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Abstract. Yager [1] introduced several families of ordered weighted averaging 
(OWA) operators, in which the associated weights depend on the aggregated 
arguments. In this paper, we develop a new dependent OWA operator, and 
study some of its desirable properties. The prominent characteristic of this de-
pendent OWA operator is that it can relieve the influence of unfair arguments 
on the aggregated results. Finally, we give an example to illustrate the devel-
oped operator. 

1   Introduction 

The ordered weighted aggregation (OWA) operator as an aggregation technique has 
received more and more attention since it’s appearance [2]. One important step of the 
OWA operator is to determine its associated weights. Many authors have focused on 
this issue, and developed some useful approaches to obtaining the OWA weights. For 
example, Yager [1] introduced some families of the OWA weights, including the 
ideal of aggregate dependent weights. Yager [2] introduced an approach to computing 
the weights of the OWA operator based on Zadeh’s [3,4] concept of linguistic quanti-
fiers. O’Hagan [5] established a mathematical programming model maximizing the 
entropy of the OWA weights for a predefined degree of orness. Xu and Da [6] ex-
tended O’Hagan’s model to the situations where the weight information is available 
partially. Filev and Yager [7] developed two procedures to obtain the OWA weights, 
the first one learns the weights from a collection of samples with their aggregated 
value, and the second one calculates the weights for a given level of orness. Xu and 
Da [8] established a linear objective-programming model for obtaining the weights of 
the OWA operator by utilizing the given arguments under partial weight information. 
Xu [9] developed a normal distribution based method. We classify all these ap-
proaches into the following two categories: argument-independent approaches [1,2,5-
7,9-12] and argument-dependent approaches [1,7,8,12-14]. The weights derived by 
the argument-independent approaches are associated with particular ordered positions 
of the aggregated arguments, and have no connection with the aggregated arguments, 
while the argument-dependent approaches determine the weights based on the input 
arguments. In this paper, we will pay attention on the second category, and develop a 
new argument-dependent approach to determining the OWA weights. 
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2   Dependent OWA Operators 

In [2], Yager defined the concept of an ordered weighted averaging (OWA) operator 
as follows: 

An OWA operator of dimension n  is a mapping, RROWA n →: , that has an 

associated n  vector T
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where ))(),...,2(),1(( nσσσ  is a permutation of ),...,2,1( n  such that 
)()1( jj aa σσ ≥−   for 

all nj ,...,2= . 
Clearly, the key point of the OWA operator is to determine its associated weights. 

Yager [1] introduced the ideal of aggregate dependent weights, which allows the 
weights to be a function of the aggregated arguments, in this case 
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The first family of the aggregate dependent weights that Yager [1] studied is as  
follows: 
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where ),( +∞−∞∈α . In this case, it leads to a neat OWA operator: 
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Note:  An OWA operator is called neat if the aggregated value is independent of the 
ordering [1]. 

Another interesting case of the aggregate dependent weights is 
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In this case, it follows that 
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which is also a neat aggregation. 
Yager [2] also considered a case where the aggregation is not neat, that is 
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in this case, it yields 
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In many actual situations, the arguments naaa ,...,, 21  are usually given by n  

different individuals. Some individuals may provide unduly high or unduly low pref-
erence arguments for their preferred or repugnant objects. In such a case, we shall 
assign very low weights to these “false” or “biased” opinions, that is to say, the closer 
a preference argument to the average value, the more the weight [9]. All the above 
argument-dependent approaches, however, should be unsuitable for dealing with this 
case. Therefore, it is worth paying attention to this issue, in the following we will 
develop a novel argument-dependent approach to determining the OWA weights. 

Definition 1.  Let naaa ,...,, 21  be a collection of arguments, and let µ  be the 

average value of these arguments, i.e., ∑
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the similarity degree of the j-th largest argument )( jaσ  and the average value µ . 

