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State of the Art
of Computational Attention Systems

The increased interest on research on visual attention together with the in-
creased power of computers and the resulting ability to realize complex com-
puter vision systems has led to a wide variety of computational systems on
visual attention. In this chapter, we will review the most influential work
in this field. We already considered models of visual attention in the previ-
ous chapter. Although several of them are also implemented computationally,
their focus is on the psychological aspect of visual attention more than on the
technical aspect: the models of the previous chapter try to explain and bet-
ter understand human perception whereas the systems in this chapter usually
have the aim to improve vision systems for applications in computer vision
and robotics. Of course, there is an overlap of the objectives and there are
psychological models that might be useful in computational applications and
technical systems well suited to explain psychophysical data.

In this chapter, we will first introduce several of the most important
computational systems on visual attention (section 3.1). Then, we discuss
several characteristics that distinguish the different approaches, for exam-
ple which features are implemented or whether top-down cues are considered
(section 3.2). Next, we present several applications of attentional systems in
computer vision and robotics in section 3.3 and finally we conclude and discuss
the limitations of current approaches (section 3.4).

3.1 Computational Models of Visual Attention

In this section, we will introduce some of the most important computational
attention systems, especially those with the highest impact on our work. We
start be introducing the model of Koch & Ullman, which laid the theoretical
basis for many current attention systems [Koch and Ullman, 1985]. Next, we
describe the system of Milanese, since it was one of the first implementations
of an attention model and introduced several useful mechanisms that were
later adopted by other approaches [Milanese, 1993]. Then, one of the currently
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Fig. 3.1. The Koch-Ullman model. Different features are computed in parallel and
their conspicuities are represented in several feature maps. A central saliency map
combines the saliencies of the features and a winner take all network (WTA) deter-
mines the most salient location. This region is routed to the central representation
where complex processing takes place (Fig. reprinted with permission from [Koch
and Ullman, 1985]. (©1985 Springer)

best-known attention systems is presented: the Neuromorphic Vision Toolkit
(NVT) of Ttti et al. [Itti et al., 1998]. It will be described in some detail since
it had the greatest impact on our work. Worth mentioning in this context is a
derivative of the NVT that includes top-down information on target objects
[Navalpakkam et al., 2005]. Another system that is able to cope with top-
down information is the one of Hamker [Hamker, 2005]. After describing these
attention systems explicitely, we mention in section 3.1.5 several additional
approaches that emphasize other important aspects and are worth mentioning.

3.1.1 Koch & Ullman

The first approach for a computational architecture of visual attention was
introduced by Koch and Ullman [Koch and Ullman, 1985] (see Fig. 3.1). When
it was first published, the model was not yet implemented, but it provided the
algorithmic reasoning serving as a foundation for later implementations and
for many current computational models of visual attention. The idea is that
several features are computed in parallel and their conspicuities are collected
in a saliency map. A Winner-Take-All network (WTA) determines the most
salient region in this map, which is finally routed to a central representation.
Here, complex processing takes place restricted to the region of interest.

The model is based on the Feature Integration Theory by Treisman [Treis-
man and Gelade, 1980] (cf. chapter 2.3.1): the idea of feature maps that rep-
resent in parallel different features as well as the idea of a central map of
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attention — Treisman’s master map of location — are adopted. The saliency
computations are also influenced by rules called prozimity and similarity pref-
erences, which favor regions that are close or similar to the last focused region.
However, newer findings claim that distance has no effect on attentional shifts,
that means there is no proximity effect [Remington and Pierce, 1984, Krose
and Julesz, 1989].

An important contribution of Koch and Ullman’s work is the WTA net-
work — a neural network that determines the most salient region in a to-
pographical map — and a detailed description of its implementation. It may
be noted that the WTA network shows how the selection of a maximum is
implementable by neural networks, that means by single units which are only
locally connected. This approach is strongly biological motivated and shows
how such a mechanism might be realized in the human brain. However, for a
technical system a WTA is certainly an overhead since there are much eas-
ier ways to compute a maximum from a saliency map. Nevertheless, many
computational attention systems take over the idea of a WTA.

After selecting the most salient region by the WTA, this region is routed
into a central representation which at any instant contains only the properties
of a single location in the visual scene. Due to this routing, the approach is also
referred to as selective routing model. How the routing is performed and what
happens with the information in the central representation is not mentioned;
the idea is that more complex vision tasks are restricted to the selected infor-
mation. Finally, the authors suggest a mechanism for inhibiting the selected
region causing an automatic shift towards the next most conspicuous location
(inhibition of return (IOR)).

The idea of a central representation in this form is hardly plausible from a
biologically point of view: simple and complex processing of visual information
in the brain is thought to be more intertwined than suggested by this model.
But from a computational point of view the method is suggestive since it
enables a modular assembling of different systems: an attentional system for
the detection of regions of interest and a recognition system for the detailed
investigation of these regions.

The proposed architecture is merely bottom-up; it is not discussed how
top-down influences from higher brain areas may contribute to the selection
of salient regions.

3.1.2 Milanese

One of the earliest implementations of a visual attention system was intro-
duced by Milanese [Milanese, 1993, Milanese et al., 1994]. It is based on the
Koch-Ullman model [Koch and Ullman, 1985] and uses filter operations for
the computation of the feature maps. Hence, it is one of the first in the group
of filter-based models. These models are especially well-suited to be applied
to real-world scenes since the filter operations — used frequently in computer
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vision — provide useful tools for the efficient detection of scene properties like
contrasts or oriented edges.

