6

Sensor Fusion

In the previous chapters, we have dealt exclusively with the part of attention
that is concerned with visual processing. This part is the best investigated
one in human behavior, probably because vision is the sense using the most
capacity in the human brain: the 32 representations of the retina occupy
more than half of the whole cortex [Kandel et al., 1996] and the primary
visual cortex V1 has the richest architecture of all cortical areas [Zeki, 1993].
Usually, computational attention systems simulate also only visual attention.
One exception is the model of [van der Willigen and von Campenhausen, 2002]
which models audio-evoked orienting — the orienting behavior in which eyes
(and head) are turned to an unexpected sound — with an artificial neural
network.

However, human eye movements are not only biased by vision but also
by other senses, e.g., the gaze may be directed into the direction of a sound,
a smell, or even a touch, [Watanabe and Shimojo, 2005] and the fusion of
different cues competing for attention is an essential part of human attention.
In robotics, attentional mechanisms might also profit from additional sensor
modalities since they yield a richer set of data that enable the detection of
more object properties, resulting in more useful foci of attention.

This chapter presents an extension of the attention system VOCUS which
enables the fusion of saliencies from different sensor modes: the Bimodal,
Laser-based Attention System (BILAS). This allows the detection of different
object properties and the detection of a wider variety of saliencies than within
a single sensor mode. The modes provided to the attention system are depth
and reflection data acquired by a 3D laser scanner in a single scan pass. BILAS
takes the data from both laser modes as input and searches both modes for
saliencies according to principles described in chapter 4: saliencies of different
features, here intensity and orientation, are computed in parallel and fused
into one global saliency map on which a single FOA is determined. Most of
this chapter was also published in [Frintrop et al., 2005¢].

We apply BILAS to laser data of real-world indoor and outdoor scenes
and elaborate on the different advantages of range and reflectance values. We

S. Frintrop: VOCUS: A Visual Attention System..., LNAI 3899, pp. 129-147, 2006.
© Springer-Verlag Berlin Heidelberg 2006



130 6 Sensor Fusion

show that these data modes complement each other: contrasts in range and in
intensity need not necessarily correspond for one scene element, i.e., an object
of similar texture as its background may not be detected in the reflection
image, but in the range data. On the other hand, a flat object — e.g. a poster
on a wall or a letter on a desk — that could be distinguished in the reflection
image, will likely not be detected in the range data. The results indicate that
the combination of different modes enables considering a larger variety of
object properties. Additionally, we compare the performance of attentional
mechanisms on laser data with that on camera data. The comparison reveals
the respective advantages of the two kinds of sensors.

Typically, computational models of visual attention use features like in-
tensity, color, and orientation. Depth is rarely considered although it plays a
special role in deploying attention. It is not clear from the literature whether
depth is simply a feature, like color or motion, or something else (cf. chap-
ter 3.2.2). Definitely, depth is an important feature in human vision; in partic-
ular, range discontinuities at the borders of many objects can help to separate
objects from each other and from their background and to compute object
shapes.

Two approaches that include depth are presented in [Backer and
Mertsching, 2000] and [Maki et al., 2000]. They obtain depth data from stereo
vision and regard it as another feature. The data obtained from stereo vision
is usually not very accurate and contains large regions without depth infor-
mation. This may justify the integration of the depth values as a feature in
the above mentioned models; in our approach the range data come from a
special sensor and yield dense and accurate range information, so we regard
depth as an additional sensor mode.

The remainder of this chapter is structured as follows: we start in sec-
tion 6.1 with a description of the data acquisition including a specification of
the bimodal 3D laser scanner. In section 6.2, we continue with introducing
the extended attention system BILAS. The main part of this chapter are the
experimental results in section 6.3 investigating in detail the respective advan-
tages of the two laser modes and of camera data. We finish with a discussion
on the presented approach.

