric polynomials.

1 Introduction

Given a polynomial P (X1, · · · , Xn) of degree d in n variables over a field Fq of
characteristic p in sparse representation, i.e. written as a sum of m monomials,
let N(P ) denote the number of solutions to P (X1, · · · , Xn) = 0 over Fq. The
problem of computing N(P ) exactly is known to be #P-complete. In this paper
we study the complexity of the modular counting problem, which is given a
modulus r, compute Nr(P ) = N(P ) mod r. We also study the related problem
of deciding whether N(P ) > 0 i.e. if the equation P = 0 is feasible over Fq.

1.1 Problem History and Motivation

The problem of counting roots of a polynomial over a finite field is a fundamental
and well studied problem in algebra with applications to several areas includ-
ing coding theory and cryptography[1]. Ehrenfeucht and Karpinski showed that
computing N(P ) is #P complete even when we restrict the degree to be three
[2]. Hence one has to look for approximation algorithms, or algorithms that work
for some special class of polynomials.
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Randomized algorithms for computing N(P ) approximately were given by
Karpinski and Luby for F2 [3] and Grigoriev and Karpinksi for Fq [4]. A more
randomness efficient algorithm for F2 was given by Luby, Velikovic and Wigder-
son [5]. The problem has been extensively studied for equations in few variables.
Schoof gives an exact algorithm to count the number of points on an elliptic
curve over Fq [6]. The counting problem for plane curves has been well studied
[7, 8, 9]. Von zur Gathen et.al show that the counting problem for sparsely rep-
resented curves is #P-complete [10]. Huang and Wong give efficient algorithms
for both the feasibility and counting problems when the number of variables is
a fixed constant [11]. The related problem of computing the Zeta-function of an
algebraic variety is well studied (see [12] and the references therein).

The problem of computing Nr(P ) has been studied in the literature in many
different contexts. A famous theorem due to Chevalley and Warning states that
if P is a polynomial over a field Fq of characteristic p and deg(P ) < n, then
Np(P ) ≡ 0 [1]. This was considerably strengthened by Ax who shows that if
k = �n−d

d � then Nqk(P ) = 0 (see [13]). This was extended to systems with many
equations by Katz. Wan gives a simpler proof of the Ax-Katz theorem over Fp

[13]. Moreno and Moreno observed that by reducing a system of equations over
Fq to a system over Fp and then applying the Ax-Katz bound for prime fields, one
can get a bound that often beats the Ax-Katz bound over Fq. They introduced
the notion of p-weight degree wp(P ) of a polynomial which is upper bounded
by deg(P ) (see Section 3). They showed that if q = ph, and if k = �hn−wp(P )

wp(P ) �
then Npk(P ) = 0. Schoof’s algorithm for counting the number of points on an
elliptic curve proceeds by computing Nr(P ) for several small primes r and using
Chinese Remaindering [6]. Wan describes methods to compute the reduction of
the zeta-function of a curve modulo pk [12]. Thus all these results are related to
the problem of computing Nr(P ) for various moduli r. Our work appears to be
the first to address the complexity of computing Nr(P ).

1.2 Our Results

We give a simple algorithm for computing Npk(P ) given P (X1, · · · , Xn) in sparse
representation over a field Fq where q = ph. The running time of our algorithm
is O(nm2qk) where m is the sparsity of the polynomial i.e. the number of mono-
mials with non-zero coefficients. The algorithm proceeds in two steps. There is a
lifting step, where we define an indicator polynomial for the zeroes of the poly-
nomial over Fn

q , and lift it to an indicator polynomial modulo p over a ring of
characteristic 0. We then amplify this polynomial to get an indicator modulo pk

and sum each monomial modulo pk over the lift of Fn
q . This high level structure

is similar to the proof of the Chevalley-Warning theorem [1] and Wan’s proof
of the Ax-Katz theorem over prime fields [13]. For a prime field, we lift the
problem from Fp the integers. For non-prime fields, the lifting is from Fq to an
appropriate ring of algebraic integers.

We also present a more naive algorithm to compute Npk(P ) for a polynomial
over Fq, which works by reducing the problem to the Fp case. While the running
time of this algorithm is exponential in the degree of the polynomial, it is only
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singly exponential in the extension degree h of Fq over Fp, as opposed to the
previous algorithm which is doubly exponential in h. This suggests that there
might be an algorithm over Fq with running time singly exponential in h and
polynomial in the degree.

The amplification step of our algorithm uses constructions of low-degree mod-
ulus amplifying polynomials from complexity theory. Such polynomials were first
constructed for the proof of Toda’s theorem [14]. Subsequently, better construc-
tions were given by Yao [15] and by Beigel and Tarui [16] to prove upper bounds
on a circuit class called ACC. Ours appears to be the first work to make algo-
rithmic use of these polynomials. The construction of Beigel et.al gives degree
2k − 1. We show a matching lower bound on the degree of any such polynomial
using Mason’s theorem.

On the hardness side, we show that over any field Fq of characteristic p, if r
is not a power of p, the problem of computing Nr(P ) given the polynomial P in
sparse representation is NP-hard under randomized reductions. More precisely,
the problem of deciding whether Nr(P ) belongs to a particular congruence class
modulo r is NP-hard. We study the related feasibility problem for sparse poly-
nomials, which is to decide if N(P ) > 0. While the problem is easy for constant
size fields, we show that it becomes NP-complete, when either the characteris-
tic p or the extension degree h becomes large. As consequence of this, we show
that exponential dependence on p and h in our algorithms is unavoidable, since
the corresponding counting problems are hard when these parameters are large.
Also, when k = n, then Npk(P ) = N(P ) hence having k in the exponent is
also unavoidable. Thus our algorithm for Fp with running time is O(nm2pk) is
asymptotically optimal.

Finally we pose the problem of feasibility for symmetric polynomials over Fq,
which are sparsely represented over the basis of elementary symmetric polynomi-
als. Our motivation for studying this problem comes from the maximum-likelihood
decoding problem for Reed-Solomon codes. Building on work of Guruswami and
Vardi [17], we show that this decoding problem is equivalent to a certain root-
finding problem for symmetric multilinear polynomials over Fq.

This paper is organized as follows: in Section 2 we discuss modulus amplifying
polynomials. We present our algorithmic results in Section 3 and our hardness
results in Section 4. We discuss maximum-likelihood decoding of Reed-Solomon
codes in Section 5.

2 On Modulus Amplifying Polynomials

Definition 1. A univariate integer polynomial Ak(X) is k-modulus amplifying
if for every integer r, the following condition holds:

x ≡ 0 mod r ⇒ Ak(x) ≡ 0 mod rk (1)
x ≡ 1 mod r ⇒ Ak(x) ≡ 1 mod rk

We use the following Lemma by Beigel and Tarui.
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Lemma 1. [16] The polynomial Ak(X) ∈ Z[X ] is k-modulus amplifying iff:

Ak(X) ≡
{

0 mod Xk

1 mod (X − 1)k
(2)

Beigel et.al derive the polynomial Ak(X) by truncating the power series expan-
sion of (1 −X)−k. We give an alternate derivation of their construction in the
full version of this paper.

Lemma 2. [16] The following polynomial is k-modulus amplifying:

Ak(X) = Xk
k−1∑
i=0

(
2k − 1
k + i

)
X i(1−X)k−1−i

Since Ak(X) must be divisible by Xk, it must have degree at least k. The running
time of our algorithms depends exponentially on the degree of Ak(X) so even
a factor 2 saving in the degree would be significant. But we will show that the
degree needs to be 2k − 1. The proof uses Mason’s theorem which proves the
ABC-conjecture for polynomials [18]. Let z(P ) denote the number of distinct
roots of a polynomial over the complex numbers.

Mason’s Theorem. [18] Given polynomials A(X), B(X), C(X) ∈ Z[X ] which
are relatively prime such that A(X) +B(X) = C(X),

max{deg(A), deg(B), deg(C)} ≤ z(ABC)− 1

Here z(ABC) is the number of distinct complex roots of A(X)B(X)C(X).

Lemma 3. If Ak(X) is k-modulus amplifying, then deg(Ak) ≥ 2k − 1.

Proof. Note that A(X) = U(X)Xk = V (X)(X − 1)k + 1 by Lemma 1. Hence

U(X)Xk − V (X)(X − 1)k = 1

Assume that deg(U) = d. Since the leading term cancels out with the leading
term of V (X)(X − 1)k, we have deg(V ) = d. We set

A(X) = U(X)Xk, B(X) = V (X)(X − 1)k, C(X) = 1

It is clear that these are relatively prime, so we can apply Mason’s theorem.
Note that the maximum degree is d+ k. The product polynomial is

A(X)B(X)C(X) = U(X)V (X)Xk(X − 1)k

which can have at most 2 + 2d distinct roots over the complex numbers. Hence

d+ k ≤ 2d+ 2− 1 ⇒ k − 1 ≤ d

This shows that the degree of Ak(X) = U(X)Xk is at least 2k − 1. ��

We note that modulus amplifying polynomials work for every modulus r. In our
algorithms, it suffices that the polynomial is amplifying for a specific modulus
p, the characteristic of Fq. It is interesting to ask if the same lower bound holds
asymptotically for polynomials that are amplifying only for the modulus p.
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3 Algorithms for Counting Roots

We use the notation X = (X1, · · · , Xn) for a vector of variables and x =
(x1, · · · , xn) for a vector of constants. Given a vector D = (d1, · · · , dn) in Zn,
we use XD to denote the monomial

∏
i X

di

i .

3.1 Modular Counting over Prime Fields

We define a lift of Fp to Z which maps i ∈ Fp to the integer i. We use the same
notation for i ∈ Fp and its lift in Z, whether i belongs to Fp or Z will be clear
from the context. We can similarly lift vectors (polynomials) over Fp to vectors
(polynomials) over Z.

The input to the algorithm is a polynomial P (X) =
∑

D cDXD over Fp. We
first lift it to Z[X] and then define a polynomial Q(X) ∈ Z[X] using:

Q(X) = Ak(1− P (X)p−1)

LetQ(X) =
∑

E cEXE where the sum is over at most 2km(p−1)(2k−1) monomials.
Q(X) satisfies the following relations for x ∈ Fn

p :

P (x) = 0 over Fp ⇒ Q(x) ≡ 1 mod pk over Z

P (x) �= 0 over Fp ⇒ Q(x) ≡ 0 mod pk over Z

Hence N(P ) ≡
∑
x∈Fn

p

Q(x) ≡
∑
x∈Fn

p

∑
E

cExE ≡
∑
E

cE
∑
x∈Fn

p

xE mod pk

where the sum is over the lift of Fn
p to Zn. To sum each monomial, observe that

∑
x∈Fn

p

xE ≡
n∏

i=1

(
p−1∑
xi=0

xei

i

)

Each ei is at most 2pk. Note that we cannot use the substitution Xp = X
since this need not hold modulo pk. Thus the time to compute the sum for
each monomial is bounded by O(np2k2). Hence we can compute Npk(P ) in time
O(2km(p−1)(2k−1)np2k2) = O(m2pkn). We summarize the algorithm below.

Computing Npk(P ) over Fp.
Input: P (X) =

∑
D cDXD over Fp.

1. Compute the integer polynomial

Q(X) = Ak(1− P (X)p−1) =
∑

cEXE

2. Compute cE
∑

Fn
p
XE mod pk for each E and output the sum.

Theorem 1. Given a polynomial P (X) ∈ Fp[X] in n variables with m mono-
mials, there is an O(m2pkn) algorithm to compute Npk(P ). For fixed p and k,
Npk(P ) can be computed in polynomial time.
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3.2 Modular Counting over Arbitrary Fields

Let q = ph and let Fq = Fp(α) be a degree h field extension of Fp generated by
α. Let H(X) ∈ Fp[X ] be the monic irreducible polynomial of degree h so that
P (α) = 0. We will assume that the H(X) is given as input. We lift H(X) to the
integers, and then define the quotient Z(α) = Z[X ]/(H(X)) where α is a formal
root of H(X). In fact H(X) is irreducible over Z, but we will not use this fact.

Lemma 4. There is an isomorphism between Z[α]/(p) and Fq.

Proof. Note that Z[α]/(p) = Z[X ]/(H(X), p) = Fp[X ]/(H(X)) where in the
last expression, H(X) is taken to be a polynomial over Fp. By our choice of
H(X), this quotient is precisely Fq = Fp(α). It is easy to check that mapping
α ∈ Z[α]/(p) to α ∈ Fq gives an isomorphism. ��
Note that this idea of first going modulo p is used to characterize primes in
the ring of Gaussian integers [19]. We can lift Fq to Z(α) by sending α ∈ Fq

to α ∈ Z(α) and sending i ∈ Fp to i ∈ Z. We now describe the algorithm for
computing Npk(P ) over Fq. Given a polynomial P (X) =

∑
D cDXD over Fq, lift

it to Z(α)[X] and then define a polynomial Q(X) ∈ Z(α)[X] using:

Q(X) = (1− P (X)p−1)

Let Q(X) =
∑

E cEXE where the sum is over at most m(p−1)(2k−1) monomials.
Q(X) satisfies the following conditions

P (x) = 0 over Fq ⇒ Q(x) ≡ 0 mod p over Z(α)
P (x) �= 0 over Fq ⇒ Q(x) ≡ 1 mod p over Z(α)

Finally define R(X) ∈ Z(α)[X] as R(X) = Ak(Q(X)). It is easy to see that
Ak(X) is modulus amplifying even for Z(α). Hence

P (x) = 0 over Fq ⇒ R(x) ≡ 0 mod pk over Z(α)
P (x) �= 0 over Fq ⇒ R(x) ≡ 1 mod pk over Z(α)

Hence N(P ) ≡
∑
x∈Fn

q

R(x) mod pk

We can compute this sum by writing R(X) =
∑

E cExE and summing each
monomial individually over the lift of Fq. It is easy to see that R(X) has at most
2km(2k−1)(q−1) monomials. So the running time is bounded by O(nm2qk).

Computing Npk(P ) over Fq.
Input: Fq = Fp(α) given by the irreducible polynomial H(X) of
α over Fp. P (X) =

∑
D cDXD over Fq.

1. Let α satisfy H(α) = 0 over Z. Lift P (X) to Z(α)[X].
2. Compute the polynomial R(X) ∈ Z(α) given by

R(X) = Ak(1− P (X)q−1) =
∑

cEXE

3. Compute cE
∑

Fn
q
XE mod pk for each E and output the sum.
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Here the sum is over the lift of Fq to Z(α). We treat α as a formal symbol
satisfying H(α) = 0 over Z. All arithmetic operations are preformed modulo pk.

Theorem 2. Given a polynomial P (X) ∈ Fq[X] in n variables with m mono-
mials, there is an O(nm2qk) algorithm to compute Npk(P ). For fixed q, p and k,
Npk(P ) can be computed in polynomial time.

3.3 Reduction from Fq to Fp

Let P (X) =
∑

D cDXD where cD ∈ Fq be the input. For each variable Xi we
substitute Xi = Yi,0 +Yi,1α · · ·Yi,h−1α

h−1 where Yi,j ∈ Zp. Thus we replace the
monomial

∏
i X

d1
i of total degree d by

∏
i(Yi,0 +Yi,1α · · ·Yi,h−1α

h−1)di . Naively,
this expression has sparsity hd. We can improve this bound using the notion of
p-weight degree due to Moreno and Moreno [20].

Definition 2. Given an integer d = d0 + d1p · · · + dtp
t, define its p-weight

σ(d) =
∑

j dj. The p-weight degree of a monomial XD =
∏

i X
di

i is defined as
wp(XD) =

∑
i σ(di). The p-weight degree wp(P ) of a polynomial P (X) is the

maximum of the p-weight degree over all monomials.

Note that σp(d) ≤ d, hence the p-weight degree of a monomial is bounded by its
degree. Returning to the monomial

∏
i X

di

i , let di =
∑

t ditp
t. Then,

∏
i

Xdi

i =
∏

i

⎛⎝h−1∑
j=0

Yi,jα
j

⎞⎠ t ditpt

=
∏
i,t

⎛⎝h−1∑
j=0

Yi,jα
j

⎞⎠ditp
t

=
∏
i,t

⎛⎝h−1∑
j=0

Y pt

i,jα
jpt

⎞⎠dit

=
∏
i,t

⎛⎝h−1∑
j=0

Yi,jα
jpt

⎞⎠dit

where we use Yi,j ∈ Fp hence Y pt

i,j = Yi,j . Let cD =
∑

u cuα
u. Then

cD
∏

i

Xdi

i =
h−1∑
u=0

cuα
u

∏
i,t

⎛⎝h−1∑
j=0

Yi,jα
jpt

⎞⎠dit

=
∑
E

cEYEαf(E) (3)

where cE ∈ Zp and f(E) is some function of E. This summation involves
h1+ dit = hwp(XD)+1 monomials. Repeating this for every monomial, we get
a sum over at most mhw monomials, where w = wp(P ) + 1:

P (Y) =
∑
E

cEYEαf(E) (4)

Since {α0, · · · , αh−1} is a basis for Fq over Zp, we can each αf(E) as a linear
combination over this basis. Grouping the various powers of α gives

P (Y) = P0(Y) + P1(Y)α + · · · + Ph−1(Y)αh−1 (5)



Algorithms for Modular Counting of Roots of Multivariate Polynomials 551

Each polynomial P�(Y) has sparsity at most mhw, since each monomial from
Equation (4) contributes at most one monomial to P�(Y) . Since the powers of α
are linearly independent over Fp, this sum is 0 iff for 0 ≤ � ≤ h−1 the coefficient
of α� is 0 over Fp. This implies that for each �, we must have P�(Y) = 0 over
Fp. We can combine these into a single equation Q(Y) = 0 over Fp where

Q(Y) = 1−
h−1∏
�=0

(
1− P�(Y)p−1)

The roots of Q(Y) over Fp are in one-to-one correspondence with the roots
of P (X) over Fq, so we can use the Fp algorithm on Q(Y). Since Q(Y) only
takes 0/1 values we can directly apply Ak to 1−Q(Y). The total running time
can be bounded by O(n(mhw)2hpk). In addition to p, k there is an exponential
dependence on h and the (p-weight) degree.

Theorem 3. Let P (X) be a polynomial in n variables with m monomials over
Fq where q = ph. Let wp(P ) be p-weight degree and w = wp(P ) + 1. There is an
O(n(mhw)2hpk) algorithm to compute Npk(P ).

4 Hardness Results for Counting

In all the results in this section, the polynomial is given in sparse representa-
tion. We refer the reader to the book by Papadimitriou [21] for the necessary
complexity-theoretic definitions.

Theorem 4. Let Fq be a finite field of characteristic p. Assume that r is not a
power of p. Given a polynomial P (X) over Fq , the problem of computing Nr(P )
is NP-hard under randomized reductions.

An instance of QE over Fq consists of m quadratic equations Q1(X) = 0,
· · · , Qm(X) = 0. It is well known that deciding if an instance of QE is feasible
is NP-complete. An instance of UQE consists of a system of quadratic equation
with the promise that in the Yes case, there is a unique solution. Similarly define
U3SAT to be the unique version of 3SAT. We show that UQE is NP-complete
under randomized reductions by a reduction from U3SAT.

Lemma 5. UQE is NP-complete under randomized reductions over any field.

Proof. We give a reduction from 3SAT to QE. The reduction itself is folklore,
we just need to verify that it preserves the number of solutions. Assume that we
have a 3SAT formula ϕ(X) with clauses C1, · · · , Cm. We add auxiliary variables
Y1, · · · , Ym and add the constraints X2

i = Xi, and Y 2
i = Yi, which ensures that

all the variables need to be 0 or 1. Assume that C1 = X1 ∨X2 ∨X3. We replace
this by Y1 = X1 ∨X2 and Y1 ∨X3 = 1. This is done by the equations

Y1 = X1 +X2 −X1X2, Y1 +X3 − Y1X3 = 1
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We perform a similar substitution for every clause. It is clear that this instance
of QE is feasible iff ϕ(X) is feasible. Further, this reduction preserves the number
of solutions since the values of the auxiliary variables Y1, · · · , Ym are uniquely
determined from the values assigned to X1, · · · , Xn.

Thus starting with an instance of U3SAT, we get an instance of UQE. It is
known that U3SAT is NP-complete under randomized reductions [21], hence we
infer the hardness of UQE for any Fq. ��

We now prove Theorem 4. The reduction used is the same reduction used by
Ehrenfeucht and Karpsinski to show the #P-completeness of computing N(P )
[2], except that the uniqueness of the solution in the Yes case is crucial.

Proof. Given an instance X1, · · · , Xn, Q1 = 0, · · · , Qm = 0 of UQE, we add new
variables Z1, · · · , Zm and let P (X1, · · · , Xn, Z1, · · · , Zm) be the equation∑

i=1,··· ,m
ZiQi(X1, · · · , Xn) = 1

Assume that x1, · · · , xn is a solution to the system of quadratic equations. Then
the above equation reduced to 0 = 1, so there is no solution. On the other hand
if some equation say Qm is unsatisfied, then we are left with a linear equation∑

i=1,··· ,m
ciZi = 1, cm �= 0

Since cm �≡ 0, we can pick values for Z1, · · · , Zm−1 arbitrarily, and then pick
Zm so that the above equation is satisfied. Thus when the instance of UQE
is satisfiable, N(P ) = (qn − 1)qm−1 whereas when it is unsatisfiable N(P ) =
qn+m−1. Since q = ph, if r is not a power of p, then (qn−1)qm−1 �≡ qn+m−1 mod
r. Hence an algorithm to compute Nr(P ) can be used to solve UQE. More
precisely, deciding whether N(P ) lies in a particular congruence class modulo r
is NP-hard. ��

4.1 Hardness Results for Feasibility

The feasibility problem is, given a polynomial P (X) over Fq does it have a root?
When the field size q is constant, there is a simple algorithm for feasibility [4].
On the other hand, we show that the problem becomes NP-complete, when either
the characteristic p or the extension degree h becomes large. A consequence of
this is that exponential dependence on p and h in our algorithms is unavoidable,
since the corresponding counting problems are also hard. To precisely quantify
how large the field size needs to be, we parameterize an instance by the number of
variables n. These results are proved by simple reductions from 3SAT, and their
proofs can be found in the full version. By repeating the reductions starting with
U3SAT, we can also show hardness for the related modular counting problems.

Theorem 5. The problem of deciding whether a polynomial P (X) over Zp has
a root is NP-complete for p ≥ 2n. The problem of computing Np(P ) given P (X)
over Zp is NP-hard under randomized reductions for p ≥ 2n.
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Theorem 6. The problem of deciding whether a polynomial P (X) over F2t has
a root is NP-complete for t ≥ 2n. The problem of computing N2(P ) given P (X)
over F2t is NP-hard under randomized reductions for t ≥ 2n.

5 Maximum-Likelihood Reed-Solomon Decoding

Let Sk(X) denote the kth elementary symmetric polynomial in X1, · · · , Xn. The
polynomials Sk(X) for 1 ≤ k ≤ n generate all symmetric polynomials [19]. If
a symmetric polynomial is written as a sum of monomials in this basis, we say
that it is sparsely represented. A natural question is what is the complexity of
the feasibility problem for symmetric polynomials in the sparse representation.
We show that maximum-likelihood decoding of Reed-Solomon codes is related
to a variant of this problem.

An [n, k]q Reed Solomon codes consists of all univariate polynomials of degree
at most k over Fq evaluated at a set of points D = {x1, · · · , xn} ⊆ Fq. The
maximum likelihood decoding problem MLD-RS asks for the closest codeword
to a vector r ∈ Fn

q . We will work with a different formulation of MLD-RS due
to Guruswami and Vardy [17]. Given D = {x1, · · · , xn}, define the matrix

H =

⎛⎜⎜⎜⎜⎝
1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

· · · · · · · · · · · ·
xw

1 xw
2 · · · xw

n

⎞⎟⎟⎟⎟⎠
We define the code C = {z ∈ Fn

q | Hzt = 0}, which is in fact a generalized
Reed Solomon code. The problem MLD-RS is: Given H and a syndrome e =
(e0, · · · , ew) ∈ Fw+1

q , is there a vector z ∈ Fn
q with wt(z) ≤ w satisfying Hz = e?

Note that any w + 1 columns of H are linearly independent, so we can always
find a vector z of weight w + 1 so that Hz = e.

Theorem 7. There exists a vector z ∈ Fn
q with wt(z) ≤ w so that Hz = e iff

P (X1, · · · , Xw) =
∑
i≤w

(−1)iew−iSi(X1, · · · , Xw) = 0

has a root in Dw where xi �= xj for i �= j.

Proof. We first prove the following identity:∣∣∣∣∣∣∣∣∣∣
1 · · · 1 e0
x1 · · · xw e1
x2

1 · · · x2
w e2

· · · · · · · · · · · ·
xw

1 · · · xw
w ew

∣∣∣∣∣∣∣∣∣∣
=

∏
i�=j

(xi − xj)
w∑

i=0

(−1)iew−iSi(x1, · · · , xw) (6)
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We evaluate the LHS by comparing it to the Vandermonde determinant. Let E
denote a formal variable. Then∣∣∣∣∣∣∣∣∣∣

1 · · · 1 E0

x1 · · · xw E1

x2
1 · · · x2

w E2

· · · · · · · · · · · ·
xw

1 · · · xw
w Ew

∣∣∣∣∣∣∣∣∣∣
=

∏
i�=j

(xi − xj)
∏
i≤w

(E − xi)

=
∏
i�=j

(xi − xj)
∑
i≤w

(−1)iEw−iSi(x1, · · · , xw)

Note that by expanding the determinant along the last column, we could derive
the same formula without using fact that the various column entries are powers
of E. They can be treated as formal symbols. Hence we deduce Equation (6).

Suppose that there exists z of weight w so that Hzt = e. Assume wlog that
the first w co-ordinates of z are non-zero. Then e lies in the span of the first w
columns of H , hence the LHS of Equation 6 vanishes. Since xi �= xj , this implies
that P (x1, · · · , xw) = 0.

Conversely, given a root (x1, · · · , xw) ∈ Dw of P , where xi �= xj , the determi-
nant on the LHS of Equation (6) vanishes. Hence a non-trivial linear combination
of its columns is 0. Since xi �= xj , the columns corresponding to various xis are
linearly independent, so the column corresponding to e occurs in this combina-
tion with a non-zero multiplier. Hence we can write e as a linear combination of
the other columns, which gives a solution to Hzt = e of weight at most w. ��

If we set ew = γ, ew−1 = 1 and ei = 0 for i ≤ w − 2, the problem reduces
to finding (x1, · · · , xw) ∈ Dw so that

∑
xi = γ. Guruswami and Vardy show

this is NP-complete when the field size is exponential in n, which implies NP-
completeness of MLD-RS over large fields [17]. However it is possible that the
above feasibility problem and hence MLD-RS are intractable over Fq when q is
polynomial in n, and when D = Fq.

6 Open Problems

We recap some problems left unanswered by this work.

– Is there algorithm to compute Npk(P ) over Fq where q = ph which is singly
exponential in p and h?

– Is the feasibility problem NP-complete for fields of characteristic 2 and size
polynomial in n? Is it complete for polynomials of low degree?

– Is it possible to construct a family of modulus amplifying polynomials for a
specific modulus p that have degree less than 2k − 1?

– Is the feasibility problem hard for sparse symmetric polynomials when q is
polynomial in n?

Acknowledgments. The first author would like to thank Matt Baker, Saugata
Basu and Henry Cohn for useful discussions on this subject.
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Abstract. We prove a version of the derandomized Direct Product Lemma for
deterministic space-bounded algorithms. Suppose a Boolean function
g : {0, 1}n → {0, 1} cannot be computed on more than 1 − δ fraction of in-
puts by any deterministic time T and space S algorithm, where δ � 1/t for
some t. Then, for t-step walks w = (v1, . . . , vt) in some explicit d-regular ex-

pander graph on 2n vertices, the function g′(w) def= g(v1) . . . g(vt) cannot be
computed on more than 1 − Ω(tδ) fraction of inputs by any deterministic time
≈ T/dt − poly(n) and space ≈ S − O(t). As an application, by iterating this
construction, we get a deterministic linear-space “worst-case to constant average-
case” hardness amplification reduction, as well as a family of logspace encod-
able/decodable error-correcting codes that can correct up to a constant fraction
of errors. Logspace encodable/decodable codes (with linear-time encoding and
decoding) were previously constructed by Spielman [14]. Our codes have weaker
parameters (encoding length is polynomial, rather than linear), but have a concep-
tually simpler construction. The proof of our Direct Product Lemma is inspired
by Dinur’s remarkable recent proof of the PCP theorem by gap amplification us-
ing expanders [4].

Keywords: Direct products, hardness amplification, error-correcting codes,
expanders.

1 Introduction

1.1 Hardness Amplification Via Direct Products

Hardness amplification is, roughly, a procedure for converting a somewhat difficult
computational problem into a much more difficult one. For example, one would like
to convert a problem A that is worst-case hard (i.e., cannot be computed within certain
restricted computational model) into a new problem B that is average-case hard (i.e.,
cannot be computed on a significant fraction of inputs).
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The first such “worst-case to average-case” reduction was given by Babai, Fortnow,
Nisan, and Wigderson [2]. They used algebraic error-correcting codes to go from a
worst-case hard function f to a weakly average-case hard function g. They further am-
plified the average-case hardness of g via the following Direct Product construction.
Given g : {0, 1}n → {0, 1}, define gk : ({0, 1}n)k → {0, 1}k as gk(x1, . . . , xk) =
g(x1) . . . g(xk). Intuitively, computing g on k independent inputs x1, . . . , xk should be
significantly harder than computing g on a single input. In particular, if g cannot be
computed by circuits of certain size s on more than 1 − δ fraction of inputs (i.e., g is
δ-hard for circuit size s), then one would expect that gk should not be computable (by
circuits of approximately the same size s) on more than (1− δ)k fraction of inputs. The
result establishing the correctness of this intuition is known as Yao’s Direct Product
Lemma [16], and has a number of different proofs [11, 5, 9, 10].

1.2 Derandomized Direct Products and Error-Correcting Codes

Impagliazzo and Wigderson [9, 10] consider a “derandomized” version of the Direct
Product lemma. Instead of evaluating a given n-variable Boolean function g on k inde-
pendent inputs x1, . . . , xk , they generate the inputs using a certain deterministic func-
tion F : {0, 1}r → ({0, 1}n)k such that the input size r of F is much smaller than
the output size kn. They give several examples of the function F for which the func-
tion g′(y) defined as g(F (y)1) . . . g(F (y)k), where F (y)i denotes the ith n-bit string
output by F (y) for y ∈ {0, 1}r, has average-case hardness about the same as that
of gk(x1, . . . , xk) for completely independent inputs xi. In particular, Impagliazzo [9]
shows that if g is δ-hard (for certain size circuits) for δ < 1/O(n), then, for a pairwise
independent F : {0, 1}2n → ({0, 1}n)n, the function g′(y) = g(F (y)1) . . . g(F (y)n)
is Ω(δn)-hard (for slightly smaller circuits).

Trevisan [15] observes that any Direct Product Lemma proved via “black-box” re-
ductions can be interpreted as an error-correcting code mapping binary messages into
codewords over a larger alphabet. Think of anN = 2n-bit message Msg as a truth table
of an n-variable Boolean function g. The encoding Code of this message will be the
table of values of the direct-product function gk. That is, the codeword Code is indexed
by k-tuples of n-bit strings (x1, . . . , xk), and the value of Code at position (x1, . . . , xk)
is the k-tuple (g(x1), . . . , g(xk)). The Direct Product Lemma says that if g is δ-hard,
then gk is ε ≈ 1− (1− δ)k-hard. In the language of codes, this means that given (oracle
access to) a string w over the alphabet Σ = {0, 1}k such that w and Code disagree in
less than ε fraction of positions, we can construct an N -bit string Msg ′ such that Msg
and Msg ′ disagree in less than δ fraction of positions.

Note that the error-correcting code derived from a Direct Product Lemma maps N -
bit messages to Nk-symbol codewords over the larger alphabet Σ = {0, 1}k. A de-
randomized Direct Product Lemma, using a function F : {0, 1}r → ({0, 1}n)k as
described above, yields an error-correcting code with encoding length 2r. For example,
the pairwise-independent function F from Impagliazzo’s derandomized Direct Product
Lemma would yield codes with encoding length N2, which is a significant improve-
ment over the length Nk.

The complexity of the reduction used to prove a Direct Product Lemma determines
the complexity of the decoding procedure for the corresponding error-correcting code.
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In particular, if a reduction uses some non-uniformity (say, m bits of advice), then the
corresponding error-correcting code will be only list-decodable with the list size at most
2m. If one wants to get codes with ε being asymptotically close to 1, then list-decoding
is indeed necessary. However, for a constant ε, unique decoding is possible, and so, in
principle, there must be a proof of this weaker Direct Product Lemma that uses only
uniform reductions (i.e., no advice).

1.3 Derandomized Direct Products Via Uniform Reductions

The derandomized Direct Product lemmas of [9, 10] are proved using nonuniform re-
ductions. Using the graph-based construction of error-correcting codes of [6], Tre-
visan [15] proves a variant of a derandomized Direct Product lemma with a uniform
deterministic reduction.

More precisely, for certain k-regular expander graphs Gn on 2n vertices (labeled by
n-bit strings), Trevisan [15] defines the function F : {0, 1}n → ({0, 1}n)k as F (y) =
y1, . . . , yk, where yis are the neighbors of the vertex y in the graph Gn. He then argues
that, for a Boolean function g : {0, 1}n → {0, 1}, if there is a deterministic algorithm
running in time t(n) that solves g′(y) = g(F (y)1) . . . g(F (y)k) on Ω(1) fraction of
inputs, then there is a deterministic algorithm running in timeO(tpoly(n, k)) that solves
g on 1 − δ fraction of inputs, for δ = O(1/k). That is, if g is δ-hard with respect
to deterministic time algorithms, then g′ is Ω(1)-hard with respect to deterministic
algorithms running in slightly less time. Note that the input size of g′ is n, which is
the same as the input size of g.

The given non-Boolean function g′ : {0, 1}n → {0, 1}k can be converted into a
Boolean function g′′ on n + O(log k) input variables that has almost the same Ω(1)
hardness with respect to deterministic algorithms. The idea is to use some binary error-
correcting code C mapping k-bit messages to O(k)-bit codewords, and define g′′(x, i)
to be the ith bit of C(g′(x)).

1.4 Our Results

In this paper, we analyze a different derandomized Direct Product construction. Let Gn

be a d-regular expander graph on 2n vertices, for some constant d. Denote by [d] the
set {1, 2, . . . , d}. For any t and any given n-variable Boolean function g, we define g′

to be the value of g along a t-step walk in Gn. That is, we define g′ : {0, 1}n × [d]t →
{0, 1}t+1 as g′(x, i1, . . . , it) = g(x0)g(x1) . . . g(xt), where x0 = x, and each xj (for
1 � j � t) is the ijth neighbor of xj−1 in the graph Gn. We show that if g is δ-hard
to compute by deterministic uniform algorithms running in time T and space S for
δ < 1/t, then g′ is Ω(tδ)-hard with respect to deterministic algorithms running in time
≈ T/dt and space ≈ S −O(t).

Note that if g is δ-hard, then we expect gt(x1, . . . , xt) = g(x1) . . . g(xt) (on t inde-
pendent inputs) to be δ′ = 1 − (1 − δ)t-hard. For δ 4 1/t, we have δ′ ≈ tδ, and so
our derandomized Direct Product construction described above achieves asymptotically
correct hardness amplification.

Combining the function g′ with any linear error-correcting code C (with constant
relative distance) mapping (t + 1)-bit messages into O(t)-bit codewords, we can get
from g′ a Boolean function on n+O(t) variables that also has hardnessΩ(tδ). Applying
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these two steps (our expander-walk Direct Product followed by an encoding using the
error-correcting code C) to a given δ-hard n-variable Boolean function g for log 1/δ
iterations, we can obtain a new Boolean function g′′ on n+O(t log 1/δ) variables that
is Ω(1)-hard. If g is δ-hard for deterministic time T and space S, then g′′ is Ω(1)-hard
for deterministic time ≈ Tpoly(δ) and space ≈ S −O(log 1/δ).

In terms of running time, this iterated Direct Product construction matches the pa-
rameters of Trevisan’s Direct Product construction described earlier. Both constructions
are proved with uniform deterministic reductions. The main difference seems to be in
the usage of space. Our reduction uses at most O(n + log 1/δ) space, which is at most
O(n) even for δ = 2−n. Thus we get a deterministic uniform “worst-case to constant
average-case” reduction computable in linear space. The space usage in Trevisan’s con-
struction is determined by the space complexity of encoding/decoding of the “inner”
error correcting code C from k to O(k) bits, for k = O(1/δ). A simple deterministi-
cally encodable/decodable code would use space Ω(k) = Ω(1/δ).

We also show that constant-degree expanders which have expansion better than
degree/2 can be used to obtain a simple space-efficient hardness amplification. How-
ever, it is not known how to construct such expanders explicitly.

Related work. Impagliazzo and Wigderson [10] use expander walks in combination
with the Nisan-Wigderson generator [12] to prove a different derandomized direct prod-
uct lemma. They start with a Boolean function of constant average-case hardness
(against circuits) and construct a new Boolean function of average-case hardness ex-
ponentially close to 1/2. In contrast, (i) we analyze the hardness of a direct prod-
uct using vertices of an expander walk only, (ii) our direct product lemma works for
a different range of parameters (amplifying worst-case hardness to constant average-
case hardness), and (iii) our reductions are completely uniform efficient deterministic
algorithms.

Our deterministic linear-space hardness amplification result is not new. A determin-
istic linear-space “worst-case to constant average-case” reduction can be also achieved
by using Spielman’s expander-based error-correcting codes [14]. His codes have en-
coding/decoding algorithms of space complexity O(logN) for messages of length N ,
which translates into O(n)-space reductions for n-variable Boolean functions.

In light of the connection between Direct Product Lemmas and error-correcting
codes, our iterated Direct Product construction also yields a deterministic logspace (in
fact, uniform NC1) encodable/decodable error-correcting code that corrects a constant
fraction of errors. Spielman’s NC1 encodable/decodable codes also correct a constant
fraction of errors, but they have much better other parameters. In particular, Spielman’s
encoding/decoding is in linear time, and so the length of the encoded message is linear
in the size of the original message. In contrast, our encoding time and the length of
the encoding are only polynomial in the size of the original message. We believe, how-
ever, that our codes have a conceptually simpler construction, which closely follows the
“Direct Product Lemma” approach.

Finally, our proof method is inspired by Dinur’s recent proof of the PCP Theo-
rem [4]. She describes a procedure for increasing the unsatisfiability gap of a given
unsatisfiable Boolean formula by a constant factor, at the cost of a constant-factor in-
crease in the size of the new formula. Iterating this gap amplification forO(log n) steps,
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she converts any unsatisfiable formula with n clauses to a polynomially larger formula
φ such that no assignment can satisfy more than a constant fraction of clauses in φ. A
single step of gap amplification uses expanders to define a new, harder formula; intu-
itively, a new formula corresponds to a certain derandomized “direct product” of the old
formula, where derandomization is done using constant-length expander walks. In the
present paper, we also use constant-size expander walks to derandomize direct prod-
ucts, achieving a constant-factor hardness amplification at the cost of constant additive
increase in the space complexity of the new function. Iterating this step O(n) times,
allows us to convert a Boolean function that is worst-case hard for linear space into one
that is constant average-case hard for linear space.

Remainder of the paper. We give the necessary definitions in Section 2. In Section 3,
we state and analyze our Direct Product Lemma. Applications of our Direct Product
Lemma to linear-space hardness amplification and logspace encodable/decodable codes
are given in Section 4. Section 5 proves a simpler version of the Direct Product Lemma,
under the assumption that expanders with expansion better than degree/2 can be effi-
ciently constructed.

2 Preliminaries

2.1 Worst-Case and Average-Case Hardness

Given a bound b on a computational resource resource (resource can be, e.g., deter-
ministic time, space, circuit size, or some combination of such resources), we say that
a function f : A → B (for some sets A and B) is worst-case hard for b-bounded
resource if every algorithm using at most b amount of resource disagrees with the
function f on at least one input x ∈ A.

For 0 � δ � 1 and a bound b on resource, a function f : A→ B is called average-
case δ-hard (or, simply, δ-hard) for b-bounded resource if every algorithm using at
most b amount of resource disagrees with the function f on at least a fraction δ of
inputs from A. Observe that for δ = 1/|A|, the notion of δ-hardness coincides with that
of worst-case hardness.

2.2 Expanders

Let G = (V,E) be any d-regular undirected graph on n vertices. Let A = {ai,j}n
i,j=1

be the normalized adjacency matrix of G, i.e., ai,j = 1
d∗(the number of edges between

i and j). For a constant λ < 1, the graph G = (V,E) is called a λ-expander if the
second largest (in the absolute value) eigenvalue of the matrix A is at most λ.

Another (essentially equivalent) definition of expanders is the following. A d-regular
graph G = (V,E) is an (α, β)-expander if for every subset W ⊆ V with |W | � α|V |,∣∣∣{v ∈ V | ∃w ∈W such that (v, w) ∈ E}

∣∣∣ � β|W | .

We will use the following lemma in the analysis of our Direct Product Lemma. A variant
of this lemma (for edge sets rather than vertex sets) is proved in [4–Lemma 5.4]; the
vertex-case is in fact simpler to argue.
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Lemma 1. Let G = (V,E) be any d-regular λ-expander for some λ < 1, and let
S ⊂ V be any set. For any value t, let Wi, for i ∈ [0..t], be the set of all t-step walks in
G that pass through a vertex from S in step i. Then, for each i ∈ [0..t], a random walk
from the set Wi is expected to contain at most t |S|

|V | +O(1) vertices from the set S.

We will need an infinite family of d-regular λ-expanders {Gn = (Vn, En)}∞n=1, where
Gn is a graph on 2n vertices; we assume that the vertices ofGn are identified with n-bit
strings. We need that such a family of graphs be efficiently constructible in the sense
that given the label of a vertex v ∈ Vn and a number i ∈ [d], the i’th neighbor of v
in Gn can be computed efficiently by a deterministic polynomial-time and linear-space
algorithm. We will spell out the exact constructibility requirement in Section 3.1.

2.3 Space Complexity

We review definitions concerning space complexity, since for our main Direct Product
Lemma, we need to measure the space complexity of the algorithms very carefully.

Definition 2 (Standard Space Complexity). An algorithm computes a function f in
space S if given as input x on a read-only input tape, it uses a work tape of S cells and
halts with f(x) on the work tape. Such an algorithm is said to have space complexity S.

Definition 3 (Total Space Complexity). An algorithm A computes a function f with
domain {0, 1}n in total space S if on an n-bit input x,

1. A has read/write access to the input tape,
2. in addition to the n input tape cells, A is allowed another S − n tape cells, and
3. at the end of its computation, the tape contains f(x).

Such an algorithm is then said to have total space complexity S.

Definition 4 (Input-Preserving Space Complexity). An algorithm A computes a
function f with domain {0, 1}n in input-preserving space S if on an n-bit input x,

1. A has read/write access to the input tape,
2. in addition to the n input tape cells, A is allowed another S − n tape cells, and
3. at the end of its computation, the tape contains x; f(x).

That is, we allow the algorithm to write on the input portion of the tape, provided it
is restored to its original content at the end of the computation. Such an algorithm is
then said to have input-preserving space complexity S. (Note that the input-preserving
space complexity of a function f(x) is the same as the total space complexity of the

function f ′(x) def= x; f(x).).

The following simple observation lets us pass between these models of space complex-
ity with a linear additive difference.

Fact 5. If there is an algorithm A with space complexity S to compute a function with
domain {0, 1}n, then there is an algorithm A′ with input-preserving (total) space com-
plexity S+n to compute f . Conversely, if there is an algorithmB′ with input-preserving
(total) space complexity S′ to compute f , then there is an algorithmB with space com-
plexity S′ to compute f .
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We will use the input-preserving space complexity to analyze the efficacy of our Direct
Product Lemma and its iterative application to amplify hardness. However, by Fact 5,
our end result can be stated in terms of the standard space complexity of Definition 2.

3 A New Direct Product Lemma

3.1 Construction

We need the following two ingredients:

(i) Let G = (V,E) be any efficiently constructible d-regular λ-expander on |V | =
2n vertices which are identified with n-bit strings (here d and λ < 1 are absolute
constants, and we will typically hide factors depending on d in the O-notation). By
efficient constructibility, we mean the following. There is an algorithm running in time
Texpander = poly(n) and total space Sexpander = O(n), that given as input an n-bit

string x and an index i ∈ [d], outputs the pair NG(x, i)
def
= (y, j), where y ∈ {0, 1}n is

the i’th neighbor in G of x, and j ∈ [d] is such that x is the j’th neighbor of y. We can
obtain such expanders from [13].

(ii) Let C be any polynomial-time and linear-space encodable (via Enc) and decod-
able (via Dec) linear binary error-correcting code with constant rate 1/c and constant
relative distance ρ.

Our construction proceeds in two steps.

Step 1: Let f : {0, 1}n → {0, 1} be any given Boolean function. For any t ∈ N, define
a new, non-Boolean function g : {0, 1}n × [d]t → {0, 1}t+1 as follows:

g(v, i1, . . . , it) = f(v)f(v1) . . . f(vt),

where for each 1 � j � t, vj is the ij th neighbor of vertex vj−1 in the expander graph
G (we identify v with v0).

Step 2: Define a Boolean function h : {0, 1}n × [d]t × [c(t+ 1)]→ {0, 1} as

h(v, i1, . . . , it, j) = Enc(g(v, i1, . . . , it))j ,

where Enc(y)j denotes the the jth bit in the encoding of the string y using the binary
error-correcting code C.

Complexity of the Encoding: Suppose that the n-variable Boolean function f is com-
putable in deterministic time T and input-preserving space S. Then the non-Boolean
function g obtained from f in Step 1 of the construction above will be computable
in deterministic time Tg = O(t(T + Texpander)) = O(t(T + poly(n))) and input-
preserving space at most Sg = max{S, Sexpander} + O(t). The claim about time
complexity is obvious. For the space complexity, to compute g(v, i1, . . . , it), we first
compute f(v) using input-preserving space S. We then re-use this space to compute
NG(v, i1) = (v1, j1) in total space Sexpander . We remember i1, j1 (these take only
O(1) space) separately, but replace v by v1, and compute f(v1) in input-preserving
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space S. We next likewise compute NG(v1, i2) = (v2, j2), and replace v1 by v2, com-
pute f(v2), and so on. In the end, we would have computed f(v)f(v1) . . . f(vt) in
total space max{S, Sexpander} +O(t). However, we need to restore the original input
v, i1, i2, . . . , it. For this, we use the stored “back-indices” jt, jt−1, . . . , j1 to walk back
from vt to v in a manner identical to the forward walk.

The Boolean function h obtained from g in Step 2 will be computable in time Tg +
poly(t) and input-preserving space Sg +O(t). Note that, assuming S � Sexpander , the
input-preserving space complexity of h is at most an additive constant term O(t) bigger
than that of f .

3.2 Analysis

We will show that the “direct product construction” described above increases the hard-
ness of a Boolean function f by a multiplicative factor Ω(t).

Lemma 6 (Direct Product Lemma). Suppose an n-variable Boolean function f has
hardness δ � 1/t for deterministic time T and input-preserving space S � Sexpander+
Ω(t). Let h be the Boolean function obtained from f using the direct product con-
struction described above. Then h has hardness Ω(tδ) for deterministic time T ′ =

T
O(t2dt) − poly(n) and input-preserving space S′ = S −O(t).

The proof of the Direct Product Lemma above will consist of two parts (given by Lem-
mas 7 and 8 below). First we argue that the non-Boolean function g (obtained from f
by evaluating f along t-step walks in the expander G) will have hardness Ω(t)-factor
larger than the hardness of f . Then we argue that turning the function g into the Boolean
function h via encoding the outputs of g by a “good” error-correcting code will reduce
its hardness by only a constant factor independent of t.

Lemma 7. Suppose an n-variable Boolean function f has hardness δ � 1/t for de-
terministic time T and input-preserving space S � Sexpander + Ω(t). Let g be the
non-Boolean function obtained from f using the first step of the direct product con-
struction described above. Then g has hardness δ′ = Ω(tδ) for deterministic time
T ′ = T

O(tdt) − tpoly(n) and input-preserving space S′ = S −O(t).

Proof : Let C′ be a deterministic algorithm using time T ′ and input-preserving space
S′ that computes g correctly on 1 − δ′ fraction of inputs, for the least possible δ′ that
can be achieved by algorithms with these time/space bounds. We will define a new
deterministic algorithmC using time at most T and input-preserving space S, and argue
that δ′ is at least Ω(t) times larger than the fraction of inputs computed incorrectly by
C. Since the latter fraction must be at least δ (as f is assumed δ-hard for time T and
input-preserving space S), we conclude that δ′ � Ω(tδ).

We will compute f by an algorithm C defined as follows. On input x ∈ {0, 1}n, for
each i ∈ [0..t], record the majority value bi taken over all values C′(w)i, where w is a
t-step walk in the graph G that passes through x at step i and C′(w)i is the ith bit in
the (t + 1)-tuple output by the circuit C′ on input w. Output the majority over all the
values bi, for 0 � i � t. A more formal description of the algorithm is given in the
table Algorithm 1.
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INPUT: x ∈ {0, 1}n.
GOAL: Compute f(x).

count1 = 0
for each i = 0..t

count2 = 0
for each t-tuple (k1, k2, . . . , kt) ∈ [d]t

Compute the vertex y reached from x in i steps by taking edges labeled
k1, k2, . . . , ki, together with the “back-labels”
�1, �2, . . . , �i needed to get back from y to x.

count2 = count2 + C′(y, �1, �2, . . . , �i, ki+1, . . . , kt)i

Restore x by walking from y for i steps using edge-labels �1, �2, . . . , �i.
end for
if count2 � dt/2 then count1 = count1 + 1 end if

end for
if count1 � t/2 then RETURN 1 else RETURN 0
end Algorithm

Algorithm 1. Algorithm C

It is straightforward to verify that the algorithm C can be implemented in determin-
istic time O(tdt(T ′ + tpoly(n))). By choosing T ′ as in the statement of the lemma, we
can ensure that the running time of C is at most T . It is also easy to argue that the input-
preserving space complexity S of algorithm C is at most max{Sexpander, S

′} + O(t)
(the argument goes along the lines of the one we used to argue about the complexity of
the encoding at the end of Section 3.1). Hence by choosing S′ = S−O(t) � Sexpander

we get the input-preserving space complexity of C at most S.
We now analyze how many mistakes the algorithm C makes in computing f . Define

the set Bad = {x ∈ {0, 1}n | C(x) �= f(x)}. Pick a subset B ⊆ Bad such that
|B|/|V | = min{|Bad |/|V |, 1/t}. By definition, if x ∈ Bad , then for each of at least
1/2 values of i ∈ [0..t], the algorithm C′ is wrong on at least half of all t-step walks
that pass through x in step i. Define a 0-1 matrix M with |B| rows and t + 1 columns
such that, for x ∈ B and i ∈ [0..t], M(x, i) = 0 iff C′ is wrong on at least half of all
t-step walks that pass through x in step i. Then the fraction of 0s in the matrix M is at
least 1/2. By averaging, we conclude that there exists a subset I ⊆ [0..t] of size at least
t/4 such that, for each i ∈ I , the ith column of M contains at least 1/4 fraction of 0s.
This means that for each i ∈ I , the algorithm C′ is wrong on at least |B|

4
dt

2 = 1
8 |B|dt

of all |B|dt walks of length t that pass through the set B at step i.
For x ∈ B and i ∈ [0..t], let us denote by Wi,x the set of all t-step walks that

pass through x in step i; observe that |Wi,x| = dt. We define Wi = ∪x∈BWi,x. Since
Wi,x and Wi,y are disjoint for x �= y, we get |Wi| = |B|dt. Also, for x ∈ B and
i ∈ [0..t], denote by W ∗

i,x the set of all t-step walks w ∈ Wi,x such that C′(w) �= g(w).
Define W ∗

i = ∪x∈BW
∗
i,x. Note that for each i ∈ I , |W ∗

i | � 1
8 |Wi|. Finally, define

W ∗ = ∪t
i=0W

∗
i — by construction, for every w ∈ W ∗, C′(w) �= g(w), so it suffices

to give a lower bound on |W ∗| to argue that C′ makes many mistakes.
For each i ∈ [0..t], let Hi ⊆ Wi be the set of all walks w ∈ Wi that contain

more than m elements from B. Using the properties of the expander G, we can choose
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m to be a sufficiently large constant (independent of t) such that, for all i, |Hi| <
1
16 |Wi|. Indeed, by Lemma 1 above, for every i, a random walk w ∈ Wi is expected to
contain at most t|B|/|V | + O(1) vertices from B. Since, by our choice of parameters,
|B|/|V | � 1/t, a random w ∈ Wi contains on average at most b = O(1) vertices from
B. By Markov’s inequality, the probability that a random w ∈ Wi contains more than
m = 16b vertices from B is at most 1/16.

Thus we have∑
i∈I

|W ∗
i \Hi| =

∑
i∈I

(|W ∗
i | − |Hi|) � |I|(1

8
− 1

16
)|Wi| �

t

64
|B|dt. (1)

On the other hand, we have∑
i∈I

|W ∗
i \Hi| � m|W ∗ \ (∪t

i=0Hi)| � m|W ∗|. (2)

Combining Eqs. (1) and (2), we get |W ∗| � t
64m |B|dt. Dividing both sides by the

number |V |dt of all possible t-step walks in G (which is the number of all possible
inputs to the algorithm C′), we get that C′ makes mistakes on at least t

64m |B|/|V |
fraction of inputs. Note that |B|/|V | � δ since f is assumed to be δ-hard for time T
and input-preserving space S. It follows that the function g is Ω(tδ)-hard for time T ′

and input-preserving space S′. �

The analysis of the second step (Lemma 8) of our Direct Product construction uses the
standard approach of “code concatenation”.

Lemma 8. LetA = {0, 1}n×[d]t. Suppose that a function g : A→ {0, 1}t+1 is δ-hard
for deterministic time T and input-preserving space S. Let h : A× [c ·(t+1)] → {0, 1}
be the Boolean function obtained from g as described in Step 2 of the Direct Product
construction above (using the error-correcting code with relative distance ρ and rate
1/c). Then the function h is δ ·ρ/2-hard for deterministic time T ′ = (T−poly(t))/O(t)
and input-preserving space S′ = S −O(t).

3.3 Iteration

Our Direct Product Lemma (Lemma 6) can be applied repeatedly to increase the hard-
ness of a given Boolean function at an exponential rate, as long as the current hardness
is less than some universal constant. In particular, as shown in the corollary below, we
can turn a δ-hard Boolean function into a Ω(1)-hard Boolean function. Note that we
state this result in terms of the usual space complexity, and not the input-preserving
space complexity that we used to analyze a single Direct Product.

Corollary 9. Let f be an n-variable Boolean function that is δ-hard for deterministic
time T and space S � Ω(n + log 1

δ ). Then there is a Boolean function f ′ on n +
O(log 1

δ ) variables such that f ′ is Ω(1)-hard for deterministic time T ′ = Tpoly(δ) −
poly(n) and space S′ = S−n−O(log 1

δ ). Moreover, if f is computable in time T̃ and
space S̃, then f ′ is computable in time (T̃ + poly(n))/poly(δ) and space S̃ + O(n +
log 1

δ ).
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Remark 10. The constant average-case hardness in Corollary 9 above can be boosted
to any constant less than 1/4 by one additional amplification with a suitable expander,
as in [6, 15] (specifically, see Theorem 7 in [15]).

Remark 11. We want to point out that Spielman’s logspace encodable/decodable codes
can also be used for “worst-case to constant average-case” hardness amplification via
deterministic linear-space reductions. So Corollary 9 is implicit in [14].

4 Applications

4.1 Hardness Amplification Via Deterministic Space-Efficient Reductions

The iterated Direct Product construction of Corollary 9 gives us a way to convert
worst-case hard Boolean functions into constant-average-case hard ones, with space-
efficient deterministic reductions. The following theorems are immediate consequences
of Corollary 9 and Remark 10. Below we use standard notation for the complexity
classes E = DTIME(2O(n)) and LINSPACE = SPACE(O(n)).

Theorem 12. Let α < 1/4 be an arbitrary constant. If there is a language L ∈ E \
LINSPACE, then there is a language L′ ∈ E that is α-hard for LINSPACE.

Theorem 13. Let α < 1/4 be an arbitrary constant. For every c > 0, there is a c′ > 0
such that the following holds. If there is a language L ∈ LINSPACE that cannot be
computed by any deterministic algorithm running in linear space and, simultaneously,
time 2c′n, then there is a languageL′ ∈ LINSPACE that is α-hard for any deterministic
algorithm running in linear space and, simultaneously, time 2cn.

4.2 Logspace Encodable/Decodable Error-Correcting Codes

Using the connection between error-correcting codes and hardness amplification men-
tioned in the Introduction (Section 1.2) , we get an alternative construction (with much
weaker parameters) to Spielman’s logspace encodable/decodable codes [14].

Theorem 14. There is an explicit code C mapping n-bit messages to poly(n)-bit code-
words such that

1. C can correct a constant fraction of errors,
2. both encoding and decoding can be implemented in deterministic logspace (in fact,

uniform NC1).

Remark 15. We are not aware of any logspace encodable/decodable asymptotically
good codes other than Spielman’s construction [14], and the recent improvements to
its error-correction performance [6, 7]. Allowing NC2 complexity seems to give several
other choices of error-correcting codes.

5 A Simple Graph Based Amplification

Here we observe that the existence of efficiently constructible d-regular expanders
with expansion factor better than d/2 would give us another deterministic linear-space
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hardness amplification. We recall Trevisan’s derandomized Direct Product construction
below. We note that a similar definition has been used in the construction of codes in
several works beginning with [1] and more recently in [6, 8].

Definition 16. Given a d-regular graph G on 2n vertices, where each vertex is iden-
tified with an n-bit string, and a Boolean function f : {0, 1}n → {0, 1}, we de-
fine a function g = G(f) : {0, 1}n → {0, 1}d as follows. For x ∈ {0, 1}n, let
N1(x), N2(x), . . . , Nd(x) denote the d neighbors of x in G (as per some fixed order-

ing). Then g(x)
def
= f(N1(x))f(N2(x)) . . . f(Nd(x)).

Lemma 17. Let G = ({0, 1}n, E) be an efficiently (in total space Sexpander) con-
structible d-regular (δ, d/2 + γd)-expander for some γd > 0. Let f : {0, 1}n → {0, 1}
be δ-hard for deterministic time T and input-preserving space S � Sexpander +Ω(d).
Then the function g = G(f) from Definition 16 is γdδ-hard for deterministic time
T ′ = T

d − poly(n) and input-preserving space S −O(d).

Thus, provided explicit expanders with expansion better than d/2 are known, we can
apply the above amplification repeatedly to get a deterministic linear-space “worst-
case to constant average-case” hardness amplification. Unfortunately, we do not know
explicit expanders with expansion factor better than d/2. The recent work of Capalbo
et al. [3] applies only to bipartite graphs. Beating the d/2 barrier for general graphs
remains a challenging open question.
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Abstract. We consider the following problem from swarm robotics:
given one or more “awake” robots in some metric space M , wake up
a set of “asleep” robots. A robot awakens a sleeping robot by moving to
the sleeping robot’s position. When a robot awakens, it is available to
assist in awakening other slumbering robots. We investigate offline and
online versions of this problem and give a 2-competitive strategy and a
lower bound of 2 in the case when M is discrete and the objective is
to minimize the total movement cost. We also study the case when M
is continuous and show a lower bound of 7/3 when the objective is to
minimize the time when the last robot awakens.

1 Introduction

The Freeze-tag problem has received some attention recently [1, 2, 7]: given a set
of n robots located at points in some metric space. Initially, there is one or more
awake or active robots and the other robots are asleep, i.e., in a stand-by mode.
The objective is for the active robots to awaken the sleeping ones. An active
robot is able to awaken a sleeping robot just by touching it. Once awake, this
new robot is available to assist in awakening other sleeping robots. This problem
was dubbed the Freeze-tag problem by the authors of [1, 2, 7].

In this paper, we consider online versions of this problem where the sleeping
robots, also denoted as requests, occur in an online fashion, i.e., neither the to-
tal number of requests nor their exact location in space are known in advance.
Therefore, decisions, i.e., which robots to move in order to wake up sleeping
robots, has to be made without any knowledge about future requests. We con-
sider the following two online problems. The online step dependent Freeze-tag
problem (online SDFT(k) for short) has k awake robots from the start and a
request is released only when the previous request has been activated or served
and the objective is to minimize the total distance travelled by all the robots.
The online time dependent Freeze-tag problem (online TDFT for short), closely
models the Freeze-tag problem defined in [1] but in an online setting. The re-
quests are released independently of how many of them have already been served
and our objective is to minimize the makespan.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 569–579, 2006.
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The Freeze-tag problem has many applications such as data distribution, net-
work design, broadcasting, routing and scheduling [1]. Another feature is that
SDFT(k) and TDFT exhibit some elements of the k-server problem and the
Traveling Salesman Problem, respectively. In the well studied k-server problem
(see e.g. [4, 5]) one aims to online serve a set of requests, positioned on points
in some metric space M , by k mobile servers and simultaneously minimize the
total movement cost. Here a request is a point in M and the servers are located
on points of M . A request r is said to be served if one of the servers lies on
r. Manasse et al.[5] have shown that k is a lower bound on the competitive
ratio of any deterministic k-server algorithm in any metric space with at least
k + 1 points, whereas the work function algorithm for the k-server problem has
been shown to have a competitive ratio of at most (2k − 1)[4]. The online step
dependent Freeze-tag problem closely models the online k-server problem but
with the difference that now the number of servers, i.e., active robots, is not
constant; a new server appears for each served request. In this paper, we provide
a 2-competitive online algorithm for this variant of the k-server problem.

The online time dependent Freeze-tag problem can be viewed as a parallel
online version of the Traveling Salesman Problem, in which the cities of the
TSP instance correspond to the asleep robots initial locations in time dependent
Freeze-tag, and the objective is to visit all cities as rapidly as possible. Further-
more, in TDFT there are many salesmen working in parallel since whenever a
salesman visit a city, he recruits a new salesman to help visit other cities. The
time dependent Freeze-tag problem was first introduced by Arkin et al.[1]. They
showed that in the offline case, minimizing the time when the last robot awak-
ens, even simple versions of the problem (e.g. in star metrics) are NP-complete
and they provide a PTAS for geometric instances on a set of points in any con-
stant dimension. Sztainberg et al.[7] further investigate offline Freeze-tag and
prove that the greedy strategy gives a tight approximation bound for the case of
points in the plane and that greedy yields a Θ((log n)1−1/δ)-approximation for
n points in Rδ. Arkin et al.[2] recently prove the NP-hardness and present an
O(1)-approximation for offline Freeze-tag in unweighted graphs, in which there
is one asleep robot at each node. They further generalize to the case when there
are multiple robots at each node and edges are unweighted and they obtain a
Θ(
√

logn)-approximation. In the case of weighted edges for this problem, they
provide an O((L/d) logn + 1)-approximation, where L is the edge of heaviest
weight and d is the diameter of the graph.

1.1 Our Results

In this paper we show that offline SDFT(k) can be solved in polynomial time for
all possible values of the parameter k. We further give a 2-competitive algorithm
in the online case and also prove a lower bound of 2 on the competitive ratio for
all k. For online TDFT we prove a lower bound of 7/3 on the competitive ratio.

Our paper is organized as follows. In section 2 we give some basic definitions
and also formally define the different variants of the Freeze-tag problems. In
section 3 we consider the offline version of SDFT(k) and prove that this problem
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can be solved in polynomial time. In section 4 we present a strategy yielding a
competitive ratio of 2 for online SDFT(k) and then we further prove that this is
in fact optimal. In section 5 we prove a lower bound of 7/3 on the competitive
ratio for the TDFT problem.

2 Preliminaries

We begin with some notation and basic definitions.
Given a metric space M , the robots are represented as points in M . A robot

can be in two different states, the awake state and the asleep state. We also call
sleeping robots requests and say that a request is served when a sleeping robot
is awakened by an active robot. An active robot is also denoted as a server. The
release time of robot r specifies the first point in time when r can be awakened
and also the first point in time when the awake robots become aware of r.

The formal definition of the problems is as follows.

Definition 1. In the online Step Dependent Freeze-tag problem, (SDFT(k) for
short), one is given a set of k initially awake robots located on points in some
discrete metric space M and the objective is to serve all requests in such a way
that the total movement cost is minimized. A new request is released only when
the previous request has been served.

In the online Time Dependent Freeze-tag problem, (TDFT for short), one
is given one initially awake robot, located on a point in some continuous metric
space L and the objective is to serve all requests in such a way that the makespan,
i.e., the time when the last robot is awakened, is minimized. An awake robot can
move with at most unit speed and associated to each robot is a release time.

Note that in the TDFT problem a moving robot is allowed to reconsider its
choice, i.e., aborting its motion when a new request occur. This is not possible
in the SDFT(k) problem since a new request is released only when the previous
request has been served.

The performance of deterministic online algorithms is measured in comparison
with the optimal offline algorithm, denoted by OPT, using the standard compet-
itive ratio, see e.g. [3]. It is assumed that OPT knows the entire input sequence,
i.e., the total number of requests and their locations in M , and can hence achieve
a lower cost. Furthermore, an online algorithm A is c-competitive for a constant
c, if for all input sequences σ, the following holds: A(σ) ≤ cOPT(σ). The infi-
mum of all such values c over all request sequences σ is called the competitive
ratio of A. The input to an online algorithm is constructed by an adversary. For
deterministic online algorithms, a cruel adversary knows exactly what the on-
line algorithm’s response will be to each input element and this adversary pays
the optimal offline cost. A different kind of adversary is the adaptive-online ad-
versary, who must serve each request it generates before the randomized online
algorithm serves the request and this adversary knows its own strategy for gener-
ating requests as well as the description of the online algorithm and all its action
taken thus far (see e.g. [3] for a more comprehensive survey on adversaries).
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We refer to an algorithm A as being lazy if (1) A moves its robot along the
shortest path to a sleeping robot and (2) A moves only one robot in order to
serve a request.

The following lemma proves that any non-lazy online algorithm for SDFT(k)
can be replaced by a lazy online algorithm without increasing the algorithms
total movement cost.

Lemma 1. Any online algorithm for the SDFT(k) problem can be replaced by
a lazy online algorithm without increasing the total path travelled by the robots.

Proof. Consider a feasible solution, i.e., a sequence σ = (r1, . . . , rn) of serving
robots, generated by a non-lazy algorithm A for SDFT(k). We show how to
construct a new feasible solution by replacing all non-lazy movements by lazy
movements without increasing the total distance travelled by the robots. The
construction goes as follows. First, let us assume that A moves robot ri ∈ σ in
order to wake up the sleeping robot r(j) and furthermore, assume that A makes
its first non-lazy movement in this step, denoted as the j:th step. This non-lazy
movement is clearly (at least) one of the following kind: (1) A does not move
along the shortest path to serve r(j), or (2) A moves more than one robot to
serve r(j). Now replace this non-lazy movement by a lazy movement by moving
only ri along the shortest path to robot r(j) and no further. It is clear that
this replacement will not increase the total distance travelled by the robots up
to step j. Repeat this process of exchanging non-lazy moves by lazy ones until
all moves are lazy, using the same serving robot sequence, i.e., σ, as A. Since
we only consider discrete metric spaces, the exchange of non-lazy moves to lazy
ones will never result in a loss of cost. ��

3 Offline Step Dependent Freeze-Tag

In this section we consider the offline version of SDFT(k) and we show that
this problem has a polynomial time solution by reducing it to maximum cardi-
nality minimum weight matching on bipartite graphs, which is known to have
polynomial time algorithms (see e.g. [6]).

We reduce SDFT(k) to maximum cardinality minimum weight matching on
bipartite graphs. Let R = (r1, . . . , rn) be a set of n requests where rj denotes the
j:th request in the sequence, where j goes from 1 to n. Let S0 = (s01 , . . . , s0k

) be
a set of k initially awake robots. We further define two new sets S = (s1, . . . , sn)
and S′ = (s′1, . . . , s

′
n) such that sj = s′j = rj . Thus, S and S′ are copies of

R. Now define a graph G = (S0 ∪ S ∪ S′, R,E), whose vertices represent the
set of requests and the set of servers, i.e., active robots that can be used to
awaken the sleeping robots. Clearly, G is bipartite because the set of vertices
can be partitioned into two sets, one set containing the vertices corresponding
to the servers (set S0 ∪ S ∪ S′) and the other containing the vertices corre-
sponding to the requests (set R). Two vertices (si, rj) ∈ G (or (s′i, rj) ∈ G),
with 1 ≤ i ≤ n, are adjacent if and only if i < j. Also, for each s0i ∈ G,
there are edges connecting s0i to every rj ∈ R. Furthermore, an edge (s0i , rj)
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(or (si, rj) or (s′i, rj), respectively) is assigned weight equal to the distance
between request rj and server s0i (or si or s′i, respectively). Note that if ri

and rm, for 1 ≤ m ≤ n, are two distinct requests with i < m, that happen
to occur on the same point, then the corresponding vertices in G are con-
sidered as being distinct, although the edges (si, rm) and (s′i, rm) have zero
weights. Furthermore, the edges (si, ri) and (s′i, ri) does not exist for any ri ∈ R.
It suffices to prove that the bipartite graph G has a maximum cardinality
minimum weight matching of size l if and only if the total movement cost
for the robots in SDFT(k) is l. Let {e1, . . . , en} be a set of edges in a max-
imum cardinality minimum weight matching on G. Since |S0| > 1 and an
edge (si, sj) ∈ E for each i < j it follows that a maximium cardinality min-
imum weight matching covers all vertices in R exactly once, whereas a ver-
tex in set S0 ∪ S ∪ S′ is covered at most once. Furthermore, note that the
set of edges E ∈ G simulates the precedence constraints in SDFT(k), i.e.,
a sleeping robot cannot be used for awaking other robots before it has been
awaken. Hence, {e1, . . . , en} is a set of movements costs with minimum cost
for the serving robots in SDFT(k). Conversely, let {l1, . . . , ln} represent a set
of movements costs of minimum cost for the serving robots generated from
the SDFT(k) execution process on graph G. Since there is only one active
robot located on each vertex in S0 ∪ S ∪ S′ in G and since each request is
served exactly once it follows that {l1, . . . , ln} forms a maximum cardinality
minimum weight matching in G. See Fig. 1 for an illustrating example of the
reduction, where the dashed edges indicate an optimal solution of cost 7 for
SDFT(k).

We have proved the following theorem:

Theorem 1. The problem SDFT(k) can be solved in polynomial time.
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Fig. 1. Graph G for sequence of requests (r1, r2, r3, r4) with initially one active
server s0
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4 Online Step Dependent Freeze-Tag

We now present a strategy, Simple, which achieves a competitive ratio of two
for SDFT(k). This strategy works in arbitrary metric spaces and for all possible
values of the parameter k. Simple works as follows. For each request in the
sequence, the request is served with the closest robot which afterwards returns
to its original position. Hence, Simple is a non-lazy strategy.

Theorem 2. Simple is 2-competitive.

Proof. To prove our claim about a competitive ratio of two for our strategy, we
just need to consider that for any request in the request sequence, the optimal
strategy must move at least the minimum distance from a previous request.
Simple moves exactly this distance in order to serve the request and then back
to its original position, thus proving the theorem. ��

By using Lemma 1 Simple can be made lazy without increasing its competitive
ratio.

We proceed by proving that Simple is in fact optimal. We start by giving an
easy argument to why two is a lower bound for SDFT(k) when k ≥ 2, i.e., there
are at least two active robots initially.

Theorem 3. There exist metric spaces for which the competitive ratio for the
SDFT(k) is at least 2, when k ≥ 2.

Proof. Given a k+1 point unit-distance metric space M, i.e., M is a metric space
with k+1 points such that for each pair of points p and q, distance(p, q)=1. Let
A be any deterministic online algorithm for the SDFT(k) problem. We show that
there exists a request sequence σ such that A(σ) ≥ 2OPT(σ). By Lemma 1, we
assume that A is lazy. For the construction of σ, let the initial configuration of
A consist of k active robots, occupying k distinct points in M, i.e., initially there
exist one point p in M not occupied by an active robot. Now, the move for the
cruel adversary is to put request r1 on point p. Then, assume that A serves r1
with one of its robots positioned at say point q, with q occupied by one active
robot r. Hence, this movement of r leaves an empty point at position q and the
next move for the cruel adversary strategy is to put the second request r2 on
position q, forcing A to move a total distance of two in order to serve σ. Clearly,
OPT(σ) = 1 since OPT can move some other active robot than robot r to serve
r1 and this concludes the proof. ��

Next, we prove a lower bound holding for all possible values of the parameter
k, i.e, this lower bound holds also in the case when k = 1. We begin by defining
a few concepts. A metric space is a tree metric if the underlying metric graph
structure is a tree. The tree metric has unit cost if all tree edges have weight
one. The distance between two points is the sum of the edge weights on the
tree path between the points. Tree metrics generalize such metric spaces as star
metrics and line metrics. An online algorithm for SDFT(k) in a tree metric is
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said to have the nearness property if it never serves a request using an active
robot having some other active robot on the tree path to the request.

To show that we can restrict ourselves to consider only online algorithms
having the nearness property, we first need to prove the following lemma.

Lemma 2. For any online algorithm that solves SDFT(k) in tree metrics there
is an online algorithm having the nearness property that solves the same instance
with the same or better competitive ratio.

Proof. Consider a request r that the algorithm serve with a robot r′ without
using nearness. This means that there is an active robot r′′ on the tree path
from r′ to r and we can equivalently view the algorithm as moving r′ to the
position of r′′ and let r′′ serve the request r. However, this step is non-lazy and
by Lemma 1 we can defer the movement of r′ to the position of r′′ to a later
request, when it is needed. ��

We are now in a position to prove our lower bound result.

Theorem 4. There is a unit cost tree metric such that no randomized online
algorithm for SDFT(k) has competitive ratio 2−ε, for any ε > 0, against adaptive
online adversaries.

Proof. We let an adaptive online adversary construct a request sequence con-
sisting of n requests in a unit cost tree metric where the tree initially has one or
more active robots at a designated node that we denote the root r, i.e., the tree
is a rooted tree. Each node in the tree has degree n and the distance from the
root to each leaf node is n.

The adversary now places requests at different children of the root until the
online algorithm has used all robots at the root to serve these requests. Note
that by Lemma 2 we can assume that the online algorithm has the nearness
property.

We denote a point that previously had active robots but now does not by a
hole and a point that has a single active robot as a single point. Hence, once the
initially active root robots all have served the requests at the children we have a
hole at the root and an even number of active robots, two at each point having
active robots. The adversary continues constructing requests in accordance with
the following simple scheme S.

1. If the tree has a hole, then a request is placed at the hole.
2. If the tree has a single point, then a request is placed at a child of the single

point being the root of a subtree having no active robots.

A simple induction proves that after the online algorithm has served each request,
then the tree will either contain an even number of robots and a hole or an odd
number of robots with one single point. All other points having active robots
will have two active robots positioned at the same point. Again we rely on the
fact that the online algorithm has the nearness property.
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Let us divide the subsequent work of the online algorithm into stages. A stage
begins with the online algorithm A and an adversarial online algorithm A∗ both
having a hole at the root of the tree and ends after a number of requests have
been served when A and A∗ again reach the same configuration, i.e., both have
their hole at the root. The number of children of the root that have active robots
we henceforth call the r-degree. Consider now an arbitrary stage i with r-degree
di ≥ 2. The adversary places a request at the root and A serves that request
using an active robot at one of the children of the root, say p. A∗ on the other
hand serves that request using an active robot at some other child q of the
root. The stage now continues with the adversary placing requests according to
the simple scheme S to be served by both A and A∗. If A and A∗ reach the
same configuration, i.e., both have a single point at q, then the two subsequent
requests will be handled by A∗ so that it has a single point at the root. Without
loss of generality we can assume that A does the same, thus one more request
will generate a hole at the root ending the stage and starting the next stage.
Figure 2 gives an example of a stage. The label of an edge is the sum of the
movements cost along this edge during the stage. Note that there are always two
active robots on each node (except for the root of the tree which has no active
robot) after a stage.

Let us analyze the expected cost of A with respect to the expected cost of A∗

during stage i. The adversary places a request at the root, which is served by A
and A∗. Note that, independently of the probability distribution that A uses, the
probability that A and A∗ serve that request using the same active robot is 1

di

if A∗ chooses the robot to use with uniform distribution. Hence, the probability
that A and A∗ serve that request using active robots from two different children
of the root is then di−1

di
, where di denotes the r-degree.
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Fig. 2. Example illustrating the proof of Theorem 4
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A trial is the sequence of steps that A does starting with a single point at
the root until it has a single point at the root the next time. A trial consists
of at least four steps so the expected cost of A in stage i can now be expressed
as E(Ai) ≥

∑di

j=1 E(Ai|j), where E(Ai|j) denotes the conditional cost of A in
stage i given that stage i consists of j trials. Then,

E(Ai|j) = kij
1

di − j + 1

j−1∏
l=1

di − l

di − l + 1
=

kij

di
, (1)

where kij is the number of moves for A in stage i given that it consists of j trials.
We know that kij ≥ j since each trial consists of at least four moves.

The corresponding expected cost of A∗ in stage i given that A consists of j
trials is

E(A∗
i |j) =

kij/2 + 2
di

, (2)

since A∗
i will use only half the number of moves that Ai uses except in the last

trial. In the last trial we can assume that both strategies use exactly four moves.
In fact, we can let Ai know the moves of A∗

i when the last trial occurs so that
Ai can follow A∗

i ’s moves.
The ratio of the total expected costs for A and A∗ is therefore bounded by

E(A)
E(A∗)

=
∑m

i=1 E(Ai)∑m
i=1 E(A∗

i )
=

∑m
i=1

∑di

j=1 E(Ai|j)∑m
i=1

∑di

j=1 E(A∗
i |j)

=

∑m
i=1

∑di

j=1
kij

di∑m
i=1

∑di

j=1

kij
2 + 4

2
di

≥
∑m

i=1
1
di

∑di

j=1 kij∑m
i=1

1
2di

∑di

j=1(kij + 4)
≥

2 ·
∑m

i=1
1
di

∑di

j=1 j∑m
i=1

1
di

∑di

j=1(j + 1)
≥ 2 ·

∑m
i=1

1
di
· di(di+1)

2∑m
i=1

1
di
· di(di+3)

2

=

2 ·
∑m

i=1(di + 1)∑m
i=1(di + 3)

≥ 2 ·
∑m

i=1(i+ 1)∑m
i=1(i+ 3)

=

2 · (m + 3)
(m + 7)

→ 2 , (3)

as m increases, where m denote the number of stages. We have used the fact
that di ≥ i since at each stage the r-degree increases by at least one.

