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Preface

This volume contains papers presented at the 3rd International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2006), held in Tarragona,
Catalonia, Spain, April 3-5, 2006. This conference followed MDAI 2004 (held
in Barcelona, Catalonia) and MDAI 2005 (held in Tsukuba, Japan) both with
proceedings also published in the LNAI series (Vols. 3131 and 3558).

The aim of this conference was to provide a forum for researchers to discuss
theory and tools for modeling decisions, as well as applications that encompass
decision-making processes and information fusion techniques.

The organizers received 97 papers from 21 different countries, 31 of which are
published in this volume. Each submission received at least two reviews from the
Program Committee and a few external reviewers. We would like to express our
gratitude to them for their work. The plenary talks presented at the conference
are also included in this volume.

The conference was supported by the Universitat Rovira i Virgili (School of
Engineering and the Department of Computer Engineering and Mathematics),
the CSIC, the Department of Risk Engineering (U. Tsukuba), the Catalan Asso-
ciation for Artificial Intelligence (ACIA), the European Society for Fuzzy Logic
and Technology (EUSFLAT), the Japan Society for Fuzzy Theory and Intelligent
Informatics (SOFT), the Generalitat de Catalunya (AGAUR 2004XT 0004), the
Ajuntament de Tarragona, the Diputació de Tarragona and the Spanish Ministry
of Science and Education.

December, 2005 Vicenç Torra
Yasuo Narukawa

Aı̈da Valls
Josep Domingo-Ferrer
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José Antonio Iglesias, Agapito Ledesma, Araceli Sanchis . . . . . . . . . . . 117

On the Use of Tools Based on Fuzzy Set Theories in Parametric
Software Cost Estimation
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Asymmetric and Compound Preference Aggregators 

Jozo J. Dujmovi   

Department of Computer Science, San Francisco State University, 
1600 Holloway Ave, San Francisco, CA 94132, USA 

jozo@sfsu.edu 

Extended Abstract. Choosing among options and selecting the best alternative is a 
fundamental component of human decision-making. The best alternative is the result 
of a mental process called system evaluation. The evaluated system can be any collec-
tion of interrelated components. The system as a whole and its components are ex-
pected to have some desired features and satisfy specific requirements. Consequently, 
system evaluation is a process of determining the extent to which a system satisfies a 
given set of requirements.  

The process of intuitive system evaluation has all characteristics of fuzzy reasoning 
and computing with words in the sense of Zadeh: 

• The process occurs in an environment of imprecision, uncertainty and partial 
truth. 

• The process is based on manipulating perceptions of value, which we call 
preferences. Preferences reflect degrees of satisfaction of requirements (0=no 
satisfaction, 1=complete satisfaction, and values between 0 and 1 reflect a 
partial satisfaction). The global satisfaction of a set of requirements (the 
value of a complex system) is also a matter of degree. 

• Intuitive evaluation is based on manipulating perceptions of value without 
any measurements and any computation. It is imprecise, granular (based on 
fuzzy information granulation), and reflects the limited human ability to dis-
tinguish detail and store information. 

The mental process of system evaluation has observable properties. These proper-
ties can be used to develop mathematical models of the intuitive system evaluation. 
Our framework for mathematical modeling of system evaluation is called the Con-
tinuous Preference Logic (CPL). The goals of CPL are to explain, organize, refine, 
enhance, and extrapolate the intuitive evaluation process through mathematical mod-
eling and building of software tools. 

CPL models must be developed in concordance with needs and limitations of hu-
man decision process, avoiding both oversimplifications and exaggerated complexity. 
We differentiate two almost independent components present in all CPL models: 

• Formal logic components 
• Semantic components 

Formal logic components specify and manipulate simultaneity (andness), replace-
ability (orness) and negation to build and to structure compound evaluation criteria. 
Semantic components manipulate perceptions of human goals, by differentiating  
and adjusting the levels of relative importance of satisfying individual system  
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requirements. The overlap of formal logic and semantic components is visible when 
we define and compare the compensatory power of individual inputs in system 
evaluation models. The compensatory power is affected both by selecting the level of 
andness/orness and by specifying relative importance (weights). The level of overlap 
of formal logic and semantic components can be identified and exemplified, but its 
deeper understanding requires more research. 

CPL models quantify the process of system evaluation performed by human brain. 
In this case the brain manipulates perceptions of degrees of satisfaction of require-
ments. The manipulation is aggregative and its goal is to determine a perception of the 
global quality of the system by aggregating degrees of satisfaction of component 
requirements. Consequently, the fundamental goal of CPL is to develop mathematical 
models of the process of aggregation of preferences. The fundamental component of 
these models is the generalized conjunction/disjunction (GCD) function that is used to 
model simultaneity and replaceability of evaluation criteria. The main parameter of 
GCD is andness/orness that can be adjusted to generate a spectrum of aggregators in 
the range from AND to OR. Andlike operators are called the partial conjunction, and 
orlike operators are called the partial disjunction. The properties of basic operators of 
full conjunction, partial conjunction, conjunctive/disjunctive neutrality, partial dis-
junction, full disjunction, and negation are summarized in Table 1.  

The concepts of andness, orness, continuous transition from conjunction to disjunc-
tion and models of partial conjunction and partial disjunction were introduced in 
1973. For more than 30 years many research efforts were devoted to modeling simul-
taneity and replaceability using a spectrum of partial conjunction and partial disjunc-
tion models, as well as t-norms and t-conorms. The area that is beyond partial  
conjunction and partial disjunction attracted much less attention. 

In the area of building complex system evaluation criteria we are interested in 
compound aggregators based on superposition of basic functions ANDOR, ORAND, 
AM, AND, OR, and NOT. The basic functions shown in Table 1 are symmetric, 
where all inputs have equal role, both semantically and in the formal logic sense.  

The first step in increasing the flexibility of aggregators is to introduce weights that 
reflect different relative importance of inputs and create asymmetric aggregators. The 
corresponding asymmetric weighted aggregators have a semantic component, but 
their logical structure can still be as simple as the partial conjunction or the partial 
disjunction. The next step is to develop fundamental aggregators whose logic struc-
ture is asymmetric and more complex.  

Two most frequently used fundamental compound aggregators are the conjunctive 
partial absorption (CPA) and the disjunctive partial absorption (DPA). They are also 
summarized in Table 1. CPA is an asymmetric aggregator that combines a mandatory 
input and a desired input. This aggregator is asymmetric at the formal logic level: if 
the requirement expressed as the mandatory input is not satisfied, then the whole 
criterion is not satisfied. This is not the case with the desired input. If the requirement 
of the desired input is not satisfied, the compound criterion can still be partially satis-
fied. DPA is an aggregator that is dual to CPA: it combines a sufficient input and a 
desired input. The aggregator reflects the asymmetric situation where the criterion can 
be fully (or substantially) satisfied by satisfying only the sufficient requirement. The 
same effect cannot be achieved by satisfying the desired input. 

 



 Asymmetric and Compound Preference Aggregators 3 

Table 1. Fundamental operators in Continuous Preference Logic 

Name Description Symbol 
Sample  
implementation 

NOT Negation x  1 x−  

AND Full conjunction, the maximum 
level of simultaneity. 

1 2x x∧  1 2min( , )x x  

ANDOR 
(PC) 

Partial conjunction, a spectrum 
of simultaneity levels. All input 
preferences must be to some 
extent simultaneously satisfied. 

 

1 2x x  
1/

1 2(0.5 0.5 )

1

r r rx x

r

+

−∞ < <
 

 
AM 
(CDN) 

Arithmetic mean, or conjunc-
tive/ disjunctive neutrality. AM 
models a perfect balance of 
simultaneity and replaceability. 
All inputs are desired, but no 
one is mandatory or sufficient. 

 

1 2x x  
 

1 20.5 0.5x x+  

ORAND 

(PD) 

Partial disjunction, a spectrum 
of replaceability levels. Each 
input can be used to partially 
compensate the lack of remain-
ing inputs. 

 

1 2x x∇  
1/

1 1(0.5 0.5 )

1

r r rx x

r

+

< < +∞
 

OR Full disjunction, the maximum 
level of replaceability. 

1 2x x∨  1 2max( , )x x  

 

CPA 

Conjunctive Partial Absorp-
tion. A combination of manda-
tory and desired inputs. The 
mandatory input (m) must be (at 
least partially) satisfied. Assum-
ing m>0, the desired input (d) 
can partially compensate an 
insufficient level of m. 

 
m d  

 
( )m m d∇   

Extreme examples: 
(0.5 0.5 )m m d∧ +  

(0.5 0.5 )m m d+  

 

DPA 

Disjunctive Partial Absorp-
tion. A combination of suffi-
cient and desired inputs. The 
sufficient input (s) can fully (or 
substantially) compensate the 
lack of desired input (d). The 
desired input can partially com-
pensate the lack of sufficient 
input. 

 
s d  

( )s s d∇ Δ  

Extreme examples: 
(0.5 0.5 )s s d∨ +   

2 2(0.5 0.5 )

2

s s d+ +
 

Asymmetric operators of CPA and DPA can be compound by nesting. This process 
yields aggregators that have three distinct logical levels: mandatory, desired and op-
tional (by nesting CPA), and sufficient, desired, and optional (by nesting DPA). This 
process could be continued to any number of logical levels, but it has no sense and 
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applicability because the resulting granularity would be beyond the granularity that is 
reachable by human brain. Nesting of partial absorption aggregators is a typical ex-
ample that illustrates natural limits of complexity of preference aggregators. 

Fundamental preference aggregators can be used to create complex evaluation  
criteria using a process of stepwise aggregation of preferences. This process is a  
systematic way to linearly increase the complexity of compound aggregators by  
always aggregating a small number (e.g. up to 5) of intermediate preferences. Each 
aggregation creates a granule of similar requirements. The stepwise aggregation of 
preferences systematically increases the size of granules, enabling justifiable deci-
sion-making with compound requirements of increasing complexity. 

Asymmetric and compound preference aggregators are one of ways towards com-
puter-enhanced decision making (CEDM). CEDM can be interpreted as an advanced 
proactive form of decision support, that extends natural human abilities using proc-
esses and tools that explain, organize, refine, enhance, and extrapolate human reason-
ing in the area of (mostly professional) system evaluation. 

Basic preference aggregators reflect observable properties of human decision mak-
ing through abstraction and quantification. This explains the components of human 
decision process and provides a way to understand and justify the selection of prefer-
ence aggregators. 

The process of stepwise aggregation of preferences provides a systematic way to 
organize and structure the decision process. Without a clear organizational structure 
the decision process can become chaotic and unreliable. 

At the root of the aggregation tree we can aggregate only several global granules. 
For example, in the case of computer evaluation models the global granules are the 
subsystems of hardware, software, performance, and vendor support. Each of these 
granules can be further independently decomposed (e.g., hardware  = processor + 
memory + external memory + I/O + communication units). By continuing this process 
we provide a stepwise refinement of decision models. 

Previous steps provide infrastructure that can be used to build tools and techniques 
that enhance human decision models beyond the level of intuitive human reasoning. 
For example, the complex quantitative criteria can be verified using the sensitivity 
analysis, tradeoff analysis, and reliability analysis. The sensitivity analysis investi-
gates the effects of changes of inputs or parameters on the value of selected prefer-
ences. The tradeoff analysis investigates compensatory features of evaluation criteria, 
i.e. the possibility to compensate deficiencies in some inputs by improving selected 
other inputs. The goal of reliability analysis is to compute the confidence levels for 
ranking of each pair of competitive systems. It enables evaluators to select the best 
system knowing the level of confidence that corresponds to the proposed decision. 

All fundamental preference aggregators are fully specified using a small number of 
adjustable parameters (e.g. 3 parameters specify CPA and DPA). However, the aggre-
gators give valid aggregation results in all points of the input preference space  
extrapolating human abilities beyond natural limitations. Another example of ex-
trapolation is the process of system optimization, where a quantitative criterion is 
used to find optimum systems that maximize preference for constrained cost. 

The presented techniques show the role of asymmetric and compound aggregators 
in the area of system evaluation, as well as a promising example of CEDM.  



Computational Models of Language Toward
Brain-Style Computing

Michio Sugeno

Faculty of Culture and Information Science,
Doshisha University,

1-3 Miyakodani Tatara, Kyotanabe,
Kyoto 610-0394, Japan

msugeno@mail.doshisha.ac.jp

Abstract. The human brain consists of a neural system as hardware
and a language system as software. It is, therefore, possible to take two
approaches to create the human brain. While the hardware-centered ap-
proach is based on computational neuroscience, it is possible to base the
software-centered approach on linguistics.

Brain-style computing is considered as one of the main research areas
in creating the brain. We take a language-based approach to brain-style
computing. To this aim, we have adopted as the basic theory Systemic
Functional Linguistics (SFL) initiated by Halliday.

Following Halliday’s four principles in the design of human language,
we have implemented the computational model of language in context,
called the Semiotic Base, and we have developed a set of algorithms of
text understanding and generation using this model. The language used
in this study is Japanese.

As an application of the models, we are developing Brain-Style Com-
puting System under which we can manage and execute all kinds of
computing through meanings. The idea is to verbalize computers by
constructing linguistic models of software and hardware applications.
Brain-Style Computing System consists of Everyday Language Interface
with a Secretary Agent, Semiotic Base, Language Applications, Language
Communication Protocol and Language Operating System.

In this talk, I shall discuss some linguistic issues in creating the brain.
There are three higher-order functions of the brain concerned with lan-
guage: processing, utilizing, and learning language. Processing language
such as understanding and generation is a basic function with the inter-
nal models of language itself and its processing. SFL could reveal what
the internal models must be like. SFL could also play an essential role
in elucidating the brain functions of language such as thinking with lan-
guage and learning language.

I shall also show some clinical evidence obtained from studies on
aphasia which support the SFL perspective on the system of language.
I shall also refer to the brain internal models for motor control and some
learning mechanisms in the brain which might be related with language
functions.

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 5–6, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Dominance-Based Rough Set Approach to
Case-Based Reasoning

Salvatore Greco1, Benedetto Matarazzo1, and Roman Slowinski2
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Abstract. Case-based reasoning is a paradigm inmachine learningwhose
idea is that a new problem can be solved by noticing its similarity to a set
of problems previously solved. We propose a new approach to case-based
reasoning. It is based on rough set theory that is a mathematical theory for
reasoning about data. More precisely, we adopt Dominance-based Rough
Set Approach (DRSA) that is particularly appropriate in this context for
its ability of handling monotonicity relationship between ordinal proper-
ties of data related to monotonic relationships between attribute values in
the considered data set. In general terms, monotonicity concerns relation-
ship between different aspects of a phenomenon described by data: for ex-
ample, “the larger the house, the higher its price” or “the closer the house
to the city centre, the higher its price”. In the perspective of case-based rea-
soning, we propose to consider monotonicity of the type “the more similar
is y to x, the more credible is that y belongs to the same set as x”. We show
that rough approximations and decision rules induced from these approx-
imations can be redefined in this context and that they satisfy the same
fundamental properties of classical rough set theory.

1 Introduction

Case-based reasoning (for a general introduction to case-based reasoning see
e.g. [10]; for a fuzzy set approach to case-based reasoning see [3]) regards the
inference of some proper conclusions related to a new situation by the analysis of
similar cases from a memory of previous cases. It is based on two principles [11]:

a) similar problems have similar solutions;
b) types of encountered problems tend to recur.

Gilboa and Schmeidler [4] observed that the basic idea of case-based reasoning
can be found in the following sentence of Hume [9]: “From causes which appear
similar we expect similar effects. This is the sum of all our experimental con-
clusions.” Rephrasing Hume, one can say that “the more similar are the causes,
the more similar one expects the effects.” Therefore, measuring similarity is the
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essential point of all case-based reasoning and, particularly, of fuzzy set approach
to case-based reasoning [3]. This explains the many research problems that mea-
suring similarity generates within case-based reasoning. Problems of modelling
similarity are relative to two levels:

– at level of similarity with respect to single features: how to define a mean-
ingful similarity measure with respect to a single feature?

– at level of similarity with respect to all features: how to properly aggregate
the similarity measure with respect to single features in order to obtain a
comprehensive similarity measure?

Taking this into account we propose an approach to case-based reasoning
which tries to be possibly “neutral” and “objective” with respect to similarity
relation, in the sense that at level of similarity concerning single features, we
consider only ordinal properties of similarity, and at level of aggregation, we do
not impose any specific functional aggregation based on very specific axioms (see
for example [4]), but we consider a set of decision rules based on the very general
monotonicity property of comprehensive similarity with respect to similarity of
single features. Therefore our approach to case-based reasoning is very little
“invasive”, comparing to the many other existing approaches.

Our approach to case-based reasoning is based on rough set theory ([12, 13]).
Rough set theory relies on the idea that some knowledge (data, information) is
available about elements of a set. For example, knowledge about patients suf-
fering from a certain disease may contain information about body temperature,
blood pressure, etc. All patients described by the same information are indis-
cernible in view of the available knowledge and form groups of similar cases.
These groups are called elementary sets and can be considered as elementary
building blocks of the available knowledge about patients. Elementary sets can be
combined into compound concepts. Any union of elementary sets is called crisp
set, while other sets are referred to as rough set. Each rough set has boundary
line cases, i.e. objects which, in view of the available knowledge, cannot be classi-
fied with certainty as members of the set or of its complement. Therefore, in the
rough set approach, any set is associated with a pair of crisp sets called the lower
and the upper approximation. Intuitively, the lower approximation consists of all
objects which certainly belong to the set and the upper approximation contains
all objects which possibly belong to the set. The difference between the upper
and the lower approximation constitutes the boundary region of the rough set.

In our approach to case-based reasoning we do not consider classical rough set
theory but its extension called Dominance-based Rough Set Approach (DRSA)
[5, 6] that has been proposed to handle ordinal properties of data related to
preferences in decision problems. The monotonicity, which is crucial for DRSA,
is also meaningful for problems where preferences are not considered. Gener-
ally, monotonicity concerns relationship between different aspects of a phenom-
enon described by data. More specifically, it concerns mutual trends between
different variables like distance and gravity in physics or inflation rate and in-
terest rate in economics. Whenever we discover a relationship between different
aspects of a phenomenon, this relationship can be represented by a monotonicity
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with respect to some specific measures of the considered aspects. So, in general,
the monotonicity is a property translating in a formal language a primitive in-
tuition of interaction between different concepts in our knowledge domain. As
discovering is an inductive process, it is illuminating to remember the following
Proposition 6.363 of Wittgenstein [17]: “The process of induction is the process
of assuming the simplest law that can be made to harmonize with our experi-
ence”. We claim that this simplest law is just monotonicity and, therefore, each
data analysis method can be seen as a specific way of dealing with monotonicity.

Let us observe that monotonicity is also present in classical rough set theory.
In fact, rough set philosophy employs approximation for describing relationships
between concepts. For example, coming back to above example of medical diag-
nosis, the concept of “disease Y” can be represented in terms of such concepts
as “low blood pressure and high temperature” or “muscle pain and headache”.
The approximation is based on a very coarse representation in the sense that,
for each aspect characterizing concepts (“low blood pressure”, “high tempera-
ture”, “muscle pain”, etc.), only its presence or its absence is considered relevant.
Therefore, rough approximation within classical rough set theory involves a very
primitive idea of monotonicity related to a scale with only two values: “presence”
and “absence”.

Monotonicity gains importance when a finer representation of the concepts
is considered. A representation is finer when for each aspect characterizing con-
cepts, not only its presence or its absence is taken into account, but also the
graduality of its presence or absence is considered relevant. Due to graduality,
the idea of monotonicity can be exploited in the whole range of its potential.
Graduality is typical for fuzzy set philosophy [18] and, therefore, a joint consid-
eration of rough sets and fuzzy sets is worthwhile. In fact, rough set and fuzzy set
capture the two basic complementary features of the idea of monotonicity: rough
set deals with relationships between different aspects and fuzzy sets deal with
expression of different dimensions representing the considered concepts. For this
reason, many approaches have been proposed to combine fuzzy sets with rough
sets (see for example [2, 16]).

Greco, Matarazzo and Slowinski [7] showed how the framework of DRSA can
be very naturally extended to represent any relationship of monotonicity in rea-
soning about data. In this context one can envisage a knowledge representation
model composed of a set of decision rules with the following syntax:

“if object y presents feature fi1 in degree at least hi1, and feature fi2 in degree
at least hi2 . . . , and feature fim in degree at least him, then object y belongs to
set X in degree at least α”.

Greco, Matarazzo and Slowinski [7] proved also that the classical rough set
approach [12, 13] can be seen as specific case of the general DRSA model. This
is important for several reasons; in particular, this interpretation of DRSA gives
an insight into fundamental properties of the classical rough set approach and
permits to further generalize the rough set approach.
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In this paper, we show that in the framework of DRSA a rough set approach
to case-based reasoning can be developed very naturally. Here, the monotonic-
ity concerns the relationships between similarity to some reference objects and
membership to some specific sets. In this context we envisage a knowledge rep-
resentation model composed of a set of decision rules with the following syntax:

“if object y is similar to object x w.r.t. feature fi1 in degree at least hi1, and
w.r.t. feature fi2 in degree at least hi2, and . . . , and w.r.t. feature fim in degree
at least him, then object y belongs to set X in degree at least α”,
where w.r.t. means “with respect to”.

These decision rules are similar to the gradual decision rules [1] being state-
ments of the form “the more object z is X , the more it is Y ” or, equivalently,
but more technically,

μX(z) ≥ α⇒ μY (z) ≥ α

where X and Y are fuzzy sets whose membership functions are μY and μX , and
α ∈ [0, 1].

Within the context of case-based reasoning gradual decision rules assume the
following syntax [3]:

“the more object z is similar to a referent object x w.r.t. condition attribute
s, the more z is similar to a referent object x w.r.t. decision attribute t”

or, equivalently, but more technically,

s(z, x) ≥ α⇒ t(z, x) ≥ α

where s and t measure the credibility of similarity with respect to condition
attribute and decision attribute, respectively.

When there is a plurality of condition attributes and decision attributes, func-
tions s and t aggregate similarity with respect to these attributes.

Let us observe that the decision rules we propose do not need the aggregation
of the similarity with respect to different features in one comprehensive similar-
ity. This is important because it permits to avoid using aggregation operators
(weighted average, min, etc.) which are always arbitrary to some extend. More-
over, the decision rules we propose permit to consider different thresholds for
degrees of credibility in the premise and in the conclusion. This is not considered
in the gradual decision rules, where the threshold is the same, α, in the premise
and in the conclusion.

This article is organized as follows. Section 2 introduces DRSA approach to
case-based similarity. Section 3 contains conclusions.

2 Rough Approximation for Case Based Reasoning

In this section, we consider rough approximation of a fuzzy set using a similarity
relation in the context of case-based reasoning. The introduced rough approxi-
mation is inspired by the rough approximation of a pairwise comparison table
within the Dominance-based Rough Set Approach (DRSA).
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Let us consider a pairwise fuzzy information base being the 3-tuple

B = < U ,F ,σ>,

where U is a finite set of objects (universe), F={f1,f2,...,fm} is a finite set
of features, and σ:U × U × F →[0,1] is a function such that σ(x,y,fh) ∈[ 0, 1]
expresses the credibility that object x is similar to object y w.r.t. to feature fh.
The minimal requirement function σ must satisfy is that, for all x ∈ U and for all
fh ∈ F , σ(x,x,fh)=1. Therefore, each pair of objects (x,y) ∈ U ×U is described
by a vector

DesF (x,y)=[σ(x,y,f1), . . . , σ(x,y,fm)]

called description of (x,y) in terms of the evaluations of the attributes from
F ; it represents the available information about similarity between x and y.
Obviously, similarity between x and y, x, y ∈ U , can be described in terms of
any non-empty subset E ⊆ F and in this case we have

DesE(x,y)=[σ(x,y,fh), fh ∈ E].

With respect to any E ⊆ F we can define the dominance relation DE on
U × U as follows: for any x,y,w,z ∈ U , (x,y) dominates (w,z) with respect to E
(denotation (x,y)DE(w,z)) if for any fh ∈ E

σ(x,y,fh) ≥ σ(w,z,fh).

Given E ⊆ F and x,y ∈ U , let

D+
E(y, x) = {w ∈ U : (w, x)DE(y, x)},

D−
E(y, x) = {w ∈ U : (y, x)DE(w, x)}.

In the pair (y, x), x is considered as reference object, while y can be called
limit object because it is conditioning the membership of w in D+

E(y, x) and in
D−

E(y, x).
Let us also consider a fuzzy set X in U , characterized by the membership

function μX : U → [0, 1]. For each cutting level α ∈ [0, 1], the following sets can
be defined:

X≥α={y ∈ U : μX(y) ≥ α}, X>α={y ∈ U : μX(y) > α},
X≤α={y ∈ U : μX(y) ≤ α}, X<α={y ∈ U : μX(y) < α}.

For each α∈[0,1] and ∗ ∈ {≥, >}, we can define the E-lower approximation
of X∗α, Eσ(X∗α), and the E-upper approximation of X∗α, Eσ(X∗α), based on
similarity σ with respect to E ⊆ F , respectively, as:

Eσ(X∗α) = {(y, x) ∈ U × U : D+
E(y, x) ⊆ X∗α},

Eσ(X∗α) = {(y, x) ∈ U × U : D−
E(y, x) ∩X∗α 
= ∅}.
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For the sake of simplicity, in the following we shall consider Eσ(X≥α) and
Eσ(X≥α). Of course, analogous considerations hold for Eσ(X>α) and Eσ(X>α).
Let us remark that the lower approximation of X≥α contains all the pairs (y, x) ∈
U ×U such that any object w being similar to x at least as much as y is similar
to x w.r.t. all the considered features E ⊆ F also belongs to X≥α. Thus, on the
basis of the data from the fuzzy pairwise information base B , if the similarity
of an object w to x is not smaller than the similarity of y to x w.r.t. all the
considered features E ⊆ F , then w belongs to X≥α. In other words, in each pair
(y, x) ∈ Eσ(X≥α), x is a reference object and y is a limit object which belongs
“certainly” to set X with credibility at least α; the limit is understood such that
all objects w that are similar to x w.r.t. considered features at least as much as
y is similar to x, also belong to X with credibility at least α.

Analogously, the upper approximation of X≥α contains all the pairs (y, x) ∈
U×U such that there is at least one object w being similar to x at least as much
as y is similar to x w.r.t. all the considered features E ⊆ F which belongs to
X≥α. Thus, on the basis of the data from the fuzzy pairwise information base
B , if the similarity of an object w to x is not smaller than the similarity of y
to x w.r.t. all the considered features E ⊆ F , then it is possible that w belongs
to X≥α. In other words, in each pair (y, x) ∈ Eσ(X≥α), x is a reference object
and y is a limit object which belongs “possibly” to set X with credibility at
least α; the limit is understood such that there is at least one object w that is
similar to x w.r.t. considered features at least as much as y is similar to x and
has membership in set X with credibility at least α.

For each α∈[0,1] and ∗ ∈ {≤, <}, we can define the E-lower approximation
of X∗α, Eσ(X∗α), and the E-upper approximation of X∗α, Eσ(X∗α), based on
similarity σ with respect to E ⊆ F , respectively, as:

Eσ(X∗α) = {(y, x) ∈ U × U : D−
E(y, x) ⊆ X∗α},

Eσ(X∗α) = {(y, x) ∈ U × U : D+
E(y, x) ∩X∗α 
= ∅}.

For the sake of simplicity, in the following we shall consider Eσ(X≤α) and
Eσ(X≤α). Of course, analogous considerations hold for Eσ(X<α) and Eσ(X<α).
Let us remark that the lower approximation of X≤α contains all the pairs (y, x) ∈
U ×U such that any object w being similar to x at most as much as y is similar
to x w.r.t. all the considered features E ⊆ F also belongs to X≤α. Thus, on the
basis of the data from the fuzzy pairwise information base B , if the similarity
of an object w to x is not greater than the similarity of y to x with respect to
all the considered features E ⊆ F , then w belongs to X≤α. In other words, in
each pair (y, x) ∈ Eσ(X≤α), x is a reference object and y is a limit object which
belongs “certainly” to set X with credibility at most α; the limit is understood
such that all objects w that are similar to x w.r.t. considered features at most
as much as y is similar to x, also belong to X with credibility at most α.

Analogously, the upper approximation of X≤α contains all the pairs (y, x) ∈
U × U such that there is at least one object w being similar to x at most as
much as y is similar to x with respect to all the considered features E ⊆ F
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which belongs to X≤α. Thus, on the basis of the data from the fuzzy pairwise
information base B , if the similarity of an object w to x is not greater than the
similarity of y to x w.r.t. all the considered features E ⊆ F , then it is possible
that that w belongs to X≤α. In other words, in each pair (y, x) ∈ Eσ(X≤α), x
is a reference object and y is a limit object which belongs “possibly” to set X
with credibility at most α; the limit is understood such that there is at least one
object w that is similar to x w.r.t. considered features at most as much as y is
similar to x and has membership in set X with credibility at most α.

Let us remark that we can rewrite the rough approximations Eσ(X≥α),
Eσ(X≥α), Eσ(X≤α) and Eσ(X≤α) as follows:

Eσ(X≥α)={(y, x) ∈ U × U : ∀w ∈ U , (w,x)DE(y,x)⇒ w ∈ X≥α},
Eσ(X≥α) = {(y, x) ∈ U × U : ∃w ∈ U such that (w, x)DE(y, x) and w ∈ X≥α},

Eσ(X≤α)={(y, x) ∈ U × U : ∀w ∈ U , (y,x)DE(w,x)⇒ w ∈ X≤α},
Eσ(X≤α) = {(y, x) ∈ U × U : ∃w ∈ U such that (y, x)DE(w, x) and w ∈ X≤α}.

This formulation of the rough approximation is concordant with the syntax
of the decision rules induced by means of DRSA in a pairwise fuzzy information
base. More precisely:

– Eσ(X≥α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at least hi1
and w.r.t. feature fi2 in degree at least hi2 and . . . and w.r.t. feature fim in
degree at least him, then object w belongs to set X in degree at least α”,

– Eσ(X≥α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at least hi1
and w.r.t. feature fi2 in degree at least hi2 and . . . and w.r.t. feature fim

in degree at least him, then object w could belong to set X in degree at
least α”,

– Eσ(X≤α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at most hi1
and w.r.t. feature fi2 in degree at most hi2 and . . . and w.r.t. feature fim in
degree at most him, then object w belongs to set X in degree at most α”,

– Eσ(X≤α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at most hi1
and w.r.t. feature fi2 in degree at most hi2 and . . . and w.r.t. feature fim

in degree at least him, then object w could belong to set X in degree at
most α”,

where {i1, . . . , im} = E and hi1, . . . , him ∈ [0, 1].
The above definitions of rough approximations and the syntax of decision rules

are based on ordinal properties of similarity relations only. In fact, no algebraic
operations, such as sum or product, involving cardinal properties of function σ
measuring credibility of similarity relations is considered. This is an important
characteristic of our approach in comparison with alternative approaches to case-
based reasoning.
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Let us remark that in the above approximations, even if for two fuzzy sets
X and Y we have X≥α= Y ≤α, their approximations are different due to the
different directions of cutting the membership function of sets X and Y . Of
course, a similar remark holds also for X<α and Y >α.

The following theorem states some properties of the rough approximations in
a pairwise fuzzy information base.

Theorem. Given a fuzzy pairwise information base B=< U, F,σ > and a fuzzy
set X in U with membership function μX(·), the following properties hold for
any E ⊆ F :

1. For any α, 0 ≤ α ≤ 1,
Eσ(X≤α) ⊆ X≤α×X≤α ⊆ Eσ(X≤α), Eσ(X≥α) ⊆ X≥α×X≥α ⊆ Eσ(X≥α),
Eσ(X<α) ⊆ X<α×X<α ⊆ Eσ(X<α), Eσ(X>α) ⊆ X>α×X>α ⊆ Eσ(X>α).

2. For any α, 0 ≤ α≤1,
Eσ(X≤α) = U × U − Eσ(X>α), Eσ(X≥α) = U × U − Eσ(X<α).

3. For any α, β, 0≤α≤β≤1,

Eσ(X≤α) ⊆ E σ(X≤β), Eσ(X<α) ⊆Eσ(X<β),
Eσ(X≥α) ⊇Eσ(X≥β), Eσ(X>α) ⊇Eσ(X>β),
Eσ(X≤α) ⊆ Eσ(X≤β), Eσ(X<α) ⊆ Eσ(X<β),
Eσ(X≥α) ⊇ Eσ(X≥β), Eσ(X>α) ⊇ Eσ(X>β).

4. For any x,y,w,z ∈ U and for any α, 0≤α≤1,

[(y,x)DE(w,x) and (w,x) ∈E σ(X≥α)]⇒ (y,x) ∈E σ(X≥α),

[(y,x)DE(w,x) and (w,x) ∈E σ(X>α)]⇒ (y,x) ∈E σ(X>α),

[(y,x)DE(w,x) and (w,x) ∈ Eσ(X≥α)]⇒ (y,x) ∈ Eσ (X≥α),

[(y,x)DE(w,x) and (w,x) ∈ Eσ (X>α)]⇒ (y,x) ∈ Eσ (X>α),

[(w,x)DE(y,x) and (w,x) ∈E σ(X≤α)]⇒ (y,x) ∈E σ(X≤α),

[(w,x)DE(y,x) and (w,x) ∈E σ(X<α)]⇒ (y,x) ∈E σ(X<α),

[(w,x)DE(y,x) and (w,x) ∈ Eσ (X≤α)]⇒ (y,x) ∈ Eσ (X≤α),

[(w,x)DE(y,x) and (w,x) ∈ Eσ (X<α)]⇒ (y,x) ∈ Eσ (X<α).

5. For any E1 ⊆ E2 ⊆ F and for any α, 0≤α≤1,

E1σ(X≤α) ⊆ E2σ(X≤α), E1σ(X<α) ⊆E2σ(X<α),
E1σ(X≥α) ⊆E2σ(X≥α), E 1σ(X>α) ⊆ E2σ(X>α),
E1σ(X≤α) ⊇ E2σ(X≤α), E1σ(X<α) ⊇ E2σ(X<α),
E1σ(X≥α) ⊇ E2σ(X≥α), E1σ(X>α) ⊇ E2σ(X>α).
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Proof. 1. For all x, y ∈ U ,

x ∈ D+
E(y, x). (i)

Thus, D+
E(y, x) ⊆ X≥α implies x ∈ X≥α and y ∈ X≥α. For the definition of

Eσ(X≥α), we have that (y, x) ∈ Eσ(X≥α) if D+
E(y, x) ⊆ X≥α, thus we conclude

that, ∀(y, x) ∈ U × U ,

(y, x) ∈ Eσ(X≥α)⇒ (y, x) ∈ X≥α ×X≥α

i.e.
Eσ(X≥α) ⊆ X≥α ×X≥α.