The idea of the feature maps and the saliency map was taken over from the
Koch-Ullman model. As features, Milanese considers two color opponencies —
red-green and blue-yellow —, 16 different orientations, local curvature and,
if no color information is available, intensity. To compute the feature-specific
saliency, he proposes a conspicuity operator which compares the local values
of the feature maps to their surround. This operator is motivated from the on-
off and off-on cells in the cortex and is also a common technique for detecting
contrasts in images; it is usually referred to as center-surround mechanism
or center-surround difference. The resulting contrasts were collected in so
called conspicuity maps, a term that was since then frequently used to denote
feature-dependent saliency.

The conspicuity maps are integrated into the saliency map by a relaxation
process that identifies a small number of convex regions of interest. The output
of the system is the saliency map that shows a few regions of interest. A
process determining the order in which to select regions from this map is not
mentioned. A drawback of the system is its high computational complexity
that results from the many filter operations on different scales and by the
relaxation process which, as per Milanese, usually requires about a dozen
iterations. Although this drawback is nowadays no longer as significant as
when the system was developed, the approach is still too computationally
demanding for real-world applications.

In a derivative [Milanese et al., 1994], Milanese includes top-down infor-
mation from an object recognition system realized by distributed associative
memories (DAMs). The idea is that object recognition is applied to a small
number of regions of interest that are provided by the bottom-up attention
system. The results of the object recognition are displayed in a top-down
map which highlights the regions of recognized objects. This map competes
with the conspicuity maps for saliency resulting in a saliency map combining
bottom-up and top-down cues. The effect is that known objects appear more
salient than unknown ones. It may be doubted if this is consistent with hu-
man vision, on the contrary, humans tend to pay more attention to unknown
objects [Wang et al., 1994]. Nevertheless, for a technical system this might
be an interesting approach, the more so as it is possible to provide the DAM
only with a single object and thus highlight this object in a scene. This would
correspond to visual search. Not mentioned is if there is an advantage of this
system over pure object recognition.

Note that the top-down information only influences the conspicuity maps
(feature dimensions) and not the feature maps (feature types). Therefore, it
is not possible to strengthen properties like “red” or “vertical”. Furthermore,
the system depends strongly on the object recognition system. It is not able
to learn the features of an object independently. Nevertheless, the system pro-
vides an interesting approach and has set benchmarks for several techniques
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which are used in computational attention models until today. Unfortunately,
this promising system was not further developed since 1994.

3.1.3 Itti et al.

One of the currently best known attention systems is the Neuromorphic Vision
Toolkit (NVT), a derivative of the Koch-Ullman model [Koch and Ullman,
1985], that is steadily kept up to date by the group around Laurent Itti [Itti
et al., 1998 Itti and Koch, 2001a,Miau et al., 2001,Itti and Koch, 2001b,Naval-
pakkam et al., 2005]. Their model as well as their implementation serve as a
basis for many research groups; one reason for this is the good documentation
and the availability of the source code for download, allowing other researchers
to experiment and further develop the system [URL, 05].

Fig. 3.2 shows the basic structure of the model. The ideas of the feature
maps, the saliency map, the WTA and the IOR were adopted from the Koch-
Ullman Model, the approaches of using linear filters for the computation of
the features, of determining contrasts by center-surround differences and the
idea of the conspicuity maps were probably adopted from Milanese [Milanese,
1993]. The main contributions of this work are detailed elaborations on the
realization of theoretical concepts, a concrete implementation of the system
and the application to artificial and real-world scenes. The authors describe in
detail how the feature maps for intensity, orientation, and color are computed:
all computations are performed on image pyramids, Image pyramid a common
technique in computer vision that enables the detection of features on different
scales. Additionally, they propose a weighting function for the weighted com-
bination of the different feature maps by promoting maps with few peaks and
suppressing those with many ones. This technique is computationally much
faster than the relaxation process of Milanese and yields good results. Since
the suggested weighting function still suffered from several drawbacks, they
introduced an improved procedure in [Itti and Koch, 2001b].

The system contains several details that were chosen for efficiency reasons
or because they represent a straight-forward solution to complex requirements.
This approach may lead to some problems and inaccurate results in several
cases. For example, the center-surround mechanism is realized by the subtrac-
tion of different scales of the image pyramid, a method that is fast but not
very precise (cf. page 61). Then, the conspicuity of the feature intensity is col-
lected in a single intensity map, although neuro-biological findings show that
there are cells both for on-off and for off-on contrasts [Palmer, 1999] and psy-
chological work suggests considering separate detectors for darker and lighter
contrasts [Treisman, 1993]. This simplification leads to some non-plausible re-
sults in certain pop-out experiments and in the top-down guidance of attention
(cf. page 60). The same is true for the computation of the color-opponency
maps: one red-green and one blue-yellow map are computed instead consider-
ing red-green as well as green-red and blue-yellow as well as yellow-blue con-
trasts separately. Furthermore, the chosen color space RGB represents colors
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Fig. 3.2. Model of the Neuromorphic Vision Toolkit (NVT) by Itti et al. From
an input image, three features are computed: color, intensity, and orientation. For
each feature, an image pyramid is built to enable computations on different scales.
Center-surround mechanisms determine the conspicuities concerning the features
which are collected in a central saliency map. A winner take all network determines
the most salient location in this map which yields the focus of attention. Inhibition
of return inhibits this region in the saliency map and enables the computation of
the next focus (Fig. reprinted with permission from [Itti et al., 1998]. ©1998 IEEE)

differently to human perception, which seems not appropriate for a system
simulating human behavior and leads to implausible results, too. Although
these are details, considering them in the implementation results in signifi-
cant improvements in performance as will be shown in this work.