Finally, note that there is one more case to handle, namely the case when
m is constant. In this case, the ratio of the total expected costs for A and A∗

depends on the cost of the last stage and is therefore bounded by

E(A)
E(A∗)

≥
∑m

i=1
1
di

∑di

j=1 kij∑m
i=1

1
2di

∑di

j=1(kij + 4)
=

2 ·
B + ( 1

dm
) ·

∑di

j=1 kmj

C + ( 1
dm

) ·
∑di

j=1(kmj + 4)
→ 2 , (4)
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as n increases, where n denotes the number of requests, and B and C are
constants. ��

5 Time Dependent Freeze-Tag

Let us change our problem specification for Freeze-tag. The robots are points in
some general metric space and associated to each robot is a release time. The
release time t(r) specifies the first point in time when a robot r can be awakened
and the awake robots become aware of r. An awake robot can move with at
most unit speed to wake up sleeping robots. Hence, a request sequence is given
by σ = ((t(r1), p(r1)), . . . , (t(rn), p(rn))), where p(ri) is the position of robot ri.
Initially one robot r0 is awake and the objective is to find an awakening schedule
that minimizes the time until all robots are awake, i.e., find the directed spanning
tree of minimum height where the out degree of any point is at most two (except
from the root point r0 which has out degree one). We call such a tree an optimal
scheduling tree. An optimal scheduling tree can be computed given a request
sequence although the best known time complexity is exponential because of the
NP-completeness of this problem [1].

The fact that the robots move in time requires us to use continuous metric
spaces to accurately model the problem. This means that at any point in time
a robot is positioned at some point in the metric space and robot motion is
continuous.

We continue by providing a lower bound on the competitive ratio for TDFT.

Theorem 5. There is a metric space such that no algorithm solves the time
dependent Freeze-tag problem with competitive ratio 7/3− ε, for any ε > 0.

Proof. Consider the graph structure of Fig. 3(a). It defines a continuous metric
space where robots can move along the edges at unit speed. Points p1, . . . , p6 are
at distance three from the point p0 having the initial active robot. The point p7
is at distance six from p0 and nine from the other ones.

The first request is (0, p0), i.e., at time zero a robot at p0 is released thus
giving us two active robots at p0. These two robots are allowed to move along
the edges to try to anticipate the release of subsequent robots. However, at time
three the cruel adversary releases two robots, one on each of the points p1, . . . , p6
that does not have an active robot on its corresponding edge. Without loss of
generality we can assume that the requests are (3, p1) and (3, p2), thus giving us
the situation depicted in Fig. 3(b)–(d).

The first active robot that serve a request will have to do so at the earliest
at time six. Assume without loss of generality that this is p1 and we look at the
other robot r at time six. If r is further from p2 than one, then nothing more
happens giving a total time for the schedule of 7. The optimal schedule takes
time three because the two robots can be at p1 and p2 respectively at time three.

On the other hand, if r is closer to p2 than one, then a fourth request (6, p7)
is generated by the cruel adversary. To serve this request, any of the robots will
have to use at least a total of 14 time units. An optimal schedule will serve p1
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Fig. 3. Illustrating the proof of Theorem 5

and p2 in time four with one robot and the other will serve p7 in six time units
giving a total optimal cost of six. In both cases the ratio for any algorithm is at
least 7/3. ��

6 Conclusions

An interesting open problem is to investigate online algorithms for time depen-
dent Freeze-tag. Does there exists a strategy with constant competitive ratio for
this problem?
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Abstract. Obtaining I/O-efficient algorithms for basic graph problems
on sparse directed graphs is a long-standing open problem. While the
best known upper bounds for most basic problems on such graphs with
V vertices still require Ω(V ) I/Os, optimal O(sort(V )) I/O algorithms
are known for special classes of sparse graphs, like planar graphs and
grid graphs. It is hard to accept that a problem becomes difficult as soon
as the graph contains a few deviations from planarity. In this paper we
extend the class of graphs on which basic graph problems can be solved
I/O-efficiently. We give a characterization of near-planarity which covers
a wide range of near-planar graphs, and obtain the first I/O-efficient
algorithms for directed graphs that are near-planar.

1 Introduction

When working with massive graphs, only a fraction of the data can be held in the
main memory of a computer. Thus, the transfer of blocks of data between main
memory and disk, rather than the internal memory computation, is often the
bottleneck. Therefore, developing external-memory or I/O-efficient algorithms—
algorithms that specifically optimize the number of block transfers between main
memory and disk, can lead to considerable runtime improvements.

I/O-efficient algorithms for graph problems has been an active area of re-
search. Even though significant progress has been made, there is still a significant
gap between the lower and the upper bound for all basic problems. Consider a di-
rected graph (digraph) with non-negative real edge weights. A shortest path from
vertex u to vertex v in G is a minimum-length path from u to v in G, where the
length of a path is the sum of the weights of the edges on the path. The single-
source-shortest-paths (SSSP) problem is to find shortest paths from a source

� Part of this work was done while Herman Haverkort was at Karlsruhe University,
supported by the European Commission, FET open project DELIS (IST-001907),
and subsequently at Aarhus University, supported by a grant from the Danish Na-
tional Science Research Council.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 580–591, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



I/O-Efficient Algorithms on Near-Planar Graphs 581

vertex s to all vertices in G. For planar digraphs (graphs that can be embed-
ded in the plane such that no two edges intersect), there exist SSSP-algorithms
with upper bounds on the number of block transfers that match proven lower
bounds up to a constant factor. However, for general graphs, the SSSP problem
is still open, as are other basic problems such as connected components (CC)
and depth- and breadth-first search (DFS, BFS).

Both from a theoretical and from a practical point of view, it is hard to accept
that SSSP should become extremely difficult as soon as a graph contains a few
deviations from planarity. In practice, networks (e.g. transportation networks)
may not be planar. However, when edges are expensive and junctions are cheap,
such networks still have a strong tendency to planarity: there will be only rel-
atively few links (e.g. motorways) that cross other edges without connecting to
them. Other examples are networks in which each vertex is connected to a few
nearby vertices. In such networks, there may be quite a number of crossings but
they are all very ‘local’. In this paper we give a characterization of near-planarity
covering a wide range of near-planar graphs, and develop the first I/O-efficient
algorithms for such graphs.

I/O-Model and related work. We develop I/O-efficient algorithms using the
standard two-level I/O-model [2]. The model defines two parameters: M is the
number of vertices/edges that fit into internal memory, and B the number of
vertices/edges that fit into a disk block, where B ≤M/2. An Input/Output (or:
I/O) is the operation of transferring a block of data between main memory and
disk. The I/O-complexity of an algorithm is the number of I/Os it performs. The
basic bounds in the I/O-model are those for scanning and sorting. The scanning
bound, scan(N) = N

B , is the number of I/Os necessary to read N contiguous
items from disk. The sorting bound, sort(N) = Θ(N

B logM/B
N
B ), represents the

number of I/Os required to sort N contiguous items on disk [2] when N > M .
For all realistic values of B and M < N , we have scan(N) < sort(N)4 N .

I/O-efficient graph algorithms have been considered by a number of authors;
for a recent review see [23]. On general digraphs G = (V,E) the best known
algorithm for SSSP, as well as for the BFS and DFS traversal problems, use
Ω(V ) I/Os in the worst case1; their complexity is O(min{(V + E

B ) · logV +
sort(E), V + V

M
E
B }) [12, 13, 19]. On sparse graphs, which have E = O(V ), the

best known bounds are thus O(V ) I/Os or worse, which is no better than just
running the internal-memory algorithms in external memory. This is far from
the currently best lower bound of Ω(min{V, sort(V )} + E/B) I/Os, which on
sparse graphs is practically Ω(sort(V )).

The search for BFS, DFS and SSSP algorithms using O(sort(E)) I/Os on
general (sparse) graphs has led to a number of improved results for special graph
classes [5, 6, 7, 8, 10]. All these algorithms are based on the existence of small
separators. For planar graphs, they exploit graph partitions, as introduced by
Frederickson [16]. For any planar graph K = (V,E), given a parameter R ≤ V ,
we can find a subset VS ⊂ V of O(V/

√
R) vertices, such that the removal of VS

1 We denote the size of a set by its name; the meaning will be clear from the context.
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partitions K into subgraphs Ki such that: (1) there are O(V/R) subgraphs; (2)
each subgraph has size O(R), and (3) (the vertices in) each Ki is (are) adjacent
to O(

√
R) vertices of VS . We call such a partition an R-partition. Assuming

that R ≤ M/(c log2 B), for a sufficiently big constant c, an R-partition can be
computed I/O-efficiently with O(sort(V )) I/Os [22]. On planar digraphs, using
R-partitions, SSSP and BFS can be solved in O(sort(V )) I/Os [8], and DFS in
O(sort(V ) log V

M ) I/Os [10];

Our results. In this paper we extend the class of graphs that admit I/O-efficient
algorithms. We introduce a class of near-planar graphs and show how to find
small separators for planar subgraphs of such graphs that gracefully depend on
the non-planarities. Using these separators, we develop the first I/O-efficient
SSSP, BFS, DFS and topological sort algorithms for such near-planar graphs.

Our main result is the following. Let G = (V,E ∪ EC) be a digraph that
consists of a planar graph K = (V,E) and a given set of additional edges EC ;
let GC = G − K = (VC , EC) denote the non-planar part of G, where VC is the
set of vertices incident to edges in EC . We show how to refine an R-partition
of K to restrict the number of vertices of VC per subgraph, while adding no
more than O(

√
V VC/R

1/4) vertices to the separator and increasing the number
of subgraphs by no more than O(VC/

√
R). Using refined R-partitions we show

how to compute SSSP on G in O(EC + sort(V + EC)).
We generalize our result to graphs G = (V,E ∪ EC) such that K = (V,E)

can be drawn in the plane with T crossings. If we know for each edge (u, v)
of K which edges it crosses, and in which order these crossings occur when
traversing the edge from u to v, we can compute SSSP on such a graph G in
O(EC + sort(V + T + EC)) I/Os.

When a graph is near-planar in the sense that T = O(V ) and EC = O(V/B),
these bounds reduce to O(sort(V )), whereas the best known SSSP-algorithm for
general graphs requires O((V + E

B )·log V
B +sort(E)) ⊃ O(V ) I/Os. If information

about a suitable drawing of a graph is given, our results allow the computation of
SSSP in O(sort(E)) I/Os on graphs with crossing number O(E), on graphs that
are k-embeddable in the plane for constant k, on graphs with skewness O(E/B)
and on graphs with splitting number O(E/B). We obtain similar results for BFS,
DFS, topological order and CC.

Outline. The paper is organized as follows. Sec. 2 presents refined R-partitions
and Sec. 3 describes how to use these partitions to compute SSSP efficiently.
Sec. 4 extends our approach to other basic graph problems. In Sec. 5 we explain
how our technique could be used for problems on several types of graphs that
are near-planar according to measures of planarity proposed in literature. We
conclude in Sec. 6 and give directions for further research.

2 Partitioning a Near-Planar Graph

In this section we discuss how to compute small separators and extend Frederick-
son’s R-partitions to graphs that are not planar. Consider a graph
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(a) (b)

Fig. 1. (a) Partition of a planar graph into clusters (boxed) and separator vertices
(black). (b) One cluster in the partition and its adjacent boundary sets.

G = (V,E ∪EC) that consists of planar subgraph K = (V,E) and a set of edges
EC . For this section we assume K to be known. Let GC = (VC , EC) = G − K
denote the non-planar part of G. We call the edges of GC cross-link edges, and
the vertices of GC cross-link vertices. We assume that the vertices and edges in
the cross-link graph GC are labeled as such.

We start by computing an R-partition for K = (V,E), that is, a set VS ⊂ V
of O(V/

√
R) vertices, such that the removal of VS partitions K into subgraphs

Ki such that there are O(V/R) subgraphs, each subgraph has size O(R), and is
adjacent to O(

√
R) vertices of VS . We use the following notation: the vertices

in VS are separator vertices and each of the subgraphs a cluster ; the set of
vertices in K − Ki adjacent to Ki are the boundary vertices ∂Ki (or simply the
boundary) of Ki. We use Ki to denote the graph consisting of Ki, ∂Ki and the
subset of edges of E connecting vertices in Ki∪∂Ki. The set of separator vertices
can be partitioned into maximal subsets so that the vertices in each subset are
adjacent to precisely the same set of clusters. These sets are the boundary sets
of the partition. If the graph has bounded degree, which can be ensured for
planar graphs using a simple transformation, there exists an R-partition with
only O(V/R) boundary sets [16] (Refer to Fig. 1).

The separator VS is a separator for K but not necessarily for G, because
any cluster in K may contain up to R cross-link vertices that are connected by
cross-link edges to cross-link vertices in other clusters, by-passing the separator.
Let Gi denote the clusters induced by Ki in G. A straightforward way to get
a separator for G would be to add all cross-link vertices VC to VS ; however,
the SSSP algorithm of Sec. 3, run on the basis of such a separator, would use
O(EC + V ) I/Os.

We show how to refine the partition of K to incorporate the cross-link edges
while ensuring that the total number of separator vertices and clusters is not
too large and each cluster contains O(

√
R) cross-link vertices. Our approach is

based on the following generalization of Lemma 2 from [16].

Lemma 1. Given a subgraph G=(V,E) of a planar graph with |∂G|=O(
√
V ),

and a weight function w : V →R such that
∑

v∈V w(v)=W , we can find a subset
S ⊂ V of size O(

√
VW ) which separates G − S into a set of O(W ) subgraphs

(clusters) G′ with the following properties:

– each cluster G′ = (V ′, E′) has a total weight
∑

v∈V ′ w(v) of at most 1.
– for each cluster G′ = (V ′, E′), we have that ∂G′ has O(

√
V ) vertices.
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Proof. The proof follows the proof of Lemma 1 and 2 from Frederickson [16],
which is based on recursive application of the separator theorem by Lipton and
Tarjan [21] in two phases: first with uniform weights on the vertices, and then
with weights on the separator vertices only. However, we use a non-uniform
weight function in the first phase. Note that we are not interested in low-weight
separators: it is the weights of the clusters that count. The first phase of the
recursive procedure is as follows. When G has weight w(G) at most 1, we are
done. Otherwise, applying Lipton and Tarjan’s separator theorem, we find a
subset S of at most 2

√
2
√
V vertices of V such that S separates G − S into

two clusters A and B that each have weight at most 2
3w(G). We partition the

clusters A and B recursively.2 This procedure results in a number of clusters. By
construction each cluster G′ = (V ′, E′) has weight at most 1, and the number
of clusters is obviously O(W ). However, the boundary ∂G′ of a cluster G′ may
still have more than O(

√
V ) vertices—this is solved by the second phase. But

first we show that so far, the total number of vertices in the subsets S that were
selected is O(

√
VW ). Let s(v, w) be the maximum number of separator vertices

that may be selected while recursively partitioning a planar graph induced by
a set of v vertices with weight w. Note that any of its subgraphs A and B may
have total weight at most 2

3w, and at least one of them has at most v/2 vertices.
Therefore s(v, w) is bounded by the following recursive expression: s(v, w) ≤
max0<α≤1/2,1/3≤β≤2/3 c

√
v+s(αv, βw)+s((1−α)v, (1−β)w) where s(v, w) = 0

if w ≤ 1, and c = 2
√

2. This recursion solves to s(V,W ) = O(
√
VW ) (details in

the full version of this paper). In the second phase of the procedure we recursively
subdivide each cluster further until the size of its boundary is reduced to O(

√
V ).

It can be shown that this increases the number of separator vertices and the
number of clusters by at most a constant factor; thus the lemma follows. ��

Our algorithm first computes an R-partition of K in O(sort(V )) I/Os with the
algorithm by Maheshwari and Zeh [22]; then we refine the partition by applying
Lemma 1 to each cluster Gi that has more than c

√
R cross-link vertices, for

some fixed constant c. For each such cluster we assign weight 1/(c
√
R) to every

cross-link vertex in Gi and weight 0 to every other vertex. Thus each cluster that
results from refining Gi has O(

√
R) cross-link vertices, O(R) vertices in total,

and O(
√
R) vertices on its boundary.

We use Lemma 1 to bound the number of separator vertices and number of
clusters G′ resulting from the refinement. Cluster Gi has total weight Wi =∑

v∈Gi
w(v) = |Gi ∩ VC |/(c ·

√
R). For each cluster Gi, the number of separator

vertices obtained by refining it is O((|Gi| · Wi)1/2) = O(R1/4(|Gi ∩ VC |)1/2).
Summed over all clusters Gi this adds O(R1/4 ∑

Gi
(|Gi ∩ VC |)1/2) separator

vertices in total. Since 2
√

(a + b)/2 ≥
√
a +

√
b, the worst case occurs if the

cross-link vertices VC are evenly distributed over the O(V/R) subgraphs Gi,
and we get: R1/4 ∑

Gi
(|Gi∩VC |)1/2 ≤ R1/4O(V/R)O(

√
VCR/V ) = O(V/R3/4 +√

V VC/R
1/4). Adding this to the O(V/

√
R) vertices that were already in VS be-

fore we started refining the partition, we get a total of O(V/
√
R+

√
V VC/R

1/4).
2 Alternatively, one could apply the results of Aleksandrov et al. [3] for the first phase.
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Similarly, the number of clusters obtained by refining each Gi is O(W ) =
O(|Gi ∩ VC |/(c ·

√
R)) (by Lemma 1), and we can show that the total number

of clusters is O(V/R + VC/
√
R). Overall we have the following (due to space

constraints the complete proof is omitted):

Theorem 1. Let R be a parameter such that R ≤ M/(c log2 B), for a suffi-
ciently big constant c. We can, with sort(E) I/Os, find a subset VS ⊂ V whose
removal separates K into a set of subgraphs Gi with the following properties:

– the total number of vertices in VS is O(V/
√
R +

√
V VC/R

1/4)
– there are O(V/R + VC/

√
R) subgraphs Gi in K − VS

– each subgraph contains O(R) vertices, is adjacent to O(
√
R) separator ver-

tices and contains O(
√
R) cross-link vertices.

3 Computing SSSP Using the Refined R-Partition

We now show how to use the refined partition of a non-planar graph G obtained
in Sec. 2 above to compute SSSP I/O-efficiently.

The standard approach used by I/O-efficient planar graph algorithms is as
follows. Given an R-partition of a planar graph K, we compute a substitute
graph KR defined on the separator vertices. The graph KR is a reduced version
of K (it has fewer vertices), and we construct it such that the lengths of the
shortest paths in KR are the same as in K. The SSSP algorithm consists of three
steps: (1) Compute KR; (2) Compute SSSP in KR (by construction, we know
these are the lengths of the shortest paths in K); (3) Compute the shortest paths
to vertices inside the clusters Ki of the R-partition.

To extend this approach to a non-planar graph G, we have to incorporate the
cross-link (non-planar) edges EC of G. We do this on the basis of a refined R-
partition of G that divides G into subgraphs Gi, as explained in Sec. 2. Note that
a shortest path between two arbitrary vertices in G enters and exits a subgraph
Gi either through a boundary vertex or through a cross-link vertex. Therefore
the substitute graph GR will be defined on both the separator and the cross-link
vertices and it contains an edge between each cross-link vertex and the boundary
vertices of its cluster. Since this introduces O(VC

√
R) edges in GR, care must be

taken so that the number of I/Os spent on them does not become Ω(VC

√
R).

Below we show how to exploit Theorem 1 to implement the substitute graph
of a refined R-partition of a non-planar graph such that shortest paths can be
computed efficiently. We will give details and prove this section’s main result:

Theorem 2. SSSP on a digraph G = K∪GC uses O(EC +sort(V +EC)) I/Os.

3.1 The Substitute Graph

We obtain GR as follows: First, it includes the edges between the separator
vertices in the partition (that is, in G), and the edges between the cross-link
vertices, i.e. the cross-link graph GC . Second, it includes the union of all complete
graphs GR

i obtained by replacing each subgraph Gi as follows: the vertices of
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GR
i are the boundary vertices ∂Gi of Gi and the cross-link vertice VC ∩ Gi of

Gi, and there is an edge from u to v in GR
i if there is a path from u to v in

Gi. The edge (u, v) has weight equal to the length of the shortest path from u
to v in Gi. Note that GR

i contains edges between boundary vertices, between
cross-link vertices and boundary vertices, and between cross-link vertices. Third,
if the SSSP source vertex s is not a separator or a cross-link vertex, we add it to
GR and add edges from s to all the boundary vertices and all cross-link vertices
of the subgraph Gi containing s; as above, the weight of an edge (s, v) is the
length of the shortest path from s to v in Gi.

Let δG(u, v) denote the shortest path from u to v in G. For any pair of vertices
u, v ∈ VS∪VC∪{s} we can show that δGR(u, v) = δG(u, v), that is, GR maintains
shortest paths between its vertices. The number of vertices in the substitute
graph is VS + VC + 1, which, by Theorem 1, is O(V/

√
R +

√
V VC/R

1/4 + VC).
By Theorem 1, there are O(V/R + VC/

√
R) subgraphs in total, each of which

has O(
√
R) boundary vertices, O(

√
R) cross-link vertices, and possibly a source

vertex; thus each complete graph GR
i has O(R) edges in total. In total ∪GR

i

has O(V/R + VC/
√
R) · O(R) = O(V + VC

√
R) edges. Add the O(V/

√
R +√

V VC/R
1/4 +EC) cross-link edges and edges between separator vertices in the

partition, and we get:

Lemma 2. The substitute graph GR has O(V/
√
R+

√
V VC/R

1/4 +VC) vertices
and O(V + VC

√
R + EC) edges.

We can also show that GR can be computed in O(scan(E) + sort(|GR|)). We
defer the details to the full version of this paper.

3.2 Computing SSSP on GR

To compute SSSP on GR we use Dijkstra’s algorithm, which we make I/O-
efficient by modifying it to take advantage of the structure of GR. In addition
to a priority queue, we maintain a list L that stores the tentative distances from
s to all the vertices in GR, that is, in VS ∪ VC ∪ {s}. When extracting a vertex
from the priority queue, we retrieve the tentative distances of its out-neighbors
from L. For each out-neighbor w of v we check whether its tentative distance as
stored in L is greater than d(v) plus the weight of the edge (v, w); if it is, we
update the distance of w in L, delete the old entry of w from the priority queue
and insert a new entry for w with the updated distance in the queue.

In total, we perform O(V (GR)) = O(VS +VC) ExtractMins, and O(E(GR)) =
O(V +VC

√
R+EC) Deletes and Inserts on the priority queue. These operations

can be performed efficiently in O(sort(V + VC

√
R + EC)) I/Os using an I/O-

efficient priority queue, e.g. [4]. We also performO(E(GR)) = O(V +VC

√
R+EC)

accesses to the list L; this is because every vertex in L is accessed once by each
incoming edge in GR. Of course, we cannot afford one I/O per edge. In order to
perform the accesses to L efficiently, we store L in the following order: all vertices
in VS are at the front of L, grouped by boundary set, followed by the vertices
in VC − VS , grouped by the index of the subgraph Gi that contains them. Note
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that with this order the vertices in the same boundary set, as well as cross-link
vertices in the same cluster, are consecutive in L.

Lemma 3. The accesses to the list L can be performed in O(VS +EC +(V/
√
R+

VC) · �
√
R/B�) I/Os.

Proof. The accesses to the list L are of three types: (1) O(EC) accesses through
the cross-link edges of GR; (2) O(VS) accesses through edges between separator
vertices; and (3) O(V + VC

√
R) accesses through the edges in the substitute

graphs GR
i . The first two types of accesses clearly take O(VS +EC) I/Os. We now

analyze the third type of accesses to L by counting the number of accesses per
boundary set (while ignoring the cross-link edges, which are counted separately
in (1)). Recall that a boundary set is a maximal set of separator vertices which
are adjacent to precisely the same subgraphsGi. Every vertex v ∈ VS∪VC∪{s} in
GR that is processed needs to access the tentative distances of its out-neighbors
in L: that is, every separator vertex v ∈ VS needs to access all the boundary
vertices and cross-link vertices of all subgraphs Gi adjacent to v; every vertex
v ∈ {s} ∪ VC \ VS needs to access all the boundary vertices and all cross-link
vertices in the subgraph Gi containing v. Every time a vertex in a boundary set
needs to be accessed, the other vertices in the boundary set need to be accessed
as well, since the vertices of a boundary set are adjacent to the same subgraphs.
For simplicity, we can think of all the cross-link vertices in a subgraph Gi as
an additional “boundary” set of that subgraph. Overall, each boundary set of
GR is accessed once by each of the vertices on the boundaries of the subgraphs
adjacent to the boundary set, and by each of the cross-link vertices in these
subgraphs. By Theorem 1, each subgraph Gi has O(

√
R) boundary and O(

√
R)

cross-link vertices. Thus each boundary set is accessed O(
√
R) times for each

adjacent subgraph.
By the planar graph argument [16] the number of boundary sets as well as

the number of adjacencies between boundary sets and subgraphs Gi is asymp-
totically the same as the number of subgraphs Gi. Using Theorem 1 we get that
the total number of accesses to boundary sets is O(

√
R) · O(V/R + VC/

√
R) =

O(V/
√
R + VC). Since boundary sets are stored consecutively in L (including

the “boundary” set consisting of the O(
√
R) cross-link vertices of a subgraph),

each boundary set can be accessed in �
√
R/B� I/Os.

Thus the accesses to boundary sets use in total O(V/
√
R+VC)·�

√
R/B� I/Os.

Adding the O(VS) accesses between separator vertices and the O(EC) I/Os to
L caused by the cross-link edges (type (1) and (2)), we get a total of O(VS +
EC + (V/

√
R + VC) · �

√
R/B�) I/Os. ��

Putting together the operations on the priority queue and the accesses to the
list L (Lemma 3) we get that computing SSSP on GR uses O(VS +EC +(V/

√
R+

VC) · �
√
R/B�+ sort(V + VC

√
R + EC)) I/Os.

The third step in the SSSP algorithm on G computes shortest paths to all
vertices in V − (VS ∪ VC). In the full paper we show that this step is dominated
by the previous two steps. From the above we get that the total number of
I/Os to compute SSSP on G is O(sort(V + VC

√
R + EC) + VS + EC + (V/

√
R
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+VC)�
√
R/B�), which is O(V/

√
R+

√
V VC/R

1/4+EC +sort(V +VC

√
R+EC)).

Assume for simplicity that M > B2. If VC < V/B, we choose R = B2 and
the bound becomes O(EC + sort(V + EC)). If VC > V/B, we choose R =
(V/VC)2 = O(M) and again get O(EC + sort(V + EC)). This concludes the
proof of Theorem 2.

4 Other Graph Problems Using Refined Partitions

The ideas from the SSSP algorithm above can be extended to other algorithms on
near-planar graphs. We mention results for connected components (CC), topo-
logical order and depth-first search (DFS) and leave details for the full version.

Theorem 3. Let G = K∪GC . A topological order (assuming G is a DAG) and
the connected components of G (assuming G is undirected) can be computed with
O(EC + sort(V +EC)) I/Os. A DFS ordering can be computed with O(V/

√
B+

EC) I/Os.

5 Planarizing Graphs

The question how close a given graph is to being planar, is much-studied and has
obvious applications in, for example, graph drawing and in the manufacturing
of VLSI circuits. Several generalizations of planarity and measures of planarity
have been defined, including crossing number, k-embeddability in the plane,
skewness, splitting number and thickness—for a survey, see Liebers [20]. The
class of near-planar graphs studied in this paper includes graphs which have low
crossing number, are k-embeddable for small k, have low skewness, or have low
splitting number—provided information about a suitable drawing of the graph
is given. We will now briefly review these measures of planarity and discuss how
a near-planar graph can be preprocessed so that it can be operated on by the
algorithms described in the previous sections of this paper.

Graphs with low crossing number. The crossing number of a graph G = (V,E) is
the minimum number of edge crossings needed in any drawing of a given graph
in a plane. When a drawing with T crossings is given, it can be preprocessed so
that our SSSP algorithm described in the previous sections uses O(sort(E+T ))
I/O’s. The idea is to represent each crossing i by a vertex v(i), which is marked as
a crossing. Each crossed edge (u, u′), with crossings i1, ..., in in order going from
u towards u′, is replaced by edges (u, v(i1)), (v(i1), v(i2)), ..., (v(in−1), v(in)),
(v(in), u′). The transformation can easily be carried out in O(sort(E+T )) I/O’s.

The resulting graph is a planar graph with O(V ) original vertices and O(T )
crossing vertices, where the crossing vertices have the special property that short-
est paths are not allowed to turn on such vertices. The partitioning scheme and
SSSP algorithm described in the previous sections can easily be adapted to
work on graphs in which some of the vertices represent such crossings. We start
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by applying the partitioning scheme as usual, ignoring the fact that some ver-
tices represent crossings. After computing the refined separator VS , we remove
the crossing vertices and restore the original connectivity of the graph. When
done carefully, this may make clusters and boundary sets non-planar, but it
will not affect which boundary sets are adjacent to which clusters. Thus the
SSSP algorithm will still work correctly within the claimed I/O-bounds, requir-
ing O(sort(V ′)) I/O’s on such a graph, where V ′ = O(V + T ).

A graph is k-embeddable in the plane if it can be drawn in the plane so
that each edge crosses at most k other edges [24]. Since a k-embeddable graph
necessarily has small crossing number, the above approach can be taken.

Graphs with low skewness. The skewness of a graph G = (V,E) is the minimum
size of any set of edges EC such that G \ EC is planar. When the skewness of a
graph is O(E/B) and EC is given, our SSSP algorithm needs only O(sort(E))
I/Os, even if the edges and vertices in EC form a clique with crossing number
Θ(E2/B2).

When EC is not given, it may be difficult to find it. Finding a minimum-size
set EC corresponds to finding a maximum-size planar subgraph of G. These are
NP-complete problems [17]. When a drawing of the graph is given, we can define
a crossing graph G′ = (V ′, E′) in which V ′ has a vertex v(e) for every edge e in
G, and E′ has an edge (v(e), v(f)) for every pair of crossing edges e and f in
G. Finding a factor-two approximation of a minimum-size set EC such that the
drawing of G \ EC is intersection-free can be expressed as a maximal-matching
problem in G′, which can be solved with the randomized algorithm by Abello
et al. [1]. This takes O(sort(E′)) = O(sort(T )) I/Os (expected), where T is the
number of crossings in the input graph.

Although theoretically, this transformation is not any cheaper than the one
described in the previous section, it may still be advantageous because the re-
sulting planar graph with added cross-links may be a lot smaller than a graph
in which crossings are replaced by auxiliary vertices.

Graphs with small splitting number. Splitting a vertex is the process of replacing
a vertex u by two vertices u1, u2, whereby some of the edges incident to u will
be reconnected to u1, while the remaining edges incident to u are reconnected to
u2. The splitting number of a graph is the minimum number of splittings that
is needed to make the graph planar.

When the splitting number of a graph is O(E/B) and the necessary splittings
are given, we can solve the SSSP problem on such a graph in O(sort(E)) I/Os,
using an approach similar to that for graphs with small skewness. Instead of run-
ning the shortest-paths algorithm on the original graph, we run it on the planar
graph resulting from the splittings, augmented with a zero-weight bidirectional
cross-link (u1, u2) for every vertex u split into u1 and u2.

Combining crossings and cross-links. Above we mentioned that graphs that have
low crossing number can be handled efficiently by replacing crossings by special
vertices, while graphs with small skewness or small splitting number can be
handled efficiently by identifying a small number of cross-link edges. The two
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approaches can be combined: we can find shortest paths in O(sort(E)) I/Os on
a graph that consists of O(E/B) cross-links and a graph with crossing number
O(E), provided the cross-links and the intersections in the remaining graph
are given. How to find a constant-factor approximation of a minimum-size set
of cross-links such that the rest of the graph has crossing number O(E), still
remains as an open problem.

6 Discussion

In this paper we extended the class of graphs for which efficient SSSP compu-
tations are possible from planar graphs to several classes of near-planar graphs.
Our approach yields efficient algorithms for graphs with low crossing number,
low splitting number or low skewness, provided suitable drawings are given. In
theory, creating suitable drawings is difficult, since identifying a maximum planar
subgraph or computing the crossing number, splitting number or the skewness
of a graph are NP-complete problems [15, 18, 25]. However, in many practical
applications of graph algorithms, graphs are given with a drawing or suitable
drawings can be produced by heuristic methods.

Even if a good drawing is given, the method to identify cross-links in a graph
of low skewness as described in Sec. 5 needs to know all crossings in the drawing.
The crossings would need to be given or would need to be computed: in the case
of a rectilinear drawing3 we could do so with the external-memory line segment
intersection algorithm by Arge et al. [9] or the randomized algorithm by Crauser
et al. [14]. One could hope to find an algorithm that can find an effective set
of cross-links without computing all crossings in the drawing first. It would also
be interesting to find a constant-factor approximation of a minimum-size set of
cross-links such that the rest of the graph has crossing number O(E), so that
we may have only very few cross-links and handle the remaining crossings with
auxiliary vertices as described in Sec. 5.

Furthermore, it would be interesting to look into more measures of planarity
that may be exploited, for example thickness: the minimum number of planar
subgraphs whose union is the original graph.
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Abstract. We study the problem of adding edges to a given arbitrary
graph so that the resulting graph is a split graph, called a split com-
pletion of the input graph. Our purpose is to add an inclusion minimal
set of edges to obtain a minimal split completion, which means that no
proper subset of the added edges is sufficient to create a split completion.
Minimal completions of arbitrary graphs into chordal graphs have been
studied previously, and new results have been added continuously. There
is an increasing interest in minimal completion problems, and minimal
completions of arbitrary graphs into interval graphs have been studied
very recently. We extend these previous results to split graphs, and we
give a characterization of minimal split completions, along with a linear
time algorithm for computing a minimal split completion of an arbitrary
input graph. Among our results is a new way of partitioning the vertices
of a split graph uniquely into three subsets.

1 Introduction
Any graph can be embedded into a split graph by adding edges, and the result-
ing split graph is called a split completion of the input graph. A minimum split
completion is a split completion with the minimum number of edges, and com-
puting such split completions is an NP-hard problem [12]. A split completion H
of a given graph G is minimal if no proper subgraph of H is a split completion
of G. In this paper we show that a minimal split completion of a given graph
can be computed in linear time.

Minimum and minimal chordal completions, also called triangulations, and
minimum and minimal interval completions are defined analogously, by replacing
split graphs with chordal graphs and with interval graphs. Computing a min-
imum triangulation and computing a minimum interval completion of a graph
are NP-hard problems [4], [14], whereas it was shown already in 1976 that mini-
mal triangulations can be computed in polynomial time [13]. Recently, there has
been an increasing interest in minimal completion problems, which has led to
faster algorithms for minimal triangulations [9], [10], [11], some of which were
presented at recent years’ SODA conferences, and a polynomial time algorithm
for minimal interval completions [8] presented at this year’s ESA conference.
Minimal split completions have not been studied earlier, and with this paper we
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expand the knowledge about classes of graphs into which minimal completions
of arbitrary graphs can be computed in polynomial time.

Minimal triangulations are well studied, and several characterizations of them
have been given [7]. An algorithmically useful characterization is that a trian-
gulation is minimal if and only if no single fill edge can be removed without
destroying chordality of the triangulation [13] (fill edges are the edges added
to the original graph to obtain a completion). This property does not hold for
minimal interval completions. In this paper, we show that it holds for minimal
split completions. Analogous to chordal graphs, we show that between a split
graph G1 = (V,E1) and a split graph G2 = (V,E2) with E1 ⊂ E2, there is a
sequence of split graphs that can be obtained by repeatedly removing one single
edge from the previous split graph, starting from G2. We characterize the fill
edges that are candidates for removal when a non-minimal split completion H
of an arbitrary graph G is given. Based on this, we give linear time algorithms
both for computing minimal split completions, and for removing edges from a
given split completion to obtain a minimal split completion.

2 Definitions and Background

All graphs in this paper are simple and undirected. For a graph G = (V,E), we
let n = |V | and m = |E|. The set of neighbors of a vertex v ∈ V is denoted by
N(v), and the degree of a vertex v is denoted by d(v) = |N(v)|. We distinguish
between subgraphs and induced subgraphs. In this paper, a subgraph of G =
(V,E) is a graph G1 = (V,E1) with E1 ⊆ E, and a supergraph of G is a graph
G2 = (V,E2) with E ⊆ E2. We will denote these relations informally by the
notation G1 ⊆ G ⊆ G2 (proper subgraph relation is denoted by G1 ⊂ G). The
complement of G is denoted by Ḡ.

A subset K of V is a clique if K induces a complete subgraph of G. A subset
I of V is an independent set if no two vertices of I are adjacent in G. We use
ω(G) to denote the size of a largest clique in G, and α(G) to denote the size of
a largest independent set in G.

G is a split graph if there is a partition V = I + K of its vertex set into an
independent set I and a clique K. Such a partition is called a split partition
of G. There is no restriction on the edges between vertices of I and vertices of
K. The partition of a split graph into a clique and an independent set is not
necessarily unique. The following theorem from [6] states the possible partition
configurations.

Theorem 1. (Hammer and Simeone [6]) Let G be a split graph whose vertices
have been partitioned into an independent set I and a clique K. Exactly one of
the following conditions holds:

(i) |I| = α(G) and |K| = ω(G)
(in this case the partition I +K is unique),

(ii) |I| = α(G) and |K| = ω(G)−1
(in this case there exists a vertex x ∈ I such that K ∪ {x} is a clique),
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(iii) |I| = α(G)−1 and |K| = ω(G)
(in this case there exists a vertex y∈K such that I∪{y} is independent).

The following theorem characterizes split graphs, and we will use condition (iii)
to characterize minimal split completions. For this result, note that a simple
cycle on k vertices is denoted by Ck and that a complete graph on k vertices is
denoted by Kk. Thus 2K2 is the graph that consists of 2 isolated edges.

Theorem 2. (Földes and Hammer [3]) Let G be an undirected graph. The fol-
lowing conditions are equivalent:

(i) G is a split graph.
(ii) G and Ḡ are chordal graphs.
(iii) G contains no induced subgraph isomorphic to 2K2, C4 or C5.

Note that every induced subgraph of a split graph is also a split graph. For a
given arbitrary graph G = (V,E), a split graph H = (V,E∪F ), with E∩F = ∅,
is called a split completion of G. The edges in F are called fill edges. H is a
minimal split completion of G if (V,E ∪ F ′) fails to be a split graph for every
proper subset F ′ of F .

A graph is chordal if it contains no induced simple cycle of length at least 4.
A graph is interval if sets of consecutive integers can be associated with its
vertices such that two vertices are adjacent if and only if their associated sets
intersect. (Minimal) chordal and interval completions of a given graph are defined
analogously to (minimal) split completions. Chordal completions are also called
triangulations. Both interval graphs and split graphs are chordal. For a chordal
graph G, α(G) and ω(G) can be computed in linear time [5], whereas these are
NP-hard problems for general graphs.

3 Sandwiching a Split Graph Between Two Given Split
Graphs

Given two chordal graphs G1 = (V,E1) and G2 = (V,E2), such that E1 ⊂ E2,
Rose, Tarjan, and Lueker [13] showed that there is an edge in E2 \ E1 whose
removal from G2 results in a chordal graph. A consequence of this result is that
a given triangulation H of an arbitrary graph G is minimal if and only if it is
impossible to obtain a chordal graph by removing a single fill edge from H . In
this section, we show that analogous results hold for split graphs and minimal
split completions.

The following two corollaries can be deduced directly from Theorem 1, and
their proofs are omitted in this extended abstract.

Corollary 1. Let G = (V,E) and G′ = (V,E′) be two split graphs with E ⊆ E′,
and let V = I + K and V = I ′ + K ′ be two split partitions of G and G′,
respectively. Then |K ′ ∩K| ≥ |K| − 1.
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Corollary 2. Let G = (V,E) and G′ = (V,E′) be two split graphs with E ⊆ E′,
and let V = I + K and V = I ′ + K ′ be two split partitions of G and G′,
respectively. Then K ′ \ I ⊆ K.

Lemma 1. Given two split graphs G = (V,E) and G′ = (V,E ∪ F ) such that
E∩F = ∅, there is an edge f ∈ F that can be removed from G′ so that the result
is a split graph.

Proof. Let V = I + K be a split partition of G, and let V = I ′ + K ′ be a
split partition of G′. If there is an edge f ∈ F with one endpoint in I ′ and one
endpoint in K ′, then f can be removed, and the resulting graph is split with
split partition V = I ′ +K ′. Assume for the rest of the proof that there is no fill
edge between I ′ and K ′.

We define the set T = K ′ ∩ I, namely those vertices that belong to an inde-
pendent set in the partition of G and to a clique in the partition of G′. According
to our assumption, there is no fill edge between T and I ′. Thus each edge in F
has either both endpoints in T or is between a vertex of T and a vertex of K ′\T ,
since K ′ \ T was already a clique in G, by Corollary 2. It follows that if F �= ∅
then T �= ∅, and all vertices in T must be incident to some edge of F in G′. Since
T is a part of an independent set in G and a part of a clique in G′, there are fill
edges between each pair of vertices in T . If |T | = 1 the fill edges connect T to
K ′ \ T .

By Corollary 1 we now have two possible situations: either |K ′ ∩K| = |K| or
|K ′ ∩K| = |K| − 1.

Assume first that |K ′ ∩K| = |K|. Then K ⊆ K ′, and consequently I ′ ⊆ I.
This means that no vertex of T is adjacent to a vertex of I ′ in G′, because there
can neither be original edges between these two sets since T ∪ I ′ = I, nor edges
from F since T ⊂ K ′. In such a situation it is possible to pick a vertex y ∈ T
incident to one or more edges in F , and remove any of the fill edges incident
to y. Doing this the graph will remain split because we can still partition it in
an independent set I ′ ∪ {y} and a clique K ′ \ {y}. We proved above that such
vertex y must exist.

Let now |K ′∩K| = |K|−1. Then there must be a vertex x that in G belongs
to K and in G′ belongs to I ′, such that (I ′ \ {x})⊆ I. Now, each vertex of T can
be adjacent to at most one vertex of I ′, namely x. If there is at least one vertex
y ∈ T which is not adjacent to x, then we can proceed as the previous case. If
all vertices of T are adjacent to x, then N(x) = K ′, so we can just swap x with
any vertex in y ∈ T incident to an edge of F , and remove this edge, since it
now connects the independent set to the clique. Swapping the vertices we make
a new partition where x is in the clique and y in the independent set, and thus
the result is a split graph.

Note that if F = ∅ then it means that G = G′ and either I = I ′ and K = K ′,
or I +K and I ′ +K ′ are two possible partitions of the same split graph G.

Corollary 3. Given two split graphs G = (V,E) and G′ = (V,E ∪ F ) with
E ∩ F = ∅, there is a sequence of split graphs G0, G1, G2, ..., G|F | such that
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Gi−1 is obtained by removing edge fi from Gi, for 1 ≤ i ≤ |F |, where G0 = G,
G|F | = G′, and F = {f1, f2, ...., f|F |}.

Theorem 3. Given an arbitrary graph G and a split completion G′ of G, G′ is
a minimal split completion if and only if no single fill edge can be removed from
G′ without destroying the split property.

Proof. If G′ is a minimal split completion then no subset of its fill edges can be
removed, so no single fill edge can be removed either. If G′ is not a minimal split
completion, another split graph G′′ exists between G and G′. Then by Lemma 1,
there is a single fill edge that can be removed from G′ while preserving the split
property.

Thus we have a characterization of minimal split completions. We will use this
to give another characterizations of minimal split completions and to describe the
fill edges that can be removed from non-minimal split completions in Section 5.
First, in the next section, we define a new way of partitioning the vertices of a
split graph uniquely.

4 Unique 3-Partitions of Split Graphs

In this section, as an alternative to split partitions, we define another way of
partitioning the vertices of a split graph that will be useful to decide whether a
given split completion is minimal or not. We will call the new partition a split
3-partition.

When we are given a non-minimal split completion of an arbitrary graph,
according to Lemma 1, the redundant fill edges can be removed one by one until
we reach a minimal split completion. The edges that can be removed without
problems are the ones connecting the independent set with the clique in the
split partition of the completion. However, since this partition is not necessarily
unique, and since we do not know the underlying minimal split completion,
problems occur according to cases (ii) and (iii) of Theorem 1. To avoid this
ambiguity we define a third set of vertices in the graph, that we will callQ. In case
we do not have a unique split partition, this set will contain those vertices that
can be chosen to be either in the independent set or in the clique, determining
different partitions.

Definition 1. Given a split graph G = (V,E) that has no unique split partition,
we define a split 3-partition V = S + C +Q of G as follows:

S = {v ∈ V | d(v) < ω(G)− 1}
C = {v ∈ V | d(v) > ω(G)− 1}
Q = {v ∈ V | d(v) = ω(G)− 1}

If G has a unique split partition V = I +K, we do not need such a 3-partition,
but for completeness, we define S = I, C = K, and Q = ∅ in this case, so
that a split 3-partition is always defined. (Note that there can be vertices of
degree ω(G) − 1 in G also when its split partition is unique.) For a split graph
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G, ω(G), α(G), and the corresponding maximum clique and independent set can
be computed in linear time [5]. Thus it can be decided by Theorem 1 whether
G has a unique split partition or not. Hence the 3-partition of a split graph is
uniquely defined.

Lemma 2. Let G = (V,E) be a split graph with no unique split partition, and
let V = S + C +Q be the 3-partition of G. Then

(i) S ⊆ I and C ⊆ K, for every split partition V = I +K of G.
(ii) Q �= ∅.
(ii) Q is exactly the set of vertices each of which belongs to a clique and to an

independent set in two different split partitions of G, respectively.

Proof. (i) Let V = I+K be any split partition of G. By Theorem 1, each vertex
of K belongs also to a clique of maximum size, and thus has degree at least
ω(G)− 1. Therefore, a vertex that has degree less than ω(G)− 1 cannot belong
to K, and it must belong to I. A vertex of I can be adjacent to at most ω(G)−1
vertices, because otherwise we have a clique of size ω(G)+1. Thus, a vertex that
has degree more than ω(G)− 1 must belong to K.

(ii) Let V = I +K be any split partition of G. By Theorem 1, either there is
a vertex x in I such that K ∪ {x} is a clique, or there is a vertex y in K such
that I ∪ {y} is an independent set. In either case, each such vertex x or y is
adjacent to all vertices of K and to no other vertex, and by Theorem 1, it has
degree exactly ω(G)− 1. Thus Q �= ∅.

(iii) By the argument in (ii) every vertex that can be moved between an
independent set and a clique in some split partition of G must have degree
ω(G)− 1. Let us show that each vertex of degree ω(G)− 1 can indeed be moved
between partitions. Let V = I + K be any split partition of G, and let v be a
vertex of degree ω(G) − 1. Assume first that v ∈ I. If |K| = ω(G) − 1, then
by moving v from I to K, we get another split partition of G. If |K| = ω(G),
then we know by Theorem 1 that a vertex x of K can be moved to I to give
a different split partition. Thus x cannot be adjacent to v. We can swap v and
x between I and K, and get a new split partition. Assume now that v ∈ K. If
|K| = ω(G)−1, then there must be a vertex z in I that is adjacent to all vertices
of K. Thus z is the only neighbor of v outside of K. We can swap z and v and
get another partition. If |K| = ω(G) then v has no neighbors in I and we can
move v from K to I and get a new partition.

Corollary 4. A split graph G = (V,E) has a unique partition V = I+K if and
only if there are exactly ω(G) vertices of degree > ω(G)− 1.

Corollary 5. Let G = (V,E) be a split graph with 3-partition V = S + C + Q.
Then every vertex of Q is adjacent to all vertices of C and to no vertex of S.

Lemma 3. Let G = (V,E) be a split graph with 3-partition V = S + C + Q.
Then one of the following is true:

(i) Q is a clique and |C|+ |Q| = ω(G).
(ii) Q is an independent set, |C| = ω(G)− 1, and |Q| ≥ 2.
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Proof. If Q is empty, there is nothing to prove. Assume that |Q| ≥ 1, so that
the split partition of G is not unique. If ω(G) > 1 (otherwise the graph is a set
of disconnected vertices and they would be all in Q) then |C| + |Q| ≥ ω(G), so
we can distinguish two situations: |C|+ |Q| = ω(G) or |C|+ |Q| > ω(G).

If |C|+ |Q| = ω(G) then |Q| is a clique, because the largest clique in G must
have size ω(G) and it can only be obtained by adding to C all vertices of Q.

If |C| + |Q| > ω(G) then we will show that |C| = ω(G) − 1 and Q is an
independent set. If |C| < ω(G) − 1 then |Q| > 2, and there must be at least a
subset Q′ ⊂ Q that is a clique of size ω(G) − |C| ≥ 2. All vertices of Q′ have
degree ω(G)−1, and since they make a clique of size ω(G) with C, they cannot be
adjacent to any vertex in Q\Q′. The vertices in Q\Q′ must be an independent set,
or it would not be possible to make a split partition V = (C∪Q′)+(S∪(Q\Q′)),
so they are adjacent only to C (by Corollary 5) and consequently each of them
has degree at most ω(G)−2, contradicting the fact that they belong to Q. So we
must have |C| = ω(G)− 1 and |Q| ≥ 2, which implies that Q is an independent
set, since otherwise we would get a too large clique in G by Corollary 5.

Corollary 6. Let G = (V,E) be a split graph with 3-partition V = S + C + Q
and Q �= ∅. Then in any split partition V = I +K of G, at least ω(G)− 1− |C|
vertices of Q belong to K.

Lemma 4. Let G = (V,E) be a split graph with 3-partition V = S+C+Q and
q �= ∅. If |Q| = 1, then |C| = ω(G) − 1 and |S| ≥ 2. If |C| + |Q| = ω(G) and
|Q| > 1, then |S| ≥ 1.

Proof. Every vertex of C has degree greater than ω(G) − 1, so every vertex of
C has at least one neighbor in S (since |C|+ |Q| = ω(G)), but every vertex of S
has degree at most ω(G)−2, so at least two of them are needed to be connected
to C in the first case, and at least one in the last.

In the next section, we will use these results to characterize minimal split com-
pletions of arbitrary graphs.

5 Characterizing Minimal Split Completions

Assume that we are given an arbitrary graph G = (V,E) and a split completion
H = (V,E ∪F ) of G. We want to find a sufficient and necessary condition for H
to be a minimal split completion of G. First we identify the fill edges that can be
removed from any non-minimal split completion. Note that, when V = S+C+Q
is the 3-partition of H , any fill edge is either incident to a vertex of S ∪ Q or
both of its endpoints belong to C.

Lemma 5. Let H = (V,E + F ) be a split completion of an arbitrary graph
G = (V,E), and let V = S + C + Q be the 3-partition of H. Then any fill edge
incident to a vertex in S ∪Q can be removed so that the resulting graph is split.
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Proof. We will prove that there is a split partition V = I+K of H such that any
fill edge incident to a vertex of S ∪Q has one endpoint in I and one endpoint in
K, and we know that such edges can be removed. We also know that all vertices
of S belong to the independent set of any split partition of H , and all vertices
of C belong to the clique of any split partition of H . This means that any edge
between S and C can be removed. Let us then assume that there are no fill edges
connecting S and C. Remember also that there are no edges between S and Q.
Let us also assume that the partition is not unique, so that Q �= ∅. Under these
assumptions, each fill edge incident to a vertex of S ∪ Q can only be between
two vertices of Q or between a vertex of Q and a vertex of C, and we have the
following cases.

Case 1: Q is a clique and there is a fill edge between two vertices x, y ∈ Q. If Q
is a clique, then we can make a partition where at most one of the vertices of
Q is chosen to be in the independent set of a partition and all the others must
be in the clique. If we put x (or y) in the independent set and y (or x) in the
clique, there will be a fill edge (xy) between the independent set and the clique,
that we can remove.

Case 2: There is a fill edge between Q and C. If a fill edge is between a vertex
x ∈ Q and a vertex y ∈ C, since we can always choose at least one vertex of Q
to be in the independent set of a partition regardless of whether Q is a clique or
an independent set, let us choose exactly x. Since y is in C it will always be in
the clique of any partition of H , so we now have a fill edge connecting a vertex
of the independent set (x) to a vertex of the clique (y), and we can remove it.

Note that Lemma 5 does not mean that all fill edges incident to S ∪Q can be
removed. We are guaranteed to be able to remove one such edge. After that the
3-partition of the resulting graph might change, and thus the set of fill edges
that can be removed might also change. In the next section, we will describe
precisely how the sets S, C, and Q might change after removing an unnecessary
fill edge.

Lemma 6. Let H = (V,E + F ) be a split completion of an arbitrary graph
G = (V,E), and let V = S +C +Q be the 3-partition of H. If each fill edge has
both its endpoints in C, then H is a minimal split completion of G.

Proof. Assume that G, H , S, C, and Q are as in the premise of the lemma such
that all fill edges of H have both their endpoints in C. Thus if F �= ∅ then |C| ≥ 2
and ω(H) ≥ 2. We show that removing any single fill edge from H results in a
non-split graph.

If Q is empty and thus H has a unique split partition, then by Theorem 1 and
Corollary 4, |C| = ω(H), no vertex of S is adjacent to whole C, and every vertex
of C has a neighbor in S. Hence |S| ≥ 2. If |C| = 2 then the single edge in C is
a fill edge. Removing it we would get a 2K2, because we can pick two vertices in
S adjacent each to only one vertex of C. If |C| > 2 then removing a fill edge we
get two nonadjacent vertices x, y ∈ C. Now, x and y must each have a neighbor
in S. If they have a common neighbor w, then we can find a vertex v ∈ C which
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is not adjacent to w, since no vertex of S is adjacent to every vertex of C. But
x and y are both adjacent to v, so this results in an induced cycle w, x, v, y, w
of length 4. If they do not have a common neighbor, then there exist w, z ∈ S,
where w is adjacent to x and not to y, and z is adjacent to y and not to x, So
removing the edge between x and y we get a 2K2.

If Q �= ∅ then S can be even empty or disconnected from C. Let us work on
Q and C using Lemma 3 and 4.

In the case when |C| + |Q| = ω(H), we have that Q is a clique and S �= ∅. If
|Q| = 1, then |C| = ω(H)− 1, so there must be at least 2 vertices in S adjacent
to vertices of C, and no vertex of S is adjacent to every vertex of C, so we can
use the same argument as above. If |Q| > 1, then |C| < ω(H) − 1. Thus every
vertex of C has a neighbor in S, and either we have the previous case, or there
is a vertex z ∈ S adjacent to all vertices in C. Recall that every vertex of Q
is connected to all vertices of C and to no vertex of S. Let us now take any
x, y ∈ C and remove the edge xy. We can find a vertex w ∈ Q, adjacent to both
x and y so that the subgraph induced by {z, x, w, y} is a cycle of length 4.

In the case when |C| + |Q| > ω(H), we have that Q is an independent set,
and |C| = ω(H)− 1. In this case S can be empty. However, since |C| ≥ 2, then
ω(H) ≥ 3 and |Q| ≥ 2. Since every vertex of Q is adjacent to all vertices of C,
we can find two vertices w and z in Q, such that if we remove any fill edge xy
from C, we get an induced cycle w, x, z, y, w of length 4.

Theorem 4. Let H = (V,E + F ) be a split completion of an arbitrary graph
G = (V,E), and let V = S+C+Q be the 3-partition of H. H is a minimal split
completion of G if and only if all fill edges have both endpoints in C.

Proof. One direction follows from Lemma 6. For the other direction assume that
H is minimal. Then no single fill edge can be removed without destroying split
property. Given the 3-partition V = S + C + Q, then each fill edge can have
one endpoint in S ∪Q and one endpoint in C, or both endpoints in C or in Q.
This is because there cannot be fill edges between S and Q (by Corollary 5), and
within S (it is an independent set). By Lemma 5 a fill edge incident to vertices
in S ∪ Q can always be removed, so since the completion is minimal, the only
possible fill edges are the ones in C.

6 Obtaining a Minimal Split Completion from a Given
Split Completion

In the next section we will give an algorithm that computes a minimal split
completion of any given graph. However, for some applications it might be de-
sirable to compute a minimal split completion of that fits within an already
given split completion. This problem has been studied and solved for minimal
triangulations [1], [2], and we solve it for split completions in this section.

Assume that we are given an arbitrary graph G, a split completion H of G,
and the 3-partition S + C + Q of H . By the results of the previous section, we
know how to decide whether H is a minimal split completion, and if not, we know
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that any single fill edge incident to S ∪ Q can be removed. After this removal,
the sets S, C, and Q might change. So a straight forward algorithm to remove
redundant fill edges from H to obtain a minimal split completion M ⊆ H of G,
would be to remove a fill edge incident to S ∪ Q, recompute the 3-partition of
the resulting split completion, and continue until a minimal split completion is
reached. In this section, we will show that a new 3-partition of the intermediate
graph does not have to be recomputed from scratch, and that a minimal split
completion can be reached in time linear in the size of H .

Theorem 5. Let H = (V,E ∪ F ) be a split completion of an arbitrary graph
G = (V,E), with F ∩ E = ∅. A minimal split completion M of G, such that
G ⊆M ⊆ H, can be computed in time O(|V |+ |E|+ |F |).

Proof. Here we give a sketch of the proof.
Let V = S + C + Q be the 3-partition of H . Let pq be a fill edge that

can be removed, H ′ the graph that is the result of removing pq from H , and
V = S′ +C′ +Q′ the 3-partition of H ′. We know that pq can be of three types.
Based on this, for each fill edge that can be removed, we have to analyze all
possible cases, and show that in each case, S′, C′, and Q′ can be computed from
S, C, and Q in constant time. Since we have a constant number of cases to check
for each fill edge that can be removed, and since we can check in constant time
whether a particular fill edge can be removed by the results of Section 5, the
total number of steps will be at most F , and the total work we do will be linear
in the size of H . To ease the notation, we let w = ω(H) and w′ = ω(H ′).

The rest of this proof is a tedious case analysis of all the possibilities for the
sets that p and q belong with the combination of whether Q is an independent set
or a clique, and the number of vertices in Q. We leave this part to the full paper.

7 Computing a Minimal Split Completion Directly

In this section, we show that minimal split completion of a given graph can be
computed in time linear in the size of the input graph. A simple and intuitive
method to embed an arbitrary graph G = (V,E) into a split graph, is to select a
maximal independent set I of G and add edges to make V \I into a clique. Unfor-
tunately, this procedure does not guarantee that the resulting split completion
is minimal; it can add edges even to a graph that is already split, in particular if
the graph does not have a unique partition. However, it can be modified to com-
pute a minimal split completion, by choosing vertices of minimum degree first
when computing the maximal independent set. We call this modified algorithm
MinimalSplit and present it below.

Algorithm MinimalSplit
Input: An arbitrary graph G = (V,E);
Output: A minimal split completion H = (V,E ∪ F ) of G.

I = ∅; K = ∅; Unmark all vertices;
while there are unmarked vertices in V do
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Choose an unmarked vertex v with minimum degree in G;
Mark and add v to I;
Mark and add all neigbors of v to K;

end-while
Make K into a clique adding a set F of fill edges;
H = (V,E ∪ F );

Lemma 7. Given an arbitrary graph G = (V,E), the graph H = (V,E ∪ F )
computed by Algorithm MinimalSplit is a minimal split completion of G.

Proof. Let V = I + K be the split partition of H computed by the algorithm.
By construction, I is an independent set, K is a clique, and no edges are added
between I andK, soH is a split graph. It follows from Lemma 6 that if V = I+K
is a unique partition of H , then H is a minimal split completion.

Let us consider the case when V = I+K is not a unique partition ofH , and let
V = S+C+Q be the 3-partition of H . If |K| < 2 then no edges are added by the
algorithm, so the completion is trivially minimal. Assume therefore that |K| ≥ 2.
By construction, K =

⋃
v∈I N(v), so every vertex of K has a neighbor in I. It

follows that |K| = ω(H)−1. Otherwise (if |K| were ω(H)), there would be ω(H)
vertices in K with degree greater then ω(H)−1, contradicting Corollary 4. Since
the split partition is not unique, there is at least one vertex z of degree ω(H)−1
in I, that can be moved to K by Theorem 1. Such vertices z belong to Q, but
they are not adjacent to any fill edge. Consequently, the only possibility for the
completion to be non-minimal is that a vertex x ∈ K incident to a fill edge,
has degree ω(H) − 1 so that x belongs to Q. Thus x has exactly one neighbor
in I. This means that there is exactly one vertex y ∈ I of degree ω(H) − 1,
since vertices of degree ω(H) − 1 in I must be adjacent to all vertices of K.
So we have exactly one vertex y ∈ I of degree ω(H) − 1 and a vertex x ∈ K
of degree ω(H) − 1, such that N(x) ∩ I = {y}. The degree of x in the input
graph G is actually less than ω(H) − 1, because it is incident to at least one
fill edge. But the degree of y is ω(G) − 1 also in G since no edges are added to
vertices in I. This means that d(x) < d(y) in G, but a vertex can be in K only
if one of its neighbors in G has been selected before it to be in I. In this case,
since the only neighbor of x in G selected to be in I is y, it means that y has
been processed by the algorithm before x, but that is a contradiction because
d(x) < d(y), and the algorithm always chooses the vertex with minimum degree
among the unprocessed ones.

This means that any graph obtained by the algorithm is a minimal split
completion of the input graph by Lemma 6.

Let us consider the time complexity of this algorithm. Since we add edges
only between the vertices of K, we can actually skip the step of adding edges,
because the resulting split partition will uniquely define the edges of H . Thus
the algorithm can be modified to return just I and K (the edges between I
and K are all edges of G). The degrees are computed only in the beginning of
the algorithm, and need not be recomputed. This and the rest of the algorithm
clearly require at most

∑
v∈V d(v) steps, which sums up to time O(|V |+ |E|).
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8 Conclusion

We have given a characterization of minimal split completions and we have shown
how to compute minimal split completions in linear time. We have also given
an algorithm for computing a minimal split completion between the input graph
G and an already given non-minimal split completion H of G. To achieve these
goals, we introduced a new way of uniquely partitioning the vertices of a split
graph into three subsets instead of two.

With these results, polynomial time algorithms are now known for minimal
triangulations, minimal interval completions, and minimal split completions of
arbitrary graphs. There are other interesting graph classes into which any graph
can be embedded by adding edges. We are interested in knowing whether minimal
completions into these classes can be computed in polynomial time. Also, is there
a graph class C that is recognizable in polynomial time, such that minimal C
completion of arbitrary graphs is an NP-hard problem?
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Abstract. In this paper, we study the design and analysis of online
batching systems. In particular, we analyze the tradeoff relationship be-
tween the start-up delay and the efficient usage of resources in an on-
line batching system, and analyze how the delay affects the performance
of such system. We derive almost optimal upper and lower bounds on
the competitive ratio of any deterministic scheduling algorithm for on-
line batching systems. Our results cover in a general way many different
batching systems and give interesting insights into the effect of start-up
delay.

1 Introduction

A batching server is one that can process more than one job simultaneously.
The jobs that are processed together form a batch, and all jobs in a batch share
a server and start and complete at the same time. The model of a system of
batching servers, or simply a batching system, has been proposed and studied
extensively in the Operations Research community [2, 3, 9, 17] because many tra-
ditional production processes, such as burn-in process in VLSI manufacturing,
diffusion process in semiconductor fabrication and heat treatment in metalwork-
ing can all be modeled as batching systems. This paper studies the design and
analysis of batching systems that are online and non-preemptive. Online batch-
ing systems arise in many IT applications such as On-demand data broadcasting
[11, 15, 16] and Video-on-demand systems [1, 8, 10].

Besides their practical importance, online batching systems are interesting
theoretically because they embody a source of tension that does not exist in
non-batching systems, namely, the tension between efficient usage of resources
and timely completion of jobs. To take advantage of the sharing capability of the
batching servers, the systems may ask their clients to be patient and wait for
some moments so that different job requests can be aggregated in a batch and
processed together. However, to maintain a good quality of services, the system
also promises that clients do not need to wait longer than some specific startup
delay [5]. Note that this delay has a profound effect on the cost-effectiveness
of the systems. On one hand, a longer delay magnifies the sharing effect and
also allows the scheduler to peep longer into the future to make better online
scheduling decisions; this improves throughput and profits. On the other hand,
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a shorter delay provides better quality of services and attracts more users to pay
and use the systems.

In this paper, we study mathematically how the startup delay affects the
performance of the systems. We also analyze the tradeoff relationship between
the startup delay and the number of servers for maintaining some fixed level of
performance of the systems. Our results are stated as a function of the laxity
of the system, which is defined to be the ratio between the startup delay and
the job length. Note that different batching systems may have different laxity;
a Video-on-demand system has small laxity, while other traditional batching
systems have larger laxity. Stating our results in terms of laxity not only allows
us to study different batching systems in a unified way but also gives deeper
insight into the effect of the start-up delay. In our study, we assume that all
jobs have the same length. As pointed out in [15], this assumption is realistic
for On-demand data broadcasting and Video-on-demand systems; most of the
documents and movies are about the same length. The insights gained in our
study can be used as a foundation for studying more complicated systems.

The Model. A batching system is specified by the tuple (d, S, c, F, �) where
d > 0 is the start-up delay, S is a set of identical servers, c is the server capacity,
F is a set of job families and � > 0 is the job length. Only jobs from the same job
family can be batched and processed by a server at the same time, and a batch
can have no more than c jobs. Once processing of a batch has been initiated
at some time t, no jobs can be removed or added to the batch until the server
completes the processing at t + �. Every job request r can be specified by a
tuple (time , family, profit) where time and profit are positive real numbers and
family ∈ F . We denote the profit of r by p(r). If r arrives at time t, then the
system will gain a profit of p(r) from r if it starts being processed within the
startup delay, i.e., start being processed at or before t + d; the system cannot
accept r after t+ d. For example, an On-demand data broadcasting system is a
(d, S,∞, F, �)-system where S is the set of broadcasting channels, F is the set of
data pages, and � is the page length.

Let B be a batching system. Given any sequence of job requests σ, we say that
a schedule is a B-schedule for σ if it specifies, for any server τ in B, when τ will
start processing the requests in σ in such a way that if we follow this schedule, τ
is always available when it is needed in this schedule. The profit of the schedule
is the total profit of the requests accepted by the schedule. An algorithm A is
a B-scheduling algorithm if it always produces B-schedules, and it is online if
its decision made at any time t depends only on the requests that arrive at or
before t. We say that A has competitive ratio κ if for any request sequence σ, we
have A(σ) ≥ 1

κOpt(σ), where A(σ) and Opt(σ) are respectively the profits of the
schedules produced by A and an optimal offline B-schedule. Let B′ be another
batching system. We say that A has relative competitive ratio κ with respect to
B′ if for any request sequence σ, we have A(σ) ≥ 1

κOptB′(σ), where A(σ) and
OptB′(σ) are respectively the profits of the B-schedule produced by A and an
optimal offline B′-schedule. Note that A’s competitive ratio is just its relative
competitive ratio with respect to B.
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Our Results. Let B = (d, S, c, F, �) be any batching system. We define the
laxity of B to be the ratio α = d/�. In this paper, we derive lower bounds on the
competitive ratio κ of any B-scheduling algorithm in terms of α. For general α,
we prove that κ ≥ �α�+2

�α�+1+ 1
Hc

where Hc ≈ ln c is the cth Harmonic number. We

have tightened our analysis for the case when α < 1: we show that in this case,
the lower bound can be improved to κ ≥ (�1/α� − 1)(1− c

−1
�1/α� ).

For upper bounds, we design a B-scheduling algorithm G and analyze its
relative competitive ratio (and hence its competitive ratio) with respect to any
batching system B′ = (d′, S′, c, F, �). Let κB′ be the relative competitive ratio of
G with respect to B′ and let α′ = d′/� be the laxity of B′. We prove that

κB′ ≤ 1 +
⌈

1 + d′/Δ

�d/Δ�

⌉
|S′|
η

where Δ = min{d, �} and η =
⌊

|S|

�/d�

⌋
=

⌊
|S|


1/α�

⌋
.1
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Fig. 1. Bounds on competitive ratios
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Fig. 2. G’s relative competitive ratio

To help digest these bounds, we have summarized our results in Figures 1
and 2. Note that we have simplified the bounds by considering the cases 0 <
α < 1 and α ≥ 1 separately, and assuming c = ∞ (for lower bounds) and �/d
divides |S| (for upper bounds). Figure 1 shows that G is almost optimal. (Recall
that G’s competitive ratio is just its relative competitive ratio with respect to B.
Note that our formula gives an upper bound of 4 instead of 3 when 1 < α < 2.
However, a more careful analysis on the boundary conditions for this case will
reduce the bound back to 3. Details will be given in the full paper.) Furthermore,
the bounds reveal the effect of the start-up delay on system performance. In
particular, when 0 < α < 1, or equivalently, when 0 < d < �, the competitive
ratio is proportional to the inverse of the laxity; hence, the smaller the laxity,
the poorer the performance guarantee.

Figure 2 reveals a tradeoff relationship between the number of servers and
start-up delay that provides valuable information for a system designer to de-
cide the right system configuration for a cost-effective system. For example,
1 Note that η ≥ 1 when d ≥ � and the bound becomes ∞ when η = 0, or equivalently,

when |S| < �/d. It can be proved that for this case, there is no algorithm A that
has finite competitive ratio. For example, consider the simplest case when |S| = 1
and c = ∞. Let σ be a request sequence with a request r at time 0 and an infinite
number of requests at d + ε < �. To ensure a finite competitive ratio, A must accept
r lest there is no more request; then A cannot accept the following ones and has an
infinite competitive ratio.
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consider a system B′ that has 5 servers and laxity 1/2. The top-right entry of
Figure 1 guarantees that for any input σ, we can always produce a schedule
with profit at least 1

κOptB′(σ) = 1
5OptB′(σ). On the other hand, the top entry

of Figure 2 asserts that for another system B with 15 servers and laxity 1/4,
the relative competitive ratio of the B-scheduling algorithm G with respect to B′

is 5. This suggests that we still gain a profit of at least 1
5OptB′(σ) if we reduce

the laxity to 1/4 and increase the number of servers to 15. As another exam-
ple, consider a system B′ with laxity 10 and another system B with laxity 11.
Suppose both systems have the same number of servers. Figure 1 suggests that
using system B′, we have a profit of at least 1

3OptB′(σ), while Figure 2 asserts
that the B-scheduling algorithm G has relative competitive ratio 2 with respect
to B′. In other words, by increasing the laxity from 10 to 11, we can improve
the profit guarantee from 1

3OptB′(σ) to 1
2OptB′(σ). This improvement may give

sufficient scientific justification for the service provider to reduce service charges
to encourage the clients to be more patient.

Related Work. In [14], Goldwasser gave the first formal study on the effect
of start-up delay on competitiveness. He focused on systems with a single non-
batching server (i.e., |S| = 1 and c = 1). Unlike our model, he assumed that jobs
may have different job lengths and start-up delays. He defined the patience τ to
be the smallest number such that every job has a start-up delay at least τ�J .
He proved that when all jobs have the same length, the competitive ratio for
scheduling such system is exactly 1+ 1

�τ�+1 . Later, Bar-Noy, Garay and Herzberg
[4] studied online scheduling of a Video-on-demand system, which is an example
of an online batching system. Their results imply that if the laxity α ≤

√
s/u,

then the competitive ratio κ = Θ(ln u/s) where u is the total number of potential
users and s is the total number of servers in the system, and if α = Θ(1), then
κ = Θ(1). Bar-Noy, Guha, Katz, Noar, Schieber and Shachnai [6] studied the
scheduling of offline batching systems in which all the jobs belonging to the same
family must have the same job length but jobs belonging to different families
may have different job lengths. They designed an approximation algorithm that
has approximation ratio 4. There were also studies on the relationship between
start-up delay and resource requirements for other types of systems such as
VOD systems that support stream-merging [5] and systems in which a job can
be divided and processed by more than one server [7, 12, 13].

2 Definitions and Notations

For any server ρ ∈ S, we say that ρ is dedicated to some family f ∈ F at time t if
ρ starts to process a batch B of jobs belonging to the family f at t. For every job
in B, we say that the request on that job is accepted at t. Let σ be any sequence
of job requests. For any time interval I, let σI denote the sequence of requests
in σ that arrive during I. For example, σ[0,t) is the sequence of requests in σ
arriving before t, and σ[t,t] are those arriving at t. Note that there may be more
than one request arriving at the same time and σ[t,t] may contain more than one
request. For any family f ∈ F , we say that f is in σI if there is a request in σI
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that is on some job belonging to f . Furthermore, we say that f has i requests in
σI if there are exactly i requests in σI on jobs in f . For example, suppose that
σI = {r1, r2, r3, r4} and only r1 and r4 are requesting jobs in f . Then f is in σI

and it has 2 requests in σI .

3 Lower Bounds on the Competitive Ratio

In this section, we derive two lower bounds on the competitive ratio of any online
deterministic algorithm for scheduling (d, S, c, F, �). We first derive a general
lower bound, and then tighten our analysis to derive better lower bounds for
some specific ranges of α. In our proofs, all jobs have a profit of 1 and hence the
profit of a schedule is just the total number of jobs accepted by the schedule.

3.1 A General Lower Bound

In this section, we show that the competitive ratio of any online (d, S, c, F, �)-
scheduling algorithm is at least �α�+2

�α�+1+ 1
Hc

where α = d/� is the laxity of the

batching system and Hc = 1+1/2+ · · ·+1/c is the cth Harmonic number. First,
we give some definition.

Definition 1. Let s, h be any positive integer. We say that a request sequence
σ has an (s, h)-peak at time to if

1. there are exactly s different families in σ[to,to] and each of them has exactly
h requests in σ[to,to], and

2. every family in σ[0,to] has no more than h requests.

To prove the lower bound, we need to prove the following technical lemma, which
reveals that given some input sequence σ with a peak at to, a competitive online
algorithm has to accept many requests of σ at or before to.

Lemma 1. Let A be an online (d, S, c, F, �)-scheduling algorithm and σ be a
request sequence that has an (|S|, h)-peak at time to ≥ 0 where h ≤ c. Suppose
that A has competitive ratio κ. Then, given σ as input, the number m of requests
accepted by A at or before to must be at least ε|S|h where ε = �d/��+2

κ −(�d/��+1).

Proof. Let α = d/�, r = d − �α�� and t1 = to + � − r. Note that 0 ≤ r < �
and to < t1. Consider the following request sequence δ, which is obtained by
modifying σ as follows:

1. δ[0,to] = σ[0,to].
2. For any time t > to and t �= t1, δ[t,t] has no request.
3. δ[t1,t1] has (�α�+ 1)|S| different families, each with h requests.
4. δ[0,t1) and δ[t1,t1] do not have any family in common.

It can be verified that every family has no more than h requests in δ.
First we estimate A(δ), the number of requests in δ that A accepts. For any

time interval I, let NI be the number of requests in δ that A accepts during I.
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Since A is online, it cannot distinguish σ and δ at or before to. Thus, A will also
accept m requests of δ at or before to; in other words, N[0,to] = m. Note that
any server s ∈ S can accept at most (�α� + 1)h requests in the time interval
(to, to + (�α� + 1)�] because s can be dedicated at most �α� + 1 times in the
interval and each time s can accept at most h requests (recall that every family
has at most h requests in δ). It follows that N(to,to+(�α�+1)�] ≤ (�α� + 1)|S|h.
Finally, note that N(to+(�α�+1)�,∞) = 0 because all requests in δ arrive at or
before t1 and they cannot be accepted after t1 + d = to + (�α�+ 1)�. Therefore,

A(δ) = N[0,to] +N(to,to+(�α�+1)�] +N(to+(�α�+1)�,∞) ≤ m + (�α�+ 1)|S|h. (1)

Now, we estimate Opt(δ), the maximum number of requests in δ that can be
accepted. By the construction of δ and the fact that σ has an (|S|, h)-peak at to,
we conclude that δ[to,to] has |S| families, each with h requests. Together with the
requests in δ[t1,t1], δ has at least (�α�+ 2)|S| families, each with h requests. We
can accept all these (�α� + 2)|S|h requests as follows. At time to, we dedicate
all servers in S to serve the |S| families in δ[to,to]. Since each of these families
has h requests and h ≤ c, we can accept all the h|S| requests in δ[to,to]. When
we finish serving these requests at to + �, we start to accept the (�α� + 1)|S|h
requests in δ[t1,t1] during the time interval [to + �, to +(�α�+1)�] = [t1 + r, t1 +d]
by accepting |S|h requests at to + �, another |S|h requests at to + 2�, . . ., and
the last |S|h requests at to + (�α�+ 1)� = t1 + d. Hence, we have

Opt(δ) ≥ (�α�+ 2)|S|h. (2)

Since A has competitive ratio κ, (1) and (2) give us a lower bound on m as
follows:

(�α�+ 2)|S|h
m+ (�α�+ 1)|S|h ≤

Opt(δ)
A(δ)

≤ κ,

or equivalently,

m ≥
(
�α�+ 2

κ
− (�α�+ 1)

)
|S|h = ε|S|h. ��

Note that ε tends to 1 when κ tends to 1. This suggests that given any request
sequence that has some peak at to, an online (d, S, c, F, �)-scheduling algorithm A
must accept many requests at or before to in order to be competitive. This gives
us an idea to construct a difficult input sequence for A: we construct a request
sequence with many peaks during some time interval I of length smaller than �.
Since a server that is dedicated at time t cannot be dedicated again before t+ �,
a server can be used at most once during I. It follows that A has at most |S|
servers to handle the peaks and thus cannot serve too many requests at these
peaks. Together with Lemma 1, we can make the conclusion that A cannot be
competitive. The proof of the following theorem formalizes this idea.

Theorem 1. Any online (d, S, c, F, �)-scheduling algorithm A has competitive ra-
tio κ no smaller than �α�+2

�α�+1+ 1
Hc

where α = d/� and Hc is the cth Harmonic

number.
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Proof. Let ρ < �/c be any positive real number. Let σ be the request sequence
in which

1. σ[t,t] is empty for all t �∈ {ρ, 2ρ, . . . , cρ}, and
2. for each 1 ≤ h ≤ c, σ has an (|S|, h)-peak at time hρ, and
3. for any 1 ≤ i �= j ≤ c, σ[iρ,iρ] and σ[jρ,jρ] have no family in common.

Suppose that σ is given as input for A to schedule. For any time interval I, let
NI denote the number of requests of σ that A accepts during I, and for any
integer i > 0, let si denote the number of times A dedicates a server to accept
some family during time interval ((i − 1)ρ, iρ]. Note that every family has no
more than i requests in σ[0,iρ] and this implies N((i−1)ρ,iρ] ≤ isi. Furthermore,
note that N[0,0] = 0. Hence, for any 1 ≤ h ≤ c,

N[0,hρ] = N[0,0] +N(0,ρ] +N(ρ,2ρ] + · · ·+N((h−1)ρ,hρ] ≤ s1 + 2s2 + · · ·+ hsh.

Since σ has an (|S|, h)-peak at hρ, we can apply Lemma 1 and further conclude
that, for any 1 ≤ h ≤ c,

s1 + 2s2 + · · ·+ hsh ≥ N[0,hρ] ≥ ε|S|h. (3)

where ε is as in Lemma 1. Below, we will use (3) to prove by induction that for
all 1 ≤ i ≤ c:

s1 + s2 + · · ·+ si ≥ ε|S|(1 + 1/2 + · · ·+ 1/i) = ε|S|Hi. (4)

Then, by noting that s1 + s2 + · · · + sc is the total number of times that A
dedicates some server to a family during the time interval (0, cρ] ⊂ (0, �), and
that a server can be dedicated at most once in this interval, we have

|S| ≥ s1 + s2 + · · ·+ sc ≥ ε|S|Hc =
(
�α�+ 2

κ
− (�α�+ 1)

)
|S|Hc.

