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Preface

Technological progress is one of the driving forces behind the dramatic develop-
ment of computer system architectures over the past three decades. Even though
it is quite clear that this development cannot only be measured by the maxi-
mum number of components on a chip, Moore’s Law may be and is often taken
as a simple measure for the non-braked growth of computational power over the
years. The more components are realizable on a chip, the more innovative and
unconventional ideas can be realized by system architects. As a result, research
in computer system architectures is more exciting than ever before.

This book covers the trends that shape the field of computer system architec-
tures. The fundamenatal trade-off in the design of computing systems is between
flexibility, performance, power consumption, and chip area. The full exploitation
of future silicon capacity requires new architecture approaches and new design
paradigms such as multiple computers on a single chip, reconfigurable processor
arrays, extensible processor architectures, and embedded memory technologies.
For a successful use in practical applications, it is not enough to solve the hard-
ware problems but also to develop platforms that provide software infrastructure
and support effective programming.

A quantum jump in complexity is achieved by embedded computing systems
with an unprecedented level of connectivity linking together a growing num-
ber of physical devices through networks. Embedded systems will become more
and more pervasive as the component technologies become smaller, faster, and
cheaper. Their complexity arises not only from the large number of components
but also from a lack of determinism and a continual evolution of these systems.
The research effort needed to design systems so that they can be developed,
deployed, maintained, configured, managed, and trusted will be a key issue for
many years. Pervasive computing is therefore much more than an Internet ac-
cess by mobile devices. The papers presented in this book set out the broadness
of the research area established by pervasive computing approaches: input de-
vices for wearable systems, mobile collaborative applications, measurement data
acquisition, location awareness, QoS awareness, and context awareness.

One possibility to cope with the growing complexity of computing systems
is to make them organic or autonomous, that is, to make them self-learning,
self-organizing, self-configuring, self-optimizing, self-healing, self-protecting, and
proactive.

In this context, completely new problems arise that should be addressed by an
interdisciplinary effort. Natural organic and self-organizing systems have been
studied in other scientific discplines such as philosophy and biology, and their
results should now be considered by architects of organic computing systems.
Some of the key questions are:
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1. Do organic systems feature properties that cannot be derived from the prop-
erties of its components? Is this emergent behavior desirable in any case or
not?

2. Can we really expect to completely control systems with an emergent be-
havior?

3. Which mathematical formalisms can help in constructing and analyzing this
type of system?

4. How is user privacy maintainable?
5. What is the role of trust?

These questions were discussed during the conference stimulated by two keynote
and three invited speeches. Two of the speakers have taken the opportunity to
present their ideas in this book.

Organic computing is a research area initiated by the special interest group
ARCS of the German computer societies (GI and ITG) that are responsible for
the organization of the ARCS conference series. Future ARCS conferences will
therefore continue to give a platform to revolutionary ideas for a new generation
of organic computing systems.

The great interest of the research community in the research field of this
conference is expressed in a large number of submitted papers. Altogether, we
received 174 papers, 32 of them were accepted and are presented in this book.
We were especially pleased by the wide range of countries represented at the
conference. We thank all the members of the Program Committee, who did a
great job. Many additional reviewers supported us in selecting the best papers.
We thank all reviewers for their elaborated reviews which greatly helped the
authors to further improve their papers. Readers will appreciate this effort yield-
ing a book with high quality.

The organization of this conference was done at two different locations. Or-
ganizational tasks were performed at the University of Frankfurt a.M., while
the work on the program was done at the University of Passau. We thank all
staff members for their excellent work making this conference a success. Special
thanks for their excellent work go to: Markus Damm, Diana Firnges, Jan Haase,
Johannes Herr, Wilhelm Heupke, Joachim Höhne, Alexander Hofmann, Andreas
Hofmann, Eva Kapfer, Anita Plattner, Franz Rautmann, Rüdiger Schroll.

March 2006 Werner Grass
Bernhard Sick

Klaus Waldschmidt
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Life-Inspired Systems
and Their Quality-Driven Design

Lech Jóźwiak

Eindhoven University of Technology,
Den Dolech 2, 5600 MB Eindhoven, The Netherlands

L.Jozwiak@tue.nl
http://www.ics.ele.tue.nl/~ljozwiak/

Abstract. The recent spectacular progress in modern microelectronics
that enabled implementation of a complete complex system on a single
chip created new important opportunities, but also new serious diffi-
culties. This paper briefly analyses the situation, trends and problems
in the field of the modern microelectronic-based systems. However, the
main aim of the paper is to discuss the paradigms of life-inspired systems
and quality-driven design that seem to be adequate to overcome the dif-
ficulties, and consider their application to the architecture synthesis for
complex real-time embedded systems.

1 Introduction

The recent spectacular progress in modern microelectronics and information
technology enabled implementation of a complete complex information pro-
cessing system on a single chip (SoC), global networking and mobile wire-less
communication, and facilitated a fast progress in these areas. New important op-
portunities have been created. The traditional applications can be served much
better and numerous new sorts of systems became technologically feasible and
economically justified, especially for applications that require miniaturization,
high performance, low power dissipation, and wire-less or distant communica-
tion. Various measurement or control systems that can be put on or embedded in
(mobile, poorly accessible or distant) objects, installations, machines or devices,
or even implanted in human or animal body can serve as an example. A big
stimulus has been created towards development of various kinds of application-
specific embedded systems.

On the other hand however, the spectacular advances in microelectronics and
information technology introduced unusual complexity :

– Silicon Complexity, in the sense of huge numbers, density, diversity, and small
dimensions of devices and interconnections, huge length of interconnections,
new materials and mixed technologies, and

– System Complexity, in the sense of a huge number of possible system states,
number and diversity of subsystems, and extremely complex interactions and
interrelations among the subsystems.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Due to the Silicon Complexity, and especially: extremely high device densities,
small physical dimensions, power supply reduction, and very high operating fre-
quencies, many previously ignorable phenomena have now a great impact on the
system correctness and other quality aspects. This results in many new difficult
to solve hardware issues, such as:

– power and energy crisis, increased leakage power, and fluctuations in the
on-chip power density distribution,

– on-chip communication problems, including delay variation due to substrate
coupling and cross-coupling,

– decreased reliability, due to numerous reasons (noise, interference, signal in-
tegrity problems, increased defect density, manufacturing process variability,
gate insulator tunneling, joule heating, electromigration, single event upsets
and transients etc.),

– decreased design predictability (due to the above mentioned and some extra
reasons),

– manufacturability problems and decreased yield,
– high manufacturing NRE and production costs, etc.

The System Complexity also results in serious system and design challenges,
such as:

– design, quality assurance and validation of the highly complex and hetero-
geneous systems with exponentially growing number of states,

– ensuring of the systems’ responsiveness, reliability and safety in the light of
changing, noisy and unreliable environment and interior,

– reducing the design productivity gap, time-to market, and design NRE costs.

More details and explanations can be found in [1][3][6].
The application-specific embedded systems are especially difficult to develop

and validate. In addition to the above listed issues, they must appropriately
react in real-time to the signals from their surroundings and to be fine-tuned
to particular applications through satisfying application specific constraints and
objectives related to such attributes as functional behavior, reaction speed and
throughput, power dissipation, geometrical dimensions, price etc. Moreover,
many of them are used in safety critical applications that impose extremely
high quality requirements (e.g. measurement or control systems built in various
machines, robots, assembly lines, planes, cars, telecommunication equipment,
military systems, safety systems, medical instruments or human body). One
more main source of difficulties is related to the fact that embedded systems
play an extremely remarkable role in today’s life and are used more and more
commonly in virtually all fields of human activity, in all sorts of technical, social
and biological systems, in more and more important and demanding applications.
They are even implanted in our bodies. Our life is to a higher and higher degree
dependent on their adequate operation. Therefore, the individual and society
expectations regarding their quality grow rapidly. In consequence, their respon-
siveness, robustness and dependability are becoming more and more critical.
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Unfortunately, due to the rapidly growing silicon and system complexity, both
the hardware and software of the future chips tends inherently to be less reliable
and more sensitive to noise and interferences with the environment. However,
we certainly cannot tolerate that the future systems will be less reliable.

Consequently, the development of the future systems should aim at the total
multi-objective quality maximization of the systemic solution, with a special focus
on the robustness, responsiveness, dependability, safety, security, adaptability,
and validation aspects. However, these important aspects are not new and were
already taken into some consideration in the past. What is thus new or different
now?

The new or different character of the current situation includes the following:

– due to the huge and rapidly growing complexity, more and more demanding
applications and growing danger of attacks and manipulations, it will be
more and more difficult to guarantee the system quality, and particularly,
responsiveness, dependability, robustness, safety, security and validation;

– due to the common usage of systems in various kinds of social, technical and
biological systems, the whole life on the Earth more and more depends on
them; in consequence, their quality, and specifically responsiveness, depend-
ability, safety and security are becoming more and more critical ; also ap-
plications considered previously as non-critical are becoming more and more
critical, because we more and more rely on them.

Consequently, high responsiveness, dependability, robustness, safety and security
must now become much more common than in the past when they were seriously
considered in relation to only some very special critical systems (i.e. mission or
life-critical systems for space, flight, military and similar applications). Due to
the common application, reasonably low-cost solutions must be used. This means
that these features cannot anymore be added on the top of the designed or im-
plemented system, when using simple, but expensive means. These features must
be accounted for from the very beginning of the system specification and design
process, implemented using sophisticated effective and efficient solutions, con-
sidered in parallel with all other important system aspects to possibly share the
implementation costs and account for the consequences of their implementation.
This will allow for an adequate tradeoff exploitation and multi-objective opti-
mization and result in more coherent, compact, comprehensive, reliable, robust
and lower-cost solutions.

Moreover, due to the embedded and/or mobile character of the new applica-
tions, growing application complexity, power and energy crisis, increased leakage
power, and fluctuations in the on-chip power density distribution, power and en-
ergy issues are more and more serious.

Summing up, the transition:

– from the multi-chip systems to systems-on-a-single-chip,
– from the general-purpose stand-alone computers to application-specific em-

bedded systems,
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– from the separated systems to networked systems,
– from the wire-based communication to wireless communication,
– from the static systems to mobile and dynamic systems

is not a gradual change, but a real paradigm shift:

– it opens new opportunities,
– but it also creates new very serious difficulties

that cannot be adequately resolved without an adequate system and design
methodology adaptation.

The adequate system and design paradigms to solve the problems seem
to be the paradigms of:

– life-inspired systems, and
– quality-driven design.

Predicting the current situation, several years ago I proposed the methodol-
ogy of the quality-driven design of the microelectronic-based systems [2][3][5],
and subsequently, supplemented it with the paradigm of the life-inspired sys-
tems [6]. In recent years, together with our collaborators we successfully applied
the quality-driven design methodology and the paradigm of the life-inspired sys-
tems to the semi-automatic system architecture exploration and synthesis for the
generic platform-based heterogeneous real-time embedded SoCs [3][7][8], and to
the multi-objective optimal circuit synthesis [4][5].

The main aim of this paper is to discuss the paradigms of the life-inspired sys-
tems and quality-driven design, and their application to the system architecture
exploration, when focusing on the important issues of parallel heterogeneous ar-
chitectures, generic and re-configurable system solutions, and automatic system
architecture synthesis, and using as an example our recently developed system-
level design exploration method [3][7][8].

2 Quality-Driven Design

What system design is about is a definition of the required quality , in the
sense of a satisfactory answer to the following two questions:

– What (new or modified) quality is required? and
– How can it be achieved?

Actually, what is quality?
A lot of various definitions can be found in literature, but none of these defini-
tions is precise enough to enable the systematic consideration, measurement and
comparison of quality that are necessary for quality-driven design [2][3].

Therefore, I proposed the following new definition:

Quality of a purposive systemic solution is its total effectiveness and ef-
ficiency in solving the original real-life problem. Effectiveness is the degree to



Life-Inspired Systems and Their Quality-Driven Design 5

which a solution attains its goals. Efficiency is the degree to which a solution uses
resources in order to realize its aims. Effectiveness and efficiency of a systemic
solution together decide its grade of excellence - their aggregation expresses qual-
ity. In turn, effectiveness and efficiency can be expressed in terms of measurable
parameters, and in this way quality can be measured.

In particular, quality can be modeled in the form of multi-objective deci-
sion models, being partial and abstract (reduced to the relevant and/or feasible
concerns and precision levels) models of the required quality, expressed in the
decision-theoretical terms. The multi-objective decision models together with
the methods and tools for the estimation of the design parameters of these mod-
els related to the relevant design aspects and performances (e.g. timing, power-
dissipation, costs) enable application of the multi-objective decision methods for
construction, improvement and selection of the most promising solutions [2][3][8].

The main concepts of the quality-driven design can be briefly summa-
rized as follows:

– designing of top-quality systems is the aim of a design process;
– quality is modelled and measured to enable invention and selection of the

most promising design alternatives and quality analysis and comarison and
in consequence quality improvement;

– quality models are considered to be heuristics for setting and controlling the
course of design, and as such, they are also a subject to design and change;

– the design process is evolutionary and it basically consists of:
• constructing the tentative quality models,
• using them for constructing, selecting and improving the tentative solu-

tions,
• analysing and estimating them directly and through analysis of the re-

sulting solutions,
• improving them, and using again, etc.

– in the design process, a balance is sought for between the multiplicity of
the system life-cycle aspects considered in parallel and amount of iteration,
design reuse and innovation, art and science in the design, designer’s in-
volvement and automation; criterium for this balance is total effectiveness
and efficiency of a design process.

The quality-driven design paradigm considers system design to be an evolu-
tionary quality engineering process in which the concepts of predicting, testing,
learning and adapting are very important. This process starts with an abstract,
imprecise, incomplete and possible contradictory initial quality model (initial re-
quirements), and tries to transform the initial model into a concrete, precise,
complete, coherent, directly implementable, and optimized to quality final model.
The quality-driven design space exploration basically consists of the alternating
phases of the exploration of the space of the abstract models of the required qual-
ity, and exploration of the space of solutions obtained with the selected quality
models. With the total quality-driven design approach, all the important de-
sign aspects can be explicitly accounted for, given necessary attention, modeled,
analyzed, and traded off against or combined with another aspects just from
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the beginning of the design process, to result in more coherent, compact, com-
prehensive, reliable, robust and lower-cost systems. In the quality-driven sys-
tem design, the design reuse, plays an extremely important role, especially in
the form of the generic system solutions and architectures, as for instance the
generic (re-)configurable system platforms and architecture templates. Design
reuse simultaneously enhances the system quality due to the ”maturity” of the
reused designs, as well as, the development and/or fabrication efficiency due to
elimination of some costly and time consuming development and/or fabrication
phases.

3 Life-Inspired Systems

The paradigm of the life-inspired systems originates from the observation
that:

– the operation domains, roles and complexity of the microelectronics-based
systems

more and more resemble

– the operation domains, roles and complexity of (parts of) the (intelligent)
life organisms or organized populations of such organisms.

Based on this parallel, I formulated the hypothesis that: the future microelec-
tronics based systems should have characteristics that resemble the
characteristics of (parts of) the (intelligent) life organisms or their
organized populations. Consequently, the basic concepts, principles,
functional and structural organization etc. of the microelectronics-
based systems should resemble these of the (intelligent) life organisms
or their populations. ”Resemble” does not of course mean to be identical. We
have to account for the differences, as for instance, in the nature of the life and
technological systems, their materials, implementation technologies, etc. Since
the whole life on the Earth more and more depends on the microelectronics-based
systems, and they more and more often are embedded in the life-organisms or
play important roles in their populations, the systems must be life-inspired also
for this reason.

Similarly to a real brain, a life-inspired system should not limit itself to the
traditional basic functions of an information technology system of collecting,
transmitting, storing, processing, and presenting information in relation to some
external systems. In addition to these functions, it should solve complex problems,
take and implement difficult decisions, learn, discover new ideas, etc., also in
relation to itself.

To achieve these diverse aims effectively and efficiently in relation to com-
plex and demanding applications and in the light of changing, noisy and unre-
liable environment and own interior, a life-inspired system has to be a largely
autonomous, self-contained, robust, self-organizing, self-adapting, self-regulating
dynamic evolutionary system. Like a real organism or brain, it should be highly
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decentralized and composed of largely autonomous, diverse, having own particu-
lar aims and optimized for these aims sub-systems (organs or centers). However,
the sub-systems should be adequately (hierarchically) organized, interconnected
with an appropriate network of efficient communication channels, properly co-
ordinated and adequately collaborating with each other to synergistically achieve
the global system aims.

Analogously to the life organisms, the life-inspired systems should have ad-
equate self-protection, self-testing, self-diagnosis, self-repair, fault-tolerance
and other self-organization, adaptation and regulation mechanisms.

To avoid the memory and communication bottlenecks, processing
time and energy inefficiency etc.:

– information, intelligence and computational resources of the life-inspired sys-
tem should be properly distributed over all its sub-systems,

– effective application-specific operators should be used,
– parallel processing should be extensively applied for tasks involving paral-

lelism, and
– effective communication should be provided between the sub-systems.

This requires:

– local distributed memories for the sub-systems,
– (more) global multi-port memories for sharing data and communication be-

tween the sub-systems,
– memory-centric processing for massive data - the computations must come to

the data and not the data to the computations (re-configurable computing),
– simple effective communication mechanisms without unnecessary overheads,
– (massively) parallel processing sub-systems involving application-specific in

hardware implemented operators,
– re-configurable hardware to implement the application-specific (parallel) pro-

cessing and memory-centric processing effectively and efficiently.

4 Importance of the Generic and Re-configurable System
Solutions

In the life inspired-systems, re-configuration will play a very important
role and serve numerous purposes, including the following:

– computation speedup, as well as, power and energy savings in comparison
to software solutions with the traditional CPU-centric instruction-stream-
based computers, due to the distributed parallel processing and effective im-
plementation of the application/program-specific operations and (massively
parallel) computation patterns directly in the re-configurable hardware,

– product differentiation and changes in relation to applications (e.g. to cover
large application domain, differentiate within a product family, react to
changing standards, enhance, update or improve the product after fabri-
cation, etc.),
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– adaptability to changing operation conditions due to changes in the sys-
tem’s surrounding or interior, including: self-organization, self-regulation,
self-protection etc. (e.g. adaptive control, filtering, interfacing, etc., but also
fault-tolerance, self-testing, self-diagnosis and self-repair),

– design reuse and computational resource sharing;
– development and fabrication effort re-use that results in the reduction of the

design productivity gap, shortening of the time-to market, and reduction of
the design and fabrication NRE costs.

Actually, what is re-configurable system?
Many various definitions of re-configurable system can be found in literature.
Unfortunately, all definitions that I was able to find are not general and not
precise enough to enable any serious discussion. Therefore, I proposed the fol-
lowing definition: re-configurable system is a system whose sub-systems and/or
sub-system configurations can be changed or modified after fabrication to (bet-
ter) serve a certain purpose. Observe that this definition is independent of the
system implementation aspects, and covers both the hardware and software re-
configuration.

To efficiently develop the complex microelectronics-based systems, an ade-
quate mixture of the design reuse at the system and/or sub-system levels with the
automatic synthesis from the system and/or sub-system levels is needed. Generic
system solutions and architectures, not necessary related to re-configurable sys-
tems, and particularly the generic system platforms and architecture tem-
plates, in parallel to serving similar aims as re-configuration, enable such
adequate mixture of design reuse and innovation. In particular, they enable
efficient automatic system architecture synthesis, process scheduling and map-
ping. If the problem (application) at a hand belongs to a certain well-defined
abstraction class containing problems (applications) with similar requirements,
a general form of a solution can be developed for the whole class and reused.
The general form constrains the solution search space to such a degree that the
construction of particular solution instances fine-tuned to particular applications
can be performed by well-defined mapping, search and decision processes, based
on evaluation of the solution’s quality model. The mapping, search and deci-
sion processes can be automated to increase the designer’s productivity and the
overall quality of the design process. This sort of reuse is very important for the
complex SoCs. For a certain application field, an appropriate generic architec-
ture template can be developed and the nature of the core system’s modules
and interfaces between the modules and with the external world can be defined.
Some families of (configurable) core system modules and interfaces suitable for
different sub-fields of the application field can be developed. For a particular
application, the generic architecture template and some selected core system’s
modules and interfaces are reused and adequately instantiated to appropriately
serve the application, but also some new problem-specific modules and interfaces
may be added. Observe, that the concept of generic system solution is strictly
parallel to genotype in the life organisms:
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– the generic solution is adequately instantiated to better serve a particular
application,

– the genotype is mutated to better fit to particular conditions.

Also the system re-configuration is strictly parallel to the adaptation in life
organisms.

5 System-Level Design

For complex systems such as SoCs, the system-level design forms a bottleneck
and its costs are becoming dominant in the total costs of a microelectronics-
based system. In addition to the difficulties with development of the modern
embedded systems that were considered in the previous sections, we can ex-
pect that in the future the more and more complex systems will be more and
more on a single chip. Observe moreover, that SoCs and other modern embed-
ded systems are application-specific and at the ”system level”, in the sense that
they represent an important or decisive part of the actual complete product
or system. Consequently, they are closer to application than to implementation
technology, and they are appreciated, estimated and evaluated by the product-
level attributes related to a particular application. The components of SoCs
and other embedded systems tend also to be more and more at the system
level and application-specific, but additionally, more often virtual (IP), flexible
(customisable, re-configurable, programmable), and mixed (hardware/software,
digital/analog).

For SoCs and other complex embedded systems, the system-level design is a
critical issue. At the system level:

– the most important global design problems and tradeoffs must be decided:
the main decisions are taken on the general form and nature of the future
system, but also on the system’s design, production, usage and disposal
processes,

– the design problems are typically less structured and more complex than at
the lower design levels, where we deal with only some partial problems and
the design freedom is limited by the previous design decisions,

– more factors influence the design decisions than at the lower design levels,
and their interrelations and tradeoffs are more complex.

Since the utility functions corresponding to various system attributes and in-
terrelationships between various design characteristics are strongly non-linear, a
huge increase of value for one characteristic is often possible without sacrificing
too much of another one. Therefore, appropriate design exploration, trade-off
exploitation and decision analysis at the system-level can result in a very large
improvement of the total system’s quality. Thus, besides the behavioural and
structural modelling and analysis, extensively used also at the lower design lev-
els, the system-level design methods and tools should adequately support
the parametric and the trade-off modelling and analysis, as well as,
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enable construction of various multi-objective decision models and us-
age of multi-objective decision methods. The system-level design should be
much more focused on the construction and validation of the design models and
use of the design models and estimates for the design-space exploration by ”what
if” analysis. Thus, at least partially, a different kind of design support is needed
here than that offered by the traditional design automation tools developed for
the lower design levels. Due to the high importance, complexity and difficulty
of the system-level design tasks, the effective and efficient system-level
design automation is crucial for enabling the adequate system-level
design. As explained above, in the system-level design and its automation the
generic system solutions and their reuse play a crucial role - in particular, the
generic system platforms and architecture templates that represent the generic
system infrastructure. This infrastructure is appropriately instantiated and used
by the application processes to realize the required system behaviour when sat-
isfying certain objectives and constraints. Some of the main design tasks the
system-level EDA-tools should serve are the following:
– application-specific generic system architecture template creation and in-

stantiation,
– system component (IP) creation and instantiation,
– architecture template based system architecture exploration and (semi-)

automatic synthesis, including automatic computation process scheduling
and mapping on the selected system platform instance, when using multi-
objective modeling, decision making and trade-off exploitation,

– design analysis, parameter estimation and evaluation,
– automatic hardware and software synthesis from the system-level specifica-

tion,
– automatic system assembly according to the selected system architecture

from the re-used IP components and the newly synthesized components,
– system design validation and system testing (including design for test and

validation).

6 System Architecture Synthesis

Together with our collaborators, we applied the quality-driven design methodol-
ogy, the paradigm of the life-inspired systems, and many other concepts discussed
above to the semi-automatic system architecture exploration and synthesis for
complex heterogeneous real-time embedded systems.

The system architecture design phase is located on the embedded system de-
sign trajectory, between the system requirement specification and hardware/soft-
ware design and implementation (see Fig. 1). The core activities of the
system architecture design for the embedded heterogeneous real-time hard-
ware/software systems involve:
– generic architecture design and modeling (once for an application/sys-

tem class)
– generic architecture template instantiation (for each particular appli-

cation/system),
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Fig. 1. System architecture design

– abstract requirement modeling (for each particular application/system),
– process scheduling and mapping on the generic architecture tem-

plate instance (for each particular application/system).

To perform the system architecture exploration and synthesis effectively and
efficiently, a generic architecture platform corresponding to a given application
class and its main modules (processors, memories and communication) have to
be developed in advance, based on the analysis of the application class and us-
ing the prior knowledge and experience related to applications/systems from
this class or analogous classes. Also, a generic architecture template, has to be
developed, being an abstract system-level model of the architecture platform
and its modules, adequate for the architecture exploration and synthesis issue.
Moreover, the original system requirements have to be analysed and an abstract
system-level model of the behavioural and parametric requirements being ade-
quate for the architecture design issue has to be constructed. The actual system
architecture exploration starts with this abstract model comprising a network
of collaborating computation processes and a set of parametric constraints and
objectives. This network of processes have to be appropriately scheduled and
distributed over the structure of modules of an adequate instance of the generic
architecture template, to define the actual system architecture - i.e. the selection
and interrelationships of the platform modules, assignment of the computational
processes to the platform modules and their schedule - that satisfies the specific
(structural, physical, etc.) constraints and optimizes the objectives of the para-
metric requirements in the context of specific trade-off preferences between the
objectives.
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Since the abstract requirement modelling, generic architecture instantiation,
and process scheduling and mapping have to be performed for each partic-
ular application/system anew, and an adequate design space exploration of
complex systems requires re-iterations and refinements, these three processes
should be automated to a high degree. Providing the initial requirements are
in any formal language, their abstract model can be automatically constructed
through a sort of parsing, analysis and abstract translation. Comparing to the
architecture template instantiation, the process scheduling and mapping seems
to be a decision task of higher complexity, because it involves a complicated
network of numerous processes that have to be appropriately scheduled and
assigned on the proposed multiprocessor architecture template instance. There-
fore, the automatic support for this task is of primary importance. In conse-
quence, we proposed the system architecture design process organization
and its automatic support as represented in Fig. 2. Both the requirement
model and generic architecture template are developed before the actual system
architecture exploration starts, although they both are not sacred and invio-
lable, but they are subject to re-design during the architecture exploration if
necessary.

To start the actual architecture exploration and synthesis, based on the initial
requirement analysis the designer makes a proposal of the generic architecture
platform instance and its resource allocation that are expected to be adequate to

Fig. 2. Organization and automation of the system architecture design
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realize the required system behaviour and satisfy the parametric requirements.
His decision is implemented through instantiation of the corresponding IP mod-
els of the generic architecture template and of its modules that is supported
with adequate design automation means. Using the requirement model and the
IP models of the architecture template instance and of its modules, the schedul-
ing and mapping are performed of the network of collaborating computation
processes defined by the behavioural requirements on the proposed architecture
template instance. Its result is a decomposition of the required network of the
system’s computational processes into a network of sub-systems that realizes
the required processes. Each of the sub-systems corresponds to a module of the
generic system architecture template instance with a sub-set of the computa-
tion processes scheduled and mapped on it. Each of the sub-systems executes a
part of the required computations and all the sub-systems collaborating together
realize the total required system’s behaviour. This network of sub-systems rep-
resents the system architecture, i.e. the generic architecture template instance
with the computational processes scheduled and mapped on this instance. The
result of scheduling and mapping has not only to realize the required system’s
behaviour, but as well to satisfy specific constraints and optimize certain objec-
tives in the context of some specific trade-off preferences between the objectives.
The constructed system architecture is subsequently examined and analysed
to check to what degree this all is satisfied. In the architecture design process
that we proposed, the scheduling, mapping and architecture analysis processes
are fully automated. We developed a method and corresponding prototype
EDA tool for the automatic system architecture construction and se-
lection through scheduling and mapping of the abstract behavioral model on
the platform instance selected, when using an adequate decision model and para-
metric estimates. We also developed a parameter estimation method and tool
for the relevant system architecture parameters, by using information from the
abstract behavioral model, mapping configuration, schedule, and characteristics
of the hardware resources. From our automatic EDA-tool, the designer receives
feedback composed of the constructed architecture model and important char-
acteristics of the constructed architecture showing to what degree the design
objectives and constraints are satisfied by this architecture. Using this feedback,
the designer can decide:

– to finish the architecture exploration end synthesis phase (if he is satisfied
with its result) or to stop it (if it turns out to be impossible to realize the
required system given the available resources),

– to make a new proposal of the generic architecture template instance and
its resource allocation that are expected to be more adequate to realize
the required system behaviour and satisfy the parametric requirements than
the previously proposed (if he is not satisfied with the degree to which the
design objectives and constraints are satisfied),

– to modify the generic architecture platform, some of its modules or design
requirements (if it turns out that it is impossible to realize the required
system with the currently used generic architecture).
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In the last two cases, after making a modified platform instance and/or require-
ment proposal, the next iteration of the scheduling, mapping and architecture
analysis is started.

The generic architecture template that served as an example in our research
involved:

– instruction set processors cores,
– application-specific (reconfigurable) hardware co-processors and accelera-

tors,
– distributed local memories placed directly in/by corresponding processing

moduls,
– main memory sub-system, and
– communication sub-system (interconnections and interfaces).

The generic architecture template and the designs of some processors, memories,
buses and interfaces contained in the design system library are reused and instan-
tiated during the co-design process, but some new hardware co-processors, inter-
faces etc. can be synthesized and re-configurable subsystems can be re-configured
especially for a specific application. The computational processes mapped to:

– instruction set processors are considered to be software modules, and
– application specific hardware co-processors and accelerators - hardware

modules.

Software of the software modules is then automatically generated, compiled and
executed on the instruction set processors. For the hardware modules an appro-
priate hardware implementing their behavior is synthesized.

The overall design aim: find a high-quality system architecture is
expressed by a number of sub-objectives (e.g. minimize the resource usage,
maximize the processing modules utilization, minimize the inter-module com-
munication), constraints (e.g. the maximum latency and the maximum module
utilization) and trade-off information. The sub-objectives and constraints are ex-
pressed as functions of some basic parameters possible to estimate based on the
processors’, memories’ and communication models and the execution character-
istics from the static behavioral analysis [7][8]. The sub-objectives are formulated
as utility functions [2][3][8]. The decision model of the system partitioning is-
sue thus constructed enables usage of the multiple-objective decision methods
and tools for the invention and selection of the high-quality system architectures
[2][3][8].

For complex designs, the estimation of the basic architecture parameters di-
rectly from the original behavioural specification is very difficult. Therefore, a
much more abstract and simpler transition system model should be extracted
for this particular design issue from the original behaviour model. To efficiently
deal with design complexity, an abstraction is used that consists of:

– data hiding,
– process abstraction and encapsulation (the internal transformation behavior

is modeled as an atomic action),
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– grouping of ”zero-time” internal events into compound transitions, and
– considering the compound transitions with interleaved events to be equivalent.

In this way, based on the original system behavior model, an abstract tran-
sition system model is constructed that is expressed in our case as an el-
ementary net system model [8]. For this transition system model, the state
reachability analysis is performed to determine the traces implementing a par-
ticular system function for the typical system use cases, and based on those
traces, the precedence and conflict relations between the transformations (see
Fig. 3). This information is used together with the processor models and hard-
ware estimators to estimate the resource usage (e.g. hardware resource usage,
execution time). The resource usage estimates are then used as values of some
basic parameters in the formulas expressing the constraints and objectives in
the decision model of the system architecture synthesis issue, and this way guide
the architecture synthesis process. Using the concepts above discussed, we de-
veloped a behavioral analysis method and tool for an efficient automatic
construction of the abstract behavioral models from the SA/RT models and
use cases specified by the designer or user (see Fig. 3). We also developed a
corresponding parameter estimation method and tool for the relevant sys-
tem architecture parameters, by using information from the abstract behavioral
model, mapping configuration, schedule, and characteristics of the hardware re-
sources.

Fig. 3. Scheduling, mapping and architecture estimation using the abstract behavior
and architecture models
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7 Conclusion

Using the prototype EDA-tools that we developed for various issues of the sys-
tem architecture design and applying them to two medium-size real-world design
problems (the H263 video encoder and radio modem of a 3rd generation mobile
phone), we performed a series of experiments with the proposed system archi-
tecture design method and EDA tools [8]. The experimental research confirms
the adequacy of the proposed system architecture exploration and synthesis ap-
proach, and of the paradigms of the life-inspired systems and quality-driven
design constituting the base of this approach. Their application should result in
higher quality of systems, due to the usage of systemic solutions more adequate
in the context of the emerging and future technologies and new demanding ap-
plications, and due to a more coherent, systematic, highly-automated, effective
and efficient design process.
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5. Jóźwiak, L.: Advanced AI search techniques in modern digital circuit synthesis. Ar-
tificial Intelligence Review, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, Vol. 20, No 3-4, December 2003, pp. 269–318
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Abstract. This corresponds to the material in the invited keynote presentation 
by H. J. Siegel, summarizing the research in [2, 23]. 

Resource allocation decisions in heterogeneous parallel and distributed 
computer systems and associated performance prediction are often based on 
estimated values of application and system parameters, whose actual values are 
uncertain and may be differ from the estimates. We have designed a model for 
deriving the degree of robustness of a resource allocation—the maximum 
amount of collective uncertainty in parameters within which a user-specified 
level of system performance can be guaranteed. The model will be presented, 
and we will demonstrate its ability to select the most robust resource allocation 
from among those that otherwise perform similarly (based on the primary 
performance criterion). We will show how the model can be used in off-line 
allocation heuristics to maximize the robustness of makespan against 
inaccuracies in estimates of application execution times in a cluster.  

1   Introduction 

This is an overview of the material to be discussed in the invited keynote presentation 
by H. J. Siegel; it summarizes our research in [2, 23]. 

This research focuses on the robustness of a resource allocation in parallel and 
distributed computing systems. What does robustness mean? Some dictionary 
definitions of robustness are: (a) strong and healthy, as in “a robust person” or “a 
robust mind,” (b) sturdy or strongly formed, as in “a robust plastic,” (c) suited to or 
requiring strength as in “a robust exercise” or “robust work,” (d) firm in purpose or 
outlook as in “robust faith,” (e) full-bodied as in “robust coffee,” and (f) rough or rude 
as in “stories laden with robust humor.” In the context of resource allocation in 
parallel and distributed computing systems, how is the concept of robustness defined? 

The allocation of resources to computational applications in heterogeneous parallel 
and distributed computer systems should maximize some system performance 
measure. Allocation decisions and associated performance prediction are often based 
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on estimated values of application parameters, whose actual values may differ; for 
example, the estimates may represent only average values, or the models used to 
generate the estimates may have limited accuracy. Furthermore, parallel and 
distributed systems may operate in an environment where certain system performance 
features degrade due to unpredictable circumstances, such as sudden machine failures, 
higher than expected system load, or inaccuracies in the estimation of system 
parameters (e.g., [1, 3, 4, 5, 8, 11, 13, 14, 16, 17, 22]). Thus, an important research 
problem is the development of resource management strategies that can guarantee a 
particular system performance given bounds on such uncertainties. A resource 
allocation is defined to be robust with respect to specified system performance 
features against perturbations (uncertainties) in specified system parameters if 
degradation in these features is constrained when limited perturbations occur. An 
important question then arises: given a resource allocation, what extent of departure 
from the assumed circumstances will cause a performance feature to be unacceptably 
degraded? That is, how robust is the system?  

Any claim of robustness for a given system must answer these three questions: (a) 
what behavior of the system makes it robust? (b) what uncertainties is the system 
robust against? (c) quantitatively, exactly how robust is the system? To address these 
questions, we have designed a model for deriving the degree of robustness of a 
resource allocation—the maximum amount of collective uncertainty in system 
parameters within which a user-specified level of system performance can be 
guaranteed. The model will be presented and we will demonstrate its ability to select 
the most robust resource allocation from among those that otherwise perform 
similarly (based on the primary performance criterion). The model’s use in static (off-
line) allocation heuristics also will be demonstrated. In particular, we will show how 
to maximize the robustness of makespan against inaccuracies in estimates of 
application execution times in a heterogeneous cluster. In general, this work is 
applicable to different types of computing and communication environments, 
including parallel, distributed, cluster, grid, Internet, embedded, and wireless. 

Section 2 describes the FePIA procedure for deriving a robustness metric for an 
arbitrary system. Derivation of this metric for a given allocation of independent 
applications in a heterogeneous distributed system is presented in Section 3, with an 
experiment that highlights the usefulness of the robustness metric. Section 4 discusses 
heuristics developed to generate static resource allocations of independent 
applications in distributed systems such that the robustness of the produced resource 
allocations is maximized. Section 5 extends the work presented in Section 4 for 
distributed systems where the dollar cost for processors is a constraint. Some future 
work is described briefly in Section 6.  

2   Generalized Robustness Metric 

This section presents a general procedure, called FePIA, for deriving a general 
robustness metric for any desired computing environment [2]. The name for the above 
procedure stands for identifying the performance features, the perturbation 
parameters, the impact of perturbation parameters on performance features, and the 
analysis to determine the robustness. A specific example illustrating the application of 
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the FePIA procedure to a sample system is given in the next section. Each step of the 
FePIA procedure is now described, summarized from [2]. 

1) Describe quantitatively the requirement that makes the system robust (question 
(a) in Section 1). Based on this robustness requirement, determine the QoS 
performance features that should be limited in variation to ensure that the robustness 
requirement is met. Identify the acceptable variation for these feature values as a 
result of uncertainties in system parameters. Consider an example where (a) the QoS 
performance feature is makespan (the total time it takes to complete the execution of a 
set of applications) for a given resource allocation, (b) the acceptable variation is up 
to a 20% increase of the makespan that was predicted for the given resource 
allocation using estimated execution times of applications on the machines they are 
assigned, and (c) the uncertainties in system parameters are inaccuracies in the 
estimates of these execution times. 

2) Identify the uncertainties to be considered whose values may impact the QoS 
performance features selected in step 1 (question (b) in Section 1). These are called 
the perturbation parameters, and the performance features are required to be robust 
with respect to these perturbation parameters. For the makespan example above,  
the resource allocation (and its associated predicted makespan) was based on the 
estimated application execution times. It is desired that the makespan be robust (stay 
within 120% of its estimated value) with respect to uncertainties in these estimated 
execution times. 

3) Identify the impact of the perturbation parameters in step 2 on the system 
performance features in step 1. For the makespan example, the sum of the actual 
execution times for all of the applications assigned to a given machine is the time 
when that machine completes its applications. Note that 1(b) states that the actual 
time each machine finishes its applications must be within the acceptable variation. 

4) The last step is to determine the smallest collective variation in the values of 
perturbation parameters identified in step 2 that will cause any of the performance 
features identified in step 1 to violate its acceptable variation. Step 4 is done for a 
given, specific resource allocation. This will be the degree of robustness of the given 
resource allocation (question (c) in Section 1). For the makespan example, this will be 
some quantification of the total amount of inaccuracy in the execution times estimates 
allowable before the actual makespan exceeds 120% of its estimated value. 

3   Robustness Metric Example 

3.1   Derivation of Robustness 

In this section summarized from [2], the robustness metric is derived for a system that 
assigns a set of independent applications to a distributed set of machines. In this 
system, it is required that the makespan be robust against errors in application 
execution time estimates. Specifically, the actual makespan under the perturbed 
execution times must be no more than a certain factor (> 1) times the predicted 
makespan calculated using the estimated execution times.  

A brief description of the system model is now given. The applications  
are assumed to be independent, i.e., no communications between the applications are 
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needed. The set A  of applications is to be assigned to the set Ω  of machines so as to 

minimize the makespan. Each machine executes a single application at a time (i.e., no 
multi-tasking). Let ijC  be the estimated time to compute (ETC) for application ia  on 

machine .jm  It is assumed that ijC  values are known a priori for all i, j. This 

assumption is commonly made (e.g., [15]). Approaches for doing this estimation are 
discussed in [10]. In addition, let jF  be the time at which jm  finishes executing all 

of the applications assigned to it.  
It is assumed that unknown inaccuracies in the ETC values are expected (e.g., a 

task’s actual exact execution time may be data dependent). Hence, it is required that 
the mapping, denoted by  ,μ  and based on the ETC values, be robust against them. 

More specifically, it is required that, for a given resource allocation, its actual 
makespan value M  (calculated using the actual application computation times (not 

the ETC values)) may be no more than τ  (> 1) times its predicted value, denoted by 
predM . The predicted value of the makespan is the value calculated assuming  

the estimated ETC values. Following step 1 of the FePIA procedure in Section 2,  
the system performance features that should be limited in variation to ensure the 
makespan robustness are the finish times of the machines. That is, 

{ for 1 }pred
jF M jτ≤ ≤ ≤ Ω . 

According to step 2 of the FePIA procedure, the perturbation parameter needs to be 

defined. Let est
iC  be the ETC value for application ia  on the machine where it is 

assigned. Let iC  be the actual computation time value. Let C  be the vector of the iC  

values, and estC  be the vector of the est
iC  values. The vector C is the perturbation 

parameter for this analysis.  
In accordance with step 3 of the FePIA procedure, jF  has to be expressed as a 

function of C. To that end,  

   
: is assigned to 

( ) .
i j

j i
i a m

F C=C  
(1) 

Following step 4 of the FePIA procedure, the set of boundary relationships 
corresponding to the set of performance features is given by 

{ ( ) for 1 }.pred
jF M jτ= ≤ ≤ ΩC  

The robustness radius, denoted by ( , ),jr Fμ C  for machine j provides the largest 

Euclidian distance, i.e., l2-norm, at which variable C can change in any direction from 

the assumed point estC  without the finish time ( )jF C  exceeding the tolerable 

variation: 

        
2: ( )

( , ) min .
pred

j

j
F M

r Fμ
τ==

= − est

C C
C C C  (2) 
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Fig. 1. Some possible directions of increase of the perturbation parameter .C  The set of 

boundary points is given by ( ) .est pred
jF C Mτ=  The robustness radius ( , )jr F Cμ  corres-

onds to the smallest increase that can reach the boundary. The shaded region represents the area 
of robust operation. 

That is, if the Euclidean distance between any vector of the actual execution times 
and the vector of the estimated execution times is no larger than ( , ),jr Fμ C  then the 

finish time of machine jm  will be at most τ  times the estimated makespan value. 

For example, assume only applications 1a  and 2a  have been assigned to machine j 

(depicted in Fig. 1), and C has two components 1C  and 2C  that correspond to 

execution times of 1a  and 2a  on machine j, respectively. The term ( )jF estC  is a 

finish time for machine j computed based on the ETC values of applications 1a  and 

2.a  The boundary line is determined by ( ) .pred
jF Mτ=C  Note that the right hand 

side in Equation 2 can be interpreted as the perpendicular distance from the point 
estC  to the hyperplane described by the equation ( ) .pred

jF Mτ=C  Using the point-

to-plane distance formula [21], Equation 2 reduces to 

           
( )

( , ) .
number of applications assigned to 

pred
j

j
j

M F
r F

m
μ

τ −
=

estC
C  

 

(3) 

The robustness metric, denoted by ,μρ  is given as 

                     
 1  

min { ( , )}.j
j

r Fμ μρ
≤ ≤ Ω

= C  (4) 
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That is, if the Euclidean distance between any vector of the actual execution times and 
the vector of the estimated execution times is no larger than ,μρ  then the actual 

makespan will be at most τ times the predicted makespan value.  

3.2 Utility of Robustness  

The experiments in this subsection seek to establish the utility of the robustness 
metric. The experiments were performed for a system with five machines and 20 
applications. A total of 1000 resource allocations were generated by assigning a 
randomly chosen machine to each application (see [2] for details). 

The resource allocations were evaluated for robustness, makespan, and load 
balance index (defined as the ratio of the finish time of the machine that finishes first 
to the makespan). The larger the value of the load balance index, the more balanced 
the load (the largest value being 1). The tolerance, ,τ  was set to 120%. In this 
context, a robustness metric value of x for a given resource allocation means that the 
resource allocation can endure any combination of ETC errors without the makespan 
increasing beyond 1.2 times its estimated value as long as the Euclidean distance of 
the errors is no larger than x seconds. 

Fig. 2(a) shows the “normalized robustness” of a resource allocation against its 
makespan. The normalized robustness equals the robustness metric value divided by 
the predicted makespan. A graph for the normalized robustness against the load 
balance index is shown in Fig. 2(b).  

There are large differences in the robustness of some resource allocations that have 
very similar values of makespan. Thus, when selecting a resource allocation with low 
makespan, the robustness calculation allows one to select an allocation that also 
provides high robustness. Fig. 2(b) shows that load balancing does not provide an 
accurate measure of robustness. These observations highlight the fact that the 
information given by the robustness metric could not be obtained from the makespan 
and load balance performance measures.  

(a) (b)  

Fig. 2. Normalized robustness against (a) makespan and (b) load balance index for 1000 
randomly generated resource allocations  
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4   Robust Resource Allocation Under a Makespan Constraint 

4.1   Problem Statement 

This section summarizes a part of the research described in [23]. An important 
research problem is how to determine a mapping (resource allocation) so as to 
maximize the robustness of desired system features against perturbations in system 
parameters. The general problem of optimally mapping applications to machines has 
been shown to be NP-complete [7, 9, 12]. Thus, the development of heuristic 
techniques to find near-optimal solutions for the mapping problem is an active area of 
research (e.g., [6, 18, 19, 20]). Static mapping is performed when the applications are 
mapped in an off-line planning phase such as in a production environment. Static 
mapping techniques take a set of applications, a set of machines, and generate a 
mapping. These heuristics determine a mapping off-line, and must use estimated 
values of application computation times. 

As described in the previous section, the allocation of independent applications in 
parallel systems is considered robust if the actual makespan under the perturbed 
conditions does not exceed the required time constraint. The goal of this study was to 
find a static mapping of all applications to machines so that the robustness of the 
mapping is maximized; i.e., to maximize the collective allowable error in execution 
time estimation for the applications that can occur without the actual makespan 
exceeding the constraint. Mathematically, this problem can be stated as finding a 
mapping of A  applications to Ω  machines such that the actual makespan is within 

the absolute time constraint α  while maximizing ,μρ given by (4). Equation (3) is 

restated in this study as 

       
( )

( , ) .
number of applications asiigned to 

j
j

j

F
r F

m
μ

α −
=

estC
C  (5) 

A distributed system with eight machines and 1024 independent applications was 
simulated in this study. Two different cases of ETC heterogeneities were used in this 
research, the high application and high machine heterogeneity (high-high) case and 
the low application and low machine heterogeneity (low-low) case (see [23] for 
details about the simulation setup). The value of the time constraint α  of 5000 
seconds was chosen so that it presents a feasible mapping problem for the heuristics 
to solve. A total of 100 trials (50 trails for each of the cases) were performed, where 
each trial corresponded to a different ETC of ijC  values matrix. The wall clock time 

for each of the heuristics to determine a mapping was arbitrarily required to be less 
than or equal to 60 minutes to establish a basis for comparison. 

Six static mapping schemes were developed in this study: Max-Max, Greedy 
Iterative Maximization (GIM), Sum Iterative Maximization (SIM), Genitor, Memetic 
Algorithm (MA), and Hereboy Evolutionary Algorithm (Hereboy). Two are described 
here. 
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4.2   Max-Max 

The Max-Max heuristic is based on the Min-Min (greedy) concept in [12]. In step 2 of 
the Max-Max heuristic, to find the fitness function for assigning a given application i 
to a given machine j, the robustness radius of machine j given by equation (5) is 
evaluated based on the applications already assigned to machine j and the possible 
assignment of application i to machine j. 

The Max-Max heuristic can be summarized by the following procedure: 

1) An application list is generated that includes all the unmapped applications. 
2) For each application in the application list, the machine that gives the 

application its maximum fitness value (first “Max”) is determined (ignoring 
other unmapped applications). 

3) Among all the application/machine pairs found in the above step, the pair that 
gives the maximum fitness value (second “Max”) is chosen. 

4) The application found in step 3 is then removed from the application list and 
is mapped to its paired machine. 

5) Repeat steps 2 to 4 until all the applications are mapped. 

4.3   Genitor 

This heuristic is a general optimization technique that is a variation of the genetic 
algorithm approach. It manipulates a set of possible solutions. The framework used 
here is based on the Genitor approach used in [24]. In our study, each chromosome 
represents a possible complete mapping of applications to machines. Specifically, the 
chromosome is a vector of length A . The ith element of the vector is the number of 

the machine to which application i is assigned. A fixed population of 200 
chromosomes is used. The population includes one chromosome (seed) that is  
the Max-Max solution based on robustness (described above) and the rest of the 
chromosomes are generated by randomly assigning applications to machines. The 
entire population is sorted (ranked) based on their robustness metric values given by 
(4). Chromosomes that do not meet the makespan constraint are allowed to be 
included in the population. The ranking is constructed so that all chromosomes that 
meet the constraint are listed first, ordered by their robustness metric value (highest 
first). The chromosomes that do not meet the makespan constraint are then listed, 
again ordered by their robustness metric value (which will be negative). 

Next, a special linear bias function [24] is used to select two chromosomes to act as 
parents. These two parents perform a crossover operation, and two new offspring are 
generated. For the pair of the selected parent chromosomes a random cut-off point is 
generated that divides the chromosomes into top and bottom parts. For the parts of 
both chromosomes from that point to the end of each chromosome, crossover 
exchanges machine assignments between corresponding applications producing two 
new offspring. The offspring are then inserted in the population in ranked order, and 
the two lowest ranked chromosomes are dropped.  

After each crossover, the linear bias function is applied again to select a 
chromosome for mutation. A mutation operator generates a single offspring by 
perturbing the original chromosome. A random application is chosen from the 
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chromosome and the mutation operator randomly reassigns it to a new machine. The 
resultant offspring is considered for inclusion in the population in the same fashion as 
for an offspring generated by crossover. 
    This completes one iteration of the Genitor. The heuristic stops after 250,000 total 
iterations.  

4.4   Experimental Results 

The simulation results are shown in Fig. 3. All the heuristics run for 50 different high-
high and 50 different low-low scenarios, and the average values and 95% confidence 
intervals are plotted. The Genitor performed among the best, comparable to GIM, 
SIM, and MA (i.e., overlapping confidence intervals). A discussion of all the results is 
in [23]. 
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Fig. 3. Simulation results for robustness for a given fixed set of machines  

5   Mapping Under Makespan and Dollar Cost Constraints 

5.1   Problem Statement 

This section summarizes another part of [23], which extends the idea in Section 4. 
The research environment here differs from Section 4 with the addition of a cost 
constraint for the machines and choosing a subset of all the available machines to be 
used. Thus, problem addressed here is how to select (purchase) a fixed set of 
machines, within a given dollar cost constraint to comprise a cluster system. It is 
assumed that this fixed system will be used in a production environment to regularly 
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execute the set A  of applications with known estimated computational character-
stics. The machines to be purchased for the set are to be selected from five different 
classes of machines, where each class consists of homogeneous machines. The 
machines of different classes differ in dollar costs depending upon their application 
execution speed. The dollar cost of machines within a class is the same. Machines in 
class i are assumed to be faster than machines of class i+1 for all applications, for 
1 4.≤ ≤i Correspondingly, class i machines cost more that class i+1 machines. 
    In this study, one must: (1) select a subset of machines so that the cost constraint 
for the machines is satisfied, and (2) find a static mapping of all applications to the 
subset. Sub-problems 1 and 2 must be done in a way so that the robustness of the 
mapping is maximized. For sub-problem 2, the machine assignment heuristics 
described in the previous section are used as components of the heuristics developed 
in this research. 

A method used to generate 100 high application and low machine heterogeneity 
(high-low) ETC matrices for 1024 independent applications was identical to that used 
in the previous work (see the details of the simulation setup in [23]). Experiments 
with simple greedy heuristics were used to decide the value of the cost constraint to 
be 34,800 dollars and the time constraint α to be 12,000 seconds. Choosing different 
values for any of the above parameters will not affect the general approach of the 
heuristics used in this research. The wall clock time for the mapper itself was set as in 
Section 4. 

Six static mapping schemes were developed in this research: Negative Impact 
Greedy Iterative Maximization (NI-GIM), Parition/Merge Greedy Iterative 
Maximization (P/M-GIM), Cost and Robustness Sum Iterative Maximization (CR-
SIM), Selection Genitor (S-Genitor), Max-Max Memetic Algorithm (MMMA), and 
Max-Max Hereboy Evolutionary Algorithm (MM-Hereboy). The S-Genitor heuristic 
is described next. 

5.2   Selection Genitor 

The S-Genitor heuristic developed in this work consists of two phases. For phase 1, a 
chromosome is a vector of length five, where the ith element is the number  
of machines used in ith class. The phase 1 of S-Genitor operates on a fixed population 
of 100 chromosomes. The entire population is generated randomly such that the cost 
constraint is met. To evaluate each chromosome, a mapping was produced using the 
Max-Max heuristic based on robustness (described in Subsection 4.2). The entire 
population is sorted in descending order based on the robustness metric.  

In the crossover step, for the pair of the parent chromosomes selected by applying 
the linear bias function, a random cut-off point is generated that divides the 
chromosomes into top and bottom parts. A new chromosome is formed using the top 
of one and bottom of another. An offspring is inserted in the population after 
evaluation only if the cost constraint is satisfied (the worst chromosomes of the 
population are discarded to maintain a population of only 100).  

After each crossover, the linear bias function is applied again to select a 
chromosome for mutation. A mutation operator generates a single offspring by 
perturbing the original chromosome. Two random classes are chosen for  
the chromosome and the mutation operator increments the number of machines of the 
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first chosen class by one and decrements the number of machines of the other by one. 
If the chromosome violates the cost constraint it is discarded. Otherwise, the resultant 
offspring is considered for inclusion in the population in the same fashion as for an 
offspring generated by crossover. 

This completes one iteration of phase 1 of S-Genitor. The heuristic stops when the 
criterion of 500 total iterations is met. The best machine combination found from 
phase 1 is used in phase 2, which derives a mapping using this combination of 
machines to maximize robustness based on the Genitor implementation described in 
Section 4 (a total of 100,000 iterations is used here to stop phase 2 of S-Genitor). 

5.3 Experimental Results 

The simulation results are shown in Fig. 4. All the heuristics run for 100 different 
scenarios and the average values and 95% confidence intervals are plotted. The  
S-Genitor is among and the best heuristics, comparable in performance with the  
P/M-GIM heuristic. Both of these heuristics, on average, had all of the available 
machines from Class 4 and Class 5. A discussion of all the results is in [23].  
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Fig. 4. Simulation results for robustness. Machine sets were determined heuristically. 

6   Future Work 

There are many directions in which the robustness research presented in the paper can 
be extended. Examples include the following. 
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1) Deriving the boundary surfaces for different problem domains. 
2) Incorporating multiple types of perturbation parameters (e.g., uncertainties in 

input sensor loads and uncertainties in estimated execution times). Challenges 
here are how to define the collective impact to find each robust radius and how 
to state the combined bound on multiple perturbation parameters to maintain 
the promised performance. 

3) Incorporating probabilistic information about uncertainties. In this case, a 
perturbation parameter can be represented as a vector of random variables. 
Then, one might have probabilistic information about random variables in the 
vector (e.g., probability density functions) or probabilistic information 
describing the relationship between different random variables in the vector or 
between different vectors (e.g., a set of correlation coefficients).  

4) Determining when to use Euclidean distance versus other distance measures 
when calculating the collective impact of changes in the perturbation 
parameter elements. 

7   Summary 

Any claim of robustness for a given system must answer three questions: (a) what 
behavior of the system makes it robust? (b) what uncertainties is the system robust 
against? (c) quantitatively, exactly how robust is the system? This paper, which 
corresponds to H. J. Siegel’s keynote presentation, summarizes the material from two 
papers related to robustness. A metric for the robustness of a resource allocation with 
respect to desired system performance features against perturbations in system and 
environmental conditions, and the experiments conducted to illustrate the utility of the 
robustness metric, are summarized from [2]. Heuristics developed to generate 
mappings of independent applications in distributed systems such that the robustness 
of the produced mappings is maximized are summarized from [23]. Finally, heuristics 
for (1) selecting a set of machines and (2) mapping applications to the set of 
machines, both to maximize robustness, also are summarized from [23].  
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Abstract. In this paper, we present a button-sized (43mm×18mm) vi-
sual input system for wearable computers, the FingerMouse. It is a fully
integrated camera and vision processing system, with a specifically de-
signed ASIC computing images at 20GOp/s consuming 78mW. Worn
on the body, it captures the user’s hand and processes in real-time its
coordinates as well as a 1-bit image of the hand segmented from the
background. This paper describes the architecture of the FingerMouse
and compares it to other implementations.

1 Introduction

As a new generation of computers, wearable computers are worn on the user’s
body or are even integrated in his textiles. This allows for new application sce-
narios: the computer becomes a digital assistant helping the user perform certain
tasks. The system shall not obstruct the user in any way, his hands should be
free. Ideally the digital assistant provides useful information (e.g. via a head-up
display, or sound) without requiring explicit user interaction. In many situations
though, user input to the system will be necessary. Obviously the classic in-
put devices like a keyboard or a mouse do not fit into the wearable computing
scenario. A new class of human-computer interaction (HCI) devices is required.

This paper describes such a new wearable device, the FingerMouse. It captures
the user’s hand when moving in front of the device’s cameras, enabling him to
interact with the wearable computer using his bare hands.

The FingerMouse uses it’s own processing power to run vision algorithms, to
acquire:

1. Hand movement: The hand position (absolute coordinates) in the captured
images is computed.

This allows the user to control an X-Y pointer, similar as a PC-mouse
does. For more simple interactions, hand movements (up, down, etc.) are
also useful, since they don’t require visual feedback, as a pointer does.

2. Hand shape: The hand shape is acquired as a 1-bit bitmap through back-
ground segmentation.

The FingerMouse transmits this image to a computer, acting as a
segmenting-camera. A possible application is the recognition of hand signs by
higher-level algorithms running on the wearable computer ([1]).

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 31–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Application scenario: FingerMouse worn on the body

image
processing

image
capturing

(X, Y)

scene FingerMouse system outputs

Fig. 2. FingerMouse: real-time scene capturing with hand tracking and segmentation

The following features characterize the FingerMouse:

1. Full integration
The system includes all the parts used for image capturing, image processing
and power regulation off a battery voltage. It computes the results mentioned
above autonomously and transmits them to a (wearable) computer.

2. Real-time operation
As a HCI device, the computation has to be done online. The FingerMouse
operates in real-time, processing several frames per second.

3. Low latency
When using the system with visual feedback (e.g. X-Y pointer on a screen),
the user and the machine become a closed-loop system. The smaller the
tracking latency (or lag) is, the higher the usability. HCI research suggests
that values under 50ms are acceptable and that latency is more important
to usability than the measurement accuracy. ([2] [3]) .

4. No calibration
The device immediately works after power-up. This allows it to be turned
on shortly only when user-interaction is needed.

5. High computation performance
The FingerMouse processes images at 320x480 resolution and 15fps, achiev-
ing an image throughput of 5 Mpixels/s. We developed a specific ASIC for
the image computation, which computes at 20 Goperations/sec.

6. Small size
The current implementation is sized 43mm x 18mm.
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7. Low power
The current implementation consumes less than 200mW at full operating
speed (ASIC: 78mW). This value has to be seen in conjunction with the
possibility to switch the system on and off very quickly.

2 Image Processing

To achieve the hand recognition, we evaluated several methods:

Table 1. Comparison between hand recognition algorithms

Method Description Problems
Background
subtraction

Two subsequently captured images
are subtracted. Moving objects can
be retrieved.

If the device is worn on the body,
the whole scene is always in mo-
tion. The method is not applica-
ble.

Color segmen-
tation

The image is segmented by using a
skin color tone reference. If a pixel
is similar to the reference, it’s clas-
sified to the hand. [4]

Needs calibration to calculate
the color reference. Changing
lighting requires new calibration.

Active light-
ing

The foreground is illuminated by a
light source of a specific spectrum.
The image is captured through a
spectral filter. Close objects should
show a higher brightness.[5]

Lighting requires a lot of power.
Outdoors, the sunlight outper-
forms lighting over most of the
spectrum. [6]

Contour
tracking

A geometrical contour of the hand
is tracked over time. In new images
the tracker adjust the contour to
follow the hand. [7] [8] [9]

Needs calibration to initially put
the contour on the hand. If the
tracking is lost, new calibration
is required.

Stereo vi-
sion image
substraction

The image from two parallel cam-
eras is subtracted. Since the back-
ground coincides, it disappears. [10]

The foreground is badly re-
trieved as an overlay of two
subtracted hands. Medium dis-
tanced objects produce a lot of
noise.

Stereo vi-
sion depth
mapping

Using two cameras, the depth of a
scene can be computed. The hand
is classified by its proximity to the
cameras. [11] [12]

High computational effort

We use stereo vision depth mapping in our FingerMouse system, because
of its good segmentation, outdoor ability and the absence of calibration. The
problem of the high computation amount is addressed by a FingerMouse ASIC,
specifically developed for the task.

As seen in fig. 3, two parallel cameras, offset by b (baseline), synchronously
capture an image of the scene. For each pixel, a depth Z can be computed,
by comparing the two images. Objects in the two stereo image are horizontally
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Fig. 3. Left: scene capture through stereo vision right: stereo matching

translated by the so called disparity d [pixels]. The disparity d of an object is
inversely proportional to its distance Z from the cameras:

d = b · f · 1
Z

· xr

xs
[pixels] . (1)

( f = focal length of the lenses; xs = image sensor width (light sensitive area);
xr = horizontal image resolution [pixels]).

The disparity is calculated for each pixel and then classified into foreground
(high disparity) or background (small disparity). To compute a disparity, a ref-
erence window, a block (3×5 pixels) around the pixel, is compared to blocks in
the other stereo image, along a horizontal search window, of width dmax, the
highest disparity to be expected (c.f. fig.3:right). The block with the highest
correlation to the reference block appears at the given disparity. The hand must
not be closer than Zmax, the distance corresponding to dmax.

The correlation between blocks is calculated with 2 different functions oper-
ating on the pixel intensity (brightness): the SAD (sum of absolute differences)
and the census function. The census function maps a 3×3 block to 8 bits, each
bit indicating wether a border pixel is brighter than the center pixel. A 5×3
block is mapped to 3×8 bits, the combination of the results from the three
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Fig. 4. Vision processing flow in the ASIC, sample images

3×3 blocks inside the 5×3 block. Blocks are compared by the hamming distance
of their census function. The census and SAD matching both produce noise, but
have different properties. By combining their results, noise can be reduced.

The block matching search is done both from the left to the right (L-R match-
ing) image and vice versa (R-L). The results are different, because of occlusions
occurring from the different perspectives of the two cameras [13]. The occlusions
are overcome by combining the results from L-R and R-L matching.

The algorithm is shown in fig. 4. It includes the processing flow inside the
ASIC and some sample images at different processing stages.

The segmented image resulting from the combination of the 4 stereo-matching
operations is median filtered, to reduce noise. The resulting picture is output-1.
The hand coordinates, output-2, are derived from a center-of-gravitycomputation.

At a second stage, the output-1 image is enhanced (fill-up) using color seg-
mentation. The color tone (hue) reference is derived from the output-1 image
(which shows parts of the hand and noise). Pixels that have a similar color and
are close to foreground pixels in output-1 are classified as foreground in the
output-3 image. The corresponding hand coordinates are called output-4. Since
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the color segmentation is done on-the-fly, the color reference is always taken from
the previous image. The use of color is optional.

Similar systems are described in [14] [15] [16] [17] [18].

3 Hardware Architecture

The architecture of the system and its components are shown in fig 5. Two cam-
eras are arranged in parallel, with a baseline of 25mm. They work synchronously
and are clocked by the FingerMouse-ASIC. The images are not stored in a frame
buffer, eliminating the need for an image-RAM. Instead, a window of only 4
(stereo-)lines from each stereo image is buffered inside the ASIC. The segmen-
tation processing is done on-the-fly on the first 3 lines, while a new line is stored
in the buffer. The segmented output is available concurrently with the image
transmission from the cameras. The hand-tracking is also done on the fly, and
the result is ready directly after the image transmission is done. This way, the
result computation has practically zero latency (if measured after image trans-
mission). The output image is delayed by only 1 single row transmission time,
due to the buffering. The resulting delay is around 100 μs.

The cameras deliver pictures of 320x480 resolution at a frame rate of 15fps. To
handle this amount of data and do online stereo matching, the ASIC has to per-
form over 20 GOperations/sec. (This value is based only the on stereo matching
part, and only counting operations [subtract, accumulate, compare, fetch value]
inside the loops, without any overhead. The complete figure is much higher.)
This is possible through a high speed ring buffer, which stores the block search
window in registers, and through the use of parallel combinatorial structures for
the computation.

A small microcontroller (TI MSP430) controls the cameras, configures the
ASIC and transports the tracking results via a RS232 interface. The segmented
images are directly output by the ASIC, over a parallel interface.

camera 1
&

camera 2

FingerMouse
ASIC

microcontroller

image data

clock

camera control

results

ASIC

config.

segmentation
result

tracking
result

clock generationpower supply

Fig. 5. System architecture
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Table 2. FingerMouse ASIC Specifications

Supply voltage 2.5V / 3.3V (core / I/O)
Chip size 2227μm × 2227μm (excluding sealring and bonding ar-

eas)
Chip technology umcL250, 250 nm
Pin count 28 input; 22 output; 20 power; 14 empty
On-chip RAM 4Kbytes (3.432 KBytes used)
Camera clock output 1/8 ASIC clock
Camera input format B/W 8 bit/pixel or YUV 4:2:2 16 bit/pixel
Image size format width: max. 1360 (internal: max 340, after factor 1,2 or

4 downsampling) height: max. 1020
Image data rate 5 Mpixel/s (2.5 Mstereo-pixels/s) @80 MHz
Power dissipation at full
processing rate

78mW @80MHz and 96mW @100MHz clock speed

Interfaces configuration, tracking results: RS232 segmented image
output: 16-bit parallel interface @312.5KHz

4 Achievements and System Comparison

The architecture is implemented on a 4-layer PCB. The FingerMouse ASIC
die is directly bonded onto the PCB, without a package. Two image sensors
(Omnivision OV7649, low voltage color CMOS VGA imager) in chip-scale pack-
age were used, together with small board-lenses. The system further includes
an MSP430F1611 in a standard package (backside), and interfaces for com-
munication. A battery voltage of 2.7V-5.5V is regulated to the different volt-
ages needed onboard, using a single micro-power-management integrated circuit
(MAX8620Y).

Table 3 gives an overview of the components’ power consumptions. Fig. 6
(left) shows the PCB with the optics, no electronics mounted.

Table 3. FingerMouse system power budget

Component: Power:
FingerMouse ASIC 78 mW
Cameras 2× 30 mW
MSP430 5 mW
Clock generator 23 mW

Total internal dissipation: 166 mW
Power regulation effiency: 89%
Total input power from battery: 187 mW
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Fig. 6. Left : FingerMouse prototype PCB (next to 2 Euro ”button”) right : ASIC layout

4.1 Algorithm Processing Efficiency on the Different FingerMouse
Implementations/Architectures

To give a notion of the system’s performance, we provide an overview over 3 other
prototypes that have been implemented at our lab. They all use stereo vision
to segment and track the hand, but the underlying processing architecture is
different.

1. The first prototype system was built in 2001/2002. It uses a DSP and a
very rudimentary algorithm: for the background/foreground segmentation,
two corresponding stereo-vision pixels were compared (image subtraction)
and classified via a threshold. In a second step, the resulting segmentation
is filtered with morphological operations. This results in a ”dirty” segmen-
tation of the background and the overlay of the hands (translated in the
stereo images) which was nevertheless usable for tracking. Image process-
ing is done after complete image transmission, resulting in some latency
(13.5ms). [10]

2. The second prototype was developed in 2003/2004. It uses the same algo-
rithm as the first prototype, with some further refinements. It uses an FPGA
for the computation, which allowed zero latency and a much higher data rate
than the first prototype, thanks to parallel processing and concurrent image
transmission.

3. Implementation of the new algorithm on a desktop PC with additional opti-
mizations. It uses two USB cameras and does not use the color segmentation
processing step.

Even though the DSP/FPGA based FingerMouse prototypes run a much more
rudimentary algorithm requiring less calculations per pixel, the efficiency com-
parison shows that the architecture based on our ASIC clearly outperforms the
other architectures.
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Table 4. Comparison between the different systems

DSP based Fin-
gerMouse

FPGA based
FingerMouse

Desktop PC
based imple-
mentation

ASIC based
FingerMouse

Processing ar-
chitecture

DSP (TI
TMS320VC33)

FPGA (Xlinix
Spartan II)

PC (Intel Pen-
tium 4)

FingerMouse-
ASIC

Internal
image res.

128×128
@15frames/s

640×480
@15frames/s

640×480
@1frames/s

320×480
@15frames/s

Clock 75 MHz 20 MHz 2.8 GHz 80 MHz
Power (only
processing)

130 mW 1000 mW >50 W 78 mW

PCB size 4672mm2

73mm×64mm
3381mm2

69mm×49mm
- 774mm2

43mm×18mm
Thickness
PCB+optics

35mm 45mm - 8mm

Segmentation
quality

low low high high

Output la-
tency

13.5ms <1ms 1000ms <1ms

Image data
rate

0.5 Mpixels/s 10 Mpixels/s 0.6 Mpixels/s 5 Mpixels/s

Efficiency (E
/ Pixel)

0.26 μJ 0.1 μJ >83 μJ 0.016 μJ

5 Conclusion

We developed a fully integrated real-time vision capturing and processing system
that achieves a high performance although working under strict constraints. Due
to its architecture, the small size and low power consumption, it qualifies for use
within a wearable system.

Outlook. The size of such a system could certainly be further reduced, when
resorting to more complex construction techniques, like multi-chip modules. On
the other hand, the size reduction is limited by the need of an offset between the
two stereo cameras. Reducing this offset would influence the vision processing,
reducing the depth measuring resolution.

A further reduction in power consumption is still possible. Switching from
250μm to sub 100μm CMOS technology allows for a decrease of the ASIC’s
power dissipation by a factor of 5 without degradation of the computing per-
formance. The trend in CMOS camera development also shows dropping power
consumption while sensor performance is increasing.

The current size indicates that autonomous vision processing devices could
already be used in wearable systems, and could even be integrated into mobile
phones or PDA’s, e.g. for user interaction or possibly to eliminate the back-
ground in video phone communication (reducing the amount of image data to
be transferred and preserving the privacy of other people in the background).



40 P. de la Hamette and G. Tröster
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Abstract. An architecture for building an ad-hoc wireless network is presented 
in which various face-to-face, peer-to-peer collaborative applications function 
simultaneously and the interconnections between group members are highly 
dynamic and self-organizing. To illustrate how the architecture implements 
communication, examples of client-server and point-to-point communication 
are given. An interconnection architecture of a Mobile Computer Supported 
Collaborative Learning (MCSCL) environment is analyzed in detail. Its com-
munication protocols are showed with sequence diagrams. The paper concludes 
with an evaluation of the architecture’s performance. 

1   Introduction 

An ad-hoc network [8] is a transitory or permanent association of nodes or mobile 
devices that do not depend on any fixed support infrastructure to establish intercom-
munication among them [1]. Connection and disconnection is controlled by the dis-
tance among nodes and the face-to-face requirements of the implemented peer-to-peer 
(p2p) application, which may be educational [3], commercial [7], [11] or collabora-
tive [13].  

According to [6], a mobile p2p system inherits many of the features of ad-hoc net-
works. Specifically, it will be (a) self-organizing: as a side effect of the movement of 
devices within a limited physical space, the topology of a mobile p2p system con-
stantly adjusts itself, discovering new communication links and managing various 
ad-hoc sub-networks as required by the application; (b) fully decentralized: each peer 
is equally important and no central node exists; and (c) highly dynamic: communica-
tion endpoints can move and change frequently and independently of one another.  

The mobile nodes in these systems can function in any location and change their con-
figuration and/or membership in various sub-networks within a single network to adapt 
to the face-to-face social interactions that users engage in and that the network must 
support. The disadvantages of wireless data transmission systems are that they have 
relatively less bandwidth, more latency, less connectivity stability, and less predictable 
availability [2]. Additional constraints are a) decentralized control, to have synchroniza-
tion even when a node fails, b) fault tolerant, when a node fails the other have to be op-
erational, and c) dynamic reconfiguration, sub-networks are formed on demand. 
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    This study presents an architecture for building an ad-hoc wireless network in 
which various face-to-face, peer-to-peer collaborative applications function simulta-
neously and the interconnections between group members are highly dynamic and 
self-organizing. 

2   MCSCL Communication Support (MCSCL-CS) 

A face-to-face Mobile CSCL (or MCSCL) environment enables several small groups 
(3 to 5 members) to work collaboratively while moving around freely with handhelds 
[12], [13]. This capability facilitates flexibility in social interactions and easy man-
agement of group composition.  

When an MCSCL environment is used in a setting such as a school classroom, the 
ad-hoc network must not only interconnect all of the collaborative workgroups, but 
must also simultaneously maintain various sub-networks for each of the 
3-to-5-member groups, which function in different collaborative activities that at any 
given moment are at varying stages of completion. 
    The proposed ad-hoc network architecture is intended for use with any 
MCSCL-type p2p application, and enables the interchange of group members in real 
time. The scenario described here is an environment in which each student in the 
classroom has a handheld which is used as a support tool for performing collaborative 
activities together with fellow group members. As well, this environment allows  
dynamic reconfiguration of the groups. 

2.1   Specification of the Proposed Architecture 

The specifications of the proposed architecture are: 

− Mobility. The application must function anywhere. 
− Ad-hoc Network. The network does not depend on any infrastructure beyond that 

formed by the handhelds themselves. Within a single ad-hoc network, various 
other sub-networks may be created as required for establishing interconnections 
between members of the collaborative groups. 

− Social and Technological Network. Users can communicate not only over the tech-
nological (ad-hoc) network, but also through the “social” network, that is, 
face-to-face communication between peer groups. 

− Configurable. Applications may need to configure different types of interconnec-
tion between nodes. In other words, they may need to establish various ad-hoc 
sub-networks simultaneously as well as configure a variety of intercommunication 
topologies between nodes, such as client-server, point-to-point, one-to-many or 
many-to-one. 

− Dynamic reconfiguration. The environment must permit reconfiguration of 
sub-networks in real time. 

− Extensible. This feature is necessary to enable the addition of applications not 
contemplated when the architecture was originally designed. 
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− Efficient. The architecture’s level of performance must be sufficient for the appli-
cation, meaning that communication times will be undetectable by the user. 

− Manageable. Within the same ad-hoc network, one of the handhelds (the teacher’s) 
must be able to reconfigure and manage in real time. 

2.2   General Architecture  

MCSCL Communication Support (hereafter MCSCL-CS) is derived from DACIA 
[10] and includes certain aspects of its group communication design. Thus, collabora-
tive groups are defined as closed groups because they develop activities independ-
ently of those of the other groups and so do not need to be aware of the latter’s  
external messages. Communication has been modeled as a hierarchical group, which 
does not limit the different forms of communication a particular activity may be re-
quired to establish so that group members can carry out the roles that activity defines. 
As for membership control, this is handled inside the group. The management of the 
collaborative groups has therefore only one point of access, making possible the Dy-
namic Reconfiguration of Groups (DRG). Maintaining consistency of the messages 
exchanged by different groups hosts is accomplished through a consistent ordering, 
given a hierarchical structure that facilitates message management, thus rendering 
global ordering unnecessary. Finally, as regards the scalability of the system, it must 
be ensured that the system works independently of the number of groups created and 
the number of group members. Since the scalability of distributed systems can be 
negatively affected by design decisions that tend to centralize them, MCSCL-CS was 
conceived for use in classrooms, whose numbers of system users are known and fi-
nite, thereby reducing the adverse impact of the groups’ hierarchical structure. 

MCSCL-CS is made up of a variable number of components referred to as  
Comp-CS that provide the necessary functionality for performing an MCSCL activity, 
which requires diverse structures and models of intercommunication (Fig. 1). Each 
Comp-CS combines the Display of the user interface and the logic of the collaborative 
activity (Application’s logic). In Fig. 1, each system application is composed of n 
Comp-CS’s, one for each node used by a specific peer.  

Communication among Comp-CS’s is carried out at two levels. Among compo-
nents residing in the same host it is executed using an adaptation of the design pattern 
Events Notifier [5]. Thus, a component is subscribed to the events that other compo-
nents publish, connecting and disconnecting the components of the p2p system. 
Communication among components, which is necessary for the collaborative per-
formance of the activity, occurs via the exchange of messages through ports. The 
components can dynamically request a number of variable ports in real time. All the 
ports activated in a host are administered by an Operator that resides in each client 
application. Each application’s Comp-CS has n associated ports to communicate with 
n remote components (Fig. 1). 

Communication among hosts within the collaborative group and the connections 
between pairs of components that reside in different hosts is administered by a Coor-
dinator (which may reside in any handheld). In similar fashion to the telephone sys-
tem, the Coordinator is responsible for the wireless connections among the members 
of a given group of users (sub-network). That is, the Operator of a given node asks 
the Coordinator to establish a connection with another node Operator (Fig. 1). 
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Fig. 1. Generic architecture of a system based on MCSCL-CS 

2.3   Architecture Examples: Client-Server and Point-to-Point Communication  

The architecture described above is general enough to be able to implement any type 
of communication. In what follows, two basic types of communication are presented: 
client-server and point-to-point.  

Scenario A of Fig. 2 is an example of client-server communication with three cli-
ents, one of them acting as the server and each having its own application logic. The 
server application has as many ports (named PStudent 1, PStudent 2 and PStudent 3) 
as there are clients in the group (including its own client), and provides communica-
tion service to the other clients. To communicate with the server (PortStudent 3) the 
clients only need one port. If, for example, Student 1 wants to communicate through 
its Comp-CS Client with Student 2, the requirement is sent through PortStudent 3 
ports that have been established by the Server Comp-CS (resident in Student 3).  
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Fig. 2. Architectures for client-server (A) and point-to-point communication (B) 
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In scenario B of Fig. 2, an example of point-to-point communication is shown. 
Here, each Comp-CS component will need as many ports as there are partners in the 
group (excluding itself) in order to communicate with the others, which in this case 
are two. So, for example, when student 1 wants to communicate with student 2 (using 
his/her Client Comp-CS) s/he does so through student 2’s port (PortStudent 2).  

3   Design of an MCSCL Environment   

In an MCSCL environment there are two types of actors, teachers and students. The 
teacher’s handheld (MCSCL-Tch) configures and manages the p2p collaborative 
group activities. The students’ handhelds (MCSCL-Stu) run the collaborative educa-
tive activities, communicating through the ad-hoc network [12], [13] and [14]. Inter-
connections and communication must be established with the students’ applications 
so that they can form collaborative groups, start the activity and, when necessary, 
modify the group configurations. 

The specific requirements of the MCSCL-Tch application are: a) management and 
selection of students’ handhelds during the MCSCL activity; b) management and 
configuration of the groups that develop the activity; and c) management and configu-
ration of the specific MCSCL activity. The requirements for the MCSCL-Stu applica-
tion are: a) student handhelds assignment information; b) student group assignment 
information; and c) Rules and roles for the MCSCL activity. 

3.1   Architecture of the System 

Fig. 3 shows an MCSCL-Tch teacher’s application and three groups with a total of 
nine MCSCL-Stu student’s applications, the latter represented by solid-line circles 
each with an Operator component. The Operator of the MCSCL-Tch application  
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Fig. 3. Characteristics of an MCSCL environment 
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creates the three classroom groups containing the students, and through the group 
Coordinator (see hexagon inside pentagon) invites the Operators of each 
MCSCL-Stu application to form a part of the specific groups. Once the students are 
identified, the MCSCL-Tch application configures and manages three components 
from the nine MCSCL-Stu applications (in the ad-hoc network), that contain a Coor-
dinator (the handhelds with a pentagon) which in turn configure and manage two 
other MCSCL-Stu applications, to form three ad-hoc sub-networks: Group 1, identi-
fied by a square; Group 2, by a triangle; and Group 3, by an ellipse. 

The lines without arrowheads joining all the circles (handhelds) constitute the 
ad-hoc network’s interconnections. Each of the dotted circles corresponds to an 
ad-hoc sub-network, whereas the dotted square represents the ad-hoc network. In each 
sub-network the same or some other application may be executed. The MCSCL-Tch 
application and one of the MCSCL-Stu applications in each group has a Coordinator 
component that is responsible for establishing communication between MCSCL-Tch 
and each group formed in order to coordinate activity development in the latter.  

3.2   MCSCL-Tch Application 

Fig. 4 shows the MCSCL-Tch application. The Connection Manager component 
establishes the links with the classroom group Coordinator and with each Coordina-
tor of the students’ collaborative groups (in one of the group’s handhelds). When the 
application is executed, each component is created and performed, as are the applica-
tion Operator and the group Coordinator in the classroom. Finally, the Operator is 
subscribed to this group, as explained in section 2.2 
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Fig. 4. Scheme of the MCSCL-Tch application architecture 

3.3   Group Formation 

The system’s networking is exclusively p2p. This means that all users will have the 
same program running on their handhelds and there is no central service. The program 
recognizes the presence of other participants and establishes a secure communication 
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with them in order to transfer data for synchronizing the applications. This is done via 
multicasting, peer discovery and synchronization via point-to-point data communica-
tion. Group formation is a basic function of the p2p MCSCL application. It is com-
posed of three clearly distinguished stages:  

− The Operator of the MCSCL-Tch sends connection invitations to the Coordinator 
so that connections are established with the Operators of the MCSCL-Stu applica-
tions residing in the students’ handhelds. 

− The Operator of the MCSCL-Tch application requests its Coordinator to create a 
new Coordinator among the MCSCL-Stu student application Operators that were 
previously connected.   

− A group must be formed with the Coordinator just created. This Coordinator re-
ceives the connections from the Operators of the MCSCL-Stu application of each 
student that belongs to the group. The messages indicating that those Operators are 
to connect again to the new Coordinator are sent to the Operator of the MCSCL-
Tch application through the teacher Coordinator.  
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Fig. 5. Sequence diagram for connecting three students 
       

Fig. 5 is a sequence diagram illustrating how the teacher connects three students 
and asks each one to create a group Coordinator. The op1:Operator of the 
MCSCL-Tch application sends a CmdInviteNewOp() command connection invitation 
to its Coordinator to establish a connection with a new Operator of the MCSCL-Stu 
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student application (NewOp:Operator). As can be seen in Fig. 5, op2:Operator (of 
Student 1) is already connected to the teacher’s Coordinator, and two new Operators 
corresponding to students 2 and 3 are in the process of being connected. Once all the 
students’ Operators have been connected (Fig. 5, the teacher’s op1:Operator asks its 
Coordinator by means of a CmdCreateRemoteGroup() command to create a Coordi-
nator among of the three Operators that were connected. The decision as to who will 
be the Operator that creates the new Coordinator is made by the MCSCL-Tch appli-
cation; in Fig. 5, op2:Operator of Student 1 is chosen. The teacher’s Coordinator 
asks op2:Operator through the CmdCreateCoordinator() command. Each group 
formed has a group Coordinator, and the MCSCL-Stu applications of each student 
who has joined a group have an Operator connected to that group Coordinator and to 
the Coordinator defined by the teacher. 
    Fig. 6 is the sequence diagram showing how the teacher’s Operator and Coordina-
tor and the students’ Coordinator and Operators form a three-member collaborative 
group. The Operators created in Fig. 6 are now called op3:Operator and 
op4:Operator, corresponding to students 2 and 3. The communication is established 
through the teacher’s Coordinator and the group Coordinator of the three connected 
students. 
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Fig. 6. Sequence diagram for forming a group 
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To form a group of students, the teacher must send the applications to each mem-
ber of the group. For example, in order to add student 1 to the group, the teacher’s 
Operator asks its Coordinator for that application through a CmdConnectCoordRe-
mote() command. The teacher’s Coordinator then asks student 1’s op2:Operator by 
means of a CmdConnectCoordinator() command to include Student 1 in the collabo-
rative work. The Student 1 Operator asks the group Coordinator (in this case, con-
tained within itself) for a connection, and the Coordinator then joins CmdJoinGroup() 
and subscribes CmdSubscribe() Student 1 to the group. 

In the scenario illustrated in Figs. 5 and 6, the teacher connects and forms a group 
of three members only. The procedures followed to connect more students and create 
new collaborative work groups are similar. 

3.4   Starting and Sending Messages 

Once the group is formed, a protocol based on the logic of the collaborative activity 
must be established for communicating among the group members. The sequence 
diagram in Fig. 7 shows the establishment of communication under a client-server 
protocol. This protocol, as requested of the collaborative group Coordinator by the 
teacher’s Operator, must start (CmdStartComp()) and update (CmdUpdate-
CompInfo()) with the ClientMCSCL information component of the MCSCL applica-
tion for each member of the group, including the teacher’s Operator. A new 
ServerMCSCL component of the MCSCL-Stu application must then be created. This 
way, neither the ClientMCSCL component nor the ServerMCSCL component knows 
that they reside in the same place, which allows any MCSCL-Stu application to start 
that component. Finally, the group Coordinator requests and creates communication 
ports among all the ClientMCSCL and ServerMCSCL components. 

Once communication between the ports is established, each member of the collabo-
rative group is ready to send and/or receive information. 
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Fig. 7. Sequence diagram for communication between ports under server protocol 
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Fig. 8. Sequence diagram for the delivery of messages among the members of a collaborative 
group 

The sequence diagram in Fig. 8 is an example of how the Student op4:Operator 
sends a message (CmdSendMsg() command) to the op2:Operator, who then forwards 
the same message (or a different one) to the other two students op3:Operator and 
op4:Operator. Note that the request to send a message is delivered to the group Coor-
dinator, who redirects it to the Operator that needs the information (CmdRe-
ceiveMsg() command). The MCSCL-CS architecture is such that this procedure is 
independent of the logic and requirements of the MCSCL collaborative activity. 

Any other communication protocol that an MCSCL activity might require can be 
designed based on the described functionality of MCSCL-CS, which demonstrates its 
flexibility, extensibility and adaptability.  

3.5   Dynamic Group Reconfiguration (DRG) 

For a DRG to be carried out, there must be at least one group to be reconfigured. Fig. 9 
shows the sequence diagram for dismantling (disarming) the group formed in Fig. 6. 
The student group Coordinator is eliminated by the delete() command. After this op-
eration, the students remain connected to the group defined by the teacher (Fig. 5).  

To execute a DRG, the teacher chooses the new members of the collaborative 
groups who are to work on a given activity through the MCSCL-Tch application. 
Once all the members of the groups have been selected, the teacher’s Operator 
(op1:Operator in the case of Fig. 5) must create the new Coordinators for each col-
laborative group again. In the case shown in Fig. 5 the Coordinators should be started 
again since the students are already connected to the teacher’s Coordinator, the only 
remaining task then being to create a new group Coordinator and connect the stu-
dents’ Operators to it. Recall that Fig. 5 shows the case of one teacher and only three 
students; if there were more students connected, the DRG would choose other com-
ponents of the MCSCL-CS as group Coordinators in the students’ handhelds.  
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CmdDeletedGroup()

CmdDeletedGroup()
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CmdDeletedGroup()
CmdDeletedGroup()

delete()
Group
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Fig. 9. Sequence diagram to dismantle a three-student group already formed 
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Finally, the MCSCL groups must be formed with their respective Coordinators. 
An example of this may be seen by referring back to Fig. 6, which shows the se-
quence diagram for creating a three-student collaborative group.  

4   MCSCL-CS Performance Evaluation 

The architecture proposed here has been employed with the MCSCL applications 
discussed in [12], [13] and [14], and implemented on the eMbedded Visual Basic 
(eVB) Runtime for Windows Mobile-based Pocket PC 2002 platform. The applica-
tions are executed over a wireless p2p Wi-Fi network and TCP/IP on Compaq iPAQ 
handhelds. For the permanent storage of configurations and results of the groups, 
Microsoft SQL Server CE 2.0 was used. TCP Sockets from the WinSock 3.0 eVB 
library provided the necessary elements to create, eliminate, connect and manage the 
socket connections established among the handhelds [4]. Since the eVB development 
environment is only a subgroup of Visual Basic, it cannot support dynamic object 
creation, i.e., at runtime. To solve this problem for the applications developed here, 
the socket-time creation was simulated based on a defined number of static objects 
created in implementation time. In this way, the objects needed at runtime were han-
dled as an array of objects. 

To measure the architecture’s performance, the teacher’s handheld (MCSCL-Tch 
application) interconnection delay before formation of the defined groups 
(MCSCL-Stu applications) was timed. MCSCL-Tch will form an ad-hoc network 
with MCSCL-Stu, which in turn will form ad-hoc sub-networks for each group. The 
group formation evaluation was conducted on a teacher’s handheld for 1, 2, 9, 12 and 
15 groups, each group consisting of 3 handhelds, thus forming ad-hoc networks of up 
to 45 students (the typical Chilean classroom size). For each of the five different 
quantities of groups, time performance was evaluated for delivery of 3 different in-
formation package sizes: 128 bytes, 256 bytes 512 bytes (MCSCL applications trans-
fer small volumes of information).  

As shown in Fig. 10 the time taken for all the groups to form their ad-hoc 
sub-networks depends on how many groups there are. According to the protocol, this 
time should be independent of their number, but the more groups there are the more 
acknowledgements must be sent to their handhelds, all of whom share the same band-
width. Furthermore, time is needed to form the groups’ ad-hoc network (controlled by 
MCSCL-Tch) once they have all created their ad-hoc sub-networks. 
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Fig. 10. Formation time of ad-hoc network and sub-networks 
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Fig. 11. Time taken for sending packages of various sizes (512B, 256B, 128B) to different 
number of groups (1, 3, 9, 12 and 15) 

The chronometers measured only the time the teacher’s handheld took to form the 
groups plus the time taken to send the information through the communication ports 
to all members of the group. In both cases, the MCSCL-Tch application receives 
acknowledgments of group formation (ad-hoc sub-networks) and of sent information 
for each group. 

Fig. 11, shows the time taken for sending packages of various sizes to different 
numbers of groups. Sending time increases as the number of groups to which informa-
tion is sent thought the ports increases. This occurs because each sub-network repli-
cates the information, thereby overloading the wireless interconnection. In Fig. 10 the 
results obtained with the different numbers of groups reveals how group formation 
times increase linearly as the quantity of groups to be formed increases. The chro-
nometers measured only the time the teacher’s handheld took to form the groups and 
the ad-hoc network. This does not mean that all the collaborative groups wait for that 
number of seconds before continuing with their activity; rather, the number refers to 
the time the MCSCL-Tch application takes to execute the last phase of the protocol 
for the last group serviced. For example, with 15 collaborative groups, at worst each 
one will have to wait an average of 9.102/15 seconds to receive 512 bytes of text 
information before being able to return to its activity. The total number of 9.102 is 
explained by the fact that MCSCL-Tch must wait until the last group acknowledge-
ment of information received has arrived and the information has been replicated to 
the group’s ad-hoc sub-network. Once the ad-hoc network and the ad-hoc 
sub-networks of each of the groups have been formed, the sending and/or receiving of 
information does not result in heavy loads on the environment because the communi-
cation ports between group members, and the ports between them and the teacher’s 
handheld, have already been created. 

5   Final Remarks 

When an MCSCL environment is used in a setting such as a school classroom, the 
ad-hoc network must not only interconnect all of the collaborative workgroups, but 
must also maintain various sub-networks, which function in different collaborative 
activities at various stages of completion at any given moment. The proposed ad-hoc 
network architecture is intended to be used with any MCSCL-type p2p application, 
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and enables the interchange of group members in real time necessary to  achieve high 
levels of student communication and motivation [9], [13], [14], necessary to achieve 
learning objectives.  

Initially the MCSCL environment recognizes the presence of other participants and 
establishes a fault tolerant communication to transfer data for synchronizing the ap-
plications. This is done via multicasting, peer discovery and synchronization via 
point-to-point data communication.  

Using the MCSCL-CS architecture that has been proposed here, the number of 
ad-hoc network nodes in a p2p collaborative system can vary up to 45 or more with-
out causing network instability.  

With MCSCL-CS, a teacher’s handheld can (a) manage all other ad-hoc 
sub-networks, (b) configure the formation of new network nodes without having to 
reboot, (c) simultaneously maintain sub-networks working with different collabora-
tive applications, (d) maintain sub-networks with 3, 5 or more nodes per collaborative 
work group, and (e) reboot and reconnect a collaborative work group when a group 
node crashes. 

Once initiated by the teacher’s handheld, each ad-hoc sub-network can function in-
dependently while always maintaining an open interconnection with the teacher in 
case rebooting or a change in the membership of a work group is necessary. 
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Abstract. As an alternative to ad hoc wireless sensor networks, we propose to 
utilize the mobile devices that are carried by people who walk along the site on 
which the sensors are deployed. Each sensor establishes a wireless connection 
to a mobile station and transmits its current measurements. On encounters two 
mobile stations can exchange their data for increasing redundancy and 
likeliness of delivery. When a mobile station approaches the sensor network 
server, it unloads all data which is saved there in a data base, processed, and 
published in local or global networks. In this paper, we describe our realization 
of this approach, the communication mechanisms that have been developed for 
it, as well as its potential usage. This approach is mainly characterized by the 
smooth integration of an additional data service in existing work processes 
utilizing only commercial off-the-shelf components. 

1   Introduction 

Wireless sensors are usually deployed in a significant number so that they set up an ad 
hoc network [1, 2]. The measurements of the sensors are transmitted over this 
network from one sensor to another until an interface station is reached. These 
stations are typically connected also to a LAN or have other means of processing the 
received information. Although the promise of sensor networks lies in the simplicity 
and multitude of sensors, the electronic components available today turn out to be 
rather expensive – especially when purchased in small quantities. In addition, there 
are numerous scenarios where a few number of actual sensors is sufficient; more 
would only be required for data transmission. 

So if the sensors are singularly deployed in a distance that they cannot reach each 
other, different ways of data transport have to be found. This might cause a large 
delay in the overall communication route. But on the other hand the capacity of the 
network as well as its robustness can increase [3]. One way can be utilizing electronic 
devices that are in some way brought close to the sensors.   

The set-up of a wireless sensor network infrastructure requires more than merely 
the sensor nodes. In a small network with limited spatial expansion all measurements 
are collected and processed directly by a server. When the number of nodes grows or 
when they are deployed in disjoint areas, regional relay stations must be used. These 
mobile stations act as concentrators (collectors) for an area of sensors and forward all 
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data gathered in this area to the sensor network server (SNS). This architecture has 
proven to be useful for instance in environmental research [4].  

The basic idea in this paper is to install isolated sensors that have wireless network 
connectivity, but are unable to reach any other sensor. The collectors are mobile 
devices carried by people who come into sufficient proximity. When two of these 
mobile devices come in the transmission range of each other, they can mutually 
exchange the data they have currently stored.  As soon as a device is close enough to 
an SNS, it delivers its data and removes it from its RAM.  

In the following sections, we are going to describe the setup of our prototype. The 
system that has been developed is called 'BlueDACS' as an acronym for 'Bluetooth-
based Data Acquisition and Carrying System'. It uses its own protocol on the 
application layer for a light-weight binary data transmission. Various solutions to 
several technical problems that had to be found are also explained. We describe our 
experiences with the overall system and describe some application scenarios. Finally 
we give a perspective for future work. 

2   System Components 

The entire system comprises three subsystems: the sensors nodes, the mobile phones 
as collectors, and the server domain. The phones are the data carrying units, 
communication with the other subsystems and with each other. The server domain 
consists of the server itself and optional relay stations, allowing a more frequent data 
delivery with shorter paths to go. The overall communication relationships are shown 
in Figure 1. 

 

 

Fig. 1. Communication paths of the BlueDACS system. The nodes forward their data to the 
carrier which may exchange it among one another and eventually send to a receiver station. 

2.1   Radio Communication 

In sensor networks where several nodes are to coexist, a spread-spectrum approach on 
the radio communication layer can reduce interferences. A widely used incarnation of 
this technology is the Bluetooth protocol (IEEE 802.15). Originally designed as  
a cable replacement for home and office peripheral devices, it can be found today in a 
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vast number of environments at steadily decreasing costs. This is one reason why 
Bluetooth has already been used for sensor networks [5-7]. 
    However there are a few general problems with the usage of Bluetooth for sensor 
networks: 

• Of the Bluetooth protocol stack, a sensor should at least use the network layer, 
maybe the LLC layer too. Depending on the type of nodes and their usage, this 
might impose a considerable overhead. 

• The entire Bluetooth protocol is considered to be rather complex and thus power-
intensive.  

• The proposed scatternet functionality that would be valuable for sensor networks is 
currently not included in commercial products. 

• Bluetooth-based nodes have to establish a connection before exchanging data. In 
this connection, one node acts as master and the other as slave. So a rigid role 
concept is necessary. 

There is, however, an outstanding advantage: Bluetooth is included in numerous 
consumer devices on the market. So for realizing a showcase that is supposed to work 
with such components, Bluetooth is today the only choice for the radio 
communication. 

Some of the aspects mentioned above may, however, even turn out as benefits: The 
standardized network layer, e.g., allows the developer to rely on a consistent 
communication channel with media access control and error detection.  

2.2   Sensor Nodes 

As sensor components we use ATmega128 RISC devices from Atmel [8]. They 
provide 128 kB self-programming flash program memory, 4 kB SRAM, 4 kB 
EEPROM, and 8 Channel 10-bit A/D-converter, as well as two RS232 ports. The 
device can be programmed in the C programming language and consumes acceptably 
little energy. Sensors can be attached to it directly at the A/D-converters or digitally 
via a separate sensor aggregation board. 

For communicating with the collector units an external Bluetooth adapter, the 
Stollmann BlueRS, connected to the serial interface, is used [9]. For sending the data 
to the mobile station, a simple serial communication using the RFCOMM layer of 
Bluetooth is sufficient. In our configuration, the sensor node acts as a Bluetooth slave 
and does therefore not emit inquiry scans for other communication partners. In fact it 
sends inquiry packets once in a while to allow the mobile node to detect it. The sensor 
node is designed to deliver its data to the mobile stations exclusively. This procedure 
can still be optimized and leaves room for further work: Due to security reasons the 
sensors should not send any inquiry packets at all, at least in some scenarios. In this 
case, the mobile stations have exact location information about the sensors and may 
detect them with AGPS. This would also allow the mobile station to reduce the 
frequency of their inquiry scans. 

The nodes use their local buffers for their own measurements. If there is an 
overflow, the oldest data set is skipped, acting like a normal ring buffer. 
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For the scenarios that are anticipated for this network configuration, a permanent 
power supply (long-lasting battery, dynamo, solar cell, or power outlet) can be 
assumed. 

2.3   Mobile Phones as Data Collectors 

The collectors are mobile phones that are carried by people walking across the site. 
From the view of the sensor network, their walking routes may be random. The 
deployment of a node should be planned in a way that there is a real chance that at 
least once a day at least one person comes in the reach of this node. It is obvious that 
this requirement is essential, making data gathering in less frequently visited areas 
unfeasible. It should, however, be realistic for many interesting applications. 

As soon as such a mobile station comes in reach of a sensor node, a Bluetooth 
connection can be established. A handshake mechanism, a simple form of 
authorization, guarantees that only qualified devices get access to the data and 
accidentally approaching Bluetooth devices of other persons are not affected.  

The mobile phones act as Bluetooth masters when communicating with the sensor 
nodes and the server or its relay stations. One may also take the role of a slave when 
talking to another mobile node. In order to fulfill their master role, the devices send 
out regularly an inquiry scan for detecting other devices in reach. The frequency of 
the scans depends on the actual usage scenario. Commonly, one scan every two or 
three minutes is a good trade-off between power consumption for the scan and 
reachability of other nodes. With this feature enabled, the power reserve of a mobile 
phone lasts between 4 and 8 hours.  

We used Nokia 6600 and Siemens S65 phones as off-the-shelf components. Both 
have Bluetooth capabilities and can be programmed in Java utilizing the Mobile 
Information Device Profile (MIDP), version 2.0. The drawback is that currently on 
most devices such Java applications cannot run in background and have to be 
activated manually. Thus after a phone call, the bearer has to start the BlueDACS 
program again. Some phones with the Symbian operating system (like the Nokia 
6600) are able to put the virtual machine in background during other activities; but the 
VM is suspended during this time. At least the application is resumed automatically 
and need not be restarted. This type of problem will more and more disappear as the 
operating systems of the mobile devices get more powerful. Alternatively, PDAs or 
pocket computers may be used; they have typically a larger power reservoir and allow 
background applications. We also made some tests with HP IPAQ PocketPCs.  

The usage of standard, wide-spread consumer devices represents the special 
advantage in this approach. Relaxing the need for sensors to communicate with one 
another makes the entire system more flexible and less expensive. Although sensor 
nodes are thought to be deployed as rather tiny electronic components in large 
numbers, the current costs for such nodes – either off-the-shelf or self-configured – 
are still considerable, especially when purchased in small quantities. On the other 
hand, the solution proposed here gives the existing devices an additional task and 
leverages previous investments with an added value.  
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2.4   Relay Stations and Sensor Network Servers 

As there is only one sensor network server for all sensor nodes of a specific group or 
even for all the sensors in the system, the chance that a mobile station comes in reach 
of Bluetooth transmission range of this server is rather low. (It may be installed in a 
place every worker must pass, like the factory gate, but this leads to other drawbacks 
and is not practicable for any application.) So it is helpful to install some additional 
relay servers that act as local points of delivery for the data. The relay servers are 
connected to the sensor network server (SNS) by LAN or over the Internet. They are 
therefore similar to the notion of "infostations" introduced in [10]. 

The SNS is realized as a usual PC with Bluetooth connectivity. It stores the data in 
an XML data base and allows access through various interfaces depending on the 
actual application, the data privacy, and the technical infrastructure, e.g. web-based 
reports, XML web services, and specialized applications making use of the data. Such 
applications may generate daily profiles from the measurements, graphical 
summaries, analyses of threshold exceedances with a hierarchical alarming system, 
etc. There are, of course, even much more sophisticated applications possible (see 
below). 

From the communication perspective a relay station shows the same behavior as a 
sensor node in the BlueDACS system. It acts as a Bluetooth slave and sends out 
inquiry signals periodically to allow mobile nodes to find it. 

3   The Communication Process 

The description of the overall communication process can be divided into three 
different aspects: The format for storing the data, the procedures performed for 
transmitting, and the protocol used in this transmission.  

3.1   Data Format 

A uniform binary format that is used in all subsystems simplifies the handling of  
the acquired data and avoids reformatting. A BlueDACS data packet consists of the 
following elements: 

• The number of data sets in the packet (n, 2 bytes) 
• The length of each data set (m, 1 byte) 
• A device identification number specifying the node that has acquired the data 

(DID, 2 bytes) 
• A data acquisition number enumerating all packets generated by this node (DAN, 1 

byte) 
• The actual data sets, usually containing one or more measurement values and a 

time stamp, with length m and quantity n as indicated by the numbers above 
• An error check array of m values, the result of an XOR operation among the data 

sets 

The width of the DAN of 1 byte is clearly a restriction. It means that the node can 
generate a maximum of 256 packets until it has to overwrite its memory. It is, 
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however, no real handicap for the practical usage. As each packet may consist of 
65536 data sets at the most, a single node can still create more data than a carrier 
might be able to retrieve. And after all, the memory of the node is fairly limited such 
that these constraints are fully acceptable.  

As we have designed here communication packets for the application layer, we do 
not have to include a very strong error-checking, but should be able to rely on what is 
already done on the network layer. So a simple XOR-generated code will certainly be 
sufficient. 

3.2   Transmission Procedures 

As soon as a mobile station comes in reach of a sensor node, a Bluetooth connection 
can be established. The sensor node transmits its most recent measurements via the 
existing connection to the mobile station. The data exchange protocol uses 
acknowledgements to ensure the success of the transmission. The mobile station 
checks the XOR field of the message and sends an ACK if everything is all right. 
Only after receiving this ACK, the node may delete the transmitted data sets from its 
buffer. 

Like the sensor nodes, also the mobile stations keep all data that has not been 
transmitted as long as there is sufficient memory. The data is stored in the flash 
memory of the devices; thus it is still available when the phone has been switched off 
or has run out of energy. 

If two mobile stations come close to each other (e.g., when their bearers walk by 
each other), they can forward mutually all measurements they currently store. They 
establish a Bluetooth connection, verify their authorization, and send the respective 
data sets. The communication is again safeguarded by XORs and ACKs to ensure that 
only uncorrupted data is stored. Data sets that are already stored on the respective 
device are discarded. 

The data exchange of two mobile stations does not mean the forwarding of the 
complete data packets. Thus the data sets are not removed from each other’s buffer 
after the transmission. This procedure just increases the redundancy of the entire 
system and the chance that any mobile station delivers the data to the SNS in the end. 

As soon as a collector comes close to a relay station or the SNS, both sides 
establish a Bluetooth connection. The relay server just forwards all datagrams. If the 
transmission, again using XOR and ACKs, is successful, the mobile station removes 
the data sets from its buffer. The protocol is similar to the one described above for  
the communication between sensor node and mobile station. The SNS saves the 
measurements in a data base, provided that there has been no record with the same 
DID/DAN combination in the last 24 hours.  

As pointed out in [11] and [12], there are numerous variants of this procedure. E.g., 
the transmission between two mobile stations may only be performed with certain 
likelihood, the stations may record which packets they have passed on, and they may 
even keep information about the IDs of those packets that – as far as the station 
knows – have already been successfully delivered to the SNS. For our prototype, the 
procedures described above seemed sufficient. Nevertheless it is clear that it strongly 
depends on the actual application which kind of strategy is used here. 
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3.3   Communication Protocol 

A BlueDACS communication session is done in rounds. At the beginning of each 
round both partners negotiate who will be sender and who will be receiver. For this 
purpose, both partners send one byte (in the structure shown below) and the partner 
with the higher value – interpreted as an integer –becomes sender. Now a data packet 
is transmitted. Afterwards a new negotiation is performed, which includes an 
acknowledge flag for confirming the correct reception of the last packet. If  
the comparison of the bytes indicates that no further communication is necessary, the 
connection is closed. In the case that the ACK fails, the packet in question is re-sent. 

The structure of the negotiation byte is as follows: 

WS RA RA RA RA RA WR ACK 

The individual bits have the following meaning: 

• WS: "wants to send". This bit is set if the sender has data to transmit. 
• RA: random. A random number is used to clarify the precedence of transmissions. 

The partner with the higher number is to send first. A sensor node sets all bits 
except the last one to 0, making sure that he has the primary right to send. A relay 
station sets all bits to 0, as it does not have anything to send at all. The mobile 
stations always set the first bit to 0 and the last bit to 1, while selecting a random 
combination for the other ones. 

• WR: "wants to receive". This bit is set if the sender is ready to receive data. Sensor 
nodes, e.g., set it to 0. 

• ACK: acknowledge. This bit is set if the last transmission was successful (not used 
in the handshake procedure).  

This arrangement of the flags allows interpreting the byte as a number. The 
communication partner with the higher number gets the right to send first. A 
communication is only established if one partner is willing to send (WS = 1) and the 
other is willing to receive (WR = 1). If this is not the case, no data exchange is 
necessary and the connection is closed. 

If this handshaking procedure should result in equal random bits, the negotiation is 
repeated. This case can only happen between two mobile phones. 

The big advantage of this protocol is its simplicity. It is easy to implement on any 
platform, meets all communication requirements, and uses the resources very 
efficiently. The header is rather small, i.e. reduced to the absolutely necessary issues. 
This is especially important for applications of the proposed type, which imply low 
data rates. A small header assures that the data size /packet size ratio and thus the 
effective bandwidth is high. 

Moreover the sensor nodes are small embedded systems without much processing 
power. For this platform a protocol should be preferred that allows a succinct 
implementation. This fact also leads to a reduced error probability – which is a 
considerable benefit for embedded devices that might be produced and deployed in 
numbers. Updates of the firmware could become difficult and expensive. 
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4   Results and Experiences 

The system has been realized as described above and tested on a prototype level. A 
number of experiences during development and testing could be gained. 

 The on-board memory of the sensor boards and the mobile stations were fairly 
sufficient. The code of the applications has a footprint of less than 5 kB which leaves 
enough memory for data storage, even on the Atmel boards.  

A more serious limitation was that the Atmel boards we used do not have onboard 
clocks. So the tagging of the packets can only be performed with a counter. In 
extreme cases this might cause overflow confusions. To allow an accurate and unique 
identification of the packets, an additional time-stamp would be desirable. In the 
present hardware configuration, this could, however, only be achieved by external 
clock components. 

The energy consumption of the Bluetooth adapter at the nodes may reach, 
according to the manufacturer, up to 45 mA with a BT connection, but no traffic, and 
70 mA with data traffic at 115 kBit/s. As we assume a reliable power supply for the 
nodes, these values (which are considerably lower than the ones reported in [7] for 
another BT-based node) are acceptable for the anticipated usage scenarios. If the 
application requires a low power consumption, the BT module may be switched off 
after one successful delivery for some time until enough measurements are gathered 
again that need to be forwarded. 

The programming interfaces both of the BT adapter and the mobile phones do not 
allow the manipulation of the radio communication on a low level. So it was not 
possible to test the influence of time slot aggregations and variations of encoding 
redundancy. For small payload packets, however, this influence is normally 
negligible.   

The limitations of the Bluetooth protocol with respect to multiple communication 
partners turned out to be rather uncritical for the transmission between a node and a 
mobile station is, since there are hardly any other devices around that could interfere 
the connection. The same holds partially for the communication between mobile 
stations, provided they do not meet in very crowded areas. The contact between the 
mobile station and the SNS (or relay stations) may be more difficult. But as our 
experience from the test bed shows, the establishment of a connection succeeds in 
most cases, even if sometimes a little delay has to be accepted. 

An unexpected result of the laboratory showcase experiments was that the inquiry 
scan, which is executed regularly by the mobile stations, takes a relatively long time, 
up to 30 seconds. The performance can be improved if the addresses of known 
devices are stored on each mobile station and only connections to these are tried 
periodically. This procedure assumes that the information about the devices in the 
system is configured at deployment time. This step makes the deployment more 
complex, but improves the overall performance significantly. In a repetition of the 
experiment with stored addresses the entire communication sequence took only a few 
seconds. 

The mobile stations have the most complex task in the BlueDACS systems since 
they have to act as servers waiting for incoming connections as well as clients trying 
to connect to other stations. The communication is done via sockets on exactly this 
basis. So making data exchange during random encounters possible requires a 
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sophisticated multithreading, switching between an open server socket and opening a 
client socket. The Java implementation on the mobile phones used in the prototype 
fulfilled this task without major problems. 

The system tends to be rather reliable. The crucial aspect is the probability of the 
encounter of the communication partners. Theoretical calculations show that even if 
the probability of a mobile station meeting a node is less than 1% for a system with 
five carriers, all data of the node can eventually be delivered and no overflow occurs. 
In experiments in the university all sensor nodes could forward their measurements 
completely, thus fulfilling the task of the entire system satisfactorily. The behavior of 
all subsystems were as required; it was even possible that the sensor nodes generated 
data packets event-driven, i.e. only when the measured value changed. Long-term 
experiences can reasonably only be gained in the context of a real application. So the 
set-up of a real-world test bed and the evaluations of the respective results are still 
part of ongoing and future work (see below).  

All in all, the prototype showed that the approach proposed above can actually be 
realized with off-the-shelf standard components, especially with standard consumer 
devices. The rather intensive energy consumption on the mobile phones and the long 
delays during BT inquiry scans and sometimes also during connection establishment 
give room for further research in optimization strategies. An extension in progress is, 
e.g., to make the server maintain a list of all communication partners in a BlueDACS 
environment and their BT data. This list is distributed as configuration information by 
the relay stations to the mobile phones which forward it to one another if necessary. 
So all devices know about the valid communication partners and can confine 
themselves to making BT connections with these only.   

5   Usage Scenarios 

The BlueDACS system is not thought for the classical sensor network scenarios, as 
these generally rely on a real-time wide-range data distribution [1, 2]. Yet there are 
various fields of usage where the longer time that the data might take to travel from 
the sensor to the server is acceptable. Some of these fields are discussed in the 
following. 

5.1   Home Care of Elderly People 

The Western industrial societies are more and more aging. An increasing number of 
persons need individual care, but they also want to stay in their familiar environment 
as long as possible. The care of these persons is often done by specially trained nurses 
and other assistants who visit their clients regularly, giving them the care they 
actually need.  

The caregivers usually carry a mobile phone with them. More and more of this 
group also have PocketPCs for accounting the services they give. On the other hand 
the clients can have electronic devices measuring some physiological quantity, e.g. 
blood sugar or cardiograms. These devices can act as the sensor nodes described 
above, recording the recent measurements and transmitting it wirelessly. The mobile 
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station in the pocket of the nurse visiting the client establishes a Bluetooth connection 
with the devices at the respective home and stores the data it receives.  

At the end of the day the nurse returns to the central office of her organization 
where the corresponding relay station with BT connection is located. Her mobile 
device transmits the data it has gathered throughout the day to the server. There the 
health conditions of the clients can be analyzed based on the knowledge about their 
maladies and medications. If some discrepancies are detected, an alarm is issued, e.g. 
recommending the client to see a doctor. 