Some of these drawbacks were already pointed out by Draper and Li-
onelle [Draper and Lionelle, 2003] who showed that the NVT lacks robustness
according to 2D similarity transformations like translations, rotations, and
reflections. They point out that these drawbacks result from weaknesses in
implementation rather than from the design of the model itself. To overcome
these drawbacks, they introduced an improved version of the system, SAFE,
which shows several differences and is more stable with respect to geometric
transformations. It may be noted, that although these invariances are impor-
tant for an object recognition system — the task Draper has in mind — they
are not obviously required and maybe not even wanted for a system that aims
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at simulating human perception since usually human eye movements are not
invariant to these transformations, too. Nevertheless, it should be guaranteed
that the computations are as correct as possible and that variances result
only from the model and not from its implementation. On the other hand, if
it is desired to achieve fast computations, time needs to be traded off against
precision.

To evaluate the quality of the NVT, a comparison with human behavior
was performed in [Parkhurst et al., 2002]. The authors compared how the
saliency computed by the system matched with human fixations on the same
scenes and found a significant coherence which was highest for the initial
fixation. They also found that the coherence was dependent on the kind of
scene: for fractals it was higher than for natural scenes. This was explained
by the influence of top-down cues in the human processing of natural scenes,
an aspect left out in the NVT.

Miau at al. investigated the combination of the NVT with object recog-
nition, considering in [Miau and Itti, 2001, Miau et al., 2001] the simple bi-
ologically plausible recognition system HMAX and in [Miau et al., 2001] the
recognition with support vector machines. Walther et al. continued these in-
vestigations, starting in [Walther et al., 2002] also with a combination with
the HMAX model. In a current approach [Walther et al., 2004], they combine
the system with the well-known recognition approach of Lowe [Lowe, 2004]
and show how the detection results are improved by concentrating on regions
of interest.

A test platform for the attention system — the robot platform Beobot —
was presented in [Chung et al., 2002,Itti, 2002,Itti, 2003]. In [Itti, 2002], it was
shown how the processing can be distributed among different CPUs enabling
a fast, parallel computation.

Navalpakkam

The NVT in its basic version does concentrate on computing bottom-up at-
tention. The need for top-down influences is mentioned but not realized. In a
recent approach, Navalpakkam and Itti introduce a derivative of their bottom-
up model which is able to deal with top-down cues [Navalpakkam et al., 2005].
The idea is to learn feature values of a target from a training image in which
the target is indicated by a binary mask. Considering the target region as
well as a region in the close surrounding — considering 9 locations from a
3 x 3 grid of fixed size centered at the salient location — the system learns the
feature values from the different feature maps on different scales. This yields
a 42 component feature vector (red/green, blue/yellow, intensity, and 4 orien-
tations, each on 6 scales). However, it may be doubted if it is useful to learn
the scale of a target since during visual search the target should be detected
on different scales. During object detection, this feature vector is used to bias
the feature maps by multiplying each map with the corresponding weight.
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Thereby, exciting and inhibiting as well as bottom-up and top-down cues are
mixed and directly fused into the resulting saliency map.

One difficulty with this approach is that it is not clear how bottom-up
and top-down cues compete. Desirable for a technical system would be the
possibility to adapt the strength of the respective influence according to the
state of the system, similar to the approach of Milanese, that means a high or
even exclusive concentration to the target’s features in one case (task-oriented
system state) and a higher influence of diverting bottom-up cues in another
case (curious, explorative system state). Additionally, since there is evidence
that two distinct brain areas are associated with bottom-up and top-down
mechanisms in human perception [Corbetta and Shulman, 2002] (cf. chap-
ter 2), it might be useful to separate the processing also in a computational
system.

Unfortunately, a detailed analysis of the quality of the detection has not
yet been published. Instead, the results in [Navalpakkam et al., 2005] concen-
trate on showing that the system detects a target faster when operating in
top-down mode than the original bottom-up system. Also of interest would be
investigations on how many fixations are needed in average in different visual
search tasks and on the robustness of the system concerning changes in view-
point and illumination. In chapter 5.4.5, we compare our attention system
VOCUS in detail with the NVT, pointing out the differences of the models
and showing results of comparative experiments.

So far, we have commented only on the aspects of Navalpakkam’s approach
that regard the main contributions of this monograph and therefore are of
most interest here. However, it shall be mentioned that the system has several
further aspects, only partially realized at the moment, which are interesting
and promising. For example, the knowledge base in which the objects are
stored is organized as a graph with entities as vertices and their relationships
as edges. An object may be related to another for example by being similar
or by being a part of the other object. This information might help in visual
search: for example if a hand shall be found and a finger is detected, the
knowledge that a finger is a part of a hand implies that the hand has been
found.

Another interesting aspect is the idea of extending the model by additional
information on the scene by computing the gist and the layout of the scene ac-
cording to the psychological triadic architecture presented in [Rensink, 2002].
This is not yet realized but is, as per [Navalpakkam et al., 2005], subject for
future work.