Simplify the above inequality and the theorem follows.
To prove (4) by induction, first note that from (3), we have s1 ≥ ε|S| and (4)

holds for i = 1. Suppose it holds for all integers 1 ≤ i < h where h ≤ c. Then,
we have ∑

1≤i<h

(s1 + s2 + · · ·+ si) ≥ ε|S|
∑

1≤i<h

Hi = ε|S|(hHh − h). (5)

Adding (3) to (5), we get h(s1 +s2 + . . .+sh) ≥ ε|S|h+ ε|S|(hHh−h). It follows
that (4) also holds for h, and hence it holds for all 1 ≤ i ≤ c. ��

3.2 A Better Lower Bound When d < 	

Note that for the case when α < 1, Theorem 1 asserts that the competitive
ratio of any online algorithm cannot be smaller than 2

1+1/Hc
. In this section,

we refine our analysis and improve this bound to Ω(�/d), which is much larger
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than 2 when d is much smaller than �. The framework for proving this tighter
lower bound is the same as that for the general case; we construct an input
sequence which has many peaks within an interval I of length no greater than �.
Our observation for the improvement is that when d < �, a competitive online
algorithm has to serve much more requests for these peaks because most of the
requests will be expired after this interval I. To make this observation precise,
we modify Lemma 1 as follows.

Lemma 2. Let A be an online (d, S, c, F, �)-scheduling algorithm. Let h ≤ c be
any integer and σ be a request sequence such that (i) it has an (|S|, h)-peak at
time to, and (ii) there is no request in σ(to,to+d]. Suppose A has competitive ratio
κ. Then, given σ as input, the number of requests accepted by A at or before to+d
must be at least |S|h/κ.

Proof. Suppose that A has accepted m requests of σ at or before to +d. Let τ be
any input sequence where τ[0,to+d] = σ[0,to+d] and there is no request in τ(to+d,∞).
Since A is online, it cannot distinguish τ and σ; it follows that A(τ) = m. On the
other hand, note that we can accept all the |S|h requests at to because h ≤ c
and we have |S| servers. Since A has competitive ratio κ, we have

m = A(τ) ≥ 1
κ
Opt(τ) ≥ |S|h/κ,

and the lemma follows. ��

To make the basic ideas transparent, we first prove below a somewhat weaker
lower bound on the competitive ratio. Then, we explain how to improve the
bound.

Theorem 2. Let A be an online (d, S, c, F, �)-scheduling algorithm with compet-
itive ratio κ. Suppose that d < � and 2
�/d�−1 ≤ c. Then, we have κ ≥ 1

2��/d�.

Proof. Let ρ = �

�/d�−1 and m = ��/d�− 1. Let σ be a request sequence in which

1. σ[t,t] is empty for all t �∈ {ρ, 2ρ, . . . ,mρ}, and
2. for each 1 ≤ h ≤ m, σ has an (|S|, 2h)-peak at time hρ.

Suppose that σ is given to A for scheduling. For any time interval I, let NI denote
the number of requests A accepts during I. Note that d < ρ and it follows that
N[0,d] = 0. For any 1 ≤ i ≤ m, let si be the number of times that A dedicates a
server to serve some family during ((i−1)ρ+d, iρ+d]. It can be verified that every
family in σ[0,iρ+d] has at most 2i requests. It follows that N((i−1)ρ+d,iρ+d] ≤ 2isi.
Therefore, for any 1 ≤ h ≤ m, we have

N[0,hρ+d] = N[0,d] +N(d,ρ+d] +N(ρ+d,2ρ+d] + · · ·+N((h−1)ρ+d,hρ+d]

≤ 2s1 + 22s2 + · · ·+ 2hsh. (6)

Furthermore, d < ρ implies that for all 1 ≤ h ≤ m, hρ+ d < (h+ 1)ρ and there
is no request in σ(hρ,hρ+d]. Together with the fact that σ has an (|S|, 2h)-peak
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at hρ and 2h ≤ c, we can apply Lemma 2 and conclude that

N[0,hρ+d] ≥ 2h|S|/κ. (7)

Combining (6) and (7), we have, for all 1 ≤ h ≤ m, 2s1 + 22s2 + · · · + 2hsh ≥
2h|S|/κ, which implies the following two inequalities:∑

1≤h≤m

2m−h(2s1 + 22s2 + · · ·+ 2hsh) ≥
∑

1≤h≤m

2m|S|/κ. (8)

and
2s1 + 22s2 + · · ·+ 2msm ≥ 2m|S|/κ. (9)

Adding (8) to (9) and simplify, we have 2m+1(s1+s2+. . .+sk) ≥ (m+1)2m|S|/κ,
or equivalently,

s1 + s2 + · · ·+ sm ≥ (m + 1)|S|
2κ

.

Note that mρ = � and thus all the s1 +s2 + · · ·+sm servers are dedicated within
the time interval (d, d+ �]. As no server can be dedicated twice in this interval,
we have

|S| ≥ s1 + s2 + · · ·+ sk ≥
(m + 1)|S|

2κ
,

and the theorem follows. ��

Note that we can remove the 2
�/d� ≤ c assumption in the above theorem by
requiring σ to have an (|S|, c

h−1
��/d� )-peak instead of an (|S|, 2h)-peak at hρ. Then,

a similar but more complicated analysis will give the following theorem.

Theorem 3. Let A be an online (d, S, c, F, �)-scheduling algorithm with compet-
itive ratio κ. Suppose that d < �. Then we have κ ≥ (��/d� − 1)(1− c

−1
��/d� ).

4 A Competitive Algorithm for (d, S, c, F, 	)-Scheduling

In this section, we analyze a simple online algorithm G, which follows the Most-
Profit-First heuristic for scheduling a (d, S, c, F, �)-batching system. We derive
an upper bound on its relative competitive ratio with respect to any batching
system with the same set of job families, server capacity and job length, but
with possibly different set of servers and start-up delay.

Let Δ = min{d, �} and η =
⌊ |S|

�/d�

⌋
. The online algorithm G decides a schedule

as follows:

Starting from time 0, G periodically dedicates η servers to accept requests
at time 0, Δ, 2Δ . . . such that at time iΔ, it schedules η servers to accept
the set of requests with the largest possible profit that η servers can
accept at iΔ.

Lemma 3. The online algorithm G is a (d, S, c, F, �)-scheduling algorithm.
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Proof. By construction, G will only accept requests that are not expired. What
needs to be proved is that at any time iΔ, there are at least η free servers for G
to dedicate.

Note that when a server is dedicated at iΔ, it will be free at time (i+��/d�)Δ
because ��/d�Δ = ��/d�min{d, �} ≥ �. Furthermore, during the interval [iΔ, (i+
��/d�)Δ), G has dedicated ��/d�η ≤ |S| servers. This implies that the η servers
dedicated at iΔ are free before G has no server to dedicate. ��

Now, we derive an upper bound on the relative competitive ratio of G with respect
to another system (d′, S′, c, F, �). Note that this result also gives an upper bound
on G’s competitive ratio.

Theorem 4. The competitive ratio of G relative to a (d′, S′, c, F, �)-batching sys-
tem is at most 1 +

⌈
1+d′/Δ
�d/Δ�

⌉
|S′|
η where Δ = min{d, �}.

Proof. Let σ be any request sequence. Let O be the set of requests accepted in
an optimal (d′, S′, c, F, �)-schedule for σ, and D be the set of requests accepted in
the (d, S, c, F, �)-schedule constructed by the online algorithm G. Let R = O−D
be the set of requests that are accepted in the optimal schedule but not by G. It
is obvious that the profits of O, R and D are related as follows:

p(O) ≤ p(R) + p(D). (10)

Now, we estimate p(R) in terms of p(D). For any server τ ∈ S′ and integer i, let
Ri,τ be the set of requests in R that are accepted by τ during the time interval

((i − 1)Δ, iΔ]. Let m = �d/Δ� and k =
⌈

1+d′/Δ
�d/Δ�

⌉
. Note that (i − km)Δ ≤

(i − 1)Δ − d′ and all requests in σ[0,(i−km)Δ] are expired (with respect to the
system (d′, S′, c, F, �)) at or before (i−1)Δ and cannot be in Ri,τ . Thus we have
Ri,τ = Ri,τ ∩ σ((i−km)Δ,iΔ] , or equivalently,

Ri,τ = Ri,τ ∩ (σ((i−km)Δ,(i−(k−1)m)Δ] ∪ σ((i−(k−1)m)Δ,(i−(k−2)m)Δ] ∪ · · ·
∪σ((i−m)Δ,iΔ]) (11)

Let us first estimate the profit of Ri,τ ∩ σ((i−m)Δ,iΔ], the set of requests in R
that arrive during the interval ((i−m)Δ, iΔ], and are accepted by τ during the
interval ((i− 1)Δ, iΔ]. Note that

– all requests in this set are of the same family type because ((i−1)Δ, iΔ] has
length Δ = min{d, �} and τ can be dedicated once to accept these requests,
and

– they can still be accepted at time iΔ in the (d, S, c, F, �) system because they
all arrive after (i−m)Δ = (i− �d/Δ�)Δ ≥ iΔ− d.

However, the fact that they are in R means they are not accepted by G. By
the construction of G, we conclude that every of the η servers that G dedi-
cates at iΔ must accept a set of requests at iΔ with profit no smaller than
p(Ri,τ ∩ σ((i−m)Δ,iΔ]). Hence, if we let Di denote the set of requests accepted
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by G at time iΔ, then we have p
(
Ri,τ ∩ σ((i−m)Δ,iΔ]

)
≤ p(Di)/η. For the

other Ri,τ ∩ σ((i−(j+1)m)Δ,(i−jm)Δ] , we can prove with a similar argument that
p
(
Ri,τ ∩ σ((i−(j+1)m)Δ,(i−jm)Δ]

)
≤ p(Di−jm)/η. Together with (11), we have

p(Ri,τ ) ≤
(
p(Di−(k−1)m) + p(Di−(k−2)m) + · · ·+ p(Di)

)
/η.

For any i, let Qi = p(Di−(k−1)m) + p(Di−(k−2)m) + · · · + p(Di). (To simplify
notation, we let p(Dj) = 0 for all j < 0.) Then we have

p(R) =
∑
i≥0

∑
τ∈S′

p(Ri,τ ) ≤
∑
i≥0

∑
τ∈S′

Qi/η =
|S′|
η

∑
i≥0

Qi.

Note that for any j, Dj appears in at most k Qi’s (i.e. Qj, Qj+m, . . . , Qj+(k−1)m).
Thus,

p(R) ≤ |S′|
η

∑
i≥0

Qi ≤
k|S′|
η

(p(D0) + p(D1) + . . .) =
k|S′|
η

p(D).

From (10), we have

p(O) ≤ p(R) + p(D) ≤ (
k|S′|
η

+ 1)p(D) =
(

1 +
⌈

1 + d′/Δ

�d/Δ�

⌉
|S′|
η

)
p(D),

and the theorem is proved. ��

5 Conclusion

We have analyzed the effect of the start-up delay on system performance in an
online batching system and showed how different system configurations change
this effect. Followings are some interesting unsolved problems.

1. Although we have derived almost optimal bounds on the competitive ratio,
there are still gaps between the upper and lower bounds. We believe that
a more careful analysis on the competitive ratio of G will give us a smaller
upper bound.

2. In our analysis, we assume that all jobs have equal length. Although this
assumption is reasonable for many applications such as On-demand data
broadcasting, it is both practically and theoretically important to study
systems with arbitrary job lengths, or systems in which the servers have
different speeds or capacities.

3. Our lower bound proofs require the set F of job families has a fairly large
size. However, it can be shown that when |F | ≤ �α�|S|, a simple round-
robin scheduling always returns optimal schedules. This suggests the problem
of studying the tradeoff between the start-up delay and the size of F . In
particular, it is interesting to find out, for some fixed F , what is the smallest
laxity that still allows us to find optimal schedules.

4. It is interesting to study how techniques such as randomization and preemp-
tion help to improve the performance guarantees.
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Abstract. We study an online job scheduling problem arising in net-
works with aggregated links. The goal is to schedule n jobs, divided into
k disjoint chains, on m identical machines, without preemption, so that
the jobs within each chain complete in the order of release times and the
maximum flow time is minimized.

We present a deterministic online algorithm Block with competitive
ratio O( n/m), and show a matching lower bound, even for randomized
algorithms. The performance bound for Block we derive in the paper is,
in fact, more subtle than a simple competitive analysis, and it shows that
in overload conditions (when many jobs are released in a short amount
of time), Block’s performance is close to the optimum.

We also show efficient offline algorithms to minimize maximum flow
time and makespan in our model for k = 1, and prove that minimizing
the maximum flow time and makespan for k, m ≥ 2 is NP-hard.

1 Introduction

Link Aggregation is a method of grouping physical link segments (channels)
between two network devices into a single logical link. The technology can be
used to scale the bandwidth between the two devices, provide load balancing and
improve system’s fault-tolerance. Since Link Aggregation is also cost effective (it
is often cheaper to add an additional channel to an existing link, then to replace
the link with one of higher capacity) it is becoming very popular.

The traffic at the source of a multi-channel system (a network in which at
least two nodes are interconnected with parallel links) is often divided into dis-
joint conversations, where a conversation is a distinguishable source-destination
pair. In the system every output of a node is equipped with a scheduler. The
scheduler receives packets from conversations that traverse the node, and chooses
the transmission time and order of these packets over the output channels.
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J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 617–628, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



618 W. Jawor, M. Chrobak, and C. Dürr

Since packets of an individual conversation may be serviced concurrently by
more than one channel, the order in which the data packets arrive at the receiver
(i.e., the order in which the last bits of packets arrive) may be different from
the order in which they arrived at the sender. Bennett et al. [2] argue that the
parallelism of network components is one of the main reasons of packet reorder-
ing, contrary to the common belief that reordering is caused by malfunctioning
network components. The inter-conversation reordering is an important issue
for multi-channel systems, as it may negatively impact the performance of the
transmission control protocol [2], and thus the performance of the whole system.

In practice, the requirement of maintaining packet ordering is met by trans-
mitting all packets that compose a given conversation on a single channel. The
distribution is achieved by using hash functions. This approach has several draw-
backs: First, it does not fully utilize the capacity of a link if the number of con-
versations is smaller than the number of channels. Second, such scheduler does
not provide load balancing, i.e., if traffic increases beyond a single channel’s ca-
pacity, it is not distributed among additional channels. Third, it is hard or even
not possible to design a hash function that would distribute the traffic well in
all situations. And finally, in some (common) configurations the link aggregation
algorithm must violate the layered architecture of network protocols by accessing
higher layer information in order to compute useful hash functions.

Problem formulation. The above discussion raises the problem of designing ap-
propriate schedulers to guide the packet transmission. Our goal is to optimize
link utilization, under the constraint that packets complete their arrivals at the
receiver in the order of their arrivals at the sender. Using scheduling terminology
we state this problem as follows: We are given n jobs (packets) organized in k
chains (conversations), with each job j specified by a triple (rj , pj , zj) where rj

is a positive release (arrival) time, pj is the processing time (length) of the job,
and 1 ≤ zj ≤ k is an index of the chain to which job j belongs. We assume
that minj rj = 0. In addition, the jobs are ordered so that if a job j precedes
j′ (we simply write j < j′) then rj ≤ rj′ . The ordering of job indices within a
chain represents the ordering of packets in a conversation. We assume that at
the node where scheduling takes places the packets arrived in a correct order,
which justifies the ordering of the release times.

The jobs need to be scheduled on m identical machines and must satisfy the
FRFC (first released first completed) order, i.e., if for jobs j < j′ we have
zj = zj′ then CA

j ≤ CA
j′ , where CA

j is the completion time (the time at which
the packet arrives at the receiver) of j in schedule A. Preemption is not allowed.
Note that these constraints impose a fixed ordering even on jobs with a common
release time, so these jobs must complete in the final schedule in this order.

In addition to the above constraints we want to optimize the machine utiliza-
tion by constructing schedule which minimizes the maximum flow time FA

max =
maxj(CA

j −rj), for scheduleA. The use of this function is motivated by Quality of
Service applications in which, in order to provide the delay guarantees, an upper
bound on the time each job spends in the system must be given. In the process,
we will also construct schedules A to minimize makespan CA

max = maxj C
A
j .



Competitive Analysis of Scheduling Algorithms 619

It is natural to require that the scheduling algorithms for this problem be
online. In the online version of the problem jobs arrive at their release times, and
the algorithm needs to schedule one of the pending jobs without the knowledge
of the jobs that will arrive in the future. If the value of the objective function on
a schedule produced by an online algorithm A is at most c times the value of an
optimum schedule on the same instance, then we say that A is c-competitive. The
smallest such value c is called the competitive ratio of A. If A is a randomized
online algorithm, then the same definitions apply, except that we replace the
value of the objective function with its expected value.

Our results. We give an online deterministic algorithm Block, which produces
a schedule with maximum flow time at most 4

√
2pavg(n/m)(pmax + F ∗

max(I)),
where F ∗

max(I) is the maximum flow time in an optimum schedule of instance
I, pmax = maxj pj , and pavg =

∑
j pj/n. Since F ∗

max(I) ≥ pmax ≥ pavg this
implies that Block’s competitive ratio is at most 8

√
n/m. We also show that for

m ≥ 2 there is no online randomized algorithm with expected competitive ratio
better than O(

√
n/m) even for pmax = 3. This means that Block is optimally

competitive up to a constant factor, and that the asymptotic guarantee given
by Block cannot be improved with randomization. Note that the performance
bound of Block is stronger than what can be captured by classical competitive
analysis. It implies that when F ∗

max(I) is large (around pavg(n/m)), the cost
incurred by Block is no more than a constant times the optimum cost. We also
give a series of simpler results: We show that for k,m > 1 minimizing maximum
flow time or makespan is NP-hard, and that for k = 1 it is possible to compute
optimum solutions in polynomial time.

We would like to note that our main goal was to study the properties of the
new FRFC scheduling constraint. The analysis of the algorithm Block, which we
present in this paper, is a worst-case analysis. Whether this worst-case scenario
reflects the properties of the real network traffic is a subject of further research.

Past work. Scheduling to minimize various functions of jobs’ flow times has
recently received a lot of attention. For recent surveys on online scheduling see [8,
7]. To the best of our knowledge we are the first to introduce the FRFC model.
Therefore, in this section we briefly review only the results for related models.

In the context of online job scheduling with release times, the objective func-
tion Fmax was first considered by Bender et al. [1] who give a deterministic lower
bound of 4

3 for m = 2. They also show that the FIFO algorithm is (3 − 2/m)-
competitive. (The FIFO algorithm always schedules the job with the earliest
release time on the next available machine; it does not necessarily create FRFC
schedules.) Feuerstein et al. [5] study scheduling of jobs organized in a number
of sequences called threads. Each job becomes available as soon as a scheduling
decision has been made on all preceding jobs in the same thread. They show
that Algorithm List [6] (a.k.a. Graham’s algorithm), which always schedules the
next job on the least loaded machine, is the best algorithm for the makespan
problem if the number of machines is lower than the number of threads plus 2.
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2 Preliminaries

FRFC scheduling. We are given m identical machines and n jobs, with each job
j specified by a triple (rj , pj , zj) where rj is a positive release time, pj is the
processing time of the job, and zj is an index of the chain to which job j belongs.
The jobs are ordered so that for any two jobs j < j′ we have rj ≤ rj′ .

A schedule A specifies when and where jobs are executed, i.e., for each job
j it specifies a machine and an interval [SA

j , C
A
j ), such that (1) SA

j ≥ rj , (2)
CA

j − SA
j = pj , (3) all jobs assigned to the same machine are either completed

before SA
j or started after CA

j , and (4) for any two jobs j < j′ from the same
chain, we have CA

j ≤ CA
j′ . All jobs must be scheduled. Whenever the condition

(4) is satisfied we say that jobs are scheduled in FRFC order. If t ∈ [SA
j , C

A
j ),

then we say that job j is running at t in A. Let FA
j = CA

j − rj denote the flow
time of a job j in schedule A. We set FA

max = maxj F
A
j , and by CA

max = maxj C
A
j

we denote the makespan of A. Similarly, by F ∗
max(I) we denote the maximum

flow time of an offline schedule of I which minimizes maximum flow time, and
by C∗

max(I) the makespan of an offline schedule of I which minimizes makespan.
Our goal is to schedule the jobs in FRFC order so as to minimize the maximum
flow time.

Online Algorithms. An algorithm A is called online if at each time t it decides
which job to execute (if any) based only on the jobs released before or at time t.

Let |A| denote the value of the objective function on the schedule A. Let
A(I) denote the schedule computed by A on I. We say that an algorithm A is
c-competitive if |A(I)| ≤ c|B| for any schedule B of I. The smallest such value c is
called the competitive ratio of A. If A is a randomized algorithm, then the same
definition applies, except that |A(I)| is replaced with the expected value of the
objective function on the schedule produced by A on I, where the expectation
is taken over all random choices of the algorithm A.

3 Offline Algorithms

We now show how to compute schedules which minimize makespan or maxi-
mum flow for k = 1. We also give a 2-approximation algorithm for minimizing
makespan for k ≥ 2. These results are not difficult to prove, but some are used
in our online algorithm in Section 4, and other are included for completeness.

In order to derive the algorithms that compute optimal schedules for k = 1,
we consider a more general objective function, which includes both makespan
and maximum flow as special cases. Consider an instance I and suppose that
for each job j ∈ I we define a reference point, denoted ej , such that for any two
jobs j < j′ we have ej ≤ ej′ . We show an algorithm RGreedy which, when given
an input instance I and a reference point for each job, computes a schedule A
that minimizes maxj(CA

j − ej). Observe that if we define ej = 0 for all j, then
the schedule A = RGreedy(I) satisfies CA

max = C∗
max(I); if we set ej = rj , then

FA
max = F ∗

max(I).
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for i ← 1 to m do starti ← en

/* create auxiliary schedule X */
for j ← n downto 1 do

l ← argmax{starti : 1 ≤ i ≤ m}
schedule j on machine l at time SX

j ← min(ej , startl) − pj

startl ← SX
j

/* construct the final schedule A */
δ ← maxj(rj − SX

j )
for j ← 1 to n do SA

j ← SX
j + δ

Fig. 1. Algorithm RGreedy

The algorithm RGreedy is shown in Figure 1. It first computes an auxiliary
schedule X , and then shifts this schedule to meet all release times.

Theorem 1. For k = 1 Algorithm RGreedy computes a schedule that minimizes
maxj(CA

j − ej).

Proof. We first prove that the schedule computed by RGreedy, denoted A, is
feasible. Let X denote the auxiliary schedule constructed in the second loop.
Consider a fixed iteration of this loop and observe that the job j, which is sched-
uled in this iteration, completes at min(ej ,maxi=1...m starti), and that starti
is equal to the minimum starting time of jobs scheduled on machine i in the
previous iterations, or en if no jobs are scheduled on i. As j decreases from n
to 1 the reference points ej decrease, as well as maxi=1,...,m starti. Thus X is
an FRFC schedule. Shifting the jobs by δ in the last loop guarantees that all
release times are met and does not change the order of completion times, so A
is feasible.

Let O be any feasible schedule of jobs 1, 2, . . . , n and let Y be a copy of O
in which all jobs are shifted to the left by maxj(CO

j − ej), i.e., SY
j = SO

j −
maxi(CO

i − ei) for all j = 1, 2, . . . , n. Observe that CY
j ≤ ej for all jobs j.

Claim 1. For any j = 1, 2, . . . , n, we have CY
j ≤ CX

j .

Proof. The proof is by induction on j = n, n − 1, . . . , 1. For j = n we have
CX

n = en ≥ CY
n , so the claim holds. Now suppose that the claim holds for

j = n, n − 1, . . . , i + 1, where i < n. We show that it also holds for j = i. If
CX

i = ei then the claim holds since CY
i ≤ ei, so assume that CX

i < ei. Let
B ⊆ {i+ 1, i+ 2, . . . , n} be the set of jobs which are running at CX

i in X . Since
CX

i < ei we have |B| = m by the definition of RGreedy. We consider two cases.
If in Y all jobs from B are scheduled on different machines then CY

i ≤
maxh∈B(CY

h − ph) ≤ maxh∈B(CX
h − ph) = CX

i , where the second inequality
follows from the inductive assumption, and the equality from the definition of
RGreedy and the condition CX

i < ei.
If there are two jobs g < f such that g, f ∈ B and both are scheduled on the

same machine in Y, then CY
i ≤ CY

g ≤ CY
f − pf ≤ CX

f − pf ≤ maxh∈B(CX
h − ph)
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= CX
i , where the first inequality follows from the FRFC assumption, the third

inequality from the inductive assumption, and the equality from the definition
of RGreedy and the condition CX

i < ei. This ends the proof of Claim 1. ��
Since CX

j −ej ≤ 0 for all j = 1, 2, . . . , n, and CX
n = en, we have maxj(CA

j −ej) =
δ. Let i be the job in X such that ri − SX

i = δ. We have maxj(CA
j − ej) = δ =

ri − SX
i = ri + pi − CX

i ≤ ri + pi − CY
i , where the last inequality follows from

the above claim. We also have maxj(CO
j − ej) = CO

i − CY
i ≥ ri + pi − CY

i ,
where the equality follows from the definition of Y. Overall, maxj(CA

j − ej) ≤
ri + pi − CY

i ≤ maxj(CO
j − ej), ending the proof of Theorem 1. ��

Consider an instance I and let Ĩ denote a copy of I in which all jobs are assigned
to the same chain. Let RList denote Algorithm RGreedy when all reference points
are set to 0. Consider an algorithm RList-M, which on any instance I returns the
schedule produced by RList on Ĩ.

Theorem 2. Let A be the schedule produced by RList-M on some instance I.
Then A is an FRFC schedule, and CA

max ≤ C∗
max(I) + pmax.

We omit the proof of the above theorem as it resembles the analysis of List from
[6]. Since C∗

max ≥ pmax, the above theorem yields the following corollary.

Corollary 1. Algorithm RList-M is a 2-approximation algorithm for minimizing
makespan.

We conclude this section with the following theorem. Due to space constraints
we omit the proof.

Theorem 3. For k > 1, m ≥ 2, minimizing maximum flow time or makespan
is NP-hard even if all jobs are released at time 0.

4 Online Algorithms

4.1 An Upper Bound on the Competitive Ratio

Let A be any offline algorithm for minimizing makespan. We first show how to
use algorithm A to create an online algorithm Block(A).

Algorithm Block(A): The algorithm proceeds in phases numbered 1, 2, 3, . . .,
where phase i starts at time βi. First, let β1 = 0. Consider phase i, and let
Qi be the set of jobs pending at time βi. We apply algorithm A to schedule the
jobs from Qi. Suppose that the last job from Qi completes at time βi + δi. Then
βi+1 ≥ βi + δi is the first time when there is at least one pending job. (If no
more jobs arrive, the computation completes.)

The above technique of applying an algorithm A to create an online algorithm
Block(A) was first proposed by Shmoys et al. [9], who prove that if algorithm A
produces a schedule with makespan at most ρC∗

max(I) on any instance I, then
algorithm Block(A) produces a schedule with makespan at most 2ρC∗

max(I
′) on

any instance I ′. Note that if A is an FRFC algorithm then so is Block(A). We
therefore obtain the following corollary:
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Corollary 2. Block(RList) is a 2-competitive FRFC algorithm for minimizing
makespan for k = 1, and Block(RList-M) is a 4-competitive FRFC algorithm to
minimize makespan for k ≥ 1.

From now on we will denote Block(RList-M) simply by Block. In this section we
show an upper bound on the maximum flow time of any job in the schedule
produced by Block.

Theorem 4. Let B be the schedule produced by Block on an instance I. Then
FB

max ≤ 4
√

2pavg(n/m)(pmax + F ∗
max(I)), where pmax = maxj pj, and pavg =∑

j pj/n.

Let B denote the number of phases. (Clearly, B ≤ n.) For i = 1, 2, . . . , B, let
the schedule of Qi created in i-th phase be called a block. By the definition
of Algorithm RList-M in each block at least one machine is continuously busy
processing jobs. In order to prove Theorem 4, we will need several lemmas.

Lemma 1. Let σ0 = 0 and let σ1, σ2, . . . , σl ≥ 0 be numbers such that σi −
σi−1 ≤ Δ for i = 1, 2, . . . , l and some Δ ≥ 0. Then σ2

l ≤ 2Δ
∑l

i=1 σi.

Proof. For any i = 1, 2, . . . , l we have σ2
i − σ2

i−1 ≤ Δ(σi + σi−1). The lemma
follows by adding these inequalities for all i. ��

Consider any instance I and let B = Block(I). We show that in order to prove
Theorem 4, we may assume that at all times 0 ≤ t < CB

max at least one machines
is busy in the schedule B.

Lemma 2. Without loss of generality we may assume that at least one machine
is busy in B at all times t ∈ [0, CB

max).

Proof. Assume that Theorem 4 holds for any instance I ′ such that at all times
t′ ∈ [0, CB′

max) at least one machine is busy in B′ = Block(I ′). We claim that then
it also holds for I.

We divide the schedule into N segments that do not have idle times. Let
t1 = β1 = 0. If ti is defined, and if there is j such that ti < βj + δj < βj+1
then pick such smallest j and set t′i = βj + δj and ti+1 = βj+1. Otherwise
let t′i = βB + δB and N = i. Let Ii be the set of jobs released in the inter-
val [ti, t′i) for i = 1, 2, . . . , N . Since Block is never idle when there are available
jobs, all jobs from Ii are completed in B no later than at time t′i. Let Bi be
the schedule computed by Block on Ii. Note that the schedule Bi is identical to
the schedule B in [ti, t′i). Therefore, FB

max = maxi=1,...,N FBi
max. Also, F ∗

max(I) ≥
maxi=1,...,N F ∗

max(Ii). Let f(x, y) = 4
√

2pavg(y/m)(pmax + x). The function f
is non-decreasing with x and y. Since we assumed that Theorem 4 holds for
all instances Ii for i = 1, 2, . . . , N , we obtain FB

max = maxi=1,...,N FBi
max ≤

maxi=1,...,N f(F ∗
max(Ii), |Ii|) ≤ f(F ∗

max(I), |I|). This means that Theorem 4 holds
for schedule B. This completes the proof. ��

We now observe that the maximum flow time of any job in schedule B may be
bounded by twice the length of a largest block in B.
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Lemma 3. FB
max ≤ 2 maxi δi.

Proof. Let j be the job with the maximum flow time in B and suppose j ∈ Qi′

for some i′. Then rj > βi′−1 and CB
j ≤ βi′ + δi′ , therefore FB

max = FB
j ≤

βi′ + δi′ −βi′−1 = δi′−1 + δi′ ≤ 2 maxi δi, as βi′ = βi′−1 + δi′−1 by Lemma 2. ��

The idea behind the analysis of the algorithm is to estimate the size of a largest
block in B in terms of pmax and F ∗

max(I). In order to do this we derive an
inequality that bounds the rate of growth of the blocks in B.

Lemma 4. For any i = 1, 2, . . . , B we have δi ≤ δi−1 + F ∗
max(I) + pmax.

Proof. Let O denote an optimum schedule of I. Let αi = minj∈Qi S
O
j . We first

observe that for all i = 1, 2, . . . , B we have

αi > βi−1. (1)

To justify this inequality, let h = argminj∈Qi
SO

j . We have SO
h = αi, by the

definition of αi, and rh ≤ αi. On the other hand, since the job h ∈ Qi, we have
rh > βi−1. So we obtain βi−1 < rh ≤ αi.

Let λi = maxj∈Qi C
O
j −αi. We now claim that for all i = 1, 2, . . . , B we have

λi ≤ δi−1 + F ∗
max(I). (2)

Note that for all j ∈ Qi we have rj ≤ βi = βi−1 + δi−1 by Lemma 2. Let g ∈ Qi

be a job completed at αi + λi in O. We have F ∗
max(I) ≥ FO

g = αi + λi − rg ≥
αi + λi − (βi−1 + δi−1) ≥ λi − δi−1 by inequality (1) proving (2).

Theorem 2 implies that δi ≤ λi + pmax. Thus, using (2) we obtain δi ≤
δi−1 + F ∗

max(I) + pmax. This ends the proof. ��

We now prove Theorem 4.

Proof. We may assume that B ≥ 2. If for all i = 1, 2, . . . , B, we have δi < 2pmax,
then the theorem follows from Lemma 3. Otherwise let l = argmaxiδi. Let 1 ≤
f < l be the maximum index i such that δi < 2pmax and δi+1 ≥ 2pmax. If such i
does not exist, we set f = 1. Define g = l − f + 1. Let σ0 = 0 and σi = δf+i−1
for i = 1, . . . , g.

Observe that for i = 2, 3, . . . , g we have σi − σi−1 ≤ pmax + F ∗
max(I) by

Lemma 4. If f = 1 we have σ1 = δ1 ≤ F ∗
max(I) ≤ pmax + F ∗

max(I) by the
definition of Block, and if f > 1 we have σ1 = δf ≤ 2pmax ≤ pmax + F ∗

max(I).
We conclude that for i = 1, 2, . . . , g, we have σi − σi−1 ≤ pmax + F ∗

max(I), so
the sequence σi satisfies the conditions of Lemma 1 with Δ = pmax + F ∗

max(I).
We now use this lemma to bound σg, the size of a largest block.

Observe that for i = 2, 3, . . . , g we have σi ≥ 2pmax, so the number of jobs in
each block Qf+i−1 is more than m by the definition of Block. We therefore obtain
σi ≤ pmax+

∑
j∈Qf+i−1

pj/m by the definition of RList, and, since σi ≥ 2pmax, we
have σi ≤ 2

∑
j∈Qf+i−1

pj/m for all i = 2, 3, . . . , g. We now consider two cases.
If σ1 ≥ 2pmax then the observation from the previous paragraph also applies to
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i = 1, and
∑g

i=1 σi ≤
∑g

i=1

(
2
∑

j∈Qf+i−1
pj/m

)
≤ 2

∑n
j=1 pj/m. If σ1 < 2pmax

then σ1 < σ2. Since we assumed that σg ≥ 2p we have g > 1, and
∑g

i=1 σi ≤
σ1 +

∑g
i=2(2

∑
j∈Qf+i−1

pj/m) ≤ 2
∑g

i=2(2
∑

j∈Qf+i−1
pj/m) ≤ 4

∑n
j=1 pj/m.

Overall we have
∑g

i=1 σi ≤ 4
∑n

j=1 pj/m. By Lemma 1 we obtain (σg)2 ≤
2(pmax +F ∗

max(I))4
∑n

j=1 pj/m ≤ 8(pmax +F ∗
max(I))npavg/m, and, by Lemma 3,

FB
max ≤ 2σg ≤ 4

√
2pavg(n/m)(pmax + F ∗

max(I)), proving Theorem 4. ��

4.2 A Lower Bound on the Competitive Ratio

We conclude the paper by proving that the algorithm Block has asymptotically
the best possible competitive ratio.

Theorem 5. No online randomized algorithm can be better than O(
√
n/m)-

competitive for m ≥ 2.

Proof. We use Yao’s minimax principle [10, 3], and show a distribution on in-
stances with k = 1 that forces each deterministic online algorithm to have ex-
pected ratio Ω(

√
n/m).

Choose a large integer a > 0. For the sake of simplicity we assume that m is
even. The construction is similar in the case when m is odd.

We generate each instance from a random binary string μ = μ1μ2 . . . μa, where
μi = 0 or μi = 1, each with probability 1

2 , independently. Suppose that t1 = 0.
For any i = 1, 2, . . . , a, suppose that ti and I1 ∪ I2 ∪ . . . ∪ Ii−1 have already
been defined. Then let ti+1 = ti + 3(i + 1) + 2μi + 4, and define instance Ii of
m(i+ 1) + 4m+mμi jobs as follows:

– m jobs of length 1 released at time ti;
– i+ 1 batches of m jobs of length 3, where batch j is released at time ti + 3j

for j = 0, 1, . . . , i;
– If μi = 1, m/2 jobs of length 3 released at time ti + 3(i + 1), and m/2 jobs

of length 1 released at time ti + 3(i+ 1) + 2;
– 3m jobs of length 1 released at time ti + 3(i+ 1) + 3μi.

The final instance I is obtained by concatenating sub-instances Ii for i =
1, 2, . . . , a. Figure 2(a) shows sub-instance Ii for μi = 1.

Since every sub-instance Ii contains at most m(i+ 6) jobs, the total number
of jobs in I is n ≤

∑a
i=1 m(i+ 6) = O(ma2).

Claim 2. There exists a schedule of the instance I with maximum flow time 5
and makespan at most ta+1.

Proof. Fix i. If μi = 0, then we schedule the first m jobs from Ii at time ti each
on a separate machine. If μi = 1, then we schedule the first m/2 jobs from Ii
at time ti on the first m/2 machines and the next m/2 jobs at time ti + 1 on
these same machines. The remaining jobs are always placed on the next available
machine (ties broken arbitrarily). By routine inspection, this is a valid schedule,
with the last job completed at time ti+1. See Figures 2(b) and 2(c). It is easy to
verify that in both cases the flow time of any job is at most 5. ��
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t i
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t i t i+1

... ...

(a)
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m

i+1

3m

...

(c)

... ...

...

... m

...

... ...

Fig. 2. (a) Sub-instance Ii for μi = 1. When μi = 0 the last 3m jobs are released three
units earlier and the dark gray jobs are not released at all. (b) Optimum schedule of
sub-instance Ii with μi = 0. (c) Optimum schedule for sub-instance Ii with μi = 1.

Since the total processing time of jobs from sub-instance Ii is exactly m(ti+1−ti),
the total processing time of jobs in I is m(ta+1 − t1), so to complete all jobs by
time ta+1 all machines must be continuously busy in the interval [t1, ta+1).

Let A be an online algorithm. Since all release times and processing times of
jobs in I are integral, we may restrict our attention to algorithms which start
jobs at integral times only. This justifies the following claim:

Claim 3. Without loss of generality we may assume that in any schedule of I
algorithm A starts and completes jobs at integral times.

For any schedule X ′ of the first n′ jobs from I let an idle slot at t on machine l
be a time unit such that l is idle at t, and a stall slot at t on machine l be an
idle slot such that there either is a job which completes after time t on l in X ′,
or t < CX ′

max − 3. Since a largest job in I has size 3, in any extension of X ′ to a
full schedule of I no job will be running in any stall slot.

The main idea of the proof is to show that A creates a schedule with Ω(ma)
idle slots for I, on average. The last completion time in the schedule created
by A is, therefore, ta+1 + Ω(a). It follows that the flow time of the job that
completes last in this schedule is Ω(a), as it is released before ta+1. Finally, as
the flow time of any job in an optimum schedule is bounded by a constant, we
can conclude that the competitive ratio of A is Ω(a) = Ω(

√
n/m).

We now prove that A creates a schedule with Ω(ma) stall slots for I, on
average. This follows from the following claim:

Claim 4. For all i = 1, 2, . . . , a a schedule of I1 ∪ I2 ∪ . . . ∪ Ii computed by A
contains Ω(mi) stall time units on average, w.r.t. the random choice of μ1 . . . μi.

Proof. LetA = A(I). Fix i and let B denote the schedule A with all jobs removed
except for I1 ∪ I2 ∪ . . . ∪ Ii−1 and the first m jobs from Ii.
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If CB
max ≥ ti + i + 5 then, since the total processing time of jobs in B is

m(ti + 3) the algorithm must have already created mi stall slots and the claim
follows. We can, therefore, assume that CB

max < ti + i + 5, which implies that
CB

max < ti +3(i+1). So at CB
max the jobs which distinguish instance Ii for μi = 0

from Ii for μi = 1 are not released yet. We will prove that since at CB
max the

algorithm cannot know the value of μi, it cannot avoid Ω(m) stall slots when
scheduling jobs from Ii, on average.

Let J = {j ∈ Ii : pj = 3} and let B′ denote the schedule A with all jobs
removed except for jobs in B and J . We wish to count the number of stall slots
in [CB

max − 3, CB′

max).
Observe that jobs in J are followed in Ii by at least 3m jobs of length 1. None

of these jobs of length 1 may be started in A before CB′

max−1 (otherwise A would
not be an FRFC schedule), and some of these jobs must complete at CB′

max + 3
(since the total processing time of these jobs is at least 3m). It follows that since
pmax = 3 these jobs force each idle slot in [CB′

max−2, CB′

max−1) in B′ to be a stall
slot in A. This allows us to include the idle slots in [CB′

max − 2, CB′

max − 1) in B′

in the total count of stall slots.
Let lh denote the number of jobs from J scheduled on machine h. Let M

denote the set of machines which complete all jobs in B at or before time CB
max−2.

Let M denote the remaining machines. We now show that the number of new
stall slots (i.e., stall slots which are in B′ and not in B) in [CB

max − 3, CB′

max − 1)
is at least m/2 for a certain value of μi. Distinguish the following cases.
Case 1: Suppose that |M | ≥ m/2, and μi = 0. First we claim that CB′

max ≥ CB
max+

3(i+ 1). Indeed, if lh = i + 1 for h = 1, 2, . . . ,m, then CB′

max ≥ CB
max + 3(i+ 1).

If for some h we have lh ≥ i + 2 then since the first job from J on h may not
complete before CB

max, we also have CB′

max ≥ CB
max + 3(i+ 1).

Any machine h ∈M completes all jobs in B by time CB
max−2, by definition. We

claim that the number of new stall slots in [CB
max− 2, CB′

max− 1) on any machine
h ∈M is at least i+2− lh. Indeed, comparing the processing power of h in that
interval with the total processing time of jobs from J on h we see that there must
be at least (CB′

max−1)−(CB
max−2)−3lh ≥ 3(i+1)+1−3lh ≥ i+2− lh stall slots

on h. Using a similar argument we can show that every machine h ∈ M must
contain at least i+1− lh stall slots. Thus, since

∑m
h=1 lh = m(i+1), the number

of new stall slots is at least
∑

h∈M (i+2− lh)+
∑

h∈M (i+1− lh) = |M | ≥ m/2.

Case 2: Now assume that |M | > m/2, and μi = 1. We claim that CB′

max ≥ CB
max+

3(i+1)+2. Indeed, either for some h ∈M we have lh ≥ i+2, which implies that
the last job on h completes in B′ at least at CB

max−1+3(i+2) = CB
max+3(i+1)+2,

or, since |M | < m/2, for some h ∈ M we have lh ≥ i + 3 and the last job on h
completes in B′ at least at CB

max − 3 + 3(i+ 3) > CB
max + 3(i+ 1) + 2.

We claim that the number of new stall slots in [CB
max, C

B′

max − 1) on any
machine h is at least i + 2 − lh. Indeed, comparing the processing power of h
in that interval with the total processing time of jobs from J on h we see that
there must be at least (CB′

max − 1)−CB
max − 3lh ≥ 3(i+ 1) + 1− 3lh ≥ i+ 2− lh

stall slots on h. Thus, since
∑m

h=1 lh = m(i+ 1) +m/2, the number of new stall
slots is at least

∑m
h=1(i+ 2− lh) ≥ m/2.
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Since the choice of i was arbitrary, it follows that each schedule of I1 ∪ I2 ∪
. . . ∪ Ii computed by A contains Ω(mi) stall slots for each i = 1, 2, . . . , a on
average. This ends the proof of Claim 4 and Theorem 5. ��

We would like to point out that in the above construction we only use jobs with
two different processing times: 1 and 3.

Acknowledgments. We would like to thank the anonymous referees for useful
comments.
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Abstract. In the 1.5-dimensional terrain guarding problem we are given
as input an x-monotone chain (the terrain) and asked for the minimum
set of guards (points on the terrain) such that every point on the ter-
rain is seen by at least one guard. It has recently been shown that the
1.5-dimensional terrain guarding problem is approximable to within a
constant factor [3, 7], though no attempt has been made to minimize the
approximation factor. We give a 4-approximation algorithm for the 1.5D
terrain guarding problem that runs in quadratic time. Our algorithm is
faster, simpler, and has a better worst-case approximation factor than
previous algorithms.

1 Introduction

1.1 Problem Statement

In the 1.5-dimensional terrain guarding problem we are given as input a terrain
T that is an x-monotone polygonal chain. An x-monotone polygonal chain is a
polygonal chain that intersects any vertical line at most once. It can be thought
of as an array of n vertices in 2-dimensional space sorted in ascending order of
x-coordinate, where edges ‘connect the dots’ from left to right. Note that the
x-monotonicity requires x-coordinates to be distinct.

a

b

c

d

e

f

Fig. 1. An example of a 1.5D terrain.
d can see b, c, and e but not a or f .

We say that a point on the terrain sees
another point on the terrain if there is a
line of sight between them, i.e. the line seg-
ment connecting them is never strictly be-
low T . A guard is simply a point on the ter-
rain that we add to a ‘guarding set’. Given
a terrain T , we are asked for the smallest
possible guarding set, i.e. the smallest set
G of points on T such that every point on
T is seen by some point in G.

It is natural to consider two different
versions of the terrain guarding problem:
the discrete version and the continuous version. In the discrete version guards
must be at vertices and only the vertices of the terrain need to be guarded. In the
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continuous version guards may be anywhere on the terrain and every point on
the terrain must be guarded. The discrete version is simpler but the continuous
version is more natural to consider in a geometric context. For the rest of this
paper we will use TG to denote the discrete version of the problem and TG-C
to denote the continuous version.

Every instance of TG is an instance of Set Cover, but we know that Set
Cover is NP-complete (see, e.g., [13]) and no sub-logarithmic approximation
factor can be obtained unless NP ⊆ DTIME(nlog log n) [12]. In general it is
not particularly difficult to modify a TG algorithm to solve instances of TG-
C, though this often involves some polynomial increase in time complexity.

1.2 Related Work

The 1.5D terrain guarding problem is very similar to the art gallery problem in
which one must guard the interior of a simple polygon. The art gallery problem
and its variants are well studied [1, 6, 11, 16, 17].

It is unknown whether or not TG is NP-hard. In 1995 Chen et al. [5] proposed
an NP-hardness proof obtainable via a modification of Lee and Lin’s proof that
the art gallery problem is NP-complete [17]. However, the proof, whose details
were omitted, was never completed successfully. Since then, attempts to find a
polynomial-time algorithm for TG and attempts to prove that it is NP-hard
have both been unsuccessful.

The first constant-factor approximation algorithm for the 1.5D terrain guard-
ing problem was given by Ben-Moshe et al. [3]. Their algorithm works by first
placing guards to divide the terrain into independent subterrains. Each sub-
terrain has the property that it does not require internal guards, i.e. every un-
guarded vertex can be seen from outside the subterrain. For each such subterrain
that is not completely guarded they then proceed with steps that either reduce
the subterrain or split it into multiple independent subterrains. They made no
attempt to minimize their algorithm’s approximation factor; as such it is very
large (at least 48). It could be brought down possibly as low as 6 with some mi-
nor modifications and careful accounting, but due to the inevitable cost incurred
by repeatedly dividing the terrain it does not seem that it could be brought any
lower than 6. Their algorithm runs in O(n2) time for the discrete version. They
also provide a reduction from TG-C to TG that allows them to solve TG-C in
O(n4) time, though the approximation factor can double in this case.

Another constant-factor approximation algorithm is given by Clarkson and
Varadarajan [7]. Consider a partition of a 1.5D terrain into maximal intervals
such that, for any two points p and p′ in a given interval, the leftmost point that
sees p and the leftmost point that sees p′ are the same. If we label each interval
with the leftmost point that sees it and read the labels from leftmost interval to
rightmost interval, Clarkson and Varadarajan note that we end up with an (n, 2)
Davenport-Schinzel sequence [18]. Such a sequence must have length at most 2n.
This characterization of the lack of complexity in 1.5D terrains allows them to
efficiently find appropriate ε-nets [14] for instances of TG. They then apply the
Set Cover method of Brönnimann and Goodrich [4] to solve the problem using
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these ε-nets. The end result is a constant-factor approximation algorithm that
runs in polynomial time. Using efficient derandomization their algorithm could
probably be made to run deterministically in O(n2 logn) time.

The 1.5D terrain guarding problem becomes easy if, instead of being placed
on the terrain, all guards ‘float’ above the terrain at a fixed altitude that is above
the highest vertex. Eidenbenz [8] gives a linear-time algorithm for finding an op-
timal set of guards in this case. The problem also becomes easy if guards can
only look rightwards. Chen et al. [5] give a linear-time algorithm for this case.

A 2.5D terrain is a polyhedral surface that intersects every vertical line at
most once and whose projection onto the x, y-plane is a simple polygon with no
holes. The 2.5D Terrain Guarding Problem is therefore a natural extension of the
1.5D problem to the next dimension. Finding a minimum number of guards for a
2.5D terrain is NP-complete and Eidenbenz shows that it cannot be approximated
within a sub-logarithmic factor unless NP ⊆ DTIME(nlog log n) [9]. Eidenbenz et
al. show that the problem is also NP-complete and equally inapproximable when
guards ‘float’ at a given altitude that is higher than the highest point in the ter-
rain [10] (recall that this can be solved in linear time for 1.5D terrains).

1.3 Motivation

Naturally, the motivation for 1.5D terrain guarding comes from guarding or cov-
ering terrain. The 1.5D case appears, for example, when guarding or covering
a road, perhaps with security cameras or street lights. The 2.5D case has more
powerful applications, most notably for providing a wireless communication net-
work that covers a given region. Its proven intractability and inapproximability,
however, motivate us to look towards the 1.5D case for insight. The 1.5D case
is also applicable, for example, if we only need to cover the path between two
points on a polyhedral terrain. It has been pointed out [3] that the 1.5D terrain
guarding problem can be utilized in heuristic methods for the 2.5D case.

The recent results of Ben-Moshe et al. [3] and Clarkson and Varadarajan [7]
showed that constant-factor approximation algorithms exist for TG. Unfortu-
nately they do not provide a small constant guaranteed approximation factor.
Efforts to design an exact polynomial-time algorithm for TG have been unsuc-
cessful and it is very possible that no such algorithm exists. If TG is NP-hard
and P �= NP, then the best algorithm running in polynomial time will be the
approximation algorithm with the lowest approximation factor. For this reason
there is significant motivation to minimize the approximation factor.

The greedy algorithm for Set Cover, which achieves the optimal approxi-
mation factor of O(log n), repeatedly picks the set that contains the most un-
covered elements. Similarly, the natural greedy algorithm for terrain guarding
repeatedly picks the guard that sees the most unguarded vertices. There are ter-
rains for which this method achieves a logarithmic approximation factor (such
a terrain, provided by Ben-Moshe [2], is described in [15]). There are other nat-
ural greedy-like algorithms that one might consider. For example, one could
repeatedly pick the guard that maximizes the leftmost unguarded vertex or the
lowest unguarded vertex. Terrains exist for these algorithms that prove they do
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not achieve constant approximation factors. The apparent absence of simple al-
gorithms that achieve constant approximation factors motivates us to consider
more sophisticated techniques.

1.4 Our Contribution

Our result is a 4-approximation algorithm for the 1.5D terrain guarding problem.
It runs in O(n2) time for TG and can be modified slightly to run in O(n2) time
for TG-C.

1.5 Organization

The rest of the paper is organized as follows. In Section 2 we introduce no-
tation and some small but fundamental lemmas. In Section 3 we give our 4-
approximation algorithm for TG; the modifications required for TG-C are ex-
plained in Section 3.6. In Section 4 we discuss open problems and suggest direc-
tions for future work regarding 1.5D terrain guarding.

2 Preliminaries

2.1 Terminology and Notation

An instance of the 1.5D terrain guarding problem is simply an x-monotone
chain T . This chain is a sequence of vertices v1, . . . , vn and edges ei = (vi, vi+1),
i = 1 . . . n− 1 such that the x-coordinate of vi is smaller than that of vj if i < j.
Given two points p and q on T (not necessarily vertices of T ), we say that p < q
if the x-coordinate of p is smaller than that of q.

For a point p we use L(p) to denote the leftmost point that sees p and R(p)
to denote the rightmost point that sees p. It is not difficult to see that L(p) and
R(p) will always be vertices, whether p is a vertex or not. We use TL(p) to denote
the terrain restricted to the interval [v1, p] and use TR(p) to denote the terrain
restricted to [p, vn]. CH(T ) is the (upper) convex hull of T . We use CHL(p) to
denote the convex hull of TL(p) and use CHR(p) for that of TR(p). If a point p
sees every unguarded point that another point q sees we say that p dominates q.
We can also say that a set S dominates a point p if every unguarded point seen
by p is also seen by some vertex in S. We say that p dominates q with respect to
a certain region of T if p sees every unguarded point in that region that q sees.

We consider a minimum guarding set GOPT for the terrain T . We assume
there is some mapping g of points of T to guards in GOPT such that, for a point
p, g(p) is a guard in GOPT that sees p. We say that g(p) is the guard responsible
for p. g is surjective but never injective (since |GOPT | < n); we use it to simplify
the explanation of our accounting scheme.

2.2 Elementary Lemmas

We will now state and prove several small but fundamental lemmas that we will
use in the rest of the paper. These lemmas and corollaries can be used with left
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and right interchanged; this is stated explicitly for Corollary 1 as an example
but is not stated for the others. Also note that these lemmas involve points on
the terrain that need not necessarily be vertices.

Lemma 1 (Order Claim [3, 5]). For
points a, b, c, d such that a ≤ b < c ≤ d,
if a sees c and b sees d then a sees d.

Proof. This becomes quite clear with
the help of a diagram (see Figure 2).
It is trivially true if a = b or c = d;
otherwise we know that a < b < c < d.
In this case b cannot be above ac and
c cannot be above bd (otherwise the
fact that a sees c and b sees d would be
violated). This means that the two line
segments must cross; we call their inter-
section point p. Considering the trian-
gle formed by a, p, and d, we note that
no point on the terrain can be above the

a

b

c
d

p

Fig. 2. The shaded areas are terrain free
and their union contains ad

lower hull and ad is the upper hull. Therefore no point on the terrain can be
above ad.

Corollary 1. For points u, v, w with u ≤ v < w, if u and v can both be seen
from TR(w) then R(v) ≤ R(u).

Corollary 1 (Symmetric Version). For points u, v, w with u < v ≤ w, if v
and w can both be seen from TL(u) then L(w) ≤ L(v).

Lemma 2. For an interval [a, b] where a sees b, any guard in (a, b) is dominated
with regard to TR(b) by a.

Proof. Let p be a guard in (a, b) and let q be some point in TR(b) seen by p.
If q = b we know that a sees q. Otherwise the order claim, applied to a, p, b, q,
states that a sees q.

Corollary 2. For points p and q such that p < q < R(p), we know that R(q) ≤
R(p).

Lemma 3 (Lip Lemma). For an interval [a, b] where a sees b, if there are no
unguarded points in (a, b) then {a, b} dominates any guard in [a, b].

Proof. This follows from Lemma 2 since a and b see each other.

Lemma 4. For a point q, any guard p in TL(q) is dominated with regard to
TR(q) by a guard in CHL(q). In particular, p is dominated by the rightmost
point in TL(p) ∩ CHL(q).
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Proof. Let u be the rightmost point in TL(p) ∩CHL(q). If p is on CHL(q) then
p = q and the lemma clearly holds. Otherwise let w be the first point on CHL(q)
to the right of u. Now u sees w, so u dominates p with regard to TR(q) ⊆ TR(w)
by Lemma 2.

Corollary 3. For points p and q, if L(q) ≤ p ≤ q then L(q) is on CHL(p).

3 The Algorithm

Our algorithm works by repeatedly finding an unguarded point u and a set S of
up to 4 points such that S must dominate g(u). By doing so, we achieve an ap-
proximation factor of 4, since we charge at most 4 guards to each guard in GOPT .
Our algorithm does not require any knowledge of previously placed guards other
than which points are unguarded. The rest of this section basically deals with
how to find an appropriate unguarded point. We first explain the algorithm as
applied to TG, and in Section 3.6 we explain the minor modifications required
for TG-C.

3.1 Introduction to GuardRight

Consider an unguarded vertex p not on CH(T ) along with a vertex c that can
see every unguarded vertex in the range [L(R(p)), p). c is like a good potential
guard that lets us focus on the unguarded points in [p,R(p)]. Note that if we
place a guard at c, no unguarded vertex in [L(R(p)), R(p)) can be seen from
outside [L(R(p)), R(p)]. For this reason we say that the interval [L(R(p)), R(p)]
is pseudo-independent. Our algorithm repeatedly finds appropriate (p, c) pairs or
advances trivially if such points are not available. If there is only one unguarded
vertex s, we place a guard there that dominates g(s). Otherwise consider the two
leftmost unguarded vertices s and t with s < t. If s ∈ CH(T ) and t ∈ CH(T ) we
just place a guard at R(s) that must dominate g(s). If s /∈ CH(T ) then p ← s
and c← s. If s ∈ CH(T ) but t /∈ CH(T ) then p← t and c← s.

If an appropriate (p, c) pair is found, our algorithm calls a recursive sub-
routine GuardRight(p, c). GuardRight will either find an unguarded vertex
u ∈ [p,R(p)) for which g(u) can be dominated by 4 guards or will find a pseudo-
independent subinterval of [p,R(p)], i.e. a pseudo-independent ‘pocket’ of the
terrain that it can recurse into with new parameters p′ and c′. At this point
we introduce some new terminology and notation that depends on the parame-
ters of GuardRight. It should be emphasized that this notation applies only
to a particular call to GuardRight. We say that a left vertex is a vertex in
CH([L(R(p)), p])−{p}. A right vertex is a vertex in [p,R(p)]. An exposed vertex
is an unguarded vertex in [p,R(p)) that can be seen by a left vertex. A sheltered
vertex is an unguarded vertex in [p,R(p)) that cannot be seen by a left vertex.
For an exposed vertex v we provide additional notation: R′(v) is the rightmost
left vertex that sees v and L′(v) is the leftmost right vertex that sees v. R′(v)
and L′(v) are undefined unless v is an exposed vertex.
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Lemma 5. (a) If v is a sheltered vertex then L(R(p)) ≤ p ≤ L(v) ≤ v ≤ R(v) ≤
R(p). (b) If v is an exposed vertex then L(R(p)) ≤ L(v) ≤ R′(v) < p ≤ L′(v) ≤
v ≤ R(v) ≤ R(p).

Proof. (a) L(R(p)) ≤ p since R(p) sees p. p ≤ L(v) otherwise v would be
an exposed vertex. L(v) ≤ v by definition. R(v) ≤ R(p) by Corollary 2. (b)
L(R(p)) ≤ L(v) by Corollary 1 if p < v and by the Order Claim otherwise.
L(v) ≤ R′(v) < p ≤ L′(v) ≤ v by definition. R(v) ≤ R(p) by Corollary 2.

Lemma 6. For an exposed vertex v, L′(v) sees R(v).

Proof. If v = p this is clearly true since p = L′(p). Otherwise, it is easy to see
that this is true as long as v is not above the line passing through L′(v) and R(v).
L′(v) cannot be below the line passing through p and v otherwise v would be
seen by a vertex in [p, L′(v)) which contradicts the definition of L′(v). Similarly,
R(v) cannot be below the line passing through v and R(p). It should now be
clear that v is not above the line passing through L′(v) and R(v) (see Figure 3).
The rest follows trivially.

p

v

L’(v)

R(p)

R(v)

Fig. 3. L′(v) and R(v) must be in the
shaded region

p

v

L(v)

R’(v)

Fig. 4. The shaded region is ter-
rain free, so every left vertex in
[L(v), R′(v)] must see v

Lemma 7. For an exposed vertex v the set of left vertices that see v is contigu-
ous, i.e. every left vertex in [L(v), R′(v)] sees v.

Proof. Consider CH([L(v), R′(v)]). This is a subset of CH([L(R(p)), p]) − {p}
since L(v) andR′(v) are both on CH([L(R(p)), p]). So we can see that CH([L(v),
R′(v)]) is a set of left vertices and we know that no left vertex not in the set
can see v. Now we will show that if w is a vertex in the set, w �= L(v), w sees
v, and w′ is the first vertex in the set to the left of w, then w′ also sees v. w′

must be above the line passing through v and w since w �= L(v). Since w′ and w
are consecutive points on the convex hull, w sees w′. Now we can see that w′w
and wv are line segments that do not interfere with the terrain, so w′v cannot
interfere with the terrain since it is above w′w and wv. Therefore w′ sees v. It
is easy to extend this into an induction proof for the lemma. See Figure 4.
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Lemma 8. For any vertex v in [L(R(p)), p), if w is the rightmost left vertex in
TL(v) then {c, w} dominates v.

Proof. By Lemma 4 we know that w dominates v with regard to TR(p). If w �= v
then v cannot see any vertex to the left of w so w dominates v with regard to
TL(w). c can see every unguarded vertex in [L(R(p)), p). Since L(R(p)) ≤ w, we
can see that TL(w) ∪ [L(R(p)), p) ∪ TR(p) = T . Therefore {c, w} dominates v.

3.2 Finding a Good Left Vertex

Lemma 8 tells us that, as long as we place a guard at c when we place other
guards, we needn’t place any guard in [L(R(p)), p) unless it is on a left vertex.
The first thing we note is that there must be at least one exposed vertex in
[p,R(p)), namely p. There may or may not be a sheltered vertex in [p,R(p)). We
define b as the leftmost left vertex such that some exposed vertex v is seen by
b but not by any left vertex to the right of b. In other words, b is the leftmost
R′(v) over all exposed vertices v. We define d as the leftmost exposed vertex for
which R′(d) = b.

Lemma 9. Every exposed vertex in (L′(d), R(p)) is seen by L(d).

Proof. If d = p then the proof follows easily from the symmetric version of
Corollary 1, so we will assume this is not the case. First we will prove that
there are no exposed vertices in (L′(d), d). Assume for the sake of contradiction
that there is an exposed vertex v in (L′(d), d). We can apply the order claim to
R′(v), L′(d), v, d to see that R′(v) sees d. This tells us that R′(v) ≤ R′(d), which
violates the definition of d, so there cannot be any such vertex v. Now we show
that L(d) sees every exposed vertex in (d,R(p)). Let w be an exposed vertex in
(d,R(p)). We have L(w) < d < w so by the symmetric version of Corollary 1
we know that L(w) ≤ L(d). By the definition of d we know that R′(d) ≤ R′(w).
Therefore L(d) ∈ [L(w), R′(w)], so by Lemma 7 we know that L(d) sees w.

Lemma 10. Any guard in [L(R(p)), p) that sees d is dominated by {L(d), c}.

Proof. Let v be a guard in [L(R(p)), p) that sees d. Since c sees every unguarded
vertex in [L(R(p)), p) it suffices to prove that L(d) dominates v with regard to
TR(p). L(d) ≤ v, so by Lemma 2 L(d) dominates v with regard to TR(d). Now
we show that no left vertex that sees d can see any exposed vertex to the left
of d. It follows from the definition of b = R′(d) and from Lemma 7 that any
exposed vertex seen from the left of R′(d) must be seen by R′(d). However, d is
the leftmost exposed vertex seen by R′(d), so no exposed vertex to the left of
d can be seen by R′(d). In other words, no exposed vertex to the left of d can
be seen by a left vertex that sees d. This, along with Lemma 4, tells us that
v cannot see any unguarded vertices in [p, d). Since v cannot see any sheltered
vertices at all, this means that L(d) dominates v with regard to TR(p). v cannot
see anything left of L(R(p)) except possibly if v = L(d), so {L(d), c} dominates
v over the entire terrain.
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Recall that, while searching for a suitable vertex u for which we can dominate
g(u) with 4 guards, either we find one right away or we find some pseudo-
independent pocket (i.e. a subinterval of [p,R(p))) that we can recurse upon.

3.3 The Terminal Case

We first consider the case where there are no sheltered vertices in (L′(d), R(d)).
We place guards at {c, L(d), L′(d), R(d)} and claim that these guards dominate
any guard that sees d. Lemma 9 tells us that every exposed vertex in (L′(d), R(d))
is seen by L(d), and since there are no sheltered vertices in (L′(d), R(d)) there are
no longer any unguarded vertices in (L′(d), R(d)). L′(d) sees R(d) by Lemma 6.
Therefore, by Corollary 3, any guard in [L′(d), R(d)] is dominated by {L(d),
L′(d), R(d), c}. By Lemma 10 any guard in [L(R(p)), p] that sees d is dominated
by {L(d), L′(d), R(d), c}. Any guard that sees d must either be in [L(R(p)), p] or
in [L′(d), R(d)], so {L(d), L′(d), R(d), c} dominates any guard that can see d.

3.4 The Recursive Case

If there are sheltered vertices in (L′(d), R(d)) our job is slightly more complicated
and requires recursion (this is where we find our pseudo-independent pocket).
We require another subroutine, GuardLeft, that is simply a mirror image
of GuardRight. For a call to GuardLeft(p′, c′) the condition that c′ must
satisfy is flipped horizontally: every unguarded vertex in (p′, R(L(p′))] must be
seen by c′. Also, p′ cannot be on CH(T ).

Let q be the rightmost sheltered vertex (note that q is not necessarily in
the interval (L′(d), R(d)), but it must be in (L′(d), R(p))). We will show that
the preconditions are satisfied if we call GuardLeft(q, L(d)). By Corollary 2
R(L(q)) ≤ R(p) and by the definition of q any unguarded vertex in (q,R(p)) is an
exposed vertex. Therefore by Lemma 9 every unguarded vertex in (q,R(L(q))) is
seen by L(d). If R(L(q)) < R(p) then either R(L(q)) is already guarded or it is an
exposed vertex and is seen by L(d). If R(L(q)) = R(p) then L(d) sees R(L(q))
since every vertex in CH([L(R(p)), p]) sees R(p). Therefore every unguarded
vertex in (q,R(L(q))] is seen by L(d). We know q is unguarded and q ∈ (p,R(p))
(and is therefore not on CH(T )), so the preconditions are satisfied.

In this way we can do a sort of recursive zig-zagging where each call to
GuardRight will spawn a call to GuardLeft and each call to GuardLeft
will spawn a call to GuardRight. It is not difficult to see that eventually, after
at most a linear number of these zig-zagging steps, we will arrive at a terminal
case. At this point we can simply place our 4 guards and, if we need to, start a
brand new call to GuardRight.

3.5 Time Complexity

It is clear that at most O(n) initial calls to GuardRight can be made. For TG
it is also easy to see that an initial call to GuardRight will result in a number
of guards being placed in O(n2) time. We can therefore give an upper bound of
O(n3) for the running time of TG.



638 J. King

R(p)

L(R(p))

p
q

L(q)

R(L(q))

Fig. 5. The nested interval [L(q), R(L(q))] can be handled independently with the help
of a dominant outside vertex

If we want TG to be more efficient, we can make GuardRight(p, c) con-
tinue placing guards until [p,R(p)) has been completely guarded. This changes
things slightly; on a given iteration, p is not necessarily unguarded so there is
not necessarily an exposed vertex. If there is no exposed vertex, however, we can
just recurse immediately by calling GuardLeft(q, c) so this is not a problem.
To increase efficiency, we can sort the exposed vertices v by R′(v) (breaking
ties using the x-coordinates of exposed vertices) to find an appropriate b and d
faster in each iteration. A call to GuardRight(p, c), ignoring all recursive calls
that it spawns, can now run in O(n +m logm) time, where m is the number of
exposed vertices in [p,R(p)). It is easy to see that the ‘n’ terms, added up over
the entire course of the algorithm, will cost O(n2) time since there will be at
most O(n) calls to GuardRight. Any vertex will be an exposed vertex for at
most one call to GuardRight, so the sum of all m logm factors encountered
will actually be bounded by O(n log n). All other overhead incurred by the al-
gorithm can be dealt with in O(n2) time, so the running time of TG is bounded
by O(n2).

3.6 Modifications for TG-C

No real modifications need to be made to apply our TG algorithm to TG-C.
However, we need to keep track of more information if we want our algorithm to
run as efficiently as possible. When dealing with TG-C the only real problem is
finding b and d at each iteration of a call to GuardRight. Instead of exposed
vertices and sheltered vertices, we consider exposed edge sections and sheltered
edge sections. It is not difficult to see that for each edge of the terrain, at most
one contiguous section will be exposed and at most one will be sheltered. From
left to right on an edge, we can have a guarded section, a sheltered section, an
exposed section, and another guarded section, though not all of these sections
will necessarily exist. For an exposed section, the leftmost point will have the
leftmost R′.
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L(p) is always a vertex regardless of where p is. If we keep track of the tran-
sition points for the function L(p) (there are only O(n) of them [7]) then we
can know where exposed sections end and sheltered sections begin. For every
edge, our algorithm also keeps track of where the unguarded section starts and
ends (it must be contiguous). After placing a guard, updating the unguarded
section on every edge can be done quite easily in linear time. Assume we have
just placed a guard at g. To the left of g call the first vertex v1 and consider the
edge e1 whose left endpoint is v1. Mark down that every point on e1 is guarded.
Now, moving left from v1, find the first vertex above the line going through g
and v1; call this v2, define e2 appropriately and mark down that every point on
e2 above the line going through g and v1 is guarded. It is easy to see how we
can proceed to update the unguarded section of each edge in linear time. Since
we place O(n) guards the total cost of updating guarded edge sections of the
terrain is O(n2).

If we do all of the aforementioned maintenance, we will only need to consider
the leftmost point in each exposed section when looking for b and d. Therefore
we do not need to worry about asymptotically more points in TG-C than in TG.
The running time therefore remains O(n2).

4 Conclusions and Future Work

The 1.5D terrain guarding problem is not known to be in P. Constant-factor
approximation algorithms for the problem have only recently been developed.
We have provided anO(n2) time 4-approximation algorithm for both the discrete
and continuous versions of the problem. Ours is the best known algorithm for
the 1.5D terrain guarding problem.

The most pressing and obvious question regarding the 1.5D terrain guard-
ing problem is whether or not it is NP-complete. All of our attempts at an
NP-hardness proof have been stymied by the Order Claim. On the other hand,
attempts at designing an exact polynomial-time algorithm have also been unsuc-
cessful. If the problem is not NP-hard, we would be interested in a polynomial-
time algorithm. If the problem is NP-hard, we would be interested in approx-
imability thresholds, e.g. whether it is APX-complete or admits a PTAS or even
an FPTAS. If the problem is APX-complete, the approximation factor should
be lowered as much as possible.
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Abstract. We present fully distributed algorithms for random sampling
of nodes in peer-to-peer systems, extending and generalizing the work of
King and Saia [Proceedings of PODC 2004] from simple Chord-like dis-
tributed hash tables to systems based on higher-dimensional hierarchical
constructions, like Content Addressable Networks (CAN). We also show
preliminary results on the generalization of the problem to biased sam-
pling. In addition, we provide an extension of CAN that requires only
O(1) space per node and achieves O(log n) lookup latency and message
complexities.

1 Introduction

A distributed algorithm for random sampling of nodes in a peer-to-peer network
provides a basic ingredient for the solution of several important problems, in-
cluding load-balancing, Byzantine agreement and computing various statistics
on data availability.

King and Saia [6] present a fully-distributed algorithm with expected logarith-
mic message complexity that with high probability (at least 1−O(1/n)) chooses
a peer with exactly uniform distribution (i.e. with probability 1/n). Both the
expected latency (in terms of the number of links in the overlay network followed
by the algorithm) and message complexity of their algorithm are logarithmic in
the number of nodes. The algorithm does not assume any knowledge of the num-
ber of nodes n in the network. Their algorithm requires a peer-to-peer network
with properties similar to those of Chord [11], in particular a one-dimensional
circular keyspace.

In some applications, such as as peer-to-peer photo sharing and massively
multiplayer games, multidimensional range-queries are critical, and the overlay
network should support higher dimensional range queries [4]. Several structured
overlay systems based on the geometry of two- or higher-dimensional space have
been proposed, including CAN [9]. In this paper, we provide an efficient mech-
anism for uniform random sampling in peer-to-peer overlay networks of higher
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dimensions. Our work applies to peer-to-peer systems with properties similar to
those of CAN.

The algorithm of King and Saia is based on a procedure to associate with
each peer a part of the keyspace so that (a) the parts assigned to different
peers are disjoint, (b) the measure of the part assigned to each peer is exactly
the same, and (c) a constant fraction of the total keyspace is assigned to the
peers. These properties reduce the problem of peer sampling to that of sampling
of points in the keyspace, because it ensures that only an expected constant
number of random keys must be sampled before one is generated that lies in a
region belonging to some peer.

It may be possible to generalize this algorithm directly to multiple dimensions
by assigning to peers disjoint regions of the keyspace. A natural idea would
be to assign to each peer its region in the Voronoi diagram of the set of peer
nodes. However, even on a line, the distances between consecutive points in a
set of n uniformly generated points vary with high probability from Θ(1/n2) to
Θ(lnn/n) [6]. Thus the Voronoi regions need to be patched to give each peer an
equal-area region and the resulting structure very quickly becomes prohibitively
complex, even in two dimensions.

The reader may already have noticed a direct reduction of our problem to
the one-dimensional case: concatenate the coordinates of a node’s ID (assumed
to be binary sequences) to get a single binary sequence. If each coordinate is
uniformly distributed, then so is the resulting sequence. These sequences define
coordinates of the nodes on a circle (ring). Building an overlay network (say,
Chord) on top of this circle allows one to directly use the algorithm of King
and Saia. This effectively creates two overlays: a multi-dimensional one based
on the original node coordinates, which allows multi-dimensional queries, and a
one-dimensional one that allows random sampling.

There are two main problems with the approach above. First, it creates
unnecessary overhead by the need of building and maintaining a second one-
dimensional overlay network to be used just for sampling. Second, since the ran-
dom sampling will be done via the auxiliary one-dimensional overlay network,
which does not take into account the proximity of the nodes in the multidimen-
sional space, the expected latency of the algorithm may no longer be logarithmic
with respect to the original multidimensional overlay network.

Hence, in contrast to this simplistic approach, we use the Hilbert space-filling
curve [10] to map the multi-dimensional keyspace into a circle, and a single multi-
dimensional overlay (say, CAN) to implement a routing table and other functions
useful for the peer-to-peer network, including those needed for the sampling
algorithm itself. Our goal is to assign to each peer a part of the keyspace of equal
volume, while keeping these parts disjoint and large enough to jointly cover a
constant fraction of the whole keyspace. Thanks to the properties of the Hilbert
curve, contiguous segments of the circle correspond to connected regions in the
original keyspace. This means that any basic step of the algorithm that searches
linearly through a bounded number of peers along the circle will only have to
consider a bounded connected region in the original keyspace, thereby ensuring
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low latency (logarithmic in the number of nodes) in terms of the number of links
followed in the multi-dimensional overlay network, unlike the simplistic solution
above. In addition to this advantage, the use of a “native” overlay allows for
the implementation of basic functions in the overlay network using the stronger
geometric properties of the multidimensional space.

1.1 Our Contributions

Given a fully decentralized peer-to-peer network in a multidimensional keyspace,
we consider the problem of distributed random sampling of peer nodes. We
assume that peers correspond to uniformly distributed points in a d-dimensional
keyspace. We show that the one-dimensional sampling algorithm of King and
Saia can be generalized to hierarchical systems with multidimensional keyspaces.

The sampling algorithm for the one-dimensional case relies on a basic function
next that, given a peer, returns the next peer along the circle. In addition to
this, the algorithm requires the ability to find the location of a given peer on the
circle and to compute the measure of an interval between two given points. All
we need assume is that the functions listed above can be computed efficiently
by the peer-to-peer system, in other words, that the peer-to-peer system we use
is compatible with the Hilbert curve. Our main result is stated in the theorem
below:

Theorem 1. Given a peer-to-peer d-dimensional keyspace satisfying the prop-
erties above, the algorithm Choose A Random Peer selects each peer with
probability exactly 1/n, with high probability. The algorithm has expected latency
O(tlookup + logn) and sends O(mlookup + logn) messages, where tlookup and
mlookup are the latency and message complexities of lookup. In particular, a CAN
can be implemented so that for any dimension d, tlookup = mlookup = O(log n),
and O(1) routing items in each peer are maintained for lookup. Therefore, in
CAN the latency and message complexity of our algorithm are both O(log n) in
expectation.

2 Background and Related Work

2.1 The Hilbert Curve

G. Peano discovered the first curve that passes through every point of a closed
square [7], but one of the first graphical representations of such a space-filling
curve was given by David Hilbert [5]. Space-filling curves are useful for reducing
a multi-dimensional problem to a one-dimensional problem, and in this role have
found uses in other contexts [3].

The Hilbert space-filling curve is a continuous mapping from the unit inter-
val [0, 1] onto the unit hypercube [0, 1]d. It can be constructed recursively. First
the d-dimensional cube is partitioned into 2d congruent subcubes and accord-
ingly, the unit interval into 2d congruent subintervals. Then each subinterval
is mapped onto a distinct subcube, and adjacent subintervals are mapped onto



644 G. Konjevod, A.W. Richa, and D. Xia

base 2
.00

.01 .10

.11

(a) First Step

base 4
.00 .01

.02.03

.10

.11 .12

.13 .20

.21 .22

.23

.30.31

.32 .33
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Fig. 1. The Generation of 2 Dimensional Hilbert Curve

adjacent subcubes with a common facet. The example for 2 dimensions are pre-
sented in Figure 1(a). The same algorithm is applied to each subcube and its
corresponding subinterval. The subinterval in each subcube is rotated and re-
flected so that it can connect to the preceding one to form a single continuous
unit interval. Figure 1(b) shows the second step of the construction in 2 di-
mensions. Albert [2] provides a mathematical formalism for the Hilbert curve in
arbitrary dimension d.

We list several properties about the Hilbert curve in the following:

Proposition 1. Each interval [0.b1b2..bi, 0.b1b2..bi + 2−i] of the curve fills a
region of volume 2−i, where i ∈ N , and bj = 0, 1, for j = 1..i. We label this
region by the i-digit binary sequence b1b2..bi. Moreover, the region is a hyper-
rectangle which can be split into two congruent sub-hyper-rectangles labeled by
b1b2..bi0 and b1b2..bi1.

In fact, we will think of the unit hypercube [0, 1]d as a wrapped d-torus,
identifying for each coordinate i every pair of points x, y ∈ [0, 1]d such that
|xi − yi| = 1 and xj = yj for i �= j, and the Hilbert curve [0, 1] as a unit
circle.

Proposition 2. For any two regions labeled as A = a1a2..ai, B = b1b2..bj,
(i ≤ j), if A is a prefix of B, then region A contains region B. If A is not a
prefix of B, then the intersection of these two regions has volume of 0.

Furthermore if 0.a1a2..ai + 2−i = 0.b1b2..bj, or 0.b1b2..bj + 2−j = 0.a1a2..ai,
i.e. their mapped intervals on the curve are connected, then regions A and B
share a (d− 1)-dimensional facet with positive (d− 1)-dimensional volume.

Proposition 3. A random process of n points uniformly distributed on the
Hilbert curve is equivalent to a random process of n points uniformly distributed
in the unit hypercube according to the Hilbert curve mapping.