6.1 Data Acquisition

The data for the experiments of this chapter were acquired with the AIS 3D
Laser Scanner which will be introduced in section 6.1.1. It yields range and
reflectance data that are rendered into images (section 6.1.2). In section 6.1.3,
we discuss the differences of range data obtained from laser scanners and from
stereo vision.
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Fig. 6.1. Left: the custom 3D range finder mounted on top of the mobile robot
Kurt3D. Right: an office scene imaged with the 3D scanner in reflection value mode,
medium resolution (361 x 211 pixels, distortions not corrected)

6.1.1 The 3D Laser Scanner

For the data acquisition in our experiments, we used a custom 3D laser range
finder which is mounted on the mobile robot Kurt3D (Fig. 6.1, left). The
scanner is based on a commercial SICK 2D laser range finder. In [Surmann
et al., 2001], the custom scanner setup is described in detail. The paper also
describes reconstruction algorithms and their use for robot applications. Here,
we provide only a brief overview of the device.

The scanner works according to the time-of-flight principle: it sends out a
laser beam and measures the returning reflected light. This yields two kinds
of data: the time the laser beam needs to come back gives the distance of the
scanned object (range data) and the intensity of the reflected light provides
information about the reflection properties of the object (reflection data).
This reflectance measurement is the result of the light measurement by the
receiver diode. It measures the amount of infrared light that is returned from
the object to the scanner and thus describes the surface properties concerning
non-human visible light.

The 2D scanner serially sends out laser beams in one horizontal slice using
a rotating mirror (LIDAR: LIght Detection And Ranging). It is very fast and
precise: the processing time is about 13 ms for a 180° scan with 181 mea-
surements and the typical range error is about 1 cm. A 3D scan is performed
by step-rotating the 2D scanner around a horizontal axis, i.e., the 3D scan
is obtained by scanning one horizontal slice after the other. Usually, the area
of 180°(h) x 120°(v) is scanned in 1°, 0.5°, or 0.25° steps resulting in the
resolutions (181, 361, 721 pts) horizontal and (121, 241, 481 pts) vertical. By
restricting the scan area to more narrow angles or by ignoring values at the
borders, other resolutions may result. In the experiments in section 6.3, we
used resolutions of 152 x 256 and 361 x 211.
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Fig. 6.2. Visualized laser data. Left: scene from camera image, middle: visualized
depth data, right: visualized reflection data. Depending on the sensor, the presented
images have slightly different extensions, the laser scanner getting a wider angle
than the camera in all directions

6.1.2 Rendering Images from Laser Data

The scanner is able to operate in two data modes. In the default mode, it re-
turns only the range data in a predefined resolution. In an alternative mode,
it is able to yield the range as well as the reflection data in a single scan pass.
The reflection data can directly be converted into a gray scale intensity image
as is depicted in Fig. 6.1, right. Here, it shows that the raw data from the scan-
ner is spherically distorted. The distortion was removed in later experiments
by rectifying the images as can be seen, e.g., in Fig. 7.12. The visualization of
the depth values from the range data requires some transformation. The ba-
sic approach is to interpret the depth values as intensity values, representing
small depth values as bright intensity values and large depth values as dark
ones. Since close objects are considered more important for robot applications,
we introduce an additional double proximity bias. Firstly, we consider only
objects within a radius » = 10m of the robot’s location. Secondly, we code
the depth values by using their square roots, so pixel p computes from depth
value d by:

b= {I—(\/d/max*l) :d < max 6.1)

0 . d > maxz,

with the maximal intensity value I and the maximal distance max = 1000 cm.
This measure leads to a finer distinction of range discontinuities in the vicin-
ity of the robot and works better than a linear function. If the robot works
outdoors and distant objects should be detected, the maximal distance can
be increased. Fig. 6.2 shows an example of the visualized laser data.

Since the data from the different sensor modalities result from the same
measurement, we know exactly which reflection value belongs to which range
value. There is no need to establish correspondences and to perform costly
calibration by complex algorithms. The laser data are illumination indepen-
dent, i.e., the data is the same in sunshine as in complete darkness and no
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reflection artifacts by external light occur. This yields a robust approach that
enables all day operation.