3.1.4 Hamker

The attention system of Hamker aims mainly at modeling the visual atten-
tion mechanism of the human brain [Hamker, 1998, Hamker, 2000, Hamker,
2005]. Its objective is more on explaining human visual perception and gain-
ing insight into its functioning than on providing a technical system. Nev-
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ertheless, this approach is discussed here and not in the previous chapter
since it is based on current computer models [Koch and Ullman, 1985, Itti
et al., 1998] and since it is often presented in the computer vision community.
Hamker’s model, shown in Fig. 3.3, shares several aspects with the architecture
of Itti: he computes contrasts for several features — intensity, orientation, red-
green, blue-yellow and additionally spatial resolution — and combines them
in feature-conspicuity maps. The conspicuities of these maps are combined in
a perceptual map that corresponds to the common saliency map. In earlier
approaches, Hamker negates the existence of a saliency map in the human
brain. But since new findings in neuro-science claim that there is a region in
the brain fulfilling the function of collecting salient cues [Mazer and Gallant,
2003], he adopted his system accordingly [Hamker, 2004, Hamker, 2005].

In addition to this bottom-up behavior, the system belongs to the few ex-
isting ones that consider top-down influences. It is able to learn a target, that
means it remembers the feature values of a presented stimulus. This stimulus
is usually presented on a black background; hence, the system concentrates
on the target’s features but is not able to consider the background of the
scene. This means a waste of important information since it is not possible
to favor features that distinguish a target well from its background. When
searching for a red, vertical bar among red, horizontal ones, the color red is
not relevant; in this case, it would be useful to concentrate on orientation. To
achieve a stable and robust system behavior, it would be necessary to learn
the features of a target from several training images.

After determining the target’s features, they are memorized in a working
memory. From here, they influence the conspicuity of the features in a pre-
sented test scene and thus merge the conspicuities of bottom-up and top-down
cues. It may be noted that the target information influences the processing
of the conspicuity maps, but not the earlier processing of the feature maps.
Bottom-up and top-down cues together determine the saliency in the percep-
tual map. A problem with this approach might be that it is not clear how
bottom-up and top-down cues compete. As for the NVT, it might be useful
to introduce a factor as the one by Milanese that allows the adaption of the
influence of bottom-up and top-down cues.

Hamker distinguishes between covert and overt shifts of attention, the lat-
ter corresponding to eye movements. The covert focus of attention is directed
to the most salient region in the perceptual map. Whether this region is also
a candidate for an eye movement is determined by so called match detection
units that compare the encoded pattern with the target template. If these
patterns are similar, an eye movement is initiated towards this region and the
target is said to be detected. The match detection units are an interesting ap-
proach in this system. However, it may be noted that this is a very rough kind
of object recognition which is only based on a few simple features and does
not consider spatial configuration of features. It also recognizes only patterns
that are presented with the same orientation as during learning. Therefore,
although at the moment this kind of recognition seems to be not sufficient in
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Fig. 3.3. The attention system of Hamker. From the input image, several feature
and contrast maps are computed and fused into feature-conspicuity maps and finally
into the perceptual map. Additionally, target information influences the processing.
Match detection units determine whether a salient region in the perceptual map is
a candidate for an eye movement. See text for details (Fig. reprinted from [Hamker,
2005], (©2005, with permission from Elsevier)

detection and false detection rates for a technical system, it is nevertheless an
interesting approach and seems to be a step into the right direction.

3.1.5 Additional Attention Systems

Beside the mentioned attention models, there is a wide variety of models in
the literature. Many differ only in minor changes from the already described
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Fig. 3.4. The attentional shifts performed by the system of Sun and Fisher. First,
the house and then the boat are focused on a coarse resolution (left, blue arrows).
Second, the boat region is zoomed in and is investigated in more detail, resulting
in fixations on the people (red arrows) (Fig. reprinted from [Sun and Fisher, 2003],
(©2003, with permission from Elsevier)

approaches, for example, they consider additional features. Here, we mention
some of the more important approaches in the field.

Sun and Fisher present in [Sun and Fisher, 2003] a sophisticated approach
to hierarchical object-based selection of regions of interest. Regions of interest
are computed on different scales, first on a coarse scale and then, if the region
is sufficiently interesting, it is investigated on a finer scale. This yields foci
of attention of different extents, for example in a landscape image showing
a lake, a boat is focused on a coarse scale, then the boat region is further
investigated on a finer scale and the people in the boat are focused one after
the other (see Fig. 3.4).

Backer presents an interesting model of attention with two selection stages
[Backer, 2004, Backer et al., 2001]. The first stage resembles standard archi-
tectures like [Koch and Ullman, 1985], but the result is not a single focus but
a small number, usually 4, of salient locations. In the second selection stage,
one of these locations is selected and yields a single focus of attention. The
model explains some of the more unregarded experimental data on multiple
object tracking and object-based inhibition of return.

The attention model of Ouerhani et al. is implemented on a highly parallel
architecture that allows to meet real-time requirements [Ouerhani, 2003, Ouer-
hani and Hugli, 2003c]. They have also integrated the rarely considered fea-
tures depth and motion into their system [Ouerhani and Hiigli, 2000, Ouerhani
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Fig. 3.5. The inhibitory attentional beam of Tsotsos et al. The selection process
requires two traversals of the pyramid: first, the input traverses the pyramid in a
feedforward manner. Second, the hierarchy of WTA processes is activated in a top-
down manner to localize the strongest item in each layer while pruning parts of the
pyramid that do not contribute to the most salient item (Fig. kindly provided by
J. Tsotsos)

and Hiigli, 2003b]. Another model which integrates these features is presented
by the group of Eklundh [Maki et al., 1996, Maki et al., 2000].