The advantage of BlueDACS in this scenario is that it exactly fits in the processes 
that are currently run. Without much additional effort, a considerable improvement of 
the home care could be achieved. The challenge in this scenario is to fine-tune the 
sleep and wake-up sequence of the Bluetooth module in the client’s device to certify 
that the data is actually delivered to the caregiver, without wasting two much energy 
by sending all day long. 

5.2   Environmental Measurements 

The quality of weather forecasts and the evaluation of water level changes at creeks and 
rivers crucially depend on measurements of the environment. The more measurements 
of temperature, wind speed, and air pressure are available, the more accurate a forecast 
can be. The same holds true for the prediction of floods, allowing detailed warnings and 
countermeasures. But the measurement places are often out of reach of public data 
networks. In the more dense populated areas of Europe, the data is frequently 
transmitted via cellular networks which causes air-time costs. In other areas often a visit 
of the measurement stations by staff persons is necessary. They denote the current 
values on pencil and paper, entering them later in their computers by hand. 

This tedious task could be automated and made more reliant by a system like 
BlueDACS. The measurement stations act as the sensor nodes, receiving their energy 
from solar panels, possibly storing hourly measurements for one or two days. The 
data gathering task could be completed by people that pass the station anyway, 
offering a small fee for their service. If this is unfeasible, either more ore less regular 
visits are still necessary, but can be done faster and more efficiently. In any case, a 
Bluetooth connection with a mobile device is used to transmit the measurements. 
When the person comes home or to his/her office, a PC there could act as a relay 
station, taking up the data from the mobile phone and forwarding it to the nation-wide 
weather office (or other authorities) for further processing. 

The data is usually not very sensible; thus no special security measures have to be 
taken. All in all, BlueDACS can automate the tasks and complement other data 
gathering technologies. In this scenario, the trade-off between the probability to reach 
a carrier and the energy consumption is also an issue. But as these outdoor devices 
will usually be powered by solar cells, a higher consumption of the radio unit is 
acceptable. 

5.3   Monitoring of Operation Times of Heavy Machine 

On construction sites of roads, bridges, and other complex buildings heavy and very 
specialized machines are used, e.g. steamrollers or tar-sealing machines. Often they 
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are required just for one step in the entire work process, but are designed to fulfill this 
task very efficiently. For construction companies the purchase of such machines is 
often uneconomically; so they obtain them under leasing or renting contracts. More 
and more renting of such machines is done on a per-work-hour basis. The renting 
company has only to pay for the time the machine is actually in action. But for a 
correct and instant accounting the information about the operation times has to reach 
the machine owner in a reasonable time frame. 

This problem could be solved with a system like BlueDACS. The machines would 
have built-in (and hopefully manipulation-resistant) clocks for recording the operation 
times. At least the foreman on the construction site carries a mobile phone which 
receives the operation data from the machines via a Bluetooth connection. If he meets 
other people involved in the construction, like architects or engineers, his device may 
exchange the data with their mobiles. As soon as one of them comes back into his 
office, the data can be transmitted to a relay station that is deployed there. This will 
then send the information about the operation times to the machine owner so that the 
billing can be processed in a precise and timely manner.  

Again, BlueDACS does not require an abrupt change, but integrates well in the 
current processes. It is not essential how long the data actually takes from the machine 
to the owner. This electronic way will be in any case certainly much faster than written 
notices. But security is an important issue here that has not been discussed so far. The 
construction machine should encrypt the data, e.g. with a public key, leaving only the 
address of the owner permanently readable. At the server decryption can be done with 
the respective private key. So privacy and accuracy are protected on the way. 

6   Related Works 

A similar approach has already been described in related works. The basic idea of the 
protocol to bridge disconnected parts of ad hoc networks by mobile nodes is known as 
the epidemic routing protocol [13]. Much of the work in this field followed this idea, 
but mostly in a naïve, straightforward way. The approach of Chen and Murphy [14], 
the so-called Disconnected Transitive Communication paradigm, is certainly similar 
to ours, but describes more a general framework than a practical realisation. Musolesi 
et al. [15] concentrate on the routing algorithms and how to make them context-
aware, demonstrating their results only by simulations. On the other hand, Lindgren et 
al. [16] emphasise the probabilistic aspect in their routing mechanisms, trying to 
connect entire clouds of nodes. They rely on the transitivity of the model and 
calculate the probability of delivery based on this assumption. In our approach, 
transitivity is also supported; the system does, however, not rely on it indispensably. 
In fact, it depends on the actual usage scenario whether the data exchange between the 
mobile stations is essential or not.  

One of the first examples of the application of routing in partially disconnected ad 
hoc networks involving wireless sensor nodes is the ZebraNet project [17]. It 
employed sensors attached to animals for studies of wildlife behavior using flooding-
like routing protocols. The idea of animals carrying data was also seized in 
DataMules [18] where, rather similar to our approach, mules are thought to visit 
sensor nodes and forward their measurements. The probability of delivery depended 
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crucially on the visiting frequency of the mules. Small and Haas [11, 12] who 
proposed to attach the sensor nodes to whales focused primarily on theoretical 
comparisons between several data dissemination strategies. 

Our results, however, differ in a several aspects. First of all, we have realized a 
working prototype that proves the feasibility of this concept; only a few of the 
approaches cited above did that. Second, this prototype does not rely on special 
hardware, individually adapted to this specific problem. As shown above, we used 
standard mobile phones as collectors, connecting via IEEE 802.15 (Bluetooth) 
protocol. And third, we separated the roles of sensors and collectors such that the 
sensors do not communicate with one another and the collectors do not have sensing 
capabilities, respectively. But most of all our system is designed to be non-intrusive. 
As illustrated by the usage scenarios, BlueDACS can integrated smoothly in the 
processes that are carried out anyway. The usage of BlueDACS does not require any 
additional efforts, especially not from the people carrying the mobile stations. It just 
introduces a significant additional value to a process that is already there. 

7   Conclusion 

Our experiments show that Bluetooth can be used for transmitting data acquired by 
sensors and other measurement devices. The approach of data gathering and carrying 
by more or less encountering mobile devices does certainly not replace the sensor 
network concept, for the delivery times are magnitudes larges than with direct 
wireless connection. As outline in the scenarios, however, there may be a couple of 
situations where the drawback of the long over-all transmission time is acceptable. 
Particularly when the data transmission integrates smoothly in existing processes, it 
can be a complimentary method worth evaluating.  

The prototype described above has proven the feasibility of this concept. For 
utilizing standard consumer devices, Bluetooth is currently the technology of choice 
for the radio communication. But as we have outline, there are certain disadvantages 
with this protocol that raise the need for looking for alternatives. A possible candidate 
can be ZigBee (IEEE 802.15.4); this protocol was designed for energy-efficient 
transmission of small data streams. It is thus perfectly suitable for the applications 
described here. Maybe with the wider dissemination in the industrial area it may also 
find its way into mobile devices.  

The BlueDACS protocol proposed here seems to be fairly sufficient for the 
anticipated use cases. The only missing issue is security. This could be added by 
taking an encrypted data set as payload for a packet. But the integration of security in 
the overall system has clearly to be the subject of further research. 
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Abstract. We provide evidence of the feasibility and effectiveness of a middle-
ware architecture for mobile devices which employs dense distributions of small
computerized entities for providing fault-tolerant location-aware services. We do
so by describing exemplary implementations based on radio frequency identifi-
cation (RFID) as an enabling technology. Firstly, we present prototypical imple-
mentations of the hardware abstraction layer and of selected core middleware
services. The latter enable a mobile device to store and retrieve data and position
information in physical places in a fault-tolerant manner, and to identify places
based on a location abstraction which is robust against failure of individual tags.
Secondly, we investigate the feasibility of some higher-level services and applica-
tions by developing and evaluating prototypical systems for tracing and tracking,
self-positioning, and collaborative map-making.

1 Introduction

Different from conventional means of RFID tag deployment and utilization, massively-
redundant tag distributions provide novel RFID-based services and applications to
mobile user devices [1]. By deploying cheap passive RFID tags (i.e., tags without a
built-in power supply) in large quantities and in a highly redundant fashion over large
areas or object surfaces, one obtains a so-called super-distributed RFID tag infrastruc-
ture (SDRI). Based on such an SDRI, [1] identifies a number of technical challenges
and describes potential benefits and first prototypical results. The practical relevance of
this concept is reflected in the recent appearance of industrial products that make use
of such redundant RFID tag distributions, such as the “first carpet containing integrated
RFID technology” presented by Vorwerk in cooperation with Infineon Technologies [2].

As a generalization of the SDRI concept, we propose super-distribution of small
computerized (and therefore “smart”) entities as a general design principle for the devel-
opment of reliable and highly available location-dependent services for mobile devices.
For that, we developed a layered service middleware architecture [3] that exploits two
fundamental characteristics of the resulting infrastructure for achieving fault-tolerance
and serviceability: the high degree of redundancy with regard to smart entities (abun-
dance aspect), and the support for localized interaction between mobile devices and
their immediate physical environment (locality aspect).

While [3] focuses on theoretical middleware aspects, in this paper we describe a
number of concrete prototypical implementations based on super-distributed smart
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entities, using RFID as an enabling technology. In doing so, our major aim is to provide
first-hand evidence of the practicability and effectiveness of the suggested approach by
demonstrating the capabilities and performance of exemplary middleware service im-
plementations, rather than presenting specific state-of-the-art solutions for the particular
application domains we cover in the process.

In the following, we define a smart entity (SE) as a physical artifact that is enhanced
by embedded computing technology in such a way that it has a globally unique iden-
tifier, a built-in memory with data read/write capabilities, and support for close-range
wireless ad-hoc communication. Likewise, we refer to super-distribution of smart en-
tities as the process of deploying and distributing SEs in a dense, highly redundant
fashion. The resulting substrate is called a super-distributed smart-entity infrastructure.

2 Middleware for Super-Distributed Smart Entity Infrastructures

2.1 Middleware Architecture

Our service middleware for super-distributed SE infrastructures described in [3] is
based on a five-layered architecture (Fig. 1): The distributed physical smart entities in
their entirety constitute the physical infrastructure on the lowest level (Hardware Layer
or Layer 0). The access to this layer is controlled by the Hardware Abstraction Layer
on the next higher level (Layer 1). It is represented by an Entity Read/Write (ERW)
service, which defines a generic and unifying interface to the underlying physical SE
infrastructure. The Core Service Layer (Layer 2) consists of fundamental abstractions
and generic services that operate with individual SEs by means of the ERW service.
The Higher-Level Service Layer (Layer 3) is represented by a collection of specialized
services and service templates. These services do not directly operate on individual SEs
of the underlying physical infrastructure but rely on the core services instead. Finally,
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in the Application Service Layer (Layer 4), we find application-specific services and
specialized instantiations of service templates.

2.2 Middleware Employment

From the user’s perspective, interaction with the SE infrastructure is performed by
means of a mobile user device (MUD), which features a wireless communication in-
terface for communicating in an ad-hoc fashion with SEs in its immediate vicinity. On
each MUD, an independent instance of the service middleware is installed, executing
the individual middleware services as separate processes. Services can be turned on or
off and configured separately. A MUD can be carried by a user or may be part of other
devices, such as being integrated into a vehicle or into a blind man’s stick, for example.

The execution of the service middleware on the MUDs themselves (rather than pro-
viding the services as part of a fixed background infrastructure) empowers the devices
to interact with the super-distributed smart-entity infrastructure in an autonomous fash-
ion. In particular, by maintaining information in SEs at the physical places where it
is required, middleware services on a MUD can remain operational even in the case
of physical damage in other areas of the infrastructure, and in the absence of network
connectivity or the unavailability of remote services.

2.3 Prototypical Reference Implementations

For our prototypical implementation, we selected a number of exemplary middleware
services based on both a bottom up and top down approach: On the one hand, we im-
plemented services of the lower layers that provide general basic functionality, which
includes the Hardware Layer, the Hardware Abstraction Layer, and three essential ser-
vices of the Core Services Layer: Local Data Sharing, Location Manager, and Position
Manager. On the other hand, based on these services, we investigated the feasibility and
practicability of some higher-level services by developing and evaluating prototypical
systems for tracing and tracking, self-positioning, and collaborative map-making.

In our implementations, the SEs were represented by passive RFID tags. As a result,
the Hardware Layer in our prototype implementation constituted a super-distributed
RFID tag infrastructure (SDRI) as described in [1]. We therefore use the terms “RFID
tag” or simply “tag” synonymously with “smart entity” in the remainder of the article.
The MUD executing the service middleware software was represented by a notebook
computer, to which a mobile RFID reader and antenna were attached to enable a local-
ized interaction with the SDRI.

3 Implementation of Basic SDRI Middleware Services

3.1 Hardware Layer: Super-Distributed RFID Tag Infrastructure Prototype

The RFID hardware we used for the SDRI consisted of ISO 15693 compliant smart la-
bels (transponders) that operated at a frequency of 13.56 MHz. As transponders, we em-
ployed Philips I·CODE tags (Type 1) [4], with a dimension of 7.5 cm×4.5 cm×0.1 cm.
The I·CODE RFID tags feature 64 byte of physical memory, which is organized into
16 slots á 4 byte (of which 11 slots are rewritable). This allowed us to store the data of
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Table 1. Properties of plastic foil templates used for building a prototypical SDRI

Dimension of plastic foil templates 123 cm×128 cm
Mean distance between two adjacent RFID tags 17.5 cm
Standard deviation of tag distribution 2.1 cm
Number of tags per plastic foil template 61 tags/foil
Average area covered by a single RFID tag 258 cm2

Average RFID tag density per square meter 39 tags/m2

several middleware services (e.g., Position Manager and Tracing and Tracking Service)
directly on the physical memory of individual tags during our experiments.

For building the SDRI, we attached the transponders onto four identical plastic foils
using the same pseudo-random distribution pattern. This yielded four RFID-tagged tem-
plates with equal characteristics as shown in Table 1.

3.2 Hardware Abstraction Layer: Entity Read/Write (ERW) Service

For the realization of the Entity Read/Write service on the Hardware Abstraction Layer,
we used the RFIDStack [5], which offers a manufacturer-independent API to applica-
tions and incorporates drivers for various types of RFID hardware. Based on the RFID-
Stack, the ERW service provides the interface for writing data to and reading data from
the underlying RFID tags of the SDRI, masking the complexity and hardware-specific
characteristics of the underlying RFID hardware from the higher service layers. The
writing of data can either be performed physically, writing to the physical tag memory,
or virtually, storing the data in the so-called virtual tag memory. The latter is managed
by a service instance of the RFIDStack residing in the Internet, which can be accessed
by means of XML messages sent via a TCP connection [5]. The virtual tag memory not
only mirrors the physical memory of a tag, but also provides an extended storage space.
Our ERW implementation only allows a MUD to access the virtual memory of a tag if
that entity is physically present within communication range.

The ERW service also implements the data management for the physical and vir-
tual tag memory. It emulates a simple file system for the physical tag memory, where
Service Data Units represent files and the Smart Entity Directory represents the root
directory. A Service Data Unit constitutes a service-specific data unit that encapsulates
the information that a service requires to be stored on a single tag for a well-defined
purpose. To detect incomplete or inconsistent data units on tags caused by interrupted,
incomplete write operations, CRC error checking is performed.

In particular, the ERW service provides the following basic methods for accessing
the physical memory of individual tags: listTags, listTagDirectory,write-
TagFile, readTagFile, deleteTagFile. Parameters include tag ID, file type,
file data, and flags that indicate the use of the virtual memory and declare if a file should
be stored persistently or can be overwritten at a later point in time (persistence flag).

3.3 Core Service Layer: Local Data Sharing (LDS) Service

The LDS service provides MUDs with an API for sharing data in physical places of
the SDRI with other devices. In doing so, the LDS service exploits the high tag density



Prototypical Implementation of Location-Aware Services 73

in the SDRI for fault-tolerant data storage by replicating Service Data Units across
multiple tags in antenna range at the current location. Data can be shared in situ by using
method shareData, which is parameterized with the service-specific data type and
the persistence flag. Previously shared data can be retrieved by means of the getData
method.

The API of the LDS service allows the user to set the replication degree, which can be
defined as an absolute number and which is targeted on a best effort basis, or as a relative
percentage value. These values apply to the initial replication and the later replication
maintenance procedure. The actual replication management is hidden from the service
clients. For accessing the tags of the SDRI, the LDS service is based on the API of the
ERW service. Further the LDS service allows to set a tolerance threshold for the number
of failed tag identify/read/write attempts of the underlying ERW service. For example,
if data is to be read from or written to eight different tags, failed read/write attempts
for two of the tags are tolerated given a tolerance threshold of 25%. This enables the
service to deal with known imperfections of RFID systems (e.g., tags in range may
not be detected, or read/write operations may abort [6]). When Service Data Units are
retrieved from local tags, the LDS service transparently filters duplicates.

3.4 Core Service Layer: Location Manager (LM) Service

The LM provides an API to define and resolve abstract locations: a Location has a
unique identifier and is defined by the set of (stationary) SEs that are detected in a
well-defined range of the MUD executing the service [3]. The Location identifiers are
directly stored on the defining SEs themselves.

The main contribution of the LM is the getLocation method, which determines
an abstract Location L as the set of RFID tags tagIDSetl detected at the respective
physical place l in the SDRI: L := tagIDSetl := {tagIDt : inRange(t, l, r)}, where
tagIDt is the unique identifier of tag t, and inRange(t, l, r) a Boolean predicate that
equals true iff tag t is within distance r of the field of the RFID antenna at place l
and false otherwise. In our prototype system, the range r of the RFID system was
defined by the characteristics of the used RFID hardware. Ideally, the range of the RFID
reader/antenna should be customizable to enable the integration of different RFID sys-
tems with variable characteristics.

If the getLocation method is called to determine the Location of the current
place, then the LM searches for predefined Location identifiers on all tags in range r.
The Location whose identifier is stored on the majority of the detected tags is returned
as the current Location. In case no predefined Location is available, or if the number
of tags containing the dominant Location identifier is below a well-defined percentage
value T , then the LM automatically defines a new Location and stores the correspond-
ing Location identifier on the affected tags. This ensures that adjacent Locations only
overlap in up to (100 − T )% of the tags, which in return enables a robust and selective
Location detection in situations where individual tags fail to respond temporarily.

3.5 Core Service Layer: Position Manager Service

The main contributions of the Position Manager service are the methods getPosit-
ion and setPosition. The setPositionmethod enables a MUD to locally store
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its current position pM obtained from a third party positioning service on the nearby
tags. In doing so, for each tag, the new position pt

new is calculated as the weighted
mean of the MUD’s position pM and the old position pt

old of the tag, using the number
of previous write operations w as a weight: pt

new := (pM + w·pt
old) : (w + 1). Vice

versa, upon calling getPosition, the Position Manager first scans all tags in antenna
range and extracts their individual position coordinates if available. Then it calculates an
estimate for the current position as the mean over all obtained individual tag positions.

4 SDRI Tracking and Positioning Prototype

The SDRI Tracking and Positioning prototype provides two main services: laying and
following of data traces, and self-positioning.

4.1 Prototype Description

We have developed a fully functional SDRI Tracking and Positioning prototype, which
consists of two major hardware components. Firstly, a trolley with the RFID equipment
(RFID reader and antenna) and the MUD (in our case represented by a notebook com-
puter running the SDRI Tracking and Positioning application). Secondly, four RFID-
tagged templates forming a prototypical SDRI (Fig. 2).

Notebook computer
running tracking and 
positioning application

Trolley

RFID antenna
(not visible)

RFID reader device

Marked test track

SDRI templates

Fig. 2. Measurement trolley and prepared test track

The RFID hardware consisted of an ISO 15693 compliant mid range RFID reader,
and an external mid range RFID antenna1. The RFID reader supported collision resolu-
tion, which enabled it to simultaneously identify multiple transponders within antenna

1 Manufacturer: Feig Electronic, model: OBID i-scan HF ISC.MR100 and OBID i-mid
ISC.ANT340/240.



Prototypical Implementation of Location-Aware Services 75

range. The RFID antenna was attached underneath the center of the bottom pane of the
trolley, at 10 cm above the floor space. At this distance, the approximately square oper-
ating area of the RFID antenna was about 50 cm×50 cm. For constructing the prototyp-
ical SDRI, the four RFID-tagged templates described in Sect. 3.1 were arranged in an
L-shape around a corner of a corridor in our office building (Fig. 2). On the templates,
we manually marked a test track for our experiments with a total length of 526 cm.

4.2 SDRI Tracing and Tracking Service

The SDRI Tracing and Tracking Service features a tracing mode, which enables the
MUD to leave a digital data trace in the SDRI, and a tracking mode, which allows a
MUD to follow a previously laid data trace. Each mode itself is divided into a basic and
advanced version, which we describe in the following.

Tracing mode. A basic trace is represented by a sequence of trace data objects stored
on tags of the SDRI. Each trace data object (TDO) consists of an anonymous trace
identifier (trace ID), which is generated by random, and a timestamp. A trace ID only
has to be unique in the local area where it is applied, but not on a global scale. Further,
all TDOs are flagged as non-persistent, and over time, the SDRI Tracing and Tracking
Service overwrites the oldest TDOs on a tag with newer traces if memory space is short.

In our prototypical implementation, we replaced the timestamp in the TDO with a
trace counter serving as logical clock to obtain a more compact, memory-space-saving
representation. This was feasible since it is usually only necessary to locally distinguish
the age of detected TDOs belonging to the same trace, which we achieve by applying
a sliding-window approach. In addition, we adapted the TDO overwrite strategy to se-
lecting a random TDO for replacement, as the use of logical clocks no longer allows to
identify the oldest TDO on a tag. Memory-wise, we used 1 byte for the trace ID and
one for the trace counter (with a window size of 12) per basic TDO, which fit into a
single slot of our physical RFID tag memory.

If tracing is active, new TDOs are stored in a redundant fashion on the RFID tags at
the current position of the MUD (by using the Local Data Sharing service) at a well-
defined update rate (specified in milliseconds). For preventing repetitive trace updates
at the same physical location, which would lead to a discontinuity of the trace counter
values, the IDs of the locally detected tags are cached. A new TDO is only written to
the SDRI if at least K percent of the local tag IDs have changed. Concretely, we used a
trace update rate of 500 ms and set the update tolerance to K = 50%.

The advanced tracing mode uses position information (e.g., obtained from the Posi-
tion Manager or from a third-party positioning service) to create an augmented trace:
the individual trace data objects are augmented with the current information about
direction (orientation), change of direction, and speed of the MUD.

Tracking mode. The tracking mode of the SDRI Tracing and Tracking Service enables
a MUD, the follower, to follow a trace by detecting the corresponding TDOs in the tags
of the SDRI. We call the MUD that previously laid the trace the forerunner. Initially,
the forerunner has to reveal its randomly chosen trace ID of the trace to the devices
that are to become its followers, and to inform them about potential starting points for
picking up the trace (which are not necessarily equal to the starting point of the trace).



76 J. Bohn

Once a follower has detected or rediscovered the trace (i.e., tags in the SDRI which
contain a TDO with the forerunner’s trace ID), the follower repeatedly searches for tags
with more recent trace information and moves into this direction. More precisely, the
follower continuously seeks TDOs of the wanted trace ID with either a more recent
timestamp, or with a higher trace counter value (based on the counter window calcu-
lated using modular arithmetic). In our system, the detected trace counter values for a
specified trace are displayed in a graphical user interface window (GUI). If an RFID
tag map of the prototypical SDRI is available, the GUI visualizes the tags of the trace
that have been detected so far, and highlights the most recent trace information. In case
of an augmented trace, the GUI also displays the augmented information, such as the
current direction and change of direction (as numerical values and visually by means of
an arrow symbol).

4.3 SDRI Positioning Service

The SDRI Positioning Service enables the MUD to store position information to or
to retrieve it from individual RFID tags of an SDRI, either using the physical on-tag
memory or a remote virtual tag database.

Calibration mode. For the calibration of the SDRI with position information, the
SDRI Positioning Service supports two modes of operation: Firstly, the exact calibra-
tion mode allows the user to calculate the individual tag positions of all RFID tags of
an SDRI template at once, based on two manually entered reference positions per tem-
plate. The determined exact tag positions are then stored on the physical tags and/or
in the virtual tag database. The physical tag calibration procedure is supported by a
tool that shows the progress and status of the calibration with the help of a graphical
display.

Secondly, the incremental calibration of the SDRI uses the position information of
a third-party positioning service to update the position coordinates on the individual
tags by calculating a new weighted mean as described in Sect. 3.5. This procedure
can be performed in a collaborative fashion by independent MUDs. In the process, the
accuracy of individual tag position coordinates usually increases with the number of
positions that are stored on the respective tags: as the actual positions of the MUDs
performing the calibration are typically scattered around individual tags, the errors of
the single position values that are averaged tend to cancel each other out.

Positioning mode. The implemented position calculation or positioning procedure of
the SDRI Positioning Service uses the positioning procedure of the Position Manager:
First the tag position coordinates stored on the single RFID tags within antenna range
are retrieved. Then the arithmetical mean of the obtained single tag position coordinates
is calculated and used as the estimated position (x, y, z) of the MUD.

4.4 Experimental Results

We performed our experiments by pushing the trolley at a constant speed along the
marked test track (Fig. 2). We further calibrated the tags of the SDRI with local posi-
tioning coordinates using the exact calibration tool.
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Efficiency of virtual and physical tag memory access. For our positioning measure-
ments, we used both the virtual and physical tag memory.

For accessing the virtual tag memory, which was maintained in a database on the
MUD itself, it was sufficient for the ERW service to retrieve the IDs of all RFID tags
within antenna range with a single command call (identify). The duration of the
identify command was independent from the number of tags within range, and took
approximately 200 ms on average (using 16 time-slots for multi-tag-detection as part of
the anti-collision protocol of the reader). This enabled a maximum rate of up to 5 Hz
for multi-tag detection and subsequent position calculation.

The efficiency of the physical tag memory was more than one order of magnitude
lower, since our particular RFID hardware required sequential scans for reading out a
data slot: one identify command followed by a separate read command for each
detected tag. In our implementation, we needed two physical memory slots to store po-
sitioning coordinates on a tag. Therefore, for attempting to read the two data slots from
four RFID tags detected during an inquiry, the duration of the scan varied from ap-
proximately 2 seconds (8 successful reads), if no errors occurred, to up to 5 seconds (8
failed reads) in the worst case if all eight sequential read operations failed. These num-
bers are based on timing measurements for successful and failed attempts for reading a
single data slot, which for our RFID hardware were approx. 250 ms and 600 ms respec-
tively. However, if we used a more advanced RFID system that supported the direct and
parallel reading of a data slot from multiple tags in range without a prior identify
operation, the duration of the physical tag memory access would be reduced to the order
of magnitude of the duration of the virtual tag memory access.

Accuracy of the positioning procedure. Due to the comparably slow physical tag
memory access of our RFID hardware, we used the virtual tag memory for our
experiments. We performed three test runs at a speed of 50 cm/s, using exact manual
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measurements of the test track as reference (Fig. 3). The resulting mean absolute po-
sitioning error was approx. 15 cm. Given our specific configuration, the maximum tol-
erable speed of the trolley is 2.5 m/s, which is determined by the tag inquiry time of
approx. 200 ms (required by the ERW service for determining the tag IDs for access-
ing the virtual tag memory) and the length of the antenna field in moving direction of
50 cm.

5 Collaborative SDRI Mapping Prototype

The prototypical Collaborative SDRI Mapping system has two main tasks: The local-
ization and mapping of RFID tags in an SDRI by means of autonomous vehicles, and
the merging of overlapping partial RFID tag mappings, which were constructed inde-
pendently from each other by these vehicles as part of a collaborative effort.

We do not aspire to contend with state-of-the-art solutions for the general collabo-
rative map-making problem, which has been in the focus of research in the domain of
mobile robots for decades (cf. to the work by Burgard, Fox, et al. [7, 8], for instance).
Our primary goal is to demonstrate the feasibility and practicability of using a super-
distributed RFID tag infrastructure for the realization of collaborative activities, which
is not considered by traditional map-making systems. In contrast to our approach, RFID
tags for positioning have so far only been used in the function of dedicated artificial
landmarks on walls or floor spaces, providing auxiliary support to dedicated position-
ing and navigation systems [9, 10, 11].

5.1 Prototype Description

The Collaborative SDRI Mapping prototype consists of the following components: a
model vehicle, a prototypical SDRI, an on-board vehicle control application (for eva-
sive driving and dead reckoning), an off-board RFID tag mapping application, and a
stand-alone collaborative map-merging application for fusing partial map observations
obtained during independent test runs.

The model vehicle was constructed using Lego Mindstorms [12] technology. It is
self-propelled, featuring two actuated parallel wheels in the back (each equipped with
a rotation sensor and an electrically powered motor) and one castor wheel in the front
for stabilization. A bumper sensor connected to a front bumper is used for collision
detection. An on-board LEGO Mindstorms RCX controller hosts the software for con-
trolling the motors of the vehicle, and for monitoring the rotation and bumper sensors.
In addition, the model vehicle is equipped with an on-board RFID reader (Fig. 4), and
an RFID antenna2 mounted at the bottom at 1 cm distance from the floor space (Fig. 5).
Due to the size of the model vehicle, the vehicle control application was executed on a
separate notebook computer, which was connected to the RCX controller and the RFID
reader by cable.

For obtaining a prototypical SDRI test area, we evenly distributed 32 mu-chip inlets
across a wooden panel of the size of 50 cm×50 cm (Fig. 4). This corresponds to a
tag density of 128 tags/m2. Each mu-chip tag features a unique 128-bit ID stored in its

2 Manufacturer: Hitachi Kokusai Electric Inc., model: MRE200 No. 1010 and PA1-2450AS.
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Fig. 4. Model vehicle with mu-chip reader on
top of the Lego RCX, within the prototypical
SDRI tagged with mu-chip RFID inlets

Fig. 5. Bottom view of the model vehicle pro-
totype showing the wheel configuration, front
bumper, and the mu-chip antenna

read-only memory (ROM). The test area of was rounded off with a solid wooden barrier
to mark off its boundaries.

The on-board vehicle control application is executed on the RCX controller and
performs the following actions: It triggers an evasion manoeuvre whenever the bumper
sensor connected to the front bumpers reports an obstacle. It also continuously monitors
the two rotation sensors and calculates the current position by means of a basic dead
reckoning algorithm. The RFID tag mapping application is executed off-board on the
notebook computer. It is connected to the RFID reader and continuously maps detected
RFID tags, using the latest dead reckoning position information obtained from the RCX
controller of the model vehicle as reference.

Overlapping partial map observations, which were created during independent map
making runs, are merged with a single, gradually growing comprehensive map of the
area by the collaborative map-merging application. The map merging algorithm uses
an affine coordinate transformation between two arbitrary maps with different local (or
global) coordinate systems. The transformation is unambiguously defined by a transla-
tion vector and a rotation angle given two or more overlapping tags (i.e., tags that are
contained in both maps). The affine transformation is calculated numerically using a
least squares metric for minimizing the overall transformation error.

5.2 Experimental Results

Experimental Method and Validation. Four map-making test runs were carried out
in our test area of 2500 cm2. Starting from a random position (which served as the
origin of the local coordinate system for the measurement), the model vehicle drove
along a straight trajectory within the SDRI at a constant speed of 3.6 cm/s. Whenever
the bumpers hit the encircling barriers, the vehicle stopped and performed an approx.
90-degrees turn on the spot, and resumed its straight movement. While driving, the off-
board application recorded the tag IDs together with the corresponding local position
coordinates of the tags detected by the RFID reader on the vehicle. The position coor-
dinates were obtained from the dead reckoning program running on the vehicle’s RCX
controller. Each test run lasted approx. 90 seconds, during which the vehicle performed
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6 turns (each of which took approx. 6 seconds). Thus, on average, the vehicle covered
a distance of approx. 200 cm per test run.

To validate our experimental results, we have manually measured the exact local
position coordinates of all RFID tags in the test area as a reference. To assess the quality
of an experimental RFID tag map, we calculated the overall minimum, maximum, and
mean absolute tag localization error. For an individual tag, the localization error was
determined by calculating the Euclidean distance between its estimated position and its
corresponding exact reference position.

Dead reckoning error. The driving distance of the model vehicle was approx. 0.33 cm
per rotation sensor increment. The average absolute error of the dead reckoning algo-
rithm for an approx. 90◦ turn of the vehicle on the spot was about 4%, and its lateral
drift approx. ± 7 cm per meter during straight driving. When considering several con-
secutive turns, the occurring negative and positive errors partly annihilate each other,
leading to a lower effective error. In our case, the overall error of six consecutive turns
was reduced to approx. 1.4 %, which corresponds to an accumulated drift of only about
2 cm per meter of straight driving.

Tag localization error. The specific RFID antenna we used detected tags inside an
area of approximately 6 by 9 cm around its center point, at approx. 1 cm distance from
the floor space. Since each mu-chip of our SDRI test area covered an area of approx.
78 cm2, only one tag was within antenna range at a time. Therefore, whenever the model
vehicle took its current reckoned position as a position estimate for a detected RFID tag,
the error caused by the uncertainty about the exact tag position within the antenna tag
reception area, which we call tag localization error, added to the dead reckoning error.

In our prototype system, the tag localization error equaled the distance between the
center of the tag reception area of the antenna and the center point of the mu-chip inlet.
Concretely, assuming that the center point of the vehicle is also the center point of the
RFID antenna tag reception area, the mean tag localization error amounted to approx.
2.7 cm. In the worst case, if a detected tag was situated in one of the corners of the tag
reception area, the resulting maximum tag localization error was approx. 5.4 cm.

Tag mapping error. During the mapping, the deviation eTP of experimentally mea-
sured tag position coordinates from the true coordinates, which we call tag mapping
error, is determined by two factors: the error eDR of the dead reckoning system (which
is proportional to the distance traveled since the initial starting position was set), and
the tag localization error eTL, which depends on the properties of the RFID hardware
and RFID tag distribution: eTP = eDR + eTL.

Evaluation of mapping procedure. As a result of the four map-making test runs, four
partial maps were created. In the process, on average 11 tags were detected per test
run, and 21 different tags were detected altogether. Each two created maps overlapped
in two or more tags. The resulting tag mapping errors for the tags of each partial map in
comparison to the tags of the exact reference map are shown in Table 2. The average
tag mapping error over four experiments was 4.1 cm, with little variation (standard
deviation σ = 1.4 cm). The overall maximum tag mapping error remained below 8 cm.
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Table 2. Tag mapping errors of four experimentally constructed partial maps

Partial map No. of tags Min. error Max. error Mean error Std. dev. of mean error
1 10 2.5 cm 6.7 cm 4.3 cm 1.3 cm
2 9 1.0 cm 5.2 cm 3.2 cm 1.3 cm
3 11 1.9 cm 7.3 cm 4.3 cm 1.8 cm
4 14 2.0 cm 7.9 cm 4.4 cm 1.3 cm

Average: 11 1.9 cm 6.8 cm 4.1 cm 1.4 cm

Table 3. Tag mapping errors of pairwise merged partial maps

Maps joined No. of Tags Min. error Max. error Mean error Std. dev. of mean error
1+2 15 1.5 cm 8.1 cm 3.9 cm 1.5 cm
1+3 15 1.4 cm 9.2 cm 5.2 cm 2.5 cm
1+4 21 1.0 cm 10.0 cm 4.7 cm 2.4 cm
2+3 17 1.0 cm 7.1 cm 4.0 cm 1.8 cm
2+4 16 1.2 cm 7.9 cm 4.1 cm 1.6 cm
3+4 18 1.3 cm 8.0 cm 4.2 cm 1.9 cm

Average: 17 1.2 cm 8.4 cm 4.4 cm 2.0 cm

Table 4. Tag mapping errors of maps obtained after two consecutive merging operations

Maps joined No. of Tags Min. error Max. error Mean error Std. dev. of mean error
(1+2)+(3+4) 21 0.5 cm 7.6 cm 3.8 cm 1.8 cm
(1+3)+(2+4) 21 1.6 cm 7.6 cm 4.2 cm 1.6 cm
(1+4)+(2+3) 21 0.8 cm 7.7 cm 3.9 cm 1.8 cm

Average: 21 1.0 cm 7.6 cm 4.0 cm 1.7 cm

Evaluation of map merging procedure. To assess the robustness of our map merging
procedure with regard to the order in which overlapping maps are merged, we have
joined the four partial maps in different sequential orders and compared the resulting
minimum, mean, and maximum tag mapping errors.

In a first step, we merged the individual maps pairwise. The results show a slight
increase of the mean tag mapping error to 4.4 cm, with a higher variability (σ = 2.0 cm),
as shown in Table 3. The mean absolute tag mapping error increased slightly to 8.4 cm,
with a new overall maximum error of 10.0 cm. The results differ significantly for each
combined pair of partial maps. An explanation for this observation is that – at this stage
– a better map merging result can be expected for maps that have more tags in common.

In a second step, we merged the previously paired maps. The resulting errors are
shown in Table 4. We can see that the mean tag mapping error stabilized at 4.0 cm, with
a lower standard deviation than in the case of the original partial maps. A stabilization
can also be observed with respect to the minimum and maximum errors. The maximum
tag mapping error after two consecutive map merging operations has even dropped
below the initial values to 7.7 cm. Apparently, independently from the merging order,
the errors with opposite signs tend to partially cancel each other out as the estimated
tag positions of all available partial maps are eventually combined.
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6 Conclusion

Based on an existing service middleware architecture for super-distributed smart
entity infrastructures, we prototypically implemented basic middleware layers and ser-
vices with the help of RFID technology: the Hardware Layer, the Hardware Abstrac-
tion Layer, and the three essential core services Local Data Sharing, Location Manager,
and Position Manager. We demonstrated the application of these services by devel-
oping and evaluating systems for tracing and tracking, positioning, and collaborative
map-making.

The SDRI-based tracking and positioning system we implemented on top of two
core middleware services is fault-tolerant with respect to individual tag failures: (1) it
redundantly stores trace data objects in physical places using the Local Data Sharing
service, and (2) it exploits the data fusion capabilities of the Position Manager, which al-
lows the service to tolerate the unavailability of single tags by interpolating the position
coordinates of the MUD at a physical location. By means of experimental evaluation
we demonstrated that our positioning service provides an average accuracy of approx.
±15 cm at walking speed in our prototypical SDRI with a tag density of 39 tags/m2.
We consider this a promising result and a strong indication for the practicability and
effectiveness of our approach, in particular considering that we used off-the-shelf RFID
equipment that was not optimized for use in mobile environments.

The prototype system for the collaborative mapping of super-distributed smart
entity infrastructures used mu-chip RFID tags as smart entities and low-cost rotation
sensors for implementing the dead reckoning system. We experimentally evaluated an
application for merging partial SDRI mappings created independently by autonomous
MUDs. We observed that the mean tag mapping error stabilized on the level of
the corresponding errors of the original individual mappings, independent from the
order in which the mappings were combined. The maximum and particularly the min-
imum tag mapping errors were even reduced in the process, which we consider
evidence for the feasibility of our approach. We conclude that the collaborative map-
ping prototype provides an encouraging example for the general idea of employing
super-distributed smart entities as a substrate for the realization of collaborative
activities.

Currently we are in the process of investigating means for performing the dead
reckoning itself with the help of a pure SDRI-based middleware service, to free the
MUD from its dependence on the rotation sensors. Besides, we intend to further de-
velop our mapping system to make use of the Location abstraction provided by our
Location Manager implementation to improve the robustness against individual tag
failures.
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Abstract. Mobile computing systems are increasingly difficult to configure, 
operate, and manage. To reduce operation and maintenance cost plus meet 
user’s expectation with respect to QoS, the computing system and its building 
blocks should be self-managed. When addressing the challenges associated with 
architecting self-managed mobile computing systems, one must take a holistic 
view on QoS management and the heterogonous entities in the mobile environ-
ment. This paper presents a novel model that combines resources and context 
elements. It helps us in modelling the environment and design resource and 
context managers that support functions for adapting the application to changes 
in the environment. The model is applied on a video streaming application for 
mobile terminals: i) resource and context elements are classified, ii) their QoS 
characteristics and context properties are modelled, and iii) weakly integrated 
resource and context managers are presented and validated.  

1   Introduction 

System developers have embraced components as the most suitable software entity 
for developing mobile computing systems. The focus within component-based soft-
ware engineering has been on modelling the functional properties and developing 
suitable execution environments [1]. The research community, on the other hand, has 
worked on architectures, principles and mechanisms for dynamic adaptation of con-
tent, middleware services, and applications, e.g., the mobile middleware platforms 
ANSAware [2], Odysse [3], BARWAN [4], ReMMoC [5], MobiPADS [6], and 
MADAM [7]. Researches have also started to take a more holistic view on computing 
systems to address the increasing complexity system administrators face as computing 
systems are becoming tighter interconnected and opened up for connections from 
Internet and wireless systems. The vision is to make the computing system and its 
building blocks self-managed [8], and free system administrators from the details of 
configuration, operations, and maintenance, plus provide users with services that meet 
their expectations to performance and reliability. A self-managed system maintains 
and adjusts itself in the face of changing components, loads, system failures, and user 
demands. Properties of such a system are: self-configuration, self-optimisation, self-
healing, and self-protection. To achieve this existing concepts and technologies must 
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be combined to a system architecture that has the desired self-management properties 
[9][10]. One also needs to develop generic models and mechanisms that apply across 
all building blocks. The reflectiveness of dynamic middleware platforms is such a 
mechanism (see research on a reflective J2EE server [11]).  

We argue that quality of service (QoS) management of component based applica-
tions is part of the self-configuration and -optimisation properties. Hence, the need for 
taking a holistic view on technologies and mechanisms also applies to QoS manage-
ment support in middleware. Our work addresses this problem, which has resulted in 
a new reflective component based architecture that integrates QoS-specific elements 
[12][13]. Mobile terminals and wireless communication systems available today offer 
no QoS guarantees, so adaptation mechanisms are needed to maintain QoS. Work on 
dynamic mobile middleware have either used resource information (e.g., [2][3][24]) 
or context information (e.g., [5][6][16]) to decide the correct adaptation of the appli-
cation and middleware. In more recent work [7], both resource and context managers 
have been included in the mobile middleware. The result is powerful designs, but 
since the holistic view is missing, the resource and context managers are designed as 
two enclosed entities with different interfaces, separate wrappers to sensors and moni-
tors, and two repositories for storing of resource and context information. In sum, 
existing architectures and designs limit the QoS management mechanisms to adapt the 
application to either changes in context or fluctuations in resource availability, and 
not according to a larger picture of the environment.  

Hence, the remaining research problem is: how to combine resource management 
and context awareness mechanisms and handle resource and context information in 
way that contributes towards the self-management vision? In this paper, we apply the 
scenario analysis method to identify the requirements to and validate the design of 
resource and context managers for a QoS-aware mobile middleware. We choose to 
combine the streaming application domain and the mobile technical domain, since 
this gives a scenario where QoS mechanisms and dynamic middleware are particu-
larly useful. The implementation of the resource and context managers are used in our 
prototype; QUality of service aware component Architecture for MOBILE computing 
(QuAMobile). A combined resource and context model is a contribution towards the 
vision of self-managed systems, in particular the QoS management aspects of self-
configuration and -optimisation, for two reasons. Firstly the model defines concepts 
useful in analysis models of the environment and the resource and context manage-
ment mechanisms. Secondly the resulting resource and context managers provide a 
complete and consistent data set, which ensures that the middleware makes available 
the most suitable application configurations to the users.  

In the following we start by discussing related work, followed by, in Sect. 3, a de-
scription of our QoS-aware mobile middleware prototype. Sect. 4 presents a com-
bined resource and context model, which in Sect. 5 is applied to a scenario with a 
video streaming application for mobile terminals. Validation and qualitative assess-
ment of the combined model and the resource and context manager implementations 
is presented in Sect. 6. Lastly, Sect. 7 gives some conclusions and directions for our 
future research. 
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2   Related Work 

Mobile middleware platforms that adapt middleware services, applications, or support 
self-adaptive applications, must have processing and delivering mechanisms of either 
resource or context information. For instance Odysse [3] delivers resource informa-
tion about changes in the mobile network to interested applications. Similarly the 
architecture in CARISMA [16] defines wrappers, to sensors and monitors, which 
encompass post-processing with filters and event messages that deliver context in-
formation to the applications according to triggers/policies set by the applications. 
ReMMoC [5] also gather context information about available services (detected by 
standard service discovery protocol) without aggregation. It uses the information to 
trigger the (re)configuration of the binding protocol. MobiPADS [6] is taking this a 
step further and has an event notification model that supports hierarchical composi-
tion of events, i.e., a particular combination of information about CPU, memory, and 
network. The BARWAN project [4] adds aggregation to the basic processing and 
delivery mechanisms, and combines context information about the execution envi-
ronment with resource information about the wireless network. This highlights the 
importance of combining both resource and context information for controlling  
the adaptation in the mobile domain. 

None of these mentioned mobile middleware platforms employ a general model of 
resources and context elements. The result is inflexible applications and middleware 
services that can not use new resource and context elements as they appear in the 
environment. Furthermore, without a common data model for resource and context 
information, it is difficult to integrate resource and context managers with other QoS 
management mechanisms.  

A general resource model has been implemented in OpenORB, an enterprise mid-
dleware platform [20]. The resource model positions resource representatives in a 
hierarchy, physical resources are at the bottom and logical resources that encompass 
several resources at the top. The strength of a hierarchical resource model is that re-
source requirements can be expressed at the granularity level suitable for the applica-
tion, but the model does not easily lend itself to analysis models of the environment or 
resource management mechanisms. This is, however, addressed in the general re-
source model (GRM) specified by the object management group (OMG) [19]. Due to 
the generality of the model and the support for new extensions, GRM is chosen as the 
starting point for the common resource and context model presented in this paper. 
Work that has utilised a general context model is the two context-aware middleware 
platforms AmbiSense [21] and Contextfab [26], designed for ubiquitous computing. 
Their implementation of a context model can store context information for any con-
text type. Another context model is presented by the MADAM project [7], which also 
adopts a resource model from the object management group (OMG). The result is a 
powerful and flexible design, but since the applications are (re)configured to a combi-
nation of user and system context, it lacks resource QoS characteristics modelling and 
mechanisms for processing, delivering and storing resource QoS characteristics.  

In sum related work highlights the need for a combined resource and context 
model that can be applied on analysis models of the environment plus resource and 
context managers. This will ensure that the middleware has the appropriate wrappers 
to sensors and monitors, and that the resource and context managers can handle the 
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required resource and context information. In addition, the middleware can provide 
QoS management mechanisms with a complete data set of both resource and context 
information.  

3   QuAMobile –A QoS-Aware Mobile Prototype   

A new domain independent QoS-aware middleware platform has been developed, 
which is based on an open reflective component architecture, called QuA (Quality of 
service-aware component Architecture). To study the suitability of the architecture for 
the mobile domain, the baseline (see code and platform independent model in [25]) is 
extended with domain specific concepts and mechanisms. The result is QuAMobile. If 
the prototyping of the platform is encouraging, the gained insight will enable us to 
generalise and extend QuA accordingly. To make QuAMobile executable on mobile 
terminals and large servers, the architecture has a small core, with hooks where QoS 
management mechanisms are inserted as plug-ins [13][14] (see Figure 1). 

 

 

Fig. 1. Middleware overview 

QuAMobile makes QoS decisions that take advantage of runtime information, to 
select the service configuration suitable for the current context and resource availabil-
ity and that meets the user's QoS requirements. Fundamental in this approach is to 
model the application as service types and at runtime let the middleware select among 
alternative implementations of these types. The alternative implementations, each 
with different QoS characteristics, are provided by application developers and de-
ployed in a repository, together with associated service plans. Service plans play a 
central role in QuAMobile and serve four purposes: i) provide the link between a 
service type and an implementation of the type; ii) specify service composition and 
parameter configuration of the implementation; iii) specify dependencies to context 
elements; and iv) describe the QoS characteristics of the implementation.  

Users specify their QoS requirements in a user QoS specification using dimen-
sional utility functions, which give users the means to specify their preferences at a 
high abstraction level. When a user requests a service, QuAMobile invokes the ser-
vice planner plug-in (see Figure 1) with the service type name and the dimensional 
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utility functions. The planner asks the broker to provide plans that implement the 
requested type, and the broker searches the repository for relevant plans. The results 
are one or more plans being returned to the service planner, each with different re-
source requirements and QoS characteristics. The returned plans specify composition 
of components and their parameter configurations, which the service planner com-
bines into service configurations. The service planner now uses the dimensional util-
ity functions from the user and the QoS prediction functions in the service plans [14] 
to assess the suitability of each service configuration. Since the context manager and 
resource manager plug-ins implements a combined resource and context model, the 
service planner retrieves from the context manager a data set with context and re-
source information. This enables the service planner to select the service configura-
tion that provides the highest utility for the user in the current context and resource 
situation [12]. For each dependency the service configuration has to context elements 
in the environment, the service planner sets triggers in the context manager. Similarly, 
triggers are set in the resource manager for relevant resource QoS dimensions. The 
service planner also uses the resource manager to check if the resources can sustain 
the additional load and to make resource reservations, if supported by the operating 
system or the communication system. Next, the configuration manager uses the se-
lected service configuration to instantiate and configure the requested service. If the 
context changes or the resource load fluctuates, triggers, in the context and resource 
managers, send to the service planner a message describing the event. If the user’s 
QoS requirements are no longer met, the service planner will choose an alternative 
service configuration (if available) that gives a higher utility. Dynamic reconfigura-
tion of the components configurations and the component compositions are managed 
by the adaptation manager. 

The plug-ins like QuAMobile, are implemented in Java (JDK 5). Service plans for 
the components, service compositions, and parameter configuration of the video 
streaming application are deployed in eXtensible Markup Language (XML) files, and 
the service types in Web-service description language (WSDL) files. User service 
requests, with QoS requirements and service type name, are entered into a Web-based 
presentation layer, which through an applet and a user datagram protocol (UDP) 
socket interact with the business layer where QuAMobile components are created and 
executed.  

4   Combined Resource and Context Model 

The overall objective with a context and resource model is to define concepts and 
their relationships that are useful in analysis models of the environment and the re-
source and context management mechanisms. To achieve this objective the combined 
model shall: i) allow for classification of resources and context element in the envi-
ronment according to their behaviour, ii) support quantification of the QoS character-
istics and properties of resources and context elements, and iii) lend itself to models 
of resource and context managers.  

During our research we have identified two resource models for middleware plat-
forms [19][20], where the general resource model (GRM) [19] from OMG is consid-
ered most suitable for the combined model. It meets our three requirements and is the 
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most comprehensive resource model. GRM includes a core model (see Figure 2) 
which has extensions for modelling of resource types, resource usage, and resource 
management. The core model is a general model that can be applied to all resources 
and it makes a distinction between resource types and their runtime instances, ena-
bling designers to model unknown resources at design time. Resource is the basis 
element, which represents a physical or logical resource that offers one or more ser-
vices; ResourceService. Each service is associated with both functional and non-
functional properties, where QoSCharacteristic represents the quantifiable quality 
properties of the service. The runtime representation of the basis element resource is 
ResourceInstance, of the resource service is ResourceServiceInstance, and QoSValue 
is the quantification of the QoS characteristic.  

For the context model we seek a model that, as stated in the beginning of this sec-
tion, supports classification of the different entities in the environment. This covers 
entities with static and dynamic properties plus logical and physical entities that offer 
services. Hence, a resource is part of an entity in the context, establishing a relation-
ship that connects the resource and context models together.  

Existing context models, e.g., [21][22][23][26], do not meet our requirements, as 
they tend to be designed for location information and presence of resources at the 
different locations. Furthermore, properties of the entities are not included in the mod-
els. Therefore, a new context model must be defined. First, we make a distinction 
between general entities in the environment and those that are relevant for QoS man-
agement. Second, a general entity may consist of parts where one or more of these 
parts are relevant for QoS management. Therefore, in the model a ContextElement is 
the relevant aspect of an Entity in the environment. Each Entity has some  
ContextProperties, where the ContextValues are the quantification of these Con-
textProperties for the ContextElement. Lastly, since ResourceInstances also exists in 
the environment, a Resource is modelled as part of an Entity (see Figure 2).  

 

Fig. 2. Combined resource and context model 

5   Applying the Combined Resource and Context Model  

The concepts defined in the combined resource and context model provides a suitable 
framework for i) defining resource and context types according to their functional 
properties, ii) specifying resource QoS characteristics and context properties to in-
stances of the resource and context types, and iii) designing resource and context 
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management mechanisms, e.g., gather, process, deliver & store data about the envi-
ronment, admission control, and resource reservation. To illustrate the usefulness of 
the combined model, it is applied to a scenario of a video streaming application for 
the mobile domain.  

5.1   Video Streaming Scenario 

Recent advances in wireless networking technologies have enabled the deployment of 
video streaming applications in the mobile domain, which raises several new chal-
lenges in order to achieve best possible playback at the terminal. Only aspects of the 
scenario that are relevant to resource and context management is presented here. For a 
detailed description of the scenario, please refer to our technical report [17]. 

Clients access the video server from different terminals types: home theatres, lap-
tops, and personal digital assistants (PDAs), which are connected to the Internet over 
the access networks: fixed local area network (LAN), wireless LAN (WLAN), and 
general packet radio service (GPRS) in GSM (see Figure 3). IP mobility management 
enables the mobile terminals, PDA and laptop, to roam seamlessly between the access 
networks. The main challenge, with respect to QoS, is to satisfy user preference and 
efficiently exploit available resources in different contexts: home theatre-LAN, lap-
top-LAN, laptop-WLAN, PDA-WLAN, PDA-GPRS, when network conditions are 
changing and terminals roam between access networks. 

 

 
Fig. 3. System overview 

Each user has their own opinion of what high quality video is, e.g., different values 
for QoS dimensions like frame rate, resolution, and colour depth. This may result in 
parallel video streams with different characteristics and requirements. Hence, the 
application must be adapted to the user's QoS requirements and the capabilities of all 
the resources and context elements along the data path from server to client.  

QoS management and reconfiguration mechanisms work together to decide when, 
what, and how to adapt the video streaming application. The foundation for QoS  
management is end-to-end QoS prediction and allocation. In our approach QoS is a 
calculated by a set of functions that establish relationships between QoS at different 
abstraction levels (context-resource  application  user). QoS prediction and 
allocation functions for the components, service compositions, and parameter con-
figurations (to the video streaming application) are described in the technical report 
[20]. These functions take data about resources and context elements as arguments. 
The basis for this is a model of the QoS characteristics and properties of the context. 
This again requires that the resources and context types for classification of the  
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entities in the environment to the video streaming application are defined, correspond-
ing to the ResourceInstances and ContextElements of Figure 2.  

5.2   Resource and Context Types 

OMG has in [19] (the standard that specifies the core resource model) defined three 
resource types, which are both general enough and sufficient for classifying the re-
sources in the video streaming scenario. The three resource types are i) Processor: 
physical computational resource that is capable of storing and using code and data; ii) 
Communication: logical resource that provide connectivity and transport of bits be-
tween two locations; and iii) Device: logical or physical resource that is not classified 
as processor or communication resources. Figure 4 shows the three resource types 
including the ResourceInstance interface that all types implement and setter/getter 
methods for QoSValues.   

Likewise, one must have context types for classification of entities in the system 
context. We have not found any general definitions of context types in related work, 
and therefore choose to define our own context types for video streaming scenario. 
The result is seven context types, illustrated in Figure 5: i) LocalComputation: local 
physical entity for computing and temporarily storing of data and code, i.e., CPU and 
memory; ii) PermanentStorage: logical entity for storing and retrieving permanent 
data and content, i.e., disc; iii) RemoteStorage: remote logical entity for storing and 
retrieving permanent data and content, i.e., streaming server; iv) Network: logical 
entity representing a data bearer service provided by the access network, such as 
GPRS packet switched; v) LocalDisplay: physical entity for presenting computation 
result or content, e.g., screen or ASCII display; vi) LocalInput: physical entity for 
entering of user data and QoS requirements, like a touch screen and keyboard; vii) 
ExecutionEnvironment: logical entity the application and middleware is running on, 
i.e., the combination of the operating system, virtual machine, and interpreters.   
    The notion of context and resource types is included in the combined resource and 
context model (see Figure 2). Furthermore, since the model specifies that a resource 
instance is part of a context element, a resource type must also be part of a context 
type. Thus, the three context types LocalComputation, Network, and RemoteStorage 
inherit the resource types Processor, Device, and Communication.  
 

 

Fig. 4. Resource types  
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Fig. 5. Context types 

5.3   Resource QoS Characteristics and Context Properties 

To model the QoSCharacteristics and ContextProperties of the classified ResourceIn-
stances and ContextElements, we adhere to the uniform modelling language (UML) 
profile for QoS modelling [18]. Because it is a formal specification that defines the 
required terms and meta-models, and it ensures that models can be integrated into 
other UML compliant design models, software development methods, and tools. First 
the resource QoS characteristics are modelled, which covers resource instances on 
both the mobile terminal and the server (see Figure 6). The QoS characteristics are 
quantified by QoS values along QoS dimensions. 

 

 

Fig. 6. Resource QoS characteristics 
 

<<QoSCharacteristic>>
Communication

<<QoSDimension>>
dataRate: integer 
{direction(increasing), unit (kB/s)}

<<QoSDimension>> 
BER: real 
{direction(decreasing), unit(p)}

<<QoSDimension>>
networkCoverage: [0.0, 1.0] 
{direction(increasing), unit(p)}

<<QoSDimension>>
networkAvailability: [0.0, 1.0] 
{direction(increasing), unit(p)}

<<QoSCharacteristic>>
Device

<<QoSDimension>>
queueDelay: real 
{direction(increasing), unit (ms)}

<<QoSDimension>>
availability: [0.0, 1.0] 
{direction(increasing), unit (p)}

<<QoSCharacteristic>>
Processor

<<QoSDimension>>
remainingCapacity [0..100]: 
integer {direction(increasing), 
unit(percentage)}

<<QoSDimension>>
freeMemory: integer 
{direction(increasing), unit (MB)}
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Fig. 7. Context properties 

In general, context information is data about the environment that the user is in, but 
in the video streaming scenario only data about the technical context is required for 
QoS management. Figure 7 shows the resulting model of all seven context property 
types identified in the video streaming scenario. The model introduces two new UML 
stereotypes. ContextProperty represents a quantifiable property of the environment, 
and PropertyType is the quantification of the context property. The context properties 
specify what in the system context that the mobile middleware must gather and proc-
ess data about. For the terminal this includes the memory, CPU, screen, execution 
environment, input devices available to the user, and disk for local permanent storage. 
On the server side there is no need for collecting data about the screen or user input 
devices. Instead data about the secondary storage server is required. 

5.4   Resource and Context Management Plug-Ins for QuAMobile 

QuAMobile has only one requirement to the design of the resource and context man-
ager plug-ins (see Figure 1); all operations specified by the (core) interface classes 
shall be implemented. Design decisions like tight or weak integration of resource and 
context management mechanisms are left to the plug-in designer(s), who have the 
knowledge about the QoSCharacteristics of the resources and ContextProperties of 
the context elements in the environment.  

For our video streaming scenario the resource and context manager must gather, 
process, trigger notifications, and store QoS and context values according to the re-
source QoS dimension and property type (see Figure 6 and 7) of the resource and 
context types (see Figure 5). Furthermore, aggregation of context values before trig-
gering a notification plus admission control of resources, are  functional  requirements  

<<ContextProperty>>
Network

<<PropertyType>>
NetworkUtilFactor: integer, 
Unit: no unit

<<PropertyType>>
Layer2SDUsize: integer, Unit: B

<<ContextProperty>>
ExecutionEnvironment

<<PropertyType>>
envirType: String, Unit: no unit

<<PropertyType>>
envirVersion: String, Unit: no 
unit

<<PropertyType>>
osType: String, Unit: no unit

<<PropertyType>>
osVersion: String, Unit: no unit

<<ContextProperty>>
LocalComputation

<<PropertyType>>
RAMsize: integer, Unit: MB

<<PropertyType>>
UtilisationFactor: integer, 
Unit: no unit.

<<ContextProperty>>
Screen

<<PropertyType>>
colour: integer, Unit: bit

<<PropertyType>>
ResolutionVertical: integer, 
Unit: pixels

<<PropertyType>>
ResolutionHorisontal: 
integer, Unit: pixels

<<ContextProperty>>
RemoteStorage

<<PropertyType>>
BlockSize: integer, Unit: B

<<PropertyType>>
RotationTime: integer, Unit: ms

<<PropertyType>>
Throughput: integer, Unit: MB/s

<<PropertyType>>
SeekTime: integer, Unit: ms

<<ContextProperty>>
UserInput

<<PropertyType>>
inputDevice: String, Unit: no 
unit

<<ContextProperty>>
PermanentStorage

<<PropertyType>>
StorageSize: integer, Unit: MB 
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Fig. 8. Resource and context management design with test tool 

from the service planner plug-in. To meet these requirements, the integration of re-
source and context managers is limited to gathering, post-processing, and storage. 
Remaining functionality in the two managers is kept separate.  

Figure 8 shows the design of the resource and context management plug-ins. To 
avoid strong dependencies between the classes, only the context plug-in has depend-
encies to the other plug-in. The storage objects for QoS and context values are in the 
package contextElements, which contains instances of the classes shown in Figure 5, 
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i.e., values are stored according to resource and context types. These objects form a 
context repository that can be extended with statistical analysis tools, for trends and 
quality estimation of the values. Wrappers and post-processing are configured by the 
resource and context managers to pass through the QoSDimensions and Proper-
tyTypes specified in the model of the resource QoS characteristics and context  
properties, previously shown in Figure 6 and 7. 

Triggers for delivery of notification messages about changes in the environment 
are set by invoking the setTrigger() operation, with the resource QoS dimension on 
the resource manager or context property on the context managers, together with a 
call-back reference of type IServicePlanner. 

For simulating changes in the environment, data about each entity are fed into the 
wrappers using a test tool. The tool’s graphical user interface (GUI), depicted in Fig-
ure 8,  includes text, values, and unit fields for all property types and resource QoS 
dimensions in the video streaming scenario. Even though the design of the resource 
and context managers was easy to implement, one should not underestimate the tech-
nical challenges associated with developing sensor and monitoring software. 

6   Validation and Assessment 

Tests of the implementation were limited to validating the behaviour. Since all classes 
in the resource and context manager plug-ins are instantiated at load time and  
the signal path goes through maximum four classes, there was no need to test the 
performance of the design. Instead the test tool was used to insert data directly into 
the wrappers, and the resulting data set in the storage objects and notification mes-
sages was validated. This included filtering of data along unknown QoS dimensions 
and property types. The storage objects were accessed by the service planner and used 
to perform QoS prediction, and the triggers were set according to the user QoS re-
quirements, dependencies to properties of the context, and minimum resource QoS 
requirements. 

The combined resource and context model is designed to answer the research prob-
lem stated in Sect. 1: how to combine resource and context management mechanisms 
and handle context and resource information in way that contributes towards the self-
management vision? This problem is based on the argument that the self-management 
vision [8] is achieved by applying generic models and mechanisms across all the 
building blocks in the computing system [9][10]. From applying the generic model 
and validating the implementation we make the following observations. The com-
bined model helps designers with classification of all entities in the environment and 
modelling of both resource QoS characteristic and context properties. It simplifies the 
design of the resource and context managers by allowing for a weak integration be-
tween resource and context managers. Most importantly the resulting resource and 
context manager provide during runtime a complete data set of all relevant resources 
and context elements in the environment.  This ensures that the mobile middleware 
has a holistic view of the environment and can find suitable configurations and  
optimise according to the context and resource availability. One possible weakness in 
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the validation is that the model is applied to only one scenario. We believe that this 
weakness is limited, since the mobile domain is associated with a broad range of dif-
ferent resource and context elements and the streaming domain has stringent QoS 
requirements. Furthermore, there are no limits to the definition of an entity in the 
combined resource and context model. An entity can range from traditional hardware 
related resources to more abstract entities like other applications. As long as the enti-
ties can be classified and the non-functional properties quantified, the model can be 
utilised. Hence, it is our assessment that the combined model successfully answers the 
research problem and contributes towards the self-management vision and in particu-
lar QoS management aspects of self-configuration and –optimisation.   

7   Conclusions 

This paper argues that there is the need to take a holistic view on technologies and 
mechanisms to achieve the goal of self-configuration and -optimisation. The scope 
was limited to QoS-awareness, which we argue is central in achieving the self-
management property.  To answer the defined research problem, we use a combined 
resource and context model that specify concepts needed in analysis models of the 
environment and the resource and context managers. The essence of the proposed 
model is that resources are provided by the same entities as the context elements are 
part of. Thus, analysis models of the environment and resource and context managers 
include both the QoS characteristics of the resources and properties of the context 
elements.  

The implementation and tests of the resource and context management mechanisms 
showed that the design was both useful and easy to apply on an application with de-
pendencies to context elements and QoS requirements. It is also evident that the pre-
sented resource and context management design is only one possible solution. One 
can design other solutions that also will work. Though, our assessment is that a QoS-
aware mobile middleware platform will benefit from applying a combined resource 
and context information, since this gave the QoS mechanisms a complete overview of 
all relevant entities in the environment and their non-function properties.  

For a fully self-configurable middleware one need to have a central mechanism 
that can plan and re-plan the service configuration and make decision on which con-
figuration that is best suited. Future work will look more into the architectural impli-
cations of such a centralisation, and the framework needed for supporting service 
planning.   
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Abstract. We present a GUI-based C++ toolbox that allows for build-
ing distributed, multi-modal context recognition systems by plugging to-
gether reusable, parameterizable components. The goals of the toolbox
are to simplify the steps from prototypes to online implementations on
low-power mobile devices, facilitate portability between platforms and
foster easy adaptation and extensibility. The main features of the tool-
box we focus on here are a set of parameterizable algorithms including
different filters, feature computations and classifiers, a runtime environ-
ment that supports complex synchronous and asynchronous data flows,
encapsulation of hardware-specific aspects including sensors and data
types (e.g., int vs. float), and the ability to outsource parts of the com-
putation to remote devices. In addition, components are provided for
group-wise, event-based sensor synchronization and data labeling. We
describe the architecture of the toolbox and illustrate its functionality
on two case studies that are part of the downloadable distribution.

1 Introduction

As context awareness gains popularity and moves towards applications, tools for
the efficient implementation of context recognition systems become even more
important. Such tools need to address a broad range of issues from sensor man-
agement middleware through low-level signal processing and pattern recognition
to high-level context modeling and utilization. We focus on the signal processing
and recognition part. Motivated by the needs of two large industrial projects
sponsored by the European Union (WearIT@Work [1] and MyHeart [2]) we have
developed the Context Recognition Network (CRN) Toolbox for development,
prototyping, and implementation of multi-modal, distributed context recogni-
tion systems. The emphasis of the CRN Toolbox is on three issues:

1. simplifying the step from prototyping (often done with tools such as MAT-
LAB) to real life implementation,

2. easy portability between different devices and sensor systems with a partic-
ular focus on low-power mobile devices, and

3. facilitating the reuse of components and easy extensibility/adaptation of
existing recognition systems.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 99–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Problem Description. The design of the CRN Toolbox is based on a system model
that has been studied by our groups on a theoretical level in [3]. We assume a
set of sensors distributed on the user’s body and in the environment, each with
its own data rate and format. A typical context recognition application consists
of a series of filters, feature extractions, and classifications successively applied
to the sensor data. In general, the processing follows a feed-forward hierarchical
data-flow model with initial computations being applied to the data stream of
each single sensor. Then, the individual data streams are successively fused in
joint features and possible partial classifications until, at the final classifier stage,
a decision is made based on all or most of the gathered data.

From previous experience with context recognition and the requirements of
the abovementioned EU projects we have found the following issues to reoccur
in most implementations:

1. Most applications rely on components from a relatively limited set of fil-
ters, features, and classifiers. The differences between the applications are
(1) the specific combination of such components, (2) the data-flow path,
and (3) component-specific parameters such as sliding window sizes, filter
frequencies, and – last but not least – classifier training.

2. In general, system development begins with data collection followed by offline
experiments with rapid development tools like MATLAB or WEKA [4]. In
advance of any online experiments, the algorithms have to be hard- or re-
coded for the specific platform. If problems occur or some sort of adaptation
is required, the whole cycle restarts from the beginning because experiments
tend to be difficult to conduct with optimized production code.

3. Porting complex context recognition tasks to mobile platforms, such as PDAs
or phones, often requires parts of the implementation to be converted from
floating point to integer because of hardware restrictions. In addition, it
might be desirable to outsource the more computation-intensive higher-level
algorithms to a remote server.

4. The synchronization of data from different sensors can be a major problem.
This involves the merging of data streams with different sampling rates,
finding a common start point for all sensors, and compensating for clock
drifts and other sources of jitter to retain synchronization over longer periods
of time.

Paper Contributions. Based on the above considerations, the central idea be-
hind the CRN Toolbox is to provide a development environment offering (1)
a set of parameterizable filter, feature, and classifier components, (2) a run-
time system that controls the required data flow and handles synchronization,
(3) parameterizable sensor interfaces, and (4) an easy-to-use GUI. With this
system, a specific recognition application can be constructed by selecting the
appropriate components from the GUI, specifying the component parameters
and classifier training data, and connecting the components according to the re-
quired data paths. Extension and adaptation of the application are just a matter
of adding/exchanging components in the GUI. Since sensor details are encapsu-
lated in the interfaces, sensor changes are also easy to incorporate (as long as
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the classifiers are not affected). Different parts of the application can be made
to run on different systems using special TCP/IP-based interface components,
enabling the outsourcing of computationally intensive parts to external servers.
Interfaces are also provided for tools like MATLAB and WEKA. By basing all
computations on an abstract ’Value’ data type equipped with arithmetic, any
application may switch between floating point, fixed point, and integer without
any recoding. Finally, special components are provided for group-wise sensor
synchronization through events and for data labeling.

Related Work. Several research groups have already addressed the issue of on-
line sensor data processing and have proposed modular extensible architectures.
However, none of them cover all the problems specific to wearable and ubiquitous
computing.

Sicheneder et al. [5] from the University of Passau presented a framework that
facilitates the graphical specification and execution of complex signal process-
ing applications with focus on industrial monitoring. In contrast to our toolbox,
this framework does not address the specific requirements of wearable comput-
ing environments such as portability between different devices, outsourcing of
computationally expensive tasks, or abstraction from actual data type. Further-
more, there is no explanation or validation of how distributed processing and
synchronization of multiple sources work.

The Lancaster CommonSense ToolKit [6] is a collection of tools that as-
sist in the communication, abstraction, visualization, and processing of sensor
data. CSTK’s core qualities are its real-time facilities and embedded systems-
friendly implementation. However, it does not support a flexible composition of
the processing entities, synchronization, embedding of tools like MATLAB, or
distributed execution which are all key features of the CRN Toolbox and are
needed for most real-world applications.

IU SENSE [7] is a Java-based approach to a toolkit that allows for real-time
processing, visualization, and analysis of data generated by multiple sensors.
Despite its modular and extensible design it is not suited to run on wearable
devices, mainly because of performance issues.

OSIRIS-SE [8], developed at Umit, is the stream-enabled version of the
hyperdatabase infrastructure for process management that was initially devel-
oped at ETH Zurich. It is focused on reliable data-stream processing in
distributed environments where mobile devices interoperate with stationary com-
puters. It utilizes Peer-to-Peer techniques and is implemented in Java. Due to
the overhead coming from the high-level approach, it can only process simple
algorithms on mobile devices and is not able to adapt optimally to different
hardware.

Triana [9] is a GUI-based data analysis tool developed at Cardiff University.
It is written in Java and provides a large library of analysis algorithms mainly
targeted for particle physics, but also useful for other signal processing applica-
tions. Triana is focused on distributed computing using Grid and Peer-to-Peer
techniques. It lacks most of the features specific for the wearable/ubiquitous
environment described above.
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Another well-known tool is the Context Toolkit [10] from Georgia Tech. Un-
like our CRN Toolbox, it focuses on the application level. Thus, we view it as
complementary rather than a competition to our system.

The area of sensor networks and associated middleware contains a lot of
work that could be useful together with or as an extension to our system. The
EU-funded RUNES project [11] is targeted towards flexible distribution of data
processing tasks in heterogeneous sensor networks. The TinyDB [12] lets the sen-
sor network appear as a database which can be queried with an SQL-like syntax.
SensorWare [13] uses mobile agents that can replicate themselves throughout the
network to gain information. With DSWare [14], applications can subscribe for
events that occur on certain groups of sensor nodes.

2 Toolbox Concept and Implementation

The aim of the CRN Toolbox is to allow distributed multi-sensor context recog-
nition to be implemented by simply plugging together standard, parameterizable
components. Thus, with the CRN Toolbox, the implementation of a multi-modal
context recognition system distributed over several platforms consists of:

1. compiling the toolbox for all platforms that it needs to run on,
2. using the GUI to select and configure the algorithms and data flow that the

toolbox needs to execute on each platform, and
3. starting the toolbox on each platform with the configuration files created by

the GUI.

Custom code and extensions are easily added to the toolbox by means of new
classes compiled and linked in with the rest as desired. A detailed description
of the toolbox implementation is beyond the scope of this text. Instead, we
focus on the concepts behind the main features elaborated on in the previous
section: component reusability and parameterization, flexible data flow, handling
of synchronization events, encapsulation of hardware-specific aspects including
sensors and data types (e.g., int vs. float), the ability to run and communicate
across devices, and the configuration GUI. A detailed documentation of the
implementation is contained within the source code.

Parameterizable, Reusable Components. The basic building blocks of the CRN
Toolbox are StreamTasks, or tasks for short. Each algorithm (filter, classifier,
etc.) available in the toolbox is implemented as such a task. The abstract
StreamTask class shown in Figure 1 is based on POSIX threads. It serves as the
superclass for all other tasks. Therefore, each task is a separate thread executing
concurrently. A task has 0 . . . n InPorts and 0 . . .m OutPorts. It continuously
processes the data received at its in-ports and puts the results on its out-ports.

Each task has a number of startup arguments that correspond to the param-
eters of the respective algorithm. The KNN classifier task for instance, requires
KNNs ”k”, the filename of the training data, and an optional step size as its
parameters.
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StreamTaskInPort OutPort

Filter

FFTFilter VarFilter

MT9Reader TCPWriterGPSReader Classifier

KNN DecissionTree

FilterPlugin

Fig. 1. Static structure of components

c on f i g u r a t i o n = taskConf connect ionConf [ timeoutConf ] .
taskConf = taskKeyword ”=” ta skL i s t .
connectionConf = connKeyword ”=” connList .
timeoutConf = timeoutKeyword ”=” number .
t a skL i s t = ” [ ” [ taskDef {” ,” taskDef } ] ” ] ” .
taskDef = taskName ”(” [ param {” ,” param} ] ”) ” .
connList = ” [ ” [ connDef {” ,” connDef } ] ” ] ” .
connDef = ”Connection (” number ” ,” number ” ,” number ” ,” number ”) ” .
taskKeyword = ” t ” [ ” a” [ ” s ” [ ” k” [ ” s ” ] ] ] ] .
connKeyword = ”c” [ ” o” [ ” n” [ ” n” [ ” e” [ ” c” [ ” t ” [ ” i ” [ ” o” [ ” n”

[ ” s ” ] ] ] ] ] ] ] ] ] ] .
timeoutKeyword = ” s ” [ ” e” [ ” c” [ ” o” [ ”n” [ ” d” [ ” s ” ] ] ] ] ] ] .
taskName = unquoted .
param = unquoted | quoted .
unquoted = l e t t e r | d i g i t { l e t t e r | d i g i t } .
quoted = ’” ’ { cha rac t e r} ’ ” ’ .
number = d i g i t { d i g i t } .
l e t t e r = ”A” . . ”Z” | ”a” . . ”z ” .
d i g i t = ”0” . . ”9” .
cha rac t e r = ( any ASCII cha rac t e r exc lud ing ” )

Listing 1.1. EBNF definition of the toolbox configuration language

The CRN Toolbox makes use of the Xparam library (http://xparam.sf.net/) for
the de-serialization of objects. This allows the toolbox to be configured by a text file
at runtime. See Listing 1.1 for the syntax definition of the configuration language
in EBNF format. The ’tasks’ section of the configuration file lists the class names
and parameters of the StreamTasks that are instantiated and run in the toolbox.
The connections between these tasks are defined in the ’connections’ section.

Table 1 lists the algorithms currently existing in the toolbox. Customized
algorithms can be added to the toolbox by creating a subclass of StreamTask
and implementing the run() method as shown in Listing 1.2 for a sample task.
The desired number of in- and out-ports must explicitly be allocated by the
task constructor. If multiple in-ports are used, the task itself needs to take care
in the run() method to avoid starvation problems. The InPort class provides
both blocking and non-blocking access methods. For filter algorithms, there is a
dedicated Filter class with a plug-in mechanism to support extended reusability
of code. The Filter task handles packet I/O and calls the filter() method of
the FilterPlugIn for each value. We recommend and prefer to implement filter



104 D. Bannach et al.

Table 1. List of existing algorithms in the CRN Toolbox

Reader Tasks:
KeyboardReader Keyboard reader task available
MT9Reader Reader for Xsens MT9-B sensors available
XbusRawReader Raw reader for Xsens Xbus available
XSensLogFileReader Reader for Xsens logfiles available
NMEAReader GPS reader task available
ARSBReader A reader for the ARSB available
CricketReader Cricket reader task available
FileReader Generic file reader available
SerialReader Generic serial port reader available
BTnodeReader BTnode reader available
HexamiteReader Hexamite reader available
PhilipsReader Reader for Philips protocol available
RFIDReader Reader task for ID-10 RFID reader testing

Organizing Tasks:
SelectiveSplitterTask Splits a data stream into several streams available
Synchronizer Event based synchronizer available
SyncMerger Synchronizing merger task available
SimpleMerger Simple merger task available
TransitionDetector Transition detector available

Filter Task and Plug-Ins:
FilterTask Configurable filter task available
MaxFilter Max filter plugin for FilterTask available
MeanFilter Mean filter plugin for FilterTask available
MedianFilter Median filter plugin for FilterTask available
VarFilter Variance filter plugin for FilterTask available
SlopeFilter Slope filter plugin for FilterTask available
ScaleFilter Scale filter plugin for FilterTask available
ThresholdFilter A two-thresholds filter testing
FFTFilter FFT filter plugin for FilterTask testing
ASEFilter Average signal energy filter testing
BERFilter Band energy ratio filter testing
BWFilter Bandwidth filter testing
CGFilter Center of gravity filter testing
FlucFilter Fluctuation filter (freq. and time domain) testing
PeakFilter Peak filter testing
SFRFilter Spectral rolloff frequency filter testing

Classifier Tasks:
ClassifierTask Base class for classifier tasks available
KNN KNN classifier available
RangeChecker Very simple classifier available
Hexamite2D Very simple classifier available
Distance2Position Very simple position calculation available
SimpleHexSensClassification Simple Classifier using xsens and hexamite available
SequenceDetector Detects specified sequences testing

Writer Tasks:
TCPWriter Write data to TCP port available
TCPClientWriter Write data to a server via TCP available
SerialWriter Multifunction serial writer available
LoggerTask Data logger task (FileWriter) available
ConsoleWriter Console logger available
PhilipsWriter Philips serial writer available
Nothing Data repeater (e.g. for debugging) available
Nirvana Quiet data sink available

algorithms within such filter plug-ins. Finally, the use of the Xparam library
makes it necessary to implement a copy-constructor for each task and to register
all other constructors with special Xparam macros (not shown in sample code).

Parameterizable Engine with Data-Flow Control. The data streams between
tasks are created by directed connections from out-ports to in-ports. The ac-
cording section of the configuration file specifies the connections between tasks
by indexing their corresponding out- and in-ports. A stream consists of a contin-
uous sequence of DataPackets. The DataPackets, or packets for short, are the
data entities that contain the sampled values belonging to a single time instant.
Each packet bears its own time stamp and sequence number plus a vector of
sampled values represented by the abstract data type Value (see Figure 2). The
elements of this vector may be viewed as channels with equal sampling frequency.
They are passed through the streaming network from task to task along the
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class CustomizedTask : public StreamTask {
public :

CustomizedTask ( Value ∗ o f f s e t ) ;
private :

Value ∗ o f f s e tVa l ;
void run ( ) ;

} ;

CustomizedTask : : CustomizedTask ( Value ∗ o f f s e t ) {
// i n i t i a l i z e parameters
o f f s e tVa l = o f f s e t ;
// c r e a t e as many in− and out−ports as needed
inPorts . push back ( new InPort ( ) ) ;
outPorts . push back ( new OutPort ( ) ) ;

}

void CustomizedTask : : run ( ) {
DataPacket ∗p = NULL;
InPort ∗ inPort = inPorts [ 0 ] ;
OutPort ∗ outPort = outPorts [ 0 ] ;

while ( running ) {
p = inPort−>r e c e i v e ( ) ;
i f ( p ) {

// get the va lue ( s ) from the data packet
Value ∗va l = p−>dataVector . at ( 0 ) ;
// p roc e s s the va lue ( s ) here
l og ( ” p roc e s s i ng the va lue : ” ) << va l ;
∗ va l += o f f s e tV a l ;
// send the modi f i ed packet
outPort−>send ( p ) ;
p = NULL;

}
}

}

Listing 1.2. Sample code for customized tasks

internal connections. Actually, only a pointer is passed around while the object
data itself stays in place for better performance. When multiple receivers are
connected to the same out-port of a task, the packet is cloned. If several streams
need to be merged (e.g., to create a feature vector containing data from multiple
sensors), a special Merger tasks must be used. As described below, Merger tasks
may include synchronization of data streams with different sampling rates.

Synchronization. Ideally, sensors would have an exact clock to timestamp each
data sample with the exact global time. Several methods for network time syn-
chronization exist that are relying on smart sensors. In the real world, however,
we have to cope also with simple sensor devices that send data samples with
either internal sequence numbers or just a specified sampling rate. Therefore,
when working with several sensors, their data streams must be synchronized to
a common starting point. Such synchronization often needs to be repeated at
runtime as the sampling rates are not reliably exact and might be jittered by
communication delays. A well known method for this type of synchronization is
the use of events that occur simultaneously at all involved sensors (e.g., jump-
ing up to synchronize a set of acceleration sensors). Our system supports such
synchronization through Synchronizer and SyncMerger tasks.
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+clone() : DataPacket

+timestamp : struct timeval

+dataVector : vector<Value>

+seqNr : unsigned short

DataPacket

+getInt() : int

+getFloat() : float

+getFix() : fix

+setVal(in val : int) : void

+operator+=(in v : Value) : Value

+operator-=(in v : Value) : Value

+operator*=(in v : Value) : Value

+operator/=(in v : Value) : Value

+sqrt() : Value

+log2() : Value

+exp2() : Value

+exp() : Value

+sin() : Value

+cos() : Value

+tan() : Value

+asin() : Value

+acos() : Value

+atan() : Value

+operator<(in v : Value) : bool

+operator>(in v : Value) : bool

+operator==(in v : Value) : bool

+operator!=(in v : Value) : bool

+operator<=(in v : Value) : bool

+operator>=(in v : Value) : bool

-valid : bool

Value

-val : int

IntValue

-val : float

FloatValue

1*

-val : fix

FixValue

-val : int

-n : int

EnumValue

Fig. 2. Static structure of data packets

An example of such synchronization is shown in Figure 3. The Synchro-
nizer searches for a distinct event1 in the data received on the first in-port. The
search is limited to a specified time-window which is triggered by a non-zero
value on the second in-port. The time stamp te of the event is stored by the
Synchronizer. The Synchronizer subtracts te from the time stamp of every
data packet received later on. Hence, the time stamps of packets on the out-port
will be relative to the event: tout = tin − te. Data streams synchronized this way
can then be easily merged according to the time stamp to form one synchronized
stream. The SyncMerger task merges two data streams that are synchronized to
the same event. Packets on the second in-port are merged to matching packets
from the first in-port. The matching criteria is the time stamp difference with
a tolerance threshold. The data rate from the first in-port is maintained on the
out-port, i.e., no packet from the first in-port is discarded. If the data packet
Pa on the first in-port is older than the next available packet Pb at the second
in-port (i.e., ta < (tb − ttolerance)), packet Pa is merged with a cached copy of
the last packet from the second in-port to maintain the data rate. The copied
values will be marked invalid. Otherwise, if Pb is older than Pa, Pb is discarded
and merging continues with the next packet from the second in-port. The signals
in Figure 3 stem from two MT9 acceleration sensors as configured in the GUI.

1 We apply a variance filter with a sliding window of size 2 and take the maximal
value as ’event’.
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Fig. 3. Display of Sync event

Both sensors are moved at the same time but the signals are not synchronized at
the beginning. After a short synchronization period, triggered by pressing a key,
the toolbox is able to adjust the timestamps and merge the streams accordingly.

Sensor Hardware Encapsulation. Sensor interfaces are implemented as tasks with
no in-ports and are called Reader tasks. They create a DataPacket for new
sampling data as acquired from sensors (or other sources) and provide it on
their out-ports. Our architecture supports multiple implementations of reader
tasks that read from different sensors or even from other sources of information
(e.g., web pages, other applications, files, etc.). We use a keyboard reader for
online labeling of sensor data.

Data Type Encapsulation. The sampled values contained within data packets
are all of the abstract data type Value. All mathematical operations and ac-
cess methods are declared in the abstract Value class (see Figure 2). They are
coded in the subclasses of Value. This allows algorithms to be implemented
completely independent of the actual sampling data type when using the generic
interface of the Value class. Such algorithms can process floating-point values
on one machine and integer values on another without any recoding. The data
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type of each stream (or even channel) can be configured to optimally match the
needs of the application and the specific characteristics of the device the tool-
box runs on. Implementations of the Value class exist for integer (IntValue),
floating-point (FloatValue), and fixpoint (FixValue) values. Moreover, there is
an enumeration value (EnumValue) for representing class labels and a raw value
(ByteBufValue) for transportation of raw buffers. For performance reasons, the
Value classes only provide mathematical operations that directly modify
the object as, for instance, the operator ’+=’ does.

Distributed Execution and Tools Encapsulation. The key to distributed execution
and the usage of external tools such as MATLAB are Writer tasks. They send
the data received at their in-ports to external devices instead of an out-port.
Such external devices can be files or displays but also network connections.
For the latter, we currently use TCPWriter tasks that are based on TCP/IP
sockets. Such tasks can send DataPackets in a serialized form to corresponding
TCPReader tasks over the network. The serialization of data packets is done by
an Encoder plug-in in the TCPWriter. Similarly, the TCPReader uses a Decoder
plug-in for de-serialization. Thus, two toolboxes running on different machines
can work as a single toolbox using a TCPWriter to transport DataPackets. In a
similar way, the toolbox can communicate with any other program augmented
by TCPReader/Writer compatible interfaces. Currently, such interfaces exist for
MATLAB and WEKA.

GUI. We implemented a graphical editor (see Figure 3) for easy configuration of
the toolbox. Tasks may be dragged from a library into the workspace where they
are connected to other tasks with just a few mouse clicks. The editor is written in
Java and automatically produces the configuration files for the toolbox according
to the language definition shown in Listing 1.1.

3 Case Studies

Although still being work in progress, we already use the CRN Toolbox for in the
WearIT@Work and MyHeart projects as well as in a variety of student works
and demonstrators. The toolbox code including different sample applications
can be downloaded from http://csn.umit.at/download/toolbox/. This sec-
tion provides two case studies that show how to apply our toolbox to context
recognition problems. The first is based on the demonstrators included in the
software distribution. The second is a real-life example from the WearIT@Work
project. The examples illustrate how distributed multi-modal context recogni-
tion systems can incrementally be constructed and adapted with the help of the
CRN Toolbox.

3.1 Assembly Activity Recognition

We begin this case study with an explanation of how to use the toolbox to gather
and save experimental data from a sensor. The real-time sensor data from an
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Fig. 4. Toolbox application schematics and MATLAB script reading sensor data

Xsens MT9 motion sensor is labeled by hand using a keyboard during the exper-
imental trials. The sensor is mounted on the back of the user’s hand. This setup
resembles an initial stage in the development of an assembly activity recognition
system for the WearIT@Work project. As shown in Figure 4a, the configura-
tion consists of a Reader for the MT9 sensor, a KeyboardReader for labeling,
a SimpleMerger, and a FileWriter, all executed on the wearable device. The
MT9Reader acquires the data from the sensor while the experiment conductor
can operate the keyboard and label the user’s actions accordingly. The labels for
the demonstrator included in the downloadable distribution mark the following
activities: to hammer, to screw drive, to sandpaper, and to saw. The Simple-
Merger, in turn, combines the sensor data with the labels and pipes them to the
FileWriter which logs the labeled data to a file. In the same manner as the rest
of the case study, this happens in perceived real-time.

In the next stage, the system is extended to include feature extraction using
scaling (ScaleFilter) and a variance filter (VarFilter) on the signal processing
side. Another component changed is the TCPWriter instead of the FileWriter
to transmit the data to a remote server (see Figure 4b). The remote computer
runs a MATLAB visualization application and/or our SensServe interface to the
WEKA machine-learning software extended by a toolbox-compatible TCPReader
module. Thus, the labeled data is forwarded to both applications. The MATLAB
visualization application is able to display the sensor data in perceived real-time.
This is a fast and easy way to ensure the correct operation of the sensors. It also
proves to be a valuable help to get a first glimpse on characteristic features of the
context recognition tasks. The SensServe interface can either be used to train a
classifier or to do online tests and demonstrations. Naturally, as it interfaces to
WEKA, it provides access to all classifiers and analysis algorithms implemented
by this machine learning library. This eases the search for suitable features and
classifiers dependent on the inference task.

Once the experimental stage of development is finished, the classification
is moved from the server to a toolbox KNN classification component able to
run on the mobile device. An already trained version of the toolbox KNN
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classifier for the previously defined activities is included in the downloadable
distribution. As the classifier runs on the mobile device, the TCPWriter can
also be used to provide only the classification output to other external applica-
tions (e.g., a video capture application that may label the user video with his
activities).

The third stage of the case study adds Hexamite ultrasonic sensors for hand
tracking (see Figure 4c). To this end, a HexamiteReader and the module Hex-
amite2D for position computations are added while the classifier is trained to
utilize position data. One ultrasonic listener is mounted on the user’s same arm
as the MT9 sensor. Disregarding height, two dimensions suffice for the position
data because height is not crucial for the activities we defined above. Thus, the
system is now able to differentiate between where in the room a specific activity
is performed. This in turn can be used to determine regions of interest or to
improve the activity recognition rate as certain activities happen at a specific
places only. The analysis and training is done using WEKA in a setup similar
to Figure 4b. The training can also be done on the mobile device. Finally, the
trained classifier running on the mobile device transmits the resulting classifica-
tions using the TCPWriter to a desktop machine. The desktop simply visualizes
the results.

To underline the flexibility of the toolbox, the Hexamite sensors may be re-
placed by Cricket ultrasonic sensors with hardly any effort. The operation of
both sensors is very similar. We only had to write a CricketReader that out-
puts the data in the same format as the HexamiteReader, and insert it into
the system using our GUI. This underlines that sensors with similar outputs
can easily be interchanged by only using different readers in the toolbox and by
adapting some filter parameters. The CRN Toolbox also supports readers with
several output formats to enhance reuse. For example, the MT9Reader can either
provide raw (int) or calibrated (float) data. Any application using the MT9 ac-
celerometer data can easily be adjusted to use other accelerometers, simply by
adding appropriate readers.

For systems with no sensors attached, the toolbox offers a FileReader. The
FileReader reads previously recorded sensor data from a file and sends it to
other components of the system in the same way as if the data originated from a
real sensor. Thus, it is possible to re-run any experiment in real-time to fine-tune
the toolbox components or debug a more complex application.

3.2 Gesture Recognition for Controlling a Document Browser

As mentioned before, the toolbox is currently used in the WearIT@Work project.
One scenario in this project takes place during a doctor’s ward round in a hospi-
tal. One problem of the ward round is the extremely limited time available per
patient. Accessing each patient’s documents on-site is important but operating
a computer or PDA tends to be time-consuming and distracting. In the solu-
tion investigated in the WearIT@Work project, we apply context- and gesture
recognition to automate and simplify the access to the patient’s documents. The
doctor is equipped with a QBIC [15] wearable computer, and an MT9 motion
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Fig. 5. Toolbox configuration for the gesture recognition

sensor plus an RFID reader at the right arm. The patient wears an RFID tag and
the nurse carries a PDA. At each patient’s bed, there is a bed-side monitor to
display documents from the hospital database system. The QBIC connects wire-
lessly to both the PDA and the bed-side system. When the doctor approaches
the patient’s bed, the bed-side monitor automatically shows the specific patients
list of documents. The doctor can then browse these documents by pointing at
the monitor and swivel the forearm up and down or left and right. The following
gestures are defined:

Forearm Gesture Command
swivel up, then down scroll up
swivel down, then up scroll down
swivel left, then right open document
swivel right, then left close document
roll right, then left activate gesture recognition
roll left, then right deactivate gesture recognition

In the following, we briefly describe how the CRN Toolbox is extended with only
three simple classes to deal with this gesture recognition and the controlling of
the document browser. The configuration is shown in Figure 5. We use the 3–axis
gyroscope of the MT9 motion sensor to detect the swiveling and rolling of the
forearm. The x–axis of the gyroscope is aligned in parallel to the main axis of the
forearm, and the y–axis in parallel to the plane of the hand. Rolling the forearm
leads to either a positive or negative deviation of the angular velocity on the
x–axis, depending on the roll direction. Similarly, swivel left/right is measured
on the y–axis and swivel up/down on the z–axis.

We implemented a ThresholdFilter by extending the FilterPlugin class.
The ThresholdFilter has two thresholds. All values greater than the upper
threshold are set to 1, all value less than the lower threshold are set to 2, and
all others are set to 0. With the appropriate thresholds, this filter applied to the
x–axis gyroscope signal will output a sequence of values similar to

. . . 0000001111111100022222222200000 . . .
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when rolling the hand and forearm to the right and then back immediately. Then,
we apply the existing TransitionDetector task and get the sequence below.

. . . 01020 . . .

The TransitionDetector allows for skipping sequences of equal values shorter
than a specified length. Setting this parameter to 4, we get the following sequence
instead.

. . . 0120 . . .

Now, we only need to identify exactly this simple sequence in the filtered data
stream in order to tell that the activate-gesture has been executed. Similarly, all
other gestures can be recognized. Therefore, we implemented the SequenceDe-
tector task which accepts a list of value-sequences as its parameter. If one such
sequence is detected in the data stream, the SequenceDetector sends the index
of that sequence on the out-port. We apply these three algorithms on every axis
of the gyroscope in parallel. We insert pseudo-sequences that never occur (e.g.,
[-1]) in the parameters passed to the SequenceDetector for the y- and z–axis
to ensure that every gesture is assigned a unique index value.

The third class that had to be implemented for this scenario is the Command-
Dispatcher task. It simply forwards the gesture indices to its out-port if in
active state and discards them otherwise. The state is set by the activate- and
deactivate commands. This task is actually extended (but not shown here)
with additional in- and out-ports to support RFID input and wireless connec-
tivity to the nurse’s PDA. The output of this task is sent to a TCPClientWriter
that connects to the document browser of the hospital database system. The
document browser can interprete the commands like real mouse and keyboard
input.

4 Conclusion and Future Work

The CRN Toolbox is currently used in different projects. At the same time it is
still evolving. In addition to the implementation of further components, the main
directions are support for dynamic (re-) configuration of applications at runtime
including ad-hoc cooperation between devices and better support for resource
management. The later will include the back propagation of control messages
through the processing network. Another immediate improvement of the CRN
Toolbox that goes along with (re-) configuration is to provide a tighter coupling
between runtime and GUI than just over configuration files. Furthermore, we
envision extensions for ad-hoc cooperation of multiple toolboxes and a meta-
model for sensors and context information.
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Abstract. Data cache compression is actively studied as a venue to make better 
use of on-chip transistors, increase apparent capacity of caches, and hide the 
long memory latencies. While several techniques have been proposed for L2 
compression, L1 compression is an elusive goal. This is due to L1’s sensitivity 
to latency and the inability to create compression schemes that are both fast and 
adaptable to program behavior, i.e. dynamic. In this paper, we propose the first 
dynamic dictionary-based compression mechanism for L1 data caches. Our de-
sign solves the problem of keeping the compressed contents of the cache and 
the dictionary entries consistent, using a timekeeping decay technique. A dy-
namic compression dictionary adapts to program behavior without the need of 
profiling techniques and/or training phases. We compare our approach to previ-
ously proposed static dictionary techniques and we show that we surpass them 
in terms of power, hit ratio and energy delay product.  

1   Introduction 

Cache compression increases the apparent capacity of the cache and reduces the miss-
rate at the expense of increased access latency associated with compression and de-
compression. As long as the cost of accessing a compressed datum in the cache does 
not exceed the cost of servicing a miss from the lower level of the memory hierarchy, 
cache compression is a wining proposition. This is easily attainable in the L2 or L3 
caches where the compression/decompression costs compare favourably (i.e. are 
much lower) to the cost of going to main memory [1,11,14,15]. The same is true for 
main memory with respect to the long disc delays and this is why many proposals 
consider main memory compression [6]. 

But why would one consider compression in an age of excessively large transistor 
budgets? The reason is that it almost always pays to have a “bigger” cache: 
Alameldeen and Wood [1] show that in commercial applications where the miss rate 
is relatively high, compression of the L2, regardless of its size, is beneficial. Further-
more, we are fast moving towards multiple cores on a chip, which will exacerbate the 
problem of adequate cache capacity since the cache will have to be shared by many 
applications or threads. L2/L3 compression is therefore a useful technique for the 
foreseeable future and especially for future CMP architectures. Alternatively, com-
pression can be used to free space in the cache which can then be translated to power 
savings [13,22,23,25]. 
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Of course this reasoning can be extended to include the L1 if it were not for a  
serious issue. L1 is typically very fast —single-digit number of cycles when pipe-
lined— and therefore latency-sensitive: a few additional cycles for compres-
sion/decompression can more than double its latency and hurt system performance.  
In addition, at the top level of the hierarchy, compression/decompression costs of the 
order of 10 to 15 cycles approach L2 access latencies, which means that accessing a 
compressed L1 datum (that would be a miss) has little difference from going directly 
to the L2. Thus, latency alone rules out all complex compression/decompression 
schemes such as those used in L2 compression [1,11,14,15]. Power consumption is 
also becoming a critical issue in L1. The L1 is accessed much more frequently 
than the L2, rendering complex and power-hungry L1 compression mechanisms un-
desirable. 

This leaves at our disposal only the simplest mechanisms for compression. One 
such simple, yet effective, mechanism is the dictionary (or directory) for frequent val-
ues [20,23,25,26]. A frequent-value dictionary stores the program’s frequent values 
(e.g., the 32-bit value “0”) and replaces all their occurrences in the cache with the re-
spective dictionary indices (e.g., 8-bit indices for a 256-entry dictionary). However, 
until now, no mechanism has been proposed to implement a dynamic dictionary for 
caches [23,24]; in other words, a dictionary whose contents can adapt to the require-
ments of the running program. The dictionaries proposed so far for caches are loaded 
statically via profiling or are “trained” for a small period of time to detect and store 
frequent values for the remainder of a program’s run [23,25,26]. In practice, such a 
static approach is avoided by designers since it is cumbersome in real systems. There, 
we would like adaptivity under different workloads without needing to resort to pro-
filing or training. Moreover, a static approach is incompatible with multipro-
grammed/multithreaded environments since the contents of the dictionary are part of 
program state and need to be changed accordingly with context switches. The need 
for dynamic dictonaries was also reported by Yang and Gupta [24] in the context of 
bus compression. 

On the other hand, a straightforward dynamic dictionary is impractical. The diffi-
culty in building a dynamic dictionary lies in that we cannot delete an entry from the 
dictionary unless we are certain that no cache line is compressed with it —otherwise 
the line cannot be decompressed with the correct dictionary index leading to consis-
tency problems. It is far too expensive, unfortunately, to keep track of the all the 
cache lines that are compressed with any particular entry in the dictionary.  

 

Contribution. The contribution of our work is the first mechanism for a dynamic L1 
dictionary resulting from coupling a decay cache [12] to a decaying dictionary. The 
principle of cache decay is the identification of cache lines which are unlikely to be ac-
cessed in the future (before their replacement). Such lines can be safely discarded with 
minimal impact on performance. We apply the same principal to the dictionary and 
discard entries which are unlikely to be used in the future. By decaying the cache  
and the dictionary in exactly the same way, we are guaranteeing that when a dictionary 
entry is decayed no live line in the cache can possibly refer to this entry. This allows us 
to replace dead entries in the dictionary with new frequent values, thus adapting the 
dictionary contents to the requirements of the running programs. 

In this paper, we exploit this mechanism for two compressed L1 schemes: i) a low-
power, and ii) a high-performance cache. We study the proposed mechanism and we 
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present our comparisons with static dictionaries (using either profiling or training) and 
with uncompressed caches of larger capacity. Our evaluation shows that our cache 
compression design can improve the Energy-Delay Product by 10% (on average) 
compared to the static and the training approaches. When high performance is the 
issue, our proposal shows 45% reduction in miss ratio compared to a conventional 
cache of the same capacity and up to 27% improvement compared to the static case.  

 

Structure of this paper. We begin by motivating the need for dynamic dictionaries 
dictated by the behavior of frequent values in Section 2. In Section 3 we show how 
cache decay leads to a solution for dynamic dictionaries and describe our proposal in 
detail while in Section 4 we delve into design issues for our approach. We continue  
in Section 5 by presenting the evaluation of our proposal. In Section 6 we survey 
related work and in Section 7 we offer our conclusions. 

2   The Dynamic Behavior of Frequent Values 

Many algorithms for compression of the memory subsystem have been proposed in 
the literature. Such techniques try to exploit different characteristics of the ad-
dress/data streams to achieve high compression ratios [1,11,14,15]. One direction 
concentrates on exploiting the well known phenomenon of locality and especially 
value locality. Value locality has been initially utilized in the design of value reuse 
and value prediction mechanisms for superscalar processors [8,16].  

The main motivation of this work is frequent value locality introduced by Zhang et 
al. [26]. Zhang et al. showed that such locality is quite prevalent in programs. They 
applied their observations in the design of L1 cache compression schemes and bus 
encoding schemes. These approaches are based on a small number of distinct values, 
that are very frequently accessed and are found by profiling the application or by 
training the dictionary during a small initial phase of the program. These approaches 
are limited by the static nature of the dictionaries: only a small fraction of the frequent 
values are accommodated and this is not optimal for all program execution. Excluding 
a small set of values (e.g., 0, 1, -1) that are universally useful, other values which are 
frequent in one part of the program may not occur as frequently in other parts and 
vice versa. A dictionary whose content changes dynamically, not only frees the de-
signers from the burden of initializing it properly, but has the potential for better per-
formance and lower power. 

To show the need for a dynamic dictionary we conduct the following experiment. 
We choose two benchmarks from the SPEC2000 suite, one from the integer suite — 
vpr— and one from the floating point suite —galgel. For each program, we divide its 
execution into smaller time intervals and for each of these intervals we find its top N  
frequent values. We then examine the commonality between each interval’s set of  
N frequent values and the fixed set of N frequent values of a static dictionary (i.e., the 
set of N for the whole program).  

The results of this experiment are presented in Fig. 1. In both graphs, the horizontal 
axis represents the number of time intervals that fit in the execution of the program 
(200 to 2), and the vertical axis represents the overlap (as a percentage of values) be-
tween the dynamically created dictionary and a fixed dictionary. The four curves in 
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Fig. 1. Overlap of dynamically created dictionaries vs. static dictionary for various sizes  

each graph plot the overlap of the dynamically created dictionaries of various sizes (32, 
64, 128, and 256) to a “static” dictionary of equal size for the whole program run.  

For both programs, the more frequent is the creation of dictionaries (smaller time in-
terval), the smaller is the overlap with the “static” dictionary. This signifies the need to 
change the contents of the dictionary continuously. For vpr dictionary overlap is least 
with the smallest time intervals but reaches 100% when the dynamic directories  are  
created  less  frequently (showing vpr’s highly dynamic nature at small time scales). 
Galgel on the other hand shows a more gradual change in the overlap at various time 
scales and even in the far right case of only two dynamically created dictionaries, 
their overlap with a single dynamic barely reaches 68%. With respect to dictionary 
size, smaller dictionaries have more overlap (because the topmost frequent values do 
tend to be the same) while larger dictionaries have more room to accommodate a 
more diverse set of values. At the largest time scales the overlap for the large diction-
aries converges to about 50% for galgel, meaning that a full half of the dynamic dic-
tionaries is different than the corresponding static dictionary —of course, the absolute 
number of values that differ from the static dictionary is a function of size. 

Having described the need to create a dictionary whose context must be able to 
change on the fly, let us now discuss our proposal for keeping the dictionary and the 
cache context consistent. The next section presents the first mechanism —to the best 
of our knowledge— for a dynamic dictionary for cache compression. 

3   Dynamic Dictionary and Compressed Data Consistency 

As of yet, no mechanism has been proposed to implement a dynamic dictionary for 
caches; instead the dictionaries proposed so far are loaded statically via profiling or are 
“trained” for a small period of time but remain static once they are loaded with values 
[1,14,23,25,26]. Dynamic (adaptive) dictonaries are reported in the context of bus com-
pression [2,7,17,19,20,24]. What makes dynamic dictionaries possible for bus com-
pression is that there is no need to keep them consistent with any other state. Data are 
compressed on the fly as they enter the bus and are decompressed as they are delivered 
at the other end —there is no storage of compressed state to worry about. But, this is the 
main impediment for dynamic dictionaries when it comes to cache compression. 
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The problem of dynamic dictionaries for caches is that the compressed cache state 
(data) needs to be kept consistent at all times with the dictionary contents. This makes 
it very hard to replace an entry in the dictionary because we must be sure that no 
cache line is compressed using the particular dictionary entry under eviction. Other-
wise, the compressed data are going to be decompressed with the new (wrong) value 
that enters the dictionary, rather than with the old (correct) one. 

A possible solution would be to keep track of all the cache lines compressed with 
any particular dictionary entry. Upon replacement of that entry the corresponding 
cache lines would be decompressed. Although this approach solves the consistency 
problem, it is extremely costly, invalidating the whole premise of efficient cache 
compression. 

Our technique to attack this problem leverages on a leakage-saving proposal, 
namely cache decay, proposed by Kaxiras et al. [12]. Cache decay identifies cache 
lines which are unlikely to be accessed in the future (before their replacement). In 
[12] such cache lines (deemed to be “useless”) are switched off in order to save leak-
age power. About 70% of the L1 can be discarded this way with minimal performance 
loss. The main idea of our work is to apply decay both in the cache and in the diction-
ary, discarding both unneeded compressed cache lines and their corresponding  
“frequent values” that are no longer needed by the remaining live cache lines. By 
decaying the cache and the dictionary in exactly the same way —in concert— we are 
guaranteeing that when a dictionary entry is decayed no live line in the cache can 
possibly refer to this entry. 

Decay is implemented by measuring time since the last access to a cache line/dic-
tionary entry. If a specified time interval (called the decay interval) passes without 
any access, the cache line/dictionary entry is discarded. We assume that as in [12], 
power to the cache line is switched off to save leakage power but the dictionary entry 
is simply marked as empty (available for replacement).   

To measure the decay interval we use counters in each line/entry. The counters are 
reset with every access but advance when the line/entry is idle. When a counter 
reaches the decay interval the corresponding cache line/dictionary entry is decayed. 
Since reasonable decay intervals for the cache are in the range of a few thousand 
cycles [12], we use a hierarchical counter scheme where a global cycle counter ad-
vances every few hundred cycles small (e.g., 2-bit) local counters in each line/entry.  

To show that decay keeps the compressed cache and the decaying dictionary con-
sistent let us walk trough an example:  

•  Initially the dictionary and the cache are empty.  
•  When a cache line is brought into the cache, all its words are checked against 

the contents of the dictionary; if a word matches a value in the directory it is 
compressed; otherwise if there are empty slots in the dictionary the word is en-
tered as a new frequent value. Thus, when a cache line is brought into the cache 
all of its frequent values in the dictionary are accessed and kept live. 

•  Similarly, when a compressed cache line is accessed (and therefore live) all its 
frequent values should be kept live too. Besides the requested word which is de-
compressed if needed (accessing the corresponding frequent value), all other 
compressed words in the cache line are used to reset the decay counters of the 
corresponding frequent values. This is a lightweight operation since we just re-
set decay counters —not access the frequent values. 
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Thus far we have established that any live line will keep its frequent values live in 
the dictionary for at least a decay interval after the line’s last access. Consequently, 
when a frequent value decays in the dictionary, it means that no cache line that uses 
this frequent value for its compression has been accessed for at least a full decay 
interval (otherwise the frequent value would not have a chance to decay). But this last 
condition means that all cache lines copressed with this frequent value have also 
decayed. This allows us to replace decayed entries in the dictionary with new frequent 
values, thus adapting the contents of  the dictionary to  the set of frequent values that 
are most relevant during different phases of execution. An important characteristic of 
our proposal is that we do not replace entries on demand —as we would do with an 
LRU algorithm —but simply replace according to the availability of dead (decayed) 
entries.  

4   Design Issues 

L1 cache compression techniques must be designed in a very cautious manner since 
this level of hierarchy lies on the most critical path of the processor-memory model. 
In this Section, we use the XCACTI 2.0 [10] to estimate all the design issues of our 
Dynamic Frequent Value Cache (DFVC) in terms of access time and power.  

4.1   Design Issues of Decaying Dictionaries 

The decaying dictionary is a critical part of the design, because it must be accessed/ 
updated every time a read/write operation is performed in the DFVC. As we will see 
in the rest of this section, the decode/encode operation is in the critical path of the 
cache. Therefore, having an efficient dictionary design is very important. Our solu-
tion, shown in Fig. 2.a, resembles a dual port register file design. In addition to  
the registers (holding the frequent values), there is an extra column that encapsulates 
the decaying functionality. This column contains the local decay counter and a decay 
status bit per entry showing its “liveliness” state. Collectively, the counter and the 
status bit are referred to as “decaying” bits since their overall functionality (and in-
deed their implementation) is captured by decaying 4-transistor (4T) memory cells.  

We have modified XCACTI to estimate the access time required for a read/write 
operation in the dynamic dictionary. We adopted the register file model proposed in 
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Fig. 2. (a) The dynamic decaying dictionary, (b) circuit to indetify the first decayed entry 
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Wattch [3], using process parameters for a 130 nm technology. Our XCACTI esti-
mates showed that the decode/encode operation of the register file is quite small vary-
ing from 0.39 ns for decoding 4 bits (16 entries) to 0.629 ns for decoding 7 bits (128 
entries). 

The decaying hardware (counter and status bit) comes at  a negligible cost (in 
terms of time and power). We refer the reader to the work of Kaxiras et al. for this 
analysis [12]. From the other hand, to insert a new entry in the dictionary is not so 
trivial. A new frequent value must be inserted in the first decayed entry of the diction-
ary (considering a top-down ordering). Searching sequentially the dictionary for the 
first decayed entry (if any) is unacceptable since it will make  the  insertion  of  a  new 
value extremely slow and costly. To alleviate this problem, we use a simple combina-
torial circuit, shown in Fig. 2.b, which identifies the first decayed dictionary entry at 
the cost of a few gates. 

Having discussed the design issues of the decaying dictionary, let us now demon-
strate our proposals for a Power-Aware DFVC (PA-DFVC) and a High-Performance 
DFVC (HP-DFVC). The hope is to create an efficient design where the time spent on 
encoding/decoding of the values has little impact —if any— in the cache access time. 

4.2   Design Issues of Power-Aware DFVC (PA-DFVC) 

In this section, we will show how the dynamic behavior of the frequent values, ex-
plained in Section 2, can be exploited in a power-aware compressed cache proposed 
by Yang and Gupta [23,26]. In contrast to their proposal, our dynamic compression 
scheme is able to adapt to changes of the frequent values for different parts of the exe-
cution during the execution of a program. Fig. 3 shows the partitioning of the data 
array of the PA-DFVC —no changes required in the tag array in this case. 

In the PA-DVFC cache, the data values are divided in two categories: a small num-
ber of N frequent values (N reflects the number of the dictionary entries) and all the 
remaining values that are marked as nonfrequent values. The frequent values are 
stored in encoded form, and therefore can be stored in log2N number of bits, while the 
nonfrequent values are stored in unencoded form in 32-bit words. 

As we can see from Fig. 3, the cache data array is partitioned so that one array con-
tains log2N bits corresponding to each word (4 words in this example) and the other 
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contains the remaining 32-log2N bits. Frequent values are stored in encoded form  
in the Low Bit Array (LBA), while non-frequent values fill both data arrays. An addi-
tional bit (flag bit) corresponding to each word in a cache line is needed to indicate 
whether the word contains an encoded frequent value or an unencoded nonfrequent 
value.  

The overall approach is as follows: when reading a word from the cache, initially 
we read from the LBA. Since the bits read out contain a flag bit, we examine it to de-
termine what comes next. If the bit is set, which means the value was stored in en-
coded form, we do not need to read the HBA and must proceed to decode the value. 
In this case, the power consumption of the cache is reduced. However, if the value is 
stored in unencoded form, we proceed to access the remainder of the word from the 
HBA. Since the read from the LBA and the read from the HBA is serialized, it takes 
longer to read a non-frequent value than it would have taken to read the same value 
from a conventional cache.  