6.1.3 Laser Data Versus Stereo Vision

In current attention systems integrating depth information, the range data is
usually extracted from stereo vision. With today’s available computing power
and advanced stereo algorithms, even real-time stereo vision at frame rate is
possible. A 3D scan pass (between 1.2 and 15 seconds, with typically 7.5 s)
is slow as compared to the frame rates of CCD cameras. However, for sev-
eral target applications, for example automatic 3D map building, high frame
rates are not needed. In this application, 3D laser range scanning has some
considerable advantages over 3D stereo reconstruction.

Firstly, range scanning yields very dense depth information. On the other
hand, most 3D stereo vision algorithms rely on matching grey level values
for finding pixel correspondences. This is often not possible since, first, cor-
respondences can only be found in textured parts of the stereo images, so
large image regions yield no depth data at all; second, ambiguous grey values
that cannot be disambiguated result in false matches and, third, shading may
prevent finding matches. Hence, the generated depth maps are sparse, often
containing large regions without depth information.

Secondly, the precision of the depth measurement of a laser range scanner
relies only on the tolerance that its construction foresees. Industry standard
scanners like the SICK scanner that we use have an average depth (Z axis)
error of 1 cm. The precision error of the Z axis measurement in 3D stereo
reconstruction is dependent on a number of parameters, namely the width
of the stereo base, the focal lengths of the lenses, the physical width of the
CCD pixel, the object distance and the precision of the matching algorithm.
The error increases by increased squared object distance, and decreases with
increasing focal length (narrowing the field of view). For small robots like
Kurt3D, the width of the stereo base is limited to small values (< 20 cm),
resulting in a typical Z axis error of about 78 cm for objects at a ranging
distance of 8 m (error = dx* (d+w)/ (b= f) with distance d = 8000 mm, pixel
width w = 0,0098 mm, stereo base b = 200 mm, f = 4 mm, precision 1
pixel).

And finally, our 3D laser scanner provides a very large field of view and the
data of the laser scanner are illumination independent. This enables all-day
operation and yields robust data. The named strengths make the 3D laser
scanner the sensor of choice in this application. An alternative may be 3D
cameras which are about to enter the market. The bimodal attention system
can equally be applied to their data as will be briefly discussed in section 6.4.
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Fig. 6.3. Combining depth (2nd) and reflection (3rd) image into one colorized image
(right). Range is coded as intensity, reflection as red-green transition

6.2 The Bimodal, Laser-Based Attention System BILAS

The first plan to build a system of visual attention able to process several
sensor modes came from the idea to apply attentional mechanisms on data
from a 3D laser scanner. This was a promising idea since the sensor yields
dense and precise data and the availability of range and reflection data let us
expect the possibility to detect new kinds of saliency. In section 6.3.1 we show
that these expectations were fulfilled.

In first experiments, we applied the bottom-up system of visual attention
— at that time the NVT [Itti et al., 1998] since our system didn’t yet exist
— to each sensor mode image separately. This enabled the investigation of
saliencies in laser data and the comparison of the complementary effect of
the modes. Nevertheless, it yielded two foci of attention for a single scene
instead of one. It was suggesting to combine the results from both sensor
modes to yield a single focus of attention especially since the data points
directly correspond. Unfortunately, this was not possible with the NVT since
this system is only able to process one input image at a time.

To overcome this problem we used a workaround in a first approach (see
also [Frintrop et al., 2003b]): the laser data is gray-scale so the color feature
channel in the NVT was not used. Utilizing this fact, we fused range and
reflection image into one colorized image. To accomplish this, the range data
were treated as intensity values of the new input image and the reflection
values were coded as color (hue) information. High reflection values were coded
in red hues, low ones in greens. This resulted in suitable color images because
the color feature computations in the NVT take into account blue-yellow
contrasts as well as red-green contrasts. An example scene with range and
reflection image as well as the combined colorized image is depicted in Fig. 6.3.
This colorized image was fed into the attention system, which computed a
single focus of attention based on range and reflection data. In Fig. 6.4 we
present this approach.