Beside the mentioned models that are based on feature computations with
linear filters, there is another important class of attention models: the con-
nectionist models. These models process the input data mainly with neural
networks. Usually, these models claim to be more biologically plausible than
the filter models. Since this approach differs strongly from the approach pre-
sented in this thesis, these models will be mentioned only briefly here.

One of the most famous models in the field of connectionist models is the
selective tuning model of visual attention by Tsotsos et al. [Tsotsos, 1990, Tsot-
sos, 1993, Tsotsos et al., 1995, Tsotsos et al., 2005]. It consists of a pyramidal
architecture with an inhibitory beam (see Fig. 3.5). This beam is rooted at
the selected item at the top of the hierarchy and has a pass zone and an
inhibit zone. The pass zone is the pathway that is selected for further pro-
cessing; in the inhibit zone, all locations are inhibited that do not belong to
the selected item. It is also possible to include target-specific top-down cues
into the processing. This is done by either inhibiting all regions with features
different from the target features or regions of a specified location. Additional
excitation of target features as proposed by [Navalpakkam et al., 2004] is not
considered. The model has been implemented for several features, for example
luminance, orientation, or color opponency [Tsotsos et al., 1995], and currently
in a sophisticated approach also for motion, considering even the direction of
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movements [Tsotsos et al., 2005]. Note that in each version only one feature
dimension is processed; the binding of several feature dimensions has not yet
been considered but is, as per Tsotsos, subject for future work.

An unusual adaptation of Tsotsos’s model is provided in [Ramstrém and
Christensen, 2002]: the distributed control of the attention system is per-
formed by game theory concepts. The nodes of the pyramid are subject to
trading on a market, the features are the goods, rare goods are expensive (the
features are salient), and the outcome of the trading represents the saliency.

Another model based on neural networks is the FeatureGate Model de-
scribed in [Cave, 1999]. Beside bottom-up cues it also considers top-down
cues by comparing pixel values with the values of a target object; but since
the operations only work on single pixels and so are highly sensitive to noise,
it seems to be not applicable to real-world scenes.

3.2 Characteristics of Attention Systems

After introducing some of the most influential computational attention sys-
tems, we summarize in this section several characteristics of attention systems
that distinguish the respective approaches. We start by distinguishing the ob-
jectives of the systems concerning psychological or technical issues and con-
tinue by discussing which features are computed in the different approaches.
Next, we distinguish connectionist and filter models and finally, we examine
what kinds of top-down influences exist and how they are realized in several
computational attention systems.

3.2.1 Objective

Computational attention systems might be categorized by their objective. As
already mentioned, the systems may be firstly designed to simulate and under-
stand human perception or, secondly, to technically improve vision systems.
Although systems of both classes may be very similar, this distinction usu-
ally has a high impact on the visibility of the systems: whereas the first class
of systems is usually well known by the psychological and cognitive science
community, the latter class is more familiar in areas like computer vision and
robotics. Since each side may highly profit from the knowledge of the other,
a better interchange between communities would be desirable.

3.2.2 The Choice of Features

Many computational attention systems focus on the computation of mainly
three features: intensity, orientation, and color [Itti et al., 1998, Draper and Li-
onelle, 2003,Sun and Fisher, 2003, Ramstrom and Christensen, 2004]. Reasons
for this choice are that these features belong to the basic features proposed in
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psychological and biological work [Treisman, 1993, Wolfe, 1994, Palmer, 1999
and that they are relatively easy to compute. A special case of color compu-
tation is the separate computation of skin color [Rae, 2000, Heidemann et al.,
2004, Lee et al., 2003]. This is often useful if faces or hand gestures have to be
detected. Other features that are considered are for example curvature [Mi-
lanese, 1993], spatial resolution [Hamker, 2005], optical flow [Tsotsos et al.,
1995, Vijayakumar et al., 2001], or corners [Ouerhani and Hiigli, 2004, Fraun-
dorfer and Bischof, 2003, Heidemann et al., 2004]. Several systems compute
also higher level features that use approved techniques of computer vision to
extract useful image information. Examples for such features are entropy [Hei-
demann et al., 2004], ellipses [Lee et al., 2003], eccentricity [Backer et al., 2001],
or symmetry [Backer et al., 2001, Heidemann et al., 2004, Lee et al., 2003].

Motion is definitively an important feature in human perception (there
is a large brain area (MT) mainly concerned with processing motion!). Nev-
ertheless, it is rarely considered in computational models, probably because
of the difficulties arising when dealing with dynamics. Some approaches that
consider motion as a feature are [Backer and Mertsching, 2000, Maki et al.,
2000,0uerhani and Hiigli, 2003b,Itti, 2002, Rae, 2000]. All of these approaches
only implement a very simple kind of motion detection: usually, two subse-
quent images in a video stream are subtracted and the difference codes the
feature conspicuity. The most sophisticated approach concerning motion was
recently proposed in [Tsotsos et al., 2005]. This approach is highly biologically
motivated, it considers the direction of movements, and processes motion on
several levels similar to the processing in the brain regions V1, MT, and MST.

Another important aspect in human perception that is rarely considered
is depth. In the literature it is not clear whether depth is simply a feature
or something else; definitely, it has some unusual properties distinguishing it
from other features: if one of the dimensions in a conjunctive search is depth,
a second feature can be searched in parallel [Nakayama and Silverman, 1986],
a property that does not exist for the other features. Computing depth for an
attention system is usually solved with stereo vision [Backer and Mertsching,
2000,Maki et al., 2000]. The data obtained from stereo vision has the drawback
that it is usually not very accurate and contains large regions without depth
information. Another approach is to use special 3D sensors, as for example
the lately appearing 3D cameras [Ouerhani and Hiigli, 2000].