The hope is to reduce the energy consumed in the data array by accessing as much 
as possible the LBA. The reduction in energy comes at a cost of an additional cycle 
needed to access non-frequent values. Thus, the PA-DFVC design trades power for 
performance. 

In this design, we assume that the log2N bits from the LBA are accessed in one cy-
cle and we account for an additional cycle when the HBA is accessed. Recall that we 
account for one cycle for the conventional cache. In fact, this is true only if the time 
spent to encode/decode a value does not impact the overall latency. In order to meet 
this condition, we turn our attention to set-associative caches. In other words, the 
target for comparison are the cache architectures whose (pipelined) access time is 
defined by the tag-array and not the data array. As long as the time spent to perform 
tag matching is greater than the time spent to read the data plus the time to do the 
encoding/decoding, no additional overhead will be introduced in our PA-DFVC com-
pared to a conventional cache. 

Our XCACTI experiments show that the access times of a conventional cache and 
the PA-DFVC are the same for a log2N range up 7 bits. In our XCACTI experiments, 
we use the cache model adopted by Yang and Gupta [23,26]. This cache model, ini-
tally presented by Ghose and Kamble [9], is based in a subbanking scheme and has 
the advantage that each word (within a cache line) can be read independently without 
the need to read the whole cache line. The same model was used by Villa et al. [22] in 
their dynamic zero compression scheme. The results of the PA-DFVC, in terms of 
Energy-Delay Product and power reduction, are presented in Section 5.2. 

4.3   Design Issues of High-Performance DFVC (HP-DFVC) 

Our dynamic cache compression technique can be used to improve the behavior of the 
L1 cache by increasing its effective capacity. Cache/Memory compression has been 
proposed for better utilization of the available transistor budgets [1,13,22]. The idea 
behind this approach is to store cache lines in a compressed form so a greater number 
of cache lines can reside in the cache at any given time, lowering the miss rate. 

Yang and Gupta [25] proposed a compressed L1 cache design where each set can 
store either one uncompressed line or two compressed lines. A static dictionary was 
used in their design. We solve the problem of keeping the cache and the dictionary  
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Fig. 4. HP-DFVC: detailed design 
 

contexts consistent, and we evaluate our approach using their framework. The overall 
scheme works as follows: we assume that each cache line of 2L words can store either 
one uncompressed line or two compressed cache lines. If the line cannot be com-
pressed to L words we keep it in uncompressed form. However, if two lines, each of 
which has been compressed to L words, map to the same cache line, they can reside in 
that line simultaneously. The architecture of the design is shown in Fig. 4. 

As we can see, the cache entries must be accordingly modified to indicate whether 
or not they contain compressed lines. A flag bit is used for this purpose. We must also 
modify the entries so that they can hold the relevant information for the two com-
pressed cache lines. Each line has its own tag (Tag1, Tag2) and a valid bit. In addi-
tion, the mask fields (Mask1, Mask2) provide useful information for the compressed 
lines. The determination of a cache hit is as follows: if there is a tag match and the 
valid bit is set, we have a hit. The retrieval of a word requires examining the mask. If 
the mask indicates that the word is compressed, then the mask provides the index of 
the dictionary entry that holds the value in a compressed form. Conversely, if the 
mask indicates that the value is not compressed, it specifies the location of the word 
in the cache line where it is stored in uncompressed form. We refer the reader to the 
work of Yang and Gupta [25] for more details about this design. The results of our 
evaluation for the HP-DFVC are presented in Section 5.3. The target for comparison 
is an uncompressed cache of larger capacity. 

4.4   Compression/Decompression of Already Cached Data 

Compression techniques have been initially used for instructions because code is not 
modified by a running program. Data compression techniques are harder to design 
because data values change as the program runs. This means that when cached data 
are modified, opportunities may arise to compress a previously uncompressed line. 
Our experiments show that compression opportunities for already cached data are rare 
for most benchmarks used in this paper. Thus, to simplify our designs we do not sup-
port compression of cached data —this can happen only when they are brought in the 
cache. 
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Furthermore, if an infrequent value is written on a compressed word, the need  
to uncompress the line may arise. In this case we immediately uncompress the  
whole cache line, possibly evicting its neighboring compressed line in the case of  
HP-DFVC. 

5   Dynamic Frequent Value Cache Evaluation 

5.1   Evaluation Methodology 

To evaluate the effectiveness of our proposals, we perform simulations using Wattch 
[3], a detailed cycle level simulator which tracks dynamic power for each CPU struc-
ture. The processor model is based on the Alpha 21264. The execution core is 4-wide 
superscalar. The memory hierarchy includes a unified, 8-way set-associative, 1MB L2 
cache. The latency of the main memory is 120 cycles. This configuration reflects prior 
work that examines the trade-off between power and performance using a static dic-
tionary [23,25,26]. We use process parameters for a 130 nm technology and XCACTI 
2.0 [10] to estimate all the modifications required by the proposed design. For the L1 
data cache, we assume a decay interval of 8K cycles [12]. The same decay interval is 
used for the  dictionary as  explained in Section 3.  We do not count leakage reduction 
from decay in our power consumption results —only dynamic power— since this 
would obscure the power benefit of compression. 

The benchmarks suite for this study consists of a set of six SPEC2000 benchmarks 
(4 integer and 2 floating-point): gzip, vpr, mesa, galgel, mcf and parser, compiled for 
the Alpha ISA. For each program, we skip the first billion committed instructions to 
avoid unrepresentative startup behavior at the beginning of the program’s execution, 
and then we simulate 200 million committed instructions using the reference input set.  

5.2   Evaluation of the Power-Aware DFVC (PA-DFVC) 

The main result of this Section is that cache compression using a dynamic dictionary 
leads to a more power efficient solution compared to the static/training dictionary 
approach. We conduct experiments using two cache configurations: an 8KB, 16-
bytes-per-line, 4-way set associative cache and a 64KB, 32-bytes-per-line, 8-way set 
associative cache. Recall that the requirement for set-associativity is dictated by the 
need to hide the compression/decompression latency, as explained in Section 4.2.  

Fig. 5 depicts the percent of hits in the frequent value dictionary (the left graph 
shows the results for the 8K cache configuration, while the right graph depicts the re-
sults for the 64K case). We compare our dynamic approach with static (referred as 
ideal in [24]) and training dictionaries of equal sizes. The static dictionary is created 
by profiling the benchmarks. The training dictionary is created by snooping at run 
time the values accessed during the first 10% of the program’s execution, which are 
then used for the reminder of the run. The vertical bars in both graphs represent the 
static, training, and the dynamic techniques respectively. The light (bottom) bars 
stand for a dictionary size of 32 entries; every additional darker segment on top shows 
the increase in the dictionary hit ratio when a 64, 128 and 256 (darkest bar) entry 
dictionary is used.  
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Fig. 5. Dictionary hit ratio using static, training and dynamic dictionary 
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Fig. 6. Execution time for the static, training and the dynamic dictionary (normalized to non-
decayed cache) 

As we can see from Fig. 5, the static and the training approaches are fairly close. 
The static approach yields better results for gzip, vpr, and parser, while the training 
dictionary seems a better solution for mesa and mcf. Both approaches have almost the 
same behavior in galgel. The dynamic dictionary technique outperforms the other two 
techniques in all benchmarks independently of the dictionary size. The improvement 
(average for both cache configurations) for a 256-entry dictionary is 18% and 21% 
compared to the static and to the training dictionary approaches respectively. In fact, 
the hit ratio in mcf of the 256-entry dynamic dictionary reaches the 99%. The results 
are analogous with dictionaries of smaller sizes. 

The superiority of our approach can be seen when another metric is used for com-
parison: the execution time of the program. Recall that we account for one cycle when 
a hit takes place in a compressed word and two cycles when a hit occurs in an uncom-
pressed word. As a consequence, smaller dictionaries increase the program’s execu-
tion time, since more cache accesses follow the slow path (touch nonfrequent values). 
The slow down in execution time decreases as the size of the dictionary increases. 
Fig. 6 shows this trend. The darkest (bottom) bars represent a dictionary size of 256 
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Fig. 7. Relative EDP reduction for the static, training and the dynamic dictionary 

entries (minimal slow down) and every additional darker segment on top shows the 
increase in the execution time when a 128-, 64-, and 32- (lighter bar) entry dictionary 
is used. 

Fig. 6 shows that our approach results in an increase in execution time less than 1% 
(average) even when a dictionary of 32 entries is used. In parser, which experiences 
the largest increases in execution time, the difference in execution time of the dy-
namic technique and the training technique is almost 3%.  

We also use Wattch and XCACTI to estimate the relative Energy-Delay Product 
(EDP) reduction for the cache and for the three approaches we examine. The savings 
in the relative EDP, shown in Fig. 7, are substantial for the two cache configurations 
we examine. As we can see, our solution achieves up to 64% reduction in EDP  
compared to a non-decayed cache and nearly 10% reduction relative to the two other 
approaches, indicating that our solution is better for power-sensitive systems (i.e. 
portable devices).  

5.3   Evaluation of the High-Performance DFVC (HP-DFVC) 

In this section, we evaluate the effectiveness of the dynamic dictionary as opposed to 
increasing the effective capacity of the L1 data cache. As we explain in Section 4.3, the 
idea in this case is to store a cache line in a compressed form so that a greater number 
of cache lines can fit in the cache simultaneously and thus lower the miss rate. 

Again, we consider two compressed cache configurations: a 4KB, 16-byte-per-line, 
and a 16KB, 32-byte-per-line. The compressed caches can accommodate up to two 
compressed lines per cache line. The targets for comparison are a conventional direct-
mapped cache (DM) of equal size and a conventional 2-way cache of double size. Re-
call that, in the high-performance case, the design of the compressed cache necessities 
a doubling of the tag array and an increase of the data array by 2 bytes per cache line. 
We assume 3 cycles for the compressed cache, because in this case the compression/ 
decompression latency cannot be hidden by the tag comparison. We validated this 
model using the XCACTI simulator. Thus, in the first configuration the comparison is 
among a 4K, 2-cycle, direct mapped cache, our 3-cycle compressed cache (which 
yields an effective capacity of about 5K) and an 8K, 2-way, 3 cycle uncompressed 
cache. 
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Fig. 8. Reduction in miss rates using static and dynamic dictionary 

The cache miss rates (absolute numbers) for the six benchmarks are shown in  
Fig. 8. The right graph shows the results for the 4KB cache, while in the left graph 
presents the results for the 16KB cache. There are four bars per benchmark: the  
leftmost bar shows the miss rate for the DM cache, the next two bars represent the 
compressed cache using the static and the dynamic dictionary respectively, and  
the rightmost bar represents the 2-way uncompressed cache (of larger capacity). Simi-
larly to previous graphs, for the compressed caches, the darkest (bottom) bars corre-
spond to the 256-entry dictionaries and the two additional darker segments above 
show the increase in miss ratio with 128- and a 64-entry dictionaries. 

For the majority of the benchmarks, the compressed-cache miss rate —for both the 
static and the dynamic dictionaries— is very close to the 2-way cache and is clearly 
better than the DM cache. Of course, our approach offers better improvements over 
the static case especially for the 4KB cache (left graph). For example, in parser, the 
compression using a static dictionary offers only a slight drop in miss ratio (< 0.2%) 
compared to the DM cache, while the dynamic approach manages to lower the miss 
ratio by 3%. This is a relative improvement of 26.5%. On average the DFVC im-
proves the miss ratio by 45% for the 4KB cache and 44% for the 16KB cache, while 
the static approach achieves a 18% and 36% improvement for the two configurations 
we examined. 

6   Related Work 

Compression in Memory Components. Most schemes for cache compression are 
proposed for power/energy savings rather than performance. The idea behind such 
schemes is simple: unused storage cells and wires provide a benefit simply by not 
consuming power. In the Dynamic Zero Compression scheme [22], each zero valued 
byte is represented by a single bit. Another approach for power/energy reduction was 
by Kim et al. [13]. The authors exploit small sign-extended values by compressing the 
upper portion of a word to a single bit if it is all 1s or all 0s. Recently, the idea of 
compressing the sign-extended values was further refined [18]. The goal in this case 
was to increase the apparent capacity of the L1 data caches.  
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As we have already mentioned, our work is inspired by frequent value locality 
shown by Zhang et al. [26] and subsequently by Yang et al. [23,25]. This value local-
ity motivates their initial approach to increase the effective capacity of the L1 cache 
[23] and their latter approach to reduce the power consumption of the cache [25]. 
Alameldeen and Wood exploit value locality in their Frequent Pattern Compression 
algorithm applied to L2 caches [1]. They observe that some data patterns, are frequent 
and compressible. This work can be considered as the only adaptive compression 
mechanism for hardware caches but relies on a compression mechanism that is too 
slow, expensive, and power-consuming for L1. 

Lee et al. [14,15] propose a compressed memory hierarchy, called Selective  
Compressed Memory System (SCMS), that selectively compresses L2 cache and 
memory blocks that can be reduced to half their original size. The idea of the SCMS 
was recently further investigated by Hallnor and Reindardt [11]. Their design allows 
blocks to be compressed in variable amounts of storage according to their compress-
ability. Their results show a significant benefit from this flexibility. Chen et al. [4] 
propose a scheme that dynamically partitions the cache into sections of different 
compressability. 

The compression technique was applied in many commercial products too. In 
IBM’s Memory Expansion Technology (MXT) [21], all main-memory data is stored 
in compressed form. A hardware engine built into the memory controller manages 
compression/decompression transparently to software. However, to reduce decom-
pression latency for misses in the on-chip caches, the MXT memory controller in-
cludes a large (32 MB) off-chip uncompressed cache. Recently, Ekman and Stenstrom 
[6], attacked the problem of the long decompression latency in main memory com-
pression schemes by using a simple but very effective compression technique. Their 
mechanism (inspired by the frequent value approach) introduces negligible decom-
pression latency. Thus, their method does not rely on huge caches. 
 

Compression in Communication Channels. There has been a significant amount of 
research on reducing address/data bus swithching activity. Work dedicated to address 
buses such as Bus Expander [5], Dynamic Base Register Caching [7], and Working 
Zone Encoding [17], is based on the sequentiality of program counters and regularity 
of memory accesses . These techniques have been re-evaluated for data buses. In this 
case, the benefits were significantly reduced, since these schemes fail to exploit local-
ity in non-contiguous bit positions. 

The work that applies to data buses includes variants of directory-based solutions. 
Frequent Value Encoding [24] is a data bus encoding scheme capable of encoding 
entire data values. FVMSBLSB [20] stores the MSB portions and the LSB portions of 
values in separate tables. While encoding MSB/LSB portions alone, the remaining 
portion of the data are sent unencoded. Recently, Suruch et al. [19] proposed a 
scheme, called TUBE, which captures chunks of varying widths from data values. 
Finally, Basu et al. [2] proposed a value cache at both ends of a memory channel. 
During a hit, the index to the cache entry is sent instead of the whole word. 

7   Conclusions 

In this paper, we propose the first mechanism —to best the of our knowledge— for 
dynamic dictionary-based compression for L1 data caches. Our approach relies on the 
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frequent value locality. In contrast to the previously proposed dictionaries for cache 
compression, the context of our dictionary dynamically adjusts to the requirements of 
a running program. We solve the problem of keeping the cache state and the diction-
ary state consistent by decaying the cache/dictionary in exactly the same way. De-
cayed entries in the dictionary are available for replacement by new frequent values 
without worrying about dependencies with the cache compressed data (no live cache 
line can possible refer to a decayed dictionary entry). Thus, we adapt the contents of 
the directory to the set of frequent values that are most relevant at any point in the 
execution. 

We evaluate our adaptive compression technique using full system simulation and 
a range of benchmarks. Our dynamic scheme provides an improvement in the relative 
EDP of the cache up to 10% compared to the static and training approaches leading to 
a more power-efficient solution. When high performance is the target for optimiza-
tion, our proposal yields 45% reduction in miss rate compared to a conventional cache 
of the same capacity and up to 27% improvement over the static dictionary technique. 
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Abstract. This paper proposes a dual-mapping function for one-way data cache 
to reduce cache misses, write-back rates, and access time for single-core or 
multi-core computing processors. Our simulation results show that it reduces 
cache misses significantly compared to any conventional L1 caches. Simple 
Scalar simulator has been used for these simulations with SPEC95FP and 
Minne SPEC2000FP benchmark programs. In addition, it has a simple hard-
ware complexity similar to that of a 2-way SAC (set-associative cache). The 
proposed cache has good AMAT (average memory access time) compared to a 
2-way cache and also uses fewer execution cycles. Simulations over CACTI 
were performed to evaluate the hardware implications as well.  

1   Introduction 

For an application program, there are two types of memory references: instruction 
references and data references. Much of the processor execution time is wasted if it 
has to wait a long time for data from slow memory (DRAM). An analysis of the  
simulations performed by Mowry et al. [1] reveals that the programs for scientific 
applications spend nearly one-fourth to one-half of the total processor execution time 
in waiting to fetch the data from the memory. 
    The need for a fast and efficient data cache is essential not only for single-core 
(or multi-core) processors to perform scientific applications but also for network 
routers (or switches) to store and retrieve large routing tables [2]. Though the exist-
ing small-sized (8KB to 64 KB) fast L1 caches provide fairly good access times, 
they fail to exploit the spatial and temporal localities associated with the data refer-
ences [3][4]. In addition, they suffer from high conflict misses causing frequent 
thrashing of data. 

Table 1 shows L1 (Level one) on-chip caches of current microprocessors, includ-
ing the following: 1) 2-way and 4-way mapping functions are popular for the L1 data 
cache; 2) L1 cache sizes are in between 8KB and 64 KB; 3) Multi-level on-chip 
caches (L1 to L3) can be popular for future multiprocessors. 

In general, since the L1 cache needs to be matched with the CPU clock speed, a 
small-sized and fast L1 cache is a must: 1-way (direct-mapped) is better than 2-way 
or 4-way from a cost and speed point of view. However, its cache misses are much 
higher than those of 2-way or 4-way. Therefore, most current processors have used  
2-way or 4-way instead of 1-way, as you see in the Table 1. 
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Table 1. Cache schemes for current microprocessors. 12KB*: 12 KB Trace cache. 

L1 (Level one) cache  
Instruction Data 

L2 cache L3 cache 

Intel Itanium II 16KB, 4-way 16KB, 4-way 256KB 3-6 MB 
Intel P4 12KB* 8KB, 4-way 256KB  
Intel PIII 16KB, 4-way 16KB, 4-way 256KB  
AMD Athlon 64KB, 2-way 64KB, 2-way 256KB  
PowerPC G5 64KB, 1-way 32KB, 2-way 512KB  
Alpha 21364 64KB, 2-way 64KB, 2-way 1.5MB  

There are two main factors to consider in designing cache architecture such as 
mapping function and replacement policy [5]. Conventional mapping schemes map an 
address onto a cache location with a fixed number of bits (index) extracted from the 
address. The index can point to a single location in Direct-mapped caches or to a set 
of locations in SACs (set-associative caches) [5]. Due to the numerous cache misses 
encountered in these conventional caches, researchers have begun to develop different 
mapping schemes such as Pseudo-3way Set-associative and Skewed-associative 
schemes to reduce conflict misses. For a small-sized cache, conflict misses (caused by 
competing for the same location of a cache) is the most critical to the system perform-
ance. All these mapping functions greatly depend on their replacement policies to 
deliver a lower cache miss-rate. 

After designing a cache memory, performance of the cache architecture can be 
evaluated by using ET (execution time) and AMAT (average memory access time) 
[5]. ET and AMAT mainly depend on miss-rate, miss-penalty, and write-back rate 
(refer to section 5).  

Therefore, our motivation has been in designing a data cache that can effectively 
reduce the miss-rate, write-back rate, and access time by exploiting the data in spatial 
and temporal localities. 

The remainder of this paper is organized as follows: Section 2 introduces Pseudo 
3-way Set-associative cache, Skewed-associative cache, and Dual-port memories; 
Section 3 explains the operation and architecture of the proposed cache; Section 4 
briefly describes simulation methodology; Section 5 analyzes the simulation results 
and Section 6 provides conclusions of the paper. 

2   Related Works 

The access time and miss-rate might be two main factors in determining the data 
cache performance. However, it is difficult to reduce the access time and miss-rate 
simultaneously because the extra hardware components to reduce the miss-rate may 
come into the critical path in accessing the cache. Therefore, the major research over 
the cache memories has been on developing cache memory architectures to achieve 
lower miss-rates and less access times, and several cache architectures such as Pseudo 
3-way set-associative (P3-way) cache [3] and Skewed-associative (Skew) cache [6] 
have been proposed to adapt memory-access behaviors [7]. 

The P3-way cache is developed based on the Multiple Access Cache (MAC) [3]. 
The miss-rate of a 2-way MAC has the same limitation as that of a 2-way SAC.  
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The similarity is due to the fixed alternative locations determined by hashing func-
tions that use static methods to compute indexes. To overcome this limitation, P3-way 
cache was proposed. In this cache, when a reference is not found in a direct mapped 
location, one of the two different hashing functions is used to access an alternative 
location. The selection between the two functions depends on dynamic reference 
pattern. A bit-array table is used to indicate the hashing function that is to be used to 
determine an alternative location [3]. 

The miss-rates achieved by the P3-way cache are slightly better than 2-way SAC 
[3]. This achievement is due to the reduction in the conflicts between two more re-
cently used cache locations by being able to access different alternative locations. 
However, the Skew cache outperforms this improvement since Skew cache works 
similar to 4-way SAC [3][6]. 

Even though the P3-way cache showed improvement in achieving lower miss-
rates, it still determines the alternative locations in a static manner. This static nature 
may cause the P3-way cache fail to resolve conflict misses when three or more refer-
ences index to the same location. 

Conflict misses, as seen in conventional SACs and P3-way caches, are mainly 
caused due to statically-determined alternative locations. To eliminate such conflict 
misses, Seznec [6] introduced the Skew cache, which maps each address onto differ-
ent cache lines using XOR mapping functions on separate banks. Fig. 1 shows the 
mapping in a 2-way Skew cache. The XOR mapping functions can decrease conflict 
misses by dispersing conflict-references onto a broad range of inter-bank and local 
locations in a bank.  

An example showing the XOR functions used in a 2-way Skew cache is as follows: 
Each referenced address is split into certain parts, as shown in Fig. 1. Consider that 
the cache has 64 lines on each bank; consequently A1 and A2 have 6 bits each. 

Let ‘f0 (R) = A2 ⊕ shuffle (A1), and f1 (R) = A2 ⊕ φ1[shuffle (A1)]’ be the two 
XOR mapping functions chosen for mapping [8]. φ1 [shuffle (A1)] gives the circular 
shifted value of the shuffled bits of A1. The shuffling can be done by accumulating 
even bits towards the most significant locations and odd bits towards the least  
 

Bank 0

A3 A2 A1 A0

memory address

f0 f1

Bank 1

Each bank has different cache index because of two different mapping 
functions (f0 and f1).

Fig. 1. Address division and mapping in a 2-way skew-cache
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significant locations. For instance, the shuffling of A1 = (b0 b1 b2 b3 b4 b5) by this 
method would generate a new bit sequence A1’ = (b0 b2 b4 b1 b3 b5). 

When both the mapping functions (f0 and f1) experience a cache-miss, a pseudo-
LRU replacement policy is followed [6].  

It is important to note that the access time of the Skew cache is fairly small since 
neither shuffling operations nor circular shift operations need any hardware logic to 
implement. The only hardware requirement is a little extra routing to extend the in-
coming bits from A1 and A2 to XOR gates and then to the memory. All these XOR 
gates operate in parallel and account to only 1 XOR gate delay. Also, a 2-way Skew 
cache is shown to have hardware complexity similar to a 2-way SAC and obtains a 
miss-rate similar to a 4-way SAC [6].   

However, the Skew cache has its own drawbacks: First, the ability of the Skew 
cache to map data to well-dispersed locations is limited by the size of banks. For 
example, for a Skew cache with N×  L (index × cache line size) KB, each XOR func-
tion is free to disperse the conflicting addresses onto N/2 locations only. Thus,  
multiple small banks might make a Skew cache fail to minimize the conflict misses. 
Second, the LRU replacement policy in a Skew cache is hard to implement at a rea-
sonable hardware cost [9]. Also, the replacement policy lacks the ability to provide 
equal preferences for all the blocks in bank1 compared to those in bank0. 

A dual-port cache inherits its architecture from multi-port SRAMs. Multi-port 
SRAMs are generally used with multi-processors, which are capable of processing 
more than one instruction at a time. According to [10][11], the benefits/drawbacks of 
using a dual-port cache over a single-port cache are as follows:  

1) Performance/Improved Bandwidth: Two locations in a dual-port cache can be 
simultaneously accessed which effectively doubles the bandwidth (benefit); and 

2) Area and logic savings: A dual-port cache could save some extra logic require-
ments and area compared to duplicated single-port caches (benefit). However, 
the area of dual-port cache is bigger than a (instead of duplicated) single-port 
cache (drawback); and 

3) Power savings: The dual-port cache power depends on how complex the support 
logic around the single-port SRAM array is. If the support logic is designed to 
implement full address arbitration and/or any other logic functions such as sema-
phore logic, then the duplicated single-port (not dual-port cache) memories con-
sume significant power (benefit); and 

4) Accesses: The second port of a dual-port cache might be accessed less than the 
primary port (drawback). 

Therefore, the dual-port cache would work effectively for improving system per-
formance if the above drawbacks, 2 and 4, are resolved. In this paper, we propose 
Pseudo-Direct Cache (PDC) that uses Dual-Mapping Function (DMF) to reduce 
drawbacks of dual-port cache and power consumption.  

3   1-Way Cache with DMF 

This paper proposes a 1-way cache memory called PDC (Pseudo-Direct Cache) that 
successfully exploits more data localities and attains lower miss-rates. The proposed 
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Pseudo-Direct Cache (PDC) works like a 1-way cache except for accessing two loca-
tions simultaneously with two different XOR mapping functions, which is called 
DMF (Dual-Mapping Function). These functions index a data reference onto two 
separate cache lines over the entire cache space. Also, unlike SAC, PDC can dynami-
cally map each reference in a set of conflicting addresses to different locations  
depending on the address bits. According to our simulation results, it is rare for two 
XOR mapping functions to access to the same locations simultaneously in a cache 
memory (much less than 0.001%). Therefore, PDC enables conflicting references to 
map well-dispersed locations; thereby reducing the number of conflict misses. The 
dispersion space available for these mapping functions is double in PDC than in  
2-way Skew cache. For example, each mapping function of the 32-KB PDC with a 
block size of 32 bytes can index onto any of the available 1024 lines. On the other 
hand, each function of the 2-way Skew cache can index onto only 512 lines. Thus, 
PDC is more effective in reducing the number of conflict misses than both Skew 
cache and SAC. To keep the conflict misses low, the PDC uses a Pseudo-Direct LRU 
(PDLRU) replacement policy that effectively selects the least recently used line for 
replacement. In this section, we present the working of the PDC, along with flow-
chart for PDLRU, followed by hardware architecture and effects on hit-time and  
miss-penalty. 

The PDC works as follows: On each reference, the PDC probes two distinct cache 
lines simultaneously to search for a referenced data. Each line is made to hold two  
1-bit flags (mapfn and altmap) that are initially set as 1 (set (1)):   

1) ‘mapfn’ is used to recognize the mapping function that is responsible for the data 
stored in a cache line; 

2) When a cache-line mapped by f0 causes a cache-hit, altmap flag on that line is 
reset as 0 (reset (0)), and altmap flag on the line mapped by f1 is set (1) and 
vice-versa. A cache line having altmap=0 indicates that the line is recently 
used.  

The PDC uses the PDLRU replacement policy, developed to give equal preference 
to all the lines in the cache. This policy overcomes the biased nature of the replace-
ment policy used in a Skew cache. The major functioning of the PDLRU policy is 
described as follows as shown in Fig. 2: 

- When a cache-miss occurs, if the altmap in f0 indexed cache line (altmap-f0) is 
found as reset (0), the PDLRU policy selects the line indexed by f1 for replace-
ment. It then resets the altmap in f1 indexed cache line (altmap-f1) and sets 
altmap-f0 flag. Setting the altmap bit indicates that the corresponding cache line 
is the least recently used among the current pair of cache lines. 

- On the contrary, if the altmap-f0 flag is found as set (1), the PDLRU policy 
chooses the line mapped by f0  for replacement. Here, it sets altmap-f1 and resets 
altmap-f0. 

- For each replacement, the flag mapfn is as set (1) when the cache line is mapped 
with the first function (f0) and as reset (0) otherwise. 
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Fig. 2. Pseudo-Direct LRU replacement policy 

 
Fig. 3. PDC Architecture for checking cache hit and miss 
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According to the experimental results, the Pseudo-Direct LRU policy works well in 
giving equal preference to all the cache lines by exploiting the random nature of data 
references.  

In Fig. 3, the hardware implementation of PDC needs slightly more extra resources 
than conventional cache implementations. As we discussed, a dual-port (SRAM) 
memory is used by the PDC to access two cache lines simultaneously on each refer-
ence. Additional extra hardware required by the PDC includes bit-XORs used for 
XOR mapping computation, comparators and multiplexers used with mapfn and 
altmap control bits, and certain AND/OR gates as shown in Fig. 3. The XOR mapping 
functions f0 and f1 require computation of several XOR operations to obtain cache 
indexes. Since all the XOR operations can be done in parallel, this computation has 
the delay of only a single 2-input XOR gate. This makes the cache access time of a 
PDC to be slightly more, but almost equal to the access time of a 2-way SAC. 

The PDLRU replacement policy is similar to that of LRU policy in a 2-way SAC. 
The difference between these policies lies in the LRU-bit update cycle. A 2-way  
SAC requires updating a single LRU bit in only one of the two cache lines on a two-
bank memory. On the other hand, a PDC requires updating of LRU bits in both the 
cache lines mapped by f0 and f1 over a single bank of memory. Thus, when a single 
write port memory is used for a PDC, the miss-penalty increases by one write cycle. 
However, using a two-write port memory eliminates this increase. Therefore, a trade-
off exits in the form of memory complexity versus miss-penalty in a PDC. 

 
Fig. 4. Hardware architecture of PDC 
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Additionally, the 3-input AND gate and the 3-input Multiplexer in the replacement 
determination path slightly increases the miss-penalty of a PDC as compared to a  
2-way SAC. The 2-way SAC uses both these gates, but each has only two inputs. This 
similarity in the replacement determination path makes the miss-penalty of PDC very 
close to the miss-penalty of a 2-way SAC. However, the exact amount of time by 
which the miss-penalty differs depends on implementation technology. As we dis-
cussed, Figures 3 and 4 show the overall hardware architecture of the PDC. In these 
figures, (f0, 0) implies f0 location’s altmap is ‘0’ and (f0, 1) implies f0 location’s 
altmap is ‘1’. So is (f1, 0) and (f1, 1). 

4   Simulation Methodology 

This paper evaluates the Pseudo-Direct mapping scheme for an on-chip, first-level 
(L1) data cache. The conventional caches including the 2-way Skew cache are also 
evaluated and compared with the Pseudo-Direct cache.  

These evaluations were done based on execution-driven simulations of the 
SPEC95FP and MinneSPEC2000FP benchmarks [12][16]. These benchmarks are 
compiled for the SimpleScalar PISA instruction set with no optimizations. A second-
level direct mapped data cache that can only affect the overall miss-penalty is as-
sumed to be present.  

Simulations are performed for different cache sizes that ranged from 8 to 32 KB. 
For each cache size, different line sizes ranging from 8 to 32 bytes were employed. 
SimpleScalar Toolset (3.0 version) is used to perform these simulations. Fig. 5 gives a 
detailed evaluation methodology of a cache design using a SimpleScalar simulator 
and SPEC95/SPEC2000 benchmarks. 
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Fig. 5. Simulation Methodology 
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Out of the variety of simulators that SimpleScalar offers, sim-cache is used for 
evaluating the different cache designs. Sim-cache is a functional simulator that is 
ideal for fast simulation of caches [13]. 

CACTI 3.0 simulator is also used to obtain the access times and delays of different 
components for various cache organizations [14]. For a given cache organization, 
CACTI will detail all possible internal configurations and chooses the one with the 
best-weighted value. Simulations were performed giving equal consideration to la-
tency, energy, and area. The simulations used 0.1um and 0.2um technologies for im-
plementing different cache organizations. 

The miss-rates and write-back rates obtained from SimpleScalar, and the access 
times and delays obtained from CACTI are used to calculate the performance metrics. 

5   Simulation Results  

This section presents the simulation results of different cache organizations along 
with performance improvement of PDC. Since the miss-rates of Skew cache [6] are 
lower than that of P3–way cache [3], only the former is implemented for simulation 
verification and comparison. Due to limited space, only the results for those caches 
with a block size of 16 bytes and 32 bytes are presented.  
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Fig. 6. Comparison of miss rates for various caches 

Fig. 6 shows the average miss-rates for various cache schemes. The average miss-
rates are obtained from the harmonic mean of the miss-rates from the results with the 
SPEC95 floating-point benchmark programs. Fig. 6 shows that PDC can reduce miss-
rates more than 10% (10% to 20%) compared to 2-way Skew cache for 4 different 
cache sizes (4K to 32K). 

Fig. 7 gives the conflict miss-rates for various cache schemes. These conflict 
miss-rates are computed as ‘miss-rate of a cache – miss-rate of a full-way cache’  
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Fig. 7. Conflict miss rates for various caches 
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Fig. 8. Write-back rates for various caches 

since we consider there is no conflict miss in a full-way set-associative (full-way) 
cache. In Fig. 7, PDC can reduce conflict misses significantly compared to other 
caches, and its conflict miss-rates are almost close to an 8-way SAC. Fig. 7 also 
shows that the conflict miss-rates of a 2-way Skew cache are close to that of a  
4-way SAC and are higher than a PDC. 

One of the ways to reduce the cache miss-penalty is to reduce the traffic amount 
between cache and main memory. The frequency of this traffic depends on the num-
ber of write-backs performed by the cache. Thus, a reduction in the write-back rate 
not only improves the CPU execution times but also reduces the power consumption. 
In general, a cache that causes lower power consumption is ideal for embedded proc-
essors. Fig. 8 shows the average write-back rates for 4 different cache schemes. The 
average write-back rates are obtained from the harmonic mean of the simulation re-
sults from all SPEC95 floating-point benchmark programs. Fig. 8 shows that, on an 
average, PDC can reduce write-back rates 6%-15% more than 2-way Skew cache.  
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Fig. 8 illustrates this comparative reduction in the write-back rates for the cache sizes 
of 4KB, 8KB, 16KB, and 32KB.  

Similar type of reduction in the miss-rates and write-back rates by the PDC (over 
Skew) are seen for the MinneSPEC2000FP benchmarks as well. Since these bench-
marks have relatively less number of associated spatial and temporal localities, the 
reduction of miss-rates and write-back rates is not eminent. Table 2 shows the results 
for these benchmark simulations in detail. 

Table 2. Detailed miss-rates and write-back rates for MinneSPEC2000FP 

 SKEW  PDC 
4K miss-rate wb-rate miss-rate wb-rate 

wupwise 0.0088 0.0088 0.0072 0.0072 
swim 0.10 0.10 0.0953 0.0953 
equake 0.02 0.02 0.018 0.018 
ammp 0.10 0.10 0.1042 0.1042 
mgrid 0.07 0.07 0.0577 0.0576 
applu 0.05 0.05 0.0455 0.0455 
mesa 0.01 0.01 0.0058 0.0058 
apsi 0.0324 0.0324 0.0297 0.0297 
art 0.0746 0.0746 0.0741 0.0741 
HMean 0.0200 0.0200 0.0190 0.0190 
8K   
wupwise 0.0077 0.0077 0.006 0.006 
swim 0.09 0.09 0.094 0.094 
equake 0.01 0.01 0.014 0.014 
ammp 0.10 0.10 0.0992 0.0991 
mgrid 0.06 0.06 0.0458 0.0458 
applu 0.04 0.04 0.0421 0.0421 
mesa 0.00 0.00 0.0042 0.0042 
apsi 0.0247 0.0247 0.0223 0.0223 
art 0.0736 0.0736 0.0738 0.0738 

HMean 0.0166 0.0166 0.0150 0.0150 
16K   
wupwise 0.0061 0.0061 0.0056 0.0056 
swim 0.09 0.09 0.0927 0.0927 
equake 0.01 0.01 0.0116 0.0116 
ammp 0.09 0.09 0.0834 0.0833 
mgrid 0.04 0.04 0.0401 0.0401 
applu 0.04 0.04 0.0401 0.0401 
mesa 0.00 0.00 0.0031 0.0031 
apsi 0.0213 0.0213 0.0203 0.0203 
art 0.0733 0.0733 0.0735 0.0735 
HMean 0.0127 0.0127 0.0125 0.0124 
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 SKEW  PDC 
32K miss-rate wb-rate miss-rate wb-rate 
wupwise 0.0063 0.0063 0.0054 0.0054 
swim 0.09 0.09 0.088 0.088 
equake 0.01 0.01 0.0104 0.0104 
ammp 0.08 0.08 0.0957 0.0956 
mgrid 0.04 0.04 0.0334 0.0334 
applu 0.04 0.04 0.038 0.038 
mesa 0.00 0.00 0.0028 0.0028 
apsi 0.0204 0.0204 0.0191 0.0191 
art 0.0731 0.0731 0.0734 0.0734 
HMean 0.0121 0.0121 0.0115 0.0115 
64K     
wupwise 0.0054 0.0054 0.0052 0.0052 
swim 0.09 0.09 0.0808 0.0808 
equake 0.01 0.01 0.0095 0.0095 
ammp 0.10 0.10 0.0949 0.0949 
mgrid 0.03 0.03 0.0278 0.0278 
applu 0.04 0.04 0.0352 0.0352 
mesa 0.00 0.00 0.0027 0.0027 
apsi 0.0189 0.0189 0.0175 0.0175 
art 0.0729 0.0729 0.0732 0.0732 
HMean 0.0112 0.0112 0.0109 0.0109 

The CPU execution time for a cache scheme can be computed by using the follow-
ing equations [5]: 

1)]}(wbrateMMATWmr[1WPI1)](wbrateMMATRmr[1{RPIIC          
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where T is the Time period of CPU clock, IC is Instruction Count, CPI is Cycles Per 
Instruction, Rmr is Read miss rate, MMAT is main memory access time, wbrate is 
write-back rate, RPI = (Reads/Instructions), and WPI = (Writes/Instructions). 

We computed the execution times for turb3d benchmark program for PDC and 2-
way skew cache separately and then compared. For these calculations, a single level 
split-cache memory is assumed to be present. A second level L2 cache is not consid-
ered, as its effect on both PDC and Skew would be the same. Also, the delay along 
the critical path for a PDC is assumed to be almost equal to that of a skew cache. Our 
computation results from turb3d benchmark program show that PDC performs ap-
proximately 1.1 times better than 2-way Skew cache.  

The AMAT for PDC and Skew cache is computed for both 0.1um and 0.2um tech-
nologies. The Skew cache architecture is implemented in CACTI using the single port 
2-bank memory. Similarly, the PDC architecture is implemented in CACTI using a 
two-port 1-bank memory. The total access delay for a single XOR gate in both  
PDC and Skew cache is assumed to be negligible. The additional delay due to the data  
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Fig. 9. Percentage reduction in AMAT for both memories 

selection multiplexer (Dmux) in PDC is assumed the same as the Dmux delay in  
2-way Skew cache. 

In computing the AMAT, the hit times are obtained from the CACTI and the miss-
rates get from the average miss-rates from our simulation results. These calculations 
were performed through typical fast memory types (Level 2 (L2): 20ns, main  
memory: 100ns) and typical slow memory types (L2: 60ns, main memory: 250ns) 
separately. Fig. 9 shows that PDC has 2-18 % lesser AMAT than Skew cache. This 
reduction in AMAT by PDC is better when slow lower level memories are used in the 
memory hierarchy. Therefore, PDC provides an advantage over Skew cache in appli-
cations that use slow lower level memories, which is cheaper than fast lower ones. 

For a memory system consisting of L1 and L2 caches, where the miss rate in L2 
cache (large size  1MB) is assumed to be negligible, the energy consumption (nano 
Joules) is given by the following equations: 
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L1 and L2 energies are the energies required to access and check a location in L1 
cache and L2 cache respectively. These energies are measured by using the CACTI 
simulator [14]. 

Our simulation results show that PDC consumes 30-50 % more energy than 1-way 
and 2-way SAC. In case of 4-way SAC, the PDC is observed to consume 4 % less 
energy for a 32 KB cache but 10% more energy for a 16 KB cache. When compared 
to 8-way SACs, the PDC is observed to consume 35-45 % less energy. 

In order to reduce the increase in energy consumptions by PDC, the numbers of 
cache accesses are to be reduced. Since 90 % of the references are found on an L1 cache 
a small register buffer can eliminate the repeated accesses belonging to a spatial locality. 
The buffer can have a size of about 2 to 4 times of the block size of L1 cache. A similar 
idea is proposed in Caching on Cache (CoC) architecture developed for embedded  
systems [15]. The CoC is proposed as a small sub-cache in L1 caches. Simulations 
performed to evaluate the CoC energy consumption show that the CoC effectively re-
duces the energy consumption by about 45 % over a 1-way cache [15]. The results also 
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show that the overhead on the performance (delay) is only 5.6% compared to 1-way 
cache. Therefore, PDC can make the energy consumption almost equal to 1-way and 
better than any of the SACs without much loss to its performance improvement. Cur-
rently, we are working on reducing power consumption by adding a small buffer and we 
expect 40 to 50% power savings for programs with high spatial locality. 

6   Conclusions 

The goal of this research is to develop an efficient cache scheme that could reduce 
access time, write-back rates, and cache misses for single-core or multi-core proces-
sors. An optimal cache scheme would be the one that can effectively keep the miss-
rates to a minimum and also maintain fast access times. Efficient cache schemes such 
as P3-way and Skew cache were introduced. Although some performance gain is 
achieved by these schemes, both have certain drawbacks. The performance of the P3-
way cache is limited by static methods employed in reducing the conflict misses. The 
performance of the Skew cache is limited by its restricted dispersing ability. Also, the 
replacement policy used in a Skew cache does not give equal preference to all the 
blocks in the cache. 

This paper proposed a new cache architecture called PDC that effectively counters 
the drawbacks of both P3-way and Skew cache architectures. PDC reduces the num-
ber of conflict misses effectively by allowing conflicting addresses to be dynamically 
mapped over the entire cache space.  

The simulation results over SPEC95FP and Minne SPEC2000FP benchmarks show 
that the PDC is successful in achieving an improvement of 10-20% reduction in the 
cache miss-rates compared to 2-way Skew cache. In addition, PDC has better miss-
rates than 4-way SAC, has better execution times than Skew cache, and is expected to 
have data access time close to 2-way SAC. Finally, there would be a slight increase in 
the hardware cost to implement the design. However, the effect of the extra hardware 
on critical path delays is negligibly small. 

Currently, we are working on reducing the power consumption for the PDC by 
adding a buffer. It can be expected to save energy by 40 to 50% for application pro-
grams with high spatial locality. The performance of this cache can be evaluated in 
shared memory environments, especially in network routers as well.  
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Abstract. Much of the chip area and power in a modern processor are
used by mechanisms that compensate for slow main memory such as
caches, out-of-order execution and prefetching. We attack this problem
by utilizing a DRAM macro made by Hwang et. al that is faster than
conventional DRAM macros, but does not conserve data in the DRAM
cells after reading. Their prototype included a large write-back buffer
for conserving data without degrading performance of read accesses. We
eliminate this buffer by utilizing the already existing cache in processor
designs at the cost of potential memory bank congestion. Two imple-
mentable and one theoretic upper-bound scheme for cache write-back are
evaluated. We find that the size of the cache can be highly reduced with-
out degrading performance when utilizing destructive-read DRAM. The
large write-back buffer can be omitted when destructive-read DRAM
is used with a processor with cache without significant degradation of
performance.

1 Introduction

The pipeline of a processor is now running at a higher frequency than main
memory. Caches are used to reduce the number of memory accesses that require
data from main memory and hence reduce the effect of the slow main memory.
However, caches have several disadvantages, they require substantial chip area,
increase power consumption and do not work equally well for all applications.
Other mechanisms are out-of-order execution, prefetching and thread switching.
These techniques increase the complexity of the processor, power consumption
and chip area as well. Increasing the chip area increases the cost of manufacturing
the chip as the yield and number of chips per wafer are reduced. Increasing the
power consumption increases the cost of packaging for the chip due to increased
cooling requirements and reduces the operation time when powered by batteries.

By reducing the latency of the main memory itself the processor core and
cache system can be simplified without degrading performance. The latency
of main memory can be decomposed into different parts: Cache miss latency,
latency of bus to main memory and memory bank latency. The latency of the off-
chip bus to main memory can be eliminated by integrating the memory bank and

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 145–159, 2006.
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Fig. 1. A logical sketch of a DRAM macro

processor on the same chip. Dense main memory is made with DRAM technology.
DRAM chips are highly optimized for storing data and a large amount of the
design is analog. Capacitors are used to store data (see Figure 1) which fills
a large area of the chip. Logic circuits on the other hand are optimized for
speed and power distribution. Merging these technologies results in compromises.
Several projects have researched into merging processors and memory over a
long period of time ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). Chips with DRAM and processors
are now in mass production for example Sony’s Playstation 2, EZchip’s NP-1c
network processor[11] and Nintendo’s GameCube. Embedded DRAM is still not
as dense (bits per area) as pure DRAM chips (typically 50% less bits per area),
but this is claimed to be better with denser technologies [12].

Embedding DRAM does not reduce the latency of the DRAM bank itself,
and even with the off-chip bus latency eliminated the DRAM is much slower
than the pipeline of the processor. Hwang et. al[13] made a DRAM macro called
destructive-read DRAM where access time was reduced with 50%, but where
data in memory is deleted when read. In order to understand how destructive-
read DRAM works, we will start with describing the conventional DRAM bank
and such a bank is shown in Figure 1. The row decoder is the first component
activated in a read access. It enables one word line and causes all transistors in
that row to be activated. These transistors connect the capacitors in the memory
array to the sense amplifiers through bit lines. The sense amplifiers work in three
phases as shown in Figure 2a. In the first phase the charge from the capacitor
drives the sense amplifier into a logic state. In the second phase that logic state
is locked. In Figure 3a the locking works as a buffer. From this buffer the data is
sent to the processor and written back to memory. In the final phase the bit lines
are pre-charged so they are ready for the next access. Destructive-read DRAM
memory works differently. The read operation of conventional DRAM (see Figure
2a) is split into two cycles (see Figure 2b and c) Destructive-read DRAM does
not lock the data after reading (as shown in Figure 3b). Instead the data are
sent directly out of the cell, in this case to cache memory. Since data is not sent
back to memory, data is destroyed after reading. Data is conserved by writing it
back to DRAM after use as shown in 2c. However, write-back can be done later
in contrast to conventional DRAM where read and write-back are one single
operation. The prototype had four independent memory banks and large write
back buffer (WBB) that was the same size as one memory bank. The purpose
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of the WWB was to hide write-backs, not to reduce latency. The WBB could
write to several banks simultaneously and required significant chip area. Later a
new scheme was made where the WBB was implemented with destructive-read
DRAM[14]. Both designs guaranteed that write-backs never conflicted with read
operations.

We have earlier studied the effect on power consumption by using destructive-
read DRAM [15]. The findings were only a small increase in system power con-
sumption (0.5% and 3% for 16kbyte and 2kbyte caches respectively). This paper
studies writing back data without using large explicit WBB. The baseline ar-
chitecture is a small processor with small caches and embedded DRAM. This
represents an embedded system. We compare performance by utilizing the mod-
ification proposed by Hwang et. al and compare the performance in terms of
instructions per clock cycle (IPC). We propose two new schemes for write-backs
based on the existing cache in a processor. The cache architecture is modified in
different ways so data are conserved.

Our findings are that the cache can be much smaller without degrading in-
structions per clock cycle (IPC) with destructive-read DRAM compared to con-
ventional main memory. The large write-back buffer in the prototype can be
omitted by using the cache for this purpose.
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2 New Write-Back Schemes

The design by Hwang et. al included a large write-back buffer and in this work
we utilize the cache of the system to do this task so the write-back buffer can be
removed. However, it is not obvious when data should be written back from the
cache and how this will impact performance since the cache is much smaller than
the original write-back buffer. As shown in the evaluation section, simulations
show that these schemes work well.

We call the first scheme the delayed write-back scheme. It can be compared to
a cache that always has dirty cache lines. This implies that all data that are read
into the cache have to be written back when replaced. A different approach is to
write back data immediately after reading and we call this the immediate write-
back scheme. The differences between conventional DRAM and destructive-read
DRAM with the immediate write-back scheme can be clarified by examining the
steps in a read operation. For conventional DRAM a read operation is completed
with the bit line not being changed. There is only one access on the memory
bus. For destructive-read with immediate write-back scheme, the data is first
transferred to the cache and then written back to main memory. Two accesses
are executed on the bus to perform one read operation. One intuitive idea might
be to insert a buffer inside the conventional DRAM macro so data becomes
available earlier. An important factor is that the DRAM is embedded. Insertion
of extra latches for each DRAM bank will require substantial chip area. Each
independent memory bank seen from the processor can have several sub banks.
In this case the sense amplifiers have to drive both the extra latch and data
to the cache and will therefore have to be more powerful. By centralizing these
latches fewer are needed at the cost of extra (on-chip) bus traffic. This enables

 Cache content before
instruction is executed

Immediate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Line 0 Line 1
1 ADR[0] R1 L0 L0 L0 x y
2 ADR[1] R2 S0 S0 S0 L1 L1 L1 0 y

3 R1+R2 ADR[0] S1 0 1
4 ADR[2] R2 S1 S1 S0 S0 S0 L2 L2 L2 0 * 1

Delayed 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Line 0 Line 1
5 ADR[0] R1 Sx Sx Sx L0 L0 L0 x y
6 ADR[1] R2 Sy Sy Sy L1 L1 L1 0 y

7 R1+R2 ADR[0] 0 1
8 ADR[2] R2 S0 S0 S0 L2 L2 L2 0 1

Fig. 4. Example of execution with the two different write-back schemes. DRAM bus
activity is shown with LA for reading and SA for writing address A. The addresses
that are kept in the cache(i.e. the state of the cache) before the instruction is executed
are shown to the right. The cache is initialized with addresses X and Y which are not
address 0, 1 or 2. Addresses 0, 2 map into the first cache line, while address 1 maps
into the second cache line. * indicates a modified cache line. In all cases the delayed
write-back scheme has to write data back to DRAM on replacement, so cache lines can
always be considered to be dirty.
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buffering of write-backs for subsequent accesses which will improve performance.
In a system with non-embedded DRAM, the situation is different as bus traffic
is slow, limited and energy expensive.

In the delayed write-back scheme data in the cache has to be written back to
make space before a read operation can start. If the data to be written and the data
to be read belong to different DRAM banks, the two operations can be executed
in parallel. The advantage with this scheme is that data is only written back to
DRAM once. With the immediate write-back scheme, data might be written back
to DRAM twice. First, the data is written back right after reading. Then, if the
data is modified, it is written a second time when it is thrown out of the cache.

A simple program (see Figure 4) illustrates the difference between the two
write-back schemes. The program is executed on hardware with the following
properties: There is only one DRAM bank, and a read or write operation to
DRAM takes 3 clock cycles. The read operations are destructive, the content of
the loaded addresses are erased in DRAM. The data cache has two cache lines
and each line can store one word. The cache has a 1 cycle latency and is not
write-through. The cache is initialized with unmodified cache lines for addresses
x and y. The example shows the difference in access patterns (number refers to
lines in Figure 4):

1. Address 0 is loaded into the cache and address x is thrown out. This line is
clean and there is no need for a write-back.

2. Address 1 is about to be loaded into cache, but the bus is busy with the write-
back from the previous instruction and this has to finish before loading can
start.

3. The result of an addition is written in address 0. Since this address is in the
cache, it is a cache hit, and no activity on the bus is needed. The write-back
from the previous instruction starts as well.

4. Data from address 2 is loaded into the cache. However, before any DRAM
accesses can start, the write-back from instruction in line 2 has to finish (2
clock cycles). Then, the data in the cache has to be written back since it has
become dirty (address 0 and address 2 map to the same cache line). Finally
the load operation can start.

5. In the delayed write-back scheme data in cache is always treated as dirty.
Therefore before loading data for address 0, data in the cache has to be
written back.

6. Same as line 5.
7. Cache hit, no activity on the system bus.
8. Data in the cache has to be written back before loading can start.

In the delayed write-back scheme data for address 0 is only written once,
while in the immediate write-back scheme it is written twice for address 0. A
load instruction with the delayed write-back scheme takes 3 or 6 cycles; if the
data in the cache line that is replaced is on the same memory bank as the data
that is loaded, it takes 6 cycles. Otherwise, when the data in the cache line and
the data to be read are on different banks, it takes 3 cycles. Load instructions
with the immediate write-back scheme takes 3 to 9 cycles. The first 3 clock
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cycles might be needed to wait for the bus to become available due to earlier
background writing operations. 3 additional cycles are needed when the data in
the cache line is dirty and have to be written back to the same memory bank.
Finally, 3 cycles are always needed for reading data.

One important question is which of the two schemes has the highest perfor-
mance. With the immediate write-back scheme the result from a load operation
is available after only 3 cycles when the cache line is clean. The strength of the
delayed write-back scheme is the reduced traffic on the memory bus. In cases
where data in the cache is modified, the number of transactions on the bus is
reduced to only one.

The advantage of the immediate write-back scheme depends on unmodified
cache lines while the advantage of the delayed write-back scheme depends on a
modified cache lines. Smaller caches will have a lower ratio of modified cache
lines that are replaced because data are swapped out before they are written to,
while larger caches will have a higher ratio of modified cache lines. The ratio of
modified cache lines that are replaced depends on the program as well.

3 Methodology

The purpose of our simulation is to study the performance of different write-
back schemes with destructive-read DRAM and compare this to conventional
embedded DRAM and to a theoretical write-back scheme with free write-backs
for data conservation. The simulator is based on SimpleScalar version 3 [16]. It is
extended to simulate a configurable number of DRAM banks and a configurable
stand alone write-back buffer in addition to the two write-back schemes and
Hwang’s original scheme.

A logical sketch of the simulated computer is shown in Figure 5. The target is a
computer with embedded memory and one level of cache. The processor is simple
to save area and power. The configuration for the baseline of the simulations is:

– Cycle-true simulation.
– Alpha processor with a five stage pipeline running at 1 GHz.

Alpha
Processor
Pipelined

Level 1
Instruction

Cache

Level 1
Data

Cache

Switch and
write back buffer

.... DRAM
bank n

DRAM
bank 1

Fig. 5. The simulated computer
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– Single issue, no branch prediction buffer, no translation look-aside buffer,
in-order execution, single decode, single commit width, single ALU.

– Two independent caches, one instruction cache and one data cache. Both are
one kbyte, two way set associative caches with 64 bytes cache lines. Latency
is 1 ns.

– Four independent memory banks with simulation of congestion. Memory bus
width is the same as cache line width (64 bytes).

– Latency of DRAM is 6 ns for a read operation. For destructive-read, this is 3
ns for reading and 3 ns for writing based on the prototype made by Hwang.
DRAM Refresh is not simulated as it is presumed to have little effect on the
result.

– In simulations of Hwang’s original scheme, the latency of the memory sys-
tem is always 3 ns (write-backs are perfectly hidden in the large write-back
buffer).

– A write-back buffer is implemented for each memory bank capable of storing
one cache line.

SPEC2000 applications were used as benchmark with lgred (large reduced
input dataset)[17] as the data set. One of the 26 applications found in the
SPEC2000 did not work with the simulator (vortex application). In order to
reduce computation time experiments that return average values are based on
a subset of the applications (gzip, gcc, crafty, mcf, swim, mgrid and equake).
Sample tests show that the subset represents the total average values within
+/- 2%.

Four different configurations were simulated:

– Conventional represents the conventional DRAM scheme. Access latency is
double the latency of destructive-read DRAM (i.e. 6 ns), but no write-back
is required.

– Immediate is the immediate write-back scheme. Data is written back imme-
diately or put in the write-back buffer if enabled. Access time is 3 ns.

– Delay is the delayed write-back scheme. The cache behaves like a normal
cache, but the lines are always written back on replacement. Access time is
3 ns.

– No cost represents an ideal DRAM, combining the speed of destructive-read
and the data integrity of conventional DRAM. The intention is to study the
performance degradation imposed by the extra write-backs for conserving
data. Access time is 3 ns.

– Hwang represents the original scheme from Hwang. Access time is 3 ns. The
accesses are guaranteed to be congestion free. No fast cache is included.

4 Evaluation

4.1 Initial Experiment

An initial experiment was run to verify the predictions regarding performance
(see Figure 4) of the two write-back schemes. The experiment has two test pro-
grams, one that reads data and one that reads and writes data into a data
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/∗ Code f o r read experiment ∗/
for ( x=0;x<30000; x++) {

y=y+data [ x ] ;
z=z+data [ x ] ;

}
/∗ Code f o r read / wr i te experiment ∗/
for ( x=0;x<30000; x++) {

data [ x]=data [ x]+y ;
data [ x]=data [ x]+z ;

}

Fig. 6. Source code for the initial experiment
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Fig. 7. Results from the initial experiment

structure as shown in Figure 6. To reduce the effect of instruction cache misses,
the experiment was run with a very large instruction cache. The data cache was
limited (128 bytes) in the same way as in the example. There was only one mem-
ory bank with 10 ns latency. The latency was set high so the effect of memory
latency becomes dominant. This configuration does not reflect a real system, but
is used to illustrate the differences between the two write-back schemes. The im-
mediate write-back scheme should suit the read experiment as the second line in
the loop can execute while write-back from the first line is executed in the back-
ground. The delayed write-back scheme should suit the read/write experiment
as the number of write-backs to DRAM is reduced compared to the immediate
write-back scheme. The results from the experiment are summarized in Figure 7
and are according to predictions.

4.2 IPC for Different Write-Back Schemes

Simulation of the different write-back schemes for the baseline architecture is
shown in Figure 8. Average values are shown to the right. First of all we see
that all applications benefit from destructive-read DRAM except for art where
the Hwang scheme degrades performance. Secondly we see that the schemes
with free write-backs for data conservation, no cost, do not perform much better
than the delayed and immediate schemes. This indicates that the write-backs are
well hidden in both the delayed and immediate schemes. Even though Hwang
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scheme perform well for some applications such as mgrid and crafty due to
less congestion, the overall performance is lower than the other scheme. This is
because there is no fast cache in this scheme.

Compared to conventional DRAM, the delayed write-back scheme is 13.2%
faster, immediate write-back scheme is 13.5% faster, no cost write-back scheme
is 14.4% faster and Hwang’s original write-back scheme is 12.1% faster. The
differences in performance of the applications are related to memory access pat-
terns and locality of the applications. Applications with poor locality that are
memory bound such as ammp, mcf and crafty benefit the most from destructive-
read DRAM. Applications with good locality that are CPU bound such as lucas
and sixtrack have less but significant advantage of destructive-read DRAM. The
buffer size of Hwang’s original scheme was 25% of the DRAM size. For the
simulated applications the size of the buffer is in the range of 170k-5714kbyte,
depending on necessary memory size. The other schemes are simulated with
1kbyte cache. By comparing the no cost scheme with the other two destructive
schemes, it is found that 1% of the performance is lost due to extra write-backs
for both immediate and delayed write-back schemes.

4.3 Cache Size

The IPC for different cache sizes are shown in Figure 9.Two different configura-
tions are simulated, with a small write-back buffer in addition to the cache, and
without this write-back buffer. We see that this small write-back buffer (one en-
try) has a big impact on the performance for the delayed write-back scheme. The
buffer changes the access pattern for a memory access; in cases with congestion
the delayed write-back is performed after the read access. For the immediate
write-back schemes the buffer has less impact, but is still significant.

Smaller caches increase the miss rate and the number of accesses to the mem-
ory system. Larger caches increase the hit rate until a point where compulsory
misses start to dominate. The immediate write-back scheme is slightly better
than the delayed write-back scheme for small caches. For larger caches they
perform more or less equal. In order to understand this advantage, the ratio
of the number of accesses to the DRAM subsystems for the two schemes is
shown in Figure 10. In the delayed write-back scheme, data are not written back
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different write-back schemes

immediately. For modified data (by the CPU), the total number of accesses is
reduced compared to immediate write-back scheme where data are written twice
in this case. Larger caches improve the probability of data being modified be-
fore being replaced for data caches. The advantage of the immediate write-back
scheme is that data is available earlier in cases where there is a conflict between
writing and reading data. Even though the two models are different, perfor-
mance is similar except for small caches where the immediate write-back scheme
is better.

4.4 Latency and Number of DRAM Banks

Simulation of different DRAM-latencies is shown in Figure 11. As latency
increases, performance degrades as the CPU is stalled. Even though the IPC
is degraded by increasing the latency of the memory, the speedup of using
destructive-read memory increases with increasing cache size. The delayed and
immediate schemes degrade faster than the no cost scheme due to conflicts be-
tween reading and writing. Increasing the number of memory banks reduces the
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Fig. 11. Average IPC as a function of latency. Write-backs become blocking as latency
is increased. The values on the x-axis are non-linear, the first value is increased from 3
to 4 ns to match the cycle time of the CPU.
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Fig. 12. (a) To the left, average IPC as a function of the number of DRAM banks.
For a small number of DRAM banks, write-backs blocks performance. (b) To the right,
average IPC as function of number of buffer size. By turning off the write-back buffer,
the delayed write-back model has to wait for the data in the cache to be written back
before a new line can be loaded in cases where these two line are mapped to the same
memory bank.

probability of congestion. The effect of increasing (or decreasing) the number
of DRAM banks is shown in Figure 12a. In this configuration each bank is in-
dependent and can handle one memory access each simultaneously. In addition
to increasing the maximum number of parallel accesses, increasing bank count
decreases the probability that two accesses are to the same memory bank as data
are spread out to more banks.

4.5 Write-Back Buffer Size

The write-back buffer is complementary to the cache and each memory bank
has its own small fully associative write-back buffer. They are important for
performance of the delayed write-back scheme as shown in Figure 12b. In this
scheme data has to be written back when the cache line is replaced. Without a
buffer the processor has to wait for both operations to finish before data becomes
available. In the immediate write-back scheme this buffer is less important. A
write-back buffer with only one entry for each memory channel (total 256 bytes)
is adequate for the simulated configuration.

5 Discussion

The simulated results support our predictions regarding cache size and write-
back schemes. In systems with a relatively large cache, delayed write-back is the
preferred scheme due to less traffic on the DRAM bus, while for smaller caches,
immediate write-back results in slightly increased performance due to data being
available earlier.

The buffer size of Hwang’s original scheme was 25% of the DRAM size. For
the simulated applications this buffer will be in the range of 170k-5714k byte,
and this is outperformed with the new schemes with a smaller 1kbyte cache.
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The simulations show that the process of writing back data is hidden quite
well (about 1% of IPC is lost due to write-backs in the baseline scheme), this is
true for both write-back schemes. This is shown to be connected to the number
of independent memory banks and the write-back buffers for each memory bank.
More banks reduces the probability of congestion. Write-back buffers change the
delayed write-back scheme to first read data before the existing cache line is writ-
ten, and therefore data becomes available earlier and performance is increased.
For longer memory latencies, congestion is increasing as a write operation has
to finish before a read operation can start.

By comparing the performance of different configurations it can be seen that
by replacing conventional DRAM with destructive-read DRAM, cache sizes can
be reduced without degrading performance. The savings in cache size is shown
in Figure 13. Even though the baseline for the simulation has small caches, we
have found that the cache size can be reduced with median 75% for cache size in
the range 4kbytes to 512 kbytes when applying destructive-read DRAM without
degrading performance. Reducing cache size has a positive impact on power
consumption and less chip area is needed.

The bus between DRAM and cache has to run at double the speed with
destructive-read DRAM compared to conventional DRAM. Since the bus is
on-chip this should result in only slightly higher power consumption. DRAM
contributes to just a small portion to the total power consumption in most com-
puters (not including off-chip buses).

We have used a constant latency for the caches in our simulation. In real
caches the latency of the cache is a function of the size of the cache. Smaller
caches are faster than larger caches. A more accurate model would be to reduce
the latency of the cache for smaller caches. This would be an advantage for the
destructive-read DRAM schemes, and by using a constant cache access time we
introduce an error that is a disadvantage for our schemes.

We have simulated a factor two difference in latency for destructive-read com-
pared to conventional read from DRAM. This was based on the number from a
prototype. However, we have shown that the write-backs are hidden very well.
Less than 1% of the performance is lost due to congstion for the baseline scheme.
Therefore, even a small decrease in latency for destructive-read DRAM will in-
crease IPC.

We have not evaluated SRAM as technology for on-chip memory technology
since DRAM stores data much denser.
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6 Related Work

Most of projects that have researched into merging processors and memory have
not looked into DRAM design, but presume a conventional design. The C*RAM
project[2] is an exception that integrated small processing elements into the sense
amplifiers and utilized the parallelism available at that level. A scaled down
prototype was made. It was a SIMD computer with single bit processors. This
architecture was mainly suitable for problems with high data locality because of
limited communication between the single bit processing elements.

Many other projects use SIMD architectures to utilize the extra bandwidth:
the IRAM project [18], Yukon [5], Terasys [3] and Execube [19]. The Mitsubishi
M32R/D [7] chip uses the bandwidth to increase the number of bits in the
data bus between main memory and cache. The use of FPGA technology and
independent processors have also been proposed to utilize the bandwidth ([6, 1]).

7 Conclusion

By using destructive-read DRAM the cache size can be reduced without degrad-
ing system performance. In our schemes the caches are responsible for conserving
data read from DRAM memories. We have shown that this does not infer any
bottlenecks and that the cache size can be reduced by median 75% compared to
a conventional architecture without degrading performance in terms of IPC. The
large write-back buffer used in the prototype by Hwang et. al can be eliminated
without significant performance degradation. The possible reduction in cache
size reduces both dynamic and static power consumption as well as system size.
The chip area made available by reducing cache size can be used to increase the
number of processors or memory size.
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Abstract. In this paper, a consistency-free memory architecture for
sort-last parallel rendering processors with a single frame buffer is pro-
posed to resolve the consistency problem which may occur when more
than one rasterizer try to access the data at the same address. Also, the
proposed architecture reduces the latency due to pixel cache misses be-
cause the rasterizer does not wait until cache miss handling is completed
when the pixel cache miss occurs. For these goals, a consistency-free pixel
cache architecture and three effective memory systems with consistency-
test units are presented. The experimental results show that the proposed
architecture can achieve almost linear speedup up to four rasterizers with
a single frame buffer.

1 Introduction

Recently high-performance rendering processors have been introduced by almost
all of the PC manufacturers. These rendering processors should process trian-
gles (or primitives) one at a time with their multiple pixel pipelines. As the
semiconductor technology advances, it is possible to produce a parallel render-
ing processor by integrating several rasterizers into a single chip. The Sony’s
GScube includes 16 graphics processing units (GPUs) integrated with 256-Mb
embedded DRAMs [1]. Because the outputs of 16 GPUs are fed into a pixel
merge unit which drives the data stream to a video display, each GPU must
have its own frame buffer. Thus a large amount of embedded DRAMs should be
integrated into a rendering processor. Note that such an organization is similar
to that of the sort-last parallel rendering machine classified in [2].

The sort-last architecture performs both geometry calculation and rasteriza-
tion in object-level parallel. This architecture is scalable because the required
bandwidth of its communication network is almost constant with respect to the
number of polygons [2,3]. Though the sort-last architecture is quite suitable for
a large-scale rendering system, as mentioned in [2], it constraints the choice of
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rendering algorithms because visibility is determined strictly by composition.
Some rendering systems allow rendering order to determine visibility as well as
depth values (for effects like stencil, blending for transparency, and multi-pass
rendering).

In SAGA [4], which is a recent sort-last rendering machine, there are two
execution modes: the unordered rendering mode and the ordered rendering mode.
In the ordered rendering mode, special control tokens enforce various render-
order constraints. For example, when a special synchronization token marking
a hard ordering constraint is encountered, then no more fragment from that
rasterizer will be processed until other rasterizers have also encountered the
synchronization token. We denote the primitive data to be kept ordering strictly
in the ordered rendering mode as the order-dependent data, otherwise in the
unordered rendering mode as the order-free data. The sort-last architecture is
the most suitable for processing order-free data in parallel.

In this paper, a consistency-free memory architecture for sort-last parallel
rendering processors on the order-free data is proposed to resolve the consis-
tency problem and reduce the latency due to pixel cache misses significantly. In
the proposed parallel rendering processor, called DAVID II, only a single frame
buffer exists and each rasterizer executes a conventional rasterization pipeline
with its local pixel cache. Parallel rendering with a single frame buffer causes
a consistency problem when more than one rasterizer access the data at the
same address. We allow the consistency problem to occur in each pixel cache.
But we maintain the consistency in the frame buffer by performing additional
consistency-tests (C-tests) for all the pixels within each pixel cache block, when-
ever it is written into the frame buffer. A C-test performs z-test and color-write
operations for each pixel. The proposed architecture also reduces significantly
the latency due to pixel cache misses by executing the rasterization pipeline im-
mediately after transmitting the cache block on which a miss was generated into
the memory interface unit (MIU).

To evaluate the proposed architecture, various simulation results with three
benchmarks are given. A trace-driven simulator has been built for the proposed
architecture. We first perform the pixel cache simulations as the number of ras-
terizers increases. We also calculate the memory latency reduction rates with
increasing the number of rasterizers. We can achieve up to 90% zero-latency
memory system even with four rasterizers.

2 Background and Related Work

2.1 Background

A conventional pixel rasterization pipeline is shown in Fig. 1. In the z-test
pipeline, a z-value from the depth cache is retrieved and is compared with that
of the current fragment, and a new z-value is written into the depth cache at the
z-write stage if z-test is successful. Observe that the pixel cache consists of the
depth cache and the color cache, as shown by a dotted box in Fig. 1.
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Fig. 1. A conventional pixel rasterization pipeline

In the color-write pipeline, we read the color data from the color cache of the
pixel cache, alpha-blend them with the result of texture blending, and then write
the final color data back to the color cache. If order-independent transparency
technique is used, color-read and alpha-blending stages can be moved into order-
independent transparency unit [5,6]. In [5], for each pixel the closest opaque
fragment is placed into the frame buffer and all transparent fragments that
could not be culled are stored into a separate R-buffer. Because no transparent
fragments exist in the frame buffer, the operation of the color-write pipeline is
only writing a color-value of the current fragment into the color cache if z-test
is successful. Therefore, we assume in this paper that only a color-write stage
exist in the color-write pipeline.

2.2 Sort-Last Architecture

The sort-last architecture can be divided into two classes based on which set of
data is transmitted via communication network [2,3]. The first class is the image
composition architecture, in which case each rasterizer outputs all the pixels
on the screen [1,3]. Fig. 2 shows the overall structure of an image composition
architecture. A pixel cache is locally placed on each rasterizer and can be omitted
on occasions. Texture cache is not provided in Fig. 2 because it is not interested
in this paper.

In the first class, all polygonal model data are distributed into each rasterizer
which generates a sub-image with its own full-screen frame buffer, called a local
frame buffer. The contents of all the local frame buffers are merged periodically
by the image merger at the speed of CRT scan. During image merging, the
depth comparisons with the contents of the same screen address for each local
frame buffer should be performed to accomplish hidden surface removal. The
final merged image is then transmitted into the global frame buffer.

In the second class, as our proposed rendering processor and [4], each raster-
izer sends only the pixel generated. Thus each rasertizer does not require the
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full-screen frame buffer in the local frame buffer. In [4], sample buffer composed
of a number of 3D-RAMs[9,10] acts as the local frame buffers. In our proposed
architecture, local frame buffers are even removed because the proposed pixel
cache acts as a buffer.

3 The Proposed Architecture

Fig. 3 illustrates the parallel rendering processor, called David II, with proposed
consistency-free memory architecture. Compared with the conventional image
composition architecture in Fig. 2, David II does not require local frame buffers.
Instead of the image merger of Fig.2, the ALUs for C-tests are inserted in between
MIU and the frame buffer to perform image merging with consistency-test.

One of the main ideas of our architecture is that we allow the consistency
problem to occur in each pixel cache, yet we maintain the consistency strictly in
the frame buffer. The data in a pixel cache are transmitted into the frame buffer
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Fig. 3. David II: the proposed parallel rendering processor
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whenever a pixel cache miss occurs. The transmission into the frame buffer is
also generated in flushing the pixel cache when the rasterization for the current
frame is completed. In the proposed architecture, the consistency of the frame
buffer is maintained by performing additional C-tests for each transmitted block
from the pixel cache against the corresponding block in the frame buffer.

Another main idea is that the rasterizer, even though a pixel cache miss oc-
curs, does not wait until cache miss handling is completed. Rather, the rasterizer
rather continues to execute the rasterization immediately after transmitting the
cache block on which a miss was generated into MIU. Thus, the latency due to
a cache miss, including the time to transfer the corresponding block from the
pixel cache into the frame buffer, can be significantly reduced. By doing so, the
rasterization pipeline and C-tests can be executed independently. We introduce
a new pixel cache architecture for this purpose.

3.1 The Proposed Pixel Cache Architecture

The proposed pixel cache in Fig. 4 consists of the data memory, the tag memory,
and the initialization logics. The data memory has the depth cache and the color
cache. The tag memory comprises three fields: the valid bit (V), the Depth tag for
the depth cache and the Color tag for color cache. The depth cache and the color
cache are coupled in such a way that both a depth block and the neighboring
color block with the same screen position are transmitted into MIU in case of a
cache miss. Because z-read is performed before color-write as shown in Fig. 1,
the tag comparison only with the depth tag needs to be performed to determine
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Fig. 4. The proposed pixel cache architecture
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whether a cache miss has occurred or not. The color tag stores only the color
addresses of the color blocks in the frame buffer. Thus, one bit is enough for V
to indicate the validity of a pixel cache block, rather than having two bits; one
for each of a depth cache block and a color cache block.

There are two types of data transmissions with respect to the pixel cache.
The first type is the transmission between the pixel cache and the rasterizer. As
in a conventional cache system, z-read operation retrieves a depth block from
the depth cache and stores it into the internal buffer if it is not in the internal
buffer. Then the depth data is read from the internal buffer. Z-write operation
stores a depth data into the internal buffer. The processing flow of color-write
operation is similar to that of z-write operation.

The second type is the transmission from the pixel cache into the frame buffer.
Unlike a conventional cache system, a write-only operation is enough. That is,
no information is required from the frame buffer. When a cache miss occurs, the
pixel block that caused a cache miss, called a replaced cache block, is transferred
into MIU. The cache block previously occupied by the replaced cache block, de-
noted as a usable cache block, is initialized into the maximum value (i.e., all 1
bits), which represents the farthest position from any viewpoint and the back-
ground black color in case of the depth value and the color value, respectively.
This initialization is also used to initiate the pixel cache at the start of a new
frame.

In the second type of the transmission, the critical path includes the tag
comparison, the cache block transmission, and the initialization operation. The
initialization operation after tag comparison is similar to the operation when
the cache write hits; it is the data write into the cache after tag comparison.
In general, we can allow it to be executed within a single cycle because it can
be performed in a pipelined fashion. Thus, we can determine the critical path
of the second type of the data transmission as the cache block transmission,
because both the cache block transmission and the initialization operation can
be executed simultaneously. If the buffer queue of MIU is not full, the second
type of the data transmission can be done within a single cycle. Otherwise, the
rasterizer should wait until any entry of the buffer queue is available.

3.2 The Processing Flow of the Rasterizer

When a new frame starts, all V bits of the pixel cache are set to zeros to indicate
the invalid states for all the pixel cache blocks. Both the depth cache and the
color cache are also initialized into the maximum values. When a depth cache
block is accessed for the first time at the z-read stage, the V bit of the depth
cache block is changed into 1, the tag field of the depth address is fed into the
depth tag of the depth cache block, and a depth value is retrieved from the depth
cache block. When a color cache block is accessed at the color-write stage for
the first time, the tag field of the color address is fed into the color tag of the
color cache block and a color value is written into the color cache block. These
two types of initial accesses imply that a cold-start cache miss never occurs.
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When a hit occurs in the pixel cache, the rasterizer continues to execute
without any pipeline stall. In case of a pixel cache miss, the replaced cache block
is sent to MIU and the usable cache block is initialized. Thus, the replaced cache
block holds the rasterization results from the time when it is initiated as a usable
cache block until it is sent to MIU due to a cache miss.

The replaced cache block goes through C-tests and then the final result cache
block is written into the frame buffer. When the rasterization of the current
frame buffer is completed, each block in the pixel cache should undergo the
same processing flow of a replace cache block. The detailed architectures for
the memory system are described in Section 4.

4 The Memory Systems of the Proposed Architecture

A unified memory system is widely adopted by recent rendering processors. As
mentioned in [11], the biggest advantage of a single graphics memory system
is the dynamic reallocation of memory bandwidth. The external bus width of
a current rendering processor is either 128 bits or 256 bits. It is expected that a
wider bus will be announced in the next generation rendering processors. The
pixel cache and the texture cache are essentially included into a rendering pro-
cessor to use a wide external bus effectively and to run the rasterization pipeline
as high a rate as possible.

A conventional MIU has several queues to buffer the data transmissions be-
tween the processor and the external memory. For example, each memory con-
troller in [11] has five request queues. The replaced cache blocks transmitted
from the pixel cache are fed into the pixel output queue in MIU and then each
of them is written into the frame buffer after C-tests. It is desirable for an ef-
fective memory system that the input rate of MIU should match well with the
output rate of MIU.

Fig. 5 shows the three memory systems for the proposed architecture: con-
ventional DRAMs for the frame buffer (CDFB), C-RAMs for the frame buffer
(CRFB), and embedded DRAMs for the frame buffer (EDFB). The shaded blocks
reside within a rendering processor chip. The non-shaded blocks can be orga-
nized as separate chips. The three figures in Fig. 5 are arranged according to
the output rate of MIU; that is, conventional DRAMs in Fig. 5(a) have the
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(DDR, RAMBUS, etc.) for 

frame buffer
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MIU

ALUs for C -tests

Frame buffer
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frame buffer
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(a) Conventional DRAMs (b) C-RAMs (c) Embedded DRAMs

Fig. 5. The three memory systems
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lowest output rate, C-RAMs in Fig. 5(b) are the next, and embedded DRAMs
in Fig. 5(c) have the highest rate.

In CDFB, conventional DRAMs are used for the frame buffer and the ALUs
for C-tests are included within the rendering processor. On the other hand in
CRFB, C-RAMs are used for the frame buffer and the ALUs for C-tests are
included within C-RAMs. Note that the relationship between the processor and
the frame buffer in CDFB is read-modify-write, while that in CRFB is write-
only. Thus, in accessing the frame buffer for rasterization, CRFB requires only
a half amount of the memory bandwidth of CDFB. However, CDFB has an
overwhelming advantage over CRFB in terms of the cost-effectiveness, because
C-RAMs are too expensive to develop.

Because C-tests are performed per cache block, the processing style of
C-RAMs is similar to that of current DRAMs. Thus, C-RAMs can be imple-
mented by adding simple hardware logics into current DRAMs, while 3D-RAMs
include an internal cache and other complex schemes to improve the performance
of the internal cache.

In EDFB, because both the ALUs for C-tests and the frame buffer are included
in the rendering processor, a very wide bus width, for example more than 1024
bits, between MIU and the frame buffer is available and the latency to access
the frame buffer is also reduced. Note that Sony’s PlayStation� 2 and GScube
are typical rendering processors with embedded DRAMs for the frame buffer.

4.1 The Internal Architecture of CDFB

Fig. 6 shows the block diagram of CDFB. The pixel output queue in Fig. 6
contains the replaced cache blocks transmitted from the pixel cache. The ALU
pool consists of several ALUs, each of which performs a C-test for a fragment
(or a pixel). We illustrate the execution flow of CDFB in Fig. 6 when the data
bus width between MIU and the external DRAM is 256 bits and a replaced
cache block size is k256 bits. The first 256 bits (four 32-bit depth data and four
32-bit color data) of a replaced cache block at the head entry indicated by the
head pointer are sent to the ALU pool and at the same time the first 256 bits
of a target block are fetched from the frame buffer. After C-tests, the resulting
four pixel data are then written into the frame buffer through the output buffer.
After the k-th iteration of the above steps, C-tests for the replaced cache block
are completed.

Both the burst data read operation from the frame buffer and the burst data
write operation into the frame buffer are performed for the pipelined execution of
C-tests. It is desirable to execute the burst write operation immediately after the
burst read operation is completed. We assume that the number of the pipeline
stages of the ALU is (k+l). It is not difficult to adjust the number of pipeline
stages because the z-test pipeline and the color-write pipeline can be connected
either sequentially or in parallel. The burst data read operation followed by the
burst data write operation requires a setup latency between these two opera-
tions. This latency is assumed to be l. Then the ALU pipeline executions can be
performed simultaneously during k256-bit read operations from the frame buffer.
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The first 256 bits after C-tests have completed appear in the output buffer after
(k+l) cycles. Thus the final 256 bits appear after (2k+l) cycles.

4.2 The Memory Organization with C-RAMs

Fig. 7 shows the memory organization with a 256-bit external bus width in
the proposed parallel rendering processor. Both the frame data and the texture
data reside in C-RAMs harmoniously, while only the frame data reside in 3D-
RAMs[9,10]. As in 3D-RAMs, the depth data and the color data are stored sep-
arately into the color C-RAMs and the depth C-RAMs, respectively. Thus, the
overall ALU’s performance of the architecture in Fig. 7 is the same as that of the
architecture in Fig. 6, even though the number of ALUs in the architecture in Fig.
6 is only a half of that in architecture in Fig. 7. The other buffers in the C-RAMs
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include the stencil buffer for stencil effect, R-buffer for order-independent trans-
parency, etc.

Four 32 bits of the depth data and four 32 bits of the color data are trans-
ferred at a time from the rendering processor into four depth C-RAMs and four
color C-RAMs, respectively, which is similar to the case of 3D-RAMs. The next
256-bit data into C-RAMs are transmitted at the next cycle and such transmis-
sion is repeated until all the data of a given replaced cache block are completely
transferred. However, this type of execution is not guaranteed in 3D-RAMs.

During C-tests, z-test operations are accomplished in the ALU of the depth
C-RAMs. The result of each z-test operation is then forwarded into the ALU of
the connected color C-RAM via a separate path. Finally, the color-write opera-
tions are executed in the ALU of the color C-RAMs. A detailed example for the
C-RAM architecture is illustrated in the next Fig. 8.

4.3 A Detailed Example of C-RAM

A brief block diagram of an example of a C-RAM chip is shown in Fig. 8. It is
designed by modifying a 128-Mb DDR graphics DRAM that is widely used in
current rendering processors. The internal data bus width is 64 bits and hence
32-bit data can be transferred into the output buffer at a time. The texture
memory and the frame buffer occupy respective memory spaces within a chip.
By checking the row address fed into the row decoder, we could determine which
part of the memory is being accessed.

If the texture memory is being accessed, C-RAM acts as a conventional DDR
DRAM. When a pixel cache block is transmitted from MIU, the execution flow
of C-RAM is converted to perform C-tests. In this case, the pipeline organization
and the execution flow of the ALU are similar to those of 3D-RAM.

The ALU consists of the z-test and the color-write pipelines. Each pipeline
has multiple stages; for example, two stages each for z-test and color-write. At
first, a z-value from MIU and that from the frame buffer are tested at the z-test
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pipeline of each depth C-RAM. If it is a success, the former is sent to the input
buffer to be stored into the frame buffer and the pass out signal is activated into
1. This signal is passed into the connected color C-RAM. The pass out of the
depth C-RAM is connected with the pass in of the color C-RAM. If the value
of the pass in is 1, color-write is then accomplished in the color C-RAM with
the color data from MIU. Because the input data can be transmitted from MIU
into the C-RAMs synchronously with the clock, the ALU pipeline is able to run
fully without any stall.

4.4 The Latency in EDFB

Compared with the previous two memory systems, EDFB can reduce the latency
to complete C-tests for a pixel cache block. We assume that the internal bus
width is equal to the size of a pixel cache block and the ALUs execute C-tests
for a pixel cache block at each cycle. Then the overall latency to complete C-tests
for a pixel cache is the latencies both to read from and to write into the frame
buffer plus one cycle to execute C-tests.

5 Experimental Simulation Results

In this section, various simulation results are given to evaluate the proposed
architecture. A trace-driven simulator has been built for the proposed archi-
tecture. The traces are generated with three benchmarks, Quake3[14] demo I,
Quake3 demo II, and Lightscape [15] for 1600×1200 screen resolution by modi-
fying the Mesa OpenGL compatible API. We assume that the traces consist of
order-free data only.

For each benchmark, 100 frames are used to generate each trace. The model
data of each benchmark are evenly distributed into a given number of rasterizers
by a round-robin fashion. For example, if the number of the rasterizers is n,
(mn+1)-th triangles, m=0,1,2,, are fed into the first rasterizer. We assume that
one order-free pixel is generated per cycle for each rasterizer. With these traces,
the pixel cache simulations are performed by modifying the well-known Dinero
III cache simulator [12].

Fig. 9 shows some captured scenes for the benchmarks. Quake3 in particular
is one of many typical current video games on the market and is frequently used

(a) Quake3 I (b) Quake3 II (c) Lightscape

Fig. 9. The three benchmarks
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as a benchmark in other related work for the simulation. Lightscape is a product
of the SPECviewperfTM and is used as a benchmark in this paper because of its
high scene complexity compared with other SPECviewperfTM products and its
distinct pixel cache miss distributions ,as provided in [8], compared with other
benchmarks.

5.1 The Pixel Cache Simulations

In [8], the cache miss rates of a conventional pixel cache architecture for various
cache sizes with different block sizes and set associativities are provided. The
simulation results show that the miss rate varies according to the block size,
but not to the cache size and the associativity. It also shows that as the block
size increases, the miss rate decreases. As mentioned in [9], these results imply
that graphics hardware rendering does not exhibit much temporal locality, but
does exhibit spatial locality. Thus we perform the pixel cache simulation only
for various block sizes.

Fig. 10 shows the pixel cache miss rates for direct-mapped 16 KB depth cache
with three different block sizes as the number of rasterizers increases, where the
miss rates for multiple rasterizers are averaged over all the pixel caches. Because
triangles are distributed into multiple rasterizers with a round-robin fashion, the
locality of each pixel cache with multiple rasterizers seems to decrease more than
that of the pixel cache with a single rasterizer. The simulation results show that
the miss rates increase quite slowly as the number of rasterizers increases for
Quake3 I and Quake3 II. But the miss rates for Lightscape increase somewhat
rapidly compared with those of Quake3 I and Quake3 II.
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Fig. 10. The pixel cache miss rates

5.2 The Memory Latency Reduction Rates

A replaced cache block from the pixel cache is stored into the tail entry of a pixel
output queue indicated by the tail pointer. When the replaced block reaches the
head entry indicated by the head pointer, it is written into the frame buffer.
The overall pipeline does not stall as long as the pixel output queue is not full.
Thus, with a buffer of infinite size, the proposed architecture is able to achieve
a zero-latency memory system.

Fig. 11 shows the memory latency reduction rates for the three memory sys-
tems and the other one, Modified, discussed at Section 5.4. Note that the re-
duction rate of 100% represents a zero-latency memory system. If the reduction
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Fig. 11. The memory latency reduction rates

rate is 0%, the full memory latency is required for a pixel cache miss. We assume
that the numbers of cycles to complete C-tests for a pixel cache block for CDFB,
CRFB, and EDFB are 16, 12, and 8, respectively. The number of cycles can be
determined according to the block size of a pixel cache, the number of ALUs, the
DRAM performance, etc. We also assume that the number of entries in a pixel
output queue is fixed to 128, because the simulation results on the reduction
rates for various numbers of entries, which is not provided in this paper, show
that the numbers of entries from 4 up to 1024 affect the reduction rates under 8%.

The simulation results show that an almost zero-latency memory system can
be achieved with CRFB and EDFB with one rasterizer and two rasterizers.
With four rasterizers, significant reduction rates are achieved for EDFB. Because
the number of replaced blocks fed into MIU at the same time increases as the
number of the rasterizers increases, the reduction rates decrease as the number
of rasterizers increases. The reduction rates are not sufficient when the number
of rasterizers is eight or sixteen.

5.3 Enhancing the Performance with More Than Eight Rasterizers

The performance of the proposed architecture in Fig. 3 can be enhanced by
modifying it to utilize the scalability of a sort-last rendering machine. Fig. 12
shows the modified architecture with sixteen rasterizers. Because an effective
memory system seems to be maintained until we deploy four rasterizers, we
integrate four rasterizers into one group. Each group is equivalent to the proposed
architecture in Fig. 3 with four rasterizers.
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Rasterizer Group 3
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Fig. 12. The modified architecture with sixteen rasterizer
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The overall structure and the execution flow of the modified architecture in
Fig. 12 are similar to those of a sort-last rendering machine. Each rasterizer
group generates a subimage with its own full-screen frame buffer, called the
local frame buffer (LFB). The contents of all LFBs are merged periodically by
the image merger at the speed of a CRT scan with a pipelined fashion. The final
merged image is then transmitted into the global frame buffer (GFB). By double
buffering for LFB and GFB, the rasterization can be executed simultaneously
with the image merging.

Because each rasterizer group can be performed independently, the memory
latency reduction rates for eight and sixteen rasterizers, denoted by Modified in
Fig. 11, are equal to that with four rasterizer. However, LFBs (two for eight
rasterizers and four for sixteen rasterizers) and the image merger should be
embedded in the rendering processor.

5.4 Performance Evaluation

To evaluate the performance analytically, we calculate the average fragments per
cycle (AFPC) with a rasterizer. In [8], the miss penalties due to both the pixel
cache and the texture cache are assumed to degrade the overall performance. In
this paper, we assume that only the memory latency due to the pixel cache can
degrade the performance. Hence, AFPC can be calculated as follows.

AFPC = 1/(1 + Miss Rate × Latency × (1 − Reduction)), (1)

where Miss Rate is the miss rate of the pixel cache, Latency is the cycle times
of the memory latency due to a pixel cache miss, and Reduction is the reduction
rates shown in Fig. 11. The denominator of the above equation represents the
average cycles per fragment with a rasterizer.

Fig. 13 shows AFPCs for the proposed architecture with different numbers
of rasterizers and five different configurations. EDFB0 represents the embedded
DRAMs for n frame buffers with 0% reduction rate, where n frame buffers are
equal to n local frame buffers of n rasterizers for conventional sort-last architec-
ture provided in Fig. 2. The AFPC of EDFB0 is provided to compare it with
those of other four proposed configurations. For example, for four rasterizers in
Fig. 13 (a), the AFPC of EDFB0 is almost the same as that of CDFB. The
performance increment for n rasterizers can be calculated easily by multiplying
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n with AFPC of the architecture with n rasterizers. Thus, the AFPC of the mod-
ified architecture in Fig. 13 (a) shows that the modified architecture achieves an
almost linear speedup even with sixteen rasterizers.

6 Conclusions

This paper has proposed a new parallel rendering processor architecture to solve
the consistency problem of the pixel cache and reduce significantly the memory
latency due to pixel cache misses. One of current works on David II is to im-
plement effectively the order-independent transparency unit, such as R-buffer.
Also, a prototype for David II will be developed in the near future.
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Abstract. Processor arrays can be used as accelerators for a plenty of dataflow-
dominant applications. Innately these applications have almost no control flow,
but the application of sophisticated partitioning and scheduling techniques in or-
der to handle large scale problems and to balance local memory requirements
with I/O-bandwidth has the disadvantage of a more complex control flow. Thus,
efficient control path synthesis is one of the greatest challenges when compiling
algorithms onto processor arrays. This paper presents an efficient methodology
for the automated control path synthesis for the mapping of partitioned algorithms
onto processor arrays. The major advantages observed in the presented method-
ology are seen in, (a) control generation for different partitioning techniques and
arbitrary parallelepiped tiles, (b) combined use of a global and a local control
strategy in order to reduce the control overhead, (c) up to 90 percent reduction in
control path area and resources compared to existing approaches.

1 Introduction and Related Work

In the last decade, there has been a dramatic growth in research and development
of massively parallel processor arrays both in academia and industry. The trends in
lithography and process integration technology allow the implementation of hundreds
of 32-bit microprocessors on a single die. Furthermore, the expensive design process
for ASICs calls for an automated synthesis of such accelerators in form of array ar-
chitectures. Also, the introduction of reconfigurable architectures allows to exploit the
flexibility of software along with the performance of processor arrays. Processor array
architectures provide an optimal platform for the parallel execution of number crunch-
ing loop programs from fields of digital signal processing, image processing, linear
algebra, etc. However, due to a lack of mapping tools, these massively parallel proces-
sor architectures are not able to realize their full potential. The ultimate aim of such
mapping tools is to map software loops, such as for or while loops in C programs, onto
a hardware target subject to the performance constraints in latency, area, or power. The
example of state of the art mapping tools are PICO-Express [1], and MMalpha [2].

The polytope model [3] is an intuitive methodology for loop parallelization and map-
ping of loop nests onto massively parallel architectures. The architectures in form of
processor array may be implemented on FPGAs or coarse-grained programmable ar-
ray architectures. The space-time mapping is an important transformation for obtaining
full-size processor array descriptions from a given nested loop program. Partitioning

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 176–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is another necessary transformation for mapping loops onto reduced-size arrays in or-
der to meet the resource constraints. Well known partitioning techniques are Tiling and
Clustering. Control generation is a transformation which is responsible for the control
path synthesis, which produces control signals to orchestrate the correct execution of the
loop program. The systematic design of control units of full-size processor arrays was
first introduced in [4]. Another procedure for the systematic definition of control sig-
nals for the class of conditional uniform recurrence equations (CUREs) was introduced
in [5]. The first method is characterized by local control flow, problem size indepen-
dence, and optimization of the number of required control variables. However, both the
methodologies are restricted to simple space-time mappings obtained by a projection.
Darte et al.[6] introduced a method for the automatic generation of control code in case
of clustering with rectangular tiles and tight linear schedules. The main contribution
of this paper is the introduction of a general methodology for control path generation
on loop partitioning with congruent tiles with maximum reuse of control predicates
in massively parallel architectures. But first in Section 2, we briefly introduce some
definitions and important transformations. Afterwards in Section 3, our novel control
generation methodology is presented. Finally, in Section 4 and 5, a case study of our
methodology and conclusions are presented, respectively.

2 Background

2.1 Definitions, Notations, and Transformations

In this paper, the class of algorithms we are dealing with is a class of recurrence equa-
tions defined as follows:

Definition 1. (PLA). A piecewise linear algorithm consists of a set of N quantified
equations, S1 [I] , . . . ,Si [I] , . . . ,SN [I]. Each equation Si [I] is of the form

∀I ∈ Ii : xi [PiI + fi] = Fi (. . . ,x j [Q jI − d ji] , . . .) if CI
i (I)

Pi, Q j are constant rational indexing matrices and fi, d ji are constant rational vectors
of corresponding dimension.

The domains Ii are defined as Linearly Bounded Lattices[7]. With these definitions,
several combinations of parallelizing transformations like embedding of variables, lo-
calization (vectorization), or operator splitting in the polytope model can be applied,
for the sake of brevity we refer to [8].

Example 1. The matrix multiplication is taken as an example to illustrate our method-
ology. The product C = A · B of two square matrices A,B ∈ Z

N×N is defined as ci j =
∑N

k=1 aikbk j ∀ 1 ≤ i ≤ N ∧ 1 ≤ j ≤ N. Let N = 8, then after application of the above
mentioned transformations the following PLA (satisfying Definition 1) is obtained.

a[i, j,k] = a[i,0,k]
b[i, j,k] = b[0, j,k]
z[i, j,k] = a[i, j,k] ·b[i, j,k]

c[i, j,k] =
{

c[i, j,k − 1]+ z[i, j,k]
z[i, j,k]

if k > 0
if k = 0

Cout [i, j,k] = c[i, j,k] if k = 7
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The matrices A and B are embedded into the arrays as follows, a[i,0,k] = aik, b[0, j,k] =
bk j. The index space is given by I =

{
I = (i j k)T ∈ Z

3 |0 ≤ i, j,k ≤ 7
}

.

2.2 Partitioning

Partitioning is a well known transformation which covers the index space of computa-
tion using congruent hyperplanes, hyperquaders, or parallelepipeds called tiles[9],[10].
For processor arrays (PAs), it is carried out in order to match a loop nest implementation
to resource constraints in terms of available number of processing elements (PEs), local
memory, and communication bandwidth. Well known partitioning techniques are mul-
tiprojection, LSGP (local sequential global parallel, often also referred as clustering or
blocking) and LPGS (local parallel global sequential, also referred as tiling). Formally,
partitioning divides the index space I using congruent tiles such that it is decomposed
into spaces J and K, i.e., I �→ J ⊕K, where tiles may be defined by tiling matrix, P 1.
J ∈ Z

n represents the points within the tile and K ∈ Z
n accounts for regular repetition

of the tiles, i.e., the origin of each tile. Hierarchical partitioning (often referred to as
multi-blocking) methods use different hierarchies of tiling matrices to divide the index

1 2 3 5 6 6 72

3 4 5 7 8 8 94

2 3 4 6 7 7 83

4 5 6 8 9 9 105

9 10 11 13 14 14 1510

11 12 13 15 16 16 1712

10 11 12 14 15 15 1611

12 13 14 16 17 17 1813

j1

j2

A

B

k 1

l
1

k 2
l2

l3

GS Tile

LS Tile

Fig. 1. The iteration space of the partial localized co-partitioned matrix multiplication 8 × 8 ex-
ample. Each arc denotes a data dependency. The numbers correspond to the time step of execution
as specified by the space-time mapping in Eq. (3).

1 J ⊕K = {i = j +P · k | j ∈ J ∧ k ∈ K ∧ P ∈ Z
n×n}.



Controller Synthesis for Mapping Partitioned Programs 179

space. Co-partitioning is such an example of a 2-level hierarchical partitioning[11],
where the index space is first partitioned into LS (local sequential) tiles, this tiled in-
dex space is tiled once more using GS (global sequential) tiles as shown in Fig. 1.
Co-partitioning uses both LSGP and LPGS methods in order to balance local memory
requirements with I/O bandwidth with the advantage of problem size independence.
Formally, it is defined as splitting of an index space into spaces J , K and L, i.e.,
I �→ J ⊕ K ⊕ L 2 using two congruent tiles defined by tiling matrices, PLS and PGS.
J ∈ Z

n represents the points within the LS tiles and K ∈ Z
n accounts for the regular

repetition of the origin of LS tiles (i.e., tiles marked with same shade in Fig. 1). L ∈ Z
n

accounts for the regular repetition of the GS tiles (i.e., bigger tiles marked with different
shade in Fig. 1).

Example 2. Co-partitioning and subsequent partial localization[12] of the matrix mul-
tiplication example is shown in Fig. 1. The PLA obtained on application of above men-
tioned transformations is given in Eq. (2) and is shown in Fig. 1. The matrices used for
tiling are

PGS =

⎛⎝4 0 0
0 4 0
0 0 1

⎞⎠ PLS =

⎛⎝2 0 0
0 2 0
0 0 1

⎞⎠
One can verify that the index point I = (5,7,0) is uniquely mapped to J = (1,1), K =
(0,1) and L = (1,1,0) after co-partitioning3.

a[ j1, j2,k1,k2, l1, l2, l3] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a[ j1, j2 − 1,k1,k2, l1, l2, l3]
a[ j1, j1,k1,k2 − 1, l1, l2, l3]
a[ j1, j1,k1,k2, l1, l2 − 1, l3]

A j1+2·k1+4·l1,l3

if j2 > 0
if j2 + k2 > 0 ∧ j2 =0
if j2 + k2 + l2 > 0 ∧

j2 + k2 =0 ∧ j2 = 0
if j2 + k2 + l2 =0 ∧

j2 + k2 =0 ∧ j2 =0

b[ j1, j2,k1,k2, l1, l2, l3] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b[ j1 − 1, j2,k1,k2, l1, l2, l3]
b[ j1, j2,k1 − 1,k2, l1, l2, l3]
b[ j1, j2,k1,k2, l1 − 1, l2, l3]

Bl3, j2+2·k2+4·l2

if j1 > 0
if j1 + k1 > 0 ∧ j1 =0
if j1 + k1 + l1 > 0 ∧

j1 + k1 =0 ∧ j1 = 0
if j1 + k1 + l1 = 0 ∧

j1 + k1 =0 ∧ j1 = 0

(1)

z[ j1, j2,k1,k2, l1, l2, l3] = a[ j1, j2,k1,k2, l1, l2, l3]

· b[ j1, j2,k1,k2, l1, l2, l3]

c[ j1, j2,k1,k2, l1, l2, l3] =

⎧⎨⎩
c[ j1, j2,k1,k2, l1, l2, l3 − 1] if l3 > 0
+ z[ j1, j2,k1,k2, l1, l2, l3]

z[ j1, j2,k1,k2, l1, l2, l3] if l3 = 0

C[ j1, j2,k1,k2, l1, l2, l3] = c[ j1, j2,k1,k2, l1, l2, l3] if l3 = 7

2 J ⊕K⊕L = {i = j +PLS · k +PGS · l | j ∈ J ∧ k ∈ K ∧ l ∈ L ∧ PLS,PGS ∈ Z
n×n}.

3 j3, k3 are removed from the description as j3 = 0, and k3 = 0.
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for all J = ( j1 j2)T ∈ J , K = (k1 k2)T ∈ K, and L = (l1 l2 l3)T ∈ L, with
J =

{
J ∈ Z

2 | 0 ≤ j1, j2 ≤ 1
}

, K =
{

K ∈ Z
2 | 0 ≤ k1,k2 ≤ 1

}
, and

L =
{

L ∈ Z
3 | 0 ≤ l1, l2 ≤ 1 ∧0 ≤ l3 ≤ 7

}
2.3 Allocation and Scheduling

Linear transformations are used as space-time mappings in order to assign a processor
p (space) and a sequencing index t (time) to index vectors [8]. In co-partitioning, the
index points within the LS tiles are executed sequentially. All LS tiles within a GS tile
are executed in parallel by the processor array. Therefore, the number of PEs is equal
to the number of LS tiles within a GS tile. The GS tiles are executed sequentially.

Definition 2. (Space-time mapping for co-partitioning). A space-time mapping in case
of co-partitioning is an affine transformation of the form(

p
t

)
=

(
0 E 0
λJ λK λL

)(
J
K
L

)
(2)

where E ∈ Z
nK×nK is the identity matrix, λJ ∈ Z

1×nJ , λK ∈ Z
1×nK , λL ∈ Z

1×nL .

Other hierarchical partitioning schemes can be realized using an appropriate selection
of an affine transformation characterizing scheduling and allocation of the index points.
The problem of determining an optimal sequencing index (i.e., λJ,λK , . . .) might be
solved by Mixed Integer Linear Programming similar as in [13].

Example 3. An optimal space-time mapping for Ex. 2 on co-partitioning according to
Def. 2 is(

p1
p2
t

)
=

(
0 0 1 0 0 0 0
0 0 0 1 0 0 0
2 1 1 1 8 4 16

)(
J
K
L

)
+

(
0
0
1

)
,where J =

(
j1
j2

)
, K =

(
k1
k2

)
, L =

(
l1
l2
l3

)

Therefore, a 2×2 processor array is obtained which executes the LS tiles in parallel and
GS tiles sequentially. The PLA obtained after space-time mapping is shown in Eq. (3).

a[p1, p2, t] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a[p1, p2, t − 1]

a[p1, p2 − 1, t − 1]

a[p1, p2, t − 4]

A2p1+ j1+4l1,l3

if j2 > 0

if j2 + p2 > 0 ∧ j2 =0

if j2 + p2 + l2 > 0 ∧ j2 + p2 =0 ∧ j2 =0

if j2 + p2 + l2 =0 ∧ j2 + p2 =0 ∧ j2 =0

b[p1, p2, t] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b[p1, p2, t − 2]

b[p1 − 1, p2, t − 1]

b[p1, p2, t − 8]

Bl3,2p2+ j2+4l2

if j1 > 0

if j1 + p1 > 0∧ j1 =0

if j1 + p1 + l1 > 0∧ j1 + p1 =0 ∧ j1 =0

if j1 + p1 + l1 =0∧ j1 + p1 =0 ∧ j1 =0

z[p1, p2, t] = a[p1, p2, t] ·b[p1, p2, t]

c[p1, p2, t] =

{
c[p1, p2, t − 16]+ z[p1, p2, t]

z[p1, p2, t]

if l3 > 0

if l3 = 0
C[p1, p2, t] = c[p1, p2, t] if l3 = 7

(3)
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3 Control Generation

The control path generation is an intrinsic part for the automated generation of PAs.
The data path synthesis can be easily obtained from the assignment statements in a
PLA (see Eq. (3)) as they are only processor p and time t dependent. The control path
synthesis is more complicated as the control predicates depend on variables other than p
and t. The iteration dependent if-conditionals occurring in a given PLA (see Eq. (1) and
Eq. (3)) have to be replaced by control variables for efficient parallelization. Further-
more, scheduling and allocation of operations on a resource constrained architecture
requires the generation of control signals. Therefore, a step for control generation is
needed that specifies the control units and the signals of the processor array. All the
iteration dependent conditionals after co-partitioning can be represented in one of the
following forms4:

AJ · J ≥ bJ ∧ AK · p ≥ bK ∧ AL ·L ≥ bL (4)

AJ · J + AK · p + AL ·L ≥ b (5)

The original iteration space co-ordinates, I are obtained as J ⊕ K ⊕ L. Therefore, the
calculation of memory addresses and control predicates which are affine functions of I
or other index variables can be done only if the following values are available.

– LS tile co-ordinates, J: For each given time step t and processor p, the LS co-
ordinates J of the index points being executed have to be known.

– Processor co-ordinates, K or p: as defined by the space-time mapping.
– GS tile co-ordinates, L: For each time step t and processor p, the GS co-ordinate L

of the index point being executed is required.

The rigidity of the problem stems from the fact that given (p t)T, the space (J p L)T is to
be calculated for the predicate computation from following linear Diophantine equation

t − λK · p = λJ · J + λL ·L (6)

The direct approach for finding a solution of Eq. (6) is the usage of the Smith Normal
Form [14]. However the direct approach is computationally inefficient and is associated
with high hardware costs. For sake of brevity, we refer to [15].

3.1 Control Design Flow: Methodology

The methodology for control generation introduced in this section is not based on a
direct solution approach, but based on the scanning of the index space in the order as
given by the space-time mapping. The methodology proposed in this section encom-
passes all possible partitioning techniques (i.e., LPGS, LSGP, co-partitioning and other
hierarchical partitioning methods) using congruent parallelepiped tiles. The only major
assumption is the application of linear affine scheduling. Fig. 2 shows a 2 × 2 pro-
cessor array realization of the co-partitioned matrix multiplication example, where the

4 Note, p = K directly follows from the definition of the space-time mapping for co-partitioning,
cp. Definition 2.
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Fig. 2. An example 2×2 processor array implementation of a co-partitioned matrix multiplication

iterative conditionals which depend on the processor index are implemented by a local
controller. The conditionals (usually common over a group of processors) and counter
(generating index variables) independent of the processor index are implemented in a
global controller and counter, respectively. To determine these described components,
our approach for control path generation is constituted of the following four steps.

Determination of PE types. This step finds processor regions of same type. This helps
in classification of control predicates for local and global controllers.
Scanning of the partitioned polytope. In this step, a global counter (see Fig. 2) for
producing values of the index space variables is determined.
Initialization of local and global control signals. In this step, local and global con-
trollers (see Fig. 2) for the execution of control predicates are generated.
Propagation of control and iteration variables. The requisite delays and directions
(see Fig. 2) required for the propagation of global counter and global control signals in
the processor array are determined.

3.1.1 Determination of PE Type
The main aim of the determination of PE types is to separate as many predicates as
possible which can be executed by a global controller from those which must be locally
computed. Without the determination of different PE types, the methodology would
implement the local control model, i.e., all predicates would be computed in a local
controller inside each PE. Secondly, It classifies processor regions executing the same
functions. The advantage appears in customizing local control units and therefore cus-
tomized hardware synthesis of data paths of PEs. The following strategy is used for the
separation of predicates to be implemented in a local or a global controller. Processor p
based iteration dependent conditionals of the form as in Eq. (5) have to be implemented
by a local controller in each PE, if AK 
= 0. Control conditions of types as in Eq. (4)
and in Eq. (5) if AK = 0 may be implemented in a global controller. However, processor
regions associated with global control signals have to be identified. This is done by an
orthogonal projection of the set of inequalities defining the corresponding control space
onto the subspace defined by processor variables, p 5.

5 (As · p ≥ bs = Projp(

⎛⎜⎜⎝
AJ AK AL
AJ 0 0
0 AK 0
0 0 AL

⎞⎟⎟⎠
⎛⎝ J

p
L

⎞⎠ ≥

⎛⎜⎜⎝
b
bJ
bK

bL

⎞⎟⎟⎠)).
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Let Q be the number of statements having conditionals of type Eq. (4) or Eq. (5)
(if AK = 0). The statement Sq is associated with polyhedron Pq as defined by Aq · p ≥
bq for q = 1, . . . ,Q. The problem of identifying processor regions is now reduced to
finding a non-intersecting set of k polyhedra, whose union covers the set

⋃Q
q=1 Pq. This

is similar to the problem of code generation for multiple statements each defined over
a different polyhedron [16]. The Q statements are then reallocated to the k processor
regions. Therefore, we obtain a PLA description (as in Eq. (3)) for each of the k PE
types. The PLA in Eq. (3) for matrix multiplication has four PE region types: PE1(p1 =
0 ∧ p2 = 0), PE2(p1 > 0 ∧ p2 = 0) , PE3(p1 = 0 ∧ p2 > 0), and PE4(p1 > 0 ∧ p2 > 0).

3.1.2 Determination of Scanning Code
The purpose of this section is to synthesize a global counter which produces values of
the required index variables (e.g., J, L for co-partitioning, J for LSGP, or K for LPGS)
as specified by the schedule vector. The schedule vector is defined by a loop matrix[7].

Definition 3. A loop matrix R = (r1 r2 . . . rs) ∈ Z
s×s determines the ordering of index

points J within a tile at time t. Index points in direction of r1 are mapped side by side
onto t, index points in direction of r2 are separated by blocks of points in direction r1

and so on. The ordering is similar to a sequential nested loop program where the loop
index ik corresponds to iterations in direction of rk. The inner loop index is i1, and the
outermost loop index is is.

To find a suitable schedule vector for co-partitioning, two loop matrices are required for
J and L, respectively. However, for the sake of brevity, the following example illustrates
our methodology for the counter generation of a LSGP tile using a single loop matrix.

Example 4. Fig. 3 (a) shows for a tile the relationship between the chosen loop matrix
R =

(−3 3
3 6

)
and the derived schedule vector λJ , t = λJJ = (3 4)

(
j1
j2

)
. The lexicographic

scanning in j1, j2 cannot lead to an execution order as defined by the loop matrix R.
Therefore, a transformation to the orthogonal domain defined by y1, y2 as depicted in
Fig. 3 (b) has to be defined. Let the vectors Y = (y1 y2)T and J = ( j1 j2)T represent
the transformed orthogonal domain and the initial domain, respectively. The transfor-
mation is defined by E ·Y = T · J, where E is the identity matrix and T is an appropri-
ate transformation matrix (in this example T =

(−2 1
1 1

)
). Subsequently, a lexicographic

scanning in the transformed domain is implemented. In Fig. 3 (b), the transformed do-
main isshown where a lexicographic scanning of black points (images of index points in
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original domain) needs to be carried out. Therefore, a counter has to be obtained in
terms of a FOR loop which counts in the transformed domain the image points and
skips the holes (i.e., the white points in Fig. 3 (b)). The strides of the loop variables
y1, y2 can be determined by finding the diagonal elements of the Hermite Normal Form
(HNF) [14] of the transformation matrix T (here, S = HNF

(
1 0
−2 3

)
). The outer counter

variables depend on the loop matrix which in turn determines the scheduling vector. The
lower bounds (i.e., initialization values) of the loop variables is the lexicographic min-
imum of the loop variables in the system of inequalities (see Eq. 7) under the context
of the outer loop variables [17], The set of inequalities AJ ≥ b defines the given ini-
tial tile whose points are to be scanned. Using Parametric Integer Programming (PIP)
[18], Eq. (7) can be used to find the lexicographic minimum of the inner loop vari-
ables (i.e., in this example y1) under the context of the outermost loop as obtained from
the corresponding row in AT−1 · y ≥ b (i.e., 0 ≤ 3y2 ≤ 26). The variable lower in the
following pseudocode6 is the lexicographic minimum of y1. Finally, the inverse of the
transformation matrix obtains the index variables in the original domain to give follow-
ing pseudo-code for counter.