Moreover, from (i) we get that for all (y, x) ∈ X≥α×X≥α, y ∈ D−
E(y, x). For

the definition of Eσ(X≥α) we have that (y, x) ∈ Eσ(X≥α) if D−
E(y, x)∩X≥α 
= ∅,

thus we conclude that, ∀(y, x) ∈ U × U ,

(y, x) ∈ X≥α ×X≥α ⇒ (y, x) ∈ Eσ(X≥α)

i.e.
X≥α ×X≥α ⊆ Eσ(X≥α).

Consequently, we proved that

Eσ(X≥α) ⊆ X≥α ×X≥α ⊆ Eσ(X≥α).

Other cases can be proved analogously.
2. Remembering that X<α = U −X≥α and observing that

D+
E(y, x) ⊆ X≥α ⇔ D+

E(y, x) ∩ (U −X≥α) = ∅ ⇔ D+
E(y, x) ∩X<α = ∅

we get
Eσ(X≥α) = {(y, x) ∈ U × U : D+

E(y, x) ⊆ X≥α} =

= U × U − {(y, x) ∈ U × U : D+
E(y, x) ∩X<α 
= ∅} =

= U × U − Eσ(X<α).

Analogous proof holds for Eσ(X≥α) = U × U − Eσ(X<α).
3. Let us observe that for any α, β, 0≤α≤β≤1

X≥α = {x ∈ U : μ(x) ≥ α} ⊇ {x ∈ U : μ(x) ≥ β} = X≥β.

Taking this into account, we get

{(y, x) ∈ U × U : D+
E(y, x) ⊆ X≥α} ⊆ {(y, x) ∈ U × U : D+

E(y, x) ⊆ X≥β}
i.e.

Eσ(X≥α) ⊆ Eσ(X≥β).

Moreover, we also obtain

{(y, x) ∈ U ×U : D−
E(y, x)∩X≥α 
= ∅} ⊆ {(y, x) ∈ U ×U : D+

E(y, x)∩X≥β 
= ∅}
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i.e.
Eσ(X≥α) ⊆ Eσ(X≥β).

Other cases can be proved analogously.
4. Let us observe that for the transitivity of DE, for any x,y,w,z ∈ U and for

any E ⊆ F

[(z, x)DE(y, x) and (y, x)DE(w, x)⇒ (z, x)DE(w, x)]
⇔

[(z, x) ∈ D+
E(y, x) and (y, x)DE(w, x)⇒ (z, x) ∈ D+

E(w, x)]
⇔

[(y, x)DE(w, x)⇒ D+
E(y, x) ⊆ D+

E(w, x)].

From this we get that if (y, x)DE(w, x), then

D+
E(w, x) ⊆ X≥α ⇒ D+

E(y, x) ⊆ X≥α

i.e.

[(y, x)DE(w, x) and (w, x) ∈ Eσ(X≥α)]⇒ (y, x) ∈ Eσ(X≥α).

Other cases can be proved analogously.
5. For any E1 ⊆ E2 ⊆ F and for any x, y, w, z ∈ U

(x, y)DE2(w, z)⇒ (x, y)DE1(w, z)

and thus

D+
E1

(x, y) ⊇ D+
E2

(x, y) and D−
E1

(x, y) ⊇ D−
E2

(x, y).

From this we get that for all α, 0 ≤ α ≤ 1,

D+
E1

(y, x) ⊆ X≥α ⇒ D+
E2

(y, x) ⊆ X≥α

and

D−
E2

(y, x) ∩X≥α 
= ∅ ⇒ D−
E1

(y, x) ⊆ X≥α 
= ∅,
which give, respectively,

E1σ(X≥α) ⊆ E2σ(X≥α) and E1σ(X≥α) ⊇ E2σ(X≥α).

Other cases can be proved analogously. �

3 Conclusions

We presented a model of case-based reasoning using Dominance-based Rough Set
Approach (DRSA). This model is based only on ordinal properties of similarity
relations and membership functions of fuzzy sets. Moreover, we did not impose
any specific aggregation functional based on specific axioms (see for example [4]),
but we considered a set of decision rules based on the very general monotonicity
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property of comprehensive similarity with respect to similarity of single features.
From this viewpoint our approach to case-based reasoning is as much “neutral”
and “objective” as possible and it is very little “invasive” comparing to many
other existing approaches. Future research on rough set approach to case-based
reasoning can be focused on

– comparison of our approach with other case-based reasoning methodologies
and

– the use of our approach for extension of other concepts, results and method-
ologies of rough set theory.

With respect to comparison of our approach with other case-based reasoning
methodologies, an important future research concerns axiomatic considerations.
As observed by Gilboa and Schmeidler [4] the interest of axiomatic consideration
can be summarized in the following points:

1) meta-scientific reasons: axiomatization provides a link between theoretical
terms and observable terms in order to rend the latter meaningful;

2) descriptive reasons: it supplies the basis for testing the empirical validity of
the theory because axioms permit to conceive experiments able to falsify the
theory rendering the theory falsifiable as requested by Popper [15];

3) normative reasons: a simple set of axioms is often more understandable than
the mathematical formulation of the theory and from this viewpoint can be
the basis for a discussion with a decision maker about acceptance or rejection
of the theory.

With respect to our approach to case-based reasoning, the axiomatic consid-
erations have the further merits of permitting a comparison with the axiom-
atization of Gilboa and Schmeidler [4] and of pointing out the fact that only
monotonic properties of similarity measures are considered.

The research field seems very promising also with respect to rough set theory
and we envisage interesting developments with respect to three following issues:

1) generalizations of other rough set fundamental concepts such as reducts and
core [13];

2) algebraic properties of the proposed rough approximations (for a general
introduction of algebraic properties of classical rough set approach see [14]);

3) application of the absolute and relative rough membership concept (see [8])
in a generalized variable precision model based on the proposed rough ap-
proximations in order to admit decision rules with a limited number of coun-
terexamples, which is particularly useful when dealing with large data sets.
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The scientific research in the area of computational trust and reputation mecha-
nisms for virtual societies is a recent discipline oriented to increase the reliability
and performance of electronic communities by introducing in such communities
these well known human social control mechanisms.

Computer science has moved from the paradigm of an isolated machine to
the paradigm of a network of systems and of distributed computing. Likewise,
artificial intelligence is quickly moving from the paradigm of an isolated and
non-situated intelligence to the paradigm of a situated, social and collective
intelligence. This new “social” dimension is the main responsible of the increasing
interest on computational trust and reputation mechanisms applied to electronic
societies.

Computational trust and reputation systems have been recognized as key fac-
tors for successful electronic commerce adoption. These systems are used by in-
telligent software agents both as a mechanism of search for trustworthy exchange
partners and as an incentive in decision-making about whether or not to honour
contracts. Reputation is also used in electronic markets as a trust-enforcing, de-
terrent, and incentive mechanism to avoid cheaters and frauds. Another area of
application in agent technology is teamwork and cooperation.

However, in spite of the obvious utility of using a trust and reputation system,
they are still not a usual element you can find in an agent architecture like
it is the case for example of planners or communication modules. Trust and
reputation systems still belong to the set of “not so important” elements of an
agent architecture. This is something it has to change if we really want artificial
socially intelligent entities.

If we analyze which computational trust and reputation models are used
nowadays, we will notice that only the simplest models are really used (see for
example e-Bay[1]). Till now, the use of complex trust and reputation models
has been somehow questioned and reduced to academic environments. Why an
artificial agent has to use one of these complex models if it is evolving in a
simple community with 10 or 15 agents that have limited interaction capabilities?
In other words, the applications and environments are too simple to justify a
complex trust and reputation model that only has sense in a socially complex
environment.

However this situation is changing very quickly. The increase of the global
connectivity (everything is inter-connected anytime and everywhere) is bringing
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us a new concept of environment where virtual entities need to interact among
them and with humans in a complex way. It is clear then, that in a few years we
will start to see the virtual societies we have been theorizing about (and waiting)
for a long time in the agents community. In this kind of environment, it will be
a must for virtual entities to use complex trust and reputation models if they
want to be successful.

Now the question is, are the current trust and reputation models ready to
fulfill the requirements of these new virtual societies? We think the answer is no.
And this negative answer is because of two reasons: the internals of the model
and how the model is being integrated with the rest of the elements of the agent
architecture.

Up to now, almost all the efforts have been directed to build trust and rep-
utation models based on a pure numerical approach. There are plenty of these
models[2, 3] and the mechanisms they use to calculate the trust and reputation
values go from simple aggregation of values[4] to the use of probability theory[5],
fuzzy logic[6] or the use of entropy[7] just to put some examples. At the end,
each model manipulates the input data in a different way trying to obtain the
most accurate trust and reputation values for a given subject. However, if we
want to undertake the problems found in socially complex virtual societies, we
need theoretically more sophisticated trust and reputation systems. The internal
process the trust and reputation system is following to arrive to a final trust and
reputation value is as important as the result itself. By ignoring this, we are
losing a lot of information that is crucial in order to be successful in the complex
world of social relations. We think the solution for that is to use a cognitive
approach supported by a solid cognitive theory behind.

The second problem is the integration of the model with the rest of the
elements that compound the agent architecture. At this moment, current models
are purely reactive black boxes. They receive different inputs (that vary from
model to model: direct experiences, witness information, social information...)
and, when queried, return the current trust and/or reputation value that has
been calculated using the inputs that the model can deal with.

If we really want useful trust and reputation systems, we have to transform
them in a proactive element of the agent. The immediate consequence of this
proactiveness is that the trust and reputation system could participate in the
decision making process by suggesting actions, strategies or complete plans that
could help to improve the reliability of the trust and reputation values. But
perhaps more important, this new approach opens the possibility of something
that till now has been completely ignored, the possibility for the agent to manage
its own credibility and reputation in front of the rest of the community. This
can only be achieved if the trust and reputation system is at the same level
that the other elements that compound the agent architecture and can influence
the decision making process by proposing actions and plans to influence the
perception others have towards it.

Our current work is going in these two directions: improve the internals of
the trust and reputation systems by using a cognitive approach and at the same
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time analyze how the trust and reputation system can be integrated in the
agent architecture to provide the functionality required by a socially intelligent
virtual entity. We think these are the two keystones for the next generation of
computational trust and reputation models. Our first step on this direction is
RepAge[8], a computational reputation model based on a cognitive theory of
reputation[9] and a previous trust and reputation model called ReGreT[10].
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Abstract. Many realistic decision aid problems are fraught with facets
of ambiguity, uncertainty and conflict, which hamper the effectiveness of
conventional and fuzzy preference modeling approaches, and command
the use of more expressive representations. In the past, some authors
have already identified Ginsberg’s/Fitting’s theory of bilattices as a nat-
urally attractive candidate framework for representing uncertain and
potentially conflicting preferences, yet none of the existing approaches
addresses the real expressive power of bilattices, which lies hidden in
their associated truth and knowledge orders. As a consequence, these
approaches have to incorporate additional conventions and ‘tricks’ into
their modus operandi, making the results unintuitive and/or tedious. By
contrast, the aim of this paper is to demonstrate the potential of (rec-
tangular) bilattices in encoding not just the problem statement, but also
its generic solution strategy.

1 Introduction

The notion of preference is common in various contexts involving decision or
choice. Preference modeling provides declarative means for choosing among al-
ternatives, including different solutions to problems, answers to database queries,
decisions of a computational agent, etc. This topic is gaining increasing atten-
tion in diverse areas of artificial intelligence such as nonmonotonic reasoning,
qualitative decision theory, configuration, and AI planning. More recently, pref-
erence modeling has also been used in constraint satisfaction and constraint
programming, for treating soft constraints, for describing search heuristics, and
for reducing search effort (see, e.g. [9] and [13] for recent collections of papers
on these topics).

Conventional preference modeling (see e.g. [25]) is centered on the notion of
classical preference structures 〈P, I, R〉, consisting of three fundamental binary
relations (strict preference P , indifference I, and incomparability R) that may
hold among the alternatives; usually the evidence in favour of these relations
is captured by a so-called outranking relation S that describes, for each couple
(u, v) of alternatives, whether u is (known to be) at least as good as v. In
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practice, it is common to encounter situations where these relationships hold up
to a certain degree, which gives rise to the study of fuzzy preference structures
(see e.g. [20, 31, 32]).

Fuzziness, however, cannot adequately cover all the imperfections inherent to
real-life data, since the ‘one-dimensional’ measurements induced by the ordering
of membership degrees in fuzzy sets have difficulties coping with information-
deficient data. As Tsoukiàs and Vincke noted in [29], fuzzy sets and logic per
se do not provide “a clear distinction between situations where the information
is missing, not satisfactory and situations in which the information is too rich,
contradictory, conflictual, ambiguous”. Indeed, stating that P (u, v) = 0 may
either mean that u (definitely) is not preferred to v, or simply that there is no
information to establish a preference of u over v, and there is no unambiguous
way for a decision maker to distinguish between the two situations. For this
reason, several researchers have considered more elaborate means of eliciting
and representing preferences. In particular, Belnap’s logic FOUR [7, 8], and
some of its extensions, built around the truth values ‘true’, ‘false’, ‘unknown’
and ‘contradiction’, had immediate and intuitive appeal, and were taken as the
basis for the approaches in [21, 24, 27, 28, 29]. However, we found that many
of these approaches lack a proper way of representing the preferences, and as a
consequence no solid analysis tools nor clear strategies for decision making under
incomplete and/or conflicting information are available to the reasoner in such
cases.

The goal of this paper is to overcome this shortcoming. For this, we consider
a certain family of algebraic structures, called bilattices [18, 22] that encapsulate
and refine Belnap’s FOUR, and that serve here as a representation platform. We
demonstrate the real expressive power of these structures, and in particular of
the ‘two-dimensional’ measurements induced by their dual orderings, in describ-
ing and modeling imprecise preferences. As such, the material presented in this
paper is not a ‘new’ approach to preference modeling, but rather a clarification,
simplification and streamlining of existing ones.

The remainder of this paper is organized as follows: in Section 2, we re-
call important preliminary notions about bilattices and their role in uncertainty
modeling. Section 3 contains our novel analysis of preference modeling by rectan-
gular bilattices; it exhibits the drawbacks of existing approaches, and describes
how they can be mended. In Section 4 we conclude.

2 Preliminaries

2.1 Bilattices

Definition 1. A bilattice [22] is a triple B = (B,≤t,≤k), where B is a nonempty
set containing at least two elements, and (B,≤t), (B,≤k) are complete lattices.1

1 Structures that meet this definition are sometimes called pre-bilattices. In such cases
the notion ‘bilattices’ is reserved for some particular type of pre-bilattices which is
determined according to the way the two partial orders are related; see Definition 2.
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The two partial orders ≤t and ≤k of bilattices intuitively represent differ-
ences in the degree of truth and in the amount of knowledge/information (respec-
tively), conveyed by the assertions. In the sequel, following the usual notations
for the basic bilattice operations, we shall denote by ∧ (respectively, by ∨) the
≤t-meet (the ≤t-join) and by ⊗ (respectively, by ⊕) the ≤k-meet (the ≤k-join)
of B. While the meaning of ∧ and ∨ corresponds to the standard logical role
of these operators, the intuition behind ⊗ and ⊕ is somewhat less transparent.
Fitting [19] calls them consensus and gullibility operations, respectively, to in-
dicate that x⊗ y is the most information ‘agreed’ upon by x and y, while x⊕ y
includes everything accepted by at least one of x and y.

We denote by f and t the ≤t-extreme elements, and ⊥, � denote the ≤k-
extreme elements of B. Intuitively, these elements can be perceived as ‘false’,
‘true’, ‘unknown’ (i.e., neither true nor false) and ‘contradictory’ (both true and
false), respectively. Thus, for instance, f ≤t ⊥ since the ‘degree of truth’ of a
statement which is known to be false is smaller than that of a statement about
which there is no information whatsoever. On the other hand, ⊥ ≤k f , since
knowing that a statement is false is more informative than knowing nothing at
all about it.

Clearly, the more interesting forms of bilattices are those in which the two
partial orders are related in one way or another. Below are some common types
of such relations:

Definition 2. Let B = (B,≤t,≤k) be a bilattice.

– B is called distributive [22] if all the (twelve) possible distributive laws con-
cerning ∧, ∨, ⊗, and ⊕ hold (for instance, a ∧ (b ⊕ c) = (a ∧ b)⊕ (a ∧ c)).

– B is called interlaced [17] if each one of ∧, ∨, ⊗, and ⊕, is monotonic with
respect to both ≤t and ≤k (for instance, if a ≤k b then a ∧ c ≤k b ∧ c).

– B is a bilattice with a negation [22] if there exists a unary operation ¬
satisfying, for every x, y in B, (1) ¬¬x = x, (2) if x ≤t y then ¬x ≥t ¬y,
and (3) if x ≤k y then ¬x ≤k ¬y.

Originally, Ginsberg considered bilattices with negations. In this case a negation
is an involution with respect to the lattice (B,≤t) and an order preserving
operation of the lattice (B,≤k). In such cases it is easy to see that ¬f = t,
¬t = f , ¬⊥ = ⊥, and ¬� = �. Following Ginsberg, Fitting introduced the
family of interlaced bilattices and showed their usefulness in the context of logic
programming (see e.g. [17, 18, 19]). It is easy to verify that distributive bilattices
are also interlaced. In the context of fuzzy sets, interlaced bilattices have been
considered, e.g., in [11].

Example 1. Figure 1 in Section 2.3 depicts double-Hasse diagrams of a four-
valued bilattice and a nine-valued bilattice. It is easy to verify that both these
bilattices are distributive, interlaced, and each one has a negation operator ob-
tained by switching the components of the truth values, that is: ¬(x, y) = (y, x).
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2.2 Rectangular Bilattices

Definition 3. Let L = (L,≤L) and R = (R,≤R) be two complete lattices. A
rectangular bilattice, shortly rectangle, is a structure L�R = (L×R,≤t,≤k),
where, for every x1, y1 ∈ L and x2, y2 ∈ R,

(1) (x1, x2) ≤t (y1, y2)⇔ x1 ≤L y1 and x2 ≥R y2,
(2) (x1, x2) ≤k (y1, y2)⇔ x1 ≤L y1 and x2 ≤R y2.

We say that a structure is rectangular if it is isomorphic to a rectangular bilat-
tice. An element (x1, x2) of a rectangle L�R may intuitively be understood such
that x1 represents the amount of belief for some assertion, and x2 is the amount
of belief against it. In the context of fuzzy sets, this corresponds to Atanassov’s
theory of intuitionistic fuzzy sets [5], which extends standard fuzzy set theory
so that any element u in a universe U is assigned not only a membership de-
gree, μA(u), but also a non-membership degree νA(u), where both degrees are
drawn from the unit interval [0, 1] and satisfy the condition μA(u) + νA(u)≤1.
Rectangular bilattices generalize this idea by not imposing the latter condition,
by considering arbitrary lattices (not only the unit interval), and by defining the
membership function and the non-membership function over potentially different
ranges .

Denote the join and meet operations of a complete lattice L = (L,≤L) by
∧L and ∨L, respectively. Then, for every x1, y1 in L and x2, y2 in R, we have

(x1, x2) ∧ (y1, y2) = (x1 ∧L y1, x2 ∨R y2),
(x1, x2) ∨ (y1, y2) = (x1 ∨L y1, x2 ∧R y2),
(x1, x2)⊗ (y1, y2) = (x1 ∧L y1, x2 ∧R y2),
(x1, x2)⊕ (y1, y2) = (x1 ∨L y1, x2 ∨R y2),

Moreover, denoting 0L = inf L and 1L = sup L, it holds that

⊥L�R = (0L, 0R), �L�R = (1L, 1R), tL�R = (1L, 0R), fL�R = (0L, 1R).

It is easy to verify that a rectangular bilattice is indeed a bilattice (in the
sense of Definition 1). The next proposition summarizes some basic properties
of rectangular bilattices and shows their central role in the theory of bilattices:

Proposition 1.

a) [17] Every rectangular bilattice is interlaced.
b) [6] Every interlaced bilattice is rectangular.
c) [22] If L and R are distributive lattices then L�R is a distributive bilattice.
d) [17, 22] Every distributive bilattice is isomorphic to L �R for some distrib-

utive lattices L and R.

In the context of item (b) of the proposition above, it is interesting to
note that every interlaced bilattice B = (B,≤t,≤k) is isomorphic to L � R,
where L = ({x | x ≥t ⊥}, ≤k) and R = ({x | x ≤t ⊥}, ≤k). These lattices are
unique up to an isomorphism (see [6]). The same lattices may be used for item
(d) of the proposition, together with the observation that if B is a distributive
bilattice, then L and R are necessarily distributive lattices.
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2.3 Squares

An important family of rectangular bilattices are those in which L and R co-
incide. These bilattices are called squares [3, 4, 12, 15] and L � L is abbreviated
by L2. The squares that are obtained by the two-valued and the three-valued
chains are shown in Figure 1. In the literature, these structures are commonly
referred to as FOUR (after Belnap’s [7, 8] original four-valued logic) andNINE
(see e.g. [1, 2]), respectively. An example of a square with an infinite amount of
elements is ([0, 1],≤)2. In the context of fuzzy set theory, the ≤t–ordering of this
square is studied in [12, 15] and its ≤k–ordering is considered in [14].
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Fig. 1. The squares {0, 1}2 and {0, 1
2 , 1}2

Again, it is easy to verify that every square L2 is interlaced, and that it is
distributive when L is distributive. The following proposition shows that the
converse is also true.

Proposition 2. [6] Every interlaced bilattice with a negation is isomorphic to
a square, equipped with a negation ¬ defined, for every x, y in L, by ¬(x, y) =
(y, x). 2

A detailed investigation of squares and the graded versions of the logical con-
nectives that can be defined on them appears in [4, 10]. As shown in [3, 4], the
evaluation structure of intuitionistic fuzzy sets is equal to the substructure of the
consistent elements of the square ([0, 1],≤)2, i.e., the elements (x, y) that satisfy
the condition x+y ≤ 1. In [3, 4] it is also shown that squares are a generalization
to arbitrary complete lattices (not only the unit interval) of interval-valued fuzzy
sets [16, 23, 26, 30], an alternative method of extending fuzzy set theory, moti-
vated by the need to replace crisp, [0, 1]-valued membership degrees by intervals
in [0, 1] that approximate the (unknown) membership degrees.
2 Note that by the fact that every distributive lattices is also interlaced, this proposi-

tion holds in particular for distributive bilattices with a negation.
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3 Modeling Imprecise Preference Information

In a number of recent papers (e.g. [21, 24, 27, 28, 29]), the use of a four-valued
logic called DDT (derived from Belnap’s original proposal) and some of its graded
extensions has been advocated as a means of dealing with the task of prefer-
ence modeling under incomplete and/or conflicting information. In all of the
mentioned papers, bilattice theory per se plays only a subservient role as the
convenient ‘language’ for modeling positive and negative preference arguments
separately, and for representing the associated epistemic states of truth, falsity,
ignorance and contradiction. By contrast, the aim of this section is to demon-
strate and exploit the full expressive power of rectangular bilattices, and of
squares in particular, for preference modeling.

3.1 Encoding the Evidence

The problem at hand is that of ranking a (finite) set U of alternatives from
the best to the worst, with respect to a number of given criteria. In order to
do this, we assume that partial information is available regarding the pairwise
comparison of alternatives. In binary preference modeling, it is common to ex-
press such information by means of a two-valued outranking relation S in U (see
e.g. [25]), where S(u, v) = 1 is read as “(there is evidence that) u is at least
as good as v”. Such an approach can be criticized for lack of expressivity, since
explicit evidence that u is not at least as good as v could only be captured by
imposing S(v, u) = 1.3 Yet, as Fortemps and S�lowiński argue in [21], arguments
in disfavour of a sentence are not necessarily identical to arguments in favour of
the opposite sentence!

For this reason, in [29] Tsoukiàs and Vincke propose to distinguish between
positive and negative arguments regarding the claim ‘u is at least as good as v’
(u ≥ v, for short). Essentially, this amounts to defining the outranking relation
S as a mapping from U2 to {0, 1}2, where the value of the first (respectively,
the second) component of S(u, v) reveals the presence of arguments in favour
(respectively, in disfavour) of u ≥ v. Clearly, this intuition fits our framework,
and Belnap’s square FOUR can be used to endow {0, 1}2 with an attractive
epistemic structure in terms of truth-hood (the ≤t-ordering: from only evidence
against, to only evidence for the claim) and of available information (the ≤k-
ordering: from ignorance to conflict).

Definition 4. For ease of notation, in what follows we shall abbreviate T for
(1, 0), F for (0, 1), U for (0, 0), and K for (1, 1), to be read as true, false, unknown
and contradiction, respectively.

Of course, nothing stands in the way of generalizing this framework by allowing
for graded evidence. For instance, in [21] and [24] the square induced by the
unit interval L = ([0, 1],≤) was investigated. In general, S can be a mapping

3 Note that S(u, v) = 0 means that there is no evidence that u is at least as good as
v, which is obviously different than claiming that u is not at least as good as v.
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from U2 to some rectangular bilattice L�R, reflecting that positive and negative
arguments may be evaluated according to two different scales.

3.2 Representing the Preferences

Once the various outranking arguments have been provided, the objective then is
to present the decision maker with as close to reality and transparent as possible
a rendering of the actual state of affairs. In conventional preference modeling
(i.e., when S(u, v) ∈ {0, 1}), a ‘decision’ concerning two alternatives u and v can
take four forms:

1. u is (strictly) preferred over v if S(u, v) = 1 and S(v, u) = 0,
2. v is (strictly) preferred over u if S(u, v) = 0 and S(v, u) = 1,
3. u and v are indifferent if S(u, v) = 1 and S(v, u) = 1,
4. u and v are incomparable if S(u, v) = 0 and S(v, u) = 0.

Evidently, all possible situations are covered in this way. Accordingly, one can
build three binary relations P (strict preference, corresponding to case 1 and 2),
I (indifference, corresponding to case 3) and R (incomparability, corresponding
to case 4), such that U2 = P ∪ P−1 ∪ I ∪ R. It is also said that 〈P, I, R〉 is a
classical preference structure; it is easy to see that it determines S unequivocally,
and vice versa; weakened versions emerge when S becomes a fuzzy relation, a
theme explored in e.g. [20, 31, 32]. In what follows, we study the bilattice-valued
generalizations of this framework.

A crisp four-valued approach. Let first S be a mapping from U2 to {0, 1}2.
Each couple of alternatives (u, v) corresponds to a couple (S(u, v), S(v, u)) in
({0, 1}2)2. For notational ease, and in order to enhance the clarity of the ex-
position, we shall abbreviate these couples by simply juxtaposing the two let-
ters corresponding to their evaluations. For instance, FK represents the element
((0, 1), (1, 1)) that exhibits a situation in which there are only negative arguments
for u ≥ v and conflicting (both positive and negative) arguments for v ≥ u.

Note 1. In [27, 28, 29], essentially the same representation, albeit in a more com-
plicated form, is obtained by defining, for every u, v in U ,

ΔS(u, v) = 1 ⇔ S(u, v) = (1, x) for some x in {0, 1}
read as, “there is presence of truth in saying that u is at least as good as v”, and
consequently introducing the so-called true, false, contradictory and unknown
extensions4 of the formula S(u, v) by, respectively,

TS(u, v) = 1⇔ ΔS(u, v) = 1 and ΔS(v, u) = 0 (1)
FS(u, v) = 1⇔ ΔS(u, v) = 0 and ΔS(v, u) = 1 (2)
US(u, v) = 1⇔ ΔS(u, v) = 0 and ΔS(v, u) = 0 (3)
KS(u, v) = 1⇔ ΔS(u, v) = 1 and ΔS(v, u) = 1 (4)

In our notations FK denotes the case where FS(u, v) = 1 and KS(v, u) = 1.
4 These are actually two-valued predicates; in [21] T, F, U and K are called strong

unary operators.
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Thus, a decision maker is confronted with any of sixteen (instead of four)
possible situations involving the alternatives u and v. As the prime determina-
tion is to try to rank the alternatives, it is worthwhile to endow those various
situations with some meaningful structure, and it turns out that bilattices can
go a long way in doing just that.

Indeed, starting from the≤t-ordering onFOUR, we can construct a bilattice-
based square on top of ({0, 1}2)2 with the following two orderings:

– (x1, x2) ≤t (y1, y2)⇔ x1 ≤t y1 and x2 ≥t y2.
Intuitively, if (x1, x2) = (S(u, v), S(v, u)) and (y1, y2) = (S(u′, v′), S(v′, u′)),
then (x1, x2) ≤t (y1, y2) expresses that the extent to which u is preferred
over v is less than the extent to which u′ is preferred over v′. The smallest
element is FT (it is not true that u ≥ v, while it is true that u ≤ v) and the
biggest one is TF (u ≥ v and not v ≥ u).

– (x1, x2) ≤k (y1, y2)⇔ x1 ≤t y1 and x2 ≤t y2.
This ordering ranges between a state of incomparability (FF) and one of
indifference (TT).

Starting from the ≤k-ordering on FOUR we can define two other orderings
on ({0, 1}2)2 as follows:

– (x1, x2) ≤′
t (y1, y2)⇔ x1 ≤k y1 and x2 ≥k y2.

Intuitively, if (x1, x2) = (S(u, v), S(v, u)) and (y1, y2) = (S(u′, v′), S(v′, u′)),
then x1 ≤k y1 means that we know less about u ≥ v than about u′ ≥ v′,
and x2 ≥k y2 means that we know more about u ≤ v than about u′ ≤ v′.
So, the bigger (x1, x2) according to this ordering, the more we know about
u ≥ v and the less we know about u ≤ v.

– (x1, x2) ≤′
k (y1, y2)⇔ x1 ≤k y1 and x2 ≤k y2.

This ordering marks the amount of information at our disposition: from a
shortage of information (UU) to an excess (KK).

Note 2. In [28, 29], the authors present a dictionary-style solution to discriminate
among the sixteen states, giving concrete names and explanations to each one
of them. For instance, TF is called ‘strict preference of u over v’, KF in their
terms is ‘weak preference of u over v’, etc. This approach, apart from being
tedious, is also misleading. As an example, in their approach (as in ours) FF
means that u and v are incomparable, whereas UU is read as “u and v are semi
incomparable”, and FU as “u and v are weakly incomparable”. Such terminology
implies an inaccurate description of the state of affairs, since

a) the element UU bears no mark of incomparability whatsoever, and
b) referring to ≤k, the elements UF, FK and KF could claim the status of rep-

resenting ‘weak incomparability’ with just as much justification as FU.

By contrast, the four order relations considered above serve to discriminate much
more naturally, and without bias, among the sixteen states, positioning each
state along four scales of measurement.
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Extensions to arbitrary (possibly continuous) rectangular bilattices.
Another important advantage of our approach is that it can be straightforwardly
generalized to graded evidence without the need for additional parameters . In-
deed, the four orderings ≤t, ≤k, ≤′

t, and ≤′
k can equally be defined on L � R

for any complete lattices L = (L,≤L) and R = (R,≤R). The orderings present
the decision maker with a rather complete picture of the situation; depending
on the underlying goals and attitudes, he or she may exploit the information in
various ways.

Consider, for instance, the bilattice ([0, 1]2)2 together with, e.g., the normal-
ized Euclidean distance function. For any value (S(u, v), S(v, u)) one can measure
its distance to the external elements of each order. Such distances give graded in-
formation which is often more helpful for the decision maker than just the order-
ings themselves. For example, when (S(u, v), S(v, u)) = ((0.1, 0.77), (0.25, 0.41)),
the distance to FT is 0.44 and the distance to TF is 0.67, which indicates a prefer-
ence of v over u. Likewise, the distances 0.62 and 0.52 to UK and KU respectively
may indicate that the amount of available information is greater for “v ≥ u” than
for “u ≥ v”.

Note also that, as shown in Figure 2 (see the diagram on the bottom-left
side), the distance to FT (respectively, to TF) of each one of KT, UT, FU, FK, is
1/2 (respectively,

√
3/2), while the distance to FT (to TF) of TK, TU, UF, KF,

is
√

3/2 (respectively, 1/2). This can be interpreted as follows: the elements on
the middle layer do not give any evidence that u ≥ v or u ≤ v, the elements on
the second layer from below give more evidence that u ≤ v, and the elements on
the fourth layer provide more evidence that u ≥ v. As Figure 2 shows, similar
layered structures and distance values are also induced by the other orders (see
the bottom-right side of this figure for ≤k, the top-left side for ≤′

t, and the
top-right side for ≤′

k).
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Fig. 2. Euclidean distances to the extreme elements of ≤t (bottom left), ≤k (bottom
right), ≤′

t (top left), and ≤′
k(top right)
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Figure 2 reveals a nice symmetry among the four diagrams: there are eight
external elements each corresponding to a ‘definite’ state of affairs (TF and
FT: strict preference; TT: indifference; FF: incomparability; KK, UU, UK, KU:
information defect) and the eight remaining ones which float somewhat between
the extremes (they are always in second or the fourth layer). Note also that the
middle layer of each diagram always contains the six other external elements.

As the next proposition shows, the four order relations considered above pre-
serve these distance considerations for every element of the underlying bilattice:

Proposition 3. Let � be any one of the above four orders (≤t, ≤k, ≤′
t, ≤′

k) on
([0, 1]2)2, and let d be the Euclidean distance function on it. Denote by 0 and 1
the �-minimal element and the �-maximal element, respectively. For every u, v
in ([0, 1]2)2, if u � v then d(0, u) ≤ d(0, v) and d(u, 1) ≥ d(v, 1).

Proof. We shall show the claim for ≤t and its minimal element FT; the other
cases are similar.

Let u = (x1, x2) and v = (y1, y2). If u ≤t v then x1 ≤t y1 and x2 ≥t y2, which
means that d(F, x1) ≤ d(F, y1) and d(T, x2) ≤ d(T, y2). Thus, d(FT, (x1, x2)) =
1
2

√
d(F, x1)2 + d(T, x2)2 ≤ 1

2

√
d(F, y1)2 + d(T, y2)2 = d(FT, (y1, y2)). �

The above representation stands in sharp contrast to existing work relying on the
conventions described in Note 1. Indeed, devising graded versions of the predi-
cates T, F, U and K requires an explicit choice of how to model the conjunction
in the right-hand sides of their defining equalities (1)–(4). In [21] and [24], two
different choices involving different t-norms on the unit interval are put forward,
each elaborately justified in its own terms. As our exposition reveals, however,
this effort is altogether superfluous since it can be avoided by working with the
original outranking information. As we have shown, rectangular bilattices offer
a simple and natural way of encoding this information, even in cases that the
argument in favour of a certain preference and the argument in disfavour of that
preference are specified in terms of different ranges.