Finally, it may be noted that considering more features usually results
in more accurate and biologically plausible detection results but also reduces
the speed since the parallel architectures are usually implemented sequentially.
Furthermore, the concept of the models is the same regardless of the number
of features, therefore, most effects can already be shown with a small number
of features.
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3.2.3 Connectionist Versus Filter Models

As mentioned before, there is a distinction between connectionist models that
are based on neural networks and filter models that use classical linear fil-
ters to compute features. Usually, the connectionist models claim to be more
biologically plausible than the filter models since they have single units cor-
responding to neurons in the human brain, but it has to be noted that they
are still a high abstraction from the processes in the brain. Usually, a single
neuron is more complex than a complete computational system. Furthermore,
also filter models may be strongly biologically motivated, as the system of
Hamker shows [Hamker, 2005].

However, the advantage of connectionist models is that they are — at least
theoretically — able to show a different behavior for each neuron whereas
in filter models usually each pixel in a map is treated equally. In practice,
treating each unit differently is usually too costly and so a group of units shows
the same behavior. The advantage of filter models is that they may profit
from approved techniques in computer vision and that they are especially
well suited for the application to real-world images.

Examples of connectionist systems of visual attention are presented for
instance in [Olshausen et al., 1993, Postma, 1994, Tsotsos et al., 1995, Baluja
and Pomerleau, 1995, Cave, 1999]. As mentioned in chapter 2, many psy-
chophysical models fall into this category, too, for example [Mozer, 1987, Phaf
et al., 1990, Humphreys and Miiller, 1993, Heinke et al., 2002]. Examples of
linear filter systems of visual attention are presented for instance in [Milanese,
1993, Itti et al., 1998, Rae, 2000, Backer et al., 2001, Ouerhani, 2003, Sun and
Fisher, 2003, Heidemann et al., 2004, Hamker, 2005].

3.2.4 Top-Down Cues

The distinction of bottom-up and top-down cues and their significance in hu-
man perception was already outlined in section 2.1.3. For a technical attention
system, top-down cues are equally important: most systems are not only de-
signed to detect bottom-up salient regions but there are goals to achieve and
targets to detect. Although the importance of top-down cues is well known
and even mentioned in many articles, most systems consider only bottom-up
computations.

Before we discuss which systems consider top-down information, we will
first distinguish between different kinds of top-down influences. Top-down
information includes all kinds of information that exist at one moment in
time concerning the mental state of the subject (or the inner state of the
system) and knowledge of the outer world. This includes aspects like prior
knowledge of the target, pre-knowledge of the scene or of the objects that
might occur in the environment, but also emotions, desires, intentions, and
motivations. The latter four aspects are hard to conceptualize and are not
realized in any computer system we know about. The interaction of attention,
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emotions, motivations, and goals is discussed in [Balkenius, 2000, Balkenius,
2002], but in his computer simulation these aspects are not considered.

Top-down information that refers to knowledge of the outer world, that
means of the background scene or of the objects that might occur, is considered
in several systems. In these approaches, for example all objects of a data
base that might occur in a scene are investigated in advance and their most
discriminative regions are determined, i.e., the regions that distinguish an
object best from all others in the data base [Fritz et al., 2004, Pessoa and
Exel, 1999]. Another approach is to regard context information, that means
searching for a person in a street scene is restricted to the street region and
the sky region is ignored. The contextual information is obtained from past
search experiences in similar environments [Oliva et al., 2003, Torralba, 2003].

The kind of top-down information that will be most relevant in this thesis
is the prior knowledge of a target that is used to perform visual search. Systems
regarding this kind of top-down information use knowledge of the target to
influence the computation of the most salient region. This knowledge is usually
learned in a preceding training phase but might in simpler approaches also be
provided manually by the user.

In the existing systems, the target information influences the processing at
different stages: some systems already influence the feature types (usually the
feature maps) [Navalpakkam et al., 2005, Tsotsos et al., 1995], some systems in-
fluence the feature dimensions (usually the conspicuity maps) [Milanese et al.,
1994, Hamker, 2005], and some influence the processing not before the compu-
tation of the saliency map [Rao et al., 2002, Lee et al., 2003, Navalpakkam and
Ttti, 2002]. The latter approach is a very simple one: the bottom-up saliency
map is computed and the most salient regions are investigated for target sim-
ilarity. It can be hardly called top-down influence of processing at all. Only
targets that are most salient in a scene can be found with this approach.
More elaborated is the tuning of the conspicuity maps, but biologically most
plausible and also technically most useful is the approach to already bias the
feature types as for example red or horizontal.

There are also different methods for influencing the maps with the target
information. Some approaches inhibit the target-irrelevant regions [Tsotsos
et al., 1995], whereas others prefer exciting target-relevant regions [Hamker,
2005, Navalpakkam and Itti, 2003]. New findings suggest that inhibition and
excitation both play an important rule [Navalpakkam et al., 2004]; this is
implemented in [Navalpakkam et al., 2005].