2.2 CAN: A d-Dimensional Peer-to-Peer Network

CAN (Content-Addressable Network)[9] is a peer-to-peer system which takes a
d-dimensional Cartesian coordinate space as the keyspace for its distributed hash
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table. The coordinate space is partitioned into hyper-rectangles, called zones, and
each peer is responsible for a zone. Then a key is stored in the peer whose zone
contains the key point. For example, Figure 2 shows a 2-dimensional [0, 1]× [0, 1]
coordinate space with 6 peers.

Each peer maintains a routing table of all its neighbors in the coordinate
space. Two peers are neighbors if they share a (d− 1)-dimensional facet. Given
a key, the lookup operation, or routing, in CAN is implemented by following the
straight-line path through the coordinate space from the inquiring peer to the
peer storing the key — that is, a peer will forward the lookup message through
the peers responsible for the regions crossed by the respective straight-line path.
Thus each peer maintains 2d neighbors and the average routing path length is
(d/4)(n1/d).

To join the network, a new peer first selects a random key point, and asks an
existing peer to find the peer p who stores the key point. Then peer p will split
its zone in half according to a given order of the dimensions, keeping one half of
the zone assigned to itself and assigning the other half to the new peer.

We adapt the process by which CAN splits a zone to add a new peer to match
the construction of the Hilbert curve. First, the whole key space [0, 1]d can be
partitioned into two zones labeled by 0 and 1. Then by Proposition 1, a zone
assigned to a peer p and labeled by b1b2..bi can be partitioned into two equally-
sized zones labeled by b1b2..bi0 and b1b2..bi1. The peer p will keep the half zone
labeled by b1b2..bi0 and assign the other half labeled b1b2..bi1 to the new peer.
Therefore we have the following lemma:

Lemma 1. The whole key space is partitioned into zones labeled by binary se-
quences. The zone labeled by b1b2..bi is filled by an interval [0.b1b2..bi, 0.b1b2..bi+
2−i] of the Hilbert curve. Therefore these intervals also partition the Hilbert
curve.

Thus each zone is labeled by a unique binary sequence. We will also use the
zone’s label to identify the peer responsible for the zone. By Lemma 1, the
Hilbert curve is partitioned into intervals, each of which fills a distinct zone.
Therefore, we have the following Lemma:
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Lemma 2. Given a peer labeled by A = a1a2..ai, there exists one and only one
peer labeled by B = b1b2..bj such that 0.a1a2..ai + 2−i = 0.b1b2..bj. Peers A and
B are neighboring regions in the coordinate space.

We call peer B the next peer of A, denoted by B = next(A).
The routing scheme of CAN provided in [9] is a simple greedy routing in

which the average routing path length is (d/4)(n1/d). In fact, we can improve
the expected routing path length to O(log n) by maintaining only O(1) routing
items at each node. We will maintain a binary tree that mimics the partitions
performed by CAN1.

We maintain a binary partition tree with n leaves according to the keyspace
partition. Figure 3 illustrates the binary partition tree for the network shown
in Figure 2. Each leaf of the binary tree corresponds to an existing zone (peer).
Each inner node of the tree represents a zone that no longer exists, but was split
at some previous time. The children of a tree node are the two zones into which
it was split.

On the other hand, let each existing peer represent its corresponding leaf and
the inner node that was split when the peer joined the network. Thus we have

Lemma 3. The binary partition tree for CAN can be maintained with only O(1)
routing items in each peer.

Now we show that the binary partition tree is well balanced.

Lemma 4. The binary partition tree for CAN with n peers has C1 log n ≤
d1(n) ≤ d2(n) ≤ C2 logn with high probability, where C1 < 1 and C2 > 2
are constants, d1(n) is the distance from the root to the closest leaf, and d2(n)
is the depth of the tree.

Proof. (1) C1 logn ≤ d1(n):Consider the full binary tree T with C1 logn depth.
The nC1 leaves of tree T are considered as bins and the n peers as balls. Let X
count the number of balls in a certain bin. Thus E(X) = n1−C1 . By Chernoff
bound, for any 0 < δ < 1, Pr{X < (1−δ)E(X)} < exp(−E(X)δ2/2). By setting
(1− δ)E(X) = 1/2, i.e. δ = 1− 1/(2n1−C1), we have

Pr{X < 1/2} < exp(−n1−C1(1 − 1/(2n1−C1))2/2)

< exp(−n1−C1/8) (For C1 < 1, 1− 1/(2n1−C1) > 1/2).
(1)

Now the probability that there is a bin with less than 1/2 ball is less than
nC1 ·e−n1−C1/8 < eC1 ln n−n1−C1/8, which can be arbitrarily small for any constant
C1 < 1, and n large enough. Thus with high probability the number of balls in
every bin is larger than or equal to 1/2, thereby larger than or equal to 1. Thus
C1 logn ≤ d1(n).

(2) d2(n) ≤ C2 logn: Consider the full binary tree T with C2 logn depth.
The nC2 leaves of tree T are considered as bins and the n peers as balls. Let X
1 Note that this binary tree need not replace the standard greedy routing algorithm

of CAN (depending on the application, this may not be desirable). This binary tree
will be used for finding a suitable routing path during random sampling operations.
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count the number of balls in a certain bin. Thus E(X) = n1−C2 . By Chernoff
bound, for any δ > 0, we have Pr{X > (1 + δ)E(X)} < ( e

1+δ )(1+δ)E(X). By
setting (1+δ) = 2nC2−1, we have Pr{X ≥ 2} ≤ ( e

2nC2−1 )2. Thus the probability
that there is a bin with more than or equal to 2 balls is less than or equal to
nC2 · ( e

2nC2−1 )2 = e2

4nC2−2 , which can be arbitrarily small for any constant C2 > 2
and n large enough. Therefore d2(n) ≤ C2 logn.

Therefore by maintaining such a binary partition tree we can achieve the average
routing path length of O(log n) and O(1) routing items in each peer.

3 Algorithm and Analysis

3.1 Estimating the Number of Peers

Since we want to choose each peer with the same probability, i.e., with probability
1/n, where n is the number of peers in the network, it is clear that we must learn
n in some sense. However, it is hard to count all the peers and keep n updated
in a fully-distributed setting. Luckily, only an approximation to n is enough to
sample peers uniformly. Before presenting the main algorithm, we first describe
an algorithm by which a peer may estimate n to within a constant multiplicative
factor. This is based on [6].

First the algorithm estimates n within a constant exponent by n̂1, the inverse
of the volume of peer p’s zone. Then it sums the volume of c1 ln n̂1 peers counting
from p by the order of the next function. Finally n is estimated by the ratio of
the number of these peers over their volume summation. The tightness of the
estimation is determined by the constant c1.

The algorithm is given as follows, where vol(p) is the volume of peer p’s
zone, next(s)(p) means applying the next function s times starting from p, and
V ol(q, p) is the sum of the volumes of the peers from q to p, i.e.

V ol(q, p) =
∑

peer r s.t. 0.r ∈ [0.q, 0.p]
vol(r) (2)

Estimate n

1. n̂1 ← vol(p)−1

2. s← c1 ln n̂1
3. t← V ol(p, next(s)(p))
4. Return n̂2 ← s/t.

We show that the above algorithm estimates n within a constant factor, basing
our analysis on that of [6]. The main difference is that their result is based on
the assumption that the peers are uniformly distributed in a unit circle, while in
CAN each peer is responsible for a d-dimensional zone and cannot be abstracted
as a point. Nevertheless, the peer in CAN is generated by a random key point,
which allows us to generalize the analysis to work in our scenario. Note that by
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Proposition 3 a random point process in the curve is equivalent to a random
point process in d-dimensions according to the Hilbert curve mapping. while
this observation is helpful, we point out that this equivalence only makes our
proof simpler, and that in CAN a random key point is just selected directly in
d-dimensions.

When a peer arrives, a random key point is generated by the random process
on the Hilbert curve. Therefore for a peer p in CAN, we define its original point
as the point on the Hilbert curve which corresponds to its random key point.

We list the notations used throughout the paper:

– For a peer p, let x(p) denote its original point on the Hilbert curve.
– For x, y on the unit circle (Hilbert curve), define the distance from x to y as
d(x, y) = y − x if y ≥ x and d(x, y) = (1 + y)− x otherwise.

– For any interval I of the unit circle, denote by numx(I) the number of
random points in I.

– For any interval I in the unit circle, denote by nump(I) the number of peers
s such that 0.s ∈ I.

– For given functions f(n) and g(n), we say that f(n) is a (γ1, γ2) approxima-
tion of g(n) if γ1g(n) ≤ f(n) ≤ γ2g(n).

– For any two peers p and q, the number of peers from q to p is given by
num(q, p) = |{peer r s.t. 0.r ∈ [0.q, 0.p]}|.

Since the original points of peers in CAN are considered as a random point
process in the unit circle, we can relate the peers in CAN to their original points
and generalize the original results.

Lemma 5. For any two neighboring peers p and q, (e.g. q = next(p)), let X be
the number of original points in [0.p, 0.q]. Then E(X) = 1− vol(p).

Proof. Let vol(p) = 2−t. Let Zi be the zone with volume 2−i that contains the
zone p, for i = 0, . . . , t− 1. Note that zone Zi is split into half when a new peer
joins and the random point falls in the region of zone Zi. Let xi be a variable to
indicate whether a random point falls in the region of zone p when zone Zi is split.
Then E(xi) = 2−t/2−i = 2i−t. Thus E(X) =

∑t−1
i=0 E(xi) = 1−2−t = 1−vol(p).

For reference, we list the lemma from [6] that we use in our proof:

Lemma 6. [6] If n points are distributed uniformly at random in the unit circle,
let α1, α2, ε be fixed positive constants with α1 < α2 and 0 ≤ ε ≤ 1/2. Let C >
144/(α1ε

2). Then for two any interval I on the unit circle such that Cα1 lnn ≤
numx(I) ≤ Cα2 lnn, we have C(1− ε)α1(lnn/n) ≤ |I| ≤ C(1+ ε)α2 lnn/n with
probability at least 1− 1/n.

Lemma 7. Let α1, α2, ε be fixed positive constants with α1 < α2 and 0 ≤ ε ≤
1/2. Let C > 144/(α1ε

2). Then for any two peers p and q such that Cα1 lnn ≤
num(p, q) ≤ Cα2 lnn, we have 1

2 · C(1 − ε)α1(lnn/n) ≤ V ol(p, q) ≤ 3 · C(1 +
ε)α2 lnn/n with probability at least 1− 1/n.
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Proof. Let I = [0.p, 0.p + V ol(p, q)]. Since the next peer t of q has 0.t = 0.q +
vol(q) = 0.p+V ol(p, q), we have I = [0.p, 0.t]. Let nump(I) be the number of peer
s such that 0.s ∈ I, i.e. nump(I) = num(p, t). Then nump(I) = num(p, q) + 1.
Let peer r be the first peer laid down in the network such that 0.r ∈ [0.p, 0.t].

(1) 1
2 · C(1 − ε)α1(lnn/n) ≤ V ol(p, q)

Let I ′ = [2 · 0.p− 0.r, 2 · 0.t− 0.r]. Then |I ′| = 2|I|. For any peer s such that
0.s ∈ [0.p, 0.t], s �= r, we have |x(s)− 0.r| ≤ 2|0.s− 0.r|. Then x(s) ∈ I ′ since
0.s ∈ [0.p, 0.t]. Thus numx(I ′) ≥ num(p, q)+1−1≥ Cα1 lnn. Thus by Lemma 6,
|I ′| ≥ C(1 − ε)α1(lnn/n). Therefore V ol(p, q) = |I| ≥ 1

2 · C(1 − ε)α1(lnn/n).
(2) V ol(p, q) ≤ 3 · C(1 + ε)α2 lnn/n
Let I ′ = [0.p′, 0.t′] where p′ and t′ be the first peer laid down in the network

such that 0.p′ ∈ [0.p, 0.r) and 0.t′ ∈ (0.r, 0.t] respectively. Then |I ′| ≥ |I|
2 .

Let numx(I ′) = x1+x2, where x1 is the number of such peers s that x(s) ∈ I ′

and 0.s ∈ I ′, and x2 is the number of such peers s that x(s) ∈ I ′ but 0.s /∈ I ′.
First we have x1 ≤ nump(I ′) ≤ nump(I) ≤ Cα2 lnn. Then since all the peers
s such that 0.s ∈ (0.p′, 0.r) or 0.s ∈ (0.r, 0.t′) should have x(s) ∈ [0.p′, 0.r]
or x(s) ∈ [0.r, 0.t′] respectively, by Lemma 5 we have E(x2) < (1 − (0.r −
0.p′)) + (1 − (0.t′ − 0.r)) = 2 − |I ′| < 2. Thus by Chernoff bound, Pr{x2 ≥
1
2 · Cα2 lnn} ≤ 2−

1
2 ·Cα2 ln n = n− 1

2 ·Cα2 ln 2. Thus with probability 1 − O(1/n),
we have numx(I ′) = x1 + x2 ≤ 3

2 · Cα2 lnn. Thus by Lemma 6, |I ′| ≤ 3
2 · C(1 +

ε)α2 lnn/n. Therefore V ol(p, q) = |I| ≤ 3 · C(1 − ε)α1(lnn/n).

Lemma 8. With probability at least 1−2/n, the algorithm ‘Estimate n’ ensures
that (1/6 − ε1)n ≤ n̂2 ≤ 6 + ε1, for any positive constant ε1 and n sufficiently
large.

Proof. Since for a peer p, log(vol(p)−1) is the depth of p’s leaf in the binary
partition tree, by Lemma 4, log(vol(p)−1) is an (α, β) approximation to logn for
any fixed constants α < 1 and β > 2. Thus s = c1 ln vol(p)−1 is an (α, β) approx-
imation to c1 lnn. Similarly, Lemma 7 shows that t in our algorithm is a (α/2−
ε, 3β+ε) approximation to (c1 lnn)/n for any ε > 0, for n and c1 sufficiently large.
Thus, n̂ is a ( α

3β+ε ,
β

α/2−ε ) approximation to n for c1 and n sufficiently large.

3.2 Choosing a Random Peer

By Lemma 8, we can estimate the number of peers as n̂2, a (γ1, γ2)-
approximation to n, for constants γ1, γ2. Then let n′ = n̂2/γ1, and λ = 1/(13n′).
Thus n′ ≥ n, λ ≤ 1/(13n) and λ = Θ(1/n).

Our algorithm for choosing a random peer works as follows. First it randomly
selects a key x in the key space [0, 1]d, looks up the peer p who stores the
key and picks up a random number T in [0, vol(p)]. Then if there is a peer p
such that V ol(lookup(x), p)− (vol(lookup(x))−T ) ≤ λ ·num(lookup(x), p) with
num(lookup(x), p) ≤ 12 lnn′, the algorithm returns the first such peer. Else
it repeats until a peer is returned. We will show that the expected number of
repetitions of the while loop is O(1) with high probability. The algorithm is a
direct generalization of the one given by King and Saia [6].
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Choose Random Peer

1. While TRUE do:
2. x← random number in [0, 1]d;
3. p = lookup(x); T ← random number in [0, vol(p)];
4. For (i = 1; i ≤ 12 lnn′; i+ +)
5. If (T ≤ i · λ) return p;
6. Else
7. p = next(p);
8. T = T + vol(p);

Definition 1. For any peer labeled as p, let first(p) be the first peer such
that the sum of the volumes of the peers from first(p) to p including first(p)
and p is larger than or equal to the number of these peers multiplied by λ, i.e.
V ol(first(p), p) ≥ λnum(first(p), p).

Lemma 9. For any peer p, if num(first(p), p) ≤ 12 ln(n′), the algorithm will
choose p with probability λ in each iteration of the while loop.

Proof. Let q = first(p). Note that if peer s = lookup(x) is not in [0.q, 0.p], then
p couldn’t be returned by the algorithm. Otherwise assume 0.s /∈ [0.q, 0.p] and p
is returned. Denote t the previous peer of first(p), i.e. next(t) = first(p). Since
t is visited by algorithm before p, then T1 > λnum(s, t), where T1 is the value
of T at the time t is visited. Then when p is visited, T = T1 +V ol(first(p), p) >
λnum(s, t) + λnum(first(p), p) = λnum(s, p), which contradicts the condition
to return p.

Then we argue by induction on k = num(first(p), p).
Base: k=1, i.e. vol(p)≥λ. The probability that p is selected is vol(p)

1 · λ
vol(p) =λ.

Induction Step: For k>1, assume peer p will be chosen if num(first(p), p)<k.
Now consider the case num(first(p), p)=k.

Denote q = first(p). Then for any peer s such that 0.s ∈ [0.q, 0.p), first(s)
should also be in [0.q, 0.p). Otherwise by the definition of first(), V ol(q, s) <
λnum(q, s), V ol(next(s), p) < λnum(next(s), p). Thus V ol(q, p) < λnum(q, p),
which contradicts q = first(p). Therefore all such s have first(s) in [0.q, 0.p) and
by the induction hypothesis they will be selected with probability λ. According
to our algorithm, if the peer s = lookup(x) is in (0.q, 0.p], then one of the peers
in (0.q, 0.p] must be selected since p is a candidate due to first(p) = q. And if
the peer s = lookup(x) is equal to q, then one of the peers in [0.q, 0.p] will be
selected with probability (λnum(q, p)− V ol(next(q), p))/vol(q).

Therefore the probability that one of the peers in [0.q, 0.p] will be selected is
given as

V ol(q, p)
1

·
V ol(next(q), p) + λnum(q,p)−V ol(next(q),p)

vol(q) · vol(q)
V ol(q, p)

= λnum(q, p) (3)

Since every peer s ∈ [0.q, 0.p] other than p has probability λ of being selected
by the induction hypothesis, peer p must be selected with probability λ.
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Lemma 10. With probability greater than 1 − 1/n, for any peer p and q such
that num(p, q) > 12 lnn, we have V ol(p, q) > lnn/n.

Proof. Let I = [0.p, 0.p+ V ol(p, q)]. Denote t = next(q). Then I = [0.p, 0.t] and
num(p, t) = num(p, q)+ 1. Let peer r be the first peer laid down in the network
such that 0.r ∈ [0.p, 0.t]. Let I ′ = [2 · 0.p − 0.r, 2 · 0.t − 0.r]. Then |I ′| = 2|I|.
Note that for any peer s such that 0.s ∈ [0.p, 0.t], s �= r, its original point
will fall in the interval I ′. Thus numx(I ′) ≥ num(p, q) + 1 − 1 > 12 lnn. By a
simply application of Chernoff bound, we have any interval containing more than
6 lnn points has length greater than lnn/n[6]. Thus |I ′| > 2 lnn/n. Therefore
V ol(p, q) = |I| > lnn/n.

Lemma 11. With probability greater than 1 − 1/n, for any peer p,
num(first(p), p) ≤ 12 lnn′.

Proof. Let q = first(p). By contradiction, assume num(first(p), p) > 12 lnn′.
Let s be the peer such that 0.s ∈ (0.q, 0.p] and num(s, p) = 12 lnn′. Then by
Lemma 10, V ol(s, p) ≥ lnn/n ≥ lnn′/n′ ≥ 12 lnn′/(13n′) = λ ·num(s, p). Then
first(p) must be in [0.s, 0.p], which contradicts q = first(p) and 0.s ∈ (0.q, 0.p].
Therefore num(first(p), p) ≤ 12 lnn′.

Theorem 2. With probability at least 1− 3/n, each peer is chosen with proba-
bility exactly 1/n.

Proof. By Lemma 11, for any peer p, num(first(p), p) ≤ 12 lnn′. Then by
Lemma 9, our algorithm will choose p with probability λ in each iteration of
the while loop. Since λ = Θ(1/n), the expected number of the repetitions of
the while loop will be Θ(1). Therefore each peer will be chosen with the same
probability.

3.3 Latency and Message Complexity

Proof of Theorem 1. By Theorem 2, our algorithm selects each peer with
probability 1/n, with high probability. Now consider its latency and message
complexity.

Since our algorithm for estimating n takes O(log n) next operations in expec-
tation, it has expected latency O(log n) and message complexity O(log n).

For each iteration of the while loop of the algorithm, there is one lookup
operation and at most O(log n) next operations. By Lemma 4 and 3, the lookup
operations in CAN implemented with the aid of the partition tree have expected
complexity O(log n), with O(1) routing items being maintained at each peer.

Therefore, in CAN, our algorithm has expected latency O(log n) and sends
O(log n) messages in expectation.

4 Future Work: Biased Distributions and More General
Networks

In this section, we propose two natural generalizations of the uniform random
sampling problem which pose interesting lines of future work.
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First we consider the problem of handling more general sampling distributions
and to choose peers with a biased probability. In other words, we would like to
choose a peer p with probability proportional to f(p), thereby with probability
f(p)/

∑
f(x), where f(p) can be any positive function on peer p. A case that is

easy to solve is when max(f(x))/min(f(x)) = Θ(1). We can estimate
∑

f(x) as
σ to a constant factor with a technique similar to that we used for estimating
n. We assign each peer a region of volume λ(p) = c · f(p)/σ, where c is a con-
stant. Since max(f(x))/min(f(x)) = Θ(1) and σ approximates

∑
f(x) within

a constant factor, we have λ(p) = Θ(1/n) for all peers p. Then the sampling
algorithm still works if Line 5 is replaced by ’If (T ≤ Λi) return p;’, where
Λi =

∑i−1
k=0 λ(next(k)(p)). For brevity, we omit the proof of correctness. Dealing

with distributions that are not “almost uniform” as described above seems to
be rather more difficult.

The second generalization of the random sampling problem that we consider
is to devise efficient algorithms for selecting a peer uniformly at random in other
overlay peer-to-peer systems, such as the locality-aware systems of Plaxton et
al. [8] and Abraham et al. [1], or in systems that provide even less structure than
Chord or CAN. Our approach of using a space-filling curve can be used in most
systems based on peers embedded in geometric space.
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Abstract. We consider the rendezvous problem for identical mobile
agents (i.e., running the same deterministic algorithm) with tokens in
a synchronous torus with a sense of direction and show that there is a
striking computational difference between one and more tokens. More
specifically, we show that 1) two agents with a constant number of
unmovable tokens, or with one movable token, each cannot rendezvous
if they have o(log n) memory, while they can perform rendezvous with
detection as long as they have one unmovable token and O(log n)
memory; in contrast, 2) when two agents have two movable tokens each
then rendezvous (respectively, rendezvous with detection) is possible
with constant memory in an arbitrary n × m (respectively, n × n) torus;
and finally, 3) two agents with three movable tokens each and constant
memory can perform rendezvous with detection in a n × m torus. This
is the first publication in the literature that studies tradeoffs between
the number of tokens, memory and knowledge the agents need in order
to meet in such a network.
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kens, torus, synchronous.

1 Introduction

We study the following problem: how should two mobile agents move along the
nodes of a network so as to ensure that they meet or rendezvous?
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The problem is well studied for several settings. When the nodes of the net-
work are uniquely numbered, solving the rendezvous problem is easy (the two
agents can move to a node with a specific label). However even in that case the
agents need enough memory in order to remember and distinguish node labels.
Symmetry in the rendezvous problem is usually broken by using randomized al-
gorithms or by having the mobile agents use different deterministic algorithms.
(See the surveys by Alpern [1] and [2], as well as the recent book by Alpern and
Gal [3]). Yu and Yung [13] prove that the rendezvous problem cannot be solved
on a general graph as long as the mobile agents use the same deterministic al-
gorithm. While Baston and Gal [5] mark the starting points of the agents, they
still rely on randomized algorithms or different deterministic algorithms to solve
the rendezvous problem.

Research has focused on the power, memory and knowledge the agents need,
to rendezvous in a network. In particular what is the ‘weakest’ possible condition
which makes rendezvous possible? For example Yu and Yung [13] have consid-
ered attaching unique identifiers to the agents while Dessmark, Fraigniaud and
Pelc [6] added unbounded memory; note that having different identities allows
each agent to execute a different algorithm. Other researchers (Barriere et al [4]
and Dobrev et al [7]) have given the agents the ability to leave notes in each
node they visit. In another approach each agent has a stationary token placed
at the initial position of the agent. This model is much less powerful than dis-
tinct identities or than the ability to write in every node. Assuming that the
agents have enough memory, the tokens can be used to break symmetries. This
is the approach introduced in [11] and studied in Kranakis et al [10] and Floc-
chini et al [8] for the ring topology. In particular the authors proved in [10] that
two agents with one unmovable token each in a synchronous, n-node oriented
ring need at least Ω(log log n) memory in order to do rendezvous with detection.
They also proved that if the token is movable then rendezvous without detection
is possible with constant memory.

We are interested here in the following scenario: there are two identical agents
running the same deterministic algorithm in an anonymous oriented torus. In
particular we are interested in answering the following questions. What memory
do the agents need to solve rendezvous using unmovable tokens? What is the
situation if they can move the tokens? What is the tradeoff between memory
and the number of tokens?

1.1 Model and Terminology

Our model consists of two identical mobile agents that are placed in an anony-
mous, synchronous and oriented torus. The torus consists of n rings and each
of these rings consists of m nodes. Since the torus is oriented we can say that
it consists of n vertical rings. A horizontal ring of the torus consists of n nodes
while a vertical ring consists of m nodes. We call such a torus a n×m torus. The
mobile agents share a common orientation of the torus, i.e., they agree on any
direction (clockwise vertical or horizontal). Each mobile agent owns a number
of identical tokens, i.e. the tokens are indistinguishable. A token or an agent
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at a given node is visible to all agents on the same node, but is not visible to
any other agents. The agents follow the same deterministic algorithm and begin
execution at the same time.

At any single time unit, the mobile agent occupies a node of the torus and
may 1) stay there or move to an adjacent node, 2) detect the presence of one or
more tokens at the node it is occupying and 3) release/take one or more tokens
to/from the node it is occupying. We call a token movable if it can be moved
by any mobile agent to any node of the network, otherwise we call the token
unmovable in the sense that it can occupy only the node in which it has been
released.

More formally we consider a mobile agent as a finite Moore automaton1

A = (X,Y,S, δ, λ, S0), where X ⊆ D × Cv × CMA, Y ⊆ D × {drop, take}, S
is a set of σ states among which there is a specified state S0 called the initial
state, δ : S × X → S, and λ : S → Y . D is the set of possible directions that
an agent could follow in the torus. Since the torus is oriented, the direction port
labels are globally consistent. We assume labels up, down, left, right. There-
fore D = {up, down, left, right, stay} (stay represents the situation where the
agent does not move). Cv = {agent, token, empty} is the set of possible configu-
rations of a node (if there is an agent and a token in a node then its configuration
is agent). Finally, CMA = {token, no− token} is the set of possible configura-
tions of the agent according to whether it carries a token or not.

Initially the agent is at some node u0 in the initial state S0 ∈ S. S0 determines
an action (drop token or nothing) and a direction by which the agent leaves u0,
λ(S0) ∈ Y . When incoming to a node v, the behavior of the agent is as follows.
It reads the direction i of the port through which it entered v, the configuration
cv ∈ Cv of node v (i.e., whether there is a token or an agent in v) and of course
the configuration cMA ∈ CMA of the agent itself (i.e., whether the agent carries
a token or not). The triple (i, cv, cMA) ∈ X is an input symbol that causes the
transition from state S to state S′ = δ(S, (i, cv, cMA)). S′ determines an action
(such as release or take a token or nothing) and a port direction λ(S′), by which
the agent leaves v. The agent continues moving in this way, possibly infinitely.

We assume that the memory required by an agent is at least proportional to
the number of bits required to encode its state which we take to be Θ(log(|S|))
bits. Memory permitting, an agent can count the number of nodes between
tokens, or the total number of nodes of the torus, etc. In addition, an agent
might already know the number of nodes of the torus, or some other network
parameter such as a relation between n and m. Since the agents are identical
they face the same limitations on their knowledge of the network.

Let U = {(n1/2, 0, ..., 0), (0, n2/2, ..., 0), ..., (0, 0, ..., nd/2)}, where each ni is
even, be a set consisting of d vectors in d-dimension. The distance between two
nodes on a d-dimensional torus is a d-vector the ith of element of which is
min{(xi − yi), (ni + yi − xi)} where wlog xi ≥ yi are the ith co-ordinates of the
nodes.

1 The first known algorithm designed for graph exploration by a mobile agent, modeled
as a finite automaton, was introduced by Shannon [12] in 1951.
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Theorem 1. Consider two agents placed in a d-dimensional oriented torus
(n1 × n2 × · · · × nd) so that their distance is the sum of vectors contained in
any nonempty subset S of U. Assume that for any non-zero element of the dis-
tance, the number of nodes of that dimension of the torus is even. Then, no
matter how many tokens or how much memory the agents have, it is impossible
for the agents to rendezvous.

Corollary 1. Two agents placed in a n×m torus are incapable of meeting each
other (no matter how many tokens, movable or unmovable they have) if their
initial distance is either (n/2, 0) or (0,m/2) or (n/2,m/2).

Theorem 1 is a generalization of Theorem 1 in [10] which states that it is im-
possible for two agents equipped with one unmovable token each, to rendezvous
in a ring with n nodes if their initial distance is n/2, where n is even.

Definition 1. We call rendezvous with detection (RVD) the problem in which
the agents meet each other if their distance is not the sum of vectors contained
in any nonempty subset S of U, otherwise they stop moving and declare that is
impossible to meet each other.

We say that an algorithm A solves RVD (or is an RVD algorithm) if the agents
rendezvous when their initial distance is not the sum of vectors contained in any
nonempty subset S of U . If, the distance is indeed the sum of vectors contained
in a subset S of U then A halts after a finite number of steps and the agents
declare that rendezvous is impossible.

Definition 2. We call rendezvous without detection (RV) the problem in which
the agents meet each other if their distance is not the sum of vectors contained
in any nonempty subset S of U.

Therefore we say that an algorithm A solves RV (or is an RV algorithm) if the
agents rendezvous when their initial distance is not the sum of vectors contained
in any nonempty subset S of U. If, however, the distance is indeed the sum of
vectors contained in a subset S of U then A may run forever.

We assume that at any single time unit an agent can traverse one edge of
the network or wait at a node (we assume that taking or leaving a token can be
done instantly). For a given torus G and starting positions s, s′ of the agents
we define as cost CTRV D(A,G, s, s′) of an RVD algorithm A, the maximum time
(number of steps plus waiting time) needed either to rendezvous or to decide
that rendezvous is impossible. The cost CTRV (A′, G, s, s′) of an RV algorithm
A′, is the time needed to rendezvous (when it is possible of course). Finally, the
time complexity of an RVD or RV algorithm is its maximum cost overall possible
starting positions of the agents.

1.2 Our Results

In the study of the rendezvous problem this paper shows that there is a striking
computational difference between one and more tokens. More specifically, we
show that
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1. Two agents with a constant number of unmovable tokens each cannot ren-
dezvous if they have o(logn) memory.

2. Two agents with one movable token each cannot rendezvous if they have
o(log n) memory.

3. Two agents with one unmovable token each can perform rendezvous with
detection as long as they have O(log n) memory.

4. When two agents have two movable tokens each then rendezvous (respec-
tively, rendezvous with detection) is possible with constant memory in an
arbitrary n×m (respectively, n× n) torus.

5. Two agents with three movable tokens each and constant memory can per-
form rendezvous with detection in an arbitrary n×m torus.

This is the first publication in the literature that studies tradeoffs between the
number of tokens, memory and knowledge the agents need in order to meet in
such a network.

1.3 Outline of the Paper

In Section 2 we first give some preliminary results concerning possible ways that
an agent can move in a torus using either no tokens or a constant number of
unmovable tokens. Then we prove that rendezvous without detection in a torus
cannot be solved by two agents with one movable token each, or with a constant
number of unmovable tokens unless their memory is Ω(logn) bits.

In Section 3 we give an algorithm for rendezvous with detection in a n×n torus
using one unmovable token and O(log n) memory. We also give an algorithm
for rendezvous with detection in a n × n torus using two movable tokens and
constant memory. Next we give an algorithm for rendezvous without detection
in an arbitrary n × m torus using two movable tokens and constant memory,
stating the relation that m and n must have in order to do rendezvous with
detection following that algorithm. Finally we give an algorithm for rendezvous
with detection in a n×m torus using three movable tokens and constant memory.

In Section 4 we discuss the results and state some open problems. Due to
space limitations, the proofs, formal algorithms and figures have been omitted
in this extended abstract.

2 Memory Lower Bounds of Rendezvous

2.1 Preliminary Results

Lemma 1. Consider one mobile agent with σ states and no tokens. We can
always (for any configuration of the automaton, i.e. states and transition func-
tion) select a n × n oriented torus, where n = Ω(σ) so that no matter what is
the starting position of the agent, it cannot visit all nodes of the torus. In fact,
the agent will visit at most (σ + 1)n nodes.
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Lemma 2. Consider one mobile agent with σ states and one unmovable token.
We can always (for any configuration of the automaton, i.e. states and transition
function) select an oriented n×n torus, where n = Ω(σ2) so that no matter what
is the starting position of the agent, it cannot visit all nodes of the torus. In fact,
the agent will visit at most (σ + 1)(1 + σn) = O(σ2n) nodes.

Theorem 2. Consider one mobile agent with σ states and a constant number
of identical unmovable tokens. We can always (for any configuration of the au-
tomaton, i.e. states and transition function) select a n×n oriented torus, where
n = Ω(σ2) so that no matter what is the starting position of the agent, it cannot
visit all nodes of the torus. In fact, the agent will visit at most O(σ2n) nodes.

2.2 An Ω(log n) Memory Lower Bound for Rendezvous Using One
Movable Token

Lemma 3. Consider two mobile agents with σ states. They each have a token
(identical to each other). Then we can always (for any configuration of the au-
tomatons, i.e. states and transition function) find an oriented n×n torus, where
n = Ω(σ2) and place the agents so that if they can not move tokens then they
cannot rendezvous.

Proof. (Sketch) We place the first agent A in a node. If A can meet only its
token, then by Lemma 2, the agent would visit at most (σ + 1)(1 + σn) nodes
before it repeats everything. We prove that we can initially choose a node to
place the other agent B so that anyone’s token is out of reach of the other. In
other words we place the second agent B so that

– it releases its token tB at a node different from at most (σ+1)(1+σn) nodes
visited by the first agent A and

– to avoid to visit the node where the first agent A released its token tA �

Notice that in the previous scenario, where the two agents cannot move the
tokens, there are still unvisited nodes (from the same agent) in the torus. In fact
we proved Lemma 3 by describing a way to ‘hide’ token tA in a node not visited
by agent B and token tB in a node not visited by agent A.

If there are two starting nodes s, s′ for the agents A and B so that agent A
drops its token tA in a node not visited by agent B and agent B drops its token
tB in a node not visited by agent A then we say that s, s′ satisfy property π.

If the agents could move tokens, then it is easy to think of an algorithm where
all nodes of any torus are visited by the same agent. For example consider the
following algorithm:

- 1: go right until you meet the second token;
- 2: move the token down;
- 3: repeat from step 1;

Nevertheless the goal is again to place the agents in a way that they could
meet only their own token. To achieve this we place the agents so that in a phase
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which starts when the agents move their tokens, up to the moment that they
move their tokens again they do not meet each other’s token.

Lemma 4. Consider two mobile agents with σ states. They each have a token
(identical to each other). Then we can always (for any configuration of the au-
tomatons, i.e. states and transition function) find an oriented n×n torus, where
n > 8σ3 = Ω(σ3) and place the agents so that even if they can move tokens they
cannot rendezvous.

This implies the following theorem:

Theorem 3. Two agents in a n× n torus with one movable token need at least
Ω(log n) memory to solve the RV problem.

Proof. Suppose that the agents have a memory of r bits. Hence they can have
at most 2r states. By Lemma 4 as long as n > 8σ3 the agents cannot perform
rendezvous. Hence, the agents need at least r = Ω(log n) memory in order to
perform rendezvous. �

2.3 An Ω(log n) Memory Lower Bound for Rendezvous Using O(1)
Unmovable Tokens

Lemma 5. Consider two mobile agents with σ states. They each have two to-
kens (identical to each other). Then we can always (for any configuration of
the automatons, i.e. states and transition function) find a n× n oriented torus,
where n = Ω(σ2) and place the agents so that if they cannot move tokens they
cannot rendezvous.

Proof. (Sketch) In view of Lemmas 2, 3 we can select the torus and the starting
positions so that an agent will visit at most (σ+1)(1+σn) nodes until it decides
to release its second token and up to that point does not meet the other’s token.
Its second token will have to be released at a ‘short’ distance from the first one
since an agent cannot count more than σ. Using similar arguments as in the
proof of Lemma 3 one can show that there are at least n2 − 5(σ + 1)(1 + σn)
pairs of starting nodes that satisfy property π. �

This implies the following theorem:

Theorem 4. Two agents in a n× n torus with two identical unmovable tokens
each, need at least Ω(log n) memory to solve the RV problem.

Applying similar arguments we can prove the following lemma and theorem:

Lemma 6. Consider two mobile agents with σ states. They each have a constant
number of k identical tokens. Then we can always (for any configuration of the
automatons, i.e. states and transition function) find an oriented n × n torus,
where n = Ω(σ2) and place the agents so that if they cannot move tokens they
cannot rendezvous.
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Proof. (Sketch) Using similar arguments as in the proof of Lemma 3 one can
show that there are at least n2 − k(k+2)

2 (σ + 1)(1 + σn) pairs of starting nodes
that satisfy property π. �

Theorem 5. Two agents in a n×n torus with a constant number of unmovable
tokens need at least Ω(logn) memory to solve RV problem.

3 Rendezvous

3.1 Rendezvous with Detection (RVD) in a n × n Torus Using One
Token and O(log n) Memory

We describe an algorithm which solves the RVD problem of two agents in a n×n
torus, equipped with one unmovable token and O(log n) memory each. Below is
a high level description of the algorithm.

First the agent (both agents run the same algorithm) moves in the initial hor-
izontal ring; it releases its token and it counts steps until it meets a token twice.
If its counters differ, then it can meet the other agent. Otherwise it does the same
in the initial vertical ring. If it does not meet the other or decide that rendezvous
is impossible (which means that the agents must have started in different rings),
then it searches one by one the horizontal rings of the torus counting its steps. If
at least one of its counters (representing horizontal or vertical distances) is dif-
ferent than n/2 then it can meet the other agent. Otherwise it stops and declares
rendezvous impossible. The formal description of the algorithm will appear in
the full version of the paper.

Theorem 6. The Rendezvous with Detection problem on a n × n torus can be
solved by two agents using one unmovable token and O(log n) memory each, in
time O(n2).

The above result can be extended for the case of an arbitrary n×m torus. The
main difference in that case is how the agents decide if they have started on the
same ring or not: they again explore one by one the horizontal rings. They will
meet a token while going down (passing from one horizontal ring to the next)
if and only if they have started on the same ring. Otherwise, they will meet a
token while going right (before finishing the exploration of a horizontal ring).
They can solve the Rendezvous with Detection problem in O(nm) steps as long
as they have O(log n+ logm) memory each.

3.2 Rendezvous with Detection in a n × n Torus Using Two
Movable Tokens and Constant Memory

We define Procedure HorScan which will be used in our algorithms.
In this procedure the agent stops immediately after it meets a token. So for

example, if after it goes right it meets a token then it stops immediately; it does
not go up.
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Procedure HorScan
1: repeat
2: go down, right, up
3: until you meet a token

Procedure FindTokenHor
1: repeat
2: HorScan
3: if you meet token up then
4: HorScan
5: go one step down and drop (or move) the second token
6: end if
7: until you meet a token down or right

We also use Procedure FindTokenHor.
An agent following Procedure FindTokenHor, scans one by one the horizontal

rings of the torus until it meets a token while moving down or right. Below we
explain procedure FindTokenHor and prove some of its properties.

Let the agents release their first token and execute procedure FindTokenHor.
During execution of HorScan (step 2 of Procedure FindTokenHor), the agent has
to meet a token for the first time either after it moved down in the first step, or
up or right (he can not meet a token while going down at a later step of Horscan
since it would have met the token while going right earlier).

If it meets a token after it moved up, then this can be any token: its or
the other’s first token (or its or the other’s second token when it scans a later
horizontal ring). However, if it executes Horscan again (step 4 of Procedure
FindTokenHor), then no matter what was the case, it is easy to see that the first
token it meets now is its token (first or second) and it meets it after it moved
up2. Furthermore in this case it is sure that the down ring had no tokens.

If it meets a token right then it is clear that it is the other’s first token and
that the two agents have started in different rings.

If it meets a token while it goes down then either it is its first token or the
other’s first token. In both cases this means that they have started in the same
ring: if it is its first token it means that it has searched the whole torus and did
not meet any other token while it was moving right.

Therefore the agent exits procedure FindTokenHor knowing that it has started
either in the same ring with the other agent (if it met a token after it moved
down) or in different rings (if it met a token after it moved right). Procedure
FindTokenHor needs O(n2) time units.

Below is a high level description of the algorithm RVD2n which solves the
RVD problem in a n×n torus. The two agents search one by one the horizontal
rings of the torus (using Procedure FindTokenHor) to discover whether they have
started in the same ring. If so, then they execute a procedure which appeared

2 Supposing that there are at most two tokens in the same horizontal ring.



662 E. Kranakis, D. Krizanc, and E. Markou

in [9], for rendezvous with detection in a ring using two tokens and constant
memory. Otherwise they try to ‘catch’ each other on the torus using a path,
marked by their tokens. If they do not rendezvous then they search one by one
the vertical rings of the torus (using a procedure similar to FindTokenHor for
searching one by one the vertical rings). They again try to ‘catch’ each other on
the torus. If they do not meet this time they declare rendezvous impossible. The
algorithm takes O(n2) time.

Theorem 7. The Rendezvous with Detection problem on a n × n torus can be
solved by two agents using two movable tokens and constant memory each, in
time O(n2).

Another possible algorithm could be if after discovering that the agents started
on different rings, first to search whether they are at distance (n/2, n/2) and if
not, then searching one by one the horizontal rings of the torus. We have chosen
to present here the first approach since it is expandable to a n×m torus.

3.3 Rendezvous Without Detection in a n × m Torus Using Two
Movable Tokens and Constant Memory

We give now algorithm RV2mn which is a RV algorithm for two agents with
constant memory in a n×m torus. Algorithm RV2mn, at first, copies algorithm
RVD2n. If no rendezvous occurs and no decision is made about its impossibility
(i.e. the agents have started in different rings), the algorithm instructs the agents
to mark a rectangle with their tokens on the torus and then execute Procedure
Pendulum: they try to shrink the rectangle and eventually meet which will hap-
pen unless they had started at distance (n/2,m/2) (in that case the algorithm
runs forever).

In fact one of the following things could happen: either the agents rendezvous,
or they detect that they are in the same ring and their distance is half the size
of the ring or the algorithm runs forever (in that case they are at horizontal
distance n/2 and vertical distance m/2). Algorithm RV2mn needs O(n4 + m4)
time.

Theorem 8. The Rendezvous without Detection problem on an arbitrary n×m
torus can be solved by two agents using two movable tokens and constant memory
each, in time O(n4 +m4).

An interesting question which naturally follows is: what is the relation of n and
m for which algorithm RV2mn is indeed a RVD algorithm? The answer is given
by the following lemma.

Lemma 7. If after the horizontal and vertical scanning of Algorithm RV2mn
the agents do not rendezvous and n−1

10 ≤ m ≤ 2n + 17 then their distance is
(n/2,m/2) and therefore rendezvous is impossible.

Hence by Lemma 7 if we knew that n−1
10 ≤ m ≤ 2n+ 17 then algorithm RV2mn

would be a RVD algorithm for the n×m torus.
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3.4 Rendezvous with Detection in a n × m Torus Using Three
Movable Tokens and Constant Memory

If the agents have 3 tokens then we can extend our RVD2n algorithm to get a
RVD algorithm for a n×m torus. The idea is the following: If the agents do not
meet while they copy Algorithm RVD2n then they mark a rectangle on the torus
using their two tokens each. Next they release their third token to the right of
their starting position. They travel on this rectangle (one agent from inside and
the other from outside), each time moving one step the fifth token they meet:
first they move it to the right until it hits another token and then down until it
touches a token. Next they go left until they meet a token and then up until they
meet a token. If at that point they see two tokens adjacent then they declare
rendezvous impossible. Otherwise they wait until rendezvous which will occur in
less than n+m time. Algorithm RVD3mn takes O(n2 +m2) time.

Theorem 9. The Rendezvous with Detection problem on an arbitrary n × m
torus can be solved by two agents using three movable tokens and constant mem-
ory each, in time O(n2 +m2).

4 Conclusions

In this paper we investigated on the number of tokens and memory that two
agents need in order to rendezvous in an anonymous oriented torus.

It appears that there is a strict hierarchy on the power of tokens and memory
with respect to rendezvous: a constant number of unmovable tokens are less
powerful than two movable tokens. While the hierarchy collapses on three tokens
(we gave an algorithm for rendezvous with detection in a n×m torus when the
agents have constant memory each), it remains an open question if three tokens
are strictly more powerful than two with respect to rendezvous with detection.

It is also interesting that although a movable token is more powerful than
an unmovable one (we showed that an agent with one unmovable token cannot
visit all the nodes of a torus with a properly selected size unless it has Ω(log n)
memory, while it could do it with a constant memory if it could move its token) it
appears that this power is not enough with respect to rendezvous; the agents with
one movable token each, still require Ω(logn) memory to rendezvous in the torus.

As this is the first publication in the literature that studies tradeoffs between
the number of tokens, memory, knowledge and power the agents need in order
to meet on a torus network, a lot of interesting questions remain open:

- Can we improve the time complexity for rendezvous without detection on a
n ×m torus using constant memory? Can we improve the time complexity for
rendezvous with detection on a n× n torus using constant memory?

- What is the lower memory bound for two agents with two movable tokens
each in order to do rendezvous with detection in a n ×m torus? In particular,
can they do it with constant memory?

- What is the situation in a d-dimensional torus? Is it the case that with
d− 1 movable tokens, rendezvous needs Ω(log n) memory while with d movable
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tokens and constant memory rendezvous with detection can be done? How does
this change if the size of the torus is not the same in every dimension?

- What are the results if the torus is not oriented? If the torus is asynchronous?
- Finally, an interesting problem is that of many agents trying to rendezvous

(or gathering) in a torus network.
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Abstract. We prove that the Glauber dynamics on the k-colourings of a
graph G on n vertices with girth 5 and maximum degree Δ ≥ 1000 log3 n
mixes rapidly if k = qΔ and q > β where β = 1.645... is the root of
2 − (1 − e−1/β)2 − 2βe−1/β = 0.

1 Introduction

The Glauber dynamics is a Markov chain on the proper colourings of a graph
that has been widely studied in both computer science and statistical physics.
For a given graph G and integer k which is at least the chromatic number of G,
the Markov chain is described as follows: We start with an arbitrary k-colouring,
and at each step we choose a uniformly random vertex v, and a uniformly random
colour c from L(v), the list of colours which do not appear on any neighbours of
v. Then we change the colour of v to c.

This chain is of great interest for a number of reasons. For one, it is the most
natural chain on the colourings of a graph, and so is an obvious attempt at a
procedure to approximately count the colourings of a graph and to generate such
a colouring nearly uniformly at random. It is also of interest in the statistical
physics community, in part because of its relation to the Potts model.

The main question in this area is: For what values of k does this Markov chain
mix in polytime? Usually this is studied in terms of Δ, the maximum degree of
G. It is well known that for some graphs, the chain does not mix for k ≤ Δ+ 1.
It is conjectured that for every graph, the chain mixes in polytime for k ≥ Δ+2,
or at least for k ≥ Δ + o(Δ), but this appears to be a very difficult conjecture.
Jerrum[11], and independently Salas and Sokal[14], showed that for all graphs
the chain mixes in polytime for k ≥ 2Δ. Vigoda[15] showed that for all graphs,
a different chain mixes in optimal time for k ≥ 11

6 Δ and this implies that for
the same values of k, the Glauber dynamics mixes in polytime. This is the best
progress to date for general graphs.

A recent trend has been to study the performance of the Glauber dynamics
on graphs with restrictions on the girth and maximum degree. At first, these
restrictions were rather severe, and the number of colours remained far from Δ:
Dyer and Frieze[4] showed that if Δ is at least O(log n) and the girth is at least
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O(logΔ) then we have rapid mixing for roughly k = 1.763Δ colours (note that
1.763 < 11/6). Since then, several improvements[12, 7, 8, 9, 10, 5, 6] have reduced
these restrictions substantially, and this line of research is producing surprisingly
strong results and shedding much insight on the general conjecture. Some notable
results are that we obtain rapid mixing for Δ = O(log n), girth at least 9, and
k ≥ (1 + ε)Δ[8] and for Δ at least a particular large constant, girth at least 6
and k roughly 1.489Δ[5].

Recently, Hayes and Vigoda[10] introduced “coupling from the stationary dis-
tribution” (described below) with which they managed to improve the girth
requirement from five to four in one of these results (from Hayes[7]). (An im-
provement of 1 may not seem like much at first glance, but when the numbers
are this small, each such improvement can be a huge gain.) They showed that we
have rapid mixing with Δ = O(log n), girth at least 4 and with k roughly 1.763Δ.
This value of k is one that is often obtained by using a particular property that
we call the first local uniformity condition (defined below). Hayes[7] had also
proved rapid mixing Δ = O(log n), girth at least 6 and with k roughly 1.489Δ,
a value that is often obtained by using the second local uniformity condition.
The main result of this paper, is to incorporate that second local uniformity
condition into a coupling from the stationary distribution argument, and reduce
the girth requirement from the latter result to 5. In doing so, difficulties cost us
in two ways: (i) we must increase the restriction on Δ somewhat, and (ii) we
obtain a number larger than the usual 1.489....

Define β = 1.645... to be the solution to

2− (1− e−1/β)2 − 2βe−1/β = 0.

Theorem 1. The Glauber dynamics mixes in O(n log n) time on all graphs on
n vertices with maximum degree Δ ≥ 1000 log3 n, when the number of colours is
k ≥ (β + ε)Δ for any constant ε > 0.

Remark. We made no attempt to optimize the exponent “3” in the lower bound
on Δ. It is not hard to reduce it somewhat.

1.1 Outline

The proof of our main result uses the framework of “coupling with the stationary
distribution” developed by Hayes and Vigoda[10] to prove their aforementioned
result. Here is the basic idea: To analyse the mixing time via a coupling ar-
gument, we can assume that one Markov chain X is distributed according to
the uniform distribution. Given a graph of girth at least 4 and maximum de-
gree Δ = Ω(logn), one can show that with high probability, Xt has the first
local uniformity condition. Hayes and Vigoda then show that, given an arbitrary
colouring Yt, the Hamming distance between Xt and Yt decreases in expectation
for k roughly 1.763Δ so long as Xt has the first local uniformity. So, with high
probability, Xt and Yt tend to drift together, and their theorem follows.

The main advantage of using the coupling with the stationary distribution
is that one only needs to prove that a uniformly random colouring has local
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uniformity properties rather than a colouring generated by the Markov chain.
This allows one to skip the analysis of the burn-in period, which is the most
technical part of many previous papers. In addition, short cycles are a bit less
harmful in uniform colourings than in “burn-in” colourings; this allowed the
girth requirement to be reduced by one in [10]. One substantial drawback to this
technique is that it does not accommodate path-coupling, a very useful technique
introduced in [2]. This means that one needs to analyse the expected change in
Hamming distance between two colourings with arbitrary Hamming distance,
rather than just analyzing the much simpler case where the Hamming distance
is one. Carrying out that analysis turned out to be manageable in [10] where
they were able to adopt the original coupling argument from Jerrum[11], which
predated path-coupling.

The main thrust of this paper is to incorporate the second local uniformity
into the framework of “coupling with the uniform condition”. In this case, it is
much more difficult to extend the path coupling analysis to the case where two
colourings have arbitrary distance. In fact, we are unable to do so without some
loss, and this is why our result requires 1.645Δ colours rather than 1.489Δ. This
portion of our analysis makes use of a novel “charging” argument (Lemma 1).
That argument does not make use of any special structure of G (such as its girth
or maximum degree) and so it might be useful in other settings. This argument
appears in Section 2.

A second difficulty that arises in this paper is in proving that the second
uniformity condition holds for a uniformly random colouring when the girth
requirement is reduced from 6 (in [7]) to 5. The main problem is that the second
local uniformity condition is defined in terms of vertices of distance two from a
specific vertex v. Every previous paper that established a uniformity condition
made crucial use of the fact that the vertices which defined the condition were
very close to being an independent set. This is true in our setting for girth 6
graphs, but girth 5 graphs can have many edges between those vertices. The
difficulties caused by these edges are what require us to increase the bound on
Δ from O(log n) to O(log3 n). We present this part of the proof in Section 3.

Remark. Our main theorem applies to graphs with maximum degree Δ. How-
ever, for brevity and ease of presentation, we only present the proof for the case
where the graph is Δ-regular. For the most part, it is straightforward to extend
the proof to non-regular graphs. The material in Section 3 is not as straightfor-
ward to extend, but the arguments used in [12] will suffice.

1.2 Definitions

In a graph G, we define N(v) to be the set of neighbours of vertex v.
For a colouring X of G, we define X(v) to be the colour at vertex v. We

denote by LX(v) the list of available colours at v in X ; i.e. the colours that do
not appear on any neighbours of v. We denote by LX the minimum of |LX(v)|
over all possible v. Given two colourings X,Y , Pv(X,Y ) := LY (v)− LX(v) and
Pv(Y,X) := LX(v) − LY (v). In other words, Pv(X,Y ) is the set of colours ap-
pearing in the neighbourhood of v in X but not appearing in the neighbourhood
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of v in Y . Given a colouring X , suppose we recolour v by colour c and denote the
resulting colouring by X ′; then RX(v, c) is defined to be the set of neighbours w
of v such that LX(w) = LX′(w). In other words, RX(v, c) is the set of vertices
w ∈ N(v) such that X(v) and c both appear in NG(w) − v. We further define
RX to be the minimum of |RX(v, c)| over all possible v and c.

For the purposes of this paper, the local uniformity conditions are defined as
follows. Set q = k/Δ.

First Local Uniformity Condition[4]
For every ζ > 0, (qe−1/q − ζ)Δ < LX < (qe−1/q + ζ)Δ.

Second Local Uniformity Condition[12]
For every ζ > 0, ((1− e−1/q)2 − ζ)Δ < RX < ((1− e−1/q)2 + ζ)Δ.

Given a particular value of k, we define Ω to be the set of k-colourings of G.

1.3 A Concentration Tool

We will make use of the following inequality, which is particularly useful in this
paper because it can be applied to random trials that are not independent.
The version that we use is from [13] and is a distillation of Azuma’s original
statement[1].

Azuma’s Inequality. Let X be a random variable determined by n trials
T1, ..., Tn, such that for each i, and any two possible initial sequences of out-
comes t1, ..., ti and t1, ..., ti−1, t

′
i that differ only on the ith outcome:

| exp(X |T1 = t1, ..., Ti = ti)− exp(X |T1 = t1, ..., Ti = t′i)| ≤ γi

then
Pr(|X − exp(X)| > τ) ≤ 2e−τ2/(2 n

i=1 γ2
i ),

for every τ > 0.

2 Distance Decreasing with the Local Uniformities

Consider two colourings X,Y of G. We use d(X,Y ) to denote the Hamming
distance of X,Y ; i.e. the number of vertices on which they differ. The key lemma
in this paper is the following:

Lemma 1. For any two colourings X,Y of a Δ-regular graph,∑
w∈V

max{Pw(X,Y ), Pw(Y,X)} ≤ (1 − RX

2
)Δd(X,Y ).

We defer its proof until the end of the section.
Let X ′, Y ′ denote random colourings generated by applying one step of the

Glauber dynamics to X,Y respectively. Following the notation in [10], we say
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that X,Y are δ-distance decreasing if there exists a coupling of X ′, Y ′ under
which the expected value of d(X ′, Y ′) is at most (1− δ)d(X,Y ).

Recall that β = 1.645... is defined in the introduction. Using Lemma 1, it is
fairly straightforward to prove the following:

Lemma 2. Suppose that k ≥ (β+ε)Δ for some ε > 0. Then there exists ζ, δ > 0
such that if X ∈ Ω satisfies the first and the second local uniformity conditions
for ζ > 0, then for every Y ∈ Ω, (X,Y ) is δ-distance-decreasing.

Proof. We need to prove, for every Y ∈ Ω,

E(d(X ′, Y ′)) ≤ (1− δ

n
)d(X,Y )

for some δ > 0. Let v be the vertex selected for recolouring at the first time step.
First we bound the probability that the chains recolour v to different colours.
For a colour c available to both chains, c will be chosen in X with probability

1
|LX(v)| and in Y with probability 1

|LY (v)| , and hence c will be chosen in both
chains with probability 1

max{|LX(v)|,|LY (v)|} if we use, as usual, Jerrum’s coupling.
Therefore, the probability that v will be coloured differently is:

Pr(X ′(v) �= Y ′(v) | v) = 1− |LX(v) ∩ LY (v)|
max{|LX(v)|, |LY (v)|}

=
max{|LX(v)|, |LY (v)|} − |LX(v) ∩ LY (v)|

max{|LX(v)|, |LY (v)|}

=
max{|Pv(X,Y )|, |Pv(Y,X)|}

max{LX(v), LY (v)} , (1)

recall that Pv(X,Y ) := LY (v) − LX(v) and Pv(Y,X) := LX(v) − LY (v). Now
we bound the expected distance after one step.

E(d(X ′, Y ′))

=
∑
w∈V

Pr(X ′(w) �= Y ′(w))

=
∑
w∈V

Pr(v �= w ∧X(w) �= Y (w)) +
∑
w∈V

Pr(v = w ∧X ′(w) �= Y ′(w))

=
n− 1
n

d(X,Y ) +
1
n

∑
w∈V

Pr(X ′(w) �= Y ′(w) | v = w)

=
n− 1
n

d(X,Y ) +
1
n

∑
w∈V

max{|Pw(X,Y )|, |Pw(Y,X)|}
max{|LY (w)|, |LX(w)|} (by (1))

≤ n− 1
n

d(X,Y ) +
1

nLX

∑
w∈V

max{Pw(X,Y ), Pw(Y,X)}

≤ n− 1
n

d(X,Y ) +
1

nLX
(1− RX

2
)Δd(X,Y ) (by Lemma 1)
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≤ n− 1
n

d(X,Y ) +
1
n

(2− (1 − e−
Δ
k )2 + ζ)Δ

2ke−
Δ
k − ζ

d(X,Y )

≤ n− 1
n

d(X,Y ) +
1
n

(1− δ)d(X,Y ) = (1 − δ

n
)d(X,Y ) (since k ≥ (β + ε)Δ)

for some δ > 0, if we take ζ to be sufficiently small in terms of ε. The second
last inequality follows from the local uniformity properties.

The following theorem about couplings which “usually” decrease distances is by
Hayes and Vigoda[10].

Theorem 2. Let X0, . . . , XT , Y0, . . . , YT be coupled Markov chains such that,
for every 0 ≤ t ≤ T − 1,

Pr((Xt, Yt) is not δ distance decreasing) ≤ ε.

Then
Pr(Xt �= Yt) ≤ ((1 − δ)T + ε/δ)diam(Ω).

In Section 3, we will prove (Lemma 3) that if G is a graph of girth 5 and
maximum degree Δ ≥ 1000 log3 n, and if X is a uniformly random k-colouring
of G where k ≥ (1 + ε)Δ for some ε > 0 then X satisfies the first and second
local uniformity properties. That will allow us to apply the preceding lemmas to
such graphs, and thus prove the main result of this paper, which we do now.

Proof (Proof of Theorem 1). The proof is along the same line as in Hayes and
Vigoda[10]. Here we just give a quick sketch. For ease of exposition, we assume
that G is Δ-regular.

Let X0 be distributed according to π (the uniform distribution) and Y0 be
arbitrary. Generate X1, . . . , XT , Y1, . . . , YT using Jerrum’s coupling with initial
states X0, Y0. For every t ≥ 0, Xt is distributed according to π. By Lemma 3,
Xt has the first and the second local uniformity properties with sufficiently high
probability. Hence, by Lemma 2, Xt and Yt are δ-distance decreasing with high
probability. Now, applying Theorem 2 gives the theorem.

Finally, we close this section by proving the key lemma.

Proof (Proof of Lemma 1). Let d := d(X,Y ) be the Hamming distance be-
tween X and Y , and v1, . . . , vd be the d vertices with different colours in X and
Y . Let Zi be a colouring equal to X except Zj(vj) = Y (vj) for 1 ≤ j ≤ i. Let
Pw(i) := max{Pw(X,Zi), Pw(Zi, X)}. So, Zd = Y and

∑
w∈V Pw(d) is the value

we would like to bound. To bound
∑

w∈V Pw(d), we consider
∑

w∈V Pw(i) for
1 ≤ i ≤ d. Intuitively, we consider the colour changes one-at-a-time.

Note that Pw(i) > Pw(i− 1) only when w is a neighbour of vi, and note also
that Pw(i) ≤ Pw(i− 1) + 1 by definition. Since the maximum degree in G is Δ,
it follows that

∑
w∈V Pw(d) ≤ dΔ. With the second local uniformity, however,

we can give a better bound. For example, when the colour of v1 is changed
from X(v1) to Y (v1), for each vertex w in RX(v1, Y (v1)), both colours X(v1)
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and Y (v1) appear in NG(w) − v and thus LX(w) and LZ1(w) are the same.
Hence, Pw(1) = Pw(0) for w ∈ RX(v1, Y (v1)). Since |RX(v1, Y (v1))| ≥ RXΔ by
definition, we have

∑
w∈V Pw(1) ≤ (1−RX)Δ. Notice that the above argument

does not hold in general at time i for i > 1, since the colours have been changed
at v1, . . . , vi−1. But one may still hope that Pw(i) = Pw(i−1) for “many” vertices
in RX(vi, Y (vi)). In light of this, we say that a good event happens at w at time
i if Pw(i) = Pw(i − 1) when the colour of vi is changed from X(vi) to Y (vi);
otherwise a bad event if Pw(i) = Pw(i− 1)+ 1 at w at time i when the colour of
vi is changed from X(vi) to Y (vi). In the following, we focus on a bad event at
w at time i where w ∈ RX(vi, Y (vi)).

Let a := X(vi) and b := Y (vi). Consider a vertex w in RX(vi, b) when the
colour of vi is changed from a to b. Suppose that a bad event happens at w
(i.e. Pw(i) = Pw(i− 1) + 1). Since w is in RX(vi, b), by definition, there are two
vertices ua, ub ∈ NG(w) − vi so that X(ua) = a and X(ub) = b. Recall that
Pw(i) := max{Pw(X,Zi), Pw(Zi,W )}. Since both colours a and b appear in the
neighbourhood of w in X , we have Pw(Zi, X) = Pw(Zi−1, X). Since we assume
Pw(i) = Pw(i − 1) + 1, it must be the case that Pw(X,Zi) = Pw(X,Zi−1) + 1.
This can only happen when the colour a disappears in the neighbourhood of w
at time i (i.e. a /∈ LZi−1(w) and a ∈ LZi(w)). In particular, this implies that the
colour of ua had been changed from a to some other colour in some j-th step
where j < i. Consider that colour change of ua = vj at the j-th step. At the j-th
step, Zj(vi) is still of colour a. Therefore, by changing the colour of ua from a to
some other colour, we have Pw(X,Zj) = Pw(X,Zj−1). Notice that Pw(X,Y ) ≤∑d

i=1 |Pw(X,Zi) − Pw(X,Zi−1)| and similarly Pw(Y,X) ≤
∑d

i=1 |Pw(Zi, X) −
Pw(Zi−1, X)|. From the above argument, if a bad event happens at w at the i-th
step, we have |Pw(X,Zi)−Pw(X,Zi−1)| = 0 and |Pw(Zj , X)−Pw(Zj−1, X)| = 0
for some j < i. And thus the bad event at w at time i and the event at w at time j
combine to contribute at most 1 to Pw(d), in particular this implies that Pw(d) is
at most d−1. Formally, we map a bad event at w at time i to another event at w
at time j where j < i and X(vi) = X(vj) = a, so that they combine to contribute
at most 1 to Pw(d). We call the events in this mapping a couple. We can do the
mapping for each bad event at w at time j for each w ∈ RX(vj , Y (vj)) by the
above argument. If there are T1 disjoint couples and T2 distinct good events such
that no event appears therein more than once, then

∑
w∈V Pw(d) ≤ dΔ−T1−T2.

Suppose for now that each bad event at w at time j for w ∈ RX(vj , Y (vj)) maps
to a distinct good event (we will prove this claim in the next paragraph). Since∑d

j=1 |RX(vj , Y (vj))| ≥ RXΔd and each event therein is either good or is in a
distinct couple, we have

∑
w∈V Pw(d) ≤ dΔ− (RXΔd)/2 = ((1−RX/2)Δ)d, as

desired. (The worst case is that there are (RXΔd)/2 disjoint couples where each
couple contains two distinct events therein).

To finish the proof, it remains to show that each bad event at w at time
j for w ∈ RX(vj , Y (vj)) maps to a distinct good event. To see this, we
need to review the mapping process. As argued previously, a bad event at w
at time i for w ∈ RX(vi, Y (vi)) happens only if the colourX(vi) disappears in the
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neighbourhood of w at time i. Then we map this bad event to another event at
w at time j where j < i and X(vi) = X(vj). This implies that Zj(vi) = X(vi)
and thus the colour X(vj) does not disappear in the neighbourhood of w at time
j, and hence the event at w at time j is not a bad event. So, a bad event does not
map to another bad event. Also, two bad events cannot map to the same event
since a colour can disappear at most once in the neighbourhood of a vertex, as
each vertex is recoloured at most once. This proves the claim and completes the
proof.

3 Uniform Colourings of Graphs with Girth 5

In this section, we establish that the uniform random colourings we consider
satisfy the first and second uniformity properties. Recall that our setting is: G
is a graph on n vertices with maximum degree Δ and with girth at least 5. We
consider k-colourings of G where k = qΔ for some q > 1. For ease of exposition,
we assume that G is Δ-regular.

Lemma 3. Consider a uniform random k-colouring X of G and consider any
ζ > 0. With probability at least 1− n−3 we have:

(a) (qe−1/q − ζ)Δ < LX < (qe−1/q + ζ)Δ;
(b) ((1 − e−1/q)2 − ζ)Δ < RX < ((1 − e−1/q)2 + ζ)Δ.

The lower bound in part (a) was proven in [10] for graphs of girth 4. The
rest of Lemma 3 was (essentially) proven in [7] to hold for graphs of girth 6.
Roughly speaking, having girth 6 is very helpful as follows: Define N2(v) to be
the vertices of distance 2 from v. Note that RX(v, c) is a function of the colours
appearing on v ∪N2(v) which, if G has girth at least 6, is an independent set. If
we pretend that the colours on those vertices are independent uniformly random
colours, then Lemma 3(b) follows easily. Of course they aren’t independent:
some dependency is induced by the edges joining the independent set to the rest
of G; this is a bit difficult to deal with, but the techniques from [12] will suffice.
When we reduce the girth requirement to 5, N2(v) can now have many edges,
and these edges bring dependencies that are not straightforward to deal with.
Fortunately, there are some restrictions - for example, no two vertices of N2(v)
with a common “parent” in N(v) can be joined. This allows us to overcome the
dependency. The way we do so comprises the new ideas in the proof; the rest
just follows techniques from [12].

In order to better control the edges within v ∪N(v) ∪N2(v), we partition it
into smaller subgraphs. In particular, for each vertex v, we partition N(v) into
sets U1(v), ..., UΔ2/3(v) each of size Δ1/3. (For convenience, we treat Δ1/3 as an
integer; it is trivial to extend the argument to the non-integer case.) Instead of
analyzing the colour distribution of colours on all of N2(v), we will sometimes
consider, for each i, the distribution on the subset of N2(v) that is adjacent to
Ui(v).
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Given a colouring of G, for any vertex v and colours c, c′ we define:

– Tv,c =
∑ 1

|L(u)| summed over all u ∈ N(v) with c not appearing on N(u)−v;
– T j

v,c =
∑ 1

|L(u)| summed over all u ∈ Uj(v) with c not appearing on N(u)−v.

We define α0 = 0, β0 = 1, λ0 = 1, and

– αi+1 = e−βi/λi

– βi+1 = e−αi/qe−1/q

– λi+1 = qβi−1
βi−αi

e−αi + 1−qαi

βi−αi
e−βi

As shown in [12], limi→∞ αi = limi→∞ βi = 1/q and limi→∞ λi = qe−1/q.
We will prove:

Lemma 4. In a uniformly random k-colouring X of G, for every v, c, j, i we
have: with probability at least 1− (Δ3)i exp(−Δ1/3):

(a) qe−1/qΔ− o(Δ) < |L(v)| < λiΔ+ o(Δ);
(b) αiΔ

−2/3 − o(Δ−2/3) < |T j
v,c| < βiΔ

−2/3 + o(Δ−2/3).

Proof. Many details are the same as those that have appeared already in several
papers. So we gloss over those, focusing more on the details that are new.

The lower bound in (a) was proven in [10]. For the rest, we use induction on i.
The base case i = 0 is trivial. So suppose it holds for i; we will prove that it
holds for i+ 1.

Expose the colours of every vertex except for those in N(v). This yields a list
L(u) for each u ∈ N(v).

By induction, and multiplying by Δ2 vertices u in N(v) ∪ N2(v) plus less
than 2Δ8/3 triples j, c, u with u ∈ N(v), we see that with probability at least
1−(Δ2+2Δ8/3)(Δ3)i exp(−Δ1/3), each u ∈ N(v)∪N2(v) has qe−1/qΔ−o(Δ) <

|L(u)| < λiΔ+o(Δ) and for every u ∈ N(v) and c, Tu,c =
∑Δ2/3

j=1 T j
u,c is between

αi + o(1) and βi + o(1).
We will show that, if the exposed colours behave as described in the previous

paragraph, then the probability that (a) is violated is at most exp(−Δ1/3) and
so is the probability that (b) is violated. This yields an overall bound of at most
(Δ2 + 2Δ8/3)(Δ3)i exp(−Δ1/3) + 2 exp(−Δ1/3) < (Δ3)i+1 exp(−Δ1/3).

Part (a): Straightforward calculations, as in [12], show that Exp(|L(v)|) ≤
λi+1Δ + o(Δ). Because G is triangle-free, we can regard the assignments of
colours to N(v) as independent uniform choices from the lists L(u). Thus stan-
dard concentration bounds (such as Azuma’s Inequality) easily yield that the
probability of |L(u)| differing from its mean by more than Δ2/3 is at most
exp(−θ(Δ2/3)) < exp(−Δ1/3).

Part (b): Let tjv,c denote the number of neighbours u ∈ Uj(v) with c ∈ L(u).
We will show that, with sufficiently high probability, αiΔ

1/3 + o(Δ1/3) < tjv,c <

αiΔ
1/3 + o(Δ1/3). This, along with the inductive bound on |L(u)| will estab-

lish (b).
Let H be the subgraph induced by ∪u∈UjN(u)− v. Note that, since the girth

of G is at least 5, no w ∈ H can be adjacent to more than one neighbour of any
u ∈ Ui(v). Thus the maximum degree in H is at most |Uj(v)| = Δ1/3.
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Expose the colours of every vertex except those in H . This yields a list L(u)
for each u ∈ Uj(v). With probability at least 1−2ie−Δ1/20

, each w ∈ N(Uj(v))−v
has qe−1/qΔ− o(Δ) < |L(w)| < λiΔ+ o(Δ) and for every c and u ∈ Uj(v), Tu,c

is between αi + o(1) and βi + o(1).
Let Ω be the set of colourings of H in which each w ∈ H has a colour from

L(w). Thus, the unexposed colours form a uniformly random member of Ω. Since
H is not an independent set, we can’t simply treat those colours as independent
uniform choices from their lists, as we did in part (a). How we deal with this
complication is the main new idea required for this section.

Suppose that the vertices of H are w1, ..., wt; we will colour the vertices one-
at-a-time, in order. After r vertices have been coloured, we use Ωr to denote
the set of completions of the partial colouring to a colouring of H taken from
the lists L(w); thus Ω0 = Ω. When we colour wr, we choose each colour c with
probability pr(c) which is equal to the proportion of colourings in Ωr−1 in which
wr has c. Thus, the resultant colouring is a uniformly random member of Ω, as
required.

Claim. For each r, c such that c is not assigned to a neighbour wr′ of wr with
r′ < r, we have: pr(c) = |L(wr)|−1(1±O(Δ−2/3)).

Proof. First note that since the maximum degree of H is at most Δ1/3, at any
point in the colouring process, every w has at least |L(w)|−Δ1/3 = Θ(Δ) colours
not appearing on any of its neighbours.

We prove the claim by induction on r. The base case is r = t; i.e. the last
vertex coloured in H . Here, each colour in L(wt) that does not yet appear on
a neighbour is equally likely, so |L(wr)|−1 ≤ pt(c) ≤ (|L(wr)| − Δ1/3)−1 <
|L(wr)|−1(1 +O(Δ−2/3). Now assume that the claim holds for every r′ > r; we
will prove it for r.

Consider two colours c, c′ ∈ L(wr) that don’t appear on any neighbour of wr .
Let Ω(c), Ω(c′) denote the sets of colourings in Ωr−1 in which wr gets c, c′ re-
spectively. Suppose that we set wr = c′ and then continue our colouring process.
By induction, the probability that at least one neighbour of wr receives c is at
most Δ1/3 × O(Δ−1) = O(Δ−2/3). Since this process yields a uniform member
of Ω(c′), this implies that at least (1 − O(Δ−2/3))|Ω(c′)| of the colourings of
Ω(c′) can be mapped to a colouring in Ω(c) by switching the colour of wr to c.
Therefore, |Ω(c)| ≥ |Ω(c′)|(1 − O(Δ−2/3)). Since this is true for every pair c, c′

the claim follows.

Having proven the Claim, we now consider any u ∈ Uj; we will bound the prob-
ability that c is not assigned to any w ∈ N(u)−v. Since our colouring procedure
yields a uniformly random member of Ω, this probability is not affected by the
actual order in which we colour the vertices. So we can take w1, ..., the first
vertices to be coloured, to be N(u) − v. Since N(u) − v is an independent set,
if c ∈ L(w) for some w ∈ N(u) − v, c will still be eligible to be assigned to w
when we come to choose the colour for w. Therefore by our claim, the desired
probability is

∏
(1 − |Lw|−1 +O(Δ−5/3)) over all w ∈ N(u)− v with c ∈ L(w),
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and this is between αi + o(1) and βi + o(1) by the same calculations as in [12].
Thus, αiΔ

1/3 + o(Δ1/3) < Exp(tjv,c) < βiΔ
1/3 + o(Δ1/3).

Next we will use Azuma’s Inequality to show that tjv,c is concentrated.
Consider a particular wr adjacent to u� ∈ Uj . We want to measure how much

the colour chosen for wr can affect the expected value of tjv,c, where the ex-
pectation is over the remaining t − r random colour assignments. The extreme
case is when we choose to assign c to wr (we omit the straightforward dispen-
sation of the other cases). This will cause u� to not have c ∈ L(u�) and thus
might reduce the conditional expectation of tjv,c by 1. Possibly it will also have
a further effect on the conditional expectation because it changes the probabil-
ity that other members of Uj will have c in their lists; we bound that effect as
follows: For each of the Δ1/3 neighbours w of wr, the assignment of c to wr

drops the probability of w receiving c to zero; for every other w, by reasoning
similar to that in our claim, this affects the probability of w receiving c by a
negligible amount. Each u ∈ N(v) has at most one neighbour adjacent to wr and
so the effect on the probability of c not appearing in N(u) is at most a factor of
(1−1/Θ(Δ)); since this probability is Θ(1), by the previous paragraph, the effect
is an additive term of at most O(1/Δ). Thus, the overall affect on Exp(tv,c) is
1 + |Ui| ×O(1/Δ) = 1 +O(Δ−2/3) < 2.

Note that tv,c is determined by Δ4/3 trials - the colour choice for each neigh-
bour of every member of Ui. If we try to apply Azuma’s Inequality directly with
each γi = 2 and with Δ4/3 trials, we fail. So we reduce the number of trials to
Δ1/3 as follows: For each u ∈ N(v), we treat the assignments to all of N(u)− v
as a single random choice. A simple concentration argument (details omitted)
implies that with probability at least 1− exp(−Θ(Δ)), no u has more than

√
Δ

neighbours that receive c. Standard arguments (details omitted) allow us to as-
sume that no u has more than Δ1/10 such neighbours, as far as the remainder
of the argument is concerned. Thus, by the same calculations as in the previous
paragraph, the maximum effect that any one of these random choices can have is
1+
√
Δ×O(Δ−2/3) < 2. Thus we can apply Azuma’s Inequality with Δ1/3 trials,

each γi = 2 and with τ = O(Δ9/30) to show that the probability of tv,c differing
from its mean by more than O(Δ9/30) = o(Δ1/3) is at most exp(−Θ(Δ4/15)).
This yields an overall probability of tjv,c differing from its mean by more than
O(Δ9/30) of less than exp(−Θ(Δ)) + exp(−Θ(Δ−4/15)) < exp(−Δ1/3).

Now we finish the proof of Lemma 3.

Proof (Proof of Lemma 3). We will show that for every v, c, the probabil-
ity that LX(v) violates part (a) or that RX(v, c) violates part (b) is at most
exp(− 1

2Δ
1/3). If Δ ≥ 1000 log3 n then this is at most 1/n5. Thus, after multi-

plying by the fewer than n2 choices for v, c, we obtain that conditions (a,b) hold
for every n, c with probability at least 1− n−3, as required.

The bound on the probability that LX(v) is in violation follows immediately
from Lemma 4 by taking i to be a large enough constant that λi differs from its
limit by at most ζ/2 and noting that (Δ3)i exp(−Δ1/3) < exp(− 1

2Δ
1/3).

For RX(v, c), we also apply Lemma 4 for a particular large value of i. Then
we carry out an argument nearly identical to that in the proof of Lemma 4(b)
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to bound, for every v, c the number of neighbours u ∈ N(v) with X(v), c both in
N(u)−v. Straightforward calculations, as in [12], show that the expected number
is within ζΔ/2 of (1 − e−1/q)2Δ so long as i is large enough that αi, βi, λi are
sufficiently close to their limits. A concentration proof nearly identical to that
in the proof of Lemma 4 shows that the probability that this number differs
from its mean by at least ζΔ/2 is less than exp(− 1

2Δ
1/3); we omit the repetitive

details.
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Abstract. We prove that the minimum weight of a dicycle is equal
to the maximum number of disjoint dicycle covers, for every weighted
digraph whose underlying graph is planar and does not have K5 − e
as a minor (K5 − e is the complete graph on five vertices, minus one
edge). Equality was previously known when forbidding K4 as a minor,
while an infinite number of weighted digraphs show that planarity does
not guarantee equality. The result also improves upon results known
for Woodall’s Conjecture and the Edmonds-Giles Conjecture for packing
dijoins. Our proof uses Wagner’s characterization of planar 3-connected
graphs that do not have K5 − e as a minor.

1 Introduction

Min-max theorems are fundamental to directed graph theory. For example,
Menger’s Theorem [7] proves that the minimum number of arcs separating node
s from node t equals the maximum number of arc-disjoint dipaths from s to t.
Reversing the roles of these objects gives another min-max theorem: the min-
imum number of arcs in a dipath from s to t equals the maximum number of
arc-disjoint cuts separating s from t. Similarly, the celebrated Lucchesi-Younger
Theorem [6] proves that the minimum number of arcs in a dijoin equals the max-
imum number of arc-disjoint dicuts. In all three cases, the min-max theorems
can be extended from digraphs to weighted digraphs.