4 Conclusion

In this paper we introduced a simple and generic solution strategy for model-
ing imprecise preference information, taking advantage of the new opportunities
offered by bilattice-based structures. The ‘traditional’ approach of evaluating
membership functions by values that are arranged in one (and usually total)
order, is replaced here by more expressive ‘two-dimensional’ measurements that
reflect different interpretations of the underlying orderings, which may be ap-
plied simultaneously. Our approach exploits the order-theoretical ingredients of
bilattice theory, and puts existing approaches of preference modeling into a sim-
ple and unified perspective. This work therefore demonstrates the applicative
aspects of our study on bilattice-based fuzzy sets [3, 4, 10] and vindicates our
claim that these structures provide a natural and attractive framework for the
representation of uncertain and potentially conflicting information.



32 O. Arieli, C. Cornelis, and G. Deschrijver

References

1. O. Arieli and A. Avron. Reasoning with logical bilattices. Journal of Logic, Lan-
guage, and Information, 5(1):25–63, 1996.

2. O. Arieli and A. Avron. Bilattices and paraconsistency. In D. Batens, C. Mortensen,
G. Priest, and J. Van Bendegem, editors, Frontiers of Paraconsistent Logic, pages
11–27. Research Studies Press, 2000.

3. O. Arieli, C. Cornelis, G. Deschrijver, and E. E. Kerre. Relating intuitionistic fuzzy
sets and interval-valued fuzzy sets through bilattices. In D. Ruan, P. D’Hondt,
M. De Cock, M. Nachtegael, and E. E. Kerre, editors, Applied Computational
Intelligence, pages 57–64. World Scientific, 2004.

4. O. Arieli, C. Cornelis, G. Deschrijver, and E. E. Kerre. Bilattice-based squares
and triangles. In L. Godo, editor, Proc. 8th European Conf. on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’05), volume
3571 of Lecture Notes on Artificial Intelligence, pages 563–575. Springer, 2005.

5. K. T. Atanassov. Intuitionistic fuzzy sets, 1983. VII ITKR’s Session, Sofia (deposed
in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).

6. A. Avron. The structure of interlaced bilattices. Journal of Mathematical Struc-
tures in Computer Science, 6:287–299, 1996.

7. N. D. Belnap. How a computer should think. In G. Ryle, editor, Contemporary
Aspects of Philosophy, pages 30–56. Oriel Press, 1977.

8. N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors,
Modern Uses of Multiple-Valued Logic, pages 7–37. Reidel Publishing Company,
1977.

9. R. Brafman and U. Junker, editors. Multidisciplinary IJCAI-05 Workshop on
Advances in Preference Handling. 2005. The proceedings is available online at
http://wikix.ilog.fr/wiki/bin/view/Preference05/WebHome.

10. C. Cornelis, O. Arieli, G. Deschrijver, and E. E. Kerre. Uncertainty modeling
by bilattice-based squares and triangles. IEEE Transactions on Fuzzy Sets and
Systems, 2006. Accepted.

11. C. Cornelis, K. T. Atanassov, and E. E. Kerre. Intuitionistic fuzzy sets and interval-
valued fuzzy sets: a critical comparison. In M. Wagenknecht and R. Hampel,
editors, Proc. 3rd Int. Conf. in Fuzzy Logic and Technology (EUSFLAT’03), pages
159–163, 2003.

12. C. Cornelis, G. Deschrijver, and E. E. Kerre. Square and triangle: reflections on two
prominent mathematical structures for the representation of imprecision. Notes on
Intuitionistic Fuzzy Sets, 9(3):11–21, 2003.

13. B. De Baets, M. Delgado, J. Fodor, F. Herrera, E. Herrera-Viedma, and L. Mar-
tinez, editors. International Journal of Intelligent Systems, volume 18(7). 2003.
Special issue on preference modeling and applications.

14. B. De Baets and R. Mesiar. Triangular norms on product lattices. Fuzzy Sets and
Systems, 104(1):61–75, 1999.

15. G. Deschrijver, C. Cornelis, and E. E. Kerre. Square and triangle: a compari-
son. In Proc. Conf. on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU’04), pages 1389–1396, 2004.

16. F. Esteva, P. Garcia, and L. Godo. Enriched interval bilattices and partial many-
valued logics: an approach to deal with graded truth and imprecision. Uncertainty,
Fuzziness and Knowledge-based Systems, 2(1):37–54, 1994.

17. M. Fitting. Bilattices in logic programming. In G. Epstein, editor, Proc. 20th
International Symposium on Multiple-Valued Logic, pages 238–246, 1990.



Preference Modeling by Rectangular Bilattices 33

18. M. Fitting. Kleene’s logic, generalized. Journal of Logic and Computation, 1:797–
810, 1992.

19. M. Fitting. Kleene’s three-valued logics and their children. Fundamenta Informat-
icae, 20:113–131, 1994.

20. J. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision
Support. Kluwer, 1994.
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Abstract. Multiperson decision making problems involve using the pref-
erences of some experts about a set of alternatives in order to find the
best of those alternatives. However, sometimes experts cannot give all the
information that they are required. Particularly, when dealing with fuzzy
preference relations they can avoid giving some of the preference values
of the relation. In the literature these incomplete information situations
have been faced giving procedures which are able to compute missing
information from the preference relations. However, these approaches
usually need at least a piece of information about every alternative in
the problem. In this paper, several strategies to manage total ignorance
situations, that is, situations where an expert does not provide any in-
formation on at least one alternative are presented, and their advantages
and disadvantages analised.

Keywords: Ignorance, Incomplete Information, Consistency, Multiper-
son Decision Making, Fuzzy Preference Relations.

1 Introduction

Multiperson decision-making (MPDM) consists of multiple individuals (usually
experts) E = {e1, ..., em} interacting to reach a decision. Each expert may have
unique motivations or goals and may approach the decision process from a dif-
ferent angle, but have a common interest in reaching eventual agreement on se-
lecting the best solution(s) to the problem to be solved [4, 12]. Fuzzy preference
relations are commonly used to represent decision makers’ preferences over the
set of possible alternative solutions X = {x1, ..., xn}, (n ≥ 2) [2, 5, 6, 7, 16, 17].

In many cases, some experts may not have a “perfect” knowledge of the
problem to be solved [3, 9, 10, 11, 18]. For example, an expert might not possess
a precise or sufficient level of knowledge of part of the problem or might be
unable to discriminate the degree to which some options are better than others.
In such cases, an expert would not be able to efficiently express any kind of
preference degree between two or more of the available options, an therefore the
fuzzy preference relation provided is incomplete [3, 18]. Therefore, it would be
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of great importance to provide these experts with appropriate tools that allow
them to overcome this lack of knowledge in their opinions.

Two different kinds of incomplete information in a MPDM can be identified:

– Partial incomplete information. In this case at least one expert does not
provide all possible preference degrees over the set of alternatives, but pro-
vides information on his/her preferences in which every alternative is at least
compared once against one of the rest of alternatives.

– Total incomplete information. In this case at least one expert does not pro-
vide all possible preference degrees over the set of alternatives, and provides
information on his/her preferences in which at least one alternative is not
compared against any one of the rest of alternatives. We call this an igno-
rance situation.

Some attention has been paid to the case of partial incomplete information
[1, 3, 18]. However, as far as we know, no study has been yet published on MPDM
problem with total incomplete information. This paper presents several possible
strategies to manage ignorance situations in MPDM problems: ad-hoc strategies
and consistency guided strategies. We analyse both their advantages and disad-
vantages and illustrate their application by examples. To model the consistency
property we use the additive transitivity property proposed by Tanino in [16].

The rest of the paper is set out as follows. Section 2 presents notation and
concepts needed throughout the papers. In section 3 we present a general consis-
tency based procedure to estimate unknown preferences values in an incomplete
fuzzy preference relation. Section 4 presents several strategies to manage igno-
rance situations in MPDM problems. Advantages and disadvantages associated
to each one of these strategies are discussed in section 5. Finally, our concluding
remarks will be pointed out in Section 6.

2 Preliminaries

Fuzzy preference relations are commonly used to represent decision makers’ pref-
erences over the set of possible alternative solutions X = {x1, ..., xn}, (n ≥ 2)
[2, 5, 6, 7, 8, 13, 16, 17].

Definition 1. A Fuzzy Preference Relation (FPR) P on a set of alternatives X
is a fuzzy set on the product set X×X , i.e., it is characterized by a membership
function μP : X ×X −→ [0, 1].

When cardinality of X is small, the preference relation may be conveniently
represented by the n × n matrix P = (pik), being pik = μP (xi, xk) (∀i, k ∈
{1, . . . , n}) interpreted as the preference degree or intensity of the alternative xi

over xk: pik = 1/2 indicates indifference between xi and xk (xi ∼ xk), pik = 1
indicates that xi is absolutely preferred to xk, and pik > 1/2 indicates that xi

is preferred to xk (xi � xk). Based on this interpretation we have that pii =
1/2 ∀i ∈ {1, . . . , n} (xi ∼ xi).

Since each expert is characterized by his/her own personal background and
experience of the problem to be solved, experts’ opinions may differ substantially
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(there are plenty of educational and cultural factors that influence an expert’s
preferences). This diversity of experts could lead to situations where some of
them would not be able to efficiently express any kind of preference degree
between two or more of the available options. Indeed, this may be due to an
expert not possessing a precise or sufficient level of knowledge of part of the
problem, or because that expert is unable to discriminate the degree to which
some options are better than others. We must note that an expert which is not
able to provide a particular preference value pik does not necessarily imply that
he/she is indifferent between both xi and xk alternatives, that is, we cannot
directly suppose that pik = 0.5.

2.1 Incomplete Fuzzy Preference Relations

Usually, we assume that experts are always able to provide all the preferences
required, that is, to provide all pik values. However, this may not always be
the case, and experts end providing an incomplete fuzzy preference relations
[1, 18]. In the following definitions we express the concept of an incomplete fuzzy
preference relation:

Definition 2. A function f : X −→ Y is partial when not every element in the
set X necessarily maps onto an element in the set Y . When every element from
the set X maps onto one element of the set Y then we have a total function.

Definition 3. [1] An Incomplete Fuzzy Preference Relation P on a set of alter-
natives X is a fuzzy set on the product set X × X that is characterized by a
partial membership function.

When a particular preference value pik is not given by an expert we will note
pik = x and we will call it a missing value.

From a particular incomplete fuzzy preference relation Ph we define the fol-
lowing sets [1]:

A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i 
= j}
MVh =

{
(i, j) ∈ A | ph

ij = x
}

EVh = A \MVh

EV i
h = {(a, b) | (a, b) ∈ EVh ∧ (a = i ∨ b = i)}

where MVh is the set of pairs of alternatives for which the preference degree of
the first alternative over the second one is not given by expert eh, that is, the
set of missing values of the expert eh, EVh is the set of pairs of alternatives for
which the expert eh provides preference values (we call it the expert values for
eh) and EV i

h is the set of preferences about pairs of alternatives given by an
expert eh involving alternative xi.

2.2 Consistency Property

The definition of a preference relation does not imply any kind of consistency
property. In fact, the values of a preference relation may be contradictory. Con-
sistency is usually characterised by transitivity, which represents the idea that



Strategies to Manage Ignorance Situations in Multiperson Decision 37

the preference value obtained by directly comparing two alternatives should be
equal to or greater than the preference value between these two alternatives
obtained using an indirect chain of alternatives.

One of the properties suggested to model the concept of transitivity in the
case of fuzzy preference relations is the additive transitivity property [16]:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k ∈ {1, . . . , n}
or equivalently:

pik = pij + pjk − 0.5 ∀i, j, k ∈ {1, . . . , n} (1)

As shown in [6], additive transitivity for fuzzy preference relations can be seen as
the parallel concept of Saaty’s consistency property for multiplicative preference
relations [14].

This kind of transitivity has the following interpretation: suppose we want to
establish a ranking between three alternatives xi, xj and xk, and that the infor-
mation available about these alternatives suggests that we are in an indifference
situation, i.e. xi ∼ xj ∼ xk. When giving preferences this situation would be
represented by pij = pjk = pik = 0.5. Suppose now that we have a piece of
information that says xi ≺ xj , i.e. pij < 0.5. This means that pjk or pik have
to change, otherwise there would be a contradiction, because we would have
xi ≺ xj ∼ xk ∼ xi. If we suppose that pjk = 0.5 then we have the situation:
xj is preferred to xi and there is no difference in preferring xj to xk. We must
then conclude that xk has to be preferred to xi. Furthermore, as xj ∼ xk then
pij = pik, and so (pij − 0.5) + (pjk − 0.5) = (pij − 0.5) = (pik − 0.5). We have
the same conclusion if pik = 0.5. In the case of pjk < 0.5, then we have that xk

is preferred to xj and this to xi, so xk should be preferred to xi. On the other
hand, the value pik has to be equal to or lower than pij , being equal only in the
case of pjk = 0.5 as we have already shown. Interpreting the value pji − 0.5 as
the intensity of preference of alternative xj over xi, then it seems reasonable to
suppose that the intensity of preference of xi over xk should be equal to the sum
of the intensities of preferences when using an intermediate alternative xj , that
is, pik − 0.5 = (pij − 0.5) + (pjk − 0.5). The same reasoning can be applied in
the case of pjk > 0.5.

3 Consistency Based Procedure to Estimate Missing
Values in Incomplete Fuzzy Preference Relations

Given a complete fuzzy preference relation, expression 1 can be used to calculate
an estimated value cpik for every pik as follows:

cpik =

∑n
j=1;i�=k �=j cpj1

ik + cpj2
ik + cpj3

ik

3(n− 2)
(2)

where cpj1
ik , cpj2

ik , cpj3
ik are directly obtained from expression 1, and the fact that

additive transitivity implies reciprocity (pik = 1− pki ∀i, k):

cpj1
ik = pij + pjk − 0.5, (3)
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cpj2
ik = pjk − pji + 0.5, (4)

cpj3
ik = pij − pkj + 0.5 (5)

When working with an incomplete fuzzy preference relation, the previous ex-
pressions cannot be directly applied, as some of the preference values used in
the expressions may be unknown. However, an iterative procedure to estimate
these unknown or missing values can be derived from the above expressions. The
following two different tasks have to be carried out:

A) Establish the elements that can be estimated in each step of the procedure,
and

B) produce the particular expression that will be used to estimate a particular
missing value.

A) Elements to be estimated in step h. The subset of missing values MV
that can be estimated in step h of our procedure is denoted by EMVh (estimated
missing values) and defined as follows:

EMVh =

{
(i, k) ∈MV \

h−1⋃
l=0

EMVl | i 
= k ∧ ∃j ∈ {H1
ik ∪H2

ik ∪H3
ik}

}

with

H1
ik =

{
j | (i, j), (j, k) ∈ {EV

h−1⋃
l=0

EMVl}
}

H2
ik =

{
j | (j, i), (j, k) ∈ {EV

h−1⋃
l=0

EMVl}
}

H3
ik =

{
j | (i, j), (k, j) ∈ {EV

h−1⋃
l=0

EMVl}
}

and EMV0 = ∅ (by definition). When EMVmaxIter = ∅ with maxIter > 0 the
procedure will stop as there will not be any more missing values to be estimated.

Moreover, if
maxIter⋃

l=0

EMVl = MV then all missing values are estimated, and

consequently, the procedure is said to be successful in the completion of the
incomplete fuzzy preference relation.

B) Expression to estimate a particular value pik in step h. In order to
estimate a particular value pik with (i, k) ∈ EMVh, we propose the application
of the following function:
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function estimate p(i,k)

1. cp1
ik = 0, cp2

ik = 0, cp3
ik = 0, K = 0

2. if #H1
ik 
= 0 ⇒ cp1

ik =

∑
j∈H1

ik

cpj1
ik

#H1
ik

; K + +.

3. if #H2
ik 
= 0 ⇒ cp2

ik =

∑
j∈H2

ik

cpj2
ik

#H2
ik

; K + +.

4. if #H3
ik 
= 0 ⇒ cp3

ik =

∑
j∈H3

ik

cpj3
ik

#H3
ik

; K + +.

5. Calculate cpik = 1
K
(
cp1

ik + cp2
ik + cp3

ik

)
end function

The function estimate p(i, k) computes the final estimated value of the miss-
ing value, cpik, as the average of all estimated values that can be calculated using
all the possible intermediate alternatives xj and using the three possible expres-
sions (3–5).

Then, the iterative estimation procedure pseudo-code is as follows:

ITERATIVE ESTIMATION PROCEDURE
0. EMV0 = ∅
1. h = 1
2. while EMVh 
= ∅ {
3. for every (i, k) ∈ EMVh {
4. estimate p(i,k)
5. }
6. h + +
7. }

This procedure is able to estimate all the missing values for a given incomplete
fuzzy preference relation if a set of n− 1 non-leading diagonal preference values
where each one of the alternatives is compared at least once is known [1]. That
means that partial incomplete MPDM problems can be successfully solved using
this procedure. However, the only application of this procedure does not solve
MPDM problem with total incomplete information. The rest of the paper is
devoted to the study of some possible strategies to tackle these situations.

4 Strategies to Manage Ignorance Situations in Decision
Making Problems

As per the notation introduced in section 2, an ignorance situation in MPDM
problems is defined as follows:
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Definition 4. In a MPDM problem with a set of alternatives X = {x1, ..., xn}
and a group of experts E = {e1, ..., em} which provide a set of incomplete fuzzy
preference relations {P1, ..., Pm}, we have a ignorance situation if

∃ (h, i) | EV i
h = ∅,

that is, at least one of the experts (eh) does not provide any preference value
involving a particular alternative (xi). We will call xi the “unknown alternative”
for the expert eh.

4.1 Ad-Hoc Strategies to Manage Ignorance Situations

These strategies estimate missing values in ignorance situations by ad-hoc proce-
dures which are not based in any particular basic principle or property associated
to the set of alternatives, experts or relations. Two simple examples of this kind
of strategies are the following:

Strategy 1: Assume Indifference Values in the Missing Values

In this case, because an expert does not provide information on an alternative
relating it to the rest of alternatives, we may model this situation as a total
indifference one and therefore each missing values for the ignored alternative
can be replace with a value of 0.5. In this case, the estimation procedure of
missing values is as follows:

Estimation Procedure 1: If an incomplete fuzzy preference relation Ph has an
ignored alternative xi, this strategy will compute all its associated missing value
as:

ph
ik = 0.5 ; ph

ki = 0.5 ∀k ∈ {1, ..., n}, k 
= i.

Example 1: We have to solve a decision making problem to find the best of 4
different alternatives: X = {x1, x2, x3, x4}. An expert gives the following incom-
plete fuzzy preference relation

P =

⎛⎜⎜⎝
− 0.7 x 0.68
0.4 − x 0.7
x x − x

0.6 0.75 x −

⎞⎟⎟⎠ ,

that is, he gives no information about alternative x3, and thus, we are in a
ignorance situation. The first estimation procedure assumes that the expert is
indifferent with respect to x3, and the reconstructed fuzzy preference relation is:

P =

⎛⎜⎜⎝
− 0.7 0.5 0.68
0.4 − 0.5 0.7
0.5 0.5 − 0.5
0.6 0.75 0.5 −

⎞⎟⎟⎠ .
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Strategy 2: Assume Random Values in the Missing Values

This strategy estimates the missing values for an ignored alternative as random
values within the range of preference values provided by that particular experts,
i.e, an unknown preference value will be computed randomly between the maxi-
mum and minimum preference degrees of its corresponding column and row. In
this case, the estimation procedure of missing values is as follows:

Estimation Procedure 2: If an incomplete fuzzy preference relation Ph has an
ignored alternative xi, this strategy will compute every missing value as:

ph
ik = rand(min({ph

jk}), max({ph
jk})) ; ph

ki = rand(min({ph
kj}), max({ph

kj}))
∀j, k ∈ {1, ..., n}, j 
= k 
= i

where rand(a, b) means a random value between a and b and max(...) and
min(...) are the usual maximum and minimum operators.

Example 2: We part from the previously presented problem (in example 1). In
this case, the estimation procedure reconstructs the missing values with random
values between the maximum and minimum preference degrees provided by the
expert. For example, p13 ∈ [0.68, 0.7] and p32 ∈ [0.7, 0.75]. An example of a
possible reconstructed preference relation is:

P =

⎛⎜⎜⎝
− 0.7 0.69 0.68
0.4 − 0.47 0.7
0.53 0.71 − 0.7
0.6 0.75 0.72 −

⎞⎟⎟⎠ .

4.2 Consistency Based Strategies

These strategies are guided by a basic principle, the consistency property of the
incomplete fuzzy preference relations represented by the additive transitivity
property. To do so, these strategies use the estimation procedure presented in
section 3.

As aforementioned, that procedure needs at least a preference value involving
the ignored alternative to be able to estimate the rest of missing preference
values of the ignored alternative. Therefore, we need a ‘seed’ value to initiate
the estimation procedure. Depending on the computation of that seed value we
can define the following two consistency based strategies:

Strategy 3: Consistency Based Strategies with Indifference Seed
Values

Similarly, as in the first strategy, we can start by assuming indifference on the
preference values for the ignored alternative, followed by the application of the
estimation procedure to complete the rest of missing values of the alternative.
Thus, in this case the estimation procedure of missing values is as follows:

Estimation Procedure 3: Suppose an incomplete fuzzy preference relation P with
an ignored alternative xi, and assume pij = 0.5 for a particular j ∈ {1, . . . , n}
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(initial indifference). The preference degrees {pik}, ∀k 
= i 
= j can be estimated
via the alternative xj by means of two of the three possible estimation equations
(3–5): cpj1

ik = pij + pjk − 0.5 and pij = cpj3
ik + pkj − 0.5, which result in cpj1

ik =
pjk and cpj3

ik = 1 − pkj , respectively. Because the indifference of a preference
value can be assumed for any of the possible values of j ∈ {1, . . . , n} with
j 
= i 
= k, then the final estimated values for the i-th row of the incomplete
fuzzy preference relation are:

cpik =
1
2

(∑n
j=1;j �=i�=k cpj1

ik

n− 2
+

∑n
j=1;j �=i�=k cpj3

ik

n− 2

)

=
1
2

(∑n
j=1 ; j �=i�=k pjk

n− 2
+

∑n
j=1 ; j �=i�=k(1− pkj)

n− 2

)
= 0.5 +

SCk − SRk

2
with SCk and SRk representing the average of the k-th column and k-th row of
the complete (n− 1)× (n− 1) fuzzy preference relation that is obtained without
taking into account the alternative xi. The parallel application of the above
assumption for the preference values pki provides the following estimation of the
values of the i-th column:

cpki = 0.5 +
SRk − SCk

2
. (6)

Example 3: If we apply this strategy to the previously mentioned problem
(examples 1 and 2), we obtain the following values for p13 and p32:

p13 = 0.5 +
(0.7 + 0.68)/2− (0.4 + 0.6)/2

2
= 0.6

and
p32 = 0.5 +

(0.7 + 0.75)/2− (0.4 + 0.7)/2
2

= 0.59

In this case, the complete reconstructed preference relation is:

P =

⎛⎜⎜⎝
− 0.7 0.6 0.68
0.4 − 0.41 0.7
0.4 0.59 − 0.51
0.6 0.75 0.49 −

⎞⎟⎟⎠ .

Strategy 4: Consistency Based Strategies with Random Seed Values

This strategy, similarly as in the second strategy, is based on obtaining just one
‘seed’ random value followed by the application of the procedure to estimate
the rest of missing values for the ignored alternative. Thus, in this case the
estimation procedure of missing values is as follows:

Estimation procedure 4: Suppose an incomplete fuzzy preference relation Ph with
an ignored alternative xi. The estimation procedure is drawn in the following
scheme:
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1. do {
2. k = irand(1, n) // Choose random k
3. } while(k �= i)
4. if (rand(0, 1) < 0.5) { // Place it in missing row
5. ph

ik = rand(min({ph
jk}), max({ph

jk}))
∀j ∈ {1, ..., n}, j �= k �= i

6. } else { // Place it in missing column
7. ph

ki = rand(min({ph
kj}), max({ph

kj}))
∀j ∈ {1, ..., n}, j �= k �= i

8. }
9. Apply the estimation procedure

where irand(a, b) means an integer random value between a and b.

Example 4: From the problem presented in the previous examples, we are going
to apply this strategy to reconstruct the missing values. First of all, we obtain
a random k 
= i. For example k = 2. We obtain a random value between [0, 1] to
determine if we are going to calculate a seed value for p32 or p23. Suppose that
the random value is 0.34, so we are going to obtain a random value for p32 ∈
[0.7, 0.75], for example, p32 = 0.74. Then, we apply the estimation procedure:

⎛⎜⎜⎝
− 0.7 x 0.68
0.4 − x 0.7
x 0.74 − x

0.6 0.75 x −

⎞⎟⎟⎠→
⎛⎜⎜⎝
− 0.7 0.46 0.68
0.4 − x 0.7
0.59 0.74 − 0.61
0.6 0.75 0.51 −

⎞⎟⎟⎠→
⎛⎜⎜⎝
− 0.7 0.46 0.68
0.4 − 0.42 0.7
0.59 0.74 − 0.61
0.6 0.75 0.51 −

⎞⎟⎟⎠

5 Analysis of the Advantages and Disadvantages of Each
Strategy

In this section we analyze some advantages and disadvantages of the proposed
strategies, identifying situations where some of the strategies may be more ade-
quate than the others.

– Strategy 1 is a very simple approach to solve ignorance situations. Although
it is not always adequate to assume that not giving preference values for one
alternative implies indifference between the unknown alternative and the rest
of them, in some situations could be an acceptable option. In fact, its easiness
application can be a very appealing factor for its use, specially in problems
where there are no other sources of information (neither information about
the alternatives or other experts). Particularly, decision making problems
with only one expert or criterion are good candidates to apply this strategy.

– Strategy 2 is also a simple approach, but it can produce a higher level of
diversity in the opinions given by the experts. However, it is important to
remark that this strategy can produce a decrease in the consistency of the
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fuzzy preference relations, because the random values will not usually comply
with any kind of transitivity property. This strategy can be a good one to
apply in decision problems with a high number of experts or criteria which do
not differ too much between them (because it can introduce some diversity
in the problem).

– Strategy 3 : This strategy improves strategy 1, as it adjusts the estimated
preference values to make the preference relation more consistent with the
previously existing information. Moreover, the initial indifference supposed
for every preference value for the unknown alternative is softened accord-
ing to the existing information in the preference relation. This approach is
interesting when there are no external sources of information about the prob-
lem and when a high consistency level is required in the experts’ preference
relations.

– Strategy 4 tries to unify the advantages of strategies 2 and 3: it tries to
maintain a high consistency degree in the fuzzy preference relations (with
the application of the estimation procedure) whilst it gives a slightly higher
level of diversity than strategy 3 (with the generation of the random seed
for the estimation procedure).

6 Conclusions

In this paper we have presented several different strategies to solve ignorance
situations in Decision Making problems. We have presented some ad-hoc strate-
gies and some consistency guided strategies and have analysed their advantages
and disadvantages.

In the future, we will study other possibilities to deal with ignorance sit-
uations using different criteria to the consistency one as it could be the use
of consensus and/or proximity measures to provide a management system of
ignorance situations.
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Abstract. Negotiation engines are major components of autonomous agents, 
because negotiation is one of the most important types of agent interaction. 
Thus far, most negotiation engines rely on analytic techniques to maximize the 
social welfare of agent communities. Such engines are developed with total dis-
regard of the possibility of enabling agents to analyze offers made by their ne-
gotiation opponents. The analysis of the offers leads to making tradeoffs that  
result into agreeing on (selecting) solution options that maximize the social wel-
fare of the negotiation agents. Therefore, this paper presents an agent negotia-
tion engine that supports the following: evaluation of solution options, analysis 
of tradeoffs, analysis of offers, and management of negotiation deadlocks. 
Moreover, the paper presents a simulation experiment that illustrates the capa-
bilities of the negotiation engine.  

1   Introduction 

Negotiation is one of the most important forms of agent interactions in multi-agent 
systems, because it provides the basis for managing the expectations of the individual 
negotiating agents, and it enables selecting solutions that satisfy all the agents as 
much as possible. Consequently, a variety of agent negotiation models have been 
proposed [2, 3]. Most of these models can be classified into two categories, namely: 
analytic models and knowledge based models. The analytic models are based on ana-
lytic techniques such as, Game Theory, to determine the solution that maximizes the 
social welfare of the negotiating agents. These models minimize communication 
among the negotiating agents; however, they have the following drawbacks: 

• The agents have no control over the tradeoffs made during the negotiation 
process. That is, the models consider only the quantity of the tradeoffs, dis-
regarding their quality. In other words, analytic based negotiation models are 
used with an implicit assumption that the negotiating agents accept any 
tradeoffs so long as they are the smallest in quantity. However, this is not 
always true, since agents may sometimes be more willing to give larger con-
cessions on some decision variables, than to give small concessions on other 
variables. 

• The analytic based models do not follow the natural process of negotiation, 
where, in between offers and counter offers, multiple negotiation decision 
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variables are traded-off against one another in order to identify the solution 
that maximizes the social welfare. 

On the other hand, knowledge based models such as the strategic negotiation 
model for multi-agent systems proposed in Kraus [7]; implicitly depend on tradeoffs 
made by negotiating agents to determine agreement solutions. Knowledge based agent 
negotiation models have the following major shortfalls: 

• They normally do not give any guarantees that the agreement solution maxi-
mizes the social welfare of the negotiating agents. 

• They normally do not support learning from the offers made by the agent ne-
gotiation opponents in order to enable the agents to make offers that are 
more socially acceptable, as the negotiation progresses. 

• The agents have no way of knowing whether the negotiation is converging or 
not. 

To circumvent the shortfalls of the analytic models, as well as the shortfalls of the 
knowledge based models, Faratin et al [4] have proposed an agent negotiation model 
which depends on utility, similar to the analytic models. Moreover, the model enables 
the agents to tradeoff during negotiation, like the knowledge based models. Given two 
negotiating agents, Agent a and Agent b, the model works as follows:  

1. Agent a identifies the solutions it prefers using utility. 
2. Agent a identifies the solution that Agent-b prefers perhaps through previous 

offers made by Agent b. 
3. Agent a determines the similarity between each of the solutions it prefers and 

the solution that Agent b prefers. 
4. Agent a selects the solution that is most similar to the solution Agent b pre-

fers as the offer. 

The negotiating agents can utilize the model proposed by Faratin et al even if they 
have partial information about the solution, thus the model has the potential of ena-
bling the agents to search a larger solution space. However, in the context of Group-
Choice Decision Making (GCDM) problems, the model has the following shortfall: It 
is viable for only two negotiating agents such as in buyer-seller negotiation problems. 
Since GCDM problems are normally characterized by a multiplicity of (more than 
two) agents, the approach of Faratin et al may not be applicable to GCDM problems 
in its current form. 

This paper presents a negotiation engine that is based on a Qualitative Reasoning 
(QR) model as well as a Game Theory (GT) model.  We call this engine the Agent 
Negotiation Engine for Collaborative Decision Making (ANE-CODEM). The QR 
model is used in the Reasoning Component of the negotiation engine to estimate the 
preference models of the negotiation opponents of agents. On the other hand, the 
Game Theory model is used in the Social Welfare Component of the engine to inte-
grate the solution rankings according to the individual negotiating agents, in order to 
generate the social (combined) ranking of the solutions. Moreover, our automatic 
negotiation engine allows the users to influence the negotiation behavior of their 
agents through the strategic settings, and it has capabilities for managing negotiation 
deadlocks. Although ANE-CODEM has many capabilities, the focus of this paper is 
how it assists agents while making and responding to negotiation offers. 
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The rest of this paper is arranged as follows, Section 2 presents the context in which 
ANE-CODEM operates, and the ANE-CODEM model is presented in Section 3.  
Section 4 deals with a simulation experiment that illustrates the capabilities of  
ANE-CODEM. Finally, conclusions are given in Section 5. 

2   Context in Which ANE-CODEM Operates 

We developed ANE-CODEM to use it in the negotiation component of an integrated 
design system which we designed. The system integrates decisions of the various 
domains (e.g. marketing, design, manufacturing, and sales) of Product Configuration 
Manufacturing, into the design process. This way, design flaws would be identified 
and fixed early in the manufacturing process. By the nature of this target problem, 
ANE-CODEM turned out to be an appropriate negotiation engine for most Group-
Choice Decision Making (GCDM) problems, where a number of agents are involved 
in choosing a single solution from a set of available solution options. Therefore, we 
extended the use of ANE-CODEM to the Decision Support System (DSS) for the 
selection of Commercial-Off-The-Shelf (COTS) software products, which we have 
developed into a fully functional GCDM system for COTS selection. In Group-
Choice problems, it is common for the agents to have different preference models. 
This is caused by the differing preferences, experience, background and constraints of 
the clients of the agents. Consequently, ANE-CODEM enables each agent to evaluate 
the solution options independently, and to carryout tradeoff analysis in order to de-
termine what the agent loses or gains if a solution other than its optimum solution is 
selected. Finally, ANE-CODEM enables the agents to identify the mutually accept-
able solution (i.e. to reach agreement on a single solution). 

2.1   Evaluation of Solution Options   

Selection of a solution from a set of options is facilitated by evaluating each solution 
option on a set of decision variables, using a Multi-Criteria Decision Making MCDM 
technique. The simplest MCDM model for estimating the performance of solution 
option k against the set of decision variables is given by Equation (1). We used this 
model as a starting point for developing and testing our automatic negotiation engine, 
as well as its constituent components; in the future we shall replace this model with 
more flexible models such as Ordered weighted Averaging [5, 10] and the Logic 
Scoring Preference model [1]. This shall require modification of algorithms in the 
various components of our negotiation engine, since different MCDM techniques are 
based on different concepts and assumptions. 
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Where, kia
 
is the strength of solution option k  in decision variable (criterion) i . 

        iw is the preference value (weight) of decision variable i . 

         n is the total number of decision variables. 
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2.2   Tradeoff  

Generally, a tradeoff is where at least one of the negotiating agents lowers the prefer-
ence values of some of the decision variables, and at the same time increases the val-
ues of other variables [4]. Tradeoff is carried out after comparing and contrasting the 
solution options on each of the decision variables, which leads to identifying solution 
options that have the same value, in spite of the differences in their characteristics. 
This increases the prospects of identifying a mutually acceptable solution. For exam-
ple, a customer of a COTS-based software development project may find a high-
priced COTS product which has all the required security features to have the same 
value with a low-priced COTS product which necessitates implementing some of the 
required security features in house, leading to an extra implementation cost. However, 
from the software developer’s perspective, the former COTS product may be much 
more acceptable than the later. In short, tradeoff is performed to identify offers (solu-
tion options) that have the same value with the most preferred solution for the pro-
pose, but have much greater benefit for the negotiation opponents [4]. This requires 
the agents to have some information about the preferences of the negotiation oppo-
nents. Consequently, tradeoff is carried out in between the negotiation rounds, after 
the agents have estimated the preferences of their negotiation opponents. 