Although working quite well in our experiments, there were some problems
with this approach. First, the approach is restricted to the processing of gray-
scale images; the fusion of color images is not possible. Also the extension
to more input images is difficult. A third gray-scale image might be coded
as blue-yellow transition, but it is questionable whether the processing of
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Fig. 6.4. First approach to compute a single focus of attention from range and
reflection data: data from both modes is combined into a colorized image by coding
range as intensity and reflection as color. On this image, a single focus of attention
is computed by a bottom-up attention system (here the NVT [Itti et al., 1998]). A
better solution is the new system BILAS which is shown in the following figures

blue-yellow and red-green is independent in the NVT. More than three input
images could definitely not be processed with this approach. Second, since in
the NVT the computation of the orientation maps works only on the gray-scale
data, no orientations are computed for the reflection values. And finally, a new
system that computes the saliencies for each mode separately is not only more
intuitive but enables also the direct inspection of depth or reflectance saliencies
as well as their tuning by top-down mechanisms. These thoughts were the first
cause to build an own attention system that is able to process several modes.
The single-mode version of the system was introduced in chapter 4, here we
show the extension of the system to two modes: the Bimodal Laser-Based
Attention System (BILAS) (see also [Frintrop et al., 2005¢]).
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Fig. 6.5. Overview of the Bimodal Laser-Based Attention System (BILAS). The
images from the two laser modes “depth” and “reflection” are computed indepen-
dently. Saliencies according to intensity and orientations are determined and fused
into a mode-specific saliency map. After combining both of those maps, the focus
of attention is directed to the most salient region. A more detailed figure is shown
in Fig. 6.6

BILAS computes regions of interest in the depth and reflection data inde-
pendently and finally fuses their saliencies yielding a single focus of attention.
In Fig. 6.5, we show an overview of this system, in Fig. 6.6 the system is
shown in more detail. Since the laser scanner provides only gray-scale data,
no color feature is computed and the processing is restricted to intensity and
orientation. Notice that depth is not a feature in our approach but a sepa-
rate sensor mode. Generally, also other sensor modalities may be regarded:
all sensor data that are representable in a 2D map might be used as input to
the system.

Base of the system is the bottom-up part of VOCUS (chapter 4). First,
the images from each mode of the laser scanner are processed independently,
i.e., intensities and orientations are computed for the depth as well as for the
reflection image. These computations take place as described in chapter 4:
the feature maps are computed with center-surround mechanisms and Gabor
filters, the maps are weighted according to the uniqueness of the features,
they are summed up to conspicuity maps and normalized. The conspicuity
maps are weighted again and summed up to a mode-specific saliency map
which contains the saliencies according to the specific sensor mode. Finally,
the saliencies of each mode are weighted again and fused into a global saliency
map.

The fusion of two different kinds of data allows to exploit the respective
advantages of both modes: saliencies in one mode correspond not necessarily
to saliencies in the other mode. Therefore, a larger variety of object properties
is considered and it is possible to detect a pop-out — e.g., in depth — that
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Fig. 6.6. The Bimodal Laser-Based Attention System (BILAS) in detail. The images
from the two laser modes “depth” and “reflectance” are computed independently.
Saliencies according to intensity and orientations are determined and fused into
a mode-specific saliency map. After combining both of those maps, the focus of
attention (FOA) is directed to the most salient region (shown as red ellipse)
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would be missed otherwise. The saliencies of both modes compete with each
other and the focus of attention is directed to the strongest cue.

Note that we do not claim that one sensor mode is better than the other
or that laser is better than camera data. Each mode has its advantages and
only the combination allows to use all of them.