FOR (y2 = 0; y2 ≤ 8; y2 = y2 +1)
lower = y2 − 3(((2y2)÷ 3)÷ 2)

FOR (y1 = lower; y1 ≤ 8; y1 = y1 +3)
j1 = (−y1 + y2)÷ 3;
j2 = (y1 +2y2)÷ 3;

ENDFOR
ENDFOR

The pseudocode is implemented as a ScanCounter which produces the index variables.

The questions that remain to be answered are: How can the above scanning code be
synchronized with the time as determined by the schedule vector? Also, how can the
transformation matrix, T be determined? The scanning code needs to be synchronized
with the time as determined by the schedule vector. In this example, this corresponds
to generating no values (stall states) at time steps t = 3,7,14,18,25,29 as shown in
Fig. 3 (a) and Table 1. This is accomplished by providing an enable signal to the Scan-
Counter which stops it at the requisite time steps. The enable mechanism’s concept is
shown in Fig. 4. The index points as determined by the loop matrix are output of the
ScanCounter. The second counter counts over the time, which runs from 0 to ttile, the

6 The symbol “÷” denotes a modulo division.
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Table 1. Counter output for Fig. 3(a). En, Res, ”x” are the enable signal, reset signal, and stall
states, respectively

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
y1 0 3 6 x 1 4 7 x 2 5 8 0 3 6 x 1 4 7 x 2 5 8 0 3 6 x 1 4 7 x 2 5 8
y2 0 0 0 x 1 1 1 x 2 2 2 3 3 3 x 4 4 4 x 5 5 5 6 6 6 x 7 7 7 x 8 8 8
j1 0 -1 -2 x 0 -1 -2 x 0 -1 -2 1 0 -1 x 1 0 -1 x 1 0 -1 2 1 0 x 2 1 0 x 2 1 0
j2 0 1 2 x 1 2 3 x 2 3 4 2 3 4 x 3 4 5 x 4 5 6 4 5 6 x 5 6 7 x 6 7 8
s 0 1 2 4 4 5 6 8 8 9 10 11 12 13 15 15 16 17 19 19 20 21 22 23 24 26 26 27 28 30 30 31 32

En 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1
Res 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

last execution time of an index point within the tile. If at time t, s = 3 j1 +4 j2 
= t, then
the ScanCounter is halted. If an enable mechanism is required or not can be determined
by considering if the total time taken to compute a tile is a multiple of the number of
points within the tile. The transformation matrix is given by

T =
σ · adj(R)
gcd(ri, j)

(8)

where σ = |det(R)|/det(R) and gcd(ri, j) is the greatest common divisor of all ele-
ments of the loop matrix. The methodology can be extended to LPGS, co-partitioning
and other hierarchical partitioning methods by passing the relevant loop matrices and
schedule vectors in Algorithm 1. For instance, for co-partitioning λJ , λL and two corre-
sponding loop matrices. Therefore, for co-partitioning we obtain two counters
producing J and L independently.

Algorithm 1: Counter generation

INPUT: Loop matrix R, Schedule vector λ , A, b.
OUTPUT: ScanCounter (as a FOR loop for J), Enable logic.

– Step 1: Determination of the transformation matrix T : If adj(R) 	= R, the transformation matrix is
determined using Eq. (8), else T = E where E is the identity matrix.

– Step 2: Generation of scanning code:
• Step 2.1: Determine the strides from the HNF of the transformation matrix T , i.e., S = HNF(T ).
• Step 2.2: Determine upper and lower bounds of variables in the transformed domain defined by

Y . The lower bounds are found as lexicographic minimum of the system of inequalities (7) under
the context of the outermost loop. The upper bounds are found from (AT−1)Y ≥ b.

• Step 2.3: Determine values of counter variables in J by inverse transformation, i.e., J = T−1Y .
• Step 2.4: Write down the counter description in terms of a FOR loop.

– Step 3: If the total time taken to compute a tile is not a multiple of the number of index points in the tile
then generate an enable mechanism to synchronize the scanning code:

• Step 3.1: Calculate ttile = maxJ∈J {λJJ}, time needed to execute the tile.
• Step 3.2: Generate the TimeCounter as in Fig. 4 with 0 as lower bound and ttile as upper bound.
• Step 3.3: The conditional unit as in Fig. 4 is configured, producing enable as true if and only if

the time (S = λJ) corresponding to the ScanCounter matches the time t as specified by Time-
Counter. The reset signal is produced when the TimeCounter reaches the upper bound ttile.

– Step 4: Update the ScanCounter every δ cycles, where δ is the iteration interval.
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j 2
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δ clk TimeCounter

Enablej  ,1 j 2

Counter

Fig. 4. Enable mechanism: The ScanCounter implements the scanning pseudocode. The enable
signal is turned off if s 	= t. The TimeCounter is incremented each clock cycle clk from zero to
the time of execution of the last index point. The scan counter is incremented only every δ clock
cycle, where δ denotes the iteration interval which is the number of time instances between the
evaluation of two successive instances of a variable within one processing element.

3.1.3 Control Unit Generation
This section deals with the automated control unit generation given the requisite pred-
icates. After PE classification, each PE of different type has an individual behavioral
specification. The behavioral specification of an example PE of qth PE type (p ∈ Pq
(say)) can be the PLA in Eq. (9).

x1[I] =

⎧⎪⎨⎪⎩
F1

1 (. . . ,x j[I − d1,1] . . .)
...
FW1

1 (. . . ,x j[I − dW1 ,1], . . .)

if Ĩ ∈ Ĩ1
1 (L)∧ Î ∈ Î1

1 (G)
...
if Ĩ ∈ ĨW1

1 (L)∧ Î ∈ ÎW1
1 (G)

...
...

...

xK [I] =

⎧⎪⎨⎪⎩
F1

K(. . . ,x j[I − d1,K ], . . .)
...
FWK

K (. . . ,x j[I − dWK ,K ], . . .)

if Ĩ ∈ Ĩ1
K (L)∧ Î ∈ Î1

K (G)
...
if Ĩ ∈ ĨWK

K (L)∧ Î ∈ ÎWK
K (G)

(9)

with the index vector I = (p t)T, where t is the time and p = (p1 p2 . . . pn)T is the
processor index, where normally n = 1 or 2 due to physical limitations. The “if” con-
ditionals also known as Housekeeping code, describe the conditional execution of the
recurrence equations. The “if” conditional for co-partitioning under type (L) are charac-
terized by a processor index dependent equation (given AK 
= 0) as in following Eq. (10)
and therefore must be implemented in the local controller.

if Ĩ ∈ Ĩ = {Ĩ = (J p L)T ∈ Z
3·n | GĨ ≥ g ⇔ AJ · J + AK · p + AL ·L ≥ b} (10)

The “if” conditional under type (G) is described in the space Î = (J L)T, explicitly de-
scribes those iterative conditionals that are independent of processor index p as shown
in Eq. (11) and can therefore be implemented by a global controller.

if Î ∈ Î = {Î = (J L)T ∈ Z
2·n | GÎ ≥ g ⇔ AJ · J ≥ bJ ∧ AL ·L ≥ bL} (11)

Let GĨ ≥ g be simplified so that it can be defined by a minimal number of m inequalities.
Then the control needs to check whether the vector Ĩ is inside the polyhedron defined
by the m inequalities. This is done by introducing m boolean variables lctri, which
are ‘1’ only if GiĨ ≥ gi. The control signals are generated for all LHS variables, xk,
k = 1, . . . ,K. The following pseudo-code is the behavioral description of the generation
of local control path and signals for processor p of type PEq.
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Fig. 5. An example of a local control path of a PE as derived from the PLA in Eq. (12)

lctrl
r,i[I] =

{
1
0

if Gl
r,i · Ĩ ≥ gl

r,i
else otherwise

∀ r = 1, . . . ,K ∧ i = 1, . . . ,Wr

∧ l = 1, . . . ,mr,i

lctrr,i = lctr1
r,i ∧ . . .∧ lctrm

r,i ∀ r = 1, . . . ,K ∧ i = 1, . . . ,Wr

∧ m = mr,i

C1[I] =

⎧⎪⎨⎪⎩
0
...
W1 − 1

if lctr1,1 = 1 ∧ gctr1,1 = 1
...
if lctr1,W1 = 1 ∧ gctr1,W1 = 1

...

CK [I] =

⎧⎪⎨⎪⎩
0
...
WK − 1

if lctrK,1 = 1 ∧ gctrK,1 = 1
...
if lctrK,WK = 1 ∧ gctrK,WK = 1

x1[I] = SWITCH(C1[I] == 0,F1
1 (. . . ,x j[I − d1,1], . . .),

. . . ,C1[I] == W1 − 1,FW1
1 (. . . ,x j[I − dW1,1, . . .]))

...
xK [I] = SWITCH(CK [I] == 0,F1

K(. . . ,x j[I − d1,K], . . .),
. . . ,CK [I] == WK − 1,FWK

K (. . . ,x j[I − dWK ,K , . . .]))

I = (p t)T, where p ∈ PEq and Ĩ = (J p L)T. J and L are index variables obtained
from a global counter. lctrr,i denotes the local control signal for the ith iterative condi-
tional for variable xr, which is obtained by AND relation of the m corresponding local
control bits lctrl

r,i. The mutual exclusivity of conditionals within a variable allows to
encode the control variables in minimal bit encoding form in control variable Ck[I].
The global control signals, gctr originating from the global controller are obtained by
propagation from neighboring processors. The control signal is responsible for the se-
lection of the appropriate input as dictated by the “if” statement. The local controller
for PE1(i.e. p1 = 0 ∧ p2 = 0) is illustrated in Fig. 5 is defined by the following pro-
gram. The construction of global control units is derived from the Type G as shown in
Eq. (11). The transformation for construction of global control units collects the Type
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G conditionals (processor independent conditionals) from all PE definitions in a single
program. The computation of global control pursues the same methodology of checking
whether the index vector, Î = (J L)T lies in the polyhedron defined by inequalities. The
global controller propagates the control signals from the border of the processor array
as shown in Fig. 2. Unlike the memory resources, the size of control unit is indepen-
dent of the partitioning parameters. The local and global control units are problem size
independent as the number of control variables are independent of the number of index
points in any index space. The discussion in this section can be similarly modified for
control generation of LSGP, LPGS, and other hierarchical partitioning methods. The
propagation of the global control signals and counter variables to the individual PEs is
discussed in the next section.

3.1.4 Propagation of Global Control Signals and Counter Values
The counter variables and the control signals are propagated through the processor
array (see Fig. 2) instead of being broadcasted to the respective processor elements.
Localization (a transformation for converting global data dependencies into local de-
pendencies) of control signals follows from gctr(p,t) = gctr(0, t − λd) where λd is
the number of delay registers or the number of time steps required by the global sig-
nals to travel to processor p. The equation is brought to a form where each PE
receives the global signal from neighboring PEs as defined by gctr(p, t) = gctr(p −
dp,t − λK · dp). The propagation vector, dp is limited to {(1,0),(0,1),(1,1),(−1,0),
(0,−1),(−1,1)(1,−1),(−1,−1)} for 2-d processor array. The selection of a propa-
gation vector dp for a PE(p) is obtained by looking at the start time of execution
λs for each neighboring processor, (p − dp). The neighboring PE with λs less than
start time of (p) and the difference being smallest is selected and the communication
link is the propagation vector dp. In case of a tie, the propagation vector is the same
as the propagation vector for the neighboring PE if they are of same PE type. Oth-
erwise the selection is done at random. This leads to regular circuit structure. Once
the propagation vector dp is found, the number of delay registers is found as λK ·
dp. For PE(0,0) the index variables and the global control signals are directly taken
from the counter and global controller, respectively. The program for a PE after ap-
plication of following algorithm incorporates the delay registers and propagation
vectors.

Algorithm 2: Delay and propagation determination

INPUT: Processor space (P), schedule vector (λ ).
OUTPUT: Propagation vector (dp), delay (λd ). For all processing elements, p ∈ P

For all possible propagation vectors, dp,
determine λ(p−dp)(start time) using the schedule vector, i.e., λ(p−dp)= λK · (p− dp).
Select dp, s.t λp−dp < λp and λp−dp ≥ λp−s ∀λp−s < λp, where s ∈ dp.
In case of tie, if p and p − dp are of the same PE type, then the propagation vector of p is the

same
as the propagation vector of PE p− dp else dp is selected randomly.

ENDFOR
ENDFOR
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4 A Case Study

Matrix multiplication was used as a case study for testing our methodology. The pro-
cessor array specification is interpreted from the PLA after control generation. After-
wards, a VHDL implementation of the example co-partitioned matrix multiplication
was carried out. The target FPGA architecture is a Xilinx Virtex XCV800. Table 2
summarizes the comparison of results from a multi-dimensional time implementation
of matrix multiplication [19] and our implementation of co-partitioned matrix multi-
plication. The methodology for the generation of a controller for multi-dimensional
time implementation includes an automaton (counter) for scanning the space-time
polyhedron within each PE thus accounting for the high cost of the control path as
seen in Table 2. As compared, our methodology has a global counter which gener-
ates the iteration co-ordinates and the some of the common predicates thus leading
to reduced area costs. Therefore, a control path area reduction of 90% is obtained.
The absence of RAM blocks is explained by use of slices as registers to realize the
local memory. That accounts for the large size of the data path. The global counter
takes up 209 slices. The high cost of the global counter and controller is however
an offset as by increasing the number of processor elements it is almost a constant
cost.

Table 2. Comparison of implementation for resource use by a single PE. Area complexity is
expressed in terms of slices(4 LUTs).

Implementation Control Memory Datapath Clock
Multidimensional time 65 slices 2 RAM Blocks 26 slices 60 Mhz

Co-partitioned MM 12 slices - 153 slices 58 Mhz

5 Conclusions and Future Work

Our scheduling methodology for partitioning techniques enables the update of itera-
tion co-ordinates in a global counter synchronous to the implementation as specified by
the space-time mapping. Therefore, a considerable cost reduction in area of the control
path is obtained as compared to the methodologies suggested in [6],[19] where a FSM
(Finite State Machine) local to every PE is responsible for the generation of iteration
co-ordinates. Furthermore, the control generation methodology can deal not only with
LSGP, LPGS, multi-projection but also co-partitioning and other hierarchical partition-
ing methods with added advantage of using parallelepiped tiles of arbitrary shape. The
area and speed trade-off obtained between calculation of control signals from predicates
or storage in a circular buffer needs to be studied with respect to resource constraints.
The hardware interpretation of the program can be tuned to the architectures. For ex-
ample, the propagation of global control signals can be optimized by having one global
controller for each PE type in case of limited routing resources. Also, the optimal gen-
eration of address generation units and control units for PEs can be optimized by using
an update scheme instead of re-computation. The results of our work are currently im-
plemented in our design system [20].



190 H. Dutta, F. Hannig, and J. Teich

References

1. Synfora, Inc.: (www.synfora.com)
2. Derrien, S., Risset, T.: Interfacing Compiled FPGA Programs: The MMAlpha Approach. In:

PDPTA. (2000)
3. Lengauer, C.: Loop Parallelization in the Polytope Model. In Best, E., ed.: CONCUR’93.

Lecture Notes in Computer Science 715, Springer-Verlag (1993) 398–416
4. Teich, J., Thiele, L.: Control Generation in the Design of Processor Arrays. Int. Journal on

VLSI and Signal Processing 3(2) (1991) 77–92
5. Xue, J.: The Formal Synthesis of Control Signals for Systolic Arrays. PhD thesis, University

of Edinburgh (1992)
6. Darte, A., Schreiber, R., Rau, B., Vivien, F.: Constructing and Exploiting Linear Sched-

ules with Prescribed Parallelism. ACM Transactions on Design Automation of Electronic
Systems 7(1) (2002) 159–172

7. Teich, J., Thiele, L., Zhang, L.: Scheduling of Partitioned Regular Algorithms on Processor
Arrays with Constrained Resources. Journal of VLSI Signal Processing 17(1) (1997) 5–20

8. Hannig, F., Dutta, H., Teich, J.: Regular Mapping for Coarse-grained Reconfigurable Archi-
tectures. In: Proceedings of the 2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2004). Volume V., Montréal, Quebec, Canada, IEEE Signal
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Abstract. Recent study shows that a further speedup can be achieved by 
RISC-based extensible processors if the incorporated custom functional units 
(CFUs) can execute functions with more than two inputs and one output. How-
ever, mechanisms to execute multiple-input, multiple-output (MIMO) custom 
functions in a RISC processor have not been addressed. This paper proposes an 
extension for single-issue RISC processors based on a CFU that can execute 
custom functions with up to six inputs and three outputs. To minimize the 
change to the core processor, we maintain the operand bandwidth of two inputs, 
one output per cycle and transfer the extra operands and results using repeated 
custom instructions. While keeping such an limit sacrifices some speedup, our 
experiments show that the MIMO extension can still achieve an average 51% 
increase in speedup compared to a dual-input, single-output (DISO) extension 
and an average 27% increase in speedup compared to a multiple-input, single-
output (MISO) extension.  

1   Introduction 

RISC-based extensible processors, which combine the speedup and power/area sav-
ings offered by application-specific hardware in addition to the simplicity and flexi-
bility offered by a RISC processor, have emerged as a promising solution to high 
performance embedded systems. Generally there are two extension schemes in such 
processors. The first scheme uses the custom logic as coprocessors, which are loosely 
coupled with the datapath of the core processor. Examples of this scheme include 
Garp [4], MicroBlaze [17] and Molen [13]. In this scheme, complicated computation 
tasks such as a loop can be performed on the custom logic without the intervention of 
the core processor. This results in significant performance improvement; however, the 
implementation of a complicated task requires considerable hardware resources and 
design effort. Additionally not all operations are suited to be implemented into custom 
logic. The second scheme integrates the custom logic into the datapath of the core 
processor, where the custom logic serves as additional function units. PRISC [11], 
ConCISe [5], and NIOS II [16] are examples of this scheme. The CFUs in such exten-
sions contain little state or control logic and cost less in communicating with the core 
processor’s instruction pipeline, making them easy to design and economic for small 
and frequently executed program patterns.  
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Nevertheless, the attainable speedup of such an extension is limited by some prac-
tical constraints [3] [6] [10]. One of them is the number of inputs and outputs of the 
custom functions1. By relaxing the constraints on the number of inputs and outputs of  
a custom function, a larger cluster of operations can be fitted into it, resulting in a lot 
more speedup [9] [6] [10]. Ideally, a MIMO custom function can be executed like a 
core instruction with all its operands encoded in one instruction and transferred in  
a single cycle. But the practical 32-bit or 16-bit instruction length of RISC processors 
restricts the number of operands that can be encoded in one instruction. Moreover this 
approach generally requires increasing the number of input and output ports of the 
core processor’s register file to provide higher operand bandwidth. Such a modifica-
tion may impair the resource efficiency of the core processor which has been deliber-
ately designed to execute DISO instructions. 

A more back-compatible extension is to maintain the operand bandwidth of the 
core processor and transfer the extra operands of the custom functions using addi-
tional instructions. We observe that such an extension, though requiring a few more 
cycles to transfer the inputs and outputs, can still bring about a significant speedup 
compared to a DISO or MISO extension. We use the following code sequence to 
illustrate this.  

I1. Add    r8, r2, r3    #op output, input, input 

I2. Mult   r9, r4, r8 

I3. Mult   r10, r2, r5 

I4. Add    r2, r9, r10 

I5. Mult   r11, r3, r6 

I6. Add    r3, r9, r11 

Assuming that each multiply instruction takes 5 cycles and each add instruction takes 
1 cycle, this code sequence will cost 18 cycles on a single-issue RISC processor with 
an unpipelined multiplier. With a MIMO extension and the ideal operand bandwidth, 
this code sequence costs 7 cycles: the operand r2, r3, r4, r5, and r6 are put into CFU 
in the first cycle and the result r2 and r3 can be read out in the 7th cycle. If we still use 
a MIMO extension but limit the operand bandwidth to be two inputs and one output 
per cycle, this code sequence costs 8 cycles: the operand and r2 and r3 are put into the 
CFU in the first cycle; the operand r4 and r5 are put into the CFU in the second cycle; 
the operand r6 is put into the CFU in the third cycle; the result r2 can be read out in 
the 7th cycle and the result r3 can be read out in the 8th cycle. If we keep the operand 
bandwidth limit but use a MISO CFU, this code sequence costs 14 cycles. This is 
because the operation I3 and I4 cannot be concurrently evaluated with I5 and I6 due 
to the output limit. Certainly we could add a CFU to exploit the parallelism here. 
However, in that case more issue slots need to be spent in transferring the operand r2, 
r3, r4 and r6 to the second CFU. Therefore, the MIMO extension achieves additional 
speedup even with the operand bandwidth limits.  

                                                           
1  For the sake of clarity, in this text we define a custom function as a group of operations in a 

program that are implemented in a CFU while defining custom instructions as the processor 
instructions used to invoke custom functions. 
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Encouraged by the above observation, we propose a processor extension based on 
a CFU that can execute custom functions with up to six inputs and three outputs. 
Using the SimpleScalar toolset [12], we developed a cycle-accurate simulator for a 
MIPS R3000 like processor with the proposed extension. We obtained a tool chain for 
this extensible processor by modifying GCC and GNU binutils. Using these tools, we 
evaluated the performance of our MIMO extension over a selection of MediaBench 
[14] applications.  

In the rest of this paper, Section 2 discusses other research efforts in this area. Sec-
tion 3 introduces the proposed MIMO processor extension. Section 4 presents ex-
perimental analysis of the proposed extension. Section 5 concludes this paper and 
describes our future work. 

2   Related Work  

PRISC [11] augments a RISC processor with a single hardware-programmable func-
tion unit that evaluates combinational functions. The delay of these combinational 
functions is restricted to be equal to the delay of the ALU in the core processor. 
PRISC only supports DISO custom functions. The ConCISe [5] system is a RISC 
processor enhanced by a CPLD-based reconfigurable functional unit. Multiple custom 
functions are encoded in a single reconfigurable unit to save resources. Like PRISC, 
ConCISe supports only DISO custom functions. The commercial soft-core processor 
NIOS II [16], allows users to choose different custom instruction architectural types 
that range from  a simple, single-cycle combinatorial architecture to an extended vari-
able-length, multi-cycle custom instruction architecture. Though flexible, NIOS II’s 
custom logic interface is also designed for DISO custom functions since each custom 
function is invoked by a single custom instruction [1].  
    Many automatic instruction-set customization algorithms [2] [3] [8] proposed re-
cently are capable of identifying MIMO custom functions from applications. With 
these algorithms, some researchers investigated the theoretical speedup by relaxing 
the constraints on the inputs and outputs of custom functions. Cong et al [9] quantita-
tively analyzed the operand bandwidth limitation on the performance of the extensible 
processors and concluded that the four inputs per cycle constraint can achieve an 80% 
speedup over the two inputs per cycle constraint. They also proposed a solution to 
improve the operand bandwidth. However this solution needs to modify many instruc-
tions’ format to address the shadow registers. Ienne et al [6] studied the maximum 
potential speedup of specialized processors by mapping only data flow sections of 
code to the custom logic. According to their results, more than 60% of the potential 
gain comes from basic blocks with more than two inputs and about 50% from basic 
blocks with a single output. Yu and Mitra [10] studied the effect of more constraints 
and concluded that 4 inputs, 3 outputs could achieve a speedup of close to the theo-
retical limit. Kubilay et al [3] and Partha et al [8] also considered the effect of differ-
ent input/output constraints in their work. These studies [3] [6] [8] [10] assumed an 
ideal operand bandwidth and focused on the theoretical speedup potential rather than 
the architectural consequences of MIMO extensions. 
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3   M2E Architecture Extension 

As alluded to in previous sections, our aim is to improve the processor performance 
by developing an architectural extension which exploits the advantages of MIMO 
solutions without resorting to complicated structural changes to the core processors’ 
ISA and micro-architecture. With this aim in mind, we propose a relatively simple 
architectural extension, named M2E (MIMO extension), which enhances the micro-
architecture of a classical single-issue pipelined RISC processor. Our extension con-
sists of only one or two CFUs, although it could be quite easily changed to include 
more CFUs. The operation of the CFUs is controlled by a single custom instruction 
and can involve from 1 to 16 custom functions per CFU. Figure 1 shows the architec-
ture of our proposed M2E extension with a single CFU. Like PRISC and NIOS II, the 
CFUs are inserted in parallel with the ALU so that only minor changes to the existing 
datapath are needed. The ALU and CFUs operate independently of each other. A 
multiplexer selects the appropriate output from the ALU or the CFUs as the result to 
be forwarded to the next stage.  

 

Fig. 1. The architecture of M2E 

3.1   M2E CFU 

As illustrated in Figure 1, a M2E CFU implements a number of (1-16) custom  
functions.  Each custom function can have up to six inputs and three outputs. A  
multiplexer is used to select the requested output of a custom function. To provide 
inputs for the custom functions, six 32-bit transparent D-Type latches (I0-I5) are used. 
These latches (called input latches) are divided into two groups, with each group 
controlled by a 2-bit signal. The signal selects the latch that will be enabled from the 
clock edge used by the pipeline registers to the opposite one. When an input latch is 
enabled, it becomes transparent so that the CFU input can propagate across it. When it 
is disabled, the latch holds the last state of the input. Therefore, the inputs of a custom 
function can be used as early as possible and held in multiple cycles. The custom 
functions in the same CFU share the input latches and can also share part of their 
logic. Hence, unlike the custom functions residing in different CFUs, the execution of 
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them cannot overlap. A multiplexer decides which custom function is being executed 
and whose output is valid.  

Like in PRISC, our custom functions are implemented using combinational logic. 
We define Ij (0 j 5) and Ok (0 k 2) as the jth input and the kth output of a custom 
function respectively. If a change to the input Ij can result in a change of output Ok, 
we say Ij and Ok are related and use Djk to represent the delay between them. We use 
Dri to represent the maximum delay from the operand registers (RA & RB) to the 
inputs of the custom functions. We use Dor to represent the maximum delay from an 
output of a custom function to the result register in Figure 1. We further define the 
total delay (Drjkr) associated with a related input-output pair (Ij, Ok) as the sum of Dri, 
Djk and Dor, Drjkr = Dri + Djk + Dor. We assume Drjkr has been translated into cycles and 
rounded up if necessary.  

For each output Ok, we have a valid signal Vk. Vk is set false if any related input of 
Ok changes (more accurately, the input latch is enabled). Vk is set true after each re-
lated input of Ok has remained unchanged for Drjkr -1 cycles. We employ a number of 
cycle counters to achieve this. Each cycle counter corresponds to one related input-
output pair (Ij, Ok) whose associated Drjkr is greater than 1. Once Ij changes the cycle 
counter is reset to the value Drjkr -1. The cycle counter counts down in each cycle until 
zero. When all the counters relevant to Ok become zero, Vk is set valid. For most 
custom functions, the number of related input-output pairs is below 8 (4 inputs, 2 
outputs). And some of the input-output pairs can share a cycle counter if they have the 
same input and symmetric outputs (the delay between the input and the two outputs 
are equal) or vice versa. Thus the hardware resource needed by the cycle counters is 
quite small. 

3.2   Instruction Set Extension 

We use the MIPS I instruction set architecture [15] to demonstrate our extension. A 
single custom instruction, cust, is added to execute the custom functions. The format 
of this instruction is shown in Figure 2. Each instruction field is briefly described in 
Table 1.To a large extent, it resembles a MIPS R-type instruction with two input op-
erands and one output operand. The s, t, d fields in this instruction are used to control 
the inputs and outputs of the custom function. Different combinations of them may 
put operands in or get results from a custom function or do both of them. The fn and 
cn fields tell which custom function in which CFU is being operated. Currently we 
allow for 2 CFUs and up to 16 custom functions. A slight change to the instruction 
format will allow different combinations of CFUs and custom functions if needed. 
Like other instructions in the MIPS I instruction set, each cust instruction takes one 
cycle unless it is interlocked. A cust instruction is interlocked only when it requests an 
output (the d field is not zero) but the output is not valid at that time. The pipeline will 
be stalled until the output is ready.  

opcode rdrtrs s t dcn fn

6 5 5 5 1 4 2 2 2

 

Fig. 2. Custom instruction format 
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Table 1. Fields of custom instruction 

Field Size (bits) Description 
opcode 6 instruction opcode 

rs 5 source operand register 
rt 5 target operand register 
rd 5 destination register 
cn 1 CFU number 
fn 4 custom function number 
s 2 0: source operand is ignored 

1: put source operand in I0 
2: put source operand in I2 
3: put source operand in I4 

t 2 0: target operand is ignored 
1: put target operand in I1 
2: put target operand in I3 
3: put target operand in I5 

d 2 0: no output 
1: get output 0 into destination register 
2: get output 1 into destination register 
3: get output 2 into destination register 

Invocation of a custom function is achieved by using a sequence of cust instruc-
tions. For example, assuming the code fragment in section 1 is implemented as cus-
tom function 0 in CFU 0, it can be invoked by the following instruction sequence 
(using the format in Figure 2): 

cust r2, r3, $0, 0(cn), 0(fn), 1(s), 1(t), 0(d) 

cust r4, r5, $0, 0(cn), 0(fn), 2(s), 2(t), 0(d) 

cust r6, $0, $0, 0(cn), 0(fn), 3(s), 0(t), 0(d) 

cust $0, $0, r2, 0(cn), 0(fn), 0(s), 0(t), 1(d) 

cust $0, $0, r3, 0(cn), 0(fn), 0(s), 0(t), 2(d) 

To ensure correctness, the instructions in the sequence must be in the proper order. 
And in order to reduce code generation complexity, we enforce the additional con-
straint that instructions that transfer inputs must be issued before the instructions that 
transfer outputs in one invocation of a custom function. Nevertheless, these instruc-
tions don’t need to be consecutive. In fact, to reduce possible interlocking, we usually 
insert other ALU operations into the sequence. This is detailed in section 4.2. 

4   Evaluation 

In this section, we present our experimental evaluation of M2E. In Section 4.1, we de-
scribe the performance model we used for our evaluation. In Section 4.2, we introduce 
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the process to map an application to the extended instruction set architecture. In Section 
4.3, we present the experimental results and a discussion of them.  

4.1   Performance Model 

We measure the relative performance of an extensible processor with M2E extension 
against the core processor by comparing the execution cycles of a range of applica-
tions executing on them. The relative performance, or speedup, is computed as [10]: 

1
..

..
)( −=

processorextoncyclesexec

processorcoreoncyclesexec
sspeedup  

The execution cycles are derived from a performance simulator developed using the 
SimpleScalar toolsuit [12]. The instruction set used in the simulator is MIPS I. The 
simulator models an enhanced micro-architecture of the MIPS R3000 processor [15] 
and an M2E extension to it. Like the MIPS R3000, the modeled processor has 5 pipe-
line stages: IF, RD, ALU, MEM and WB, and two forwarding paths: from MEM to 
ALU and from WB to ALU. The modeled processor includes a one-cycle ALU and a 
separate multiplier unit. The multiplier unit can execute concurrently with the ALU.  

As the core processor for the M2E extension may be either a soft core processor 
such as NIOS II [16], or a more advanced hard core processor such as PowerPC 405 
[7], we added some additional features (shown in Table 2) to the MIPS R3000  
memory hierarchy. This makes the modified configuration better than NIOS II and 
comparable to a PowerPC 405. All instructions have one-cycle latency except when 
interlocked. When interlock occurs, the previous stages are stalled and the following 
stages are fed NOP instructions. The instructions that may cause an interlock include: 
MFLO/MFHI, load instructions, and the cust instruction. A multiplication operation 
costs 4 cycles and a division operation costs 8 cycles. The processor has no branch 
prediction unit but each branch instruction has a one-cycle delay slot. Many of the 
delay slots can be filled by the compiler with useful instructions. So on average the 
branch instruction latency is between one and two, which is better than what most 
embedded processors’ branch architecture can achieve. 

Altera’s Quartus II software was used to measure the custom function delay. Bal-
anced, medium optimization options and the Stratix II device ep2s15f484c3 were 
used in the experiments. The Stratix II device uses 90 nm copper technology with a 
maximum frequency of up to 500 MHz. In the simulation, the measured delays are 
translated into processor cycles based on the assumed frequency of the processor core. 

Table 2. Memory hierarchy parameters 

Instruction L1 cache 16K, directly mapped, 1-cycle hit latency 
Data L1 cache 16K, 4 associativity, 1-cycle hit latency 
Unified L2 cache 256K, 4 associativity, 6-cycle hit latency 
Memory latency 32 cycles 
Instruction TLB 64-entry fully associative 
Data TLB 64-entry fully associative 
TLB hit latency 1 cycle 
TLB miss latency 32 cycles 
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4.2   Mapping Applications 

We use the algorithm proposed in [3] to identify MIMO instruction clusters which are 
suited to be implemented as custom functions. Memory operations are precluded from 
our custom functions because of their variable latency.  After an instruction cluster is 
identified and synthesized as a custom function, we replace the instruction cluster 
with the appropriate invocation of the custom function. This is done in an extra opti-
mization phase inserted into the compiler. As mentioned previously, a MIMO custom 
function is usually invoked by a sequence of the same custom instruction (cust). Ac-
cording to our experience, most MIMO custom functions need 3-20 cycles to com-
plete their computation. In some situations the pipeline has to be stalled to wait for the 
output of the custom function to be ready. To avoid this, some ALU instructions that 
precede or follow the cust instruction sequence are moved into the cust instruction 
sequence based on the analysis of the latency of the custom function together with the 
data dependence between the custom function and the ALU instructions. This process 
is similar to rescheduling instructions to exploit the empty issue slots between instruc-
tion MULT and instruction MFLO/MFHI in MIPS processors [15].  

4.3   Experimental Results 

Five applications from MediaBench [14] were used in our experiments. Integer fdct 
functions were used in the benchmark mpegenc for we modeled only an embedded 
processor without floating point unit. All the applications were compiled using GCC 
with option -O2 and –funroll-loops. The tool chain used in our compilation process is 
MIPS 32-bit little-endian GCC 3.4.3 with glibc 2.3.5 and GNU binutils 2.15.91. In all 
experiments we assume a single CFU. 

In the first experiment, we compare the proposed M2E to a DISO extension, a 
MISO extension as well as a MIMO extension with ideal operand bandwidth 
(IMIMO) in terms of the speedup achieved. In this experiment, we assume a hard-
core processor running at 500 MHz. The input-output delays were translated under  
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Fig. 3. Compare M2E with DISO, MISO, and IMIMO in terms of the speedup achieved when 
using a hard core (500 MHz) and a single CFU 
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this assumption. The results shown in Figure 3 indicate that M2E on average can 
achieve roughly 77% speedup over the core processor, while the DISO and MISO 
extension can only achieve about 26% and 50% respectively. There are three principal 
reasons for the differences. First, compared to a DISO or MISO custom function, a 
MIMO custom function allow more operations to benefit from the speedup advan-
tages of FPGA [18]. Second, even though the custom logic needs the same time to 
execute the custom functions as the core processor does, putting more operations into 
it will save more issue slots.  These issue slots can be used to issue other ALU in-
structions, which will possibly cause a reduction of the program’s critical path. The 
third reason is that DISO & MISO extensions usually need more custom functions to 
approach the maximum speedup than M2E. This can be seen in Figure 4, which shows 
the speedup for two benchmarks (adpcmenc & adpcmdec) for different numbers of 
custom functions. When a large custom function is broken into several small custom 
functions, the total number of outputs of all custom functions may increase as some 
intermediate variables need to be passed between the ALU and the custom functions. 
The increase in the total number of outputs will cause the delay between any output of 
the custom functions and the result register (Dor) to grow. As a result, the outputs of 
custom functions may need more cycles to become available. Certainly, in some 
situations a MIMO custom function that satisfies all constraints may not be available. 
And sometimes a DISO or MISO custom function may get more speedup than a 
MIMO custom function as a smaller custom function usually has a greater chance to 
repeat itself in elsewhere in a program. Our extension has the flexibility to employ 
custom functions with 1-6 inputs and 1-3 outputs. 

From Figure 3, we can also observe that generally IMIMO achieves more speedup 
than M2E. However, the difference between them is not large (about 9% on the aver-
age). One reason is that compared to the latency of the custom functions, the number 
of cycles spent in transferring operands or results is usually small. Another reason is 
that increasing operand bandwidth does not necessarily reduce the custom functions’ 
latency especially when there is data dependence between the operations.  

In the second experiment, we studied the speedup difference between using a soft 
core and a hard core assuming that the CFU is implemented on the same reconfigur-
able fabric. Again, the hard core is assumed to run at 500 MHz [7] while the soft core 
is assumed to run at 150 MHz [16].  From the results shown in Figure 5, we can see 
that the speedup achieved with a hard core is smaller than with a soft core. This is  
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Fig. 5.  Speedup difference when extending a hard core (500 MHz) and a soft core (150 MHz) 
with single-CFU M2E 

because the same latency of custom logic is translated into fewer processor cycles in a 
soft core situation. However, the difference (about 6% on the average) is not as large 
as the processor frequencies suggest. There is even no difference for the benchmark 
adpcmdec. This is because the instructions that are executed in the ALU are the criti-
cal path (in adpcmdec situation) or will become the critical path when the latency of 
the custom function is reduced. 

5   Conclusions and Future Work 

RISC-based extensible processors have emerged as a promising solution for high 
performance embedded systems. The attainable performance of such processors is 
limited by the number of inputs and outputs of the custom functions. In this paper we 
proposed a very simple MIMO processor extension for classical single-issue pipelined 
RISC processors. To minimize the change to the core processors’ ISA and  
micro-architecture, we use only a single custom instruction and maintain the operand 
bandwidth of two inputs, one output per cycle. The extra operands and results of the 
custom functions are transferred using a repeated sequence of the same custom  
instruction. While keeping such an operand bandwidth limit does sacrifice some 
speedup, the experiments show that our M2E extension can still achieve an average 
speedup 51% more than a DISO extension and 27% more than a MISO extension, and 
approaches the theoretical limit for MIMO extensions. Our current M2E extension is 
limited to fixed-point operations and in-order single issue processors. Adding support 
for floating-point operations and out-of-order processors as well as implementing a 
prototype of the extension on a NIOS II development board are areas for future work. 
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Abstract. Dynamic hardware reconfiguration is becoming a key tech-
nology in embedded system design that offers among others new poten-
tials in dependable computing. To make system designers benefit from
this new technology, powerful infrastructures and programming environ-
ments are needed. In this paper, we will propose new concepts of an
operating system (OS) infrastructure for reconfigurable networks that
allow to efficiently design fault-tolerant systems. For this purpose, we
consider a hardware/software solution that supports dynamic rerouting,
hardware and software task migration, hardware/software task morph-
ing, and online partitioning. Finally, we will present an implementation
of such a reconfigurable network providing this OS infrastructure.

1 Introduction

Nowadays, embedded systems are typically networked at different levels of gran-
ularity. This can be either at system level, where different controllers cooperate
with each other, like in sensor networks or body area networks, or at chip level
where different processor cores and dedicated hardware modules are implemented
on a single die. The motivation to design such a networked embedded system
can be found in automotive and avionic industries where system requirements
range from high computational power to reliability and flexibility aspects.

In this paper, we will present the possibilities that distributed dynamic hard-
ware reconfiguration offers in the context of fault tolerance and flexibility. In
the following, we will use the term reconfigurable network to denote a networked
embedded system consisting of hardware reconfigurable nodes (FPGAs). In such
a reconfigurable network, it becomes possible to migrate hardware and software
tasks from one node to another at run time. Thus, resource faults can be com-
pensated by rebinding tasks to fully functional nodes of the network. This task
of rebinding is also known as online partitioning [1, 2]. However, in order to allow
system designers to benefit from this new technology, powerful infrastructures
and programming environments are needed.

Recent research focuses on operating systems for single FPGA solutions
[3, 4, 5, 6] where hardware tasks are dynamically assigned to FPGAs. On the
other hand, architectures for networked reconfigurable solutions like PACT [7],
Chameleon [8], HoneyComb [9], and dynamically reconfigurable networks on
chips (DyNoCs) [10] were investigated intensively. Nevertheless, the former omits

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 202–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An OS Infrastructure for Fault-Tolerant Reconfigurable Networks 203
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Fig. 1. Basic OS features provided by a ReCoNet. On each node in the reconfigurable
network a local OS is needed. Based on these local OSs, basic network services can be
implemented. On top of the basic network services, the basic OS features dynamic
rerouting, task migration, and morphing are defined. In order to increase the fault
tolerance of a ReCoNet, online partitioning must be supported as well. Finally, an
application can be build on top of all these layers.

the fact that more and more embedded systems become networked, whereas the
latter does not account the support of basic hardware task management for
online scheduling and online placement. Moreover, only by considering both as-
pects simultaneously, the problem of designing fault-tolerant and flexible or even
self-optimizing embedded systems can be solved.

In this contribution, we close this gap by proposing new concepts for an op-
erating system (OS) infrastructure for reconfigurable networks that allow for
designing dependable computing systems efficiently. This operating system pro-
vides an efficient infrastructure and programming environment by providing the
basic tasks known as dynamic rerouting, hardware and software task migra-
tion, hardware/software task morphing, and online partitioning. This is shown in
Fig. 1. In this paper, we focus on dynamic rerouting, task migration, and online
partitioning. Whereas hardware/software task morphing is covered only briefly.
In the following, we denote a reconfigurable network as ReCoNet.

The first three features that are provided by the OS in a ReCoNet are
(1) dynamic rerouting, (2) task migration, and (3) task morphing. Note that
these features that deal with erroneous resources have to be implemented on
each reconfigurable node such that they run in a distributed manner in the net-
work. Thus, we are able to compensate line errors by computing a new route for
broken communications and we can migrate tasks from one node in the network
to another at run time. Moreover, we are able to morph the implementation
style of a task. Especially the task of fault tolerant communication in networked
reconfigurable systems is of outer importance and will be discussed in this paper
comprehensively. This communication protocol is the basis for an efficient rerout-
ing algorithm for a ReCoNet. Based on the three tasks dynamic rerouting, task
migration, and task morphing, we define feature (4) called online partitioning
as the process of optimally binding tasks to nodes in the network. Feature (4)
guarantees the fault tolerance of the ReCoNet.
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In summary, the paper contributes with an OS infrastructure to design mod-
ern fault-tolerant and flexible embedded systems covering reconfigurable net-
works or even organic computing systems. The rest of the paper is organized
as follows: In Section 2, an in depth discussion of the basic OS tasks dynamic
rebinding, task migration, and task morphing will be done. Section 3 is devoted
to the topic of fault tolerance and online optimization. Finally, Section 4 presents
our implementation of a ReCoNet and the most important figures related to
this implementation. The focus in this section will be on the implementation of
a communication protocol that supports dynamic rerouting.

2 Basic OS Features

This section describes the basic features needed for running a ReCoNet. Before
defining these features, we will take a closer look on the underlying architecture.
The main aspects of the architecture are:

– small: Each node in the network is able, but is not necessarily required, to
store the current state of the entire network. The state of a network is given
by its current topology consisting of all available nodes, of available links,
and of the distribution of the tasks in the network.

– dynamic hardware reconfiguration: Allows the implementation of arbitrary
functions in hardware. Thus, it accelerates the computation of the corre-
sponding functions required in the network.

– embedded: requires the optimization of different objectives, like power con-
sumption, cost, etc. simultaneously.

These are the fundamental properties of a reconfigurable network that we call
a ReCoNet. Furthermore, in order to increase the degree of fault tolerance
and flexibility of a ReCoNet, it must support online partitioning of tasks in
the network. For this purpose, we have to implement four basic OS features.
In order to compensate errors in the hardware infrastructure, we implemented
the OS features dynamic rerouting, hardware and software task migration, and
hardware/software task morphing. Network connectivity faults are compensated
by the computation of a new routing and faults of a complete node are compen-
sated by migrating tasks to other nodes. Finally, the task morphing allows for
changing the implementation style of a task from hardware to software and vice
versa at run time. On top of these features, we implemented an additional, fourth
OS feature named online partitioning which will be discussed in Section 3. This
online partitioning uses task migration and morphing due to optimality reasons.

In order to describe these OS features formally, we need an appropriate model.
The application implemented by the reconfigurable network is given by n tasks
T = {t1, t2, . . . , tn} running on m possible nodes R = {r1, r2, . . . , rm}. Tasks
may communicate with each other modeled by so-called data dependencies D =
{d1, d2, . . . , dk} ⊆ T × T . Moreover, the ReCoNet structure is given by l links
C = {c1, c2, . . . , cl} between the nodes where C ⊆ R × R. Each task ti ∈ T can
be mapped onto an arbitrary set of nodes. Moreover, a task can be implemented
in either hardware (HW) or software (SW). We therefore model all possible
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bindings as a set M , where M ⊆ T ×R×{hw, sw}. The actual binding of tasks to
resources is called β ⊆ M . A task ti bound to hardware (ti, rj , hw) ∈ β produces
a hardware load (number of resources occupied on the FPGA) of wH(ti). The
same task implemented in software produces a software load (CPU utilization)
of wS(ti). The OS features are triggered if a resource fault is detected. In the
following, we reveal the basic OS features dynamic rerouting, task migration, and
task morphing in detail. Online partitioning will be discussed in Section 3 in the
scope of fault tolerance.

2.1 Rerouting

The first OS feature to be defined is the task of dynamic rerouting. Rerouting
is required if a connection (cf ∈ C) in the network fails. All data dependencies
routed over this connection have to be redirected. There are several publications
dealing with this issue where recent work was mainly focused on probabilistic
approaches [11]. Here, we consider a high-level fault tolerant approach. Dynamic
rerouting itself can be decomposed in three subproblems:

1. Line detection: Is a link ci = (rj , rk) between two nodes rj and rk available?
2. Network state distribution: If a connection between two nodes (rj , rk) fails,

all nodes using link cf must be informed.
3. Routing of broken communications (data dependencies).

Note that communication takes place between tasks and the binding of a task to
a network node can change at run-time. Therefore, the rerouting is much more
complex as in static networks where communication takes place between nodes.
This will be discussed comprehensively in Section 4 where we present an efficient
algorithm for dynamic rerouting.

2.2 Hardware and Software Task Migration

Task migration describes the rebinding of hardware and software tasks ti ∈ T
from one node rj in the network to another node rk. If ti is implemented in
hardware, i.e., (ti, rj , hw) ∈ β the rebinding leads to (ti, rk, hw) ∈ β. To perform
this step, we need {(ti, rj , hw), (ti, rk, hw)} ∈ M . Note, that if we configure
the reconfigurable nodes ri, rk with a processor, it may be possible to morph
a hardware task ((ti, rj , hw) ∈ β) to a software task ((ti, rj , sw) ∈ β) and vice
versa, too. For a node rj this will further need {(ti, rj , hw), (ti, rj , sw)} ∈ M .

Task migration is applied to compensate resource faults, i.e., if a node rf in the
network fails, all tasks running on rf must be migrated to other nodes. Thus,
task migration can be divided into two subproblems: 1) detection of resource
errors and 2) rebinding of tasks to nodes. The first subproblem can be solved by
observing if a node rf has at least one working connection to any of its neighbors
({ri | (rf , ri) ∈ C}). Otherwise, this node is called isolated. An isolated node
cannot be used for process execution any longer and all tasks bound to this node
must be migrated.

An important question is how to perform a save task migration, i.e., how
to keep track on the current state of a task. For this purpose, we use so-called
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checkpoints as discussed in the following section. Moreover, we must answer
the question of how to optimally bind a task ti after some resource fault. This
is especially necessary in the context of embedded systems where multiple ob-
jectives have to be optimized simultaneously while meeting several constraints.
This topic will also be discussed in the subsequent section in the context of fault
tolerance.

2.3 Hardware/Software Task Morphing

Hardware/software task morphing describes the switching of the implementation
style of a task from hardware to software or vice versa. Assuming that function-
ality can be implemented for the available hardware and software resources, the
morphing phase needs several steps, e.g., for extracting states of the functionality
implemented in either hardware or software and transforming these states such
that they can be loaded in their functional counterpart. Due to space limitations,
we will omit an in depth discussion.

3 Fault Tolerance

With the above presented methods for dynamic rerouting, task migration, and
task morphing, we are now able to investigate new concepts for increasing the
fault tolerance in a ReCoNet. The problem we face is the following: Suppose a
node rf in the reconfigurable network fails and with this node all its functionality
will be lost. All tasks ti ∈ T with (ti, rf , {hw, sw}) ∈ β must be migrated to
a fully functional node r ∈ R\{rf}. Obviously, this should be done quickly in
order to compensate the resource fault. However, the new task binding β′ might
be suboptimal or even miss some constraints imposed on the system, such that
we have to perform an optimization of the system at run time.

The described scenario is sketched in Fig. 2. The online partitioning basically
consists of two phases: (i) a fast repair phase that reestablishes the functionality
of a defect node and (ii) a repartitioning phase that optimizes the binding of
tasks in the network.

In order to guarantee a fast repair, we propose the use of self replication of
tasks in combination with checkpointing. Checkpointing is responsible for saving
a task’s state in order to recover this state, whereas replicating tasks assures
that a fast migration decision can be made in case of some node fault. Hence,
after a resource fault, the replicated tasks take over control of the computation
and restore the last state saved from this computation. In a second step, the
task is replicated as well in order to guarantee a fast migration step in case of
an additional node failure.

During the replication of tasks, we might step into another problem, which
will be solved by so-called dynamic repartitioning. The new tasks that will be
produced during the replication phase has to be bound to free resources. Unfor-
tunately, it cannot be guaranteed at design time, that exactly the resource for
binding either a task implemented in hardware or software is free at run time.
Hence, a novel strategy for dynamic repartitioning needs to be investigated that
decides whether a tasks will be implemented in hardware or software and on
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fast_repair()

re_partition()

bi−partitioning

ok?
partition

Is

allocation’(t), binding’’(t)

no

yes

discrete diffusion

allocation’(t), binding’(t)

event(t)

allocation(t), binding(t)

Fig. 2. Phases of the online partitioning. In case of certain events, indicating e.g.,
temporary or permanent resource and link faults, a fast reassignment of tasks to avail-
able resources is found by fast repair(). In the second phase, a diffusion-based dynamic
repartitioning is applied where an actual temporal bi-partition is iteratively improved
by migrating tasks to other active resources and by possibly changing their implemen-
tation style.

which node a task will be executed. In the following, we will discuss the three
aspects self replication, checkpointing, and dynamic repartitioning separately.

3.1 Self Replication

For the purpose of redundancy, a regular task replicates itself on another node,
such that an execution of a task can be continued if one of these nodes fails. Self
replication is task migration to an adjacent node without stopping/removing
the regular task. This replicated and migrated task will be called shadow task
subsequently. Thus, there exists a shadow task for each regular task in the re-
configurable network. A regular task and its corresponding shadow task observe
each other by periodically sending and requesting so-called keep alive messages
from each other. To permit this mutual monitoring a task to task communica-
tion protocol (Task2Task) must be supported by a ReCoNet (cf. Sec. 4.2). In
Task2Task communication so-called task addresses (TAD) are resolved to phys-
ical node addresses (NAD) such that messages can be routed between nodes in
the network.

To avoid confusions during the resolution of a TAD to a NAD, TADs must
be unique in a ReCoNet. Thus, a designer has to define unique TADs for a
regular task and the corresponding shadow task at design time.

If a shadow task becomes a regular task, i.e., if the former regular task is not
available any longer, it takes the TAD of the former regular task. On the other
hand, if the shadow task fails, a new shadow task is created by the regular task



208 D. Koch et al.

and the TAD of the shadow task will be assigned. This shadow task is bound on
the first adjacent node, which has free capacities for an additional task.

A problematic scenario is the decomposition of a network in two parts and
the reconnection of two subnetworks. Suppose the regular task is running in
one part of the network and its shadow task is running in the other part. The
regular task does not receive any keep alive messages from its shadow task and
therefore creates a new one. The same holds for the shadow task. This task in
turn assumes that the regular task is out of order and sets itself to be the regular
task. Producing another shadow task, leads to a situation in which two TADs of
the regular and two TADs of the shadow task exist in the decomposed network.

In order to resolve this particular problem when two parts of a network are
reconnected, we make use of the concept of so-called checkpoint sessions, which
will be introduced in more detail later on. Here, it is only important to under-
stand, that after each creation of a checkpoint or each rollback to a checkpoint,
a session number will be increased. Thus, the session number is representative
for the lifetime of a task. Now, if two tasks have the same TAD, the tasks with
the shortest lifetime survives. If they have the same lifetime, the task on the
node with the lowest NAD will be removed.

With this concept, it can be ensured that always one regular and one shadow
task exist, if an adjacent node provides the necessary resources for execution.

3.2 Checkpointing

Without an efficient mechanism for saving and restoring states of processes, the
migration and replication of tasks is not applicable. For this purpose, check-
pointing mechanisms are integrated which contain a context of a task and are
periodically updated.

The checkpointing mechanisms can be used in order to keep the shadow task
in an actual state. Every time a task generates or updates its checkpoint, it
transmits this checkpoint also to the shadow task. When the shadow task takes
control and becomes a regular task, it detects that its local data is inconsistent
and causes a rollback. Note that it is applicatory not possible to hold consistent
local data at a shadow task. This would otherwise result in a multiplication
of communicated messages in the network. Each task of a checkpoint group
would have to duplicate its messages and send them to the receiving task and to
its shadow task. For further information about checkpointing mechanisms, [12]
provides a good survey.

3.3 Dynamic Repartitioning

After a node fails in a network, new shadow tasks are started and restored, such
that they are in a consistent state with their corresponding regular tasks. In [2],
this phase has been called fast repair phase and aims at a network with full
functionality and the same redundancy as before the failure. This phase has to
be passed in a certain time, so that we can make assumptions about the real-time
behavior.

The second phase, described in this section, tries to find an optimal binding of
processes to nodes with respect to certain objectives. In this phase, the decision
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whether a task will be implemented on hardware resources or software resources
as well as the distribution of tasks in the network will be done iteratively until a
satisfying binding β concerning the objectives is found. Note that due to reasons
of fault tolerance this approach has to run in a distributed manner in the network.

Our overall approach to dynamic repartitioning tries to find a binding of tasks
to nodes such that the load reserves of hardware as well as of software resources
are maximized on all nodes. Optimizing the binding of tasks to resources in this
way, increases the probability that a shadow task can be bound onto an adjacent
node. In [13], we proposed a two step methodology consisting of a diffusion phase
and a local hardware/software partitioning phase:

Diffusion Phase: During the diffusion phase nodes exchange tasks according to
their load differences on the nodes. Characteristic to a diffusion-based algorithm,
introduced first by Cybenko [14], is that iteratively each node is allowed to move
any size of load to each of its neighbors. Communication is only allowed along
point-to-point connections. The quality of such an algorithm may be measured
in terms of the number of iterations that are required in order to achieve a
balanced state and in terms of the amount of load moved over the edges of the
graph. In [2], we have presented an extended diffusion algorithm, that exchanges
only whole tasks between nodes and thus, only discrete load entities. Anyway,
it has been shown theoretically and by experiment that our proposed version
of the diffusion algorithm does not exceed optimality constraints concerning the
optimization flow of its continuous counterpart and moreover, we are able to
show theoretically maximal deviations with respect to the quality of the load
balance. Note that the diffusion phase makes use of the OS feature hardware
and software task migration.

Local Bi-Partitioning: The local bi-partitioning supposes that each task ti ∈ T
can be either implemented in hardware or software. Each implementation style
causes certain costs or load on the node’s resources wH/S(ti) and upon these
costs a ratio is determined for each task: wH(ti)/wS(ti). According to this ratio
the bi-partitioning algorithm selects one task and implements it either in hard-
ware or software. Due to such a local strategy, we can guarantee that the total
load will be minimized, but to reach an optimal hardware/software balance, we
calculate the total software load and the total hardware load on one node. If
the hardware load is less than the software load, the algorithm selects a task
which will be implemented in hardware, and the other way round. Due to these
competing objectives (balanced hardware/software load and minimization of to-
tal load), tasks with a ratio larger than one can be assigned to hardware and
tasks with a ratio less than one are assigned to software. Of course it is possible
that tasks are assigned to a resource such that they are implemented subopti-
mal. But during the diffusion phase, we diffuse these tasks at first. Therefore,
we introduce two priority lists, one for software and one for hardware tasks. In
these lists, we collect all tasks in the reverse order as they are assigned to a
hardware or software resource. Thus, the last task which was, e.g., assigned to
software is the first task which will be diffused if the node has to send tasks via
the network. Therefore, suboptimal partitioned tasks will have a higher mobility,
which leads to an improvement concerning the convergence speed. Note that the
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implementation of the local bi-partitioning needs the OS feature hardware/software
task morphing.

4 Prototype Implementation

In this section, we will present our implementation of a ReCoNet. Here, we will
focus on the communication infrastructure and dynamic rerouting algorithm.

4.1 Architecture and Local OS

Our prototype implementation of a ReCoNet consists of four fully connected
Altera Cyclone FPGA boards [15]. Each Board is configured with a NIOS soft-
core CPU [16] running microC/OS-II [17] as local operating system. The local
OS permits, multi-tasking by priority-based preemptive scheduling. We extend
the microC/OS-II, by a new C++-API for task creation and an Inter Process
Communication (IPC) infrastructure based on message passing. As Altera FP-
GAs do not support dynamic hardware reconfiguration, we configure each node
with a set of hardware modules implementing selected tasks. These hardware
modules can be activated during run time to emulate dynamic reconfiguration.
Beside the NIOS processor and the application dependent hardware modules,
each Cyclone board is configured with a number of new designed communica-
tion ports. These communication ports permit line detection which is a basic
functionality for dynamic rerouting. Moreover, a novel communication protocol
was developed providing many features to support dynamic rerouting and task
migration. This communication protocol will be discussed in detail next.

4.2 Communication

Our ReCoNet approach demands a specialized network infrastructure. In order
to obtain a high degree of fault tolerance, we cannot allow busses that are based
on a shared physical medium. Even a doubling of the bus medium in order to
get a parallel redundant communication path is based on a too restricted fault
model. One faulty node can prohibit the communication inside the entire network
by randomly sending unintentional data.

Point-to-point (P2P) networks on the other side demand some routing over-
head to channel packages through the network. In the case of a faulty link, data
can be sent via alternative paths.

Beside the fault tolerance, P2P networks have the advantage of an extreme
high total bandwidth. Thus, ReCoNet uses P2P communication.

For our ReCoNet we implemented a new communication protocol which
supports dynamic rerouting as well as hardware and software task migration.
The communication protocol works on different layers. Firstly, a node-to-node
(N2N) protocol at the transport layer is defined. The N2N protocol is responsible
for reliable communication between nodes (multi-hop). Secondly, a task-to-task
(T2T) protocol is implemented that handles the task resolution in the network.
The most important features of the communication protocol can be summarized
as follows:
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– Priorities are used to achieve different service levels in the network in order
to prevent low priority messages blocking high priority messages.

– Different sizes are supported to allow the efficient transfer of simple sensor
values as well as the efficient transfer of large binary (configuration) data.
The size of the payload field can vary between 4 and 20 bytes per cell.

– Celling is used by the network driver to determine if the cell is a fraction of
a multi-cell package or not.

– Cut through for small multi-hop communication latencies.
– Data transfer rate of 12.5Mb/s.

Task2Task Communication. One of the major design goals of the ReCoNet
is to decouple structure from functionality. This means that a task is not forced
to run on a predefined resource in the network if it does not demand special
resources that are only available on specific nodes (e. g., a sensor). Thus, a task
resolution mechanism has been integrated with the following requirements:

– Fast assignment of task addresses (TADs) to node addresses (NADs). Note,
due to the rapid change of the TAD to NAD assignment, the resolution has
to take place after each reconfiguration.

– Resolution of conflicts in case of multiple TADs which can occur in the
context of task replication.

– Task resolution is an operating system task which is not visible to the user
and does not affect the design style.

Line Detection. If we want to compensate failures, we have to build failure
detection mechanisms into a ReCoNet. In the case of links, we have to distin-
guish between intermediate and long term failures. A single bit flip for example
is an intermediate failure that will not demand additional care with respect to
the routing, while a link down should be recognized as fast as possible in order
to determine a new route for packages to be transferred over this link. As the
link state is recognized in the transceiver ports of our implementation we chose
the advantageous variant to perform the line detection completely in hardware.

All links of a ReCoNet support full duplex mode. If for example one trans-
ceiver port fails the failure is recognized in the adjacent node and not in the
faulty one itself. Hence, the recognizing node needs to send its receive link state
back to the adjacent node with the faulty transceiver. If this happens the hard-
ware tries to reestablish the link by itself. If this was not successful, the hardware
generates an interrupt to the CPU to switch over to an alternative routing. This
will be described in the following section. The complete process takes place in
less then a millisecond. In case that both lines will go down at the same time, this
is recognized by an inactivity on the link. If no traffic is demanded by the appli-
cation the transceivers generate keep alive message for their adjacent neighbors.
If a link is down, the hardware tries to setup the connection periodically. This
allows to include new links at run time (e. g., after the repair of a faulty link).

Routing and Rerouting. The main design objective described in this paper
is to achieve a high degree of fault tolerance by self-optimizing network com-
ponents. Consequently, we demand that the self-optimizing process itself has
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to be fault-tolerant. Hence, all network management processes have to operate
distributed without global knowledge and robust with respect to faulty nodes.

The routing is based on a hierarchical approach and has some similarities
to distance vector routing (also known as Bellman-Ford algorithm). Routing is
defined as the problem of finding an output port for an associated node specified
by its address. In our approach we have hardware routers each with a local
routing table evaluating the primary routing function by a lookup. This permits
routing with a small latency. In addition, every node maintains a second routing
function that determines an alternative port in software that has to differ from
the port selected by the primary routing function. As a consequence, this allows
for a fast reaction on link failures when packages have to be sent over alternative
routes. In the case of a fault, it is mandatory to determine new routes as fast
as possible. In this phase it is not important to find the best alternative route.
The secondary routing function determines the alternative port before the fault
occurs. For this purpose, we need the so-called reachability set (RSp) for each
output port p that contains the nodes that can be reached from p.

The routing is based on a special addressing scheme allowing a node to send a
package to a neighbor node without knowing the target address. With UP being
the set of ports connected to active nodes and costr the cost function defined
as the distance given by the number of hops to reach a node r ∈ R, then the
routing algorithm initializes each node r̄ as follows:

1: UP := ∅ \\at the beginning there is no port available
2: ∀r ∈ R\{r̄} : ROUTE 1st(r) := −1 \\we have no primary route
3: ∀r ∈ R\{r̄} : ROUTE 2nd(r) := −1 \\we have no 2nd route
4: ∀p ∈ outputs(r̄) : RSp := ∅ \\no neighbors
5: ∀r ∈ R\{r̄} : costr := −1 \\we don’t know the cost to any node

If a link to a neighbor node r̃ is established, we do the following in node r̄:

1: UP := UP ∪ {p} \\put new link to set of connected ports
2: HELLO(p, r̄, 1) \\send via port p that r̄

\\is reachable with cost 1

The incoming HELLO(p, r̄, cost) message on port p̃ then starts an update of
the primary routing function on the neighbor node r̃ :

1: RSp := RSp ∪ {r̄} \\put neighbor node r̄ into the
\\reachability set of port p̃

2: ROUTE 1st(r̄) := p̃ \\set route on port p̃ for node r̄
3: costr̄ := cost \\update cost function
4: ∀q ∈ UP\{p̃} : ROUTE(q, r̄, cost + 1, r̃) \\propagate routing
5: ROUTE(p̃, r̃, 1)) \\inform new node with own identity
6: ∀r ∈ R|ROUTE 1st(r) �=−1 : ROUTE(p̃, r, costr + 1, r̃)

\\inform new node with all known routes
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In line 4 we propagate the new route to node r̄ to all connected neighbor ports
different from the new one. The value of the cost function has to be incremented
by 1 if the traffic is routed through node r̃. If these nodes receive a route with
lower cost they will update their own table and only in this case the routing
information is propagated further through the network until all routing tables
can be updated with a better route. In line 5 we set the new route in backward
direction whereas in line 6 we inform the new neighbor about the complete rout-
ing information we know until now. As a result, the neighbor will test for each
route if there was a better one or not. In the former case the local routing table
is updated and the result is propagated further.

Because of the optimality principle, the route written to the primary routing
table is optimal with respect to the number of hops. The secondary routing
function stores the port with the second best cost function and is used when
the hardware detects that the link of a specific port is down. Note that this
algorithm needs no information about the network topology. Even the ports of
a single router can be used in any order.

In the case of a link failure the primary routing table gets the values from the
second routing table for all nodes that were originally routed through the now
faulty port. This alternative table has usually a higher cost. Therefore, we have
to propagate the new cost to the remaining neighbor ports that can locally decide
whenever to update a routing table or not. Every node only has to store locally
the two best routing alternatives. In the worst case, we have to propagate the
routing information over the complete network. This can take up to |R|−1 time
steps with |R| being the number of nodes in the ReCoNet. An additional delay
can only occur if the node degree k is larger than two. But a node with degree 2+k
will reduce the longest possible path in a ReCoNet at least by k. Therefore, the
sum of links passed by a package will always be less than |R| − 1. The proposed
routing algorithm will not execute more than two consecutive commands (e. g.,
HELLO and ROUTE) in a single node to update all routing tables. As a
consequence, the routing is finished in O(2 · (|R| − 1)) = O(|R|) time steps.

Fig. 3 gives an example of the rerouting algorithm for the case that node A
sends a package to node D. In the error free case I), the message will pass node

Fig. 3. Rerouting of a route A → D in the case of a link failure II) or the failure of
a complete node III). The numbers specify the cost for each transceiver port to reach
port D. If a transceiver port is not capable to reach D then the cost is set to -1.
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SPI
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GatewayMonitor

TCP/IP

IEEE 802.3

Fig. 4. In a network of several nodes, one node is acting as the gateway to the network
monitor. The gateway collects all data and sends them via a TCP/IP connection to a
host computer.

B and C. If the link from B to C fails, node B will look into the second routing
table guiding the package via the nodes G and H instead of node C. The route
is invalidated by writing −1 into the cost function table for the broken ports. If
next node G fails its neighbor node B will have the only possibility to reach D
via A. As a consequence node A will invalidate its port to node B and a new
route is established via the nodes E, F , C.

4.3 Online Analysis and Experimental Results

For analyzing the performance of the presented methods, a network monitor-
ing system has been designed and integrated. It basically consists of a
gateway collecting the data of the nodes in the network and a host computer
for interpreting and displaying the collected data (see Fig. 4). The gateway is
integrated into one dedicated node and each other node sends periodically its
own status to the gateway. The information displayed by the monitoring system
contains

– the binding of tasks to nodes in the network and the implementation style
(hardware/software),

– a time line for each task, such that it can be analyzed when a task has been
started on a node and when it migrated to another node,

– the data traffic on a link over the time,
– the topology of the network and
– the content of routing tables.

Routing: The routing algorithm has been tested with different network topolo-
gies. Initially, the nodes had to discover routes after start-up. Then, at run-time
links are disconnected and reestablished. In order to compare the results of the
routing time after start-up TS and in case of an error TF with the theoretical
upper bound T̂ = 2(n−1), the results in Fig. 5 are presented in time steps. Note
that the number of nodes in the network is denoted with n.
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Fig. 5. Several scenarios are presented containing one broken link each. The given
time steps denote a theoretical upper bound of routing time T̂ , the measured time
after startup TS and the measured time after a link defect TF , respectively.

Performance of Task2Task Messaging: As presented in Sec. 4.2 the data transfer
rate depends on the message type which is chosen. Remember that dedicated
messages are intended for e.g. sensor values with a good ratio between protocol
data and small data entities. Another message type is intended for high volume
data transfers having again a good ratio between protocol data and large data
entities. With the constraint of a 50MHz CPU and a physical layer that supports
a data transfer rate of 12.5Mb/s, a data transfer rate of

– 1MB/s is reached for multi cell packets and
– 400KB/s could be transfered for single cell data packets during task to task

communication.

5 Conclusion and Future Work

In this paper, we presented a new operating system infrastructure for reconfig-
urable networks which allow for the efficient design of dependable computing
systems. The scope of this paper is on fault tolerance and a novel strategy
was presented which deals with permanent faults or defects of communication
links and computational resources. To establish this task, the basic OS features
dynamic rerouting, hardware and software task migration, hardware/software
task morphing, and online partitioning were discussed and implemented. In
particular, the online partitioning that consists of a fast repair phase and an
optimization phase is a key contribution in the area of modern embedded
system design covering reconfigurable networks as well as organic computing
systems.

In future work, we will present an application from the automotive industry
running on our ReCoNet. Moreover, in order to support dynamic hardware
reconfiguration at full scale, we consider the integration of state-of-the-art Xilinx
FPGAs into our ReCoNet.
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Abstract. Wearable computing places tighter constraints on architec-
ture design than traditional mobile computing. The architecture is de-
scribed in terms of; miniaturization, power-awareness, global low-power
design and flexibility or suitability for an application. In this article we
present a new methodology based on four metrics that represent different
properties. Flexibility, Electronic Packaging, Relative Recognition Per-
formance and Energy Consumption metrics are proposed and evaluated
on practical design examples to study different trade-offs. The proof of
concept case study is analyzed by studying (a) walking behavior with
acceleration sensors (b) office-worker activities with a combination of ac-
celeration and light sensors and (c) a computational task. The results
show that the proposed metrics and methodology assists in selecting an
optimal architecture for a given application in the domain of wearable
computing.

1 Context Aware Wearable Systems

Wearable computing as defined by [1, 2] envisions personal, mobile computing
systems that are always on, useful in all situations, and most of all, easy to
use. Thus whereas a conventional mobile device would only be used for an oc-
casional schedule check or address lookup, a wearable device would constantly
provide the user with useful information such as nearby shops and special offers,
transport delays, or health and lifestyle-related reminders (taking medicine, diet
etc). Such systems are particularity important in professional applications such
as emergency response units, manufacturing and maintanance. Thus a wearable
system might constantly provide a fireman with hints and warning about hazards
related to his environment, his physiological state and his current actions.

A key component of the wearable computing vision is the ability of the system to
model and recognize user activity and the situation aroundhim. This so called con-
text awareness [3] allows the system to proactively provide the user with the right
information at the right time, reduces the complexity of the user interface, and
allows new modes of information recording. One of the most popular approaches
to context awareness in a mobile environment is based on simple on-body sensors.
Thus an accelerometer, light sensor and a microphone placed on the wrist could be

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 217–231, 2006.
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used to track interaction with household appliances [4] or the use of tools [5]. In a
similar way an accelerometer and/or gyroscope on the upper leg can differentiate
between level walking, going upstairs, going downstairs and running.

1.1 Basis Architecture

Overall, a context aware wearable system consists of several interconnected mod-
ules placed at different body locations . Each module consists of sensors, com-
puting elements, RF circuitry and hybrid power supplies (batteries and energy
scavenging generator) (see figure 1). When designing such systems one has to
take into account not only the usual computer performance measures but also
the limitations imposed by the human body. One key aspect of such a system is
‘Wearability’. ‘Wearability’ is defined as the interaction between the human body
and the wearable object. It can be improved by designing low-power miniatur-
ized systems with a comfortable form-factor suitable to be worn on the body as
unobtrusively as possible. Miniaturization can be achieved by designing smaller
individual components and integrating them as one functional unit with suitable
electronic packaging technologies. Power consumption can be minimized by duty
cycling, reducing the active energy per operation and implementing power-aware
algorithms on the processor. At the same time, the performance of the wearable
system should not be affected and should offer high suitability for different tasks.
Here, a tradeoff is faced by designers between; flexibility (suitability for a given
task), efficiency or performance, Wearability and energy. Commercial micro con-
trollers and processors are flexible enough due to their versatile instruction sets
that allow the implementation of different wearable tasks. Dedicated processors
(ASICs) on the other hand execute the given task faster, require less silicon area
and consume lower power than general-purpose architectures. However, they
lack the flexibility. If the wearable scenario changes, a redesign of the ASIC is
required. Reconfigurable devices combine the flexibility of general processors and
the performance of ASICs, but they do not meet the strict demands of power
consumption.

Fig. 1. Proposed Wearable System Architecture

1.2 Paper Scope

As sketched above, the design of a wearable system can be viewed as a multi
dimensional problem with conflicting optimization criteria. This paper is ded-
icated to formalizing the tradeoffs involved in solving this problem. In doing
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so we focus on an individual module as shown by figure 1. We propose to de-
scribe such a module by four parameters that are either orthogonal to each
other or represent different properties. They are ‘Electronic Packaging param-
eters’(routing area, volume) and ‘Flexibility of the processor/ASIC’, both re-
garded as hardware metrics; ‘Relative recognition performance’ in a task and
‘Normalized Energy/Power consumption’ which are both regarded as applica-
tion oriented metrics. We propose a methodology based on these four metrics
to study the architectural trade-offs to answer the following questions. Which
architecture is ideal/suitable in a context recognition scenario offering high flexi-
bility, recognition performance and lowest energy consumption?. Which wearable
architecture provides high Wearability and low- packaging costs?. This method-
ology is applied to practical design examples implemented at the ‘ETH Wearable
Computing Lab’. The results show that the proposed methodology assists in se-
lecting an optimal architecture for solving a given context recognition task. It
will also be shown that, it is not possible to optimize all the four metrics at the
same time. We will prove that the proposed metrics are orthogonal to each other.

2 Related Work and Paper Contribution

The main aspect which sets us aside from the work done by other groups in
the field of computer architecture is the focus on context aware wearable sys-
tems. Design space exploration studies of computer architecture has been widely
investigated by several researchers. Here we quote few examples, as it is not
the purpose of the paper to advance the state-of-the-art in this area in general.
Design studies of computer architectures consisting of heterogeneous systems
with different hardware components was investigated by [6, 7, 8, 9]. However,
they have not been applied to design nor to evaluate context aware wearable
systems. System-level design approaches specific to power-performance optimiza-
tion, speech processing in wearable computing was proposed by[10, 11], System-
atic design approaches in wearable computing, were proposed by [12, 13]. Here,
wearable systems do not necessarily include sensors and are not evaluated in
activity context recognition tasks. They also do not deal with the aspect of
miniaturization with electronic packaging and evaluating the flexibility. Devel-
oping new electronic packaging technologies such as SOP (System-On-Package)
for achieving the goals of miniaturization, long-term performance and low pro-
ductions costs have been the interest of several packaging research groups with
more emphasis on technology. They did not focus on wearable system architec-
tures and an evaluation of different tasks [14].

A detailed systematic approach considering wearability and power consump-
tion in the design space was investigated by [15]. The methodologies for context-
aware system design were proposed by [16] for selecting optimized architectures
with respect to power consumption and classification performance. Evaluation of
different context recognition algorithms with low-power wearable systems were
investigated by [17, 4]. Electronic packaging aspects of an ultra-miniaturized
wearable micro-system [18] was investigated by our group in the earlier studies.
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In this paper, we present an advanced methodology purely applied to wearable
systems by deriving the metrics from the different areas such as electronic pack-
aging, processor architecture and context recognition algorithms. This evaluation
methodology is based on four different metrics, viz; flexibility, packaging, relative
recognition rate and normalized active energy consumption. Our methodology
aims at investigating the architectural tradeoffs and finding optimized architec-
ture for solving a wearable computing task. To the best of our knowledge this
paper provides the following novelties.

– Proposing a new methodology by deriving the metrics from system design
aspects such as ‘flexibility’ and ‘electronic packaging’ and combining them
with task/application oriented ‘relative recognition rate’ and ‘energy con-
sumption’ metrics to evaluate wearable systems.

– Evaluation of the methodology by applying to practical design examples as
a proof-of-concept to find an optimal architecture.

– It is also shown that the proposed metrics are orthogonal to each other. i.e
Optimizing all the four metrics at the same time is not feasible.

In Chapter 3, we propose the metrics, methodology and introduce different cat-
egories of tasks. In Chapter 4 we present different wearable systems and explain
the hardware. Chapter 5 consists of a case study where wearable systems are
evaluated. Finally we state our conclusions and proposed work for the future.

3 Proposed Metrics-Methodology

Considering the hardware aspects and application oriented aspects we have de-
rived four metrics to represent the trade-offs. A task is defined as a set of isolated
or continuous activities in a wearable scenario which needs to be recognized. eg:
sitting-standing-walking, recognizing wood-workshop sounds

3.1 Proposed Metrics

(a) Flexibility: Flexibility is defined as suitability for solving different tasks.
Suitability of the processor, is restricted by it’s internal memory and operat-
ing frequency. Commercial processors have different instruction sets which also
determines it’s suitability in solving the given task. By Combining these three
important properties we derive the Flexibility metric. It is specified by the de-
vice/processor maximum operating frequency (fmax), internal program memory
in kb (Mp) and number of core instructions ’I’, normalized on a logarithmic
scale. In order to represent a wide range of processor families, a logarithmic scale
would be imperative. Often ASIC (Application-Specific-Integrated-Circuits) and
FPGA (Field-Programmable-Gate-Arrays) are custom designed for a specific ap-
plication and do not rely on the instruction-set, so the number of CPU states or
the number of outputs from the ASIC can be taken as a similar measure. With
the proposed metric, different families of processors used in context recognition
tasks are evaluated as shown in Table 1. Here, for ASICs we have calculated
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the number of outputs in two different scenarios (walking, arcA is 3 and office-
worker, arcB is 5) (See chapter 5). ASICs show the lowest flexibility followed
by low-performance micro-controllers. If the scenario changes a redesign would
be required in the case of an ASIC, whereas less memory and lower operat-
ing frequencies restrict the flexibility of micro-controllers. The calculated values
are shown in Table 1, proving that this metric holds true for a wide range of
processor families.

Table 1. Flexibility Metric applied to Processors used in context recognition

Processor fmax(MHz) Mp(kb) Inst Pin Count Flex.
MSP430F123 8 4 27 32 2.15
MSP430c33x 3.8 24 27 100 3.20
MSP430F1611 8 48 27 64 4.64
PIC18Fx480 10 16 75 44 4.78
PIC18Fx580 10 24 75 44 5.19
μPD78082 5 16 66 44 3.96
μPD78083 5 24 66 44 4.37
SA-1110 251 24 110 256 8.79
x-scale 400 32 80 544 13.83
AT91M40807 21 128 40 100 6.98
TMS320c55xx 200 24 85 144 8.31
ASICarcA 8 30 3 84 1.97
ASICarcB 8 30 5 84 2.48

Flexibility = log(
fmax ∗ Mp ∗ I

100 ∗ 1MHz ∗ 1kb
). (1)

fmax = maximum operating frequency in MHz
Mp = program memory in kb
I = No. of core instructions

Modern FPGAs offer to combine the flexibility of digital signal processors and
performance of ASICs to improve the suitability. However, they consume very
high-power compared to an ASIC, that is designed to solve the similar applica-
tion. One such example can be quoted to justify the reason, not to consider them
in the current investigation. Mencer et. al[19] compared the implementation of
the IDEA cryptography algorithm to comapre SA-1000 (RISC), DSP, FPGA
and ASIC architectures. Although, it’s possible to achieve high performance,but
they can not achieve power savings compared to an ASIC which is intend to do
the same task.

(b) Electronic Packaging Metrics:The wearable systems should be compact
and light. The electronic packaging technology and scheme in which the sys-
tems are designed with sensors, a processor and signal conditioning circuitry,
dominates the agenda since it directly affects the Wearability. Area in the x-
y space (area occupied on the human-body when placed) and volume of the
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Table 2. Comparision Between RISC, DSP, FPGA and ASIC

Type Technology clock Performance Power Efficiency .
μm (MHz) (MBit/s) (W) (MBit/J)

RISC SA-110 0.35 200 32.0 1.0 32.0
DSP TMS320C6x 0.25 200 53.1 6.0 8.9
FPGA XC4020XL 0.35 33 528.0 3.2 167.6
ASIC (VINCI) 1.20 25 177.8 1.5 118.7

system represents comfort and miniaturization. Based on the ITRS road map
[20], the projections for processor pin-count follows a scale of power 2. In or-
der to compensate for this growth and emphasize the ‘packaging effort’ within
the system, (

√
(Pinproc) * vol.) metric with usage of a logarithmic scale is

imperative. For a wearable system, using a processor with a higher pin-count
does not affect it’s wearability but the packaging effort does (‘effort in system-
integration’).

Pkga = log[
Area ∗ √

(Pinproc)
1mm2 ∗ 1000

]. (2)

Pkgb = log[
V ol. ∗ √

(Pinproc)
1mm3 ∗ 1000

]. (3)

Area = Area of the Wearable-System after Packaging in mm2

Vol. = Volume of the Wearable-System after packaging in mm3

Pinproc = Number of pins of the processor

(c) Normalized Active Power or Energy Consumption: The active power
or energy consumption of a processor is defined as the energy/power consumed in
performing a number of classifications (N) in a time ‘t’ to solve a context recog-
nition task. The energy/power values of the processor are measured and nor-
malized to a logarithmic scale. The proposed power-consumption metric serves
to represent a wide range of power values (from a few micro watts to several
watts), which would not be feasible with linear representation. The normalized
power consumption Pnorm of the processor is defined as

Pnorm = log(
Pproc

1m.W
). (4)

The number of classifications per second depends on the architecture of the
processor, the complexity of the algorithm and the task to be recognized. In order
to compare different architectures, active classification energy for performing ’N’
classifications in time ’t’ sec can also be used as a metric .

EN = log(
Eproc

1m.J
). (5)

EN = Normalized Classification Energy consumption
Eproc = Energy consumption of the processor in mJ
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If the task is a computational job such as calculating a particular set of features
or a single feature then execution time Tex normalized on a logarithmic scale
can be considered as a suitable metric(TN ).

TN = log(
Tex

1ms.
). (6)

(d) Relative Recognition Performance ( R.R.P): Isolated actions or con-
tinuous activities can be recognized by using features from single or multiple
sensors together with a classifier algorithm. Implementation of the complex fea-
tures and algorithms is restricted by the available hardware resources, which
influences the recognition rates. The proposed metric normalizes the recognition
rates of different tasks on a scale of 0.1 to 1. We define the limits of recognition
performance based on the task. A task is deemed successful if it meets the stipu-
lated ‘higher limit or above’ and unsuccessful if it does not meet the lower limit
with respect to the recognition rates.

– R.R.P = 1 (completion of the task )
– R.R.P = 0.1 (un successful completion of the task)
– R.R.P = Wp ( partial completion of the task) where Wp= weights assigned

Wp =
Rs − Rlow

Rhigh − Rlow
∗ x. (7)

Rs = Recognition Rate achieved during the task
Rlow = Lower limit of Recognition rate (scenario specific)
Rhigh = Upper limit of Recognition rate (scenario specific)
x = 0.9 ( for the R.R.P scale (1.0 - 0.1 = 0.9) )

This metric serves as a performance-measure of a system for solving a context
recognition task considering the effect of features and classifier algorithms. Also
the task can be a computational job such as calculation of a feature, set of
features towards application in context recognition. It can be termed as Rela-
tive Task Solvability (R.T.S). R.T.S can only be rated as either 1.0 or 0.0 for
successful and unsuccessful completion. All the four metrics: costs of flexibil-
ity,packaging,energy, recognition performance can be calculated in a combined
form for a given architecture. It will also be shown that, these metrics help in
selecting optimal wearable architecture.

3.2 Tasks

A task is recognition of a single or set of activities in a wearable computing
scenario, using information from sensors. Tasks are divided into three cate-
gories (table 2) based on the computational complexity (No. of Instructions
per sec.)& minimum memory size (Mmin) It is assumed that we have a priori
knowledge about what sensors are required in each activity. The features and the
classifier algorithms are known [17, 4] . They range from simple daily-life activ-
ities detection using ’mean’ feature with a C 4.5 decision tree classifier algo-
rithm to solving a complex health monitoring task using Hidden Markov models
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Table 3. Categories of tasks based on the complexity

Task Category Features Inst./sec Mmin

-Classifier (MIPS) (Kb)
low household mean, mcr, < 1 < 2

activities[4] max., min. - C4.5
medium Walking [21, 22] mean, std, fluc ≥ 1& ≥2 &

Kitchenette [17] variance, cg, ≤ 10 ≤ 100
rpt, LDA

Workshop[5] FFT- K-NN, Bayes
high Eating Habits - HMM, > 10 > 100

Sign Language[23] Vision Algorithms

(HMM). For low level tasks the features are simple time-domain features such
as ‘mean’,‘maximum’, ‘minimum’ and ‘slope’ with a C 4.5 decision tree classifier
algorithm. For medium level tasks, a combination of time and frequency domain
features (‘FFT’, ‘roll-off-point’, ‘center of gravity’, ‘band width’ etc.) or time
domain features (‘variance’ and ‘fluctuation’ which requires a multiplication or
division operation) with classifier algorithms such as K-Nearest Neighbor and
Naive Bayes. High-level tasks deal with much more complex algorithms such as
Hidden Markov Models and wearable vision algorithms.

– std - standard deviation, rpt - roll off point, fluc- fluctuation
– cg - center of gravity, mcr - mean crossing rate, LDA - Linear Discriminant

Analysis
– FFT - Fast Fourier Transformation

4 Wearable Systems Architecture

In order to evaluate the proposed Metrics we have implemented the following
wearable systems. The systems A,B and C consists of accelerometers (ADXL311
from Analog Devices), microphone (SPO103 from Knowles Acoustics) and vis-
ible light sensor (SFH3410 from Osram Semiconductors) as sensors together
with MSP430 family processors and an nRF 2401 Transceiver from Nordic
Semiconductors. In ‘A’(WSpack 1.0) an external ADC, 12 bit and 8 channel
AD7888 from Analog devices is used, where as ‘MSP430F1611’ already includes a
12-bit AD converter. The clock for the micro-controller, is generated by an in-
ternal digital controlled oscillator (DCO). The DCO is stabilized by an exter-
nal 32kHz quartz crystal. The data from the micro-controllers is forwarded to
an nRF2401 transceiver for wireless transmission.They are powered by a small
lithium-polymer battery (VPP402025 from Varta) which has a capacity of 130
mAh. The entire systems are fabricated on a 4 layer FR-4 substrate. ‘A’ has over-
all size of 27 x 32 mm2 with a thickness of 9 mm, where as B has a size of 41.5
x 27.5 mm 2 with a thickness of 9 mm due to slightly bigger micro-controller. A
detailed hardware explanation for A, B is given in [4, 24] System ‘C’ additionally
includes a hybrid power supply (a DC-DC converter with solar cell). The entire
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Fig. 2. Hardware Architecture of Autonomous Sensor Button

system is divided into three modules. Sensors and the RF transceiver are on the
top module, the micro-controller with hybrid power supply are in the second
module which in turn is connected to a third module: a solar cell for energy
harvesting. The system has a radius of 15 mm with 1 mm holes for sewing it to
the clothing for wearability.

We also have implemented an ASIC (0.25 μm UMC L250) for detecting walk-
ing behavior. It can process the input data from accelerometers, pressure sensors
and a GPS sensor. The chip is designed to calculate; ‘mean’, ‘variance’, ‘maxi-
mum’, ‘high-band’, ‘low-band’, ‘slope’, ‘entropy’ features together with FFT (64,
128, 256 pt) with an option to by-pass certain features. The K-Nearest Neighbor
algorithm is implemented in the chip to detect walking behavior. The activity
recognition chip is used for simple-walking behavior (idle, walking straight, walk-
ing up/down) using only acceleration data and detailed level-walking (elevator
up, down) using the additional data from the pressure sensor. The entire area
occupied by the chip is 2.435 mm * 2.435 mm with a core area of 3.204 mm2 The
chip is designed to have a maximum operating frequency of 8 MHz. The supply
voltage to the core is 2.5 V and the I/O : max is 3.3 V The final system that we
have considered in the study is the QBIC, this consists of an x-scale processor
from the ‘Intel’ family. The QBIC has a belt form factor and can be used for
field trials. The friendly user-interface allows different sensors to be connected
without major modifications in the design.

5 Case Study - Discussion

The proposed four metrics are evaluated in two tasks with the systems introduced
in section 4. In Task A, ‘walking behavior’, three activities are required to be
detected using accelerometers. ‘Idle’, ‘walking’, and ‘walking up/down’ using the
features shown in Table. 4, it is possible to achieve recognition rates of around
90% [22, 21]. In Task B, ‘office-worker’ activities such as ‘ sitting at the desk’,
‘typing on the keyboard’, ‘moving the mouse’, ‘taking a nap’, ‘lifting a cup and
drinking from it’ are to be recognized. Simple feature with a C 4.5 decision tree
classifier algorithm is sufficient in this case as recommended in [27]. In Task C a
32- bit FFT is implemented and tested on the systems to calculate the execution
time.
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Table 4. Practical Design Examples

System Processor
A. WSpack 1.0[4] MSP430F123(Texas Instruments)
B. WSPack 2.0[24] MSP430F1611(Texas Instruments)
C. Wearable Sensor Button MSP430F1611(Texas Instruments)
D. ARC chip [25] ASIC (0.25 μm UMC L250 technology)
E. QBIC[26] x-scale(Intel)

Table 5. Evaluated Tasks

Evaluated Tasks Sensors Feat.- Classifier Recogn.
A. Walking accl. - ‘mean’,‘max’,‘var’- ≥80 %

(12-bit, 100 Hz)- K-NN
above knee

B. Office- accl.,light ’mean‘, ‘MCR’, ‘fluc’ or ≥75 %
Worker (12-bit, 32 Hz) only ’mean‘ - C 4.5

on the wrist
C. FFT 64,128,256 pt FFT 1.0 or

(16, 32-bit) 0.0

The test results of ARC chip power consumption, using the acceleration test
vectors calculating ‘mean’, ‘variance’, ‘maximum’ and fast fourier transform (256
pt FFT) with the K-NN algorithm is shown in Fig.3. Also the measured active
power-consumption results of the MSP430F1611 processor at different supply
voltages are shown in Fig.4. These measurements allow us to estimate the energy
consumption values in the current case study. For task A, the MSP430F123
processor could not complete the recognition task. It does not have a hardware
multiplier and due to limited memory, during the distance matrices calculations
of the K-NN algorithm with 5-9 neighbours, buffer-overflow problems occur. The
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‘ARC chip‘ performed 200 classifications@ 2 MHz, the behavior with frequency
is linear. The x-scale processor performed 10 classifications/sec @400 MHz using
‘mean’, ‘variance’ features and running a K-NN classifier algorithm with a data
input of 100 samples/sec. K-NN requires calculation of eucledian distances to the
training vectors in the memory and classifies the activities using sorting. Here
a sorting algorithm such as bubble sort would be required, which takes 390 ms
at 1 MHz sorting 32 bytes of data (32 vectors) on the MSP430F1611 or similar
processors [28]. This can be roughly translated so that sorting 100 feature vectors
can take 1.17 seconds. Therefore at 4MHz around 3 classifications are possible.
The active energy costs (ENa) of all the systems are calculated to perform 10
classifications of task A.

For task B, the expected recognition performance (80-83%) can be achieved
by using all the processors and slightly lower recognition rates for MSP430F123
can be attributed due to it’s limited memory size. The calculation of ‘mean’
feature and classification with decision tree classifier (6-7 decisions) is possi-
ble on all the four processors. Using MCR, fluctuation even higher recognition
rates can be ahieved. In this scenario, a complete redesign of ASIC would be
required, hence we have emulated an ASIC, similar to the ARC chip used in the
walking behavior task. Using MSP430 processors 3 classifications @1MHz were
achieved. For the ASIC, it would be above 100 classifications@ 1MHz, whilst on
an x-scale processor performing around more than 100 classifications @150 MHz
(minimum clock frequency) can be achieved. This can be attributed due to the
lower complexity of the decision tree classifier in comparison to a K-NN classifier
algorithm [17, 4]. The active energy costs (ENb) of all the systems are calculated
to perform 100 classifications for task B. The measured and calculated metrics
for all wearable systems for both tasks are shown in Table 4.

Discussion: From the behavior of the diagrams the ideal system is that which is
centralized. For task A, only WSPack1.0 (F123) failed to complete the task but
scores the lowest packaging costs. ARC (ASIC) shows best energy costs with re-
spect to other systems but lacks the flexibility, whilst QBIC/x-scale combination
showed best flexibility, R.R.P but higher packaging and energy costs. WSPack2.0
has medium flexibility and packaging costs. It fails to score above QBIC in flexi-
bility and lower energy costs than the ARC chip. Task B has a lower complexity
than Task A and all the systems could complete it. The distribution of metrics
moves closer to the center in case of WSPack1.0. For this task too, ASIC scored
the lowest energy costs. It also scores better flexibility only comparision (see

Table 6. Evaluation of Metrics to Design Examples

System/ Processor Flex. Pkga ENa R.R.Pa ENb R.R.Pb

(a) WSPack1.0/MSP430F123 2.15 1.58 2.17 0.1 3.37 0.72
(b) WSPack2.0/MSP430F1611 4.64 2.21 2.54 1.0 3.41 1.0
(c) ARC/ASICarcA 1.97 1.86 -3.21 1.0 -0.79 1.0
(d) QBIC/X-Scale 13.83 4.58 6.90 1.0 5.92 1.0
(e) SensorButton/MSP430F1611 4.64 1.73 2.54 1.0 3.41 1.0
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Fig. 5. Architectural tradeoffs for task A

Fig. 6. Architectural tradeoffs for task B

Tab.1) to WSPack1.0. WSPack2.0 scores medium packaging, energy, flexibility
costs with best R.R.P. QBIC/x-scale, meanwhile has poor performance consid-
ering high packaging and power costs but scores best flexibility and R.R.P. None
of the systems score best performance for all the proposed metrics in both of the
tasks. From the case study it can be inferred that it’s not possible to optimize
the four metrics, to have the best centralized distribution.
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High flexibility is characterized by high memory and operating frequencies.
This contradicts achieving lowest energy consumption as well as lower packaging
costs ( higher pin-count corresponds to higher packaging effort and more area).
At the same time, commercial processors which consume lower energy might
not achieve better recognition performance or cannot complete the tasks at all.
This implies it’s not feasible to optimize all the four metrics at the same time
to design an architecture to have centralized distribution. This implies, that
these four metrics are orthogonal to each other and that they represent four
different system properties. The proposed orthogonality can also be verified by
search algorithms such PISA [29]. Due to the current design space, instead of a
complete search algorithm we have applied dominance-non domiance algorithm
(for minima)[29]. This approach is useful, to check the dependency of solutions,
where automaticly solutions can be identified as shown in solution dependecies
in Case (A),(B) and (C). In the case of 32-bit 64 pt FFT, using the R.T.S metrics
such behavior can be osberved, where XScale processor is faster than its F1611
(both scoring 1), where as F123 fails to complete the task scoring 0. But in this
case also all the metrics are orthogonal to each other.

Min.Sol(A) =

−2.15 1.58 2.17 −0.10
−1.97 1.86 −3.21 −1.00
−13.83 4.58 6.90 −1.00
−4.64 1.73 2.54 −1.00

Min.Sol(B) =

−2.15 1.58 3.37 −0.72
−1.97 1.86 −0.79 −1.00
−13.83 4.58 5.92 −1.00
−4.64 1.73 3.41 −1.00

Min.Sol(C) =
−2.15 +1.58 ±∞ 0
−13.83 +4.58 −5.92 −1
−4.64 +1.73 +4.56 −1

It can be seen from the results of dominance(non) algorithm that no solution
dominates and it is not possible to optimize all the four metrics at the same time.
With in the family of systems, between WSPack2.0 and Sensor Button (using
the similar processor), the Sensor Button dominates only in terms of electronic
packaging metric due to smaller size. Hence the solutions of architecture 2 are
ruled out in the design space and rest of the solutions output is executed.

6 Conclusions and Future Work

We have presented a new methodology to study the architectural tradeoffs in
wearable systems. From the evaluation of the proposed metrics it was concluded
that all the four metrics cannot be optimized at the same time. This implies that;
flexibility, packaging, energy and relative recognition performance, are orthog-
onal to each other. Also it can be concluded that ASICs can not be optimized
for achieving highest flexibility. Medium Performance processors are more suit-
able for solving both low and medium level tasks showing medium overall costs.
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However, they cannot be optimized for lowest energy and highest flexibility and
are not suitable for high level tasks just as low performance micro controllers
are not suitable for medium level tasks. In our future work, we would like to
consider even more complex scenarios for evaluation.

Acknowledgements. Special thanks to Mathias Stäger for the valuable discus-
sions and suggestions. Thanks to Thomas Stiefmeier for allowing us to explore
ARC and Veronica Housen for proof reading.

The Wearable Sensor Button concept is patented under ETH Technology
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25. T.Stiefmeier, G.Tröster: Activity Recognition Chip(arc) (2005)
26. Amft, O., Lauffer, M., Ossevoort, S., Macaluso, F., Lukowicz, P., Tröster, G.:
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Abstract. While trace cache, value prediction, and prefetching have been 
shown to be effective in the single-threaded superscalar, there has been no 
analysis of these techniques in a Simultaneously Multithreaded (SMT) 
processor. SMT brings new factors both for and against these techniques, and it 
is not known how these techniques would fare in SMT. We evaluate these 
techniques in an SMT to provide recommendations for future SMT designs. 
Our key contributions are: (1) we identify a fundamental interaction between 
the techniques and SMT’s sharing of resources among multiple threads, and (2) 
we quantify the impact of this interaction on SMT throughput. SMT’s sharing 
of the instruction storage (i.e., trace cache or i-cache), physical registers, and 
issue queue impacts the effectiveness of trace cache, value prediction, and 
prefetching, respectively. 

1   Introduction 

Simultaneous Multithreading (SMT) has been proposed for improving processor 
throughput by overlapping multiple threads in a wide-issue superscalar processor. 
Three techniques which are used to exploit more instruction-level parallelism (ILP) 
and to improve single-thread performance in superscalar are: 1) trace cache to 
increase fetch bandwidth, 2) value prediction to break data dependences, and 3) 
prefetching to hide memory latency. While these techniques have been shown to be 
effective in the single-threaded superscalar, there has been no analysis of their 
effectiveness in SMT. which is becoming the microarchitecture of choice for high-
performance microprocessors (e.g., Intel’s Hyperthreading, Sun’s Niagara, IBM’s 
POWER5). Compared to superscalar, SMT brings new factors both for and against 
these techniques, and it is not known how these techniques would fare in SMT. Some 
of these techniques are implemented in superscalars today, and they will be included 
automatically in SMT when the superscalars are converted to SMT. Therefore, it is 
important to know how they fare in SMT.  

This paper fills this important gap by evaluating these techniques in the context of 
an out-of-order issue SMT and provides recommendations for future SMT designs. 

1 Chen-Yong Cher and Il Park completed all the work in this paper during their PhD studies at 
Purdue University.  After graduation, Chen-Yong Cher and Il Park joined IBM TJ Watson 
Researcher Center. This paper is not affiliated with IBM.  

* Current Address: IBM T. J. Watson, P.O. Box 218, Yorktown Heights, NY 10598, USA 
   {chenyong, ilpark}@us.ibm.com 
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Because SMT’s goal is to improve throughput, which is also an important 
performance metric for server-class machines which increasingly use SMT, we 
evaluate the techniques in terms of processor throughput. 

Our novelty is not in the techniques we study, but in their evaluation in the context 
of SMT. Our key contributions are: (1) we identify a fundamental interaction between 
the techniques and SMT’s sharing of resources among multiple threads, and (2) we 
quantify the impact of this interaction on SMT throughput. This interaction is the key 
issue and common theme in our evaluation of the three techniques.  

Previous studies showed that trace cache increases fetch bandwidth [22,20,19,8,3]. 
Trace cache creates traces from dynamic instruction sequences and allows an entire 
trace to be fetched in one access. A key motivation for trace cache is that increasing 
fetch bandwidth in superscalar is complicated and involves more than merely using 
many fetch ports. To utilize multiple fetch ports, superscalar needs multiple branch 
prediction, which is not straightforward. Implementing multiple branch prediction 
involves both (1) maintaining high accuracy of prediction and (2) providing multiple, 
contiguous fetch PCs for the same thread. Trace cache handles these issues effectively 
and achieves better performance than multiple branch prediction.  

Unfortunately, trace cache introduces multiple copies of instructions in different 
traces, despite the most efficient implementation [3]. This redundancy reduces the 
effective size of the cache. Increasing the cache size is difficult due to latency, area, 
and power considerations. This trade-off of space for bandwidth seems reasonable for 
superscalar because a single thread may not need a large instruction cache. However, 
SMT needs a larger instruction storage (i.e., trace cache or i-cache) because multiple 
threads share the storage. In contrast to superscalar, SMT can supply multiple fetch 
PCs from different threads and utilize extra fetch ports effectively without needing 
multiple branch prediction. Therefore, it is not clear whether trace cache’s trade-off of 
space for bandwidth will improve SMT throughput. 

Value prediction predicts values instead of waiting for long-latency dependences to 
be resolved, speeding up computation even beyond data-flow limits [16,1,23,17,5]. 
Prediction accuracy can be increased and the benefit of the technique can be sustained 
by trading off coverage and predicting only highly-predictable long-latency 
operations (e.g., cache misses) [5]. In contrast to value prediction in superscalar, SMT 
simply tolerates L1 misses. Upon L2 misses, SMT squashes the thread [27], releasing 
the thread’s shared resources (i.e., physical registers and issue queue slots), and over-
laps the L2 miss with other threads.  

Applying value prediction to SMT raises a key but subtle issue related to sharing of 
registers. Value prediction holds up physical registers even when the prediction is 
correct! Due to program-order commit, instructions that follow a correctly-value-
predicted, long-latency instruction hold up registers even after completing execution. 
These instructions can release their registers only after the long-latency instruction 
completes, confirms the prediction, and commits. Building larger register file to 
alleviate such hold-up is not easy due to latency, area, and power considerations 
[2,4,18]. While this hold-up of registers may be acceptable for superscalar, it may not 
be profitable for SMT, in which multiple threads create a higher demand for the shared 
registers. It is not clear whether SMT throughput is improved more by value-predicting 
long-latency instructions and holding up registers; or by squashing the instructions and 
releasing registers so other threads can use the registers and overlap the latency. 
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Prefetching predicts future memory references and brings data into caches before the 
data is actually needed [24,14,25,6,10,13,32,9]. Recent proposals for aggressive 
hardware prefetching, such as Dead-block predictor[13] and its successor Time-Keeping 
predictor [32], are highly successful even with non-strided access patterns. SMT has 
two opposing effects on the opportunity available from prefetching. On one hand, 
because SMT can tolerate cache misses, it may present less opportunity to prefetching. 
On the other hand, because SMT issues memory references from multiple threads, it 
increases the pressure on the memory hierarchy and may present more opportunity. 

Prefetching in SMT achieves coverage and accuracy comparable to those of a 
single thread. However, prefetching raises a subtle issue related to sharing of the issue 
queue. While prefetching into L2 achieves most of the benefit of prefetching into L1 
without incurring L1’s contention problems for a single thread [9], prefetching only 
into L2 causes a problem for SMT. Prefetching into L2 converts slow L2 misses into 
fast L2 hits; however, the L2 hits still miss in L1, resulting in the same L1 misses 
occurring in fewer cycles. L1 misses clog the issue queue with dependent instructions, 
even though L1 misses are short. While SMT without prefetching is also clogged for 
the L1-miss duration, it eventually incurs an L2 miss and squashes the thread [5], 
unclogging the issue queue to allow other threads to progress. Because prefetching 
causes L1 misses to occur in fewer cycles, the issue queue is clogged more often with 
prefetching than without. Thus, even correct prefetching may hurt SMT throughput! 
Unfortunately, neither removing L1 misses nor circumventing them to avoid the 
clogging is easy; removing L1 misses by prefetching into L1 is difficult due to L1’s 
high contention [9], which is worse in SMT. Circumventing L1 misses is also difficult 
because L1 misses are known too late in the pipeline to prevent dependent 
instructions from entering the pipeline. Thus, in addition to the uncertainty in 
opportunity, the question of whether issue-queue clogging or latency hiding will 
impact SMT throughput more is unclear. Table 1 summarizes the trade-offs of the 
techniques when they are implemented in SMT.  

The main results of our simulations using a subset of the SPEC2000 benchmarks 
are:

• Trace cache, value prediction and prefetching significantly improve single-thread 
performance. This result agrees with previous papers and validates our 
implementations.  

• Given similar size for the duo of trace cache and backup i-cache as the 
conventional i-cache, trace cache degrades SMT throughput compared to the 
conventional i-cache (throughput improves for 2 threads, agreeing with the two-
threaded Pentium IV’s use of a trace cache). This result shows that trace cache’s 
space-for-bandwidth trade-off hurts SMT. Giving considerable extra size to the 
trace cache results in the trace cache performing only marginally better than the 
conventional i-cache, showing that trace cache is not effective in SMT.  

• Given a typical number of physical registers, value prediction degrades SMT 
throughput, showing that holding up registers under value prediction hurts SMT. 
While value prediction does improve individual threads that have long-latency 
misses, it does so at the cost of the other threads, defeating SMT’s purpose. 
Using infinite physical registers and perfect confidence prediction results in value 
prediction performing only marginally better than conventional SMT, showing 
that value prediction is not effective in SMT.  
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• For memory-intensive workloads, there is substantial opportunity for prefetching 
even with many threads, showing that not all long-latency misses can be hidden 
by SMT. We found that prefetch coverage can be reduced to balance prefetching 
and issue queue clogging, improving throughput for this workload. For 
workloads with mixed memory demand, SMT significantly reduces opportunity. 
Despite reducing the coverage, prefetching slightly degrades throughput for this 
workload due to issue queue clogging. Like value prediction, prefetching also 
improves individual threads at the cost of the other threads in this workload, 
degrading overall throughput.  

• Our findings create a new responsibility for the OS: Because the techniques 
improve single-thread performance, we recommend that the OS disable the 
techniques when running multi-programmed workload, and enable them for 
single-threaded workload and for high-priority threads in a multi-programmed 
workload.  

Section 2 gives the background of the techniques. Section 3 describes our 
methodology. Section 4 shows our results, and Section 5 concludes the paper. 

Table 1. Trade-offs of each techniques 

 Trace Cache Value Prediction Prefetching 
Pros - satisfies SMT’s high 

demand of fetch bandwidth 
- breaks the data 
dependences of 
individual threads 

- fulfills SMT’s high 
demand on memory 
access 

Cons - causes redundancy in 
instruction storage while 
SMT demands high 
instruction storage capacity 
- SMT provides high fetch 
bandwidth without needing 
multiple branch prediction 

- Data dependence 
delay can be hidden 
by other threads. 
- holds up resources 
even when 
predictions are 
correct

- Opportunity may 
drop because of 
thread-level 
parallelism. 
- may cause issue 
queue clogging even 
when prefetches are 
correct

2   A Brief Background of the Techniques 

2.1   Trace Cache 

Before trace cache was introduced, Tyson et al. [31] increased fetch bandwidth by 
predicting multiple branches every cycle with Branch Address Cache. Rotenberg et al. 
[22] introduced trace cache, and compared it with other high-bandwidth instruction 
fetch schemes. Others [20,21,8] studied important issues concerning trace cache 
performance such as partial matching, cache associativity, fill unit, and multiple 
branch prediction. Patel et al. [19] proposed branch promotion and trace packing for 
improving trace cache bandwidth. To achieve better utilization of trace cache space, 
Black et al. [3] suggested the block-based trace cache, which stores pointers to blocks 
constituting a trace, instead of storing instructions. Any repetition of the traces results 
in only the pointers being repeated instead of the entire trace, reducing space 
requirements.  
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Because we wish to study the effectiveness of trace cache’s space-for-bandwidth 
trade-off, and because the block-based trace cache is the most space-efficient 
implementation that also achieves high bandwidth, we use the block-based trace 
cache in our evaluations. We discuss the details of this specific trace cache later in 
Section 4.1.1. 

2.2   Value Prediction 

Lipasti et al. [16] proposed last-value prediction with saturating confidence counters. 
Mendelson et al. [1] added a stride prediction scheme, and Farkas et al. [23] studied 
the implementation details for the context-based prediction scheme. Others predict 
load values by using recent store information [17,30]. However, without accurate 
prediction, value prediction may hurt performance due to misprediction penalties 
unless there is hardware support, such as selective recovery, to reduce the penalty. 
Calder et al. [5] showed the importance of confidence prediction to perform selective 
value prediction to avoid mispredictions and achieve good speedup even without the 
complicated machinery of selective recovery.  

In addition to avoiding complicated selective recovery, reducing mispredictions is 
important for SMT so that processor resources are not wasted on incorrect execution. 
Therefore, we use [5]’s selective value prediction, which combines confidence 
prediction and value prediction, in our evaluations and discuss their details in 
Section 4.2.1.  

2.3   Prefetching 

While prefetching can be implemented in either software [24,14] or hardware, we 
focus on hardware prefetching in this study. Chen et al. [25] proposed the stride 
prefetcher, and others [11,7] used a stream buffer for prefetching. Markov prefetching 
uses address correlation (i.e., correlation among addresses in the cache miss stream) 
to improve the accuracy of prefetching arbitrary, non-strided access patterns [6,10]. 
These proposals focused on what to prefetch but do not pinpoint when to prefetch. 

Lai et al. [13] first proposed to consider the timing of memory access patterns to 
determine when to prefetch and improves accuracy over [10]. They introduced Dead-
Block Predictors to predict the dead blocks — i.e., the blocks that will be evicted 
without any use — in L1. When a block dies, the prefetcher predicts the next access 
to the block’s set and prefetches the next access into the dead block’s frame. Kaxiras 
et al. [12] also proposed a scheme to predict dead blocks, but they used the prediction 
for reducing cache leakage power and not for prefetching data. Hu et al. [32] applied 
[12] to prefetching and used smaller prediction tables than [13] for both dead-block 
predicition and next-address prediction while achieving better performance.  

Lastly, Hu, et al. [9] simplified [32] by showing that when prefetching into a large 
highly-associative L2 cache, dead-block prediction was not necessary. [9] also 
showed that prefetching into L2 can achieve most of the benefit of prefetching into L1 
without disrupting the highly contentious L1 with untimely or incorrect prefetches. 
Because SMT’s multiple threads cause even higher contention on L1 than that of 
superscalar, we implement the latest, best-performing tag-correlating prefetching of 
[9] to prefetch into L2 without disrupting L1. We discuss the prefetcher implementa-
tion details in Section 4.3.1. 
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3   Methodology 

We modified simplescalar-3.0 for our evaluation. Our simulator carefully models 
SMT pipeline details, including out-of-order issue, memory-bus occupancy, multiple 
contexts, virtual-to-physical address translation, per-thread load/store queues and 
active lists, and shared physical register file and issue queue. The simulator models a 
pipeline that supports thread-level squashing on branch misprediction. To improve 
instruction throughput in SMT, we apply squashing on L2 misses [27], except for 
special cases that we will mention later. Because the L1 caches are virtually indexed, 
we use address offsetting described in [15] to spread out accesses of different threads 
in the cache. We also use the Bin-Hop page allocation policy to spread out accesses in 
the L2 cache [15]. 

Our simulator runs Alpha binaries that are compiled with peak setting. We fast-
forward the first two billion instructions of each thread. The fast-forwarding warms 
up branch predictor, the L2 and L1 caches, but do not gather statistics. We then 
simulate until one of the threads reaches 100 million instructions. For four or eight 
threads this method simulates more than 100 million instructions. Therefore, our 
results are unlikely to be biased by individual programs. Recently [26] proposes 
clustering phases to reduce simulation time while minimizing errors for simulating 
single program. However, clustering for a multi-programmed workload is more 
complicated and involves mixing phases of several programs. Because [26] does not 
show clustering for SMT simulations, we do not use such approach. 

Table 2. Applications and workloads 

Category Benchmarks
1T.ILP mesa, crafty, fma3d, eon,

facerec, equake, sixtrack, galgel 
1T.MEM vpr, apsi, art, applu, swim, lucas, mcf, ammp
1T.MIX 1T.ILP + 1T.MEM 

Workload Composition Workload Composition
2T.ILP.1 mesa, crafty 2T.MIX.1 vpr, mesa
2T.ILP.2 fma3d, eon 2T.MIX.2 apsi, crafty
2T.ILP.3 facerec, equake 2T.MIX.3 art, fma3d
2T.ILP.4 sixtrack, galgel 2T.MIX.4 applu, eon
2T.MEM.1 vpr, apsi 2T.MIX.5 swim, facerec
2T.MEM.2 art, applu 2T.MIX.6 lucas, equake
2T.MEM.3 swim, lucas 2T.MIX.7 mcf, sixtrack
2T.MEM.4 mcf, ammp 2T.MIX.8 ammp, galgel
4T.ILP.1 2T.ILP.{1,2} 4T.MIX.1 2T.MIX.{1,2} 
4T.ILP.2 2T.ILP.{3,4} 4T.MIX.2 2T.MIX.{3,4} 
4T.MEM.1 2T.MEM.{1,2} 4T.MIX.3 2T.MIX.{5,6} 
4T.MEM.2 2T.MEM.{3,4} 4T.MIX.4 2T.MIX.{7,8} 
8T.ILP.1 4T.ILP.{1,2} 8T.MIX.1 4T.MIX.{1,2} 
8T.MEM.2 4T.MEM.{1,2} 8T.MIX.2 4T.MIX.{3,4} 
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    Multi-programmed workload is one of the most important workloads for SMT. To 
simulate real-world workloads, we choose sixteen benchmarks from SPEC2000 to 
compose workloads that have two, four and eight threads. Out of these sixteen 
benchmarks, eight achieve the highest IPCs (shown in bold) and the other eight have 
the most L2 cache misses per instruction (shown in italics). We mixed these 
benchmarks to create three representative workloads of different ILP and memory 
demand. Table 2 lists the SPEC2000 benchmarks and multi-programmed workloads 
we use in this study. The first set, called ILP, consists of the high-ILP programs; the 
second set, called MEM, consists of the high-miss-rate programs; and the third set, 
called MIX, combines programs from both ILP and MEM. Within a set, there are four 
groups (1T, 2T, 4T, and 8T) and each group indicates the workloads for a given 
number of threads. We use the ref input for all benchmarks.