The process of comparing and contrasting the solution options on the decision vari-
ables is referred to as tradeoff analysis. This process identifies the decision variable 
that can be traded between pairs of the solution options. The tradeoff analysis model 
used in ANE-CODEM is based on a Qualitative Reasoning (QR) model presented in 
Wanyama and Far [9]. The representation of the model uses the performance of one 
of the solution options to provide the baseline performance, and then identifies what 
the agent gains and/or loses if a solution option other than the one providing the base-
line performance is selected. Furthermore, ANE-CODEM ensures that the limits of 
the preference values are not violated during tradeoff. 

2.3   Negotiation  

For negotiation to take place between two or more agents there is need for a negotia-
tion protocol that defines the rules of the game. Within the negotiation game, each 
agent adopts a strategy which determines the actions it takes in response to the actions 
of other agents. The following subsections present the negotiation protocol associated 
with ANE-CODEM, and the negotiation strategies of the agents that utilize ANE-
CODEM. 

Negotiation Protocol: The negotiation protocol associated with ANE-CODEM, 
which we used in our COTS selection DSS works as follows: 

• One of the agents makes an offer, then each of the other agents respond in-
dependently accepting the offer, rejecting it, or opting out of the negotiation.  

• The negotiation stops if all agents accept the offer. In some domains, the ne-
gotiation may stop if one of the agents opts out, but if the negotiation contin-
ues then a different agent makes another offer.  
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• To be fair, the offers are made in negotiation rounds, and in every round, 
each agent makes an offer once, unless an agreement is reached before the 
turns of some of the agents to make their offers.  

It should be noted that ANE-CODEM can work with other agent negotiation proto-
cols. In fact, we tested it in systems where offers are made randomly, and it worked 
well. However, we believe that the above protocol gives all the agents a fair chance to 
participate in the negotiation process. 

Negotiation Strategies: Negotiation strategies for GCDM have two components, the 
first component being the coalition which the agent decides to belong. Coalition for-
mation increases the bargaining power of individual agents, thus the agents that join 
coalitions trade their autonomy for increased utility [6]. But coalition formation can 
lead to increase utility only if the agents have the capability to analyze the offers of 
their coalition partners in order to identify the socially acceptable solution options; 
this capability is what ANE-CODEM offers agents in GCDM systems. It should be 
noted; however, that the coalition formation process is not addressed in this paper. 

Ideally, each member of the coalition acts to maximize the welfare of the coalition, 
instead of its own welfare. But in practice, the agents normally retain some autonomy, 
which results in the maximizing of the coalition welfare to be subjected, to some 
extent, to maximizing the welfare of the individual agents. Consequently, agents ne-
gotiate with varying levels of commitment to their coalitions. The Commitment Level 
(ω ) of an agent to its coalition is the second component of the negotiation strategy of 
the agent. At the extremes, a totally committed agent (ω  = 0) acts to maximize the 
coalition welfare without taking into account the tradeoffs it makes. On the other 
hand, a totally uncommitted agent (ω  = 1) acts to maximize its own welfare without 
taking into account the welfare of its coalition. Effectively, such an agent retains all 
its autonomy, and acts on it own (does not belong to the coalition). Since in practice 
agents negotiate with commitment levels that lay between 0 and 1, we define an Ac-
ceptance Factor ( ifA − ) for each solution option i , given by Equation (2). 

     
ifA −
 = ω . 

ifT −
 + (1-ω ). ifS −  .                                           (2) 

Where, 
ifT −
 is the Tradeoff Factor and ifS −   the Social Fitness Factor.

  
 

The Acceptance Factors of solution options take into account the coalition of the 
agents, the commitment levels of the agents to their coalitions, and the tradeoffs asso-
ciated with the solution option with respect to particular agents. The Acceptance Fac-
tor (

ifA −
) of a solution option is a measure of the social acceptance of the option. In 

the context of ANE-CODEM, agents use the Acceptance Factors of solution options 
as a basis for accepting and/or rejecting offers made by their negotiation opponents,. 
This enables agents in distributed multi-agent systems to make independent, tactical 
(tradeoff) decisions that maximize their individual, as well as coalition welfare. The 
Tradeoff Factor (

ifT −
) of a solution option is a measure of tradeoff associated with the 

option with respect to the concerned agent. Tradeoff Factors of the solution options 
are generated using a tradeoff algorithm that is based on the QR model presented  
in Wanyama and Far [9]. The Social Fitness Factor ( ifS − ) of a solution option is a 
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measure of how well the option satisfies the combined preferences of a group of ne-
gotiating agents. Social Fitness Factors are generated using an algorithm that is based 
on a Game Theory model of an n-person- general sum game with complete informa-
tion. The inputs to the model are the scores of the solution options with respect  
to each of the negotiating agents, and the outputs are the Social Fitness Factors of the 
solution options. The Game Theory model is presented in detail in Wanyama and  
Far [8]. 

We believe that assuming a linear relationship between Acceptance Factors, 
Tradeoff Factors and Social Fitness Factors may limit the applicability of our ration-
ale for making or responding to offers. However, we note that the assumption only 
affects the model and not the general procedure for responding to offers. Moreover, 
we would like to note that the negotiation approaches that are based on analytic tech-
niques implicitly assume that all the negotiating agents have the same strategy corre-
sponding to ω  = 0 and a single grand coalition (coalition of all negotiating agents); 
in which case all the agents are totally committed, and are willing to accept any solu-
tion that is believed to optimize social welfare no matter the amount and/or quality of 
the tradeoffs some of them would have to make in order to utilize the agreement solu-
tion. On the other hand, purely knowledge based techniques assume ω =1; implying 
that all the agents have the same negotiation strategy of acting to maximize the  
individual welfare without taking into account the preference of the negotiation oppo-
nents. These two extreme approaches are not practical in the context of GCDM,  
because in such problems the agents seek to optimize their individual gains, as well as 
the social welfare, thus the issue here is modeling how much an agent puts the needs 
of the coalition before its own needs. 

3   The ANE-CODEM 

In this section we briefly describe the eight major components of the Agent Negotia-
tion Engine for Collaborative Decision Making (ANE-CODEM), and Figure 1 illus-
trates how the components interact to provide the functionalities of ANE-CODEM.  

• The Reasoning Component: This component has a Qualitative Reasoning al-
gorithm that is used for two purposes. The first purpose being to estimate the 
preference models of the agent negotiation opponents based on their offers, 
and the second purpose being to determine the Tradeoff Factors associated 
with each of the solution options. 

• The Evaluation Component: The evaluation component has a MCDM model 
that integrates preference models of agents with the strength of the solutions 
in each of the decision variables to generate scores that represent the ability 
of each of the solution options to satisfy the agent preferences. 

• The Social Welfare Component: This component has a Game Theory model 
which is used to determine the Social Fitness Factors of the solution options. 
The input to the Game Theory model are the estimated scores of the solution 
options for the coalition mates of the concerned agent, as well as the actual 
solution scores for the agent.  
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• The Preferences Component: This component stores the preference models 
of the agents. In other words, the component stores the decision variables 
(evaluation criteria) the agent is interested in, and the preference values (cri-
teria weights) of the decision variables. 

• Auto-Tradeoff Component: This component stores an algorithm that is used 
to modify the agent preference models automatically. The input to this com-
ponent is the Acceptance Factors of the solution options and the preference 
model to be modified. The automatic tradeoff algorithm is based on the QR 
model that is presented in Wanyama and far [9]. 
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Fig. 1. The ANE-CODEM 

• The Strategy Component: This component stores the strategies of the agents. 
This to say, the component stores the coalition to which the agent belongs, as 
well as the commitment level (ω ) of the agent to the coalition. 

• Acceptance Component: This component has an algorithm for combining the 
Social Fitness Factors, the Tradeoff Factors, and the parameters of the agent 
strategies, to determine the Acceptance factors of the solution options (see 
Equation 2).  
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• The Decision Making Component: This component makes decision of the of-
fers to make based on the ranking of solution options generated by the 
evaluation component. In addition, the component decides on how to re-
spond to offers made by the opponents of the agent, based on the Acceptance 
Factors of the offers. 

3.1   Making Offers 

In the context of ANE-CODEM, each of the agents evaluates the solution options by 
integrating its preference model and the capabilities of the solution options using the 
MCDM model presented in Section 2.1. This generates solution scores which are sent 
to the Decision Making Component of ANE-CODEM, from where the agent selects 
the solution option that have the highest scores as its offer, which it proposes when its 
turn to make an offer comes .  

3.2   Responding to Offers 

Responding to offers in much more complicated than making them, because the agent 
has to analyze the offers to determine whether or not they are acceptable. On receiv-
ing an offer, the agent checks it according to the following scenarios: 

1. The offer is the same as the solution option that the agent prefers. In which 
case, the offer is accepted. 

2. The offer is not the preferred solution option of the agent, and it is made by 
an agent that is not a member of the agent’s coalition. Such a solution is sent 
to the Decision Making Component of ANE-CODEM to determine whether 
it satisfies the acceptance criteria before accepting or rejecting it. 

3. The offer is not the preferred solution option of the agent, and it is made by a 
member of the agent’s coalition. The offer is sent to the Reasoning Compo-
nent of ANE-CODEM to finally estimate the Acceptance Factors of the solu-
tion options. The Acceptance Factors are thereafter sent to the Decision 
Making Component of ANE-CODEM to determine whether the offer satis-
fies the acceptance criteria. 

The Acceptance Factors of the solution options are updated whenever a new offer 
is received from a coalition member. This is done by determining the new Social 
Fitness Factors of all the solution options, based on the preferences of all coalition 
members that have already made their offers. If an agreement is not reached by the 
end of a negotiation round, the concerned agent sends the final Acceptance Factors of 
the solution options to the Automatic Tradeoff Component of ANE-CODEM to be 
used in the process of modifying the preference model. The agent modifies its prefer-
ence model by adjusting the preference values of some decision variable in such a 
way as to increase the score of the solution option with the ‘best’ Acceptance Factor; 
if that solution is not the agent’s most preferred, then the modified preference model 
is used to evaluate the solution option at the beginning of the next negotiation round. 
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3.3   Deadlock Management 

Deadlock management is a challenge to automated negotiation for Multi-Agent Sys-
tems (MAS). In the context of GCDM, a deadlock is said to have occurred if at least 
one of the negotiating agents cannot modify it preference model to attain agreement 
with its opponents. This is normally caused by one of the following: 

• The preference values of all the tradeoff decision variables are at their limits, 
meaning that there is no solution in the current solution space that satisfies 
the combined needs of all the negotiating agents. 

• Adopting a strategy that results into selfish behavior. 

Deadlocks due to the former cause are broken by changing or modifying the solu-
tion space, or by changing the preference value limits of the concerned agents. On the 
other hand, deadlock due to the latter cause can be broken by changing the negotiation 
strategy of the concerned agents, and this is the type of deadlocks that are automati-
cally managed by ANE-CODEM. 

If the offers of all the agents are the same as the previous offers, ANE-CODEM 
recognizes that a deadlock has occurred, and triggers deadlock breaking procedures. 
There are two types of procedures for breaking deadlocks, namely: Procedures that 
modify the agent coalitions to include more members by lowering the membership 
requirements, and procedures that increase the commitment of the agents to their 
coalitions by reducing the value of ω . Some agents may employ both types of pro-
cedures to expedite the process of breaking the deadlock. However, the actual type of 
procedure adopted by a particular agent depends on the background knowledge of the 
agent. 

4   Simulation Experiments 

We performed a simulation experiment to investigate the capabilities of ANE-
CODEM. In the experiment, agents were required to select a Commercial-Off-The-
Shelf (COTS) product to be used in the development of a web-shop, from a set of four 
solution options (N.B. this is a typical group-choice decision making problem). A 
COTS expert ranked the products in each of the twelve predefined decision variables 
(evaluation criteria), and the initial preference value functions of the agents were 
generated using a truncated random number generator. The experiment had the fol-
lowing components: 

• Negotiating without using ANE-CODEM (i.e. no tradeoff analysis and track-
ing of the negotiation process in order to identify socially acceptable solution 
options; agents adjust their preferences randomly in between negotiation 
rounds).  

• Agent a and Agent c employing ANE-CODEM only if the offer is made by 
one of them, and using the existing decision variables to respond to the offers 
made by Agent b.  Moreover, Agent b not employing ANE-CODEM. (i.e. 
Agent a and Agent c make tradeoffs that lead to making offers that are ac-
ceptable to both of them, and Agent b does not consider the preferences of its 
negotiation opponents, as revealed by their offers). 
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• Agent a and Agent c employing ANE-CODEM only if the offer is made by 
one of them, and Agent b employing ANE-CODEM regardless of the source 
of the offer being considered. (This means that Agent a and Agent c make 
tradeoffs that lead to making offers that are acceptable to each other, while 
Agent c makes tradeoffs that lead to making offers that are acceptable to all 
the three negotiating agents). 

• All the three agents belonging to a single grand coalition and all of them em-
ploying ANE-CODEM regardless of the source of the offer being considered. 
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Fig. 2. Effects of coalition formation on the negotiation process and on the welfare of the 
agents 

In all the four components of the experiment, the ω -values of the agents were ini-
tially set at midpoints, (i.e. ω = 0.5), and the utilities of the agents corresponding to 
the offers were noted. Figure 2 shows the utilities of two of the agents (Agent a, and 
Agent b) for the offer made during the negotiation processes for all the four compo-
nents of the experiment. In the figure, the circles represent the offers made by Agent 
a, and the crosses represent the offers made by Agent b. A cross inside a circle repre-
sents the agreement offer. 
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4.1   Discussion of Results 

Figure 2 illustrates that ANE-CODEM does not only increase the welfare of the indi-
vidual negotiating agents, but also stabilizes the negotiation process (compare Figure 
2(a) to Figures 2(c) and 2(d)). Moreover, Figure 2 demonstrates that ANE-CODEM 
enforces coalition formation and tradeoff analysis which in turn expedites the negotia-
tion process (forming coalitions resulted in few negotiation rounds: compare Figure 
2(a) to Figure 2(d)), and enables agents to negotiate in a smart manner, where they 
make offers that aim at identifying a mutually acceptable solution. Generally, Figure 
2 shows that negotiating without deliberately making tradeoff that lead to the identifi-
cation of socially acceptable solution options (i.e. without using a negotiation engine 
such as ANE-CODEM, that enforces coalition formation, as well as reasoning about 
offers made by negotiation opponents in order to identify mutually acceptable solu-
tion options), results in random behavior of agents, where agreements are reached 
almost by chance. Moreover, we have results (not presented) that reveal that when 
ANE-CODEM is armed with deadlock management capabilities, over 90% of nego-
tiation deadlocks can be broken. However, it should be noted that ANE-CODEM 
results in increased utilization of computational resources. 

5   Conclusion and Future Work  

This paper presents an agent negotiation engine called ANE-CODEM, that is ap-
plicable to distributed multi-agent system for GCDM. The engine expedites the 
negotiation process and increases negotiation efficiency by enabling the estimation 
of the preferences of the negotiation opponents. Moreover, ANE-CODEM has 
capabilities for breaking negotiation deadlocks caused by the negotiation strate-
gies, and it supports dynamic coalition formation, where each agent decides indi-
vidually when to join or to leave a coalition. The simulation results presented in 
this paper show that ANE-CODEM is able to guide agents in the process of identi-
fying mutually acceptable solution options, without having to share their prefer-
ence models. Furthermore, the results illustrate that tradeoff analysis and indeed 
coalition formation enforced by ANE-CODEM has an effect of increasing the 
welfare of the negotiating agents. 

For the future, this research will be extended in three major directions. Firstly, we 
would like to carry out a study to establish a practical meaning of ANE-CODEM 
parameters such as the Acceptance Factor, the Social Fitness Factor, and the Tradeoff 
Factor. This will help us to determine and set of acceptable ranges of values of such 
important decision parameters. Secondly, we would like to investigate the coalition 
formation process in order to establish an efficient algorithm for the formation of 
coalitions for the purpose of making tradeoffs that lead to making offers of socially 
acceptable solution options.  Lastly, we believe that there is a need to reduce the com-
plexity of ANE-CODEM before it can be customized for use in systems with limited 
computational, and/or memory facilities.  
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Abstract. We discuss a decision theoretic approach to learn causal
Bayesian networks from observational data and experiments. We use the
information of observational data to learn a completed partially directed
acyclic graph using a structure learning technique and try to discover
the directions of the remaining edges by means of experiment. We will
show that our approach allows to learn a causal Bayesian network opti-
mally with relation to a number of decision criteria. Our method allows
the possibility to assign costs to each experiment and each measurement.
We introduce an algorithm that allows to actively add results of experi-
ments so that arcs can be directed during learning. A numerical example
is given as demonstration of the techniques.

1 Introduction

Bayesian networks (BNs), introduced by Pearl [1], have become well known tools
for working in domains with uncertainty. They allow performant probabilistic
inference and give an intuitive representation of the domain.

BNs can also represent causal information when the edges represent causal
relations between the corresponding variables [2]. The causal relation between
two variables, in the form of a directed edge from a cause variable C to an effect
variable E, is understood as the effect a manipulation of variable C (the cause)
would have on variable E (the effect).

Learning BNs can be done from observations alone, by first learning the com-
pleted partially directed acyclic graph (CPDAG) and then choosing a possible
complete instantiation in the space of equivalent graphs defined by this CPDAG.

This is impossible for causal Bayesian networks (CBNs), because there is
only one true causal network that represents the underlying mechanisms, so the
remaining edges have to be directed to represent the correct causal influence.

We discuss a decision theoretic approach for learning CBNs from a mixture
of observational and experimental data. We assume we learn a CPDAG using

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 58–69, 2006.
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a structure learning technique and then direct all the remaining arcs in the
resulting CPDAG based on the results of experiments.

Algorithms exist to learn CBNs based on experiments [3, 4] and in [5] tech-
niques have been developed to learn CBN from a mixture of experimental and
observational data.

In [6, 7] it has been shown that in order to learn a complete structure at
most log2(N)+1, with N the number of variables, experiments are needed. This
result is given as a theoretical bound for the worst case scenario.

The main difference with the Active Learning approaches in [3, 4] is that we
assume that there is a number of observational data which we can use to form
an initial CPDAG in which every directed edge is a representative of a causal
mechanism. Next we introduce an experimentation phase in which we perform
specific experiments in order to learn the completed CBN optimally based on
some decision criterion. Our technique tries to find an optimal experimentation
strategy in order to minimize the number of experiments, which should be lower
than the bound derived in [7]. We allow the possibility to assign costs to an
experiment, which might influence the decision of choice for performing an ex-
periment. This type of setting is typical for medical applications where there is
a lot of data from patients but it might be very costly to perform experiments.

The remainder of this paper is as follows, in the next section we introduce
some notations and definitions. Then we will discuss several of the assumptions
we make before introducing our decision theoretic approach and criteria used.
We end with a conclusion and future work.

2 Notations and Definitions

In this work uppercase letters are used to represent variables or sets of variables,
i.e. V = {X1, . . . , Xn}, while corresponding lowercase letters are used to repre-
sent their instantiations, i.e. x1, x2 and v is an instantiation of all xi. P (Xi) is
used to denote the probability distribution over all possible values of variable
Xi, while P (Xi = xi) is used to denote the probability distribution over the in-
stantiation of variable Xi to value xi. Usually, P (xi) is used as an abbreviation
of P (Xi = xi).

Ch(Xi), Pa(Xi), Ne(Xi) respectively denote the children, parents and neigh-
bors of variable Xi in a graph. Furthermore, Pa(xi) represents the values of the
parents of Xi.

A causal Bayesian network (CBN) 〈V, G, P (xi|Pa(xi))〉, with:

– V = {X1, . . . , Xn}, a set of observable discrete random variables
– a directed acyclic graph (DAG) G, where each node represents a variable

from V
– conditional probability distributions (CPD) P (xi|Pa(xi)) of each variable

Xi from V conditional on its parents in the graph G.

is a Bayesian network in which the directed edges are viewed as representing
autonomous causal relations among the corresponding variables, while in a BN
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the directed edges only represent a probabilistic dependency, and not necessarily
a causal one.

3 Assumptions

In this section we will discuss some assumptions we make about the domain to
apply our algorithm.

3.1 Faithful Distribution

We assume the observed samples come from a distribution faithful to a CBN, i.e.
there are no hidden variables or confounding factors. This means that for each
two variables Xi and Xj connected in the graph either Xi → Xj or Xi ← Xj

must hold [8]. During the remainder of this paper we will always accept this
assumption.

3.2 Correct CPDAG

We assume that after an initial learning phase we are given the correct CPDAG
as a consequence of applying a learning algorithm such as PC [9], BLCD [10],
etc. For the technique presented in this paper we will accept this assumption.

In general it is possible that these algorithms do not retrieve the correct
CPDAG, for a discussion on the properties of these algorithms see [9]. If this
assumption is false, there are a lot of problems that might occur and we will
have to adapt our algorithm. We are currently studying learning CBNs in this
setting, and this is a part of our future research.

3.3 Modular Experiments

In order to find the causal relation between two variables X and Y we have to
check whether randomizing X holding all other variables fixed at a certain value
induces a variation in Y and/or vice versa. If we just randomized X and not
put any constraints on the other variables then we can only detect which other
variables covary with X but we cannot detect whether this relationship is direct
or mediated by other variables.

If no variation is found by randomizing X this is possible due to the spe-
cific value assignment of all the other variables, and so it could be possible that
we have to perform a randomization proces for all possible value assignments.
Fortunately if we have the correct CPDAG, it is easier to find the causal rela-
tionships between all variables. The only possible unknown direct effects of a
certain variable X are those that are connected to X by an undirected edge in
the CPDAG. So performing an experiment at X , this is randomizing X , will
give us direct information on the directionality of all undirected edges connected
to X .



Learning CBNs from Observations and Experiments 61

4 Decision Theoretic Approach

We use a decision theoretic approach to learn the CBN from a given CPDAG.
In general a decision problem consists of three parts: values (symptoms, observ-
ables), actions and possible consequences. It is assumed that these are given in
advance. It is possible to order the consequences by preference by using a utility
function. Hence we can choose the action that will lead to our preferred result
based on some decision criteria such as least risk or optimistic estimation.

Our decision problem is represented graphically in Figure 1, in which the
possible actions are performing experiments, the values are the results of these,
and the consequences are the relative utilities of the experiment. It is clear that
we cannot construct the entire decision tree for this problem. Since the problem
is iterative a decision can be dependent on the choice of a previous one, so we
would have to construct a subtree for each possible sequence of actions and the
size of the tree would explode.

Choice experiment

Result

Result

Result

Exp_n

Ex
p_

1

Exp_2

# dire
cted

#inferred directed

Prob. Directed

Utility

Utility

Utility

Fig. 1. Decision problem of learning a CBN from a given CPDAG

4.1 Utility Function

In general our utility function U() will be a function of three variables: gain(exp),
cost(exp), cost(meas), respectively the gained information, the cost of perform-
ing an experiment and the cost of measuring other variables. If we denote per-
forming an action (=experiment) at Xi by AXi , and measuring the neighboring
variables by MXi then the utility function can be noted as:

U(AXi ) = f(gain(AXi), cost(AXi ), cost(MXi)) (1)

The only restriction that is placed on the utility function is that it is propor-
tional to gain(AXi) and negative proportional to cost(AXi ) and cost(MXi). In
this paper we assume the following utility function:
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U(AXi) =
αgain(AXi)

βcost(AXi ) + γcost(MXi)
(2)

where α, β and γ are measures of importance for every part. We will assume
α = β = γ unless stated otherwise, this allows to simplify the notation.

Gain of an experiment. In this section we describe the information that can
be retrieved after performing an experiment. Since it is our goal to direct all
remaining undirected edges of our current CPDAG, the amount of edges we can
direct after having results from an experiment is the gain of our experiment.

Lets assume that we perform an experiment on Xi and that we can measure
all neigboring variables Ne(Xi). In this case we can direct all links connecting
Xi and Ne(Xi) as a result of the experiment. So in this case the gain(AXi),
with AXi = experiment on Xi, is based entirely on the number of variables that
are connected to Xi by an undirected arc.

However it is possible that directing one arc can infer direction of other arcs,
see the final phase of the PC-algorithm [9]. It is possible to take into account
the possibility of inferred edges in gain(AXi). Note that the amount of edges of
which the direction can be inferred after performing an experiment is entirely
based on the instantiation of the undirected edges connected to the one being
experimented on. An instantiation of an undireceted edge is assigning a direction
to it, so for instance if we have an edge X − Y , then X → Y and X ← Y are
the two possible instantiations of that edge. We denote inst(AXi) as the set of
instantiation of the undirected edges connected to Xi. The number of inferred
edges based on inst(AXi) is noted as #inferred(inst(AXi)).

Note that two parts of a graph that are not linked in any way by undirected
edges can not be influenced by performing an experiment in the other part when
the CPDAG is correct. Since we assume that all discovered arcs are correct
no existing arcs can change based on inferration by experiments, and hence no
new information can be inferred through a set of already directed arcs. So the
calculation of the utilitiy of an experiment is only based on that part of the
graph that is connected to the variable by undirected links. The problem can
hence be separated in sub-problems, each concerning a part of the graph linked
by undirected edges. In the remainder of this paper we will introduce solutions
for a single substructure that is entirely constituted of undirected links. This
result can then be mimicked for the other undirected substructures.

Cost of experiment and measurement. The cost of an experiment can be
the time needed, the amount of space it takes or simply the amount of money it
costs to perform an experiment. It is dependent on the situation in which every
experiment takes place and will typically be given by experts.

It is important to note that there are certain experiments that can not be
performed, either because of ethical reasons (e.g. infecting people with HIV) or
simply because it is impossible to do so (e.g. changing the season). These types
of experiments will be assigned a cost value of infinity (∞) and thus the gain of
performing such an experiment will be 0, and therefore it will not add any new
information.
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In order to gain anything from an experiment we have to perform measure-
ments on the variables of interest. It is however important to note that measuring
itself can be costly and can diminish the usefulness of an experiment although it
does not directly concern the variable that is being altered. For instance inject-
ing someone with a certain fluid might not cost that much, but when the only
way to check for changes is performing a CT-scan, measuring the results might
add a huge cost factor.

5 Decision Criteria

In this section we will discuss a number of decision criteria for our learning
problem. Our approach allows the possibility to maximize any of these criteria
in order to converge optimally to the solution for these criteria. Depending on the
type of situation in which to perform the experiments it might be advantageous
to choose a specific criterion. We will show by example the working mechanism
of the different criteria on the network in Figure 2, a comparative study is part
of future research.

X1 X2 X3 X4

X5

Fig. 2. Example CPDAG on which we show all optimization criteria

5.1 Maximax

The maximax decision criterion is an optimistic one, which means that we choose
the action that could give the best result, i.e. the one that might direct the most
arrows. In our case this means that we perform an experiment on Xbest with:

Xbest = argmax
Xi

⎛⎝NeU (Xi) + max
inst(AXi

)
(#inferred(inst(AXi)))

cost(AXi) + cost(MXi)

⎞⎠ (3)

This is the sum of the number of undirected edges connected to Xi and the
maximum number of inferred edges by any of the instantiations of the directions
of the undirected edges connected to Xi, divided by the cost.

In our example in Figure 2, if all costs are equal all variables except X4 will
have an equal maximal utility value, U(Xi) = 6, i = 1, 2, 3, 5.

5.2 Maximin

The maximin decision criterion is a pessimistic one, which means that we assume
that for each experiment at a variable Xi the least number of possible inferred
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edges can be found. This means the minimum amount of edges oriented by any
instantiation of all edges connected to Xi. In our case this means that we perform
an experiment on Xbest with:

Xbest = argmax
Xi

⎛⎝NeU (Xi) + min
inst(AXi

)
(#inferred(inst(AXi)))

cost(AXi) + cost(MXi)

⎞⎠ (4)

The instantiation of edges that would induce the least inferred edges would
be the one where all arrows are pointing at Xi, but this might create new v-
structures and thus is not always possible. So if two neighbors of Xi are not
directly connected, one of the links has to be out of Xi and hence leads to
inferred edges.

In the example Figure 2 the optimal choices are variable X2, X3 and X5,
since they all orient minimal 3 edges. For example, if we peform an experiment
at X2, a minimal instantiation would be: X1 → X2, X3 → X2, X5 → X2.

5.3 Laplace

Using the Laplace criterion means that we assume that all directionalities of
edges are equally probable, for example for any two connected variables P (Xi →
Xj) = P (Xi ← Xj) = 0.5, for all non-directed edges Xi −Xj .

Every instantiation has thus a probability of 1
#inst(AXi

) and for every possible
instantiation we can calculate the number of inferred edges that will be directed.

In this case it would mean that we perform the experiment on Xbest with:

argmax
Xi

⎛⎜⎜⎜⎝NeU (Xi) +
inst(AXi

)
#inferred(inst(AXi

))

#inst(AXi
)

cost(AXi ) + cost(MXi)

⎞⎟⎟⎟⎠ (5)

In the example Figure 2 this is the variable X3 with U(X3) = 3 + 10
5 = 5.

The derivation of this result is based entirely on the number of inferred edges
for each instantiation. The results for X3 are:

instantiation #inferred inferred
→ X2, → X4, → X5 2 X2 → X1, X5 → X1

← X2, → X4, → X5 3 X2 → X1, X5 → X1, X2 → X5

→ X2, ← X4, → X5 2 X2 → X1, X5 → X1

→ X2, → X4, ← X5 3 X2 → X1, X5 → X1, X2 → X5

← X2, → X4, ← X5 0 none

in which → Xi indicates an arrow from X3 to Xi and vice versa.



Learning CBNs from Observations and Experiments 65

5.4 Expected Utility

The expected utility is based on a distribution of the directions of the links. Based
on this distribution it is possible to calculate the probability of any instantiation
of directions that might occur. We will discuss several ways to give distributions
for the directionalities.

Probabilities based on equivalence class for general graph structure.
Instead of just assuming a uniform distribution of the edges we can look at all
possible dags in the equivalence class of the discovered CPDAG and count for
each pair Xi − Xj , the number of times Xi → Xj and Xi ← Xj appears and
hence we can assume that:

Peq(Xi → Xj) =
#(Xi → Xj)

#members of eq. class
(6)

Peq(Xi ← Xj) =
#(Xi ← Xj)

#members of eq. class
(7)

Note that in future steps in the learning phase we no longer have a CPDAG,
because some arcs may be directed based on knowledge from experiments. We
should then take into account all members of the original equivalence class that
share the exact same directed edges, for convenience we will still refer to this set
of dags as the members of the equivalence class of the current PDAG.

Using this approach it would mean that we perform the experiment on the
variable Xbest with:

argmax
Xi

⎛⎜⎝NeU (Xi) +
∑

inst(AXi
)
#inferred(inst(AXi))Peq(inst(AXi))

cost(AXi ) + cost(MXi)

⎞⎟⎠ (8)

with Peq(inst(AXi)) meaning the number of times a certain instantiation is
present in the equivalence class divided by the number of members in that class.

The problem with this approach is that we need to know the exact number
of elements in the equivalence class. As far as we know there is no exact way of
calculating the number of elements in the equivalence class of a certain DAG.
In theory it is possible to construct all equivalent graphs, but this is very time
consuming, certainly for large graphs. Hence, we can not calculate Peq(Xi → Xj)
in practice for a general graph.

However we can solve the problem for tree structures, since the number of
elements in the equivalence class of a tree is equal to the number of nodes (=
number of edges + 1). We will use this property to construct an approximation
for general structures.

Approximate probabilities for general graph structure. Since the num-
ber of members in an equivalence class (of a CPDAG or PDAG as introduced
earlier) is generally unknown and hard to compute we will need an approxima-
tion to solve the problem.
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Checking the utility of performing an experiment at Xi means running over
all possible instantiations of Xi − Ne(Xi), so in our approximate technique we
need to have information on all these directions. We have seen that for tree
structures this problem can be solved, so instead of working with the original
structure we will use a Minimum Weight Spanning Tree (MWST) algorithm in
which we force that all edges Xi − Ne(Xi) are present and no edges except
those in the original structure are present to approximate the original structure.
The weights on all the edges are given by the mutual information between the
variables based on the observational data. We then use the technique for trees
and use the results as approximations for the general structure.

For example if we want to check for the expected utility based on the equiv-
alence class of performing an experiment at X1 in Figure 2, a possible MWST
is given in Figure 3.

X1 X2 X3 X4

X5

Fig. 3. Possible MWST for structure given in Figure 2

Keep in mind that we will look at all possible instantiations of Xi −Ne(Xi)
as they occur in the original graph. For example in Figure 3 we will also look at
the instantiation X2 → X1 ← X3, although this is a v-structure in the tree.

Expert knowledge. It is also possible that an expert can give a certain proba-
bility to the direction of edges in the CPDAG. This is the least costly procedure
since at the time of performing experiments an expert is present and it is no
added cost to obtain the extra knowledge. So in this case the probabilities are
based on the belief of an expert and is noted as:

Pexp(Xi → Xj) = belief of expert (9)

The utility function would be the same as given in equation 8 but with Pexp()
instead of Peq().

6 Learning Algorithm

In this section we propose our learning algorithm. We introduce an adaptive
algorithm in which it is assumed that experiments are performed during learning.
The first phase of the algorithm consists of applying a learning algorithm to
obtain the correct CPDAG representing the equivalence class of all BNs faithful
the distribution.



Learning CBNs from Observations and Experiments 67

As stated, we allow the possibility to add newly discovered knowledge due
to the experiments during the learning phase. Since experiments are performed
we gain information on the direction of certain links, these may remove the need
to perform certain other experiments. Remember that parts of the graph that
are not connected by undirected links can be treated separately, so multiple
instances of the algorithm can be applied in parallel to the substructures.

The complete algorithm is given in Algorithm 1.

Algorithm 1. Adaptive learning of CBN
Require: Observational data set.
Ensure: A CBN.

1. Apply a learning algorithm on the data-set to obtain CPDAG G.
2. Compute for each node Xi for which #NeU (Xi) > 0 in G

U(AXi) with equation 3, 4, 5 or 8.
3. Perform an experiment at the node with the optimal U(AXi) value in relation

to the decision criterion, Xbest.
4. For all Xj ∈ NeU (Xbest)

If distribution of Xj changed because of experiment,
then orient Xbest − Xj as Xbest → Xj

else orient Xbest − Xj as Xbest ← Xj

end
5. repeat

if Xi → Xj and Xj and Xk are adjacent, Xk and Xi are not and there
is no arrow into Xj then orient Xj − Xk as Xj → Xk.
if there is a directed path from Xi to Xj and an edge between Xi

and Xj then orient Xi − Xj as Xi → Xj .
until no more edges can be oriented.