6.3 Experiments and Results

We have tested our approach on scans of both indoor and outdoor scenes. The
laser scans were taken at two different resolutions: 152 x 256 and 361 x 211
data points. From these points, images of sizes 244 x 256 and 288 x 211 were
generated. The pixel dimensions do not match exactly the number of data
points, since some of the border pixels in horizontal direction are ignored
due to distortion effects and in the lower resolution mode the pixels in the
horizontal direction were duplicated to yield adequately dimensioned images.
The lower resolution proved to be sufficient for the application of attentional
mechanisms. The computations of the first focus on both laser images took
230 ms on a Pentium IV with 2400 MHz. The computation of further foci was
determined nearly at once (less than 10 ms).

The camera images depicted in this section represent the same scenes as
the laser scans to facilitate the scene recognition for the reader and to enable
comparison between the sensor modalities. It has to be remarked that camera
and laser images do not show identical parts of the scene, since the apex angles
and their fields of view are different.

In this section, we focus on three aspects. Firstly, we show the general
performance of attentional mechanisms on laser data (section 6.3.1). Secondly,
the different qualities of the two laser modes are shown (section 6.3.2), and
finally, we compare the performance of attentional mechanisms on laser images
with those on corresponding camera images (section 6.3.3).

6.3.1 Regions of Interest in Laser Data

Here, we briefly demonstrate the general performance of attentional mecha-
nisms on laser data to indicate that it makes sense to determine salient regions
in laser data with an attention system since the regions are of potential in-
terest in robotic applications. Fig. 6.7 shows four scenes, a camera image as
reference on the left and the laser image combined from both laser modes on
the right.

In the first three laser images, the FOAs point to objects that also a human
observer would consider as salient: a traffic sign, two flower pots and a statue
with flowers. These objects are focused because they are highly salient in
laser images: the traffic sign has strong reflection properties that yield high
saliencies in the reflection image. Furthermore, it pops out in depth and shows
a vertical orientation (cf. the maps in Fig. 6.5). Similar effects are true for
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Fig. 6.7. The first two foci of attention computed by BILAS on laser scanner data.
Left: the scene in a camera image. Right: foci on the combination of range and
reflection data
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the objects in the next two images. The last row shows an example of a scene
in which the foci point to regions, the windows, that most human observers
would not consider as conspicuous, since they are not useful to most tasks.
However, in a pure bottom-up approach the window region is highly salient in
the laser data, because the glass is transparent for the laser scanner, yielding
black regions in both laser modes. Note that similar effects would arise in
the processing of the camera image, which shows the window region much
brighter than the rest of the image.

6.3.2 Fusing Two Laser Modes: Depth and Reflection

This section shows the different qualities of the two laser modes. For that
purpose, we applied our system separately to range and reflection data. Addi-
tionally, we applied it to the simultaneous input of both modes, showing how
their different properties influence the detection of salient regions. We start
with the presentation of some scenes where certain saliencies are only detected
in the range data and other saliencies only in the reflection data. The shown
examples (Fig. 6.8-6.11) are presented in reading order as follows: depth im-
age, reflection image, combined image, and camera image as a reference of the
scene.

The advantages of the depth mode are illustrated in Fig. 6.8 and 6.9. The
example in Fig. 6.8 shows a rubbish bin in a corridor. The rubbish bin is highly
salient in the depth image, but not in the reflectance image. Here, the vertical
line of the door attracts the attention. In the combined image, the influence of
the depth focus is stronger, resulting in a focus on the rubbish bin. Remember
that the influence of the maps is determined by the weighting function W that
strengthens maps with few salient regions (cf. eq. 4.9). Of course, the focus in
the combined image is not always on the desired object since this is a task-
dependent evaluation. The region with the highest bottom-up saliency wins
and attracts the FOA.

The example in Fig. 6.9 shows a hallway scene. The depth image shows a
FOA on an open door — visible as dark region — which could be interesting
for a robot as a passage. In the reflection image the foci point to other regions.
Here again, the influence of the depth image is stronger, resulting in FOAs on
the open door in the combined image, too.