Table 3. Base Configuration 

Issue Width 8
L1 I-cache 64KB, 2-way, pipelined 
L1 D-cache 64KB, 4-way, 3-cycle hit latency 
L2 Cache 4MB, 8-way, 15-cycle hit latency 
Memory 150 cycle latency, 4-cycle pipelined, split-transaction bus 
Branch Predictor 16k/16k/16k  spec-update, 8-cycle misprediction penalty 
Physical Registers 100+T*32 INT , 100+T*32 FP    for T threads 
Active List  128/context 
Load-Store Queue 64/context 
Issue Queue 32 INT, 32 FP 
MSHR 32

Table 3 lists the configuration for the basic SMT in our study. We carefully choose 
an aggressive SMT core such that our results are representative of many different 
SMT configurations in the foreseeable future; a less aggressive SMT would handicap 
the techniques we study because of less headroom for improvements. We use an issue 
width of eight as other SMT-related previous studies do [29,27,28], unless otherwise 
specified. For branch prediction, we use a hybrid of local and gshare predictors. Each 
context uses a 128-entry return address stack and maintains its own branch history for 
the gshare predictor. The SMT in this study has two fetch ports and fills up fetch 
bandwidth from up to two threads. We use ICOUNT as our SMT fetch policy as 
recommended in [28]. 

We will describe the implementation details of trace cache, value prediction and 
prefetching, in Section 4.1.1, Section 4.2.1, and Section 4.3.1, respectively. 

4   Results 

We present our results for trace cache, value prediction, and prefetching in 
Section 4.1, Section 4.2, and Section 4.3, respectively. As stated in Section 1, because 
SMT’s goal is to improve throughput, which is also an important performance metric 
for server-class machines which increasingly use SMT, we evaluate these techniques 
in terms of instruction throughput. 
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We find that (1) given similar size for the duo of trace cache and backup i-cache as 
the conventional i-cache, trace cache degrades SMT throughput compared to the 
conventional i-cache; (2) given a typical number of physical registers, value prediction 
degrades throughput; (3) prefetching improves throughput for memory-intensive 
workloads but degrades throughput for workloads with mixed memory demand. 

4.1   Trace Cache 

4.1.1   Trace Cache Implementation 
We implement the latest, most space-efficient block-based trace cache (TC) described 
in [3]. The TC is implemented using a block cache and a trace table. Each block of a 
block cache stores a small subtrace (e.g., a few consecutive basic blocks up to six 
instructions) and the trace table stores pointers to the block cache. To provide high 
bandwidth, the block cache is multi-ported (implemented via true ports and/or 
copies). The trace table provides n pointers which are used to pull out n subtraces 
from the block cache, and the subtraces together form the fetch unit of one trace. The 
subtraces are formed by observing past instances of the instruction stream. The trace 
table is updated with pointers to the subtraces. Because the subtraces are small, there 
is less repetition than trace cache using full-blown traces [22,21,20,8,19]. 
Furthermore, only the pointers to subtraces, but not subtraces themselves, are repeated 
in the full traces, achieving further compaction. 

Because our results show that TC is ineffective for SMT, we make the following 
assumptions to ensure that our results are not due to insufficient resources or 
inefficient implementation: 1) Our TC uses an ideal, sequential, atomic multiple-
branch predictor that accurately updates branch history even for branches predicted in 
the same cycle. In contrast, the base case SMT’s i-cache uses a conventional, 
speculatively-updated predictor which predicts up to one taken branch or up to two 
branches per thread. The TC uses infinite branch-prediction bandwidth, therefore the 
branch promotion optimization in [19] is irrelevant. 2) The TC uses perfect target 
prediction for direct branches. 3) The TC has zero-cycle fill latency. 

We implement the following key optimizations from [3]: 1) For termination, a 
subtrace ends upon encountering a branch, a jump, a call or a return instruction near 
the end of the subtrace. 2) Our TC employs partial matching which allows a substring 
of a trace, instead of restricting to complete traces, to be supplied. 3) We use a two-
way associative “rename table” to map PCs to trace pointers. The table determines 
whether a trace is present in the block cache on every TC access and handles 
replacement in the block cache. The table’s associativity effectively makes each copy 
of block cache two-way associative. 4) On fetching, the processor sends a request to 
both TC and i-cache simultaneously. If the request misses in the TC but hits in the i-
cache, there is a one-cycle penalty, as in [22,21,20,19,8,3]. 5) To compensate for 
block-level fragmentation, the TC provides more instructions than the processor’s 
front-end width. The front end picks the number of instructions requested to send into 
the pipeline and buffers any excess instructions to be combined with the next trace. 
Our TC has a six-instruction block size, as recommended in [3]. 6) We update the 
block cache speculatively on misses, as opposed to updating at commit. Other simula-
tions (not shown) reveal that speculative update performs better. 

When using the TC in SMT, we do the following to ensure that our SMT 
adaptation of the scheme is not disadvantaged by easily solvable problems: 1) We 
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employ address offsetting in the TC and its accompanying i-cache. 2) Each cycle, two 
threads access the TC and each thread gets half the TC bandwidth. Our simulations 
(not shown) reveal that this policy achieves better performance than giving the full 
TC’s bandwidth to only one thread. 

4.1.2   Trace Cache Results 
Recall from Section 1 that TC trades off space for bandwidth and that the sharing of 
instruction storage among SMT’s threads impacts this trade-off. In this section, we 
evaluate this trade-off in SMT. Because we found that TC benefits little with an  
8-issue pipeline even for single-thread workloads (not shown), we use 16-issue width 
for the TC as in [22,21,20,19,8,3]. Accordingly, we also double the pipeline resources 
listed in Table 3, such as rename registers, issue queue, active list, load-store queue, 
and execution units.  

Figure 1 shows the throughput improvements of TC over the base case, which has 
64KB i-cache and no TC. We show three sets of workloads: ILP, MEM, and MIX, as 
defined in Section 3. For each set, there are four groups of bars (1T, 2T, 4T, and 8T)
varying the number of threads as one, two, four, and eight. Each bar indicates the 
geometric mean of throughput improvements for the workloads in the set.  
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Fig. 1. Trace Cache Throughput Improvements 

Because we are interested in TC’s space-for-bandwidth trade-off, we vary TC size. 
Within each group of bars for a given number of threads, the first bar shows a  
48K TC using two copies of dual-ported block cache backed up by a dual-ported 32K 
i-cache, for a total size of 80K, compared to the base case of a dual-ported  
64K i-cache. Thus, the first bar represents our comparison using a similar total size. 
The next three bars from left to right show a 64K i-cache combined with TC of 48K, 
96K, and 192K (1-cycle latency). These bars represent the cases where the TC 
configurations use extra space compared to the base case of a 64K i-cache. 

To examine the upper limit of improvement through enhancing TC, by increasing 
size/associativity or using per-thread TC, we simulate Ideal TC which is an oracle 
configuration that has infinite size and always supplies as many instructions as the 
fetch bandwidth from two threads every cycle. Ideal TC does not suffer from fetch 
fragmentation or capacity/conflict miss, and subsumes enhancements. Ideal TC uses 
the same ideal multiple branch predictor as other TCs mentioned in Section 4.1.1. The 
last bar shows Ideal TC’s throughput improvement. 

Figure 1 shows two clear trends. First, TC benefits ILP and MIX but not MEM. 
While ILP and MIX have enough parallelism that fetch bandwidth is important for 
performance, MEM is dominated by data cache misses that fetch bandwidth is not 
important. 
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Second, for similar-size configurations, TC offers no benefit to SMT, and can lead 
to throughput degradation as the number of threads increases. This similar-size 
comparison is important because increasing the size of the level-1 instruction storage 
is difficult due to latency, area, and power considerations, as mention in Section 1. 
When we add an extra TC to the base 64K i-cache, TC is effective for single threads. 
This result agrees with previous papers [22,21,20,19,8,3] ([3] also gives extra space to 
TC), indicating that our TC implementation is correct. For two threads, TC improves 
SMT throughput; this results agrees with the two-threaded Pentium IV’s use of a trace 
cache. However, when threads increase to more than two, TC’s advantage rapidly 
diminishes. The base case throughput, shown in the first row of Table 4, continues to 
improve as we increase the number of threads to eight, showing that TC’s diminishing 
returns are not due to pipeline saturation. Even with a large, 192K TC with single-
cycle latency, TC shows only modest improvement over the base case for four or 
more threads. These results are no surprise when we look at the last bar, which shows 
the throughput improvement with an ideal TC. The last bar clearly shows that TC’s 
potential drops rapidly as thread increases. Thus, we see that SMT’s sharing of 
instruction storage makes TC’s space-for-bandwidth trade-off unprofitable. 

In SMT, applying a technique may impact low-IPC threads and high-IPC threads 
differently. With the goal of maximizing throughput, SMT distributes resources (fetch 
and front-end bandwidth, issue queue slots, etc.) among threads proportional to each 
thread’s individual IPC (e.g., using ICOUNT). However, applying a technique may 
improve a low-IPC thread, fooling SMT into allocating more resources to the improved-
but-still-low-IPC thread at the cost of other high-IPC threads, reducing overall 
throughput. That is, one thread may improve but the overall throughput may reduce. To 
capture such cases, [27] introduces weighted speedup, which is the geometric mean of 
IPC improvements of each thread. If the weighted speedup is more than throughput 
improvement, then the technique impacts (positively or negatively) low-IPC threads 
more than high-IPC threads; if the weighted speedup is less than throughput 
improvement, then the reverse is true. If the two metrics are similar, then the impact on 
low- and high-IPC threads are similar. Although our goal is to evaluate processor 
throughput, we show weighted speedup for 48K TC with 64K i-cache in the second row 
in Table 4. We see that weighted speedup follows the same trend as throughput, 
confirming that TC’s advantage diminishes as the number of threads increases. 

To explain TC’s downward trend with an increasing number of threads, we compare 
base case i-cache miss rates with TC miss rates. The third row in Table 4 shows the  
 

Table 4. Trace cache statistics 

ILP workload MEM workload MIX workload  
1T 2T 3T 4T 1T 2T 3T 4T 1T 2T 3T 4T 

Base case IPC 4.3 6.9 8.2 9.2 1.4 2.0 3.1 3.5 2.6 4.8 6.9 7.6 
Weighted Speedup (%) 28.5 5.2 -2.3 -12.7 4.3 6.1 4.4 0.0 15.7 13.6 4.2 -1.2 
64K IC miss rate (%) 0.1 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 
48K TC miss rate (%) 10.5 20.1 31.2 41.9 0.2 0.8 2.5 6.8 5.2 8.6 17.2 29.0 
192K TC miss rate (%) 1.2 4.2 10.8 19.7 0.0 0.1 0.3 0.7 0.6 1.0 4.2 10.0 
64K IC avg Insts 5.2 8.5 9.4 9.8 1.6 2.9 4.8 5.3 3.1 6.2 8.8 9.2 
48K TC avg insts 8.5 9.2 9.0 8.4 2.0 3.5 5.1 5.4 4.4 7.9 9.3 8.9 
Ideal TC avg insts 8.7 10.8 11.3 10.9 2.0 3.5 5.1 5.4 4.4 8.5 10.4 10.6 
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i-cache miss rate in the base case, and the fourth and fifth rows show the miss rates for 
the 48K and 192K TCs, respectively. The significantly-higher TC miss rates show that 
the efficiency of the TC rapidly decreases as the number of threads increases.  

Table 4 also shows the average number of instructions supplied by a 64K i-cache 
(64K IC avg insts), a 48K TC with its accompanying 64K i-cache (48K TC avg insts), 
and an ideal TC (Ideal TC avg insts) to the pipeline. On average, TC can supply 8.5 
instructions per cycle in a single thread, which is 63% more than an i-cache can 
supply. When multiple threads are available, SMT uses the second fetch port to fetch 
from another thread. Therefore, SMT sustains high instruction throughput without the 
complication of a TC. With eight threads, the base i-cache with two ports achieves 9.8 
IPC, which is higher than TC‘s. The base case’s higher bandwidth combined with the 
large, diverging gap between the base case’s and TC’s miss rates as the number of 
threads increases, clearly shows that TC’s space-for-bandwidth trade-off is not 
effective in SMT.  

There is an interesting observation in Figure 1: MIX gets more benefit from  
TC than ILP and MEM as threads increase. As expected, ILP gets the most benefit of 
TC in single-thread runs. As threads increase, the pressure on the TC greatly increases 
and the miss rate in the TC increases quickly. When we put ILP and MEM together 
(MIX), the ILP threads experience less pressure in the TC compared to the ILP 
threads in the ILP workload because ILP threads in MIX take up the slack of the TC 
space created by MEM threads in MIX. This argument is supported by TC’s miss rate 
shown in Table 4. For instance, TC’s miss rate for 8 threads in MIX is similar or 
lower than TC’s miss rate for 4 threads in ILP. 

Some processors use TC to hold pre-decoded instructions (e.g. Pentium IV). If 
such a cache holds merely decoded individual instructions but not traces spanning 
multiple branches, we consider such a cache to be an i-cache and not a TC, and our 
results are not applicable to it.  

Our experiments favor TC by giving it unrealistic advantages and an aggressive, 
16-issue processor which gives TC much headroom for improvement. Nevertheless, 
we find that TC degrades SMT throughput. Using miss latencies longer than our 
numbers to model future technology will shift the performance bottleneck to the back-
end and reduce opportunity for the front-end, further discouraging the use of TC. We 
also show that an ideal TC only marginally improves throughput. Therefore, our 
results unequivocally prove that TC hurts SMT running more than two threads, and 
there is no need to vary other parameters. 

4.2   Value Prediction 

4.2.1   Value Prediction Implementation 
We implement the latest, best-performing selective value predictor (VP) described in 
[5]. The value predictor uses a confidence predictor to select when to predict and a 
hybrid of stride and context predictors to predict values.  

Because our results show that VP is ineffective for SMT, we make the following 
assumption to ensure that our results are not due to inefficient implementation: we 
assume that VP’s value history is updated correctly by an oracle in the decode stage. 

We implement the following key optimizations described in [5]: 1) To minimize 
mispredictions, we implement a history-based confidence predictor. 2) We employ 
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warm-up counters so that instructions with insufficient history do not update 
predictors. 3) To reduce mispredictions and maximize the benefit, we allow the 
predicted value to be used only for load instructions that incur L1 misses. According 
to our evaluations, this scheme has better performance than one that predicts all 
instructions. While we use the predictions only on misses, we predict and update on 
all loads regardless of a hit or a miss to accelerate the predictor’s warm-up. 4) 
Instructions that directly or indirectly consume predicted values are assigned lower 
priority and can execute only on otherwise-idle execution units. These instructions 
resume their normal priority when the prediction outcome is known. When a 
misprediction is detected, the pipeline squashes the thread’s instructions that are 
subsequent to the producer. To avoid unnecessary squashing, squash does not happen 
if the mispredicted value has not been consumed. 

When using VP in SMT, we do the following to ensure that our SMT adaptation of 
the scheme is not disadvantaged by easily solvable problems: 1) Because VP benefits 
mostly from L2 misses, SMT’s squashing on L2 misses would nullify much of the 
benefit of VP. Therefore, we modify the squashing policy on L2 misses in SMT. If an 
L2-missing load is value-predicted, we do not squash the pipeline. This mechanism 
allows dependent instructions to consume predicted values and later release issue 
queue entries. When a thread fills up its active list or load/store queue on an value-
predicted L2 miss, we squash the thread’s instructions only in the front end and stall 
fetching from the thread until the miss returns. Otherwise, fetched instructions from 
the thread would clog the front end preventing other threads from making progress. 
This squashing of the front end is not extra because the base case already squashes the 
pipeline on all L2 misses, regardless of whether resources fill up. 2) To reduce 
aliasing in prediction tables, we add tags to all prediction table entries. 3) To avoid 
inter-thread interference in the prediction tables, we use per-thread prediction tables.  

4.2.2   Value Prediction Results 
Recall from Section 1 that value-predicting a long-latency operation causes hold-up of 
registers until the operation completes and the prediction is confirmed. This hold-up 
occurs even with correct value prediction. In contrast, SMT simply squashes the 
thread containing the operation, releasing the resources held by the thread and 
allowing other threads to progress. Thus, there is a choice of value-predicting and 
holding up registers, versus squashing and overlapping the latency with other threads. 
SMT’s sharing of registers among its threads impacts this choice. In this section, we 
evaluate this choice in SMT. 

Each thread has two four-way, 8K-entry tables, one each for stride prediction and 
context prediction. To minimize mispredictions, each of these table also has its own 
2KB confidence tables. The total size of the VP tables in an eight-thread SMT is a 
generous 5MB, ensuring that our results are not limited by small tables. 
Figure 2 shows VP’s throughput improvements compared to an SMT without VP. 
Similar to Section 4.1.2, Figure 2 shows three sets of workloads, ILP, MEM, and 
MIX, and varies the number of threads as one, two, four, and eight. Each bar indicates 
the geometric mean of throughput improvements for the workloads in the set.  

Because we are interested in register pressure in the presence of VP, we show two 
configurations with different number of physical registers. One configuration, called 
VP-finite, contains (100 + T * 32) integer registers and (100 + T * 32) floating-point  
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Fig. 2. Value prediction throughput improvements

registers, where T is the number of threads. The number 32 in this expression is the 
minimum number required for per-thread architectural registers, and 100 is the 
number of registers for renaming. This configuration represents a realistic number of 
registers, and it has also been used in [28]. The other configuration, called VP-infinite,
has infinite physical registers. To examine if VP can benefit SMT by overlapping 
only L1 misses, we show a configuration called VP-squash. VP-squash uses VP if a 
load misses in L1 but squashes (mentioned in Section 3) if the load also misses in L2. 
VP-squash has the same number of physical registers as VP-finite.

Figure 2 shows a group of five bars for a given number of threads. The first bar 
shows VP-finite. The second bar shows VP-finite with perfect confidence prediction. 
The third and fourth bars show VP-infinite without and with perfect confidence 
prediction, respectively, quantifying VP’s potential if register pressure were absent. 
The base case for the first and second bars is an SMT with as many physical registers 
as VP-finite. The base case for the third and fourth bars is an SMT with an infinite 
number of physical registers. The last bar shows VP-squash normalized to the base 
case for VP-finite.

Figure 2 shows that VP benefits MEM and MIX but not ILP. This result is hardly 
surprising because VP is triggered only for L1 misses, and ILP has low L1 miss rates. 
On the other hand, VP hides the penalties of the misses present in MEM and MIX.  

Looking at MEM and MIX, this figure shows a interesting trend: VP significantly 
improves single-thread performance, especially for MEM. This result agrees with the 
results from previous VP papers [16,1,23,17,5], indicating that our value predictor is 
implemented correctly. However, VP-finite’s throughput improvements decrease 
significantly and become negative as the number of threads increases in both MEM 
and MIX. Note that the base case throughput, shown in the first row of Table 6, 
continues to improve as we increase the number of threads to eight, showing that 
VP’s diminishing returns are not due to pipeline saturation. VP-finite with perfect 
confidence (second bar) shows the same trend, showing that the degradation exists 
even when VP is 100% accurate (albeit at non-perfect coverage). Thus, the second 
bars rule out mispredictions as the cause of the degradation trend. 

Two reasons contribute to VP’s degradation with multiple threads, even with large 
VP tables. First, VP’s holding up of registers degrades throughput with two or more 
threads. Figure 2 support this observation by showing that VP-finite’s degradation 
largely disappears when infinite registers are available, as shown by VP-infinite (third 
and fourth bars). Second, SMT’s latency tolerance reduces VP’s opportunity. Figure 2 
supports this argument by showing that even using VP-infinite with perfect 
confidence, VP’s opportunity diminishes and eventually disappears, as the number of 
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threads increases. Near-zero opportunity combined with register pressure forces VP-
finite to incur degradation at more than two threads. The near-zero opportunity also 
shows that VP’s benefit would be marginal, even if the VP implements selective 
recovery (mentioned in Section 2.2) to reduce misprediction penalty. 

The four-thread VP-infinite bars for MIX show a small degradation despite having 
infinite registers. Because MIX has high-ILP and low-ILP threads, VP’s impact is not 
uniform (this point is also made in Section 4.1.2). VP helps low-ILP threads more 
than high-ILP threads to the point that SMT allocates resources to the improved-but-
still-low-ILP threads at the cost of the high-ILP threads. Such allocation causes a 
slight overall throughput degradation. VP-squash improves two-thread MEM by 6%, 
but improves little for other workloads (0-3%). This result shows that implementing 
VP to overlap only L1 misses is not profitable for SMT. 

Table 5 shows important statistics for VP. Coverage is the ratio of the number of 
predictions over the number of L1 load misses. WP in the table means Weighted 
Speedup. Squash Rate is the ratio of the number of squashes caused by value 
mispredictions over the number of predictions. We see that coverage and squash rate 
are fairly stable across threads, and the squash rate is low. The stability of these 
metrics clearly indicates that VP’s degradation with two or more threads is not due to 
worse coverage or more value mispredictions. 

The fourth, fifth and sixth rows show the weighted speedup (explained in 
Section 4.1.2) for VP-finite, VP-infinite and VP-squash. VP-finite’s weighted speed-
ups are positive for two or more MEM and MIX threads while the overall throughput 
degrades. Because there is a large variance in the individual predictability and IPCs of 
these MEM and MIX threads, VP’s impact is uneven among the threads, causing 
weighted speedup to deviate from overall throughput (as explained in Section 4.1.2). 
VP fools SMT into allocating more registers to the improved-but-still-low-ILP 
threads which hold up the registers from the high-ILP threads, degrading overall 
throughput. Because SMT’s goal is to improve processor throughput, techniques 
which improve individual threads while degrading processor throughput defeat 
SMT’s purpose. In fact, SMT does the reverse: SMT employs several optimizations 
which improve processor throughput at the cost of individual threads. For example, 
(1) because the SMT pipeline is typically deeper than a superscalar pipeline [29], 
single-thread performance slightly worsens on SMT. (2) SMT’s ICOUNT, which 
optimizes processor throughput, may worsen a low-IPC thread by fetching more often 
from higher-IPC threads [28]. (3) Squashing a thread on L2 misses improves 
processor throughput while slightly worsening the thread’s IPC [27]. 

Table 5. Value prediction statistics 

ILP workload MEM workload MIX workload  
1T 2T 3T 4T 1T 2T 3T 4T 1T 2T 3T 4T 

Base case IPC 3.5 4.6 5.1 5.3 1.1 1.8 2.9 3.9 2.1 3.8 4.7 5.2 
Coverage (%) 15.0 22.6 27.9 42.2 34.4 28.4 24.0 31.0 24.3 30.6 28.7 31.3 
Squash rate (%) 0.3 0.2 0.2 0.2 0.6 0.5 0.4 0.4 0.4 0.3 0.2 0.2 
VP-finite WP (%) 0.5 -1.5 -1.6 -1.9 23.0 8.8 8.5 7.5 11.2 6.0 0.7 1.6 
VP-infinite WP (%) 0.5 -0.4 -0.2 -0.4 26.0 18.2 19.3 14.7 12.5 10.6 7.1 6.9 
VP-squash WP (%) 0.5 -0.4 -0.3 -0.4 23.0 12.2 4.4 2.9 11.3 4.5 2.3 0.9 
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Our experiments favor VP by giving it unrealistic advantages and an aggressive 
processor which gives VP much headroom for improvement. Still, VP degrades SMT 
throughput. Because VP holds up physical registers during an L2 miss, using longer miss 
latencies to model future technology will further degrade throughput. We also show that 
VP does not improve throughput even with infinite registers. Therefore, our results 
unequivocally prove that VP hurts SMT and there is no need to vary other parameters. 

4.3   Prefetching 

4.3.1   Prefetching Implementation 
We implement the latest, best-performing tag-correlating prefetching (PF) [9]. The 
prefetcher decides what to prefetch by using the L1 miss stream as history to predict the 
next miss. The predictor is a two-level scheme, where the first level stores per-set miss 
stream history, and the second level stores the tag of next-misses. Upon an L1 miss, the 
prefetcher triggers prefetch to the predicted next miss. Instead of using dead-time 
prediction to trigger prefetches, this simplified prefetcher uses L1 misses as the triggers.  

Because our results show that PF is effective for SMT, we do not give any undue 
advantage to the prefetcher to ensure that our results are not due to unjustifiable 
implementation assumptions. Specifically, because PF uses additional space for 
prediction tables, we compensate the base case by running it with a larger L2. 
Because the largest predictor size we use is 498KB (in an eight-thread SMT), we use 
a 4.5 MB L2 for all base case runs, while using only a 4MB L2 for all the PF runs. 
We enlarge the base case’s L2 with no penalty to the L2 hit latency. 

We implement the following key optimizations in the two-level predictor: 1) The 
predictor uses eleven bits of the L1 tag and one bit of the L1 index from the previous 
three misses, together with the full L1 tag from the previous miss, to form indexes 
into the second-level table as in [9]. 2) The first level uses per-set history as recom-
mended in [32]. 3) The prefetcher uses 32 extra MSHRs to hold in-flight prefetch 
status and a 128-entry prefetch queue to hold pending prefetch requests, as 
recommended in [32].  

When using PF in SMT, we do the following to ensure that our SMT adaptation of 
the scheme is not disadvantaged by easily solvable problems: 1) While [32] 
prefetches data into L1, [9] argues that prefetching into L1 is difficult due to L1 
contention. [9] shows that prefetching data only into L2 achieves most of the benefit 
of prefetching into L1 while entirely eliminating dead-block prediction. This effect is 
seen because L1 miss latency can be overlapped easily with ILP. While prefetching 
into L2 in SMT introduces the issue queue clogging described in Section 1, we could 
reduce prefetch coverage to balance prefetching and issue queue clogging and 
improve overall throughput. Therefore, we evaluate prefetching into L2. 2) The 
second-level table is accessed with the previous L1 miss and history, that is also made 
of L1 misses. Because the L1 is physically tagged, the L1 miss stream has physical 
addresses which are already randomized by bin-hopping (Section 3). Consequently, 
the second-level table does not need any offsetting to reduce conflicts. 3) Each level 
of prediction tables may be configured to be shared across threads or to be private to 
each thread. Because there is not much difference between shared or private for the 
second level, we use a shared second-level table. We show both private and shared 
configurations for the first-level table. 4) We increase the second-level shared table 
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size with the number of threads (the table size is T * 120KB for T threads, except for 
eight-thread SMT we use T=4 to keep the size under 512KB). We increase the size 
with no change in the associativity, keeping the implementation reasonable. Although 
the table is shared among threads, no major conflicts among the threads occur because 
the table is accessed using physical addresses, which are unique across the threads.  

4.3.2   Prefetching Results 
Recall from Section 1 that because SMT tolerates latency but at the same time 
increases pressure on the memory hierarchy by overlapping multiple threads, the 
opportunity for PF is unknown. While PF reduces memory latency, prefetching into 
L2 encourages L1 misses in fewer cycles, which causes clogging of the issue queue 
and slows down the other threads. Ironically, only correct prefetches cause this 
clogging. Thus, SMT’s sharing of the issue queue across multiple threads impacts 
PF’s effectiveness. In this section, we evaluate these opposing effects of PF in SMT.

While we showed that TC and VP do not improve SMT throughput; in this section, 
we will show that PF improves throughput for MEM, but has limited opportunity for 
MIX.

Figure 3 shows PF’s throughput improvements compared to the SMT without PF. 
As before, Figure 3 shows the three sets of workloads, ILP, MEM, and MIX, and 
varies the number of threads as one, two, four, and eight. Each bar indicates the 
geometric mean of throughput improvements for the workloads in the set. Note that 
the Y-axis scale has changed from the previous graphs. 
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Fig. 3. Prefetching throughput improvements 

Because prefetching into L2 causes the issue queue clogging problem, we studied 
ways to reduce this clogging. First, we experimented with prefetching into L1. Unlike 
prefetching into L2, prefetching into L1 cannot use L1 misses as triggers (prefetched 
block will displace useful data) and needs dead-block prediction [32]. We found that 
because of high pressure on L1 in SMT, the dead time is shorter in SMT than that in a 
single thread. The shorter dead time makes dead block prediction harder. Second, we 
resumed prefetching into L2 and tried to avoid clogging by preventing instructions 
which are past an L1 miss that hits in a prefetched L2 block from entering the pipeline. 
To this end, we used an L1 miss predictor which stops fetching past a predicted L1 
miss. The predictor essentially needs to balance accuracy (avoid incorrectly stopping 
fetch due to mispredictions) and coverage (identify all the misses). Unfortunately, 
achieving this balance proved to be difficult. Therefore, we looked into other ways  
to reduce the clogging. Taking a hint from VP, which reduces coverage to reduce 
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mispredictions, we tried to reduce prefetch coverage to prevent too many L2 misses 
from being converted to L1 misses, which cause clogging. Reasoning that a shared 
first-level history would have less coverage than a private first-level history due to 
inter-thread interference, we experimented with these two configurations. We found 
that the shared first-level history works better and achieves throughput improvements. 
Because PF already shows throughput improvement for MEM and little opportunity 
for MIX, further enhancements through either prefetching into L1 or using a better L1 
miss predictor will improve MEM’s throughput more and will not improve MIX. Any 
such further enhancement will only reinforce our conclusions.  

Figure 3 shows a group of four bars for a given number of threads. The first bar 
shows PF-private, which uses a private first-level history. The second bar shows  
PF-shared, which uses a shared first-level history. To confirm that the absence of 
dead-block prediction does not affect PF (as previously shown in [9]), the third bar,  
PF-shared-prefect-DBP, shows PF with perfect L2-dead-block prediction. To show 
the potential of PF, the last bar shows Ideal L1, which lets every access from the 
processor hit in L1.  

From Figure 3, we see that PF does not benefit ILP much with multiple threads, 
because ILP has low L1 miss rates. Looking at MEM, PF significantly improves 
single-thread performance. This result agrees with the results from previous PF papers 
[32,9], indicating that our prefetcher is implemented correctly. With multiple threads, 
we see that while PF-private degrades throughput, PF-shared improves throughput. 
PF-private’s poor performance is due to issue queue clogging, as can be seen in the 
second and third rows in Table 6 by the larger fraction of time the Issue Queue (IQ) 
stays clogged (IQ clog frac.) with PF-private (PF-p) than with PF-shared (PF-s). Note 
that the base case throughput, shown in the first row of Table 6, continues to improve 
as we increase the number of threads to eight, showing that PF-private’s diminishing 
returns are not due to pipeline saturation. Thus we see that SMT’s sharing of the issue 
queue among its threads accounts for the difference between PF-private’s failure and 
PF-shared’s success. 

We also see that PF-shared-perfect-DBP is marginally better than PF-shared, 
showing that using L1 misses as triggers is a good dead-block predictor, as also 
claimed by [9]. Ideal L1 shows that though the opportunity reduces with more threads, 
there is still substantial opportunity even with eight threads. PF-shared captures some 
 

 

Table 6. Prefetching statistics 

ILP workload MEM workload MIX workload  
1T 2T 3T 4T 1T 2T 3T 4T 1T 2T 3T 4T 

Base case IPC 3.5 4.6 5.1 5.3 1.2 1.8 3.1 4.0 2.1 3.8 4.7 5.2 
PF-p IQ clog frac. (%) 2.5 1.0 0.3 0.3 37.7 25.2 36.8 18.2 18.8 10.3 7.2 1.7 
PF-s IQ clog frac. (%) 2.5 1.0 0.5 0.4 37.7 24.8 11.5 6.1 18.8 9.6 3.9 1.1 
Base case L2 miss (%) 9.8 7.5 9.1 4.8 26.8 25.3 26.7 32.6 18.0 24.8 21.9 21.9 
PF-p L2 miss (%) 7.9 5.0 4.9 3.4 12.2 9.1 12.0 15.8 10.0 11.1 9.5 10.8 
PF-s L2 miss (%) 7.9 5.0 7.5 4.6 12.2 16.9 19.9 26.5 10.0 12.4 17.1 18.6 
PF-p accuracy (%) 22.7 24.6 46.6 68.2 66.1 85.1 83.7 86.9 42.7 63.2 81.3 80.5 
PF-s accuracy (%) 22.7 24.0 34.7 30.5 66.1 73.6 67.6 62.2 42.7 59.3 66.5 55.9 
PF-p WP (%) 2.0 1.2 0.5 0.3 30.7 53.0 22.3 20.9 15.5 19.7 26.0 12.4 
PF-s WP (%) 2.0 1.0 0.2 0.0 30.7 21.7 14.7 10.7 15.5 16.7 7.2 2.4 
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of this opportunity, achieving 7% improvement with four threads and 9% with eight 
threads. These results show that when memory latency is a major bottleneck, even 
multiple threads cannot tolerate all L2 misses, and PF is effective. 

For MIX, PF-shared suffers 6% and 4% degradation with two and four threads, 
respectively. Despite using a shared configuration, this workload causes issue queue 
clogging, resulting in slight throughput degradation. This result is not surprising when 
we look at Ideal L1, which shows little opportunity for PF with increasing threads. 
This limited opportunity combined with issue queue clogging forces PF-shared to 
degrade with two or more threads.  

Table 6 presents important statistics for PF. The fourth, fifth, and sixth rows show 
the L2 miss rates in the base case and PF-private and PF-shared, respectively. These 
miss rates confirm that PF is effective in reducing L2 misses. PF-private’s miss rates 
are lower than those of PF-shared, indicating that PF-private has higher coverage than 
PF-shared. This higher coverage causes clogging problems that result in throughput 
degradation. The next two rows show that the accuracy of PF-private and PF-shared 
behave similarly to coverage and have the same effect. Finally, we show weighted 
speedup for PF-private and PF-shared. PF-private has positive weighted speedups for 
MEM and MIX while it degrades throughput, showing that PF-private improves low-
IPC threads with high miss rates at the cost of overall throughput. PF-shared has 
positive weighted speedups but lower than those of PF-private due to lower coverage. 
For MEM, PF-shared has both positive weighted speedups and improved throughput, 
indicating that PF-shared improves low-IPC threads without hurting the other threads.  

Our experiments do not give PF any undue advantage and yet show that PF 
improves SMT throughput for MEM. Because PF hides L2-miss latencies, using 
longer latencies will further improve throughput. For MIX workload, we showed that 
PF does not improve even with an ideal L1. Therefore, our results unequivocally 
prove that PF improves MEM and does not improve MIX, and there is no need to 
vary other parameters. 

5   Conclusions 

In this paper, we evaluated trace cache, value prediction and prefetching in SMT. We 
found that SMT’s sharing of the instruction storage (i.e., trace cache or i-cache), 
physical registers, and issue queue impacts the effectiveness of trace cache, value 
prediction, and prefetching, respectively. 

We found that: (1) Trace cache introduces multiple copies of the same instructions 
in different traces, trading off space for bandwidth. However, SMT needs a large 
instruction storage because multiple threads share the storage. Furthermore, trace 
cache’s benefit of supplying many instructions in one fetch diminishes in SMT 
because SMT can do so by fetching from multiple threads. Our simulations showed 
that when compared to a similar-sized i-cache, trace cache’s space-for-bandwidth 
trade-off degrades SMT throughput (for 2 threads, throughput improves, supporting 
Intel’s decision to use a trace cache in the two-threaded P4). (2) Value prediction 
causes hold-up of physical registers and cannot release them until after the predicted 
instruction completes and commits. Because SMT’s multiple threads share physical 
registers, this hold-up stalls progress in other threads. Thus, unlike superscalar, SMT 
incurs throughput degradation even with correct value predictions. Our simulations 
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showed that with a typical number of physical registers, value prediction degrades 
SMT throughput; and with unlimited registers, value prediction’s benefit disappears 
with an increasing number of threads. (3) Prefetching into L2 converts slow L2 
misses into fast L2 hits. However, the L2 hits still miss in L1, resulting in the same L1 
misses occurring in fewer cycles. Because instructions dependent on the L1 misses 
clog the issue queue and because SMT’s multiple threads share the issue queue, this 
clogging stalls progress in other threads. With prefetching, L1 misses occur in fewer 
cycles, clogging the issue queue more often. Thus, unlike superscalar, SMT incurs 
throughput degradation even with correct prefetches. Therefore, SMT needs to 
balance prefetching and issue queue clogging. Our simulations showed that prefetch 
coverage can be reduced to achieve such balance, improving throughput for memory-
intensive workloads. However, for workloads with mixed memory demand (high-ILP 
and memory-intensive threads), prefetching has little opportunity and slightly 
degrades throughput.

On one hand, the techniques are ineffective for multi-programmed workloads and 
in many cases hurt throughput; on the other hand, the techniques significantly 
improve single-thread performance, and disabling them to improve multi-
programmed throughput would hurt single-thread performance. In an SMT with 
thread priority, these techniques may also hurt high-priority threads in a multi-
programmed workload. Thus, our findings create a new responsibility for the OS: We 
recommend that the OS disable the techniques when running multi-programmed 
workload, and enable them for single-threaded workload and for high-priority threads 
in a multi-programmed workload. 
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Abstract. This paper presents a scalable and partitionable asynchrono-
us bus arbiter for use with chip multiprocessors (CMP) and its corre-
sponding pre-layout simulation results using VHDL. The arbiter exploits
the advantage of a concurrency control instruction (Brk) provided by the
micro-threaded microprocessor model to set the priority processor and
move the circulated arbitration token at the most likely processor to issue
the create instruction. This mechanism provides latency hiding during
token circulation by decoupling the micro-threaded processor from the
ring’s timing. It is shown that this arbiter can be extended easily to sup-
port large numbers of processors and can be used for chip multiprocessor
arbitration purposes.

1 Introduction

The history of the IBM Power PC (PPC) processor shows that clock speed
has increased at twice the predicted rate, i.e. from 33MHz to 1GHz over the
last twelve years, but increases in system-level concurrency have not tracked
the packing density [1]. With some processors using 2 Billion transistors, we
may ask if these transistors are being effectively used. Evidence that all is not
well is provided by the fact that Intel has cancelled its 4GHz Pentium 4 [2],
because this processor has effectively reached the limit of its performance and
has poor scaling properties. Simply increasing the clock speed and using more
and more transistors (enabled by smaller feature sizes) is a poor strategy for
future generations of processors and does not guarantee better performance.

Chip multiprocessors (CMPs) are becoming an increasingly attractive for ob-
taining high performance and low power consumption and we expect that many
new microprocessor designs will be based on this approach. However if CMP ar-
chitectures are based on a single clock domain with global synchronization and
control signals system performance and prevent overall system scalability will
be severely restricted.

The Globally Asynchronous Locally Synchronous (GALS) design style is an
approach to VLSI system design that holds the promise of combining the ad-
vantages of both synchronous and asynchronous operation [3]. Eliminating the
need for a centralized clock minimizes the clock-skew problem and opens the
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door wide for system scalability and functional portioning, which both are the
requirements for future CMP designs. The Semiconductor Industry Association
(SIA) Roadmap recognizes that, by 2007, asynchronous techniques will be used
in many designs [4].

The micro-threaded CMP architecture [1], exploits the advantages of a GALS
design by using a set of global buses all of which are fully asynchronous. One
of these buses is the broadcast bus, which each processor uses in order to create
a new family of micro-threads. The broadcast bus is also used to broadcast the
global state to all processors. To avoid processor contention and to take the ad-
vantages of asynchronous communication, this paper introduces an asynchronous
arbiter design. The arbiter exploits the advantage of a concurrency control in-
struction Brk, provided by the micro-threaded microprocessor to set a priority
policy and to hide the token circulation time by decoupling the micro-threaded
pipeline from the ring’s timing. It provides useful features, such as modularity,
partitioning organization, and is starvation free.

The rest of the paper organized as follows: In the next section, we present
a brief background and related work. Section 3 explains the micro-threaded
approach, its concurrency controls and the micro-threaded chip multiprocessor
architecture model. In section 4, the asynchronous arbiter organization and its
mechanism are presented. The arbiter pre-layout simulation results using VHDL
is described in section 5. Finally, we present a conclusion in section 6.

2 Background and Related Work

GALS systems not only mitigate the clock distribution, power consumption,
and clock skew problems, but also simplify design reuse [5]. Recently, Hemani
et.al. [6] compare the GALS architecture with the globally synchronous (GS)
case. The results show that 70% power savings in clock distribution with neg-
ligible overheads can be achieved using GALS architecture design compared to
the GS design case.

Delay modelling is one of the most significant elements of validating asyn-
chronous design. One popular well-known approach that gives unbounded de-
lays to both wire and gate elements is the delay-insensitive design approach.
This avoids the need for timing analysis, providing designs that operate correctly
whatever the delay in the interconnecting wires [7]. It also has some benefits over
bounded-delay methodologies in that the former delay model forces the designs
to use conventions such as completion signals and transition signalling which
are both important to good asynchronous circuit structure [8]. Furthermore, the
delay-insensitive model facilitates the exploitation of average-case delay rather
than the worst case, providing significant saving with long interconnections [7].
There have been some processors that have used a delay-insensitive design tech-
nique such as [9, 10].

Asynchronous-synchronous interfaces using point to point GALS interconnect
as described in [11] represent a very efficient and a suitable way to synchronize
asynchronous and synchronous clock domains. The design described in this paper
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uses a point to point connection between arbiter modules. A delay-insensitive
methodology is used giving unbounded delays to both wires and logic gates.

It is well-known that access to shared resources by two or more processors
requires an arbitration mechanism to prevent contentions. Many arbitration
schemes have been proposed [12, 13, 14] with different characteristics. Arbiters
can be centralized, decentralized, daisy chained, tree, round-robin with fixed or
dynamic priority. Comparison between these mechanisms concerns a set of fac-
tors including reusability, modularity, fairness, avoidance of starvation, power
consumption and area. Most of the arbitration mechanisms are only suitable for
some cases and none of them is optimal for all cases.

Macii and Poncino [15] described a synchronous scalable multiprocessor bus
arbiter using a ring architecture. The priority of each processor is reduced by one
at every arbitration cycle to rotate priority between the processors. Two signals
(Bus Busy and Token Out) are propagated through the ring to circulate the
token. Our arbiter also uses a ring structure but is fully asynchronous with one
grant signal (Gout) rather than two. Furthermore, we exploit the concurrency
control instruction (Brk) provided by the micro-threaded microprocessor to hide
the token circulation time and to set a priority processor based on the processor
that has succeed in executing this instruction.

Bellido et. al. [12] presents a modular asynchronous design for an n-user linear
array arbiter. A centralized control signal drives all the modules in the array.
When this signal is 0, the arbitration process takes place in such a way that
this signal is not 1 until the requests have been granted in the same order as
the modules in the array. Priority is dependent on the relative position of the
modules. This mechanism is not fair and may cause starvation if a large number
of modules are used. Our approach has the advantage that each arbiter can
decide locally to access the bus or to wait. Also, our priority policy provides fair
communication and avoids processor starvation.

Moore et. al. [11] proposed an asynchronous-synchronous interface for a point
to point communication channel with independent clock domain. The authors
suggested an asynchronous FIFO between producer and consumer modules to
hide the waiting time during request and acknowledge synchronization. This
mechanism requires a complex control scheme, and in some cases, if the FIFO
is deep, the performance will be significantly degraded.

Rigaud et. al. [13] describes an asynchronous arbiter for on-chip communi-
cation, proposing both a fixed and dynamic arbiter priority configuration. In
the fixed approach three blocks are used to handle the arbitration mechanism.
These blocks are the loop control block to reactivate the arbiter after serving
requests, the synchronizer block to sample the input requests and the fixed-
priority block to determine the priority value based on a hardware coded prior-
ity mechanism. Dynamic priority design also has the same complexity of blocks,
where n-request analyzer blocks and n-priority comparator blocks are required
to handle n-requests. This arbiter has a complex design with a centralized struc-
ture, which prevents partitioning. Also, many comparisons may be required to
determine the priority values if the previous comparison failed. In contrast, our
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arbiter has less complexity and provides a simple arbitration mechanism for a
large number of processors on-chip.

Villiger et. al. [16] proposes a mechanism for transferring data between GALS
modules using a self-timed ring topology. This configuration provides a point-to-
point communication between two adjacent GALS modules and provides modu-
lar connectivity, with full scalability in both bandwidth and area for increasing
numbers of GALS modules. The design we described in this paper has the ad-
vantage of a ring organization that connects GALS micro-threaded processors
with the broadcast bus in a circular fashion.

3 Micro-threaded Chip Multiprocessor Architecture
Model

3.1 Micro-threaded Microprocessor Model

The CMP model was first introduced in 1996 [17], then extended in a set of
papers e.g. [1, 18] to support systems with multiple processors on-chip. It com-
bines the advantages of blocked multi threading and interleaved multi-threading
by interleaving the threads when one thread is blocked on a cycle-by-cycle basis
using an explicit context switch instruction or tag, which is required when the
compiler cannot guarantee that data will be available. The model exploits in-
struction level parallelism primarily across loop bodies, as the families of threads
are defined on loops.

Threads are reactivated after being suspended by a context switch when
the data they were waiting for becomes available. Indeed the thread is sus-
pended and awaits its data in the register that the compiler determined was
non-deterministic. There is one other situation where the compiler may flag a
context switch and that is following a branch instruction. In this case the thread
is reactivated upon the computation of the branch target address. The con-
currency controls used in this model provide a flexible and efficient mechanism
for thread creation, context switching and synchronization. Context switching
is compiler controlled by recognizing and tagging instructions which could fail
synchronization.

The micro-threaded model provides instructions to create families of threads
(Cre), to explicitly context switch between threads (Swch), to kill a thread (Kill)
and two instructions for global synchronization, one a barrier synchronization
(Bsync), the other a form of a break instruction (Brk), which forces a break from
a loop executed concurrently. The Brk instruction terminates all other threads
and leaves the issuing thread as the main thread. This instruction gives a hint
that the processor needs to create a new family of micro-threads after a few
cycles. Thus, a processor that has succeed in executing this instruction can assert
a high request signal through the Brk wire line to its arbiter to inform it that
this processor will be requesting the broadcast bus. Based on this prediction, our
asynchronous arbiters moves the grant token until it has reached the requesting
module. This mechanism provides latency hiding and deadlock freedom during
token circulation time.
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3.2 Micro-threaded Chip Multiprocessor Model

A block diagram of a micro-threaded chip multiprocessor is shown in figure 1. A
set of shared components are used in this model to support the micro-threaded
CMP. These components are the Broadcast Bus which enables one processor
to create a family of identical threads. This bus arbitrates between multiple
processors and at any time one processor can access this bus to create a descriptor
of a new family of micro-threads. Descriptors are processed by the scheduler to
determine the subset of the family of threads the processor will execute.

The broadcast bus is also used to replicate what the compiler defines as global
state to each processor’s local register file instead of using a centralized register
file for global variables. It is one of two mechanisms that allow the register file in
micro-threaded model to be fully distributed between the processors. The other
is the Shared Registers Ring Network, which allows compiler-specified communi-
cations between pairs of threads, one of which produces data and the other which
consumes it. This communication between the shared and dependent thread will
be performed by the ring network if the threads are allocated to different pro-
cessors. The justification for using a ring network is that it is scalable and, given
sufficient resources, the model, can adopt a schedule which ensures that any
constant-strided, loop-carried dependency be mapped to a neighboring proces-
sor.The distribution of threads to pipelines is deterministic and based on a simple
scheduling algorithm. It is dynamic as it is determined by resource allocation
and release (the concurrency exposed is parametric and not limited by the hard-
ware resources). The instruction issue schedule is also dynamic and is scalable.
Instructions can be issued from any micro-thread already allocated and active.
The concurrency is limited only by the linearly growing hardware cost for a given
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chip area. Clearly if such a system could also give linear performance increases,
then it can provide a solution to both CMP and ILP scalability [18].

4 Arbiter Organization

Figure 2 shows the arbiter organization. Each processor has its own local con-
trol and a separate arbiter module in order to allow processor partitioning. Each
arbiter module is linked to the next one in a ring arrangement and the pro-
cessors are arranged in a grid layout as shown in figure 3a. Thus, each arbiter
can be linked to two physically adjacent ones to reduce propagation delays. Our
arbiter has the optional capability of being usable in a dynamically partition-
able processor array, assuming a suitable routing architecture is available. For
example a possible reconfiguration of the processors in figure 3a onto two inde-
pendent groups is also shown in figure 3b. However, a detailed description of the
partitioning architecture is beyond the scope of this paper.

Figure 4 shows the arbiter input and output signals. Each arbiter are linked
by four lines comprising the request high (RHi), which is the highest priority
request, request low (RLi), which is the lowest priority request, an acknowledge-
ment signal (Acki) to release the bus, and the grant line (Gi) to grant requests
and move the grant token towards the requesting module. The request and grant
signals propagate in opposite directions around the ring. Also, one output wire
(Wouti) is required from each arbiter module to give processor Pi permission to
access the broadcast bus.

There are three signals from each processor to its arbiter. The first is to in-
form the arbiter that the current processor has succeed in executing the Brki

instruction, the next signal (Di) is used to assert a demand request. The third is
the local acknowledgement (Ackli) signal to inform the arbiter that a receiving
processor has finished with the bus. The Brki signal is assigned to the RHi

signal line with highest priority and the Di signal assigned to RLi line with low
priority. An initial (init) signal is also required to determine the initial loca-
tion of the token. One arbiter is initialized with the token, the others without.

Micro-threaded
Processor

Micro-threaded
Processor

Micro-threaded
Processor

(GALS) (GALS) (GALS)

A1 A2 An

Broadcast  Bus

Fig. 2. Asynchronous Arbiter Block Diagram



258 N. Hasasneh, I. Bell, and C. Jesshope

PP P P

P PP P

P P PP

(b) Grid  connection for two ring arrangement

P P

P P

P P

A

A A A
A

A

A

A

A

A

A

A

A

A

A

A

A
A

P P

P P

P P

A

A

A

A

A
A

Token
Token

Broadcast Bus

PP
A

APP
A

A

(a) Sample 4x4  grid arrangement with one ring network

Configurable
Arbiter Signal
  Router

BusBus

Fig. 3. Asynchronous Arbiters with Different Partitioning. a)Grid Organization.
b)Independent Group Organization.

RHout

RLout

Gin

Control

A2
RHin

RLin

BrkDWout

Wout D Brk

Init

Ackl

Ackin Ackout

Gout

AcklAckin

Ackin

RHout

RLout

Gin

Control

A1
RHin

RLin

BrkDWout

Wout D Brk

Init

Ackl

Ackin Ackout

Gout

AcklAckin

Ackin

Fig. 4. Asynchronous arbiter with require input and output signals

Once a processor has responded to a grant acknowledgement is sent back to
the grantee using the ring connectivity The acknowledgment control circuit is
shown in figure 5, where each processor asserts a high signal through its lo-
cal acknowledgment (ACKli) line when that processor has read the data from
the bus. A write (WR) signal is also required to control the propagation of the
acknowledgment signal through the arbiter chain. Thus, the acknowledgement
signal is propagated from one module to another until it has reached the pro-
cessor that has reserved the broadcast bus. When that processor received an
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input acknowledgment (Ackini−1) signal from the previous arbiter module the
processor releases the token and the arbiter responds by deasserting Wout.

Instead of just assigning current priority based on position in the ring as de-
scribed in [12] higher priority is given to a processor executing the Brk instruc-
tion, while the lower priority is assigned to a processor that making a demand
request. The Brk instruction always occurs before executing the Cre instruction,
thus providing latency hiding. In our CMP only one processor can succeed in
executing the Brk instruction at a given time, so there is no need for many
levels of priority. However, the mechanism we described in this paper can be
easily extended for many levels of priority and can be used to support any CMP
arbitration model.

The arbiters operations can be described as follows, where we have N arbiter
modules and only one processor can succeed in executing the Brk instruction at
a given time.

– The arbiter are labelled using modulo arithmetic so for M arbiters Ai+1 is
A0 for i = M − 1 and Ai−1 is Am−1 for M=0.

– Note that init0 = 1 and init1 to initm−1 = 0. This means that proces-
sor 1 would have a request acknowledged immediately after system initial-
ization (reset) but other processors must wait for the grant to propagate
(A1toA2........toAm).

– If Brki =1, Ai outputs a high request to the next arbiter via RHouti. The
rest of the modules can also generate a demand request via RLoutk where
k can be any number from 1..N except i (k 
= i). If all Brk=0 any module
can assert RLout.
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– If Brki=0 and Di=0, Ai propagates RHini to RHouti, RLini to RLouti
and Gini to Gouti. This propagate RHi and RLi from Ai to Ai−1 and Gi

from Ai to Ai+1.
– If Brki=1 and Gini=1, and Ackini=0 then Ai asserts Wouti (read), which

gives processor permission to access the broadcast bus.
– When a receiving processor has completed the bus transaction it asserts a

local acknowledge signal Ackli=1, which also propagated through the ring
until it has reached the module that has currently reserved the bus. Thus,
when Ackini=1 and Wouti=1, the token is released and the arbiter responds
by deasserting Wout.

– If Brki=0, and the input line RHini=1, then forward the grant to the next
module irrespective of D. If Di=1 assert RLouti=1, else propagate RLini

to RLouti.
– If Brki=0, and input line RHini=0, and demand request Di=1 and Ackini

= 0, then activate the Wouti, which gives the processor permission to access
the broadcast bus.

– If Brki=0, and Gini=1 and RHini=0, and demand request Di=0, and
RLini=1, then forward the grant to the next module.

– When there is no request from any processor, then the RHi, RLi, Gi, Acki,
and Wouti will all be 0.

It is clear from this mechanism that the highest priority is given always to the
processor that asserts a high signal through its Brk output.
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The state machine diagram for the arbiter module is shown in figure 6. As
shown, there are eight states, however an asynchronous version of this ma-
chine can be minimized. Two states reset and grant priority can be eliminated,
where the elimination of redundant stable states allows us to draw a simplified
and minimized state machine. The idle state receives the input requests from
RHiniorRLini and if there is no input grant Gini = 0, it propagates the input
requests to the next arbiter module via output request lines RHoutiorRLouti.
The request must be propagated until it reaches the module that currently holds
the token. The token is stored in the busy passive state, from which high input
requests from RHi or RLi cause a change to the grant state. In the grant state
the machine waits for removal of the incoming request before returning to the
idle state.

From the idle state an incoming bus demand from the processor (D=1 or
Brk=1) causes a change to the request state. In the request state, if the input
grant Gini = 1, and Brki= 1, and (Ackini−1 = 0), then the state changes to
busy active, which gives the processor permission to access the broadcast bus by
activating the Wouti wire line. When the input acknowledge Ackini−1 = 1 is
received, this means that all processors complete accessing the bus and the state
changes to busy passive. While if the input grant Gini = 1, Brki = 0 and the
input request Rhi=1, then the pass priority state is used to pass the request,
ignoring the lower priority demand from this processor.

Our arbiter is both starvation free and provides deadlock freedom. If we as-
sume that the token is initially in module one and a demand requests to access
the broadcast bus is encountered from all modules, then the token is given first
to module one, which gives it access to the bus. When this module finished, it
passes the token towards to the next module i.e. module two and so on. Thus,
as described above the highest priority is given first to the module that has suc-
ceed in executing the Brk instruction, then the rest of the modules that have
requested the bus are served based on the position in the ring and in sequential
order. It is clear that this mechanism provides a fairness and is starvation free.
As soon as the processor releases the bus the next module will be served di-
rectly. Also, in the microthreaded model [1], only the main thread has triggered
a bus request and these have been performed in sequence and hence there will
be virtually no delay in arbitration, as there is no contention.

4.1 Arbiter Partitioning

A partitionable design methodology will become one of the design requirements,
which ensures low power and high performance in future processors [19, 20]. It
also offers a promising approach to fault tolerance problems and provides an
independent communication between different system blocks. Each arbiter con-
nects to two other arbiters associated with adjacent processors to form an arbi-
tration ring as shown in fig 3a. This arrangement could be hardwired, however,
by providing a routing architecture as shown in figure 7 each arbiter and their
associated global resources can be dynamically partitioned into groups, where
each group has a separate token.
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4.2 Arbiter with N-Levels of Priority

Figure 8 shows a block diagram for a scalable asynchronous arbiter design with n-
levels of priority. As illustrated, three blocks are required to handle n requests,
which comprise the processor bus access controller block, request logic block
and the state machine block. The function of the first block is to control and
manipulate different levels of priority, where the priority levels can be determined
by the compiler.

The second block determines whether the demand input signal has a high or
low priority compared with the incoming requests. Thus if the demand line D
has low priority, then a high signal is asserted to the state machine through PP
wire line. Otherwise, if the demand has high priority, then PP=0 is asserted.
The state machine uses the input signals from the request logic block to decide
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whether to pass the grant line to the next module via Gout if the current module
has a lowest priority; or to activate the Wout line, which allows the processor
to access the bus. So, if the current module has the highest priority, then the
pass-high-priority (PHP) signal is activated by the state machine to inform the
request logic block that the bus access is given to the current module. Otherwise
PHP=0 is asserted. The zero request line (ZR) can be used to control all output
request RO, which block the propagation of output request RO if ZR=0, or to
pass the request to the next module if ZR=1.

5 Simulation Results

We simulated the arbiter using VHDL, exploiting the generate statement to cre-
ate networks of N processors/arbiters in the test bench. The simulations used
processors with different clock phases and frequencies in order to model their
globally asynchronous nature. The arbiter modules were linked using arbitrary
delay elements as shown in figure 9 to model interconnect delays. Simulations
using this approach verified correct operation of the arbiter with up to 64 proces-
sors. The processors were modelled using a high level description of the continu-
ation queue and scheduling system, which will be reported elsewhere and whose
details are not critical to the current discussion. In effect the sequencing of bus
requests in these simulations were manually controlled by the test bench set up.

We are investigating the performance of our arbiter with respect to the request-
to-grant delay by replacing the processor model with a simple state machine and
generated requests at delays determined by a sequence of random numbers. The
state machine is shown in figure 10. The state machine first generates a request
(local state) then changed to wait bus state. When a grant is received the state
changes to bus in use. When the bus access is complete the state changes to ac-
knowledge informing the rest of the processors in the ring that bus is free again.
The simulation includes a different sizes of processors i.e. 4, 8, 16, 32, and 64.
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Table 1. Relative frequency of create instruction over a range of loop kernels

Loop Create instruction rate
compared to other instructions

A: Partial Product 0.3333
B: 2-D SOR 0.2
L3: inner Product 0.25
L4: Banded Linear Equation 0.2
L5: Tri-Diagonal Elimination 0.25
L6: General Linear Recurrence 0.1429
C:Pointer Chasing 0.0714
L1: Hydro Fragment 0.1111
L2: ICCG 0.0909
L7: Equation of State Fragment 0.0385

The rate of requests to the arbiter within the context of the microthreaded
CMP depends on the behavior of the create instruction. The frequency of exe-
cuting this instruction over a range of loop kernels as shown in table 1. Figure 11
also shows the frequency create executing over a range of loop kernels against
the normalised problem size, where m is the size of the problem in terms of the
number of iterations, and n is the number of processors. The loops considered
included a number of livemore kernels, some that are independent and some
that contain loop carried-dependencies. As shown, the frequency of executing
this instruction is very low, and the percentage of executing this instruction is
less than 17% over all loop kernels considered in this analysis. Thus, the bus is
used infrequently hence the delay in arbitration will primarily depend on the ring
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delay, as there is very little or no contention. Furthermore, the microthreaded
processors are tolerant to latency when they have created threads, so it does not
matter how long it takes to create the next family of microthreads.

6 Conclusion

In this paper we have discussed the design and the pre-layout simulation using
VHDL of an asynchronous arbiter. The arbiter provides a very simple system
architecture, where each module has a few wires connecting the next one and
the last is connected to the first module in a circular fashion. Delay-insensitive
methodologies with unbounded wire and gate delays were considered in the ar-
biter simulation procedures. The arbiter also has the advantages of GALS com-
munication design and include the following features:

– The ring configuration to arbiter modules and the point-to-point communi-
cation between two adjacent arbiter modules provide a modular connectivity,
which has full scalability in both bandwidth and area with increasing num-
bers of micro-threaded processors GALS modules.

– Each arbiter module has its own control signals and implements a self-timed
model. Therefore, there is no need to propagate the control signals through-
out all the arbiter modules.

– There are four wires connecting every arbiter module in the chain to the next
one and the last to the first in a circular fashion. The latency of the wire
delay is very small. Thus the decision is made locally by each arbiter module
instead of using large wire delay, which gives it a partitioning properties.
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– Each processor arbiter has a priority policy dependent on a processor suc-
cessfully executing the concurrency control instruction Brk. This mechanism
provides latency hiding by decoupling the micro-threaded processor from the
token circulation time. It also, offer a fairness communication between pro-
cessors and eliminates processors starvation.
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Abstract. In this paper, we present the prototypical implementation of the scal-
able GigaNetIC chip multiprocessor architecture. We use an FPGA-based rapid 
prototyping system to verify the functionality of our architecture in a network 
application scenario before we are going to fabricate the ASIC in a modern 
CMOS standard cell technology. The rapid prototyping environment gives us 
the opportunity to test our multiprocessor architecture with Ethernet-based data 
streams in a real network scenario. Our system concept is based on a massively 
parallel processor structure. Due to its regularity, our architecture can be easily 
scaled to accommodate a wide range of packet processing applications with 
disparate performance and throughput requirements at high reliability. Further-
more, the composition from predefined building blocks guarantees fast design 
cycles and simplifies system verification. We present standard cell synthesis re-
sults as well as a performance analysis for a firewall application with various 
couplings of hardware accelerators. 

1   Introduction 

Embedded multiprocessor systems can efficiently meet the ever-growing performance 
requirements of network applications. The scalable GigaNetIC architecture is a novel 
approach to flexibly meet the disparate performance requirements of different network 
application scenarios. The backbone of our architecture is a powerful and yet flexible 
network on-chip (NoC) – the GigaNoC. Like other network on-chip architectures, e.g., 
[1][2][3] the GigaNoC offers the possibility to easily extended SoC designs to new 
application requirements by additional components (cf. Sec. 2.4). Differently coupled 
hardware accelerators can easily be integrated in the GigaNetIC system to improve the 
performance for specialized tasks. Not only as a proof of concept, but to speed up the 
simulation and verification process, we implemented a prototype of the GigaNetIC 
system using a reconfigurable FPGA platform. For this PCI-bus-based system we have 
developed a graphical user interface (GUI), which allows a convenient interaction with 
the FPGA hardware. Because our embedded multiprocessor architecture is highly 
suitable for packet processing purposes, we consider a network application scenario to 
evaluate the system performance. 

The paper is organized as follows. In the next section, we describe the architecture 
of our system-on-chip multiprocessor concept. Furthermore, three different ways of 
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coupling hardware accelerators with the system will be discussed. Section 3 explains 
the implementation of system components in detail and shows the synthesis results for 
an FPGA mapping as well as for a semi custom standard cell design. The performance 
evaluation for a network application is discussed in Section 4, revealing the capability 
of the GigaNetIC approach. Finally, the paper is concluded in Section 5. 

2   Architectural Concept 

The GigaNetIC approach focuses on a scalable architecture for universal coprocessors 
and for network processors in particular. Our platform is scalable in respect to the 
number of the clusters, the processors instantiated per cluster, the provided hardware 
accelerators, and the available bandwidth of the on-chip communication channels. By 
this, a high reusability of our architecture can be guaranteed. Further advantages of 
such a uniform system architecture lie in the simplified testability and verification of 
the circuit and in a homogeneous programming model. The proposed architecture is 
structured into the following three domains: PE level, Cluster level, and SoC level. 
The programmer is relieved from specifically handling the on-chip communication 
protocol since routing, memory management, and I/O are transparently controlled by 
the switch boxes (SBs). At the cluster level, the programming model is based on a 
proprietary parallelizing ANSI C compiler. A preceding tool partitions and schedules 
the tasks for the individual processor clusters. 

 

Fig. 1. Scalable parallel GigaNetIC SoC architecture based on hierarchical IP blocks 

2.1   PE Level 

At the processing element (PE) level, we use our 32 bit RISC processor N-Core, as 
processing element [4][5]. The core is a softmacro and can be adapted to the needs of 
the respective area of application. Instructions have a fixed width of 16 bit, providing a 
high code density, which is of special importance for embedded systems with limited 
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memory resources. The instruction set can be extended through additional operations 
due to 11% free opcode space. Therefore, it is possible to optimize the architecture for 
specific application domains, e.g., the networking area. In this field, we have already 
implemented several new instructions for header modification and for encryption algo-
rithms used in IPsec protocols [6][5]. These instruction set extensions can be seen as 
the smallest hardware blocks used in our architecture. Additionally, the N-Core pro-
vides a coprocessor interface for hardware accelerators, facilitating further acceleration 
by adding larger HW blocks. The processor core has been verified in silicon success-
fully. It is also possible to connect other embedded general purpose CPUs than the 
N-Core to the local bus due to the standardized bus interfaces. Even specialized hard-
ware accelerators can be easily integrated (cf. section 2.4). Each PE has a local mem-
ory, which is used for program code as well as for local data. There is also a shared 
memory belonging to the cluster level that is used as a packet buffer for all PEs con-
nected to the local bus. 

2.2   Cluster Level 

At the cluster level, switch boxes act as high speed routing nodes, which combine the 
individual processor clusters with each other. The on-chip communication is based 
on a packet switched network-on-chip [7][8]. Data is transmitted by means of Flits 
(Flow Control Digits) – packet fragments that represent the atomic on-chip data 
transmission unit [9]. A locally connected processor cluster consists of a multitude of 
processors or other intellectual property (IP) blocks, which are connected to the SB 
by the Wishbone on-chip bus. We also have the opportunity to use an AMBA high-
speed interconnection matrix together with a multiprocessor cache. However, in this 
paper, we focus on applications for which such a complex cache system is not neces-
sary due to independent data streams and applications with very few inter-process 
communications thus making a complex cache coherency protocol useless. There-
fore, we focus on the Wishbone implementation, which is much smaller in terms of 
chip area requirements. 

The number of SB communication ports is variable and depends on the desired 
on-chip network topology. Despite its simplicity, this architecture allows parallel 
operation and a pipelining of the processor fields. Additionally, it guarantees almost 
equal  link  lengths  and  thus  an  identical and short propagation delay of the signals  
 

 

Fig. 2. Switch box HW block 
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between SBs. Each SB can be connected to a multiprocessor array by an additional 
input/output port (port 0 in Fig. 2) that interfaces a communication controller (CC). 
The CC transfers data to and from the local clusters. The SB consists of two main 
parts. The first part combines the I/O port and the crossbar to form the communica-
tion structure that ensures that the data packets are rapidly transmitted and reach the 
correct switch box output port on the basis of the routing strategy. The second part of 
the SB comprises the control structures, which serve as an interface between the 
processor field and the on-chip network. This task is performed by the communica-
tion controller, which is located between port 0 and the bus of the local cluster. The 
communication controller performs the following tasks: It receives the flits, reorders 
them if necessary, and forwards them to the connected HW blocks, e.g., processors 
or hardware accelerators. Another important function is the initialization of the PE 
code memories at system startup. 

2.3   SoC Level 

The coarse-grained level of our architecture is the SoC level. For integrating a huge 
amount of processors on a single chip, it has to be ensured that these units are able to 
communicate efficiently over an on-chip interconnection network. To support the 
software engineer, we have developed special programming models and libraries. 
Following this programming paradigm, our chip will speed up many network applica-
tions in a cost and power saving way. Despite its simplicity, our architecture allows 
parallel operation and a pipelining of the processor fields. Additionally, it guarantees 
almost equal link lengths and thus an identical and short propagation delay of the 
signals between SBs. Furthermore, the parallel structure of the SB concept allows a 
high fault tolerance: if the software detects a malfunctioning processor unit, others 
can take over the pending tasks. 

2.4   Hardware Accelerators and Other HW Blocks 

Besides the processor cores and the local memories, further HW blocks can be inte-
grated in several ways. The processor supports the tight connection of hardware ac-
celerators via a coprocessor interface (cf. Fig. 3a). If these units should be available to 
a number of processors, they can be coupled via the local bus at cluster level. Coupled 
closely to the processor field, these HW blocks are integrated through additional mas-
ter/slave interfaces of the local bus system and addressed via memory-mapped I/O 
ports (cf. Fig. 3b). Besides hardware accelerators, additional modules, such as UARTs 
for debugging purposes, can also be integrated. 

At the SoC level, more independent units can be connected to any SB and are ad-
dressable via the on-chip network. These units can be loosely coupled hardware ac-
celerators enqueued in the data path, such as encryption modules, or units that realize 
outwards connections such as memory controllers for external memory or Ethernet 
controllers that take over the connection to external networks (cf. Fig. 3c). To connect 
a unit to the GigaNoC, a CC is connected to the respective component and to a  
SB port. The CC performs the conversion of the data into the flit protocol and the 
termination of the protocol, respectively. Due to this connection mode, the units are 
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Fig. 3. Different variants of hardware accelerator couplings 

universally suited and offer a simple adaptation of the system to new application 
areas. In this case, the units normally need an own memory as a packet buffer. 

3   Implementation 

Despite an already available SystemC simulation model [10], the GigaNetIC system is 
implemented at Register Transfer Level (RTL) using VHDL and Verilog. As men-
tioned in Section 2, the structure of our architecture consists of three domains: PE 
level, Cluster level, and SoC level. In the following we will describe the implementa-
tion of these three levels and their core components in more detail. From a bottom-up 
view of the GigaNetIC system, the N-Core is the core component at PE level. As al-
ready mentioned, the N-Core represents a 32 bit RISC microprocessor with a common 
load/store architecture. The implemented three-stage pipelined architecture delivers 
reasonable performance for embedded systems [4]. Two independent banks of sixteen 
32 bit registers allow fast program context switching, e.g., for fast interrupt handling. 

Additional HW blocks extend the microprocessor core to an embedded processor 
subsystem environment (cf.). The HW blocks are very tightly coupled to the PE by 
using the 32 bit wide processor system bus. The bus controller acts as a wrapper, 
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Fig. 4. Architecture of the processor subsystem environment 

which connects the N-Core to the processor system bus. All HW blocks can be ac-
cessedfrom the PE using memory mapped I/O and are arbitrated by the address de-
coder. The programmable interrupt controller (PIC) handles up to 32 interrupt 
sources, which are prioritized and can be assigned to normal or fast interrupts. Fast 
interrupts use the alternative register banks of the N-Core, whereas normal interrupts 
have to save the register contents at the stack before performing the interrupt service 
routine. One interrupt input signal is connected to the programmable timer module, 
which allows creating periodic interrupts. Furthermore, the timer module features a 
programmable counter, which can be used for cycle accurate timing purpose (e.g., 
benchmarking and system optimization). The memory interface block offers dual port 
access to the local memory of the processor subsystem. The N-Core can access in-
structions or data via the processor subsystem bus. In order to access the local mem-
ory from other components, e.g., for initialization or shared variables, the second 
memory port is implemented as a Wishbone slave interface. Via the Wishbone bridge 
module the processor subsystem is connected to the next higher level of our hierarchal 
architecture: the cluster level (cf. Fig. 2). On cluster level every N-Core subsystem 
can access the 32 bit wide Wishbone bus as a master and supports byte granular data 
transfer. The implemented Wishbone standard [11] uses a multiplexed master-slave 
bus protocol with a round-robin arbiter assuring uniform access distribution. Once 
again, additional HW blocks can be connected to the Wishbone bus at cluster level. In 
contrast to HW extensions at PE level, those modules can not only be addressed by 
the associated processor element, but are accessible by every N-Core subsystem con-
nected to the local bus. The serial interface module (UART) is intended to connect 
I/O components, e.g., touch screens, which are used for debugging purposes and for 
user interaction. Via the SRAM interface external memory can be attached to the 
Wishbone bus, in order to store large or shared data structures. However, the packet 
memory block features on-chip dual-ported memory space to store data packets of the 
 



274 J.-C. Niemann et al. 

CCport 
0

 

Fig. 5. GigaNetIC architecture at cluster level 

on-chip network. The N-Core subsystems can access the packet memory via the 
Wishbone bus, whereas the other port is connected to the memory interface of the 
switch box’s communication controller. 

On the SoC level of the GigaNetIC hierarchy several cluster components are con-
nected to a powerful grid network (cf.), the GigaNoC [10]. Furthermore, every switch 
box port can be used to connect loosely coupled HW blocks, which are addressable via 
the on-chip network from every PE in the system. In order to communicate with other 
network devices, we implemented an Ethernet controller HW block. Every Ethernet 
controller has up to four fast Ethernet ports to send and receive network packets. 

3.1   Synthesis Results 

The target technology for the GigaNetIC architecture will be a semi custom ASIC 
design. As shown in the first tapeout will consist of eight switch boxes and 
32 processing elements. However, since all components are specified in a hardware 
description language, the GigaNetIC architecture can also easily be synthesized for 
FPGAs. Therefore, we have the opportunity to map a GigaNetIC demonstrator sys-
tem to a hardware emulation platform. For this purpose we use the FPGA-based 
rapid prototyping system called RAPTOR2000 [12] (cf. Sect. 3.2), which has been 
developed at our research group. When using the RAPTOR2000 system for hard-
ware verification we can achieve a speed-up of about 100,000 compared to HDL 
simulation on a 3 GHz Pentium 4. In the following, the synthesis results for an 
FPGA implementation are presented as well as for a semi custom ASIC design. 

FPGA Prototype. Not only to accelerate simulation speed, but also as a proof of 
concept, we mapped a GigaNetIC demonstrator system on our FPGA-based rapid 
prototyping platform RAPTOR2000. The architecture of the demonstrator system is 
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shown in Fig. 6 and its functionality will be explained in Sect. 4.1 in detail. In this 
section we want to focus on the synthesis results of individual system components. 
The following results are based on Xilinx Virtex-II FPGAs: 

Table 1. Synthesis results for FPGA implementation 

a) PE level components b) cluster level components

HW block Slices RAM16s
address decoder 121 -
bus controller incl. N-Core 3,206 -
memory interface incl. 32 KB RAM 71 16
programmable interrupt controller 6 -
timer 163 -
Wishbone bridge 95 -

(N-Core subsystem) 3,662 16

HW block Slices RAM16s
4 x N-Core subsystem 14,648 64

packet memory (32 KB) 53 16
SRAM interface 22 -
UART 626 -
Wishbone arbiter 13 -

(cluster) 15,362 80

 

The demonstrator system comprises two switch boxes, which are used to connect 
two clusters at SoC level. A single switch box with an integrated communication 
controller and four external data ports occupies 14,133 slices. Hence, a switch box is 
the most resource intense component of the system and requires almost as much slices 
as four N-Core subsystems. The reason for this is because a switch box buffers data in 
FIFO structures, which are currently realized as registers. About 59 % of the switch 
box slices are used for implementing FIFO registers. In order to communicate with 
external network devices, additional Ethernet controllers are connected to open switch 
box ports (cf. Fig. 6). An Ethernet controller with two implemented Ethernet ports 
occupies 5,544 slices and 32 RAM16 memory blocks, used as packet buffers. On each 
Virtex-II FPGA a switch box, with a cluster and Ethernet controller attached, is 
mapped. Adding all component resources separately results in a total of 35,309 slices 
and 112 RAM16 memory blocks for the whole SoC level implementation. However, 
the synthesized FPGA design only requires 29,288 slices and 112 RAM16 compo-
nents. The resource variation is caused by optimization reasons, since, e.g., we only 
use two of the four switch box ports (cf. Fig. 6). The final utilization ratio for a Xil-
inx Virtex-II 8000 is 63% of FPGA slices and 67% of BlockRAM resources. A 
maximum clock frequency of 12.5 MHz is achieved. 

ASIC Realization. The synthesis results for the semi custom standard cell process are 
based on a modern 90nm CMOS technology. The results in Table 2 are based on 
typical operating conditions, which mean a chip core voltage of 1.20 V and a tem-
perature of 27 °C. A cluster including a switch box (cf. Fig. 5) occupies 5.78 mm² 
chip area and runs at a maximum clock frequency of 263 MHz. The critical path runs 
through the N-Core and the respective memory interface (cf. Fig. 4). The local mem-
ory of each PE as well as the packet memory inside the cluster architecture is based 
on SRAM blocks. Adding the 32 KB packet memory and the 32 KB local memory of 
all four N-Core subsystems results in a total of 160 KB memory space per cluster. 
The chip area for the corresponding SRAM structures adds up to 4.43 mm², which 
equals 77 % of the whole cluster chip area. Considering the 2x4 grid structure accord-
ing to, the required chip area  for 8 clusters  will  be  46.22 mm². Additional chip area  
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Table 2. Synthesis results for 90nm CMOS technology 

frequency chip area
[MHz] [mm²] [mW] [mW / MHz]

N-Core 278 0.127 414.98 1.49
switch box 714 0.530 1510.30 2.12
cluster (incl. SB) 263 5.777 737.57 2.80
ethernet controller 435 2.181 957.30 2.20

power consumption

 

may be consumed by loosely coupled hardware accelerators (cf. Fig. 3c) as well as by 
Ethernet controllers connected to the open switch box ports. An Ethernet controller 
with four Ethernet ports implemented covers 2.18 mm² chip area, whereof 70 % is 
again occupied by SRAM. 

3.2   System Integration 

The RAPTOR2000 platform is used for the system integration of the GigaNetIC 
demonstrator. RAPTOR2000 is a modular FPGA-based rapid prototyping system, 
which has been developed by our research group [12]. The prototyping system con-
sists of the RAPTOR2000 motherboard, which can be equipped with up to six appli-
cation specific daughterboard modules. Based on FPGA daughterboard modules, 
RAPTOR2000 is able to emulate circuits with a complexity of more than 100 million 
gates. The host computer can communicate via a PCI bus interface with the 
RAPTOR2000 board and each attached daughterboard, respectively. 

 
 

Fig. 6. RAPTOR2000 Rapid Prototyping System with Ethernet- and FPGA-modules 
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Fig. 7. GigaNetIC demonstrator GUI 

To implement the GigaNetIC demonstrator, we used two Xilinx Virtex-II 8000 
FPGA modules and an Ethernet transceiver module (cf. Fig. 6). The Ethernet daugh-
terboard features four independent Ethernet ports for network communication work-
ing with either 10 Mbps or 100 Mbps. 

For user convenience, we have developed a Graphical User Interface (GUI) for the 
GigaNetIC demonstrator, which allows comfortable initialisation, controlling and 
debugging of the prototype. By using RAPTOR2000 dynamic link library (DLL) 
functions, which provide a user-friendly API for hardware access, the software is able 
to read and write all necessary register contents. After starting the GUI program the 
user can select a configuration file for each FPGA module on the RAPTOR2000 
board. When the FPGAs are initialized the GUI automatically detects the system 
setup in terms of processor elements per cluster, memory sizes and available Ethernet 
ports. In order to initialize the code memory, the user can assign a program file to 
each N-Core subsystem. As soon as the initialization is finished, each processor sys-
tem can individually be started and reset, respectively. The status of each processor 
element is visualized by colored circles underneath the corresponding N-Core symbol. 
Gray color symbolizes that the processor has not been initialized yet, whereas a red 
circle indicates that the processor has not been started or stopped due to a reset. A 
green symbol indicates that a processor is executing the assigned program code. In 
order to debug the demonstrator system, the user can access additional status informa-
tion of every hardware component by selecting the corresponding GUI symbol. For 
example, the content of each memory component can be displayed as easily as the 
connection status of an Ethernet port. In this way we are able to verify our system 
architecture and evaluate software algorithms at satisfactory speed compared to simu-
lation models. Furthermore, new hardware blocks can easily be integrated in the sys-
tem and can be tested in a real world environment. This ensures fast design cycles and 
a high reliability of the system. 
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4   Performance Evaluation for a Network Application 

Among other domains, the GigaNetIC architecture is particularly suitable for net-
work applications. Incoherent packet flows can be processed concurrently by our 
multiprocessor system achieving high data throughput. However, when considering 
the established TCP/IP standard, one of the core functions of many network devices 
is to either check or calculate protocol checksums. Whenever a TCP/IP packet is 
received, the system has to decide whether to accept and process the packet or to 
drop it. Accordingly, new checksums have to be calculated for every packet that is 
transmitted. In our application scenario packets are defined as valid if the checksums 
of the IP header as well as the TCP header are correct and the time-to-live value of 
the IP header is greater than zero. We have implemented this function in software as 
well as using differently coupled hardware accelerators. Header checksums for IP 
packets, TCP packets and UDP packets can be checked or calculated. In the follow-
ing, we will first describe the system setup with all types of hardware accelerators 
and afterwards present the results of our performance evaluation.  

4.1   System Setup 

As described in section 3.2, we use the RAPTOR2000 system to realize a GigaNetIC 
demonstrator. Fig. 6 shows the basic architecture of the demonstrator system, consist-
ing of two clusters. Each cluster includes four processor subsystems, wherein every 
N-Core has 32 KB local memory (cf. Fig. 4) for program code and local data. Two 
switch boxes interconnect the clusters and also connect Ethernet controllers to the 
system. Every time an Ethernet packet is received the Ethernet Controller sends the 
packet to the connected cluster. The communication controller stores the incoming 
data in the 32 KB packet memory. Subsequently, one of the processor elements can 
access the received packet. As mentioned earlier, the packet has first to be checked for 
correctness, before processing the actual packet data. This compute-intensive packet 
header verification can be done in software by the corresponding N-Core itself, as 
well as by a hardware accelerator. We have implemented three different interfaces for 
our hardware accelerators. For this system setup a hardware accelerator has been 
developed, which can check and calculate header checksums for TCP/IP or UDP/IP 
packets. The accelerator requires a chip area of 28.3 μm² and achieves a clock fre-
quency of 575 MHz at typical conditions (90nm technology). The closest coupling of 
the hardware accelerator is called PE coupled coprocessor (PE coprocessor). In this 
case the accelerator is connected directly to the processor system bus of one N-Core 
subsystem (cf. Fig. 4). Therefore, the hardware accelerator can only be used by the 
corresponding processor. In the second case, the hardware accelerator (WB HW acc) 
is connected to the Wishbone bus at cluster level (cf. Fig. 5). This accelerator is more 
loosely coupled and can be used by every N-Core subsystem of one cluster. The third 
implementation is the open switch most independent one: the hardware accelerator 
(CC HW acc) can be attached to every box port. Hence, it can be used by every CPU 
in the system. 

Once all headers of a received packet are verified, either by a processor or by a 
hardware accelerator, the packet itself can be processed. For our demonstrator system 
we have developed packet parsing algorithms, which search the packet data for  
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specific key words. If a TCP/IP packet contains one of those key words, the packet 
data can be altered or the packet may even be dropped. After processing the packet, 
new header checksums are calculated. Again, this can be done in software or by one 
of the hardware accelerators. At the end, the packet is send to the Ethernet controller 
and transmitted to its final destination. 

The application scenario may be used in packet parsing network devices, e.g., 
firewalls or spam filters. When the software validates every packet and searches for 
specific key words a packet can be dropped (firewall) or marked as potentially not 
relevant (spam filter). 

4.2   Analysis Results 

In this section, we introduce the results of a test series with software-based and 
hardware-accelerated packet processing, and evaluate these in respect to the various 
coupling possibilities of the hardware accelerators (cf. Fig. 2.4). When evaluating the 
performance results, the number of active processing units at the local bus must be 
taken into account. We will concentrate on two extreme cases, that is, one processing 
unit is exclusively active, or all four processing units are occupied with packet proc-
essing (cf. Fig 8). Hybrid cases of software processing and hardware-accelerated 
processing are also neglected. For the superior NoC, the numbers of active units are 
also of relevance. As we initially base our survey on a 32 PE system with a number 
of hardware accelerators adapted to the application scenario, there will be no note-
worthy impairment of the system [13]. 

For the processing, packets of characteristic size according to the Internet MIX 
(iMIX), i.e., Ethernet packets of 64, 570 and 1518 bytes, have been used. The pro-
posed hardware accelerator is about an order of magnitude faster than the processor 
element when both operate at the same clock frequency. The fact that a significantly 
higher clock frequency of the hardware accelerator would be possible is not taken into 
account here. With large packets the acceleration is higher than with smaller ones 
since the share of fixed operations in the total workload decreases in comparison to 
the data-dependent share.  

In this analysis, we differentiate between communication and calculation. Commu-
nication includes the addressing of the hardware accelerator, the delivery of control 
words and address pointers as well as additional data that may be required. When 
using the software-based variant, this part is omitted since the CPU does not have to 
perform additional communication with other hardware blocks. Calculation means the 
part of cycles that is required for the actual checking of the packet data. 

It becomes evident that the bus-related communication is no bottleneck for  
the software-based processing with four processing units. Only with more than four 
processors, we can determine a reduction of the processing speed, which is due to 
competing bus accesses. This is different for the hardware accelerator that is con-
nected to the local bus (WB HW acc). Here, the clearly higher processing speed  
becomes noticeable. Accordingly, the number of required cycles increases from 
27 (64 bytes packet / 1518 bytes packet) with one active processor to 72 (64 bytes 
packet) and 477 (1518 bytes packet) with four active processors, respectively. This is 
caused by delays arising through the bus arbitration and corresponds to an increase of 
the communication costs of 267 % and 1767 %. The costs of the communication with 
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Fig. 8. Comparison of software-based packet processing and HW accelerator-supported packet 
processing with various system couplings 

four active processors at the bus are in the same order of magnitude as the costs of 
calculation. This is also the case when using the accelerator connected to a switch-
box-port (CC HW acc). However, in this case, the local bus is relieved far more, and 
the wait cycles arise through the NoC. Therefore, this solution is offered especially 
for large systems where a multitude of CPUs target the compute-intensive tasks to a 
few specialized hardware accelerators that are accessible through the NoC. 

Two variants of the software-based processing can be distinguished. On the one 
hand, there is the variant, which works on the data in the shared memory of the clus-
ter, meaning every time this data is to be accessed by the corresponding CPU the bus 
is occupied. On the other hand, we provide a solution with which the data is copied 
into the local processor memory (local memory). The communication costs of this 
variant are in the same order of magnitude as the costs for calculation, whereas the 
costs for communication of the shared memory approach are zero. From that, this 
form of processing is worthwhile only if further operations occur on the packets such 
as any additional packet parsing as described in Sect. 4.1. This would relieve the bus 
after the usual packet examination and could finally lead to a speed-up in processing. 
Using a multiprocessor cache, also developed by us, instead of the normal local proc-
essor memory, the transfer of new packets could be accelerated by prefetching. This 
would also increase the throughput of the system. 

The operating time of the software-based calculation ranges from 6.1 cycles/byte 
(64 bytes packet) to 4.3 cycles/byte (1518 bytes packet), whereas the hardware accel-
erator approach requires only 0.4 cycles/byte (64 bytes packet) and 0.3 cycles/byte 
(1518 bytes packet), respectively. 

Fig 9 shows the maximum amount of packets that can be processed by a cluster with 
one and with four active CPUs for the three different packet sizes. This shows that 
maximum throughput can be achieved with the bus and NoC-coupled variants. The 
highest throughput with one active CPU is achieved by the bus-coupled hardware accel-
erator. Here, a throughput of 2.82 MByte/MHz is reached for 1518 bytes packets 
whereas the four processor variant reaches a maximum throughput of 6.9 MByte/MHz 
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Fig. 9. Possible processed packets per MHz for each processing variant 

in the NoC based solution (CC HW acc). In relation to our synthesis results this corre-
sponds to a maximum throughput of 1.814 GB per cluster at an operating frequency 
of 263 MHz. This, in turn, allows an examination of packets on Layer 3 and Layer 4, 
e.g., of approx. 900 ADSL2+ (16 MBit/s, Downstream) connections. With the soft-
ware-based variant in about 120 of these DSL connections could be processed under 
full load. Despite of the reduced clock frequency, the introduced demonstrator is able 
to process more than 86 MByte/s at 12.5 MHz. 

5   Conclusion 

In this paper, we have presented a scalable, IP (Intellectual Property)-based network 
processor architecture, which is adaptable to different application domains in respect 
to performance, power consumption and area requirements. We have characterized 
this architecture by key figures for achievable performance and area requirements 
based on elementary tasks for a firewall scenario. 

Our FPGA-based emulation environment RAPTOR2000 facilitates an early verifi-
cation of the application software and of the entire multiprocessor system in a real 
world network scenario. With this environment, we determine key architectural pa-
rameters for a broad range of networking applications and verify the functionality of 
our system early in the design phase. Especially for compute-intensive tasks, hard-
ware accelerators can simply be integrated at various architectural levels of the SoC. 

Concluding this work, we found that with the aid of our powerful GigaNoC, appli-
cation-specific architectures can be designed in a resource-efficient way. The  
coupling takes place either at the local bus or, with the presented communication 
controller, on an arbitrary port of a switch box. The system is easily adaptable to 
dedicated application scenarios, can be optimized, and is scalable to other domains of 
network processing. By using coprocessors, we achieved substantial increases in 
performance. The embedded PEs could be strongly relieved and are thus available for 
additional tasks. Our future work comprises the integration of additional hardware 
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accelerators such as crypto engines for security aspects of new network services. 
Currently, we are in the process of taping out the initial silicon for the prototype reali-
zation in 90nm. 
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Abstract. As applications tend to grow more complex and use more
memory, the demand for cache space increases. Thus embedded proces-
sors are inclined to use larger caches. Predicting a miss in a long-latency
cache becomes crucial in an embedded system-on-chip(SOC) platform
to perform microarchitecture-level energy management. Counting Bloom
filters are simple and fast structures that can eliminate associative lookup
in a huge lookup space. This paper presents an innovative segmented de-
sign of the counting Bloom filter which can save SOC energy by detecting
misses aiming at a cache level before the memory. The filter presented
is successful in filtering out 89% of L2 cache misses and thus helps in
reducing L2 accesses by upto 30%. This reduction in L2 Cache accesses
and early triggering of energy management processes lead to an overall
SOC energy savings by up to 9%.

1 Introduction

The increasing complexity and shrinking feature size of present day micropro-
cessors has led to energy becoming an important design constraint. Energy is
more of an issue in embedded cores that are a part of System-on-chips (SoCs)
for handheld devices, where the prime concern is battery life. However, also due
to shrinking feature size designers have more transistors per die at their dis-
posal. This has led to large caches, which are major consumer of both static and
dynamic power in embedded SoCs. This paper presents an innovative design to
help reduce energy consumption in caches and also the SoC platform comprising
of the CPU and multi-level caches.

The memory hierarchy of most processors contains single or multi-level caches
designed as SRAM memories followed by a large DRAM backstore. Since an
access to DRAM memory may take 100s of cycles,therefore in in-order processors,
and in some cases for out of order processors, severe stalls may occur on a cache
miss in the cache-level before the DRAM. Hence, the cache miss event can be
used as a trigger for several microarchitectural energy management processes in
the SoC. The energy management processes may include but are not limited to
putting all caches in a state preserving low power drowsy mode and for power
gating all or part of the processor core.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 283–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Bloom filters are simple and fast structures that can eliminate associative
lookup when the lookup address space is huge. They can replace associative tables
with a simple bit vector that can precisely identify addresses that have not been
observed before. This mechanism provides early detection of events without re-
sorting to the associative lookup buffers. This has significant implications on the
performance and power consumption considering the fact that Bloom filters are
very efficient hardware structures in terms of area, power consumption and speed.

This paper presents an innovative segmenteddesign of the counting Bloom filter
that saves energy by detecting a miss in the cache level before the memory. The
detection of the miss happens much earlier than the actual request reaches the
particular cache. The early detection would allow the processor to make the energy
managementprocesses quite early in the memoryhierarchy. Starting energy saving
measures early provides more energy saving opportunities than in the case where
the measures are taken after a miss in the lowest cache level is detected.

The rest of this paper is arranged as follows. Section 2 explains the basics of
Bloom filters. Section 3 describes the novel segmented Bloom filter design and
elucidates how it aids in saving energy. Then, Section 4 describes the simulation
methodology and the energy savings obtained using the segmented Bloom filter
and presents the experimental results. Section 5 discusses prior art. Finally,
Section 6 concludes the paper.

2 Bloom Filters

The structure of the original Bloom filter idea as described by Bloom [1] is shown
in Figure 1a. It consists of several hash functions and a bit vector. A given N -bit
address is hashed into k hash values using k different random hash functions.
The output of each hash function is an m-bit index value that addresses the
Bloom filter bit vector of 2m where m is much smaller than N.

Hash Function1

Bit Vector

Address (N bits)

m bits

0

1

2m-1

m bits

L-bit Counters

Hash Function2

Hash Functionk

Hash Function1

Address (N bits) Hash Function2

Hash Functionk

Bit Vector

0

1

2m-1

(a) (b)

m bits

m bits

m bits

m bits

Fig. 1. (a) Original Bloom filter, (b) counting Bloom filter
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Each element of the Bloom filter bit vector contains only 1 bit that can be
set. Initially, the Bloom filter bit vector is zero. Whenever an N -bit address is
observed, it is hashed to the bit vector and the bit value hashed by each m-bit
index is set. When a query is to be made whether a given N -bit address has been
observed before, the N -bit address is hashed using the same hash functions and
the bit values are read from the locations indexed by the m-bit hash values. If
at least one of the bit values is 0, this means that this address has definitely not
been observed before. This is called a true miss. On the other hand, if all of the
bit values are 1, then the address may have been observed but cannot guarantee
it. If the address has not been observed but the bit vector indicates it does, this
is called a false hit.

As the number of hash functions increases, the Bloom filter bit vector is
polluted much faster. On the other hand, the probability of finding a zero during
a query increases if more hash functions are used. The major drawback of the
original Bloom filter is the high false hit rate because the filter can get polluted
quickly and filled up with all 1s and it starts signalling false hits.

The original Bloom filter has to be quite large to reduce the false hit rate since
once a bit is set in the filter there is no way we may reset it. So as more bits are
set in the filter, the number of false hits increase. To improve performance of this
kind of filter a mechanism for resetting entries set to one is needed. The counting
Bloom filter as shown in Figure 1b is proposed by Fan et al. in [2], which aims at
web cache sharing, provides the capability of resetting entries in the filter. For a
counting Bloom Filter, an array of counters is added along with the bit vectors
of the classical Bloom Filter. When a new address is observed for addition to the
Bloom filter, each m-bit hash index addresses to a specific counter in an L-bit
counter array. Then, the counter is incremented by one. Similarly, when a new
address is observed for deletion from the Bloom filter, each m-bit hash index
addresses to a counter, and the counter is decremented by one. If more than one
hash index addresses to the same location for a given address, the counter is
incremented or decremented only once. If the counter becomes non-zero, the bit
in the Bloom filter bit vector addressed by the same m-bit index is set. If the
counter becomes zero, then the bit is reset. Queries to a counting Bloom filter
are similar to the original Bloom filter.

3 Segmented Bloom Filter Design

We propose an innovative segmented counting Bloom filter as shown in Figure 2
where the counter array of L bits per counter is decoupled from the bit vec-
tor and the hash function is duplicated on the bit vector side. The cache line
allocation/de-allocation addresses are sent to the counter array using one hash
function while the cache request address from the CPU is sent to the bit vector
using the copy of the same hash function. The segmented Bloom filter design
allows the counter array and bit vector to be in separate physical locations.

A single duplicated hash function is sufficient as our experiments show that
the filtering rate of a Bloom filter with a single hash function is as good as the
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Fig. 2. Segmented Bloom filter

one with two or more hash functions. The implemented hash function chops the
physical address into several chunks of hash index long and bitwise XOR them to
obtain a single hash index. The number of bits needed per counter (L) depends
on how the hash function distributes indeces across the Bloom filter. In the worst
case, if all cache lines map to the same counter, the bit-width of the counter must
be at most log2(Numofcachelines) to prevent overflows. In reality, the required
number of bits per counter is much smaller than the worst-case.

The counter array is updated with cache line allocation and de-allocation
operations. Whenever a new cache line is allocated, the address of the allocated
line is hashed into the counter array and the associated counter is incremented.
Similarly, when a cache line is evicted from the cache, its associated counter is
decremented.

The counter array is responsible for keeping the bit vector up-to-date. The
update from the counter array to the bit vector is done only for a single bit
location if and only if the counter becomes zero from one during decrement
operation or one from zero during increment operation. The following are the
steps taken for updating the bit vector:

1) The L-bit counter value is read from the counter array prior to an increment
or decrement operation.

2) The counter value is checked for a zero boundary condition by the
zero/nonzero detector whether it will become non-zero from zero or zero
from non-zero inferred by the increment/decrement line.

3) If a zero boundary condition is detected, the bit update line is asserted,
which forwards the hash index to the bit vector.

4) Finally, the bit write line is made 1 to set the bit vector location if the
counter will become non-zero. Otherwise, the bit write line is made 0 to
reset the bit vector location.

5) If there is no zero boundary condition, then the bit update is not activated,
which disables the hash index forwarding to the bit vector.

When the CPU issues a lookup in the cache, the cache address is also sent to
the bit vector through the duplicated hash function. The hash function generates
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an index and reads the single bit value from the vector. If the value is 0, this is
a safe indication that this address has never been observed before. If it is 1, it
is an indefinite response, i.e. can be either miss or hit.

There are several reasons for designing a segmented Bloom filter: 1) We only
need the bit vector, whose size is smaller than the counter, to know the outcome
of a query to the Bloom filter. Decoupling the bit vector enables faster and low
power accesses to the Bloom Filter. So, the result of a query issued from the core
can be obtained by just looking at the bit vector. 2) The update to the counters
is not time critical with respect to the core. So, the segmented design allows
the counter array to run at a much lower frequency than the bit vector. The
vector part being smaller provides a fast access time, whereas the larger counter
part runs at a lower frequency to save energy. The only additional overhead of
this segmented design is the duplication of the hash function hardware. Using a
single hash function in the Bloom filter also simplifies the implementation and
duplication of the hash function. 3) The decoupled bit vector can sit between the
L1 and L2 caches or can also be integrated into the core. For systems in which
the L1 and L2 caches are inclusive, the integrated bit vector can also filter out
the L1 instruction and data caches if an L2 cache miss is detected.

3.1 SoC Energy Management

This section explains how the segmented Bloom Filter detects L2 Cache misses,
and saves the overall system energy without losing performance in an in-order
processor. In an in-order processor with two cache levels, severe stalls may occur
due to an L2 Cache miss. This is because after a data access misses the L2 cache,
it accesses the DRAM memory, which may take more than 100 cycles, depending
on the processor frequency before the data returns.

By detecting an L2 cache read miss early with a segmented Bloom filter, we
can save static energy of the system by turning off all or part of the core and by
putting the L1 and L2 caches into drowsy or low-power state-preserving mode
until the data returns. The overhead incurred by this technique is turning on and
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turning off of the core and caches. This overhead is not much of a concern because
the turn-off period overlaps with the memory access, which may take hundreds
of cycles. Also, since it is known exactly when the data returns from memory,
the turned-off units can be turned on in stages to save power. In addition to
reducing static energy, dynamic energy of the system can also be reduced by
preventing an L2 Cache access. Not only does this save the dynamic energy of
the L2 but also reduces the bus energy consumption due to reduction in bus
switching activity.

The segmented Bloom filter is shown in Figure 3 for a SOC in which the L1
and L2 caches which are not assumed to exhibit inclusive behaviour. In such a
system, the bit vector is located just below the L1 caches. The CPU issues a
cache address to the L1 data cache. On a miss, the bit vector snoops the address
and signals in a cycle if the L2 cache does not have the cache line. On receiving
the signal, the CPU is powered down and the L1 I and D and L2 caches can be
put into the drowsy mode. The access to the L2 cache is also stopped.

Figure 4 shows a system where the L2 cache is inclusive with the L1 caches.
Here, the bit vector is placed inside the core and can detect L2 cache misses before
they are sent to the L1 caches. In a cache system using inclusion property, an L2
miss is also a miss in the L1 cache. Thus, a cache request address can be sent to
directly to memory when a miss is detected by the bit vector inside the core.

For both systems, the bit vector may not be 100% consistent with the counter
array as there is some delay occuring between the counter array and bit vector.
This situation happens if incrementing the counter in the counter array is de-
ferred till the time of a linefill. At that moment, the corresponding bit location
in the bit vector might be 0. So, if the counter changes from 0 to 1, the counter
array sends an update to the bit vector to set the bit location in the vector.
Before this update reaches the bit vector, if the CPU accesses to the same bit
location, then it reads 0 and assumes that this line is not in the cache and there-
fore forwards the request to memory. This drawback is eliminated if the counter
is incremented at the time of the miss, rather than the linefill. By the time the
actual linefill occurs, the bit vector will have been updated by the counter array.
We see that segmenting the Bloom Filter allows the bit vector to be placed in
a different physical location leading to more energy saving opportunities. This
concept may be extended to cases where there are more than two levels of caches
and the segmented bloom filter is used to filter out requests to the cache that is
accessed just before DRAM memory. In such a case, though the counter array
would be updated for the cache before memory, the bit vector may be kept at
a place where it would be accessible with any of the previous cache levels, thus
providing early miss indication.

4 Experimental Results

4.1 Experimental Framework and Benchmarks

We use SimpleScalar [3] to model the behavior of caches and segmented Bloom
filter. The CPU is an in-order processor that stalls on a load operation, which is
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a typical behavior of many embedded processors. We compute the total energy
consumption of the on-chip system including the CPU, caches and the Bloom fil-
ter. Our baseline model is the system with no Bloom filter. We use a total of eight
applications, bzip2, gcc, gzip, mcf, parser, vortex and vpr from SPECint2000,
lame MP3 player application from MiBench [4]. 2 billion instructions are sim-
ulated in the SPECint benchmarks while lame runs to completion. SPECInt
benchmarks were chosen because they are known to stress the L2 cache. Only a
few embedded applications such as lame could stress the L2 cache.

Table 1. Architectural assumptions

Drowsy-mode in/out time = 10 cycles
CPU turn-on/off time = 10 cycles
Shutdown Penalty = 20 cycles
Bit vector access time = 1 cycle
Memory access time = 100 cycles
CPU Energy = 2 x L1 Cache Energy
Cache Drowsy Energy = 1/6 x Cache Leakage Energy

Other pertinent architectural assumptions or fixed-parameters are listed in
Table 1. The following assumptions are made to estimate the energy consump-
tion of the baseline system (i.e. system without the Bloom filter) and a low-power
system with the segmented Bloom filter. The time taken to put the caches in
drowsy mode is 10 cycles, and it also takes another 10 cycles to put them into the
normal mode. Similarly, the time taken to turn the CPU components off is also
assumed to be 10 cycles. The total time for turning on and turning off, that is 20
cycles is called the shutdown penalty. The access time to the bit vector takes one
cycle while the memory access time is 100 cycles. We also assume that the CPU
energy consumption is twice the total L1 instruction and data cache energy con-
sumption. This is a realistic assumption as embedded processors tend to have this
trend as illustrated in [5]. The cache leakage energy in the drowsy mode is taken
to be one sixth of the cache leakage energy as estimated by Flautner et al in [6].

We experiment two different cache architecture configurations as shown in
Table 2. The first configuration has 2-way set-associative 8KB L1 instruction
and data caches, 4-way 64KB L2 cache, a 8192-bit Bloom filter bit vector and a

Table 2. Architectural configurations

Description Configuration 1 Configuration 2
L1 I and D cache 2-way 8KB 2-way 32KB
L2 cache 4-way 64 unified 4-way 256 unified
Bit vector size 8192 bits 32768 bits
Counter array size 8192 3-bit counters 32768 3-bit counters
L1 latency (cycles) 1 4
L2 latency (cycles) 10 30
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Bloom filter counter array of 8192 entries with 3-bit1 counter per entry. The line
size is 32B for both L1 and L2 caches. The latencies of the L1 instruction and
data caches and L2 cache are 1 and 10 cycles, respectively. This configuration
represents low-end market such as industrial and automative applications in the
embedded domain.

The second configuration includes 2-way set-associative 32KB L1 instruction
and data caches, 4-way 256KB L2 cache, each has a 32B line size. The Bloom
filter consists of a 32768-bit bit vector and a counter array of 32768 entries with
3-bit counter per entry.

The latencies of the L1 instruction and data caches and L2 cache are 4 and
30 cycles, respectively. This configuration represents the domain where slightly
larger scale applications are targeted, e.g. consumer and wireless applications.

We have chosen the number of Bloom Filter entries to be around four times
the number of cache lines. We experimented with different BF sizes and found
this emperical ratio to provide best results. The area overhead for the Bloom
Filters is about 6% of the L2 Cache area for both the configurations.

4.2 Energy Modeling

The L1 caches, L2 cache, bit vector and the counter array were designed using
the Artisan 90nm SRAM library [7] in order to get an estimate on the dynamic
and static energy consumption of the caches and the segmented Bloom filter. The
Artisan SRAM generator is capable of generating synthesizable verilog code for
SRAMs in 90nm technology. The generated datasheet gives an estimate of the
read and write power of the generated SRAM. The datasheet also provides a
standby current from which we can estimate the leakage power of the SRAM.

We have two system energy models. The first model is the baseline model in
which the dynamic and static energy consumption of the CPU, L1 instruction
and data caches and the L2 cache are calculated. The second system model is the
low-power system model in which the dynamic and static energy consumption
of the bit vector and counter array is also added to the rest of the system com-
ponents. Table 3 shows the abbreviation of the variables used in the formulation
to evaluate the system energy of the baseline and low-power system models.

Baseline System Energy Model.

Cycoff = NumL2readmiss ∗ (Latmem − SP )

Cycon = Cyctot − Cycoff

Ebase
cpu = Cycon ∗ CPUdyn + Cycoff ∗ CPUleak

Ebase
$ (type) = Numcacheaccess ∗ $dyn + Cycon ∗ $leak + Cycoff ∗ $dr

Ebase
sys = Ebase

cpu + Ebase
$ (I) + Ebase

$ (D)

+Ebase
$ (L2) (1)

1 Although the worst case number of bits required per counter is 12, we observe in
our experiments that the value of each counter never exceeds 4. Thus we use 3 bits
per counter to save energy and have a policy of disabling a particular counter if it
saturates.
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Table 3. Abbreviations and their descriptions

Abbreviation Description
Cyctot Total Number of Cycles
Cycoff Number of Idle Cycles
Cycon Number of Active Cycles
Numcacheaccess Number of Cache Accesses
NumL2readmiss Number of L2 Read Misses
NumL2access Number of L2 Accesses without filtering
NumL1access Num of L1 Accesses
NumL2filt Number of Filtered L2 Misses
Latmem Memory Latency
SP Shutdown Penalty
LatL2 L2 latency
Latvector Bit vector latency
CPUdyn CPU Dynamic Energy per Cycle
CPUleak CPU Leakage Energy per Cycle
$dyn Cache Dynamic Energy per Cycle
$leak Cache Leakage Energy per Cycle
Cachedr Cache Drowsy Energy per Cycle
BVdyn Bit Vector Dynamic Energy per Cycle
BVleak Bit Vector Leakage Energy per Cycle
BVdr Bit Vector Drowsy Energy per Cycle
Counterdyn Counter Array Dynamic Energy per Cycle
Counterleak Counter Array Leakage Energy per Cycle
Counterdr Counter Array Drowsy Energy per Cycle

Low-Power System Energy Model. We now estimate the energy consump-
tion of the low-power system model having L1 and L2 caches which are assumed
to exhibit inclusive behaviour with the segmented Bloom filter as follows:

Cycoff = NumL2readmiss ∗ (Latmem − SP ) + NumL2filt ∗ (LatL2 − Latvector)

Cycon = Cyctot − Cycoff

Elow
cpu = Cycon ∗ CPUdyn + Cycoff ∗ CPUleak

Elow
L2 = (NumL2access − NumL2filt) ∗ L2dyn + Cycon ∗ L2leak + Cycoff ∗ L2dr

Elow
L1 (type) = NumL1access ∗ L1dyn + Cycon ∗ L1leak + Cycoff ∗ L1dr

Elow
vector = NumL2access ∗ BVdyn + Cycon ∗ BVleak + Cycoff ∗ BVdr

Elow
counter = NumL2access ∗ Counterdyn + Cycon ∗ Counterleak + Cycoff ∗ Counterdr

Elow
sys = Ecpu + Elow

L1 (I) + Elow
L1 (D) + Elow

L2 + Elow
vector + Elow

counter

If the L1 and L2 caches are inclusive, then the energy consumption of the L1
cache is determined by the total number of L1 accesses less the number of filtered
L2 misses. Also, the number of L2 accesses is replaced by the number of L1
accesses in the bit vector energy equation.

Elow
L1 (type) = NumL1access − NumL2filt ∗ L1dyn + Cycon ∗ L1leak + Cycoff ∗ L1dr

Elow
vector = NumL1access ∗ BVdyn + Cycon ∗ BVleak + Cycoff ∗ BVdr
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Finally, the percentage savings in the total system(Dynamic + Leakage) en-
ergy is defined by the following equation:

% Savings =
Ebase

sys − Elow
sys

Ebase
sys

(2)

4.3 Cache and Bloom Filter Statistics

The cache miss rates for the L1 instruction and data caches and L2 cache and
the miss filter rates of the Bloom filter for the two configurations are provided
in Table 4 and Table 5. The miss filter rates in the last column of the tables are
the percentage of the L2 misses that the Bloom filter can detect. For instance,
94% of the L2 misses can be detected by the Bloom filter in gcc for the first
configuration. The remaining 6% of them cannot be detected, i.e. false hit rate.
The average miss filter rates across all benchmarks are 86% and 88% for both
configurations. These rates imply that a great majority of the L2 misses can be
caught by the Bloom filter. An 88% filtering of L2 misses also implies that the
Bloom Filter is able to reduce accesses to the L2 cache by more than 30%.

Table 4. Cache miss and miss filtering rates for configuration 1

Benchmark L1 I L1 D L2 Bloom Filter
bzip2 4.82% 0.002% 45.55% 83.21%
gcc 10.52% 4.19% 48.56% 94%
gzip 5.66% 0.01% 45.99% 96.12%
mcf 26.21% 1.24% 58.07% 87.60%
parser 6.08% 0.68% 36.68% 82.76%
vortex 3.84% 13.24% 21.41% 84.49%
vpr 3.64% 2.14% 13.35% 81.47%
lame 2.76% 0.78% 27.61% 81%
MEAN 7.84% 2.78% 37.15% 86.33%

Table 5. Cache miss and miss filtering rates for configuration 2

Benchmark L1 I L1 D L2 Bloom Filter
bzip2 3.54% 0.0002% 48.90% 88.36%
gcc 10.01% 1.55% 55.92% 99.07%
gzip 4.72% 0.001% 12.45% 95.25%
mcf 25.12% 0.0001% 63.74% 83.43%
parser 3.60% 0.05% 31.81% 86.38%
vortex 1.36% 4.84% 5.88% 77.96%
vpr 1.71% 0.21% 39.19% 83%
lame 0.99% 0.30% 12.36% 93.88%
MEAN 6.38% 0.87% 33.78% 88.42%
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4.4 Energy Consumption Results

Table 6 shows the L2 dynamic energy savings for the two configurations with
respect to the L2 cache in the baseline model. gzip, parser, vortex and lame
suffer a drop in L2 dynamic energy savings in the second configuration because
of improvements in L2 miss rates for using a much larger L2 cache. As the L2 miss
rate improves, the number of misses of which the Bloom filter can take advantage
to shutdown the CPU and caches diminishes. The L2 energy savings drop rates in
gzip, vortex and lame are more dramatic because their miss filtering rates also
drop in the second configuration except for lame where it actually improves.
However, this increase in the miss filtering rate is not sufficient to boost the L2
energy savings for lame. The miss filtering rate for parser also improves in the
second configuration. This explains why the drop in L2 energy savings in the
second configuration for parser is not as significant as the others.

In summary, using the segmented Bloom filter provides an average of 33% and
30% savings in the L2 dynamic energy respectively for the two configurations.

Figure 5 plots the SoC static energy savings. The SoC static energy includes
the leakage energy of the CPU, L1 and L2 caches in the baseline model, and

Table 6. L2 cache energy savings

Benchmark Configuration 1 Configuration 2
bzip2 37.90% 43.21%
gcc 45.65% 55.40%
gzip 44.21% 11.85%
mcf 50.87% 53.18%
parser 30.35% 27.47%
vortex 18.09% 4.59%
vpr 10.88% 32.53%
lame 22.37% 11.60%
MEAN 32.54% 29.98%
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Fig. 5. Static SoC energy results
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Fig. 6. Total SoC energy results

the leakage energy of the bit vector and the counter array are accounted for the
low-power SoC model. In addition to the two configurations, we also show the
results of the inclusive versions for each configuration. In the inclusive version,
the bit vector is embedded within the core and filters out the L1 instruction and
data cache accesses as well.

The percentage increases in the system static energy savings are quite signifi-
cant for gcc and mcf from a smaller configuration to larger one. In configuration
2, 24% and 21% of the static energy consumption can be saved by using the
segmented Bloom filter for gcc and mcf, respectively. The percentage increase in
gcc is higher than mcf because the L2 miss rate increases and the miss filtering
rate improves in gcc . Similar to the L2 dynamic energy results, when switching
from a smaller configuration to a larger one, gzip, vortex and lame benchmarks
observe some percentage loss in the static energy savings due to lower L2 miss
rates. However, the static energy savings of parser in configuration 2 is slightly
higher than that of configuration 1 even though its L2 miss rate is lower. This is
because the high miss filtering rate in configuration 2 is sufficient to boost the
energy savings.