Still, many important min-max questions remain open or are untrue.
Woodall’s Conjecture [13] reverses the roles of the Lucchesi-Younger Theorem
and asks if the minimum number of arcs in a dicut equals to the maximum num-
ber of arc-disjoint dijoins. Although Woodall’s Conjecture remains one of the
biggest open conjectures in graph theory, its weighted version (the Edmonds-
Giles Conjecture [2]) is not true [9], [5], [12], [1]. In particular, Figure 1 shows
that the Edmonds-Giles Conjecture is not true for planar digraphs. On the other
hand, the conjecture was verified for series-parallel digraphs [8] (see also [10],
[3], [4] which proves the conjecture for source-sink connected digraphs). In this
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Fig. 1. A counterexample to the Edmonds-Giles Conjecture (left), and its planar dual
(right). Light arcs have weight zero and dark arcs have weight one.

paper we narrow the gap between these two results by working on the planar
dual problem. Along the way we introduces new techniques and lemmas that
hold promise for future results in this challenging and important area.

Claim. If digraph D is planar and has no K5−e minor, then for any arc weights,
the minimum weight of a dicycle is equal to the maximum number of disjoint
dicycle covers.

Our proof relies upon Wagner’s characterization of 3-connected graphs that have
no K5 − e minor. In particular, we show that dicycle covers can be glued across
vertex cuts of size 1 and 2. Then, despite the global nature of dicycle covers, we
are able to reduce the problem of finding dicycle covers locally. We redistribute
weight around individual nodes and then eliminate arcs with zero weight or large
weight. Furthermore, we employ a wye-delta reduction which removes a vertex
of degree 3 and replaces it with edges between the vertex’s neighbours.

Theorem 1 (Wagner). If planar digraph D is 3-connected and has no K5− e
minor, then D is either a small complete graph, the envelope graph, or a wheel
[11].

2 Definitions, Notation, and Terminology

In this section we group together definitions, notation, and terminology neces-
sary for the remainder of the paper. Graph-theoretic concepts that are open
to different interpretations will be formally defined, while more standardized
concepts will not. Included in this section are ideas that are common to many
packing and covering theorems, so experienced readers may wish to skim this
portion of the text. At the end of the section we introduce the notion of pushing
weight into a cut, and point out its use in Remarks 1 and 2.

A graph G = (V,E) is a set of vertices V and a set of edges E, where each
edge is an unordered distinct pair of vertices. A digraph D = (N,A) is a set
of nodes N and a set of arcs A, where each arc is an ordered distinct pair of
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Fig. 2. From left to right: complete graphs K1 through K4, the envelope graph, and a
wheel graph with seven vertices

nodes. Given a digraph D = (N,A), its underlying graph is equal to (V,E),
where V = N and E = {xy : xy ∈ A or yx ∈ A}. A weighted digraph (D,ω) is a
digraph D = (N,A) together with non-negative arc weights ω ∈ {0, 1, 2, . . .}A.

Let C be a dicycle in D with arcs A(C). The weight of C is denoted ω(C) and
is equal to

∑
a∈A(C) ω(a). The minimum weight of a dicycle in (D,ω) is denoted

τ(D,ω). Let J ⊆ A be a subset of arcs. J covers C if J ∩ A(C) �= ∅. J is a
(dicycle) cover of D if J covers every dicycle in D. A cover is minimal if every
proper subset of it is not a cover. A collection of arc subsets J1, J2, . . . , Jk ⊆ A
are disjoint in (D,ω) if at most ω(a) of the covers use a, for all a ∈ A. The
maximum number of disjoint covers in (D,ω) is denoted ν(D,ω). Notice that
ν(D,ω) ≤ τ(D,ω). If equality holds then we say that (D,ω) packs ; otherwise
(D,ω) does not pack. Finally, a collection of τ(D,ω) disjoint covers is called a
packing of covers. Central to finding a packing of covers is the pursuit of special
covers which we will call valid and accommodating. Let vJ ∈ {0, 1}A be an
incidence weighting for J ⊆ A, where vJ(a) = 1 if a ∈ J , and vJ (a) = 0 if
a /∈ J . We say that J is valid in (D,ω) if ω − vJ has only non-negative entries;
that is, if ω(a) > 0 for each a ∈ J . J accommodates dicycle C in (D,ω) if
ω′(C) ≥ τ(D,ω) − 1, where ω′ = ω − vJ . Furthermore, J is accommodating in
(D,ω) if every dicycle in C is accommodated by J in (D,ω). Notice that if J
is accommodating in (D,ω) then τ(D,ω − vJ ) = τ(D,ω) − 1; that is, J leaves
enough room for the possibility of finding τ(D,ω) − 1 disjoint covers after its
removal forms (D,ω − vJ ). Notice that every cover in a packing is valid and
accommodating, and that the ability to always find a valid and accommodating
cover allows one to construct a packing of covers.

Let X ⊆ N be a set of nodes in digraph (N,A). We let X = N −X , and the
cut induced by X is represented by δ(X) and is equal to δin(X)∪ δout(X), where
δin(X) = {xy ∈ A : x ∈ X and y ∈ X} and δout(X) = {xy ∈ A : x ∈ X and y ∈
X}. If δout(X) = ∅ then we say that δin(X) is a dicut.

A digon is a dicycle of length 2, and any arc that is in a digon is called a
digon arc.

Given a graph G = (V,E) and e ∈ E, we let G\e represent the result of
deleting edge e, and we let G/e represent the result of contracting edge e. Like-
wise, given v ∈ V , we let G\v be the result of deleting vertex v and every edge
that is incident with v. For a subset of vertices X ⊆ V , we let G[X ] be the
result of deleting every vertex in X . In graph G = (V,E), a k-separation is a
pair of subgraphs (G1, G2) where G1 = (V1, E1) and G2 = (V2, E2), such that



680 O. Lee and A. Williams

3

3

3
3

3

3

3 3

3

33

3

3

3

4

2

3
3

3

3

3 3

2

33

3

2

4

Fig. 3. Before and after pushing into δ(X), where X is given by the black nodes

E = E1 ∪ E2, E1 ∩ E2 = ∅, V1 ∪ V2 = V , and |V1 ∩ V2| = k. If a graph does
not have an i-separation for any i ≤ k − 1, then we say that it is k-connected.
We use analogous notation for digraphs and weighted digraphs, except that for
weighted digraphs we implicitly assume that contraction and deletion will result
in weights that are restricted to the remaining arcs.

Given a weighted digraph (D,ω) with D = (N,A), and X ⊂ N , then pushing
into δ(X) results in a new weighting for D, denoted by ρ(ω,X) = ω′ where

ω′(a) =

⎧⎨⎩
ω(a) + 1 if a ∈ δin(X)
ω(a)− 1 if a ∈ δout(X)

ω(a) otherwise

Remark 1. If C is a dicycle in (D,ω), then ω(C) = ω′(C) where ω′ = ρ(ω,X),
for X ⊆ N . In particular, τ(D,ω) = τ(D,ω′).

Remark 2. J is accommodating in (D,ω) ⇐⇒ J is accommodating in
(D, ρ(ω,X)), for X ⊆ N .

Remarks 1 and 2 follow from the fact that |A(C)∩δin(X)| = |A(C)∩δout(X)|
for any dicycle C, and any subset of nodes X . It is worth noting that Remarks
1 and 2 hold regardless of how many cuts we push into, and whether or not we
push into the same cut more than once. To perform successive pushes, let us
define

ρ0(ω,X) = ω

ρi(ω,X) = ρ(ρi−1(ω,X), X)

Often we want to push as much weight into a cut as possible, and we also
want to avoid making an arc have negative weight, so we are constrained by the
minimum weight of an outgoing arc in the cut. For this reason we introduce the
following notation: let ρ∗(ω,X) be shorthand for ρi(ω,X) where

i = min{ω(a) : a ∈ δout(X)}

and i = τ(D,ω) if δout(X) = ∅. To aid in the readability of this document,
we suggest that ρ(ω,X) be verbalized as “pushing out of δ(X)” as opposed
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to “pushing into δ(X)”. Finally, we generally wish to push into or out of cuts
surrounding a single node, and so we will use the notation ρ(ω, x) as a short-form
for ρ(ω, {x}), and ρ(ω, x) as a short-form for ρ(ω, {x}), for node x.

3 Connectivity Lemmas

In this section we show that packings can be combined across dicuts,
1-separations, and 2-separations whose overlapping vertices form a digon. For
this entire section we let (D,ω) be a weighted digraph with D = (N,A).

Lemma 1 (Dicut). Suppose that δin(S) is a dicut in D. Let D1 = D[S], let
D2 = D[S], and let ωi be ω restricted to Di for each i = 1, 2. If (D1, ω1) packs
and (D2, ω2) packs, then (D,ω) packs.

Proof. Note that τ(Di, ωi) ≥ τ(D,ω) for each i = 1, 2. Suppose that (Di, ωi)
packs for each i = 1, 2. Then there exists a packing including J i

1, . . . , J
i
τ(D,ω) in

(Di, ωi) for each i = 1, 2. Let Jj = J1
j ∪ J2

j , for 1 ≤ j ≤ τ(D,ω). Clearly Jj is a
cover of D, for 1 ≤ j ≤ τ(D,ω). Thus, J1, . . . , Jτ(D,ω) is a packing for (D,ω).

Lemma 2 (1-separation). Let (D1, D2) be a 1-separation of D. Let ωi be ω
restricted to Di for each i = 1, 2. If (D1, ω1) packs and (D2, ω2) packs, then
(D,ω) packs.

Proof. The proof is identical to the proof of Lemma 1.

Lemma 3 (2-separation). Let (D′
1, D

′
2) be a 2-separation of D such that D′

1
and D′

2 share vertices x and y. Let ωi be ω restricted to Di for each i = 1, 2. Let
αi be the minimum weight of a dipath from x to y in (D′

i, ωi) for each i = 1, 2.
Assume that α1 ≤ α2, and let α = min{τ(D,ω), α1}. Let e = xy, f = yx
be new arcs. For each i = 1, 2, let Di = D′

i ∪ {e, f}, let ωi(e) = α, and let
ωi(f) = τ(D,ω)− α. If (D1, ω1) packs and (D2, ω2) packs, then (D,ω) packs.

Proof. Let τ = τ(D,ω). We claim that τ(Di, ωi) = τ for each i = 1, 2. We prove
it for D1; the proof is analogous for D2. Suppose there exists a dicycle C in D′

1
such that ω1(C) < τ . Clearly, C must contain e or f . If f ∈ A(C) then C − f
gives a dipath from x to y in D1 such that ω1(C−f) < α ≤ α1, which contradicts
the choice of α1. If e ∈ A(C) then α1 = α < τ , and C−e gives a path in D1 such
that ω(C − e) = ω1(C − e) < ω−α1. Let Q be a minimum length dipath from x
to y in (D′

1, ω1[D′
1]), that is, ω(Q) = α1. Then ω((C−e)∪Q) < τ −α1 +α1 = τ ,

and hence (C − e) ∪Q contains a dicycle Z in D such that ω(Z) < τ , which is
a contradiction. Hence, τ(D′

1, ω1) = τ .
If τ(Di, ωi) = ν(Di, ωi) for each i = 1, 2, then there exists a packing including

τ covers of D′
i, say {J i

1, . . . , J
i
τ}, for each i = 1, 2.; We may assume that for each

i = 1, 2, we have e = xy ∈ J i
j , for 1 ≤ j ≤ α, and f = yx ∈ J i

j , for α+1 ≤ j ≤ τ .
Let Jj = (J1

j ∪ J2
j ) − {e, f}, 1 ≤ j ≤ τ . We claim that each Jj is a cover of D,

for 1 ≤ j ≤ τ . In fact, if C is a dicycle contained in D1 or in D2 then Jj clearly
intersects C. Otherwise, x and y are vertices in C, and C can be partitioned in
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two paths P and Q from x to y and from y to x, respectively. Without loss of
generality, say that P is contained within the arcs of D1, and Q is contained
within the arcs of D2. We have two cases to consider.

(a) 1 ≤ j ≤ α: note that P ∪ f is a dicycle in D′
1 and recall that J1

j is a cover of
D′

1. Since f �∈ J1
j , then J1

j (and hence, Jj) intersects P .
(b) α+1 ≤ j ≤ τ : note that Q∪ e is a dicycle of D′

2 and recall that J2
j is a cover

of D′
2. Since e �∈ J2

j , then J2
j (and hence, Jj) intersects Q.

Thus, in both cases each Jj is a cover of D, and hence, {J1, . . . , Jτ is a packing
in (D,ω).

4 Contraction and Deletion Lemmas

In this section, we continue to show how packings in a smaller weighted digraph
can be extended to packings in a larger original weighted digraph called (D,ω)
with D = (N,A). However, in this section there is a single smaller weighted
digraph, and it arises not from dicuts or separations, but instead from individual
arcs that are deleted or contracted. In particular, we associate deletion with arcs
of weight at least τ(D,ω), and contraction with non-transitive arcs of weight 0.
We require non-transitive arcs for contracting since we do not wish to introduce
new dicycles. On the other hand, we are not concerned with removing dicycles
when deleting an arc of weight at least τ(D,ω) since the arc can be added to
every cover of the smaller weighted digraph.

We also extend these results by pushing weight into a cut δ(X) to bring an
arbitrary arc to weight τ(D,ω), or a non-transitive arc to weight 0. We point
out that it is always possible to create arcs of weight 0 in a cut, however it is
not always possible to create arcs of weight τ(D,ω) in a cut. In particular, if we
are pushing into δ(X) with δin(X) �= ∅, then it must be that maxa∈δin(X) ω(a)+
mina∈δout(X) ω(a) ≥ τ(D,ω). After manipulating weights and forming a smaller
weighted digraph, we are not interested in revealing an entire packing for (D,ω),
but merely a single valid accommodating cover. Because of Remarks 1 and 2,
our challenge is ensuring that at least one cover in the smaller weighted digraph
is valid in (D,ω). For this reason, |δout(X) ∩ {a ∈ A : ω(a) = 0}| becomes
important. If the value is strictly less than τ(D,ω), then we can ensure that at
least one of the τ(D,ω) covers found in the smaller weighted digraph will be
valid in (D,ω); otherwise, we can think of δ(X) as being protected against such
an argument.

Lemma 4 (Contract). (a) Suppose ∃ non-transitive a ∈ A with ω(a) = 0. If
(D,ω)/a packs, then (D,ω) packs.
(b) Suppose ∃ non-transitive a ∈ δout(X) and X ⊆ N , such that ω(a) =
min{ω(b) : b ∈ δout(X)} and |δin(X) ∩ {b ∈ A : ω(b) = 0}| < τ(D,ω). If
(D, ρ∗(ω,X))/a packs, then (D,ω) has a valid accommodating cover.

Proof. (a) Since a is non-transitive, it means that the dicycles in D and D/a
are identical (except that some dicycles in D/a no longer include a). Therefore,
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by Remark 1 and since ω(a) = 0, we have that τ(D,ω) = τ(D,ω)/a, and that a
cover in D/a is a cover in D. Therefore, the packing in (D,ω)/a is also a packing
in (D,ω).
(b) Let ω′ = ρ∗(ω,X). Since a is non-transitive, it means that the dicycles in D
and D/a are identical (except that some dicycles in D/a no longer include a).
Therefore, by Remark 1 and since ω′(a) = 0, we have that τ(D,ω) = τ(D,ω′) =
τ((D,ω′)/a), and that a cover in D/a is a cover in D. Let J1, . . . , Jτ(D,ω) be a
packing in (D,ω′). From Remark 2, each Ji is accommodating in (D,ω). Fur-
thermore, since the only arcs that have ω(b) = 0 and ω′(b) > 0 are contained in
δin(X), and since |δin(X) ∩ {b ∈ A : ω(b) = 0}| < τ(D,ω), it must be that one
of the Ji covers is also valid in (D,ω).

Lemma 5 (Delete). (a) Suppose ∃a ∈ A with ω(a) ≥ τ(D,ω). If (D,ω)\a
packs, then (D,ω) packs.
(b) Suppose ∃a ∈ A and X ⊆ N , such that a ∈ δin(X) and maxb∈δin(X) ω(b) +
minb∈δout(X) ω(b) ≥ τ(D,ω) and |δin(X) ∩ {b ∈ A : ω(b) = 0}| < τ(D,ω). If
(D, ρ∗(ω,X))\a packs, then (D,ω) has a valid accommodating cover.

Proof. (a) Deleting a does not decrease the minimum weight of a dicycle, so there
is a packing of covers in (D,ω)\a that includes J1, . . . , Jτ(D,ω). Notice that each
Ji covers every dicycle in D, except possibly for some dicycles containing a.
Therefore, since ω(a) ≥ τ(D,ω), we have that J1 ∪ {a}, . . . , Jτ(D,ω) is a packing
for (D,ω).
(b) Let ω′ = ρ∗(ω,X). Notice that ω′(a) ≥ τ(D,ω). By Remark 1, and since
deleting a does not decrease the minimum weight of a dicycle, we have that
τ(D,ω) = τ(D,ω′) ≥ τ((D,ω′)\a). Therefore, there is a packing of covers in
(D,ω)\a that includes J1, . . . , Jτ(D,ω). Notice that each Ji covers every dicycle in
D, except possibly for some dicycles containing a. Therefore, J1∪{a}, . . . , Jτ(D,ω)
are all covers in (D,ω). From Remark 2, each Ji is accommodating in (D,ω).
Furthermore, since the only arcs that have ω(a) = 0 and ω′(a) > 0 are contained
in δin(X), and since |δin(X) ∩ {b ∈ A : ω(b) = 0}| < τ(D,ω), it must be that
one of the Ji covers is also valid in (D,ω).

5 Proof of Claim

Now we are ready to use the results of the two previous sections in order to
prove Claim 1, which is restated below as Claim 5.

Claim. (D,ω) packs whenever the underlying graph of D has no K5 − e minor.

To prove Claim 5, we show that a smallest counterexample cannot exist. We
call such a counterexample (Dm, ωm), where Dm = (Nm, Am). For notational
convenience, let τm = τ(Dm, ωm). We choose (Dm, ωm) to be smallest in the
sense that it first minimizes τ , then the number of nodes, and finally the number
of arcs. Hence, (D,ω) packs whenever one of the following holds:
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M1: τ(D,ω) < τm

M2: τ(D,ω) = τm and |N | < |Nm|

M3: τ(D,ω) = τm and |N | = |Nm| and |A| < |Am|

Remark 3. Dm is 3-connected.

From these choices and the results in Section 3, we have proven that Dm is 3-
connected (Remark 3). Therefore, by Theorem 1 it must be that the underlying
graph of Dm is a small complete graph, the envelope graph, or a wheel. Without
too much difficulty, we can eliminate the possibility of K2 and K3. Furthermore,
a wheel with three vertices is K3, and a wheel with four vertices is K4. Therefore,
we have the following:

Remark 4. The underlying graph of Dm is a member of the set S = { K4, E,
W5, W6, W7, . . .}, where E is the envelope graph, and Wi is a wheel with i
vertices.

Fortunately, each member of S contains vertices of degree 3. In fact, every vertex
has degree 3 except for the middle vertex in the wheels. Even more fortuitously,
if we perform a wye-delta reduction on any of the graphs in S, then we either
get K3, or a graph in S with one less vertex. (If v is a vertex of degree 3 with
neighbours x, y, z, then a wye-delta reduction is the result of removing vertex v
and adding edges xy, xz, yz.)

Remark 5. Dm has no dicuts.

Since Dm has no dicuts, there is at least one arc entering and leaving each node
in Dm. Therefore, Figure 4 shows the possible configurations for the directed
versions of its degree 3 vertices (without distinguishing between neighbours).

Fig. 4. From left to right: Configurations 1 through 8

By using the ideas from Section 4, let us now eliminate all but the first three
configurations. From (M2) and Lemma 5, we cannot push any arc in Am to
weight τm, unless the cut we are pushing on is protected by |δout(X) ∩ {a ∈ A :
ωm(a) = 0}| ≥ τm. Notice that pushing a digon arc to weight zero is equivalent
to pushing its partnered digon arc to weight τm. Therefore, Configurations 6, 7,
8 cannot appear in (Dm, ωm). For Configuration 4 and 5, notice that in both
cases there is a digon arc a that would appear in no other dicycle except with the
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digon arc that it is partnered with, and we will call b. Therefore, we can delete
a, find τm covers by minimality, and then extend these to covers of (Dm, ωm)
simply by adding a to the covers that b is not included in. Hence, Configurations
4 and 5 cannot appear in (Dm, ωm).

Configuration 3 is slightly more difficult to eliminate. Let us label the nodes
and arc weights of Configuration 3 as in the left portion of Figure 5. As in the
previous paragraph, we cannot push a digon arc to weight 0. Therefore, we have
the following conditions:

s < r

t < q

Our strategy is now to replace this configuration by using a wye-delta reduc-
tion which is illustrated in the right portion of Figure 5. We will call the newly
formed weighted digraph (D,ω). In particular, we construct (D,ω) so that every
dicycle in (Dm, ωm) has a corresponding dicycle in (D,ω) with the same weight,
except for the digon, which is not transferred to (D,ω). From the previous dis-
cussion on wye-delta reductions on the set of graphs S, and from (M2), (D,ω)
packs. From the arc weights shown in Figure 5, it is clear that τ(D,ω) = τm,
and so we have a packing J1, . . . , Jτm for (D,ω). We now wish to show that
this packing gives a valid accommodating cover for (Dm, ωm). Before proceed-
ing, we must constrain which sets of arcs the individual covers can contain by
introducing Lemma 6.

q

s

x

y z

x

c

y z

r

t

s+q r+t

s+t

Fig. 5. Delta-wye reduction for Configuration 3

Lemma 6. Let C be a cycle that is not a dicycle, and of the two directions of
arcs within C, let one direction be called forward and the other backward. If J
is a minimal cover and includes every forward arc of C, then J includes at least
one backward arc of C.

Proof. Otherwise, since J is minimal, for every forward arc a in C, there is
a dicycle Ca such that A(Ca) ∩ J = {a}. However, if J does not include any
backward arc of C, then we contradict that J is a cover, since taking Ca for each
forward arc a in C, together with the backward arcs of C, gives a dicycle that
is not covered by J .

From Lemma 6, we know that the possible sets of arcs contained in each Ji

are given by Figure 6. If Ji is of the first type, then it can be converted into a
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Fig. 6. From left to right, the five possible arc sets included in each Ji are given by
the light arcs

valid accommodating cover for (Dm, ωm) by replacing arcs yx, yz, xz by cx, cz
(Figure 7 (left)). If Ji is of the second type, then it can be converted into a
valid accommodating cover for (Dm, ωm) by replacing arc yx with cx (Figure 7
(center)). If Ji is of the third type, then it can be converted into a valid ac-
commodating cover for (Dm, ωm) by replacing arc xz with xc (Figure 7 (right)).
Therefore, we can eliminate Configuration 3 by guaranteeing that at least one
of J1, . . . , Jτ is of one of the first three types given by Figure 6. Fortunately, the
last two types given by Figure 6 can be used at most s+ t times by the weight
given in Figure 5. From the above discussion on pushing, s < r and t < q, so
s+ t < r+ q. However, r+ q are the weights of a digon, so s+ t < τm, and there-
fore, at least one of J1, . . . , Jτm can be converted into a valid accommodating
cover for (Dm, ωm).

Fig. 7. From left to right, converting the first three possible arc sets into valid accom-
modating covers for (Dm, ωm)

Therefore, we have now shown that every degree 3 vertex in the underlying
graph of Dm is of Configuration 1 or Configuration 2 in Figure 4. Furthermore,
from the results of Section 4, we know that at least one of the cuts surrounding
these degree 3 vertices must be protected by |δout(X) ∩ {a ∈ A : ωm(a) = 0}| ≥
τm. Therefore, we must have that τm = 2 and the arc weights must be as shown
in Figure 8.

The endgame for our proof now consists of showing that when the underlying
graph of (Dm, ωm) is the envelope graph, or a wheel, and τm = 2, and the degree
3 nodes of (Dm, ωm) are given by Figure 8, then (Dm, ωm) packs. It is not difficult
to verify by hand that the envelope graph cannot possibly have nodes of degree 3
that are consistent with Figure 8. Therefore, we turn our attention to the infinite
class of wheels.
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Fig. 8. Every degree 3 node in (Dm, ωm) must be isomorphic to one of the above

0
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1

1 1

1

1

Fig. 9. If (Dm, ωm) is a wheel, then it must have an odd number of nodes as above

Fortunately, the heavy restrictions force the wheels to have an odd number
of vertices, with the outer cycle alternating in direction with weight zero arcs,
and the inner arcs alternating in direction around the wheel with weight one.
Figure 9 shows an example with seven nodes. Given such a weighted digraph,
it is easy to find a packing of two covers, since we can let J1 = {xc : xc ∈ Am}
and J2 = {cx : cx ∈ Am}, where c is the center node in the wheel.

Therefore, we have show that (Dm, ωm) does in fact pack. Therefore, there
is no minimal counterexample, and we have verified our original claim. We con-
clude the paper by pointing out the corollary that it has for the Edmonds-Giles
Conjecture, and less generally, Woodall’s Conjecture.

Corollary 1. Let (D,ω) be a weighted digraph, and let P be the planar dual of
the K5 − e graph. If the underlying graph for D does not contain P as a minor,
then the maximum number of disjoint dijoins is equal to the minimum weight of
a dicut.
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Abstract. We provide sharp estimates for the probabilistic behaviour
of the main parameters of the Euclid algorithm, and we study in par-
ticular the distribution of the bit-complexity which involves two main
parameters : digit–costs and length of continuants. We perform a “dy-
namical analysis” which heavily uses the dynamical system underlying
the Euclidean algorithm. Baladi and Vallée [2] have recently designed a
general framework for “distributional dynamical analysis”, where they
have exhibited asymptotic gaussian laws for a large class of digit–costs.
However, this family contains neither the bit–complexity cost nor the
length of continuants. We first show here that an asymptotic gaussian
law also holds for the length of continuants at a fraction of the execution.
There exist two gcd algorithms, the standard one which only computes
the gcd, and the extended one which also computes the Bezout pair,
and is widely used for computing modular inverses. The extended algo-
rithm is more regular than the standard one, and this explains that our
results are more precise for the extended algorithm. We prove that the
bit–complexity of the extended Euclid algorithm asymptotically follows
a gaussian law, and we exhibit the speed of convergence towards the
normal law. We describe also conjectures [quite plausible], under which
we can obtain an asymptotic gaussian law for the plain bit-complexity,
or a sharper estimate of the speed of convergence towards the gaussian
law.

1 Introduction

The Euclid algorithm computes the greatest common divisor (in short gcd) of u
and v, with Euclidean divisions of the form v = m ·u+ r with 0 ≤ r < u. On an
input (u, v), with v0 := v, v1 := u, it performs a sequence of Euclidean divisions

v0 = m1 · v1 + v2, . . . vi = mi+1 · vi+1 + vi+2 . . . vp−1 = vp ·mp + 0. (1)

It stops when the remainder vp+1 is zero, and the last non-zero remainder vp is
the greatest common divisor d of u and v.

We wish to study the bit–complexity of the Euclid algorithm, i.e., the to-
tal number of binary operations performed during the execution of the Euclid
algorithm. The (naive) bit–complexity of a Euclidean division v = m · u + r is
�(u) · �(m), where �(v) is the binary length of the integer v; it equals �lg v�+ 1,

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 689–702, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where lg denotes the logarithm in base 2. Then, the bit–complexity of the Euclid
algorithm on the input (u, v) is

B(u, v) =
p∑

i=1

�(mi) · �(vi), [ p := P (u, v) is the number of iterations] (2)

The extended Euclid algorithm ouputs, at the same time, the Bezout pair (r, s)
for which d = rv + su. It computes the sequence si defined by s0 = 0, s1 = 1,
si = si−2 − si−1 · mi−1, 2 ≤ i < p. The last element sp is the Bezout
coefficient s. The bit–complexity D of this algorithm on (u, v) is

D(u, v) = �(mp) · �(vp) +
p−1∑
i=1

�(mi) · [�(vi) + �(si)]. (3)

We introduce also a so–called “smoothed” version D̃, B̃ of costs D,B, where we
replace the size �(si), �(vi) of si, vi by their logarithms lg si, lg vi,

D̃(u, v) = �(mp)·lg vp+
p−1∑
i=1

�(mi)·[lg vi+lg si], B̃(u, v) =
p∑

i=1

�(mi)·lg vi. (4)

We observe that all the costs of interest can be expressed as a sum of terms,
each of them being a product of two factors: the first one involves the (bit-)size
of digits, and the second one involves the size of the so-called continuants vi, si.

1.1 Distributional Analysis

We are interested here in studying the probabilistic behaviour of the gcd algo-
rithm. The set Ω of inputs for the Euclid algorithm is Ω := {(u, v) ∈ N2; 0 ≤
u < v}. For any (u, v) of Ω, the size of pair (u, v), denoted by L(u, v), is just
the binary length (or the size) of v, i.e., L(u, v) := �(v). The subset Ωn of inputs
(u, v) with a fixed size n,

Ωn := {(u, v) ∈ Ω; L(u, v) = n}, (5)

is endowed with the uniform probability Pn. For a random variable R defined on
Ω, its restriction to Ωn is denoted by Rn, and we wish to analyze the asymptotic
behaviour of R, i.e., the evolution of variables Rn when n becomes large.

The evolution of the mean values E[Rn] is of great interest and, more gen-
erally, the study of all moments E[R�

n] provides a first understanding of the
probabilistic behaviour of the algorithm: this is the average–case analysis. How-
ever, the distributional analysis, which describes the evolution of the distribution
of variable Rn, provides a much more precise analysis of the algorithm: this is
the ultimate purpose in analysis of algorithms. Very often, variables Rn have a
distribution which tends to the gaussian law: this phenomenon is easily proved
as soon as cost Rn is the sum of n elementary costs, which are independent, and
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possess the same distribution. However, in the “Euclidean world”, the steps of
(1) are not independent, and the distribution of numbers may evolve with the
evolution of the algorithm. This is why asymptotic gaussian laws, even if they
are widely expected, are often difficult to prove in this context.

We provide here such a distributional analysis, for the most precise parameter
of the extended Euclid algorithm, its bit–complexity D. We are also interested in
describing the evolution of the size of remainders vi. There exist now many well-
known results about the probabilistic behaviour of the Euclid algorithm, even
if the last ones have been obtained recently. The first results on probabilistic
analysis of Euclid’s algorithm are due to Heilbronn and Dixon who have shown,
around 1970, that the average number of iterations is linear with respect to the
size. In 1994, Hensley [6] performed the first distributional analysis, and proved
that the number of steps has an asymptotic gaussian behaviour. However, his
proof is not easily extended to other parameters of the algorithm. During the
last ten years, the research team in Caen has designed a complete framework for
analyzing an entire class of Euclidean algorithms, with a large class of parameters
(see [10]). It is possible to obtain precise results on the average behaviour of the
main parameters of the algorithm : the digits mi, and the size of continuants
vi and si. Akhavi and Vallée have also analyzed the average bit–complexity [1].
These methods consider the underlying dynamical systems, and make a deep
use of dynamical tools, like the transfer operator. However, all the analyses were
“average–case analyses”. There was a breakthrough two years ago, when Baladi
and Vallée [2] extended the previous method for obtaining limit distributions,
for a large class of costs, the so-called additive costs of moderate growth; they
consider costs C defined on Ω and associated to an elementary cost c on digits,

C(u, v) :=
p∑

i=1

c(mi). (6)

When c(m) is O(logm), the cost c, and the cost C are said to be of moderate
growth. This class of costs contains quite natural parameters, as the number of
steps (for c = 1), the number of occurrences of a given digit m0 (for c(m) :=
[[m = m0]]), the total encoding length (when c equals the binary length �), but
NOT the bit–complexity. These bit–complexity costs are more difficult to deal
with, because they involve both continuants and digits, in a multiplicative way.
Here, we aim to study the distribution of the bit–complexity, and we wish to
extend both the results of Akhavi and Vallée, about the average bit–complexity,
and the distributional methods of Baladi and Vallée. We wish also to study the
evolution of the size of remainders vi.

As in previous works [2, 3], we make a deep use of the weighted transfer
operator relative to an elementary cost c and which depends on two parameters
(s, w),

Gs,w,[c][f ](x) :=
∑
m≥1

1
(m + x)2s

· exp[wc(m)] · f
(

1
m+ x

)
. (7)
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When c is of moderate growth, the operator Gs,w,[c] admits (on a convenient
functional space) a unique dominant eigenvalue, for (s, w) near (1, 0). The loga-
rithm of the dominant eigenvalue, called the pressure, and denoted by Λ[c](s, w),
plays a central work in [2], and also in the present paper. The particular case
when c equals the binary length � is crucial in study of bit–complexities.

1.2 Asymptotic Gaussian Laws

We prove here that many variables R defined on Ω follow asymptotically a
gaussian law. We first provide a precise definition:

Definition. [Asymptotic gaussian law.] Consider a cost R defined on Ω and its
restriction Rn to Ωn. The cost R asymptotically follows a gaussian law if there
exist three sequences an, bn, rn, with rn → 0, for which

P

[
(u, v) ∈ Ωn

∣∣ Rn(u, v)− an√
bn

≤ y

]
=

1√
2π

∫ y

−∞
e−t2/2 dt+O(rn) .

The sequence rn defines the speed of convergence, denoted also by r[Rn]. The
expectation E[Rn] and the variance V[Rn] satisfy E[Rn] ∼ an, V[Rn] ∼ bn. We
say that the triple (an, bn, rn) is a characteristic triple for the gaussian law of R.

For instance, the result of Baladi and Vallée can be stated as follows.

Theorem 0. [Asymptotic gaussian Law for additive costs of moderate growth]
(Baladi and Vallée). Consider an additive cost C relative to an elementary cost
c of moderate growth [defined in (6)].
(i) On the set of integer inputs of size n, the cost C asymptotically follows a
gaussian law, with a characteristic triple given by: r[Cn] = O(n−1/2),

E[Cn] = μ(c) ·n+μ1(c) +O(2−nγ), V[Cn] = ρ(c) ·n+ ρ1(c) +O(2−nγ),

Here γ is a strictly positive constant which does not depend on cost c.
(ii) The constants μ(c) and ρ(c) involve the first five derivatives of order 1 and
2 of the pressure function Λ(s, w) = Λ[c](s, w) of Gs,w,[c] at (s, w) = (1, 0).

In the case when c = �, the constant ρ(�) is (only) polynomial–time com-
putable (see [8]) while μ(�) admits a closed form

μ(�) =
12
π2 log

∞∏
i=0

(1 +
1
2i

).

1.3 Our Main Results

The “extended” cost D defined in (3) is easier to analyze because it is, in a sense,
more regular than cost B. We prove here that the cost D follows asymptotically
a gaussian law, with a characteristics triple which involves constants μ(�), ρ(�)
of Thm 0 relative to the binary–length �.
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Theorem 1. [Asymptotic gaussian law for the extended bit–complexity.] (i) On
the set of integer inputs of size n, the bit complexity D of the extended Euclid
algorithm follows asymptotically a gaussian law, with the characteristic triple

E[Dn] = μ(�)·n2 [1+O
(

1
n

)
], V[Dn] = ρ(�)·n3 [1+O

(
1
n

)
], r[Dn] = O(n−1/3).

The smoothed bit–complexity D̃ asymptotically follows a gaussian law with the
same characteristic triple [μ(�) · n2, ρ(�) · n3, O(n−1/3)].

(ii) Under conjecture (C1), the speed of convergence r[D̃n] is O(n−1/2).

Conjecture (C1) is described in 2.3. For the standard bit–cost B, defined
in (2), we exhibit a precise estimate for the variance, and propose a conjecture
(C2), described in 2.4, under which we prove an asymptotic gaussian law.

Theorem 2. [Standard integer bit–complexity.] (i) On the set of integer inputs
of size n, the mean and the variance of the bit-complexity B satisfy

E[Bn] =
1
2
μ(�) · n2 [1 +O

(
1
n

)
], V[Bn] = τ · n3 [1 +O

(
1
n

)
]. (8)

Here τ is a strictly positive constant, which involves spectral objects of the
operator Gs,w,[c]. The same holds for the smoothed version B̃.

(ii) Under Conjecture (C2), the speed of convergence r[B̃n] is O(n−1/3), and
the equality 4τ = ρ(�) holds.

We are also interested in describing the evolution of the size of remainders vi

during the execution of the algorithm, and we consider the size of the remainder
vi at “a fraction of the depth”. More precisely, for a real δ ∈]0, 1[, we denote by
�[δ] the logarithm of vi when i equals �δP �, [P is the number of iterations of the
Euclid algorithm]. The following result shows that the remainders at a fraction of
the depth asymptotically follow a log-normal law, and that the evolution of the
sizes of continuants is very regular. This result constitutes a “discrete version”
of the well-known result of [9] (sharpened by Vallée in [11]) who shows that the
n-th continuant of a real x ∈ I asymptotically follows a gaussian law, when I is
endowed with any density of class C1.

This result also plays a central rôle in the analysis of the so–called Interrupted
Euclidean algorithm which stops as soon as the remainder vi is less than vδ

0 . An
average–case analysis of the Interrupted algorithm is provided in [4], and the
present results are a first [but crucial] step towards the distributional analysis of
the algorithm. And the Interrupted algorithm is itself a basic procedure of the
Lehmer Euclid algorithm [7], or the recursive Euclidean algorithms.

Theorem 3. [gaussian limit law for sizes of continuants at a fraction of the
depth.] Consider a rational δ of ]0, 1[. On the set of integer inputs of size n, the
length �[δ] follows asymptotically a gaussian law, with mean, variance and speed
of convergence given by r[�[δ]n ] = O(n−1/2),

E[�[δ]n ] = μ[δ] · n+ μ1(δ) +O(2−nγ), V[�[δ]n ] = ρ[δ] · n+ ρ1(δ) +O(2−nγ).
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Here γ is a strictly positive constant which depends on δ, and the constants μ[δ]
and ρ[δ] are related to the derivatives of the pressure function Λ(s) at s = 1,

μ[δ] = (1− δ), ρ[δ] = δ(1− δ)
|Λ′′(1)|
|Λ′(1)| > 0 .

1.4 Plan of the Paper

Section 2 provides a description of the main steps for proving Theorems 1 and
2 and states Theorem 4, which will be a main tool in these proofs. Section
3 presents the transfer operators and explains their generating rôle. Then, it
describes the main principles of the analytical study which provides a proof of
Theorems 3 and 4. Finally, we describe the two conjectures and provide some
hints towards a possible proof.

2 Main Steps for Theorems 1 and 2

Here, we explain how to obtain asymptotic gaussian laws for the bit–
complexities. We prove Theorem 1, Assertion (i), describe conjectures (C1) and
(C2) and explain how to prove Theorem 1 (ii) and Theorem 2 (ii) under these
conjectures.

2.1 Expressions for Continuants

Each division–step of the Euclid algorithm v = m · u + r uses a digit m and
changes the old pair (u, v) into a new pair (r, u). Instead of integers, we consider
rationals [the old rational x = u/v, and the new rational y = r/u] which both
belong to the unit interval, and we look for a relation between y and x. One has

r

u
=

v −mu

u
=

v

u
− � v

u
� so that y = T (x) with T (x) :=

1
x
− � 1

x
�.

With T (0) = 0, the map T : [0, 1] → [0, 1] is called the Gauss map and plays a
fundamental rôle in the study of the Euclid algorithm. When the quotient is m,
there exists also a linear fractional transformation (LFT) h[m] for which

x = h[m](y) with h[m](y) = 1/(m+ y) .

Of course, the LFT’s h[m] are the inverse branches of T . On an input (u, v), the
execution (1) creates a continued fraction of the form

u

v
= h[m1] ◦ h[m2] ◦ . . . h[mp] = h(0). (9)

When the algorithm performs p iterations, it gives rise to a continued fraction
of depth p. Here, we show that the main parameters of the Euclid algorithm on
the input (u, v) (quotients mi, remainders vi and continuants si) can be read
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on the continued fraction of the rational u/v. When the CFE of u/v is split at
depth i, the LFT h defines three LFT’s, the beginning LFT bi, the middle LFT
hi and the ending LFT ei, respectively defined as

bi := h[m1] ◦ h[m2] ◦ . . . ◦ h[mi−1], hi := h[mi] ei := h[mi+1] ◦ . . . ◦ h[mp].

Then, the i-th continuants admit expressions which involve LFT’s ei and bi,

s−2
i = |b′i(0)|, v−2

i = v−2
p · |e′i(0)|. (10)

2.2 Bit-Complexity Cost

This entails the following decompositions,

Proposition 1. The bit–complexity costs D, D̃ of the extended Euclidean algo-
rithm decompose as D̃ = (L − 1) · Z + Ỹ , D = (L+ 1) · Z + Y,

with Ỹ = −Y (1) +O(Y (2)) + Y (3) + Y (4), Y = Ỹ + Y (5).

Here L is the size of the input, defined by L(u, v) = �(v) = �(v0) and

Z =
p−1∑
i=1

�(mi), Y (1) =
p−1∑
i=1

�(mi) · lgmi, Y (2) = (�(mp) + lg vp)2, (11)

Y (3) = f ·
p−1∑
i=1

�(mi), Y (4) =
p−1∑
i=1

di · �(mi) Y (5) =
p−1∑
i=1

fi · �(mi), (12)

with di =: lg
∣∣∣∣ h′i(0)
h′i(ei(0))

∣∣∣∣+lg
∣∣∣∣b′i(ei−1(0))

b′i(0)

∣∣∣∣ , f := {lg v0}, fi := −{lg vi}−{lg si}.

Moreover, the so-called distortions di admit uniform lower and upper bounds.

We have then “splitted” the extended cost D into two costs: the “main” cost
X := L ·Z which will be proven to be (asymptotically) gaussian, and a “remain-
der” cost Y , which will be proven to be (asymptotically) more concentrated that
the main cost. Then, the total cost X + Y will be (asymptotically) gaussian: .

Proposition 2. Consider two costs X and Y , defined on Ω and their restrictions
Xn, Yn to Ωn. Suppose that X admits a gaussian limit law with speed of con-
vergence r[Xn] and the variances of Xn and Yn satisfy V[Yn] = αn ·V[Xn], with
αn → 0. Then, the random variable X + Y follows asymptotically a gaussian
limit law with a characteristic triple given by: r[Xn + Yn] = r[Xn] +O(α1/3

n ),

E[Xn + Yn] = En[X ] + En[Y ], V[Xn + Yn] = V[Xn] · [1 +O(αn)].
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2.3 Proof of Theorem 1

Theorem 1 (i) is easily deduced from Propositions 1 and 2. The “main” cost is
X := L ·Z, where L(u, v) is the size of pair (u, v), equal to �(v). With results of
Baladi and Vallée [Theorem 0], the cost Z follows an asymptotic gaussian law.
Since Xn = n ·Zn, the cost X follows itself an asymptotic gaussian law with the
characteristic triple

E[Xn] = n · E[Zn] = O(n2), V[Xn] = n2 ·V[Zn] = O(n3), r[Xn] = O(n−1/2).

In Proposition 1, there appear three different kinds of costs: – (i) cost Y (1) –
(ii) cost Y (2) which is an end-cost, [i.e., it depends only on variables used in the
last step �(mp), �(vp), and in a polynomial way.] – (iii) The other costs R [the
distortion cost Y (4) and the two fractional costs Y (3), Y (5)] deal with bounded
sequence fi, di. For these costs R, one has:

E[Rn] = O(E[Zn]) = O(n), V[Rn] ≤ E[R2
n] = O(E[Z2

n]) = O(n2).

In the following Theorem 4, we will prove that the cost Y = Y (1) fulfills the
concentration property, and that end-costs R are negligible i.e.,

E[Yn] = O(n), V[Yn] = O(n), E[Rn] = O(1), V[Rn] = O(1).

This leads to Theorem 1 [Assertion (i)], with a speed of convergence O(n−1/3).
If we wish to obtain a speed of convergence of order n−1/2, we must study

more carefully costs Y (i) for j = 3, 4, 5. The fractional cost Y (5) is clearly very
difficult to study: this is why we have introduced the smoothed cost D̃, which
no longer involves Y (5). It is possible to generate the distortion cost Y (4) and
the fractional cost Y (3) with some convenient transfer operator. However, we do
not succeed in proving that the concentration property holds for them.

Conjecture (C1): The costs Y (3) and Y (4) satisfy the concentration property.

Under this conjecture, Theorem 1 (ii) is proven.

2.4 An Asymptotic Gaussian Law for B̃ ?

For proving Theorem 2 (ii), we relate wi := vi/vp = (e′i(0))1/2 to the approxi-
mate continuant si := b′i(ei−1(0))−1/2 and we introduce two (new) costs

A(u, v) :=
p∑

i=1

�(mi) · lgwi, A(u, v) :=
p∑

i=1

�(mi) · lg si.

First, as in 2.3, the cost (A+A) will be asymptotically gaussian with the same
characteristic triple as D̃. Second, since the cost A is close to costs B̃, B, it
is sufficient for Theorem 2 (ii) to prove that the decomposition A = (1/2)(A+
A)−(1/2)(A−A) provides a new instance of application of Propositions 1 and 2.
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This is possible if the second cost (An−An) has a variance of order O(n2). Since
E[An −An] is of order O(n) [see Proposition 3, Section 3], we study

E[(An −An)2] = E[A2
n] + E[A

2
n]− 2E[An ·An],

where each term is of order O(n4). Proposition 3 proves a cancellation between
the dominant terms, and entails for αn an order of O(1/n).

Conjecture (C2) : E[A2
n], E[A

2
n], E[An ·An] have the same terms of order n3.

This conjecture is plausible since it is based on a property of “semi-
commutativity” which generalizes Proposition 3. Under (C2), it is easy to prove
Theorem 2 (ii).

2.5 Various Kinds of Costs

We are then led to study various costs C, and the behaviour of additive costs
C heavily depends on the behaviour of cost c. We then introduce the Dirichlet
series Ac(s, w),

Ac(s, w) :=
∑

m∈M

1
m2s

exp[wc(m)],

closely related to the operator Gs,w,[c], which helps to define the behaviour of c.

Definition 1. (a) A cost R is an end–cost if it depends only on variables used
in the last step �(mp), �(vp), and in a polynomial way.
(b) An elementary cost c and its associated additive cost C are of moderate
growth if –(b1) the bivariate generating function Ac(s, w) is convergent for 6s >
σ0 and 6w < ν0 with σ0 < 1 and ν0 > 0 – (b2) it is analytic at (1, 0),
(c) An elementary cost c and its associated additive cost C are of intermediate
growth if –(c1) its generating function Ac(s, w) is convergent for 6s > σ0 with
σ0 < 1 and 6w ≤ 0, – (c2) it is not analytic at (s, w) = (1, 0), but, as a function
of the real variable w, it admits derivatives of any order wrt w, at w = 0−.

Remark. The size cost c = � is of moderate growth, while any power of the size
of the form c = �α (with α > 1) defines a cost of intermediate growth.

The following theorem is one of the basic results of our paper. Note that Assertion
(b) is already proven by Baladi and Vallée [2].

Theorem 4. The following holds:
(a) An end cost R is negligible, i.e., the expectation E[Rn] and the variance

V[Rn] are O(1).
(b) An additive cost C of moderate growth is asymptotically gaussian with

a characteristic triple of the form [O(n), O(n), O(n−1/2)].
(c) An additive cost C of intermediate growth satisfies the concentration

property, i.e., the expectation E[Cn] and the variance V[Cn] are O(n).
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3 Dynamical Systems and Generating Operators

We explain here how dynamical systems allow to derive alternative forms for
generating functions. This will be done via various extensions of the transfer
operator, which plays here the rôle of a “generating operator”.

3.1 Dynamical Systems and Transfer Operators

A continuous extension of one step of the Euclid algorithm to real numbers x
of I := [0, 1] is provided by the Gauss map T : I → I, together with the set
H := {h[m];m ∈ N} of the branches of T−1. The pair (I, T ) defines a dynamical
system. The set Hk is the set of the inverse branches of the iterate T k, and the
set H� := ∪kHk is the semi-group generated by H.

If I is endowed with some initial density f = f0, the time evolution governed
by the map T modifies the density. The successive densities f1, f2, . . . , fn, . . .
describe the global evolution of the system, and there exists an operator, the
density transformer G which transforms f0 into f1. The weighted transfer oper-
ator Gs,w,[c] relative to some digit cost c,

Gs,w,[c][f ](x) =
∑
h∈H

exp[wc(h)] · |h′(x)|s · f ◦ h(x),

is a perturbation of the density transformer G [obtained for (s, w) = (1, 0)].
When w = 0, we omit the variable w and the cost c, so that Gs := Gs,0,[c]. Now,
if we extend cost c on H� by additivity, the quasi–inverse is of the form

(I −Gs,w,[c])−1[f ](x) =
∑

h∈H	

exp[wc(h)] · |h′(x)|s · f ◦ h(x) .

3.2 Generating Functions

We consider a general parameter R defined on Ω, and we wish to study its
distribution on Ωn, when endowed with the uniform probability. Our final prob-
abilistic tool [for distributional analyses] is the sequence of moment generating
functions E[exp(wRn)],

E[exp(wRn)] =
R(n,w)
R(n, 0)

, with R(n,w) :=
∑

(u,v)∈Ωn

exp[wR(u, v)]. (13)

We first consider the whole set Ω of inputs and our strategy consists in encap-
sulating all the moment generating functions E[exp(wRn)] in a Dirichlet series

SR(s, w) :=
∑

(u,v)∈Ω

1
v2s

exp[wR(u, v)] =
∑
m≥1

1
m2s

rm(w) , (14)

where rm(w) is the cumulative value of exp[wR] on inputs (u, v) for which v = m.
The series SR(s, w) is a bivariate generating function which depends on two
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parameters, s “marks” the input size, and w “marks” the cost of interest. This
is a Dirichlet series with respect to s. The study of moments of order k,

E[Rk
n] =

R(n)[k]

R(n)[0]
, with R(n)[k] :=

∑
(u,v)∈Ωn

Rk(u, v), (15)

deals with a Dirichlet Series S[k]
R (s)

S
[k]
R (s) :=

∂k

∂wk
SR(s, w)|w=0 =

∑
(u,v)∈Ω

1
v2s

Rk(u, v) =
∑
m≥1

1
m2s

r[k]
m , (16)

where r[k]
m is the cumulative value of Rk on inputs (u, v) for which v = m.

In both cases, the plain moment generating function, , and the plain moment
of order k of Rn can be recovered from series SR(s, w) or S[k]

R (s) with (13,15),
and relations

R(n,w) =
2n−1∑

m=2n−1

rm(w), R(n)[k] =
2n−1∑

m=2n−1

r[k]
m . (17)

We first look for an alternative expression for series SR(s, w) [defined in (14)]
from which the position and the nature of its dominant singularity become ap-
parent. With taking derivatives, we also obtain alternative expressions for S[k]

R (s)
[defined in (16)]. Then, we transfer these informations on the asymptotic behav-
iour of coefficients of SR(s, w) or S[k]

R (s), which are closely related via (13,15,17)
to our prime objects of interest E[exp(wRn)], E[Rk

n].

3.3 Alternative Expressions for Bivariate Dirichlet Series

We will use transfer operators Gs,Gs,w,[c] (or some of their extensions) as “gen-
erating” operators: Bivariate generating functions SR(s, w) can be expressed via
quasi–inverses of these operators.

Additive costs. If C is the total cost relative to c, the quasi-inverse (I−Gs,w,[c])−1

“generates” the bivariate generating function of cost C (relative to coprime in-
puts). Furthermore, the Zeta function defined as ζ(2s) :=

∑
d≥1 d

−2s allows to
deal with general inputs [not only coprime inputs]. Finally,

SC(s, w) = ζ(2s) · (I −Gs,w,[c])−1[1](0). (18)

Continuant at a fraction of the depth. We study the parameter �[δ] which equals
the logarithm of remainder vi for i = �δP �. For an input (u, v) of Ω on which
the algorithm performs p iterations, there exists LFT h of depth p such that
u/v = h(0). One decomposes h in two LFT’s g and r of depth �δp� and p−�δp�
such that h = g ◦ r, and if δ is a rational of the form δ = c/(c+ d), then

S�[δ](s, w) = ζ(2s− 2w) ·
c+d−1∑

j=0

Gj−�δj�
s−w ◦ (

∑
k≥0

Gdk
s−w ◦Gck

s ) ◦G�δj�
s [1](0). (19)
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The operator Gs,w :=
∑

k≥0 Gdk
s−w ◦ Gck

s is called a pseudo–quasi-inverse; of
course, since Gs and Gs,w do not commute, this is not a “true” quasi-inverse.
However, we study this operator when w is near to 0, and we can hope that the
properties of Gs,w will be close to properties of a true quasi-inverse.

3.4 Alternative Expressions for Dirichlet Series S
[j]
R (s)

In other cases of cost R, we look for alternative expressions for the series S[i]
R (s)

for i = 1, 2. We denote by W[c] the derivation wrt w (at w = 0), and by Δ the
derivation wrt s,

W[c]Gs =
∂

∂w
Gs,w,[c]|w=0, Δ :=

1
log 2

d

ds
Gs.

Then, the operators W[c] or Δ operate themselves on transfer operators. Our
Dirichlet series of interest can be written as a sequence of occurrences of the
quasi–inverse (I −Gs)−1, separated by occurrences of the form AGs where A
is a monomial of the (commutative) algebra A generated by {Δ,W[c]}. Then,
we adopt shorthand notations where we omit the quasi-inverses, the zeta func-
tion, the function 1, and the point 0: we only take into account the operators
“between” the quasi inverses.

Additive costs C of intermediate growth. In this case, it is not possible to deal
directly with the transfer operator Gs,w,[c]. However, the univariate series S[j]

C (s)
admit alternative expressions of the form

S
[1]
C = [W[c]] S

[2]
C = [W 2

[c]] + 2[W[c],W[c]]. (20)

Bit-Complexity Costs A,A. Here, we omit also the index [�] in W[�] and we
obtain, in the same vein S

[1]
A = [Δ,W ], S

[1]
A

= [W,Δ],

(1/2)S[2]
A ≈ 2[Δ,Δ,W,W ]+[Δ,W,Δ,W ]+[Δ2,W,W ]+[Δ,ΔW,W ]+[Δ,Δ,W 2],

(1/2)S[2]
A
≈ 2[W,W,Δ,Δ]+[W,Δ,W,Δ]+[W,W,Δ2]+[W,ΔW,Δ]+[W 2, Δ,Δ],

S
[1]
AA
≈ 2[W,Δ,Δ,W ]+2[Δ,W,W,Δ]+[W,Δ,W,Δ]+[Δ,W,Δ,W ]+

+[W,Δ2,W ]+[Δ,W,ΔW ]+[W,Δ,ΔW ]+[ΔW,Δ,W ]+[ΔW,W,Δ]+[Δ,W 2, Δ].

3.5 Analysis of Costs

With alternative expressions of Dirichlet series provided in Sections 3.3 and 3.4
at hand, we now perform the second step: we find the dominant singularities
of these Dirichlet series and their nature, and then transfer these informations
towards coefficients and obtain asymptotic expressions for their coefficients. We
use, as a main tool, convenient “extractors” which express coefficients of series
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as a function of the series itself. There are two main “extractors” for Dirichlet
series: Tauberian Theorems [which do not provide remainder terms] are well-
adapted for the average–case analysis or the study of all the (non centered)
moments [Thm 4 (a)] — the Perron Formula [which may provide remainder
terms] constitutes an essential step, both in the studies of the variance [Thms 1,
2, 4(c)] and in distributional analyses [Thm 3].

Both extractors need informations on the quasi-inverse (QI), closely related
to the dominant spectral properties of the transfer operator on the Banach space
C1(I). However, Tauberian Theorems “only” need informations on the QI on
the domain 6s ≥ 1. For using with some success the Perron Formula, we need
a more precise knowledge of the QI on vertical strips on the left of the vertical
line 6s = 1. Properties of the same vein are very often difficult to prove and
intervene for instance in the proof of the Prime Number Theorem. The US
Property [Uniformity on Strips] describes a convenient behaviour of the QI and
informally says: “there exists a vertical strip |6(s)− 1| < α which contains only
one pole of the QI; moreover, on the left line 6(s) = 1 − α, an adequate norm
of the QI is bounded by M · |7s|ξ (with ξ > 0 small). Baladi and Vallée [2] have
generalized ideas due to Dolgopyat [5] and prove that the US(s) Property holds
for (I −Gs)−1, and that a uniform US(s, w) Property (uniform wrt w) holds
for (I −Gs,w,[c])−1 (when c is of moderate growth). Here, for Thm 3, we prove
that a uniform US(s, w) Property also holds for the “pseudo quasi–inverse”.

For (s, w) = (1, 0), and for any cost c, the operator Gs,w,[c] is just the density
transformer G, which possesses a unique dominant eigenvalue equal to 1 and
an invariant function Ψ(x) = (1/log 2)(1/1 + x). Then, each occurrence of the
quasi–inverse (I −Gs)−1 brings a pole at s = 1, with an explicit residue:

Proposition 3. Any Dirichlet series denoted by an expression [A1, A2, . . . Ak]
[see Section 3.4], where each Ai is a monomial of the algebra generated by
{Δ,W[c]}, has a pôle of order k + 1 at s = 1, with an expansion of the form

[A1, A2, . . . , Ak](s) =
1

log 2

∑
i≥0

ai · (|λ′(1)|(s− 1))i−k−1,

with a0 =
∏k

i=1 I[AiG], I[H] :=
∫

I H[Ψ ](t)dt, Ψ(x) := (1/log 2)(1/1 + x).

Since the dominant constant a0 depends only on the subset {A1, A2, . . . Ak}, this
proves that, for additive costs R = C or bit-complexities R = A,A, there exists
a relation of the form b0 = 2a2

0 between the dominant constant a0 of S[1]
R and

the dominant constant b0 of S[2]
R , which entails a cancellation in the variance.

Conjecture (C2). It is based on a similar property which involves the Porter
operator Q defined as the constant term in the expansion of (I −Gs)−1 near
s = 1. Conjecture (C2) says: The following equality holds:∑
X,Y,X′,Y ′∈{Δ,W}

X′ �=X,Y ′ �=Y

(−1)[[X=Y ]] · I[XG] · I[YG] · (I[X ′G ◦Q ◦ Y ′G]− I[X ′Y ′G]) = 0.
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Conjecture (C1). It deals with two families of costs.
Costs R = f ·C. To prove that VRn is O(n), we use generating functions relative
to moments of R := lg v0 ·C. They can be expressed with [·, . . . ·, ·], and we have
to prove cancellations between the constants, as in Conjecture (C2).

Distortion costs. Generating functions for the distortion costs involve generalized
transfer operators acting on functions with two variables as in [11]. The US prop-
erties are not yet proven to hold for such operators, and proving cancellations
between constants needs to deal with their dominant spectral objects.
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Abstract. A full-text index is a data structure built over a text string
T [1, n]. The most basic functionality provided is (a) counting how many
times a pattern string P [1, m] appears in T and (b) locating all those
occ positions. There exist several indexes that solve (a) in O(m) time
and (b) in O(occ) time. In this paper we propose two new queries, (c)
counting how many times P [1, m] appears in T [l, r] and (d) locating all
those occl,r positions. These can be solved using (a) and (b) but this
requires O(occ) time. We present two solutions to (c) and (d) in this
paper. The first is an index that requires O(n log n) bits of space and
answers (c) in O(m + log n) time and (d) in O(log n) time per occur-
rence (that is, O(occl,r log n) time overall). A variant of the first solution
answers (c) in O(m + log log n) time and (d) in constant time per occur-
rence, but requires O(n log1+ε n) bits of space for any constant ε > 0.
The second solution requires O(nm log σ) bits of space, solving (c) in
O(m�log σ/ log log n�) time and (d) in O(m�log σ/ log log n�) time per
occurrence, where σ is the alphabet size. This second structure takes
less space when the text is compressible.

Our solutions can be seen as a generalization of rank and select dic-
tionaries, which allow computing how many times a given character c
appears in a prefix T [1, i] and also locate the i-th occurrence of c in
T . Our solution to (c) extends character rank queries to substring rank
queries, and our solution to (d) extends character select to substring select
queries.

As a byproduct, we show how rank queries can be used to implement
fractional cascading in little space, so as to obtain an alternative imple-
mentation of a well-known two-dimensional range search data structure
by Chazelle. We also show how Grossi et al.’s wavelet trees are suitable
for two-dimensional range searching, and their connection with Chazelle’s
data structure.

1 Introduction and Related Work

The indexed string matching problem is that of, given a long text T [1, n] over an
alphabet Σ of size σ, build a data structure called full-text index on it, to solve
� Funded by the Academy of Finland under grant 108219.
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two types of queries: (a) Given a short pattern P [1,m] over Σ, count the occur-
rences of P in T ; (b) locate those occ positions in T . There are several classical
full-text indexes requiring O(n logn) bits of space which can answer counting
queries in O(m) time (like suffix trees [2]) or O(m + logn) time (like suffix ar-
rays [14]). Both locate each occurrence in constant time once the counting is
done. Similar complexities are obtained with modern compressed data struc-
tures [5, 10, 7], requiring space nHk(T ) + o(n log σ) bits, where Hk(T ) ≤ log σ is
the k-th order empirical entropy of T .1

In this paper we introduce a new problem, position restricted substring search-
ing, which consists of two new queries: (c) Given P [1,m] and two integers
1 ≤ l ≤ r ≤ n, count all the occurrences of P in T [l, r], and (d) locate those
occl,r occurrences. These queries are fundamental in many text search situations
where one wants to search only a part of the text collection, e.g. restricting the
search to a subset of dynamically chosen documents in a document database,
restricting the search to only parts of a long DNA sequence, and so on. Curi-
ously, there seem to be no solutions to this problem apart from locating all the
occurrences and then filter those in the range [l, r]. This costs at least O(m+occ)
for (c) and (d) together.

We present several alternative structures to solve this problem. The best com-
plexities are summarized in Table 1.

Table 1. Simplified complexities achieved for queries (c) and (d). Locating time is
given per occurrence.

Section Bits of space Counting time Locating time
4 O(n log1+ε n) O(m + log log n) O(1)
4 n log n(1 + o(1)) + O(nHk(T ) logγ n) O(m + log n) O(log n)
4 n log n(1 + o(1)) + nHk(T ) O(m� log σ

log log n
� + log n) O(log n)

5 n m−1
k=0 Hk(T ) O(m� log σ

log log n
�) O(m� log σ

log log n
�)

Interestingly, our solutions are also useful to solve a generalization of another
well-studied problem. Given a sequence S over an alphabet Σ of size σ and a
character c ∈ Σ, query rankc(S, i) returns the number of occurrences of c in
S[1, i], while selectc(S, j) returns the position of the j-th occurrence of c in S.
Both queries can be answered in constant time using data structures that require
nH0(S)+o(n) bits of space if the alphabet of the sequence is σ = O(polylog(n)),
or in O(log σ/ log log n) time in general [9, 8]. They can also be solved in O(log σ)
time using wavelet trees [10, 11]. For the case of binary sequences, apart from
the simple n+ o(n) bits data structures [12, 4, 16], there are others that answer
rank and select in constant time using nH0(S) + o(n) bits [18].

A natural generalization of the above problem is substring rank and select. For
a string s, ranks(S, i) is the number of occurrences of s in S[1, i], and selects(S, j)
is the starting position of the j-th occurrence of s in S. We can use the indexes
for position-restricted substring searching to answer ranks in the same time of
1 In this paper log stands for log2.
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a counting query (type (c)), and selects in the same time of a counting query
plus the time to locate one occurrence (type (d)).

As a byproduct, we present a space-efficient implementation of a well-known
two-dimensional range search data structure by Chazelle [3]. We show in partic-
ular how the fractional cascading information (which is simulated rather than
stored in Chazelle’s data structure) can be represented by constant-time rank
queries on bit arrays. We also show that Grossi et al.’s wavelet trees [10, 11]
are suitable for two-dimensional range searching, pointing out in particular their
connection with Chazelle’s data structure.

2 Two-Dimensional Range Searching

In this section we describe a range search data structure to query by rectangular
areas. The structure is a succinct variant of one from Chazelle [3, 13] where we
have completely removed binary searching and fractional cascading and have
replaced them by constant-time rank queries over bit arrays. Given a set of
points in [1, n] × [1, n], the data structure permits determining the number of
points that lie in a range [i, i′] × [j, j′] in time O(log n), as well as retrieving
each of those points in O(log n) time. The structure can be implemented using
n logn(1 + o(1)) bits.

Structure. We describe a slightly simpler version of the original structure [3],
which is sufficient for our problem. The simplification is that our set of points
come from pairing two permutations of [1, n]. Therefore, no two different points
share their same first or second coordinates, that is, for every pair of points
(i, j) �= (i′, j′) it holds i �= i′ and j �= j′. Moreover, there is a point with first
coordinate i for any 1 ≤ i ≤ n and a point with second coordinate j for any
1 ≤ j ≤ n.

The structure is built as follows. First, sort the points by their j coordinate.
Then, form a perfect binary tree where each node handles an interval of the first
coordinate i, and thus knows only the points whose first coordinate falls in the
interval. The root handles the interval [1, n], and the children of a node handling
interval [i, i′] are associated to [i, �(i+ i′)/2�] and [�(i+ i′)/2�+1, i′]. The leaves
handle intervals for the form [i, i]. All those intervals will be called tree intervals.

Each node v contains a bitmap Bv so that Bv[r] = 0 iff the r-th point handled
by node v (in the order given by the initial sorting by j coordinate) belongs to
the left child. Each of those bitmaps Bv is preprocessed for constant-time rank
queries [12, 4, 16]). The bitmaps with rank functionality give a space-efficient way
to implement fractional cascading, and also avoid any need of binary searching.

Querying. We first show how to track a particular point (i, j) as we go down
the tree. In the root, the position given by the sorting of coordinates is precisely
j, because there is exactly one point with second coordinate j for any j ∈ [1, n].
Then, if Broot[j] = 0, this means that point (i, j) is in the left subtree, other-
wise it is in the right subtree. In the first case, the new position of (i, j) in the left
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Algorithm. RangeCount(v, [i, i′], [j, j′], [ti, ti′])
(1) if j > j′ then return 0;
(2) if [ti, ti′] ∩ [i, i′] = ∅ then return 0;
(3) if [ti, ti′] ⊆ [i, i′] then return j′ − j + 1;
(4) tm ← �(ti + ti′)/2	;
(5) [jl, j

′
l ] ← [rank0(Bv, j − 1) + 1, rank0(Bv, j′)];

(6) [jr, j
′
r ] ← [rank1(Bv, j − 1) + 1, rank1(Bv, j′)];

(7) return RangeCount(left(v), [i, i′], [jl, j
′
l ], [ti, tm]) +

RangeCount(right(v), [i, i′], [jr , j′
r], [tm + 1, ti′]);

Fig. 1. Algorithm for counting the number of points in [i, i′]× [j, j′] on a tree structure
rooted by v with nodes left(v) and right(v). The last argument is the tree interval
handled by node v. The first invocation is RangeCount(root, [i, i′], [j, j′], [1, n]).

subtree is j ← rank0(Broot, j), which is the number of points preceding (i, j)
in Broot which chose the left subtree. Similarly, the new position on the right
subtree it is j ← rank1(Broot, j).

Range searching for [i, i′] × [j, j′] is carried out as follows. Find in the tree
the O(log n) maximal tree intervals that cover [i, i′]. The answer is then the set
of points in those intervals whose second coordinate is in [j, j′]. Those points
form an interval in the B array of each of the nodes that form the cover of
[i, i′]. However, we need to track those j and j′ coordinates as we descend by
the tree. Every time we descend to the left child of a node v, we update [j, j′]←
[rank0(Bv, j − 1) + 1, rank0(Bv, j

′)], and similarly with rank1 for a right child.
When we arrive at a node whose interval is contained in [i, i′], the number of
qualifying points is just j′−j+1. Thus the whole procedure takes O(log n) time.
Figure 1 shows the pseudocode.

For retrieving the points, we start from each of the tree nodes that cover
[i, i′]. Each point in the node whose second coordinate is in [j, j′] is tracked
down in the tree until the leaves, so as to find its first coordinate i. This can
be done in O(log n) time per retrieved element. (For our application, we do not
describe how to associate the proper j value to each i coordinate found, but
it can be done by traversing the tree upwards from each leaf using select.) We
traverse the whole subtree of each node included in [i, i′], as long as it has some
point in [j, j′]. The leaves found in this process are reported. Figure 2 gives the
pseudocode.

Space. We do not need any pointer for this tree. We only need 1 + �logn�
bit streams, one per tree level. All the bit streams at level h of the tree are
concatenated into a single one, of length exactly n. A single rank structure is
computed for each whole level, totalizing n logn(1 + O(log logn/ logn)) bits.
Maintaining the initial position p of the sequence corresponding to node v at
level h is easy. There is only one sequence at the root, so p = 1 at level h = 1.
Now, assume that the sequence for v starts at position p (in level h), and we
move to a child (in level h + 1). Then the left child starts at the same position
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Algorithm. RangeLocate(v, [j, j′], [ti, ti′])
(1) if ti = ti′ then { output ti; return; }
(2) if j > j′ then return;
(3) tm ← �(ti + ti′)/2	;
(4) [jl, j

′
l ] ← [rank0(Bv, j − 1) + 1, rank0(Bv, j′)];

(5) [jr, j
′
r ] ← [rank1(Bv, j − 1) + 1, rank1(Bv, j′)];

(6) RangeLocate(left(v), [jl, j
′
l ], [ti, tm]);

(7) RangeLocate(right(v), [jr , j′
r], [tm + 1, ti′]);

Fig. 2. Algorithm to invoke instead of returning j′ − j + 1 in line (3) of RangeCount,
so as to locate occurrences instead of just counting them

p, while the right child starts at p + rank0(Bv, |Bv|). The length of the current
sequence |Bv| is also easy to maintain. The root sequence is of length n. Then
the left child of v is of length rank0(Bv, |Bv|) and the right child is of length
rank1(Bv, |Bv|). Finally, if we know that v starts at position p and we have the
whole-level sequence Bh instead of Bv, then rankb(Bv, j) = rankb(Bh, p − 1 +
j) − rankb(Bh, p − 1). Figure 3 shows again the counting algorithm, this time
over the real data structure.

Algorithm. RangeCount(B, [i, i′], [j, j′], h, p, �, [ti, ti′])
(1) if j > j′ then return 0;
(2) if [ti, ti′] ∩ [i, i′] = ∅ then return 0;
(3) if [ti, ti′] ⊆ [i, i′] then return j′ − j + 1;
(4) tm ← �(ti + ti′)/2	;
(5) [jl, j

′
l ] ← [rank0(Bh, p, p − 1 + j − 1) + 1, rank0(Bh, p, p − 1 + j′)];

(6) [jr, j
′
r ] ← [rank1(Bh, p, p − 1 + j − 1) + 1, rank1(Bh, p, p − 1 + j′)];

(7) [�l, �r] ← [rank0(Bh, p, p − 1 + �), rank1(Bh, p, p − 1 + �)]
(8) p′ ← p + rank0(Bh, �)
(9) return RangeCount(B, [i, i′], [jl, j

′
l ], h + 1, p, �l, [ti, tm]) +

RangeCount(B, [i, i′], [jr, j
′
r], h + 1, p′, �r, [tm + 1, ti′]);

Fig. 3. Algorithm for counting the number of points in [i, i′] × [j, j′] on the real, level-
wise, structure. The first invocation is RangeCount(B, [i, i′], [j, j′], 1, 1, n, [1, n]). We use
rankb(Bh, a, b) as shorthand for rankb(Bh, b) − rankb(Bh, a − 1).

Wavelet Trees. Wavelet trees [10, 11] are data structures for text indexing in-
troduced by Grossi et al. The wavelet tree is a perfectly balanced tree of height
�log σ�. Each tree node corresponds to a subinterval of [1, σ] and represents the
text subsequence of characters in that subinterval. At each node, the current
alphabet range is partitioned into two halves, and the corresponding alphabet
subintervals are assigned to the left and right child of the node. The only data
stored at a node is a bitmap where, for each character of the text it represents,
it is indicated whether that character went left or right.
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Each bitmap is processed for rank and select queries. If one uses basic tech-
niques for those queries [12, 4, 16] the wavelet tree takes n�log σ�+O(n log logn/
logσ n) bits of space for a text T [1, n], that is, the same text size. With
more advanced techniques [18], the size of the wavelet tree achieves nH0(T ) +
O(n log logn/ logσ n) bits of space, where H0(T ) is the zero-order entropy of T .
In both cases, the wavelet tree solves in O(log σ) time the following queries: (a)
T [i], that is, finding the i-th character of T ; (b) rankc(T, i), that is, finding the
number of occurrences of c in T [1, i]; and (c) selectc(T, j), that is, finding the
position in T of the j-th occurrence of c.

We note now that wavelet trees have yet other applications not considered
before. Assume we have a set of points (i, j) ∈ [1, n]× [1, n] which is the product
of two permutations of [1, n] as explained in the beginning of this section. Call
i(j) the unique i value such that (i, j) is a point in the set. Then consider the
text T [1, n] = i(1)i(2)i(3) . . . i(n). Then, the wavelet tree of T is exactly the data
structure we have described in this section. This text has alphabet of size n and
its zero-order entropy is also logn, thus this wavelet tree takes n logn(1 + o(1))
bits as expected. Although the original wavelet-tree queries are not especially
interesting in this range search scenario, we have shown in this section that
the wavelet tree structure can indeed be used to solve two-dimensional range
search queries in O(log n) time, and report each occurrence in O(log n) time as
well.

3 A Simple O(m + log n) Time Solution

Our first solution is composed of two data structures. The first is the familiar
suffix array A[1, n] of T , enriched with longest common prefix (lcp) information
[14]. This structure needs 2n�logn� bits and permits determining the interval
A[sp, ep] of suffixes that start with P [1,m] in O(m + logn) time [14]. The
second is the range search data structure R described in Section 2, indexing
the points (i,A[i]). Both structures together require 3n logn(1 + o(1)) bits, or
3n+ o(n) words.

To find the number of occurrences of P [1,m] in T [l, r], we first find the interval
A[sp, ep] of the occurrences of P in T , and then count the number of points in
the range [l, r−m+ 1]× [sp, ep] using R. This takes overall O(m+ logn) time.
Additionally, each first coordinate (that is, text position l ≤ i ≤ r −m + 1) of
an occurrence can be retrieved in O(log n) time, that is, the occl,r occurrences
can be located in O(occl,r logn) time.

A plus of the index is that, unlike plain suffix arrays, this structure locates
the occurrences in text position order, not in suffix array order. In order to find
them in suffix array order, we should rather index points (A[i], i) and search
for the interval [sp, ep] × [l, r −m + 1]. Then R would retrieve the suffix array
positions i (in increasing order in A) such that A[i] is an occurrence.

Larger and faster. It is possible to improve the locating time to O(1) by using
slightly more space. Instead of the structure of Section 2, that of Alstrup et al.
[1] can be used to index the points (i,A[i]). This structure retrieves the occl,r
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occurrences of a range query in O(log logn+ occl,r) time. In exchange, it needs
O(n log1+ε n) bits of space, for any constant 0 < ε < 1. Thus, by using slightly
more space, we achieve O(m + logn) counting time and O(1) locating time per
occurrence.

Given the complexity O(log logn) for the range-search part of the counting
query, it makes sense to replace the suffix array by a suffix tree, so that we still
have O(n log1+ε n) bits of space and can solve the counting query in O(m +
log logn) time, and the locating query in constant time per occurrence.

Smaller and slower. Alternatively, it is possible to replace the suffix array A
and its lcp information by any of the wealth of existing compressed data struc-
tures [17]. For example, by using the LZ-index of Ferragina and Manzini [6] we
obtain n logn(1 + o(1)) + O(nHk(T ) logγ n) bits of space (for any γ > 0 and
any k = O(logσ logn)) and the same time complexities. On the other hand,
we can use the alphabet-friendly FM-index of Ferragina et al. [7, 8] to obtain
n logn(1 + o(1)) + nHk(T ) bits of space (for any σ = o(n/ log log n) and any
k ≤ α logσ n for any constant 0 < α < 1). In this case the counting time raises
to O(m�log σ/ log logn�+ logn). This is still O(m+ logn) if σ = O(polylog(n)).

4 An O(m log σ) Time Solution

We present now a solution that, given a construction parameter t, requires
nt log σ(1+o(1)) bits of space and achievesO(m�log σ/ log logn�) time for count-
ing the occurrences of any pattern of length m ≤ t. Likewise, each such oc-
currence can be located in O(m�log σ/ log logn�) time. For example, choosing
t = logσ n gives a structure using n logn(1 + o(1)) bits of space able to search
for patterns of length m ≤ logσ n.

Actually, we show that this structure can be smaller for compressible texts,
taking n

∑t−1
k=0 Hk(T ) instead of nt logσ, where Hk(T ) is the k-th order empirical

entropy of T [15, 10]. This is a lower bound to the number of bits per character
achievable by any compressor that considers contexts of length k to model T .

Structure. Our structure indexes the positions of all the t-grams (substrings of
length t) of T . It can be tought of as an extension of the wavelet tree [10, 11] to
t-grams.

The structure is a perfectly balanced binary tree, which indexes the binary
representation of all the t-grams of T , and searches for the binary representation
of P . The binary representation b(s) of a string s over an alphabet σ is obtained
by expanding each character of s to the �log σ� bits necessary to code it. We
index n t-grams of T , namely b(T [1, t]), b(T [2, t+1]), . . . , b(T [n, n+ t− 1]). The
text T is padded with t− 1 dummy characters at the end.

The binary tree has � = t�log σ� levels. Each tree node v is associated a binary
string s(v) according to the path from the root to v. That is, s(root) = ε and, if
vl and vr are the left and right children of v, respectively, then s(vl) = s(v)0 and
s(vr) = s(v)1. To each node v we also associate a subsequence of text positions
Sv = {i, s(v) is a prefix of b(T [i, i+ t− 1])}.



710 V. Mäkinen and G. Navarro

Note that each i ∈ Sv will belong exactly to one of its two children, vl or vr.
At each internal node v we store a bitmap Bv of length nv = |Sv|, such that
Bv[i] = 0 iff i ∈ Svl

. Neither s(v) nor Sv are explicitly stored, only Bv is.

Querying. Given a text position i at the root node, we can track its corresponding
position in Bv for any node v such that i ∈ Sv. At the root, we start with
iroot = i. When we descend to the left child vl of a node v in the path, we
set ivl

= rank0(Bv, i), and if we descend to the right child vr we set ivr =
rank1(Bv, i). Then we arrive with the proper iv value at any node v.

In order to search for P in the interval [l, r], we start at the root with lroot = l
and rroot = r−m+ 1, and find the tree node v such that s(v) = b(P ) (following
the bits of b(P ) to choose the path from the root). At the same time we obtain
the proper values lv and rv. Then the answer to the counting query is rv− lv +1.
The process requires O(m log σ) time.