Please note that the foci in the combined image are not a union of the foci
of both modes. In the combined image, the first focus might point to a region
that is the most salient region neither in the depth nor in the reflection image.
This might happen for a simple reason: if the depth image has its most salient
point at location a and the reflection image at location b, whereas both images
have a point with lower saliency at location ¢, then the saliency of location ¢
sums up to the highest saliency in the combined image, yielding the primary
focus of attention.

The advantages of the reflection mode are shown in Fig. 6.10 and 6.11.

Although the traffic sign in Fig. 6.10 attracts the first FOA in both laser
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Fig. 6.8. The foci in laser data show some advantages of the depth mode. In reading
order: depth image, reflection image, combined image, camera image. The rubbish
bin is salient only in the range data. Here, the stronger influence of the depth image
causes the first focus to point to the rubbish bin in the combined image, too

Tt

Fig. 6.9. The foci in laser data show some advantages of the depth mode. In reading
order: depth image, reflection image, combined image, camera image. The open door
is salient only in the range data
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Fig. 6.10. The foci in laser data show some advantages of the reflection mode. In
reading order: depth image, reflection image, combined image, camera image. The
handicapped person sign is salient only in the reflection data

Fig. 6.11. The foci in laser data show some advantages of the reflection mode. In
reading order: depth image, reflection image, combined image, camera image. All of
the four cars are among the first six focus regions in the reflection data
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modes, in the reflection image the 5th FOA is directed to the handicapped
person sign on the floor. In the depth data this sign is completely invisible.
In the combined data this detection occurs later: the 6th FOA is on the
handicapped person sign. Another example is shown in Fig. 6.11. Three of the
four cars in the scene are among the first four FOAs in the reflection image
and within the first seven FOAs in the combined data. Obviously, the strongly
reflecting license plates are the reason for high saliency in these regions. In
the depth image, the cars are not focused, because the saliency of the nearer
tree is stronger.

These examples show the respective advantages of the two laser modes and
their complementary effect, enabling to consider different object properties.

6.3.3 Camera Versus Laser

Usually, computational visual attention systems take camera images as input.
In this section, we compare this approach to the here introduced method,
considering the respective advantages of the sensors.

We present three different cases: FOAs that are similar in both kinds of
sensor data, those that are unique in camera images and those being unique in
laser data. Fig. 6.12 shows two examples of scenes where both sensor modal-
ities yield the same results: the traffic signs attract the attention in both
scenes. We remark that this is due to different reasons: the camera FOAs are
attracted by the color of the traffic sign, the laser FOAs by its depth and re-
flection properties. Obviously, the design of traffic signs is carefully examined
since they attract bottom-up attention of different kinds.

One of the advantages of a camera is its ability to obtain color informa-
tion. Although laser scanners exist that are able to record color and even
temperature information, ours is not. Both scenes in Fig. 6.13 show cases in
which color properties alone produced saliencies in image regions (the car in
the upper image, the telephone box in the lower one) that would hardly be
salient in the laser mode data.

On the other hand, Fig. 6.14 shows objects that are only focused in the
laser images. The person (top) and the rubbish bin (bottom) are only focused
in the laser image. The bottom image is a good example of a scene showing
advantages of both, camera and laser. Whereas the focus in the laser data
is on the rubbish bin — an interesting region during obstacle avoidance or
cleaning up — it is in the camera image on fire extinguisher and emergency
exit signs — important regions in security-relevant tasks.

Since each sensor enables the detection of different object attributes, best
results should be achieved by a combination of both sensors, inducing a much
richer variety of salient regions; this remains subject for future work.
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Fig. 6.12. Foci showing the same regions in camera and in laser data. Some FOAs
on camera images (left) and laser images, combined from depth and reflection data
(right). The FOAs are attracted due to different object properties: by color and
intensity in the camera images and by depth contrast and reflection properties in
the laser data

6.4 Discussion

In this chapter, we have introduced an extension of VOCUS to several sensor
modalities: the Bimodal Laser-based Attention System (BILAS). The bimodal
input data for the attention system, depth and reflection, were provided by a
3D laser scanner. Both data modes were processed independently considering
different saliencies for the respective modes.