The inclusive versions for both configurations show slightly better savings
than the cases where inclusion is not assumed, for all benchmarks because the
inclusive configuration allows early turning off the system components, which
reduces the system static energy consumption.

The average system static energy savings are 3.9%, 4.4%, 7.7% and 8.7% for
configuration 1, its inclusive version, configuration 2 and its inclusive version,
respectively.

Figure 6 plots the total SoC energy savings in percentage. The total SoC
energy is defined as the total dynamic and static energy consumed by the CPU,
L1 caches, L2 cache for the baseline model. This also includes the dynamic and
static energy consumption of the bit vector and the counter array for the low-
power SoC model. Here, we see a very similar trend to the system static energy
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savings graph above in terms of rise and falls in the system total energy savings
when changing to a larger configuration from a smaller one.

Similar to the SoC static energy reduction, the inclusive versions for both
configurations reduces the total energy more than the cases where inclusion
property is not assumed, for all benchmarks because of reductions in the number
of L1 cache accesses, which reduces the dynamic as well as the static energy
consumption.

The average total SoC energy savings for the first configuration and its in-
clusive version are 3.6% and 4.2%, respectively. These rates go up to 7.2% and
8.1% for the second configuration and its inclusive version. The reason for the
additional improvement is due to much higher the L2 latency in the second con-
figuration. A large amount of static energy can be saved during the long-latency
L2 accesses by turning off the CPU, caches and also the counter array. Since
the bit vector access time is constant, the effective gain in the total energy with
increasing L2 latencies (i.e. larger L2 caches) also rises.

5 Related Work

The initial purpose of Bloom Filters was to build memory efficient database ap-
plications. Bloom filters have found numerous applications in networking and
database areas [8] [9] [10] [11] [12] [13]. Bloom filters are also used as microar-
chitectural blocks for tracking load/store addresses in load/store queues. For
instance, Akkary et al. [14] uses one to detect the load-store conflicts in the store
queue. Sethumadhvan et al. [15] improve the scalability for load store queues
with a Bloom filter. More recently, Roth [16] uses a Bloom filter to reduce the
number of load re-executions for load/store queue optimizations.

The earliest example of tracking cache misses with a counting Bloom filter is
given by Moshovos et al. [17], which proposes a hardware structure called Jetty
to filter out cache snoops in SMP systems. Each processing node has a Jetty that
tracks its own L2 cache accesses, and snoop requests are first checked in the Jetty
before searching the cache. This is reported to reduce snoop energy consumption
in SMP systems. A Jetty-like filter is also used by Peir et al. [18] for detecting
load misses early in the pipeline so as to initiate speculative execution. Similarly,
Mehta et al. [19] also uses a Jetty-like filter to detect L2 misses early so that
they can stall the instruction fetch to save processor energy. We, on the other
hand, propose a decoupled Bloom filter structure where the small bit vector can
potentially be kept within the processor core to perform system dynamic and
static energy conservation of L1 and L2 caches and the core itself.

Memik et al. [20] proposes some early cache miss detection hardware tech-
niques encapsulated as Mostly No Machine(MNM) to detect misses early in the
multi-level caches below L1 (i.e. L2, L3 and etc). Their goal is to reduce dynamic
cache energy and to improve the performance by bypassing the caches that will
miss. The MNM is a multi-ported hardware structure that collects block re-
placement and allocation addresses from these caches and can be accessed after
the L1 access or in parallel with it. In comparison to the MNM, the segmented
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Bloom filter design allows the processor to access only the bit vector, which is
smaller and much faster. Potentially, it can run at the processor frequency. Since
the counter array is located at the L2 cache, it can run at the same clock fre-
quency as the slower L2 cache. This is a more energy-efficient design than the
MNM. Besides, the bit vector can also be located inside the processor so that
the L1 instruction and data cache misses can also be filtered out in the case of
an inclusion between the L1s and L2. This way, we can save L1 I and D cache
dynamic energy by not accessing them at all, and static energy by putting them
into a drowsy mode. The MNM did not discuss static energy consumption in
the caches, CPU or filters.

6 Conclusion

This paper introduces a segmented counting Bloom filter to perform microarchi-
tectural energy management in an embedded SoC environment and evaluates its
energy saving capabilities. We have shown that the segmented Bloom filter tech-
nique can be an efficient microarchitectural mechnanism for reducing the total
SoC energy consumption. A significant part of the total SoC energy including
L2 dynamic cache energy, L1, L2 and CPU static static energy can be saved in a
system where the cache hierarchy is not assumed to exhibit inclusive behaviour.
However, the segmented design is shown to be particularly more energy-efficient
if the cache hierarchy exhibits inclusive behaviour. This is because the segmented
design provides the opportunity to make the bit vector accesible before the L1
Cache access and allows for detection of misses much earlier in the memory hi-
erarchy. The segmented counting bloom filter has been shown to filter out more
than 89% of L2 misses, causing a 30% reduction in accesses to the L2 Cache.
This results in a saving of more than 33% of L2 Dynamic Energy. The results
also demonstrated that the overall SoC energy can be reduced by up to 9% using
the proposed segmented Bloom filter.

As future embedded applications demand more memory and shrinking feature
sizes allow more transistors on a die, embedded processors would be inclined
to have larger caches. Having these longer latency caches would provide more
opportunities for the segmented design to facilitate microarchitectural energy
management earlier in the memory hierarchy. Therefore cache miss detection in
general and the segmented filter design presented in this paper would play a key
role in energy management for future embedded processors.
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Abstract. Early energy estimation is increasingly important in MultiProcessor
System-On-Chip (MPSoC) design. Applying traditional approaches, which con-
sist in delaying the estimation until the architectural layout has been produced, is
inefficient and prevents the rapid exploration of alternative architectures. In this
paper, we present a framework for architectural exploration as part of MPSoC de-
sign. Our framework allows configurations that offer a good performance/energy
tradeoffs to be found early in the design flow. The hardware components, de-
scribed at the Cycle-Accurate Bit-Accurate (CABA) level of SystemC, were
taken from the SoCLib library. For each component in the library, we developed
an energy model using both physical measurements and analytical models of en-
ergy consumption. These models indicate a good accuracy/speed tradeoffs. Plug-
ging the energy models into the SoCLib architectural simulator makes it easy to
estimate the application’s performance and energy consumption. The effective-
ness of our method is illustrated through design space exploration (DSE) for a
parallel signal processing application.

1 Introduction

As advances in technology lead to smaller and smaller feature sizes, in accordance with
Moore’s law, more and more transistors will be integrated on a single die. Such huge
transistor budgets stress designers’ capacity to design and verify the resulting very com-
plex chips, making the gap between chip complexity and the productivity of the logic
design wider and wider. Thus, the multiprocessor system-on-chip (MPSoC) architecture
becomes an incontrovertible solution for the embedded systems designed for applica-
tions that require intensive parallel computations. MPSoC are generally very heteroge-
neous, that can, for example, contain memories (Cache, SRAM, FIFO...), processors
(MCU, DSP...), interconnecting elements (Bus, Crossbar, NoC...), I/O peripherals and
FPGA [8]. This heterogeneity makes the DSE of such systems one of the most important
design challenges. Increases in clock frequency, IP multiplicity and silicon integration
are accompanied by a dramatic increase in energy consumption. Thus, in addition to
traditional performance criteria, such as area and execution speed, it has become imper-
ative to take energy consumption into account when designing MPSoC.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 298–310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In any MPSoC design flow, an efficient architectural exploration requires a set of
tools capable of estimating performance and energy consumption at different abstrac-
tion levels. The availability of such estimators at different levels allows designers to
make fast decisions at several design stages, which reduces the exploration space, short-
ens the time to market and increases the design team’s productivity. Unfortunately, to
our knowledge, there are very few tools that allow rapid and accurate energy consump-
tion evaluation for MPSoC. To remedy this problem, we have developed a flexible ar-
chitectural exploration environment that allows energy consumption to be estimated at
the cycle-accurate bit-accurate (CABA) level. This framework provides accurate esti-
mates within a reasonable simulation time. It will be used in our future research to allow
performance and enrgy consumption to be estimated at higher levels.

This paper in organized as follows. An overview of related work on system perfor-
mance and energy consumption estimation at different abstraction levels is given in sec-
tion 2. Section 3 describes the major estimation techniques at the CABA level. Details
about our energy consumption models are presented in section 4. Section 5 presents
experimental results for a parallel version of the DCT application, and section 6 offers
our conclusions and prospects for future research.

2 Related Work

Significant research efforts have been devoted to developing tools for evaluating perfor-
mance and energy consumption at the different abstraction levels in embedded system
design. In the existing tools, performance and energy consumption are generally evalu-
ated at four different levels:

– the functional level, at which system behaviour is inaccurate and un-timed;
– the TLM (Transactional Level Model) level, at which time is introduced approxi-

mately;
– the CABA (Cycle Accurate-Bit Accurate) level, at which the system is described

in detail with respect to time; and
– the Register Transfer Level or RTL (i.e. the physical level), at which the description

is given at a low level that corresponds precisely to physical module’s structure and
behaviour.

Among the existing tools for low abstraction levels we can mention, SPICE [4],
Diesel [12] and PETROL [11], which operate at the RTL level. These tools are fairly
accurate, but require significant amount of simulation time, because each component
must be estimated at very low levels. At such low level, it is very hard to explore differ-
ent complex architecture alternatives because many details must be set.

To reduce the simulation time, several studies have proposed evaluating system per-
formance at higher abstraction levels. These tools use an architectural level simulator to
evaluate system performance and an analytic power model to estimate consumption for
each platform component. Wattch [7] and Simplepower [15] are two of the tools avail-
able for this level. With these two tools, the power consumption of the main internal
units is estimated using power macro-models, produced during lower-level simulations.
The contributions of the internal unit activities are calculated and added together dur-
ing the execution of the program on a micro-architectural simulator. In our approach,
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the functional unit activities are also added together to evaluate the dynamic part of the
energy consumption.

For the functional level, Tiwari et al. [14] have introduced the concept of Instruction
Level Power Analysis (ILPA). They associate a power consumption model with instruc-
tions or instruction pairs, which are characterized using measurements on a real chip.
The power consumed by a program running on the processor can then be estimated by
using a standard instruction-set simulator to extract instruction traces, and then adding
up the total cost of the instructions. Estimation at high levels reduces the simulation
time and thus permits a rapid exploration. However, the higher the description level, the
more difficult it is to produce sufficiently accurate estimates. In this paper, we propose
an approach that solves the problem of the accuracy/speed trade-off.

All the studies mentioned above concern single-processor Systems-on-Chip (SoC).
To our knowledge, little research has been devoted to performance and energy consump-
tion estimations for architectural exploration in MPSoC design. In fact, we are aware of
only one recently published approach that allows cycle-accurate power estimation for
multiprocessor systems [10]. That approach, called MPARM, focus on the exploration
for the cache components. This approach is limited because the authors used in-house
low level energy models. Our approach does not have this limitation as we provide an
open and flexible environment for performance and power consumption estimation at
the CABA level of MPSoC design.

3 Energy Consumption Estimation at CABA Level

Compared to lower levels, estimations done at the CABA level are sufficiently rapid
to allow the entire multiprocessor system to be analyzed in a reasonable time. Doing
the estimations at this level permits flexibility in the choice of performance or energy
model parameters for each component, which makes it possible to separately evalu-
ate the processing part (processor and memory activities) and the communication part
(interconnection network activity).

The total energy consumption of a given system is obtained by adding the consump-
tion of each system component together. Two types of energy consumption can be
distinguished: dynamic consumption, which corresponds to component activity (e.g.,
internal circuit switching), and static consumption, which corresponds to leakage cur-
rents. For a long time, dynamic power consumption has been considered more signif-
icant than static consumption. However, this point of view changed with the advent of
new sub-micron technologies, for which the two types of consumption both have their
degree of importance. For this reason, real measurements with low level tools remain
the most accurate solution.

For this study, we developed energy models for the main components in the SoCLib
MPSoC architecture: the processor, the cache memory, the shared SRAM memory and
the interconnection network. We integrated these models into the SoCLib simulator,
taking the architectural and technological parameters into account. Our energy estima-
tion strategy is based on identifying each component’s pertinent activities. For this, a
counter is allotted to each kind of activity, and these counters are incremented during
the simulation if the corresponding activity occurs during the current cycle. Thus, the
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Fig. 1. Performances and energy estimation at CABA level

number of activity occurrences is obtained for each component. An energy consump-
tion cost is also evaluated for each activity, calculated from the developed power models
and from physical measurements.

The application’s total energy consumption is calculated using the following
equation:

E =
∑

i

Ni × Ci (1)

Ni: Number of times where the activity i is executed
Ci: Energy consumption for one occurrence of activity i

Figure 1 shows our estimation strategy in detail. First, the architectural parameters
(e.g., number of processors, cache size) are specified. Interval by interval, or at the end
of the simulation, the values on the activity counters are transmitted to the energy con-
sumption models to calculate the energy dissipation per interval or the total dissipation.
The consumption simulator contains energy models for each component. This approach
was applied to a multiprocessor architecture composed of several R3000 MIPS proces-
sors, data and instructions caches, shared instructions and data SRAM memory, a timer
and locks engine. These locks are used to ensure inter-processor synchronization. All
these components, which are reused from SoCLib library [6], are described in Sys-
temC [5] at the CABA level and are VCI compliant.

4 Energy Modeling for the SoCLib

The energy consumed by a circuit depends on its physical implementation and its tech-
nological parameters. To estimate activity consumption, the most accurate approach
works with the component at the physical level, taking measurements directly on the
component. However, this solution requires a lot of time and effort to design the cir-
cuit and to handle low level tools. In our study, we used low level simulations for the
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Fig. 2. Example of SoCLib MPSoC [6]

activity energy consumption evaluation when possible. The values estimated at the
physical level are injected into the energy model at the CABA level. Consequently,
our approach is a hybrid technique, relying on both physical measurement and ana-
lytic modeling. This hybrid approach yields acceptable levels of precision and speed.
Still, measuring the activities with low level CAD tools is not always possible for all
the MPSoC components. For instance, such a characterization is not possible for the
interconnection network, the crossbar, which is not a preexisting component like the
processor or the memory. In fact, the connection (or the wire) length in the crossbar
depends on the structure of the MPSoC and the mapping of the components on the die.
For this reason, we chose to use an analytical model to evaluate the activity energy cost.

4.1 SRAM Memory Energy Model

For an SRAM, three main activities consume energy: Read, Write and Idle. These ac-
tivities correspond respectively to the read access mode, the write access mode and the
waiting state. This approach is similar to the approach proposed by Loghi et Al. [10].
To estimate an activity’s energy cost, different SRAM sizes are simulated at the phys-
ical level using the ELDO analog simulator [3]. The logical synthesis, the placement,
the routing and the layout extraction is carried out using CAD tools in the ALLIANCE
VLSI design environment [1]. The objective is to produce a parameterized energy model
for estimating the cost of SRAM activities, according to the number of words (M) and
number of bits per word (N). This model facilitates the architectural exploration. The
simulation results show that the energy costs change linearly according to the number
of words and number of bits per word. This is presented in figure 3 for a read access.

From the simulation results, the following equations can be written:

Eread = (R0 + R1 · N) · (R2 + R3 · M)
Ewrite = (W0 + W1 · N) · (W2 + W3 · M)
Eidle = (I0 + I1 · N) · (I2 + I3 · M)

(2)
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(a) Energy cost variation in terms of M (b) Energy cost variation in terms of N

Fig. 3. Energy cost variation in terms of M (the number of words) and N (the number of bits per
word)

Using the experimental values, these equations must be solved in order to find the
coefficients Ri, Wi and Ii and to obtain a simple estimation model for the SRAM
activities. However, these parameters are only valid for a given technology process. To
obtain a general model, it is necessary to find the weighting coefficient α to move from
the parameters of technology λ0 to another technology λ:

Ri = Ri0 · (λ/λ0)α

Wi = Wi0 · (λ/λ0)α

Ii = Ii0 · (λ/λ0)α

(3)

Using 2 and 3 the following model is deduced for energy consumption calculation in
the SRAM:

ESRAM = nread · Eread + nwrite · Ewrite + nidle · Eidle (4)

n read, n write and n idle are respectively the counter values of read access, write
access and waiting cycles.

4.2 Cache Memory Energy Model

Xcache component description. In the SoCLib library, the xcache component con-
tains the instruction cache and the data cache. These two caches share the same VCI in-
terface with the crossbar. Each cache is controlled by an independent FSM. Instructions
and data are represented on 32 bits. The size and the shape (e.g., block size, associativ-
ity) of each cache are parameterized. In the example presented in the next section, the
two caches are direct mapped caches, and they use the “write through” policy to handle
write hits. The xcache has a FIFO buffer to store read and write requests for missed
data and un-cached data. The VCI interface controller reads the FIFO buffer and con-
structs a request packet for several addresses on the same page (4Kbytes). The xcache
is designed to answer to the processor request in one cycle.
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Xcache energy model. In the xcache description, different states have been defined
in the SoCLib to guarantee that the component behaves correctly. For instance, the Init
state corresponds to the cache initialization, and the Write Updt state corresponds to
the data loading of the cache. The xcache energy consumption depends on the state of
the FSM that controls the component. Each state corresponds to one or several read or
write operations. These operations may affect the tag array, the data array and the FIFO.
Tables 1 and 2 represent the various FSM states that control the data and instructions
caches and their corresponding activities. In these tables, R represents a read access, W
represents a write access and “–” represents a wait state.

Table 1. DATA cache FSM

Activity Type
DATA cache FSM TAG DATA FIFO
DCACHE INIT W – –
DCACHE IDLE R R –
DCACHE WRITE UPDT – W –
DCACHE WRITE REQ R R W
DCACHE MISS REQ – – W
DCACHE MISS WAIT – – –
DCACHE MISS UPDT W W –
DCACHE UNC REQ – – W
DCACHE UNC WAIT – – –

Table 2. Instructions cache FSM

Activity Type
INST cache FSM TAG DATA
ICACHE INIT W –
ICACHE IDLE R R
ICACHE WAIT – –
DCACHE UPDT W W
DCACHE UNC WAIT – –

Therefore, estimating the energy consumption of an FSM state is equivalent to eval-
uating the energy cost of a write or read access to the SRAM memory (tag array or data
array) and evaluating the energy cost of a write access to the FIFO buffer. The procedure
for the SRAM has already been explained in the preceding section, and the procedure
for the FIFO buffer is the same as for the SRAM. We conducted several simulations
with different FIFO buffer sizes using the ELDO tool to find a parameterized model.

We defined a complete set of cache access modes, with different power models:
Write Tag, Read Tag, Write Data, Read Data, Write Fifo and Idle. For each access
mode, we declared a counter in the SystemC description of the component. These coun-
ters correspond to the number of different access modes and states of the SRAM arrays.
At the end of the simulation, the values of these counters are read, and then they are
multiplied by the activity energy costs to find the overall consumption of the xcache
component. Note, it is also possible to read these counters on interval basis.
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4.3 Processor Energy Model

Energy consumption at the processor level depends not only on the application to be ex-
ecuted, but also on the processor’s architecture. For this reason, this architecture must
be adapted to the system specifications in terms of performance, size and consumption.
In our study, we used the Mips R3000 processor. This scalar processor has a 5-stage
pipeline. In our simplified power consumption model for the Mips R3000, we consid-
ered two states: Running (execution of an instruction) and Waiting for data or instruction
(due to a data or instruction cache miss). The energy consumptions for these two states
are different.

The processor’s energy consumption in the active state depends on the instruction to
be executed. The set of all the instructions’ energies will constitute the processor energy
model, and the cost of each instruction can be determined from low level measurements.
This approach has been used by several other authors [10] [13]. For instance Sinha [13]
demonstrated that for the StrongARM SA-1100 processor, the maximum current vari-
ation between instructions during the execution of a program is only 8%. The Hitachi
HS-4 processor behaves in the same way [13]. Consequently, for a processor with a rel-
atively simple architecture, like the Mips R3000, a consumption model that considers
only the average current per instruction is sufficient. Thus, we adopted the following
energy model for estimating processor energy consumption:

Eprocessor = nrunning · Erunning + nidle · Eidle (5)

Where nrunning represents the number of cycles during which the processor is in the
running state and nidle represents the number of cycles during which the processor is
in an idle state.

4.4 Crossbar Energy Model

The crossbar interconnection network connects one processor and its caches to one of
the shared components (e.g., RAMs, timer or lock engine). In the connection protocol,
the processor is called the initiator, and the component with which the connection is
made is called the target. The crossbar in our MPSoC architecture was chosen for per-
formance reasons, specifically for the large bandwidth constraint. However, the physical
implementation constraints allow only a limited number of processors (8 or less) to be
embedded in the SoC. The main activity of the crossbar is to transfer data between two
VCI ports, and its most significant consumption is at the wire level. The energy dissipa-
tion of these wire connections depends on their length and the used process technology.
Thus, to estimate the crossbar consumption accurately, the connection lengths between
components must first be estimated, and these lengths depend on the final organiza-
tion of the components on the chip. For our study, we supposed a particular component
structure in order to obtain approximate wire lengths, using the Graal tool (Layout ed-
itor) in the Alliance environment to measure the size of each component according to
the process technology. The following equation yields the energy consumption during
a data transfer from the initiator i to the target j:

E =
∑
N

Ei,j (6)
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i and j: Number of ports
N : Number of transmitted words in the packet
Ei,j : Energy transfer cost of a word from i to j.

A word transfer from an initiator i to a target j (request word) or vice versa (response
word) corresponds to several wire activation along the VCI request interface (93 bits)
or the VCI response interface (46 bits). The energy cost Ei,j for transferring one word
depends on the number of bits on the interface that commutated between 0 towards 1 or
conversely (noted α)and on the bit energy cost transfer E0.

Ei,j = α · E0(Li,j) (7)

α can be calculated in the crossbar component description, though this will slow the
simulation down, or it can be estimated to be half the number of wires of the request or
response interface. E0 which depends on the wire length between i and j (noted Li,j)
is calculated as follows:

E0 = WirePower(Li,j) · Wiredelay(Li,j)

WirePower =
1
2

· C(Li,j) · V 2
(8)

Where wireDelay is the data propagation time between i and j and C(Li,j) is the ca-
pacitance of the wire C(Li,j). These two parameters are deduced from the wire model
used in the Cacti Tool [2].

5 Experimental Results

The previously developed energy models were integrated into the SoCLib architectural
simulator in order to benefit from a fast architectural exploration environment for MP-
SoC design. To validate our approach, we used a Visiophony application for the UMTS
network. For this application, we chose a minimal resolution using the QCIF format
(144*176 pixels). The coding standard chosen was the H.263, adapted for Visiophony
and Videoconference applications. For this paper, we evaluated only the DCT task to
validate our approach of DSE.

To evaluate the impact of the number of processors on the performance and the total
consumption of the system, we executed the DCT task on QCIF image macroblocs,
using systems with 1 up to 8 processors. The size of the instruction and data cache was
set to 4 KB, and the MIPS frequency was set at 50MHz. All the processors execute the
same DCT task but on different image macroblocs. Figure 4 reports the execution time
in cycles and the total energy consumption in mJ.

Given these results, it seems that adding processors to the system decreases execu-
tion time, which improves system performance. This variation is not linear because the
processors share resources, and sometimes they cannot reach the same target simultane-
ously, which necessitates waiting cycles and diminishes system performance. In terms
of energy consumption, up to a certain number of processors, the total system energy
consumption decreases as the number of execution cycles is reduced, and then it tends to
stabilize as the system performance improves. But increasing the number of processors
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Fig. 4. Performance and energy variation in terms of the number of processors

over a certain limit tends to be ineffective, as it just adds new conflicts at the crossbar,
leading to more waiting cycles. More conflicts at the crossbar and more waiting cycles
dramatically alter overall performances, especially in terms of power consumption.

Next, we used a 4-processor configuration to examine the impact of varying instruc-
tion and data cache size on the performance and energy consumption of the whole
system. We executed the DCT-parallelized algorithm using instruction and data caches
of increasing size; from 2 KB up to 16KB. Our results are presented in figure 5.

Fig. 5. Variations in performance and energy consumption in terms of cache size with 4 processors

The increase in the cache size significantly increases overall system energy consump-
tion. In general, larger caches improve system performance; however, this depends on
the size of the task or of the data to be handled. In our example, the move from 4KB
to 8 KB, for instance, improved performance by 0.2%, but also increased energy con-
sumption by 29%. For the 8 KB and 16 KB caches, the performance did not change but
energy consumption increased by 45%.
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Fig. 6. Consumption of energy in the various components

Figure 6 presents the energy consumption (expressed in percentages) of the sys-
tem components for the different caches sizes. In our multiprocessor system, caches
constitute the primary source of consumption. In fact, instruction and data caches are
responsible for 50% to 80% of the entire system’s energy consumption. It is interesting
to note that the increase in cache size decreases the number of caches misses, which
reduces processor execution time and minimizes the traffic on the interconnection net-
work and the access to the different memories. Consequently, except for the caches,
the energy percentage of the all components decreases significantly as cache size in-
creases. The processors are responsible for between 10% and 23% of the overall energy
consumption, while the crossbar generally consumes less than 20% (for 2 KB). The
shared SRAM consumes a small part of the total energy, this percentage varies between
10.09% (for 2 KB caches) and 7% (for 16 KB caches).

Fig. 7. Power dissipation in the Crossbar per 1000 cycles



Estimating Energy Consumption for an MPSoC Architectural Exploration 309

Up to this point, we have focused on the advantages of estimating performance and
energy consumption on the CABA level to allow design exploration for MPSoC. Our
approach may be also useful for managing the power dissipated by the system. In fact, in
a circuit, power consumption is responsible for thermal dissipation, which must be taken
into account for reliability reasons. This heat problem is worsened on multiprocessor
systems-on-chips, which tend to heat up, which in turn accelerates the functional degra-
dation of the silicon. This dissipated power can be calculated directly from the energy
and the execution time, given by the number of cycles. Our environment permits the
power consumption to be calculated cycle by cycle or over n consecutive cycles (inter-
val) for each component. This makes it easier to control overall thermal dissipation and
power peaks, thus making batteries last longer.

Figure 7 represents the power consumption in the crossbar per 1000-cycle interval.
This information can be used to verify that the circuit operated correctly during the
execution of the application.

6 Conclusion

A reliable DSE for multiprocessor systems-on-chip requires well-developed simulation
techniques. MPSoC design also requires rapid and accurate tools for estimating perfor-
mance and energy consumption. In this study, we enhanced the SoCLib CABA-level ar-
chitecture simulator with an energy consumption estimator. The designed environment
is flexible and allows rapid and accurate performance estimations. Future research will
focus on several areas. First, we plan to apply the same methodology to more com-
plex architectures, including other types of processors and interconnection networks.
Second, we hope to adapt this approach for higher abstraction levels, such as the TLM
level. Finally, we are planning to integrate this framework into our complete design
flow, Gaspard[9].
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Abstract. In this paper we establish a general framework for estimating
the energy consumption of an embedded Java virtual machine (JVM).
We have designed a number of experiments to find the constant overhead
of the Virtual Machine and establish an energy consumption cost for
individual Java Opcodes. The results show that there is a basic constant
overhead for every Java program, and that a subset of Java opcodes have
an almost constant energy cost. We also show that memory access is a
crucial energy consumption component.

1 Introduction

In recent years we have seen an explosion of markets for portable electronic de-
vices such as PDAs, personal communicators and mobile phones. These battery-
operated devices provide more and more functionalities and as a consequence
become more and more complex. They have in common strong constraints on
energy consumption, and thus maximizing battery life for such devices is crucial.

Several techniques have been developed to optimize the energy consumption
of embedded systems. Those techniques can be hardware based solutions, as well
as software or co-design solutions [1]. Techniques for low power optimization of
software have been mostly applied on processor instructions level [2, 3] by mainly
using processor specific instructions [4, 5]. Techniques on memory management
have also been widely applied for optimizing energy consumption [6, 7].

At the same time, the size and complexity of applications and development
constraints like getting the product to market on time, make necessary the use
of high-level languages. Due to the wide diversity of hardware and OS used in
the world of handheld devices, portability across systems is not easy and needs
efforts. Java language eases portability by allowing application developments
with an abstraction of the target platform, making the concept “write once, run
it anywhere” possible.

In this paper we establish a general framework for estimating the energy
consumption of an embedded Java virtual machine. We present a number of
experiments to estimate the constant overhead of the JVM energy consumption
and establishe an energy consumption cost for individual Java Opcodes.
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The major contributions of this paper are a better understanding of the energy
consumption distribution of an embedded Java virtual machine (JVM) and the
definition of the energy cost for the Java bytecodes.

The remainder of this paper is organized as follows. Section 2 proposes a
methodology scheme used to characterize the energy consumption of an embed-
ded Java Virtual Machine. Section 3 presents several experiments in order to
define some constant overheads of the JVM and comments the repartition of
the JVM energy consumption. Section 4 presents a measurement methodology
used to define the energy cost of Java bytecode by cost comparison between
two appropriate class files. Finally, section 5 concludes the paper and suggests
future possible work. This paper is presenting the main results of [8] where more
example graphs and results can be found.

2 An Energy Consumption Model of Java Applications

The Java Virtual machine is an abstract machine, making the interface between
platform independent applications and the hardware, through a possible operat-
ing system. Thus the use of Java language can be seen as adding one more layer,
the Java virtual machine, between the hardware and software layers. We want to
study how well applying estimation techniques on the virtual machine opcodes
level can be done, similarly to what has been done on processor instructions
level. Figure 1 shows a simple view of the JVM life cycle. An efficient energy
model should characterize each stage of the life cycle model, and thus shows in
which stage(s) effort needs to be concentrated to achieve energy optimization.
It seems obvious that such model needs to consider the system’s hardware and
software configuration and therefore is not directly portable. But the methodol-
ogy used to build it can easily be applied on different configurations by changing
the platform configuration parameters.

As shown in [9] the memory consumption must also be included in the model,
as the memory might represent the biggest source of energy consumption on a
typical embedded system. This is even more important to take into account as
the JVM is a stack machine and will therefore have a relatively high memory
activity.

 Start JVM Initialization of 
the VM

Interpreter loop Exit
Load the class 
containing the 
main method

Fig. 1. Simple view of the JVM life cycle

2.1 Measurements Methodology

We chose to use the Sun Microsystems K Virtual Machine (KVM), CLDC v1.0.3,
as it has been developed for a resource-constrained platform and has its source
code freely available. KVM is a small virtual machine containing about 50-80 Kb
of object code in its standard configuration and has a total memory footprint
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in the range of 128-256 Kb. KVM can run on a 16-bit or 32-bit RISC/CISC
processor clocked from 25MHz.

To build an energy model of the KVM we adapted the energy profiler enpro-
filer [10] developed by the Embedded Systems Groups at Dortmund University.
The adaptation was done in order to integrate the Java environment in the re-
sults provided by the energy profiler. With the adaptation, when summing up
the energy cost for each instruction execution or memory access the enprofiler
checks in which KVM stage the event occurred and increments the correspond-
ing costs variable. Enprofiler is a processor instructions level energy profiler for
ARM7TDMI processor cores operating in Thumb mode [11] and integrating the
consumption of memory accesses. It has been built from physical measurements
done on an Atmel AT91EB01 evaluation board consisting of a AT91M40400
processor clocked at 33MHz and an external 512K bytes SRAM. A detailed de-
scription of the energy model used by enprofiler is given in [12]. According to [12]
enprofiler shows a precision of 1.7% for the cost measurement of 12 instructions
in an endless loop.

Figure 2 shows the measurements methodology scheme used to character-
ize each stage of the KVM life cycle. The Java class generator generates, from
template classes, Java applications with the possibility to modify parameters
inside the class source code. With the Java Code Compact (JCC) we compile
and link together the JVM source code and the generated Java application. The
executable code is run on the ARM7TDMI emulator ARMulator, which traces
instructions, memory accesses and events that occur during the application exe-
cution. From this trace, we extract all information concerning the memory access
addresses, size and type (read, write, sequential, non-sequential), the instruc-
tions addresses and their corresponding processor opcodes. The energy profiler
enprofiler reads the emulator trace and accesses databases providing processor
instruction costs and the cost of a memory access depending of its address, size

Java
Application

(source code)

Java
Virtual Machine

(Source code)

Java Class
generator

Java Code
Compact

(JCC)

Executable
(Application + VM)

Processor
Emulator

(ARM7TDMI)

Processor trace file :
Memory -  Instruction

Event -  Register  -  Bus
Energy profiler

Platform data
(memory mapping)

Energy consumption
per instruction

Battery specification Energy

Max. running time
of the application

Compiler &
Linker

Fig. 2. Measurements methodology scheme
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and type. The energy profiler estimates the energy consumed by the application
and provides information on how the energy is distributed between the processor
and memories for each KVM stage.

2.2 Energy Profiler

The energy profiler provides the number of instructions, memory accesses and
garbage collections that occur during each KVM stage. It needs as input infor-
mation on the JVM stage addresses inside the emulator trace. These addresses
are provided by the linker from which eight useful address symbols are collected:

– main: this symbol represents the main() function of KVM, and is used by
the energy profiler to detect the start of the KVM execution.

– StartJVM: represents the StartJVM(argc, argv) function (in StartJVM.c
source file). This function only checks if the user gave a class name as argu-
ment, and then calls the KVM Start() function.

– KVM Start: represents the KVM Start() function (in StartJVM.c source
file). This function initializes the VM, the global variables, the profiling
variables, the memory system, the hashtable, the class loading interface, the
Java system classes, the class file verifier and the event handling system. It
also initializes the multithreading system after loading the main application
class.

– garbageCollect: represents the garbageCollect() function (in garbage.c source
file) that performs a mark-and-sweep garbage collection.

– ExitGarbage : the ExitGarbage symbol was added into the KVM source code
in order to detect the end of the garbage collector.

– Interpret : represents the Interpret() function (in execute.c source file) that
runs the interpreter loop.

– KVM Cleanup : KVM Cleanup represents the KVM Cleanup() function (in
StartJVM.c source file). It runs several finalization functions when the VM
is shut down.

– ExitVM : This symbol is used to detect the end of the KVM execution.

3 Experiments

We have run the measurement process over several representative benchmarks
to characterize each stage of the KVM life cycle and determine if some stages are
dominant. The benchmarks used are: a) the dhrystone benchmark, b) parts of
The Java Grande Forum Benchmark Suite and the DHPC Java Grande Bench-
marks. In addition to these established benchmarks we also used as reference an
empty application in order to reflect the KVM basic costs. Dedicated intensive
allocation applications was also used in order to study the behavior of the KVM
stage costs. All benchmarks can be retrieve from [13]. For all measurements, if
not explicitly expressed the KVM was compiled with an heap size of 256 Kb.
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3.1 Benchmarks

Empty application: We run the empty application through the measurement pro-
cess in order to find out if overhead constants in the KVM energy consumption
can be determined. We can predict that one or several stage(s), like StartJVM,
will have a constant energy consumption, as they have an application indepen-
dent behavior. Its source code is the following:

public class HelloWord {
public static void main(String arg[])
{
//nothing to do
}

}

Intensive allocation applications: Two intensive allocation applications were used
in order to study a possible application related evolutions in the KVM costs.
The first application, called alloc1, instantiates inside a loop one object of class
MyClass. This class doesn’t contain any field and has just one main method.
Each new class MyClass created by main is stored in the heap, and will contain
only a reference to the class definitions area. Each instantiation will create a
new stack frame and call the MyClass constructor which by default will only
call java/lang/Object constructor method. The stack frame created by the main
method contains two operand stacks and three local variables to store the object
reference, the length and the loop index. This application is used to observe the
evolution of different KVM stage costs with the length of the loop. The source
code for alloc1 is the following:

public class MyClass {
public static void main(String arg[])
{
int length = X;
for(int i=0; i<=length ; i++) {
new Myclass();
}

}
}

The second intensive allocation application, called alloc2, is similar to the prece-
dent one with the difference that MyClass contain one field define by an integer
array of size 500. Alloc2 is used to observe the weight that can take the garbage
collector in comparison to the other KVM stages in extreme allocation rate. As
each new instance takes approximatively 2Kb, with an heap size of 128Kb the
garbage collector needs to be triggered every 64th objects created in the loop to
reclaim the heap space occupied by the unreferenced objects. The source code
for alloc2 is the following:
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public class MyClass {
int[] tab = new int[500];
public static void main(String arg[])
{
int length = X ;
for(int i=0; i<=length ; i++) {
new Myclass();
}

}
}

Dhrystone: Dhrystone tests the system’s integer performance. It is a well es-
tablished benchmark for performance measurement of general purpose system.
We conducted the measurement process with two test executions of 50 and 250
benchmark runs.

Table 1. Benchmarks used from Java Grande Forum Benchmark suite

Low level operation benchmarks
Name Short description
Arith Execution of arithmetic operations
Assign Variable assignment
Create Creating objects and arrays
Exception Exception handling
Loop Loop overheads
Math Execution of maths library operations
Method Method invocation
Generic Local and Static variable handling

Java Grande Benchmarks: We used the sequential benchmarks which are the one
suitable for single processor execution. Several low level operation benchmarks
was used from the Java Grande Forum Benchmark Suite and the DHPC Java
Grande Benchmarks. Table 1 summarize all benchmarks used for our study.

3.2 Results

This section presents the results obtained by the introduced applications and
benchmarks through the measurement process.

Empty application: The empty application has been used in order to find out if
overhead constants in the KVM energy consumption can be determined.

Table 2 shows the obtained results and figure 3 presents the energy consump-
tion distribution among all KVM stages and also the distribution between the
energy consumed by memory accesses and processor instruction execution.

We can make some remarks from figure 3. Even if this application does abso-
lutely nothing, it has to be noticed that the interpreter stage represents about
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Table 2. Empty application - Energy consumption of KVM’s stages in μJ

StartJVM Inst. StartJVM Mem. KVMStart Inst. KVMStart Mem. Interpr. Inst. Interpr. Mem.
9,42 20,08, 748,81 1639,18 3552,28 8273,34

KVM Clean Inst. KVM Clean Mem.
144,92 326,38

4.48%

9.80%

21.24%

49.46%

3.33%

7.13%

Energy distribution

StartJVM Inst

StartJVM Mem

KVM Start Inst

KVM Start Mem

Interpret Inst

Interpret Mem

KVM Clean Instr

KVM Clean Mem

Garbage Inst

Garbage Mem

75.31%

24.69%

Memory / Instructions distribution

Memory

Instructions

Fig. 3. Empty Application - Energy consumption distributions

70 % of the consumed energy from all stages, and memory accesses represent
75% of the total consumed energy. As the application was ′empty′ the values in
table 2 represent the KVM basic costs or the minimal overhead energy cost that
any application will have to dissipate.

Intensive allocation applications: From the alloc1 results in figure 4 we note that
only the energy consumed by the interpreter is dependent on the loop length
value. All other stages of the KVM consume a constant energy including the
garbage collector, as the maximum number of created object was not enough to
fill up the Java heap and trigger off a garbage collection. It is also important
to notice that the energy consumed by the interpreter stage is linear and pro-
portional to the loop length. This can be explain by the fact that the interpreter
is looping over a number of constant Java opcodes. These opcodes are:

4 goto 18
7 new\#2 -> create a new ’MyClass’ object in the heap
10 dup -> duplicate new object reference in the operand stack
11 invokespecial \#3 -> call the constructor
14 pop -> remove the top of the operand stack
17 iinc 2 1 -> increment the second local variable by 1
18 iload\_2 -> load 2nd local variable in operand stack (i)
19 iload\_1 -> load 1st local variable in operand stack (length)
20 if\_icmple 65543

As the energy profiler evaluates the cost of a memory access according to the
memory technology, i.e. have for each memory type (RAM, ROM, Flash, etc.) an
average cost for each access type regardless of its address, and as the new opcode
allocates the same amount of memory for all created (and already resolved)
objects, it will have an identical cost for each execution.
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Fig. 4. Alloc1 - KVM’s stages energy consumption depending of the loop length
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Fig. 5. Alloc1 - Energy distribution for loop length equal to 1000

The energy distribution for a loop length of 1000 presented in figure 5, is
similar to the first experiment with an interpreter stage even more dominant,
representing over 95% of the total energy consumed.

Alloc2 application was used to observe the garbage collector weight in com-
parison to other KVM stages. Several factors can influence the garbage collection
behavior and thus its energy consumption: the size of the heap, the sizes and
numbers of live or dead objects, and heap fragmentation. However, as shown
on figure 6, the garbage collection stage will hardly exceed more than 15% of
the total energy consumed even for application with intensive allocation rate.
Table 3 shows the energy values consumed by the interpreter and garbage collec-
tor for alloc2 application with a loop length of 1000 where the garbage collection
represent 13,65% of the interpreter stage energy consumption.

Benchmarks: Table 4 and 5 gather the results for all benchmarks. Table 4 shows
for the used benchmarks the energy values in μJ for StartJVM, KVMStart and
KVMClean stages. We can notice that the obtained values for each stage are
very similar for all benchmarks, and there values and variations extremely small
compare to the interpreter stage values show in table 5 (in mJ). We can say
that with an average of 98% of the total energy consumption the interpreter
stage is fare ahead the stage where the energy consumption is dissipated in-
side the KVM, and that StartJVM, KVMStart and KVMClean have an almost
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Fig. 6. Garbage collection weight

Table 3. Energy consumption values for a loop length of 1000 in μJ

Interpreter Inst. Interpreter Mem. Garb. Collect. Inst. Garb. Collect. Mem.
54 035 127 949 7 789 17 057

Table 4. Stable energy costs for StartJVM ,KVMStart and KVMClean stages in μJ

StartJvm KVMStart KVMClean
Benchmark Instuction Memory Instuction Memory Instruction Memory

Dhrystone250 9,42 20,08 857,74 1868,40 155,41 350,31
Dhrystone50 9,42 20,08 849,82 1851,51 154,74 348,82

Arith 9,42 20,08 815,78 1776,04 145,67 328,40
Assign 9,42 20,08 823,32 1791,93 145,94 329
Create 9,42 20,08 807,81 1833,57 147,48 335,21

Exception 9,42 20,08 814,08 1772,99 145,94 329
Loop 9,42 20,08 810,01 1764,06 145,67 328,40

Method 9,42 20,08 823,89 1793,72 146,75 330,93
Generic 9,42 20,08 838,76 1828,55 152,78 344,39
Math 9,42 20,08 823,89 1793,72 146,75 330,93

Table 5. Interpreter stage energy cost and weight in mJ

Dhrystone250 Dhrystone50 Arith Assign Create Exception
Inst. 97-29.65% 88-29.30% 877-29.21% 2380-29,87% 1053-26,38% 2250-29,82%
Mem. 850-69.90% 207-68.92% 2121-70.62% 5584-70,05% 2779-69,61% 5475-70,04%

Loop Math Method Generic
Inst. 533-29,32% 2718-29,77% 533-29,86% 611-29,65%
Mem. 228-69,03% 6408-70,17% 1246-69,84% 1445-70,09%

constant and insignificant energy consumption. All measurements were done on
an opteron 244 1.8GHz machine with 4Gb of RAM, and for the slowest bench-
mark JGFMathBench the measurement process took about 36 hours.

From all experiments done it is clear that the interpreter stage is far ahead the
main source of energy consumption and a better comprehension of it is needed if
someone wants to achieve energy optimization on the KVM. As the interpreter
reads and executes the Java bytecode, having a closer view on the interpreter
implies increasing the granularity of its energy consumption model by looking
at the cost of each Java opcode interpreted.
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4 Java Opcode Energy Cost

In order to get a better understanding of the interpreter energy consumption,
an evaluation of each Java opcode energy cost is needed. As a strict class file
structure needs to be respected, it is not possible to only execute one Java
opcode. Thus a cost comparison between two class files is needed to estimate the
cost difference between them. The general measurements methodology scheme
used to characterize each KVM stage life cycle can be re-used with different
inputs. Instead of using Java source code files we will use as input appropriate
byte-code executable class files.

4.1 Measurements Methodology

Figure 7 shows an abstract view of the class files generator used to create two
class files, named ClassFile and ClassFile Ref. The opcode behavior towards
the Java operand stack and the local variables array has to be defined for each
studied Java opcode, i.e. provide the operand stack state needed before and re-
sulting after the studied opcode execution as well as the number of local variables
needed. Figure 8 shows an example of generated bytecode classes for the Java
opcode NOP (0x00). In this example ClassFile method 1, the main method,
executes 256 NOP opcodes when the ClassFile Ref method 1 executes only the

ClassFile_RefClassFile

Java class file
generator

Opcode + (argument)
Opcode behavior with the stack operand

Opcode behavior with the local variables array

Fig. 7. Bytecode executable class file generator

ClassFile
Method 1:
0000d8 0009       access flags = 9
0000da 0008       name = #8<main>
0000dc 0009      descriptor = #9<([Ljava/lang/String;)V>
0000de 0001      1 field/method attributes:
                            field/method attribute 0
0000e0 0006          name = #6<Code>
0000e2 00000119  length = 281
0000e6 0000          max stack: 0
0000e8 0001          max locals: 1
0000ea 00000101  code length: 257
0000ee 00              0 nop
0000ef 00               1 nop
0000f0 00               2 nop
0000f1 00               3 nop
..............
0001ed 00              255 nop
0001ee b1              256 return
0001ef 0000           0 exception table entries:

ClassFile_Ref
Method 1:
0000d8 0009           access flags = 9
0000da 0008           name = #8<main>
0000dc 0009           descriptor = #9<([Ljava/lang/String;)V>
0000de 0001           1 field/method attributes:
                                field/method attribute 0
0000e0 0006                name = #6<Code>
0000e2 00000019        length = 25
0000e6 0000                max stack: 0
0000e8 0001                max locals: 1
0000ea 00000001        code length: 1
0000ee b1                    0 return
0000ef 0000                0 exception table entries:

Fig. 8. Example of generated byte-code class files
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compulsory return opcode in order to return void from the main method. By
comparing the interpreter energy consumption for both class files we can get
the energy consumption estimation for 256 NOP executions and thus the energy
cost of one NOP opcode.

To ensure the estimation quality for each opcode we generate several pairs
of class files executing the studied opcode and also monitor the possible energy
consumption differences between all other KVM stages. All measurements were
done on a Linux 700Mhz Pentium III machine with 256MB of RAM, and on
average the estimation of a Java opcode cost took 3 minutes.

4.2 Results

From all Java opcodes we will not study the 51 opcodes which handle floating
point values as floating point is not supported by the CLDC specification. The
opcode athrow was also omitted from this study, it is not possible to directly
estimate its energy cost using this comparison method as its cost can not be
extracted from the context cost. All the same, in table 5 in [13] we can see from
the opcode checkcast the cost of throwing an ClassCastExeption exception and
exiting the KVM.

Due to space requirement all obtained values for each studied opcode are
published in [13], where the opcodes are divided in six functional groups:

Stack and local variable operations opcodes: Tables 2 and 3 in [13] show the
results concerning opcodes that operate on the operand stack and local variable.
We can notice that loading a value from the local variables array to the operand
stack is lightly more expensive than storing the same value back to the local
variable. It is also interesting to note that the opcode bipush consumes about
9% less energy than iload and 5% less than ilaod x. Thus it is more energy
efficient to load an constant integer lower than 256 into the operand stack using
bipush than initializing the local variable array with the constant and use iload
or ilaod x. The same is true if a constant integer lower than 65536 has to be
loaded into the operand stack, it will be more efficient to use the opcode bipush
instead of iload. But in case the integer constant can be stored in the first 4 local
variables then iload x becomes the most efficient opcode.

Type conversion opcodes: Table 1 in [13] shows the results for opcodes that
convert value from one primitive type to another. The costs are in the same range
as the stack and local variable operations opcodes as the conversion opcodes pop
a value from the stack, perform a right shift or truncate the popped value and
push back the result.

Arithmetic opcodes: Table 4 in [13] shows the costs for arithmetic opcodes. As
it was easy to predict, the cost of an arithmetic operation is dependent on the
type of the operands and the operation. Operations on long types are about 50%
more expensive than on integers, except for the division of types long which is
about two times more expensive than to divide integers.
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Logic opcodes: As for the arithmetic opcodes, the cost of logic opcodes is also
depending of the type of the operand and operations on longs are from 23% to
37% more expensive than operation on integers. Table 9 in [13] shows the costs
for logic opcodes.

Control flow opcodes: The control flow opcodes are the opcodes that implement
the following Java language statements: do-while, while, if, if-else, for and switch.
Table 8 in [13] shows the cost for the 25 control flow opcodes. For all conditional
if opcodes (i.e. opcodes from 0x99 to 0xa6 and ifnull, ifnonnull) the energy
cost depends on a two values comparison success. If the comparison success
the VM jumps to a target defined by the opcode operands, in the other case
the VM continues by executing the following opcodes. The KVM lookupswitch
implementation uses the binary search algorithm to retrieve the branch offsets
associated with the case values of the switch statement. In consequence, the
lookupswitch cost depends on the number of needed iterations through the binary
tree which is determined by the position of the researched case value in the tree.
As on average for a binary tree of size n it takes (log2 n − 1) iterations to found
the researched value, it is possible to determine an lookupswitch average cost
depending on the number of case values included in the switch statement. The
tableswitch opcode performs the same task as lookupswitch, with the difference
that it requires a consecutive list of case values contained between one low and
high endpoint. Thus the VM knows in advance the position of all case values so
that the retrieving cost is the same for all cases. Compared with lookupswitch,
tableswitch has a lower energy cost but generates all the more bigger class file
size as the gape between the case values is great.

Objects and arrays opcodes: Tables 5 and 6 in [13] show the cost of opcodes that
create and manipulate arrays and objects. The creation cost, with newarray,
of a single dimension array of primitive type integer, long, short, byte, char
or boolean is not directly dependent on array type and size, but more on the
memory size that needs to be allocated for its creation. That means that the
creation cost is identical for an integers array of size 8, a shorts array of size 16,
or a longs array of size 4. The creation cost, with multiarray, of multidimensional
arrays is dependent on the array dimensions and dimensions indexes values. Each
dimension adds a basic cost to the array creation cost, thus creating a 2*2*2
integers array will be 70% more expensive than creating a 2*4 integers array,
and especially 18 times more expensive than creating a single dimension integers
array of size 8. Moreover, in order to access to one multidimensional array value
the JVM has to retrieve from the first dimension the second dimension address
and so one until it reaches the last dimension.

The objects creation cost depends on the objects themselves, i.e on the type
and size of their constant pool, interfaces, fields,methods and their super-classes,
and also on their resolution flags inside each class constant pool. A new object is
resolved only once within a same class, and its address is stored in the constant
pool structure of the class. Table 5 in [13] shows as an example the creation cost
of an object of type java.lang.Object and java.lang.String. In addition, table 5
in [13] refers to two objects called Class and subClass which is a empty (none
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interface,field nor method) sub class of nonResolvedClass itself empty sub class
of java.lang.Object.

Method invocation and return opcodes: Because invoking a method implies
returning from it at some point, table 7 in [13] shows the costs of different
invoke/return pairs. They all invoke an empty ’already resolved’ method within
the same class or instance. We can notice from this table that calling a static,
public or private method costs almost the same, and that the type of the returned
value has not a great influence on the overall cost.

It is also important to compare all obtained values with the NOP energy
consumption. As the opcode NOP is the first case statement in the interpreter
switch and doesn’t execute any instruction, its energy consumption represents
the minimum overhead cost due to the interpreter mechanism. For the most
of the stack and local variable operation opcodes the interpreter mechanism
overhead represents about 70% of their energy consumption.

The obtained values allow us to get an estimation of how long the KVM will
run for a given battery. If we suppose that on average the execution of one Java
opcode consumes a total of 3.372μJ and is executed in 200 cycles, the average
power dissipated by the processor (clocked at 33MHz) to execute Java opcodes
is 0.556 Watt. Thus for the processor supply voltage sets at 3.3 Volts, an ideal
3.3 Volts 500 mAh battery will allow the KVM to run for 200 minutes.

4.3 Opcode Costs Verification

In order to verify the obtained opcode costs we calculated for each benchmark
execution the value

∑
(Opcodecost ∗ OpcodeOccurrence). The computed value

was then compared with the cost given by the energy profiler for the interpreter
stage. The occurrence for each opcode was calculated thanks to the KVM tracing
ability. For control flow opcodes we checked if the branch was taken or not
to attribute the correct opcode cost, but to keep the verification simple we
didn’t looked at the type of variable handled by putfield, getfield, putstatic and
getstatic. There respective cost for handling integer was used for all occurrences.
In addition for all other none static opcode costs only the respective basic cost
was used. The benchmark Exception from the Java Grande Forum Benchmark
Suite was not used as we didn’t studied the cost for the opcode athrow.

Table 6 presents the normalized verification results where the value 100 repre-
sent for each benchmark the energy cost given by the energy profiler for the inter-
preter stage. For each benchmark the accuracy obtained by calculating the value∑

(Opcodecost∗OpcodeOccurrence) is staying between -5 and +10% of the cost
given by the energy profiler. But this lost in precision has to be balance with the
time needed to compute it. It takes only few seconds to calculate the occurrence

Table 6. Verification results

Dhrystone50 Arith Assign Loop Create Method Math Generic
103,99 105,31 95,55 100,30 97,95 102,51 96,74 109,43
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for each opcode and compute the value
∑

(Opcodecost ∗ OpcodeOccurrence),
compare to several hours needed by the energy profiler.

5 Conclusion

Several observations have been done in this paper concerning the energy con-
sumption of the KVM. For the hardware configuration fixed by the energy pro-
filer, the distribution between the processor and memories is constant over the
KVM execution with 70% of the energy consumed by memory accesses. This
shows the major importance of the memories for embedded system runtime
performance.

This paper can also guide developers to produce energy-aware java applica-
tion by limiting the use of long data type, avoiding multidimentional array and
trying to use consecutive case values inside a switch statement. Furthermore, the
opcodes energy cost can be helpful for developing a energy-aware Java compiler
as well as optimizing the JVM by pointing out the expensive opcodes. This pa-
per shows the first steps toward an energy aware performance analysis tool for
Java application, as a such tool would ask a more detailed model for a subset of
opcodes.

Also as the interpreter mechanism overhead cost is a predominant factor in
opcode execution cost, it will be interesting in the future to look at the cost
differences between the two possible Java execution modes: interpreted or JIT
compilation. JIT compilation increases significantly the execution speed, but in
the same time increases memory footprint. A trade-off between execution time
and memory footprint size will certainly have to be found to reach the optimum
optimization point for energy consumption.
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Abstract. The onset of Deep Sub Micron (DSM) technology has driven
the computing world towards billion device multi-GHz processor archi-
tectures leading to a stiff upward curve in power consumption and power
density (W/cm2). In this paper we develop a graph-based power model
for multiprocessors that predicts power requirements across the compo-
nents of the cluster (Compute node, Memory and Network system) at
various hierarchical levels when applications are run. PASCOM proposes
new metrics for power measurement that integrates execution module
characteristics with power dissipation metrics. The PASCOM model is
applied to Memory In Processor chip and we study power consumption
for parallel scientific applications from SPLASH2 and NAS Parallel suite.
Total power dissipated varies by 15%. However, the static and dynamic
power dissipation exhibit up to 33% and 60% variation respectively due
to workload characteristics.

1 Introduction

The advent of Deep Sub Micron (DSM) [2] technology has begun to pose some
serious questions for the chip designers. Even with 50% percent more transistor
integration the leakage power will be a few hundred watts beyond 90 nm [1].
Sub-threshold leakage is approaching the practical limit of 50% of overall power.
Over the technology generations, interconnect designs have not kept up with
the scaling trends of the devices. The parasitic resistance, capacitance and in-
ductance associated with interconnections and contacts are now beginning to
influence circuit performance and power. The global clock and bus lines con-
sume up to 25% [3] of overall processor power consumption while the local
interconnects consume up to 15% of overall power consumption [2] [4]. Inter-
connect limitations will be one of the primary factors in the evolution of deep
sub micron technology.

Supercomputers with focus on performance and performance-density are con-
strained by power dissipation density. From the CRAY C90 [6] to the ASCI Q [5]
machine performance has increased by a factor of 2000 but the performance/watt
by stark contrast has increased by just 200 fold.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 326–340, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Scaling conventional processor models to multiprocessor systems result in con-
siderable loss of accuracy and require long prediction time. The error in power
estimation increases due to influence of workload and other components (i.e. sys-
tem interconnects, remote latency induced stalls). Processor power estimations
can be applied at various levels of abstraction namely gate level [19][20], archi-
tectural level [21] and behavioral levels [22] [23]. The processor power estimation
techniques are slow and preclude online runtime usage. They also require a com-
plex accurate description of the structure of micro-architecture components.

This research paper brings out a novel Power-Aware-SuperCOMputing
(PASCOM) paradigm that leads to hardware-software co-design introducing
power awareness at all levels (i.e hardware and software), into multiprocessor sys-
tems. The paper proposes a power model for supercomputers. In this paper we
develop a graph based power model that parameterizes architecture, layout, tech-
nology and measures power based on workload influence on various hardware com-
ponents of the system. We put forth the concept of hierarchical power libraries to
estimate and predict the power requirements when an application is run on the su-
percomputer. We have developed application mapping based hierarchical power
metrics help in introducing power awareness systems to all stages in the system.

The MIP (Memory In Processor) [7][8] architecture is used as a case study for
the PASCOM power model. The device and interconnect technology was fixed
up for the MIP processor. The interconnect R-C-L parameters and device spec-
ifications were obtained from the ITRS 2003 specifications. The PDIP tool [13]
was extended and used to predict the interconnect distribution and area for the
MIP processor. The OCEAN, BARNE’s Hut, Embarrassingly parallel, Integer
Sort applications were used to perform a power analysis of the MIP S.C.O.C
(SuperComputer On a Chip).

We believe that the hardware-software co-design approach holds the most
promise for introducing power awareness. PASCOM’s interface between the
hardware and software will enable the designers to integrate the system soft-
ware with hardware level power aware techniques. PASCOM power model will
enable the operating system to utilize the power-libraries of applications to initi-
ate actions for effective power management both at the node and system levels.
The paper discusses primarily the power estimation techniques while it proposes
to use power saving techniques such as multiple VDD, clock gating and other
node hardware dependent approaches.

2 PASCOM Power Model

The PASCOM Power (PASCOMP) model employs power estimation method-
ologies at various levels of the task mapping process across the nodes of the su-
percomputer. The PASCOMP model encompasses (1) Multiprocessor hardware
specifications (i.e node architecture, interconnect topology, memory hierarchy)
(2) Application task mapping and scheduling characteristics. The application
and algorithm mapping have been factored into the power estimation method-
ology since the computation mapping and communication characteristics have a
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critical impact on the power requirements at various components in a multipro-
cessor system, as we show in our results.

The PASCOMP model integrates the application execution hierarchy with
the corresponding architecture hierarchy. It engages a set of analytical models
to predict the power associated with the various architecture components of
the system (processor, on-chip cache,network processor and network intercon-
nects). There are two design phases for the PASCOMP model. (1) Development
of architecture level power models for the various architecture components (2)
Framework design for developing power-libraries The PASCOMP models the Su-
percomputing system using (1) SUPERARCH (SUPERcomputer Architecture)
power models (2) APPLIB (APplication Power LIBraries).

Fig. 1 shows the integration of SUPERcomputer ARCHitecture (SUPER-
ARCH) power model and APplication Power LIBraries(APPLIB) into the sche-
ma of the PASCOM model. The SUPERARCH power model employs power
estimation models for the various architecture components. It is designed hi-
erarchically and integrates the power models at every level (i.e node, board,
cluster) based on the components that participate in co-ordinating execution
(i.e. data transfer and computation). The APPLIB design is closely coupled
with the mapping libraries of the application. It was designed hierarchically
to provide power prediction for the various execution-module levels (Instruc-
tion,..Algorithm, ..Application). The execution-module levels are created based
on complexity of the task, scheduling granularity and hardware components em-
ployed. The PASCOM model binds the execution module with the architecture
system that runs the module to estimate power. It then employs the SUPER-
ARCH power models to predict the power dissipation during the execution.
PASCOMP estimates the influence of task-graph characteristics and hardware

Fig. 1. PASCOM Design paradigm. Integration of the SUPERARCH & APPLIB.
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on power dissipation. Conventional power models take into consideration only
hardware characteristics and approximate workload to simple component on/off
activity factors.

Figure 1 shows the correspondence between the various PASCOM model lev-
els and the hierarchical build up of the supercomputer. The PASCOM model
evolved, models the multiprocessor architecture at various levels (I-V) and will
use the execution library modules to predict the power consumption at all the
levels as shown in the Fig. 1. This allows us to estimate the power consump-
tion at every level (WBA (watts/ basic algorithm),WBP (watts/ basic pro-
gram)....WBI(watts/basic instruction)),see Fig. 1. The term “basic” refers to
primary execution tasks which are used to synthesize applications.

Fig. 2. Embedding a Computation Graph on an Architecture Graph

Fig. 2 shows interaction of PASCOM components. PASCOM models applica-
tion execution as a graph embedding problem and estimates power dissipated
with a graph traversal. The AG in Fig. 2 represents the architecture graph
or the cluster structure and the various elements in the cluster. The CG in
Fig. 2 represents the computation graph which represents the interaction be-
tween the various mapping libraries. The arrow illustrates the embedding of
the CG onto the AG. Following this process, the various nodes in the CG
will be scheduled for execution on specific nodes of the AG. The nodes are
generic and represent various components in a multiprocessor system (eg: I/O
processor, processor, or memory bank). Power involved in the execution of a
mapping library is evaluated as a graph traversal problem. Based on archi-
tecture and technology the corresponding analytical model is incorporated in
respective nodes to evaluate power consumed. The appropriate network power
model is applied to the hyperedge during the course of data transfer across the
network.
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3 SUPERARCH Components

The SUPERARCH employs a set of power models that parameterizes the
architecture, layout, technology metric influences on the various components
of the cluster. The various power models involved in the SUPERARCH Power
model are .

PDIP: An parameterized graph-theory based power model that parameterizes
architecture-layout-technology factors that influence power dissipation in
processors.

CAP: A cache power model that parameterizes the influence of floor-plan and
technology on power. Includes the power dissipated in wordline, bitline and
other datapath components.

MHS: Defines generic data structures and software modules to create the mem-
ory hierarchy of a multiprocessor system. Captures the data transactions
between (1) The multiple levels in the memory hierarchy and (2) The de-
pendent data transfer between the processing nodes.

3.1 PDIP: Power Estimation Tool

The Power Delay product for Instruction execution in a Processor (PDIP) tool
[13] was developed at WARAN Research Foundation as a part of the PASCOM
project. In [13] we have studied the sensitivity and accuracy of PDIP model
using Pentium-III as representative design. The PDIP tool(see Fig. 3) was de-
veloped primarily to provide a power-delay product analysis for the instruction
execution in a processor. It also has the capability to provide ad-hoc power and

Fig. 3. Integrated schema of PDIP showing the Software modules, Processor Hyper-
graph generation and PDIP engine
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delay analysis. The processor is modeled as a PG (Processor hyperGraph), the
function blocks of the processor map into the nodes of the graph while the hyper-
edges map the interconnect structure. The instruction execution is modelled as
a graph traversal problem. Instruction execution flows(i.e. data/address/control
bus flows) is mapped onto the hyperedges. Based upon the paths traced in the
PG the weight vectors assigned to nodes and edges will provide the parameters
for predicting the power for instruction. An integrated schema of the functional
modules, corresponding PG parameter generation, PG extraction and genera-
tion is shown in Fig. 3a. Parameterized power models have been developed for
functional units based on [15]. Interconnect power estimation is a two stage
process. The first stage involves Interconnect Distribution (ID) prediction for
the processor. The interconnect distribution prediction is adopted from [24][25].
The second stage involves application of distributed R-C power models [14] to
the various interconnect levels.

The architecture details and technology specification of the functional unit are
specified as a weight vector ’N’ assigned to the node. N is a 4 tuple specified as
< n1, n2, n3, n4 >. These indicate the propagation delay (n1), pipeline rate (n2),
average number of gate transitions (n3), local interconnect distribution (n4). We
model interconnects in all three tiers (1) Local (2) Semi-Tier (i.e Inter-function
unit) and (3) Global (i.e Bus, Clock). In PDIP we model influence of the local
nets (i.e internal to function unit) with node weight vector parameter n4. Semi-
Tier Global nets are mapped onto the edges of the hypergraph. The weight vector
generated for an edge is used to evaluate the delay and power associated with
the inter-function unit interconnects. An edge weight vector E is defined as a 4
tuple < e1, e2, e3, e4 >. Edge weights vector elements represent the bus-width
(e1),average length(e2), average transition along the interconnects(e3) and the
technology parameters(e4). In Fig. 3 we also show the inputs used to calculate
the vectors. Architecture-Descriptor-Language (ADL) is used to provide a class
description of the components of the processor and their network.

The instruction initiates execution at a node of the PG(Processor hyper-
Graph). The path traced in the graph by the various data, address and control
flows of the instruction is defined as the IEP(Instruction Execution Path). The
power associated with an instruction is evaluated as a summation of power pre-
diction associated with nodes and edges of the IEP. The simulator stages of
PDIP is illustrated in Fig. 3.

The PDIP integrates the processor unit’s power prediction with instruction
execution trace in the processor and thereby measures power as a function of
the instruction execution. PDIP parameterizes architecture-technology-layout
details and does not suffer from limitations of conventional processor power mod-
els that do not take into consideration the DSM effect of multi-level interconnect
and crosstalk effects on power.

3.2 CAche Power Estimator (CAP)

CAche Power Estimator (CAP) [16] was developed to predict the power con-
sumption on on-chip cache memory structures. CAP bridges the divide between
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the functional and micro-architecture simulators. Similar to the PDIP in con-
struction, it uses a set of parameterized power models to predict the power dissi-
pation of various cache components. Currently CAP has been developed only for
SRAM based caches. CAP is an extension of [27][18] cache power models. The
various input parameters of CAP is listed in Table 1. As shown in Table 1, the pa-
rameter vector consists of terms that are used to model architecture, technology
and layout dependent features. The sub-banking and block buffering strategies
have not been taken into consideration for power prediction. The Data and Tag
arrays in a cache basically employ the same structure. The dynamic switching
power and the static leakage current power of all gates, interconnects, and sense
amplifiers are modelled.

Fig. 4. Generic Cache Architecture

Table 1. Cache Parameters

bo Processor-Cache bus width(bits)
C the size of the cache in bytes
B the block or line size of the cache
A the associativity of the cache

nwl number of word line divisions
nbl number of bit line divisions
nsp number of sets per physical row

nfold number of folds in cache array.

The power dissipation estimation follows the critical path modelling. Equa-
tions 1,2 list the power equation for the data and tag array respectively. Table 2
lists the terms associated with power estimation.

The dynamic power is estimated by calculating the total switched capacitance.
Additionally, each gate and SRAM cell is modelled as a leakage component.
Critical Path average interconnect length was predicted and distributed R-L-
C model was applied. The interconnect R-C parameters, the device parasitic
capacitance values and Vdd values for a given technology have been obtained
from [17]. The CAP power analytical models was compared with Hspice results
[16] and it was found that up to 1MB cache positive error was within 10%
limit, beyond which the prediction deviated to up to 30% for 6MB caches. With
supercomputers and DSM processors driving towards larger cache structures this
will not be acceptable. Currently we have overcome this problem by employing
CAP to predict power for cache partitions and then scaling it up.

Pdata = Paddrd + Ppredecoded + Pfdecoded + Pwld + Pbld + Psensed + Poutd (1)

Ptag = Paddrt + Ppredecod + Pwlt + Pblt + Psenset + Poutt (2)

Memory hierarchy in a multiprocessor is more complex than that of a proces-
sor since there are more levels in the hierarchy and complex coherence protocol
interactions. The CAP power model primarily seeks to incorporate the effects of
Cache and DRAM memory banks. The Memory-Hierarchy-Simulator(MHS) is
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Table 2. Power Dissipation Terms

Paddr Driving Address Bus
Ppredecode Non-Shutdown Pre-Decoder(synthesized using NAND gates)
Pfdecode Final Decoder (synthesized using NOR gates)
Pwl Word Line Driver
Pbl Global/Local Bit Line (SRAM Access Dynamic power + Leakage power)
Psense Sense Amplifier (Clocked nFET Analog unit)
Pout Output Driver

used to simulate the traffic pattern of memory transactions on the inter-node bus
network and the various memory architectures such as Shared Memory, COMA
and NUMA-UMA’s. All memory architectures vary, primarily based on the num-
ber of memory levels, off-chip /on-chip characteristics, and the type of memory
cell employed. Main memory DRAM power has been obtained and scaling fac-
tors were employed to estimate power for various memory blocks. PASCOMP
model also currently does not include the power factors of the secondary disks.

4 APPLIB Hierarchy

Application execution on a multiprocessor, is hierarchically decomposed in to
mapping libraries. The mapping library is an execution module which speci-
fies application decomposition, task assignment, scheduling and synchronization.
The PASCOM model integrates the power prediction for architecture compo-
nents and mapping libraries. The mapping process is hierarchical. In this hier-
archy, at every level the execution process is represented using a computation
graph. The nodes of this graph are of varying complexity (Instruction/.. Appli-
cation) based on the level in the hierarchical task-mapping process. The graph
nodes in Fig. 2 are of varying complexity based on the system which is going to
execute the corresponding execution module in the mapping hierarchy level. The
PASCOM graph based model enables us to map various programming model,
since we express every programming model as combination of basic messages
and sources/sinks. The hierarchical power library model provides a schema to
express this process conveniently. A monolithic model will not scale with the
problem size and complexity.

The POWer LIBraries (POWLIBs) are constructed at various levels in the
execution hierarchy of the multiprocessor as shown in Fig. 1. The POWLIB at a
particular level consists of only a specific class of execution module (Instruction/
Program/ Algorithm/ Problem/ Application). The POWLIB(POWER Library)
consists of Basic-Execution-Modules (BEM) that are developed based on an
analysis of mapping techniques (i.e inherent parallelism, and process flow). Cur-
rently this is a combination of manual call-graph analysis and automated trace
extraction. The POWLIBs for a particular application is constructed during the
process of mapping the application onto the supercomputer. The model is built
bottom up to reverse engineer the application mapping process. A bottom-up
construction for the power libraries will enable us to proceed from a micro to
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Fig. 5. Power Tree for a problem execution. The bold tree edges show synthesis of root
from branches.

macro execution module. This will give rise to a detailed, more accurate analysis
of the power.

The Fig. 5 shows the evaluation of power at different levels during the exe-
cution of an application. Power is calculated for an application by constructing
a power-tree. The power-tree is a weighted tree that illustrates the synthesis
of the application from the ISA of the processor.The power requirement of the
application is computed by traversing the tree bottom-up integration power fac-
tors up the various sub-trees. Every node involves a weighted summation of the
power calculated in its sub-trees. Every level in the power-tree corresponds to a
particular level in the APPLIB model shown in Fig. 1. The conventional met-
ric of Watts for expressing power, is replaced with hierarchical metric schema
which express power requirements of execution libraries. This provides us with
a lucid and in depth figure of merit for power that takes into consideration the
application mapping on the cluster.

5 Experimental Case Study: Memory-In-Processor

The Memory In Processor(MIP) SuperComputer On a Chip(S.C.O.C) [7][8] is
a current project of the Vishwakarma group at WARAN Research Foundation.
PASCOM applied on the MIP S.C.O.C will provide us with a definitive indication
for power requirements of future billion device architectures. The MIP S.C.O.C
was designed to overcome the memory bottleneck and develop massive on-chip
parallelism to achieve Teraflop scale single chip performance. We case study here
a specific 2 MB MIP node that has a 128 bit datapath. The overall organization
of the MIP node is discussed in [8] [9] and the Processor-hyperGraph (PG)
used in PDIP is shown in Fig. 6b . In [9] we discuss the resource specifications,
performance analysis and develop scheduler support for the architecture.

The technology for the MIP S.C.O.C has been fixed up for two generations
as shown in Table 3. Two feature sizes of 75nm and 45nm were chosen based
on maximum transistors/die supported by the technologies. The preliminary
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Fig. 6. 2MB MIP S.C.O.C organization

analysis based on [17] indicate that fine-grain bit level logic-SRAM integra-
tion [8] is possible with aggressive technology scaling although there are certain
creases in the manufacturing process. The objectives during the chip design for
memory is density whereas for logic transistors it’s been the scaling and switching
abilities. Table 3 shows the long term(45nm) and short term(75nm) manufac-
turing prospects of the MIP S.C.O.C. The device and interconnect parameters
have been obtained from ITRS 2003 [17]. These parameters have been used in
estimation of static power and dynamic power consumption for processor.

Table 3. MIP S.C.O.C Technology

Year 2007 2010
Device Parameters
Feature Size 75nm 45nm
Total No of Transistors 1.5 Billion
Number of Metal Levels 10 12
Vdd 1.1 1.0
Vth 0.21 0.15
Parasitic Source/Drain
Resistance (Ohm-m)

162 135

Ideal NMOS device gate
Capacitance (F/μm)

6.64E-16 5.6E-16

Interconnect Parameters
Number of Metal Levels (Local:3 Global:5 Clock:2)
Total Interconnect
length (m/cm2)

1002 1784

Metal 1 wiring pitch
(nm)

191 108

RC delay(ps) for M1
(1mm)

46 616

Intermediate wiring
pitch (nm)

215 135

Interlevel Insulator(k) 3.3-3.6 2.3-2.6

Table 4. Processor Die specifications

C4 Flip-Chip Packaging
Technology 75nm 45nm
Die Area 720mm2550mm2

Ground Pin Count 1000 780
Vcc Pin Count 450 300
Data I/0 pins 2000 2000
Pad Pitch(μm) 120 80
Pin Voltage(V) 0.92 0.78

Power Specifications
Clock Distribution Power 75W 50W

I/O Pad Power 120W 110W
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The PDIP tool has been extended to include area estimation techniques from
[25] to provide us with an area estimate for the MIP shown in Fig. 6. The
interconnect length estimations for the various segments has also been shown
in Table 3. Due to the 2D array structured organization of the MIP S.C.O.C
the global lines are of lower complexity and length is proportional to number
of segments sharing the line. The processor die parameters have been shown in
Table 4. The pin count has been estimated (see Table 4) for the MIP S.C.O.C
based on bandwidth requirements and physical limitations of the packaging and
die area. The pin count has been partitioned amongst ground, Vcc and I/O data
pins. The data feed rate derived from performance estimates in [8] is fixed at
125 GBytes/s. The PDIP tool was used to extract the critical length for the
clock distribution. The number of repeaters was predicted using [14]. An R-C
tree analytical model was used to predict the clock distribution power.

6 Benchmark Applications on MIP S.C.O.C

Five major parallel benchmark applications were chosen from NAS and
SPLASH2 suite and mapped onto the MIP S.C.O.C. We capture the function
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Fig. 7. Graphs plot the resource utilization of the MIP S.C.O.C for various applica-
tions. The X-Axis plot the function units used to map the application. The Y-Axis
plots the clock cycle utilization.
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calls, their execution points and the memory load/store traces to generate the
application graph. Currently we generate the graphs from the traces manually.
With more sophisticated call-graph analyzers and binary instrumentation this
process can be automated. The resource utilization curves are shown in Fig. 7.
We assume a 75nm process technology for deriving constants to estimate power.
Table 5 shows the MIP S.C.O.C static and dynamic power under various work-
load conditions. We have integrated power consumed in interconnect transfers
into the static power calculations. We define dynamic power as power consumed
consumed for by function units when (1) performing computation and (2) used
as memory storage. Since data transfer bus lines themselves are not involved
with providing storage/computation we include them in static power calcula-
tions. Static power numbers shown in Table 5 include (1) Static power of devices
(2) Static power of interconnects (3) Power consumed by interconnects during
data transfer. We discuss in this section influence of workload on type of power
dissipation.

Table 5. Power Estimation for Algorithms

Algorithm Static Power Dynamic Power
OCEAN (10000 Grid Points) 300W 250W

Barnes’s Hut Tree(10000 Body) 320W 320W
LU-D(Matrix order=10002) 300W 400W
Integer Sort(218 numbers) 450W 150W

EP (228 numbers) 350W 275W

Table 5 illustrates the influence of workload on power dissipation break-up.
The dominant source of power dissipation will influence the power saving mech-
anism employed to save power. There is a difference of 33% between maxi-
mum and minimum static-power dissipation across the benchmarks (see Table 5
Integer-Sort and OCEAN). For dynamic power the disparity between maximum
and minimum across the various workloads is even greater at 60%(see Table 5
Integer Sort and LU-D). The total average power varies between 600W-700W.
However, they clearly indicate the influence of workload on power estimation,
and demonstrate our short-sightedness if we only measure workload indepen-
dent total power consumption. Conventional power model assumptions lead us
to gross mis-estimations not in total power, but the power dissipation source.

Application kernels such as Barne’s Hut, Ocean, and LU-D are primarily syn-
thesized using matrix algorithm libraries and they have been mapped onto the
matrix and vector cores [8]. The mapping statistics for LU-D indicate a normal
trend with the dynamic power greater than the static power. But, important
observation is that dynamic power is not significantly greater as in conventional
processors. In Barne’s hut which is primarily a tree building/traversal problem,
Dynamic power=Static power. This is due to characteristics of balanced com-
putation/communication ratio. In Barne’s hut the two distinct phases of tree
building and force estimation are complements of each other. The tree building
is the communication intensive algorithm with close to no computation and it
alternates with force estimation which employs 3 ∗ N2 multiplication and N2
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divisions where ’N’ is number of bodies in subtree. In Ocean we see the influence
of communication bound workloads creating the situation of Dynamic power
< Static power. Ocean is streams through large data structures and performs
few computations at each point.

In MIP processor with functional units being of such distinct classes, mapping
policies which entirely utilize only one core, the other cores and functional units
act as only memory locations. The number of active function units, the SRAM
leakage, and idle function units increase static power prohibitively. In application
such as Integer Sort (IS) dominated by communication over the network bus
Nperf/Ndata transfer <1. The static power dominates over the dynamic power
since only the vector core is utilized while the and the scalar and matrix cores are
idle. The Embarrassingly Parallel benchmark is dominated by small computation
phases which have very little intra-dependency. This is reflected in the power
numbers of Table 5 where static power dominates, but is due idle function units
rather than communication.

We advocate a metric in the form of Nperf/Ndata transfer where ’Nperf ’ is
computation performance (ie. communication time is not included) in FLOPS
and Ndata transfer is the communication bound in MBytes/s would be appro-
priate measure for estimating power dissipation dominant factors. Due to sim-
ulation constraints we have evaluated a single-chip multiprocessor system. The
quantitative results would change if we employ a multi-node system, however it
would not change qualitative results since power would be lost on global system
network rather than chip interconnects. We hope to validate our network power
model and hope to analyze multiprocessor clusters in results work.

7 Conclusion

This paper presents a first ever workload based model targeted towards su-
percomputers and large multiprocessor systems. We presented a hierarchical
hyper-graph based power model for uniprocessor and multiprocessor systems.
We developed two schemas (1) SUPERARCH (2) APPLIB , to model the var-
ious architecture components, application task mapping and integrated them
into our power estimation model. The novel concept of APPLIB was evolved to
evaluate the power associated with the execution modules. The power library in-
cludes at every hierarchical level the respective characteristics of the application.
Suitable power metrics were defined for mapping the levels in the hierarchy (see
Fig. 1). In sections 3.1 and 3.2 we developed power models for processors (PDIP)
and caches(CAP) that parameterize architecture, technology, and layout details
and take into consideration sub-micron effects like interconnect dominance, and
crosstalk. We demonstrated our system on a single-chip supercomputer MIP
S.C.O.C. We presented our results for a subset of scientific applications from
NAS and SPLASH suite and showed the influence of workload characteris-
tics on static,dynamic power dissipation sources. The hierarchical power model,
the concept of power library and new power metric definition will contribute
greatly towards introducing power awareness in supercomputers. The application
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dependent power prediction will help supercomputer architects in proposing ap-
plication specific power saving techniques for various runtime environments. This
will aid in putting forth a hardware-software co-design for power estimation. Cur-
rently we are validating and estimating PASCOM’s accuracy on multiprocessor
systems.
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Abstract. An n-node tree has to be explored by a group of k mobile
robots deployed initially at the root. Robots traverse the edges of the
tree until all nodes are visited. We would like to minimize maximal dis-
tance traveled by each robot (e.g. to preserve the battery power). First,
we assume that a tree is known in advance. For this NP-hard problem we
present a 2-approximation. Moreover, we present an optimal algorithm
for a case where k is constant.

From the 2-approximation algorithm we develop a fast 8-competitive
online algorithm, which does not require a previous knowledge of the
tree and collects information during the exploration. Furthermore, our
online algorithm is distributed and uses only a local communication. We
show a lower bound of 1.5 for the competitive ratio of any deterministic
online algorithm.

1 Introduction

Suppose, we conduct a Mars expedition by sending a group of robots to this
distant planet. The team lands at the bottom of an unknown crater. Each mobile
robot is equipped with a wireless communication device and batteries for energy
supply. The goal of the first mission is to explore the unknown terrain minimizing
the energy consumption of each robot.

Since it takes many minutes for a signal to reach the Earth, the remote coor-
dination of the exploration is impossible. So the robots organize themselves as a
team and using local distributed strategies complete the mission and return to
the landing zone in order to send results (the map of the terrain) to the Earth.

In this paper we investigate the problem of exploring graphs by a group of
wireless mobile robots. We assume that there is no central authority, which
could coordinate the robots. So the team has to organize itself in order to jointly
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explore the terrain. All decisions are made locally without any prior knowl-
edge of the terrain’s complexity, as it is always the case for such online prob-
lem. The global (optimal) solution emerges from decisions made locally by the
robots.

We investigate a terrain with a tree topology. An n-node tree has to be ex-
plored by a group of k mobile robots initially deployed at the root. Robots
traverse the edges of the tree until all nodes are visited. The goal is to minimize
the maximal distance traveled by one robot.

The standard approach in the competitive analysis [1] is to compare results of
our online algorithm to the results of the optimal offline algorithm which knows
the tree in advance.

1.1 The Model

We assume we are given a tree T with a root r and D is the maximal distance
(number of edges) from r to any node in T , i.e. the height of the tree. The
team of k robots has to explore the tree in such a way that robots start and
finish at r and jointly traverse all edges of the tree. We minimize the maximal
distance traveled by each robot. This problem can be defined in the following
way [2]:

Definition 1 (of k-MIN-RE problem).
Instance: an undirected tree T = (V, E), |V | = n, a fixed node r ∈ V , an

integer k > 0
Solution: tours C1, C2, . . . Ck, where

⋃k
i=1 Ci = E and each tour contains

the node r
Goal: minimize cmax = max{|Ci| : i = 1, . . . k}

For the offline approximation, we assume that the tree T is known in advance
and we construct tours Ci in polynomial time, so that cmax is close to the optimal
value.

In the online model we assume that robots initially have no knowledge of
T and a robot in a node v of T sees only the outgoing ports, i.e. beginnings
of edges adjacent to v. It does not see the other node adjacent to any edge
leaving v. Moreover, we have discrete and synchronous time and each time step
consists of the following events:

1. a robot placed at some node v gets the information on all outgoing ports of
that node,

2. a robot can communicate with other robots at distance at most 1 (or it can
read or write some information on the landmark at node v),

3. a robot may choose either to wait or to traverse an edge from the chosen
port.

Waiting and communicating does not induce any energy cost, while travers-
ing an edge costs one unit. The overall cost of the exploration is the maximal
distance traveled by one robot, which describes maximal energy used by one
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robot. We compare this cost to the cost of the optimal algorithm, which knows
T in advance.

1.2 Related Work

An exploration of unknown environments is widely studied (see [3] for a survey).
The simplest case is when a mobile robot is initially placed at some node of
a graph. If the graph is unlabeled, a robot cannot explore the graph alone.
Hence, in [4] the robot marks the nodes of the graph with the pebbles in order
to recognize visited nodes.

In [5] one robot traverses an arbitrary graph in a piecemeal manner and in [6]
some natural exploration algorithms are presented (DFS) and lower bounds
for exploration are established. In [7] the cost (penalty) is measured as a ra-
tio between the number of edge traversals of an algorithm and the overall
number of edges m in a graph. There, the authors develop an algorithm with
penalty O(m).

The single robot approach can be extended by introducing a larger number of
robots and exploring the graph by a group of them. In [8] a team of two robots
explores an unlabeled directed graph in time O(d2n5) with high probability,
where d is the maximal degree in the graph.

Profits from a collective exploration of trees are investigated in [2]. They prove
O(D + n/ log k) running time of their algorithm, which gives a multiplicative
overhead of O(k/ log k) for the time of exploration comparing to the time of an
optimal algorithm which knows the tree. They also prove lower bound of 2−1/k
for this ratio.

In [9] they present an (2−2/(k+1))-approximation algorithm for k-traveling
salesman problem for edge-weighted trees with running time O(kk−1 · nk−1).
In [10] the running time is improved to O((k − 1)! · n). The k-traveling sales-
man problem is similar to our model, but it does not constrain the the starting
positions of the robots.

The problem of minimizing the maximal distance traveled by a single robot in
a collective exploration of an unweighted tree is shown to be NP-hard. For trees
with weighted edges it is NP-hard too and remains NP-hard even for a constant
number of robots [11].

1.3 Our Results

In this paper we focus on the exploration of an arbitrary, unweighted tree. Unlike
in [9] and [10] we constrain positions of robots to one node in the tree (i.e. to the
root). As a first result we show how to compute in polynomial time the optimal
tours for the problem of the exploration with a fixed number of robots k.

Moreover, we show a 2-approximation algorithm for the problem with an
arbitrary number of robots which runs in O(k · max{D, (n − 1)/k}) time. This
significantly improves the time comparing to results of [9] and [10].

Furthermore, from our 2-approximation we develop an 8-competitive algo-
rithm with the same running time for the online problem (Sect. 1.1). We also
prove a lower bound of 1.5 for the online problem.
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2 The Complexity of k-MIN-RE

We start with an observation that k-MIN-RE is intractable [2]. The following
remark is a result of a simple reduction of k-MIN-RE to the 3-PARTITION
problem.

Remark 1. The decision version of the k-MIN-RE problem is NP-hard.

We show that for unweighted trees the problem becomes easy when we assume
that the number of robots is fixed. The algorithmDPExplore based on the dynamic
programing technique constructs a k-dimensional arrayAv of size n in a bottom-up
fashion for each node v. The element Av(a1, a2, . . . , ak) of the array is the sequence
(T1, T2, . . . , Tk) of subtrees, such that

⋃
Ti = Tv, Ti ⊂ Tv, v ∈ Ti and ai = |Ti| is

the number of edges in Ti. Each subtree defines a tour of a single robot.
The array Av is capable of storing all possible reasonable traversals of Tv

(and clearly includes the optimal one) by a group of k robots. The reasonable
traversals are those, which are optimal or can be used to construct the optimal
traversal. If there are many such traversals for fixed a1, a2, . . . , ak, then we take
any of them.

The algorithm DPExplore(v, T ) computes Av for any v and thus after com-
puting Ar, the OptFixed(v, T ) algorithm can easily find the optimal solution for
T = Tr by finding the cell of an array Ar with the best content. Pseudo-codes
for the algorithm and its subprocedures are depicted in Fig. 1, 2 and 3.

Extend(v, As)
foreach b1, . . . , bk where As(b1, . . . , bk) 	= ∅ do

(T1, . . . , Tk) ← As(b)
foreach bi > 0 do

b′
i ← bi + 1

T ′
i ← Ti ∪ {v}

A′(b′) ← (T ′
1, . . . , T

′
k)

return A′

Combine(Ax, Ay)
foreach a, b where Ax(a) 	= ∅ and Ay(b) 	= ∅ do

foreach 1 ≤ i ≤ k do ci ← ai + bi

A′(c) ← Ax(a) ∪ Ay(b)
return A′

Fig. 1. The Extend and Combine procedures

Lemma 1. The algorithm DPExplore(v,Tv) computes in O(n2k+2) time steps
the array Av, which contains all reasonable traversals of Tv.

Proof. For D = 0 the algorithm computes Ar such that Ar(0, . . . , 0) is a set of
k trees each containing only one node. Clearly this is an optimal solution for a
tree in height of 0.
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DPExplore(v, T )
if v has no children

Av(0, . . . , 0) ← the sequence of k trees consisting only of node v
else

foreach child s of v do As ← DPExplore(s,As)
foreach child s of v do A′

s ← Extend(v, As)
foreach child s of v do Av ← Combine(Av, A′

s)
return Av

Fig. 2. The DPExplore algorithm

OptFixed(v,T )
A ← DPExplore(v, T )
find (a1, . . . , ak) minimizing maxi{ai} for which A(a1, . . . , ak) 	= ∅
(T1, . . . , Tk) ← A(a1, . . . , ak)
return sequence of Ci described by a tree Ti

Fig. 3. The optimal polynomial algorithm for k-MIN-RE and fixed k

Suppose that T is h > 0 in height and DPExplore computes properly arrays
for all smaller subtrees. The root r of T has children s1, s2, . . . , sd where d is
the degree of r (clearly d > 0). Assume that As1 , As2 , . . . , Asd

have already been
computed and contain all reasonable traversals of subtrees Tsi . The procedure
Extend(v, Asi) builds an array A′

si
, which contains all reasonable traversals of

subtree Tsi ∪ {v} for each i. The next d calls of procedure Combine(Av, Asi)
construct all reasonable traversals of T .

The upper bound for the number of nonempty elements in Av is nk. So, the
procedure Extend needs O(nk) time steps. The procedure Combine needs O(n2k)
time steps for the same reason, thus the algorithm DPExplore terminates after
O(n2k+2) time steps. ��
Lemma 2. The algorithm OptFixed(r, T ) computes an optimal solution to the
problem k-MIN-RE for a fixed k in a polynomial time.

Proof. The first step of OptFixed is a call to subalgorithm DPExplore which
computes in time O(n2k+2) the array A containing all reasonable traversals of T
(Lemma 1).

Then, the optimal traversal of T can be easily found in O(nk) time. This
implies that the OptFixed finds an optimal solution in O(n2k+2) time steps,
which is polynomial in the size of the tree. ��

3 The Approximation

In this section we present the algorithm which produces tours Ci in such a way
that cmax is only two times larger than the cost of the optimal tours. We need
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LeftWalker(r,t)
Perform t/2 steps of DFS using only unmarked edges and preferring
ports with the smallest IDs and then return to r. Mark each traversed
edge which does not lead to unmarked edges.

Fig. 4. The LeftWalker algorithm

the following simple procedure which is similar to the well-known Depth First
Search algorithm. It traverses the tree and marks some edges, which is described
in details on Fig. 4.

Let Tv denote the subtree rooted in v and Sv be the sequence of children of
v, such that for each s ∈ Sv the tree Ts contains an unmarked edge. We assume
that Sv is sorted in increasing order of IDs.

Furthermore, Bv = {(v, w) : w ∈ Sv} is a set of outgoing edges which lead to
subtrees containing unexplored edges. The following fact is straight-forward for
a DFS-kind algorithm.

Remark 2. For any v and s1, s2 ∈ Sv where id(s1) < id(s2) the LeftWalker will
not enter the Ts2 before completely marking all edges of Ts1

Let t = 4·max{D, (n−1)/k} and we sequentially run LeftWalker(r, t) on the same
tree k times. We show two lemmas concerning subsequent calls of LeftWalker(r, t)
(Fig. 5).

1st

2nd

3rd

Fig. 5. Subsequential calls of LeftWalker algorithm

Lemma 3. At the beginning of any subsequent call of LeftWalker(r,t) the fol-
lowing assertion holds. For each v ∈ V at most one edge from the current set Bv

has been traversed by a robot. If there is such an edge in Bv, it must be (v, w)
where w is the node from the current Sv with the smallest ID.

Proof. Assume that for some v we have two traversed edges in the current Bv.
We denote these edges by (v, w1) and (v, w2) where w1, w2 ∈ Sv and (w.l.o.g)
the ID of the port connecting to w1 is smaller than the ID of the port connecting
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to w2. Then, there is an unexplored edge in both Tw1 and Tw2 . It means that in
some round in the past, LeftWalker started to explore ’right’ subtree Tw2 before
finishing Tw1 , which contradicts the Remark 2. ��

Lemma 4. If the next subsequent call of LeftWalker(r,t) does not finish the
exploration of T , it discovers at least max{D, (n− 1)/k} ’new’ edges which were
not traversed by any robot before.

Proof. Suppose that LeftWalker(r, t) explores the tree for the first time (first
subsequent call) and it will not finish the exploration in this round. Before it
starts returning to the root, its energy units are limited to t/2. It can traverse
each edge at most twice, so it will traverse at least t/4 ’new’ edges, before
reaching the limit.

Suppose that it is a further subsequent call of LeftWalker, i.e. there was at
least one call before. Assume that the exploration will not be finished in this
round, so it will traverse exactly t/2 edges. We claim that at least t/4 of these
edges are ’new’, since at most t/4 of these edges were traversed before.

Indeed, from Lemma 3, we have that there is at most one such edge at arbi-
trary distance from the root r. This implies that there exist at most D ≤ t/4
such edges which have been already traversed and are not marked. ��

Basing on the LeftWalker and its properties we define the algorithm depicted in
Fig. 6, and in the following lemma we show that it produces a feasible solution.

2-ApproxAlg(T)
t=max{D, (n − 1)/k}
for i=1 to k do

Ci ← LeftWalker(r, 4t)

Fig. 6. The approximation algorithm

Lemma 5. For any tree T (V, E) with root r the algorithm produces a sequence
of paths Ci such that ⋃

Ci = E

and r belongs to each path described by Ci.

Proof. Clearly, r belongs to each path described by Ci, since LeftWalker(r, 4t)
starts and ends in the root. Furthermore, Lemma 4 guarantees that in each pass
LeftWalker(r, 4t) explores at least max{D, (n− 1)/k} ‘new’ edges or finishes the
exploration. This implies that k passes suffice to completely explore the tree
(k · max{D, (n − 1)/k} ≥ n − 1 ‘new’ edges traversed). ��

In the next lemma we show that the algorithm is an approximation of an optimal
solution, i.e. we show a lower bound of any feasible solution.
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Lemma 6. For every algorithm for k-MIN-RE there exists an index i such that
|Ci| ≥ 2 · t, where t = max{D, (n − 1)/k}.
Proof. Assume that for each i the size |Ci| < 2D. Then, the bottom of the tree
cannot be reached and at least one leaf cannot be explored. In the case, where
for each i, |Ci| < (2n − 2)/k, we have

∑k
i=1 |Ci| < 2n − 2 steps made, which is

not sufficient to explore any tree consisting of n nodes. ��
Our algorithm outputs in O(k·max{D, (n−1)/k}) time steps k feasible sequences
Ci (Lemma 5), such that |Ci| ≤ 4 · t and Lemma 6 states the lower bound of
2 · t for the optimal algorithm, which proves the approximation factor of 2 for
k-MIN-RE.

4 The Online Problem

As described in Sect. 1.1 in the online setting, we assume no previous knowledge
of the tree. The robots have to gather information on the terrain’s complexity
during the exploration. First, we show that no deterministic online algorithm can
be optimal and then, we develop the strategy which gives the close to optimal
solution. We apply the standard approach and we search in a binary way for the
appropriate value of s for the tree.

4.1 Lower Bound

The following lemma states a lower bound on the competitive ratio of any de-
terministic algorithm.

Lemma 7. Any deterministic online algorithm for k-MIN-RE has the compet-
itive ratio δ ≥ 1.5.

Proof. For an arbitrary deterministic algorithm A we will present a tree for
which A needs at least 6 · p energy units to explore and for which the optimal
offline solution needs only 4 · p energy units.

We construct a tree T which is an union of 2k − 2 paths of length p and one
path of length 2p. The tree T = (V, E), depicted in Fig. 7, is such that:

V = {r} ∪ {vi,j : 1 ≤ i ≤ p, 1 ≤ j ≤ 2k − 1} ∪ {vi,q : p + 1 ≤ i ≤ 2p + 2}
and

E = {(r, v1,j) : 1 ≤ j ≤ 2k − 1}
∪{(vi−1,j , vi,j) : 2 ≤ i ≤ p, 1 ≤ j ≤ 2k − 1}
∪{(vi−1,q, vi,q) : p + 1 ≤ i ≤ 2p + 2}

The parameter q is defined for A in such a way, that the node vp,q is visited by
a robot which has already visited another node on level p (a node from the set
{vp,j : 1 ≤ j ≤ 2k − 1}). We assume that q is the smallest number with this
property.
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p

p

r

1 2 vp,q 2k − 1

v2p,q

Fig. 7. The tree of lower bound

The offline algorithm may assign one robot to traverse the long path and all
other robots to traverse two short paths each. Thus, the tree is explored with an
energy of 4p per robot. Below we show that the deterministic online algorithm
A will need at least 6p energy units for at least one robot.

By the definition of q, A uses q − 1 robots and 2p energy per robot to visit
the first q − 1 dead ends and then return to r. Then one of these q − 1 robots
is sent to explore the long path. After the robot reaches node vp,q, it discovers
that this is the long path. It can not decide to explore this path (its total energy
consumption would grow up to 6p). It comes back to the root, thus some other
robot explores the long path. The yet unexplored long path has to be traversed
by the robot which has explored no edge before.

Let us sum up the energy the robots used so far. We have three groups of
robots:

2 robots with energy consumption of at least 4p (which are useless now),
q − 1 robots with energy consumption of at least 2p,
k − q − 1 robots which have used no energy.

There are 2k − 1 − q unexplored dead ends left, and even if the second group
explores q − 1 of them, there are still 2k − 2q unexplored short paths and only
k−q−1 robots which can explore them. Even if each robot takes two short paths,
running out the whole available energy, there will be at least one unexplored
path. Thus, the team will fail to explore the tree with an energy smaller than 6p.

��

4.2 The Online Algorithm

Now we introduce a distributed online algorithm which uses LeftWalker routine
and explores an unknown tree.

Assume that robots have unique IDs from set [0, 1, . . . , k − 1]. The algorithm
to explore the tree is depicted in Fig. 8. In the following two lemmas we prove
the correctness and a good performance of the algorithm.
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WarningBee(r,k)
energy ← 1
while (tree is not completely explored){

energy ← energy · 2
wait( id · energy )
get list of the most left ports to unmarked edges from the robot id − 1
LeftWalker( r, energy )
wait( (k-id) · energy )

}

Fig. 8. The online parallel algorithm for a group of robots

Lemma 8. WarningBee terminates after �log(2t)�+1 rounds, and thus eventu-
ally it completely explores the tree with energy consumption of at most 16t units
per robot.

Proof. As we know from Sect. 3, running LeftWalker(r, 4t) sequentially k times
will completely explore the tree. This is the case in the �log(2t)� + 1 round of
WarningBee, where energy = 2�log(t)	+2 ≥ 4t. After all robots have completed
this round the whole tree is explored. This implies that WarningBee will ter-
minate after �log(2t)� + 1 rounds, where energy ≤ 8t. Summing up the overall
energy used in all rounds, we get at most 16t energy units per robot. ��

Lemma 9. WarningBee is 8-competitive for the online model.

Proof. Since the WarningBee uses at most 16t energy units (Lemma 8) and
optimal algorithm uses at least 2t energy units (Lemma 6) we have the bound
of 8 for the competitive ratio. ��

5 Conclusion

We have presented algorithms for exploration of trees with the goal of minimizing
maximal energy used by each robot.

The first two algorithms deal with the situation where the tree is known in
advance. The third one is online and it efficiently explores a tree not known in
advance. The online algorithm is distributed and uses only local communication.
Both algorithms are optimal up to a constant factor.

It turns out that the 8-competitive (energy) online algorithm, WarningBee,
uses at most O(k · D + n) time steps. WarningBee moves only one robot at a
time and therefore is not capable of optimizing the time of exploration, achieving
k-competitiveness in this model (time).

It is known that there is O(k/ log k) competitive online algorithm for opti-
mizing time [2]. At the moment there is a lower bound of 2 − 1/k, so there is a
huge gap left for further research.
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Abstract. State-of-the-art technologies in very large scale integration
(VLSI) allow for the realization of gates with varying energy consump-
tions and hence delays (i.e., processing speeds) in the very same circuit.
By considering this technological advent as an option, the design pro-
cess can pursue two different goals: (1) making the circuit as fast as
possible and (2) making non-time-critical gates slower in order minimize
the circuit’s overall energy consumption. This paper utilizes evolution-
ary algorithms, a population-based heuristic optimization technique, in
order to find optimal solutions. From a technological point of view, this
goal can be accomplished by varying the individual threshold voltages,
which determine both the device’s processing speed and its leakage cur-
rents. The experimental results indicate that evolutionary algorithms
yield significantly better solutions than rather traditional optimization
algorithms. By maintaining populations of candidate solutions, evolu-
tionary algorithms are able to escape from sub-optimal designs, which
contrasts traditional single-point optimization approaches.

1 Introduction

Off-the-shelf products offered virtually everywhere indicate that the processing
speed of digital devices, such as personal computers, laptops, personal digital
assistents, cellular phones, and the like, is of high importance to many end-
users. In other words, end-users expect their devices to operate at a processing
speed as high as possible. With respect to mobile devices, the markets today also
suggest another trend: mobile devices are expected to yield times-of-operation
as long as possible, probably in order to maximize the end-user’s independence
on electrical wires.

The issue of a suitable power supply, e.g., by means of rechargeable batteries,
becomes even more important in small mobile devices, such as cellular phones
and personal digital assistants. For example, it would probably be unacceptable
for most end-users, if the battery was larger and/or heavier than the actual cel-
lular phone. High processing speed and long time-of-operation are probably the
driving forces for research on low-power technologies. Section 2 briefly reviews
the technological background as well as the relation between energy consump-
tion and processing speed. It turns out, unfortunately, that these two parameters
compete with each other by their very nature.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 352–366, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Biologically-Inspired Optimization of Circuit Performance and Leakage 353

Among other aspects, current research on low-power [3, 9, 10, 18, 19] tries to
minimize a circuit’s energy consumption without tampering its processing speed.
Normally, a circuit consists of very many interconnected gates. But as Section
2 argues, not all of these gates are equally responsible for the circuit’s process-
ing speed. Based on this observation, previous research has proposed to simul-
taneously use both fast high-energy-consuming and slow low-energy-consuming
gates in the very same circuit. For this approach, the term dual-threshold CMOS
(DTCMOS) has been coined.

It is obvious that all gates within the critical path must be implemented in fast
high-energy-consuming technology, in order to obtain maximal processing speed.
For all other gates, however, it remains to be determined, which technology is
to be used in order to reach both optimization goals: fastest processing speed by
paying minimal energy consumption.

Previous research [18, 19, 22, 24] has already reported on some encouraging
results when applying special-purpose algorithms to the present optimization
problem. This is also discussed in Section 2. However, a comparison with
human-optimized designs indicates that these algorithms yield good but only
sub-optimal solutions. Apparently, these algorithms got stuck at sub-optimal
solutions, also known as diverting local optima in the pertinent literature on
optimization.

Since the optimization procedures mentioned above do not reliably yield op-
timal solutions, this paper applies evolutionary algorithms to the problem at
hand. Evolutionary algorithms are heuristic population-based search procedures
that incorporate random variation and selection. This paper focuses on the ap-
plication of evolutionary algorithms to the optimization problem at hand, since
both numerous experiments and theoretical analyses [1, 6, 17] stress their su-
perior global optimization performance, especially in the presence of unwanted
local optima. Therefore, Section 3 presents a short description of this class of
algorithms.

In order to allow for an evaluation, this paper applies selected evolutionary
algorithms to some rather standard design problems, which are drawn from the
ISCAS benchmark suite [7]. Section 4 provides a short description of these tasks,
and also summarizes all the relevant parameter settings. The results presented
in Section 5 suggest that the selected algorithms evolve designs better than
previously reported. Finally, Section 6 concludes with a brief discussion.

2 The Circuit Model and Previous Research

The introduction has already indicated that a device’s processing speed f as well
as its energy consumption Ptotal are tightly coupled. From a technological point
of view, this relation can be approximated by the sum of a static and a dynamic
term Pstatic and Pdynamic, respectively:

Ptotal = Pstatic + Pdynamic

with
Pstatic ≈ Pleakage ≈ VDDIDS and Pdynamic ∼ αCloadfV 2

DD , (1)
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Fig. 1. A CMOS transistor with the main voltages and currents as well as the drain-to-
source current IDS = f(VG) as a function of the gate voltage VG for a constant power
supply VDD . The voltage VTH is called the threshold voltage.

with Cload denoting the sum of the device’s dynamic capacities (e.g., the gate
capacities), VDD denoting the device’s power supply, IDS denoting the drain-to-
source (static) current (see below), and Pleakage denoting the static leakage energy
consumption. The dynamic term, as equation (1) indicates, is proportional to
the square of the power supply VDD . Research on low-power has consequently
reduced VDD from 5V to approximately 1.4V in recent years. In order to make
the CMOS devices still function properly, the gate threshold-voltage VTH has
similarly been reduced from approximately 0.7V to 0.4V [9, 25].

Figure 1 illustrates a CMOS transistor with some of its major voltages and
currents. The figure also illustrates the drain-to-source current IDS = f(VG) as
a function of the gate voltage VG for a constant power supply VDD . It should be
noted that the y-axis is in logarithmic scale, thus expressing that the drain-
to-source current IDS ∼ exp(VG) grows exponentialy with the gate voltage
VG. The term VTH is called threshold (gate) voltage, and the regime VG <
VTH is called sub-threshold. In current VLSI technologies, the drain-to-source
sub-threshold currents IDS � IGS are much larger than the gate-to-source sub-
threshold currents IGS and thus dominate the static energy consumption Pleakage.

Unfortunately, the reduction of the gate threshold voltage to VTH ≈ 0.4 has
led to a left-shift of the IDS (VG) curve, and thus to a significant increase of
the sub-threshold drain-to-source current. By contrast, technological advances
in the development of new insulators, prevent other leakage currents, such as
the gate-to-drain currents IGD , from further increases. Currently available low-
power technologies indicate that the static energy consumption Pleakage is and
will be dominated by the sub-threshold drain-to-source leakage current IDS .

The particularly chosen value of the threshold voltage VTH not only influences
the sub-threshold drain-to-source leakage current IDS but also the transistor’s
delay1 and thus the device’s processing speed: a higher threshold voltage VTH ,
with a lower sub-threshold drain-to-source leakage current IDS associated to it,
requires more time to charge and discharge the transistor’s capacitor. Hence,
1 On the transistor as well as gate level, the term delay rather than processing speed

is more commonly used.
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Fig. 2. A simple CMOS-circuit with different path delays, caused by different numbers
of gates in each path. The lower path is non-critical, and thus may be subject to the
implementation in slow high-voltage technology.

saving energy consumption by increasing the threshold voltage also increases a
transistor’s delay.

A digital VLSI circuit generally consists of very many gates of different types,
such as NAND, NOR, inverters, etc., and varying numbers of inputs, which to-
gether realize the circuit’s functionality, e.g., a network adapter or a micropro-
cessor. It used to be that throughout the entire VLSI circuit, the very same
threshold voltage VTH was used for all transistors. But the simple example pre-
sented in Figure 2 allows for the observation that not all gates are equally im-
portant for the circuit’s overall delay: the upper path has more gates in sequence
and thus constitutes the circuit’s critical path, since it determines its overall de-
lay, whereas the lower path processes its signals faster anyhow. In other words,
the gates residing in the non-critical path can be processing their signals slower
without affecting the circuit’s overall delay to some extent.

Based on the observation discussed above, dual-threshold CMOS (DTCMOS)
design techniques [9, 10, 22, 24] have proposed to employ both slow high-threshold
and fast low-threshold gate types in the very same circuit. These two gate types
are obviously realized by high-threshold and low-threshold transistors, respec-
tively. In addition, previous research [3, 18, 19, 23] has also generalized this idea
by allowing a variable number of fast and slow transistors, thus providing a
rather fine-grained differentiation of the gate’s delay and its energy consump-
tion. Table 1 provides three examples of three different realizations with their
resulting delays and leakage currents. For further details, the interested reader
is referred to [18, 19].

Table 1. This table shows three different realizations with their resulting delays and
leakage currents for NOR-2, NAND-2, and an inverter

NOR-2 NAND-2 INV
66.3 ps 86.0 nA 42.9 ps 135.0 nA 36.6 ps 92.8 nA
78.0 ps 36.6 nA 51.3 ps 46.5 nA 37.6 ps 62.5 nA
90.0 ps 10.6 nA 58.3 ps 20.3 nA 45.8 ps 12.6 nA
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By offering p specific implementations, i.e., delay and energy consumption, per
gate and a total of g gates, the very same circuit can be realized in potentially
n = gp alternatives. Previous research [11] has suggested that p=3 different
implementations per gate are optimal; unfortunately, no substantial indication
was provided, why this choice is supposed to be optimal. One possible reason
might be that the number of possible realizations grows exponentially in the
number p implementations per gate.

For the task of finding optimal designs, previous research [10, 18, 19, 22] has
employed various algorithms, from which two serve as a baseline for comparison
purposes. The first algorithm [18], denoted as SFA-I (straight-forward algorithm,
variant I) for short, starts off by using the slowest implementation for all gates.
It then accelerates the critical path by substituting some of them with their
fastest counterparts until either this path has turned into a non-critical one or
no further gates can be accelerated. This step is repeated as long as it can change
a critical path into a non-critical one. Finally, all fast gates are substituted by
the medium ones as long as this does not affect the circuit’s overall delay.

The second algorithm [19], denoted as SFA-II for short, is a modification of a
previous development [12, 21]. It starts off by selecting the fastest alternatives for
all gates. It then consecutively substitutes them with medium or slow alternatives
by preferring gates with a high fan-out. The step is repeated until no further
gate can be slowed down without affecting the circuit’s overall delay. For further
details, the interested reader is referred to the literature [18, 19].

3 The Evolutionary Approach

The term evolutionary algorithms refers to a class of heuristic population-based
search procedures that incorporate random variation and selection, and provide
a framework that mainly consists of genetic algorithms [6], evolutionary pro-
gramming [4, 5], and evolution strategies [15, 17].

Even though all evolutionary algorithm have their own peculiarities, they
share many common features. All evolutionary algorithms maintain a population
of μ individuals, also called parents. In each generation, an evolutionary algo-
rithm generates λ offspring by copying randomly selected parents and applying
variation operators, such as mutation and recombination. It then assigns a fitness
value (defined by a fitness or objective function) to each offspring. Depending on
their fitness, each offspring is given a specific survival probability. The canonical
form of an evolutionary algorithm can be “formally” described as follows:

Step 0: Initialization of the population’s individuals and evaluation of the indi-
viduals’ fitness

Step 1: Selection of the parents according to a preselected selection scheme (e.g.,
roulette wheel, linear ranking, truncation selection)

Step 2: Recombination of selected parents by exchanging parts of their genes
Step 3: Mutation of some genes by a pre-specified probability
Step 4: If not termination criterion met, go to Step 1
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Fig. 3. A graphical visualization of an evolutionary algorithm in its canonical form

Figure 3 presents a graphical visualization of an evolutionary algorithm, and for
a good overview as well as further details, the interested reader is referred to [1].

By selecting certain individuals as parents, an evolutionary algorithm ad-
vances from one generations to another. The two most-commonly used selection
schemes are denoted as either (μ,λ) or (μ+λ). The first selection scheme, i.e.,
(μ,λ) indicates that the algorithm chooses the parents for the next generation
only from the offspring, whereas the latter selection scheme selects from the
union of the previous parents and the current offspring; the latter form is also
known as μ-fold elitism.

As has been discussed above and exemplified in Table 1, all gates can be
configured with three different leakage currents2. Therefore, the optimization
problem at hand is discrete by its very nature for which the traditional form of
genetic algorithms is particularly suited. In the experimental comparisons, these
algorithms are denoted as (μ+λ)-GA or (μ,λ)-GA for short. The other evolu-
tionary algorithm variants, particularly evolutionary programming and evolution
strategies, are rather tailored to continuous parameter optimization and are thus
not further considered in this paper.

4 Methods

The first task of almost any optimization procedure is to find a proper machine
coding, also called genome or genotype, for the problem at hand. Here, this paper
adopts a direct coding in which every gate is represented by a particular allele,
which codes for the particularly chosen leakage current IDS . Thus, a device that
consists of n gates is represented by a genome of n positions with each being
able to assume three different values (see above and also [11]).

Since each gate can choose its leakage current only from three different values,
the implementation of an appropriate mutation operator is straight forward: it
2 It should be noted that the actual values of the leakage currents are not equivalent for

all gates, but depend on their number of inputs, functionality, and other parameters.
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chooses the next lower or higher value. In accordance with the literature [6, 16] a
mutation probability pm = 1/n with n denoting the number of gates was chosen
in all experiments.

The literature [1, 6, 15] offers a large selection of various recombination oper-
ators for evolutionary algorithms. But since recombination could not yield any
performance advantage in the present task, non of these operators is been used
in this paper. Furthermore, the literature [15] suggests that μ=1 parent and λ=6
offspring yield the highest sequential efficiency.