To locate each such occurrence lv ≤ iv ≤ rv, we must do the inverse tracking
upwards. If v is the left child of its parent vp, then the corresponding position in
vp is ivp = select0(Bvp , iv). If v is a right child, then ivp = select1(Bvp , iv).
The final position in T is thus iroot. This takes O(m log σ) time for each
occurrence.

Space. The bulk of the space requirement corresponds to the overall size of bit
arrays Bv. Vectors Bv could be represented using the technique of Clark and
Munro [4, 16], which permits answering rank and select queries in constant time
over the bit arrays Bv using nv(1 + o(1)) bits. All the nv values at any depth
add up n, and since the tree height is �, we have nt�log σ�(1 + o(1)) bits overall.
The same technique used before to concatenate all the bitmaps at each level is
used here to ensure that o(1) is sublinear in n.

We show now that, by using more sophisticated techniques [18], the space
requirement may be reduced on compressible texts T . In that work they represent
bit array Bv using nvH0(Bv) + o(nv) bits, and answer rank and select queries
in constant time. As we already know that the o(nv) parts add up o(nm log σ)
bits (more precisely, O(nm log σ log logn/ logn) bits), we focus on the entropy-
related part. Let us assume for simplicity that σ is a power of 2.

Let us analyze all the nvH0(Bv) terms together. For a binary string s, let us
define ns = |{i, s is a prefix of b(T [i, i + t − 1])}|. Thus, if we consider vector
Broot, its representation takes nH0(Broot) = −n0 log n0

n − n1 log n1
n .

Consider now the vectors B for the two children of the root. The entropy
part of their representations add up −n00 log n00

n0
− n01 log n01

n0
− n10 log n10

n1
−

n11 log n11
n1

. We notice that n0 = n00 + n01 and n1 = n10 + n11. By adding up
the size of representations of the root and its two children, we get −n00 log n00

n −
n01 log n01

n − n10 log n10
n − n11 log n11

n bits. This can be extended inductively to
log σ levels, so that the sum of all the representations from the root to level
log σ − 1 is

−
∑

s∈{0,1}log σ

ns log
ns

n
= nH0(T )

where 0 log 0 = 0.
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Similarly, starting from each node v such that s(v) ∈ {0, 1}logσ, we have that
nH0(Bv) = −ns(v)0 log ns(v)0

ns(v)
−ns(v)1 log ns(v)1

ns(v)
, and all the B vectors in the next

log σ levels of its subtree add up

−
∑

s∈{0,1}log σ

ns(v)s log
ns(v)s

ns(v)
.

Summing this for all the nodes representing all the possible s(v) ∈ {0, 1}logσ,
we have

−
∑

s,s′∈{0,1}log σ

nss′ log
nss′

ns
= nH1(T ).

This can be continued inductively until level t log σ, to show that the overall
space is

n

t−1∑
k=0

Hk(T ) + O(nt log σ log logn/ logn)

bits. For incompressible texts this is nt log σ(1+o(1)), but for compressible texts
it may be significantly less.

Higher arity trees. A generalization of the rank/select data structures [18] permit
handling sequences with alphabets of size up to O(polylog(n)) with constant time
rankc and selectc [9, 8]. Instead of handling one bit of b(T [i, i+ t−1]) at a time,
we could handle a bits at a time. This way, our binary tree would be 2a-ary
instead of binary. Instead of a sequence of bits Bv at each node, we would store
a sequence Bv of integers in [0, a − 1]. As long as 2a = O(polylog(n)) (that is,
a = O(log logn)), we can index those sequences Bv with the generalized data
structure so as to answer in constant time the rank/select queries we need to
navigate the tree.

The search algorithm is adapted in the obvious way. When going down to
the d-th child of node v, 0 ≤ d < a, we update iv to ivd

= rankd(Bv, iv) and,
similarly, when going up to v from child d, iv = selectd(Bv, ivd

). Note that a must
divide log σ to ensure that any pattern search will arrive exactly at a tree node.
The overall time is O(m log(σ)/a) = O(m�log σ/ log logn�), either for counting
or for locating an occurrence. This is O(m) whenever σ = O(polylog(n)).

We note that it is necessary, again, to concatenate all sequences at each tree
level, so that the limit a = O(log logn) remains constant as we descend in the
tree. For space occupancy related to entropy, the analysis is very similar; we just
consider a bits at once.

Compared to the solution of the previous section requiring O(n log n) bits of
space and O(m + logn) counting time, we can use t = O(logσ n) to achieve the
same space complexity, so that any query of length up to t can be answered.
The structure of this section is faster than that of the previous section in this
range of m values. Compared to the faster structure requiring O(n log1+ε n) bits
and O(m) counting time, our structure could answer in the same space counting
queries on patterns of length up to O(logσ n logε n). The time for counting is
better than the previous structure for m = O(log logn).
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5 Substring Rank and Select

The techniques developed for the problem of counting and locating the occur-
rences of a pattern P in T [l, r] can be used to solve the substring rank and sub-
string select problem. As far as we know, this problem has not been addressed
before. It extends the rankc and selectc queries, c ∈ Σ, to strings over Σ. That
is, given s ∈ Σ∗, ranks(T, i) is the number of occurrences of s in T [1, i], while
selects(T, j) is the initial position of the j-th occurrence of s in T .

Note that ranks(T, i) is just the number of occurrences of s in T [1, i], and
therefore it corresponds directly to a particular case of our counting queries.
On the other hand, selects(T, j) is solved by using the locating mechanism. We
detail this query now.

With the structure of Section 3 we must start with a counting query for s in
the interval [1, n]. Therefore, we end up at the unique interval [sp, ep] at the tree
root. Then, to solve selects(T, j) we must track down in the tree the position
sp + j − 1 at the tree root. Therefore, we need overall O(|s| + logn) time for
selects(T, j) (just as for ranks(T, i)), yet � calls to selects cost O(|s| + � logn).
It is not clear whether the more complicated O(n log1+ε n) bits structure can
extract random occurrences in constant time.

Let us now consider the structure of Section 4. Once we search for s in the
tree starting with range [l, r] = [1, n], we end up at some node v (such that
s(v) = b(s)) with [lv, rv]. To solve selects(T, j) we take entry lv + j−1 at node v
and walk the tree upwards until finding the position in the root node, and that
position is the answer. This takes overall time O(|s|�log σ/ log logn�) (just as for
ranks), and requires O(n|s| log σ) bits of space (or less if T is compressible).

6 A Small Experiment

We have implemented the simplest mechanism described in Section 3, and com-
pared it against a brute-force solution, that is, use the plain suffix array to
discover the occ occurrences and then pass over those determining which are in
the right text range.

As the suffix array search is identical in both cases, we have focused on the
time to complete the process once the suffix array range is known. For counting,
the brute-force method has complexity O(occ), whereas our method in Section 3
requires O(log n) time. For locating the occurrences, the brute-force method is
still O(occ) time, while our method requires O(occl,r logn).

We tested over different English texts, ranging from 1 to 100 megabytes.
We randomly generated subintervals of the suffix array of a fixed length and
compared the time to pass over it counting/reporting the text positions within
some range, against using the generated suffix array interval as a key for the two-
dimensional search of our method. Note that the fact that the suffix array ranges
generated do not come from an actual search is irrelevant for the performance
of the process, and it permits us tight control over occ.

According to the experiments, our counting method becomes faster than brute
force approximately for occ > 1, 000. This did not depend significatively on the
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text size nor on the text interval [l, r] chosen. The two-dimensional search part
takes, in our method, time similar to the suffix array search.

For locating queries, on the other hand, our method was superior for occl,r

occ <
0.004. This is obtained when occ exceeds 1,000 by a sufficient margin (say, 10
times). The reason is that our method has a constant overhead that is indepen-
dent of occl,r, so that even for occl,r = 0 the brute force method is faster for
occ < 1, 000.

The ranges of values obtained show that our method is reasonably practical,
and it wins when the query is sufficiently selective, as expected.

7 Conclusions

We have addressed several important generalizations of well-studied problems in
string matching and succinct data structures. First, we generalized the indexed
string matching problem to position-restricted searching, where the search can
be done inside any text substring. We have obtained space and time complexities
close to those obtained for the basic problem. Second, we generalized rank and
select queries on sequences to substring rank and select, where the occurrences of
any substring s can be tracked instead of only characters. Our time complexities
are slightly over the ideal O(|s|).

It is an interesting open question whether we can close those small gaps, that
is (1) whether we can answer position-restricted counting queries in O(m) time
and locating each result in O(1) time with structures taking O(n log n) bits of
space, or even better, compressed data structures requiring O(nHk) bits of space;
and (2) whether we can answer rank and select queries for substring s in O(|s|)
time.

In addition, we have shown some interesting connections between well-known
two-dimensional range search data structures by Chazelle and recent data struc-
tures for compressed text indexing (the wavelet trees by Grossi et al.). We also
showed how rank queries permit implement Chazelle’s structure without using
any fractional cascading information nor binary searches.
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Abstract. We derive algorithms for approximating a set S of n points
in the plane by an x-monotone rectilinear polyline with k horizontal
segments. The quality of the approximation is measured by the maximum
distance from a point in S to the segment above or below it. We consider
two types of problems: min -ε, where the goal is to minimize the error
for k horizontal segments and min -#, where the goal is to minimize the
number of segments for error ε. After O(n) preprocessing time, we solve
the latter in O(min{k log n, n}) time per instance. We then solve the
former in O(min{n2, nk log n}) time. We also describe an approximation
algorithm for the min -ε problem that computes a solution within a factor
of 3 of the optimal error for k segments, or with at most the same error
as the k-optimal but using 2k − 1 segments. Both approximations run in
O(n log n) time.

1 Introduction

The problem of approximating a set of two-dimensional points by a polygonal
line has been studied extensively in the literature. Different error metrics and
constraints on the nature of the approximating curve result in many variants
of this problem (see [1, 2, 4, 5, 6, 7, 8, 9, 10] for an assortment of these). For each
variant two problem types, min -ε and min -#, are often considered. In min -ε
approximation the goal is to minimize the error for a given complexity of the
approximating curve R. Conversely, in min -# approximation the objective is to
minimize the complexity of R for a given allowed error ε.

We consider both min -ε and min -# problems for the special case of rectilinear
approximation, i.e., for the case where the approximating curve R is a step
function. In this case, the complexity (size) of R is given by the number of its
horizontal segments. This problem has been studied in [3, 11]. Dı́az-Báñez and
Mesa derive a simple O(n) time algorithm to solve the rectilinear min -# problem
and use it as a subroutine to solve the min -ε problem in O(n2 logn) time. This
result was improved by Wang, who proposed an algorithm that runs in O(n2)
time. His algorithm also makes use of the min -# algorithm of [3] but achieves
better performance by reducing the number of subroutine calls.

Our contribution to the rectilinear approximation is twofold. First, we develop
a new min -# algorithm which, after a preprocessing cost of O(n), can solve
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multiple instances (with different target errors) at a cost of O(min{k logn, n})
time per instance. When coupled with the approach proposed by Wang, this
results in an algorithm for the min -ε problem than runs in O(min{n2, nk logn})
time. This is asymptotically faster than the result in [11] when k = o(n/ logn).
Our second algorithm has O(n log n) running time and yields an approximation
curve with error within a factor of 3 of the optimal and with the same number
of segments. Furthermore, a curve generated by our algorithm of size 2k − 1
achieves an error no more than that of an optimal curve of size k.

We now define the problem formally as well as introduce useful notation. Let
S = {pi = (xi, yi), i = 1, . . . , n}, x1 < x2 < . . . < xn, be a set of points in
the plane. For 1 ≤ i ≤ j ≤ n, define Sij := {pi, pi+1, . . . , pj}. A curve R is
rectilinear if it consists only of alternating horizontal and vertical segments. It
is x-monotone if any two neighboring horizontal segments share exactly one x-
coordinate, namely that of the vertical segment joining them. The error function
used in our method is based on vertical distance. First, for p = (x, y) and p′ =
(x′, y′), the vertical distance dv(p, p′) between p and p′ is |y − y′| if x = x′, and
∞ otherwise. Then, the vertical distance between a point p and a curve R is
simply dv(p,R) = minq∈R dv(p, q). Following the notation of [3], the eccentricity
of R with respect to S is the maximum vertical error between the points of S
and R, i.e., e(S,R) = max1≤i≤n dv(pi,R).

Because of our definition of distance, it suffices to restrict our attention to
rectilinear x-monotone curves whose domain in x includes the interval [x1, xn]
and all of whose vertical segments fall strictly within it. We also assume that
the first and the last segments of an approximation curve are horizontal and, if
needed, can be extended arbitrarily far in the negative or positive x-directions.
Given a horizontal segment s of a curve R with x-domain [a, b], we say that a
point pi of S is “covered” by s if xi ∈ [a, b]. Obviously, every point of S falls in
the x-domain of some horizontal segment of R and the set of all points covered
by s is some Sij (which, as in [3], we call the allocation set of s). Furthermore,
since we are not interested in increasing the complexity ofR without changing its
eccentricity, all allocation sets are nonempty, i.e. there is no horizontal segment
that does not cover at least one point of S.

Let us call the y-span of points in the allocation set of s, the range of s.
Then, it is clear (and shown in [3]) that in the search for an optimal so-
lution to the min -ε problem we may restrict our attention to curves whose
horizontal segments are centered with respect to their range. We denote by
εij = 1

2 maxpr ,ps∈Sij |yr − ys| the error of a segment covering Sij and note that
E = {ε12, ε13, . . . , ε1n, ε23, . . . , εn−1n}, the set of all possible errors for the seg-
ments in a candidate curve R, must include the eccentricity of R.

The min -# problem can be solved in O(n) time [3] by sweeping the points
from left to right and adding them to the current allocation set provided that its
range is no more than twice the allowed eccentricity. Then, the min -ε problem
can be reduced to a binary search on E , resulting in an O(n2 logn) algorithm.
See [3] for details.
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Wang [11] improves the running time for min -ε by avoiding the generation
and sorting of all possible eccentricities. Instead he uses a double sweepline scan
to determine which instances of the min -# problem to solve. Every step of the
algorithm advances one of the two sweeplines based on the comparison between
the number of segments in the curve from the previous step and k. As a result,
[11] tries no more than 2n values of ε and, thus, solves the min -ε problem in
O(n2) time. See [11] for details.

2 An Optimal min -ε Algorithm

In our solution to the min -ε problem, we use Wang’s approach to generate
min -# problem instances but solve each of them using a different algorithm.
Let k = �log2 n�, where n = |S|, and let A be an array of size 2k+1 − 1. The
last 2k elements of A contain the points of S sorted by x-coordinate, padded
on the right with 2k − n copies of (xn, yn) for n < 2k. The entries of A can be
interpreted as a full binary tree whose leaves are the (padded) elements of S and
whose internal nodes occupy locations A[1..2k − 1]. We adopt the convention
that the parent of A[i] is stored at location �i/2�, as it is normally done for
heaps. Each of the first 2k − 1 elements of A stores the range of the y values
for all points in its subtree. This information can be generated in O(1) time per
node by proceeding bottom-up, one level at a time. Thus, the tree can be built
in linear time.

The algorithm creates an optimal k-curve with eccentricity ≤ ε one segment at
a time but does not necessarily investigate every point. Rather, it first expands a
segment by covering progressively larger groups of consecutive points and then
contracts its allocation set when (and if) its error exceeds ε. The expansion
and contraction phases correspond to following upward and downward node
sequences through the tree, which we shall now describe. The construction of
the first segment starts at the first leaf node (i.e., A[1] = p1) and proceeds
upward as long as the union of y-ranges of the nodes examined (i.e., the error
of the segment being built) is no more than ε. Each new node in the upward
sequence is the parent of the previous node’s right neighbor, i.e. the parent of the
node whose array index in A is one greater than that of the previous node. Note
that this relationship means that the new node may not necessarily be linked to
the previous one by an edge, i.e. generally we do not traverse a connected path.
If the previous node had no right neighbor, then the upward sequence must
terminate since it means that the last leaf node is already covered and so the
segment extends to include the nth point. Once the algorithm reaches a node
that causes the union of y-ranges to exceed ε, the upward sequence is finished and
to determine the rightmost point of the segment under construction we begin
the downward sequence. Now, every time the algorithm goes down one level of
the tree it first examines the left child of a node followed (if necessary) by the
right child to see which of the y-ranges of the two children causes the error of the
segment to be greater than ε. It then descends to that child. Once the algorithm
reaches a leaf element, the segment is finalized and a new segment is started with
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its allocation set beginning at this element. Note that in each upward sequence
no more than 1 node and in each downward one no more than 2 nodes from
the same tree level are examined. Therefore, the total cost of creating a segment
is proportional to 3 logn. Since in order to advance either of the sweeplines in
Wang’s min -ε algorithm all we need to know is how the number of segments k′

in the candidate curve compares to the target number k, our min -# algorithm
may finish and simply return that k′ > k whenever any points are not covered
after k segments have been finalized. This ensures that we spend no more than
O(k log n) time building a single candidate curve.

The other upper bound for this min -# algorithm can be shown by ob-
serving that for each segment the length of upward and downward node se-
quences depends on the number of points it would be extended to cover. Letting
ni, 1 ≤ i ≤ k, be the number of points in the final allocation set of the ith
segment, we know that no more than 3 log 4ni nodes were in both sequences for
segment i since the highest node in the upward sequence could have at most 4ni

nodes in its subtree (since the subtree sizes in the upward sequence double every
time we move up a level and the last node in this sequence may contribute no
points to the allocation set, it may have 2ni leaves in its subtree and therefore
have height log 4ni). Hence, the total number of nodes visited by the algorithm
is

∑k
i=1 3 log 4ni ≤ 3(2k + n) = O(n) since n1 + . . .+ nk ≤ n. This implies that

no matter what k is, our min -# algorithm takes no more than linear time and
so our solution to the min -ε problem, which uses Wang’s method of solving 2n
min -# problems, takes total time O(min{n2, nk logn}) and is asymptotically
faster than Wang’s algorithm when k < n/ logn.

We note that the above algorithm can be implemented without padding the
leaf point data to bring its size to a power of 2. Then, the number of the non-leaf
elements preceding S in A is n− 1 if n is even and n otherwise. Now, the point
with the leftmost x-coordinate may not necessarily be the leftmost leaf due to
the fact that leaves may reside at two different levels of the tree. Therefore, we
have to allow some upward sequence that reached the rightmost node of some
level to cross over to the leftmost node on that same level. This situation may
occur exactly once during the execution of the algorithm and to detect it it
is enough to keep track of the largest leaf index reachable from the currently
inspected node.

3 An O(n log n) Approximation Algorithm

Let k > 0 and S be a set of n points in the plane. Let us denote an optimal
k-curve (a curve with at most k segments) for S by C∗ and its eccentricity by
ε∗. The algorithm in [11] finds C∗ and ε∗ in Θ(n2) time. We sought a faster
approximation algorithm to generate curves with eccentricity no more than ε∗

and at most αk horizontal segments, where α > 1 is a small constant. In this
section we first describe our simple greedy algorithm and then show that α = 2
always suffices. Furthermore, we shall prove that the eccentricity of a k-curve
generated by our algorithm is within a factor of 3 from optimal.
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GCSA(A,m)
1 Sort A in ascending order by x-coordinate
2 L ← BuildSegmentList(A)
3 if size[A] ≤ m
4 then return L
5 H ← BuildCostHeap(L)
6 while size[H] > m
7 do s ← ExtractMin(H)
8 low[left[s]] ← Min(low[left[s]], low[s])
9 high[left[s]] ← Max(high[left[s]], high[s])

10 right[left[s]] ← right[s]
11 if cost[left[s]] �= ∞
12 then h ← Max(high[left[s]], high[left[left[s]]])
13 l ← Min(low[left[s]], low[left[left[s]]])
14 cost[left[s]] ← h − l
15 Heapify(H, left[s])
16 if right[s] �= nil
17 then h ← Max(high[left[s]], high[right[s]])
18 l ← Min(low[left[s]], low[right[s]])
19 cost[right[s]] ← h − l
20 left[right[s]] ← left[s]
21 Heapify(H, right[s])
22 delete s
23 return L

Fig. 1. Pseudocode for the GCSA Algorithm

We start with a set of n points stored in an array A. The Greedy Combine
Segment Approximation (GCSA) Algorithm, described in Fig. 1, is called on
A with a single additional parameter m that specifies the number of segments
in the output curve C. The first step of the GCSA algorithm is to sort the
points in A by x-coordinate. Then, GCSA creates a doubly-linked list L of n
segments (line 2), each going through a different point and linked in the order
of appearance in A of the corresponding points. Thus, we begin with an n-curve
of eccentricity 0 that consists of singleton segments ordered from left to right.
In order to produce an m-curve, adjacent allocation sets will be merged and
new longer segments created. GCSA follows a greedy approach minimizing the
eccentricity of the resulting curve at every merge step. GCSA represents each
segment as a structure with 6 fields: start, which is the index in A of the leftmost
point in the allocation set, low and high, which are the lowest and highest
y-coordinates of the points in the allocation set, left and right, which point to the
left and right neighboring segments, and cost that records the eccentricity of the
curve resulting from merging the segment with its left neighbor. Initialization
of these fields is done inside of the function BuildSegmentList. The fields
low and high are set to the y-coordinate of the only point covered by the seg-
ment. The only field whose initialization requires a computation is cost, which
is set to the length of the y-range of the points covered by the segment and its left
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neighbor. Since the leftmost segment has no left neighbor, its cost is ∞. Note
that if n ≤ m, the algorithm simply returns the curve obtained in this first step.

The next step is to prepare the list of segments for processing (merging) by pri-
oritizing them according to cost. GCSA repeatedly extracts the segment with the
least cost from the heap (line 7) and merges it with its left neighbor. Merging is
carried out by updating the neighbor’s fields (lines 8-14), re-heapifying (line 15),
and then updating the fields of and re-heapifying on its right neighbor (lines 16-
20). As part of this operation, the algorithm also maintains the adjacency point-
ers between segments (lines 10, 20). At every point in the execution of this loop,
the eccentricity of the curve is dominated by the cost of the segment at the top of
the heap and equals the error of the last generated segment. Another important
observation is that the costs of the neighbors of an extracted segment can only
increase, which justifies the calls to Heapify in lines 15 and 21. Note that the
leftmost segment is never extracted from the heap and as a result the splicing of
nodes never changes the head node of L. The GCSA algorithm stops after n−m
iterations and L stores the segments of the curve sorted by x-range. The following
theorem follows easily from Fig. 1 and the complexity of heap operations.

Theorem 1. The GCSA Algorithm produces the curve C in O(n logn) time.

Let us now introduce some terminology which will facilitate our discussion of
the properties of curves constructed with GCSA.

Definition 1. The cardinality of a rectilinear x-monotone curve C, denoted |C|,
is taken to be the number of horizontal segments contained in C (including the
possibly semi-infinite beginning and ending segments).

We shall call a curve constructed by the GCSA algorithm (after any number of
iterations) a GCSA curve and classify its segments through their relationship
with the segments of some (fixed) optimal k-curve.

Definition 2. Let S be a set of points and C∗ an optimal k-curve for S. A hor-
izontal segment s of a GCSA curve C is called an inside segment with respect to
C∗ if its allocation set is a contiguous subset of the allocation set of a horizontal
segment s∗ of C∗. In that case, we say that s∗ contains s and denote it s ⊆ s∗.
Also, if s ⊆ s∗ and s∗ covers a point not covered by s, we say that s∗ properly
contains s. Any segment of C which is not an inside segment with respect to C∗

is a straddling segment (or a straddler) with respect to C∗.

Since we shall always keep the choice of C∗ fixed throughout every argument,
we shall drop the reference to C∗ when qualifying the segments of C and simply
speak of them as inside or straddling segments. When the allocation sets of
a segment s of C and a segment s∗ of C∗ intersect, we shall simply say that
s intersects s∗. Clearly, any segment of C can only intersect a subset of the
segments of C∗ that are adjacent. We shall also expand the last definition and
differentiate between the straddlers that intersect exactly two segments of C∗

and call these simple straddlers and the straddlers that intersect exactly three
segments of C∗ and name those double straddlers. Obviously, no GCSA curve C
may contain more than k − 1 straddlers with respect to an optimal k-curve C∗
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(and only have that many when they are all simple) because there are exactly
k − 1 pairs of adjacent segments in C∗.

We now prove one of the two main properties of the GCSA algorithm.

Theorem 2. If n ≥ 2k, the GCSA algorithm with m = 2k− 1 produces a curve
C with eccentricity ε ≤ ε∗.

Proof. Let S be a set of n points and k > 0. Let C∗ be an optimal k-curve with
eccentricity ε∗. Suppose that the curve C returned by GCSA and consisting of
2k − 1 segments has eccentricity ε > ε∗. Then, C contains at least one segment
s, whose error is equal to ε. Consider the situation just before s was created
(i.e., before its cost is extracted from the heap) and call the curve constructed
up to that point C′. Then, clearly, |C′| > 2k − 1, since s resulted from merging
two segments. Now, let s∗ be a segment of C∗ and consider how many inside
segments of C′ may be contained by s∗. Assume there are two or more such
segments of C′. Then, there must be at least one adjacent pair of these inside
segments and the cost of merging any such pair is ≤ error(s∗) ≤ ε∗ and so is
< ε by hypothesis. Therefore, merging these pairs of segments has smaller cost
than creating s contradicting the fact that the cost of s is at the top of the
heap. Thus, we infer that all such pairs have been merged before and there can
be at most one segment of C′ completely inside of s∗. Since s∗ was arbitrary,
it follows each segment of C∗ may contain at most one segment of C′. Then,
since there can be no more than k−1 straddling segments, C′ has no more than
k+ k− 1 = 2k− 1 segments. However, earlier we established that |C′| > 2k− 1,
a contradiction. We conclude that the curve C consisting of 2k−1 segments has
eccentricity ε ≤ ε∗. Since GCSA starts with n segments and with each iteration
decreases their number by one, C is obtained after n− 2k + 1 iterations.

Construction 1. We can construct an arbitrarily large set of points S whose
GCSA (2k− 2)-curve has eccentricity bigger than ε∗. For k = 2, Fig. 2a shows a
set of n = 4 points along with an optimal 2-curve (dotted lines) and the GCSA
curve with 2k−2 = 2 segments (solid lines). If δ is very small, this shows that the
GCSA 2-curve is almost twice as bad as an optimal one. Figure 2b shows how
we can build a bigger example with three copies of the same point set in a V -
shaped arrangement (with point D shared) and this construction carries over to
arbitrarily large numbers of points and segments. In general, an optimal k-curve
may have eccentricity almost twice as small as that of the GCSA (2k−2)-curve.
To see this, let k = h + 1 and so 2k − 2 = 2h. With h copies of the point set
in Fig. 2a we have 3h + 1 points and after merging in each copy the middle
pair of points we obtain h 2-point segments and h+ 1 singleton segments. This
necessitates the creation of one more segment with error strictly bigger than the
eccentricity of an optimal (h+ 1)-curve.

Before we proceed with our next result, we need one more definition.

Definition 3. For 0 < i < n and the same set of points S, the GCSA curves
produced after 0, . . . , i−1 merge steps are called the ancestor curves of the GCSA
curve C obtained after the ith step. Furthermore, any segment in an ancestor
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Fig. 2. (a) A set of 4 points with the optimal 2-curve (dotted) and the GCSA curve
approximating it (solid). The distance between the points A and B as well as between
C and D is 1 unit, while the distance between B and C is 1 − δ, (b) 3 copies of the set
in (a) adjoined in a V -shaped arrangement with the optimal 4-curve (dotted) and the
GCSA 6-curve (solid) whose eccentricity is almost twice as bad.

curve of C contained by a segment s of C is an ancestor segment of s (i.e., the
ancestors of s are all those segments whose merging eventually produced s).

In the next two theorems, we shall make use of the following easy to prove
lemma.

Lemma 1. Let s and t be neighboring segments in a GCSA curve C. Suppose
that with respect to some optimal curve C∗, s is an inside segment and t is a
straddler with error error(t). Then, error(s ∪ t) ≤ ε∗ + error(t).

We now prove an intermediate result that determines the minimum number of
segments for a GCSA curve C to have guaranteed eccentricity within a factor of
2 of optimal.

Theorem 3. The GCSA curve C with at least k + �k
3 � segments achieves ec-

centricity at most 2ε∗.

Proof. Consider the curve C generated by GCSA just prior to creating a segment
with error ε > 2ε∗. Clearly, |C| ≤ 2k− 1 (Theorem 2). First, suppose that C has
no segment properly contained by a segment of C∗. Then, the theorem follows
since in that case C is made up only of straddling segments or segments that
also belong to C∗, and thus |C| ≤ k.

Therefore, we assume that C has at least one segment properly contained
by a segment of C∗. Let s be the leftmost such segment of C, inside of some
segment s∗ of C∗, that does not extend all the way to the right end of s∗. We
observe that, if s exists, the number of segments in C to the left of s is no
more than the number of segments in C∗ to the left of s∗. If s does not exist,
then |C| ≤ |C∗| = k and the theorem follows. We shall compute the greatest
possible number of segments in C between s and the next inside segment r to
the right of s and compare it to the number of segments in C∗ between s∗ and
the segment containing r (note that r may or may not extend to the right end
of that segment). Let C′ be the last ancestor curve of C with eccentricity ε′ ≤ ε∗
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(soon we shall see that because of the existence of s, C′ must be different from
C). Then, since error(s) ≤ ε∗, s ∈ C′ and from the proof of Theorem 2 we know
that s has no neighbors in C′ and, consequently, in C that are properly inside of
s∗. Therefore, the right neighbor of s in C, call it t, “straddles” s∗ and its right
neighbor t∗.

Now, can t ∈ C′? Clearly not, as otherwise error(t) ≤ ε∗, and, therefore,
merging s with t results in a segment whose error is less than ε (by Lemma 1,
error(s ∪ t) ≤ error(t) + ε∗ ≤ 2ε∗), but by hypothesis ε resides at the top of the
heap after C was created. Therefore, t /∈ C′ and so t has an ancestor segment
t′ ∈ C′ that also straddles s∗ and t∗ (since t covers points of s∗ that s does
not, C′ cannot contain an ancestor of t that covers only these points, otherwise
merging s with that ancestor creates a segment of eccentricity ≤ ε∗). Now, t′

covers all points of s∗ that are covered by t and error(t′) ≤ ε∗. Since both t and
t′ cover points of t∗ and t′ ⊆ t, it follows that t was obtained from t′ by merging
it on the right with another segment of C′ and so C cannot have any segment
contained in t∗ (since at most one existed in C′).

If the rightmost point covered by t is the same as the rightmost point covered
by t∗, then C has no more segments up to that point than C∗ (same number
of segments prior to s∗ and then {s, t} in C and {s∗, t∗} in C∗). Now, suppose
that t does not cover at least one point of t∗. Then, the right neighbor of t∗, u∗,
cannot contain a segment of C for otherwise the segment of C that straddles t∗

and u∗ is also in C′ (this is because its ancestor in C′ must also be a straddler
and cannot be merged afterwards as its only inside neighbor on the left has to be
merged with t′ to produce t and, by assumption, its inside neighbor on the right
survives) and we have a contradiction - it and the segment inside of u∗ must be
merged before we get to C (again by Lemma 1)! Thus, there are at most two
segments of C that cover points of u∗, one that straddles t∗ and u∗ (call it u)
and a segment (call it v) that straddles u∗ and its right neighbor r∗. Therefore,
the next inside segment r of C to the right of s must be beyond u∗ (the first
segment of C∗ that can contain it is r∗). Consequently, since every segment of
C from s to r is straddling except s itself, there is at most one more segment in
C up to r than there are segments in C∗ up to the segment containing r. Since
there are at least 3 such segments in C∗ (namely, {s∗, t∗, u∗} versus {s, t, u, v}
in C), it follows that C has at most �k

3 � more segments than C∗. It remains to
consider the case when t ends in u∗ or beyond. In this case t is a double-straddler
and C has no more segments spanning the range from s to the left endpoint of r
than C∗ (again, since all segments other than s are straddling and t is a double
straddler). Thus, it is always true that |C| ≤ k + �k

3 �.

We are now ready to prove that not only does GCSA produce a good approxi-
mation curve with 2k − 1 segments but that a curve with as few as k segments
has eccentricity no more than 3 times greater than optimal.

Theorem 4. A GCSA curve C with k segments has eccentricity at most 3ε∗.

Proof. Let C be the GCSA curve prior to creating a segment with error > 3ε∗.
Previously, we have shown that no two segments of C can be inside of the same
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segment of C∗ (Theorem 2). Then, we have argued that no two inside segments
of C can be adjacent to the same simple straddler (Theorem 3 proves a stronger
claim). Now, we show that in our case no simple straddler can be a neighbor of
an inside segment in C. This is easy. Suppose that s is such a simple straddler
next to an inside segment t of C. Let C′ be the last ancestor curve of C whose
eccentricity is no more than ε∗. Since t ∈ C′, the proof of Theorem 2 implies
that there is an ancestor of s in C′, call it s′, which is also a straddler. Moreover,
s′ is a neighbor of t in C′ and, therefore, s was obtained from s′ by merging
on (at most) one side. Therefore, error(s) ≤ 2ε∗. It follows by Lemma 1 that
error(s ∪ t) ≤ error(s) + ε∗ = 3ε∗. Hence, s and t cannot both be present in C
and we have a contradiction. Thus, we have shown that for every inside segment
C must contain a non-simple straddler. Otherwise, if C has no inside segments,
it consists only of straddlers and segments that are also in C∗. Therefore, we are
done and |C| ≤ k.

Construction 2. We shall illustrate with this example that situations when the
GCSA algorithm produces k-curves with eccentricity arbitrarily close to 3ε∗ do
arise. Figure 3 shows one such situation with 12 points, numbered in the order of
increasing x-coordinate, and Table 1 displays the y-coordinates and the vertical
distance between consecutive points (δ is an arbitrarily small positive number).
We let k = 4 and display the optimal 4-curve with eccentricity ε∗ = 1 + 3δ in
Fig. 3b.

In Fig. 3c, d, e we show the construction of an approximating 4-curve with our
algorithm, divided into 3 stages. The first stage (3c) merges 5 pairs of singleton
segments, the second stage (3d) merges two pairs of neighboring segments created
in the first stage and separated by 1+ δ, and in the final stage there is no choice
but to increase the eccentricity to 3 + 3δ and one possibility for it is Fig. 3e.

p1
p2
p3

p4

p5

p6

p7
p8

p9
p10

p11

p12

(a) (b) (c)

(d) (e)

Fig. 3. (a) A set of 12 points, (b) An optimal approximation, (c) Stage 1 of GCSA
(ε = 1), (d) Stage 2 of GCSA (ε = 2 + δ), (e) Stage 3 of GCSA (ε = 3 + 3δ)
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Table 1. Vertical distances between neighboring points in Fig. 3

Point yi |yi − yi−1| Point yi |yi − yi−1|
p1 0 −− p7 4 + 5δ 1
p2 1 + 2δ 1 + 2δ p8 5 + 7δ 1 + 2δ
p3 2 + 2δ 1 p9 4 + 7δ 1
p4 3 + 3δ 1 + δ p10 5 + 8δ 1 + δ
p5 2 + 3δ 1 p11 6 + 8δ 1
p6 3 + 5δ 1 + 2δ p12 7 + 10δ 1 + 2δ

This example carries over to arbitrarily large n and k. Imagine putting to-
gether h copies of the 12 points in Fig. 3a, with p1 of the (i + 1)st copy having
x-coordinate greater and y-coordinate 1 less than those of p12 of the ith copy.
Then, it is an easy exercise to verify that the optimal (3h+ 1)-curve has eccen-
tricity 1+4δ while the GCSA curve of the same complexity will have eccentricity
3 + 3δ. Therefore, for arbitrarily large n and k, as δ → 0, we have the ratio

ε

ε∗
=

3 + 3δ
1 + 4δ

→ 3.

The worst-case curves used to prove the tightness of the bounds in Theorems
2 and 4 are artificial constructions which are unlikely to occur in practice. The
GCSA algorithm performs very well on both synthetic (correlated and uncorre-
lated) and real data and achieves approximation factors well below these upper
bounds. In fact, the experiments we have conducted on real datasets taken from
websites such as the Time Series Data Library1 and The Financial Data Finder2

have produced near-optimal or optimal k-curves. The specific results are dis-
played in Table 2 for four data files and for several representative values of k.
The contents of the files used in our experiments are described below.

arosa.dat1 Ozone concentrations in Arosa, Switzerland, 1932-1972
daily.asc2 Daily Dow Jones Industrial avg. stock price index, 1915-1989
pphil.dat1 Monthly precipitation in mm in Philadelphia, 1820-1950
tpmon.dat1 Monthly temperature in England (F), 1723-1970

For the datasets in Table 2 GCSA produced highly accurate curves with k seg-
ments and always significantly outperformed k-optimal curves with 2k − 1 seg-
ments. The GCSA approximation is extremely accurate for meteorological data
and is within 11% of optimal for the Dow Jones data with just

√
n = 137

segments. Furthermore, we note that on this dataset GCSA computed its ap-
proximation

√
n-curve 1000 times faster than Wang’s algorithm took to find an

optimal curve of the same complexity. Overall, we conclude that with real data
the GCSA algorithm quickly produces remarkably good k-curve approximations
with eccentricity within 15% of optimal while the eccentricity of (2k− 1)-curves
always remains significantly below k-optimal.
1 http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL/
2 http://fisher.osu.edu/fin/osudown.htm
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Table 2. Results of GCSA test runs on financial and meteorological data shown as
ratios of GCSA k-curve eccentricities ε to those (ε∗) of optimal k-curves and ratios of
optimal k-curve eccentricities ε∗ to those (ε′) of GCSA (2k−1)-curves (in parentheses)

File n k = log n k =
√

n k = n/20 k = n/10 k = n/5
Ozone 481 1.00 (1.07) 1.00 (1.16) 1.00 (1.16) 1.00 (1.67) 1.10 (1.94)
Precipitation 1572 1.00 (1.15) 1.00 (1.18) 1.00 (1.24) 1.00 (1.33) 1.00 (1.62)
Temperature 2976 1.00 (1.07) 1.00 (1.09) 1.00 (1.14) 1.00 (1.69) 1.14 (1.89)
Dow Jones 18840 1.13 (1.38) 1.11 (1.39) 1.07 (1.82) 1.05 (1.96) 1.04 (2.56)
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The Branch-Width of Circular-Arc Graphs
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LIF, Université de Provence,
13453 Marseille Cedex 13, France

Abstract. We prove that the branch-width of circular-arc graphs can
be computed in polynomial time.
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1 Introduction

The notions of tree-width and tree-decomposition of a graph have been intro-
duced by Robertson and Seymour [1] for their graph minor project. These no-
tions have been intensively investigated for algorithmic purposes and it is well
known that many intractable problems can be solved in polynomial (and very
often in linear) time when the input is restricted to graphs with bounded tree-
width (see [2] for a comprehensive survey). While working on their graph minor
project, Robertson and Seymour defined, in connection with tree-width, the no-
tion of branch-width [3]. They proved that for any graphG, bw(G) ≤ tw(G)+1 ≤
1.5 ˙bw(G). Both bounds are tight and achievable on trees and complete graphs.
Branch-width appeared to be an even more appropriate tool than tree-width for
the graph minor theory. Since both parameters are so close, one can expect the
algorithmic behaviour of these problems to be quite similar. However, this is not
true. For example, on planar graphs branch-width can be computed in polyno-
mial time [4] while computing the tree-width of a planar graph in polynomial
time is a long standing open problem. An even more striking example was ob-
served by Kloks et al. [5]: deciding the branch-width of a split-graph is NP-hard
while deciding the tree-width of a split-graph can be done in linear time.

In [6], the author studied the relation between both tree-decompositions and
branch-decompositions and, in particular, how they can be associated to trian-
gulations in a similar way. Using his techniques, Fomin et al. [7] describe the
analogue of minimal triangulations and potential maximal cliques for branch-
width: efficient triangulations and blocks. They also note that, using a large
enough family of blocks together with their block branch-width, it is possible to
compute the branch-width of any graph in exponential time. The algorithm is
essentially the same as the one Fomin et al. use [8] to compute the tree-width.

In this article, we use the same framework to show that it is possible to
compute the branch-width of circular-arc graphs in polynomial time. Section 3
is devoted to a proof of the efficient triangulation theorem which is simpler than
the original one [6]. Section 4 presents some results of [7] and Sect. 5 shows how
to use these tools to compute the branch-width of circular-arc graphs.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 727–736, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Preliminaries

Throughout this paper, G is a graph with vertex set V and edge set E, n = |V |
and m = |E|. The neighbourhood N(x) of a vertex x is the set of vertices adjacent
to x. The neighbourhood of a set of vertices C is the set of vertices not in C that
are adjacent to at least one vertex of C.

A set of vertices S is a separator if G \ S has at least two connected com-
ponents, an a, b-separator if a and b are in different connected components of
G \ S, an a, b-minimal separator if no proper subset of S is an a, b-separator.
The connected component of a in G\S is Ca(S). The component Ca(S) is a full
connected component if S is the neighbourhood of Ca(S). For an a, b-minimal
separator S, both Ca(S) and Cb(S) are full. A set S is a minimal separator if
there exist a and b such that S is an a, b-minimal separator or, which is equiva-
lent, if G \ S has at least two full connected components.

A clique of a graph G is a set of vertices of G that are pairwise adjacent in
G. The maximum clique size of G is denoted by ω(G). A graph is chordal (or
triangulated) if every cycle of length at least four has a chord, that is an edge
between two non-consecutive vertices of the cycle.

Theorem 1 ([9]). A graph is chordal if and only if it is the intersection graph
of a family of sub-trees of a tree.

If H is the intersection graph of a family {Tx | x ∈ V (H)} of sub-trees of a tree
T , every maximal clique Ω of H can be associated to a vertex vΩ of T such
that the set of vertices whose sub-tree contains vΩ is exactly Ω. The minimal
separators of H can be associated to edges of T in a similar way.

A graph H is a super-graph of a graph G if H and G have the same vertices
and every edge of G is an edge of H . A triangulation of a graph G is a chordal
super-graph of G. A triangulation H of G is minimal if no strict sub-graph of
H is a triangulation of G.

Definition 1 (Efficient triangulation). A triangulation H of G is efficient if

1. each minimal separator of H is also a minimal separator of G;
2. for each minimal separator S of H, the connected components of H \ S are

exactly the connected components of G \ S.

Note that according to a result of Parra and Scheffler [10], minimal triangulations
are efficient.

If X is a set of edges, V (X) (the vertices of X) denotes the set of vertices
incident to X . The border of X , δ(X), is the set of vertices V (X) ∩ V (E \X).
A pack of a set of vertices S is either an edge whose ends belong to S or the set
of edges incident to a connected component of G \ S. Note that if X is a set of
edges, a pack of δ(X) is either a subset of X or disjoint from X . We can thus
define the packs of a set of edges X as being the packs of δ(X) that are subsets
of X .

The notion of branch-width is due to Robertson and Seymour [3]. A branch-
decomposition T of a graph G is a pair (T, τ) with T a ternary tree and τ a



The Branch-Width of Circular-Arc Graphs 729

bijective mapping from the leaves of T to the edges of G. The vertices of T are
its nodes. For any edge e of T , the two connected components T ∗

1 (e) and T ∗
2 (e)

of T \e are the e-branches of T . A branch of T is a e-branch for some edge e. The
set of edges of G mapped on the leaves of a branch T ∗ is its ground. By using
the ground, we can define the packs, the border and the set V (T ∗) of a branch
T ∗. We also extend the definition of packs and border to the edges of a branch-
decomposition. A branch-decomposition T is compatible with a set of vertices S
if S is a subset of at least one border of T . The maximum size of the border of
an edge of T denoted by bw(T ) is called the width of the branch-decomposition.
The branch-width (bw(G)) of a graph G is the minimum width of one of its
branch-decompositions. Note that the definitions of branch-decomposition and
branch-width also apply to hyper-graphs.

The notion of branch-width is closely related to the well-known notion of tree-
width. The tree-width of a graph G (tw(G)) is the minimum of ω(H) over the
triangulations H of G. In particular, Robertson and Seymour [3] showed that
bw(G) ≤ tw(G) + 1 ≤ �2 bw(G)/3�. The branch-decompositions of a graph can
also be associated to triangulations. Indeed, given a branch-decomposition T of
a graph G, we can associate to each vertex x of G the subtree Tx of T covering
all the leaves of T containing edges incident to x. The border of a branch e of T
is exactly the set of vertices x of G such that e belongs to Tx. The intersection
graph of the subtrees Tx is the triangulation HT of G associated with T .

Proposition 1. Let G be a graph, T be any branch-decomposition of G of op-
timal width and HT be the triangulation of G associated with T .

bw(G) = bw(HT ).

Proof. By induction on the number p of edges in HT \G. If G and HT are equal,
the result is obvious.

Otherwise, let (x, y) be an edge of HT \G and G′ be the graph G ∪
{
(x, y)

}
.

Since (x, y) is an edge of HT , Tx and Ty have a non empty intersection and since
(x, y) does not belong to G, this intersection contains an edge e of T . Add to T
a new vertex in the middle of e and a new leaf u attached to that vertex and
map the edge (x, y) to u. The branch-decomposition T ′ obtained is a branch-
decomposition of G′ such that bw(T ) = bw(T ′). Since T is optimal for G, we
have bw(G) ≥ bw(G′) and since G is a sub-graph of G′, bw(G) = bw(G′). By
construction, the triangulation HT ′ of G′ associated to T ′ is equal to HT . By
induction, bw(HT ) = bw(G′) which finishes the proof. ��

3 Tight Branch-Decompositions

Proposition 1 implies that the branch-width of G is the minimal branch-width of
a triangulation of G. This latter result is also true for tree-width. It is also known
that while dealing with tree-width, we can only consider minimal triangulations
but the same restriction is not possible for branch-width for there are examples of
chordal graphs H such that H is never the triangulation associated to an optimal
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branch-decomposition of H . However we show that we can restrict ourselves to
efficient triangulations. To prove this, we order the branch-decompositions of
a given graph and then show that the triangulations arising from the minimal
branch-decompositions are efficient.

Definition 2. A branch-decomposition T of a graph G is tighter than T ′ if
bw(T ) is at most bw(T ′) and HT is a subgraph of HT ′ .

The following theorem defines a “cleaning” process that does not increase the
tightness and that we can use to perform local optimisations to a branch-
decomposition. Figure 1 gives an idea of how the proof works.

Theorem 2. Let T be a branch-decomposition of a graph G and T ∗ a branch
of T .

There exists a branch-decomposition T ′ obtained from T by replacing T ∗ with
another branch such that T ′ is tighter than T and such that every pack of T ′∗ is
the ground of a sub-branch of T ′∗.

Moreover, if a border S of T ∗ is neither a subset of δ(T ∗), nor a subset of
V (X) with X a pack of T ∗, then T ′ is strictly tighter than T .

Proof. For every pack Xi of T ∗, consider the rooted sub-tree of T ∗ covering the
leaves containing an edge of Xi. By contracting edges, we can “remove” the
nodes of degree 2 and thus obtain a branch T ′∗

i of ground Xi. By linking these
branches by there root, we can obtain a branch T ′∗ of ground X .

We claim that the branch-decomposition T ′ obtained by replacing T ∗ by T ′∗

in T is tighter than T . Indeed, by construction, every sub-branch B′
i of T ′∗

i is
a pruned sub-branch B of T ∗. Since Xi is a pack of T ∗, δ(B′

i) is a subset of
δ(B). Finally, since the border of all the edges added to link the branches T ′∗

i is

X

Y

X

Y1
Y2

On the left, we consider a branch T ∗
X of a decomposition T

with a ground X that has two packs and
a sub-branch T ∗

Y of ground Y that “crosses” the two packs.

If we prune T ∗
X to each pack and rearrange the new branches,

the sub-branch T ∗
Y and δ(Y ) will be split in two.

The new decomposition is strictly tighter than T .

Fig. 1. A trimmed branch
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a subset of δ(T ∗), every border of T ′ is a subset of a border of T . This proves
that T ′ is tighter than T .

Now suppose that S is a border of T ∗ which is not a subset of δ(T ∗) and not
a subset of any V (Xi). Let T ∗

S be a sub-branch of T ∗ of border S. Let u be a
vertex of S \ δ(T ∗) (such a vertex exists by hypothesis) and Xu be the pack of
T ∗ such that V (Xu) contains u. Since S is not a subset of V (Xu), there exists a
vertex v of S in S \ V (Xu). By construction, T ′

u and T ′
v do not meet and T ′ is

strictly tighter than T . ��

The branch-decomposition built in Th. 2 is trimmed along T ∗. We can now easily
prove Th. 3.

Theorem 3. The triangulation associated to a tightest branch-decomposition of
a graph G is an efficient triangulation of G.

Proof. Let T be a tightest branch-decomposition of G and HT the triangulation
associated to T . Let S be a minimal separator of HT and Ω1 and Ω2 be two
maximal cliques of HT contaning S.

The triangulation HT is the intersection graph of the sub-trees Tx, thus Ω1
and Ω2 correspond to vertices vΩ1 and vΩ2 of T and there is an edge eS on
the path from vΩ1 to vΩ2 that corresponds to S. Let T ∗

1 and T ∗
2 be the two

eS-branches with vΩ1 in T ∗
1 and vΩ2 in T ∗

2 .
Suppose now that S is not a minimal separator of G, it has at most one full

connected component. We can thus suppose that S is the border of no pack of
T ∗

1 . By Th. 2, we can trim T along T ∗
1 and suppose that all the packs of S in

G are the grounds of some sub-branches of the two e-branches. In the resulting
decomposition T ′, no border of a sub-branch of T ′∗

1 contains S which proves that
Ω1 is not a maximal clique of HT ′ . Thus T ′ is strictly tighter than T which is
absurd. The minimal separator S of HT is also a minimal separator of G.

Using the same techniques, we can also deduce the fact that the connected
components of G \ S and HT \ S are the same. ��

4 Block Branch-Width

Suppose that bw(G) = bw(HT ). We can see the maximal cliques of HT as pieces
of a puzzle that match along minimal separators. Since we can suppose that HT
is efficient, we can characterize its maximal cliques as blocks.

Definition 3 (Block). A set of vertices B of G is called a block if, for each
connected component Ci of G \B,

– its neighbourhood Si = N(Ci) is a minimal separator;
– B \ Si is non empty and contained in a connected component of G \ Si.

We say that the minimal separators Si border the block B and we denote by
s(B) the number of these separators.
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Let Ω be a maximal clique of HT . The branch-decomposition T induces a branch-
decomposition TΩ of the complete graph K(Ω) on Ω. This branch-decomposition
respects K(Ω) in that TΩ is compatible with the minimal separators of HT
included in Ω. The branch-width of HT is the maximum width of the branch-
decompositions TΩ.

Definition 4 (Block branch-width). The block branch-width of a block Ω
(bbw(Ω)) is the minimal width of a branch-decomposition of K(Ω) respecting Ω.

Conversely, if we have optimal respectful branch-decompositions of the maximal
cliques of HT , we can construct an optimal branch-decomposition of HT which
leads to the following theorem.

Theorem 4 ([7])

bw(G) = min
H efficient triangulation of G

max{bbw(Ω) | Ω maximal clique of H}.

If we have “enough” blocks of a graph G and if we know their block branch-
width, computing the branch-width of G is indeed a large puzzle in which we try
to match blocks of low block branch-width along minimal separators bordering
them to construct a chordal graph. This puzzle can be solved in linear time in
the number of blocks.

Theorem 5 ([7]). Given a graph G and a complete list BG of blocks to-
gether with their block branch-widths, the branch-width of G can be computed
in O(nm|BG|) time.

The last tool we need to be able to compute the branch-width of a graph is to be
able to compute the block branch-width of a block. Unfortunately, deciding the
block branch-width of a block is strictly equivalent to deciding the branch-width
of a split-graph which is NP-complete [5] as already stated. Fortunately, if a
block Ω is bordered by “few” minimal separators, we can still compute bbw(Ω).

Theorem 6 ([7]). The block branch-width of any block B can be computed in
O(3s(B)) time.

We can sketch the proof as follows. In a decomposition T of Ω, there is a node
vΩ corresponding to Ω and three branches T ∗

i attached to vΩ . If T respects
Ω, then the minimal separators bordering Ω are partitioned in three according
to the branch in which they appear as a border. If we choose a 3-partition of
the minimal separators, we can compute the optimal width of a decomposition
leading to this 3-partition in constant time. To compute the block branch-width,
we only have to try all the possible 3-partitions.

5 Circular- Arc Graphs

In this section, we apply Th. 5 to circular-arc graphs to prove that their branch-
width can be computed in polynomial time.
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A circular-arc graph is the intersection graph of the arcs of a circle. The tree-
width of circular-arc graphs can be computed in polynomial time as it is shown in
[11]. To prove this, the authors use a circular interpretation of the graph (which
can be obtained in linear time [12]) and give a geometrical interpretation of
maximal potential cliques which allows them to prove that a tree-decomposition
corresponds to a planar triangulation of some polygon. We will follow exactly
the same path to prove that the branch-width of circular-arc graphs can be
computed in polynomial time.

From now on, G is a circular-arc graph. By shifting them a little, we can
suppose that ends of two distinct arcs of an intersection model I of G are also
distinct. We will only consider such representations. Between two such ends, we
put a scan-point. A scan-line is a chord of the disk Σ between two distinct scan-
points; these chords are different from the chords of a chordal graph. It is easy
to see that there are 2n scan-points and n(2n − 1) scan-lines. The arcs inside
of which lie the ends of a scan-line are cut by the scan-line. A scan-line λ or a
family of scan-lines Λ realises the set V (λ) or V (Λ) of vertices whose arcs they
cut.

Let S be a minimal separator of G and C a full component of S. The union
of the arcs of the connected component C is also an arc μC which is bordered
by two scan-points. The scan-line defined by these scan-points is close to C. It
is easy to see that the scan-line close to C realises S. Since blocks of a graph are
characterised by the minimal separators that border them, we can realise blocks
with scan-lines. More precisely, a block Ω is characterised by the connected
components of G\Ω. The scan-lines close to these connected components define
a block-realiser of Ω:

Definition 5 (Block-realiser). A realiser of a block Ω is a family of scan-lines
Λ such that:

1. Λ realises the minimal separators bordering Ω;
2. no two scan-lines of Λ cross;
3. there is a connected component Σ \ Λ which is incident to all the scan-lines

of Λ (the domain of Λ);
4. every minimal separator bordering Ω is realised by at least one scan-line of Λ.

Figure 2 shows two realisers. The block-realiser we have just described is the
loose realiser. In this realiser, distinct minimal separators correspond to distinct
scan-lines. It may be possible to use less scan-lines. For example, if S is a subset
of S′, we only need to realise S′. By grouping some minimal separators under a
common scan-line, we can hope to bound the number of scan-lines of a realiser.
This would prove that there is a polynomial number of blocks.

More precisely, let T be a branch-decomposition of G and Ω a block of G
associated with T . Let vΩ be a vertex of T corresponding to Ω and T ∗

1 , T ∗
2 and

T ∗
3 be the three connected components of T \ {vΩ}.

Definition 6 (Respectful realiser). A scan-line λ respects a branch T ∗ if
V (λ) is a subset of V (T ∗).
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A realiser Λ of Ω respects the three branches T ∗
i if it is a realiser and if all

its scan-lines respect one of the branches.

By construction, the loose realiser is respectful.

Proposition 2. Let Ω be a block of a tightest branch-decomposition T of G and
vΩ and T ∗

i be defined as above.
A realiser Λ of Ω using as few scan-points as possible respecting T ∗

i has at
most three scan-lines.

Proof. Suppose for a contradiction that Λ has at least four scan-lines. At least
two scan-lines λ1 and λ2 of Λ respect the same branch T ∗

i0
. The ends of λ1 and

λ2 define a chord λ3 of the domain of Λ which respects T ∗
i0 (see Fig. 2). This

chord partitions Λ in Λ1 and Λ2. If V (Λ1) is a subset of V (λ3), then Λ2 ∪ {λ3}
is a realiser of Ω respecting T ∗

i which uses strictly less scan-points than Λ which
is absurd. For the same reason, V (Λ2) is not a subset of V (λ3).

λ3

λ1

λ2 λ3

λ1

λ2

Two chords of a same branch have the same symbol on them.

In the first case, we can either reduce the size of the realiser or
produce a strictly tighter decomposition than T .

In the second case, we produce a strictly tighter decomposition than T .

Fig. 2. Two realisers of a block and two scan-lines λ3

Let T ′ be the decomposition T trimmed along T ∗
1 , T ∗

2 and T ∗
3 .

By rearranging the sub-branches of T ′∗
i corresponding the packs of T ∗

i , we can
build two branches T ′∗

i 1 and T ′∗
i 2 such that V (T ′∗

i 1) contains V (Λ1) and V (T ′∗
i 2)

contains V (Λ2). By rearranging the three branches T ′∗
i 1 and the three branches

T ′∗
i 2 in two branches T ′′∗

1 and T ′′∗
2 that we link, we can define a new branch-

decomposition T ′′ which is tighter than T . Moreover, by construction V (λ1) and
V (Λ2) are cliques of HT ′′ but Ω is not one because λ3 separates two vertices of
Ω. This implies that T ′′ is strictly tighter than T which is absurd and finishes
the proof. ��

Since there are O(n2) scan-lines, Prop. 2 implies that there are at most O(n6)
blocks that can appear in a tightest branch-decomposition of G. Moreover, since
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the realiser of Ω gives the “good” three-partition of the minimal separators
bordering Ω, we can compute bbw(Ω) in constant time using Th. 6. These last
two results show that we can use Th. 5 to prove:

Theorem 7. There is a polynomial time algorithm to compute the branch-width
of a circular-arc graph.

6 Conclusion and Open Problems

Theorem 5 can be used for any class of graphs. If we can bound the number
of “interesting” blocks in a class of graphs C and if we can compute the block
branch-width of these blocks, it shows that we can compute the branch-width
of the graphs in C efficiently. This can easily be done with graphs of bounded
asteroidal number with a polynomial number of minimal separators for which
we can also compute the tree-width in polynomial time. The specific ideas used
for the circular-arc graph rely on the existence of scan-lines that can realise
minimal separators. A scan-line λ3 using the ends points of two other scan-lines
λ1 and λ2 must realise a subset of V (λ1)∪V (λ2). Such a notion exists for circular
permutation graphs and more generally for d-trapezoid circular graphs.

The work we have conducted seems to show that the branch-width problem is
more difficult that the tree-width problem. The only class we know for which this
might not be the case is the class of planar graph. Otherwise, if we can compute
the branch-width of a class of graphs, then we can compute the tree-width for
this same class and with a more efficient algorithm. We feel that this is because
tree-decompositions cannot decompose cliques whereas branch-decompositions
can. Indeed, in our Th. 5, we not only need to be able to compute the blocks
but we need to compute their block branch-width. This second point has no
equivalent in the tree-width version of the algorithm. We feel that there could
be some theorem stating that if we only use minimal separators, triangulations
and blocks it is more difficult to compute branch-width than tree-width.
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Abstract. Let G = (V, A) be an Eulerian directed graph with an
arc-labeling. In this work we study the problem of finding an Eulerian
circuit of lexicographically minimal label among all Eulerian circuits of
the graph. We prove that this problem is NP-hard by showing a reduction
from the Directed-Hamiltonian-Circuit problem.

If the labeling of the arcs is such that arcs going out from the same
vertex have different labels, the problem can be solved in polynomial
time. We present an algorithm to construct the unique Eulerian circuit of
lexicographically minimal label starting at a fixed vertex. Our algorithm
is a recursive greedy algorithm which runs in O(|A|) steps.

We also show an application of this algorithm to construct the mini-
mal De Bruijn sequence of a language.

1 Introduction

Eulerian graphs were an important concept in the beginning of graph theory.
The “Königsberg bridge problem” and its solution given by Euler in 1736 is
considered the first paper of what is nowadays called graph theory.

In this work, we consider Eulerian digraphs with an arc-labeling into a finite
alphabet, and we study the problem of finding the Eulerian circuit of lexico-
graphically minimal label among all Eulerian circuits in the digraph.

By the BEST theorem (see [1]), we can compute the number of Eulerian
circuits in a graph. This number is usually exponential in the number of vertices
of the graph (at least ((γ − 1)!)|V | where V is the set of vertices and γ is the
minimum degree of vertices in V ). Therefore, finding the Eulerian circuit of
lexicographically minimal label can be costly.

This problem can be stated as a Chinese postman problem with a kind of
priority over the streets: The postman must deliver mail in a network of streets
and return to his depot without walking any street more than once (minimizing
the walked distance) and at each corner he wants to choose the street of minimal
slope. Therefore, the post office needs to give an itinerary to the postman such
that at each corner he will choose the unvisited street of minimal slope unless it
produces an unfeasible itinerary.
� Partially supported by Programa Iniciativa Cient́ıfica Milenio P01-005 and Fun-
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To find an Eulerian circuit of lexicographically minimal label is also interesting
with respect to the problem of finding optimal encodings for DRAM address bus.
In this model, an address space of size 22n is represented as labels of arcs in a
complete digraph with 2n vertices. An Eulerian circuit over this digraph produces
an optimal multiplexed code (see [2]). If we want to give priority to some address
in particular, an Eulerian circuit of lexicographically minimal label give us this
code.

Eulerian digraphs with an arc-labeling are commonly employed in automata
theory: a labeled digraph represents deterministic automata where vertices are
the states of the automata, and arcs represent the transitions from one state to
another, depending on the label of the arc. Eulerian circuits over these digraphs
are related with synchronization of automata (see [3]).

Eulerian digraphs with an arc-labeling are also used in the study of DNA.
By DNA sequencing we can obtain fragments of DNA which need to be assem-
bled in the correct way. To solve this problem, we can simply construct a DNA
graph (see [4]) and find an Eulerian circuit over this digraph. This strategy is
already implemented and it is now one of the most promising algorithms for
DNA sequencing (see [5, 6]).

Another interesting application of these digraphs is to find De Bruijn se-
quences of a language. De Bruijn sequences are also known as “shift register
sequences” and were originally studied in [7] by N. G. De Bruijn for the binary
alphabet. These sequences have many different applications, such as memory
wheels in computers and other technological device, network models, DNA algo-
rithms, pseudo-random number generation and modern public-key cryptographic
schemes, to mention a few (see [8, 9, 10]). More details about this application are
discussed in Section 3.

Note that these last applications consider digraphs with an arc-labeling with
a particular property: Arcs going out from the same vertex have different labels.

In Section 2, we define the problem and we study its complexity. We prove
that the problem is NP-hard. In Section 3 we study the problem when the arc-
labeling has different labels for arcs going out from the same vertex. We show
that in this case the problem can be polynomially solved: we give a recursive
greedy algorithm that runs in linear time in the number of arcs of the digraph.
Finally, in Section 4 we show an application of this algorithm to construct the
minimal De Bruijn sequence of a language.

2 The Problem and Its Complexity

Let G be a digraph and let l : A(G) → N be a labeling of the arcs of G over an
alphabet N such that arcs going out from the same vertex have different labels.

A trail is a sequence T = a1a2 . . . ak of arcs aj such that the tail of ai is the
head of ai−1 for every i = 1, 2, . . . , k and all arcs are distinct. If the tail of a1 is
equal to the head of ak then T is a closed trail or circuit. A circuit is an Eulerian
circuit if the arcs of T are all the arcs of G. An Eulerian digraph is a digraph
with an Eulerian circuit. The label of T , l(T ), is the word l(a1) . . . l(ak).
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Our problem is the following: given an Eulerian digraph and a vertex r, we
intend to find the Eulerian circuit starting in r with the lexicographically minimal
label. We note that is important to fix a starting vertex r so as to define an order
in which vertices are visited, which allows us to define a lexicographical order
among Eulerian circuits.

First, we prove that this problem is NP-hard. We define the decision problem:

MIN-LEX-Eulerian-Circuit
Instance: An Eulerian digraph G, a labeling l : A(G) → N of its
arcs, a starting vertex r and a word X ∈ N |A(G)|.
Question: Is there an Eulerian circuit T starting at r such that
l(T ) ≤ X?

Theorem 1. MIN-LEX-Eulerian-Circuit is NP-complete.

Proof. We present a transformation of a Directed-Hamiltonian-Circuit in-
stance (see [11]) into a MIN-LEX-Eulerian-Circuit instance, polynomially
bounded in the size of the input graph.

Let G be a digraph. We want to verify if G contains a directed Hamiltonian
circuit. We construct a digraph H in the following way: for each vertex v ∈ G,
we include two vertices v1 and v2 and an arc v1v2 in H . Additionally, for each
arc vw ∈ G we include the arc v2w1 in H (see Figure 1). Finally, we label all
arcs in H with the label 0.

It is easy to see that G has a Hamiltonian circuit if and only if H has a circuit
with label 02|V (G)|.

We can complete the digraph H to an Eulerian digraph H̄ with additional
vertices and arcs with label 1 in the following way: we add a vertex c and we
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Fig. 1. Transformation of a digraph G (Directed-Hamiltonian-Circuit instance)
into a labeled digraph H (MIN-LEX-Eulerian-Circuit instance)
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connect every vertex v in H to c with two arcs vc and cv of label 1. With these
connections, the resulting digraph is strongly connected even if we remove all
arcs in H . Finally, to each arc xy in H we add an arc yx with label 1. These arcs
provide the equality between the in-degree and the out-degree of each vertex in
H̄ . Hence, the resulting digraph is Eulerian. Moreover, if G has a Hamiltonian
circuit then we can remove the arcs of its associated circuit of label 02|V (G)| in
H̄ and the remaining graph is still Eulerian.

Therefore, G has a Hamiltonian circuit if and only if H̄ has an Eule-
rian circuit starting at any vertex r ∈ H with label smaller or equal to
02|V (G)|1|A(H̄)|−2|V (G)|.

3 A Linear Algorithm

In this section we assume that the arc-labeling gives a different label to each arc
going out from the same vertex. We note that if we fix an initial vertex r, then
there is a bijection between the trails starting at r and its labels.

We define the following greedy strategy to construct a circuit: Starting at a
given vertex r, follow the unvisited arc (if exists) of minimal label. This strategy
finishes with a trail, and this trail exhausts the vertex r. A trail constructed by
this strategy is called an alphabetic trail starting at r.

Let U be a subset of vertices in G. A cut defined by U is the set of arcs with
one end in U and the other in V (G)\U , and is denoted by δG(U). For simplicity,
for a trail T we write δG(T ) instead of δG(V (T )), where V (T ) is the set of the
tail and head vertices of the arcs in T .

A vertex v is exhausted by a trail T if δG\A(T )(v) = ∅. We note that an
alphabetic trail starting at r is the trail of lexicographically minimal label among
all trails starting at r and exhausting r. We denote by LastNotEx(T ) the last
vertex visited by T among all vertices not exhausted by T .

Let T = e1 . . . eM be a trail and let ei be an arc in the trail T . We denote by
Tei the subtrail e1 . . . ei, by eiT the subtrail ei . . . eM and by eiTej the subtrail
ei . . . ej for i < j.

Lemma 2. Let T be a circuit starting at r and exhausting r and let v =
LastNotEx(T ). If ei is the arc in T after the last visit to v then

δG\A(Tei−1) (ei+1T ) = {ei}

Proof. Let e be an arc of δG(ei+1T ). Since all vertices of ei+1T are exhausted by
T , e ∈ T . Hence either e ∈ Tei−1 or e ∈ eiT . Therefore e ∈ δG\A(Tei−1)(ei+1T )
if and only if e = ei.

We note that these properties are valid for any trail starting at r and exhaust-
ing r, it does not need to be an Eulerian circuit.

For a trail T = e1 . . . eM over G, we define a failure of T as a pair of arcs
ei = vw, ej = vx in the trail such that i < j but l(ei) > l(ej) and such that
∀k < i with ek = vy, l(ek) < l(ej). The vertex v is called a failure vertex. Note
that an alphabetic trail is a trail with no failures.
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Our strategy to construct the Eulerian circuit starting at r of lexicographi-
cally minimal label is the following: Start at r with an alphabetic trail T0. Let
v = LastNotEx(T0) and let ei be the arc in T after the last visit to v. Start
at v an alphabetic trail T1 over G \ A(T0). If the trail T1 exhaust all its ver-
tices, merge both trails obtaining T2 = (T0ei−1)T1(eiT0) and repeat the process
over LastNotEx(T2). If T1 does not exhaust all its vertices, repeat the strategy
recursively.

We note that if T1 exhausts all its vertices, the trail T2 = (T0ei−1)T1(eiT0) is
the trail of minimal label exhausting r and having one failure.

This strategy can be stated as in Algorithm MinLex. Note that we include a
global counter s and a bound MaxSteps in order to count the number of failures
of the resulting trail.

MinLex(A,r) : Compute the lexicographically minimal Eulerian circuit
starting at r on (V (G), A)

Require: A an arc-subset of A(G), r a vertex of G.
1. s ← s + 1
2. T ← AlphabeticTrail(A, r)
3. while NotEx(T ) �= ∅ and s ≤ MaxSteps
4. v ← LastNotEx(T )
5. ei ← the arc in T after the last visit to v
6. T ← (Tei−1)(MinLex(A \A(T ), v))(eiT )
7. end while

Return: T

Where AlphabeticTrail(A, r) returns the alphabetic trail starting at
r over (V (G), A), NotEx(T ) is the set of not exhausted vertices in T ,
MaxSteps is a fixed integer and s is a global counter initialized in 0.

In order to prove the correctness of our algorithm, we define Ok as the circuit of
minimal label starting at r, having k failures and exhausting r and its failures
vertices. In the following, we will define the trail Ok−1 in terms of Ok.

First, we study the position of failures over Ok. The following lemma can be
proved:

Lemma 3. Let 〈ei, ej〉 and 〈ei′ , ej′〉 be two different failures of Ok. Then it is
not possible that ei′ ∈ eiO

kej and ej′ ∈ ejO
k.

The previous lemma state that two failures of Ok are either nested or in different
subtrails of Ok. A failure 〈ei, ej〉 will be called simplicial if and only if there is
not another failure in eiO

kej . Therefore, there exist simplicial failures of Ok.
Let 〈ei, ej〉 be the first simplicial failure of Ok. We define Õ = (Okei−1)(ejO

k).
We will prove that Õ = Ok−1. In order to prove this equality, we will prove some
intermediate lemmas. All the proofs have the same idea: if the statement of the
lemma is not fulfilled, then we can construct a trail with k failures with a label
smaller than the label of Ok.
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Lemma 4. Let 〈ei, ej〉 be the first simplicial failure of Ok and let v be the vertex
LastNotEx(Ok). Then v is last visited in Okej.

Proof. (sketch) By contradiction, suppose that v is last visited by an arc em ∈
ej+1O

k and let W be the alphabetic trail starting at v over G \ A(Õ). Hence,
the trail (Õem−1)(W )(emÕ) is a trail with k failures and a label smaller than
the label of Ok, which is a contradiction.

Corollary 5. Let 〈ei, ej〉 be the first simplicial failure of Ok and let v be the
vertex LastNotEx(Õ). Then v is the failure vertex of 〈ei, ej〉.

Proof. By contradiction, let x be a vertex in ejÕ not exhausted by Õ and let
en be the last visit of Õ to x. By Lemma 4, the vertex x is exhausted by Ok,
then there exists an arc em ∈ eiO

kej such that x is the head of em−1 and the
tail of em.

Therefore, the trail (Õen−1)(emOkej−1)(eiO
kem−1)(enÕ) uses the same arcs

that Ok but its label is smaller than the label of Ok.

Lemma 6. The trail Õ is the trail Ok−1.

Proof. (sketch) The trail Õ starts and exhausts the vertex r and it has k − 1
failures. By Corollary 5, Õ exhausts all its failure. We only need to compare the
label of Õ with the label of Ok−1.

If the label of Ok−1 is smaller than the label of Õ then the arc producing this
difference needs to be in a failure of Õ. Its corresponding failure vertex cannot
occur before v, then Õei−1 = Ok−1ei−1 = Okei−1.

Let x = LastNotEx(Ok−1). If x is last visited after ej then we can
merge an alphabetic trail starting at x over G \ A(Ok−1) and we obtain a
trail with k failures and with a label smaller than the label of Ok, therefore
LastNotEx(Ok−1) = v.

By Lemma 2, there is no arc between the vertices of subtrails eiO
kej−1 and

ejO
k−1. Hence, if the label of ejO

k−1 is smaller than the label of ejÕ, the trail
(Ok−1ei−1)(eiO

kej−1)(ejO
k−1) has k failures and a label smaller than the label

of Ok. Therefore, Õ = Ok−1.

Now we are ready to prove the correctness of our algorithm.

Theorem 7. The trail Ok is the trail obtained by the MinLex(A(G), r) algo-
rithm after k steps (MaxSteps = k).

Proof. We prove this result by induction on the number of steps.
For k = 0, the algorithm produces the alphabetic trail starting at r, which is

the minimal trail exhausting r with no failures.
Now we assume that k > 0. By Lemma 6, Ok is equal to merge Ok−1 with the

alphabetic trail over G \ A(Ok−1) starting at v, where v = LastNotEx(Ok−1).
By induction hypothesis, Ok−1 is obtained by the algorithm after k − 1 steps.
Moreover, the next step in the algorithm is an alphabetic trail starting at v
over G \A(Ok−1). Therefore, the resulting trail of the algorithm after k steps is
exactly Ok.
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Corollary 8. The algorithm MinLex(A(G), r) with a sufficient large integer
MaxSteps finishes with the Eulerian circuit of minimal label starting at r

The complexity of our algorithm is linear in |A(G)|. We can use an adjacency
list (see [12]) to represent the digraph, where each vertex v has a list with the
head of each arc starting at v in the alphabetical order of its labels. Knowing
this structure of a digraph, the algorithm can easily construct the alphabetic
trails over G \Oi for every i, removing the visited arcs from the list and keeping
track of exhausted vertices. Since this algorithm visits each arc at most twice, it
can be implemented in O(|A(G)|), which is best possible.

4 An Application: Minimal De Bruijn Sequence

Given a set D of words of length n, a De Bruijn sequence of span n is a periodic
sequence B such that every word in D (and no other n-tuple) appears exactly
once in B. Historically, De Bruijn sequence was studied in an arbitrary alphabet
considering the language of all the n-tuples. In [13] the concept of De Bruijn
sequences was generalized to restricted languages with a finite set of forbidden
substrings and it was proved the existence of these sequences and presented an
algorithm to generate one of them. Nevertheless, it remained to find the minimal
De Bruijn sequence in this general case.

In [14] was studied some particular cases where an alphabetic trail obtains
the minimal De Bruijn sequence. Using Algorithm MinLex we can solve this
problem efficiently in all cases.

A word p is said to be a factor of a word w if there exist words u, v ∈ N∗ such
that w = upv. If u is the empty word (denoted by ε), then p is called a prefix of
w, and if v is empty then is called a suffix of w.

Let D be a set of words of length n + 1. We call this set a dictionary. A De
Bruijn sequence of span n + 1 for D is a (circular) word BD,n+1 of length |D|
such that all the words in D are factors of BD,n+1. In other words,

{(BD,n+1)i . . . (BD,n+1)i+nmod (|D|)|i = 0 . . . |D| − 1} = D

De Bruijn sequences are closely related to De Bruijn digraphs. The De Bruijn
graph of span n, denoted by GD,n, is the digraph with vertex set

V (GD,n) = {u ∈ Nn|u is a prefix or a suffix of a word in D}

and arc set
A(GD,n) = {(αv, vβ)|α, β ∈ N, αvβ ∈ D}

Note that the original definitions of De Bruijn sequences and De Bruijn graph
given in [7] are the particular case of D = Nn+1.

We label the arcs of the digraph GD,n using the following function l: if
e = (αu, uβ) then l(e) = β. This labeling has an interesting property: Let
T = v0e0 . . . emvm+1 be a trail over GD,n of length m ≥ n. Then T finishes in
a vertex u if and only if u is a suffix of l(T ) = l(e0) . . . l(em). This property
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explains the relation between De Bruijn graphs and De Bruijn sequence: BD,n+1

is the label of an Eulerian circuit of GD,n. Therefore, given a dictionary D, the
existence of a De Bruijn sequence of span n+1 is characterized by the existence
of an Eulerian circuit on GD,n.

Let D be a dictionary such that GD,n is an Eulerian digraph. Let z be the
vertex of minimum label among all vertices. Clearly, the minimal De Bruijn
sequence has z as prefix. Hence, the minimal Eulerian circuit on GD,n starts at
an (unknown) vertex and after n steps it arrives to z. Therefore if we start our
Algorithm MinLex in the vertex z we obtain the Eulerian circuit of minimal
label starting at z which have label B = B′ · z. Hence z · B′ is the minimal De
Bruijn sequence of span n + 1 for D.
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Abstract. We give faster approximation algorithms for the generalization of two
NP-hard spanning tree problems. First, we investigate the problem of minimizing
the degree of minimum spanning forests. Fischer [3] has shown how to compute a
minimum spanning tree of degree at most b ·Δ∗ +�logb n� in time O(n4+1/ ln b)
for any b > 1, where Δ∗ is the value of an optimal solution. We model our
generalization as a multi-objective optimization problem and give a deterministic
algorithm that computes for each number of connected components a solution
with the same approximation quality as the algorithm of Fischer and runs in time
O(n3+1/ ln b). After that, we take a multi-objective view on the problem of com-
puting minimum spanning trees with nonuniform degree bounds, which has been
examined by Könemann and Ravi [7]. Given degree bounds Bv for each vertex
v ∈ V , we construct an algorithm that computes for each number of connected
components a spanning forest in which each vertex v has degree O(Bv + log n)
and whose weight is at most a constant times the weight of a minimum span-
ning forest obeying the degree bounds. The total runtime of our algorithm is
O(n3+2/ ln b) for an arbitrary constant b > 1. Setting b = ek, k > 2/3 an
arbitrary constant, the runtime is by a factor n3−2/k log n less than the given
bound by Könemann and Ravi.

1 Introduction

Many problems in computer science ask for solutions with certain attributes or prop-
erties that can be expressed as functions mapping potential solutions to scalar numeric
values. The usual optimization approach is to take these attributes as constraints to
determine the feasibility of a solution, while one of them is chosen as the objective
function to determine the preference order of the feasible solutions. In the minimum
spanning tree problem, for example, constraints are imposed on the number of con-
nected components (one) and the number of cycles (zero) of the chosen subgraph,
while the total weight of its edges is the objective to be minimized. A more general
approach is multi-objective optimization, where several attributes are employed as ob-
jective functions and used to define a partial preference order of the solutions, with
respect to which the set of minimal (maximal) elements is sought (see, e.g., Ehrgott [2]
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or Papadimitriou and Yannakakis [9]). Most of the best known single-objective polyno-
mial solvable problems like shortest path or minimum spanning tree become NP-hard
when at least two weight functions have to be optimized at the same time. Moreover, the
set of minimal elements always contains the solution of the corresponding constrained
single-objective problem. In this sense, multi-objective optimization is considered (at
least) as difficult as single-objective optimization.