Let the T
nwwww ),...,,( 21=  be the weight vector of the OWA operator, then we 

define the following: 

                             nj
as

as
w

n

j
j

j
j ,...,2,1,

),(

),(

1
)(

)( ==
∑

=

µ

µ

σ

σ                              (10) 



 Dependent OWA Operators 175 

where ),( )( µσ jas  is defined by Eq.(9). Clearly, we have ]1,0[∈jw  and 
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then Eq.(10) can be rewritten as 
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    In this case, we have 
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    It is easy to see that this is a neat and dependent OWA operator. 
By Eq.(12), we can get the following results easily: 

Theorem 1.  Let naaa ,...,, 21  be a collection of arguments, and µ  be the ave- 

rage value of these arguments, ))(),...,2(),1(( nσσσ  is a permutation of ),...,2,1( n  

such that )()1( jj aa σσ ≥− , for all nj ,...,2= , and let ),( )( µσ jas  be the simila- 

rity degree of the j-th largest argument )( jaσ  and the average value µ , if 

),(),( )()( µµ σσ ji asas ≥ , then ji ww ≤ . 

Corollary 1.  Let naaa ,...,, 21  be a collection of arguments, if ji aa = , for all 

ji, , then ,
1

n
w j =  for all j . 

From Eq.(12) and Theorem 1, we know that a prominent characteristic of this de-
pendent OWA operator are that it can relieve the influence of unfair arguments on the 
aggregated results by assigning low weights to those “false” or “biased” ones. 

Yager [1,2] defined two important measures associated with an OWA operator. 
The first measure, called the dispersion of the weighting vector w  of an OWA opera-
tor is defined as 
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which measures the degree to which w  takes into account the information in the 
arguments during the aggregation. 
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The second measure, called orness measure, is defined as 
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which lies in the unit interval [0,1], and characterizes the degree to which the aggre-
gation is like an or operation. From Eqs.(12), (14) and (15), it follows that 

                             

∑

∑
∑

=

=

=−=
n

j
j

n

j
n

j
j

j
j

as

as

as
as

wdisp

1

1

1

),(

),(

),(
ln),(

)(
µ

µ

µ
µ

                               (16) 

 

∑

∑

=

=

−

−
=

n

j
j

n

j
j

as

asjn

n
worness

1

1

),(

),()(

1

1
)(

µ

µ
                             (17) 

Example 1.  Suppose that there are seven decision makers ( )7...,,2,1=jd j , these 
decision makers provide their individual preferences for a university faculty with 
respect to the criterion research. Assume that the given preference arguments are as 
follows: 

,801 =a ,752 =a ,1003 =a  ,404 =a  905 =a ,  ,956 =a  707 =a  

    Therefore, the re-ordered arguments )7,...,2,1( =ja j
 in descending order are 

,100)1( =σa  ,95)2( =σa  ,90)3( =σa  ,80)4( =σa  75)5( =σa  

,70)6( =σa   40)7( =σa  

then by Eqs.(9) and (12), we have  
 

13145.01 =w , 13967.02 =w , 14789.03 =w , 16432.04 =w  

16080.05 =w , ,15258.06 =w  10329.07 =w  

which are shown in Fig. 1.  
By Eqs. (16) and (17), we have 
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)]10329.0ln(10329.0 ×+  

9363.1=  
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Fig. 1. The weights jw  of )( jaσ )7,...,2,1( =j  

and 
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16080.0216432.0314789.0413967.0513145.06(
6

1 ×+×+×+×+××=

                    )10329.0015258.01 ×+×+  

5076.0=  

By Eq.(13), we have 

9014789.09513967.010013145.0),...,,( 21 ×+×+×=naaaOWA  

7516080.08016432.0 ×+×+ 4010329.07015258.0 ×+×+  
74155.79=  

hence, the collective preference argument is 74155.79 . 

To relieve the influence of unfair arguments on the aggregated results, in the above 
example, we assign low weights to those “false” or “biased” ones, that is to say, the 
closer a preference argument to the average value 57.78=µ , the more the weight. 

For example, we assign the lowest weight 10329.07 =w to the lowest preference 

value 404 =a , which has the biggest departure from the average value, and assign 

the second lowest weight 13145.01 =w  to the maximal preference value ,1003 =a  

which has the second biggest departure from the average value. We assign the most 
weight 16432.04 =w  to the preference value ,801 =a  which is closest to the average 

value, and assign the second most weight 16080.05 =w  to the preference value 

,75)5( =σa  which has the second least departure from the average value. We assign the 

value 0.5076 to the orness measure, and give the value 1.9363 to the dispersion  
measure. 
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3   Concluding Remarks   

In this paper, we have investigated the dependent OWA operators, and developed a 
new argument-dependent approach to determining the OWA weights, which can re-
lieve the influence of unfair arguments on the aggregated results. We have verified 
the practicality and effectiveness of the approach with a numerical example.  
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