The processing of target-relevant top-down cues in computational atten-
tion systems is not yet well investigated. Even the systems that consider top-
down cues are seldomly tested on natural scenes or only on hand-picked exam-
ples [Hamker, 2005]. The currently best tested system also including natural
scenes is presented in [Navalpakkam et al., 2005]. Unfortunately, the qual-
ity of the detection results has not yet been published; the mentioned paper
focuses on comparing the top-down approach with the previous bottom-up
system (merely the improvement factor is indicated not the absolute detec-
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tion results). Currently, there exists no complete, robust, and well investigated
system of top-down visual attention which analyzes the influence of top-down
cues systematically for different targets, with changing viewpoints, on different
backgrounds, and under changing illumination conditions.

3.3 Applications in Computer Vision and Robotics

While psychological models of visual attention usually aim at describing and
better understanding human perception, computational attention systems
usually intend to improve technical systems. In this section, we discuss sev-
eral application scenarios in the field of computer vision and robotics and
introduce the approaches that currently exist in this field.

3.3.1 Object Recognition

Probably the most suggesting application of an attention system is object
recognition since the two-stage approach of a preprocessing attention system
and a classifying recognizer is adapted to human perception [Neisser, 1967]. It
is worth mentioning that object recognition may be a subtask of more complex
applications like object manipulation in robotics, which will be described later.

One example of a combination of an attentional front-end with a classifying
object recognizer is shown in [Miau and Itti, 2001, Miau et al., 2001]. The rec-
ognizer is the biologically motivated system HMAX [Riesenhuber and Poggio,
1999]. Since this system focuses on simulating processes in human cortex, it is
rather restricted in its capabilities and it is only possible to recognize simple
artificial objects like circles or rectangles. In [Miau et al., 2001], the authors
replace the HMAX system by a support vector machine algorithm to detect
pedestrians in natural images. This approach is much more powerful with re-
spect to the recognition rate but still computationally very expensive and lacks
real-time abilities. Walther and colleagues combine in [Walther et al., 2004]
an attention system with an object recognizer based on SIFT features [Lowe,
2004] and show that the recognition results are improved by the attentional
front-end. In [Salah et al., 2002] an attention system is combined with neural
networks and an observable Markov model to do handwritten digit recogni-
tion and face recognition. In [Ouerhani, 2003], an attention-based traffic sign
recognition system is presented.

All of these systems rely only on bottom-up information and therefore
on the assumption that the objects of interest are sufficiently salient by
themselves. Non-salient objects are not detected and so they are missed. For
some object classes like traffic signs which are intentionally designed salient,
this works quite well; for other applications, top-down information would be
needed to enable the system to focus on the desired objects.

It may also be mentioned that when combining object recognition with
attention, the advantage over pure classification is usually the time saving
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and not the quality improvement: most classifiers show no improvement if
restricted to a region of interest (an exception is the work of Walther et
al. [Walther et al., 2004] since the Lowe detector improves if restricted to a
region of interest). Since most attention systems are still rather slow and the
recognition systems not powerful enough to deal with a wide variety of ob-
jects, the advantage of such a combination of attention and classification does
usually not yet show of to its best. Currently, there is no existing approach
that exhibits a time saving resulting from the combination of attention and
classification. However, in future, with more powerful recognition systems and
more complex requirements concerning vision systems, an attentional front-
end is a promising approach.

A different view on attention for object recognition is presented in [Fritz
et al., 2004]: an information-theoretic saliency measure is used to determine
discriminative regions of interest in objects. The saliency measure is computed
by the conditional entropy of estimated posteriors of the local appearance
patterns. That means, regions of an object are considered as salient if they
discriminate the object well from other objects in an object data base. A
similar approach is presented in [Pessoa and Exel, 1999].

3.3.2 Image Compression

A new and interesting application scenario is presented in [Ouerhani et al.,
2001]: focused image compression. Here, a color image compression method
adaptively determines the number of bits to be allocated for coding image
regions according to their saliency. Regions with high saliency have a higher
reconstruction quality with respect to the rest of the image.

3.3.3 Image Matching

Image matching is the task to redetect a scene, or part of a scene, in a newly
presented image. This is often done by matching relevant key points. An
approach that uses foci of attention computed by a saliency operator for image
matching is presented in [Fraundorfer and Bischof, 2003].

3.3.4 Image Segmentation

The automatic segmentation of images into regions usually deals with two
major problems: first, setting the starting points for segmentation (seeds) and
second, choosing the similarity criterion to segment regions (cf. appendix A.3).
Ouerhani et al. present an approach that supports both aspects by visual
attention [Ouerhani et al., 2002, Ouerhani and Hiigli, 2003a]: the saliency
spots of the attention system serve as natural candidates for the seeds and the
homogeneity criterion is adapted according to the features that discriminate
the region to be segmented from its surroundings.
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3.3.5 Object Tracking

Tracking objects in dynamic environments is important in applications such
as video surveillance or robotics. In [Ouerhani and Hiigli, 2003b], the authors
present an approach in which the salient spots are tracked over time; however,
the tracking is only done by feature matching instead of using a proper track-
ing method as for example Kalman filters. In [Ouerhani and Hiigli, 2004] the
authors suggest to use this approach for robot localization. The localization
itself has not yet been done.

3.3.6 Active Vision

Active vision represents the technical equivalent for overt attention by direct-
ing a camera to interesting scene regions and/or zooming these regions. The
goal is to acquire data that is as suitable as possible to the current task and
to reduce the processing complexity by actively guiding the sensors (usually
the camera) to reasonable regions [Aloimonos et al., 1988]. In several cases,
active vision is a subtask for applications like human-robot interaction and
object manipulation, which will be discussed in the next sections.