The question arises whether working in this more general framework can lead to
better understanding of the problem and sometimes also to the design of more efficient
algorithms. This is indeed the case for the average case analysis of a well-known algo-
rithm for the 0/1 knapsack problem. Beier and Vöcking [1] have considered different
input distributions for this problem and shown that the number of minimal elements in
objective space is polynomially bounded. This implies that the well-known Nemhauser
and Ullmann algorithm has an expected polynomial runtime for these distributions.
Neumann and Wegener [8] have analyzed the runtime of randomized search heuristics
for minimum spanning trees. Their results show that randomized search heuristics find
minimum spanning trees easier in a multi-objective model than in a single-objective
one. A further of a successful multi-objective approach is to obtain more information (a
set of minimal elements instead of only one specific element in it) with the same or —
as for the example of this paper — even less computational effort.

In this paper we consider two NP-hard spanning forest problems and use a multi-
objective formulation to obtain faster approximation algorithms. Given a connected
graph G = (V, E) with n vertices and m edges and positive integer weights w(e)
for each edge e ∈ E, we are searching (i) for minimum spanning forests of minimum
degree, and (ii) for minimum spanning forests obeying given degree bounds on the
vertices. A forest with i connected components is a cycle-free subgraph of G that con-
tains exactly n − i edges. A minimum spanning forest with i connected components
is a forest where the sum over all edge weights is minimal among all spanning forests
with i connected components. In a minimum spanning forest of minimum degree, the
largest vertex degree is as small as possible. This generalizes the problem of comput-
ing minimum spanning trees of minimum degree. For our algorithms it is, in contrast
to previous work, not necessary to assume the graph to be connected. For simplicity
we work under this assumption, but in the case that G is not connected our algorithms
would produce solutions for each possible value of i. Note that solutions for the differ-
ent number of connected components may be of additional interest when each spanning
tree has a weight that is not acceptable in practical applications such that the graph has
to be partitioned into different clusters. Having a solution for each number of connected
components the designer of a network can decide how to build these clusters.

1.1 Previous Work and Our Results

Let Δ∗ be the degree of an optimal solution. When edge weights are not considered,
or assumed uniform, a Δ∗ + 1 approximation algorithm for minimizing the degree
of spanning trees has been obtained by Fürer and Raghavachari [6]. For the weighted
case, Fischer [3] has presented an approximation algorithm that computes a minimum
spanning tree of degree at most b ·Δ∗ + �logb n� in time O(n4+1/ ln b) for any b > 1,
which is the best-known algorithm for this problem up to now. His algorithm is an
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adaptation of a local search algorithm of Fürer and Raghavachari [5] to the weighted
case. The idea of the local search is to perform edge exchanges until the spanning tree
is locally optimal.

We model the problem of computing minimum spanning forests of minimum de-
gree as a multi-objective optimization problem where one objective is to minimize the
number of connected components and the other to minimize the weight and degree. Our
aim is to compute for each i, 1 ≤ i ≤ n, a minimum spanning forest with i connected
components with the same approximation quality as the algorithm of Fischer. Our algo-
rithm can be seen as extension of Kruskal’s algorithm for the computation of minimum
spanning trees and runs in time O(n3+1/ ln b). Note that during the run, Kruskal’s algo-
rithm computes solutions that are minimum spanning forests for each possible number
of connected components. The working principle of our algorithm is also to start with an
empty graph and to compute the minimum spanning forests as in the run of Kruskal’s
algorithm one after another. After inclusion of a new edge that leads to a minimum
spanning forest with smaller number of connected components, its degree is improved
by edge exchanges as long as we cannot guarantee our desired approximation quality.

Könemann and Ravi [7] have considered the problem of approximating minimum
spanning trees with nonuniform degree bounds. Given degree bounds Bv for all ver-
tices, they have presented an algorithm that runs in time O(n6 log n) to compute a
spanning tree in which the degree of each vertex v is O(Bv + log n) and the weight
is by at most a constant factor higher than the weight of any spanning tree that obeys
the given degree constraints, if such a tree exists. Note, that the question whether there
exists a spanning tree obeying the given degree bounds is already NP-complete.

Starting with the empty edge set, we compute in time O(n3+2/ ln b) for each number
of connected components a minimum spanning forest with the same approximation
quality given by Könemann and Ravi [7]. For b > 1 a large constant, the runtime of our
algorithm approaches the upper bound O(n3). An additional advantage of our algorithm
is that we do not need the assumption that there is a spanning tree obeying the given
degree bounds. If this is not the case our algorithm will produce a set of solutions that
contains for each i where a spanning forest exists that respects the degree constraints a
solution that has the stated approximation quality.

The paper is organized as follows. In Section 2, we introduce our model for the com-
putation of minimum spanning forests with minimum degree and give a new algorithm
for minimizing the degree of minimum spanning forests that runs in time O(n3+1/ ln b).
Section 3 applies our technique in combination with an extension of the primal-dual
method for minimum spanning trees [7] to the problem of computing minimum span-
ning forests with nonuniform degree bounds. We finish with some conclusions.

2 Minimizing the Degree of Minimum Spanning Forests

2.1 A Multi-objective Formulation

We take a multi-objective view on the computation of minimum spanning forests with
minimum degree. Let X = {0, 1}m be the search space. A search point x ∈ X de-
scribes the set of all edges ei where xi = 1 holds. Let c(x) be the number of con-
nected components of the solution x, w(x) be the weight of the chosen edges, dj(x)
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be the number of vertices of degree j in x, and Δ(x) the maximum vertex degree of x.
The objective function value of x is given by the vector f(x) = (f1(x), f2(x)), where
f1(x) = c(x) and f2(x) = (w(x), dn−1(x), . . . , d0(x)). Both objectives f1 and f2 have
to be minimized. Minimizing the second objective means minimization with respect
to the lexicographic order. This model generalizes the function g(x) = (c(x), w(x))
that has been examined by Neumann and Wegener [8] for the computation of mini-
mum spanning trees by randomized search heuristics. They have shown that a multi-
objective model leads to a more efficient optimization process than in the case of a
single objective.

Let f(X) be the image of the search space under the objective function f defined
above. By intersecting the canonic order on f1(X) with the lexicographic order on
f2(X), both of which are total orders, a partial order on f(X) can be defined as

f(x) 1 f(x′) :⇔ f1(x) ≤ f1(x′) ∧ f2(x) ≤lex f2(x′) (1)

for all x, x′ ∈ X . This partial order represents our preference relation regarding the
solutions. The aim is to identify all minimal elements of (f(X),1), and with each
minimal element one of its pre-images from X .

As the edge weights are positive, a minimum spanning forest with i + 1 connected
components has a smaller weight than a minimum spanning forest with i connected
components. Therefore, (f(X),1) has n minimal elements, representing for each i,
1 ≤ i ≤ n, a minimum spanning forest with i connected components and minimum
degree. Our goal is to approximate the set of minimal elements as good as possible. We
want to compute for each i a minimum spanning forest with i connected components
that has degree at most b ·Δ∗

i + �logb n�, where Δ∗
i is the smallest maximum degree of

any minimum spanning forest with i connected components.

2.2 Local Improvements

Fischer’s algorithm [3] for the computation of a minimum spanning tree with degree at
most b · Δ∗ + �logb n� starts with an arbitrary minimum spanning tree and improves
the degree of high-degree vertices. The number of these improvements is bounded by
O(n2+1/ ln b). A better bound on the number of necessary improvements would yield
a better upper bound for the runtime of Fischer’s algorithm. We consider the number
of necessary improvements for our multi-objective model and start with some general
properties of minimum spanning forests with i connected components.

Lemma 1. Let Δ∗
i , 1 ≤ i ≤ n, be the minimum degree of a minimum spanning forest

with i connected components. Then Δ∗
n ≤ Δ∗

n−1 ≤ . . . ≤ Δ∗
1 holds.

Let si be a solution with i connected components and minimal weight. We call si locally
optimal if there is no solution s′i with c(s′i) = c(si) and hamming distance 2 that is
better than si with respect to f2(si) when disregarding all dj(si) with j < Δ(si) −
�logb n�. Otherwise, we say that s′i improves si. For the case i = 1 Fischer has shown
in [3] that if there is no improvement for s1 then the minimum spanning tree has already
degree at most b · Δ∗

1 + �logb n� for any b > 1. We generalize this approximation
guarantee of local optimal minimum spanning trees given by Fischer to locally optimal
minimum spanning forests.
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Lemma 2. Let si be a solution that is locally optimal and Δi be its maximum degree.
Then Δi ≤ b ·Δ∗

i + �logb n� holds for any constant b > 1.

Lemma 3. The total number of local improvements until a minimum spanning forest
of degree at most b · Δ∗

i + �logb n� has been computed for each i, 1 ≤ i ≤ n, can be
bounded by O(n1+1/ ln b).

Proof. Consider a situation where a minimum spanning forest with j connected com-
ponents and degree at most b ·Δ∗

j + �logb n� has been computed for each j, i ≤ j ≤ n.
We want to show that no more than 3 · (n− i) · μ local improvements are necessary to
reach this state, where μ = O(n1/ ln b). Setting i = 1 then proves the lemma.

Let a potential function be defined as p(s) :=
∑
logb n�+1

j=0 dr+j(s) · ej , where
r = max{Δ(si) − �logb n�, 0}. The empty edge set sn = ∅ is obviously a minimum
spanning forest with n components and minimum degree, and no improvements are
necessary to reach this. In addition p(sn) = 0 holds. For going from i to i − 1 we
introduce into si a lightest edge e that does not create a cycle. This yields a minimum
spanning forest with i− 1 components, denoted as s′i−1. Introducing an arbitrary edge
into si increases the potential value p(si) by at most 2e
logb n�+1 ≤ 2e2 · elogb n =
2e2 · eln(n)/ ln(b) =: μ, hence p(s′i−1) − p(si) ≤ μ, where μ = O(n1/ ln b). Now,
s′i−1 can undergo a number νi−1 of local improvements to arrive at a new solution
si−1 that is locally optimal or satisfies Δ(si−1) = Δ(si), which can be achieved by
reducing the whole potential p(s′i−1). Due to Lemma 1 and 2 in both cases the claimed
approximation holds.

In a local improvement dk(s) decreases by at least 1 for some k ≥ r + 2. The
potential reduces by the smallest amount if dk(s) reduces by one, dk−1(s) increases by
three and dk−2(s) decreases by 2. This means that one local improvement step reduces
the potential by at least e2 − 3e + 2 > 1/3, i.e., a constant amount.

Therefore, and because r cannot increase in this process, the relation p(si)≤p(si+1)
−νi+1/3+μ holds for each i, 1≤ i≤n−1. Using this, the potential value of a solution
s′i that has been created by the introduction of a new edge into si+1 can be bounded
with respect to the cumulated number of all νj , i< j≤n, previous improvement steps
by p(s′i)≤(n− i)μ−

∑n
j=i+1 νj/3. As νi≤3p(s′i),

∑n
j=i νj≤3μ(n− i). �

2.3 The Algorithm

The analysis in Section 2.2 has shown that the number of improvements in the multi-
objective model can be bounded by O(n1+1/ ln b), which is by a factor n smaller than
then the number of improvements in the algorithm of Fischer. Based on this observation
we give a deterministic algorithm that computes for each i a minimum spanning forest
with i connected components and degree at most b ·Δ∗

i +�logb n� in time O(n3+1/ ln b)
for any b > 1.

Let si be a minimum spanning forest of degree at most b · Δ∗
i + �logb n�. Then

we can produce a minimum spanning forest si−1 with i− 1 connected components by
introducing a lightest edge that does not create a cycle. If Δ(si−1) = Δ(si) holds,
si−1 has the desired approximation quality. Otherwise we have to improve si−1. The
pseudo-code of our algorithm called Minimum Spanning Forest Optimizer (MSFO) is
given in Fig. 1.
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1. Initialize: let i := n, si := ∅, S := {si}.
2. Create si−1 by introducing into si the lightest edge that does not create a cycle.
3. Improve the solution si−1 until it is locally optimal or Δ(si−1) = Δ(si) holds.
4. S := S ∪ {si−1}.
5. i := i − 1.
6. If i > 1 continue at 2., otherwise output S and stop.

Fig. 1. Minimum Spanning Forest Optimizer (MSFO)

MSFO can be seen as a variant of Kruskal’s algorithm where after each insertion of
an edge the degree of the current solution si−1 is improved as long as we cannot guaran-
tee the desired approximation quality. The algorithm of Kruskal can be implemented in
time O((m + n) log n). Hence, to bound the runtime of MSFO it is necessary to bound
the number of local improvements (as done in Section 2.2) and the time to achieve such
an improvement.

Lemma 4. Let si be a solution with i connected components that is not locally optimal.
Then an improvement can be found in time O(n2).

Using the bound on the number of necessary improvements and the time bound to
achieve such an improvement, we can give an upper bound on the runtime of MSFO.

Theorem 1. The algorithm MSFO computes for any b > 1 in time O(n3+1/ ln b) a set
of solutions that includes for each i, 1 ≤ i ≤ n, a minimum spanning forest with i
connected components and degree at most b ·Δ∗

i + �logb n�.

Proof. Consider the time the solutions {sn, sn−1, . . . , si} ⊂ S have been produced.
These solutions have the following properties. Each sj , i ≤ j ≤ n, is a minimum
spanning forest with j connected components. In addition, sj is locally optimal or
Δ(sj) = Δ(sj+1) holds. Obviously, sn is a locally optimal solution. We introduce
into si an edge e of minimal weight that does not create a cycle. This can be easily done
by checking each remaining edge in time O(m). Note that the whole computation in
step 2 in the run of the algorithm can be implemented in time O((m + n) log n) using
the ideas of Kruskal’s algorithm. After step 3, the solution si−1 has minimal weight
among all solutions with i − 1 components. If e is not incident to at least one edge of
degree Δ(si), Δ(si−1) = Δ(si) holds. Otherwise, the number of vertices with degree
Δ(si) + 1 is at most 2 and we have to improve si−1 to reach a locally optimal solution
or to achieve Δ(si−1) = Δ(si).

The number of local improvements in the run of MSFO is bounded by O(n1+1/ ln b)
as shown in Lemma 3 and an improvement of a non locally optimal solution can be
found in time O(n2) due to Lemma 4. Hence, the time until MSFO has achieved the
desired approximation can be bounded by O(n3+1/ ln b). �

3 Minimum Spanning Forests with Nonuniform Degree Bounds

Könemann and Ravi [7] have examined the case of non-uniform degree bounds Bv for
all vertices v ∈ V . They presented an algorithm that finds, in time O(n6 log n), a span-
ning tree where the degree of each vertex is O(Bv +log n) and whose total edge weight
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is at most a constant times the weight of any tree that satisfies the degree constraints.
There it is necessary to assume that a tree obeying the given degree bounds exists. Note
that the problem to decide this question is already NP-complete. The algorithm uses a
combination of primal-dual methods and local search, where in each local search step
the normalized degree of the high-degree vertices in a current spanning tree is reduced.
We generalize the primal-dual idea of Könemann and Ravi to the approximation of
minimum spanning forests with nonuniform degree bounds. The task is to find for each
i, 1 ≤ i ≤ n, a spanning forest with i connected components and minimum total edge
weight such that the maximum degree of each vertex v is at most Bv . The algorithm
presented here runs in time O(n3+2/ ln b), b > 1 an arbitrary constant, and outputs for
each i, 1 ≤ i ≤ n, a spanning forest Fi of i connected components whose vertex de-
grees are O(Bv + log n) and whose total weight is at most a constant times the total
weight of any minimum spanning forest with i connected components. Here we do not
need the assumption that there exists a spanning tree obeying the given degree bounds.
For each value of i where a spanning forest respecting the degree constraints exists a
solution with the stated approximation quality is produced.

We first adapt some results of [7] to the case of spanning forests. A feasible partition
of V is a set π = {V1, . . . , Vk} where Vi ∩Vj = ∅ for all i �= j, V = V1 ∪ . . .∪Vk , and
the induced subgraphs G[Vi] are connected. Let Gπ be the multigraph obtained from G
by contracting each Vi into a single vertex, Π be the set of all feasible partitions of V ,
and x(e) be the variable indicating whether edge e is included in the current solution,
i.e., x(ei) = xi. We consider the following integer linear program (IP) formulation for
the problem of computing the minimum spanning forest with i, 1 ≤ i ≤ n, connected
components that obeys all degree bounds Bv .

min
∑
e∈E

w(e)x(e) (2)

s.t.
∑

e∈E[Gπ]

x(e) ≥ |π| − i ∀π ∈ Π (3)

∑
e∈E:v∈e

x(e) ≤ Bv ∀v ∈ V (4)

x(e) ∈ {0, 1} ∀e ∈ E (5)

The dual of the linear programming relaxation of (IP) is given by

max
∑
π∈Π

(|π| − i) · yπ −
∑
v∈V

λvBv (6)

s.t.
∑

π:e∈E[Gπ]

yπ ≤ w(e) + λu + λv ∀e = (u, v) ∈ E (7)

y, λ ≥ 0 (8)

Könemann and Ravi have given a primal-dual interpretation of Kruskal’s algorithm.
Let (IP-SP) denote (IP) without constraints of type (4), its LP relaxation denoted by (LP-
SP) and its dual be (D-SP). Kruskal’s algorithm can be seen as a continuous process over
time that starts with an empty edge set at time 0 and ends with a minimum spanning
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tree at time t∗. At any time t, 0 ≤ t ≤ t∗, a pair (xt, yt) is kept, where xt is a partial
primal solution for (LP-SP) and yt is a feasible solution for (D-SP). In the initialization
step x(e)0 = 0 is set for all e ∈ E, and yt

π = 0 for all π ∈ Π . Consider the forest
F t that corresponds to the partial solution xt and let πt be the partition induced by the
connected components of F t. At time t the algorithm increases yt

π until a constraint of
type (7) becomes tight. If this happens for edge e, this edge e is included into the primal
solution. If more than one edge becomes tight, the edges are processed in arbitrary order.
We denote by MSFi a variant of this algorithm that stops when a minimum spanning
forest with i connected components has been computed in the continuous process.

Let degF (v) be the degree of vertex v in the spanning forest F with i connected
components. The normalized degree of a vertex v is denoted by ndegF (v) = max{0,
degF (v)− 1− bα ·Bv}, where b and α are constants depending on the desired approx-
imation quality. Let Δt the maximum normalized degree of any vertex in the current
spanning forest F t

i at a given time t and denote by U t
j the set of vertices whose normal-

ized degree is at least j at time t. The following lemma was shown in [7].

Lemma 5. There is a dt ∈ {Δt − 2 logb n, . . . , Δt} such that∑
v∈Udt−1

Bv ≤ b ·
∑

v∈Udt

Bv

for any constant b > 1.

Our algorithm called Primal Dual Forest Optimizer (PDFO) is given in Fig. 2. The
idea is to start with an empty edge set and compute the solutions with the desired ap-
proximation quality one after another. If we maintain a solution xt with i connected
components that does not have the desired approximation quality with respect to the
degree bounds, we compute a new solution xt+1 which improves xt with respect to the
normalized degree. Let F t

i be the forest corresponding to xt. We increase the weight of
an edge e ∈ E by εt if it is either in F t

i and adjacent to vertices of Udt , or in E \ F t
i

and adjacent to vertices of Udt−1. The weight increment εt is defined as the smallest
weight increase when deleting an edge adjacent to a vertex of Udt and inserting an edge

1. t := 0; λt
v := 0, ∀v ∈ V ; wt(e) = w(e), ∀e ∈ E;

2. i := n; (xt, yt) := MSFi(G, wt); S := {xt};
3. while i > 1 do

(a) i := i − 1; wt+1(e) = wt(e); (xt+1, yt+1) := MSFi(G, wt+1); t := t + 1;
(b) while Δt > 2 logb n do

i. Choose dt ∈ {Δt − 2 logb n, . . . , Δt} s.t. v∈Udt−1
Bv ≤ b · v∈Udt

Bv

ii. Choose εt and let λt+1
v := λt

v + εt if v ∈ U t
dt−1 and λt+1

v := λt
v otherwise

iii. wt+1(e) := wt(s)+εt if ((e ∈ F t
i )∧(e∩Udt �= ∅)∨((e �∈ F t

i )∧(e∩Udt−1 �= ∅))
and wt+1(e) := wt(e) otherwise

iv. (xt+1, yt+1) := MSFi(G, wt+1); t := t + 1;
(c) S := S ∪ {xt};

Fig. 2. Primal Dual Forest Optimizer (PDFO)
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adjacent to vertices that are not contained in Udt−1 such that a new cyclefree subgraph
of G is constructed. After that, xt+1 is a minimum spanning forest with i connected
components with respect to the updated weight function wt+1. We have also stated the
computation of the dual variables corresponding to the primal solutions in Fig. 2 using
MSFi. The dual variables will be used later to show the approximation quality of our
algorithm, but it is not necessary to compute these values during in the run.

We want to show that the algorithm computes in time O(n3+2/ ln b) an approxima-
tion of the set of minimal elements that contains for each i, 1 ≤ i ≤ n, a spanning
forest with i connected components in which each vertex v has degree O(Bv + log n)
and weight at most a constant times the weight of an optimal solution obeying the
degree bounds. First, we consider the approximation quality of the solutions that are
introduced into the set S in step 3c. Here we use an extension of the arguments given in
[7] to the case of minimum spanning forest with given degree bounds.

Lemma 6. For all iterations t ≥ 0 where we are considering solutions with i connected
components in the algorithm PDFO, the relation∑

π∈Π

(|π| − j)yt+1
π ≥

∑
π∈Π

(|π| − j)yt
π + εtα

∑
v∈Udt−1

Bv (9)

holds for and all j, 1 ≤ j ≤ i.

Lemma 7. Let ω > 1 be a constant and α = max{ω/(ω − 1), ω}. For all iterations
t ≥ 0 where we are considering solutions with i connected components in the algorithm
PDFO, the relation

ω
∑
v∈V

Bvλ
t
v ≤ (ω − 1)

∑
π∈Π

(|π| − j) · yt
π (10)

holds for each j, 1 ≤ j ≤ i.

Lemma 8. For all iterations t ≥ 0 where we are considering solutions with i connected
components in the algorithm PDFO, the relation

∑
e∈F t

j

w(e) ≤ ω

[∑
π∈Π

((|π| − j) · yt
π)−

∑
v∈V

(Bv · λt
v)

]
(11)

holds for each j, 1 ≤ j ≤ i.

Lemma 8 shows that in each iteration the weight of a spanning forest with j, 1 ≤ j ≤ i,
is only a constant times the weight of an optimal solution. It remains to show an upper
bound on the runtime of PDFO. To do this we first consider the time to produce a new
solution xt+1 from the current solution xt.

Lemma 9. The solution xt+1 can be computed from xt in time O(n2).

Proof. If the computation of xt+1 is carried out in step 3a of the algorithm introducing
the lightest edge for the weight function wt+1 into xt that does not create a cycle yields
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xt+1. This can be done in time O(n2) by inspecting every edge at most once. In the
other case xt is a minimum spanning forest with i connected components with respect
to wt and xt+1 is a minimum spanning forest with i connected components with respect
to the updated weight function wt+1. To determine xt+1 we have to compute εt and
execute the resulting exchange operation. For the computation of dt we use an integer
array of size n and store at position j, 0 ≤ j ≤ n− 1, the sum over the Bv-values with
vertices of normalized degree j in F t

i . This can be done in time O(n) using a breath
first search traversal on F t

i in which we compute the Bv value for the current vertex v
in the traversal and add the value to the value of the corresponding position in the array.
After that we determine the values

∑
v∈Uj

Bv, 0 ≤ j ≤ n−1, one after another starting
with U0. Note that

∑
v∈U0

Bv =
∑

v∈V Bv . The value
∑

v∈Uj+1
Bv can be computed

by subtracting from
∑

v∈Uj
Bv the entry at position j in the array. Each computation

can be done in constant time based on the corresponding array values. Hence, the value
dt of Lemma 5 can be determined in time O(n). To compute the εt value we determine
the exchange operation that leads to a primal solution of MSFi(G, wt+1). Note that εt

is the smallest weight increase such that deleting an edge adjacent to at least one vertex
of Udt and inserting an edge adjacent to vertices that are not contained in Udt−1 yields a
minimum spanning forest with i components for the weight function wt+1. We consider
two possibilities for the exchange operation.

First we investigate the case where introducing an edge e connects two components
of the current forest F t

i . Then another edge from the resulting forest has to be removed
to create a solution with i connected components. Introducing the edge e with smallest
weight that is not incident to vertices of Udt−1 and deleting the edge e′ ∈ F t

i with the
largest weight of all edges incident to vertices of Udt in F t

i leads to the desired exchange
operation with the smallest weight increase. Each edge of G has to be examined once,
which gives an upper bound of O(n2) on the runtime in this case. Let εt′

be the value
obtained by this exchange operation.

The other possibility to get a smaller value than εt′
is to introduce into F t

i an edge
that creates a cycle. Then we have to delete one edge of this cycle. We use a depth
first search traversal of F t

i from every vertex v ∈ V . Let w be the current vertex in
this traversal. Assume that there is an edge e = (v, w) in E and that v and w are not
contained in Udt−1. Otherwise we can continue the traversal since the pair (v, w) does
not fulfill the properties for the exchange operation. Let wi be the largest weight of
an edge e′ in the path from v to w that is incident to vertices of Udt . If no such edge
e′ exists then e can not participate in the exchange operation we are looking for. The
weight increase of introducing e and deleting e′ can be computed in constant time, and
the variables wi can be maintained in constant time per step of the traversal using stacks.
Hence, we can determine the exchange operation with the smallest weight increase
in the second case in time O(n2). Let εt′′

be the weight increase of this exchange
operation. Choosing εt = min{εt′

, εt′′} and computing a primal solution of MSFt+1
i

by executing the corresponding exchange operation gives the stated upper bound. In
addition we update the weight with respect to wt+1 for the next iteration which can be
done in time O(n2). �

Theorem 2. The algorithm PDFO computes, for any b > 1 and ω > 1, in time
O(n3+2/ ln b) a set of solutions that includes a minimum spanning forest with



Speeding up Approximation Algorithms for NP-Hard Spanning Forest Problems 755

i connected components for each i, 1 ≤ i ≤ n, in which each vertex degree is at
most b · α · Bv + 2 logb n + 1 and the total weight is at most ω · w(F ∗

i ), where
α = max{ω/(ω − 1), ω} and w(F ∗

i ) is the minimum weight of any spanning forest
with i connected components satisfying the degree bounds.

Proof. As long as the algorithm has not achieved a solution with i connected compo-
nents such that the vertex degree is at most b ·α ·Bv + 2 logb n + 1, the right hand side
of (11) is ω times the optimal value of the dual objective function. This implies that the
weight of a minimum spanning forest with i connected components for the weight func-
tion wt is at most ω times the value of an optimal solution obeying the degree bounds
for each j, 1 ≤ j ≤ i. Hence, the solutions introduced into the set S in step 3c of PDFO
have the stated approximation quality. As each possible value of i is considered in the
run of PDFO, the set S includes after termination for each i, 1 ≤ i ≤ n, a solution with
i connected components with the desired approximation quality.

In the following we give an upper bound of O(n3+2/ ln b) on the runtime until the
algorithm terminates. A new solution xt+1 can be computed from the current solution
in time O(n2) due to Lemma 9. It remains to bound the number of primal solutions xt

that have to be computed until the algorithm terminates. The number of solutions that
are computed in step 3a of the algorithm is at most n − 1 as the number of connected
components is bound by n. In the inner while-loop we compute for the solution with i
connected components new primal solutions as long as we have not reached a solution
with i connected components that has the desired approximation quality.

Consider a modification of the potential function p introduced in Lemma 3. For a
solution s, let Δ̂(s) be the maximum normalized degree of s, and let d̂i, 0 ≤ i ≤ n− 1,
be the number of vertices with normalized degree i in this solution. The potential of a
solution s is given by p′(s) :=

∑
2 logb n�+1
j=0 d̂r+j(s) ·ej , where r = Δ̂(s)−�2 logb n�.

Assume that a minimum spanning forest with i, 2 ≤ i ≤ n, has been computed. Af-
ter initialization this is true for i = n. The solution of MSFi−1(G, wt) differs from
MSFi(G, wt) by one single edge that is additionally introduced into MSFi−1(G, wt)
at any time t. Introducing this edge into si, a solution s′i−1 with p′(s′i−1) − p′(si) =
O(n2/ ln b) is created. Each iteration of the inner while-loop reduces the potential by at
least 1/3. Hence, we can upper bound the number of improvements in the run of PDFO
by O(n1+2/ ln b) using the ideas of Lemma 3. �

Note that choosing b as a constant large enough the runtime of PDFO approximates the
upper bound O(n3). For b = e, b = e2, . . . , b = ek, where e = 2.71... and k is a
constant, we get runtimes O(n5), O(n4), . . . , O(n3+2/k). The degrees of the produced
solutions are bounded by O(Bv + log n), and the weight of a solution with i connected
components introduced into the set S in step 3c is at most a constant times the weight of
any minimum spanning forest with i connected components obeying the degree bounds.

4 Conclusions

In this paper we have shown that a multi-objective formulation can help to design faster
approximation algorithms for the generalization of two NP-hard spanning tree prob-
lems. Our algorithms can be seen as an incremental construction procedure starting
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with the empty edge set and producing the solutions for the different number of con-
nected components after another. Nevertheless we point out that our results have been
obtained by the multi-objective formulation and this new view on the problem. We also
think that this approach may be helpful to get a better understanding of other problems
that have additional constraints. Based on our observations we have given an algorithm
that computes for each i, 1 ≤ i ≤ n, a minimum spanning forest with i components and
degree at most b ·Δ∗

i + �logb n� in a total time of O(n3+1/ ln b). In the case of nonuni-
form degree bounds we have presented an algorithm that runs in time O(n3+2/ ln b) and
computes for each i, 1 ≤ i ≤ n, a spanning forest in which each vertex has degree
O(Bv + log n) and the weight is a most a constant times the weight of a minimum
spanning forest with i components obeying the given degree bounds.
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Abstract. We present in this paper an exact algorithm for motif extrac-
tion. Efficiency is achieved by means of an improvement in the algorithm
and data structures that applies to the whole class of motif inference al-
gorithms based on suffix trees. An average case complexity analysis shows
a gain over the best known exact algorithm for motif extraction. A full
implementation was developed and made available online. Experimental
results show that the proposed algorithm is more than two times faster
than the best known exact algorithm for motif extraction.

1 Introduction

Patterns appearing repeated either inside a same string or over a set of strings
are important objects to identify. Such repeated patterns are called motifs and
their identification is called motif inference or motif extraction. The area has
many potential applications, namely to data compression, natural languages,
databases, basically, any activity or research requiring text mining [4]. The field
of application that concerns us is molecular biology. The motifs in this case may
correspond to functional elements in DNA, RNA or protein molecules, or to
whole genes whose sequences are strongly similar. In biological applications, it
is mandatory to allow for some mismatches between different occurrences of the
same motif. In fact point mutations might have taken place, as well as errors
in the sequencing procedure, so that molecules that have the same or related
function(s), have no longer identical sequences. This is what makes the problem
difficult from the computational point of view. In this paper we propose an exact
algorithm for the extraction of motifs with mismatches. In particular, we con-
sider single and structured motifs, which are motifs composed of several disjoint
single motifs placed at given distances from each other. The extraction of struc-
tured motifs appears particularly interesting because of its application to the
detection of binding sites ([3]). Given a text s, the problem is to find repeated
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patterns in s according to some parameters that specify the frequency and the
structure required for the motifs. In molecular biology, the text is in general a set
of DNA sequence. Several exact, heuristic, and probabilistic algorithms for ex-
tracting structured motifs exist. Up to date, the best known exact algorithms for
the extraction of single [7] and structured [2] motifs perform well when searching
for short motifs. In this paper, we propose an improvement to such algorithms
in order to deal with long motifs. The problem of extracting long motifs was first
adressed by Pevzner and Sze [6]. They considered a precise version of the motif
discovery problem: find all single motifs of length 15 with at most 4 mismatches
in 20 sequences of size 600. A general set for this problem deserves attention
from the algorithmic point of view because its computational complexity is in
the worst case exponential with respect to the number e of mismatches allowed
among different occurrences of the same motif. The reason is that, to identify
motifs of the required length, there can be an explosion of the number of candi-
dates of intermediate length whose extension has to be attempted. This imposes
in practice a limit to the length of the motifs themselves, as in many applications
the value of e depends on this length. The improvement introduced in this paper
acts exactly in these cases, and hence applies to relatively long motifs, being a
way to increase the length of motifs that are detectable in practice.

2 Single Motif Extraction

A single motif is a word over an alphabet Σ. Given an error rate e, a motif is
said to e-occur in a sequence if it occurs with at most e letters substitution. The
single motif extraction problem takes as input N sequences, a quorum q ≤ N , a
maximal number e of mismatches allowed, and a minimal and maximal length
for the motifs, kmin and kmax, respectively. The problem consists in determining
all motifs that e-occur in at least q input sequences. Such motifs are called valid.
An efficient exact algorithm for the extraction of single motifs with mismatches
has been introduced in [7] and is based on a suffix tree: motifs are considered in
lexicographical order starting from the empty word, and they are extended to
the right as long as the quorum is satisfied until either a valid motif of maximal
length is found (if the kmax length is reached), or the quorum is no longer
satisfied. In both cases, a new motif is attempted. Formally, the algorithm ([7])
we refer to is sketched in Algorithm 1.. At the beginning ExtractSingleMotif
is called on the empty word. The algorithm recursively calls itself for longer
motifs built by adding letters (step 4), and considers new ones (step 1) when
the extension fails (step 2). A valid motif is spelled out whenever a motif whose

Algorithm 1. Single motif extraction

ExtractSingleMotif(motif m)
1. for all α ∈ Σ do
2. if mα is valid then
3. if |mα| ≥ kmin then spell out the valid motif mα
4. if |mα| < kmax then ExtractSingleMotif(mα)



RISOTTO: Fast Extraction of Motifs with Mismatches 759

length lies within the required minimal and maximal length is detected (step 3).
The order in which motifs are generated corresponds to a depth-first visit of a
complete trie M (the motif tree) of all words of length kmax on the alphabet
Σ. The algorithm does not need to allocate the motif tree. The only memory
requirement is for the suffix tree T . Assuming that the required length of the
motif is k (that is kmin = kmax = k), and that at most e mismatches are allowed,
the algorithm has worst case time complexity in O(Nnkν(e, k)), where nk is the
number of tree nodes at depth k, and ν(e, k) is the number of words that differ
in at most e letters from a word m of length k. This value does not depend on
m, and it holds that ν(e, k) ≤ ke|Σ|e. This upper bound is in practice not tight.
Nevertheless, no better bound can be given and therefore the time complexity is
linear in the input size, but possibly exponential in the number e of mismatches.
Since reasonable values for e are proportional to the value of k, this actually
places a practical bound on the length required for the motifs. The goal of this
paper is to move this bound.

2.1 Using Maximal Extensibility of Factors

The modification we suggest consists in storing information concerning maximal
extensibility in order to avoid trying to extend hopeless motifs. For instance (see
Fig. 1), assume that in our virtual depth-first visit of the motif tree, we have
found out that motif m can be further extended without losing the quorum up
to a length of MaxExt(m) only, the latter representing its maximal extensibil-
ity. If later on, we are processing a motif m′ that has m as a suffix, then the
MaxExt(m) information could be useful, as it applies to m′ as well because m′

can also be extended with at most MaxExt(m) symbols (and possibly less). In
particular, we have that if |m′| + MaxExt(m) < kmin, then we can avoid any
further attempt to extend m′ as there is no hope to reach length kmin for motifs
that have m′ as prefix. In Algorithm 1., motifs are considered in lexicographical
order by a depth-first (virtual) visit of the motif tree M. Every time we stop ex-
tending a motif, that is, when we (virtually) backtrack inM, it is either because
we found a valid motif of the maximal length, or because the quorum is no longer
satisfied (mα does not satisfy the condition at step 2, and we start to consider
the next one in lexicographical order). In the first case, m is valid, as are all its
prefixes, and |m| = kmax. No information on the maximal extension of m nor of

mink

MaxExt(m)

Valid model

m m’

MaxExt(m)

Fig. 1. Example where the extension of m′ can be avoided, using MaxExt(m), where
m is a suffix of m′, because |m′| + MaxExt(m) < kmin
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its prefixes can be of any use because all motifs having a prefix of m as suffix
can in general still be extended as much as necessary to reach at least the length
kmin. For this reason, we set MaxExt(m) = +∞. In the second case, m does not
satisfy the quorum while all its prefixes do. For reasons that will be clearer later,
we chose to only use the maximal extensibility information of motifs of length
up to kmin − 1, hence this case can be subdivided into two subcases. When a
motif m cannot be extended anymore and it has not reached the length kmin−1,
we set MaxExt(m) = 0. If the motif has reached a length h between kmin − 1
and kmax, we set MaxExt(〈mα|kmin−1) = h− (kmin − 1), where 〈mα|kmin−1 is
the prefix of length kmin − 1 of mα. Since it can be that MaxExt(〈mα|kmin−1)
had already received some value because a previous extension of 〈mα|kmin−1 was
interrupted, then we change the value of MaxExt(〈mα|kmin−1) only if we are
increasing it, as maximal extensibility of a motif refers to its longest extension.
All maximal extensibility values are initially set to −1, hence the first attribution
to MaxExt(〈mα|kmin−1) will always increase its value.

In all the cases above, the algorithm does not consider any further extension
of m, and backtracks. This backtracking consists in either replacing the last
letter σ|m| of m (line 1), or considering a shorter motif which in general shares
a prefix with m, if σ|m| was the last letter of the alphabet Σ. In this latter case,
the whole subtree rooted at the node spelling σ1 . . . σ|m|−1 has been (virtually)
completely visited. Thus, we have all the information necessary to set the value of
MaxExt(σ1 . . . σ|m|−1) according to MaxExt(x) = 1 + maxα∈Σ MaxExt(xα),
for all valid motifs x such that |x| < kmin−1. If the letter σ|m|−1 was the last of
the alphabet, then the backtracking goes further. In that case, also the MaxExt
information concerning the word σ1 . . . σ|m|−2 can be filled in in the same way,
and so on. As mentioned before, maximal extensibility information can be used
for motifs whose extension is being considered and for which this information
could actually prevent some useless attempts. Namely, assume we are trying to
extend the motif m = σ1, σ2 . . . , σ|m|. Obviously, we do not know the value of
MaxExt(m) yet, and we know MaxExt(σ2, . . . , σ|m|) only if it lexicographically
precedes m, that is, it has already been virtually visited in the motif tree. If this
is not the case, we check whether MaxExt(σ3, . . . , σ|m|) is already known, and
so on, possibly until the singleton σ|m|. If they are all lexicographically greater
than m, then no maximal extension information can be used for m, but if for
any of them MaxExt is known and it holds that the maximal possible extension
is not enough to reach kmin, then the information is useful as it guarantees that
attempting to further extend m is useless.

Lemma 1. Let w ∈ Σ∗. We have MaxExt(w) ≤ MaxExt(v) for each v which
is a suffix of w.

A consequence of Lemma 1 is that longer suffixes of m can give us more tight
bounds on the maximal extensibility information with respect to shorter ones.
Therefore, since we start by checking the longest one, as soon as we find a suffix
of m that enables us to state that m is not worth further attempts, then we
can stop checking the other (shorter) suffixes. That is, if we find a suffix |m〉j =
σj , . . . , σ|m| of m, with 1 < j ≤ |m|, such that MaxExt(|m〉j) is not enough for m
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to reach kmin because MaxExt(|m〉j)+|m| < kmin, then we can quit attempting
m and all its extensions, and we can consequently update MaxExt(m). On the
other hand, if no suffix |m〉j of m is such that MaxExt(|m〉j)+ |m| < kmin, then
the maximal extension does not disallow to reach kmin. In this case, we have to
go on trying to extend m even if it might be the case that it will never reach
the minimal length. The algorithm for single motif extraction using the maximal
extensibility information is presented in Algorithm 2.. For simplicity, we denote
in the same way a node x and the word spelled by the path from the root to x.
Recall that we use 〈mα|kmin−1 to denote the prefix of mα of length kmin − 1,
and |x〉|x|−1 to denote the suffix of x of length |x| − 1. Finally, for step 3, recall
that we assumed that all maximal extensibility values are initially set to −1.

Algorithm 2. Single motif extraction with maximal extensibility information

ExtractSingleMotif(motif m)
1. for all α ∈ Σ do
2. x := mα
3. repeat x := |x〉|x|−1 until (x = root or MaxExt(x) �= −1)
4. if x �= root and MaxExt(x) + |mα| < kmin then
5. MaxExt(mα) := MaxExt(x)
6. stop spelling mα and continue
7. if mα is valid then
8. if |mα| ≥ kmin then spell out the valid motif
9. if |mα| < kmax then ExtractSingleMotif(mα)

10. else MaxExt(〈mα|kmin−1) := +∞
11. else
12. if |mα| < kmin then MaxExt(mα) := 0
13. else if MaxExt(〈mα|kmin−1) < |mα|−(kmin−1) then MaxExt(〈mα|kmin−1) := |mα|−

(kmin − 1)
14. if |m| < (kmin − 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

2.2 Complexity Analysis

The time complexity of Algorithm 2. remains the same as for Algorithm 1. in the
worst case. Nevertheless, the proposed improvement has (very positive) effects
on the average case. Next we compute the average ratio between the number of
attempted extensions by RISO and RISOTTO for single motif extraction and
compute the limit from which RISOTTO performs better than RISO.

Assume that the dataset has r planted random motifs of size t, where each
motif can be extracted with at most e mismatches, and that the remaining
text is uniformly random. This assumption captures the fact that we want to
analyze the ratio between the number of attempted extensions by RISO and
RISOTTO in the context of a dataset with highly correlated sequences (meeting
the application requirements to biological datasets).

Let Mi be the random variable that gives the number of extracted motifs of
size i with at most e mismatches for the assumed dataset, where 0 ≤ i ≤ t.
Clearly, we have that P (M0 = 1) = 1 and P (Mt ≥ r) = 1. The number of
attempted extensions by RISO at level i > 0 (when the recursion step is at
level i) is given by the random variable Ei = Mi−1|Σ|, and the total number
of attempted extensions for the extraction of a single motif of size k is given by
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Rk =
∑k

i=1 Ei. On the other hand, RISOTTO will only extend words at level i
if they fulfill the maximum extensibility requirement. Therefore the number of
attempted extensions by RISOTTO at level i is given by E′

i = Mi−1|Σ|(1−p(i)),
where p(i) is the probability of a i-word having maximal extensibility information
to avoid its extension. Furthermore, the total number of attempted extensions
by RISOTTO for the extraction of a single motif of size k is R′

k =
∑k

i=1 E′
i.

We conclude that to compute the average value of R′
k

Rk
we need to determine

the average of the random variables Mi and the values p(i), for i = 1, . . . , k. We
proceed by computing the average values of Mi. Clearly, a planted motif of size
t has t − i + 1 segments of size i (considering overlapping). Observe that the
average number of mismatches of the e-occurrences of a motif of size t is

e =
e∑

j=0

j

(
t
j

)
(|Σ| − 1)j

ν(e, t)
.

Hence, if we assume the mismatches to distribute uniformly over the segments,
the average number of mismatches of the segments of size i of the e-occurrences
is ei = i

te. Thus, the motifs extracted at level i due to the planted motifs are
all the neighbors differing at most (e− ei) letters from the segments of size i of
the planted motifs. Since there are r(t − i + 1) segments of size i, the average
number of extracted motifs of size i with at most e mismatches, due to the
planted motifs, is

T i = |Σ|i
⎛⎝r(t−i+1)−1∑

j=0

(
1− ν(e− ei, i)

|Σ|i

)j
ν(e− ei, i)
|Σ|i

⎞⎠ .

Finally, to determine the average value of Mi, we need to take into account
the motifs extracted from the random part of the text, and so, we have M i =
T i + (|Σ|i − T i)(1 − πi), where πi is the probability of a random word of size i
not being extracted with quorum q from a set of N sequences. Given that the
probability of an e-neighbor of a word of size i not appearing in a random text
of size n is

δ(i, e, n) = (1 − 1/|Σ|i)(n−i+1)ν(e,i) ≈ (1− 1/|Σ|i)nie|Σ|e,

the value of πi can be computed by the following binomial

πi =
q−1∑
j=0

(
N
j

)
δ(i, e, n)N−j(1− δ(i, e, n))j .

We finalize by computing the probability p(i). Since the probability of a suffix
of a random word being lexicographically smaller than the random word is 1

2 ,
we have that



RISOTTO: Fast Extraction of Motifs with Mismatches 763

p(i) =
i∑

j=1

1
2j

γk−i

where γk−i is the probability of the suffix of size k − i to have information to
avoid the extension. Notice that γk−i is the probability of the suffix of size k− i
not being extended to a size greater than k − 1, and is given by

γk−i = πk−i + (1− πk−i)π
|Σ|
k−i+1 + (1 − πk−i)(1 − π

|Σ|
k−i+1)π

|Σ|2
k−i+2 + ...

=
i−1∑
j=0

π
|Σ|j
k−i+j

j∏
�=1

(1− π
|Σ|j−�

k−i+j−�) .

To understand when RISOTTO starts to provides a gain over RISO, it is impor-
tant to look to E′

i and Ei. Note that E′
i will be much smaller than Ei if p(i) is

close to 1. Moreover, as soon as random motifs start to disappear, Mi−1 will be
larger than Mi, which happens when πi is close to 1. Both πi and p(i) depend
tightly of δ(i, e, n), that is, if δ(i, e, n) is close to 0, so are πi and p(i), and if
δ(i, e, n) is close to 1, so are πi and p(i). Since δ(i, e, n) behaves like a Dirac
cumulative function for large values of n, that is, it jumps very fast from 0 to 1,
we just need to solve the equation δ(i, e, n) = 1/2 for the variable i to grasp
when RISOTTO starts to be faster than RISO, which is just slightly before the
solution. The solution of that equation is the fixed point of the following function

f(x) = − log(1− 1
2nxe|Σ|e )/ log(|Σ|).

Given that f(x) is contractive, that is, its derivate function takes values in the
interval (−1 + ε, 1 − ε), the fixed point can be computed by iterating f over
an initial value. Finally, notice that the fixed point increases with the values of
e, n and Σ. With the previous analysis, we have all the machinery necessary
for computing the ratio between the expected number of attempted extensions
between RISO and RISOTTO, as well as, from which point RISOTTO performs
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Fig. 2. Left: Ratio between the expected number of extensions attempted by
RISOTTO and RISO (cf Fig. 3 to compare theoretical with experimental results ob-
tained in the same set). Right: Ratio between performance of RISOTTO and RISO.
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better than RISO. As an example, the ratio between the expected number of
extensions attempted by RISOTTO and RISO for a dataset consisting of N =
100 sequences of size n = 1000 where we planted r = 1 motif of size t = k = 5..20,
with up to e = 2 mismatches, and quorum q = 100, is given in Fig. 2(left). For
the dataset considered, the fixed point for f(x) is x = 10.6616.

3 Structured Motif Extraction

A structured motif is a pair (m, d) where m = (mi)1≤i≤p is a p-tuple of single mo-
tifs and d = (dmini

, dmaxi
)1≤i<p is a (p−1)-tuple of pairs, denoting p−1 intervals

of distance between the p single motifs. Each element mi of a structured motif is
called a box and its minimal and maximal length denoted by kmini

and kmaxi
, re-

spectively. The structured motif extraction problem takes as parameters N input
sequences, a quorum q ≤ N , p maximal error rates (ei)i≤1≤p (one for each of the
p boxes), p minimal and maximal lengths (kmini

)i≤1≤p and (kmaxi
)i≤1≤p (one

for each of the p boxes), and p − 1 intervals of distance (dmini , dmaxi)i≤1≤p−1
(one for each pair of consecutive boxes). Given these parameters, the problem
consists in searching for the contents of the boxes, that is the motifs, that have
the structure defined by the parameters above and that satisfy the quorum. The
algorithm for single motif extraction introduced in [7] is the ancestor of others
[2, 5] that infer structured motifs. The optimisation introduced in this paper can
be applied to any of them. In a few words, the algorithm first builds the factor
tree T of the input sequences, then it searches for all valid motifs of length at
least kmin and up to kmax (as in [7]) and, after updating the data structure (see
[2] for details), checks whether there is a second valid motif (again as in [7]) with
the required interval between them. The algorithm is described by Algorithm 3.
for p = 2, where i indicates whether we are dealing with the first or the second
box, and λ is the empty word.

Algorithm 3. Structured motif extraction

ExtractStructuredMotif(motif m, box i)
1. for all α ∈ Σ do
2. if mα is valid then
3. if |mα| ≥ kmini

then
4. if i = 2 then spell out the valid motif
5. else update T to ExtractStructuredMotif(λ, 2)
6. if |mα| < kmaxi

then ExtractStructuredMotif(mα, i)

3.1 Using Maximal Extensibility of Factors

In the case of structured motifs, the maximal extensibility information for the
first box of a motif should be updated as described in Sect. 2.1. However, any
failure in attempting to extend a motif during the search of a second box cannot
update any value of MaxExt because it refers only to parts of the text that
follow a specific first box at a specific distance. In fact, when a first box m1 of a
structured motif is fixed at any given step, the maximal extensibility information
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Algorithm 4. Structured motif extraction with maximal extensibility information

ExtractStructuredMotif(motif m, box i)
1. for all α ∈ Σ do
2. if i = 1 or e2 ≤ e1 then
3. x := mα
4. while (x �= root or MaxExt(x) = −1) x := |x〉|x|−1
5. if x �= root and MaxExt(x) + |mα| < kmini

then
6. if i = 1 then MaxExt(mα) := MaxExt(x)
7. stop spelling mα and continue
8. if mα is valid then
9. if |mα| ≥ kmini

then
10. if i = 2 then spell out the valid motif
11. else follow box-links and update T to ExtractStructuredMotif(λ, 2)
12. if |mα| < kmaxi

then ExtractStructuredMotif(mα, i)
13. else if i = 1 then MaxExt(〈mα|kmin1

−1) := +∞
14. else if i = 1 then
15. if |mα| < kmin1 then MaxExt(mα) := 0
16. else if MaxExt(〈mα|kmin1

−1) < |mα| − (kmin1 − 1) then MaxExt(〈mα|kmin1
−1) :=

|mα| − (kmin1 − 1)
17. if i = 1 and |m| < (kmin1 − 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

that concerns the whole sequence is in general an upper bound on the maximal
extensibility of fragments of the sequence that are at a given distance from the
occurrences of m1. Given this observation, a possibility is to use the maximal
extensibility information of the first box when searching and trying to extend a
second box. Another possibility, while attempting to find a motif for the second
box, is to compute and store tighter maximal extensibility information which
we can use for the second box being attempted as long as the first box is fixed.
In the following, we only address the first alternative, that is, only the first box
stores extensibility information. The conditions needed for our optimisation to
be applicable in the case of structured motifs may hold even more frequently
than in the case of single motifs. In fact, since the search for a valid motif as
second box is made after a valid motif for the first box is found, maximal ex-
tensibility information may be known also for the whole motif whose extension
is attempted and not just for its prefixes. In other words, it may happen that
when Algorithm 3. is called with parameters m and 2, the value of MaxExt(m)
is already known. Proper suffixes are thus not the only candidates to give useful
information when we are trying to find a motif for the second box. The ex-
tensibility information can be used as for the case of single motifs except that
one has to deal with different error rates among boxes. Indeed, e2 must be less
than or equal to e1 in order for the extensibility information to be useful for
the second box. Otherwise, the maximal extensibility information stored for the
first box may be too restrictive, and if it is used, it may cancel the extension of
valid motifs. The algorithm for structured motif extraction using the maximal
extensibility information is presented in Algorithm 4. Similarly to the case of
single motif extraction, the time complexity of Algorithm 4. remains the same
as for Algorithm 3. in the worst case, and the improvement proposed accounts
only for the average case, as we shall verify in the next section.
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4 Implementation and Experimental Results

In order to verify the improvement proposed in this paper, a C implementation
of the maximal extensibility algorithm, called RISOTTO1, was made. The new
implementation was tested against a C implementation of the algorithm pre-
sented in [2] and called RISO. The results of the experiments we made show
a sensible improvement for both single and structured motif extraction when
using maximal extensibility information. As we shall see in this section, maxi-
mal extensibility may cost some extra space, which is a delicate issue for large
datasets, but it can definitely save some hopeless visits, and in general it results
very efficient.

We start with some considerations concerning the storage of extensibility in-
formation. As we have seen in Sect. 2.1, due to the order in which motifs are
considered, we have that only certain subwords of motifs can give useful informa-
tion concerning maximal extensibility, namely, those that are lexicographically
smaller. Since no motif is smaller than itself, we actually only use the MaxExt
information of motifs that are shorter than the current one, that is, they are
proper suffixes. Therefore, since the condition to check is whether or not we can
hope to reach the kmin length, then we make use of the MaxExt data only
for strings of length at most kmin − 1. Hence, it is not necessary to store this
information for motifs that have length kmin or more for the purpose mentioned
above. Let us now discuss how much space is required to store the extensibility
information until level kmin − 1. We say that a tree is uncompact complete if it
is a trie where all possible nodes are present. There is thus no arc whose label
contains more than one letter. A previous result [1] makes use of some statis-
tical analysis for stating that a suffix tree of a text of length n is expected to
be uncompact complete at the log|Σ|(n) top levels, where Σ is the alphabet of
the text. This fact suggests a model to store extensibility information: a static
data structure to keep the MaxExt values until level log|Σ|(n), and a dynamic
structure for deeper levels. Since we are interested in the DNA alphabet (com-
posed of the four nucleotides A, C, G, and T ), then we have that our suffix tree
is uncompact complete at the top log4(n) levels where n is the size of the input
sequence s. The function log4(n) reaches 10 for n ≈ 106, it is greater than 11
for n = 107, it is more than 13 for n = 108, and nearly 15 for n = 109. These
values correspond to reasonable values for the minimal length kmin of the motif,
and they are reached for values n of the text size corresponding to quite big
datasets. In the RISOTTO implementation, we took all the observations above
into consideration. Since kmin has to be relatively small for our approach to be
tractable spacewise, we considered only 1 byte (a char in C) to store MaxExt
values. In this case, extensibility values must be less than 256, which is quite
reasonable. To build a static data structure to store such values until level z,
we need z + 1 1-byte arrays, where the j-th array has size |Σ|j with 0 ≤ j ≤ z.
Therefore, for the case of DNA, the total amount of memory required is 4z+1−1

3
bytes. This function gives us values of 1.3MB for z = 10, 5.3MB for z = 11,

1 RISOTTO is available at http://algos.inesc-id.pt/∼asmc/software/riso.html.
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85.3MB for z = 13, and 1.3GB for z = 15. In our experiments, we achieved
an optimum trade-off between memory allocation/management and maximal
extensibility gain when z = 10. Taking this observation into account, we only
allocate values for MaxExt until level z = min{10, kmin − 1}, even for large
values of kmin, and disregard deeper levels as well as the dynamic data structure
mentioned above. Nevertheless, we allowed this z level to be an implementation
parameter. In the end, considering z = min{10, kmin − 1}, RISOTTO requires
at most 1.3MB more that RISO for DNA databases, being more than twice
faster as we shall see next.

To test maximal extensibility performance we used several randomly gen-
erated (with a uniform distribution over the four letters size DNA alphabet)
synthetic datasets with planted structured motifs. Each dataset consists of 100
sequences of size 1000 where we planted one motif, possibly structured into sev-
eral boxes, with 2 mismatches per box. We ran both RISO and RISOTTO
requiring a quorum q = 100 and at most 2 mismatches per box so that the out-
put contains at least the planted motif. For each dataset, we made several runs
for increasing lengths of the motifs. In particular, given the number of boxes
of the structured motifs (in our tests there are p boxes for p = 1, . . . , 4), we
have increased the size of the boxes ranging from 5 to 20. As a result, the total
motifs size (without counting the gaps) ranges from 5 to 80. For each p (number
of boxes), we have plotted in Fig. 3, against the size of the motif (x axis), the

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e 

at
te

m
pt

s 
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

One box

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35 40

P
er

ce
nt

ag
e 

at
te

m
pt

s 
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

Two boxes

box 1/2
box 2/2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e 

at
te

m
pt

s 
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

Three boxes

box 1/3
box 2/3
box 3/3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50 60 70 80

P
er

ce
nt

ag
e 

at
te

m
pt

s 
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

Four boxes

box 1/4
box 2/4
box 3/4
box 3/4

Fig. 3. Ratio between the number of extensions attempted by RISOTTO and RISO
(cf Fig. 2(left) to compare theoretical with experimental results obtained in the same
set)
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ratio between the number of extensions attempted by RISOTTO and those by
RISO (y axis). Given than RISOTTO only saves useless attempts, this equals
the percentage of saved calls of the recursive procedure. For one box (Fig. 3
top left) we have depicted the results for several runs, while for two, three and
four boxes (Fig. 3 top right and bottom) there are one curve for the inference
of each box of the structured model. As one would expect, the attempts saved
are more when the length of the motif increases and, in particular, the improve-
ment starts when the length of the box is about 10 (this value depends in general
from the input sequence and the alphabet size). For one box (see Fig. 3 top left),
the number of attempted extension of RISOTTO decreases fast to 40% with
respect to RISO (for growing values of the length of the motifs). Even better
results, getting as good as attempting only 20% of the extensions of RISO, were
achieved when extracting an i-th box with 2 ≤ i ≤ p (see Fig. 3 (top right and
bottom)). Moreover, we present the ratio of speed performance of the compu-
tation of RISOTTO with respect to that of RISO. This is shown for all tests
together in Fig. 2(right) for all possible sizes of the boxes. One can see that the
best relative performance is achieved for the first boxes (that is where it is more
needed because the search space is very large and noisy), where RISOTTO is
up to 2.4 faster than RISO. Finally, in [6] a challenging problem was launched
that concerned finding all single motifs of length 15 with at most 4 mismatches
in 20 texts of size 600. We ran both RISO and RISOTTO on such instances.
We observe a speedup of 1.6 of RISOTTO over RISO. We actually believe
that a true challenge should involve texts of larger size. Therefore, we ran tests
with the same parameters (length 15 and at most 4 mismatches) on larger input
sequences. The results confirm the 1.6 speedup for sequences of length 700 and
800, 1.3 speedup for length 900, and then the speedup decreases, but the time
required by RISOTTO is always lower than for RISO.
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Abstract. In this paper, we consider source location problems and their
generalizations with three connectivity requirements λ, κ and κ̂. We show
that the source location problem with edge-connectivity requirement λ
in undirected networks is strongly NP-hard, and that no source location
problems with three connectivity requirements in undirected/directed
networks are approximable within a ratio of O( ln D), unless NP has an
O(N log log N)-time deterministic algorithm. Here D denotes the sum of
given demands. We also devise (1 + ln D)-approximation algorithms for
all the extended source location problems if we have the integral capacity
and demand functions.

Furthermore, we study the extended source location problems when a
given graph is a tree. Our algorithms for all the extended source location
problems run in pseudo-polynomial time and the ones for the source loca-
tion problem with vertex-connectivity requirements κ and κ̂ run in poly-
nomial time, where pseudo-polynomiality for the source location problem
with the arc-connectivity requirement λ is best possible unless P=NP,
since it is known to be weakly NP-hard, even if a given graph is a tree.

Keywords: Connectivity, location problem, combinatorial optimization,
and approximation algorithm.

1 Introduction

There is vast literature on location problems in the fields of operations
research, computer science, etc. (see, e.g., [12]). Location problems in networks
are often formulated as optimization problems to determine the best location
of facilities such as industrial plants or warehouses in given networks to sat-
isfy a certain property. Location problems based on flow (i.e., connectivity)
requirements, called source location problems, were introduced by Tamura et
al. [17, 18], and have recently received much attention from many authors (e.g.,
[1, 2, 3, 8, 10, 11, 14]).
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Connectivity is one of the most important factors in applications to control
and design of multimedia networks. Suppose that we are asked to locate a set S
of multiple servers which can provide a certain service in a multimedia network
N . A user at vertex v can receive a service by connecting to a server in S through
a path in N . To ensure the quality of the service to v even if certain number
d−1 of links and/or vertices become out of order, we should select S so that the
arc- and/or vertex-connectivity between S and v is at least d. Therefore, such a
kind of fault-tolerant settings can be formulated as a source location problem.

(Extended) Source Location Problems

Formally, source location problems can be described as follows. Let N = (G =
(V, A), u) be a network with a vertex set V of cardinality n, an arc set A of
cardinality m, and a capacity function u : A → R+, where R+ denotes the set
of all nonnegative reals. It has two demand functions d−, d+ : V → R+, and a
cost function c : V → R+. Then the problem is given as

Minimize
∑
v∈S

c(v)

subject to ψ−(S, v) ≥ d−(v) and ψ+(v, S) ≥ d+(v) (v ∈ V ), (1.1)
S ⊆ V.

Here ψ±(X, Y ) denote certain measurements based on the connectivity from
vertex set X to vertex set Y in N . For any v ∈ V , we simply write ψ−(S, v)
and ψ+(v, S) instead of ψ−(S, {v}) and ψ+({v}, S), respectively. For such mea-
surements ψ±, the present paper studies three basic connectivity requirements:
arc-connectivity λ, and two kinds of vertex-connectivity κ and κ̂. Note that Prob-
lem (1.1) sometimes adopts a single measurement ψ (= ψ− = ψ+). Let us further
note that in a more general problem setting we consider multiple constraints in
(1.1) as ψ−

i (S, v) ≥ d−i (v), ψ+
i (v, S) ≥ d+

i (v) for all v ∈ V and i = 1, 2, · · · , �.
For example, we can consider the arc- and vertex-connectivity simultaneously.

We note that the cost function of the source location problem depends only
on the fixed setup costs of the facilities at vertices. It is natural to consider the
cost functions which depend not only on the setup costs but also on the supply
values. This kind of generalization was introduced in [15], where we deal with
source location problems with supply values x(v) of facilities at v ∈ V , each of
whose cost functions cv is the sum of the opening cost and the monotone concave
running cost for a facility at v ∈ V . We remark that monotonicity and concavity
are natural assumptions on the cost, and are required in many network design
problems (see, e.g., [6]).

Previous Work

We briefly survey the developments in (extended) source location problems.

Arc Connectivity Requirements. Tamura et al. [17] first considered the
source location problem with the edge-connectivity (or arc-connectivity) require-
ment ψ (= ψ− = ψ+) = λ, whenN is undirected and both the cost c and demand
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d are uniform (i.e., c(v) = 1 and d(v) = k for all v ∈ V ), and gave a polynomial
time algorithm for it. Since then, Tamura et al. [17], Ito et al. [10] and Arata et al.
[2] have investigated the source location problem with edge-connectivity require-
ment λ in undirected networks. They provided polynomial time algorithms when
the cost function or the demand function is uniform. On the other hand, it was
shown that the problem is in general weakly NP-hard [2]. But, it remains open
to prove the NP-hardness in the strong sense or to devise a pseudo-polynomial
time algorithm.

For directed networks, Ito et al. [11] showed that the problem is strongly NP-
hard, even if either the cost function c or the demand functions d− and d+ is
uniform, and Bárász et al. [3] and Heuvel and Johnson [8] provided a polynomial
time algorithm if c, d− and d+ are uniform.

Vertex Connectivity Requirements. The source location problem with
vertex-connectivity requirement κ (i.e., ψ− = ψ+ = κ) was investigated by
Ito et al. [10]. They considered the case in which G is undirected, and the cost
function c and the demand function d (= d− = d+) are uniform. They showed
that the problem is polynomially solvable for k ≤ 2, but NP-hard for k ≥ 3.
They also showed that the positive result for k ≤ 2 can be extended to the case
in which the edge-connectivity λ(S, v) ≥ � is required simultaneously.

Let us note that the vertex-connectivity requirement, say, κ(S, v) ensures that
there exists at least κ(S, v) internally vertex-disjoint paths from S to v. This
means that any source in S never has a breakdown. To take possible breakdowns
of sources into consideration, Nagamochi et al. [14] introduced another kinds of
vertex-connectivity requirements κ̂−(S, v) and κ̂+(v, S), where κ̂−(S, v) (resp.,
κ̂+(v, S)) is the maximum number of paths from S to v (resp., from v to S) which
are vertex-disjoint except at v. They presented a polynomial time algorithm for
the source location problem when d− and d+ are uniform and ψ± = κ̂±. Ishii et
al. [9] considered the problem with a non-uniform demand function in undirected
networks, gave a linear time algorithm if d(v) (= d−(v) = d+(v)) ≤ 3, and showed
that the problem is NP-hard if there exists a vertex v ∈ V with d(v) ≥ 4.

Some other types of the source location problems were also studied. These
include single cover problem [17, 18], simultaneous location [1], and compound
requirements [10].

For the extended source location problems, [15] investigated when it has
uniform edge-connectivity requirement λ in undirected networks. By model-
ing this as a laminar cover problem, it can be shown that it is solvable in
O(nm + n2(q + log n)) time, where q is the time required to compute cv(x)
for each x ∈ R+ and v ∈ V .

The Results in this Paper

We address the (extended) source location problems. Briefly, the results obtained
in this paper can be summarized as follows.

– We show that the source location problem with edge-connectivity require-
ment λ in undirected networks is strongly NP-hard. This solves an open
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problem posed in [2], and gives us a complete picture of the tractability-
intractability of the source location problems. Moreover, we show that no
source location problems with three connectivity requirements in undirected/
directed networks are approximable within a ratio of O( ln

∑
v∈V (d+(v) +

d−(v))), unless NP has an O(N log log N )-time deterministic algorithm.
– We devise (1 + ln

∑
v∈V (d+(v) + d−(v)))-approximation algorithms for the

extended source location problems if we have integral capacity and demand
functions. We remark that our approximation algorithm is applicable to
all connectivity requirements. By combining the hardness result described
above, we can say that our algorithm is optimal for all the extended source
location problems, i.e., it is Θ(ln

∑
v∈V (d+(v) + d−(v)))-approximable.

– We also develop algorithms for the (extended) source location problems when
a given graph is a tree, where we say that a directed graph G is a tree if G
becomes a tree by ignoring the orientation of arcs and then regarding parallel
edges as a single one. Our algorithms for the integral versions of the extended
source location problems run in pseudo-polynomial time and the ones for
the source location problems with vertex-connectivity requirements κ and κ̂
run in polynomial time. We remark that pseudo-polynomiality for the arc-
connectivity requirement λ is best possible unless P=NP, since it is known
[2] that the source location problem with arc-connectivity requirement λ is
weakly NP-hard, even if the underlying graph is a tree. Our positive results
for the source location problems with the vertex-connectivity requirements
κ and κ̂ reveal for the first time a tractable subclass of the problems.

The rest of the paper is organized as follows. Section 2 introduces some no-
tation and definitions. Section 3 shows the intractability of the source location
problems, and Section 4 presents approximation algorithms for the (extended)
source location problems. Section 5 considers the source location problem in tree
networks.

Due to the space limitation, we skip the proofs, which can be found in [16].

2 Definitions and Preliminaries

For a network N = (G = (V, A), u), let us define three connectivities λ, κ, and
κ̂. For vertex subsets X, Y ⊆ V , we say that X is k-arc-connected to Y if there
exists a feasible flow ϕ from X to Y whose value is at least k, where a flow
ϕ : A → R+ is feasible from X to Y if it satisfies the following conditions:

∂ϕ(v) def=
∑

(v,w)∈A

ϕ(v, w) −
∑

(w,v)∈A

ϕ(w, v) = 0 (v ∈ V − (X ∪ Y )), (2.1)

0 ≤ ϕ(a) ≤ u(a) (a ∈ A), (2.2)

and the value of ϕ is defined by
∑

v∈X ∂ϕ(v). The arc-connectivity from X to Y ,
denoted by λ(X, Y ), is the maximum number k such that X is k-arc-connected
to Y . Here we define λ(X, Y ) = +∞ if X ∩ Y �= ∅.
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For two sets X, Y ⊆ V , we say that X is k-vertex-connected to Y if there
exists k internally vertex-disjoint paths from X to Y . The vertex-connectivity
from X to Y , denoted by κ(X, Y ), is the maximum number k such that X is
k-vertex-connected to Y . We define κ(X, Y ) = +∞ if X ∩ Y �= ∅ or there exists
an arc from X to Y . For two sets X, Y ⊆ V , κ̂−(X, Y ) (resp., κ̂+(X, Y )) denotes
the maximum number of paths from X to Y such that no pair of paths contains a
common vertex in V \Y (resp., V \X). We define κ̂−(X, Y ) = κ̂+(X, Y ) = +∞,
if X ∩ Y �= ∅.

This paper studies the source location problem given by (1.1) with three basic
connectivity requirements λ, κ and κ̂, i.e., the constraints ψ−(S, v) ≥ d−(v) and
ψ+(S, v) ≥ d+(v) for λ, κ, and κ̂ are, respectively, given as follows.

λ(S, v) ≥ d−(v) and λ(v, S) ≥ d+(v), (2.3)
κ(S, v) ≥ d−(v) and κ(v, S) ≥ d+(v), (2.4)
κ̂−(S, v) ≥ d−(v) and κ̂+(v, S) ≥ d+(v). (2.5)

For any X, Y ⊆ V , we denote A(X, Y ) = {(x, y) ∈ A | x ∈ X, y ∈ Y }.
For X ⊆ V , let u−(X) (resp., u+(X)) denote the sum of the capacities of arcs
entering (resp., leaving) X , i.e.,

u−(X) =
∑

a∈A(V \X,X)

u(a), u+(X) =
∑

a∈A(X,V \X)

u(a),

and, for an undirected network, let us define u(X) by u(X) = u−(X)(= u+(X)),
where we note that u(X) = u(V \X). For every X ⊆ V , a vertex v ∈ V \ X
is called an in-neighbor (resp., out-neighbor) of X if there is an arc (v, x) ∈ A
(resp., (x, v) ∈ A) for some x ∈ X , and v is simply called a neighbor of X if it
is an in- or out-neighbor of X . The set of all in-neighbors (resp., out-neighbors)
of X is denoted by N−(X) (resp., N+(X)). For a vertex set X ⊆ V , d−(X)
(resp., d+(X)) denotes the maximum in-demand (resp., out-demand) among all
vertices in X , i.e.,

d−(X) = max
v∈X

d−(v) (resp., d+(X) = max
v∈X

d+(v)).

A set W ⊆ V is, respectively, called deficient with respect to (1) λ, (2) κ̂,
and (3) κ if (1) u−(X) < d−(X) or u+(X) < d+(X), (2) |N−(W )| < d−(W ) or
|N+(W )| < d+(W ), and (3) W can be represented by W = X ∪ N−(X) with
|N−(X)| < d−(X) or W = X ∪ N+(X) with |N+(X)| < d+(X). A deficient
set W is called minimal if no nonempty proper subset X � W is deficient. We
denote by Wλ,Wκ̂ and Wκ the families of all minimal deficient sets with respect
to λ, κ̂ and κ, respectively.

From the max-flow and min-cut theorem, we have the following lemma, which
is frequently used in the proofs given in the sequel.

Lemma 2.1. A set S ⊆ V is a feasible solution of the source location problem
with requirement ψ = λ, κ̂, κ if and only if S∩W �= ∅ holds for every W ∈Wψ. ��
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We next define the extended source location problems. Due to the space limita-
tion, we only generalizes the arc-connectivity requirement.

A flow ϕ : A → R+ is feasible with a supply x : V → R+ if it satisfies the
following conditions:

−x(v) ≤ ∂ϕ(v) ≤ x(v) (v ∈ V ), (2.6)
0 ≤ ϕ(a) ≤ u(a) (a ∈ A), (2.7)

where ∂ϕ(v) is the net out-flow at vertex v ∈ V for ϕ defined by (2.1). (2.6)
means that the net out-flow ∂ϕ(v) and the net in-flow −∂ϕ(v) at v is at most the
supply at v. For a vertex v ∈ V and a supply x ∈ RV

+, let λ−(x; v) (resp., λ+(x; v))
denote the sum of the supply x(v) and the maximum net in-flow −∂ϕ(v) (resp.,
net out-flow ∂ϕ(v)) at v among all feasible flows with a supply x. In other words,
λ−(x; v) (resp., λ+(x; v)) denotes the maximum (s, v)-flow (resp., (v, s)-flow)
value in the augmented network N ∗ = (G∗ = (V ∗, E∗), u∗) defined by

V ∗ = V ∪ {s},
A∗ = A ∪ {(s, v), (v, s) | v ∈ V }, (2.8)

u∗(a) =
{

u(a) if a ∈ A,
x(v) if a = (s, v), (v, s).

The extended source location problem with arc-connectivity requirement λ
asks for a minimum-cost supply x ∈ RV

+, i.e.,

Minimize
∑
v∈V

cv(x(v))

subject to λ−(x; v) ≥ d−(v) and λ+(x; v) ≥ d+(v) (v ∈ V ), (2.9)
x(v) ≥ 0 (v ∈ V ).

Here we assume that the cost cv : R+ → R+ is monotone (i.e., f(x) ≤ f(y) holds
for arbitrary two reals x, y ∈ R with x ≤ y) and concave (i.e., f(αx + (1− α)y)
≥ αf(x) + (1− α)f(y) for arbitrary two reals x, y ∈ R and α with 0 ≤ α ≤ 1).

Note that the flows ϕ−
v and ϕ+

v in (2.9) may depend on v. It is not difficult
to see that (2.9) is a generalization of the source location problem. In fact, for
all v ∈ V , let cv(x(v)) = 0 if x(v) = 0, and = c(v) otherwise. Then we can see
that (2.9) represents the source location problem.

3 Intractability of the Source Location Problems

In this section, we show that the source location problem with edge-connectivity
requirement λ in undirected networks is strongly NP-hard. Recall that the prob-
lem can be described as follows. Given an undirected network N = (G =
(V, E), u) with a capacity function u : E → R+, a demand function d : V → R+,
a cost function c : V → R+,
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Minimize
∑
{c(v) | v ∈ S} (3.1)

subject to λ(S, v) ≥ d(v) (v ∈ V ),
S ⊆ V,

where λ(S, v) denotes the edge-connectivity between S and v.

Theorem 3.1. Problem (3.1) is strongly NP-hard.

Proof. We show the present theorem by reducing to Problem (3.1) the set cover
problem, which is known to be strongly NP-hard [7].

Problem SetCover
Input. A set U = {1, 2, · · · , p} and a family S = {S1, · · · , Sq} ⊆ 2U .
Output. A subfamily X ⊆ S such that

⋃
Si∈X Si = U and |X | is minimum.

Given a problem instance I of Set Cover, we construct the corresponding
instance J (N = ((G, u), d, c)) of Problem (3.1) as follows.

V = {t1, t2} ∪ {s1, · · · , sq} ∪ {x1, · · · , xp},
E = {(t1, si) | Si ∈ S} ∪ {(si, xj) | j ∈ Si ∈ S} ∪ {(xj , t2) | j ∈ U},

u(v, w) =

⎧⎨⎩
�i if v = t1 and w = si (Si ∈ S),
1 if v = si, w = xj and j ∈ Si ∈ S,
kj − 1 if v = xj (j ∈ U) and w = t2,

d(v) =
{∑q

i=1 �i if v = t1, t2,
0 otherwise, c(v) =

⎧⎨⎩
0 if v = t2,
1 if v ∈ {s1, · · · , sq},
q + 1 otherwise,

where �i = |Si| and kj = |{Si | Si , j}|. We denote S = {si, · · · , sq} and
X = {x1, · · · , xp}. Note that

∑q
i=1 �i =

∑p
j=1 kj .

Although we skip the details, we can show that any optimal solution Y of J
can be represented as

Y = {t2} ∪ {si | Si ∈ X} (3.2)

for an optimal solution X of I. This completes the proof. ��

We remark that the reduction above is gap-preserving. In fact, any feasible so-
lution X of I produces a feasible solution Y of J given by (3.2), whose cost is∑
{c(v) | c ∈ Y } = |X |. Any feasible solution Y of J that cannot be repre-

sented by (3.2) has
∑
{c(v) | v ∈ Y } ≥ q + 1 > |S|. It is known [13, 4] that

problem SetCover is not approximable within a ratio of O(log p), unless NP
has an O(N log log N ) time deterministic algorithm. Here we can assume that q is
bounded by a polynomial in p. Since we have

∑
{d(v) | v ∈ V } ≤ 2pq, which is

polynomial in p, the reduction above implies the following inapproximable result.

Theorem 3.2. The source location problem with edge-connectivity requirement
λ in (un)directed networks is not approximable within a ratio of O(ln

∑
{d+(v)+

d−(v) | v ∈ V }), unless NP has an O(N log log N ) time deterministic algorithm.
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Similarly, we can show the inapproximability of the problems with vertex-
connectivity requirements κ and κ̂.

Theorem 3.3. The source location problem with vertex-connectivity require-
ment κ (or κ̂) in (un)directed networks is not approximable within a ratio of
O(ln

∑
{d+(v) + d−(v) | v ∈ V }), unless NP has an O(N log log N ) time deter-

ministic algorithm.

Before concluding this section, we remark that the bounds in Theorems 3.2
and 3.3 are tight. This can be shown in the next section by constructing
(1 + ln

∑
v∈V (d+(v)+d−(v)))-approximation algorithms for the extended source

location problems.

4 Approximation Algorithms for the Extended Source
Location Problems

In this section, we introduce the submodular cover problem as a natural
generalization of the set cover problem [4, 13] and the submodular set cover
problem [5, 19], and show that the extended source location problems can be
regarded as a special case of the submodular cover problem. We then show that
the extended source location problems are all approximable within a ratio of
(1 + ln

∑
v∈V (d−(v) + d+(v))) by producing a simple greedy algorithm for the

submodular cover problem.
A function f : RV

+ → R is submodular if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (4.1)

holds for arbitrary two vectors x, y ∈ RV
+. Here (x ∨ y)(v) = max{x(v), y(v)}

and (x∧ y)(v) = min{x(v), y(v)}. The submodular cover problem is described as
follows. Given a finite set V , monotone concave cost functions cv : R+ → R+
(v ∈ V ), a monotone submodular function f : RV

+ → R+ and a real M , the
problem is to find a minimum-cost vector x ∈ RV

+ that satisfies f(x) ≥ M , i.e.,

(SC) Minimize
∑
v∈V

cv(x(v))

subject to f(x) ≥M, (4.2)
x ∈ RV

+ .

Here, by putting f(x) ← min{f(x) − f(0), M − f(0)} if necessary, we can
assume without loss of generality that f(0) = 0 and f(x) ≤ M for all x ∈ RV

+ .
This paper also considers its integral version, which is obtained from (4.2) by
replacing x ∈ RV

+ with x ∈ ZV
+ , where Z+ denotes the set of all nonnegative

integers. We remark that Wolsey [19] considered a similar generalization, but he
assumed that the cost function c is linear and f is piecewise linear and concave
as well as monotone and submodular.
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We show that all the extended source location problems can be formulated as
submodular cover problems. Because of space limitations we only consider the
extended source location problem (2.9) with arc-connectivity requirement λ.

Given a directed network N = (G = (V, A), u) and two demand functions d−

and d+, we define a function f and a real M by

f(x) =
∑
v∈V

(
min{λ−(x; v), d−(v)} + min{λ+(x; v), d+(v)}

)
, (4.3)

M =
∑
v∈V

(d−(v) + d+(v)). (4.4)

Then we have

Lemma 4.1. A function f defined by (4.3) is monotone and submodular. ��

Hence we see that the extended source location problem can be formulated as a
submodular cover problem given by (4.2).