6. Return to Step (2) until all links are directed.
7. Return CBN G.

7 Example

For example lets assume that the correct causal network of Figure 2 is as given
in Figure 4.

Run with Maximin. We have seen in Section 5.2 that for the maximin crite-
rion the optimal choices were X2, X3 and X5. Suppose we choose to perform an
experiment at X2, this would result immediatly in the following instantiation:
X2 → X1, X2 ← X3 and X2 → X5.

This instantiation then triggers the inferration of other directions in the next
phase of the algorithm, X3 → X5 and X5 → X1.

The only remaining undirected arc is X3 − X4, so an experiment on either
one of these will lead to the final result. In practice the experiment with highest
utility will be chosen.
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X1 X2 X3 X4

X5

Fig. 4. The correct underlying CBN for the undirected structure in Figure 2

Run with tree approximation. In Figure 5 all MWSTs are given for each
possible experiment, i.e. (a) is the tree for performing experiment at X1, (b)
for X2, etc. Only arcs that where present in the original structure are used and
all arcs connected to the variable being experimented on remain, as discussed
previously.

X1 X2 X3 X4

X5

X1 X2 X3 X4

X5

X1 X2 X3 X4

X5

X1 X2 X3 X4

X5

X1 X2 X3 X4

X5

(a) (b)

(e)

(c) (d)

Fig. 5. All MWSTs for each possible experiment

The optimal choice (again assuming all costs equal) is variable X3 (since not
all arcs can be directed inwards in the original graph, there are less instantiations
without inferred edges in the tree), and this would result immediatly in the
following instantiation: X3 → X2, X3 → X4, X3 → X5.

This instantiation then triggers the inferration of X2 → X1 and X5 → X1.
The only remaining undirected arc now is X2−X5, thus again an experiment

on any of these nodes will solve the problem.

8 Conclusion and Future Work

We discussed a decision theoretic approach to learn causal Bayesian networks
from a mixture of experiments and observational data.

We used the information of observational data to learn a completed partially
directed graph and tried to discover the directions of the remaining edges by
means of experiment. Our method allows the possibility to assign costs to each
experiment and each measurement.

We demonstrated that our approach allows to learn a causal Bayesian net-
work optimaly with relation to a number of decision criteria. For the expected



Learning CBNs from Observations and Experiments 69

utility for a general structure we gave an approximation based on the solution
for tree structures.

We introduced an algorithm that is adaptive, since it allows to actively add
results of experiments. The algorithm is a general description and can be used
with any decision criteria or utility function.

A first part of future work is a comparative study between the different
decision criteria for learning CBN structure. We would also like to extend this
approach to take into account that the CPDAG learned in the first phase is not
correct and allow hidden variables.

Acknowledgments. This work was partially funded by a IWT-scholarship.
This work was partially supported by the IST Programme of the European
Community, under the PASCAL network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views.

References

1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
2. Pearl, J.: Causality: Models, Reasoning and Inference. MIT Press (2000)
3. Murphy, K.P.: Active learning of causal bayes net structure. Technical report,

Department of Computer Science, UC Berkeley (2001)
4. Tong, S., Koller, D.: Active learning for structure in bayesian networks. In: Sev-

enteenth International Joint Conference on Artificial Intelligence. (2001)
5. Cooper, G.F., Yoo, C.: Causal discovery from a mixture of experimental and

observational data. In: Proceedings of Uncertainty in Artificial Intelligence. (1999)
116–125

6. Eberhardt, F., Glymour, C., R.Scheines: N-1 experiments suffice to determine the
causal relations among n variables. Technical report, Carnegie Mellon University
(2005)

7. Eberhardt, F., Glymour, C., R.Scheines: On the number of experiments sufficient
and in the worst case necessary to identify all causal relations among n variables.
In: Uncertainty in Artificial Intelligence Conference (UAI). (2005)

8. Shipley, B.: Cause and Correlation in Biology. Cambridge University Press (2000)
9. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. MIT

Press (2000)
10. Mani, S., Cooper, G.F.: Causal discovery using a bayesian local causal discovery

algorithm. In: MEDINFO 2004, IOS Press (2004) 731–735



 

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 70 – 80, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

The Pairwise Comparison Model: The Multiplicative  
and the Additive Approach 

Antonio Jesús Herencia-Leva1, Ma Teresa Lamata2, 
and Cristino Pérez-Meléndez1 

1 Depto de Psicología Social y Metodología de las Ciencias del Comportamiento 
Facultad de Psicología, Universidad de Granada,18071 Granada, Spain 

herencia@ugr.es, cristino@ugr.es 
2 Depto de Ciencias de la Computación e Inteligencia Artificial, 

E.T.S de Ingeniería Informática, Universidad de Granada,18071 Granada, Spain 
mtl@decsai.ugr.es 

Abstract. The aim of this work is to study some of the differences between the 
additive and multiplicative representations associated with the Analytic 
Hierarchy Process. We present the Method of Pair Comparisons with the study 
of its properties from the point of view of representational measurement theory 
and scaling theory. From the first point of view it is impossible to differentiate 
two types of representations and therefore, the distinction has to be done in 
terms of the type of task that the subjects perform. The conclusion establishes 
some differences and relationships between the task of making judgments of 
proportion and judgments of distance. 

1   Introduction 

Within the tradition of psychological measurement there are a number of sub-schools. 
Perhaps the most notable is the division between The Scaling Theory and The 
Representational Theory of Measurement. Luce and Krumhansl [1] state that the 
scaling problem is one of finding how best to recast a set of data into a particular 
numerical representation within a chosen class of representations. Krantz et al [2] 
affirm that scaling literature involves mapping one numerical structure in another one. 
     The Representational Theory of Measurement means one or more specified 
operations and relations over a set of objects or events that are characterized by a 
number of empirically testable assumptions (Luce [3]). The measurement axioms 
offer a solution in that they can be considered expressions of potential empirical laws 
(Falmagne [4]). 

Therefore, the principal difference between the Theory of Scaling and the 
Representational Theory of Measurement, is primarily a certain level of scale is 
assumed in the first moment (ordinal, interval or ratio, for example) and later by 
means of tests of adjustment it verifies the grade in which it is possible to support the 
above mentioned assumption. On the other hand, the Representational Theory of 
Measurement specified from the beginning a series of qualitative properties, that if 
they are satisfied, they guarantee the existence of a given representation and therefore, 
of a concrete level of scale. 
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One of the most important tasks is the Method of Pairs Comparisons (MPC), this is 
well documented and widely employed by economists, psychometricians, decision-
makers, etc…It provides a simple and practical way of eliciting the opinion of a 
referee from a set of n(n-1)/2 pairwise judgments that express the preferences among 

2n ≥  alternatives which are compared with respect to an attribute/criterion. 
Hegelmaier introduced the MPC, published in German in 1852, and later, in 1860, 
Gustav Theodor Fechner [5], through two major contributions to this method, 
developed it as a basic tool for experimental psychology Siegler [6]. Fechner used the 
MPC in the framework of psychophysics, in which the attributes to be measured had 
to have a knowledge correspondence with an extensive attribute, i.e. an attribute for 
which the operation of addition is empirically defined.  
    In 1927 Thurstone [7] developed a model known as the “Law of Comparative 
Judgment” (LCJ), for the MPC. The principal importance of it was that: 

   a) It generalizes some of the psychophysical models to the case when the scaling 
attribute doesn’t have a knowledge correspondence with an extensive attribute, i.e. the 
model was constructed without a mention of a reference (something like the 
referential set in Fuzzy Set Literature; see, for example, Norwich & Turksen, [8]).  
   b) It opens the door for measuring social attributes, allowing social psychology 
statistically defend its empirical studies. 

    The MPC was used later by Saaty [9-13] to build their model on decision-making 
introducing some changes in the response format. Some authors have reported some 
problems with this multiplicative response format and they have proposed alternative 
scales to make the decision makers judgments more consistent (see [14] for a review).  

The questions related to consistency are one of the principal problems in the 
Saaty’s multiplicative approach [9] [14] but they are not addressed in this paper. 
   The aim of this work is to study some of the differences between the additive and 
multiplicative approaches of the Saaty model. In section two, we present the classical 
preference structure related to the MPC. In section three we present the measurement 
theory approach: we describe various axioms systems which can represent the data 
obtained by the different versions of the task of the MPC. Finally, in section four we 
would like to remark that with the multiplicative and additive version of MPC we can 
construct a ratio scale, because, it has been shown that category ratio scaling has 
many advantages compared to magnitude matching, the various modifications 
introduced by the models mentioned earlier and how to compute the scale values 
within each model. 

2   Classical Preference Structures 

In a decision problem, a decision maker is usually confronted with a set of 
alternatives ( )1 2, ,..., nA a a a= , among which, for instance, the best alternative has to be 

selected. In the following, we ask that the decision maker compares any two alternatives 
ai and aj in A. It is then acceptable to assume that the decision maker either  

• prefers ai to aj 

• prefers aj to ai 

• is indifferent to ai and aj 
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Let the binary relation C  represent “more preferred than”, ~C “indifferent to” and 

C  “less preferred than” with respect to a criterion C. Hence, denote “ai is preferred 

to aj , with respect to C” by ai C  aj. Likewise, if ai and aj are equally preferred, based 

on C, we write ai  ~C aj , and ai C  aj represents the case where ai is less preferred than 
aj .  Assuming that for every pair of alternatives ai , aj  can be assigned a real number 

( ),C i jP a a  (positive or negative) which represents their relative preference, such that: 

• ai C  aj  if and only if ),( jic aaPe < , 

• ai  ~C aj  iff  eaaPe jic ≤≤− ),( ,  and  

• ai C  aj  iff eaaP jic −<),( , with respect to C.  

e is the absolute threshold value in the structure and it determines the minimal 
absolute distance for which a stimulus is judged different to other stimulus. 

Rating a set of n elements ( )1 2, ,..., na a a  can be a task even when a unique 

criterion is considered demanding. The comparison matrix (CM) represents all 
possible comparisons, 
 

CM=

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1 1 1 2 1 1

2 1 2 2 2 2

1 2

, , , ,

, , , ,

,

, , , ,

C C C j C n

C C C j C n

C i j

C n C n C n j C n n

P a a P a a P a a P a a

P a a P a a P a a P a a

P a a

P a a P a a P a a P a a

 

 
It provides a simple and practical way of eliciting the opinion of a referee from a 

set of n(n-1)/2 pairwise judgments that express the preferences among 2n ≥  
alternatives which are compared with respect to an attribute/criterion. 

3   Measurement Theory Approach  

In this section two possible types of numerical structures are studied. These can be 
used to represent the information obtained in the task of pair comparisons. Section 3.1 
presents an algebraic difference structure as an example of additive representation. 
Section 3.2 outlines an algebraic ratio structure as an example of multiplicative 
representation. 

3.1   Algebraic Difference Structure 

The MPC is an algebraic difference structure, if and only if, we have a set 
X= ( ), , ,....x y z  which is a nonempty set and a order relation “≥” on  “X”, i.e., a binary 

relation on “XxX” and the following axioms are satisfied [2] [15-17]. 
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D.1. (XxX, ≥) is a strict weak order, if and only if on verify the properties. 

       D.1.1. Asymmetry  
        (∀ x, y, z, r ∈ X), (if  xy ≥ zr → not (zr ≥ xy)) 

       D.1.2. Transitivity 
        (∀ x, y, z, r, v, w ∈ X), (if xy ≥ zr & zr ≥ vw then xy ≥ vw) 
 
D.2. Reciprocity 
        If xy ≥ zr then rz ≥ yx  
  
D.3. Transitivity 
        If xy ≥ zr & yv ≥ rw then xv ≥ zw 
 
D.4. Resolution 
        If xy ≥ zr ≥ xx, then there exist r’, r’’ ∈ A, such that xr’ ∼ zr ∼ r’’y. 
 
D.5. Arquimedian 

If x1, x2, ..., xi, ... is a strictly bounded standard sequence (xi+1xi ∼ x2x1, for every ai, 
ai+1 in the sequence; not x2x1 ∼ x1x1; and there exist r’, r’’∈ X such that r’r’’≥ xix1 ≥ 
r’’r’, for all xi in the sequence. 

 
Proposition 1. If (XxX, ≥) is an algebraic-difference structure, then there exists a 
real-valued function φ1 on X such that, for all x, y, z, w ∈ X, 
 

xy  ≥ zw iff φ1(x) - φ1(y) ≥ φ1(z) - φ1(w)   (1) 

3.2   Algebraic Ratio Structure 

The additive and multiplicative version of the MPC is an algebraic ratio structure if 
and only if we have a set “X” which is a nonempty set and a quaternary relation  
“≥” on  “X”, i.e., a binary relation on “XxX” and the later axioms are satisfied [2]  
[15-17]. 

 
Proposition 2. If (XxX, ≥) is an algebraic-difference structure, then there exists a 
real-valued function φ2 on X such that, for all x, y, z, w ∈ X, 
 

xy  ≥ zw iff φ2(x)/φ2(y) ≥ φ2(z)/φ2(w)   (2) 
 
An implication of propositions 1 and 2 is that we cannot differentiate between an 

additive and ratio representation because if equation (1) is true we can transform the 
function φ1 into φ2 and equation (2) is true too. So, in terms of mathematical models, 
we cannot differentiate between the two types of representations. In section 4, we 
propose to make the distinction in terms of the type of task that subjects do.  
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4   The Multiplicative and Additive Models 

The Analytic Hierarchy Process (AHP) introduced by T.L. Saaty [9] is a well known 
and popular method of multicriteria decision making. Central to this method are the 
pairwise comparisons between criteria (and decision alternatives) made using a 9-unit 
scale. The appropriateness of Saaty’s original one-to-nine (1–9) scale has been the 
subject of much debate and cause for concern. 

4.1   The Multiplicative Approach 

We have a set L of linguistic sentences Li, where i often is i = 1, 2, ..., 17. These 
sentences express different values of the psychological distance between the stimuli 
of the pair. The task of the subject is to pick up the sentence that best express his/her 
subjective perception of the distance between the stimuli of the pair.  
     We can construct now a matrix similar to CM=[ ( ),C i jP a a ], we denote it by 

A=[ ija ]. In this matrix ija  denotes the evaluation about the absolute ratio of the row 

stimulus i versus the column stimulus j. 
 

12 1 1

12 2 2

1 2

1 2

1 ... ...

1 1 ... ...

1 1 ... ...

1 1 ... 1 ... 1

j n

j n

ij
j j ij in

n n in

a a a

a a a

A a
a a a a

a a a

⋅
= =

⋅

 

     We have that  ija = Li ∈ L. 

     In the pairwise comparisons method, stimuli (e.g. criteria or alternatives) are 
presented in pairs to one or more referees (e.g., experts or decision makers). It is 
necessary to evaluate individual alternatives, derive weights for the criteria, construct 
the overall rating the alternatives and identify the best alternative. 
    Let us denote the stimuli by A=[A1, A2, …, An] (n is the number of compared 
stimuli), their actual weights by w=[w1, w2, …, wn] and the matrix of the ratios of all 
weights by W = [wi / wj]. The matrix of pairwise comparisons A = [aij] represents the 
intensities of the expert’s preference between individual pairs of alternatives (Ai 
versus Aj), for all i,j = 1, 2,…, n  chosen usually from the scale given by Saaty [9], it 
can be represented by  

1

1/
ij

a if i is preferred to j

a if i and j are equally preferred

a if j is preferred to i

=  

the values of a are obtained from the values 1,2,...,9 .  

   The elements aij are considered to be estimates of the ratios wi / wj, where w is the 
vector of actual weights of the stimuli, which is what we want to find. All the ratios 
are positive and satisfy the reciprocity property: aij = 1/aji (i,j = 1, 2, …, n)  Saaty´s 
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eigenvector solution of Aw=λw always exists if the consistency (or transitivity) 
condition ij ik kja a a= ×  (i,j,k = 1, 2, …, n) is satisfied.  

In the eigenvector method, the vector of weights corresponds to the maximum 
eigenvalue λmax of the matrix A. According to the Perron-Frobenius Theorem, the 
eigenvalue λmax is positive and real. Furthermore, the vector w can be chosen with all 
positive coordinates. It is a normalized solution of the following equation: 

 
Aw = λmaxw 

4.2   The Additive Approach 

For each pair of stimuli, the subjects treat with the function   
 

0.5

1
ij

b if i is preferred to j

b if i and j are equally preferred

b if j is preferred to i

=
−

 

 
in which, ( ]0.5,1b ∈  that represents the additive model. 

12 1 1

12 2 2

1 2

1 2

0.5 ... ...

1 0.5 ... ...

1 1

1 1 1 0.5

j n

j n

ij

j j ij in

n n in

b b b

b b b

B b

b b b b

b b b

−

= = ⋅
− −

− − −

 

We have now that  
1ij jib b+ =  

 

and the diagonal cells of matrix B will are equal to 0.50. 
By example, the assignment of 0.80 to one member of the pair and the remaining 0.20 

to the other is same as to indicate that the former is four times as large as the latter. A 
split of 0.50-0.50 indicates that the stimuli are of the same magnitude [18] [19] .  

For each subject we have a matrix similar to A, we denote it by R=[rij]. In this 
matrix ijr  denotes the evaluation about the absolute ratio of the row stimulus i versus 

the column stimulus j.  
 

12 1 1

12 2 2

1 2

1 2

1 ... ...

1 1 ... ...

1 1 ... ...

1 1 ... 1 ... 1

j n

j n

ij
j j ij in

n n in

r r r

r r r

R r
r r r r

r r r

⋅
= =

⋅
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Now we can define ijr  as the ratio of the stimulus values indicated by the column to 

those indicated by the row: 

ij
ij

ji

b
r

b
= =

1
ij

ij

b

b−
 

so, we have that  
1

ij
ji

r
r

=  

but ijr  can be defined by 

log rij = log bij – log bji 

 

and if we make the sum in j, we can compute ri by  

1

1

log ' (log log )
n

i ij ji
j

r b b
−

=

= −  

but log r’i = log bi – log 1 and so, log r’i = log bi, log r’i is the simulation of the 
geometric mean ratio of stimulus i all along the set X of stimuli as estimation of the 
weights, in place to use the eigenvector as in the multiplicative case. Now if we want 
to express the ratio value of  i in function of another stimuli, we can compute: 

'
''

i

k

r
r

ikr e=  

that it already constitutes a ratio scale. 

4.3   Relations Between the Two Approaches 

It is possible to confirm that the two approaches represent the same models and it is 
possible to work with the two types of information, the multiplicative and the 
additive one. The major difference between them is on the scale; in the multiplicative 
case the scale is finite {1/9, 1/8,…, 1,…, 8, 9} while, in the additive case there is 
very much granularity, and the values of the matrix could be anyone in the (0, 1) 
interval. But, there is a very close relationship between these two approaches as we 
have shown previously. Now, we illustrate the relationships between these two 
approaches.  
 

Definition 1. Let ijA a=  be a multiplicative preference matrix, with values in {1/9, 

1/8,…, 1,…, 8, 9} and let ijB b=  be an additive preference matrix with values in 

[0,1] then, the relation between them is given by 
 

[ ]: 1/ 9,...,1,...,9 0,1f →  

91/ 2 log 9ij ij ija b a→ =  
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such that  

[ ]

[ ]

9

9

9

1/ 9 1/ 2 log 1 0

1/ 9,...,1 0,1/ 2

1 1/ 2 log 9 1/ 2

1,...,9 1/ 2,1

9 1/ 2log 81 1

→ =
→
→ =
→
→ =

 

The relations between ija  and ijb are given by 

91/ 2 log 9ij ijb a=  2 19 ijb

ija
−=  

Definition 2. Let ijA a=  be a multiplicative preference matrix, we call A a 

consistent multiplicative preference matrix, if ij ik kja a a= × , ∀ i,j,k∈N. 

Definition 3. Let ijB b=  be an additive preference matrix, we call B a consistent 

additive preference matrix, if 1/ 2ij ik kjb b b= + − , ∀ i,j,k∈N. 

Theorem 1. Let ijA a= as in definition 1 with ij ik kja a a= ×  a consistent matrix, 

then the matrix ijB b=  with 1ij jib b+ =  related to the additive case, also is 

consistent being this consistency given in [14] [20] by 1/ 2ij ik kjb b b= + − . 

Proof.  
If 

ij ik kja a a= ×  

Then 
81 9 9ij ik kja a a= × 9 9 9 9log 9 9 1 log 9 log 9 log 9ij ij ik kja a a a× = + = +  

 
if we multiply this equation by ½. 

9 9 91/ 2(1 log 9 ) 1/ 2 log 9 1/ 2log 9ij ik kja a a+ = + 1/ 2 ij ik kjb b b+ = +  

Theorem 2. Let ijB b=  as in definition 1 with 1ij jib b+ =  and 1/ 2ij ik kjb b b= + −  

then the matrix ijA a= with ij ik kja a a= ×  also is consistent. 

Proof. 
If                                

 1/ 2ij ik kjb b b= + −  

Then  
2 2 2 1ij ik kjb b b= + − = (2 1) (2 1) (2 1)ij ik kjb b b− = − + −  

(2 1) (2 1) (2 1)9 9ij ik kjb b b− − + −=   
and 

ij ik kja a a= ×  
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Table 1. Table of equivalences between the multiplicative and the additive approaches 

Multiplicative Additive 
(1:1) [0.50, 0.50] 

(1/2:2) [0.33, 0.66] 
(1/3:3) [0.25, 0.75] 
(1/4:4) [0.20, 0.80] 
(1/5:5) [0.16, 0.83] 
(1/6:6) [0.19, 0.85] 
(1/7:7) [0.12, 0.87] 
(1/8:8) [0.11, 0.88] 
(1/9:9) [0.10, 0.90] 

If a subject is able to judge stimuli with the values that are reflected in Table 1, the 
multiplicative and the additive models are equivalent.  

In Figure 1 it can be consulted a comparison between the additive and multi- 
plicative approaches. Assuming that in a comparison between two stimuli, a decision-
maker chooses with the same probability the different linguistic labels available, the 
probability of choosing a label to which a numerical extreme value corresponds is 
higher in the multiplicative approach than in the additive approach, indicating that in 
this case the probability of an inconsistent judgment would be higher also. 

 

 
Fig. 1. Relationship between the multiplicative and the additive numerical scales in the pairwise 
comparison method  
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The Figure has been obtained assigning an equal probability mass to each numerical 
value that it expresses a possible ratio between a pair of stimuli. The horizontal axis 
shows the values that the ratio between two stimuli can reach (the maximum value 
being 10); the vertical axis shows the accumulated probability that a subject may 
randomly choose a label whose numerical value is less or equal to that ratio. The lines 
represent the distribution of probability for additive and multiplicative scales.  

In the multiplicative approach the number of possible ratio values (x-axe in the 
figure) is finite and the cumulative probability function (y-axe in the figure) is 
staggered. Nevertheless, in the additive approach the number of possible values is 
infinite and the cumulative probability function is continuous.  

In Figure 1, if PM  is the multiplicative cumulative probability function, PA  is the 
multiplicative cumulative probability function and x is any ratio value, then for x in the 
interval [1, 8], PA(x) ≥ PM(x) and for x in the interval [0,1) and x in the interval (8, 10] 
PA(x) ≤ PM(x). This indicates that for the multiplicative approach the probability of 
choosing a extreme ratio value is higher.  

5   Conclusions 

The AHP method is based on pairwise comparison between attributes, and can be 
used to evaluate the relative performance of decision alternatives with respect to one 
or several criteria. In the case study, the results from these comparison analyses 
“Saaty’s multiplicative and additive measurement scales” show that the considered 
two methods for prioritization have different performance, but they are very closer. 

The paper studied the differences between the additive and multiplicative 
approaches of the Saaty method for pairwise comparison. In this way, if the referees 
are consistent, the traditional method of Saaty is much closer to that in which the 
scale is not multiplicative. For all intents and purposes the two methods are the same, 
but they have one significant difference, this is the scale. So, while the scale of 
responses in the additive is any number between (0, 1), and therefore the granularity 
is large, in the case of Saaty this granularity is small. However, the Saaty scale is 
closer to the natural language.  

The questions related to consistency are one of the principal problems in the 
multiplicative approach that are not addressed in this paper but it is possible to affirm 
that in the additive case this problem is reduced because it counts with much more 
granularity, i.e. theoretically, the decision maker has an infinity number of possible 
ratio values to choose. Nevertheless, in the Saaty´s multiplicative approach, if the 
decision maker has to make an infinity number of judgments, then it’s obliged to 
choose a linguistic label that it makes inconsistent its judgments. So, theoretically the 
multiplicative approach makes inconsistent the decision maker judgments. This topic 
will be analyzed in depth by the authors in a future article.  
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Abstract. Strategic planning can be schematised as a decision making
process where, given a general outline of the desirable future, the deci-
sion makers need to choose a set of actions that should coherently lead a
system (corporation, institution, city, region, etc.) toward that future. A
more sophisticated case is when rather than only choosing actions, the
decision maker also decides the allocation of available resources among
different available actions. We show that in most cases the problem can
be faced using a particular Decision Network with multiple objectives,
in which actions are applied simultaneously and are modelled by vari-
ables representing the efforts spent on them. The main advantage of the
proposed Simultaneous Decision Network is that it can be easily built
by a panel of domain experts, under the assumption of the noisy-OR
causal interaction. The problem of finding the best strategy in terms of
resource allocation is formulated as a combinatorial optimisation, and
solved through a multi-objective meta heuristic approach.

1 Introduction

While the exploration and the treatment of causal knowledge using Bayesian
Network (BN) based approaches [1], has received great attention in the recent
years, this has also highlighted a fundamental problem with the probabilistic
reasoning, namely the large amount of a priori knowledge required for the spec-
ification of the Conditional Probability Table (CPT).

The problem becomes more evident when dealing with economical, political,
and social issues, since most of the conditional probabilities required by the BN
approach are difficult to estimate. In these fields often not enough data can be
gathered to automatically determine the probabilities. In these cases the model
construction turns out to be quite time consuming, since the input data must
largely be derived from experts’ opinions and value judgements sustained by
knowledge, experiences, intuition and common sense.

An interesting issue, often belonging to the category of problems introduced,
arises when a human decision maker needs to allocate an available amount of
resources among various actions to be applied simultaneously, to reach a trade-
off between many, often conflicting, objectives. This is usually the case with a
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Strategic Planning (SP) process in organisations, finalised toward the achieve-
ment of institutional goals and objectives.

Accounting for the uncertain knowledge usually available, the probabilistic
effects of actions on the objectives can be modelled in terms of a Simultaneous
Decision Network (SDN), that is, a BN augmented with actions applied ‘in
parallel’ (i.e. all at the same instant), represented by variables.

Following the SDN approach, it should be take into consideration that the
number of CPT entries to be estimated by human experts, for a node of the
network, grows exponentially with the number of its direct causes (i.e. actions
or events). Furthermore, when actions are variables belonging to domains with
high cardinality, each variable representing the amount of effort (i.e. money,
energy, time, etc.) spent on the corresponding action, the problem becomes even
more significant. Thus, the elicitation of such a model by human experts, as well
as its solution, can be arduous in real applications.

On the other hand, in the context outlined above, causes are often expressions
of quite independent sub-systems, in such a way that their effects can be modelled
by the well known noisy-OR canonical model [2]. As will be shown below, this
enables experts to build a probabilistic model in an easier way, estimating in a
semi-qualitative manner the relationships which functionally link the amount of
effort spent on actions and the probability of their effects.

Once the model is built, there is a feasible approach with SDN allowing to find
the ’best’ strategy in terms of effort allocation, with respect to the objectives.
Such approach consists of solving all associated BN where an evidence is given
(i.e. the values of action variables) and the probabilities of events influencing the
objectives are to be computed [3]. In our case, the actions potentially belonging
in sets with high cardinality, such an approach can bring about a need to perform
a high number of BN inferences. This suggests the formulation of the problem
as a multi-objective optimisation.

Some of the above outlined concepts were integrated in the Decision Support
System (DSS) described in the rest of the paper. In particular, the subject of
the next section is the underlying causal model, in section 3 the multi-objective
search is described, which was developed in terms of a multi-objective genetic
algorithm, and in section 4 an application example is presented. Section 5 con-
cludes the paper with some final considerations.

2 The Causal Model

The entities of the model are represented as variables, which will be indicated
by upper case letters (e.g. Y ) or indexed upper-case letters (e.g. Xi). A specific
value of a variable will be denoted by lower case letters (i.e. x). The set of all
possible values of a variable Y will be indicated as D(Y ). Set of variables will be
indicated by calligraphic style letters (e.g. Y). The general scheme of the model,
represented in Figure 1, includes:
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Fig. 1. A multi-objective SDN scheme and the involved entities

– a set A of m actions which are modelled as continuous real variables. The
value a of an action A ∈ A represents the effort spent on it. In general, the
domain of definition of an action A is the discrete set D(A) ⊆ [0, +∞[;

– a set V of events which are modelled as binary random variables. The two
values of an event Y ∈ V will be denoted by the correspondent lower case
letter y, with the meaning of ‘occurrence’, and negate lower case letter ¬y.
Hence, the domain of definition of an event Y is D(Y ) = {y,¬y}. In order to
facilitate the process of elicitation of the model by domain experts, the event
set V is partitioned in the set U containing exogenous events, which can not
be influenced by any of the entities in the model, and the set E containing
endogenous events, which can be influenced by all other events in V and by
actions in A

– a set C of k objectives. Each C ∈ C is a variables defined in the set of real
numbers ", reflecting the value of an objective function gC .

A strategy α is defined as the m-uple α = (a1, . . . , am) ∈ Πm
i=1D(Ai), represent-

ing an effort assignation for each action.
The employed model of interaction between variables is a BN, augmented

with decision nodes and objective nodes, that is, a Decision Network (DN). It
is worth to note that, differently from the more frequent utilisation of DNs,
in this case the multiple decisions are assumed to be made in parallel and not
sequentially. In other words, in the DNs used in this paper there is no precedence
relationship among decision nodes, and they are not depending on any other
model entity, so the model can be called Simultaneous Decision Network (SDN)
(or Simultaneous Influence Diagram as in [3]).

As every BN, the causal model can be represented by a directed acyclic graph
consisting of a set of nodes and the links among these nodes (see Figure 1).
Each node is associated with a variable Y representing a model entity and, for
simplicity, we will refer interchangeably to nodes and associated variables. Each
variable Y has a parent set π(Y ) in the network. Actions and exogenous events
have not ingoing edges, i.e., their parent sets are always empty. Endogenous
events can have ingoing edges representing probabilistic dependence, whereas
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objectives can have ingoing edges representing a functional dependence. In the
DN, nodes representing objectives do not have children.

In particular, for each E ∈ E , the distribution P (E|π(E)), where π(E) ⊆
V ∪ A \ {E}, specifies the probability of each value of E given each possible
assignment of π(E). If the domains of definition of E and π(E) are finite, such
a distribution is called a Conditional Probability Table (CPT).

Each objective C takes a value given by an objective function gC : D(π(C))
→ ", where D(π(C)) = ΠX∈π(C)D(X). By hypothesis, as shown in Figure 1,
the parent set of the objective C1 is the set of actions, i.e., π(C1) = A, while for
each objective Ci, i = 2, . . . , k, is defined a specific parent set π(Ci) ⊆ E as part
of the model.

In order to simplify the formalisation, the action variable Ai can be viewed,
with respect to a strategy α, as a random variable whose probability is Pα(Ai) =
1 if Ai = ai and Pα(Ai) = 0 otherwise. Thus, temporarily neglecting the objec-
tive variables, the DN can be viewed as a BN representing the following joint
probability:

Pα(V ,A) =
∏

Y ∈V
P (Y |π(Y ))

m∏
i=1

Pα(Ai) (1)

The expected value of the objective variable C ∈ C in case of applying strategy
α, is defined as

Eα(C) =
∑
π(C)

Pα(π(C))gC (π(C)) (2)

where Pα(π(C)) denotes the marginal probability of the variables π(C) in the
BN, that is,

Pα(π(C)) =
∑

A∪V\π(C)

Pα(V ,A) (3)

with the summation extended to all possible values in A ∪ V \ π(C).
It is worth to note that, given the above definitions, for the objective C1,

whose parent set π(C1) is the set of action variables A, the expected value
corresponding to the strategy α is simply Eα(C1) = gC1({α}).

The computation of the expected values of objectives Ci with i > 1, given
the strategy α, involves the use of a proper inference procedure for the BN rep-
resenting the joint probability (1). To this end, it is interesting to observe that
approximate inference procedures, such as standard stochastic sampling meth-
ods, present quite fast convergence avoiding the problem of unlikely evidence,
since the latter (i.e. the values of random variables representing actions) are
concentrated in the roots of the BN graph.

2.1 Multi-attribute Utility Versus Multi-objective Approach

Following the multi-attribute utility theory, in most DN models the multiple
objectives Ci are combined in a single terminal value node, through a multi-
attribute utility function. In practice, the multi-objective problem is transformed
into one with the single objective of maximising expected utility. The main
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advantage of combining objectives lies in its simplicity: an optimal strategy is
the strategy that achieves the optimal value of the expected utility Eα. On the
other hand, as pointed out in [4], the approach of combining objectives in a
single utility function presents many drawbacks.

First, it is difficult to find a multi-attribute utility function which incorporate
many conflicting objectives. When weights are used, there is a high subjectivity
in their choice and, often, it is hard to use weights to combine objectives with
different physical meaning. Second, it requires an explicit statement of prefer-
ences by decision maker prior to the solution process: if the preferences change,
the entire solution process must be repeated. Another issue is related to the pos-
sible inaccuracy in the expected value of an objective: using a multi-attribute
utility function, the entire output of the decision making process will be affected
by that inaccuracy. Besides, while the solution process can potentially give valu-
able information about how the system represented by the DN works, this is
precluded by combining all objectives in a single value.

A different approach exploited in the causal model described here (see Fig-
ure 1) consists in maintaining multiple objectives, emphasising the generation of
a range of solutions and tradeoffs to be presented to the decision maker for con-
sideration. The main purpose of this approach is to produce the entire set of non-
dominated or effective solutions. The analyst then helps decision maker choose
among possible solutions. The solution chosen is called the most preferred solu-
tion or the best-compromise solution and is attained by examining and exploring
the various tradeoffs between objectives for the entire set of possible solutions.