In [Mertsching et al., 1999, Bollmann, 1999], the active vision system
NAVIS is presented that uses an attention system to guide the gaze. It is
evaluated on a fixed stereo camera head as well as on a mobile robot with a
monocular camera head. In [Vijayakumar et al., 2001] an attention system is
used to guide the gaze of a humanoid robot. The authors consider only one
feature, visual flow, which enables the system to attend to moving objects.
To simulate the different resolutions of the human eye, two cameras per eye
are used: one wide-angle camera for peripheral vision and one narrow-angle
camera for foveal vision. Other approaches which use attention systems to
direct the gaze of an active vision system are described in [Clark and Ferrier,
1989] and [Driscoll et al., 1998].

3.3.7 Human-Robot Interaction

If robots shall interact with humans, it is important that both agree on a
current object or region of interest. A computational attention system similar
to the human one can help to focus on the same region. Breazeal introduces
a robot that shall look at people or toys [Breazeal, 1999]. Although top-down
information would be necessary to focus on an object relevant for a certain
task, bottom-up information can be useful too if it is combined with other
cues. For example, Heidemann et al. combine an attention system with a
system that follows the direction of a pointing finger and so can adjust to the
region that is pointed at [Heidemann et al., 2004]. In [Rae, 2000] this approach
is used to guide a robot arm to an object and grasp it.
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3.3.8 Object Manipulation in Robotics

A robot that has to grasp and manipulate objects first has to detect and
possibly also to recognize the object. Attentional mechanisms can be used to
support these tasks. For example, Tsotsos et al. present a robot for disabled
children that detects toys by the help of attention, moves to a toy and grasps
it [Tsotsos et al., 1998]. In another approach, Bollmann et al. present a robot
that uses the active vision system NAVIS to play at dominoes [Bollmann
et al., 1999]. The above mentioned approach of Rae in which a robot arm has
to grasp an object a human has pointed at, falls also into this category [Rae,
2000].

3.3.9 Robot Navigation

In [Scheier and Egner, 1997] a mobile robot is presented that uses an attention
system for navigation. The task was to approach large objects. Since larger
objects have a higher saliency, only the regions with the highest saliency have
to be approached. The task gives the impression to be rather artificially made
up.

In [Baluja and Pomerleau, 1995, Baluja and Pomerleau, 1997], an attention
system is used to support autonomous road following by highlighting relevant
regions in a saliency map. These are obtained by computing the expectation
of the contents of the inputs at the next time step.

3.3.10 Robot Localization

Another application scenario of an attention system in robotics is the de-
tection of landmarks for localization. Especially in outdoor environments and
open areas, the standard methods for localization like matching 2D laser range
and sonar scans are likely to fail. Instead, localization by detection of visual
landmarks with a known position can be used. Attentional mechanisms can
facilitate the search of landmarks during operation by selecting interesting
regions in the sensor data. By focusing on these regions and comparing the
candidates with trained landmarks, the most probable location can be deter-
mined. A project that follows this approach is the ARK project [Nickerson
et al., 1998]. It relies on hand-coded maps, including the locations of known
static obstacles as well as the locations of natural visual landmarks.

As already mentioned, [Ouerhani and Hiigli, 2004] suggest to use matching
and tracking of salient regions for robot localization but a realization of the
localization itself has not yet been done.

3.4 Discussion

In this chapter, we have introduced several of the best known computational
systems of visual attention in the field of computer vision. Their objective is to
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profit from findings on human perception to improve technical computer vision
systems. We first presented some of the most influential systems in detail; after
we discussed several characteristics of current systems, for example the kind of
features that are computed. Finally, we presented several application scenarios
in computer vision and robotics in which attention systems are applied.

The modeling of visual attention is a wide field and it is hardly possible
for one group to address all of the issues that arise. Therefore, each system
emphasizes and specializes on a different aspect. However, there are aspects
that are hardly considered due to costly realization or to missing evidence
from the field of human perception. Let us summarize some of the limitations
of current computational attention systems and some issues that are seldomly
addressed.

First, features like depth and motion are seldomly considered in computa-
tional attention system. When changing from static 2D images to dynamical
3D applications, both provide useful information in natural environments.
Second, there are few systems which integrate top-down influences and en-
able visual search. The few systems that do show hardly any evaluation of
their approach and usually present only some isolated examples of the func-
tionality of their system. A robust, well-evaluated approach does not yet exist.
Third, since most systems focus on bottom-up computations, the evaluation
of the systems is hard because there is usually no ground truth. The decision
whether a computed focus of attention is reasonable, is usually left to the
observer. Fourth, the computations usually focus on camera data although
human attention operates for all senses. Especially in robotics, the considera-
tion of additional sensors would be desirable. Finally, although there are sev-
eral approaches that combine their attention system with object recognition,
these approaches usually do not evaluate this combination and do not show
its advantage. Neither the improvement in time performance nor a change
in detection quality is discussed. Furthermore, since most systems operate
merely in a bottom-up mode, the combination of top-down attention with
object recognition has not yet been done. This results in recognition systems
that are only able to recognize the most salient regions in a scene but not a
target of current interest.

In the following chapters, we will present the computational attention
system VOCUS that overcomes most of the discussed limitations of existing
approaches.



	3.1 Computational Models of Visual Attention
	3.2 Characteristics of Attention Systems
	3.3 Applications in Computer Vision and Robotics
	3.4 Discussion