Similarly to the case of arc-connectivity requirement λ, we can show that the
extended source location problems with κ and κ̂ can also be formulated as (4.2).

We now propose a simple greedy algorithm for the submodular cover problem,
which can be seen as a natural generalization of the one for the set cover problem.
The algorithm starts with x = 0 and repeatedly increases x until it becomes a
feasible solution of the problem. In each iteration, it finds an element v∗ ∈ V
and a positive real δ∗ > 0 that is the most cost-effective, i.e., that attains

gx(v∗; δ∗) = min
v∈V,δ>0

{gx(v; δ)}, (4.5)

where

gx(v; δ) =
cv(x(v) + δ)− cv(x(v))

f(x + δχv)− f(x)
, (4.6)

and χv is the vth unit vector, i.e., χv(w) = 1 if w = v, and = 0 otherwise. Here
we assume the existence of the minimum in (4.5).

The algorithm is formally described as follows.

Algorithm. Greedy SC
Input: A finite set V , a monotone submodular function f : RV

+ → R+, mono-
tone concave cost functions cv : R+ → R+ (v ∈ V ), and a real M (> 0).
/* Let us assume that f(0) = 0 and f(x) ≤ M for all x ∈ RV

+ */
Output: A feasible solution x ∈ RV

+ for Problem SC.
Step 0. x(v) := 0 for all v ∈ V .
Step 1. While f(x) < M do

(I) Find an element v∗ ∈ V and a real δ∗ > 0 that satisfies (4.5).
(II) x(v∗) := x(v∗) + δ∗.

Step 2. Output x and halt. ��
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We remark that the algorithm might not halt in general since for v∗ and δ∗

computed in Step 1, f(x + δ∗χv∗) − f(x) might converge to +0. However, this
does not hold for many problem instances, including the ones constructed from
the (extended) source location problem.

As for the integral version of the problem, we modify algorithm Greedy SC
by replacing “ a real δ∗ > 0 ” in Step 1 with “ an integer δ∗ > 0 ”.

Theorem 4.2. Let ε be a nonnegative real such that v∗ and δ∗ in Step 1 always
satisfy f(x + δ∗χv∗)− f(x) ≥ ε. Then Greedy SC computes a solution whose
cost is at most

(
1 + ln M

ε

)
times the optimum. Moreover, it is polynomial if

(i) v∗ and δ∗ in Step 1 can be computed in polynomial time, and
(ii) the number of iterations is bounded by a polynomial in the input size. ��

For requirement λ, we can see that M =
∑

v∈V (d−(v) + d+(v)) by (4.4), and
ε ≥ 1 if d−, d+ and u are integral. Moreover (i) and (ii) in Theorem 4.2 are
satisfied for requirement λ. For example, we can prove that Greedy SC has
at most n(2n + 1) iterations. This implies the following results, where we have
similar results for κ and κ̂.

Theorem 4.3. For (the integral version of ) the extended source location prob-
lems with λ, κ and κ̂, Greedy SC computes in polynomial time a feasible so-
lution whose cost is at most 1 + ln

∑
v∈V (d−(v) +d+(v)) times the optimum if

d−, d+ and u are integral.

Corollary 4.4. For the source location problems with κ and κ̂, Greedy SC
computes in polynomial time a feasible solution whose cost is at most 1 + ln 2n
times the optimum.

5 Extended Source Location Problems in Tree Networks

In this section, we present algorithms for the (extended) source location problems
when the underlying graph G = (V, E) is a tree, where we say that a directed
graph G is a tree if G becomes a tree by ignoring the orientation of arcs and then
regarding parallel edges as a single one. Our algorithms are based on dynamic
programming. The algorithms for the extended source location problems run
in pseudo-polynomial time and the ones for the source location problems with
vertex-connectivity requirements κ and κ̂ run in polynomial time.

Due to space limitations, we briefly discuss the source location problems in
undirected tree networks.

Let N = (T = (V, E), u) be an undirected tree network with integer capacity
u, let d : V → Z+ be a demand function and let c : V → R+ be a cost function.
Then our source location problem can be represented by

Minimize
∑
v∈S

c(v)

subject to ψ(S, v) ≥ d(v) (v ∈ V ) (5.1)
S ⊆ V.
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Here ψ = λ, κ or κ̂. Let us arbitrarily take a vertex r as a root of T . For a
v ∈ V , let CH(v) be the set of all children of v, and let V (v) be the subset of
V consisting of all descendants of v (including v). For example, if v is a leaf,
we have CH(v) = ∅ and D(v) = {v}. For a vertex v ∈ V and X ⊆ CH(v), let
V (v, X) be the subset of V consisting of v and all descendants of X . We denote
by N (v) (resp., N (v, X)) the network induced by V (v) (resp., V (v, X)).

Let D = max{d(v) | v ∈ V } and U = max{u(e) | e ∈ E}. For a v ∈ V , let Y
be a subset of CH(v). We define a tree network N ′(v, Y ) = ((V ′, E′), u′) by

V ′ = V (v, Y ) ∪ {tv} and E′ = E(v, Y ) ∪ {(tv, v)}, (5.2)

and u′(e) = D if e = (tv, v), and = u(e) otherwise, where tv is a new vertex that
is not in V . Here E(v, Y ) denotes the edge set of N (v, Y ).

Then our dynamic programming solves the following problems in the networks
N ′(v, Y ).

P(N ′(v, Y ), k, p) Minimize
∑
{c(v) | v ∈ S}

subject to ψ(S, t) ≥ d(t) − k (t∈V (v, Y )), (5.3)
ψ(S ∪ {tv}, t) ≥ d(t) (t∈V (v, Y )\{v}), (5.4)
ψ(S, tv) ≥ p, (5.5)
S ⊆ V (v, Y ),

where k is an integer with 0 ≤ k ≤ D, and p is an integer with 0 ≤ p ≤ min{D, U}
if ψ = λ; p = 0, 1, D if ψ = κ; and p = 0, 1 if ψ = κ̂. Constraint (5.3) means
that the deficiency at each vertex t ∈ V (v, Y ) for S is at most k, (5.4) takes into
account the possibility that sources outside N (v, Y ) may cancel this deficiency,
and (5.5) the possibility that S may satisfy at least p deficiency outside N (v, Y ).

Although we skip the details, we have the following positive results.

Theorem 5.1. The integral versions of the extended source location problems
for ψ = λ, κ, κ̂ can be solved in pseudo-polynomial time when the underlying
graph is a tree, and the capacity and demand functions are integral.

Theorem 5.2. The source location problems for ψ = κ̂ and κ can be solved in
polynomial time when the underlying graph is a tree.
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Abstract. Ordered Binary Decision Diagrams (OBDDs) are a data
structure for Boolean functions which is successfully applied in many
areas like Integer Programming, Model Checking, and Relational Alge-
bra. Nevertheless, many basic graph problems like Connectivity, Reacha-
bility, Single-Source Shortest-Paths, and Flow Maximization are known
to be PSPACE-hard if their input graphs are represented by OBDDs.
This holds even for input OBDDs of constant width. We extend these
results by concrete exponential lower bounds on the space complexity of
OBDD-based algorithms for the Reachability Problem, the Single-Source
Shortest-Paths Problem, and the Maximum Flow Problem. This involves
the first exponential lower bound on the OBDD size for the highest bit
of Integer Multiplication w. r. t. the natural interleaved variable order.

1 Introduction

Algorithms on (weighted) graphs G with node set V and edge set E ⊆ V 2

typically work on adjacency lists of size Θ(|V | + |E|) or on adjacency matri-
ces of size Θ(|V |2). But in areas like CAD, Model Checking, and Relational
Algebra graphs arise whose size does not allow an explicit enumeration of all
their elements. There [2, 10] and in further areas like Algorithmic Learning [7]
and Integer Programming [1], the implicit representation of data by Ordered
Binary Decision Diagrams (OBDDs) [3, 4, 18] is well-established as a succinct
alternative. Their convenient algorithmic properties help to save time and space
through solving problems by efficient logical operations. So OBDDs are applied
in heuristic methods with hopefully sublinear resource usage.

Though each single OBDD manipulation is always efficient, a short sequence
of them may suffice to cause an exponential blow-up in the OBDD size. Most
algorithms on OBDD-represented graphs have only been analyzed experimen-
tally [11, 12, 21] or w. r. t. rough measures like the number of OBDD manipula-
tions [8, 9, 13]. Feigenbaum et al. [6] showed that even the very basic problem of
s–t-Connectivity is PSPACE-complete on OBDD-represented graphs. That is,
the success of OBDD-based approaches has to be explained by means of advan-
tageous properties of real-world instances causing an essentially better behavior
� An extended version of this paper is available at http://ls2-www.cs.uni-dortmund.
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than in the worst case. Recent research tries to build theoretical foundations for
the analysis of the over-all runtime of OBDD-based algorithms [15, 16, 20]. This
includes the investigation of the parameterized complexity of graph problems
when structural properties of input and/or output OBDDs are considered as
fixed parameters [17]. So basic graph problems are known to be fixed-parameter
intractable w. r. t. a fixed input OBDD width (unless P=PSPACE). (The book
of Downey and Fellows [5] gives a comprehensive introduction to the field of
parameterized complexity.)

Despite these hardness results, there is no nontrivial lower bound for the
complexity of any problem on OBDD-represented instances so far. The challenge
is to prove both an upper bound on the input’s OBDD size and an exponentially
larger lower bound on the size of some OBDD occurring during the computation.
We present such bounds for the Single-Source Shortest-Paths Problem and the
Maximum Flow Problem. For the Reachability Problem this succeeds only for a
certain class of OBDD-based algorithms. However, all existing algorithms known
to the author belong to this class. We do not assume a separate output tape
because the separation of working space and output size is not reasonable in
practical applications.

The paper is organized as follows: After giving foundations on OBDDs in
Section 2, we sum up both known and some trivial new results on the complexity
of graph problems on OBDD-represented instances in Section 3. In Section 4,
we introduce a construction method for functions with constant OBDD width.
With these preliminaries we are able to construct pathological instances for all
three considered graph problems in Sections 5, 6, and 7 giving us the desired
exponential lower bounds. Due to space limitations, the technical lower bound
on the OBDD size of the highest bit of multiplication has been shifted into the
extended version of the paper. Finally, Section 8 gives conclusions on the work.

2 Ordered Binary Decision Diagrams

For B := {0, 1}, let us denote the ith character of a binary string x ∈ Bn by
xi and let |x| :=

∑n−1
i=0 xi2i identify its value. The class of Boolean functions

f : {0, 1}n → {0, 1} is denoted by Bn. The set of all permutations of n elements
is denoted by Σn.

A function f ∈ Bn defined on variables x0, . . . , xn−1 can be represented by
an Ordered Binary Decision Diagram (OBDD) [3, 4]. An OBDD G is a directed
acyclic graph consisting of internal nodes and sink nodes. Each internal node
is labeled with a Boolean variable xi, while each sink node is labeled with a
Boolean constant. Each internal node is left by two edges one labeled 0 and the
other 1. A function pointer p marks a special node that represents f . Moreover,
a permutation π ∈ Σn called variable order must be respected by the internal
nodes’ labels on every path from p to a sink. For a given variable assignment
α ∈ Bn, we compute the function value f(α) by traversing G from p to a sink
labeled f(α) while leaving each node labeled xi via its αi-edge. An OBDD with
variable order π is called π-OBDD. The minimal-size π-OBDD for a function
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f ∈ Bn is known to be canonical and will be denoted by π-OBDD[f ]. Its size
size(π-OBDD[f ]) is measured by the number of its nodes; its width is the maxi-
mum number of inner nodes labeled with the same variable. Finding an optimal
variable order leading to the minimum size OBDD for a given function is known
to be NP-hard. Independent of π, it is size(π-OBDD[f ]) ≤

(
2 + o(1)

)
2n/n for

any f ∈ Bn. The book of Wegener [18] gives a comprehensive survey on different
types of Binary Decision Diagrams.

Efficient Algorithms on OBDDs. Functional operations on OBDD-
represented functions can be implemented by efficient algorithms called OBDD
operations in the following. The satisfiability of f can be decided in time
O(1). The negation f , the replacement of a variable xi by some constant c
(i. e., f|xi=c), and computing |f−1(1)| are possible in time O

(
size(π-OBDD[f ])

)
.

The set f−1(1) of f ’s minterms can be obtained in time O
(
n · |f−1(1)|

)
.

Whether two functions f and g are equivalent (i. e., f = g) can be de-
cided in time O

(
size(π-OBDD[f ]) + size(π-OBDD[g])

)
. The most important

OBDD operation is the binary synthesis f ⊗ g for f, g ∈ Bn, ⊗ ∈ B2 (e. g.,
∧, ∨); in general, it produces the result π-OBDD[f ⊗ g] in time and space
O
(
size(π-OBDD[f ]) · size(π-OBDD[g])

)
. The synthesis is also used to implement

quantifications (Qxi)f for Q ∈ {∃, ∀}. Hence, computing π-OBDD
[
(Qxi)f

]
takes time O

(
size2(π-OBDD[f ])

)
in general. All operations produce minimum

size π-OBDDs.

Representing Graphs by OBDDs. One canonical way to represent data im-
plicitly by an OBDD is to express it in terms of a subset S ⊆ {0, . . . , N − 1}k,
where N depends on the data size and k is constant. Assuming w. l. o. g.
N = 2n, S can be represented by an OBDD for the characteristic function
χS ∈ Bkn of S defined by χS(x(1), . . . , x(k)) = 1 :⇔ (|x(1)|, . . . , |x(k)|) ∈ S,
where x(1), . . . , x(k) ∈ Bn. Correspondingly, a digraph G = (V, E) with nodes
v0, . . . , vN−1 can be represented by χG ∈ B2n with χG(x, y) = 1 :⇔ (v|x|, v|y|) ∈
E for x, y ∈ Bn. Undirected graphs are then considered as digraphs with symmet-
ric edges. If G’s edges are weighted by c : E → {0, . . . , B} with maximum weight
B, we extend the definition to χG(x, y, a) = 1 :⇔ (v|x|, v|y|) ∈ E ∧ c(v|x|, v|y|) =
|a|. In the context of characteristic functions, one further functional operation is
of interest: the argument reordering.
Definition 1. Let ρ ∈ Σk and f ∈ Bkn be defined on variable vectors
x(1), . . . , x(k) ∈ Bn. The argument reordering Rρ(f) ∈ Bkn w. r. t. ρ is defined
by Rρ(f)

(
x(1), . . . , x(k)

)
= f

(
x(ρ(1)), . . . , x(ρ(k))

)
.

In order to enable efficient argument reorderings (see Lemma 3 and Theorem 1),
it is common to use k-interleaved variable orders.
Definition 2. The k-interleaved variable order πτ

k,n ∈ Σkn of k variable vectors
x(1), . . . , x(k) ∈ Bn reads bits of same significance index en bloc:

πτ
k,n :=

(
x

(1)
τ(0), . . . , x

(k)
τ(0), x

(1)
τ(1), . . . , x

(k)
τ(1), . . . . . . , x

(k)
τ(n−1)

)
,

where τ is the local order of each x(1), . . . , x(k). The order πid
k,n is called natural.
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3 Survey of Previous and New Results

Even the very basic problem of deciding whether two nodes s and t are con-
nected in a digraph G = (V, E) is known to be PSPACE-complete if the input
graph is represented by π-OBDD[χG] (see [6]). In [17], this result is extended to
fixed-parameter intractability results for a variety of fundamental graph prob-
lems including Connectivity, Bipartiteness, Planarity, Acyclicity, Single-Source
Shortest-Paths, and Flow Maximization. This is for the fixed parameter of the
input graph’s OBDD width and under the assumption P �= PSPACE. Unless
stated otherwise, we assume in the following that input and, if required, output
are represented by OBDDs.

With similar techniques, it can be proved that these problems as well as
computing minimum spanning trees on OBDD-represented graphs remain fixed
parameter intractable when the maximum of input and output OBDD width
is considered as fixed parameter. That is, even if the characteristic functions of
input and output have OBDDs of constant width and, therefore, size O(log |V |),
intermediately generated OBDDs may still be superpolynomially larger, unless
P=PSPACE. Because these negative results rely on the compactness of OBDD-
represented configuration graphs of Turing machines, they directly carry over
to more general branching program models. Interestingly, the situation changes
when the edge weight zero is forbidden. Then, the All-Pairs Shortest-Paths Prob-
lem can be solved in polynomial time if certain width restrictions apply to input
and output OBDD [15]. The prefix “PW-” indicates the restriction to positive
weights (PW-APSP and PW-SSSP).

On the other hand, all decision problems mentioned so far can be trivially
solved in space poly(log |V |) by a nondeterministic Turing machine using χG as
oracle. Each oracle request can be implemented by an OBDD evaluation opera-
tion. Together with the reasonable assumption size(π-OBDD[χG]) ≥ log2 |V | and
the fact NPSPACE=PSPACE, we conclude that these problems can be solved in
polynomial space w. r. t. size(π-OBDD[χG]). But what about search problems?

If the output OBDD has polynomial size w. r. t. the input size
size(π-OBDD[χG]), we can enumerate all potential output OBDDs of polyno-
mial size and verify the result in polynomial space. Without bounding the out-
put OBDD size, this is not possible: We prove in this paper that constant input
OBDD width does not suffice for polynomial space complexity of the Single-
Source Shortest-Paths Problem, the Maximum Flow Problem, and the restricted
reachability problem Reachability∗. That is, their space complexity is not fixed-
parameter tractable w. r. t. the parameter of input OBDD width.

Table 1 gives an overview of the state of affairs w. r. t. eight complexity classes
named α-β-γ for α ∈ {I, IO}, β ∈ {FPT, P}, and γ ∈ {T, S}. Component α indi-
cates whether the complexity is related to input (I) or input and output OBDDs
(IO); β separates fixed-parameter (FPT) from polynomial (P) complexities; γ
separates time (T) from space (S) complexity. The classes are related as follows:

I-β-T⊆ IO-β-T �
⊆ I-β-S �

IO-β-S, α-P-γ ⊆ α-FPT-γ .
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Table 1. The complexity of graph problems on OBDD-represented inputs, unless
P=PSPACE. The IO case is left out for decision problems. Results from [15, 17] are
marked with daggers. The main contributions of this paper are starred.

I-FPT-T IO-FPT-T I-FPT-S IO-FPT-S I-P-T IO-P-T I-P-S IO-P-S
MaxFlow no † no no � yes no † no no � yes
APSP no † no no � yes no † no no � yes
PW-APSP no † yes † no � yes † no † ? no � yes
SSSP no † no no � yes no † no no � yes
PW-SSSP no † ? no � yes no † ? no � yes
Reachability∗ no no no � yes no no no � yes
TransClos∗ no no no � yes no no no � yes
MST no no ? yes no no ? yes
s–t-Conn. no † - yes - no † - yes -
Connected no † - yes - no † - yes -
Bipartite no † - yes - no † - yes -
Acyclic no † - yes - no † - yes -
Euler Cycle no † - yes - no † - yes -

4 Constructing Functions with Constant OBDD Width

The pathological graph instances constructed in the following sections will have
constant OBDD width w. r. t. natural interleaved variable orders. This section
supplies a convenient construction method for functions with constant OBDD
width. Actually we generate OBDDs with constant complete-OBDD width.

Definition 3. An OBDD for f ∈ Bn is called complete if every path from its
function pointer to a sink has length n.

That is, complete OBDDs are not allowed to skip variable tests. The minimal-
size complete π-OBDD for f ∈ Bn is also known to be canonical [18] and will
be denoted by π-OBDDc[f ] in the following.

Definition 4. The complete-OBDD width of a function f ∈ Bn w. r. t. a vari-
able order π ∈ Σn is the width of π-OBDDc[f ].

So it is size(π-OBDD[f ]) ≤ size(π-OBDDc[f ]) = O(nw) for any f ∈ Bn

with complete-OBDD width w and variable order π. On the other hand, it is
size(π-OBDDc[f ]) ≤ n · size(π-OBDD[f ]) (see, e. g., [18]).

The basic building blocks of the construction technique are multivariate
threshold functions [20].

Definition 5. Let f ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈ Bn.
A function f is called k-variate threshold function iff there are W ∈ N, T ∈ Z,
and δ1, . . . , δk ∈ {−W, . . . , W} such that

f
(
x(1), . . . , x(k)

)
=

(
k∑

i=1

δi ·
∣∣∣x(i)

∣∣∣ ≥ T

)
.
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The corresponding class of functions is denoted by TW
k,n.

Clearly, each of the relations >, ≤, <, and = can be composed by binary syn-
theses of a constant number of multivariate threshold functions.

Lemma 1 ([20]). Functions f ∈ TW
k,n have complete OBDDs of width O(k2W )

using the variable order πid
k,n ∈ Σkn.

That is, for k, W = O(1) multivariate threshold functions have constant
complete-OBDD width. Moreover, both critical OBDD operations that may in-
crease the OBDD size preserve constant complete-OBDD width (proved in the
paper’s extended version):

Let f1, f2 ∈ Bn be defined on variables x0, . . . , xn−1 ∈ B; assume f1 resp. f2
has complete-OBDD width w1 resp. w2 w. r. t. π ∈ Σn.

Lemma 2. The binary synthesis result π-OBDD[f1 ⊗ f2], ⊗ ∈ B2, has a
complete-OBDD width of at most w1w2.

Let f3 ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈ Bn; assume f3 has
complete-OBDD width w3 w. r. t. πτ

k,n, τ ∈ Σn. Let ρ ∈ Σk.

Lemma 3. The argument reordering result Rρ(f3) of f3 w. r. t. ρ has a
complete-OBDD width of at most w33k.

We conclude that a constant number of operations increases the complete-OBDD
width independently of n.

Theorem 1. Let x(1), . . . , x(k) ∈ Bn, k constant. Let S be a sequence of O(1)
operations as introduced in Section 2 applied to functions from TW

k,n defined on
x(1), . . . , x(k) and to intermediate results generated by the current prefix of S.

Each function generated by S has complete-OBDD width β(W ) w. r. t. πid
k,n

for some appropriate function β : N → N independent of n.

5 Single-Source Shortest-Paths

The previous section has enabled us to construct functions with constant OBDD
width starting from simply structured multivariate threshold functions. We now
have to use this framework to generate instances for graph problems with an
exponential gap between the input and output OBDD size. At first, we consider
the Single-Source Shortest-Paths Problem on a weighted graph G = (V, E, c) as
introduced in Section 2. Let D be the set of all solution pairs (v, d) ∈ V ×N such
that a shortest s–v-path (s, . . . , v) =: P has weight d :=

∑
e∈P c(e). The input for

the problem’s OBDD-based version consists of π-OBDD[χG] for some π ∈ Σkn

and a source node s ∈ V ; the output is π-OBDD[χD] for D’s characteristic
function χD. That is, we even restrict ourselves to computing only the costs of
shortest s–v-paths.

We define a sequence (Gm)m of pathological graph instances with solution
sets Dm. Gm := (Vm, Em, cm) consists of 2m components Hi, 0 ≤ i < 2m. Each
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Hi is a path of 2m nodes wi,0, . . . , wi,2m−1 with edges (wi,j , wi,j+1) of weight
i for 0 ≤ i < 2m. Moreover, a common source node s is connected to all His
by edges (s, wi,0) of weight 0. So the path (s, . . . , wi,j) has weight ij and it is
(wi,j , ij) ∈ Dm. We add 22(m+1) − (22m + 1) dummy singletons and number the
nodes in Vm := {v0, . . . , v22(m+1)−1} by wi,j := vi2m+1+j and s := v22m+1 .

Claim. The function χGm has a complete πid
5,m+1-OBDD of size O(m) with con-

stant width independent of m.

Proof. We express χGm ∈ B5(m+1) in terms of Theorem 1. For x ∈ B2(m+1)

let i(x) := x2m+1 . . . xm+1, and j(x) := xm . . . x0. We begin with a tentative
function χ∗

Gm
.

χ∗
Gm

(x, y, a) :=
[
(|x| = 22m+1 �= |y|) ∧ (|j(y)| = |a| = 0)

]
∨
[
(|x| �= 22m+1 �= |y|) ∧ (|i(x)| = |i(y)| = |a|) ∧ (|j(y)| = |j(x)|+ 1)

]
(1)

for node numbers x, y ∈ B2(m+1) and a weight encoding a ∈ Bm+1. This def-
inition does not take care yet of dummy singletons occurring due to the node
numbering. Hence, let χVm ∈ B2(m+1) be defined by

χVm(x) := (|x| = 22m+1) ∨ (|i(x)|, |j(x)| < 2m) (2)

which is 1 exactly for all nondummy nodes. We finally have χGm with

χGm(x, y, a) := χVm(x) ∧ χVm(y) ∧ χ∗
Gm

(x, y, a) . (3)

Each comparison in (1)–(3) can be realized by O(1) functions from TO(1)
5,m+1. So

Theorem 1 applies and πid
5,m+1-OBDDc[χGm ] has constant width. ��

Having proved that Gm has compact complete OBDDs of constant width, it
remains to show that the output χDm has exponential OBDD size.

Claim. Every OBDD for χDm has exponential size w. r. t. m.

Proof. Assume w. l. o. g. that m is even. Replacing some variables of a Boolean
function by constant values does not enlarge the corresponding π-OBDD. So
we show a lower bound on a subfunction fm ∈ B2m of χDm which is obtained
by replacing x2m+1, . . . , xm+m/2+1 and xm, . . . , xm/2 by 0. Hence, argument x

represents a wi,j node with i, j < 2m/2 and it is fm(x, a) = 1 ⇔ |i(x)| · |j(x)| =
|a|, where |a| < 2m. So fm is the Graph of m/2-bit Integer Multiplication whose
π-OBDD size is bounded below by 2m/1536−1 for any variable order π (proved
in [16]). ��

The claims in this section imply the result on the space complexity of SSSP.

Theorem 2. The Single-Source Shortest-Paths Problem on OBDD-represented
graphs has exponential space complexity, even for instances with constant
complete-OBDD width. This implies SSSP �∈ I-FPT-S.
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By further variable replacements, the single-source variant can be trivially re-
duced to the all-pairs variant as defined in [15]. In Section 3, the special role of
the edge weight zero has been mentioned. Though Gm contains such edges they
can be avoided by constructions which are a little more complicated.

Proposition 1. PW-SSSP, PW-APSP �∈ I-FPT-S.

6 Maximum Flow

We continue with an exponential lower bound on the space complexity of
the OBDD-based Maximum Flow Problem. Again, the input is an OBDD
π-OBDD[χG] representing a weighted graph instance G. We want to compute a
maximum flow φ : E → {0, . . . , B} from a source s ∈ V to a terminal t ∈ V . This
time, the edge weights represent capacities. The flow φ must respect φ(e) ≤ c(e)
as well as

∑
e=(u,v) φ(e) =

∑
e=(v,w) φ(e) for each v ∈ V . The final output is

π-OBDD[χF ] for the solution set F := {(v, w, d) : φ(v, w) = d}.
We define a sequence (Gm)m of pathological graph instances with unique

maximum flows φm and solution sets Fm. Gm := (Vm, Em, cm) consists of 22m

components Hi,j , 0 ≤ i, j < 2m. Each Hi,j consists of j + 2 nodes si,j , ti,j , and
wi,j,� for 0 ≤ � < j. Hi,j contains 2j edges (si,j , wi,j,�) and (wi,j,�, ti,j) with
capacity i. The global source s and terminal t are connected to all components
Hi,j by edges (s, si,j) and (ti,j , t) of capacity 22m. Obviously, φm sends i · j units
of flow through each Hi,j and it is (s, si,j , ij) ∈ Fm.

The nodes in Vm := {v0, . . . , v23(m+1)−1} are numbered by wi,j,� :=
vi22(m+1)+j2m+1+�, si,j := vi22(m+1)+j2m+1+2m , ti,j := vi22(m+1)+j2m+1+2m+1,
s := v22m+1 , and t := v22m+1+1.

Claim. Function χGm has a complete πid
8,m+1-OBDD of size O(m) with constant

width independent of m.

Proof. We express χGm ∈ B8(m+1) in terms of Theorem 1. For x ∈ B3(m+1) let
i(x) := x3m+2 . . . x2m+2, j(x) := x2m+1 . . . xm+1, and �(x) := xm . . . x0. Again
we begin with a tentative function χ∗

Gm
reflecting all four types of edges.

χ∗
Gm

(x, y, a, b) :=
[
(|x| = 22m+1) ∧ (v|y| ∈ {si,j : i, j}) ∧ (|ab| = 22m)

]
∨
[
(v|x| ∈ {ti,j : i, j}) ∧ (|y| = 22m+1 + 1) ∧ (|ab| = 22m)

]
∨
[
(v|x| ∈ {si,j}i,j) ∧ (v|y| ∈ {wi,j,�}i,j,�)

∧ (|i(x)| = |i(y)| = |ab|) ∧ (|�(y)| < |j(x)| = |j(y)|)]
∨
[
(v|x| ∈ {wi,j,�}i,j,�) ∧ (v|y| ∈ {ti,j}i,j)
∧ (|i(x)| = |i(y)| = |ab|) ∧ (|�(x)| < |j(x)| = |j(y)|)] (4)

for node numbers x, y ∈ B3(m+1) and a weight encoding ab consisting of concate-
nated components a, b ∈ Bm+1. This definition does not take care yet of dummy
singletons occurring due to the node numbering. Hence, let χVm ∈ B3(m+1) be
defined by
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χVm(x) := (v|x| ∈ {s, t, si,j, wi,j,�, ti,j : i, j, �}) . (5)

We finally have χGm with

χGm(x, y, a) := χVm(x) ∧ χVm(y) ∧ χ∗
Gm

(x, y, a) . (6)

Each comparison in (4)–(6) can be realized by O(1) functions from TO(1)
8,m+1.

This holds also for type checks like v|x| ∈ {si,j : i, j} ⇔ (|i(x)|, |j(x)| < 2m) ∧
(|�(m)| = 2m). Comparisons with the concatenation |ab| can be broken down
to O(1) comparisons with both parts |a| and |b|. So Theorem 1 applies and
πid

8,m+1-OBDDc[χGm ] has constant width. ��

Claim. Every OBDD for χFm has exponential size w. r. t. m.

Proof. We show a lower bound on a subfunction fm ∈ B4m of the solution χFm

which is obtained by replacing x by the source number 22m+1, y3m+2 and y2m+1
by 0, and |�(y)| by 2m. Hence, argument y represents an si,j node with i, j < 2m.
The maximum flow φ sends i · j flow units through (s, si,j) and it is fm(y, a, b) =
1 ⇔ |i(y)| · |j(y)| = |ab|. So fm is the Graph of m-bit Integer Multiplication
whose π-OBDD size is bounded below by 2m/768−1 for any variable order π
(see [16]). ��

The claims in this section imply the result on the space complexity of MaxFlow.

Theorem 3. MaxFlow �∈ I-FPT-S.

7 Reachability

Computing the set R of nodes that are reachable from some source s ∈ V in
a digraph G = (V, E) is an important problem in CAD and Model Checking
(see, e. g., [18–Chapters 13.2 and 13.3]). Let G be defined as in Section 2. In
the OBDD-based setting, we want to compute the characteristic function χR

of the solution set R ⊆ V . There are both BFS-like approaches with Ω(|V |)
OBDD operations [11] as well as iterative squaring methods with O(log2 |V |)
operations [14]. All popular algorithms known to the author achieve this by
iteratively increasing the length of considered paths. This involves computing
intermediate subfunctions χRp with χRp(x) = 1 iff s and v|x| are connected by
a directed path not longer than 2p for p ∈ {1, . . . , �log2 |V |�}. So we denote the
problem of computing {χRp , χR}p by Reachability∗. Moreover, we assume that
the variable order is not changed during the algorithm.

We construct instances (Gm)m with constant complete-OBDD width whose
intermediate result Rm,p has exponential OBDD size for some maximum path
length 2p. Each Gm := (Vm, Em) consists of 22m components Hi,j , 0 ≤ i, j < 2m.
Each Hi,j is the concatenation Pi−1 . . . P0 of paths P� := (wi,j,�,j−1, . . . , wi,j,�,0).
P� is concatenated to P�−1 by (wi,j,�,0, wi,j,�−1,j−1). Moreover, a common source
node s is connected to all Hi,js by edges (s, wi,j,i−1,j−1). The nodes in Vm :=
{v0, . . . , v24(m+1)−1} are numbered by wi,j,�,r := vi23(m+1)+j22(m+1)+�2m+1+r and
s := v24m+3 .
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Claim. Function χGm has a complete πid
8,m+1-OBDD of size O(m) with constant

width independent of m.

Proof. We express χGm ∈ B8(m+1) in terms of Theorem 1. For x ∈ B4(m+1) let
i(x) := x4m+3 . . . x3m+3, j(x) := x3m+2 . . . x2m+2, �(x) := x2m+1 . . . xm+1, and
r(x) := xm . . . x0. Again we begin with a tentative function χ∗

Gm
.

χ∗
Gm

(x, y) := (|x| = 24m+3 �= |y|) ∧ (|�(y)| = |i(y)| − 1) ∧ (|r(y)| = |j(y)| − 1)

∨ (|x| �= 22m+1 �= |y|) ∧ (|i(x)| = |i(y)|) ∧ (|j(x)| = |j(y)|)
∧ (|�(x)| = |�(y)| < |i(x)|) ∧ (|j(x)| > |r(x)| = |r(y)| + 1)]

∨ (|x| �= 22m+1 �= |y|) ∧ (|i(x)| = |i(y)|) ∧ (|j(x)| = |j(y)|
∧ (|i(x)| > |�(x)| = |�(y)| + 1) ∧ (|r(x)| = 0) ∧ (|r(y)| = |j(y)| − 1)] (7)

for node numbers x, y ∈ B4(m+1). This definition does not take care yet of dummy
singletons occurring due to the node numbering. Hence, let χVm ∈ B4(m+1) be
defined by

χVm(x) := (v|x| = 24m+3) ∨ (|i(x)|, |j(x)|, |�(x)|, |r(x)| < 2m) (8)

which is 1 exactly for all nondummy nodes. We finally have χGm with

χGm(x, y, a) := χVm(x) ∧ χVm(y) ∧ χ∗
Gm

(x, y, a) . (9)

Each comparison in (7)–(9) can be realized by O(1) functions from TO(1)
8,m+1. So

Theorem 1 applies and πid
8,m+1-OBDDc[χGm ] has constant width. ��

Having proved that Gm has compact complete OBDDs of constant width, it
remains to show that for some appropriate p the function χRm,p has exponential
OBDD size. We first consider the ith bit of n-bit Integer Multiplication.

Definition 6. Let x, y ∈ Bn. The ith bit of n-bit Integer Multiplication
MULTn,i ∈ B2n on variables x, y is defined to be the ith bit of |x| · |y|.

There are well-known exponential lower bounds on the OBDD-size of the middle
bit MULTn,n−1 (see [19]). The π-OBDD size of the highest bit MULTn,2n−1 for
any nontrivial variable order π ∈ Σ2n has been open so far [18–Problem 4.12].

Theorem 4. The size of πid
2,n-OBDD[MULTn,2n−1] is at least 2(n−5)/6.

The proof of this theorem uses techniques from analytic number theory; it has
been shifted into the extended version of this paper.

Claim. The size of πid
4,m+1-OBDD[χRm,2m−1 ] is exponential w. r. t. m.

Proof. Replacing some variables of a Boolean function by constant values does
not enlarge the corresponding π-OBDD. So we show a lower bound on a sub-
function fm ∈ B2m of χRm,2m−1 which is obtained by replacing x4m+3, x3m+2,
and x2m+1, . . . , x0 by 0. Hence, argument x represents a wi,j,0,0 node which is
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reachable from s via at most 22m−1 edges iff the s–wi,j,0,0-path length i · j is not
larger than 22m−1. So it is fm(x) = 1⇔ |i(x)| · |j(x)| ≤ 22m−1.

Let gm(x) = 1 :⇔ |i(x)| · |j(x)| = 22m−1. It is easy to see that the πid
2,m-OBDD

size of gm is O(m2). Hence, the πid
2,m-OBDD for

hm(x) := fm(x) ∧ g(x) = (|i(x)| · |j(x)| < 22m−1)

is at most polynomially larger than for fm. Due to MULTm,2m−1(x, y) = 1 :⇔
|x| · |y| ≥ 22m−1 for x, y ∈ Bm, it is hm = MULTm,2m−1.

Altogether, we showed that the πid
2,m-OBDD size of MULTm,2m−1 is at most

polynomially larger than of χRm,2m−1 implying the claim’s statement. ��

Both claims imply the result on the space complexity of Reachability∗.

Theorem 5. Reachability∗ �∈ I-FPT-S.

By further variable replacements, the Reachability Problem can be trivially re-
duced to computing the OBDD of all connected node pairs—the transitive clo-
sure. It is an important submodule of many OBDD-based graph algorithms [11,
14, 20]. So it follows for the analogous restricted variant TransClos∗:

Proposition 2. TransClos∗ �∈ I-FPT-S.

These results rely on the assumption that the output OBDDs of the starred prob-
lem variants use the same variable order as the input OBDDs. In contrast, practi-
cal algorithms usually run variable reordering heuristics on intermediate OBDD
results in order to minimize their size. However, we conjecture that MULTn,2n−1
has exponential OBDD size for every variable order.

8 Conclusions

None of the graph problems that have been considered on OBDD-represented
instances has an FPT algorithm w. r. t. a fixed input OBDD width, unless
P=PSPACE. Except restricted shortest paths problems, this holds also if both
input and output OBDD width are fixed parameters. On the other hand, a poly-
nomially bounded output OBDD size allows to solve all considered problems in
polynomial space. We contributed exponential lower bounds on the space (and,
therewith, time) complexity of general OBDD-based shortest paths and max-
imum flow algorithms and a common class of reachability algorithms. Conse-
quently, a restriction of the input OBDD width does not suffice to guarantee
polynomial space for these problems. The analyses include the first nontrivial
exponential lower bound on the OBDD size for the highest bit of Integer Multi-
plication w. r. t. the natural interleaved variable order.

It remains an open question whether the OBDD-based Minimum Spanning
Tree Problem is in I-FPT-S.

Acknowledgments. Thanks to Oliver Giel, Martin Sauerhoff, and Ingo
Wegener for proofreading and discussions.
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Abstract. We construct systems of bases of Cn which are mutually al-
most orthogonal and which might turn out to be useful for quantum
computation. Our constructions are based on bounds of classical expo-
nential sums and exponential sums over elliptic curves.

1 Introduction

A maximal set of mutually unbiased bases, for short MUBs, is given by a set of
n2 + n vectors in Cn, the n-dimensional vector space over the complex numbers
C, which are the elements of n + 1 orthonormal bases Bh = {wh,1, . . . ,wh,n} of
Cn where h = 0, . . . , n. Hence,

〈wh,i,wh,j〉 = δi,j , (1)

where

δi,j =
{

1, i = j,
0, i �= j,

and the defining property is the mutual unbiasness, given by

|〈wf,i,wg,j〉| =
1√
n

(2)

for 0 ≤ f, g ≤ n, f �= g, and 1 ≤ i, j ≤ n, where

〈a,b〉 =
n∑

u=1

aubu

denotes the standard inner product of two vectors

a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Cn.

However, so far maximally sets of n + 1 MUBs in dimension n are only known
to exist in any dimension n = pr which is a power of a prime p, see [5, 10] for
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an overview and some of such constructions. For p ≥ 3, one of the most elegant
constructions, see [10], is based on Gaussian sums and in the case of prime n = p
can be described as

wh,k =
1
√

p

(
ep(hu2 + ku)

)p

u=1 , 1 ≤ h, k ≤ p,

where em(x) = exp(2π
√
−1x/m), and also B0 being a standard orthonormal

basis, that is, w0,j = (δj,u)p
u=1. One can use additive characters over an arbitrary

finite field to extend this construction to an arbitrary prime power n = pr. Very
interesting links between constructing MUBs and some classical problems of Lie
algebras have recently been discovered in [5].

However the condition that n = pr is a prime power is still somewhat too
restrictive and unnatural for quantum computation. So a natural question arises
whether MUBs exist for every positive integer n. Unfortunately, despite efforts
of many researchers, no example of MUBs in other dimensions is known, and
in fact most it is believed that indeed MUBs may exist only in prime power
dimensions, see [1, 2, 3, 5, 9, 10, 14, 15, 19] and references therein.

Here, following the proposed in [11] approach, we consider vector systems
where we relax the condition (2). In [11] exponential sums have been used to
construct vector systems for any dimension n which

– satisfy (1) but instead of (2) all other inner products are O(n−1/3);
– satisfy (1) and assuming some natural and widely believed conjecture on the

distribution of primes in arithmetic progressions all other inner products are
O(n−1/2 log n).

Here we improve the bound for the first construction from [11] from O(n−1/3)
to O(n−1/2(log n)1/2). We also present a new construction, based on elliptic
curves, satisfying (1) and all other inner products are O(n−1/2). This construc-
tion applies to almost all dimensions n, and under some widely accepted conjec-
tures about the gaps between consecutive prime numbers, it in fact applies to
all dimensions.

2 Finite Field Construction

We need the following lemma which could be of independent interest.
For positive integers h, k, n and a prime p ≥ n we put

Sh,k(p, n) =
n∑

u=1

ep(hu2)en(ku).

Lemma 1. For a positive integer n and a prime p ≥ n we have

max
h=1,...,p−1

max
k=0,...,n−1

|Sh,k(p, n)| ≤
(

2π−1/2 + O

(
1

log p

))
p1/2(log p)1/2.
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Proof. We have

|Sh,k(p, n)|2 =
n∑

u,v=1

ep

(
h
(
u2 − v2))en(k(u − v))

≤ 2

∣∣∣∣∣∣
∑

1≤v<u≤n

ep

(
h
(
u2 − v2))en(k(u − v))

∣∣∣∣∣∣ + n.

Making the change of variable u = v + w we derive

|Sh,k(p, n)|2 ≤ 2

∣∣∣∣∣
n−1∑
v=1

n−v∑
w=1

ep

(
h
(
(v + w)2 − v2)) en(kw)

∣∣∣∣∣ + n

= 2

∣∣∣∣∣
n−1∑
v=1

n−v∑
w=1

ep

(
h
(
2vw + w2))en(kw)

∣∣∣∣∣ + n

= 2

∣∣∣∣∣
n−1∑
w=1

ep

(
hw2) en(kw)

n−w∑
v=1

ep (2hvw)

∣∣∣∣∣ + n

≤ 2
n−1∑
w=1

∣∣∣∣∣
n−w∑
v=1

ep (2hvw)

∣∣∣∣∣ + n

≤ 2
p−1∑
w=1

∣∣∣∣∣
n−w∑
v=1

ep (2hvw)

∣∣∣∣∣ + n

= 2
p−1∑
w=1

∣∣∣∣∣
n−w∑
v=1

ep (vw)

∣∣∣∣∣ + n.

Since the inner sum is the sum of a geometric progression, we obtain

|Sh,k(p, n)|2 ≤ 2
p−1∑
w=1

∣∣∣∣ep ((n− w + 1)w)− ep (vw)
ep (w) − 1

∣∣∣∣ + n

≤ 4
p−1∑
w=1

1
|ep (w) − 1| + n.

Finally, since
ep (w)− 1 = 2

√
−1ep (w/2) sin(πw/p),

we conclude

|Sh,k(p, n)|2 ≤ 2
p−1∑
w=1

1
|sin(πw/p)| + n.

Now the bound of Lemma 2 of [6] immediately implies the desired result. ��
Let p be the smallest prime with p ≥ n and note that, in particular p ∼ n by
the Prime Number Theorem. For each f = 1, . . . , n we consider the basis

Bf = {uf,1, . . . ,uf,n}, where uf,i =
1√
n

(
ep

(
fu2) en (iu)

)n

u=1 . (3)
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Theorem 1. The standard basis B0 and the n bases Bf , f = 1, . . . , n, given
by (3) are orthonormal and also satisfy

|〈uf,i,ug,j〉| ≤
(

2π−1/2 + O

(
1

log n

))
n−1/2(log n)1/2

where f, g = 0, . . . , n, f �= g and 1 ≤ i, j ≤ n.

Proof. The orthonormality of Bj, j = 0, . . . , n, is obvious (see also [11]).
If f �= g and f = 0 or g = 0 then obviously

|〈uf,i,ug,j〉| =
1√
n

.

Finally, if fg �= 0, we also have

〈uf,i,ug,j〉 =
n∑

u=1

ep((f − g)u2)en((i− j)u)

and the result now follows from Lemma 1. ��

3 Elliptic Curve Construction

Let E be an elliptic curve over a finite field IFp of prime order p > 3 defined by
the affine Weierstrass equation

Y 2 = X3 + aX + b, a, b ∈ IFp,

such that 4a3 + 27b2 �= 0.
We recall that the set of IFp rational points on E forms an Abelian group (with

the point at infinity O as the neutral element). The cardinality n = #E (IFp) of
this group satisfies the Hasse–Weil inequality

|n− p− 1| ≤ 2p1/2

or equivalently
n1/2 − 1 ≤ p1/2 ≤ n1/2 + 1 (4)

(see [17] for this, and other general properties of elliptic curves).
Each polynomial f ∈ IFp(E) in the function field IFp(E) over E , can be

uniquely written in the form f(X, Y ) = u(X) + v(X)Y with some polynomi-
als u(X), v(X) ∈ IFp[X ]. The degree of f is defined as

deg(f) = max(2 deg(u), 3 + 2 deg(v))

with the convention that the degree of the zero polynomial is −∞.
For 2 ≤ d ≤ n − 1 denote by Fd the set of polynomials of degree at most d

with f(0, 0) = 0.
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Lemma 2. The cardinality of Fd is |Fd| = pd−1.

Proof. If d is even then f = u+vy has degree at most d if and only if deg(u) ≤ d/2
and deg(v) ≤ d/2 − 2. So we have pd/2+1+d/2−1−1 polynomials f of degree at
most d with f(0, 0) = u(0) = 0. If d is odd the result follows similarly. ��

As we have noticed, E(IFp) is an Abelian group. Let X denote the corresponding
character group.

For f ∈ IFp[E ] we define the set

Bf = {vf,χ : χ ∈ X},

where for a character χ ∈ X , the vector vf,χ is given by

vf,χ =
1√
n

(ep(f(P ))χ(P ))P∈E

where we also define f(O) = 0.

Theorem 2. For 2 ≤ d ≤ n − 1 the standard basis and the pd−1 sets Bf =
{vf,χ : χ ∈ X}, with f ∈ Fd, are orthonormal and satisfy

|〈vf,χ,vg,ψ〉| ≤
2d + (2d + 1)n−1/2

n1/2 ,

where f, g ∈ Fd, f �= g, and χ, ψ ∈ X .

Proof. The orthonormality follows immediately from the property of group char-
acters,

〈vf,χ,vf,ψ〉 =
1
n

∑
P∈E

χ(P )ψ−1(P ) =
{

1, χ = ψ,
0, χ �= ψ.

For f �= g we have

|〈vf,χ,vg,ψ〉| ≤
1
n

⎛⎜⎝
∣∣∣∣∣∣∣
∑
P∈E
P �=O

ep(f(P )− g(P ))χ(P )ψ−1(P )

∣∣∣∣∣∣∣ + 1

⎞⎟⎠
≤ 1

n
(2dp1/2 + 1) ≤ 2dn1/2 + 2d + 1

n

by [12, Theorem 1] and the bound (4). ��

4 Remarks

By the classical results of Deuring [8], see also [4, 16, 18], for every prime p > 3,
each integer n in the so-called Hasse-Weil interval [p + 1− 2p1/2, p + 1 + 2p1/2]
is a cardinality of some elliptic curve over IFp, see also [4, 16, 18].
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Note that the probability that an integer n is not in such an interval for some
prime p is very small. More precisely, for any fixed ε > 0, the number of such
integers n ≤ x is O(x25/36+ε) by a result of [13]. By the Cramer conjecture [7]
the distance of the nth and (n + 1)th primes pn and pn+1 is

pn+1 − pn = O
(
(log pn)2

)
.

Certainly under this conjecture every positive integer n presents a cardinality of
some elliptic curve over a finite field. On the other hand, the Riemann Hypothesis
seems not to be strong enough to derive this statement.
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10. A. Klappenecker and M. Rötteler, ‘Constructions of mutually unbiased bases’, Lect.
Notes in Comp. Sci., Springer-Verlag, Berlin, 2948 (2004), 137–144.
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Abstract. Exact exponential-time algorithms for NP-hard problems is
an emerging field, and an increasing number of new results are being
added continuously. Two important NP-hard problems that have been
studied for decades are the treewidth and the minimum fill problems.
Recently, an exact algorithm was presented by Fomin, Kratsch, and
Todinca to solve both of these problems in time O∗(1.9601n). Their al-
gorithm uses the notion of potential maximal cliques, and is able to list
these in time O∗(1.9601n), which gives the running time for the above
mentioned problems. We show that the number of potential maximal
cliques for an arbitrary graph G on n vertices is O∗(1.8135n), and that
all potential maximal cliques can be listed in O∗(1.8899n) time. As a con-
sequence of this results, treewidth and minimum fill-in can be computed
in O∗(1.8899n) time.

1 Introduction

Recently there has been a growing interest for exact exponential time algorithms
for NP-hard problems. There are several reasons for this. One is the need for
exact solutions, which approaches like approximation algorithms, randomized
algorithms, and heuristics, cannot deal with.

An exhaustive search is a trivial way to cope with the problem of finding
an exact solution. In the recent yeas it has been shown that it is possible to
design algorithms which are significantly faster than exhaustive search, though
still not in polynomial time. Nice examples of this type of algorithms are a
O∗(1.4802n) time algorithm for 3-SAT [9] and Eppstein’s algorithm for graph
coloring in O∗(2.4150n) time [10]. (In this paper we use a modified big-Oh no-
tation that suppresses all other (polynomial bounded) terms. For functions f
and g we write f(n) = O∗(g(n)) if f(n) = O(g(n) · poly(|n|)), where poly(|n|) is
a polynomial. This modification may be justified by the exponential growth of
f(n).) An overview of applied techniques used for exact algorithms can be found
in [17].

The treewidth of a graph, introduced by Robertson and Seymour [14], has
been intensively investigated in the last years, mainly because many NP-hard
problems become solvable in polynomial time when restricted to graphs with
small treewidth. These algorithms use a tree-decomposition (or a triangulation)
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of small width of the graph. In recent years [8] it has bee shown that the results on
graphs of bounded treewidth (branchwidth) are not only of theoretical interest
but can successfully be applied to find optimal solutions of lower time bounds for
various optimization problems. Finding a small treewidth is useful and important
in areas like artificial intelligence, databases, and logical-circuit design. See [1]
for further references.

The minimum fill-in problem asks to find a triangulation (equivalently a
tree-decomposition) with the minimum number of edges. This problem has ap-
plications in sparse matrix computations [15], database management [16], and
knowledge base systems [13].

Computing the treewidth and minimum fill-in are NP-hard problems [2, 18].
Treewidth is known to be fixed parameter tractable, moreover, for a fixed k,
the treewidth of size k can be computed in linear time (with a huge hidden
constant) [4]. There exists also an approximation algorithm for treewidth, with
a factor logOPT [1, 5], and it is an open question if there exists a constant factor
approximation.

Both treewidth and minimum fill-in can be computed exactly in O∗(2n) time
by reformulating the problems to finding a special vertex ordering and using the
technique proposed by Held and Karp [12] for the traveling salesman problem, or
by using the algorithm of Arnborg et al.[2]. In 2004 Fomin, Kratsch, and Todinca
[11] improved this bound to O∗(1.9601n) by listing all the minimal separators
and potential maximal cliques of the graph, and then using these to compute the
treewidth and minimum fill-in for the graph. The most expensive operation used
in [11] to obtain the O∗(1.9601n) time bound is listing the potential maximal
cliques. It is actually known from [7] that the number of potential maximal
cliques in a graph is bounded by the number of nice potential maximal cliques
in the graph.

In this paper we find a new theoretical bound (O∗(1.8135n)) for the number
of nice potential maximal cliques in a graph, and thus also a new bound for the
number of potential maximal cliques in the graph. This is obtained using a non
constructive proof, and cannot be used directly to create faster algorithms. The
second result in this paper is a new way of partitioning the graph, such that any
nice potential maximal clique can be represented by a vertex set of size n/3 or
less, which is less than the 2n/5 bound used in [11]. This new bound improves
the time required to list all the potential maximal cliques to O∗(1.8899n), and
thus also the bound for computing the treewidth and minimum fill-in.

2 Basic Definitions

We consider finite, simple, undirected, and connected graphs. Given a graph
G = (V, E), we denote the number of vertices as n = |V | and the number of
edges as m = |E|. For any non empty subset W ⊆ V , the subgraph of G induced
by W is denoted by G[W ], and the subgraph induced by G[V \W ] is denoted
by G \W . The neighborhood of a vertex u ∈ V is denoted by NG(u) = {v for
uv ∈ E}, and NG[u] = NG(u)∪{u}. In the same way we define the neighborhood
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of a set A ⊆ V of vertices by NG(A) = ∪u∈ANG(u)\A, and NG[A] = NG(A)∪A.
A sequence v1 − v2 − ... − vk of distinct vertices describes a path if vivi+1 is an
edge for 1 ≤ i < k. The length of a path is the number of edges in the path. A
cycle is defined as a path except that it starts and ends with the same vertex.
If there is an edge between every pair of vertices in a set A ⊆ V , then the set A
is called a clique.

The notion of treewidth is due to Robertson and Seymour [14]. A tree decom-
position of a graph G = (V, E), denoted by TD(G), is a pair (X, T ) such that
T = (VT , ET ) is a tree and X = {Xi | i ∈ VT } is a family of subsets of V such
that:

1.
⋃

i∈VT
Xi = V ;

2. for each edge uv ∈ E there exists an i ∈ VT such that both u and v belong
to Xi;

3. for all v ∈ V , the set of nodes {i ∈ VT | v ∈ Xi} induces a connected subtree
of T .

The width of a tree decomposition is defined as maximum of |Xi| − 1 where
i ∈ VT , and the treewidth of the graph G is the minimum width over all tree
decompositions of G.

A chord of a cycle is an edge connecting two non-consecutive vertices of the
cycle. A graph H is chordal, or equivalently triangulated, if it contains no induced
chordless cycle of length ≥ 4. A graph H = (V, E∪F ) is called a triangulation of
G = (V, E) if H is chordal. The edges in F are called fill edges. H is a minimal
triangulation if (V, E ∪ F ′) is non-chordal for every proper subset F ′ of F . H is
a minimum triangulation if there exists no edge set F ′ such that |F ′| < |F | and
(V, E∪F ′) is chordal. The problem of finding the smallest value of |F |, such that
H = (V, E ∪ F ) is chordal is called the minimum fill-in problem for the graph
G = (V, E).

A vertex set S ⊂ V is a separator if G\S is disconnected. Given two vertices u
and v, S is a u, v-separator if u and v belong to different connected components
of G\S, and S is then said to separate u and v. A u, v-separator S is minimal if
no proper subset of S separates u and v. In general, S is a minimal separator of G
if there exist two vertices u and v in G such that S is a minimal u, v-separator.
We denote by ΔG the set of all minimal separators of G. The following two
results will be used to list all minimal separators, and give an upper bound for
the number of minimal separators.

Theorem 1. ([3]) There is an algorithm listing all minimal separators of an
input graph G in O(n3|ΔG|) time.

Theorem 2. ([11]) For any graph G, |ΔG| = O(n · 1.7087n).

For a set K ⊆ V , a connected component C of G \ K is a full component
associated to K if N(C) = K. A vertex set Ω ⊂ V is called a potential maximal
clique of G if there is a minimal triangulation H of G, such that Ω is a maximal
clique in H . We denote by ΠG the set of all potential maximal cliques of G.
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Theorem 3. (Bouchitté and Todinca [6]) Let K ⊆ V be a set of vertices and let
C(K) = {C1, ..., Cp} be the set of connected components of G \K. Let S(K) =
{S1, S2, ..., Sp} where Si(K) is the set of vertices of K adjacent to at least one
vertex of Ci(K). Then K is a potential maximal clique if and only if:

1. G \K has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K] by turning each Si ∈ S(K)

into a clique, is a complete graph.

The following result is an easy consequence of Theorem 3.

Theorem 4. ([6]) There is an algorithm that, given a graph G = (V, E) and a
set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The time
complexity of the algorithm is O(nm).

Three different ways of representing a potential maximal clique is given in the
next lemma. We will see that potential maximal cliques that can be represented
by the two first of these already can be found and listed within a good time
bound.

Lemma 1. (Fomin, Kratsch, and Todinca [11]) Let Ω be a potential maximal
clique of G, S be a minimal separator contained in Ω and C be the component
of G \ S intersecting Ω. Then one of the following holds:

1. there is a ∈ Ω \ S such that Ω = N [a];
2. there is a ∈ S such that Ω = S ∪ (N(a) ∩ C);
3. Ω = N(C \Ω).

The number of potential maximal cliques covered by the first case is clearly
bounded by n, since only one such potential maximal clique can exist for each
vertex in the graph.

From [11] we have the following statement covering the second case. Let Ω
be a potential maximal clique of G. The triple (S, a, b) is called a separator
representation of Ω if S is a minimal separator of G, a ∈ S, b ∈ V \ S, and
Ω = S ∪ (N(a) ∩ Cb(S)), where Cb(S) is the component of G \ S containing b.
Note that for a given triple (S, a, b) one can check in polynomial time if (S, a, b)
is the separator representation of a (unique) potential maximal clique Ω.

The number of unique potential maximal cliques in a graph, that have a
separator representation is bounded by n2|ΔG|, since there are O(n2) triples for
each separator. From Theorem 2 we have that |ΔG| = O(n · 1.7087n), thus the
number of unique potential maximal cliques with a separator representation is
of order O(n3 · 1.7087n).

Let Ω be a potential maximal clique of a graph G, and let S ⊂ Ω be a minimal
separator of G. We say that S is an active separator for Ω, if Ω is not a clique in
the graph GS(Ω)\{S}, obtained from G by completing all the minimal separators
contained in Ω, except S. If S is active, a pair of vertices x, y ∈ S non adjacent
in GS(Ω)\{S} is called an active pair.
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Theorem 5. (Bouchitté and Todinca [6]) Let Ω be a potential maximal clique
of G, S be a minimal separator contained in Ω and C be the component of G\S
intersecting Ω, and let x, y ∈ S be an active pair. Then Ω \ S is a minimal
x, y-separator in G[C ∪ {x, y}].

We say that a potential maximal clique Ω is nice if at least one of the minimal
separators contained in Ω is active for Ω.

Theorem 6. (Bouchitté and Todinca [7]) Let Ω be a potential maximal clique
of G, let u be a vertex of G, and let G′ = G \ {u}. Then one of the following
holds:

1. Ω or Ω \ {u} is a potential maximal clique of G′.
2. Ω = S ∪ {u}, where S is a minimal separator of G.
3. Ω is nice.

The following result can be found using Theorem 6.

Corollary 1. [11] A graph G on n vertices has at most n2|ΔG| + n · ΠNG =
n2 · 1.701n + n · ΠNG potential maximal cliques, where ΠNG is the number of
nice potential maximal cliques in the graph.

Proof. This follows from the Theorems 2 and 6, and the proof of Theorem 16 of
[11].

Finally we can relate the upper bound for listing all potential maximal cliques
of G to computing the treewidth and minimum fill-in of G. Theorem 7 is the
tool we need to obtain this.

Theorem 7. (Fomin, Kratsch, and Todinca [11]) There is an algorithm that,
given a graph G together with the list of its minimal separators ΔG and the list of
its potential maximal cliques ΠG, computes the threewidth and the minimum fill-
in of G in O∗(|ΠG|) time. The algorithm also constructs optimal triangulations
for the threewidth and the minimum fill-in.

3 Theoretical Upper Bound for the Number of Potential
Maximal Cliques

In this section we show that the upper bound for the number of potential max-
imal cliques in a graph is O(n3 · 1.8135n). This bound is obtained by finding a
new upper bound for the number of nice potential maximal cliques. We do this
by computing two numbers: the number of potential maximal cliques of size less
than αn and the number of potential maximal cliques of size at least αn, for
0 < α < 1.

Let Ω be a potential maximal clique of G and let x be a vertex in Ω. Let
CΩx be the connected component of G \ (Ω \ {x}) containing x. Notice that
G[CΩx] is connected, and that every component C of G \Ω such that x ∈ N(C)
is contained in CΩx.
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Corollary 2. Let Ω be a potential maximal clique of G and let x be a vertex in
Ω. Then Ω = N(CΩx) ∪ {x}.

Proof. This follows directly from Theorem 3, which gives a definition of a po-
tential maximal clique.

Definition 1. We will say that the pair (Z, z) is a vertex representation of Ω
if Z = CΩz \ {z}, z ∈ Ω, and Ω = N(Z ∪ {z}) ∪ {z}.

Lemma 2. Let Ω be a nice potential maximal clique, α be a constant such that
αn = |Ω|. Then there exists a vertex representation (U, u) of Ω such that |U | ≤
�2n(1− α)/3�.

Proof. Let Ω be a nice potential maximal clique of G, S be a minimal separator
active for Ω, x, y ∈ S be an active pair, and z be a vertex contained in Ω \S. Let
us now prove that there exists a vertex u such that |CΩu \ {u}| ≤ �2n(1−α)/3�.
Partition the connected components of G \Ω into three sets: A1 = CΩx ∩ CΩy;
A2 = CΩx \ (CΩy ∪ {x}); A3 = (V \ Ω) \ (A1 ∪ A2). Notice the following:
|A1 ∪A2 ∪A3| = n(1− α) since A1 ∪A2 ∪A3 = V \Ω, A1, A2, A3 are pairwise
non intersecting, and most important: CΩx\{x} = A1∪A2; CΩy\{y} ⊆ A1∪A3;
CΩz \ {z} ⊆ A2 ∪A3.

One of the vertex sets A1, A2, A3 will be of size at least n(1− α)/3, thus the
remaining two are of size at most �2n(1−α)/3�. Let us without loss of generality
assume that |A1| ≥ n(1−α)/3, then |A2|+ |A3| ≤ �2n(1−α)/3�. It follows that
|CΩz \ {z}| ≤ �2n(1− α)/3� since CΩz \ {z} ⊆ A2 ∪A3, and thus there exists a
vertex representation (U, u) of Ω as claimed by the lemma.

Lemma 3. For a constant 0 < α < 1, and a graph G, the number of nice
potential maximal cliques of size at least αn vertices is not more than
n
∑
2n(1−α)/3�

i=1

(
n
i

)
.

Proof. It follows from Lemma 2 that every potential maximal clique Ω of size at
least αn has a vertex representation (X, x) such that |X | ≤ �2n(1− α)/3�. The
idea of the proof is to give a bound for the number of such pairs. The number
of unique vertex sets of size �2n(1− α)/3� or less is

∑
2n(1−α)/3�
i=1

(
n
i

)
. For each

such vertex set X we create a pair (X, x) for each vertex x ∈ V \ S, which give
us the multiplication by n.

Lemma 4. For a constant 0 < α < 1, and a graph G, the number of nice
potential maximal cliques of size less than αn vertices is not more than 2n(2+α)/3.

Proof. We know from Lemma 2 that every potential maximal clique Ω of size less
than αn has a vertex representation (U, u) such that |V \ (Ω ∪U)| ≥ n(1−α)/3.
We say that (x, X) is a bad pair associated to Ω if Ω = N(Cx) ∪ {x}, where Cx

is the connected component of G[X ∪ {x}] containing x.
Let (x, X) be a bad pair associated to Ωx and let (y, Y ) be associated to

Ωy, where Ωx �= Ωy. We want to prove that (x, X) �= (y, Y ). Suppose that
x = y and that X = Y . From the definition of bad pair we know that N(Cx) ∪
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{x} = N(Cy) ∪ {y}. Now we have a contradiction since N(Cx) ∪ {x} = Ωx,
N(Cy) ∪ {y} = Ωy, and Ωx �= Ωy.

Since (U, u) is a vertex representation of Ω, then U ∪ {u} = CΩu. Remember
that CΩu is connected and that |V \N [CΩu]| ≥ n(1−α)/3. Thus we can create
2n(1−α)/3 unique bad pairs u, X for Ω, by selecting X = CΩu ∪ Z, where Z is
any of the 2n(1−α)/3 subset of V \N [CΩu].

It follows that 2n ≥ |ΠNGsα| · 2n(1−α)/3, which can be restated as |ΠNGsα| ≤
2n(2+α)/3, where |ΠNGsα| is the number of nice potential maximal cliques of size
less than αn.

Lemma 5. The number of nice potential maximal cliques in a graph G with n
vertices is O(n2 · 1.8135n).

Proof. Let ΠNG be the set of nice potential maximal cliques, ΠNGlα be the set of
potential maximal cliques of size at least αn, and ΠNGsα be the set of potential
maximal cliques of size less than αn. Then |ΠNG| = |ΠNGlα| + |ΠNGsα| ≤
n ·

∑
2n(1−α)/3�
i=1

(
n
i

)
+ 2n(2+α)/3. By making use of Stirling’s formula and using

α = 0.5763 we obtain the bound O(n2 · 1.8135n).

Theorem 8. For any graph G, ΠG = O(n3 · 1.8135n).

Proof. From Corollary 1 we have that the number of potential maximal cliques
in G is less than n2|ΔG|+ n ·ΠNG = n3 · 1.701n + n ·ΠNG potential maximal
cliques, where ΠNG is the number of nice potential maximal cliques in the graph.
By inserting the result from Lemma 5 we get the new result that ΠG = O(n3 ·
1.8135n).

4 Listing All the Potential Maximal Cliques

In this section we show that any potential maximal clique of a graph with n
vertices can be represented with n/3 vertices or less, thus it follows that all
potential maximal cliques of the graph can be listed in O∗(

(
n

n/3

)
), or equivalent

O∗(1.8899n) time.
The idea is to show that every nice potential maximal clique which is not

covered by the two first cases of Lemma 1 can be represented by a vertex set
of size n/3 or less. From the results of [11] we know that the number of nice
potential maximal cliques covered by the two first cases of Lemma 1 is bounded
by n + n2|ΔG| and from [7] it follows that the potential maximal cliques which
is not nice can be generated from the nice potential maximal cliques.

To describe these different representations of a potential maximal clique we
need to partition the graph into different vertex set. The first step towards this
partitioning is given in Lemma 6 which is a slightly refinement of similar lemma
and proof given in [11].

Lemma 6. Let Ω be a nice potential maximal clique, S be a minimal separator
active for Ω, x, y ∈ S be an active pair, and C be the component of G \ S
containing Ω \ S. There is a partition (Dx, Dy, Dr) of C \Ω such that N(Dx ∪
{x}) ∩ C = N(Dy ∪ {y}) ∩ C = Ω \ S.
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Proof. By Theorem 5, Ω \S is a minimal x, y-separator in G[C ∪{x, y}]. Let Cx

be the full component associated to Ω \ S in G[C ∪ {x, y}] containing x, Dx =
Cx \ {x}, and let Cy be the full component associated to Ω \ S in G[C ∪ {x, y}]
containing y, Dy = Cy \ {y}, and Dr = C \ (Ω ∪ Dx ∪ Dy). Since Dx ∪ {x}
and Dy ∪ {y} are full components of Ω \ S, we have that N(Dx ∪ {x}) ∩ C =
N(Dy ∪ {y}) ∩ C = Ω \ S.

Definition 2. For a potential maximal clique Ω of G, we say that a pair (X, c),
where X ⊂ V and c ∈ X is a partial representation of Ω if Ω = N(Cc)∪(X\Cc),
where Cc is the connected component of G[X ] containing c.

Definition 3. For a potential maximal clique Ω of G, we say that a triple
(X, x, c), where X ⊂ V and x, c �∈ X is an indirect representation of Ω if
Ω = N(Cc ∪Dx ∪ {x}) ∪ {x}, where

– Cc is the connected component of G \N [X ] containing c;
– Dx is the vertex set of the union of all connected components C′ of G[X ]

such that x ∈ N(C′).

Let us note that for a given vertex set X and two vertices x, c one can check in
polynomial time whether the pair (X, c) is a partial representation or if the triple
(X, x, c) is a separator representation or indirect representation of a (unique)
potential maximal clique Ω.

We state now the main tool for upper bounding the number of nice potential
maximal cliques.

Lemma 7. Let Ω be a nice potential maximal clique of G. Then one of the
following holds:

1. There is a vertex a such that Ω = N [a];
2. Ω has a separator representation;
3. Ω has a partial representation (X, c) such that |X | ≤ n/3;
4. Ω has a indirect representation (X, x, c) such that |X | ≤ n/3.

Proof. Let S be a minimal separator active for Ω, x, y ∈ S be an active pair, and
C be the component of G\S containing Ω \S. By Lemma 6, there is a partition
(Dx, Dy, Dr) of C \Ω such that N(Dx∪{x})∩C = N(Dy ∪{y})∩C = Ω \S. If
one of the sets Dx, Dy, say Dx, is equal the emptyset, then N(Dx ∪ {x})∩C =
N(x)∩C = Ω \S, and thus the triple (S, x, z) is a separator representation of Ω.

Suppose that none of the first two conditions of the lemma holds. Then Dx

and Dy are nonempty. In order to argue that Ω has a partial representation
(X, c) or a indirect representation (X, x, c) such that |X | ≤ n/3, we partition
the graph further. Let R = Ω\S and let DS be the set of full components associ-
ated to S in G\Ω. The vertex set Dx is the union of vertex sets of all connected
components C′ of G \ (Ω ∪DS) such that x is contained in the neighborhood of
C′. Thus a connected component C′ of G\(Ω∪DS) is contained in Dx if and only
if x ∈ N(C′). Similarly, a connected component C′ of G \ (Ω ∪DS) is contained
in Dy if and only if y ∈ N(C′). We also define Dr = V \ (Ω ∪DS ∪Dx ∪Dy),
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which is the set of vertices of the components of G \ (Ω ∪DS) which are not in
Dx and Dy.

We partition S in the following sets

– Sx = (S \N(Dx)) ∩N(Dy);
– Sy = (S \N(Dy)) ∩N(Dx);
– Sxy = S \ (N(Dy) ∪N(Dx));
– Sxy = S ∩N(Dy) ∩N(Dx).

Thus Sx is the set of vertices in S with no neighbor in Dx and with at least
one neighbor in Dy, Sy is the set of vertices in S with no neighbor in Dy and
with at least one neighbor in Dx, Sxy is the set of vertices in S with neighbors
neither in Dx or Dy, and finally Sxy is the set of vertices in S with neighbors
both in Dx and Dy. Notice that the vertex sets DS , Dx, Dy, Dr, R,Sx, Sy, Sxy,
and Sxy are pairwise disjoint. The set Sxy is only mentioned to complete the
partition of S, and will not be used in the rest of the proof.

Both for size requirements and because of the definition of indirect representa-
tion we can not use the sets Sx, Sy, and Sxy directly, they have to be represented
by the sets Zx, Zy, and Zr, which are subsets of the vertex sets Dy, Dx, and Dr.
By the definition of Sx and Sy it follows that there exists two vertex sets Zx ⊆ Dy

and Zy ⊆ Dx such that Sx ⊆ N(Zx) and Sy ⊆ N(Zy), let Zx and Zy be the
smallest such sets. By Lemma 1, Ω = N(Dx ∪ Dy ∪ Dr), thus it follows that
there exists a vertex set Zr ⊆ Dr such that Sxy ⊆ N(Zr), let Zr be the smallest
such set.

Let C∗ be a connected component of G[DS ], remember that N(C∗) = S. We
define the following sets

– X1 = C∗ ∪R;
– X2 = Dx ∪ Zx ∪ Zr;
– X3 = Dy ∪ Zy ∪ Zr.

First we claim that

– the pair (X1, c), where c ∈ C∗, is a partial representation of Ω;
– the triple (X2, x, c), where c ∈ C∗ is an indirect representation of Ω;
– the triple (X3, x, c), where c ∈ C∗ is an indirect representation of Ω.

In fact, the pair (X1, c) = (C∗ ∪R, c) is a partial representation of Ω because
N(C∗) ∩ R = ∅, C∗ induces a connected graph, and Ω = N(C∗) ∪ R. Thus
(X1, c) is a partial representation of Ω.

To prove that (X2, x, c) = (Dx ∪ Zx ∪ Zr, x, c) is an indirect representation
of Ω, we have to show that Ω = N(Cc ∪D′

x ∪ {x}) ∪ {x} where Cc is the con-
nected component of G \ N [X2] containing c, and D′

x is the vertex set of the
union of all connected components C′ of G[X2] such that x ∈ N(C′). Notice that
(S ∪ C∗) ∩X2 = ∅ and that S ⊆ N(X2) since S ⊆ N(Dx ∪ Zx ∪ Zr) and X2 =
Dx∪Zx∪Zr. Hence the connected component Cc of G\N [X2] containing c is C∗.

Every connected component C′ of G[X2] is contained in Dx, Zx, or Zr since
Ω∩(Dx∪Zx∪Zr) = ∅ and Ω separates Dx, Zx, and Zr. From the definition of Dx
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it follows that x ∈ N(C′) for every component C′ of G[Dx], and from the defini-
tion of Dy and Dr follows that x �∈ N(C′) for every component C′ of G[Zx∪Zr].
We can now conclude that Dx is the vertex set of the union of all connected com-
ponents C′ of G[X2] such that x ∈ N(C′). It remains to prove that Ω = N(C∗∪
Dx∪{x})∪{x}. By Lemma 6, we have that Ω \S = R is subset of N(Dx∪{x})
and N(Dy ∪{y}), and remember that N(C∗) = S. From this observations it fol-
lows that Ω = N(C∗ ∪Dx ∪ {x})∪{x} since N(C∗ ∪Dx ∪ {x}) = (S ∪R) \ {x}.

By similar arguments, (X3, x, c) is an indirect representation of Ω.

To conclude the proof of Lemma, we argue that at least one of the vertex sets
X1, X2, or X3 used to represent Ω, contains at most n/3 vertices.

We partition the graph in the following three sets:

– V1 = DS ∪R;
– V2 = Dx ∪ Sx ∪ Sxy;
– V3 = Dy ∪ Sy ∪Dr.

These sets are pairwise disjoint and at least one of them is of size at most n/3
and to prove the Lemma we show that |X1| ≤ |V1|, |X2| ≤ |V2|, and |X3| ≤ |V3|.
|X1| ≤ |V1|. Since C∗ ⊆ DS , we have that X1 = C∗ ∪R ⊆ V1 = DS ∪R.

|X2| ≤ |V2|. To prove the inequality we need an additional result

|Zx| ≤ |Sx|, |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy|. (1)

In fact, since Zx is the smallest subset of Dy such that Sx ⊆ N(Zx), we have
that for any vertex u ∈ Zx, Sx �⊆ N(Zx \ {u}). Thus u has a private neighbor in
Sx, or in other words there exists v ∈ Sx such that {u} = N(v) ∩ Zx. Therefore
Sx contains at least one vertex for every vertex in Zx, which yields |Zx| ≤ |Sx|.
The proof of inequalities |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy| is similar.

Now the proof of |X2| ≤ |V2|, which is equivalent to |Dx ∪ Zx ∪ Zr| ≤
|Dx ∪ Sx ∪ Sxy|, follows from (1) and the fact that all subsets on each side
of inequality are pairwise disjoint.

|X3| ≤ |V3|. This inequality is equivalent to |Dy ∪ Zy ∪ Zr| ≤ |Dy ∪ Sy ∪ Dr|.
Again, the sets on each side of inequality are pairwise disjoint. |Zr| ≤ |Dr|
because Zr ⊆ Dr, and |Zy| ≤ |Sy| by (1).

Thus min{|X1|, |X2|, |X3|} ≤ n/3 which concludes the proof of the lemma.

Lemma 8. Every graph on n vertices has at most 2n2 ∑n/3
i=1

(
n
i

)
nice potential

maximal cliques which can be listed in O∗(
(

n
n/3

)
) time.

Proof. By Lemma 7, the number of the number of possible partial representa-
tions (X, c) and indirect representations (X, x, c) with |X | ≤ n/3 is at most
2n2 ∑n/3

i=1

(
n
i

)
. By Theorem 2, the number of all possible separator represen-

tations is at most n2|ΔG| ≤ n2
(

n
n/3

)
and we deduce that the number of nice

potential maximal cliques is at most 2n2 ∑n/3
i=1

(
n
i

)
. Moreover, these potential
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maximal cliques can be computed in O∗(
(

n
n/3

)
) time as follows. We enumerate

all the triples (S, a, b) where S is a minimal separator and a, b are vertices, and
check if the triple is the separator representation of a potential maximal clique
Ω; if so, we store this potential maximal clique. We also enumerate all the po-
tential maximal cliques of type N [a], a ∈ V (G) in polynomial time. Finally, by
listing all the sets X of at most n/3 vertices and all the couples of vertices (x, c),
we compute all the nice potential maximal cliques with a partial representation
(X, c) or a indirect representation (X, x, c).

Not all potential maximal cliques of a graph are necessarily nice (see [7] for
an example). These non nice potential maximal cliques can be found as shown
in the proof of Theorem 9, by using Theorem 6 and an algorithm to find nice
potential maximal cliques.

Theorem 9. A graph G on n vertices has at most 2n3 ∑n/3
i=1

(
n
i

)
= O(n4 ·

1.8899n) potential maximal cliques. There is an algorithm to list all potential
maximal cliques of a graph in time O∗(1.8899n).

Proof. Let x1, x2, . . . , xn be the vertices of G and Gi = G[{x1, . . . , xi}], for all
i ∈ {1, 2, . . . , n}. Theorem 6 and Lemma 8 imply that |ΠGi | ≤ |ΠGi−1 |+n|ΔGi |+
2n2 ∑n/3

i=1

(
n
i

)
, for all i ∈ {2, 3, . . . , n}. By Theorem 2, |ΠG| ≤ 2n3 ∑n/3

i=1

(
n
i

)
.

Clearly, if we have the potential maximal cliques of Gi−1, the potential max-
imal cliques of Gi can be computed in O∗(|ΠGi−1 |+

(
n

n/3

)
) time by making use

of Theorems 2, 6, and Lemma 8. The graph G1 has a unique potential maximal
clique, namely {x1}. Therefore ΠG can be listed in time O∗(

(
n

n/3

)
) time which

is approximately O∗(1.8899n).

Theorem 10. For a graph G on n vertices, the treewidth and the minimum
fill-in of G can be computed in O∗(1.8899n) time.

Proof. The result follows from the Theorems 1, 2, 7, and 9.

5 Concluding Remarks

It is still an open question whether or not it is possible to list all potential
maximal cliques in a graph in less than O∗(1.8899n) time. The fact that the
theoretical bound for the number of potential maximal cliques is O∗(1.8135n)
points in the direction of a better bound. Unfortunately there exits no nice
algorithm for listing the potential maximal cliques of G in O∗(|ΠG|) time, like
there exists for minimal separators [3].
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Dürr, Christoph 617
Dwork, Cynthia 43, 56

Elbassioni, Khaled M. 423
Engelberg, Roee 435

Farach-Colton, Mart́ın 447
Fatès, Nazim 455
Fernandes, Rohan J. 447
Figueira, Santiago 154
Fournier, Hervé 467
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