2.2 Probabilistic Dependence of Events

Some types of conditional probability distributions can be approximated by
canonical models that require fewer parameters. One type of model describing
how an effect Y is probabilistically produced by n causes π(Y ) = {X1, . . . , Xn},
is the noisy-OR gate [5, 2]. In the domain of application of SP, such canonical
interaction often approximates the true distribution sufficiently well, reducing
the model building effort significantly. On the other hand, as showed in [6], in
case of models built by human experts, even if the distribution does not exactly
respect the noisy-OR hypothesis, the elicitation error affecting the noisy-OR pa-
rameters might be smaller than the elicitation error of the complete CPTs. For
these reasons the noisy-OR gate is used in our DSS.

With the purpose of briefly recalling the noisy-OR model, we say that the
event represented by the variable Xi may be a cause of Y when it is active with
respect to Y , that is, when it assumes a particular value x↑Y

i . It is worth to note
that since in a large BN an event Xi may represent a cause for more than one
effect, the activation value of Xi may be different for each effect. In general we
can define the set:

π∗(Y ) = {X ∈ π(Y ) : X = x↑Y } (4)

to which belong all the Xi’s which are in the active state for Y . Formally, the
noisy-OR assumptions are:
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– each of the causes Xi is characterised with respect to its potential effect Y ,
by a parameter pi ∈ [0, 1] called causal strength;

– the ability of each cause being sufficient is independent of the presence of
other causes (i.e. when the effect Y has not been produced each cause Xi

has failed independently).

The parameter pi is defined as the probability that the effect Y will be true if
the cause Xi is active and all other causes Xj , with j 
= i, are inactive:

pi = P (y | x↑Y
i ∧ ¬x↑Y

j ∀ j ∈ [1, n], j 
= i) (5)

The above hypothesis allow us to specify the entire conditional probability dis-
tribution, given the non-empty activation set π∗(Y ) and only n parameters, i.e.
a parameter pi for every Xi. In particular the probability of y is given by the
following formula:

P (y|π∗(Y )) = 1−
∏

i:Xi∈π∗(Y )

(1 − pi) (6)

which is sufficient to derive the complete CPT of Y conditional on its predecessor
X1, X2, . . . , Xn.

In practice, it is almost impossible to list all possible cause that can produce
the effect Y . For this reason Henrion [5] proposed an extension of the binary
Noisy-OR gate for situations where the effect can be produced even if all its
explicit causes are inactive and called this extended model a leaky Noisy-OR
gate. This can be conceptualised by introducing an additional cause X0 which is
assumed to always be active. There is an additional parameter p0 ∈ [0, 1], called
the leak probability, associated to this cause, i.e. the probability that the effect Y
is produced by the unmodelled causes when all the modelled causes are inactive.
Hence:

p0 = P (y | ¬x↑Y
j ∀ j ∈ [1, n]) (7)

Since X0 is always active, the CPT is expressed by the equation:

P (y|π∗(Y )) = 1− (1− p0)
∏

i:Xi∈π∗(Y )

(1− pi) (8)

where in this case pi is the probability that the effect Y is produced by Xi if all
modelled and unmodelled causes are inactive.

Causal strength shape functions. Equation (8) refers to the situation where
an event Y has only other events Xi as its explicit causes in the model. It can
be extended to the situation represented in Figure 2, where among additional
causes of Y there is also the effort value of an action A. To this end, let us
introduce an additional factor 1− p(A) in Equation (8), which becomes:

P (y|π∗(Y ), A) = 1− (1− p0) (1− p(A))
∏

i:Xi∈π∗(Y )

(1− pi) (9)
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Fig. 2. Action causal strength Fig. 3. Examples of causal strength functions

where p(A) is the causal strength of the action A, with an obvious meaning in
the context of the noisy-OR assumptions. In order to simplify the elicitation
process, we assume that p(A) can be expressed as:

p(A) = ψ(A; q1, . . . , qn) (10)

where ψ is a function, representing an interaction pattern. These functions are
chosen, during the modelling phase, by the domain experts on the basis of their
knowledge and opinions about the interactions. In Figure 3, few examples of
strength functions included in the model are represented. For example, the func-
tion II in Figure 3 allows to express the causal strength given the two parameters
pinf and aα: the asymptotic value of ψ and the value of the action corresponding
to strength α pinf , respectively.

2.3 Elicitation of Model Parameters

As explained in the section 1, in real-case applications it is frequent that not
enough data (i.e. cases) are available to automatically learn the model. Hence,
the BN must largely be derived from experts’ opinions, both in terms of struc-
ture and parameters. For all these reasons, the developed DSS was designed in
such a way the experts are involved in a collaborative interactive phase of mod-
elling, considerably helped by the visual definition of the model interrelation as
a directed graph (see Figure 4). In terms of parameters the model requires the
estimation of:

– the occurrence probability P (ui) for each exogenous event Ui;
– the leak probability p0 for each endogenous event Ei;
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– the causal strength (i.e. a single scalar parameter) for each causal link from
event to event;

– the causal strength in terms of the choice of a shape of function and associ-
ated scalar parameters, for each causal link from action to event.

Regarding the latter point, the DSS interactively represents the chosen shape of
the function given its actual parameters.

3 Searching for Best Strategies

A way to find the trade-off strategy α = (a1, . . . , am) ∈ Λ = Πm
i=1D(Ai), consists

in the computation of the expected values of the k objectives Ci in correspon-
dence to all possible strategies [3]. In our case such an approach might turn
out to be too expensive from a computational point of view, being necessary to
perform a complete inference of the BN representing the joint probability (1) for
each possible strategy. In fact, the domain of definition of actions might present
high cardinality, this potentially leading to a very large number of strategies
in set Λ. On the other hand, the problem can be conveniently formulated as
multi-objective search as follows:

max
α∈Λ

Eα(Ci), i = 1 . . . k (11)

A more complete formulation may include a constraint on the total effort

m∑
i=1

Ai ≤ amax (12)

where amax is a maximum allowed value.
The objective functions in problem (11) are not available in explicit form,

this suggesting the use of techniques based on the local function knowledge
such as Genetic Algorithms (GAs), which were already successfully exploited in
conjunction with BN, although in a single objective form [7]. In our case, a GA
can be used to evolve a randomly initialised population, whose generic element
is a m-dimensional vector s (i.e. a chromosome) representing an element α ∈ Λ.
The i-th gene of the chromosome is obtained as the binary encoding of Ai, using
a suitable bit numbers and its interval of definition D(Ai). Each chromosome
can be decoded in a strategy α and, performing the BN inference, the objective
functions can be computed. In the present implementation of the program, the
well known likelihood weighting was used as approximate BN inference algorithm.

To avoid the combination of multiple objectives, as illustrated in section 2.1,
the GA is used in order to search for a Pareto-optimal set of solutions [8]. Thus,
the comparison of two candidate solutions with respect to the different objectives
is achieved through the introduction of the concepts of Pareto optimality and
dominance, avoiding any a priori assumption about the relative importance of
individual objectives. In particular, considering the optimisation problem (11),
we say that a solution α (strongly) dominates the solution β if:
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∀ i Eα(Ci) ≥ Eβ(Ci) ∧ ∃ j : Eα(Cj) > Eβ(Cj) (13)

In other words, α dominates β if α is better or equivalent to β with respect to
all objectives and better in at least one objective. A non-dominated solution is
optimal in the Pareto sense (i.e. no criterion can be improved without worsening
at least one other criterion), and a search based on such a definition of optimum
almost always produces not a single, but a set of non-dominated solutions, from
which the decision-maker should select one.

The employed multi-objective GA (MOGA) is based on the widely used
Goldberg’s ‘non-dominated sorting’ [9]. Briefly, the procedure proceeds as fol-
lows: (i) all non-dominated individuals in the current population are assigned
to the highest possible rank; (ii) these individuals are virtually removed from
the population and the next set on non-dominated individuals are assigned to
the next highest rank. The process is reiterated until the entire population is
ranked.

The MOGA proceeds on the basis of such ranking: every individual belonging
to the same rank class has the same probability to be chosen as a parent. The
employed GA makes use of elitism as suggested by the recent research in the
field [10], which means that from a generation to another the non-dominated
individuals are preserved. This allows us to extract the Pareto-set from the last
population. It is interesting to observe that some care is necessary using elitism
in this case, because of the noise that may affect the fitness functions if an
approximate stochastic method is used for the BN and the number of sampling
was too low. In fact, noisy fitness functions coupled with elitism may produce
outliers which remains forever in the population. Nevertheless, to cope with this
problem it is sufficient to use a proper number of sampling in the stochastic
evaluation of the fitness.

4 An Application Example

The application example illustrated in this section is relative to a policy-making
case-study. The model graph is represented in Figure 4, including actions (i.e.
rectangles) and events (i.e. ovals). In the graph a minus symbol as label of an arc
from an event X to an event Y means x↑Y = ¬x, whereas a plus symbol means
x↑Y = x (see Section 2.2). A minus symbol as label of an arc from an action
A to an event Y means that a decreasing causal strength function was used,
whereas a plus symbol means that an increasing one was used (see also Figure 3).
The thickness of the arcs represents the intensity of the causal strength (i.e.
the maximum or the asymptotic value in case of arcs from actions to events).
The model required the estimation of 15 leak probabilities, 16 constant causal
strength and 16 shapes of functions. The analysis was based on three objectives,
with parents defined as: i the set of actionsA as π(C1); ii the set G ⊆ V , as π(C2),
containing events reputed as positive facts by the panel of domain experts; iii
the set B ⊆ V , as π(C3) of events reputed as negative facts. In particular, the
objective functions were defined as:



90 I. Blecic, A. Cecchini, and G.A. Trunfio

Fig. 4. The presented example graph from the developed DSS

gC1 =
m∑

Ai∈A
Ai, gC2 =

1
�G

∑
Xi∈G

xi, gC3 =
1
�B

∑
Xi∈G

(1 − xi) (14)

where it is assumed that x = 1 and ¬x = 0. Thus, Eα(C1) is simply the total
effort spent on the strategy α, Eα(C2) is the expected fraction of occurring events
in G, while Eα(C3) is the expected fraction of not occurring events in B. Table 1
reports all entities included in the model and their estimated characteristics, as
well as the events’ rating (i.e. positive and negative sets).

The randomly initialised GA population was composed of 200 chromosomes,
each coding a strategy (i.e. the 9 effort values relative to the available actions).
For each effort value a 12-bit string was employed.

The objective functions were evaluated performing a standard stochastic sam-
pling procedure of the BN for each individual in the population. Given that the
adopted GA was of elitist kind, the values of the objective function relative to
the current Pareto set were conveniently stored from one generation into its
successors (i.e. the BN inferences are not re-performed). In every generation,
after the ranking, for each selected couple a one-site cross-over and subsequently
a children mutation with probability pm = 0.003 were applied. In this exam-
ple, in order to explore the whole decision space, the effort constraints were
not considered. The computation was simply terminated after 20 generations
(the program allows a real-time monitoring of the Pareto-set evolution). Using
a standard PC, less than ten minutes were required for the total computation.
Figure 5, representing the final non-dominated set, shows how the proposed



SDNs with Multiple Objectives as Support for Strategic Planning 91

Table 1. The entity characteristics in the presented example (p0 is the leak probability)

Fig. 5. The set of non-dominated solutions in the
space of the objective functions

Fig. 6. Effort allocation cor-
responding to the solution
highlighted in Figure 5

multi-objective approach allows the user to select a solution from a variety of
possibilities. Clearly the final selection must be performed on the basis of some
additional subjective decision. The selected strategy in our case, corresponding
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to 272 effort units, is highlighted in the figure. In particular, Figure 6 reports
the effort allocation suggested by the DSS analysis.

5 Conclusions and Future Works

We have presented a decision support system based on a simultaneous decision
network coupled with a meta-heuristic search procedure. The latter, in the cur-
rent version of the programme, is a multi-objective genetic algorithm, even if we
are now trying different and more specific evolutionary algorithms that might
lead to better overall behaviours. The DSS is purposeful for the solution of a
problem often arising in strategic planning, and concerning the allocation of an
available amount of resources among many actions. The formulation of the SDN
is suitable when the model entities interact according to the noisy-OR model
and it requires few parameters considering that actions are modelled as vari-
ables belonging to domains that might have high cardinality. The DSS can be
used when the model can not be learnt from data and must be built by a panel
of experts. In future we should explore better how the shape of strength func-
tions can be obtained integrating data and experts’ opinions. This work confirms
that the multi-objective approach provides a number of advantages and, in par-
ticular, offers the decision-maker the choice of an adequate strategy, extending
the knowledge about the variety of possibilities offered by the decision space.
Besides, this approach allows the decision maker to be directly involved and in
control of the process of evaluation of strategies.

References

1. Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan Kaufman, San
Mateo, CA (1988)

2. Dı́ez, F.J.: Parameter adjustment in bayes networks. the generalized noisy or-gate.
In: UAI. (1993) 99–105

3. Zhang, W., Ji, Q.: A factorization approach to evaluating simultaneous influence
diagrams. (To appear in IEEE Trans. on Systems, Man and Cybernetics - A)

4. Diehl, M., Haimes, Y.Y.: Influence diagrams with multiple objectives and tradeoff
analysis. IEEE Trans. on Systems, Man and Cybernetics - A 34 (2004) 293–304

5. Henrion, M.: Some practical issues in constructing belief networks. In: Uncertainty
in Artificial Intelligence 3. Elsevier Science (1989) 161–173

6. Zagorecki, A., Druzdzel, M.J.: An empirical study of probability elicitation under
noisy-or assumption. In: FLAIRS Conference. (2004)
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Abstract. In this paper, we present a novel rule evaluation support
method for post-processing of mined results with rule evaluation mod-
els based on objective indices. Post-processing of mined results is one of
the key issues to make a data mining process successfully. However, it is
difficult for human experts to evaluate many thousands of rules from a
large dataset with noises completely. To reduce the costs of rule evalua-
tion procedures, we have developed the rule evaluation support method
with rule evaluation models, which are obtained with objective indices
of mined classification rules and evaluations of a human expert for each
rule. To evaluate performances of learning algorithms for constructing
rule evaluation models, we have done a case study on the meningitis
data mining as an actual problem. In addition, we have also evaluated
our method on four rulesets from the four UCI datasets. Then we show
the availability of our rule evaluation support method.

1 Introduction

In recent years, huge data are easily stored on information systems in natural sci-
ence, social science and business domains, developing information technologies.
With these huge data, people hope to utilize them for their purposes. Besides,
data mining techniques have been widely known as a process for utilizing stored
data on database systems, combining different kinds of technologies such as
database technologies, statistical methods and machine learning methods. Es-
pecially, IF-THEN rules, which are produced by rule induction algorithms, are
discussed as one of highly usable and readable output of data mining. However,
to large dataset with hundreds attributes including noises, the process often ob-
tains many thousands of rules. From such huge rule set, it is difficult for human
experts to find out valuable knowledge which are rarely included in the rule set.

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 93–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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To support such a rule selection, many efforts have done using objective rule
evaluation indices such as recall, precision, and other interestingness measure-
ments (we call them ‘objective indices’ later). However, it is also difficult to
estimate a criterion of a human expert with single objective rule evaluation in-
dex, because his/her subjective criterion such as interestingness and importance
for his/her purpose is influenced by the amount of his/her knowledge and/or a
passage of time.

To above issues, we have been developed an adaptive rule evaluation support
method for human experts with rule evaluation models, which predict experts’
criteria based on objective indices, re-using results of evaluations of human ex-
perts. In Section 3, we describe the rule evaluation model construction method
based on objective indices. Then we present a performance comparison of learn-
ing algorithms for constructing rule evaluation models in Section 4. With the
results of the comparison, we discuss about the availability of our rule evaluation
model construction approach.

2 Related Work

To avoid the confusion of real human interest, objective index, and subjective
index, we clearly define them as follows: Objective Index: The feature such
as the correctness, uniqueness, and strength of a rule, calculated by the mathe-
matical analysis. It does not include any human evaluation criteria. Subjective
Index: The similarity or difference between the information on interestingness
given beforehand by a human expert and those obtained from a rule. Although
it includes some human criterion in its initial state, the similarity or difference
are mainly calculated with a mathematical analysis. Real Human Interest:
The interest felt by a human expert for a rule in his/her mind.

Focusing on interesting rule selection with objective indexes, researchers have
developed more than forty objective indexes based on number of instances, prob-
ability, statistics, information quantity, distance of rules or their attributes, and
complexity of a rule [11, 22, 24]. Most of these indexes are used to remove mean-
ingless rules rather than to discover really interesting ones for a human expert,
because they can not include domain knowledge. In contrast, a dozen of sub-
jective indexes estimate how a rule fits with a belief, a bias or a rule template
formulated beforehand by a human expert. Although these subjective indexes
are useful to discover really interesting rules to some extent due to their built-
in domain knowledge, they depend on the precondition that a human expert
is able to clearly formulate his/her interest. Although interestingness indexes
were verified their availabilities on each suggested domain, nobody has validated
their availabilities on the other domains or/and characteristics related to the
background of a given dataset.

Ohsaki et. al [15] investigated the relation between objective indexes and
real human interests, taking real data mining results and their human evalua-
tions. In this work, the comparison shows that it is difficult to predict real human
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interests with a single objective index. Based on the result, they indicated the
possibility of logical combination of the objective indexes to predict real human
interests more exactly.

3 Rule Evaluation Support with Rule Evaluation Model
Based on Objective Indices

At practical data mining situations, costly rule evaluation procedures are re-
peatedly done by a human expert. In these situations, useful experiences of each
evaluation such as focused attributes, interesting their combinations, and valu-
able facts are not explicitly used by any rule selection system, but tacitly stored
in the human expert. To these problems, we suggest a method to construct
rule evaluation models based on objective rule evaluation indices to describe a
criterion of a human expert explicitly.

3.1 Constructing a Rule Evaluation Model

We considered the process for modeling rule evaluations of human experts as the
process to clear up relationships between the human evaluations and features of
input if-then rules. With this consideration, we decided that the process of rule
evaluation model construction can be implemented as a learning task. Fig. 1.
shows the process of rule evaluation model construction based on re-use of human
evaluations and objective indices for each mined rule.

At the training phase, attributes of a meta-level training data set is obtained
by objective indices such as recall, precision and other rule evaluation values. The
human evaluations for each rule are joined as class of each instance. To obtain this
data set, a human expert has to evaluate the whole or part of input rules at least
once. After obtaining the training data set, its rule evaluation model is constructed
by a learning algorithm. At the prediction phase, a human expert receives predic-
tions for new rules based on their values of the objective indices. Since the task
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of rule evaluation models is a prediction, we need to choose a learning algorithm
with higher accuracy as same as current classification problems.

4 Performance Comparison of Learning Algorithms for
Rule Model Construction

To predict human evaluation labels of a new rule based on objective indices
more exactly, we have to construct a rule evaluation model, which has higher
predictive accuracy.

In this section, we firstly present the result of an empirical evaluation with
the dataset from the result of a meningitis data mining[9]. Then to confirm
the performance of our approach on the other datasets, we evaluated the five
algorithms on four rule sets from four kinds of UCI benchmark datasets [10].
With the experimental results, we discuss about the following three view points:
accuracies of rule evaluation models, analyzing learning curves of the learning
algorithms, and contents of learned rule evaluation models.

As an evaluation of accuracies of rule evaluation models, we have compared
predictive accuracies on the whole dataset and Leave-One-Out. The accuracy of a
validation dataset D is calculated with correctly predicted instances Correct(D)
as Acc(D) = (Correct(D)/|D|) × 100, where |D| means the size of the dataset.
Recalls of class i on a validation dataset is calculated with correctly predicted
instances about the class Correct(Di) as Recall(Di) = (Correct(Di)/|Di|) ×
100, where |Di| means the size of instances with class i. Also the precision of
class i is calculated with the size of instances predicted i as Precision(Di) =
(Correct(Di)/Predicted(Di))× 100.

As for learning curves, we obtained learning curves about accuracies to the
whole training dataset to evaluate whether each learning algorithm can perform in
early stage of a process of rule evaluations. Accuracies from randomly sub-sampled
training datasets are averaged with 10 times trials on each percentage of subset.

Looking at elements of the rule evaluation models to the whole dataset, we
consider the characteristics of each learning algorithm on the attribute space
consisted of the objective indices.

To construct a dataset to learn a rule evaluation model, values of objective
indices have been calculated for each rule, taking 39 objective indices as shown
in Table 1. The dataset for each rule set has the same number of instances as
the rule set. Each instance consists of 40 attributes including the class attribute.

To these dataset, we applied five learning algorithms to compare their perfor-
mance as a rule evaluation model construction method. We used the following
learning algorithms from Weka[23]: C4.5 decision tree learner[19] called J4.8,
neural network learner with back propagation (BPNN)[12], support vector ma-
chines (SVM)1[18], classification via linear regressions (CLR)2[3], and OneR[13].

1 The kernel function was set up polynomial kernel.
2 We set up the elimination of collinear attributes and the model selection with greedy

search based on Akaike Information Metric.
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Table 1. The objective rule evaluation indices for classification rules used in this
research. P: Probability of the antecedent and/or consequent of a rule. S: Statistical
variable based on P. I: Information of the antecedent and/or consequent of a rule.
N: Number of instances included in the antecedent and/or consequent of a rule. D:
Distance of a rule from the others based on rule attributes.

Theory Index Name (Abbreviation) [Reference Number of Literature]
P Coverrage(Coverage), Prevalence(Prevalence)

Precision(Precision), Recall(Recall)
Suppurt(Support), Specificity(Specificity)
Accuracy(Accuracy), Lift(Lift)
Leverage(Leverage), Added Value(Added Value)[22]
Klösgen’s Interestingness(KI)[14], Relative Risk(RR)[1]
Brin’s Interest(BI)[2], Brin’s Conviction(BC)[2]
Certainty Factor(CF)[22], Jaccard Coefficient(Jaccard)[22]
F-Measure(F-M)[20], Odds Ratio(OR)[22]
Yule’s Q(YuleQ)[22], Yule’s Y(YuleY)[22]
Kappa(Kappa)[22], Collective Strength(CST)[22]
Gray andOrlowska’s Interestingness weighting Dependency(GOI)[7]
Gini Gain(Gini)[22], Credibility(Credibility)[8]

S χ2 Measure for One Quadrant(χ2-M1)[6]
χ2 Measure for Four Quadrant(χ2-M4)[6]

I J-Measure(J-M)[21], K-Measure(K-M)[15]
Mutual Information(MI)[22]
Yao and Liu’s Interestingness 1 based on one-way support(YLI1)[24]
Yao and Liu’s Interestingness 2 based on two-way support(YLI2)[24]
Yao and Zhong’s Interestingness(YZI)[24]

N Cosine Similarity(CSI)[22], Laplace Correction(LC)[22]
φ Coefficient(φ)[22], Piatetsky-Shapiro’s Interestingness(PSI)[17]

D Gago and Bento’s Interestingness(GBI)[5]
Peculiarity(Peculiarity)[25]

4.1 Constructing Rule Evaluation Models on an Actual Datamining
Result

In this case study, we have taken 244 rules, which are mined from six dataset
about six kinds of diagnostic problems as shown in Table 2. These datasets are
consisted of appearances of meningitis patients as attributes and diagnoses for
each patient as class. Each rule set was mined with each proper rule induction al-
gorithm composed by a constructive meta-learning system called CAMLET[9].
For each rule, we labeled three evaluations (I:Interesting, NI:Not-Interesting,
NU:Not-Understandable), according to evaluation comments from a medical
expert.

Table 2. Description of the meningitis datasets and their datamining results

Dataset #Attributes #Class #Mined rules #’I’ rules #’NI’ rules #’NU’ rules
Diag 29 6 53 15 38 0
C Cource 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult find 29 2 24 3 18 3
TOTAL — — 244 48 187 9
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Comparison on Classification Performance. In this section, we show the
result of the comparisons of accuracies on the whole dataset, recall of each class
label, and precisions of each class label. Since Leave-One-Out holds just one
instance as the test data and remains as the training dataset repeatedly for
each instance of a given dataset, we can evaluate the performance of a learning
algorithm to a new dataset without any ambiguity.

The results of the performances of the five learning algorithms to the whole
training dataset and the results of Leave-One-Out are also shown in Table 3 All
of the accuracies, Recalls of I and NI, and Precisions of I and NI are higher than
predicting default labels.

Table 3. Accuracies(%), Recalls(%) and Precisions(%) of the five learning algorithms

On the whole training dataset Leave-One-Out
Recall of Precision of Recall of Precision of

Acc. I NI NU I NI NU Acc. I NI NU I NI NU
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Accuracy on the Training Dataset. Comparing with the accuracy of OneR, the
other learning algorithms achieve equal or higher performance with combination
of multiple objective indices than sorting with single objective index. Looking
at Recall values on class I, BPNN have achieved the highest performance. As
for the other algorithms, they show lower performance than OneR, because they
have tended to be learned classification patterns for the major class NI.

Robustness with Leave-One-Out Estimation. Each value of Leave-One-Out esti-
mation shows robustness of each learning algorithm to an unknown test dataset.
On the accuracies, these learning algorithms have achieved from 75.8% to 81.9%.
However, these learning algorithms have not been able to classify the instances
with class NU, which is a minor class label in this dataset.

Looking at each learning algorithm, the values of BPNN show the trend of over
fitting, comparing with its values of training dataset and its values of Leave-One-
Out. Although OneR selects an adequate objective index to sort and classify 244
training datasets in the Leave-One-Out validation, the predictive performances to
a new dataset have been limited because of the selection of just one objective index.

Learning Curves of the Learning Algorithms. Since the rule evaluation
model construction method needs evaluations of mined rules by a human expert,
we have investigated learning curves of each learning algorithm to estimate how
many evaluations are needed to construct a valid rule evaluation model. The
upper table in Fig. 2. shows accuracies to the whole training dataset with each
subset of training dataset. The percentages of achievements for each learning
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algorithm, comparing with the accuracy with the whole dataset, are shown in
the lower chart of Fig. 2. As shown in these results, SVM and CLR, which
learn hype-planes, achieves grater than 95% with only less than 10% of training
subset. Although decision tree learner and BPNN could learn better classifier
to the whole dataset than these hyper-plane learners, they need more training
instances to learn accurate classifiers.
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Fig. 2. Learning Curves of accuracies(%) on the learning algorithms with sub-sampled
training dataset: The left table shows accuracies(%) on each training dataset to the
whole dataset. The left graph shows their achievement ratio(%). Also the right table
shows recalls(%), and the graph shows their achievement ratio(%).

To eliminate known ordinary knowledge from large rule set, it is needed to
classify non-interesting rules correctly. The right upper table in Fig. 2. shows
percentages of recalls on NI. The right lower chart in Fig. 2. also shows the
percentages of achievements on recall of NI, comparing with the recall of NI on
the whole training dataset. Looking at this result, we can eliminate NI rules
with rule evaluation models from SVM and BPNN even if there is only 10% of
rule evaluations by a human expert. This is guaranteed with no less than 80%
precisions of all learning algorithms.

Rule Evaluation Models on the Actual Datamining Result Dataset.
In this section, we present rule evaluation models to the whole dataset learned
with OneR, J4.8 and CLR, because they are represented as explicit models such
as a rule set, a decision tree, and a set of linear models.

The rule set of OneR is shown in Fig. 3(a). OneR has selected YLI1[24] to
classify the evaluation labels. Although YLI1 corrects support to predict inter-
estingness of a human expert, YLI1 estimates a correctness of each rule on a
validation dataset.

As shown in Fig. 3(b), J4.8 leaned the decision tree. At the root node, this
model takes Laplace Correction[22], which is a corrected Precision with constant
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IF                                 YLI1 < 0.02 THEN  "I"
IF  YLI1 >= 0.02  and  YLI1 < 0.29  THEN  "NI"
IF  YLI1 >= 0.29  and  YLI1 < 0.43  THEN  "I"
IF  YLI1 >= 0.43  and  YLI1 < 0.44  THEN  "NI"
IF  YLI1 >= 0.44  and  YLI1 < 0.55  THEN  "I"
IF  YLI1 >= 0.55  and  YLI1 < 0.63  THEN  "NI"
IF  YLI1 >= 0.63  and  YLI1 < 0.83  THEN  "I"
IF  YLI1 >= 0.83                              THEN  "NI"

NU =
      0.6202 * Specificity +
      0.6224 * Accuracy +
     -1.1384 * Leverage +
     -0.6895 * RelativeRisk +
      0.3704 * CertaintyFactor +
      0.5722 * OddsRatio +
      0.7656 * BI +
     -0.222  * Credibility +
     -0.3941 * LaplaceCorrection +
      0.7986 * GiniGain +
     -0.0966 * GBI +
     -0.8895

NI =
      1.7173 * Precision +
     -0.5063 * Accuracy +
      0.5673 * RelativeRisk +
     -1.2718 * CertaintyFactor +
      0.5955 * YulesQ +
     -0.4609 * K-Measure +
      0.4613 * PSI +
     -0.4181 * Peculiarity +
      0.5302

I =
     -1.4417 * Precision +
     -0.7286 * Specificity +
      0.4085 * Lift +
      0.6297 * CertaintyFactor +
     -1.4477 * CollectiveStrength +
      1.5449 * GiniGain +
     -0.5318 * PSI +
      0.4981 * Peculiarity +
      1.4872

(a)

(c)

Laplace Correction

Accuracy

Recall

Peculiarity

Prevalence

GBI

PrecisionCoverage

<= 0.44

<=0.11 >0.11

NI(3.0)
<=0.20 >0.20

I (17.0/5.0)
<=0.61 >0.61

NU (3.0) I (6.0)

>0.44

<=0.57
>0.57

NI (138.0/9.0)
<=0.25 >0.25

<=0.05 >0.05

NU(4.0) NI(2.0)

<=0.93

I (2.0) NI (69.0/20.0)

>0.93

(b)

Fig. 3. Learned models to the meningitis data mining result dataset: (a) rule set learned
from OneR, (b) decision tree learned from J4.8, (c) linear regression models learned
from CLR

values. At the other levels, it takes indices evaluating a correctness of a rule
such as Accuracy, Precision and Recall. Coverage and Prevalence are indices
to evaluate a generality of the antecedent and the consequent of a rule. GBI[5]
calculate index values with the classification result of a rule. Peculiarity[25] sums
up differences of antecedents between one rule and the other rules in the same
rule set.

Fig. 3(c) shows linear models to classify each class. The prediction has done
with integrating the responses of these linear models. As for models to class NI
and I, they have the same indices such as Precision, Certainty Factor, PSI, and
Peculiarity with opposite coefficients. The strongest factors on these models are
Precision and Gini Gain, which increase their values with the correctness of a
rule. To class NU, the strongest factor is Leverage based on Precision with a
correction using a generality of a rule.

4.2 Constructing Rule Evaluation Models on Artificial Evaluation
Labels

We have also evaluated our rule evaluation model construction method with
rule sets from three datasets of UCI Machine Learning Repository to confirm
the lower limit performances on probabilistic class distributions.

We selected the following three datasets: Mushroom, Heart, Internet Adver-
tisement Identification (called InternetAd later) and Letter. With these datasets,
we obtained rule sets with bagged PART, which repeatedly executes PART[4]
to bootstrapped training sub-sample datasets.

To these rule sets, we calculated the 39 objective indices as attributes of
each rule. As for the class of these datasets, we set up three class distribu-
tions with multinomial distribution. The class distribution for ‘Distribution I’
is P = (0.35, 0.3, 0.3) where pi is the probability for class i. Thus the num-
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ber of class i in each instance Dj become piDj . As the same way, the proba-
bility vector of ‘Distribution II’ is P = (0.3, 0.5, 0.2), and ‘Distribution III’ is
P = (0.3, 0.65, 0.05).

Table 4 shows us the datasets with three different class distributions.

Table 4. Datasets of the rule sets learned from the UCI benchmark datasets

Accuracy Comparison on Classification Performances. To above
datasets, we have attempted the five learning algorithms to estimate whether
their classification results can go to or beyond the accuracies of just predicting
each default class. The left table of Table 5 shows the accuracies of the five
learning algorithms to each class distribution of the three datasets. As shown in
Table 5, J48 and BPNN always work better than just predicting a default class.
However, their performances are suffered from probabilistic class distributions
to larger datasets such as Heart and Letter.

Table 5. Accuracies(%) on whole training datasets labeled with three different distrib-
utions(The left table). Number of minimum training sub-samples to outperform %Def.
class(The right table).
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Evaluation on Learning Curves. As same as evaluations of learning curves
on the meningitis rule set, we have estimated the minimum training subsets
for a valid model, which works better than just predicting a default class. For
each data point, we constructed rule evaluation models to each size of sub-
sampled training datasets 10 times. Then the averaged accuracy of each set of
rule evaluation models is calculated on each whole dataset.

The right table in Table 5 shows sizes of minimum training subsets, which
can be constructed more accurate rule evaluation models than percentages of a
default class by each learning algorithm. To smaller dataset, such as Mushroom
and InternetAd, they can construct valid models with less than 20% of given
training datasets. However, to larger dataset, they need more training subsets to
construct valid models, because their performances with whole training dataset
fall to the percentages of default class of each dataset as shown in the left table
in Table 5.

4.3 Discussion

On the Classification Performances. As shown in Table 3 and the left table
of Table 5, J4.8 decision tree learner and BPNN neural network learner work
better than the other algorithms on both of the actual problem and a proba-
bilistic problem. In section 4.1, the classification result about class ‘I’ indicates
that these instances are difficult to separate with liner expressions in this at-
tribute space based on the 39 objective indices. To predict such labels correctly,
we should apply nonlinear classifier learned from nonlinear learners. Although
these five learning algorithms have achieved 81.6% of the highest accuracy in
the Leave-One-out estimation, we need to obtain more accurate rule evaluation
models with meta-learning algorithms such as boosting, bagging and so forth.

On the Learning Curves. With this analysis of the learning curves about each
amount of training samples, we consider the following guideline: At early stage
of rule evaluation support, the system should select hyper-plane learners to con-
struct better rule evaluation models rapidly. Then closing stage of evaluations,
the system should select more accurate learning algorithm to predict minor but
valuable rules. This guideline can be applied to a large rule set, considering the
work done by Perlich et. al[16], which shows the result that regression learners
can be learned faster on large datasets than decision tree learners.

On the Learned Rule Evaluation Models. Looking at indices used in
learned rule evaluation models, they are not only the group of indices increas-
ing with a correctness of a rule, but also they are used some different groups
of indices on different models. This corresponds to the comment from the hu-
man expert. He said that he evaluated these rules not only correctness but also
his interest based on his expertise. From the other viewpoint, this also indicates
that the rule model construction method needs to select prior algorithms on data
pre-processing algorithms, such as attribute construction and attribute selection,
and a mining algorithm to construct an adequate rule evaluation model.
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5 Conclusion

In this paper, we have described rule evaluation support method with rule eval-
uation models to predict evaluations for an IF-THEN rule based on objective
indices, re-using evaluations of a human expert.