We have tested our system on both indoor and outdoor real-world scenes.
The results show that range and reflection values complement each other:
some objects are salient in depth but not in reflection data and vice versa.
The comparison between the 3D laser scanner and a camera as input sensors
exhibited that their data also contain complementary features. In camera
images, regions may be salient due to color contrast, which is not existent in
laser data. On the other hand, laser data allow the detection of salient regions
that cannot be identified in camera data. Best results will be achieved by a
combination of laser and camera data, a topic we consider for future work.
Due to the distortions of the laser data and the different fields of view of
laser and camera, this fusion is not a trivial task and has to be examined
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Fig. 6.13. The foci show some advantages of camera images over laser data: the
red car (top) and the red telephone box (bottom) are only focused in the camera
images (left), but not in laser data (right)

Fig. 6.14. The foci show some advantages of the laser data: the person (top) and the
rubbish bin (bottom) are only focused in the laser data (right), but not in camera
images (left). The bottom example shows the respective advantages of the sensors:
the FOA in the laser data is on the rubbish bin whereas the FOAs in the camera
image are on the fire extinguisher and the emergency exit sign
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carefully [Sequeira et al., 1999]. First results can be found in [Pervélz et al.,
2004].

Considering two sensor modes is a first step for the integration of multiple
sensors in an attention system. The same way the two laser modes are fused,
the system can be augmented to combine information of arbitrary sensors
that provide the possibility to locate the sensor information in the environ-
ment. Not only camera and laser data, also auditory information could be
depicted in a map and searched for salient regions provided that the direction
of the sounds are known. Another possibility is to use infrared cameras to
facilitate the detection of humans, a task we consider for future work [Hennig,
2004]. However, the integration of different sensor information requires careful
examination.

An advantage of the laser scanner data is that it is independent of illumi-
nation variances. Different lighting conditions are a big problem in computer
vision applications that rely on camera images. The laser scanner can be ap-
plied even in complete darkness, yielding the same results and providing a
visual impression of the scene based on the reflection data. This can be an
advantage in applications like surveillance in which the robot has to operate
at night.

A limiting factor for the application of a scanning device in robot control
is the low scan speed. The minimum speed of the scanner is 1.7 seconds for a
low resolution 3D scan. Therefore, data from other sensors have to be used for
robot navigation in quickly changing environments. On the other hand, the
3D scanner is well-suited for applications in low dynamics environments, like
security inspection tasks in facility maintenance, interior survey of buildings
and 3D digitalization. A much faster way to acquire range and reflection values
are 3D laser “cameras”, that use a sensor array to measure these values in
parallel.

Several research prototypes of 3D “cameras” are known, e.g., the CSEM
range camera [URL, 14|, the PMD camera [URL, 15|, and the 3D camera
at KTH [Carlsson et al., 1999], At the moment, these cameras are still ex-
pensive, are mostly restricted to shorter ranges and very low resolutions, and
usually yield results that are less precise than those of a laser scanner, but
in future such devices might be the sensor of choice for such systems as the
one presented here. The application of our system to data from a 3D cam-
era is straightforward: the depth information is extracted and rendered into
an image as described in 6.1.2, the color information forms a second image,
replacing the reflectance data of our system. This approach has also the ad-
vantage of corresponding values and it furthermore provides color information
and mainly undistorted data. One approach of applying attentional mecha-
nisms to the data of a 3D camera is presented in [Ouerhani and Hiigli, 2000].

In this chapter, we focus on the bottom-up computation of saliencies.
Obviously, the next step will be the combination of this approach with the top-
down guidance of the previous chapter, a topic we leave for future work. Note
that one weight vector has to be computed for each sensor mode. Inevitably,
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the search will be less successful than the experiments in chapter 5 since it is
hard to detect targets only from the two features intensity and orientation.
Nevertheless, it might be possible to distinguish obstacles (bright regions in
range data) and passages (dark regions in range data). Best results are to be
expected from performing goal-directed search on the data from several sensor
modes.
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