As has been outlined above, the fitness function should incorporate both the
network’s delay and its energy consumption. Since the network’s delay is of
primary interest (by definition), the following fitness function has been used:

f = delay − 1
leakage

. (2)

For the goal of doing a comparative study, this paper has selected the following
five standard designs (for further details, see [7]):

C432 is a 27-channel interrupt controller [26] with a total of 36 inputs and 7
outputs. The controller has 27 interrupt request inputs, which are grouped
into 3 buses with 9 lines each. It has further 9 control inputs, which activates/
de-activates the associated interrupt lines. The implementation of such an
interrupt controller, requires 160 gates.

C1355 is a 32-Bit single-error correcting circuit [27]. By utilizing a (40,32)
Hamming code matrix, it generates a 8-bit long syndrom by reading the 32
input lines. The 41 input lines are forwarded along with the 8-bit syndrom
to a correction unit. The implementation of this device requires 546 gates.

C3540 is a 8-bit arithmetic-logical-unit (ALU) [28] with 50 inputs and 22 out-
puts. It realizes various arithmetic, logical, BCD, shift, and other operations
on 8 input lines, and its implementation requires 1669 gates.

C5315 is an extension of the C3540-circuit [29], in that it realizes a 9-bit ALU
with 178 inputs and 123 outputs, which requires 2406 gates for its imple-
mentation.

C7552 is a device [30] that contains a 34-bit adder, a 34-bit comparator, which
requires an additional 34-bit adder, and an 34-bit parity checker. The circuit
requires 3512 gates to map the 207 inputs onto 108 outputs.

For the realization, this paper used a previously developed gate library [20],
which is based on the 65 nm Berkeley predictive technology models (BPTM).

5 Results

Direct performance comparisons are not straight forward for the following two
reasons: first, two quality measures are simultaneously subject to the optimiza-
tion process, and second, the optimization procedures considered in this paper
operate on different time scales. Therefore, this section starts off with a detailed
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Fig. 5. The evolution of both the circuit’s delay (y-axis on the left-hand-side) and
leakage (y-axis on the right-hand-side) when applying a straight-forward optimization
algorithm on the C5315 problem

discussion of Figures 4-7, which show various performance figures obtained on
the ALU-design problem C5315.

Figure 4 shows the evolution of the both the delay and leakage when using
both a (1+6)-GA and a (1,6)-GA. Since the genetic algorithms initialize all
gates with the fastest realizations, the delay starts at 1955 ps and a (total)
leakage of 272,600 nA. During the corse of evolution, then, the leakage drops to
almost a fifth of that value, i.e., about 58,597 nA, without increasing the circuit’s
delay as requested. Since the performance graphs of both procedure are virtually
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identical, the remainder of this section focuses on the (1+6)-GA and does not
consider the (1,6)-GA any further.

For comparison purposes, Figure 5 presents the development of both delay
and leakage when using the procedures SFA-I and SFA-II previously developed
[18, 19]. It can be seen that both procedures start off with a relatively large delay
of about 2656 ps, but arrive at the same final value of 1955 ps after about 150
to 250 iterations. In order to attain this improved processing, both procedures
have increased the leakage to about 73,443 nA and 81,580 nA, respectively.

For a better comparison of the two parameters under optimization, Figures 6
and 7 combine those graphs into two figures. To this end, the time scale, i.e.,
x-axis, has been rescaled to a 100 time units. It can be clearly seen that the
circuit’s final delay arrive at the same values (Figure 6), whereas the genetic
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Fig. 9. The evolution of the leakage when applying a (1+6)-GA, SFA-I, and SFA-II to
the C1355 problem

algorithms were able to improve the leakage by about 20-30% (Figure 7). This,
however, came at the cost of a significant increase in the computational require-
ments. With respect to the end-users expectations on the time-of-operation, this
additional optimization effort might by worth it, especially since this has to be
done only once during the circuit’s design process.

Figures 8 to 11 show how the optimization procedures under consideration
evolve the leakage over time for the other four design problems C432, C1355,
C3540, and C7552, respectively. As for the C5315 problem discussed first, all
procedures exhibit a similar behavior. Furthermore, all procedures arrive at the
same final delay (not shown in any figure) for each problem.
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to the C5315 problem

The performance graphs may be summarized as follows: In comparison to
SFA-I, SFA-II constitutes a significant improvement in that it requires shorter
optimization time and often yields lower leakage values. SFA-II increases the
leakage by substituting slow high-voltage gates by their fastest counter parts,
until the circuit has the shortest delay possible. It then reduces the resulting
leakage by also considering medium-voltage gates.

The genetic algorithms by contrast, yielded the lowest overall leakage and
thus energy consumption values, but required substantially more time. This ob-
servation goes in-line with the pertinent literature [15]: evolutionary algorithms
are a general framework, which might be slower than special-purpose procedures
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in many cases but have the ability to escape from local optima, and are thus of-
ten able to yield superior results. For comparison purposes, Table 2 presents the
final values for delay and leakage for all algorithms over all problems considered
in this paper.

In order to assess the utility of large population sizes, Figures 12 and 13
illustrate the application of a (10+40)-GA to the C432 and C5315 problems,
respectively. A comparison with Figures 8 and 11, respectively, indicates that
a (10+40)-GA might be faster in terms of the number of generations but sig-
nificantly slower in terms of the number of functions evaluations, which is the
product of the number of generations and the number of offspring λ.
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Table 2. Comparison of the final delay and leakage values over all procedures and all
problems

C432 Delay Leakage C1335 Delay Leakage
SFA-I 1045 43,699 SFA-I 925 79,037
SFA-II 1045 38,482 SFA-II 925 73,443

(1+6)-GA 1045 38,779 (1+6)-GA 925 70,781

C3540 Delay Leakage C5315 Delay Leakage
SFA-I 1618 145,504 SFA-I 1955 73,443
SFA-II 1618 137,857 SFA-II 1955 81,580

(1+6)-GA 1618 132,012 (1+6)-GA 1955 58,597

C7552 Delay Leakage
SFA-I 1198 180,714
SFA-II 1198 195,898

(1+6)-GA 1198 169,948

6 Conclusions

This paper has argued that processing speed and energy consumptions are
properties, which end-users consider important for mobile devices. It has been
discussed that these two parameters depend on each other due to technologi-
cal reasons. This paper has furthermore reviewed two optimization procedures,
which have been investigated in previous research. Since previous research has
led to optimized designs, which are inferior to devices designed by humans, this
paper has applied genetic algorithms to this optimization problem. The experi-
mental results indicate that genetic algorithms were able to reduce the leakage by
about 10-40% as compared to previously optimized designs. The results also in-
dicate, however, that genetic algorithms require substantially more computation
time.

Future research will be dedicated to the investigate of further optimization ap-
proaches, such as simulated annealing and other evolutionary algorithm variants,
Furthermore, future research will be investigating to what extent an increase of
the number p of different gate implementations can benificial for the overall
energy consumption.
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Abstract. In this paper, we propose and analyze an application called
SOMA (SynchrOnous Multicast Application) which offers multicast file
transfer service in an asymmetric intra-campus environment. For efficient
bandwidth utilization, SOMA uses IP multicasting. Since TCP cannot
be used in multicast situations, we also propose a transport protocol
involving a flow control algorithm. This algorithm adapts the protocol
window size and the overall application transfer rate to the minimum
network capacity, allowing synchronism and reacting quickly when con-
gestion arises at any router. The protocol behavior has been intensively
tested in a lab, using a mixture of wired and wireless networks. The paper
also explains how to capture and post-process SOMA network traffic. In
addition, we develop a mathematical model to validate the most impor-
tant protocol parameters. The methodology employed to define, analyze
and evaluate this protocol is, indeed, another contribution and can be
easily extended to other multicast protocols.

1 Introduction

The use of multicasting within a network has many benefits. Multicast minimizes
the link bandwidth consumption because no multiple unicast connections are
needed to send the information. It also reduces the sender and router processing
and the delivery delay.

In this paper we propose, analyze, implement and test a SynchrOnous Multi-
cast Application called SOMA to transfer large amount of data from a server to
a group of clients. It is specially featured to operate in an intra-campus environ-
ment (several interconnected LANs through few routers). We also describe how
to capure and post-process its generated network traffic. In particular, we have
used a Linux kernel architecture to improve the packet capture process (BSD
Packet Filter) and we have modified the two well-known open-source sniffers
(tcpdump and ethereal) to interpret our protocol packets.

Since TCP is a unicast (point-to-point) oriented protocol, it cannot be used
in a multicast environment. Therefore, a key aspect associated to the application
design is the definition and implementation of an appropriate multicast transport
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protocol. Although a large number of multicast transport protocols have been
proposed in the literature, most of them are extremely complex and some of
them move transport level tasks to network devices (for example, to provide
NAK or ACK suppression).

Our main contribution in comparison with the related work in [1][2][3] is to
define and code an efficient and extremely simple multicast transport protocol
able to work in an asymmetric intra-campus scenario. Obviously, our solution
requires multicast network facilities, but this is not a concern since involved
routers are located into our administrative domain. In spite of its simplicity,
our proposed protocol provides the main tasks of a transport protocol: Efficient
and simple flow control, congestion control and error correction algorithms. In
addition, it fairly shares network capacity with other flows.

SOMA protocol simplicity makes possible an easy codification and a feasible
mathematical analysis of the main key features which enables the optimization
of some parameter values. It has been described and validated using the SDL
specification and description language and it has been written in C language
using standard Linux kernel routines.

The rest of this paper is organized as follows. Section 2 describes the protocol.
In section 3 the key protocol parameters are analytically characterized. Section 4
describes the methodology used to capture and process SOMA traffic. Section 5
presents our test results in a mixed wired and wireless LAN. Finally, section 6
concludes the paper.

2 SOMA Description

SOMA is a multicast application designed for transmitting synchronously large
files and hard disk partitions to a set of clients. This protocol is an extension and
enhancement of a previous work [4] to cover asymmetric intra-campus networks.

The application employs IP multicast addressing and implements its own
multicast transport protocol over UDP. Thereby, port multiplexing and error
checking facilities are automatically resolved by the kernel. However, due to
the UDP simplicity, the flow control and error recovery mechanisms have to
be implemented to fit the transport layer requirements of our application. For
this reason we refer to SOMA alternatively as an application or as a transport
protocol.

2.1 Overall Protocol Description

SOMA splits the transmission process into two phases. In the first one, the
server multicasts a set of data packets (a window) to all clients. The clients
store the payload and confirm the received packets by an ACK. Although in
this phase the server never retransmits any data packet, a client issues a NACK
packet when packet losses are detected and it also saves an error mark instead of
the payload. The feedback information (ACK and NACK packets) received at
the server are used to resize the window. The above procedure is repeated until
the file is completely transferred.
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The second phase, that is focused on error correction, starts when the
entire file has been transmitted. Each receiver re-scan their file looking for er-
ror marks. If one of them is found, the client delivers a unicast Repair-Request
packet towards the server. The server answers the client sending a unicast Repair-
Response packet.

One of the main SOMA protocol features is synchronicity. The proposed flow
control algorithm, that is explained and tested below, adapts the server trans-
mission rate to the slowest bitrate of a participant network. Therefore, all the
clients receive the information at the same time.

SOMA is mainly used to replicate a large amount of information. In this
scenario, the reduction of packet flows to only one multicast data flow is the
objective and synchronicity is a consequence. However, the syncronicity feature
converts SOMA in a useful and simple multicast transport protocol also for real
time applications.

Error correction tasks are relegated to a final phase since current network
technologies offer low error rates. This assumption avoids a complex protocol
design, solving unfrequent packet losses during the transmission. Furthermore,
the protocol adaptation for real time applications only requires to disable the
error correction phase.

2.2 Proposed Header

The SOMA packet header consists of 4 fields. The Sequence Number (SN, 4
bytes long) used mainly for packet loss detection. The Type Of Packet (TOP, 1
byte), which distinguishes a DATA, an ACK, a NACK, a Repair Request or a
Repair Response packet. The Payload Length (PL, 2 bytes) indicates the total
packet length in bytes. The Last Window Sequence Number (LWSN, 4 bytes)
is used to indicate the last packet of a given window. The header is followed by
the payload, which transports 512 information bytes.

2.3 Flow Control Algorithm

After the server sends a data packet window, it starts a timer called timeout and
immediately waits until an ACK packet for each participating LAN acknowledges
the window or until the timer expires. If the timer expires before the ACKs are
received, its value is increased multiplying it by a factor of α (α > 1). But if
the window is confirmed in time, the timer value is decreased as denoted by
expression (1)

Tout = max{Tout

β
, default T out}. (1)

Where β is also greater than one (β > 1) and default Tout is the bottom thresh-
old value. The server repeats the above operation until the file is completely
transferred.

The window is only confirmed when the server receives one ACK for each
LAN, ensuring synchronism among all multicast clients. Therefore, if one of
the networks suffers congestion, the timeout value is increased and therefore,
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the data transmission rate decreases. When congestion disappears, the timer
redefinition allows to increase the transfer rate again.

To improve the flow control reaction, it is convenient that not only the timer
but also the window size changes appropriately. To accomplish this, just before
sending the next data window, the server modifies the window size as follows:

– If the expected ACKs associated to this window have been received before
the timer expires, the server increases the window size in one unit.

– If the timeout expires, the server decreases in one unit the window size.
– For each NACK that indicates a different packet lost (only the first identical

NACK is considered), the server decrements the window size in one unit.

On the other hand, the clients are waiting for data packets. When a packet
arrives, each client extracts the SN and compares it with the expected value:

– If SN is the expected one, the client stores the payload and updates the
sequence number.

– If SN is greater, the client detects packet losses and sends a NACK with the
sequence number of the received data packet. Simultaneously, it finds out
the number of packets lost and it stores an error mark for each one. Finally
it also stores the data contained in the received packet.

– If SN is smaller, the data packet is discarded.

In addition, if the SN matches with the LWSN value, the client competes for
sending an ACK to confirm the entire window issued by the server.

2.4 Feedback Implosion Reduction

To reduce the amount of ACK feedback packets in the network, a client must
wait a random period called ARTP (ACK Random Time Period) before sending
an ACK and simultaneously listens if other client is transmitting the same ACK.
If the ARTP expires and the ACK has not been received, the client generates
and multicasts its own ACK. The rest of clients will receive the ACK but only
the clients at the ACK sender side will disable its own ACK transmission. The
ARTP value is obtained from a uniform probability distribution function ranging
between zero and ARTPmax. Thereby, only one ACK for each participant LAN
is sent to the server, independently of the number of clients.

The effective ACK generation time is a random variable defined as: ARTP =
min(ARTP1, · · · , ARTPn) , where n is the number of clients. Therefore, the
mean ARTP value is

ARTP =
(

1 − n

n + 1

)
· ARTPmax. (2)

It is clearly decreasing with the number of clients.
Figure 3 briefly shows the usual protocol operation. The server sends a set of

data packets, increasing each time the window size until WT size is reached. At
this point, the timer expires just before the ACK is received, probably because
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Fig. 1. Flowchart of the multicast stage of the server

at some network point congestion arises. The server reacts quickly increasing
the timer value and decreasing the window size. It is clear that for protocol
consistency, the timer (timeout) must be greater than the mean ARTP value
(ARTP ).

Figures 1 and 2 summarize server and client behavior.
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Fig. 2. Flowchart of the multicast stage of the client
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Fig. 3. Window size evolution in an asymmetric network environment. One of the
networks (at C1 Mbps) is slower than the other one (at C2 Mbps). The window size
(W ) is expressed in bits.

3 Protocol Characterization

The protocol behavior is strongly correlated with the flow control algorithm
performance. In particular, the maximum window size, the steady state window
size and the maximum throughput values are the three most important protocol
parameters.

3.1 Maximum Window Size

The transmission rate is determined by the network capacity, the timeout timer
and the window size. The proposed flow control algorithm modifies the last two
parameters to reach an optimum transfer rate.

If there is no congestion, the server increases the window size up to its max-
imum value (suppose also an error-free transmission channel). To simplify, but
without loss of generality, suppose that there is only one LAN with capacity C
bps. Suppose also that the file size is large enough to assume that the trans-
mission is performed by the maximum window size. Under these conditions, the
total transfer time can be calculated as

T =
FileS

PayloadS
· DataPS

C
+

FileS

PayloadS · WindowS

(
ARTP +

AckPS

C

)
. (3)

Where FileS is the file size, PayloadS is the data packet payload size, DataPS
and AckPS are the data and ACK packet sizes respectively and WindowS is the
maximum window size.

The first addend is the time needed for the server to transfer the file and the
second one is the required time by the clients to issue the ACKs. It is obvious
that a high maximum window value enables a faster transmission rate, but at the
same time the protocol has fewer opportunities to react to network congestion.

By simply operating in (3), the transfer time reduction due to the use of a
window size W2 instead of W1 (W2 > W1) is equal to

FileS

PayloadS

(
ARTP +

AckPS

C

)
· W2 − W1

W1W2
. (4)

If an appropriate window size W1 is selected, an alternative window size W2
(where W2 >> W1) does not provide a remarkable transfer time reduction since
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lim
W2→∞

W2 − W1

W2W1
=

1
W1

. (5)

According to (4) and (5) we choose a maximum window size of 100 data packets
(rule of thumb) since it achieves both, fast data transmission rate and a quick
response when congestion arises.

3.2 Window Size Convergence

The window size during the transmission reaches a steady state value, which is
strongly correlated with the throughput. In this section we find out a mathe-
matical expression to this parameter.

In our analytical model, we must assume some simplifications to reduce the
extremely complex general situation. We assume that the intra-campus network
consists of two unequal capacity LAN networks (LAN1 at C1 Mbps and LAN2
at C2 Mbps, where C1 >> C2), both connected through a router (see figure 4).
We also assume that there is not any other applications using the network and
that the server is situated at the slowest LAN, the LAN1 network.

Fig. 4. Router model. Delay from LAN2 to LAN1 network is negligible.

Due to the network capacity difference, congestion may arise at the router,
which can be modeled as a pair of buffers serving packets at C2 and C1 Mbps
respectively. LAN2 to LAN1 buffer delay can be neglected because it is filled
only with the ACK packets and the service rate at the other side is very high
(C1 Mbps).

Supposing an initial window size of one (see figure 3), the server sends only
one data packet to the network and waits for ACKs (one for each LAN). The
ACK packet from LAN1 arrives early, since it does not need to go through the
router. The ACK packet from the LAN2 network arrives approximately at

DataPS

C1
+

DataPS

C2
+ ARTP ≈ DataPS

C2
+ ARTP, where C1 >> C2. (6)

When both ACKs have arrived, the window size is increased by one unit and
the next data window is issued. For a W window size, the server will receive the
ACK from the slowest network approximately at

W · DataPS

C2
+ ARTP. (7)
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The window size just before congestion is detected (WT ) can be obtained when
(7) slightly matches with default Tout (see figure 3):

WT =
(default T out − ARTP )

DataPS
· C2. (8)

At this time, the server increases again the window size and sends the next
data block. But now, congestion is declared since the timer expires before the
ACK packet from LAN2 arrives. Therefore, the flow control multiplies the timer
by α and decreases the window in one unit. In this new situation, it can be
guaranteed that the server assumes that the congestion has disappeared since
α > 1. Once again, the window is increased and the timer is divided by β.
But since β > α > 1, the timer value reaches again its default value and then
congestion is declared again.

This behavior is continuously repeated. Therefore, the window size reaches a
steady-state value slightly oscillating around WT . This study can be extrapolated
to other intra-campus scenarios if it is satisfied that one of the networks has a
lower capacity than the others.

3.3 Maximum Throughput

SOMA obtains the maximum throughput and the maximum window size (Wmax)
when it is the only running application and there is no congestion. In that
situation, the time interval between two consecutive data windows is restricted by
the ARTP mean value (2) and not by the timer (default T out >> ARTPmax).
Therefore, in this case the maximum throughput is bounded by

Wmax

Wmax

C
+ ARTP

. (9)

Where C is the network capacity at the server side and Wmax is expressed in
bits.

But, if congestion arises at some network point, the timeout timer restricts
the time between data blocks and the window size reaches its steady-state value.
Therefore, the maximum throughput is bounded by

WT + DataPS

WT + DataPS

C
+ default T out

. (10)

Where C is the network capacity at the server side and WT is expressed in bits.

4 Capturing and Processing SOMA Traffic

There are several solutions to capture real traffic in a network. The first one is
to use a hardware protocol analyzer. They are able to capture frames and to get
some traffic figures in real time. The capture can also be stored in a file to obtain
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more statistical parameters by subsequent processing. The equipment price and
a very limited adaptation to new emerging network technologies are the main
drawbacks of this solution.

Other solution is to use a software network sniffer running in a computer.
Many companies (Cisco, HP, Nortel Networks, etc.) add this feature to their
network management tools. However, the software cost and the limited traffic
analysis characteristics are the main drawbacks in this case. Finally, there is
another solution: The freeware sniffers like ethereal [5] and tcpdump [6] (the first
one is a GUI network sniffer and the second one is a line-oriented sniffer).

This is the best solution in most of the situations. Their features are compa-
rable to hardware solutions and they require a low investment. Furthermore, this
option can adapt to any network technology since, nowadays, there are many
network interfaces (Frame Relay, ISDN, ATM) available to PC at competitive
prices. We have chosen tcpdump and ethereal sniffers to evaluate our proposed
protocol.

Working with open-source sniffers allows us to easily improve the protocol
analysis capabilities. The software can be modified to be able to identify a SOMA
packet and to show the packet fields in an adequate format. Ethereal is a multi-
platform software written in C language. Amongst other libraries, ethereal uses
the packet capture and filtering library libpcap (Packet CAPture LIBrary), the
graphical user interface gtk+ and the glib library which allows the sniffer to
generate and manage a protocol stack similar to the recommended OSI model.
Adding a new protocol to the protocol supported set requires the codification of
a new dissector (a C language file which name must be packet soma.c, that is,
the reserved word packet followed by the new protocol acronym). The dissector
encodes the new protocol definition, its header fields, its names and the format
they must be shown in the result window. Moreover, the new dissector must
be registered to the lower level dissector, and then glib library is able to insert
SOMA protocol into the global protocol stack. In our case, SOMA packets are
encapsulated into UDP packets, and therefore, the lower dissector is the specific
UDP dissector.

Like ethereal, tcpdump is an open-source sniffer written in C that uses the
libpcap library. However, the capture information is shown in console mode. This
feature allows to capture traffic using computers without a graphical interface
(i.e. X Server). This fact allows to save system resources in limited computers
and therefore to improve the traffic capture process.

Tcpdump adaptation implied different modifications. First, the predefined
display format has been completely redefined. Original tcpdump displays the
packet information in a tree structured format, where each protocol information
is printed in a different line. Our customized tcpdump displays all the packet in-
formation in only one line (for post-processing purposes, as it is explained later).
Second, as ethereal, tcpdump must be able to detect and interpret a SOMA
packet. For that, the UDP protocol module (print udp.c) has been modified to
determine the port number associated to a SOMA packet. Then, if a UDP port
number of a received packet matches the SOMA port number, print udp.c calls
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the print soma() function, coded in print soma.c which analyzes and prints the
SOMA header.

As well as adapting open-source sniffers to interpret our protocol, we use
the Linux Packet Filter (LPF) inspired by the BSD Packet Filter (BPF)[7], a
kernel architecture for packet capture. The BPF has two main components: The
network tap and the packet filter. The network tap collects copies of packets
from the network device drivers and delivers them to listening applications. The
filter decides if a packet should be accepted and, if so, how much of it to copy
to the listening application.

When a packet arrives at a network interface, the link level device driver nor-
mally sends it up to the system protocol stack. But when BPF is listening on this
interface, the driver first calls BPF. BPF feeds the packet to each participating
process filter. For each filter that accepts the packet, BPF copies the requested
amount of data to the buffer associated with that filter. The device driver then
regains control.

The main advantage of the BSD Packet Filter is that it discards unwanted
packets as early as possible and therefore it minimizes the packet copies across
the kernel buffers.

Once traffic is captured and stored, information from packet header must be
processed to extract the desired statistical figures. For that, we have use awk, a
powerful pattern scanning and processing language. Awk scans input lines, line
by line, to see if a line matches a set of patterns or conditions specified in a
program. If a line matches a certain pattern, a specified action is carried out.

The high processing rate offered by the awk language has determined this elec-
tion. Awk functions and programming philosophy are very similar to C language.
Multiple arithmetic calculations can be programmed in an extremely easy way,
and therefore many protocol figures and parameters can be obtained efficiently
and quickly.

5 Test Results Discussion

In this section, we evaluate SOMA in a real situation. It should be noticed that
our analytical study is focused on a transport layer but test experiments are
obviously the result of all OSI layers integration, from the physical layer up to
the transport one. Concretely, in section 3 we have not made any consideration
about the MAC, LLC, IP and UDP sub-layers. Moreover, SOMA runs over a
multi-task OS, which has non real-time facilities. Therefore, although we try
to minimize the computational load in each computer (unnecessary processes,
like cron, are killed), sometimes the kernel may give priority to other processes
instead of SOMA. Both effects, the OSI layers integration and the multi-task
OS may cause that the test results reveal some smaller differences with the
analytical ones.

The intra-campus environment is formed by two LANs of extremely unequal
capacities, a wired Ethernet LAN operating at 100 Mbps and a wireless LAN
802.11b at 2 Mbps, both connected through a wireless access-point router. The
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Fig. 5. Window size evolution for different default Tout values: 80, 90, 100, 110 and
120 ms

access-point router is a Linksys WRT54G, co-sponsored by Cisco Systems. We
changed its firmware by a stable and configurable Linux OS called OpenWrt [8].

To verify that the analytical results obtained in section 3 fit good enough
with the test results, the same intra-campus environment is used: the clients are
situated in both LANs and the server is situated in the wired network.

Our test intra-campus network forces congestion since the wireless LAN ca-
pacity (2 Mbps) is fifty times lower than the wired network capacity (100 Mbps).

Figure 5 shows the evolution of the window size for different default Tout
values: 80, 90, 100, 110 and 120 ms. According to expression (8) the window
size should oscillate around 29, 32, 36, 39 and 43 packets respectively. To obtain
these values it is assumed that: (a) The ARTP is 120 μs, which is calculated
using (2) when n=4 and the ARTPmax is 600 mus. (b) The effective wireless
LAN capacity is around 1.6 Mbps instead of the theoretical 2 Mbps.

As it can be observed, the analytical values fit good enough with the exper-
imental ones and the window size remains always around its steady state value
(WT ). Sometimes the window size slightly decreases due to sporadic packet losses
at the wireless LAN side and also by background control applications packets,
like spanning-tree, that overload the access point buffer capacity.

Figure 6 represents the instantaneous throughput. Independently of the de-
fault Tout value, the server throughput slightly oscillates around 1.6 Mbps.
Therefore, the proposed flow control algorithm is able to adapt the server trans-
mission rate to the slowest network capacity maintaining synchronism among all
clients and avoiding congestion.

This test result can be corroborated analytically by introducing the value of
WT in (10). Assuming always that mean ARTP value is negligible, the through-
put can be approximated by
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default T out · C2 + DataPS

default T out · C2 + DataPS

C1
+ default T out

≈ C2. (11)

Where C2 << C1 and DataPS << default T out · C2.
In the next experiment, our protocol is evaluated in a single congestionless

wired LAN. Figure 7 depicts the window size evolution and the instantaneous
throughput. Now, the window size reaches its maximum value limited by the
protocol (W=100). The maximum theoretical throughput is 97.4 Mbps (9) which
approximately fits in the experimental result. Again, the flow control is able to
adapt the transmission to the maximum network capacity.

Finally, figure 8 illustrates the window size evolution in a different experiment.
At the beginning only wired clients participate in the file replication process.
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Fig. 8. Window size evolution in a mixed wired and wireless intra-campus. The wireless
LAN terminals join the file transfer approximately in the middle of the transfer.

As it can be seen, the window size reaches its maximum value (W=100). But
approximately in the middle of the transfer, the wireless terminals join to the
file transfer. The response time of our proposed protocol is an important factor
since the wireless channel capacity is strongly dependent on the signal to noise
ratio. As it can be appreciated, the SOMA flow control is able to quickly adapt
to the new situation by resizing the window (and also the timer, although it is
not shown) synchronizing both networks and avoiding congestion.

6 Conclusions

SOMA is a multicast application for fast file replication. One of its most re-
markable aspects is its own transport protocol definition focused mainly on flow
control which is designed to work fine in an asymmetric intra-campus scenario.
The proposed flow control algorithm is able to quickly react under congestion, re-
sizing adequately the window size and the time between data blocks to maximize
the throughput.

Some of the main protocol parameters have been also characterized analyt-
ically under certain constrains. In addition, the mathematical study has been
validated with real traces in a test lab network.

Although the proposed transport protocol is used in SOMA for file transfer,
its synchronicity and simplicity makes it interesting for other type of applications
like real time video and audio streaming.
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Abstract. Wireless Sensor Networks (WSN) are designed for data gath-
ering and processing, with particular requirements and constraints: low
hardware complexity, low energy consumption, special traffic pattern
support, scalability, and in some cases, real-time operation. In this pa-
per we present the Virtual TDMA for Sensors (VTS) MAC protocol,
which intends to support the previous features, focusing particularly on
real-time operation. VTS adaptively creates a TDMA arrangement with
a number of timeslots equal to the actual number of nodes in range.
Thus, VTS achieves an optimal throughput performance compared to
TDMA protocols with fixed size of frame. The TDMA frame is set up
and maintained by a distributed procedure, which allows sensors to asyn-
chronously join and leave the frame. A major advantage of VTS is that it
guarantees a bounded latency, which allows soft real-time applications.
An expression for the upper latency bound is also provided in this paper.
VTS performance is evaluated by simulation. Results show less power
consumption than other proposals in the field. We also introduce a novel
multi-hop operation by coordinated sleep/awake cycles among clusters.

1 Introduction

Wireless Sensor Networks (WSNs) are a new paradigm of telecommunication
networks. WSNs are designed to perform efficient data collection and environ-
ment monitoring, among other applications. WSNs share key properties with
Mobile Ad-hoc NETworks (MANETs): decentralized control, wireless broadcast
nature, self-configuring capabilities, multi-hop routing and ephemeral topologies.
However, unlike MANETs, WSNs must support: (a) specific traffic patterns,
characterized by very long idle periods and sudden peak transmissions, (b) long
run battery-powered deployment, which yields to tight energy constraints, and
(c) device (hardware and software) simplicity. Therefore, two fundamental goals
of WSN protocols are energy saving and traffic/environment adaptivity. In ad-
dition, there are new incoming proposals of combined sensor and actors (devices
that act upon events) networks [1], yielding the so-called Wireless Sensor and
Actor Network (WSAN) model. WSANs are by nature alarm-driven systems,
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where the reaction time (from sensor detection to actor action) must usually be
bounded. Thus, WSAN proposals must add real-time operation as a requirement
for their associated protocols.

WSNs major sources of energy waste are related to radio communication is-
sues [2]. Namely, collisions, idle listening, overhearing packets addressed to other
nodes, and packet overhead (sending and receving too many control packets).
Since nodes do not know when they will receive packets from their neighbors,
they are always listening to the channel (idle listening) and the radio is kept in
receiving mode, consuming energy. Reference [3] states that idle listening is the
dominant factor. Thus, radios must be turned off during periods of inactivity
to save energy. Besides, sudden trafffic peaks are likely to happen in WSNs.
High loads may collapse the network, degrading its performance (throughput
and latency) and raising power consumption. Consequently, adaptation to ex-
treme situations is mandatory for WSN protocols. Device limitations (both
hardware and software), additionally impose that algorithms and protocols be
simple.

In this paper we propose the VTS (Virtual TDMA for Sensors) MAC proto-
col. VTS provides a TDMA-like access scheme, in which the number of available
slots dynamically adjusts to the number of nodes present in a cell (cluster) of
nodes. Such a mechanism, after a transient adjustment phase, leads to a scalable
and collision-free MAC protocol that consumes considerably less energy than
contention-based protocols and has a bounded packet latency (providing support
for soft real-time services). VTS also addresses network setup and synchroniza-
tion issues. The trade-off is the average latency, which is slightly worse than
contention protocols under low/medium loads.

As most of the sensor network proposals [2,5,8], VTS periodically puts nodes
to sleep to reduce power consumption, which results in listen/sleep cycles. Our
protocol employs a synchronization procedure similar to S-MAC [2] to establish
the listen/sleep schedule. However, unlike S-MAC, only one node can transmit
in every listen/sleep cycle. Thus, every cycle becomes what in a TDMA context
is called a timeslot1. By following an extremely simple procedure, the nodes in a
cluster will transmit in different timeslots. Therefore, when each node is finally
transmitting in a different timeslot, a frame of timeslots has been built in a
distributed way. VTS allows frame adjustment, that is, to increase or reduce
the number of timeslots, which improves throughput compared to a TDMA
frame with a fixed number of timeslots. With this TDMA-like access there is no
contention for data transmission and latency is guaranteed.

Besides, in a multi-hop network VTS achieves good performance. Border
nodes maintain time-shifted TDMA arrangements for each cell they belong to.
This assumption implies that separate clusters of nodes independently select lis-
ten periods which do not overlap. It is a reasonable assumption because the usual
listen interval only lasts around 10% of the cycle time. We call this operation
mode Awake Time Division Multiple Access (ATDMA).

1 In this paper, we refer to a listen/sleep cycle as timeslot, cycle or frame, depending
on the context. A set of listen/sleep cycles is called a superframe.
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The rest of the paper is organized as follows: Section 2 contains related work
on MAC protocols for WSNs. In Section 3 the basis of the S-MAC protocol
is reviewed to introduce VTS synchronization procedure. Section 4 thoroughly
describes the VTS protocol. A performance analysis of VTS is presented in
section 5. Finally, section 6 concludes and suggests future work.

2 Related Work

A considerable research effort has been devoted to WSNs in the last few years.
Many new protocols and applications are currently being proposed and tested.
WSN MAC protocols focus mainly on energy efficiency. Latency in message
delivery is not usually a metric to be optimized. Most of the proposals can be
classified in one of the classical categories: contention or TDMA-based.

MAC contention protocols are simple, scalable and flexible. Their major
drawback is a high idle listening time (the dominant factor of energy waste).
WSN contention-based proposals presently extend the Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA) mechanism, applying additional sche-
mes to reduce overhearing and idle listening: (1) Out-of-band signaling requires
additional radio channels [4], and hardware is more complex and expensive. (2)
Coordinated scheduling of listen time, which was first proposed by the Sensor-
MAC (S-MAC) protocol [2]. S-MAC introduces a procedure to synchronize nodes
on a common structure, that yields a shared listen/sleep cycle among neighbor
nodes. This schedule reduces idle listening and, therefore, energy consumption.
The Timeout-MAC (T-MAC) [5] protocol improves S-MAC by using an adap-
tive cycle length. The listen/sleep interval duration adapts to traffic fluctuations
and obtains a better energy profile. This family of MAC protocols is relatively
simple but does not guarantee latency. In contrast, with a similar complexity,
our protocol keeps latency bounded (see section 4).

TDMA protocols assign timeslots to nodes, avoiding collisions and idle lis-
tening. However, in ad-hoc and sensor networks, establishing and maintaining a
superframe of timeslots is a complex task. In addition, if the number of nodes
dynamically changes, which is likely to occur in WSNs, scheduling must be
readapted. All TDMA proposals for WSNs (and MANETs) utilize contention
stages to setup and maintain a properly organized TDMA. Our protocol also
belongs to this category. There is a number of these proposals for MANETs
and WSNs: (1) The Five Phase Reservation Protocol (FPRF) [6], which pro-
vides a distributed algorithm to solve the problem of slot allocation in multi-hop
networks. FPRF allocation procedure performs well at the expense of a great
complexity, and does not implement any energy saving mechanism. (2) In Eyes
MAC (EMAC) [7] a node can be active or passive. Active nodes own a timeslot
and form a network backbone that performs routing tasks. Passive nodes use
contention periods to send data. EMAC is focused on the increase of network
lifetime, whereas latency or throughput are not addressed. (3) The Lightweight
Medium Access Protocol (LMAC) protocol [8] is a modification of EMAC in
which each node selects a timeslot using slot occupancy information from its
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one-hop neighbors. Its main limitations are that the number of available slots
is fixed and the nodes listen to unused slots. Therefore, LMAC latency and
throughput degrades at low loads [9]. In comparison with these proposals, VTS
is simpler and does not fix the number of timeslots, therefore, it achieves a better
performance.

3 S-MAC Overview

S-MAC [2] is a contention-based protocol that reduces energy consumption by
means of several mechanisms.

Periodic listen and sleep forces nodes to activate periodically for a small
time interval (the listen period); the rest of the time the nodes turn off their
radio and sleep (the sleep period). A listen/sleep cycle is also called a frame
(see Fig. 1). The ratio of the listen interval to the sleep interval is the duty
cycle. Neighbors achieve and maintain a coordinated sleeping time, synchronizing
their listen/sleep schedules by means of the short SYNChronization (SYNC)
packet. SYNC packets correct clock drifts and are used to discover new neighbors.
In a stationary situation, each node broadcasts a SYNC packet after a fixed
number of frames (NC) to maintain synchronization. Within a frame, the listen
interval is subdivided into SYNC period (for SYNC packets) and Data period
(for data packets), as shown in Fig. 1. Nodes perform carrier sense during a
random number of slots (contention) before transmitting SYNC. If two nodes
contend for transmitting a SYNC in the same cycle, it may happen that: (1)
Nodes choose a different number of carrier sense slots. As a result, the node
with a higher number defers its SYNC transmission (losing contention), and
makes another attempt in the next synchronization cycle. (2) Both nodes select
the same slot. A collision occurs which is not detected by any of them. After
NC cycles, both nodes contend again for SYNC transmission. Transmission of
an information packet, occurs in the Data period inside the frame (see Fig. 1).
Nodes can make use of the Data period in any frame: synchronization and Data
periods operate independently.

Collision avoidance is based on CSMA/CA. It uses a RTS (Request To Send)-
/CTS (Clear To Send)/Data/ACK sequence, with a fixed backoff contention
window. Notice that S-MAC uses two independent periods of contention in every
cycle, one for SYNC and one for Data transmission.

To avoid overhearing, all the nodes sleep either at the beginning of the sleep
period or inmediately after receiving a RTS or a CTS not addressed to them,
and they wake up when the next frame starts. This scheme (periodic listen and

LISTEN PERIOD LISTEN PERIOD

FRAME

Contention Periods

...DATA SLEEP PERIOD DATA SLEEP PERIOD

SY
NC

SY
NC

SY
NC

LISTEN PERIOD

Fig. 1. S-MAC listen-sleep frame
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sleep) significantly reduces idle listening. However, there is an undesirable effect
on packet latency, because nodes must wait for the next listen period to send
their data. To overcome this issue, S-MAC proposes a technique called adaptive
listening : nodes which overhear a RTS or CTS packet wake up at the end of the
transmission, instead of waiting for their next scheduled listen time. Thereby, if
a node is the next-hop destination, its neighbor is able to inmediately pass the
data to it.

Summarizing, S-MAC reduces idle listening and provides an efficient mech-
anism to synchronize nodes. Nevertheless, it does not act upon the other major
sources of energy waste: collisions and packet overhead. It even increases them:
there are two contention intervals (SYNC and Data) every cycle, and a new
control packet (SYNC). Moreover, S-MAC cannot guarantee packet latency.

3.1 S-MAC Synchronization

In S-MAC, when a node initializes, it keeps listening for a certain amount of
time. If it receives a SYNC packet, it adopts its listen/sleep schedule and tries
to send its own SYNC in the next available chance. Otherwise, the node chooses
its own schedule and broadcasts it using a SYNC packet. After NC listen/sleep
cycles, nodes broadcast a new SYNC packet to maintain synchronization.

Figure 2 illustrates this effect for a network with M neighbor nodes, being
node A1 the first node sending a SYNC. Any other node will follow A1 schedule.
The rest of the nodes compete to send a SYNC packet in the next scheduled
SYNC time. Nodes that lose contention compete again every cycle until they send
a SYNC. Let the i-th listen/sleep cycle be called timeslot i (ti), the evolution of
the network is as follows:

– At t1, node A1 sends the first SYNC. A cycle counter is set to NC , which
decreases by one every cycle. When the cycle counter reaches 0 a new SYNC
is delivered.

– At t2, the rest of the nodes try to send a SYNC packet, but only the
contention winner sends it. Let us assume that an arbitrary node A2 wins
contention and so it sets its cycle counter to NC . We say that node A2 has
captured this timeslot.

– At t3, the remaining nodes try to transmit their SYNC packet, but, again,
only the contention winner actually sends it. Node A3 wins the contention
(captures timeslot) and sets its cycle counter to NC .

– At tM , the last present node sends its SYNC packet and sets its cycle counter
to NC .

– From tM+1 to tNC
, there are timeslots without SYNC transmissions.

– At tNC
, A1 sends a SYNC again.

– At tNC+1, A2 sends a SYNC again.
– And so on.

Let us notice that S-MAC implicitly defines a TDMA-like arrangement of NC

timeslots, even though, in fact, it is not used, because S-MAC allows all nodes
to contend for sending data every listen period. On the contrary, VTS takes
advantage of this property to setup and maintain an adaptive TDMA frame.
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Fig. 2. S-MAC and VTS setup evolution

4 VTS Description

As stated in section 2, TDMA access schemes are the natural way to keep latency
bounded and to reduce energy consumption, since there are neither contention
nor collisions. VTS constructs a TDMA structure with the exact number of
timeslots needed, that is, VTS dynamically adjusts the number of timeslots (NC)
in the TDMA frame to the number of nodes in the cell. In a stationary state,
the protocol ensures that each node owns a single timeslot, not shared with any
other node. In this situation, a virtual superframe of timeslots is created. The
word virtual means that nodes do not know the superframe arrangement: neither
its limits, nor their relative position in the superframe. They just independently
keep a counter with the superframe length (NC). VTS synchronization procedure
works as S-MAC (Sect. 3.1), but, unlike S-MAC, VTS nodes are only allowed
to send data in their captured cycle, i.e., nodes only send packets, any kind of
packet, every NC cycles after their firstly sent SYNC packet. It can be seen in
Fig. 2 that a superframe of length NC is virtually established.

Briefly, a VTS node contends every cycle until it captures a timeslot (wins
the contention). From then on, the node only sends packets every NC cycle.
After a number of network setup (initialization) cycles, the nodes adjust their
superframe length counter to their number of known neighbors. If nodes leave the
cell, the superframe length is distributedly reduced. Finally, to allow new nodes
to join the superframe, there is always a short contention period before packet
transmission, where new nodes can contend with the owner of the timeslot.

In the following sections a detailed description of VTS operation is provided,
starting with the single-hop network description and followed by the extension
of VTS for multi-hop topologies.
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4.1 Network Setup

The network setup phase lasts from nodes activation, to the definition of a (still
of fixed size) virtual superframe. In VTS we prefer the name ConTroL (CTL)
packet to SYNC packet, because the packet is used also for other purposes which
are discussed in next sections. VTS setup stage behaves exactly as the S-MAC
synchronization mechanism presented in section 3.1. That is, a node contends to
send a CTL packet every listen cycle until it actually sends it. Then, the node
only can send a new CTL packet after NC cycles, and it must send it as a keep-
alive beacon. When all the nodes have sent their first CTL packet, the virtual
superframe of NC timeslots is formed. Let us notice that nodes are not aware
of the implicit timeslot allocation. They just know that they are only allowed to
transmit packets every NC cycle. Thus, the slot allocation procedure is simple
and fully distributed. Let us also notice that nodes know who their neighbors are
when they receive CTL packets. In the example of Fig. 2 it is assumed that all
the nodes are initialized simultaneously and that they always capture timeslots
consecutively. Let us see what would happen if these assumptions did not hold:

1. If a node is initialized after the superframe has been formed. It will wait for a
CTL packet to join the listen/sleep schedule. Once it has been received, the
new node tries to send its own CTL packet in the next scheduled timeslot.
If this timeslot is owned by another node, both of them contend for the
timeslot. The contention winner becomes the owner of the timeslot. The
looser retries to send its CTL packet in the next timeslot. If this timeslot is
also owned by a node, the contention winner will own the timeslot and the
looser will keep trying. Eventually, an empty timeslot will be reached, which
is captured by the only remaining node trying to access the medium at that
moment. If more than one new node initialized, the only difference would
be that the number of contending nodes for a timeslot would be higher.
Eventually, every node would be assigned an empty timeslot. We call this
process of multiple deallocation and reassignment “allocation loop” .

2. If more than one node selects the same access instant during contention
there is a collision. In this case, two or more nodes send their CTL packets
simultaneously. However, the contenders are not aware of the collision and
each one considers that its own CTL has been correctly sent. After NC cycles
(the superframe length) they will try to send their CTL packet again, so there
will be a new contention. The contention winner will own the timeslot. The
looser will keep trying to send the packet, as discussed in the previous case.
In the unlikely event of a new collision this sequence is repeated.

4.2 Adjustment of Virtual Superframe Length

With the previous setup procedure, a virtual superframe of fixed length NC is
created. If NC were kept fix, protocol performance would be poor. On one hand,
if NC is less than the maximum number of neighbors, nodes cannot exclusively
own a timeslot. In this case, there would always be contention between at least
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two nodes in every slot. On the other hand, if NC is greater than the actual
number of neighbors, VTS latency and throughput are negatively affected, since
they are proportional to superframe length.

To overcome these situations, the number of timeslots should be adapted to
the actual number of nodes. Therefore a node adjusts the initial cycle counter
(set to NC) to the real number of neighbors in the cell, that is, to the number
of received CTL packets from distinct nodes up to that moment. This is done a
number of timeslots (let it be NS , a protocol parameter) after node initialization,
From then on, the node dynamically adapts to the possibility of nodes joining
and leaving the cell:

1. New nodes join the cell : anytime a node receives a CTL packet from an
unknown neighbor, the superframe length is updated (NC = NC + 1).

2. Nodes leave the cell : within a superframe the mandatory CTL packet from
the timeslot owner must be received. Therefore, CTL serves as a keep alive
beacon, which allows to signal missing neighbors. However, a single CTL
packet missed does not mean that its corresponding node has actually left
the network: its CTL packet may have been corrupted or it may have been
a collision with a new node joining the cell. Hence, a node is considered
missed only after a certain number of inactivity timeslots (let it be NI).
On such event, the frame length and number of known nodes is updated
(NC = NC − 1).

Let us note that in both cases there is a transient period before stability:
in the first case the incoming node “steals” a slot, and it causes a new alloca-
tion loop. In the second case, nodes are not aware of the position of the lost
node in the superframe, so they cannot properly adjust their cycle counter. To
overcome it nodes randomly select a value within zero and the number of known
neighbors.This solution requires a full reallocation of positions in the superframe.
Since these events are supposed to be unlikely, this scheme was preferred because
it keeps the protocol extremely simple. It should be remarked here that sensor
nodes do not usually move, that is, networks are assumed to be static, and a
node leaves the cell only when it has depleted its battery.

4.3 Data Exchange and Control Packets

At the beginning of each timeslot, all the nodes wake up and listen. The owner
of the timeslot performs a carrier sense (choosing a random slot from a fixed
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1 byte 2 bytes 2 bytes 2 bytes 2 bytes1 byte 1 byte

CRCT DEST SRC S SLEEPSq#

DEST:
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     Source address
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Time to sleep period (ms)

Cyclic Redundancy Code

Sequence number

      Destination address

   Packet type{RTS,BCAST,SYNC}

Fig. 3. CTL packet format
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contention window), and broadcasts a single and short control packet (CTL),
see Fig. 3. which is used as:

– Synchronization and schedule discovery (as S-MAC SYNC packet).
– Keep-alive beacon. It is mandatory for a node to send a CTL packet in its

owned slot, since its neighbors must know that the node is active.
– New node discovery. CTL packets include source address. Thus, new nodes

are added to the list of known neighbors as CTL packets arrive.
– Channel reservation: RTS information is included in CTL packets. This way,

non-addressed nodes may go to sleep just after CTL packet reception.

VTS uses the CSMA/CA mechanism for data delivery. The following types
of transmissions exist:

1. Unicast packet transmission. A CTL{RTS} packet is sent by the owner of
the timeslot. Non addressed nodes change to the sleep state inmediately,
avoiding overhearing. Destination node replies using a CTS. Transmission is
finished after a Data/ACK sequence and both nodes go to sleep.

2. Broadcast packet transmission. A CTL{BCAST} packet is sent by the owner
of the timeslot. Destination is a broadcast address. All the nodes keep listen-
ing. Inmediately, sender sends the broadcast packet, that is, without waiting
for any CTS reply. After receiving the packet nodes go to sleep. No ACK is
sent.

3. No data transmission. A CTL{SYNC} packet is sent. Nodes adjust the clock
reference, clear sender inactivity counter and go to sleep.

Control packet overhearing is reduced this way. A single CTL packet performs
synchronization and discovery, reservation and keep-alive functions.

4.4 Single-Hop Cluster Latency

Let TC be timeslot duration. In a single-hop cluster in steady-state (i.e., all the
nodes are the owners of a timeslot) any data transmission between two nodes
has a maximum latency (L) given by:

L ≤ NCTC (1)

This is the maximum expected latency considering that MAC layer does not
enqueue packets. Figure 4 illustrates this expression. Let us assume that the
node A1 generates a packet for any other node in cluster A. In the worst case,
this packet arrives just at the end of the activity period (label T0 in figure 4),
so a superframe (of length NCTC) must pass before packet transmission ends
(label T1 in the figure).

4.5 Multi-hop Network

Large sensor networks are usually organized in clusters [10] , with the border
nodes sharing coverage areas between adjacent clusters. Information coming from
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one cluster to another must hop among them. VTS proposes the Awake Time
Division Multiple Access (ATDMA) scheme for multi-hop networks. That is,
nodes coordinate awakening among clusters in order to have one-hop neighbor
clusters never wake up at the same time, to avoid inter-cluster interferences.
In other words, all the clusters except one are in their sleep period. When this
active cluster goes to sleep, another one wakes up, and so on. Thus, a VTS
border node forms different superframes with its neighbors in each cluster. The
length of both superframes depends on the number of neighbors in each cluster
and it may be different. Once superframes are created, packets can travel from
one cluster to other during its corresponding listen interval. Hence, ATDMA
satisfies cluster operation without interference. Combining VTS and inter-cluster
ATDMA two goals are achieved: (1) Bounded multi-hop latency and (2) Spatial
reuse of channel.

ATDMA is based on the assumption that clusters adopt different listen/sleep
schedules, since they are independently initialized. Which means that virtual
superframes in every cluster are time-shifted. In this case, border nodes see
several schedules and adopt all of them. ATDMA operation is also depicted
in the example of figure 4, where two neighborhoods share the media using
ATDMA. Nodes in the first cluster are A1, A2, A3 and A4. Nodes in the second
cluster are B1 and B2. To clarify ideas, let us assume that A1 is a border node
between the two clusters A and B, and therefore, it also owns a cycle in cluster
B. Let us note that ATDMA seamlessly allows a different number of nodes in
each cluster.

However, if there exists overlapping two problems arise: (1) A border node can-
not know in which schedule each of its neighbors is. VTS still works because there
is always a channel sense period before transmission, but the latency cannot be
guaranteed. (2) The border node will suffer from hidden node collisions. Nodes in
adjacent cells will own the same slot in pairs, causing collisions at the boder node.

T0 T1
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T4

A1 B1 A2 B2 A3 A1 A4 B1 A1 B2

time

A2 A1

T3

CTL/Data/Sleep cycle

1 3 4 12

1 3 4 12

2

B1

A1

B2

A1

A4

A3

A2

Tc
Cluster A/Cycle

Cluster B/Cycle

SUPERFRAME

ATDMA

Fig. 4. ATDMA superframe evolution with two adjacent clusters (A and B) with 3
and 2 nodes respectively, plus one common border node A1
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Therefore, VTS must ensure non overlapping schedules. In any case, ATDMA
can be easily achieved after running a network-layer clustering protocol like [10],
that can shift sleep time between superframes. At the moment, we assume that
border nodes always see non-overlapping schedules. In a clustered network, with
random initialization, this is a reasonable assumption. With a 1-10% duty cycle,
different schedules are likely to be in the 99-90% remaining time.

4.6 Multi-hop Cluster Latency

Using ATDMA, intra-cluster packets have a bounded latency of Lintra ≤ NCTC

(the same as the single-hop operation). Inter-cluster latency is expressed by:

Linter ≤
∑

i∈{clusters}
Li−intra (2)

Li−intra denotes the intra latency of the i-th cluster in the path from source
(first cluster) to destination (last cluster) (this route is determined by upper
level protocols). Let NH be the number of hops in the path (NH is always the
number of clusters in the path minus one) and NCi

the TDMA frame length of
the i-th cluster, then:

Linter ≤ (TC

∑
i

NCi
) ≤ (NH + 1)TC max

i
{NCi

} (3)

This relationship holds for any (inter or intra-cluster) data exchange.
For the sake of clarity, let us assume that node A4 wants to send a packet

to node B2 in the scenario of figure 4. The packet must be delivered through
the path A4 → A1 → B2. Intra-cluster A transmission (A4 → A1) maximum
latency is given by eq. 1. In the worst case A4 packet arrives at A1 just after
A1 slot in the cluster B (as shown in label T3 in the example). Then, a full
additional B superframe is required to complete the A1 → B2 transmission (label
T4 in the figure). Therefore, in this example, Linter ≤ LA−intra + LB−intra =
(4 + 3)TC = 7TC .

5 Simulation Results

In this section we evaluate VTS through comparative simulations with S-MAC
(with and without adaptive listening). S-MAC is chosen as reference because it
is a general purpose protocol, it is well documented and previous results can
be found in the open literature [2]. All single-hop experiments are evaluated
in a 20 node cell for VTS, S-MAC and S-MAC with adaptive listening. All
figures show the measured parameter versus the packet Inter Arrival time (IAt,
where IAt = 0 means that all the packets are generated at the same time).
Unicast packet destination is randomly chosen with equal probability among all
the neighbors.
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Table 1. VTS simulation parameters

Parameter Value
Radio bandwith 20 Kbps
CTL packet 11 bytes
Listen period 130 ms
Duty cycle 10%
Contention window 31 slots, 1 ms/slot
Consumption in reception state 14.4 mW
Consumption in transmission state 36 mW
Consumption in sleep state 15 μW
Initial NC counter 20
Inactivity counter (NI) 5 superframes
Setup cycles (NS) 20 cycles
TC 1.3 s

Simulation Configuration. OMNET++ 2 is used as simulation platform. Sim-
ulation parameters are selected from reference [2], using the Mica motes 3 as
underlying hardware. Table 1 shows main simulation parameters. Aditionally,
the following options are set for all the simulations:

– A simulation finishes when all the nodes have sent 1000 data packets (70%
unicast and 30% broadcast). Data packets are 100 bytes long.

– Network packet generation starts after a transient time (100 s) plus a random
number of cycles uniformly distributed between 0 and 50. Packet generation
is then deterministic: packets arrive after a selected IAt.

Maximum and Average Latency. Figures 5(a) and 5(b) show the maximum
and the average latency, respectively. A bounded latency is expected for VTS as
discussed in section 4.4. Experiments confirm that in all the cases latency never
exceeds the superframe length (as obtained from eq. 3). VTS effectively adapts
the frame length to the actual number of nodes present. In comparison, S-MAC
maximum packet latency is clearly not bounded, even with adaptive listening.

Under high load conditions (low IAt), VTS keeps average latency equal to
the superframe length (20 TC = 26 s). For low and moderate loads (medium and
high IAt), the average latency depends on the packet generation time, which is
uniformly distributed in the timeslot, yielding a latency reduction of one half. In
S-MAC, latency depends on the number of nodes contending for the medium. For
moderate loads, only a few nodes contend and latency reduces below that of VTS,
because VTS nodes must wait for their timeslots to transmit. Adaptive listening
is an improvement of S-MAC to reduce latency. Consequently, it outperforms
both VTS and S-MAC. Although this is a trade-off between average latency and
energy consumption, as it will be shown later.

Power Consumption. Figure 6(a) shows the average network power consump-
tion. S-MAC consumes a 18% more than VTS at high loads (due to the double
2 http://www.omnetpp.org
3 http://www.xbox.com
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Fig. 5. Single-hop configuration (average ± 99% confidence interval)

contention interval per slot and the collisions). S-MAC with adaptive listening
consumes two times more power than VTS. This is the cost of reducing latency.
In this case, nodes wake up many more times and try to send packets during
the scheduled sleep time, consuming the energy of an additional listen interval.
As load decreases, the adaptive listening mechanism is not necessary and the
behavior is similar to normal S-MAC. In this case, nodes sleep early in VTS,
which increases power saving up to 75%. Reduction of VTS power consumption
is higher than S-MAC one as load decreases. Under very low loads (high IAt),
VTS will significantly increase the network lifetime compared to S-MAC (the
peak at IAt=30 is due to a steeped decrease in latency 5(b), since time to de-
liver all the packets is reduced and power is measured as total energy consumed
divided by total time). In conclusion, in VTS there is a trade-off between latency
and energy consumption at low loads, while it guarantees latency at high loads.

Throughput. Figure 6(b) shows that at high loads VTS performs slightly better
than S-MAC. VTS can handle traffic peaks as properly as a contention protocol.
S-MAC with adaptive listening outperforms VTS but at the cost of a higher
consumption.

Transient Time. An experiment was conducted to evaluate the time needed
to reconfigure the timeslot arrangement when nodes appear in the network. In
this experiment, a 16 nodes network is set and progressively 4 additional nodes
join the cell, causing allocations loops (see Sect. 4.1). The results show that the
average transient time until superframe is established again is 30.08 s (slighty
higher than a single superframe time, NCTC = 26 s).

Multi-hop Scenario. Scenario of Fig. 4 is set for the multi-hop configuration
experiments. That is, two clusters (A and B) with 3 and 2 nodes respectively,
plus one common border node (A1). IAt was set to 0 (always one packet to
send), One node of cluster A sends packets to another node of cluster B through
the border node. The rest of the nodes send packets to randomly selected intra-
cluster nodes. As expected, from 0.15 to 1 s offset there is no overlap between
schedules, thus all the experiments exhibit a maximum latency under the upper
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Fig. 6. Power consumption and throughput for single hop (average ± 99% confidence
interval)

bound obtained in eq. 3 (7TC in this case). Average latency depends on the offset
between schedules. If there is overlapping, VTS still works and delivers all the
packets but latency is not bounded.

6 Conclusions

In this paper we proposed VTS, a protocol for WSNs with bounded latency.
VTS dynamically creates a superframe of timeslots and adapts its length to the
number of actual nodes in a cell for optimum performance. VTS implements a
very simple mechanism to adjust and assign timeslots to the nodes (Sect. 4.1 and
4.2). This protocol may be extended to a multi-hop network if the medium is
shared by multiplexation of activity/sleep cycles of clusters (this access scheme is
called ATDMA). Its behavior is examined in Sect. 4.5, concluding that, as long
as nodes do not overlap, multi-hop operation has a bounded latency. Finally,
expressions for the maximum latency of both intra and inter-cluster links have
been obtained (Sect. 4.4 and 4.6). VTS further proposes to use a short single
control packet to announce any node intentions during its timeslot. Thereby,
VTS saves energy by reducing the amount of time a node needs to listen to
the channel. Simulations reveal that VTS has an excellent power consumption
profile, which is crucial in WSN. Under low loads VTS compromises latency
and energy consumption, while it guarantees latency at high loads. Our future
work includes the development of a generalized mechanism that ensures proper
ATDMA operation (independently of the relative schedule delay among clusters)
and an evaluation of scalability. We plan also to implement and test it with real
devices.
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Abstract. Vertical handoff (VH) is required to achieve anywhere and
anytime internet access in the fourth generation (4G) network provid-
ing interoperability between universal mobile telecommunications system
(UMTS) and wireless LAN (WLAN). However, video data can be lost
due to latency caused by VH. To solve this problem, in this paper, we
propose an effective video streaming method for video on demand (VOD)
services that provides seamless playout at the client in VH. Experimental
results show that our method can provide seamless playout at the client
in VH while preserving image quality.

1 Introduction

Currently, the research community and industry in the field of telecommunica-
tions are considering the possibility of the choice for handoff which could be the
solutions for the 4G of wireless communication [1]. The 4G wireless networks
will integrate heterogeneous technologies such as WLAN and third generation
(3G) network because no single wireless network technology simultaneously can
provide a low latency, high bandwidth, and wide area data service to a large
number of mobile users [2].

The movement of a user within or among different types of networks is called
the vertical mobility. One of the major challenges for seamless service in the
vertical mobility is VH, where handoff is the process of maintaining a mobile
user’s active connection by changing its point of attachment [3]. In the 4G wire-
less systems, seamless handoff with small latency and packet losses should be
executed. Handoff latency is one of important factors that decides the quality of
service (QoS) in the 4G wireless networks. In the deployment of multimedia ser-
vices with real-time requirements, the handoff process can significantly degrade
the QoS from the user’s perspective [4]. Especially, since video data can be lost
due to latency caused by VH, video quality degradation caused by VH is the
critical problem in video streaming. In order to solve this problem, a successful
video streaming solution is required to adapt appropriately to mobile handoff
scenarios for maximum user-perceived quality.

There are several methods for video streaming in VH [5]-[7]. The multime-
dia transport protocol (MMTP) determines the encoding rate according to the
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measured available bandwidth for VH [5]. However, this protocol does not con-
cern packet losses caused by VH. In [6], the required buffer size of the client is
determined to achieve lossless VH. However, since this method does not perform
QoS control for video streaming, the large buffer size is often required to adapt
various network. The seamless VH scheme in [7] implements soft handoff based
on the stream control transmission protocol (SCTP). However, this scheme re-
quires the support of the system-level design such as the hardware configuration
and the lower layer protocol design.

In this paper, we present an effective video streaming method for VOD services
that provides seamless playout at the client in VH between the WLAN and
the 3G network without the system-level design. For seamless video playout,
the streaming server predicts the channel rate and the client buffer status by
analyzing the RTCP receiver report (RR) and the application-defined packet
(APP). And, we propose a frame selective pre-transmission (FSP-T) method
using the predicted results to minimize visual quality degradation caused by
VH. The FSP-T method selectively transmits frames with high activity for the
VH preparation period. The motion vectors (MVs) of skipped frames are also
transmitted to support error concealment (EC) of skipped frames in the client.

The rest of the paper is organized as follows. Section 2 presents the proposed
video streaming method for VH. Experimental results are presented in Section
3. Finally, our conclusions are given in Section 4.

2 Proposed Video Streaming Method for Vertical
Handoff

Before introducing the proposed video streaming method for VH, we first con-
sider VH scenario as follows:

Fig. 1 shows the VH when the mobile station (MS) moves between the 3G
network and the WLAN. In our scenario, the MS automatically transits to a
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RAN: Radio access network
PCF: Packet control function
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Multimedia 
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Fig. 1. Vertical handoff scenario
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new network attachment between the 3G network and the WLAN, based on
WLAN availability. That is, considering the WLAN with high priority, it would
be preferable to seamlessly and automatically switch to a higher data rate net-
work connection whenever it is available.

Fig. 2 illustrates the VH procedure in the heterogeneous network where sig-
nificant events have been pointed out. When the streaming client needs VH,
it transmits the trigger message indicating the VH initiation to the streaming
server. At this time, the streaming server performs the proposed FSP-T to min-
imize visual quality degradation caused by VH. The trigger message indicating
the beginning of VH is transmitted to the streaming server before executing VH.
Finally, the client informs the server of the VH completion. Note that TP and
TL, respectively, are the period for VH preparation and the VH latency.

According to the VH scenario, after receiving the trigger message indicating
the VH initiation, the client buffer status is predicted by analyzing RTCP feed-
back and the channel rate is estimated by using the channel model [8] at the
streaming server. Using the predicted results, the video stream is transmitted by
the proposed FSP-T method during TP . After finishing VH, the streaming server
transmits the video bitstream by using the regular transmission that is the basic
transmission method of the streaming server. Fig. 3 shows the proposed video
streaming framework that can overcome handoff problems.

Before VH, in order to achieve seamless playout in the client for TL, the
proposed FSP-T method attempts to transmit in advance all frames that can be
lost due to TL as well as frames that are transmitted for TP . However, the picture
quality may be degraded since all the frames can not be transmitted in advance
because of the channel rate and client buffer constraints. Thus, the Lagrangian
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rate-distortion (R-D) method is employed to dynamically select frames to be
transmitted during TP according to the frame activity while minimizing visual
quality degradation. In addition, the proposed method also transmits in advance
only MVs for frames to be skipped in order to enhance the performance of EC
in the streaming client. In the proposed method, since the frames with lower
activity are skipped, the streaming client can easily conceal the effect of frame-
skipping with received MVs while minimizing visual degradation.

Let S be all frames that are assigned for TP + TL and ST be frames to be
transmitted during TP . The optimal frame set, ST , is determined from the set
S by

ST = arg min
St⊂S

{
D(St) + λ ·

(∑
i∈St

Bi +
∑

i∈S−St

BMV
i

)}
, (1)

with the distortion caused by skipped frames

D(St) =
∑

i∈S−St

Ai, (2)

where Ai, Bi, and BMV
i , respectively, are the motion activity of and the number

of bits of, and the number of bits for MVs of the ith frame. In order to com-
ply with rate and client buffer constraints, the optimal set, ST , is obtained by
minimizing (1) subject to the rate constraint:∑

i∈S−St

BMV
i +

∑
i∈St

Bi ≤ B̂, (3)

the client buffer constraint:

BC +
∑

i∈S−St

BMV
i +

∑
i∈St

Bi −
∑
i∈SP

Li ≤ BM
C , (4)

where B̂ is the total number of bits allocated for TP + TL, BM
C is the maximum

level of the client buffer, and SP represents frames to be played for TP in the
client buffer. In (4), the client buffer fill level, BC , can be predicted by analyzing
RTCP RR and APP at the streaming server [9]. Thus, BC is given by

BC =
HTSN∑

i=LPSN

Li, (5)

where Li is the size of the packet with the ith sequence number, HTSN is the
highest transmitted sequence number kept by the server, and LPSN is the last
played sequence number which is calculated by using the playout time. The
playout time is calculated by using the fields the oldest buffered sequence number
(OBSN) and playout delay (PD) contained in the RTCP APP OBSN extension as
proposed by 3GPP-SA4 [10]. OBSN is the sequence number of the first packet in
the sequence of packets to be played out in the client buffer. PD is the difference
between the scheduled playout time of the oldest packet and the time of sending
the OBSN APP packet in milliseconds.
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Note that since MPEG bitstreams typically consist of the group of pictures
including B-frames, e.g., IBBPBBPBBP· · · , P-frames are kept preferentially in
order to minimize re-coding errors caused by skipping frames. Thus, the proposed
method first skips B-frames and then skips P-frames.

3 Experimental Results

We have simulated VH according to the VH scenario to show the effectiveness of
the proposed video streaming method. The “Foreman” sequence with 300 frames
of QCIF format (176×144) is used for our experiments. The test sequence is
encoded to the MPEG-2 bitstream of 128kbps with 30fps. M and N , respectively,
are 3 and 6. For buffering simulations, a 35KB client buffer is assumed and we
specify an 1.25 sec pre-buffering time for playout.

Fig. 4 shows the variation of the channel rate for the VH simulations. In our
VH simulations, there exist two times transitions where TP and TL, respectively,
are 1 sec. Each transition is described as follows:

Transition 1) 3G → WLAN: (2.33 sec ∼ 4.33 sec)
The handoff process including the handoff initiation is performed from the
70th frame to the 130th frame. In this transition, the dominant factor of
constraints is the channel rate of the 3G network, 190kbps.

Transition 2) WLAN → 3G: (4.66 sec ∼ 6.66 sec)
The handoff process is preformed from the 140th frame to the 200th frame. In
this case, although the channel rate of the WLAN is high enough to transmit
in advance all frames that can be lost due to handoff latency, the client buffer
does not provide sufficient empty space to receive all frames from the 140th

frame to the 200th frame.
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Fig. 5 shows the PSNR performance of the proposed method in VH based
on the transition scenario as described before. In Fig. 5, “Non-adaptive” means
that the streaming server does not consider VH. The “Periodic Frame Selec-
tion” indicates that ST is determined by selecting frames periodically to comply
with the rate and buffer constraints. For the “Non-adaptive” case, every transi-
tion produces tremendous quality degradation. On the other hand, the proposed
methods show that VH can be effectively overcome. In every transition, the FSP-
T method shows better visual quality than the PFS-T method that selects frames
just periodically since the FSP-T method preferentially skips frames with lower
activity according to the frame activity. For example, in the second transition,
we can see that the proposed FSP-T method transmits frames with high activity.
Fig. 6 shows the frames transmitted according to the simulation scenario. We
can see that the proposed method provides seamless video transmission although
the non-adaptive method produces tremendous lost frames caused by VH.
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Fig. 7 shows the client buffer fill level of the proposed method. For the pro-
posed method, we chose BM

C to be 95% of the client buffer size to give marginal
spaces enough to prevent the client buffer overflow caused by abrupt transmis-
sion. Thus, the proposed method controls the transmission rate to prevent the
client buffer overflow around 5.6 sec. As shown in Fig. 7, despite of two times
VHs, the client buffer is maintained stably without the underflow caused by VH
and the overflow by overtransmission.

Fig. 8 shows that the EC method using pre-transmitted MVs can be applied
easily to the result of the proposed FSP-T method in order to conceal skipped
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Table 1. Comparison of the PSNR performance of the FSP-transmission method

Average PSNR [dB]
Transition Non-adaptive FSP-T FSP-T+EC No Frame-Skipping

1 (3G → WLAN) 25.10 26.83 28.07 28.13
2 (WLAN → 3G) 20.53 26.17 26.99 27.15

(a) (b)

Fig. 9. Error-free decoded frames of the “Foreman” sequence: (a) 113th frame with low
activity; (b) 155th frame with high activity

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Reconstructed and error images for 113th frame and 155th frame of the “Fore-
man” sequence: For 113th frame, (a), (b), (e), and (f), respectively, are the recon-
structed image by EC, the previous frame, the error image of (a), and the error image
of (b); For 155th frame, (c), (d), (g), and (h), respectively, are the reconstructed image
by EC, the previous frame, the error image of (c), and the error image of (d)

frames since skipped frames have lower motion activity as compared with non-
skipped frames. Table 1 shows PSNR comparison for two transition cases. In
Fig. 8 and Table 1, it is seen that the PSNR result of the FSP-T method with
EC is very close to that of the error-free transmission. In order to show the
visual quality of EC, we show estimated frames for the “Foreman” sequence;
for comparison, Fig. 9 reports 113th and 155th frames after decoding in the
no frame-skipping case. In Fig. 10, we report the frames reconstructed by EC
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using pre-transmitted MVs for the “Foreman” sequence, in which 113th and
155th frames are lost (The 113th frame has low activity and the 155th frame has
high activity.) As can be seen from these images, the EC using MVs provide
a reconstruction of good visual quality. Especially, since the proposed FSP-T
method skips frames with lower activity, many skipped frames are closely re-
constructed as shown in Fig. 10. Especially, Fig. 8 shows that some frames are
reconstructed perfectly because of very low activity of those frames. Thus, the
simulation results show that the proposed method that transmits in advance the
MVs of skipped frames improves the performance of EC effectively.

4 Conclusions

VH is required to achieve anywhere and anytime internet access in the 4G net-
work providing interoperability between UMTS and WLAN. However, video
data can be lost due to latency caused by VH. To solve this problem, in this
paper, we have presented an effective video streaming method for VOD ser-
vices that provides seamless playout at the client in VH. For seamless video
playout, the streaming server predicts the channel rate and the client buffer sta-
tus by analyzing the RTCP RR and APP. And, we propose a FSP-T method
using the predicted results to minimize visual quality degradation caused by VH.
The FSP-T method selectively transmits frames with high activity for the VH
preparation period. The MVs of skipped frames are also transmitted to support
EC of skipped frames in the client. Experimental results show that the proposed
method provides seamless video streaming in VH with both utilizing the channel
bandwidth highly and maintaining the client buffer stably. In addition, through
EC using MVs transmitted of skipped frames, it is seen that the streaming client
can reconstruct skipped frames successfully.
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Abstract. Pattern matching is one of critical parts of Network Intrusion
Prevention Systems (NIPS). Pattern matching hardware for NIPS should
find a matching pattern at wire speed. However, that alone is not good
enough. First, pattern matching hardware should be able to generate
sufficient pattern match information including the pattern index number
and the location of the match found at wire speed. Second, it should
support pattern grouping to reduce unnecessary pattern matches. Third,
it should show constant worst-case performance even if the number of
patterns is increased. Finally it should be able to update patterns in
a few minutes or seconds without stopping its operations. We modify
Shift-OR hardware accelerator and propose a system architectures to
meet the above requirement. Using Xilinx FPGA simulation, we show
the new system scaled well to achieve a high speed over 10Gbps and
satisfies all of the above requirements.

1 Introduction

The explosive growth of the Internet and the emergence of new applications, such
as P2P file sharing, video-on-demand, and e-commerce, dramatically increases
network traffic. Network speed and bandwidth is also rapidly increasing to satisfy
demand for high-speed Internet access and high bandwidth. These trends have
made malicious network attacks, such as Denial of Service (DoS), e-mail virus,
and Internet worm, faster and more destructive and damaging. For example,
Code Red worm [1] and SQL Slammer worm [2] spread over the world within a
few hours and minutes, respectively to cause billions of dollars in damage.

Network Intrusion Prevention Systems (NIPS) have recently emerged as one
of the most promising technologies against such network attacks. The NIPS com-
bines both firewall and NIDS [3]. It inspects both packet headers and payloads
as a NIDS does and blocks suspicious packets from entering the network as a
firewall does. The NIPS lives in-band on the network and processes packets in
� This work was supported by 2005 Korea Sanhank Foundation Research Fund.
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real-time at wire speed. The performance of NIPS is critical because a poorly
performing NIPS would be detrimental to the whole network. At the heart of
most NIPS is pattern matching to find attack string patterns in the payload.
Pattern matching is computationally intensive. The pattern matching routines
in Snort [4], a widely used open-source NIDS/NIPS, account for up to 70% of
total execution time and 80% of instructions executed on real traces [5]. There-
fore, a pattern matching method for NIPS should be highly efficient to keep up
with ever increasing speed demand.

Pattern matching for NIPS has several domain-specific characteristics [6, 7, 8].
First, the number of patterns is very large and is keep rising. In Snort, a rule
describes the pattern of attack signature and an action to take if a packet matches
the signature. The number of the patterns is increasing and more than 2100 in
the current Snort. Second, the size of patterns varies widely ranging from 1 to
122, although most pattern sizes are below 32. Third, a large number of string
patterns are non-case sensitive. More than half of the string patterns used in
Snort are non-case sensitive.

A great deal of research has concentrated on developing pattern matching
hardware that satisfies all or some of the domain-specific characteristics. How-
ever, there are other important features that pattern matching hardware must
support to be useful and effective for NIPS.

1. Pattern match information at wire speed – at least the pattern index number
and the location information should be provided:
When a pattern match occurs, rule-checking software further examines the
packet to check if other rule options are satisfied. Snort uses pattern index
information to find the related rule and the location information to decide
whether the packet satisfies other content options, such as depth and off-
set, which specify how far into a packet should be searched and where to
start searching in the packet, respectively. Such information for all matched
patterns should be generated at wire speed. Otherwise, pattern matching
hardware eventually stalls to process the information.

2. Pattern grouping support – only patterns related to the rule group a packet
belongs to are checked against:
In Snort, rules are divided into rule groups by the protocol type and source
and destination port numbers specified in the rules. An incoming packet is
classified by its protocol type and source and destination ports, and its pay-
load is checked against only those patterns in the corresponding rule group.
Without pattern grouping in hardware, there could be many matches against
patterns that belong to other unrelated rule groups and this could results in
unnecessary software executions.

3. Worst-case performance:
This requirement is also discussed in [6, 9]. The worst-case performance of
a NIPS has to match network speed. Otherwise, an attacker can devise a
packet with content that results in the worst-case performance of NIPS and
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continuously send the packets to render the NIPS unusable, which will even-
tually block all other legitimate traffic. In addition the worst-case perfor-
mance should remain constant and predictable even when more patterns are
added. If not, it would be hard to predict when the NIPS would fail to meet
the speed requirement.

4. Fast non-interrupting pattern update:
This requirement is important to protect networks from a fast spreading
Internet worm like SQL Slammer worm. Content-filtering, used in NIPS,
should start to filter the new worm within a few minutes after the worm
outbreaks in order to successfully quarantine the worm propagation [10].
This implies that pattern matching hardware should be able to update pat-
terns in less than a few minutes or seconds for Internet worm quarantine.
Considering the amount of damages caused by latest worm outbreaks, this
feature becomes very important. Only the pattern matching architecture in
[9] explicitly addressed this issue.

Most pattern matching hardware based on FPGA [11, 12, 13, 14, 15, 16, 17]
likely fails to satisfy the worst-case performance requirement. When the num-
ber of patterns is increased, the operating frequency of FPGA pattern matching
hardware tends to increase due to the increase in the amount of combinational
circuits for state transitions. This makes NIPS performance unpredictable and
eventually leads to the failure of NIPS performance at some point, not match-
ing network speed. These approaches also most likely fail to meet the fourth
requirement, fast non-interrupting pattern update, because they need to re-
synthesize and reprogram FPGA for new patterns, which usually take a long
time for a large number of patterns. Bit-split FSM approach [9] based on Aho-
Corasick algorithm [18] uses SRAM for state transition tables. The approach
shows excellent performance and hardware area utilization as well as satisfies
two requirements, the worst-case performance and fast non-interrupting pattern
update.

In this paper, we propose a pattern matching system architecture for the
wire-speed pattern match information and pattern grouping requirements. To
the authors’ best knowledge, this is the first work that successfully addresses
these two requirements. Two papers [16, 17] addressed issues related to the pat-
tern match information requirement and proposed two similar architectures that
generate signature indexes using pruned priority binary tree and highly pipelined
binary-OR tree. However, these architectures cannot handle multiple matches
that simultaneously occur and also do not provide any information on the loca-
tion of a match in a payload. Our study on string patterns used in Snort shows
that there are many suffix matches of patterns. The maximum number of pat-
terns in the same suffix match group is 5. This implies that there could be up
to 5 multiple matches for a given input character.

In this paper we also introduce some improvements to Shift-OR pattern
matching accelerator [8] for fast non-interrupting pattern update. The Shift-
OR pattern matching accelerator uses SRAM as Bit-split FSM does and does
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not need to change hardware when a pattern is added. This allows the acceler-
ator to have constant worst-case performance. The proposed pattern matching
system architecture with the updated Shift-OR pattern matching accelerator
successfully satisfies all of the above four requirements.

We evaluate our proposed architecture using Xilinx FPGA tools. We de-
sign the proposed pattern matching system and obtain timing and area results
through FPGA simulation. This paper begins by briefly describing Shift-OR al-
gorithm [19] in Section 2. Section 3 presents the pattern matching system that
consists of the updated Shift-OR pattern matching accelerator, pattern group-
ing hardware, and pattern match information system. We evaluate the proposed
architecture by Xilinx FPGA tools in Section 4 and conclude in Section 5.

2 Shift-OR Pattern Matching Algorithm

In this section, we briefly describe Shift-OR pattern matching algorithm for a
single pattern, which is the basis of the pattern matching architecture we present
in this paper. The algorithm uses bitwise techniques. It keeps a bit array of size
m (pattern length), a state vector R that shows if prefixes of the pattern match
at the current place. For example, there are a pattern P = p0 . . . pm−1 and input
string X = . . . xi+j . . .. After processing xi+j , R[j] = 0 if xi . . . xi+j matches
p0 . . . pj , otherwise R[j] = 1. There is another bit array of size m, a character
position vector Sc, denoting the position of character c in pattern P . For example,
Sc[i] = 0 if pi = c, otherwise Sc[i] = 1. If we know that the bit value of R[j]
after processing xi+j , we can easily compute R[j + 1] by knowing whether the
next character xi+j+1 appear at pattern position pj+1. R[j + 1] can be defined
as follows:

R[j + 1] =

⎧⎨⎩
0 if R[j] = 0 and Sc[j + 1] = 0 where c = xi+j+1

1 otherwise.
(1)

R[0] = Sc[0] where c = xi+j+1 (2)

R[m − 1] = 0 means the pattern xi . . . xi+m−1 matches p0 . . . pm−1, that is,
the matching pattern is found. The computation of new R for the next input
character c reduces to Shift and OR operations (SHIFT (R) OR Sc).

This algorithm easily handles any finite class of symbols, complement symbols
and even don’t care symbols. If position i of a pattern allows a class of symbols
{x, y, z}, then letting Sx[i] = Sy[i] = Sz[i] = 0 handles the case. Complement
symbols and don’t care symbols can be handled in the same way. Therefore,
noncase-sensitive matches can be easily processed without any additional over-
head. The algorithm can be extended for multiple patterns. It first concatenates
all state vector R for each pattern into one large state vector. It also concate-
nates all character position vector Scs for each pattern into one large character
position vector for a given character c. The only difference from single pattern
match is that when the new bit value of the large R corresponding to the first
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position of a pattern, i, is computed, the value is only affected by the large Sc[i],
not by shifted value from i−1th position. In the remaining of the paper, ‘vector’
denotes a concatenated vector.

3 Pattern Matching System

The pattern matching system presented in this paper has multiple pattern
matching units (PMU). PMU is the updated Shift-OR pattern matching ac-
celerator that can do fast non-interrupting pattern update and have constant
worst-case performance. The pattern matching system provides pattern group-
ing and can generate pattern matching information at wire speed.

3.1 Pattern Match Unit

The pattern match unit performs Shift-OR pattern match algorithm for multi-
patterns. Figure 1 shows the components of the pattern matching unit (PMU).
PMU has a multiport SRAM that stores 256 character position vectors, one per
an 8-bit character. Multiple characters are read from the payload and used to
address the multiport SRAM. The size of the SRAM is 256 x W bits, where W
is the width of the SRAM. It is also the size of the character position vector
that the PMU uses. The character position vector is a concatenated character
position vector for a character for all the patterns assigned to the PMU. These
vectors are precomputed from string patterns and loaded into the SRAM. The
number of SRAM ports, N , determines the number of input characters processed
together. PMU has four registers for bit vectors: pattern boundary vector (B),

Fig. 1. Pattern Matching Unit
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Fig. 2. Shift-OR Computation

state vector (R), match position (M), and match result vector (F ). The size of
all vector registers is the same, W bit wide.

Once N character position vectors S0, . . . , SN−1 are read from the multiport
SRAM, Shift-OR computation is performed using state vector R generated from
the previous cycle and pattern boundary vector B to compute a new state vector
R as shown in Figure 2. The pattern boundary vector B denotes boundaries of
each pattern by bit value ‘0’ and is used to prevent the Shift-OR computation
result from propagating cross pattern boundaries. Initially R is ANDed with B,
then shifted and ORed with S0 to generate intermediate state vector T0. Next, T0
is ANDed with B, then shifted and ORed with S1 to generate next intermediate
state vector T1. The same computation is performed at each stage until TN−1 is
generated. The final result TN−1 will be stored into R register again for the next
cycle computation. The computation is represented in the following equations.

Tk(0) = Sk(0) + 0 = Sk(0) for all k (3)
T0(i) = S0(i) + (R(i − 1) ∗ B(i − 1)) for i > 0 (4)
Tk(i) = Sk(i) + (Tk−1(i − 1) ∗ B(i − 1)) for k > 0, i > 0 (5)

As shown in Figure 2, the shift operations are performed by simply connect-
ing the ith position results to one input port of the OR gate of the i+1th position
at the next stage. Each stage computation is equivalent to one Shift-OR oper-
ation in Shift-OR algorithm. N Shift-OR operations are performed in a single
cycle. Combinatorial logic circuit is used for all the computation, and interme-
diate state vectors, T0, . . . , TN−1, are generated on the fly and do not need to
be stored. The character position vectors, S0, . . . , SN−1 also do not need to be
stored. They are the output of the multiport SRAM and directly used for the
computations.
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Fig. 3. Match Result Vector Generation

While N input characters are simultaneously processed, several matches can
be found. Figure 3 shows the architecture that detects all the matches from all the
intermediate state vectors. All the bits at the same position in the intermediate
state vectors are ANDed and then ORed with the bit at the same position in
match position vector M . Match position vector has 0 bit at a pattern’s end
position. The result is match result vector and stored in F register. If the match
result vector has zero bits (match bits), it means there are matches. The output
of F vector register becomes the output of PMU.

PMU can perform fast non-interrupting pattern update. A pattern can be
easily ignored by resetting M vector bit at the pattern’s end position to 1. The
effect is the same as deleting the pattern. Adding a pattern requires reinitializing
pattern boundary vector B and match position vector M registers and reloading
the multiport SRAM. Updating and initializing B and M registers can be done by
writing the vector values into SRAM, reading the vector data from the SRAM,
and finally loading them into the corresponding registers. For this, we can use
a separate SRAM or the same multiport SRAM by increasing its depth by 2
for the vectors. The time for reloading the multiport SRAM for new character
position vectors takes the same number of cycles as the length of the new pattern.
We need to write only the character position vectors for characters in the new
pattern. Writing multiport SRAM can also be performed without blocking any
read operations. Therefore, pattern updates can be done without stopping the
system.

3.2 Pattern Group Unit

In hardware pattern matching where all patterns are searched together, the time
taken for the pattern match process itself is not affected by grouping patterns.
However, pattern grouping can reduce many unnecessary matches against pat-
terns that belong to other unrelated rule groups. Rule groups are classified by the
protocol type and source and destination ports specified in the rules. Patterns in
the same rule group form a pattern group. The patterns are assigned to PMUs
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Fig. 4. Pattern Matching System

such that a PMU processes only patterns in the same pattern group. A pattern
group index is obtained by inspecting an incoming packet’s protocol type and
source and destination ports and used to access Pattern Group Unit (PGU) as
shown in Figure 4. The PGU enables only those PMUs that handle the cor-
responding pattern group. A PMU activation vector is read from the SRAM
accessed by pattern group index, and each bit of the vector is used to enable or
disable a PMU. When a PMU is disabled, the match result vector of the PMU
generates all 1’s, effectively having no effect on the match result.

3.3 Pattern Match Information Unit

Pattern matching hardware usually raises a signal line when a pattern matches.
For Snort, pattern matching hardware may need almost 2000 signal lines and
more. The software cannot read all of the signal lines at once. Therefore the sig-
nal line index (or pattern index) should be provided to rule checking software for
further examination. Pattern Match Information Unit (PMIU) reads the match
result vectors of all PMUs and generates pattern indexes and the location infor-
mation of the matching patterns in the payload for all match bits. PMIU speed
should match the processing speed of core pattern match hardware. Otherwise,
the pattern match hardware would stall at some point to wait for all the match
results to be processed.

Example architecture of PMIU is shown in Figure 5. It is a pipelined priority
tree with special functionalities. The figure shows how PMIU receives a match
result vector from F register and generates a position index of the match bit at
the 35th bit position. The position index can be used as a pattern index. First,
an Input Vector Encoder (IVE) receives each 4 bits in the match result vector
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Fig. 5. Example of Pattern Match Information Unit

and encodes the relative position indexes of all match bits in those 4 bits. The
encoded values are put into the first-level FIFO. The first-level FIFO with ID
’00’ has the relative position index of the match bit at the 35th bit position, and
the index value is ‘11’. The next level Priority Path Selector (PPS) selects the
first-level FIFO ‘00’ out of the four first-level FIFOs. The four FIFOs have the
relative position indexes of match bits in each 4 bits at the bit position 32nd

to 35th, 36th to 39th, 40th to 43rd and 44th to 47th, respectively. The PPS uses
the relative position index (‘11’) from the first FIFO and the FIFO ID (‘00’)
to generate position index ‘0011’. The position index is stored in the second
level FIFO ‘01’. Note that the value ‘0011’ is the relative position index of the
match bit at 35th bit position in 16 bits, from 32nd to 47th position. The final
PPS selects the position index (‘0011’) from the second-level FIFOs and uses
the FIFO ID number ‘01’ to generate the final position index ‘100011’. In the
next, we describe three main components of the PMIU.

FIFO. The FIFO stores the position index of matching bits. A FIFO entry
consists of three control bits, tag (T ), dummy (D), empty (E), and index bits
(I). In Figure 5, only the index bits are shown for simplicity. The index
bits store the relative position index of a match bit. At the first level, the
size of the index bits is log2 N where N is the number of bits processed by an IVE.
As the level goes up, the size of the index bits is increased by log2 of the number
of the lower level FIFOs connected to a PPS.
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An empty control bit (E) shows whether the corresponding FIFO entry is
empty or not. A tag bit (T ) is used to represent the sequence of match results.
A tag bit is associated with a match result vector register, and the value is tog-
gled between 0 and 1 every time a new result vector is loaded into the register.
All PMUs generate new result vectors at the same time. The tag bit value is
moved along with the index bits for the match result vector. We can compute
the location information of the pattern by counting the number of the tag bit
changes when the final pattern index is generated. Using the tag bit,PPS se-
lects input index bits such that the index bits for earlier match results vector
are moved to the upper levels before the index bits for any subsequent match
result vectors. The dummy bit tells whether the index bits have a real posi-
tion index. An IVE fills one FIFO entry with dummy index bits when there
is no match bit. This prevents index bits for different match result vectors,
but with the same tag value from appearing as inputs of a PPS at the same
time. Dummy index bits are eliminated by PPS so that there is one dummy
index left at the final stage of PMIU for each match result vector with no
matches.

The FIFOs at each level create a pipeline stage. The first-level FIFO connected
to IVE is different from FIFOs at the other levels. The size of an IVE input bits
determines the depth of the first-level FIFO. All the relative position indexes of
match bits are generated and loaded into the FIFO in one cycle. The depth of
FIFOs at the other level should be at least two. Two entries are required not
to make a bubble in the pipeline stage. With two-entry FIFO, a new relative
position index can be generated and stored into the FIFO by the lower-level PPS
connected as soon as there is at least one empty entry. This prevents a bubble
from being introduced in the pipeline.

Priority Path Selector. A Priority Path Selector (PPS) selects the highest
priority index bits from all the connected input FIFOs and generates a new
relative position index from the input index bits and the ID number of the
FIFO selected. The selected FIFO entry is erased, and the new relative position
index is stored in the output FIFO connected to the PPS. The priority selection
should consider tag and dummy bit values as well as the priority of input FIFOs.
The operation of a PPS is executed in one cycle.

The priority mode of a PPS changes between 1 and 0-mode. In a given priority
mode, input FIFO entries with the same tag value as the mode are considered
for selection and subsequent operations. The mode changes only when the first
entries of all input FIFOs have the same tag value, and then the priority mode
is changed to the tag value. This is to compute all the relative position indexes
in the same order of the match result vector generation. When a PPS finds at
least one non-dummy entry, then it selects one entry among them and erases all
dummy entries by sending a select signal to all related input FIFOs. If all entries
are dummy entry, only one dummy entry is move to the upper level, and all the
other dummy entries are erased as well. By doing this, at most only one dummy
entry is left when it reaches the top-level PPS. The dummy entry is for a match
result vector with no matches.
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Input Vector Encoder. An Input Vector Encoder (IVE) receives a part of a
match result vector and generates all the relative position indexes of match bits
in the partial match result vector. If there is no match bit, the IVE generates
only one dummy index. The IVE stores all the relative position indexes into the
first-level FIFO in one cycle and set its mode to the same as the tag value of
the match result vector. As far as the mode of an IVE is the same as that
of the match result vector, no further operation is performed. When the tag of
the match result vector changes, that is, a new match result vector is generated
for the new input payload byte and loaded into the vector, the IVE generates
the relative position indexes again.

4 Evaluation

We design PMU using the latest Xilinx FPGA Virtex-4 [20]. Virtex-4 has the
largest number of embedded RAMs, called block RAMs, which are used to con-
struct multiport SRAM in our design. Unfortunately it has only dual port mem-
ory configuration. Therefore, we have to duplicate memory banks to simulate
the multiport SRAM when the number of ports becomes larger than 2. In this
experiment, we choose 256 bits for the size of the character position vector.
Therefore a PMU can handle the total pattern length of 256 bytes. The average
size of patterns in Snort is about 12 bytes and hence a PMU can process more
than 20 patterns in average.

Figure 6 shows the processing speed of a PMU as the number of Shift-OR
stage is increased. The number of Shift-OR stages is shown in logarithmic scale.
We can process the same number of input characters together as the number
of Shift-OR stages. There are two different versions of the designs. The one
labeled as ‘pipeline’ has a pipeline stage between the memory bank and Shift-OR
computation circuits, and the other one labeled as ‘non-pipeline’ does not have
a pipeline stage. The graph shows that the processing speeds of both versions of
a PMU can reach up to 14 and 14.5Gbps, respectively, with 64 Shift-OR stages.

The pipelined design shows up to 58% improvement over the non-pipelined
design. The performance difference is more noticeable when the number of Shift-
OR stage is small. This is because the effective memory access time is reduced
by overlapping memory accesses and a few stages of Shift-OR computations.
This shows that memory access time is critical when the number of Shift-OR
stages is small. As the number of Shift-OR stages is increased, the total Shift-OR
computation time for all stages becomes the dominant performance factor.

Figure 7 shows the resource count for different hardware resources, such as
RAM banks, LUT, flip-flops for the non-pipelined design and flip-flop for the
pipelined design. They are labeled as RAM, LUT, FF(NP), FF(P), respectively
in the figure. The resource count counts the number of resources needed per
one pattern character. The increase in the number of RAM banks is due to the
simulation of multiport memory. As the number of Shift-OR stages is increased,
we need more memory read ports. Duplicated memory banks are used instead
of memory ports, and this leads to the large number of memory banks for a
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Fig. 6. PMU Processing Speed vs. The Number of Shift-OR Stages

Fig. 7. Resource Count per Pattern Character vs. The Number of Shift-OR Stages

large number of Shift-OR stages. The number of LUT and flip-flops for the
pipelined design is increased as well. This is because Shift-OR stages use LUTs
for the logic, and the number of flip-flops for memory pipeline is increased due
to memory port increase for more Shift-OR stages. Note that the number of
flip-flops for the non-pipeline design is almost constant. This implies that non-
pipeline is a good choice when memory is fast enough and many Shift-OR stages
are needed.

Overall, there are trade-offs between the processing speed and the amount
of hardware resources available for Shift-OR pattern matching architecture. As
we add more Shift-OR stages, we need more read ports or memory banks and
LUTs even for the resource-efficient non-pipeline design. However, note that
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Fig. 8. PMIU Pipeline Speed vs. PMIU sizes

Fig. 9. Resource counter per one PMIU bit vs. PMIU sizes

when more hardware resource is available, it is relatively easy to improve the
processing speed of a PMU by adding more Shift-OR stages. This is an important
advantage of Shift-OR pattern matching architecture over other previous pattern
matching hardware.

We implement PMIUs with 256 inputs through with 8K inputs. Figure 8
shows the pipeline speed of PMIU as its input size increases. The pipeline speed
remains almost constant for all PMIU sizes we test and successfully matches the
speed of all the non-pipelined PMUs and the speed of pipelined PMU except
those with 1 or 2 Shift-OR stages. Figure 9 shows the resource count for dif-
ferent hardware resources, slices, LUTs, flip-flops for different sizes of PMIUs.
The resource count counts the number of resources per one input bit of a PMIU.
The hardware resource used to construct a PMIU increases linearly as the size
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increases. These data show that the PMIU architecture uses a reasonable amount
of hardware resources and can produce a pattern index and the location infor-
mation at least every clock cycle of 420 MHz.

Finally we put all system components together on one single Xilinx Virtex-4
chip and measure the resource utilization. The designed architecture has one
PGU of size 512 x 32 bit wide, 32 PMUs with 4 Shift-OR stages, one 8K-bit
PMIU. The architecture can support total pattern length of 8K bytes. The slice
is the most constraint resource in the design, reaching 94% utilization. A
slice consists of two LUTs and flip-flops. There are many flip-flops and LUTs
left unused (54% and 88% utilization, respectively). This implies that a custom
design may improve the balance of the resource utilization. However, we do not
further investigate the issue in this paper.

5 Conclusion

In Network Intrusion Prevention Systems (NIPS), pattern matching is exten-
sively used to find attack signatures in a payload and is the most computationally
intensive part of the execution. In this paper, we proposed a pattern matching
system architecture that satisfies four important requirements for NIPS: pattern
match information generation at wire speed, pattern grouping support, constant
worst-case performance, and fast non-interrupting pattern update. These re-
quirements are as important as finding matching attack patterns at wire speed
for NIPS.

We evaluated the proposed architecture using Xilinx FPGA tools and showed
that the system scaled well to achieve a high speed over 10Gbps. The pipeline
speed of PMIU matched most of PMU operation speeds and could generate a
pattern index and match location information at every clock cycle of 420 MHz.
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Abstract. The problem of secure multicasting in a large and highly
dynamical group of users is addressed, and a novel hierarchical key man-
agement framework is proposed, based on an appropriate combination of
the updatable and static logical key hierarchies. It fits to the underlying
architecture of an IP-based network, and reduces the synchronization
problem which is a main issue regarding the necessary key update upon
membership changes. The proposed solution employs a hybrid two-layer
approach with the updatable key hierarchy in the upper layer and the
static one in the bottom layer. It provides scalability, flexibility, efficiency
and security. Although any static and updatable logical hierarchies can
be employed, certain architectural issues of the proposed framework are
considered. The security and performance of the proposed approaches
are discussed and compared with the previously reported schemes, and
advantages of the proposed approach are pointed out.

1 Introduction

Multicast is commonly employed in the context of group communication over
an IP-based network in order to save network bandwidth and server capacity by
sending some message only once to several recipients, and therefore securing the
multicasting sessions appears as a very important issue.

When cryptography is used for secure multicast communications, a session-
encrypting key (SEK) is used to encrypt the data. Ensuring that only the valid
members have SEK at any given time instance is the key management problem in
the secure multicasting. Whenever the SEK is invalidated, there needs to be an-
other set of keys called the key-encrypting keys (KEKs) to encrypt and transmit
the updated SEK to the valid members of the group. Hence, the key manage-
ment problem reduces to the problem of distributing the KEKs to the members
such that at any given time all the valid members can be securely reached and
updated with the novel SEK. The difficulty of managing cryptographic keys used
arises from the dynamic characteristics of membership.
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Accordingly, from a security point of view, an efficient key management for
a very large, highly dynamic multicast group is a challenging issue. Among the
results addressing this problem the approaches based on the logical key hierarchy
have appeared as very important ones. Roughly speaking, there are two main
logical key hierarchy concepts: one is based on the updatable KEKs (see [1,2],
for example) and the other is based on the static KEKs (see [3,4], for example).
A number of proposals on scalable key management for establishing the secure
multicast or broadcast sessions have been reported including the ones discussed
in [1-15].

This paper mainly intends to propose an alternative approach which yields
some advantages over the previously reported results, i.e. the novel proposal will
accommodate higher frequency of membership change with moderate commu-
nication overload but not reducing the security. Particularly, our approach is
motivated by a very recently reported concept of the sectioned tree logical key
hierarchy [13] which has been also employed for developing particular reconfig-
urable key management schemes reported in [14,15].

This paper is organized as follows. In the next two parts of this section, the
related works on key management and our contributions are summarized. Some
preliminaries, including formal definitions, are given in Section 2. The novel
framework for key management and certain implementation issues are discussed
in Section 3. The security and performance of the proposal are addressed as
well as some comparisons with the previous results in Section 4. A concluding
discussion is given in section 5.

1.1 Background

The subsection overviews some results on the hierarchical approaches for devel-
oping scalable key management schemes which provides the main origins for our
approach. These schemes are based on the underlying tree structures, and these
tree nodes play different roles in different schemes. According to the nature of
the elements forming a hierarchy, there are the following two main classes: (i)
hierarchy of the domains, and (ii) hierarchy of the keys (KEKs). The second
further includes, as the subclasses, the hierarchies with updatable nodes and the
static ones.

Hierarchy of Domains. The hierarchy of domains is proposed in [6]: The pro-
posed tree hierarchy consists of receivers at the leaves with multiple intermediate
levels of group security agents (agents, in short) above. Each agent tree node and
its children (clients or lower level agents) form a subgroup and share a subgroup
key. Thus, there is no globally shared group key. Thus a join in or a leave from
a subgroup does not affect other subgroups; only the local subgroup key needs
to be changed. Therefore, in the tree scheme [6], only the members in the same
subgroup are influenced upon membership change.

On the other hand, the scheme [6] requires synchronization of the state upon
a user addition or removal, but within the subgroup only. Thus, suitable division
strategy makes it scalable for a very large, dynamic membership. But, due to its
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computational overheads for decrypting and re-encrypting data (not only key
update message)in each agent, it consumes a pretty large amount of computa-
tion resources and produces extra delays. Thus, it is not suitable for real-time
applications (e.g. video multicasting).

Hierarchy of Keys

Updatable Tree Nodes. The logical key hierarchy (LKH) scheme [1,2] uses a
hierarchy of keys to solve the scalability problem, and LKH was the first secure
multicast protocol that incurs sub-linear re-keying cost for single membership
change.

The approach is based on a different hierarchy in comparison with [6]. The
tree hierarchy consists of keys, with individual keys at leaves, the group key at
the root, and subgroup keys in intermediate node. There is a single key server
for all the users (clients). Without any agents, each user is assigned multiple
keys (its individual key, the group key, and some subgroup keys).

A number of results to improve LKH have been reported in the literature in-
cluding [11] and [12], for example. The approach reported in [12] is particularly
efficient in some revocation situations: It yields a small communications over-
head in the multiple revocations at the expense of a pretty large, computation
overhead that limits its scalability.

A drawback of LKH is that it requires dealing with the synchronization for the
keys updating. This operation, if implemented in the acknowledgement manner,
makes LKH unsuitable for a very large, highly dynamic membership. Certainly,
other reliable multicast approaches, e.g. FEC, can also be used for the required
state synchronization, but, they can not guarantee complete synchronization
of the state. Hence, up to now, acknowledgement manner is still a popular one.
Accordingly, the state synchronization (StateSyn) problem appears to be a limit-
ing issue regarding the updatable logical key hierarchies (U-LKH). An additional
problem with LKH is related to the users who were off-line during the resyn-
chronization. These users should be provided with all updates while they were
off-line.

Static Tree Nodes. When the members of a session are stateless receivers,
broadcast encryption techniques, based on a static logical key hierarchy (S-LKH)
appear to be the suitable one for key management.

The basic idea in the most efficient broadcasting encryption schemes is to
represent any privileged set of users as the union of s subsets of a particular
form. A different key is associated with each one of these sets, and a user knows
a key if and only if he belongs to the corresponding set. The broadcaster encrypts
SEK s times under all the keys associated with the set in the covering message.
Consequently, each privileged user can easily access the SEK but even a coalition
of the non-privileged users cannot recover SEK. The simplest implementation of
this idea is to cover the privileged set with singleton sets. A better solution is to
associate the users with the leaves of a binary tree, and to cover the privileged
set of leaves with a collection of sub-trees.
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Let N be the number of receivers, R the number of revocations, and let all
the logarithms be the base 2.

In [3], a generic framework based on the tree graph approach is given by
encapsulating several previously proposed revocation methods called Subset-
Cover algorithms. These algorithms are based on the principle of covering all
non-revoked users by disjoint subsets from a predefined collection, together with
a method for assigning KEKs to subsets in the collection. The first proposed
scheme, called the Complete Sub-Tree scheme (CST), requires a message length
of at most R log(N/R) and storage of log N keys at the receiver and constitutes
a moderate improvement over previous schemes. The second scheme proposed in
[3] is based on the Subset Difference algorithm (SD), and further improvement
of this technique called Layered Subset Difference (LSD) is reported in [4].

Recently, a divide-and-conquer strategy and the sectioned key tree were re-
ported in [13] for developing improved key management schemes based on the
trees with static nodes which yield a possibility for appropriate trade-offs be-
tween the main overheads related to the key management.

1.2 Motivation for Our Work and Summary of the Results

The previous discussion has pointed out the main characteristics of certain re-
ported techniques for developing the secure multicasting. The techniques based
on the updatable LKH (U-LKH) have a number of favorable characteristics but
their main disadvantage is related to StateSyn problem which is an essential
and restrictive factor regarding U-LKH based techniques. The simplification of
StateSyn problem opens a door for higher frequency of the membership changes
to be accommodated. On the other hand, a main advantage of the static LKH
(S-LKH) techniques is that they do not require the synchronization. But, S-LKH
will produce more communication overload that tightly relevant with the scale
of whole network not only the number of legitimate receivers. Also, fitting of the
key management architecture to the underlying network architecture appears as
an interesting issue, as well as employment of a dedicated divide and conquer
concept. Accordingly, in this paper we consider a hybrid approach for developing
the key management scheme for secure multicasting.

This paper proposes a novel LKH based key management framework suitable
for a variety of secure multicasting scenarios, which combines U-LKH and S-LKH
techniques in a suitable manner to yield more powerful hybrid LKH (H-LKH)
approach.

The integration of S-LKH into U-LKH simplifies StateSyn, so that U-LKH
can support very high frequency of membership changes. U-LKH assumes that a
receiver keeps a number of updatable keys whereas the keys at a receiver related
to S-LKH scheme are fixed (not changeable). The proposed hybrid approach
increase the fixed part of key materials and reduce the changeable part of it
through employing a suitable two-layer structure where the upper layer of the
tree has updatable nodes and the bottom layer has static nodes.

The employed two-layer structure partitions all receivers/users into a number
of different logical domains and fits to the network underlying structure. This
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paper gives only a hierarchical infrastructure of key management with hierarchi-
cal key centers, and they can be run by some network service providers (NSP)
cooperatively, e.g. Master Key Center is run by a NSP, and Master Key Agents
are run by other NSPs.

2 Preliminaries

A key management scheme can be denoted as a triple (U, K, R) as follows:

– U is a finite and nonempty set of users, U = {u1, u2, . . . , un}
– K is a finite and nonempty set of KEKs
– R is a corresponding relationship of key assignment. R(ui) = Ki, ui ∈ U

and Ki ⊂ K and
⋃n

1 Ki = K

The security of key distribution requires that the session key is only distrib-
uted to all authorized receivers excluding all revoked receivers and that any
coalition T of revoked receivers cannot get this key even with all secret infor-
mation

⋃
ui∈T Ki they hold. Therefore, key assignment method R must meet:

Kj|uj /∈T 
⊂ ⋃
ui∈T Ki for any coalition of receivers T . Certainly, Ki 
= Kj , when

i 
= j.

Definition 1: StateLess Protocol (SLP) Key Management. SLP key
management is one where K is not changed when membership change event
(e.g. a user addition or removal) happens, which implys that K ′|event = K,
where K ′ is the set of keys to be used after a change event.

Definition 2: StateFul Protocol (SFP) Key Management. SFP key man-
agement is one where K must be updated when membership change event hap-
pens, which implys that K ′|event 
= K, where K ′ is the set of keys to be used
after a change event.

SLPs include subset cover revocation scheme [3] and its variants. They as-
sign the secret information to all receivers: at certain time instance some of
these receivers will be the legitimate ones, and some of them will be revoked.
Thus, the set of users can be considered as U = UL

⋃
UR , where UL = {ui :

ui is a legitimate receiver} and UR = {ui : ui is a revoked receiver}. Thus, K is
fixed for fixed U .

The most prominent SFPs are LKH [1]-[2] and their variants ([10] and [16],
for example). Let U = {ui : ui is legitimate receiver of session}, and K =
Kind

⋃
KKEK , where Kind = {ki : ki is individual key of userui} and KKEK

= K − Kind , is set of all changeable KEKs. The state of SFP is determined by
KKEK . StateSyn intends to assure

⋃n
1 Ki|receiver−end = K|center by acknowl-

edgement mechanism. Sender is not permitted to transmit the encrypted data
with renewal session key and the next update cannot be handled until StateSyn is
set up. The more legitimate receivers, the more packets of acknowledgement are
required, and the higher possibility this will bring packet dropout during a ses-
sion, thus the higher probability of retransmitting key update message. Thus, the
complexity of StateSyn is completely determined by the parameter |U | of SFP.
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3 Novel Approach

3.1 Underlying Ideas and the Framework Proposal

According to Section 2, K = Kind

⋃
KKEK can be generalized as K = Kfixed

⋃
Kchangeable where Kchangeable specify the state of SFP, and therefore generally
speaking, decreasing Kchangeable implies a possibility to accommodate a higher
membership dynamic in comparison with the ordinary SFP.

This paper indicates a possibility for integration of SLP into SFP and de-
velopment of a hybrid key management protocol. Generally speaking, this ap-
proach employs two cryptographic components FK and EL, related to SFP and
SLP, respectively. The security requirements of these two components are dif-
ferent, since FK uses short-lived keys whereas EL uses long-lived keys. EL is
required to be semantically secure against chosen ciphertext attacks, and FK to
be chosen-plaintext, one-message semantically secure. Key-indistinguishability
property, identified and utilized in [3], may be utilized in our approach, as well.
Any scheme in which all the keys are chosen independently satisfies this property.

Accordingly, the novel framework is based on the following:

1. Two-layer heterogeneous hierarchy with SFP over the upper layer and a
number of SLPs over the bottom layer is employed where the internal tree
nodes correspond to the keys and the members are at the tree leaves

2. The upper layer contains a number of the key management agents (KMA),
and members in a subgroup are connected to the center via an intermediate
tree node corresponding to a KMA;

3. The members are at bottom of the bottom layer, and all the members are
partitioned into several subgroups;

Regarding the above proposed framework please note the following:

– The employed two-layers hierarchy is used for secure transmitting of the
session key only, but not for data itself. Here, we should emphasize that after
the SEK distribution, all members share the same session key for decrypting
the payload data, just like that used by previously reported systems.

– Employment of the two-level hierarchy in a general setting implies existence
of the following four possibilities related to the upper and bottom layers:
(i) SFP+SFP, (ii) SFP+SLP, (iii) SLP+SFP, (iv) SLP+SLP. StateSyn re-
quires that all members correctly obtain the renewed session key. Therefore,
SFP+SFP implies the same complexity as a simple SFP over the entire
structure (yielding the same performance, as well). SLP+SLP mode will
require too much communication overhead. On the other hand, the upper
layer corresponds to a bigger zone than the bottom one: Therefore, if SLP
is employed in the bottom layer, its inherent disadvantages will have not
too significant impact particularly in comparison with the synchronization
advantages. Accordingly the combination SFP+SLP appears as the most
favorite one.
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– In a scenario with trustable KMAs, after a KMA receives a session key
encrypted by the center, it will decrypt it with some key it has been assigned
to recover the new session key and then re-encrypt it with relevant keys
assigned to this subgroup, and finally transmit the encrypted session key to
the subgroup members.

3.2 Architectural Issues

Upper Layer Issues. For a concrete secure multicast session, there certainly
exists the smallest domain that contains all potential members, and the corre-
sponding (the hierarchically highest) key center is assigned to be the master key
center (MKC) for this multicast session, e.g. c2 (fig.1) is the MKC of a multi-
cast session whose members all lie in this domain. The MKC (e.g. c2 in Fig. 1)
and the key management agents, KMAs, of the session lying in the BLDs which
contain the legitimate members of the current session (e.g. c4 and c5 in Fig.
1), constitute a backbone for the key management (see Fig. 1). All KMAs to
the session are placed at the leaf nodes of the upper layer key tree that is built
and maintained by the MKC. The keys are assigned according to the path from
associated leaf node to the root, following the ordinary LKH [1]-[2] approach.

Fig. 1. Key centers for a multicast session, here c1, . . . , c7 are prospective key centers

When a KMA enters into or leaves from the session due to a membership
change, associated keys should be updated as follows: MKC will generate the
renewal session key and transmit it securely to KMAs of BLDs that contain
legitimate members of the current session in the same way as in the ordinary
LKH. The employed MKC is an entity that is temporarily in charge of the key
management functions for a multicast session.

LKH is employed between the MKC and KMAs so that only those KMAs of
BLDs that contain legitimate users of the current session can securely obtain
the new session key. If a membership change implies that a KMA joins or leaves
a session, the key tree needs to be updated in the same way as in the ordinary
LKH scenario. Otherwise, only the session key needs to be updated and relevant
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KMA needs to re-compute subset cover so that forward/backward secrecy can
be assured, but the state of the upper layer does not change.

Bottom Layer Issues. Within every bottom-layer domain (BLD), a SLP key
management, e.g. subset cover revocation approaches [3,4] or a similar suitable
one (such as [13]), is employed. This scheme assumes that all the users within
BLD are arranged at the leaf nodes of the underlying binary tree, and that the
key center in this domain, for each multicast session, can generate a subset cover
based on this tree to include all legitimate receivers and to exclude all revoked
receivers within the domain.

Suppose that a subset cover S1, S2, . . . , Sn is generated within a BLD. Then
the message, (Ek1(ks), Ek2 (ks), . . . , Ekn(ks)), Eks(M), can be constructed where
Ek(L) stands for encrypting L with key k, ki is the key corresponding to subset
Si, ks is the session key and M the message securely transmitted. Accordingly,
each legitimate receiver of the session within this domain can derive the key of
subset it belongs to from pre-assigned key material so that it can get the session
key to decrypt the message. So, each BLD can be considered as a subgroup within
the two-layers underlying structure corresponding to the members partitioning
according to their physical locations in the network.