As the result of the performance comparison with the five learning
algorithms, rule evaluation models have achieved higher accuracies than just
predicting each default class. Considering the difference between the actual eval-
uation labeling and the artificial evaluation labeling, it is shown that the medical
expert evaluated with noticing particular relations between an antecedent and a
class/another antecedent in each rule. In the estimation of robustness to a new
rule with Leave-One-Out, we have achieved more than 75.8% with these learning
algorithms. On the evaluation with learning curves to the dataset of the actual
datamining result, SVM and CLR have achieved more than 95% of achievement
ratio compared to the accuracy of the whole training dataset with less than 10%
of subset of the training dataset with certain human evaluations. These result
related to performances of rule evaluation models indicate the availability of this
rule evaluation support method for a human expert.

As future works, we will introduce a selection method of learning algorithms
to construct a proper rule evaluation model according to each situation. We also
apply this rule evaluation support method to estimate other data mining result
such as decision tree, rule set, and committee of them with objective indices,
which evaluate whole mining results.
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Abstract. The poor characterisation of contaminated soils is likely to result in 
high costs, restricted choice in landfill disposal sites and future environmental 
impact. This makes that big quantities of soils are still waiting to be recovered. 
Until now the tools used to detect contaminated soil have been very generic, 
without any criteria of prioritization. Usually, simulation studies are used to 
classify contaminated soils, however these systems need a large quantity of data 
that is difficult to obtain and manage, which means that the results obtained are 
subject to large uncertainty. Recently, Artificial Intelligence techniques have 
been used to tackle this problem. In this work we propose the use of Fuzzy  
Expert Systems to classify the soils. Classical decision rules have shown to be 
interpretable, efficient, problem independent and able to treat large scale appli-
cations, but they are also recognised as highly unstable classifiers with respect 
to minor perturbations in the training data. In our problem, the data is subject to 
uncertainty, for this reason we propose the fuzzyfication of the variables. In the 
study many different variables have been taken into account: Physic and 
Chemical characteristics of the soil and pollutants, toxicological properties, and 
environment and social conditions. After applying Fuzzy Expert Systems at dif-
ferent levels, we obtain a ranking of the soils according to their risk of contami-
nation. The results have been contrasted with another Multicriteria Decision 
Making system. 

1   Introduction 

Soil is a natural resource, not always renewable. Due to the deep aggressions carried 
out in the last years, the European Community considered to establish a Protecting 
Soil Directive that integrates the soil into the protected natural resources group, as 
water, atmosphere and biota (CEC 2002) [1]. The conditions of the soil have direct 
consequences in groundwater and water resources health [1]. Water quality is related 
to the quality of the soil, because soil performs storage, filtering, buffering and trans-
formation functions. Between 1995 and 2005, around 4500 areas in Spain were classi-
fied as contaminated soils by the National Plan of Contaminated Soil Recovering. 
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Before 1998, there was no legal rule to protect efficiently the soil from the contamina-
tion nor to detect and priorise the contaminated ones. The experience in other coun-
tries of E.U. helped to understand that huge areas of contaminated sites were still 
waiting to be characterized and recovered. 

Until now, the classification methods used to evaluate contaminated soils only 
compare analytical results with the maximum concentration of contaminant estab-
lished by the government. No recovery action is taken if the analytical results are  
under the established limit. However, many other factors influence the risk of a par-
ticular soil. Contaminated sites can vary widely in terms of their hydraulic conditions, 
the nature of the contamination, and the associated physical (e.g. mass transfer  
between different phases), chemical (e.g. oxidation and reduction), and biological 
(e.g. aerobic biodegradation) processes [2]. Therefore all the parameters involved in 
the processes described above should be also taken into account. Moreover, these data 
is sometimes very difficult to obtain and manage, leading to results subject to a great 
uncertainty. For this reason, there is a need of developing new computational tech-
nologies to optimise time and costs with respect to detection and recovery of con-
taminated sites.  

Intelligent Decision Support Systems (DSSs) intend to rationally analyse complex 
sets of alternatives in order to find the solution to a decision problem. Some attempts 
to use DSSs for the characterization of contaminated soils have been done [2], but 
they do not use all the variables of the problem and they do not consider uncertainty 
in the data, leading to results that are not good enough. For this reason, a new ap-
proach is needed for developing a useful and user-friendly system which can be really 
adopted [3]. 

An expert system is an intelligent computer program using knowledge and infer-
ence procedures to emulate the decision-making ability of a human expert in a  
restricted domain [4]. They have been successfully applied in many areas such as 
business, medicine, science, and engineering. The basic idea of a knowledge-based 
expert system consists in supplying facts to the expert system, and receiving expert 
advice in response. The rules used in the inference stage can be automatically gener-
ated from decision trees [5]. Decision Trees have already shown to be easy to  
interpret, efficient, problem independent and able to treat large scale applications. But 
they are also recognised as highly unstable classifiers with attributes presenting high 
uncertainty in terms of variance. To cope with uncertainty, fuzzy decision trees have 
been developed [6]. Recently, different shells for implementing fuzzy expert systems 
have appeared  (FuzzyCLIPS [7]. FuzzyShell [8], FuzzyJess [9]), so this kind of  
applications are growing [FS].  

In our domain, we have lots of attributes to analyse in order to obtain a sorting of a 
set of soils into some predefined risk categories. In addition, many of these soil attrib-
utes are subjective measures, with some intrinsic uncertainty. For this reason, we  
propose, in this paper, the use of fuzzy sets to represent uncertainty and of fuzzy ex-
pert systems to solve the problem of soils classification and their priorisation for later 
recovery.  

This paper proceeds as follows. Section 2 presents the characteristics of the prob-
lem we are trying to solve. Section 3 shows the architecture of the decision system we 
have designed and implemented, which is based on using fuzzy expert systems.  
Section 4 gives details about the modeling of the information with decision trees 
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made by a committee of experts in soil contamination, and explains the exploitation 
of the system. Then, section 5 is devoted to explain the tests of the system and the 
evaluation of the results in comparison with other approaches. Finally, section 6  
presents some conclusions and new research directions. 

2   Problem Domain 

Many factors are relevant in the characterization of the risk of contamination in a soil, 
such as hazard assessment, toxicities and exposure assessment. To reduce the amount 
fo information, we performed a statistical analysis of the data to find the most relevant 
variables. Finally, 26 attributes were selected to build the knowledge base of a fuzzy 
expert system. This system will be used as a sorting method to determine the con-
taminated soil risk.  

The information has been obtained from an expert commission, formed by a 
chemical engineer and an expert in contamination of soils, and bibliography (basically 
the Catalan Risk Evaluation Guide). For some months, a knowledge engineer had 
some interviews with the experts. In the first interview introduced and explained the 
concepts and tasks of the proposed methodology to tackle this problem. In the later 
interviews, when the knowledge engineer had gained some familiarity with the do-
main, they structured the information and modeled it in the form of decision trees, as 
will be explained in the following sections.  

The experts decided that the rules should not consider together some variables, be-
cause they have different meaning and a different relation to the risk of contamina-
tion. For this reason, they put the variables into 3 types (see Table 1): 

Table 1. Variables considered to build the expert system 

Risk characterization variables 
Group nº 1: Source Group nº 2: Transfer vector Group nº 3: Local properties 

     Land dimension Porosity Population 

Confinement Hydraulic conductivity Population distance 

State of the contaminant Unsaturated zone deep Population quantity 

Toxicity Recharge Accessibility 

Contaminant Quantity Rainfall Sensible activities 

Half life Groundwater proximity Sensible ecosystem 

Solubility Surface water proximity Species in danger 

Vapour pressure Soil used Visual impact 

Installation age Water used  
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1. Source attributes:  give details about the source of contamination. 
2. Transfer vector attributes: refer to the possibility of dissemination of the 

contamination. 
3. Local properties: are related to the possibly affect the health of human  

being and ecosystems. 

For our environmental team of experts, one of the goals of this work is to study if 
we can determine the risk of contamination of a soil with less variables than it is  
usually done. So, we made a careful selection of the significant variables, and the 
structure of the expert system was widely discussed, before deciding to separate the 
variables. For each of this three groups we have build a separate expert system, that 
concludes which is the degree of risk of contamination in relation to these different 
points of view of the domain. Then, another expert system has rules that combine 
these three different measures of the risk. This approach with separate sets is a new 
proposal with respect to other previous approximations to this problem. 

2.1   Fuzzyfying the Attributes 

Environment decision-making involves complex and often ill-defined variables with a 
high degree of uncertainty due to incomplete understanding of the underlying issues 
[10]. These uncertainties can arise due to probability of an event, an expert's belief in 
an event, imprecision in real word measurements an experimenter's unclear notion of 
a value. 

Fuzzy logic is useful for representing imprecise knowledge. Fuzzy expert systems 
show exceptional performance for working with processes which are adequately de-
fined in qualitative terms and for which no precise mathematical model of the process 
exists [11]. So, we have taken this approach to design our system. 

The group of experts in soils contamination analysis helped us to determine which 
attributes should use linguistic values rather than numerical ones, and also to design 
the membership functions associated to these linguistic values.  

In this application, 16 attributes out of the 26 have been fuzzyfied. For almost all, 
we use three terms: low, medium and high risk. We have used trapezoidal sets to 
model their membership functions. The membership functions for each linguistic  
variable have been set up independently, to model the semantics of each attribute.  
 

 

Fig. 1. Land dimension: surface in contact with contaminant (m2) 
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Fig. 2. Groundwater proximity: proximity of groundwater to contaminants (m) 

 

Fig. 3. Fuzzy values of the risk of contamination of a soil 

Figures 1and 2 show the membership functions of the linguistic terms of the risk 
given the land dimension and groundwater proximity to the source of contaminant. 

In the same way, for the decision variable (the risk of soil contamination) four lin-
guistic values were chosen and their corresponding trapezoidal fuzzy sets fixed. This 
information is given in Figure 3. 

3   The Expert System Architecture 

In [2] a fuzzy expert system is designed to solve a problem quite similar to the one we 
are presenting here. The main differences that our proposal introduces are the follow-
ing: (1) the set of attributes considered are not the same, (2) we organise the attributes 
in 3 sets and build an expert system for each one, due to that they refer to different 
aspects of the problem and seem to contribute differently to the final level of risk con-
tamination. The results are used in the rules of another expert system to find the final 
risk of contamination. So, we are proposing to use a hierarchic fuzzy expert systems 
approach [12].  

In Figure 4, the architecture of the hierarchic expert system is represented. It has two 
levels..Expert system SOURCE determines the risk of contamination having into con-
sideration the attributes related to the source. Expert system TRANSFER uses the trans-
fer vectors to know the  risk of  contamination.   Expert system   LOCAL-PROPERTIES 



110 M. García et al. 

 

Fig. 4. Architecture of the decision making system 

characterizes the risk in function of the local properties. We obtain a fuzzy degree of 
risk for each of these three aspects. Then, another expert system is used to integrate 
that values and determine the global risk of contamination.  

4   Building the Expert Systems 

This section is gives details about the design and development of the system we  
propose for this particular problem. 

4.1   Modeling the Information with Decision Trees 

Decision trees have been widely used in Artificial Intelligence applications. The 
knowledge is represented by nodes (corresponding to a particular attribute), branches 
(corresponding to the possible values of the attribute) and leaves (corresponding to 
decision values). So, decisions take part in the nodes, branches represent different 
ways to follow according to the value of the decision attribute, and leaves give the 
result of the problem.  

Decision trees can be induced from a set of supervised examples using, for in-
stance, the well-known ID3 algorithm [5]. Another way of obtaining a decision tree is 
building it with the help of an expert. We have used the latter approach because of the 
lack of a sufficient and significant set of supervised contaminated soils. 



 A Multicriteria Fuzzy Decision System to Sort Contaminated Soils 111 

To build each of the four decision trees involved in our system, the knowledge en-
gineer used a data-driven analysis, instead of the goal-driven approach proposed in 
[3]. The experts committee analyzed separately each of the three sets of variables to 
build a decision tree for each of them. The result of each tree is the risk of contamina-
tion associated to the source contaminant, the transfer vector and local properties, 
respectively. In addition, each attribute was given a weight according to its estimated 
contribution to the risk of contamination. Then, the new three fuzzy variables ob-
tained from the three decision trees, were used to build the decision tree that inte-
grates the partial results in order to find the global risk associated to a particular soil 
contaminated. In this case, the risk value of the three sets also contributes differently 
to the final level of risk contamination. The values of these weights were also given 
by the experts, who set that source is more important for risk assessment, so it takes a 
weight of 0.4, and transfer vector and local properties takes 0.3 each one.  

4.2   Obtaining the Fuzzy Rules 

To build the rule base of the expert systems, rules have been derived from the deci-
sion trees. Each path in the decision tree (form the root to the leave) corresponds to a 
rule. In Figure 6 we can see an example with a tree with two decision levels before 
determining the risk. From this tree we obtain the following rules: 

R1: If toxicity is low then risk is low. 
R2: If the toxicity is medium and the quantity of contaminant is low then the risk is low. 
R3: If the toxicity is medium and the quantity of contaminant is medium then the risk is low. 
R4: If the toxicity is medium and the quantity of contaminant is high then the risk is medium. 
R5: If the toxicity is high and the quantity of contaminant is low then the risk is low. 
R6: If the toxicity is high and the quantity of contaminant is medium then the risk is medium. 
R7: If the toxicity is high and the quantity of contaminant is high then the risk is high. 

To execute the expert system, the decision-maker provides the value of each of the 
attributes. Then the system selects the rules whose preconditions are fulfilled at some 
degree, and all these rules are fired to give a degree of risk of contamination.  

To calculate the level of fulfillment of the conditions of a rule, we take the  
membership degree of thee values of each variable, and we use a weighted average 
operator to calculate the global degree of achievement, as it is done in [3]. This value 
is used to infer the degree of membership of the conclusion given by the rules  
(following [9]). In case, that the rules fired give different linguistic values in the con-
clusions, the final output of the system is the maximum value of the risk given by the 
rules. We take the maximum because the risk is directly associated with hazard to  
the health of human beings and ecosystems. This is a pessimistic approach. In fact, we 
want to study other methods. 

 In the example of Figure 5, we have supposed that Toxicity has a value of 4 (in a 
range from 1, best, to 10, worst), and the Quantity of Contaminant is 100 m3 (from 0, 
best, to 2000, worst). In Figure 5, we can see the rules that are fulfilled in this exam-
ple. Each of the conditions of these rules is satisfied to a different degree. In the nodes 
of the tree in Figure 5 we can find the membership degree for the corresponding vari-
able. These degrees modify the final membership degree of the risk value in the con-
sequent of the rule, together with the weights associated to each attribute. For 
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Fig. 5. Decision tree for a particular example 

instance, for rule R3, we have that Toxicity is satisfied with a degree of 0.25 and 
Quantity of Contaminant with a degree of 0.5, so the risk is low with a degree of 0.3.  

In Table 2 we can see the number of rules obtained from the decision trees for each 
expert system. We can see, depending on group of variables considered, the final 
number of rules obtained from the trees is different. The more complex part of the 
domain (the one that has more rules and with more complex conditions) is the group 
corresponding to the characterisation of the source of contamination. 

Table 2 also shows some examples of rules of the four expert systems. Notice that 
each expert system has its own decision variable referring to RiskSource, RiskTrans-
fer and RiskLocal respectively. Notice that the rules have different number of condi-
tions; they use fuzzy linguistic variables but also non-fuzzy variables, like the second 
rule of the Local Properties system. 

Table 2. Rules 

Expert 
System 

Number 
of rules 

Examples 

SOURCE 70 If Toxicity is low and ContaminantQuantity is high   
and HalfLife is low then RiskSource is low 
If VapourPressure is low then RiskSource is medium 

TRANSFER  
VECTOR 

33 If Rainfall is high and Recharge is medium then 
Climatology is high 
If Porosity is medium and Climatology is high then 
RiskTransfer is low 

LOCAL  
PROPERTIES 

25 If Population is adult and PopulationDistance is far 
and PopulationQuantity is low then RiskLocal is low 
If SensibleActivity=yes and SensibleEcosystems=yes 
and SpeciesInDanger=no then RiskLocal is medium 

RISK 27 If RiskSource is medium and RiskTransfer is 
medium and RilkLocal is high then RiskTotal is high 
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5   Evaluation of the Results 

To check whether the results provided by the fuzzy expert system are correct or not, 
we have done two types of studies. On one hand, we have tested some case studies of 
soils provided by the Risk Evaluation Guide published by the Catalan Government. 
Three different soils were considered, each one was tested with two different con-
taminants: DDT and Atrazine. The results were quite similar and, according to the 
experts’ opinion, the results obtained with the fuzzy expert system were more ade-
quate than the ones given by the guide. Although we must carry on a more exhaustive 
study, we can see that this system gives good results using fewer variables than the 
ones considered in the guide. We can also see that fuzzy values can capture the 
knowledge needed in this problem, so it seems better than dealing with precise num-
bers. This is very interesting because we can see that with less information, we can 
make good predictions, which results in a reduction of time and cost in the informa-
tion elicitation stage. 

On the other hand, we have compared our results with the ones given by another 
method that follows the Multi-Criteria Decision Aid (MCDA) philosophy. MCDA 
approaches attempt to consider a large set of criteria describing a set of different al-
ternatives using consensus techniques [13]. In particular, we have focused on “sort-
ing” methods, which are the ones classify the alternatives into a pre-defined set of 
ordered categories [13]. We have used the ClusDM system to perform this multicrite-
ria sorting analysis, because ClusDM is able to deal with both numerical and qualita-
tive data simultaneously [14].  

ClusDM is based on the Multi-Attribute Utility Theory [15], so it has two initial 
stages consisting of aggregating all the information of the alternatives into a single 
criterion, and then ranking the values obtained. In this system, the aggregation is  
performed by means of unsupervised clustering techniques, which build a set of  
non-overlapping clusters (one for each desired final preference category). Then, the 
ranking is done using a similarity-based approach, comparing the prototypes of the 
clusters with the definition of the most risky contaminated soil and the least risky one. 
Finally, a linguistic preference value is assigned to each of the clusters according to 
its position in the ranking. The set of possible values has been provided by the user: 
{detest, can-not-stand, hate, do-not-like, do-not-mind, enjoy, like, love, absolutely-
adore}. Then, the ClusDM algorithm selects the most appropriate term to describe the 
preference of each of the clusters. 

Before presenting the results of the comparison between these two different deci-
sion making methods, we have to explain that ClusDM uses a different approach to 
uncertainty handling. Instead of defining the semantics of the linguistic values with 
fuzzy sets, ClusDM uses negation functions as defined in [16], where the negation of 
a term is the value that expresses the opposite meaning. We translated all the fuzzy set 
variables into the negation function representation, but the application is not exact. 
Consequently, there are some differences between the interpretations of the linguistic 
values done by each of the two systems. In Table 3 we can see the negation function 
of the Land Dimension criterion, with its associated numerical intervals. This negation 
maintains as much as possible the meaning of the terms given by its fuzzy variables, 
which were shown in Figure 1. 
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Table 3. Representation of the semantics of the Dimension variable with a negation function 

Values of the Land Dimension Negation of each value Interval 
Low High [0..0,25) 
Medium High [0,25..0,5) 
High Low and Medium [0,5..1] 

Table 4. Results comparison 

Id FES  ClusDM  Dif^2 
1 very-high 1 detest 0,04 0,001 

13 very-high 0,91 detest 0,04 0,002 
6 very-high 0,89 can-not-stand 0,12 6E-06 

14 very-high 0,88 can-not-stand 0,12 1E-04 
15 high 0,72 detest 0,04 0,058 

8 high 0,69 do-not-mind 0,5 0,035 
12 high 0,6 do-not-mind 0,5 0,01 
10 high 0,6 hate 0,23 0,031 

2 high 0,57 hate 0,23 0,041 
16 high 0,56 do-not-like 0,39 0,003 

7 medium 0,51 like 0,58 0,007 
5 medium 0,48 hate 0,23 0,086 
9 medium 0,25 love 0,69 0,003 

11 medium 0,2 love 0,69 0,012 
17 medium 0,19 love 0,69 0,013 
18 low 0,18 love 0,69 0,016 

3 low 0,13 like 0,58 0,089 
4 low 0,09 love 0,69 0,048 

Table 4 shows the results of a test with 18 different possible contaminated soils. 
FES stands for Fuzzy Expert System, and gives 4 terms to indicate the degree of risk 
of each of the soils. The following column gives the numerical value of risk in the 
range [0..1]. After this, we can find the preference values given by the ClusDM sys-
tem. We can see that when FES says that site number 1 has a very high risk of con-
tamination, ClusDM says that this site has a very low preference (value 0,04), it is 
detested, which means that the risk of contamination is high which is not the desirable 
state. The last column compares the two results giving the squared difference of their 
numerical values. The mean squared error of this test is 0,025. 

Notice that both systems detect the worst and best situations. However, the 
ClusDM approach is not able to distinguish correctly the soils that have criteria indi-
cating that it is risky and other criteria indicating that there is not a huge risk. With 
decision trees it is possible priorise the analysis of those criteria at different levels, so 
Fuzzy Expert System works better in this case. 
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6   Conclusions and Future Work 

In this paper we propose the use of a hierarchic fuzzy expert system to characterise 
the risk of contamination of soils. The tests carried out indicate that the performance 
of the system is good, compared with manual evaluations and with results given by 
other techniques, such as a utility-based multicriteria decision aid approach.  

The experts in this field that have participated in this study are quite confident in 
the use of this approach for the correct determination of the degree of risk of contami-
nation of soils.  

Remediation techniques are the following step to take into account in the manage-
ment of contaminated soils. We would like to integrate the fuzzy expert system pre-
sented in this paper with the selection of the best remediation technique to be applied 
to recover the soil. This would be of great help for the people who have to decide how 
to manage the treatment of contaminated soils.  

Other research line is the integration of the two approaches considered in this pa-
per, in order to take advantage of the features of each of them. The advantage of using 
techniques as ClusDM is that these tools work directly with the set of criteria, not 
requiring any expert to build the rules of the system. Thus, they can easily change the 
set of criteria (including new variables or removing some of them). On the contrary, 
expert systems need the help of the expert committee each time that we have to mod-
ify the decision trees to incorporate new knowledge.  
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Abstract. The main goal of agent modelling is to extract and represent the 
knowledge about the behaviour of other agents. Nowadays, modelling an agent 
in multi-agent systems is increasingly becoming more complex and significant. 
Also, robotic soccer domain is an interesting environment where agent model-
ling can be used. In this paper, we present an approach to classify and compare 
the behaviour of a multi-agent system using a coach in the soccer simulation 
domain of the RoboCup.  

1   Introduction 

Modelling agent techniques have been used from Artificial Intelligence (IA) begin-
nings. The idea of extract knowledge from other agents’ behaviour was used, origi-
nally, in the field of the game theory [1]. After not considering information about  
opponents in game mechanics, it was realized that knowledge about the opponent’s 
strategy can enhance the game results. After this first research, many others re-
searches have been working to develop different ways of modelling other agents. 
Carmel and Markovitch [2] proposed a method to infer a model of the opponent’s 
strategy which is represented as a Deterministic Finite Automaton (DFA).  

Perhaps, one of the most interesting environments where agent modelling has been 
used is the robotic soccer domain. The Robot World Cup Initiative (RoboCup) [3] is 
an international joint project to encourage AI, robotics and related fields. It provides a 
standard problem where many intelligent techniques must be integrated and exam-
ined. RoboCup chooses to use soccer game as a central topic of research, aiming at 
innovations to be applied for socially significant problems and industries [4]. One of 
the challenges for the near future is opponent modelling, a research which can be used 
both RoboCup and general multi-agent system. 

One of the leagues competitions in RoboCup is Simulation league. In this 
league there are three competitions; 2D, Coach and 3D and each of them has dif-
ferent goals. 

In the 2D Competition, in order to perform a soccer game, technologies like multi-
agent collaboration or strategy acquisition must be incorporated. There have been 
many papers and studies related to opponent modelling in this robotic soccer domain: 
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Stone et al. [5] introduce “ideal-model-based behaviour outcome prediction” 
(IMBBOP) which models the result of the other agents’ future actions in relation to 
their optimal actions based on an ideal world model. But, this first work into  
automated opponent-modelling, assumes that the opponent plays optimally. Ledezma 
et al. [6] present an approach to modelling low-level behaviour of individual opponent 
agents, OMBO (Opponent Modelling Based on Observation). Druecker et al [7] de-
velop a neural network which is fed with the observed player positions and tries to 
classify them into a predefined set of formations. Riley et al. [8] propose a classifica-
tion of the current adversary into predefined adversary classes. Based on this work, 
Steffens [9] presents a feature-based declarative opponent-modelling (FBDOM) 
which identify tactical moves of the opponent. 

The RoboCup Coach Competition mainly deals with an agent (coach) providing 
advices to another agents about how to act. About the Coaching problem raised in 
Coach Competition, Riley et al. [11] present a general description of the coaching 
problem. This description is the first step in understanding advice-based relationships 
between automated agents. In this research, one of the reasons to consider a coach 
role in a team of autonomous agents is that a coach role provides a method of over-
sight for the agents and can aid in the creation of agents with adjustable autonomy 
[12]. Also, Riley et al. [13] justify that coaching can help teams to improve in simu-
lated robotic soccer domain. 

RoboCup Coach Competition changed recently in order to emphasize opponent-
modelling approaches. The main goal of this competition is to compare two team 
behaviours, but in one of them a play pattern1 (way of playing soccer) has been ac-
tivated but not in the other one. With regards to this competition, our work on op-
ponent modelling is driven by the goal of learning the behaviour of agents by  
observing them. Also, this behaviour must be stored in a way that it can be com-
pared to another one.  

This paper introduces a comparing process of agent behaviours as a general 
framework which can be used in different multi-agent systems. Our proposal is im-
plemented and empirically evaluated in the RoboCup domain, specifically in the 
Coach RoboCup Competition.  

The goal of this research has several aspects: 

• Abstracting useful features from the multi-agent system log files. 
• Analyzing these features in order to recognize different events. 
• Proposing the storage of the events in a trie data structure. 
• Comparing different tries to get the useful information. 
• Recording this information in an easy way.  

This paper is organized as follows: Section 2 presents a summary on our approach 
to agent modelling. Section 3 provides the trie data structure used to store events. Sec-
tion 4 describes the proposed comparing method. The experimental results are shown 
in section 5. Finally, conclusions and future works are drawn in section 6.  

                                                           
1 In this paper we use the term pattern as a contraction of play pattern. 
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2   The Modelling Environment 

2.1   The RoboCup Simulation League 

The robotic soccer domain has been chosen because is one of the most used and 
useful domains in this subject. The RoboCup Simulation League uses the Soccer 
Server System [10] to simulate the field and the objects. Each player consists of a 
unique process that connects via a standard network protocol to the server. This 
server keeps track of the current state of the world, executes the actions requested 
by the clients, and periodically sends each agent noisy information about the 
world. There are 11 players (10 fielders and 1 goalie) that can only perceive ob-
jects that are in their field of vision and both the visual information and the execu-
tion of the actions are noisy.  

2.2   The RoboCup Online Coach Competition 

The RoboCup Online Coach Competition is a sub-league for automated coaches 
which are able to advise a team of autonomous agents to perform better its behaviour 
in front of an opponent. In this case, in addition to the players, each team may connect 
a privileged client to the server, the coach agent. It gets global and noiseless informa-
tion from the Soccer Server about the position and speed of all players and the ball. 
This coach can only support its team by giving messages to its player in a standard 
coach language called CLang, which was developed by members of the simulated 
soccer community [10].  

This competition structure changed recently in order to emphasize opponent-
modelling approaches. According to the RoboCup 2005 official rules for the Coach 
Competition [20], instead of having a coachable team playing against an opponent to 
score, this coachable team plays against a fixed opponent in which several playing 
patterns have been activated. The term pattern is used to describe a simple behaviour 
that a team performs which is predictable and exploitable for the coaches [14]. For 
example, a possible pattern could be that the player number 2 marks the attacker ad-
vancing from the lower part of the field. The coach is given a number of game logs 
and it must model them in order to detect the used patterns and report them. In other 
words, the coaches should be looking for the qualitative differences among the pattern 
log file and the corresponding no-pattern log file to recognize the pattern correctly.  

Therefore, this competition requires two phases:  

• Offline analysis: Is the first phase of each round and the coaches analyzes the log 
files of the patterns which will be used during the round. 

• Online Detection: The only task of coach in this phase is to detect the pattern(s) 
activated in the opponent team.  

The performance of a given coach is based only on its ability to detect and report 
patterns. The research focus is on team/opponent modelling and online adaptation. 
The coaches can work both by analyzing logs of previous games and by observing 
and adapting while a game is proceeding. 
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3   Classifying Behaviour 

As we describe in the above section, RoboCup Online Coach Competition has two 
phases, but in this paper we consider only the first one (offline analysis) because this 
is a preliminary work on this domain. The goal of this first process is to extract and 
store in a useful way the important data from log files. This data must be relevant to 
classify the multi-agent/team behaviour. 

3.1   Feature Extraction 

Kuhlmann et al. [14] describe a procedure to identify high-level events in a play 
game. An event represents a recognized atomic behaviour. The goal of their work is 
to get a coach that learns to predict agent behaviour from past observations and gen-
erates advices to improve its team’s performance. Based on that work, we carried out 
two processes: feature extraction and event recognition. Unlike Kuhlmann procedure, 
we use the result of these processes to describe a team’s behaviour.  

When running the Soccer Server, certain options can be used to store all the data 
for a given match. This information is recorded in a log file, so this file is a special 
stream of consecutive information data. As we are considering an offline mode, the 
coach receives data from the log files instead of getting it from the server. Hence, 
from these log files, we extract important features over all the information of the field.  

At every cycle of the server, each agent updates its world model with data such as 
positions and velocities, as well as cumulative data such total travel distances and av-
erage positions.  In this first phase, the most relevant data of these log files must be 
extracted, so we need to get the following information: 

• Cycle: A number that enables arrange the events. 
• Ball Position: The ball’s  position is stored like xy axis in a coordinate system. 
• Teammate Positions: Each teammate´s position is stored as xy axis coordinates. 
• Opponent Position: Each opponent´s position. 
• Ball Possessor: A data that indicates who is the owner of the ball. 

3. 2   Event Recognition 

After extracting data from the logfiles, we have to infer what events have occurred. 
There is some uncertainty inherent in the results because there are events very hardly 
to identify, even if it is done by a soccer expert. Kuhlmann et al. work [14] propose 
nine different events (dribble, hold, goal, pass, foul, steal, missed shot, intercepted 
pass and clear) to create advices in RoboCup Simulation Soccer. In our work, we only 
identify seven events and the way we use them is different.  

 One of the most important data to extract to identify high-level events is the owner 
of the ball every cycle. When a ball possession change occurs, it means that an event 
is taking place. For our research, we classify the next events: 

• PassXtoY (T): If a player (X) of the team (T) kicks the ball and a teammate (Y) 
gains possession, then the ball owner made a pass. (Perhaps the ball owner did not 
want to do this pass, but we can not consider this assumption). This event stores 
both the player who makes the pass and the player who gains possession. 
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• DribbleX (T): If the ball moves a significant distance since the player (X) gains 
possession until he kicks it. 

• InterceptedPassXtoY (T): If the player (X) kicks the ball and the opponent (Y) 
gains possession within a reasonable distance of the ball owner, the event is as-
sumed to be an intercepted pass. 

• StealXfromY (T): If a player (X) kicks the ball and an opponent (Y) gains posses-
sion, then the opponent stole the ball from the ball owner. 

• GoalX (T): If a player (X) kicks the ball and at the end of the interval, the ball is in 
the goal, the event is classified as a goal by the player X. 

• MissedShotX (T): If a player (X) kicks the ball and at the end of the interval, the 
ball is out of bounds, the kick is considered as a missed shot. 

• Clear (T): If the event cannot be classified as any of the above categories. 

The result of this phase is a set of events ordered by time. Each stream of events is 
labelled by a team (T = Left or Right) and the result may look as follows: 

{Pass1to2 (R)  Dribble2 (R)  Pass2to10 (R)  Goal10 (R)}, {Pass7to10(L)   MissedShot10 (L)} 

3.3   Building a Trie 

Once we have extracted the features from the log files and every event have been rec-
ognized, the next step is to analyze the behaviour sequences and choose the most ap-
propriate sequences for our goal. In this and next sections, we try to choose, as well as 
possible, the behaviour sequences that describe the pattern followed by the team. 

As we described in section 2.2, a pattern describes a simple behaviour that a team 
performs. As this pattern must be predictable for the coaches, we consider that the re-
peating events or behaviour sequences could be related to the activated pattern. Be-
cause of this supposition, in this paper we propose the use of a trie structure data [17], 
[18] to store the results of the event recognition. 

A trie (which is abbreviated from “retrieval”) is a kind of search tree similar to the 
data structure commonly used for page tables in virtual memory systems. This special 
search tree is used for storing strings in which there is one node for every common 
prefix and the strings are stored in extra leaf nodes. In this research we propose to use 
this data structure to store events in an effective way for our goal. The advantage of 
this kind of data structure is that every event is stored in the trie just once, but in a 
way that the event has a number that indicates how many times it has appeared.  

In this research, every node represents an event so a path from the root to a node 
represents a sequence of events in the order they were played. Works by Kaminka 
[15] and Huang et al. [16] use the same data structure to analyze the behaviour se-
quences. The goals of these two researches are: to learn the coordinated sequential 
behaviour of teams [15] and to create frequent patterns in dynamic scenes [16]. 

An example of this trie data structure is shown as follow. If we get the next events 
sequences from the previous phase:  

{Pass1to2 (R)    Dribble2 (R)   Pass2to10 (R)    Pass10to11 (R)} and {Dribble2 (R)    

Pass2to10(R)   Goal10 (R)} and the trie is empty, the first event sequence to insert is 
{Pass1to2 (R)    Dribble2 (R)   Pass2to10 (R)    Pass10to11 (R)} and it is added the first 
branch of the tree. Each event is labelled with the number 1 that indicates how many 
times the event has been inserted in that sequence (In Figure 1, this number is  
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enclosed in brackets). Then, it is inserted the two remaining suffixes of this sequence: 
{Dribble2 [1]   Pass2to10 [1]    Pass10to11 [1]} and {Pass2to10 [2]    Pass10to11 [2]}. Next, 
we insert the second sequence {Dribble2 (R)    Pass2to10(R)   Goal10 (R)} and the remain-
ing suffix: {Pass2to10(R)   Goal10 (R)} but in this case, there exist sequences like these 
inserted in the trie and we just add up one to the counter number of the events. 

The trie built previously for the Right team is shown in the Figure 1. 