4 Security and Performance

4.1 Security

The consideration is related to the following two variants of the proposed ap-
proach. The first variant is related to the scenarios with trustable KMAs, and
the second one is related to the scenarios with untrustable KMAs. In the both
cases the security of the proposed schemes is discussed assuming LKH+CST
combination over the upper and the bottom layers as an illustrative example.
The session key must be updated upon membership change and that the upper
layer state should be updated only if the event of a KMA addition/removal takes
place.

After receiving key update message, KMAs are in charge of two kinds of
operations depending on their trust assumptions. If KMAs are trusted ones,
they are authorized to decrypt the key update message and recover the new
session key - otherwise, they are not authorized to do this. In the two scenar-
ios, KMA should encrypt the session key (or key update message itself) using
the relevant KEKs of the employed broadcast encryption scheme (CST) within
the BLD in order to securely transmit it to legitimate end-nodes. The main
difference between the scenarios with trustable and un-trustable KMAs is that
the un-trustable scenario requires extra keys and more computations at the
end-node.

Key materials of different BLDs are absolutely independent mutually. There-
fore, collusion of users from different domains does not provide them any addi-
tional power owing to re-encryption of the update messages with independent
keys within different BLDs. On the other hand, as pointed out in [3] and [4], any
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collusion of users from the same domain cannot recover the current session key
unless at least one of them is a legitimate member of the session.

Different trust relations requires different key pre-assignment. Here, if KMA
doesn’t leak out the session key he gained, KMA is trustable.

Trustable KMAs. In this scenario, the users keep those keys assigned by SLP
within the corresponding subgroup (BLD). After a user is joining in or removed
from a multicast session, corresponding KMA will re-generate a subset cover
which including all legitimate receiver and excluding all revoked receivers, and
a new session key will be generated by MKC and then distributed to all the
session members. Both of the employed key management schemes (LKH and
CST) provide the required secure updating of the session key. Accordingly, the
proposed scheme is forward/backward secure.

Un-trustable KMAs. The scenario with un-trustable KMAs requires the fol-
lowing deployment of the keys: (i) Each receiver keeps the keys related to the
both layers, i.e. to the both components SFP and SLP; (ii) Each KMA keeps
all the SLP related keys in its BLD only. SFP related keys should be updatable
and SLP related ones are fixed. Untrustable KMAs is not authorized to decrypt
and just re-encrypt the key update message from the key center. MKC works
as usual to encrypt the key update message with SFP-related key. Each legiti-
mate receiver needs double decryptions to get the SEK and possibly update the
SFP-related keys.

We assume that the ”un-trust” implies that KMA works improperly , and ac-
cordingly, in general case, removal of a untrustable KMA includes the following.
An alternative KMA will be established and the main center will update related
SFP keys at each receiver, and finally distribute the new encrypted SEK. As the
previous discussion, in the same manner as in the case of a user revocation, the
security under the KMAs change can be shown.

Finally, note that in the scenario when KMAs are un-trustable, the updating
of SFP keys at a receiver is required only when some KMA should be removed,
and it is likely that this event appears with a much lower probability than
appearance of a user revocation request.

4.2 Performance

The proposed approach mainly intends to simplify StateSyn problem related to
the SFPs in order to boost the frequency of the allowed membership change with
integrating SLPs (e.g. subset cover revocation scheme) into the entire structure.
As well, the proposed approach intends to minimize the overall overheads of the
system.

System Overheads. The main overheads of any key management are related
to the following: (i) required storage at a receiver, (ii) required processing at a re-
ceiver, and (iii) the communications overhead. Additionally the synchronization
requirements should be taken into account.
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In a scenario with un-trustable sub-centers (KMAs), each receiver should
keep as well the KEKs involved in the upper layer besides the keys used in the
SLPs within the subgroups. These keys can be divided into two types, fixed and
changeable. The fixed part corresponds to the employed SLP while the change-
able part corresponds to SFP. The proposed approach can also be regarded as
integrating SLPs into SFPs so that increasing the fixed part that makes the
changeable part smaller implies simplification of the StateSyn problem because
only the changeable keys require the synchronization.

On the other hand, if some subgroups/domains are merged to become a bigger
one, the changeable portion of the keys will be further reduced while the fixed
part will be increased because some previous changeable keys can be as the fix
ones. In general case, it also slightly increases the number of keys each receiver
should keep. Therefore, complexity of StateSyn becomes lower while overhead re-
garding the subgroup related storage and communication become slightly larger.
If this process continues until only one subgroup contains all members (only one
BLD contains all users within a network), the approach becomes a SLP one
involving only unchangeable keys. As another extreme, the approach becomes
SFP one (like LKH ) when each subgroup contains only one user. In this case
all the keys are changeable implying that complexity of StateSyn becomes the
largest and this makes membership change harder.

The proposed framework yields a variety of possibilities for combining
particular SFP and SLP in order to achieve different tradeoffs and to fit the
performance within the given limits. Therefore, the proposed architecture can
accommodate different characteristics and performance requirements, and as a
result, the scheme is highly scalable and highly flexible.

Suppose that a particular framework employs SFP with basic LKH [1,2] and
the subgroup oriented SLP with CST [3].

Let the total number of members of a session is N , and that the proposed
hybrid approach allows that they can be partitioned into P subgroups where
each subgroup contains Q members. Let R revocations in total should be per-
formed assuming that R/P revocations should be performed within each of the
subgroups.

Assuming the above notation, it can be directly shown that the following two
propositions hold.

Proposition 1. When the sub-group centers (KMAs) are trustable, the pro-
posed hybrid key management requires the following overheads.

1. Storage overhead at a receiver: unchangeable storage log Q
2. Processing overhead at a receiver: 1
3. Communications overhead within a BLD sub-group for R/P revocations:

(R/P ) log(N/R).
4. Synchronization requirements at a receiver: None.

Proposition 2. When the sub-group centers (KMAs) are not trustable, the
proposed hybrid key management requires, in a general case, the following over-
heads.
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1. Storage overhead at a receiver: unchangeable storage log Q and changeable
storage log P

2. Processing overhead at a receiver: 2+logP (when KMAs structure is changed)
or 2 otherwise

3. Communications overhead within a BLD sub-group for R/P revocations:
(R/P )(log P + log(N/R)) (when KMA structure is changed) or R/P log
(N/R) otherwise

4. When a change appears in the structure of KMAs, synchronization require-
ments at a receiver is log P or none otherwise.

Summary comparisons between the proposed scheme and the ordinary LKH [1,2]
and its recent improvement [12] are given in Tables 1 and 2.

Table 1. Comparison among our proposed scheme, ordinary LKH [1]-[2] and its recent
improvement [12] on receiver’s side overhead assuming N users partitioned into P
subgroups and each one of dimension Q, N = PQ, and assuming that there are no
changes within KMAs

Evaluation Scheme changeableunchangeablecomputation required
storage storage overhead synchronization

LKH basic scheme [1,2] log N 0 log N log N

LKH version [12]:
restricted revocation scenario log N 0 log N log N

proposed scheme (LKH + CST)
with trustable KMAs 0 log Q 1 0

proposed scheme (LKH + CST) 2 + log P
with untrustable KMAs log P log Q or 2 0

Table 2. Comparison of the proposed scheme, ordinary LKH [1]-[2] and its recent
improvement [12] regarding the communications’ issues, assuming N users partitioned
into P subgroups and each one of dimension Q, N = PQ, and R user’s revocations in
total with R/P random revocations per a subgroup (domain)

Evaluation Scheme # domains comm. overhead # users domain that
per domain require syn.

LKH basic scheme [1,2] 1 R log N N − R

LKH version [12]:
restricted revocation scenario 1 2 log N N − R

proposal1 (LKH + CST)
with trustable KMAs P (R/P ) log(N/R) 0

proposal2 (LKH + CST)
with untrustable KMAs P (R/P ) log(N/R) 0

and no changes within KMAs
proposal3 (LKH + CST) log P
with untrustable KMAs P +(R/P ) log(N/R) log P

and a changes within KMAs
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State Synchronization. Due to non-reliability of Internet, some packets may
be dropped out. And in certain LKH based scenarios, if some of the acknowledge-
ments have not been received upon expiration of timeout, key center is required
to retransmit key update message and keep on waiting for the acknowledgement,
until it is sure that the focused receivers have updated the keys. During this pro-
cedure, the key center cannot handle any membership change. Hence, StateSyn
determines the upper bound on frequency of membership changes that SFPs
can support and the problem become more serious with larger membership. If a
session has larger membership, this will not only imply possibly longer duration
of StateSyn and as a consequence a lower frequency of the supportable mem-
bership change, but also significant implications to other applications within the
same network due to increased overhead of communications. Therefore, there is
a trade-off between the number of members and frequency of the changes in an
ordinary LKH.

Contrarily, the proposed approach with trustable KMAs requires synchro-
nization only among the KMAs. On the other hand, it is obvious that both the
number of KMAs and the frequency of theirs change are much smaller in com-
parison with the the same issues related to the members. Thus, the proposed
scheme can remarkably simplify the StateSyn problem to yield a shorter dura-
tion of StateSyn and be able to handle a higher frequency of the membership
change.

5 Concluding Discussion

This paper points out a hierarchical infrastructure for key management regarding
the secure multicast. The hierarchical and autonomous structure of Internet
allows allocation of key centers in each of the domains supporting the hierarchical
infrastructure for key management. Also, for each particular multicast session,
a dynamic hierarchical structure for key management is feasible.

A novel key management approach for secure multicasting is proposed. It
is based on a hybrid underlying structure which contains updatable and fixed
nodes and where the synchronization problem, as well as the overall overheads
are reduced.

The underlying hybrid structure is two-layer, i.e. the upper layer employs an
updatable logical key hierarchy, e.g. LKH scheme [1,2], and the bottom layer em-
ploys CST scheme [3] (alternatively SD [3] or LSD [4] schemes can be employed
as well ).

The proposed key management appears as a very suitable approach for a
different Internet oriented applications. Main advantages of the proposed hybrid
framework include the following: (i) reduction of the synchronization problem in
comparison with employment of an updatable (U-LKH) scheme; (ii) reduction
of the permanent keys to be kept at each end users (receivers at leaves in the
bottom layer) in comparison with employment of a static (S-LKH) scheme; (iii)
reduction of the overall system overheads; (iv) fitting the system architecture to
the underlying environment (Internet).
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Abstract. Protecting software and data becomes more and more im-
portant, especially, when sensitive or expensive software is executed on
remote hosts. This protection includes copy protection, prevention of
disassembling, prevention of altering the program flow and protection
of processed data. For personal computers protection is more focused on
copy protection. However, providing extended security to prevent data
and algorithm disclosure is very important to increase the acceptance for
GRID computing.

In this paper we present a cache design for a secure combined hard-
ware and software architecture called SAM. For SAM, the cache provides
transparent encryption/decryption and content verification using hash
values. Additionally, the cache has to consider different memory views
and protection levels as well as support for protected shared memory, a
key feature of SAM.

1 Introduction

SAM was introduced in [1]. The architecture provides a secure execution envi-
ronment for programs by providing register protection, encryption/decryption
of program code and prevention of memory manipulations by using hash trees.
Since all encryption and protection is done inside the CPU, even direct hard-
ware access (for instance by sniffing on busses) or software based attacks (for
instance by administrators) cannot be used to alter or disclose protected data.
All protection schemes are implemented transparently and therefore typically
invisible to the executed program. Protected and unprotected programs can be
executed in a multitasking environment without interfering each other.

SAM was designed to achieve the following two goals:

1. Protection of program code and data: It should be impossible for an attacker
to get information about the executed program code and the computed data.

2. Preventing any external modifications during program execution: The pro-
gram must be executed in the intended way or aborted immediately.

The major parts of the operating system can be unchanged. SAM requires
only changes in the lower level parts like TRAP handling and context switching.
These parts must be trustworthy and each protected program has to provide
hash values for them. Fortunately, these parts occupy only 64 kByte of memory.
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Since the operating system (OS) typically has full control over all executed
programs and their memory contents a partly trustworthy OS requires changes
in the memory management to prevent successful attacks by a modified OS.

This paper is focused on SAM’s cache design. Compared to normal caches
additional verification and cryptography units have to be added. They are im-
plemented using dedicated queues to parallelize most of the required work. The
cache provides different memory views required to keep the protected part of
the OS as small as possible. Furthermore, the cache keeps track of which cache
lines have already been verified. This is required because the protected parts of
the operating system are shared between all executed programs and each pro-
gram must trust them individually. Therefore, SAM adds support for protected
shared memory.

Section 2 gives an overview the architectural changes introduced by SAM.
Then the cache design is described in detail in Sec. 3. Section 4 gives an overview
over other approaches to provide a secure execution environment. The next two
sections describe the simulation environment (5) and simulation results (6). Sec-
tion 7 concludes this paper.

2 Architecture Overview

SAM is currently implemented using a modified SPARC processor design (LEON
[2]) and a modified Linux kernel. Encryption and verification is implemented
transparently in the L2-cache. A more detailed description of the cache design
is given in section 3.

The operating system (OS) must be adapted to support SAM. But only a small
part of the OS (approx. 64 kByte) dealing with context switching and TRAP
management must be trustworthy. The main part with drivers, networking and
filesystems can remain untrusted and mostly unchanged.

Tamper detection has to be done on different levels. Hardware manipulations
on the processor core must be detected just like software based attacks and
external data manipulations. Hardware manipulations of the processor core are
not covered by this work. In the final implementation they are reported like
all other detected tampering attempts to the tamper detection unit. This unit
deletes all process related sensitive data stored in the processor. This includes
keys and cache contents.

2.1 Data and Program Verification

Overview. SAM provides transparent verification of memory contents by check-
ing corresponding hash values for each fetched cache line. Additionally, these hash
values are updated transparently during write back.

AES [3] is used as the hashing algorithm H1, because the program encryption
(see section 2.2) is based on AES, too. In the current design of SAM a L2 cache
line consists of 64 byte which is equal to four AES blocks. As can be seen in
1 Unlike the proposed size of 256 bits, we are using only a key and block size of 128

bits resulting in a 128 bit hash value.
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Fig. 1. Hashing and decryption

Fig. 1(a) the hash value is computed over the unencrypted cache line. To prevent
data disclosure and to bind the cache line to its address in main memory, the
virtual base address V and the program specific secret AES-key k2 are included
in hash value computation. This results in an unique hash value. To prevent
replay attacks, a set of four hash values is protected by another hash value. This
results in a hash tree [4]. The root hash is permanently stored in the cache to
prevent manipulations of the tree during runtime.

The hash values are stored in the cache like any other cache line3. This can
speed up data verification, because already stored and checked hash values in
the cache are trustworthy and need not to be re-verified.

Each protected program contains pre-computed hash values for all protected
parts including all trustworthy parts of the OS. Each time the cache detects
modified memory parts, the particular program is terminated immediately and
all program related parts in the cache including the secret key k are deleted and
the operating system is informed by generating a TRAP.

Fast Verification. The whole hash tree is only required for non static data, be-
cause replay attacks on static data are not possible. Even parts of other programs
in the same memory region cannot be used as a replacement due to different se-
cret keys. Furthermore, the unique secret key k prevents calculation of valid hash
values by an attacker. As a result, for static program code only the corresponding
hash value in the parent node is checked, but not the whole tree. This helps to
speed up program verification, especially for the often used protected OS parts.

2.2 Data and Program Encryption

To prevent program and data disclosure transparent memory content encryp-
tion and decryption is supported. Like all other protected parts encrypted parts
are protected by hash values. Each cache line can be encrypted and decrypted
2 This key is chosen randomly when building a SAM executable.
3 In the following, cache lines containing hash values are denoted as hash lines.
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separately using AES with the secret key k (Ek) in counter mode. In counter
mode, a so called counter value is encrypted and then XORed with the plain
text data for encryption. We are using the hash value described in section 2.1
as a counter.

As can seen in Fig. 1(b), every cache line consists of four cache blocks. Hence,
one hash value is not sufficient as a counter, because this would result in the
same pattern used for four cache blocks. Therefore, the hash value is XORed
with the four different 128 bit patterns R1···44 to generate four different counter
values. Counter mode was chosen to speed up cache line fetches, because fetching
memory contents and the time consuming encryption Ek of a counter can be done
in parallel as shown in Fig. 1(b). When both the data and the encrypted counter
values are available, they must only be XORed to get the decrypted data.

2.3 Memory

SAM provides execution of encrypted and normal programs at the same time
using multitasking. Therefore, depending on the application, shared memory
parts of the main memory must not be encrypted, to allow access by other
programs running at the same time. Further, parts of the main memory used
for DMA are modified from external devices like network cards. Hence, the
corresponding memory regions cannot be protected by hash values. This results
in different context specific memory regions where each region can either be
unprotected, protected or protected and encrypted.
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Fig. 2. Memory Layout

Memory Layout. Figure 2 shows this relatively
fixed layout. It was chosen with hardware imple-
mentation in mind. For each protected context only
four addresses are stored. Their base addresses are
marked in this figure with the following labels:

– HASH BASE denotes the position of the root
hash and therefore the beginning of the hash tree.

– Between ENC BASE and PROT BASE the
cache transparently decrypts and encrypts all
code and data and verifies the contents using
the hash tree.

– All code and data between PROT BASE and
UNSEC BASE is unencrypted, but protected
by hash values. This memory region is typically
dedicated to trustworthy parts of the OS.

– All memory above UNSEC BASE and all mem-
ory below HASH BASE is unprotected. These
parts are dedicated for the OS, DMA areas and
parameter passing between the operating system
and the protected program.

4 These four patterns are constant and the same values are used by all SAM enabled
processors. Their values were chosen randomly.
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Memory Views. The L2-cache transparently decrypts encrypted parts of main
memory and computes new hash values for modified memory regions. But access
to decrypted parts cannot always be granted and hash values must not always
be computed or checked: For example, memory contents are decrypted and hash
values are computed during write back only if the line was written by an instruc-
tion protected by hash values of the same context. This results in the internal
classification of protected or unprotected instructions, depending on the exis-
tence of hash values for these instructions. Hence, SAM provides two different
views of the main memory:
– Protected instructions can access all memory regions and encrypted main

memory contents are decrypted in SAM’s L2 cache. On write back hash
values are computed and the hash tree is updated.

– Untrusted instructions can access the whole memory area, too, but encrypted
parts remain encrypted and hash values are not generated during write back
of dirty parts.

Sparse Hash Trees. The hash tree protects the whole memory area containing
the executable, stack and heap and parts of the OS (see Fig: 2). It consumes
33% additional memory compared to the original memory region. Hash values
need to be provided for all memory areas containing data to protect. On the
other hand, parts like heap or stack that are unused at time of program start
do not need pre-computed hash values. These values can be calculated the first
time a corresponding region is used.

To distinguish used and unused memory areas, unused areas are marked with
a hash value of zero. Fortunately, all pages containing only zeros need not to be
stored within the executable to reduce its size. During runtime, the OS maps
pages containing only zeros to this areas. Each time zero is read, the protected
content is assumed to be valid, regardless of the actual contents. However, the
cache still verifies this zero value using the corresponding parent in the tree.
To cope with the unlikely case of a computed hash value of zero, this value
is stored as “1” in memory. The following pseudo-code describes the checking
procedure:

valid=0
if (computedHash==0) computedHash=1
if (HashBlock==0 || computedHash==HashBlock) valid=1
if (valid==0) informTamperDetectionUnit()
else checkHashBlockwithParentHash()

2.4 Operating System

In a multitasking environment the OS manages execution of different processes.
Hence, it must be adjusted to support SAM’s security architecture. Additionally,
approx. 64 kBytes of the OS mostly used for the TRAP handling must be stored
in protected memory. The other parts can remain unprotected. SAM provides
special instructions described in [1] to prevent attacks on the protected program
when leaving the protected part of the OS during a TRAP.
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3 Cache Design

In this section implementation details of the L1 and L2 cache will be discussed.
As encryption and verification takes place in L2 cache most architectural changes
are located there. Data encryption and verification leads to additional latencies.
SAM was designed to keep read latencies as small as possible. On the other hand,
the time until protected data is written back to memory is increased. SAM tries
to hide these additional latencies where possible.

3.1 Comparison with Other Caches

Both the L1 data and instruction caches are operating on virtual addresses.
The L2 cache operates on physical addresses but additionally stores the virtual
address of each cache line. This is required because the virtual address is used
for encryption, decryption and to compute the address of the hash value.
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Fig. 3. L1/L2 cache design

Because of the memory verification of the L2 cache
parts of its contents are hash values. They are stored
in cache lines (here called hash lines) like other data
requested by the processing unit and treated equally
regarding to the line exchange algorithm. The cache
automatically computes the memory address of the
corresponding hash value to the requested data and
fetches it.

Due to the different memory views the cache hit
logic is more complex than in other caches. For ex-
ample, a requested cache line already stored in the
cache could be treated as miss, if it has been fetched
for a different memory view. In cases of a permis-
sion related miss the cache line is written back to
main memory and fetched again with the correct
permissions.

3.2 L1 Cache

The L1 cache has to keep track of the memory views of all stored cache lines.
SAM uses one additional bit, the unprotected bit, to reflect the memory state. It
is set for each unprotected cache line and each time a cache line was fetched due
to an unprotected instruction access. This information is passed to the L2 cache
during write back to prevent hash updates. Each time a protected instruction
tries to access an unprotected line this access is treated as a miss and the line is
written back to the L2 cache and re-fetched.

3.3 L2 Overview

The L2 cache has been newly designed, because most security related functions
are located here and therefore, its design requires most changes compared to
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standard caches. Figure 3 contains an overview about the caches internal units.
The most noticeable change are five queues. They are used to process all func-
tions related to protected memory and hash values in parallel to the normal
cache logic. They are described in Sec. 3.8.

The cache supports only a limited amount of encrypted processes. This helps
to reduce the overhead caused by storing process related data. Our implementa-
tion is able to execute up to 16 protected processes at the same time. The next
subsections describe all parts shown in Fig. 3 in detail.

3.4 TAG RAM

Protection. The L2 cache uses two bits to reflect the protection level of each
cache line: The unprotected bit serves the same purpose as in the L1 cache. The
cache refuses to update the hash tree during write back if this bit is set. Addi-
tionally, for encrypted memory regions the decrypted bit indicates an decrypted
cache line. This bit is used to prevent read or write access from other contexts
to decrypted memory parts.

The L2 cache operates on physical addresses, but additionally stores the cor-
responding virtual TAG part of this address. This is required because it is im-
possible to compute the virtual address only from a given physical address. The
virtual address is required at three times:

1. The virtual address is part of the hash value computation.
2. It is required to determine the parent node in the hash tree.
3. The stored virtual address of a cache line and the requested virtual address

must match in case of protected memory. If not, the cache initiates a recheck
of the stored hash line regardless of the checked context bits described in
the next section.

On write back, the cache has to select the matching secret key k for hash value
computation and encryption. Thus, the context number of the fetching context
(here called owner context) is stored, too.

Multitasking. SAM provides multitasking support and shared protected read
only memory. This memory area is mainly used for the protected part of the OS
(see Fig. 2).
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Fig. 4. Context Dictionary

The L2 cache checks each cache line
accessed by a protected instruction.
Already checked cache lines need not to
be rechecked, as long as they remain in-
side the cache. Obviously, a cache line
already stored in the cache and checked
for a protected context A may be not
trustworthy for a protected context B.
Since frequently used parts of the OS
remain in this kind of shared memory the cache has to keep track of the contexts
the current cache line has been checked for.
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Special care must be taken to reduce
the overhead caused by storing this in-
formation, because it has to be stored for
each cache line in the cache, Therefore,
SAM uses a dictionary based approach
shown in Fig. 4 to minimize the amount
of RAM to store this information. The
last four context numbers a check was
processed for are stored in a global dic-
tionary. Each cache line (Fig. 4 shows three sample lines) now has to keep track
for which of the global contexts it has been checked for which requires only four
additional dictionary bits for each cache line.

Each time a new entry is added to the dictionary the oldest entry has to
be removed first and the dictionary bits in each cache line must be updated.
This is shown in Fig. 5 for the new protected context “1100”. To speed up
this task, the global dictionary and the dictionary bits for each cache line are
stored in shift registers. Hence, they can easily be updated in one clock cy-
cle. On write access, the context bits of others than the writing context are
deleted.

3.5 Hit Logic

The L2 cache contains a complex hit logic. The cache sets the following internal
status bits if the requested cache line is already stored in cache RAM:

– Write: This bit is set on write access.
– Protected Memory: Set, if the requested data is located in protected memory.
– Encrypted Memory: Same for encrypted memory.
– Protected Instruction: Set, if data is requested by a protected instruction.
– CTX: Set, if the owner context and the requesting context are different.
– Dirty: The accessed cache line is dirty.
– Unprotected: The accessed cache line is unprotected.
– Decrypted: The accessed cache line is decrypted.

Table 1 illustrates the action to be taken based on these internal status bits5.
Each column represents another protection combination of the requesting in-
struction. For example, the first column represents an unprotected instruction
accessing unprotected memory whereas the last column represents a protected
instruction accessing encrypted memory. Each row in this table shows the dif-
ferent states of the cache line already stored in cache RAM. For example, the
actions for shared protected memory are shown in column 5, rows 1, 3, 7 and 9.
Possible actions are:

5 The following invalid status bit combinations are omitted, because they are prevented
by the cache logic: “Unprotected Memory, Encrypted Memory” and “Unprotected,
Decrypted”.
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– “WB”: Write back current line and fetch the same line again with a different
protection level.

– “F”: Fetch line and overwrite selected line in cache.
– “R”: Process read requests, equals “WB” on write access.
– “RW”: Cache hit, process read or write access based on Write bit.

After a line fetch or on write access the status bits of the corresponding cache
line are updated according to the following Boolean functions:

dirty = Write
unprotected = ∼ Protected Memory ∨ ∼ Protected Instruction

decrypted = Protected Instruction ∧ Encrypted Memory

Table 1. L2 hit logic

0 1 1 0 1 1 Prot. Memory
0 0 1 0 0 1 Encr. Memory

CTX Decr. Unprot. Dirty 0 0 0 1 1 1 Prot. Instruction
0 0 0 0 RW RW F RW RW F
0 0 0 1 R R R WB RW WB
0 0 1 0 RW RW RW RW RW F
0 0 1 1 RW RW RW WB WB WB
0 1 0 0 F F F F F RW
0 1 0 1 WB WB WB WB WB RW
1 0 0 0 RW RW RW RW RW F
1 0 0 1 R R R R WB WB
1 0 1 0 RW RW RW RW RW F
1 0 1 1 RW RW RW RW WB WB
1 1 0 0 F F F F F F
1 1 0 1 WB WB WB WB WB WB

3.6 TLB

The L2 cache must be able to compute physical addresses of parent hash lines
determined by their virtual address. Hence, as can be seen in Fig. 3, the L2
cache contains its own TLB6. This design was chosen because the VHDL imple-
mentation is based on the LEON design. LEON contains one TLB’s for the L1
instruction cache and another one for the data cache and these TLB’s cannot
be accessed by the L2 cache. Therefore, the cache has its own TLB.

3.7 AES Unit

The AES unit is a central part in this design and used by many other units
(see Fig. 3). It is used to compute hash values and encrypted counter values.
Due to the counter mode design and the hash value computation algorithm no
6 Translation Lookaside Buffer.
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decryption part is required. In our implementation the AES unit is controlled by
a simple scheduler. This scheduler can pass a new cache line to be encrypted to
the AES unit within each clock cycle. In our VHDL design a pipelined version of
the AES unit was replaced with four sequential AES units to reduce the required
chip space. In this case the scheduler waits until one AES unit is free.

3.8 Queues

The cache contains three different data queues to hide cache latencies:

1. Cache Write Queue: On write miss this queue stores the value to be
written to cache RAM until the missing cache line is fetched. After each fetch
all queue contents are processed to find entries which can now be stored in
the newly fetched line. This queue is primary used to store computed hash
values from the Main Memory Queue until the corresponding line is fetched.

2. Main Memory Write Queue: This queue contains cache lines to be writ-
ten to main memory. Internally this queue is split into the following three
queues:
– Unprotected Data Queue: This queue is used for unprotected data to be

written back to memory.
– Protected Data Queue: This queue is used to compute hash values for

protected data to be written back. The computed hash value is passed
to the cache which may write it in the Cache Write Queue on write miss.

– Encrypted Data Queue: This queue serves the same purpose as the Pro-
tected Data Queue but additionally encrypts the given line before writing
it back to memory.

3. Hash Check Queue: The purpose of this queue is to verify cache or hash
lines. A cache line is passed to this queue if it is protected and unchecked
for the accessing context. This queue then computes the hash value and
compares this hash value with the parent hash values. The parent hash value
is fetched from the cache. On a miss the queue waits until the requested data
is fetched.

Each queue has a predefined size and only the first element can initiate a cache
or memory access. Note that all queue elements can access the AES unit as
needed.

3.9 Cache Arbiter

The arbiter controls internal and external access to the cache controller. External
access is initiated by the L1 I/D cache and internal access is requested by the
queues. The arbiter considers the following information when granting access to
the cache:

– If a requested cache line is in one of the Main Memory Queues cache access
is deferred until the line is written back to memory.

– A cache line can not be accessed until all data for this cache line is written
from the Cache Write Queue to cache RAM.
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– The size of all queues is monitored. If one of the queues has less than 2 free
elements all L1 requests are stalled until one element left the queue. This
prevents deadlocks on full queues caused by L1 requests.

– Queues with more active entries have higher priority to access the cache than
queues with less active entries.

4 Related Work

Using cryptography to protect algorithms and data in a tamper resistant envi-
ronment is not a new approach. Secure co-processors have been proposed which
provide a tamper-sensing and tamper responding secure environment. These
processors can be implemented on smart cards (for example, [5]) or as a co-
processor shown by [6] in a PC (for example, the IBM PCIXCC [7]). These
co-processors provide a secure environment. But they are limited in terms of
processor speed and memory and often, programs must be significantly modified
to be suitable to this kind of co-processors. Therefore, they do not provide an
easy to use and expandable secure environment.

A more related approach to ensure a secure execution of programs is the
AEGIS [8] architecture. The architecture provides transparent program and
memory encryption using an enhanced standard processor. Protected parts begin
with a special instruction and all further instructions are encrypted. Unfortu-
nately, only small parts of a program can be encrypted, because it does not allow
system calls while in encrypted mode.

The AEGIS architecture provides status changes during an interrupt and
guarantees correct restoration. But an AEGIS program contains unprotected
parts used for system calls. During execution of this parts, a malicious OS can
alter the program counter or modify register values and therefore, the unmodified
execution of a whole program with encrypted and unencrypted parts cannot be
guaranteed. As a result, only sensitive algorithms can be protected, but not the
whole program.

In AEGIS, memory protection is done by encrypting the memory contents
with AES [9] and protecting them by hash values. Like our approach, both en-
crypted and normal programs can be executed in a multitasking environment.
But encryption is done by encrypting the data directly. This increases the de-
cryption latency, because all data must first be read and can then be decrypted
instead of doing both in parallel as SAM does. On the other hand, writing en-
crypted data is slower in our case, since the hash value must be computed first.
But fortunately, this additional latency caused by SAM can mostly be hidden
by the Main Memory Write Queues. For most programs the read latency is more
important, since a program can only be continued after providing the requested
data.

Another advantage of SAM is is the amount of memory required to encrypt
and validate cache lines. We must only store the counter value, which can be used
as a hash value to validate the integrity of the cache line and as a counter value
to decrypt the cache line. Therefore, only one additional read access is required
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to encrypt and check the contents of a cache block. In the AEGIS architecture
the hash and an initialization vector must be stored. Additionally, SAM’s design
does not require a full hash tree walk for instructions.

Other approaches to provide a trusted environment, like the TCG [10] can pro-
vide only a trusted software platform. Hardware attacks, like sniffing on busses,
are still possible. Additionally, compared to our design larger parts of the OS
must be trusted which increases the possibility of exploitable errors in these
parts. Therefore, mostly software based systems do not provide the same pro-
tection level as our architecture.

5 Simulation Environment

SAM’s development efforts are focused on a hardware based FPGA implemen-
tation and a software simulator. The hardware is used to proof the design
on the hardware side. Unfortunately the VHDL model is too slow when it is
used for software based simulations. Simulations using the FPGA are much
faster, but much harder to debug, especially when developing the OS changes.
Hence, a fast software based simulator is required. The freely available system
emulator qemu[11] has been chosen as platform, because it provides a good
performance by using dynamic translation and a reasonable detailed hardware
simulation. To fulfill all requirements for SAM qemu has been modified in many
ways:

– Due to its main purpose to provide a fast environment qemu does not count
the number of simulated clock cycles and the program counter is only up-
dated on branches. Since we need detailed clock information for benchmark
purposes and memory protection qemu was modified to provide this informa-
tion. The current implementation executes one instruction in each simulated
clock cycle. A pipeline or stalls due to branch misprediction are not simu-
lated.

– The whole memory access is logged into a trace file.
– Qemu supports SAM’s changed instruction set.
– The memory protection levels are honored and checked for each instruction.

The trace file that is generated during simulation logs following data: The virtual
and physical address of the accessed memory, the program counter, the type of
access (instruction, data, I/O or raw), the number of bytes read or written and
information about TRAP or context switch occurrences.

The trace file is then used as input for a L1/L2 cache simulator to estimate
the overhead of the security mechanisms of SAM. The discrete event simulator
simulates the whole cache system described in section 3. Special care has been
taken to build the simulator as close as possible to the hardware design. But
due to the trace file, it is impossible to feed back timing impacts caused by the
cache simulation back to qemu. Therefore, the next step is the integration of the
secure cache directly into qemu.



A Cache Design for a Security Architecture for Microprocessors 447

6 Simulation Results

The following results are generated using a standard Linux kernel because the
SAM enabled kernel is still under development. As most of the protected and
encrypted part of a protected context are located in userspace, we expect the
results with a SAM enabled Linux Kernel to be similar.

The SPEC suite was used as a base for the following simulations. In this
paper, not the whole runtime of all benchmarks was simulated. Due to the long
simulation times for a full benchmark (up to two weeks on a Pentium 4, 3 GHz)
and due to the size of the resulting trace file (approx. 2-3 bytes per clock cycle)
the benchmarks were terminated after 232 simulated clock cycles.

A cache line of the different simulated L1 and L2 caches equals 64 bytes in
each simulation. The L1 caches are always direct mapped and the L2 caches
4-way set associative organized. The benchmarks were executed on the following
cache configurations using five non-pipelined AES units:

– BC: 16 KB data instruction cache, 1 MB L2 cache
– SC: 8 KB data instruction cache, 128 KB L2 cache
– TL1: 4 KB data instruction cache, 1 MB L2 cache
– TL12: 4 KB data instruction cache, 64 KB L2 cache
– BCA: Like BC, but using only a single pipelined AES unit7

Each benchmark was executed without SAM enhancements used as a reference,
fully encrypted (E), fully encrypted with full hash walk even for instructions
(EH) and only protected without encryption (P). All programs have been stati-
cally linked with a base address of 0x70000000. The region between 0x70000000
(ENC BASE ) and 0xf0000000 (UNSEC BASE ) was protected by hash values
for the E, EH and P runs.

Fig. 6(a) shows the results for most of these configurations. As expected,
the performance penalty is lower for a bigger L2 cache. For most benchmarks
the speedup is between 0.99 and 0.80 for the BC and TL1 configuration. But
increasing the L1 cache does not always increase the speedup as can be seen by
comparing both configuration. The SC and TL12 configurations could not hide
the additional latencies as good as the BC and TL1 configurations resulting
in a speedup down to 0.61 for one benchmark and the smallest cache. The
abdication of a full hash walk for instructions can increase cache performance
slightly especially for small caches. On larger L2 caches this optimization has no
effect.

When using mostly protected, but unencrypted programs, the performance
penalty is near zero in most cases as can be seen in Fig. 6(b). Therefore, in cases,
where the program code must be encrypted, but the stack and heap contents can
remain unencrypted, the performance penalty can further be reduced. Using a
pipelined AES unit does not increase performance significantly. Hence, five non-
pipelined AES units are sufficient which reduces the required chip space.
7 A pipelined AES unit consumes approx. 11 times more chip space than a non-

pipelined unit.
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Fig. 6. (a)Various cache configurations (b)AES and no encryption

7 Conclusion

In this workwe presented a cachedesign suitable for the SAM architecture.The ar-
chitecture was designed to provide a secure execution environment even for hostile
environments where an attacker might have direct hardware or software access.

SAM mainly consists of security enhanced L1 and L2 caches. The L1 cache
provides basic security support by using additional TAG bits to represent the
additional protection. The L2 cache additionally provides transparent data and
code encryption, decryption and verification. As a result, SAM’s hit logic has
to consider the protection of each cache line on each access. Most additional
encryption and verification steps are done by dedicated queues. This enables
concurrent access to the cache either by the L1 cache as well as internal accesses
by the queues and helps to hide most additional latencies caused by these steps.

SAM was designed to support concurrent execution of unprotected and pro-
tected programs. The cache design supports multitasking in many ways: Data
from different contexts can be held in the cache because SAM stores for each
cache line the owner context. Additionally, shared protected memory is sup-
ported by providing a dedicated context dictionary to prevent unneeded cache
line verifications.

The size of the required hash tree stored with each executable can be limited
by using sparse hash trees. By using a full hash walk only for data and not for
instructions, the resulting performance penalty can further be reduced. Simula-
tions show, that the overall performance penalty is acceptable and in some cases
only detectable by benchmarks.
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Abstract. Hierarchical software components offer interesting characteristics for
the development of complex applications. However, supporting the deployment
of such applications is difficult, especially on challenging distributed platforms.
This paper addresses the distribution and the deployment of hierarchical com-
ponents on heterogeneous dynamic networks. Such networks may include fixed
and mobile resource-constrained devices and are characterized by the volatility
of their hosts and connections, which may lead to their fragmentation. The dis-
tribution scheme and the associated mechanisms we propose allow a component
to provide its services in an ubiquitous way and to operate in a degraded mode.
The deployment of hierarchical components is described: we present an ADL ex-
tension for specifying a context-aware deployment and we detail a hierarchically-
controlled deployment designed for dynamic networks. This deployment is
performed in a propagative way and is driven by constraints put on the resources
of the target hosts.

1 Introduction

Distributed platforms are no longer restricted to stable networks of workstations. One
of the archetype of a distributed platform is now a network that may comprise stable
and powerful workstations but also a number of mobile and resource-constrained de-
vices. Although this kind of distributed platform is increasingly common, it remains a
challenging target for building, deploying an maintaining distributed applications. Spe-
cific techniques must be applied to cope with the heterogeneity of the hosts and links as
well as with the dynamism of the network. What we call dynamic networks are espe-
cially a difficult target, as hosts may become unaccessible because of their mobility or
their volatility. As a consequence, one cannot rely on models and algorithms designed
for fully connected networks. A dynamic network is rather described as a partitioned
network, viewed as a collection of independent islands. An island is equivalent to a
connected graph of hosts that can communicate together, while no communication is
possible between two islands. In addition, the configuration of the islands may change
dynamically.

Figure 1 shows an example of such a dynamic network. It is composed of a number
of hosts a user has access to and on which a distributed application is meant to be
accessible. This set of hosts includes fixed and mobile machines. Connectivity is not
ensured between all the hosts. Indeed, at home, the user’s connection to Internet is
sporadic and some of the devices are mobile (as such, they may become out of reach)
and/or volatile (a PDA may for example be switched off frequently).

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 450–464, 2006.
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Fig. 1. Example of a dynamic network, possibly partitioned in three islands

The applications that are to be executed on dynamic networks can be inherently
complex. This complexity is even increased by the need to produce code that can adapt
to the changes of the execution environment. Since a few years, the use of software
components proved to be useful for developing complex distributed applications and
many component models and their associated technologies are now available. In the
component-based approach, the application is designed as an assembly of reusable
components that can be bound in a versatile manner, possibly dynamically. Some of
the proposed models are known as hierarchical models. They offer the possibility of
creating high level components by composing components of lower abstraction level,
which represents a software construction principle that is natural and expressive. In
such models, a component –that is then called a composite component– can be itself
an assembly of components, recursive inclusion ending with primitive components that
encapsulate computing code.

Using a hierarchical component-based approach for building an application that tar-
gets a dynamic network seems an attractive solution. Yet, several problems remain that
are not dealt with available component models and component execution supports. In
particular, the two following aspects have to be dealt with: (1) how to deploy a hi-
erarchical component in a dynamic network while ensuring that this deployment re-
spects the architecture of the application and adapts itself to the resource constraints
imposed by the target platform? (2) how to allow a distributed execution of the com-
ponents, i.e. to allow interactions between components in a not-always-connected envi-
ronment? This paper describes a distribution scheme of hierarchical components and its
associated deployment process that target dynamic networks. Because of the very con-
strained environment in which the application is to be deployed, we can hardly envisage
a permanent access to the services offered by the application or an optimal utilization
of the resources. The emphasis is put on finding a distribution scheme and some de-
ployment mechanisms that achieve a minimal availability while taking account of the
environment.

Outline of our approach. The distribution scheme we propose is related to the hierar-
chical structure of the application. This scheme is based on the replication of composite
components. Indeed, we allow a composite to be accessible on a set of hosts, although
each primitive component is localized on a single host. Besides, we also allow a com-
ponent to operate in a degraded mode in order to account for network disconnections
without making the entire application unusable. The notion of active interface is added
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to the component model. Our runtime support detects network disconnections and de-
activates some components’ interfaces accordingly. Introspection on the state (active or
inactive) of an interface is possible so as to allow the development of adaptive compo-
nents.

The deployment of a component covers several parts of the life-cycle of a compo-
nent. In this paper we focus on the last phases of the deployment, covering the in-
stantiation of the component (that creates an executable instance from a component
code), its configuration (that establishes the bindings to its interfaces) and its activation
(that allows the other components to invoke its interfaces). The presented techniques
should be complemented with component delivery mechanisms such as those described
in [1].

The deployment of the hierarchy of components is specified in a constraint-based
declarative way. The architecture descriptors of the components are augmented with
deployment descriptors in which constraints on the resources required by components
and on their possible location can be specified.

When the deployment is triggered, all the constraints listed in the deployment de-
scriptor may not be satisfied immediately. The dynamism of the network makes the sit-
uation even more difficult as it may occur that the set of hosts that would satisfy globally
the deployment constraints are never connected together at the same time, precluding
any deployment. Instantiation of some components and their activation is however pos-
sible as we allow the components to operate in a degraded mode through the dynamic
management of interfaces’ activation. The deployment process we implement is thus a
propagative process : the instantiation and the activation of a component are performed
as soon as some resources that meet its needs are discovered. We propose an algorithm
that supports this propagative deployment. The scalability of the process is ensured by
the distributed and hierarchical organisation of the control. Moreover, we implement a
distributed consensus that guarantees that the location constraints are satisfied even in
the context of a partitioned network.

The paper is organised as follows. First, the model of hierarchical component we
work on is presented and we explain how a hierarchy of components is distributed over
a network. The concept of activation at the interface level is briefly exposed. In section 3
we give some details on the form of the deployment descriptor that complements the
architecture description. Section 4 presents the overall propagative deployment process
and details the distributed instantiation algorithm that forms the basis of the distributed
deployment. Section 5 briefly describes the status of the development of our prototype.
Finally, we cite the related works before concluding.

2 Distributed Hierarchical Components

We describe in this section what we understand by distributed hierarchical components,
through the description of the basic features of our component model and of the way
we have chosen for distributing the components over a network of hosts. Further details
can be found in [2].
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2.1 Hierarchical Component Model

In this paper, we consider a widely applicable hierarchical component model in which
a composite component represents a more or less complex structure of interconnected
components that can be used as a simple component with well-defined required and pro-
vided interfaces. Recursion stops with primitive components that correspond to com-
puting units. Components are interconnected through bindings that each represents a
link between a required interface and a provided interface. For practical reasons, we
have chosen to base our development on the Fractal component model [3] and more
precisely on its reference Java implementation Julia. However, the concepts developed
in this paper could easily be applied to other hierarchical component models such as
Koala [4], Darwin [5] or Sofa [6].

The notion of composite component is often used at design time and is found in
so-called architecture description languages (ADL) [7]. In the applicative framework
we have chosen, it is however interesting to also be able to manipulate a composite at
execution time in order to ease dynamic adaptation. Therefore the composite is reified
at runtime namely by a membrane object that stores the interfaces of the component
and its configuration (the list of its subcomponents and the bindings between these
subcomponents).

2.2 Distribution Model

As mentioned in the introduction, we wish to deploy a hierarchy of components on a
distributed platform that is characterized namely by its heterogeneity and the volatility
of its hosts. The application components are distributed on a set of hosts. The way this
placement is performed is detailed in section 4. We focus here on the description of the
mechanisms allowing a distributed execution of hierarchical components.

In our approach, the architecture of a component is coupled to its placement and
this relationship is dealt with differently for composite components than for primitive
components. As far as distribution is concerned, a primitive component executes on one
host whereas a composite can be physically replicated on a set of different hosts. The
main goal of composite replication is that the component’s interfaces become directly
accessible on several hosts. A composite component can then be seen as providing a
ubiquitous service.

A single host is associated with a primitive component whereas a set of hosts is
associated with a composite component. This set must be a subset of the set of hosts
associated with the including component. By default, the placement set of a composite
component is inherited from the including component.

At execution time, each instance of a composite component maintains locally infor-
mation about the configuration of its subcomponents. Hence, a distributed composite
component c distributed over a set of hosts respects the following properties:

– The provided and required interfaces of c are accessible on all the hosts hi of .
– Let c be a composite component that contains a primitive subcomponent p. There

exists a single host hi on which p executes. For every host h j ∈ ( j � i), there
exits c j, an instance of c on h j. Each c j holds a remote reference to p (in a proxy).
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2.3 Example

We give in this section an example of an application made of hierarchical components
and we detail how it can be distributed on a given set of hosts.

Figure 2 depicts the architecture of a photo application that allows the user to search
for a number of photos in a repository and to build a diaporama with the selected pho-
tos. The top-level composite component (PhotoApp) includes a generic component
devoted to document searching (DocumentSearch). This component is also a com-
posite component (taken off the shelf); it is composed of a DocumentFinder and a
DocumentBuffer. The primitive DocumentFinder component provides an interface for
issuing more or less complex requests based on the names of documents, on their sub-
jects or some other meta-information, and for selecting the corresponding documents
from a given set of documents (a repository). The selected documents are passed to a
DocumentBuffer. Apart from an interface for adding new documents, the primitive Doc-
umentBuffer component provides an interface for sorting and extracting documents.
This provided interface and the one of DocumentFinder are accessible as provided in-
terfaces of the DocumentSearch component. Finally, the DocumentSearch component is
bound to a PhotoRepository component that constitutes the specialized document repos-
itory and a DiapoMaker component which allows the selected photos to be assembled
in a parameterizable diaporama.

Consider that the photo application is meant to be usable from any of the five ma-
chines owned by the user (hosts h1 to h5), in a dynamic network similar to the one
depicted in figure 1. Hence, the target set of hosts associated with the PhotoApp com-
ponent is {h1, h2, h3, h4, h5}. A subset of these hosts is dedicated to the distributed
execution of the composite component DocumentSearch, say {h1, h2, h3}, h4 and h5

being excluded for licence reasons for example. Moreover, some constraints on the re-
quired resources result in the following placement of the primitive components (see
section 4 for details): DocumentFinder on h1, DocumentBuffer on h2, PhotoRepository
on h4 and DiapoMaker on h5.

At runtime the membranes of the composite components are maintained on each
of their target hosts. A membrane contains the interfaces of the component as well
as the description of its architecture (subcomponents and bindings). The instances of
components (primitive or composite) that are not present are represented by proxies.
Note that for a primitive component, the proxy is linked to the distant (single) instance
of this primitive whereas for a composite component, the proxy is linked to one distant
instance of the (partially replicated) membrane.

DocumentFinder
PhotoRepository

PhotoApp
DocumentSearch

DocumentBuffer

DiapoMaker

Fig. 2. Architecture of the photo application (in UML 2.0)



Constraint-Based Deployment of Distributed Components in a Dynamic Network 455

DocumentFinder

DocumentSearch : {h1, h2, h3}
PhotoApp : {h1, h2, h3, h4, h5}

DocumentBuffer : h2
DocumentFinder : h1 PhotoRepository : h4

DiapoMaker : h5

PhotoApp local instance

h1

DocumentSearch local instance

PhotoRepository

proxy to h4

DocumentBuffer

proxy to h2
DiapoMaker

proxy to h5

h4

PhotoApp local instance

DocumentSearch proxy to h1

PhotoRepository

local instance

DiapoMaker

proxy to h5

local instance

Fig. 3. Placement of components and entities maintained on host h1 and h4

Figure 3 summarizes the placement of the components and shows the runtime entities
(architectural information and instances) maintained on h1 and h4 for our PhotoApp
example.

2.4 Support for Disconnections

The replication of a composite component eases the access to the services it implements
as it makes possible to use its provided interfaces on each host. However, because of
network disconnections, from a given site, access to a remote component can be in-
terrupted. Consequently, a method invocation in this case may raise some kind of a
network exception. This problem is not specific to our approach but appears as soon as
remote references are used, that may point to unaccessible components at any time. In
a context of hierarchical components, the technique that consists in deactivating a com-
ponent as soon as one of its required interface is unbound is very penalizing as a single
disconnection will end up by ricochet with the deactivation of the top-level component,
that is the deactivation of the entire application. In the dynamic environments we target,
where disconnections are frequent, the application is likely to be rarely usable.

We address this problem in the following two ways:

– We introduce the notions of active and non active interfaces. We maintain the state
(active or not) of an interface according to the accessibility of the component’s
instance it is bound to. Moreover, we add a control interface to components to
allow introspection on the state of its provided and required interfaces.

– We allow the execution of a component even if some of its interfaces are not active.
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On the PhotoApp example, if a disconnection occurs between h1 and h4, the Pho-
toRepository component is no longer accessible from h1. The disconnection is detected
by a dedicated monitor, and consequently, the required interface of the DocumentSearch
component is deactivated. This triggers the deactivation of the corresponding required
interface of the DocumentFinder and then of its provided interface. However, the sec-
ond interface of DocumentSearch (the one bound to DiapoMaker) can remain active as
the DocumentSearch component is still accessible. Globally the application is still us-
able, although in a degraded mode, as diaporamas can still be built from the document
buffer.

Notice that this approach has an obvious impact on the programming style required
when developing components, as the state of an interface should be tested before invok-
ing methods on this interface. Indeed, the uncertainty of the accesses to needed (or re-
quired) services –inherent to the targeted dynamic platforms– enforces adaptable code.
The provision for tools to introspect on the availability of the interfaces is a minimal
answer that should be complemented by other facilities for describing or applying, for
example, adaptation strategies. This involves research at language level and middleware
level that is out the scope of the presented work.

3 Deployment Specification

When considering the deployment of distributed components, the key issue is to build
a mapping between the component instances and the hosts of the target platform. This
task implies to have some knowledge not only about the identity of the hosts involved in
the deployment phase, but about the characteristics of each of them as well. Moreover,
for a hierarchical component-based application, every component instance at each level
of the hierarchy has to be handled.

At design-time, the designer is unlikely to know where to deploy each component
regarding resource availability. This motivates the need to differ this task at runtime.
We propose to add a deployment aspect to an existing architecture description language
(such as [8, 9]).This will allow the description of the resource properties that must be
satisfied by a machine for hosting a specific component.

We propose an extension to ADLs that makes possible the description of the tar-
get platform in a declarative way. The language we propose is purely declarative and
descriptive and has a similar objective to the language described in [10]. It is not manda-
tory to give an explicit name or address of a target machine: the placement of compo-
nents are mainly driven by constraints on the resources the target host(s) should satisfy.
The choice of the machine that will host a component will be made automatically at
runtime (during the deployment).

The description of the resources that the target platform must satisfy is defined in
a deployment descriptor in which references to component instances (defined in the
architecture descriptor) can be made. For each component, a deployment context is de-
fined. Such a context lists all the constraints that a hosting machine has to satisfy. If
these constraints are associated with a primitive component, one host will be autho-
rized to instantiate this component whereas several hosts may be selected for hosting
the membrane of a composite component, in accordance with our distribution model.
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There are two types of constraints that can be defined in a deployment context: re-
source constraints (ResCst) and location constraints (LocCst). ResCsts allow hardware
and software needs to be represented. Each of these constraints defines a domain value
for a resource type that the target host(s) should satisfy. LocCsts are useful to drive the
placement choice of a component if it occurs that more than one host is applicant.

<component name="DocumentSearch">
<component name=" DocumentFinder">

<deployment−contex t>
<resource−c o n s t r a i n t >

5 <cpu f r e q ="1 .2"
u n i t ="GHz"
operator ="min " / >

</ resource−c o n s t r a i n t >

10 < l o c a t i o n−c o n s t r a i n t >
< t a r g e t varname="x " / >

</ l o c a t i o n−c o n s t r a i n t >
</ deployment−contex t>

</component>
15

<component name=" DocumentBuffer ">
<deployment−contex t>

<resource−c o n s t r a i n t >
<memory f r e e ="200"

20 u n i t ="MB"
operator =" min " / >

</ resource−c o n s t r a i n t >
< l o c a t i o n−c o n s t r a i n t >

< t a r g e t varname=" y " / >
25 </ l o c a t i o n−c o n s t r a i n t >

</ deployment−contex t>
</component>

<deployment−contex t >
30 < l o c a t i o n−c o n s t r a i n t >

<operator name=" a l l d i f f ">
<arg varname=" t h i s . DocumentFinder . x " / >
<arg varname=" t h i s . DocumentBuffer . y " / >

</ operator
35 </ l o c a t i o n−c o n s t r a i n t >

<deployment−contex t >
</component>

(a)

<component name="PhotoApp">
<component name=" DiapoMaker ">

<deployment−contex t>
40 <cpu f r e q ="1 .5" u n i t ="GHz"

operator ="min " / >
<memory

f r e e ="50"
d i r e c t o r y = " /home / "
u n i t ="MB"

45 operator ="min " / >
</ resource−c o n s t r a i n t >

</deployment−contex t>
</component>

50 <component name=" PhotoRepository ">
<deployment−contex t>

<resource−c o n s t r a i n t >
<memory f r e e ="1" u n i t ="GB"

d i r e c t o r y = " /home / "
55 operator =" min " / >

</ resource−c o n s t r a i n t >
</deployment−contex t>

</component>

60 <component name="DocumentSearch">
< l o c a t i o n c o n s t r a i n t >

<operator name=" exclude ">
<arg value =" e g i l s a y " / >
<arg value =" p a r v a t i " / >

65 </ operator >
</ l o c a t i o n c o n s t r a i n t >

</component>

<deployment−contex t>
70 < l o c a t i o n c o n s t r a i n t >

< t a r g e t hostname ="ambika " / >
< t a r g e t hostname =" d a k i n i " / >
< t a r g e t hostname =" mafate " / >
< t a r g e t hostname =" e g i l s a y " / >

75 < t a r g e t hostname =" p a r v a t i " / >
<deployment−contex t>

</component>

(b)

Fig. 4. Deployment descriptor

An example of use of ResCst and LocCst is illustrated in Figure 4 which shows the
deployment descriptor, in an XML notation, of the photo application introduced in the
previous section. The descriptor (a) contains the constraints associated with the Doc-
umentSearch composite component and descriptor (b) contains those of the PhotoApp
component. Resource constraints are defined within the resource-constraint element.
For every component, adding an XML tag corresponding to a resource type (e.g. cpu,
memory) specifies a constraint on this resource the target host has to verify.

Location constraints are declared within the location-constraint element. The target
element defines the set of hosts among which our runtime support will have to choose.
Hosts can be represented in two ways: (1) by their hostname if their identity are known
before the deployment or (2) by a variable. Such a variable can be used at the com-
posite level to control the placement of components. This feature is achieved by the
use of the operator element. This element allows relations between variables to be ex-
pressed. For example, in descriptor (a), the DocumentFinder component is said to be
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deployed on host x and DocumentBuffer on host y. Constraining DocumentFinder and
DocumentBuffer to be on two distinct hosts is achieved by using the alldiff operator that
declares x to be different from y. For a primitive component, at most one variable can
be declared (because a primitive component will be placed on an unique host). Several
variables can be used for a composite component, which is physically distributed over
several hosts.

When composing the application, it is possible to use only variables. Then, the defi-
nition of the target platform is made at the first level of the hierarchy (for the component
PhotoApp on the example) by adding the list of the machines that will be involved in the
deployment (lines 71–75 on Figure 4). During the deployment, as it is detailed in next
section, this set of machines, together with the location constraints will be inherited by
the sub-components.

4 Deployment Process

4.1 Overview of the Propagative Deployment

Because of the dynamism of the network on which we deploy our applications, it is not
possible to base a deployment on a full connection of the different hosts. We are inter-
ested in a deployment that will allow an application to be activated progressively, that
is, part of its provided services can be put at disposal even if some machines that are
required for the "not yet" installed components, are not available. As soon as these ma-
chines become connected, the deployment will go along. Moreover, resource changes
on any host may yield the deployment of components although is was not possible be-
fore. The deployment we present in this paper is thus asynchronous as it may not be
possible to deploy every component immediately.

Once the architecture descriptor and the deployment descriptor have been defined,
the deployment phase we consider in this article consists in choosing a target host for
every component of the architecture. This selection has to be made according to the
deployment context associated with every component. Indeed, the selected machine has
to satisfy all the resource constraints and this machine must not contradict the location
constraints. In the case of a primitive component, a single host has to be selected among
several applying machines. For a composite component, the number of applicants can
be greater than the set of machines over which this composite component has to be
distributed. Controlling the selection of the target hosts is essential to guarantee the
consistency of the application. Indeed, in a dynamic network where islands of machines
may appear, we must avoid inconsistent decisions in two different islands. For example,
we have to ensure that two distinct machines from two islands will not be selected for
the hosting of the same primitive component.

In the following we present the general propagative deployment algorithm in two
steps. First, we consider a fully connected environment. This will help us to focus on
the resolution of the constraints expressed in the deployment descriptor and to describe
a possible distribution of the instantiation tasks (thus the selection of target hosts) within
a hierarchical architecture. Then we present the complete propagative deployment in a
dynamic network where the main difficult aspect is to ensure a unique decision regard-
ing component instantiation.
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4.2 Deployment in a Connected Network

We consider in this section a fully connected network composed of a finite set of ma-
chines. Each machine is identified and no disconnection may occur. The propagative
deployment in such a network consists in diffusing the architecture descriptor and the
deployment descriptor to all the machines that are listed at the top level of the applica-
tion (with the XML target element).

Then, once a machine has received these descriptors, a recursive process is launched
in order to select the components that can be hosted on this machine. The main steps of
this process for a machine mi, for a component C are the following:

1. machine mi checks if it satisfies the location constraints associated with C. This cor-
responds to verifying if mi belongs to the set of the target hosts (see XML target
element). If the mi is not concerned by the deployment (instantiation) of component
C, the process returns for this component, else,

2. machine mi has to launch probes corresponding to the resource constraints of C
(e.g. CPUProbe, MemoryProbe). If at least one probe returns a value violating
a resource constraint (e.g. not enough free memory available), the process returns,
else,

3. machine mi declares itself as an applicant host for component C and a collective de-
cision has to be made. Indeed, more than one host may apply and if C is a composite
component, it may have subcomponents with location constraint such as x � y

4. once a choice has been made, all the applicants are informed of the value of the free
variables and of the fact that they are authorized (or not) to instantiate component
C. The process stops for hosts that are not authorized. For the others,

5. if C is a composite component, the process is performed recursively for all the
subcomponents of C

In a connected network, there is no difficulty to make the collective decision de-
scribed in point 3. We could for example choose before the deployment a machine S
whose role is to decide a host among applicants. In this case, when a host h satisfies all
the constraints attached to a component and thus becomes applicant, h announces itself
to S and waits for a decision. However we prefer the approach of [11] where a deploy-
ment controller, which is in charge of well-defined tasks of the deployment, is defined
for each composite component of the hierarchy. The main reason for such a distribu-
tion of the deployment controllers is scalability. Indeed, with this approach, parts of the
application can be deployed independently according to its topology. Thus, we define a
machine S i per composite component of the hierarchy. This machine is responsible for
the decision-making of its direct sub-architecture, i.e. it must choose among applicants
those who don’t contradict the location constraints. Applicants must be informed of
the results. Thus, after a decision, each representative S i sends to the applying hosts a
new deployment descriptor which is updated with the new location information, i.e. the
actual name of the machine hosting a specific component is added to the location con-
straints. Indeed, before the deployment, no explicit machine name is given and variables
can be used to indicate applicant machines. For example, if the machines ambika and
dakini are respectively attributed to components DocumentFinder and DocumentBuffer,
the following lines are added to descriptor (a):
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/ / r e p l a c e l i n e 11 by : / / r e p l a c e l i n e 23 by :
< t a r g e t varname =" x " v a l u e =" ambika " / > < t a r g e t varname =" y " v a l u e =" d a k i n i " / >

As a consequence of the decision, some components can be instantiated. In the
case of composite components, the deployment process (local evaluation, applicant an-
nouncement, decision-making) goes along recursively.

However, it may be possible that a representative machine could not find any place-
ment solution (because no combination of applicants fullfills all the location constraints).
In order to propose to the representative a new possible placement, a machine that newly
satisfies some resource constraints (for uninstalled components) declares itself as
applicant.

4.3 Deployment in a Dynamic Network

The previous section, with the assumption of a fully connected network, has highlighted
two main ideas of the propagative deployment: (1) each host does the evaluation of the
constraints attached to the components and (2) the decision making is distributed over
several machines, each of them representing a composite component of the application.

In a dynamic network all the machines may not be connected at the same time. In
this kind of network, islands may exist and communication paths between machines
may disappear. In such an environment, a deployment based on a full connection of
the different machines at the same time is not conceivable. We may want to start the
deployment (i.e. the instantiation of parts of the components and thus to put parts of
the services offered by the application at disposal) while some machines may be dis-
connected or inaccessible. The component model presented previously (see section 2)
allows an application to run in a degraded mode but the main difficulty here is to deal
with the unicity of the instantiation of the–possibly statefull–components, which is dif-
ficult to ensure in a dynamic network. Indeed, we must avoid conflicting decision to
be made in the different islands that may exist in such an environment. On one hand, a
machine that represents a composite component, cannot be selected before the deploy-
ment, as in a fully connected network, since this machine may not be connected. On
the other hand, if we let each of the machines that host the same replicated composite
component make a decision, we cannot guarantee that in two different islands contra-
dictory instantiations may not be performed. We tackle this difficulty by considering
the consensus problem: a set of machine has to decide on a same value regarding the
representative of composite components.

We use the results of [12], in which the requirements of the consensus problem are
relaxed. The authors have identified conditions for which there exists an asynchronous
protocol that solves the consensus problem despite the occurrence of t process crashes.
We define the consensus to select, for each composite that is replicated on several ma-
chines, a representative host that will make future decisions on where the direct sub-
components have to be instantiated.

Algorithm. The main steps of the algorithm described in the previous section are not
modified. The only change concerns the designation of a representative host for each
node of the hierarchy. We use the algorithm of [12] to elect such a representative and to
build a common view of the placement of the components.
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The consensus algorithm requires that a majority of machines can be reached among
the target hosts of the composite component. This majority is not the same depending
on the composite component. For example, the photo application is distributed over
{h1, h2, h3, h4, h5}, as a consequence, the majority is reached when at least three of these
machines are in the same island. Whereas for the composite DocumentSearch com-
ponent, which is distributed over {h1, h2, h3}, the consensus is possible when an island,
composed of at least {h1, h2}, {h1, h3} or {h2, h3}, is formed.

The consensus-based algorithm consists in:

1. ensuring that the selection of a host for a representative composite component is
possible if an island is composed of a majority of machines,

2. selecting a machine S i for the future instantiation decisions for each composite
component of the hierarchy

3. updating the deployment descriptor with the identifier of the selected machine.

Points 1 and 3 guarantee that if a new island composed of a majority of machines
is created, there is at least one machine that possesses the most recent version of the
deployment descriptor. Thus no contradictory decision can be made in this island.

The consensus may not terminate (e.g. the number of hosts within an island may not
be sufficient). In order to prevent this situation, we allow a newly connected machine to
participate in this consensus. This is achieved by periodically broadcasting a message
asking if a consensus is still in progress. In that case the newly connected machine
collects the data that have already been exchanged between the other machines and
proposes a value that can make the consensus evolve.

Once a representative composite component is chosen, due to the dynamism of the
network, this composite may be in a non-majority island during a more or less amount
of time. In this case, if an instantiation decision is made, it cannot decide any more
whereas it may exists an other island in which a consensus can be reached. Thus, if
such a decision has to be made and a majority of machines composes the islands, a new
representative machine is selected and the deployment descriptor is updated. No conflict
will arise later, i.e. when the older representative belongs to a new majority islands.
Indeed in such an island, it exists at least one machine that possesses the most recent
version of the deployment descriptor, thus during the consensus, the older representative
will learn the existence of the new one.

5 Implementation Status

The propagative deployment presented in this paper is based on a constraint based-
language for the description of the placement of components according to resource
requirements. Our current prototype has been implemented using Julia, a Java imple-
mentation of the Fractal component model [3]. The features of the ADLs described
in section 3 have been implemented as new modules into the Fractal Architecture De-
scription Language. Deployment descriptors can be specified graphically through an
extension of FractalGUI.

In order to evaluate the constraints defined in the deployment descriptor, we have to
collect information about resources on every host. We use D-Raje [13] –a framework
developed in our team, dedicated to the observation of distributed system resources in
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Java– to define specific probes related to resource constraints. D-Raje is also used to
model and to monitor the state of physical links between hosts. A disconnection can
then be captured with the result that bindings between components are withdrawn and
the corresponding interfaces are deactivated. Further details can be found in [2].

We are currently implementing a distributed test platform in order to tune our consen-
sus algorithm considering parameters such as the numbers of hosts and the frequency
of disconnections.

6 Related Work

The main aspects developed in this paper are related to a distribution scheme for hi-
erarchical components on dynamic networks and to a resource-aware and propagative
deployment.

Many works have taken into account a context-aware deployment, that is, the place-
ment of components onto hosts according to some resource requirements. A formal
statement of the deployment is given in [14] and a set of algorithms that improve mo-
bile system’s availability is presented. In [15] the authors propose a deployment con-
figuration language (DCL) in which properties on the target hosts can be expressed.
The deployment considered in this work extends the Corba Component Model, which
is a flat component model. In [10], the authors present the Deladas language that also
allows constraints to be defined on hosts and components. A constraint solver is used to
generate a valid configuration of the placements of components and reconfiguration of
the placement is possible when a constraint becomes inconsistent. But this centralized
resolution is not suited to the kind of dynamic network we target. Moreover, the current
version of Deladas does not consider resource requirements. These abovementioned
works aim at finding an optimum for the placement problem of components. This as-
pect is not one of our objectives. Indeed, due to the dynamism of the environment, it
is hardly feasible to define a quiescent state that will allow our consensus algorithm to
decide on an optimal placement. Moreover, the solutions proposed are centralized.

In [16] a decentralized redeployment is presented. The configuration to be deployed
is available on every host involved in the deployment. A local decision can then be made
according to the local subsystem configuration state. However the choice of the compo-
nents’ location is made before the deployment process. The works presented in [11] on
the deployment of hierarchical component-based applications is probably the closest to
ours’. The authors describe an asynchronous deployment and use the hierarchical struc-
ture of the application in order to distribute deployment tasks. In the solution developed
by the authors, a deployment controller is statically chosen and defined in the deploy-
ment descriptor. In our approach we could not decide at design-time which machine
will host such a controller. The approach proposed by the authors focuses on functional
constraints and thus resource requirements have not been taken into account.

7 Conclusion

This paper has presented a support for deploying and executing an application built
with hierarchical components on an heterogeneous and dynamic network. The main
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contribution of this work is that it attempts to take into account a challenging distributed
target platform characterized by the heterogeneity and the volatility of the hosts, volatil-
ity that may result in the fragmentation of the network.

A distribution method has been proposed for hierarchical components. Composite
components are made accessible on a set of hosts whereas each primitive component is
localized on a single host. Besides, via the notion of active interface, we allow a com-
ponent to operate in a degraded mode in order to account for network disconnections
without making the entire application unusable.

We have presented a purely descriptive language for specifying deployment descrip-
tors that allow for a context-aware deployment. This language is meant to extend some
existing ADL. A deployment descriptor allows the description of the resource needs of
a component and some placement constraints.

The deployment process we have defined is a propagative one. The instantiation and
the activation of a component is performed as soon as some resources that meet its
needs are discovered. This early activation is possible as some of its interfaces can re-
main inactive (the component then executes in a degraded mode).We have designed an
algorithm that supports this propagative deployment in a dynamic network. The scal-
ability of the process is ensured by the distributed and hierarchical organisation of the
control. Moreover, we have presented a distributed consensus that guarantees that the
location constraints are satisfied even in the context of a partitioned network.

The main direction of our future work consists in taking into account the possible
modifications on the resources’ availability after some component instantiations have
been made. Indeed, even if we can respect for example a memory constraint on the
instantiation of a given primitive component, the memory conditions may change that
invalidates the choice afterwards. The mechanisms we have implemented in our deploy-
ment algorithm could be adapted for solving this problem, provided the component can
be safely stopped. An autonomic deployment could thus be defined.
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Abstract. Mobile ad-hoc networks are suitable for collaborative
applications, whose objective is to reach a common goal through the
cooperation of the members involved. These networks have to be trust-
worthy in message delivery and fault-tolerant. We developed two different
frameworks to satisfy these needs, and evaluated the performance of each
network. This paper describes both frameworks and the results obtained
from the experiments. We observed important differences between the
networks in the results. This is explained by the two different devel-
opment environments used, C++ and .NET, and the specificity versus
generality of the frameworks. Combining the advantages of both frame-
works could present a platform that satisfies all the needs for mobile
collaborative activities.

1 Introduction

In recent years, mobile devices such as cell phones and Personal Digital Assistants
(PDAs) have become part of our daily lives. With their increasing improvements
on both hardware and software, the scope of their possible applications has
extended. At the same time, new wireless technologies such as Bluetooth and
Wi-Fi have taken these devices out of their isolation, allowing the advantages of
mobility to be used in combination with inter-device interaction.

In particular, mobile ad-hoc networks present a particularly attractive en-
vironment for collaborative applications [1]. Since in ad-hoc mode the wireless
connection does not need a central server, execution of these activities can be
achieved anywhere and with any number of people. This potential, enhanced by
the handheld size of the PDAs, presents a proper ground for the development of
collaborative applications, whose objective is to reach a common goal through
the communication and cooperation of the various members involved [2]. This
type of collaborative work can be seen in collaborative learning, in simulations
which involve several people working together, etc.

Among the problems that standard ad-hoc networks deal with are the fre-
quent peer transit and the indirect peer routing [3]. Peer transit refers to the
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successive entrance and exit of peers to the network, while indirect peer rout-
ing refers to the generation of the adequate routes, through other peers, to carry
messages between peers which are not directly connected (i.e. out of reach) [4][5].
Nevertheless, these concerns do not apply to collaborative activities. In these,
it can be considered that the users do not transit, because the purpose of these
activities is for a pre-defined group of people to collaborate for a period of time
to reach a common goal. Thus, the transit requirement is reduced to the need
of a discovery method at the beginning of the activity. Moreover, because col-
laboration is intended to take place in a face-to-face interaction, indirect peer
routing does not apply.

On the other hand, collaborative activity networks must outperform standard
ad-hoc networks in two main subjects: trustworthiness of message delivery and
fault-tolerance. Trustworthiness of messages delivery is a high priority in the
development of a collaborative activity. The correct progress of such an activity
relies on the effective arrival of all the shared information. Due to the fact that
these activities tend to have a considerable duration, and a progress that depends
on the communication inside the group, the successful exchange of information
between peers must be ensured in order to be able to reach the goals of the
activity [6]. This is not an easy task in a wireless mobile network, especially if
there is much traffic and a high number of users involved.

A high level of fault-tolerance is another important factor. Wireless networks
are prone to disconnections and other similar problems [7]. If one of the peers
accidentally leaves the network, the whole activity could be compromised. In
the best case, the remaining users could be able to go on without that peer, but
that user looses the possibility to complete the activity. Therefore, the recovery of
both the network and the application is essential to repair the possible problems
that may show up.

Networks in collaborative activities share specific characteristics that need
custom made solutions. We developed two different networks which satisfy these
needs as a part of two different collaborative activity frameworks. Although they
share the same common objectives, their aim and design was different.

Though the services provided by both networks are similar, they hold impor-
tant differences. Both are designed to be used with PDAs. The protocols used
in each network are different, as is the way they solve problems such as fault-
tolerance. The first framework, named Edunova, was implemented in embedded
C++. This is a lower-level language compared to other possible platforms, but
it provides better control of the network and other operating system functions
with less overhead. The second framework, called Activity Framework (AF), was
developed using the .NET Compact Framework and the C# language [8]. .NET
provides better functionality and is easier to use, but it adds a new middle layer
to the applications, which may slow down the execution of the software.

This paper describes the architecture and protocol of each framework. It also
shows the results of a set of performance experiments we designed, which give a
measure of the limitations and advantages of each framework’s functionality and
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physical behavior. These results help to understand each design, protocol and the
advantages/disadvantages of the corresponding implementation environment.

The document is structured as follows: Sect. 2 details the objective and ar-
chitecture of each framework. It also shows the features and structure of the
network developed for each framework. Section 3 explains the experiments de-
signed to test both networks. Section 4 presents the results of the experiments
performed, and Sect. 5 finishes with the conclusions and future work.

2 Frameworks Developed

2.1 Objectives and Main Features

The purpose of both frameworks is to provide the services required to build
a collaborative activity (see Table 1). By using a framework, the developer
of an activity can focus on its objectives, without considering the lower-level
functionality.

Table 1. Objectives and features of each framework

Edunova AF
Main objective Specific collaborative activi-

ties for the classroom (MC-
SCL [2] [9])

Generic collaborative activi-
ties

Applications
developed

MCSCL implementation for
the use in school’s class-
rooms [2] [9]

Learning to Collaborate
Collaborating (LCC) [10]

Implementation
language

Embedded C++ .NET Compact Framework
C#

The first framework, Edunova, was developed to implement face to face collab-
orative learning [2][9]. Mainly, activities consist of questions stored in a database,
where students have to agree on an alternative, with the teacher acting as a me-
diator. Even though there is the potential to add new functionality, the main
underlying frame of the activities will persist.

The second framework, Activity Framework (AF), was designed to unify the
lower level functions into a generic, complete and coherent framework. Two
of the main objectives of AF were the modularity and ease of extension. One
application developed over the AF framework is called Learning to Collaborate
Collaborating (LCC) [10], where collaboration and coordination between the
members is essential to successfully solve the problems presented.

Being more specific, Edunova has the possibility of functioning more finely-
tuned to the kind of collaborative activity that uses its services. However, it can’t
be used as a framework for other types of applications, at least not without
extensive changes. On the other hand, AF provides services that may not be
specifically made for a given application, but provides a higher level of flexibility
for multiple applications of different kinds.
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Another difference arises from the implementation language used in each case.
The Edunova framework was developed in Embedded C++, because of the speed
and efficiency it provides. It also allows a considerable level of control over the
lower operating system calls, and the way the communication is done. Never-
theless, developing the platform in this language implies a very high level of
complexity in producing and maintaining the code.

The AF platform was developed in C# over .NET Compact Framework. One
of the reasons we chose this environment is the high level of functionality it pro-
vides, which simplifies considerably software development. .NET also is platform-
independent, so AF can be used over multiple operating systems. However, the
.NET layer may diminish the efficiency of the platform, especially when many
resource-limited devices, such as PDAs, are interacting. Also, it may reduce the
level of control the developer has over the inner workings of the operating system
and network calls.

2.2 Framework Architectures

The architectures of both platforms are similar, based on a series of hierarchical
components. They both have a certain degree of modularization, to allow the
easy expansion of new functionalities and activities.

The architecture of the Edunova framework is organized in several hierarchical
layers, as shown in Fig. 1. The upper layers handle the functionality for different
high-level purposes, such as group management, image processing, and visual
interface. The lower layers consist of the network and the basic functional blocks.
The communication between the modules is either direct, calling functions of the
lower layers, or through “handlers”, objects that register their functions to be
called when an event is generated.

Edunova’s components are modular. The functionality of each one of them is
clearly defined and separated. However, due to the platform’s objective and its
development, there are some strong relations between the components, which
make the process of isolating or replacing them complex.

(a) (b)

Fig. 1. (a) Architecture of the Edunova framework, (b) Architecture of the AF
framework
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AF’s architecture is completely modular, as shown in Fig. 1. It has a main
manager, called ModuleManager, which coordinates the rest of the modules. The
manager acts as a mediator, so that each module only knows one interface, the
manager’s, and they are independent among themselves. Besides, the manager
only sees one interface, IModule, which is implemented by each module. There-
fore, there is no need to modify the inner workings of either the manager or the
other modules when adding new ones.

Each module adds a specific functionality, such as network functions or peer
management. The services of each one of them are used by sending specific mes-
sages through the IModule interface. Each module sends messages intended for
other destinies to ModuleManager, who in turn re-sends them to the correspond-
ing module.

Both platforms allow the user to select one of the available activities in the
device. Activities have a different definition in each framework, as shown in
Table 2. In Edunova an activity is a specific instance of the MCSCL type of
collaborative activities. In AF, an activity is the complete definition of a generic
collaborative group work which meets certain conditions to function with the
framework. In both cases the concept of “plugin” is used for an object that
extends the functions of the platform, though with different scopes in each case.

Table 2. Comparison of activities in each framework

Edunova AF
Definition of an Ac-
tivity

XML object that con-
tains graphic design,
logic and information;
other resource files used
by the activity

Plugin contained in a
DLL file with graphic in-
terface, logic, functional-
ity and resources

Extra Functionality
for an Activity

Can’t have specific new
functionality

Included in definition

Extra Functionality
for the Framework

Plugin contained in a
DLL file with the func-
tionality

Modules implementing
the IModule interface

Purpose of a Plugin Component that adds
new services and func-
tionality to the frame-
work

Complete activity, in-
cluding custom-made
functionality

Activity Execution Controlled by the frame-
work

Controlled by the plugin

The development of new activities in Edunova is relatively simple, due to the
fact that the definition is isolated in an XML file. The person creating them
doesn’t need to have knowledge of C++, as he/she can easily adapt an activity
XML template to his needs. However, he will not be able to add new function-
ality inside the XML, and the complexity of implementing new plugins with
some added features to the framework, or of modifying the framework itself, is
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extremely high. This is due to Edunova’s architecture, and the little facilities
for reusability that embedded C++ offers when compared to other alternatives,
such as .NET or Java [11]. Though it is true that C++ is object oriented, the
settings needed to operate in a Windows environment, and to connect to libraries
in the operating system, hinder the ease of development.

On the other hand, the development of activities in AF requires a high level
of knowledge in the C# language, as they are implemented directly on the code.
However, this gives a high flexibility for the possible applications to be designed,
without loosing the advantages of the services provided by the framework. .NET
provides much more functionality and it is easier to use than the libraries and
methods of C++. However, this usually implies sacrificing some of the efficiency
and control that C++ provides.

Figure 2 shows the architecture of the network level of both frameworks.
Edunova’s network is organized as a library. It has a hierarchical structure

divided in layers. Higher modules in the framework can access its services calling
the corresponding functions.

The network components are organized so that each has clear and differ-
entiated functions. The access to each component is direct, so that high level
modules call specifically the component they require. This allows the network to

(a) (b)

Fig. 2. (a) Architecture of Edunova’s network, (b) Architecture of AF’s network

Table 3. Main components of the Edunova network

Component Functions

ConnManager - Starts and stops the WinSocks [12] library for TCP/IP com-
munication.
- Sends and receives messages inside the logic network of the
system, offering both TCP and UDP protocols for sending them.

PeerManager - Connects and manages the peers in the logic network.

PeerRecoverer
- Broadcasts by UDP the state of the application and network.
- Helps the recovery in case of network failures.
- Negotiates the reentry into the network, the change of a device
for a user and the late entries into the network.

UdpFileSync - Implements a UDP trusted file transfer protocol, to help broad-
cast files through the network. It works directly over WinSocks.
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Table 4. Main components of AF’s network

Component Functions

CCommModule
- Interacts with ModuleManager and gets the messages re-
questing network services from other modules.
- Centralizes and unifies the functions of the lower components
in the network.

CGTSMessenger - Codifies and sends the messages on the network.
- Handles the threads that send and receive messages.

CGameInfo - Handles the network status, and the information about con-
nected peers.

CFileTransferer - Provides file transference between peers.
CUdpMessenger - Implements a UDP trusted communication protocol between

peers.

be efficient, but it makes the relation between the components stronger, being
harder to isolate the network module to be reused in a simple way.

On the other hand, AF’s network architecture has a more modularized design,
also using several layers. The upper interface is used to hide the complexity of
the lower layers, so when there are changes inside the module, they are not seen
by the outside components (either ModuleManager or any module requesting
the network services).

Inside the module, the components possess a low level of coupling and a high
level of cohesion. This makes the components highly reusable. As an example,
the component in charge of the file transference was easily reused in another
application for the quick updating of the AF files between different devices.

2.3 Network Model and Services

Both network modules allow the setup of an ad-hoc network among several
mobile devices. The way the network works after it has been setup is ad-hoc. In
both networks, there are two kinds of peers: Master and Slaves, which are shown
in Table 5.

The peer we call Master provides certain specific services, but in general it
acts as a simple peer. However, there are some differences regarding the Master
in each network. In Edunova, the Master centralizes the activity around it, as
the activities developed for this framework need a main peer. Some functions in
Edunova are limited to the Master. On the other hand, the AF network sees the
Master as another peer during the progress of the application. The only special
functionality is the initial network setup, and the recovery and re-entry into the
network by other peers. After the setup, the Master is only different in that it
can communicate with all the groups. It depends on the application if it uses
the Master as the center of the activity, as a monitor, or as another peer.

The setup is similar in both networks. The Master chooses the activity to
be loaded from the list of available activities. Then, it broadcasts a message
about the new activity, and registers every peer that answers. Once they are all
connected, it starts the activities. The only differences in this setup between the
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Table 5. Comparison of Master and Slave functions

Edunova AF

Master

- Creates the network. - Creates the network.
- Registers peers into the network. - Registers peers into the network.
- Acts as a peer. - Acts as a peer; it knows and han-

dles several peer groups.
- It is the center of the activities. - Tends to be the center of the ac-

tivity, but it depends on the appli-
cation.

- Broadcasts and file multicast lim-
ited to Master-Slave model.

- All communications peer-to-peer.

- Coordinates the recovery after
network problems.

- Coordinates the recovery after
network problems.

Slave
- Can communicate with Master
directly.

- Can communicate with Master
directly.

- May communicate with other
peers, depending on the configura-
tion.

- Can communicate will all peers in
the group directly.

- Doesn’t have access to all func-
tions.

- Has access to all functions.

frameworks are in the coordinating protocol and the methods for peer registry,
but the outcome is the same.

Lastly, the AF network handles the groups directly at its level. The Edunova
framework allows the creation of groups, but at a higher level, above the network
layer.

Table 6 shows the services provided by each network. The basic services are
similar, and cover the main functions a network must provide for a collaborative
activity. Both networks function mainly at the Session (layer 5) and Transport
(layer 4) levels of the OSI model [13]. However, there are some differences.

Regarding the transport protocols, the Edunova network allows sending mes-
sages both through TCP and UDP, while the AF network implements its own
trusted protocol over UDP. UDP has less overhead than TCP, but it’s not trust-
worthy. AF’s protocol is similar to TCP, but lighter. Each time a message is
received, an acknowledgement is sent back. In case this acknowledgement does
not arrive after a certain amount of time, the message is assumed lost, and the
higher application is notified.

Both networks have a recovery mechanism, in case a peer drops out of the
network. The Master is constantly sending a broadcast containing the basic
network configuration. In Edunova, it also includes the activity state. When a
peer resets its network interface, it is able to detect the recovery message, and
uses it to re-enter the network. In both frameworks it communicates with the
Master to be re-accepted. In Edunova, it also returns to the place it was in the
activity before it dropped out. In the case of AF, there is an activity recovery
mechanism, where the Master and the Slave coordinate to return to the previous
state. Due to the fact that AF activities are more generic, the implementation
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Table 6. Description of the services provided by the networks in Edunova and AF

Services Edunova AF
Send Text Mes-
sages

Sends messages between Mas-
ter and Slaves. There has to
be some additional setup to
send messages between Slaves.
Allows trusted (TCP) and
not trusted (UDP) communi-
cations.

Sends messages, usually
smaller, between all members
of a group, or to or from
the Master. Uses a trusted
protocol over UDP.

Send Binary
Messages

Sends binary data in the same
way as a text message.

(No corresponding service)

Send Broad-
casts

Sends broadcasts to the entire
logic network from the Master.

Sends broadcasts to the entire
logic network, or to a group,
from any peer.

Send Files Sends files through TCP be-
tween two peers, or multicast
through UDP (from Master to
all the Slaves).

Sends files through TCP be-
tween any pair of peers.

Recovery Can return to the network and
the activity state if discon-
nected.

Can return to the network
if disconnected. May return
automatically to the activity
state if the application de-
tailed the structure of a state.

Saving and Load-
ing ofStates

(No corresponding service) Can save the network state to
the device, and load it later.
May save the activity state
and load it later if the applica-
tion detailed the structure of a
state.

of the state structure for the activities is left to be defined by the application,
though the recovery of such state is handled by the framework automatically.

3 Empiric Framework Comparison

3.1 Test Environment

The PDAs used were Compaq iPAQ Pocket PC h3760. Each one has an In-
tel StrongARM 1110 processor at 206 MHz, with 64 MB of SDRAM memory,
running over Microsoft Pocket PC 2002. The network interface is the Compaq
WL110 Wireless PC Card, Wi-Fi certified, working at 11 Mbps (802.11b [14]
specification). These cards were setup in ad-hoc mode, so there was no need for
an access point.

Due to the short battery life of the PDAs, the tests were run having all the
devices plugged in to their power sources. In this way we avoided the possible
negative effect of differently charged batteries, or low power of a device.
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3.2 Experiments

These experiments are intended to get a measure of the behavior of both net-
works under typical conditions. The service evaluated was the sending of text
messages through a trusted protocol. The values measured were the latency
(time between the moment when the message was sent by a peer, and the mo-
ment when it was received by the destiny peer, measured in milliseconds) and
the percentage of lost messages (proportion between the total amount of mes-
sages that were received, and the total amount of messages sent). Both give an
idea of the behavior and limits of each platform and network.

The parameters that were controlled for the measurements were three: the
amount of network peers, the size of the message, and the time between sending
one message and the next. This last parameter allows controlling indirectly the
frequency of the messages. Each one of the tests was repeated at least five times
in each peer, to get stability in the values measured. The averages were calculated
among all the peers to get the final values.

Table 7. Controlled parameters

Parameter Values Used
Amount of peers 2, 4, 8
Message size From 1 B to 1024 B
Time between messages From 1 ms to 4096 ms

For each framework, we developed small test applications. The logic of the
program is the same in both frameworks; only the use of the corresponding ser-
vices varies. In Edunova, we designed an activity to handle the experiments,
and an extra plugin with the new functionality required. In AF, we created a
specific new plugin, which implements the required experiments. Both applica-
tions simulated the environment conditions of traffic in a network, to evaluate
its performance with minimal interference from the higher layers.

Experiment 1. An evaluation of the performance in mutual communication.
Peer-to-peer communication was simulated, with each peer sending messages to
each of the rest of the peers in the network. This simulates the traffic occurring
when the peers are working collaboratively in a group. In this experiment, the
Master is considered just another peer.

Experiment 2. An evaluation of the capacity of the Master (peer) to receive
messages from the peers. It measures how much traffic the Master can handle in
the different scenarios. All the peers send messages continuously to the Master.
This simulates the messages that the Master receives when supervising the work
on the network.

Experiment 3. Combination of experiment 2 and traffic from the Master. The
Master receives messages from all the peers, and is also continuously sending
messages back at them. This experiment is the closest one to the functioning of
a Master/Slave network.
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4 Results

Here we present the results obtained with the experiments on both networks.
From the results of the first experiment in Fig. 3, we can see that the dis-

tributions bear a certain similarity between both networks, but differ in some
considerable aspects. The latencies of both networks are very different, with the
ones in AF being much higher than the ones in Edunova. While Edunova has
a tendency to stabilize along 50 ms, and it peaks no more than 200 ms, AF is
more stable around 1300 ms for large messages, and peaks up to 2300 ms. These
differences show that, in peer-to-peer high traffic mode, Edunova is around 10
times faster than AF.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Peer average behavior in experiment 1. First row: Edunova, with (a) 2, (b) 4
and (c) 8 peers. Second row: AF, with (d) 2, (e) 4 and (f) 8 peers.

The tendency in Edunova is to have high latencies when there is little time
between messages, and to remain more stable for any values after that. AF is
more strongly affected by the size of the messages, and shows a higher latency
with larger messages. Also, in AF, the highest latency is at the point of higher
message size and lower time between messages, as it should be expected. In
Edunova, however, there seems to be a peak around 500 - 1000 bytes, and then
the latency goes down. This is probably due to the fragmentation of packages
around that message size, which speeds up the data transfer.

In Fig. 4, we can see the results of the second experiment. In Edunova, the
graphics are stable and unaffected by the time between messages, except for
some brief peaks at the lowest times. The rest of the time, the latency peaks
up to 500 ms, and goes steadily down along with the package size. In AF, the
same tendency observed in the previous experiment is maintained, having the
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Behavior of the Slave peers in experiment 2. First row: Edunova, with (a) 2,
(b) 4 and (c) 8 peers. Second row: AF, with (d) 2, (e) 4 and (f) 8 peers.

highest latency when the message size is highest and the time is lowest. The
lowest latency values are observed when the message sizes are smallest and the
in-between times are highest. The latency in AF peaks up to 3000 ms, but it
tends to stabilize around 1000 - 1500 ms for large messages. In this case, Edunova
is around twice as fast as AF, and more stable in its results.

The behavior of the peers in Edunova shows that the Master is able to with-
stand the traffic from the peers, and it is only barely affected by the frequency
of the messages. This is probably due to the Master/Slave design of Edunova’s
network. In AF, the peaks are more notorious than in the previous case, and
the rest of the time the latency is stable. This shows that AF is strongly af-
fected when there is high traffic, but it is stable in other cases, even with large
messages, due to its particular protocol.

Figure 5 shows the results of the Master peer in experiment number 3. The
shapes of the graphics are similar for both networks. In Edunova the peaks are
around 90 - 110 ms, and the latency stabilizes around 50 ms for large messages.
In AF, the peaks are near 2300 ms, and it stabilizes around 1000 ms for large
messages. It can also be seen that in Edunova with 8 peers, there is an increase
of the latencies with small packages and small in-between times, probably due to
the high amount of traffic that this situation generates. AF has a similar shape,
but it is not affected by the number of peers; the graphics show only a peak for
lower in-between times and larger messages.

Edunova seems to be unstable in this experiment with many peers, because the
Master is not designed for constant bi-directional communication. Its protocols
are optimized for receiving messages, or sending them to peers, but the Master
is unstable if it has to do both things at a time. AF is very stable, even with
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Behavior of the Master peer in experiment 3. First row: Edunova, with (a) 2,
(b) 4 and (c) 8 peers. Second row: AF, with (d) 2, (e) 4 and (f) 8 peers.

Table 8. Percentages of messages lost

Edunova (%) AF (%)
Number of peers 2 4 8 2 4 8
Experiment 1 0 1.068 1.739 0 0.398 0.444
Experiment 2 0 0 0 1.111 3.504 10.51
Experiment 3, Master 0 0 0.0360 0 0 0
Experiment 3, Slaves 0 0 1.514 2.393 8.119 21.32

many peers, though the same tendency to be strongly affected by high traffic is
maintained. The time AF protocols need to process the messages is an important
factor when there is little time between the messages.

Regarding the packages lost, it can be seen in Table 8 that Edunova is more
trustworthy than AF on average. However, in the first experiment, AF looses
fewer packages than Edunova. This may be because AF is a little more oriented
to pure peer-to-peer than Edunova. In the second experiment, Edunova has a far
higher performance than AF. This may be due to the fact that Edunova’s Master
is more suited for Master/Slave activities, and therefore can handle better the
reception of many peers communicating with it at once.

5 Conclusions and Future Work

We have presented two frameworks developed for collaborative activities. Both
frameworks have similar purposes and services, though one is more generic than



478 S. Echeverŕıa, R. Santelices, and M. Nussbaum

the other. The networks of each framework offer the same kind of services, though
the implementation and protocols in each one of them are different.

The empirical results show that the targeted framework (Edunova) is, in gen-
eral, much faster in its message sending, especially with more users and larger
message sizes. It also appears to be more trustworthy. Its better results are
probably due to being custom-made, and to the use of embedded C++. Be-
ing custom-made for the activities it supports, it is more finely-tuned for the
services required, and makes the components more efficient in their communi-
cations. Embedded C++ offers a degree of control, speed and efficiency that is
much higher than the one .NET can provide. However, the generic framework
(AF) still presents an environment in which the development of activities is faster
and easier. It also provides platform-independence, and the support for many
types of collaborative activities.

Selecting the best traits of each framework could be very useful in creating a
platform that would have the advantages of both systems. If AF can be brought
up to speed with Edunova, it would become a competitive generic framework,
while still allowing for easier development and maintenance. Working on im-
proved transport protocols, and tuning the network parameters and mechanisms,
could yield a substantial improvement in AF’s performance.
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Abstract. Time synchronization is a prerequisite in sensor network ap-
plications such as object tracking, consistent state updates, duplicate
detection, and temporal order delivery. In addition, reliability issues and
fault tolerance in sophisticated sensor networks have become a critical
area of research today. However, most research on time synchronization
does not consider clock faults of nodes such as fluctuation, severe changes
in drift rate, and so on. In this paper, we propose a fault tolerant time
synchronization method for wireless sensor networks. In the proposed
method, two cases of fault model: (1) clock faults and (2) network faults
(topology changes) are assumed. In order to evaluate the performance of
the proposed method, a simulation model is established in the NESLsim
based on the PARSEC platform. In the simulation, the effect of clock
faults is analyzed. Simulation results show that the proposed scheme has
about 1.5x∼2x better performance than TPSN (Timing-sync Protocol
for Sensor Networks) in the presence of faults.

1 Introduction

A sensor network is composed of a large number of sensor nodes which have
sensing, computation and wireless communication capabilities. Sensor network
applications need synchronized time to the highest degree such as object track-
ing, consistent state updates, duplicate detection, and temporal order delivery.
In addition to these domain-specific requirements, sensor network applications
often rely on synchronization as typical distributed systems do: for secure cryp-
tographic schemes, coordination of future action, ordering logged events during
system debugging, and so forth [1]. Besides, reliability issues and fault tolerance
in sophisticated sensor networks have become a critical area of research today.
From a fault-tolerant computational perspective this encompasses issues like: (1)
the integration of information in real-time when the clocks at the nodes are not
so perfect, (2) the transmission and integration of information without incurring
heavy losses (communication, information or otherwise), and (3) the fault toler-
ance of the network topology in the presence of not working or dead nodes [2].
These issues are closely connected with time synchronization in sensor networks
to improve synchronization accuracy and reliability; but there is little research
on these problems.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 480–493, 2006.
Springer-Verlag Berlin Heidelberg 2006
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This paper proposes a fault tolerant time synchronization for wireless sensor
networks. In the proposed scheme, we assume two cases of fault model: (1)
clock faults and (2) network faults. The clock faults mean timing faults such
as fluctuation of clocks, changes in drift rate, and so on. The network faults
mean communication or crash faults due to hardware failure, moving of nodes,
or running out of energy which bring topology changes. Simulation results show
that the proposed method has about 1.5x∼2x better performance than TPSN
[3] in the presence of faults.

The remainder of this paper is structured as follows. In section 2 related
work and motivation are discussed. Section 3 describes proposed fault tolerant
time synchronization method. Next, simulation and performance analysis are
presented in section 4. Finally, we conclude in section 5.

2 Related Work

2.1 Traditional Time Synchronization Protocols

Most traditional time synchronization protocols share the same basic design:
a connection-less messaging protocol, exchange of clock information between
client and server(s), methods to reduce the effects of random non-deterministic
communication delay, and a method to upgrade the client time based on the
information from the server [4]. Several standard time synchronization proto-
cols were defined in a series of RFC (Request for Comments) documents. The
three major time synchronization protocols are the Time Protocol, the Daytime
Protocol, and the Network Time Protocol (NTP). NTP is widely deployed in
the internet, since it is scalable, robust and has good performance. It consists
of various stratums of servers in a hierarchy providing synchronization to the
clients which are leaves in a hierarchical tree [5].

Table 1. Internet time synchronization protocols

Name Document Format
Time Protocol RFC-868 – Unformatted 32-bit binary number

– UTC seconds since January 1, 1900
Daytime Protocol RFC-867 – Exact format not specified in standard

– Time code as standard ASCII characters
Network Time RFC-1305 – 64-bit timestamp

Protocol (NTP) – UTC seconds since January 1, 1900
Simple NTP (SNTP) RFC-1769 – Same format with NTP version 3

2.2 Time Synchronization Protocols in Sensor Networks

Since the characteristic of sensor nodes with limited computation and energy,
traditional time synchronization protocols in distributed systems can not be
applied to the sensor networks directly. So existing synchronization methods are
revised or new approaches are proposed to synchronize the sensor networks. In
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the following we survey time synchronization protocols for sensor networks and
present a classification for the various approaches pursued.

In the first stage of research on time synchronization in sensor networks, most
approaches are based on the synchronization model such as event ordering or
relative clock. These methods do not synchronize the sensor node clocks but
generate a right chronology of events or maintain relative clocks of nodes. From
a viewpoint of network topology, synchronization coverage is limited in a single
broadcast domain; however, typical wireless sensor networks operate in areas
larger than the broadcast range of a single node, so network-wide time syn-
chronization is needed essentially. Besides, adjusting the local clock has better
efficiency than maintaining relative clocks since it requires more memory capac-
ity and communication overheads. TPSN [3] and FTSP [6] are the representative
ones which meet these requirements [7].

TPSN works in two phases: level discovery and synchronization. The aim of
the first phase is to create a hierarchical topology in the network, where each
node is assigned a level. Only one node is assigned level 0, the root node. In
the second phase, a node of level i synchronizes to a node of level i − 1. At
the end of the synchronization phase, all nodes are synchronized to the root
node, and network-wide synchronization achieved [3]. The goal of the FTSP is
to achieve a network wide synchronization of the local clocks of the participating
nodes. The assumptions in FTSP are that each node has a local clock exhibiting
the typical timing errors of crystals and can communicate over an unreliable
but error corrected wireless link to its neighbors. The FTSP synchronizes the
time of a sender to possibly multiple receivers utilizing a single radio message
time-stamped at both the sender and the receiver sides. It compensates for the
relevant error sources by utilizing the concepts of MAC layer time-stamping and
skew compensation with linear regression [6].

FTSP achieves robustness against node and link failures by utilizing periodic
flooding of synchronization message and implicit dynamic topology update. On
the other hand, TPSN does not handle dynamic topology changes; however,
FTSP can not be applied generally since the synchronization accuracy in FTSP
is seriously affected by the analyzed source of delays and uncertainties which
are varied according to changes of the systems. Our previous work, RTSP solves
these problems by maintaining candidate parents list and performing pair-wise
synchronization. It handles topology changes through candidate parent and im-
proves synchronization accuracy through constructing a tree with lower depth
and pair-wise synchronization [8].

Recently, reliability and fault tolerance in sensor networks have become crit-
ical issues; however, most research on time synchronization does not consider
clock faults of nodes such as fluctuation, severe changes in drift rate, and so on.
If these faults are not considered in a synchronization mechanism, the synchro-
nization error is propagated hugely in the network. Therefore, new approaches
are required to manage these problems.
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3 Fault Tolerant Time Synchronization

In the following, we present a synchronization method called Fault Tolerant Time
Synchronization (FTTS) for wireless sensor networks. As mentioned before, reli-
ability and fault tolerance issues are increased in sensor networks. In this paper,
we consider two cases of fault model.

3.1 Fault Model

A sensor node fails when its output deviates from the desired value. Communica-
tion faults occur due to hardware failure, moving of nodes, or energy depletion.
These faults can be permanent, temporary or transient [2].

From a viewpoint of clock management, a clock H is correct if it measures
the length t′ − t of any real time interval [t, t′] with an error of at most ρ(t− t′),
where ρ is the maximum clock drift rate from external (or real) time specified
by the clock manufacturer:

(1 − ρ)(t − t′) ≤ H(t) − H(t′) ≤ (1 + ρ)(t − t′)

A clock fault occurs if the previous clock correctness condition is violated.
Examples of clock fault types are: crash faults (e.g. the clock stops), timing
faults (e.g. a change in the frequency of the quartz oscillator driving the clock
counter causes the clock value to be incremented too fast or too slowly), and
Byzantine faults [9].

In this paper, we assume two cases of fault model: (1) clock faults and (2)
network faults. The clock faults mean timing faults such as fluctuation of clock,
changes in drift rate, and so on. The network faults mean communication or
crash faults due to hardware failure, moving of nodes, or running out of energy
which bring topology changes.

3.2 Basic Concept

The proposed FTTS works in two phases. It is assumed that: (1) nodes in the
network have a unique ID, (2) root clock has no clock fault, and (3) a synchro-
nization group meets the following condition n ≥ 3m + 1 where n is the number
of nodes and m is the number of fault nodes. It does not need that each node
is aware of the neighbor set. The management of neighbor nodes is included in
the operation of the scheme.

In the first phase – hierarchical topology setup – a hierarchical topology is
created in the network. Root node with level 0 initiates topology setup. A node
receives topology setup messages and assigns its level by selecting a parent with
lowest level to reduce the depth of tree in the network. This improves synchro-
nization accuracy since the accuracy is a function of the construction and depth
of the tree in network-wide multi-hop time synchronization. Other parent infor-
mation is stored in the reference parent list for fault management. Eventually
every node is assigned a level and a tree structure is constructed.



484 S. Hwang and Y. Baek

In the second phase – fault tolerant synchronization – a node belonging to
level i exchanges time-stamp messages and calculates offset and delay with its
parent node and two reference nodes from the reference parent list which are
belonging to level i − 1. It removes a false-ticker node and synchronizes to one
of the true-chimer nodes using averaged offset. When a node can not commu-
nicate with its parent or reference nodes, it selects another parent in the refer-
ence list and performs synchronization. If the reference list is empty, it requests
level setup to its neighbors and assigns a new level, a new parent and reference
parents.

Fig. 1. Measuring delay and offset

As in the NTP, the roundtrip delay and clock offset between two nodes A and
B are determined by a procedure in which timestamps are exchanged via wireless
communication links between them. The procedure involves the four most recent
timestamps numbered as shown in figure 1. The measured roundtrip delay δ and
clock offset θ of B relative to A are given by [10]

δ = (T4 − T1) − (T3 − T2) , θ =
(T2 − T1) + (T3 − T4)

2
.

Figure 2 shows how to define a false-ticker. First, a node exchanges time-stamp
messages with its parent node and two reference nodes. Then, it calculates offsets
and delays respectively. After that, it averages offsets and finds majority using
averaged offset. A false-ticker is defined as what is not included in the majority.
A node synchronizes to one of the true-chimer nodes.

Fig. 2. Defining a false-ticker
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3.3 Protocol Description

(1) The first phase: Hierarchical topology setup
In the first phase, a hierarchical topology is created in the network. This phase
enforces to create a tree structure with lower depth and reference parent list is
generated to manage fault of nodes in the network. Figure 3 shows the operations
of the first phase.

Step 1: The root node initiates topology setup phase. Level 0 is assigned to the
root node. It broadcasts topology setup message with its ID and its level.

Step 2: A node receives topology setup message during pre-defined time inter-
val. Root node discards this message. It selects a parent with the lowest level
number from received messages and stores other information to the reference
parent list according to the level number. Then it broadcasts topology setup
message with its ID and its level.

Step 3: Each node in the network performs step 2 and eventually every node
is assigned a level.

Step 4: When a node does not receive topology setup message or a new node
joins the network, it waits for some time to be assigned a level. If it is not
assigned a level within that period, it broadcasts topology setup request
message and then performs step 2 with reply of its neighbors.

(2) The second phase: Fault tolerant synchronization
In the second phase, a node belonging to level i synchronizes to a true-chimer
node which is one of parent or reference nodes by exchanging time-stamp mes-
sages. When a node can not communicate with its parent or reference nodes, it
selects another parent in the reference list and performs synchronization. Oper-
ations of the second phase are presented in figure 4.

Step 1: The root node initiates synchronization phase by broadcasting synchro-
nization pulse.

Step 2: On receiving synchronization pulse, nodes belonging to level 1 exchange
time-stamp message with the root node and adjust the local clock and then
broadcast synchronization pulse.

Step 3: On receiving synchronization pulse, each node belonging to level i ex-
changes time-stamp message with its parent and two reference nodes. It
removes a false-ticker node (if it presents) and synchronizes one of the true-
chimer nodes using averaged offset. Eventually every node is synchronized.
Once it receives a synchronization pulse, it discards additional pulses from
other upper level nodes.

Step 4: When a node can not communicate with its parent or reference nodes,
it selects another parent in the reference list, updates own level (if it is
needed) and performs step 3. The level of its child nodes will be updated
when they execute synchronization. If the reference list is empty, it performs
step 4 of the topology setup phase ahead. The reference list can be updated
periodically by listening to communications of neighbors.



486 S. Hwang and Y. Baek

(a) Initiate topology setup (b) Level assign

(c) Level and candidate assign (d) Level and candidate assign

Fig. 3. Hierarchical topology setup
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(a) Initiate synchronization (b) Exchange time-stamp messages

(c) Network fault handling (d) Clock fault handling

Fig. 4. Fault tolerant synchronization
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When the root node fails, a node which has the lowest ID in the next level
takes it over. The synchronization accuracy may be improved by utilizing the
concepts of MAC layer time-stamping and the random back-off mechanism can
be adapted to avoid the collision of wireless links.

4 Experiments

In order to evaluate the performance of the proposed method, we established a
simulation model in the NESLsim based on the PARSEC platform [11, 12]. In
NESLsim, a sensor network is modeled as a collection of sensor nodes, a channel,
and a supervising entity to create the nodes [11].

4.1 Environment and Performance Metrics

N nodes are deployed in a uniformly random fashion over a sensor terrain of size
100×100. Each node has a transmission range of 28. The number of nodes, N,
is varied from 100 to 300 with step of 50. The setup includes a CSMA MAC.
The radio speed is 19.2kb/s, similar to the UC Berkeley MICA Motes, and every
packet has a fixed size of 128bits. The granularity of the node clocks, which is
the minimum accuracy attainable, is 10μs. The clock model used in simulations
has been derived from the characteristics of the oscillators used in sensor nodes.
The frequency drift is varied randomly with time, within the specified range,
to model the temporal variations in temperature. All sensor node clocks drift
independently of each other [13].

Followings are performance metrics in the experiments: (1) synchronization
accuracy or synchronization error, (2) number of messages and (3) synchronized
ratio. Synchronization accuracy is defined as average and standard deviation
of clock differences between a node and a root node. Number of messages is a
measure of energy costs. It consists of send, receive and overhear. Receive means
reception with its own address or broadcast address and overhear means recep-
tion with the other address. Synchronized ratio is a metric of fault tolerance. It
is defined as the proportion of nodes that their synchronization error is bounded
in defined accuracy when there are faults.

4.2 The Effect of Clock Faults

First, we analyzed the effect of clock faults since there are few researches con-
sidering clock faults. In the simulation environment, 200 nodes are deployed and
clock faults are set. The clock of fault nodes set to be fluctuated rapidly or fault
nodes have error in drift rate.

Figure 5 shows the effect of fault nodes’ level in the TPSN. In the simula-
tion, 1% nodes are set as clock fault nodes and the clock of fault nodes set to
be fluctuated rapidly. The y-axis represents the proportion of nodes that their
synchronization error is bounded in m+3σ where m is average and σ is standard
deviation when there is no fault of nodes. The synchronization error is defined
as the difference between the clocks of the sensor nodes and the root node. As
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Fig. 5. The effect of fault nodes’ level
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(a) Synchronization error
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Fig. 6. The effect of clock fault

Table 2. Number of messages

Total Send Receive Overhear
FTTS 43459 1062 1073 41324
TPSN 16323 401 414 15508

can be seen in the result, the synchronization error is increased the more the
fault nodes have the higher level.

In the following, we compare the effect of clock faults in the FTTS to that
in the TPSN. In the simulation model, 200 nodes are deployed and 5 nodes
are set as clock fault nodes. Clock fault nodes are set step by step during the
simulation. First, 2 nodes are set as fault nodes, then each 1 node is set as a
fault node additionally at each determined time up to 5 as simulation time goes
by. The fault model is that fault nodes have error in drift rate. Figure 6 shows
the synchronization accuracy and the synchronized ratio. The synchronized ratio
represents the proportion of nodes that their synchronization error is bounded
in defined error boundary of 1ms. Table 2 presents average number of messages
each synchronization phase.

The proposed scheme, FTTS restricts the propagation of synchronization error
when there are clock faults of nodes, but it needs improvement in the number of
messages. Theoretically, FTTS has 3x amount in the number of messages than
TPSN.
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4.3 Simulation Model

In the proposed method, FTTS, two cases of fault model: (1) clock faults and
(2) network faults are assumed. In the following simulation, we applied these
fault model and analyzed synchronized ratio and number of messages during
synchronization phase. A clock fault is set as error in drift rate of a node’s clock;
therefore, the clock is fluctuated. A network fault is set as communication failure
between a node and its parent or reference node. These faults are set after first
synchronization round. Simulations are performed when there are 10% clock
fault of nodes, 10% clock fault and 10% network fault of nodes and 10% clock
fault and 20% network fault of nodes. Fault nodes are selected randomly.

4.4 Simulation Results

All results are averaged over hundred simulation runs. The performance is com-
pared to the TPSN and the RTSP. The synchronized ratio represents the pro-
portion of nodes that their synchronization error is bounded in m+3σ where m
is average and σ is standard deviation when there is no fault of nodes. The fault
nodes are selected randomly and these nodes are excluded in calculating syn-
chronized ratio. During the simulation, if a node does not have enough reference
nodes, it synchronizes just to its parent node.

Table 3 and figure 7 show the number of messages and the synchronization
accuracy when there is no fault of nodes. The FTTS has better performance
than the TPSN in synchronization accuracy since it creates tree topology with
lower depth according to the operation of the topology setup phase; however,
the number of messages in the FTTS is more than that it the TPSN since it
exchanges time-stamp messages with multiple reference nodes to discard a clock
fault node.

Figure 8 depicts the synchronized ratio and the number of messages when
there is 10% clock fault of nodes. The FTTS has 1.5x∼2x better performance in
synchronized ratio. The number of messages in the FTTS is 2.4x∼2.8x more than
that in the FTTS since it exchanges time-stamp messages with multiple reference
nodes to discard a clock fault node; however, fault tolerant synchronization is a
critical factor because clock error is propagated hop-by-hop.

Figure 9 shows the synchronized ratio and the number of messages when there
is 10% clock fault and 10% network fault of nodes. The FTTS has 1.5x∼2x

Table 3. Number of messages without fault

Send Receive Overhear
Nodes FTTS RTSP TPSN FTTS RTSP TPSN FTTS RTSP TPSN
100 507 202 202 512 208 209 9354 3649 3650
150 795 303 305 803 312 320 22127 8251 8415
200 1092 404 406 1104 416 419 42006 15206 15318
250 1364 504 505 1380 519 529 65561 23815 24000
300 1665 604 605 1684 623 629 95986 34149 34519
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Fig. 7. Without fault of nodes
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(b) Number of messages

Fig. 8. 10% clock fault of nodes
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(b) Number of messages

Fig. 9. 10% clock fault and 10% network fault of nodes

better performance in synchronized ratio. The number of messages in the FTTS
is 2.3x∼2.8x more than that in the FTTS. Figure 10 shows the synchronized ratio
and the number of messages when there is 10% clock fault and 20% network fault
of nodes. The FTTS has 1.5x∼2x better performance in synchronized ratio. The
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Fig. 10. 10% clock fault and 20% network fault of nodes

number of messages in the FTTS is 2.1x∼2.6x more than that in the FTTS. The
number of messages in the FTTS is decreased the more the network fault ratio is
increased since it handles dynamic topology changes with the candidate parent
list as described in the operation of the fault tolerant synchronization phase.

As can be seen in the results, the proposed method has about 1.5x∼2x better
performance than TPSN in the presence of faults; however it needs improvement
in the number of messages.

5 Conclusions

In this paper, we proposed a fault tolerant time synchronization method for
wireless sensor networks considering two cases of fault model such as clock faults
and network faults. The proposed scheme restricts the propagation of synchro-
nization error when there are clock faults of nodes such as rapid fluctuation,
severe changes in drift rate, and so on. In addition, it handles topology changes.
Simulation results show that the proposed method has about 1.5x∼2x better
performance than TPSN in the presence of faults; but it needs improvement in
the number of messages.
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