 

Fig. 1. Example of a trie representation 

As we will see in section 5, the obtained trie from a log file game is quite big. So, 
in order to get the most important information and because of the pattern event se-
quences must be repeated to be able to extract the pattern, the tries are pruned. For 
pruning a trie, we eliminate the branches which have been introduced in the trie only 
once (it means that the node of level 1 of the branch has been introduced once). 

3.4   Evaluating Dependence 

Although there are few methods for discovering significance of sequences and sub-
sequences, in this paper, we have used a statistical dependency test [16]. 

The main idea of this procedure is the proposal that the appearance of repetitive 
sequences may indicate a pattern. To evaluate the relation between the previous 
events sequence to a specific event (what we call prefix) and that event, we use one of 
the most popular statistics: Chi-square test [19]. Chi-square test is a statistical test that 
we propose to determine whether a prefix is dependent on the following events. This 
test enables us to compare observed and expected sequences objectively and evaluate 
whether a deviation appears. Hence, if we modify the trie structure that we have ob-
tained in the previous section 3.3 for storing this value in every node (except the 
nodes of level 1 and the root), we can determine whether an event is or not relevant 
with its prefix. 

To compute this test, a 2x2 contingency table (also known as a cross-tabulation ta-
ble) has to be made. This table is filled with four frequency counts, as we can see in 
the Table 1. The counts are calculated as follows: The first number O11 indicates how 
many times the current node/event is following the prefix. The number O12 indicates 
how many times the prefix is followed by a different prefix. The number O21 indicates 
how many times a different prefix of the same length, is followed by the same event. 
The number O22 indicates how many times a different prefix of the same size, is fol-
lowed by a different event. 
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Table 1. The contingency table 

 Event Different event Total 
Prefix O11 O12 O11 + O12 
Different prefix O21 O22 O21 + O22 
Total O11 + O21 O12 + O22 O11+O12+O21+O22 

The expected values are calculated as in Equation 1. 

Expected (Eij) = (Rowi Total x Columnj Total) / Grand Total (1) 

The formula to calculate chi-squared value, is giving in Equation 2. 

 
(2) 

where: Oij is the observed frequency and Eij is the expected frequency. 

4   Comparing Process 

The most interesting part in our research is to provide a method to compare two agent 
systems’ behaviours. In this research, we only compare two agent systems’ behav-
iours, the process to compare more than two behaviours is not considered in this 
work.  

The input of this procedure is the result of the previous process. In this procedure, 
we compare two different tries which represent the behaviour of two agents systems. 
But, one of the agent system follows an unknown pattern. The result of the compari-
son is a pattern description as similar as possible to the pattern followed by the  
pattern-trie. The term pattern-trie is used to refer to the trie obtained from the agents 
system which followed a pattern, and no-pattern-trie terms the trie for the agents  
system that did not follow the pattern.  

Before describing the comparing method, we will present our proposal to store the 
result of the comparison: our pattern description. 

4.1   Our Pattern Description 

In this work, a pattern defines recurring events to a recurring prefixes. Also, a pattern 
could consist of a set of simple behaviours. Because of this reason, our pattern de-
scription consists of a set of sub-patterns. Our sub-pattern is defined as the possibility, 
measured by chi-square test value (chi-sq), that an event (ev) occurs after a prefix 
(pr). Let OurPDescription = {[p1], [p2], ...} be the set of all sub-patterns sub-pi. A 
sub-pattern is defined as follow:  

sub-pi = (ev, pr, chi-sq) 

Because of this is a preliminary work on the RoboCup Online Coach domain, we 
do not treat the pattern description after it is obtained. However, it will be used in fu-
ture works in the online detection of possible patterns in an opponent team. 
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4.2   Comparing Algorithm 

In this section, we describe the proposed algorithm to compare two tries (pattern-trie 
and no-pattern-trie) in order to get the pattern description that the pattern-trie fol-
lows. Before describing the algorithm, we have to consider the following concepts 
about the trie data structure: 

• As we describe in section 3.4, every node is represented by:  
− Event: A word that indicates a specific event and the agent/s that takes part in it 

(passXtoY, InterceptedPassXtoY,…). 
− Prefix: A set of the previous events in the trie. 
− Chi-Sq: A number that indicates the chi-square test value for the node. 

• The depth of a trie is the maximum depth of any of its leaves. 
• The level 0 in trie is the root. 

    Also, the main features of the algorithm are: 

1. A threshold value (ThresholdChiSqValue) has to be established for accept or reject 
the chi-square test hypothesis in the events. 

2. If the event of a node is represented in both tries at the same level and their prefix 
is the same: 
• Chi-square value of both nodes is compared and only if the difference is bigger 

than the threshold, the information of the node of the pattern-trie is stored as a 
sub-pattern in the pattern description. It means that a different behaviour in the 
trie has been found (and it is classified as a sub-pattern). 

3. If the event and prefix of a node are represented only in the pattern_trie: 
• If the chi-square value of the event is bigger than a threshold value (Threshold-

ChiSqValue), the information of the node is stored as a sub-pattern in the pattern 
description. 

In order to make efficient and more comprehensible the proposed algorithm, we 
describe, first, a few used functions: 

• depthTrie (Trie T): This function returns the maximum depth of any of its leaves. 
• getSetOfNodes (Level L, Trie T): This function retrieves a result set that contains 

every node of the trie T in the level L. 
• getNode (Event E, Prefix P, SetOfNodes S): This function returns a node consisting 

of the event E and which prefix is P, and is obtained from the set of nodes S. (If a 
node with these parameters does not exist in the trie T, the function returns null). 

• chi-Sq (node N): This function returns the chi-square value of the node N. 
• Prefix (node N): This function returns the prefix (set of events) of the node N 
• AddToOurPatternDesc (Event E, Prefix P, Chi-Sq Chi-SqValue): This function 

adds to our pattern description the new sub-pattern consisting of the event E, the 
prefix P and the chi-square value Chi-SqValue. 

    The basic structure of the algorithm is shown in Figure 2. 
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Fig. 2. Basic structure of the algorithm 

5   Experimental Results 

We carried out a set of experiments in order to test whether our method is able to 
compare a game played by a RoboCup soccer team which follows a pattern to a game 
in which this pattern is not followed. Also, the result must be a description of the de-
tected pattern. 

Robocup 2005 Coach Competition has created a set of simple strategies to be used 
as the base strategies of the patterns [20]. The patterns are added to theses bases 
strategies. A no-pattern logfile describes the base strategy and the pattern file de-
scribes a simple behaviour that the opponent team performs.  

The first step in our experiment is to obtain the pattern and its corresponding no-
pattern logfiles. These files, that contain the same data that the online coach receives, 
have been obtained from the “Patterns” section of “RoboCup 2005 Coach Competi-
tion” web page [21]. The two logfiles last around 3500 times steps (a complete game 
lasts 6000 times steps). The pattern and no-pattern descriptions (defined by CLang 
rules) are described as follows: 

• Pattern Description: The attackers (i.e. players 10 and 11) pass to each other right 
in front of the goal, before shooting. 

• No-pattern Description: The attackers (i.e. players 10 and 11) dribble to the goal 
and shoot (i.e. they do not pass each other). 

In order to extract the main features from the log files and analyze the behaviour of the 
two games, we have fully implemented a program. This program is able to recognize and 
report the events of each game. The result is a file for each game (pattern game and no-
pattern game) where is defined every event of the game. This event representation is con-
sisting of the event realized, the player/s who made this event and the team of the player. 
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Then, we build a trie for each logfile with the event sequences of the opponent 
team (this is the only team analyzed for our purpose). The pattern trie represents the 
game in which the opponent follows a pattern and no-pattern trie represents the game 
in which the pattern is not followed. As we have seen, a trie node consists of (1) the 
description of an event  (2) a number that indicates how many times the event has 
been inserted in that sequence (3) Chi-square value for this node (except for the nodes 
of level 1 and the root). 

In this experiment, the total node number of the tries is: 176 (pattern trie) and 121 
(non-pattern trie). But, as we explained in section 3.3, in order to reduce the amount 
of no significant nodes, the trie is pruned and the branches which have been intro-
duced only once are eliminated.  

The main characteristics of the pruned tries are: 

• Pruned pattern trie: Total node number: 49 nodes. Depth: 6.  
− Chi-square Value: Maximum (35,0); minimum (1,3) and average (11,85). 

• Pruned no-pattern trie: Total node number: 56 nodes. Depth: 5. 
− Chi-square Value: Maximum (25,0); minimum (0,2) and average (11,91). 

 

Fig. 3. Most important branches of the pattern trie 

 

Fig. 4. Most important branches of the no-pattern trie 

The most important branches of each trie are shown in Figures 3 and 4. 
After obtaining the two tries that represent the two games, we can apply the algo-

rithm described in section 4.2: 
At level 2 of the pattern trie, we observe that the event “pass10to11” (and prefix 

“pass11to10”) does not appear in the no-pattern trie. Also, this event has the big- 
gest chi-square value (35.0), so we insert this event and its prefix in the pattern  
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description. Another interesting node in this level, is the event “Pass8to11” (and pre-
fix “Pass9to8”), but, in this case, this event appears in the no-pattern trie with a simi-
lar chi-square value, so we do not consider this event as a possible sub-pattern. 

At level 3 of the pattern trie, the node “Goal10” is considered as a sub-pattern be-
cause of its chi-square value and because this node is not repeated in the no-pattern 
trie. So, we insert this sub-pattern in the pattern description. After analyzing every 
node in the pattern trie, Our Pattern Description is as follows: 

OurPDescription = {[(pass10to11),  (pass11to10), (35.0)],[(Goal10), (pass10to11  pass11to10), (29.9)]} 

As we can see, our pattern description represents a team behaviour very similar to 
the team behaviour represented by the original pattern description. So, in this case, 
our method is able to look for the qualitative difference between the pattern trie and 
its corresponding no-pattern trie. The only difference between our pattern description 
and the original pattern, is that the event “pass11to10” has not been identified as a 
sub-pattern. It is because of this event is in level 1 and at this level the nodes have no 
chi-square value. This improvement could be made in future works. 

6   Conclusions and Future Work 

In this paper we presented a comparing method of two different multi-agent systems 
behaviours, which one of them follows a specific pattern.  

This method is applicable and useful in Coach RoboCup Soccer domain. In order 
to compare two different games, in which one of them is following a pattern, we use 
the trie data structure and it is demonstrated that a trie can be very usefulness to show 
the behaviour of a team in this domain. 

The comparing method that we have applied works successfully when the pattern 
followed by a team is related to the players’ actions. But, in our research, the different 
field regions in which the action occurs, has not been represented, so if the pattern fol-
lowed by the team is related to this aspect, our proposed method would not be viable. 
Also, if the pattern is related to actions that occur when the player is not the ball 
owner, this method, as well, would not be viable. 

This is a preliminary work on this domain and we consider that the result of the 
proposed method is very adequate in great amount of cases. 
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Abstract. The whole software industry has an awful footpath for delivering soft-
ware on-time and on-budget. Probably, one reason is coming from not deal with
the imperfection of information when they use a lot of human process. In this
paper, we propose the use of fuzzy measures in contrast with crisp measures of
traditional models and, therefore, apply of appropriate aggregators. Traditional
models of software cost estimation are constructed from project databases and
they describe cost drivers in terms of linguistic estimations using vague terms
like “low” or “high”, and such expressions are also used in obtaining actual pre-
dictions. But cost drivers are in many cases abstract concepts that are better esti-
mated by breaking them down in a number of second-level aspects. The method
proposed is based both, on a concrete study of the use of linguistic variable hu-
man categorizations and, on level aspects that are defined by layer and are easy
to raise using appropriate aggregators. Moreover, the proposed scheme can have
different planes according to the model morphology.

Keywords: Soft Computing, indiscernibility, Software Engineering, Fuzzy set
theory, Software Development Cost, Aggregation Operators, Cost Drivers.

1 Introduction

1.1 Software Cost Estimation

The whole software industry has an awful footpath for delivering software on-time and
on-budget[16].

No more than ten percent of software projects in large corporations actually finish
on budget and on time. Over fifty percent of them cost in excess of twice the original
budget. More than half of software projects are deployed without proposed functional-
ities in the original project because the time to complete them was widely surpassed,
even over twice as long as planned and the budget go beyond of a painful overruns.

Effective management of any project requires quantification, measurement and mod-
eling. Software measures provide or should be provided a quantitative basis for the de-
velopment and corroboration of process of the software development. More specifically,
they would have to give it in the process of Software Cost Estimation.

There are several ways to obtain estimation. The most basic approach is to record
effort, duration or size estimates as well as estimating processes and assumptions, and
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then record the actual results from each estimated cost driver or activity. Comparing
actual outcomes to the estimates helps generate more accurate estimates in the future.
But, if you have not a good estimation, almost estimating procedures and templates that
itemize tasks help avoid the common problem of overlooking necessary work.

1.2 The Use of Rough and Fuzzy Set Theories on Software Cost Estimation

Scattered previous research has addressed diverse aspects of fuzziness in software esti-
mation models, including estimation by analogy [11], fuzzy function points [19], gen-
eralizing estimation formulas [13], and using fuzzy regression methods to adjust the
models [9, 10]. But none of the approaches provide an experimental account regarding
the role of natural language and human categorization [17] in the process of modeling
and working with the inputs. At the same time, a study of a tool by evaluating, control-
ling and predicting some important attributes of software projects such as Usability.

The rest of this paper is structured as follows. Section 2 we report a concrete ex-
perience in investigating the fuzziness associated to the natural language expression of
input values of one concrete COCOMO cost drivers, as representative case study of
the modeling challenges that underlie many of the software and project attributes that
is often used in parametric models. In Section 3, describes a concrete cost estimation
setting under fuzziness, and a discussion of the resulting estimates. Finally, conclusions
and future research directions are sketched in Section 4.

2 Fuzzines in Cost Drivers When They Are Described by
Linguistic Variables

A simple on-line cost model for estimating the number of person-months required to
develop software can be employed as educational examples of technology developed
and used by cost engineers (Figure 1). This model COCOMO, described originally by
Boehm in [4], estimates cost using factors to account for differences in constraints.
These factors are calling cost drivers. Figure 1 show cost drivers and the linguistic
variables associate by easy use of COCOMO.

Here is what a experiment says about the use of one cost drivers with linguistic
values and the participants mental model.

The AEXP cost driver is dependent on the level of applications experience of the
project team developing the software system or subsystem. The ratings are defined in
terms of the project team’s equivalent level of experience with this type of application.
According to COCOMO indications, a very low rating is for application experience of
less than 2 months, a very high rating is for experience of 6 years or more, and the
intermediate labels are approximated by 6 months, one year and three years.

These assumptions can be contrasted by a membership elicitation process. Figure 2
provides the result of a membership exemplification process. The apparent “anomaly”
in high values of rating scale are the consequence of a belief that when a developer has
reached a certain degree of experience with a given technological context, he/she stops
improving his/her level of knowledge, due to the relative degree of self-satisfaction.
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Fig. 1. COCOMO-81 Web tool input form
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Fig. 2. Fuzzy sets for the AEXP cost driver

Another apparent “anomaly” appear by overlap. The large degree of overlapping
becomes much more complex the work out, since categories overlap to larger extents.
In addition, the separation between the centroids of the fuzzy numbers obtained by
the proposed method and the values of the traditional model present a non-equitable
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disparity. This can be due to cost drivers normally use crisp values to utilize algebra
operator, even when they are described like intervals. The assignment of linguistic vari-
ables to these cost drivers, in order to make effortless their use, bring the confusion on
theirs use.

3 The Use of Fuzzy Variable Entries and Aggregations Operator

Several existing software cost estimation models consider a number of factors often
called cost drivers[5]. These cost drivers are of a diverse nature, encompassing devel-
opment team’s abilities, complexity and reliability of the software and schedule con-
straints, among others. But these cost drivers are in many cases of a somewhat abstract
nature, so that estimating their values directly for a given project becomes a difficult
task. For example, the influence of the overall documentation required is better ex-
pressed through the requirement for certain types of more specific documentation arti-
facts. In consequence, these high-level cost drivers can be broken up in more concrete
and easily measurable ”second-level” aspects that contribute to them to some extent.
This raises the necessity for the design of aggregation operators from second-level (and
possibly in some cases, from third and further levels) aspects to first-level ones.

Aggregation operators can be considered as mathematical objects that have the func-
tion of reducing a collection of numbers (or more generally, of values) to a unique rep-
resentative or meaningful one. Perhaps the most commonly used aggregation operator
is the weighted mean, but this does not mean that it’s necessarily always the better
choice. Since a considerable amount of research has been carried out in the last decade
regarding the design of aggregation operators [6], a rich array of aggregation operator
families with specific characteristics are available for the practitioner to better solve the
problem at hand. These aggregation models should ideally be considered in each con-
crete aggregation process, or at least some well-known classes of Software Engineering
problems should be investigated regarding the adequacy of such models for their under-
lying aggregation processes.

3.1 Case Study Description

Usability is a multifaceted concept [20] that encompasses several attributes regarding
the interaction of humans with software systems, and its attainment is recognized as an
important cost factor [2], since it must be considered at several stages in the develop-
ment process and the costs of evaluation are usually high.

In many cases, these different attributes are summarized in several generic inter-
dependent aspects like efficiency, learnability, memorability and satisfaction [15]. In
consequence, estimation will typically include an aggregation stage in which partial es-
timations of importance regarding different attributes would need to be summarized in
an overall number.

Let us consider a given project that account with three main functionalities f1, f2, f3
for which the required usability (USAB) is stated in term of three second-level aspects:
efficiency (EFF), control (CTRL) and learnability (LRN).

Each of the functionalities have different requisites regarding each of these aspects.
For example, f1 is the most commonly used function, a data entry form, that require high
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Fig. 3. Estimated requirements about each of the second-level usability aspects

efficiency (i.e. speed in data entry) and control (usually measured as the absence of user
errors). Functionalities f2 (a reservation form) and f3 (a devolution handling form) are
considered to have less stringent requirements in terms of efficiency and control, since
they occur less often. In addition, the three aspects have fairly similar requirements in
terms of learnability (which impacts in the cost of training for the users of the appli-
cation). In addition, the three functionalities have different importances with regard to
the quality of their interfaces. For these departure assumptions, the first required step is
that of estimating numerically the degrees of requirement for each usability factor.

A streamlined variant of the fuzzy Delphi method described by Ishikawa et al. [12],
can be used for that purpose, estimating triangular fuzzy numbers. The results of a pilot
study with three respondents and two rounds are showed in Figure 3.

In this Figure 3 the requirements for each aspect are expressed as triples – e.g.(e1,
e2, e3) for efficiency – of numbers in [0,1] indicating the minimum acceptable level,
the more reasonable level and the maximum level, respectively. In addition, the impor-
tance of each functionality is expressed as a weight. Now the problem is that of finding
an appropriate overall usability requirement from the described sub-aspects. To do so,
let us consider a model of the cost estimates based on the assumption that the costs of
usability come from carrying out usability testing with users. According to the generic
model described by Nielsen ([14], Chapter 6) the cost of usability tests can be estimated
by using the formula upf(i) = N(1− (1− λ)i), where i is the number of test users, N
the (estimated) total number of usability problems in the interface, and the probability
finding any single problem with any single user. For the above described cost estimat-
ing situation, we’ll assume that the cost for EFF follows that formula with N = 41 and
λ = 0.31, CTRL represents a 10% of that estimates (since the procedure for testing is
the same than for EFF to a large extent), and LRN follows the formula with N = 41

a. Table b. Graph

Fig. 4. A possible mapping for usability given the number of test users and estimated overall
usability with respect to the number of errors detected in the evaluation
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and λ = 0.15 (of course the rationale for such approach may be arguable, but it’s based
on Nielsen’s estimates and an inquiry about the type of user testing required). In conse-
quence, the number of test users is related to the number of errors (probably) found, so
that we can assess the degree of ”usability” according to them. Figura 4.a shows some
representative values for one of such possible characterizations.

The membership function μUSAB exemplified in Figure 4 provides the mean to
decide on the required number of test users, depending on the required degree of us-
ability expressed in the [0,1] interval. In consequence, the aggregation of the partial
requirements in Table 1 determines the final decision regarding the cost estimate for the
project. In the following section, a number of aggregation methods are discussed.

3.2 Using the OWA to Model Cost Driver Aggregation

Partial usability requirements can be aggregated following diverse schemes, from the
more pessimistic1 (using the maximum) to the more optimistic (using the minimum),
and also including the arithmetic mean. Each aggregation opera- tor will eventually
yield a different decision that affects the cost estimates of the project. Table 3 shows the
results obtained using several of them (global numbers are obtained by weighting each
task according to its importance I).

The significant divergences between minimum and maximum operators can be rec-
onciled by using the mean, but also by using more general operators. Among the latter,
we have selected the OWA operator family. [21]. An OWA operator of dimension n is a
mapping:

F (x1, . . . xn) =
n∑

j=1

x(j) · wj (1)

where x(i) are an increasing permutation of the input variables, and the vector of weighs
W = (w1, . . . wn)T satisfies wi ∈ [0, 1] and

∑
i wi = 1.

The selection of the weights of the OWA operator determines its behavior, and it
can be adjusted from a set of experimental data. The values in Figure 3 have been ob-
tained this way by using Beliakov’s tool1[1], from a data set consisting on estimation
of aggregations for the values in Figure 3

(.9, .9, .3) ≈ .9, (.4, .6, .2) ≈ .4, (.3, .5, .2) ≈ .3, (.95, .95, .4) ≈ .9, (.5, .7, .3) ≈
.6, (.4, .65, .3) ≈ .5, (1, 1, .5) ≈ .9, (.7, .8, .4) ≈ .75, (.5, .75, .4) ≈ .6.

The inputs for those values are examples of aggregation obtained from Figure 3 , and
the outcomes have been obtained from the participants in the study using again a stream-
lined Delphi technique with two rounds, so that they reflect the consensus reached from
the initial divergences in overall required usability given the required usability for each
of the attributes EFF, CTRL and LRN respectively.

The resulting weights are (0.348, 0.575, 0.077), and the degree of orness of the op-
erator amounts to 0.636. Such degree of orness indicates that our operator is slightly
closer to the maximum than to the minimum.

1 http://www3.cm.deakin.edu.au/ gleb/aotool.html
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Fig. 5. μUSAB required values using the minimum (n),the maximum (x) operator, the median (m)
and the OWA (o)

The implication of using one of the described operators are evidenced when return-
ing to the mapping μUSAB illustrated in Figure 4.

If we use the minimum, our choices are constrained to using one or two test users
(since the global USAB values are lower than 0.5), while using the maximum lead to
the decision of using six or more test users (being the better much around ten users). The
mean and OWA operators indicate that the number of testers must be above four and
five respectively, being closer to estimated cost-benefit trade-offs described by Nielsen
[15]. As user testing is a resource consuming activity, these divergences may entail sig-
nificant costs, especially for small projects subject to budget constraints.

Another example of such studies is described in [18]. In this paper, we approach
such view through a concrete case study concerned with usability as a software cost
driver. The case study illustrates how an OWA operator can be used as an alternative to
more straightforward aggregation means to come up with a more realistic solution. Of
course, this case study represents only a partial illustration of the rich variety of Soft-
ware Engineering situations that would eventually benefit from a consideration of the
research results on the area of mathematical aggregation operators, but it’s intended to
motivate further research in the area.

4 Conclusions

The contributions of this paper are two-fold: (i) a study of the expressed mental model
mathematically of participants about cost drivers, and its relation with the values of
traditional model cost drivers, such as COCOMO-81 cost drivers, which are constructed
from project databases.

As the studies described in the previous section point out, the scales used in software
parametric estimation models may include varying degrees of imprecision coming from
human categorizations. Moreover, estimation cost model users make choices using a
mental model that typically includes both explicit and implicit perceptions of concepts
and uncertainties about real nature of cost drivers. The linguistic value choice is inferred
because most of them cannot articulate that mental model with any precision. These
choices can provide critical inputs based on theirs cost divers criteria and forecasts as
well. Choice-based models have to change cost drivers selection and measures in order
to a better and easier management and to get better results.



136 F.J. Crespo and Ó. Marbán

And, (ii) a concrete study of a proposed method base on levels scheme that is defined
by layer and are easy to raise using appropriate aggregators. Furthermore, the proposed
one allows developing cost drivers from others of second level. These second level ones
should have more reliability of magnitude-estimation scaling as a measure and easier
to be measure. These second level cost drivers let build up cost drivers much more
descriptive as variable entries of model formula.

This raises the need for inquiry regarding the most appropriate aggregation pro-
cesses. Recent research on aggregation operator design has resulted in a number of
families of operators that should ideally be considered for each concrete situation. In
this paper, we illustrate this view through a concrete case study in which the required
usability of a given system is modelled in terms of three second level aspects, and the
OWA operator is introduced as a realistic summarization tool. But already exists another
as Choquet integral[8] or Double aggregation operators [7].

The results of these case studies point out the necessity to carefully examine the
aspects that affect each given cost driver, and their relative influence and, eventually,
their interactions in the overall result. Future work will investigate the composition of
commonly used cost drivers and the aggregation mechanisms that may better serve each
concrete situation. We propose that it is not pointless make changes using rough set and
fuzzy set theories in order to cope with inherent imprecision or uncertainty that pervades
estimation cost software process and they must be incorporated in the overall steps of
the process.
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Abstract. Several researchers on country-of-origin (coo) have expressed their 
interest in knowing how consumers’ emotional reactions toward coo-cues affect 
product attitude formation. This paper shows how Fuzzy Set Theory might 
serve as a useful approach to that problem. Data was gathered by means of self-
administered questionnaires. Technically, orness of OWA-operators enabled us 
to distinguish consumers expressing highly positive versus less positive emo-
tions toward coo. It appeared that this variance in emotional estate goes together 
with a difference in aggregating product-attribute beliefs. 

1   Introduction to Product Attitude Formation 

We start this paper by providing a short overview of the literature on product attitude 
formation. Without going into all the details, it provides the larger (marketing) con-
text in which the technical contribution of our paper should be seen.  The motivation 
for this is that the contribution of this paper does not only lay in technical aspects of 
the OWA operator (see section 5), but it also provides superior consumer information 
with managerial relevance that can not be offered by conventional statistical tech-
niques that have been used for this kind of marketing research. 

Attitude Theory states that consumers’ behaviour toward products is determined to 
a large extent by their attitude toward them. In line with Peter et al. [19], we define 
‘attitude’ as a person’s overall evaluation of a concept. According to Eagly and 
Chaiken [6], this overall evaluative judgement can be seen as a psychological ten-
dency that expresses some degree of (dis)favour toward the attitude object. The Ex-
pectancy Value Model developed by Fishbein and Ajzen [10] posits that this overall 
evaluative judgement of the product is mediated by the evaluation of salient beliefs. 
In other words, people combine or integrate product knowledge to form an overall 
evaluation of products. Thus, consumers’ beliefs about product attributes are consid-
ered as crucial determinants of their attitude toward the product. The literature on 
advertising and emotions has challenged some of the basic principles behind this so-
called multi-attribute theory. Its key-proposition was that advertisements can generate 
several affective reactions which also influence the formation of consumers’ attitudes 
toward products. Peterson et al. [20] for instance, stated that ad evoked affects can 
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play various roles in consumer decision making, ranging from influencing the ways in 
which information is processed and stored in memory to determining product choices. 

Past research indicates that advertising cues indeed produce different types of af-
fective reactions. According to Derbaix and Pham [5], these range from emotions, 
feelings, moods and temperaments to preference, attitude and appreciation. As rec-
ommended by Verlegh [26], our attention more specifically goes to ‘feelings’.  

As put by Burke and Edell [2], ad evoked feelings influence consumers’ brand atti-
tude through their attitude toward the ad or via their brand attribute beliefs. Holbrook 
and Batra [13] also found that ad attitude mediates the effect of ad feelings on brand 
attitude. In addition, they tested whether ad evoked feelings had a direct impact on 
brand attitude and found that it was rather limited. Results reported by Stayman and 
Aaker [22] went in the same direction, although they established that the effects of ad 
feelings on brand attitude were not always necessarily mediated by ad attitude. Yet, 
on the average, we can state that ad evoked feelings rather exert an indirect influence 
on the consumer’s attitude toward the product. Ad attitude and product attribute be-
liefs both seem to function as important mediators. Since the concept of ad attitude is 
not within our scope of interest, we will further concentrate on the other path where 
feelings evoked by advertising cues like country-of-origin are posited to influence the 
consumer’s overall evaluative judgement of the product indirectly, that is, via the 
formation and subsequent processing of attribute beliefs. 

2   Coo-Effects: The Affective Approach 

Although coo-effects have been traditionally approached from an information theo-
retic perspective, several scholars working within the field already argued attention 
should be paid to the coo-cue’s capacity to evoke all kinds of symbolic and emotional 
connotations which might interfere with the consumer’s intent to evaluate a product. 
Some interesting examples in support of this assumption have been cited by Obermil-
ler and Spangenberg [17]. For instance, they mention the negative reaction toward 
high quality Israeli-made precision instruments expressed by Americans of Arab 
origin. Friedman [11] in turn, explains the American Jews’ boycott of German-made 
products during the first decades after the Second World War by the fact that ‘Made 
in Germany’ labels elicited all kinds of traumatic feelings. Klein et al. [15] established 
that previous or ongoing military, political and economic events between Japan and 
the People’s Republic of China generate feelings of ‘animosity’ affecting Chinese 
consumers’ buying decisions. Still recently, Verlegh [26] demonstrated how Dutch 
consumers’ tendency to identify with their home country is accompanied by less posi-
tive feelings toward a foreign coo. These in turn, appeared to influence the formation 
of beliefs about the attributes of products coming from abroad in a negative way.  

Thus, we might conclude that the emotional reactions triggered by the coo-cue act 
as potential determinants of the consumer’s attitude toward foreign sourced products. 
However, it still remains unclear how they affect this process of product attitude for-
mation. Our attention will be focused on that problem. Throughout the following 
sections, we will first elaborate on our conception of attitudes. In our effort to explain 
how coo-related emotions might affect the consumer’s product attitude, we will base 
ourselves on insights from the literature on ad emotions. 
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3   Coo Emotions and Information Processing 

According to Isen [14], affective reactions evoked by ads influence our cognitive 
activities in many ways. As she puts it, “[…] the evidence suggests that rather than 
causing people not to think, affect (at least some affects) can influence thought by 
influencing what people think about, how they relate things to one another, what they 
try to accomplish, and how they go about solving problems. Thus feelings can have a 
substantial influence on thought processes and resultant behaviour.” [14]. Before 
turning to our vision on the functioning of emotions evoked by advertising cues like 
the product’s coo, we will briefly review some insights coming from the literature on 
coo-emotions. To begin with, it is striking to establish how the majority of these stud-
ies are concentrated on the functioning of rather extreme negative feelings like ani-
mosity [15], ethnocentrism [21], or patriotism [12]. Overall, it is found that these are 
directly transferred to the product. This leads to situations where people decide not to 
buy, purely based on their aversive feelings toward the product’s coo.   
    Verlegh [26] wondered whether such powerful effects would also be triggered by 
milder affective reactions toward coo. As he argued, extremely negative feelings 
toward foreign nations only manifest themselves in very particular occasions and 
cannot always be generalized to the context of daily life. In his opinion, the average 
consumer will rather be characterized by the expression of less intensive feelings 
toward other countries. Therefore, he focused more on the role of softer feelings. 
More in detail, he proposed a framework where such weaker coo-related feelings are 
modelled as determinants of the consumer’s product attribute beliefs. Although partial 
and inconsistent, he found significant supportive evidence in both cases of positive 
and negative feelings toward coo. Thus, it appears that milder coo-feelings bias our 
perception of a product’s attributes.  
    However, Han [12] thinks people’s perception of a product’s quality attributes is 
not fundamentally determined by the way we feel about the place where it was made. 
Obermiller and Spangenberg [17] subscribe to this reasoning in positing that consum-
ers who experience extremely negative feelings toward certain countries still ac-
knowledge that products from those nations are of superior quality. Thus, coo-specific 
feelings apparently do not alter our perception of a product’s quality attributes per se, 
even if we vividly experience them. Han [12] designed a study to examine this prob-
lem and found that consumers expressing positive feelings toward the product’ s coo 
only tentatively rated that product’s attributes more favourably.  

Thus, in general, it seems that for weaker feelings toward coo, some doubts remain 
on how they precisely affect our product attitudes. Verlegh [26] thinks they determine 
our perception of a product’s quality attributes albeit that his results and those ob-
tained by others are not very consistent. The question of knowing how such milder 
affective reactions toward coo influence product attitude formation thus remains open.   

Our key proposition will be that softer coo-specific feelings will influence the way 
in which consumers process these attribute beliefs. More in detail, we argue that less 
intensive coo-specific feelings will affect the way in which consumers cognitively 
combine or integrate their product attribute beliefs.  
    Our reasoning is based on the principles behind the encoding-specificity mecha-
nism developed by Tulving and Thomson [25]. The underlying idea is that affects 
experienced by individuals can activate thoughts which have been stored in memory 
as relevant and related to those affects. As put by Cacioppo and Petty, affects indeed 
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can “bias issue-relevant thinking by making affectively consonant thoughts and ideas 
more accessible in memory.” [3]. Isen [14] continues that several studies have shown 
how people being happy show better recall of positive material. Thus, it appears that 
affective reactions elicited by ads can lead to greater receptiveness of positive or per-
suasive communication. In line with this reasoning, we assume that individuals will 
be more inclined to process those particular attribute beliefs which correspond best 
with their actual emotional state. Therefore, we formulate the following hypothesis: 

H: Consumers expressing more positive feelings toward the product’s coun-
try-of-origin will process the stronger valued attribute beliefs while consumers 
expressing less positive feelings toward the product’s country-of-origin will proc-
ess the weaker valued attribute beliefs. 

4   Methodology 

A study was designed to determine how feelings evoked by coo-cues influence the 
respondents’ cognitive attribute processing.  More specifically, the products selected 
for our study were DVD-players (utilitarian) and beer (hedonic). The decision to opt 
for two distinct types of products was taken in order to increment the external validity 
of our study. Additional motivation for the selection of these two products can be 
found in the frequent use that is made of them by other coo-researchers. The coun-
tries-of-origin selected for our study were Spain and Denmark. Both countries were 
sufficiently familiar to our respondents and mutually different on a number of coun-
try-specific aspects. This made participants feel confident enough in filling out the 
questionnaire. Also, we obtained two samples of which the overall level or intensity 
of country-specific feelings aroused substantially varied. 

As evaluation function we have chosen the ordered averaging operator (OWA).  This 
operator was originally introduced by Yager [29] to provide a means for aggregating 
scores with the satisfaction of multiple criteria, which unifies in one operator both con-
junctive and disjunctive behaviour. Examples of alternative aggregation operators in-
clude the Weighted Mean and the Weighted OWA [23].  However, we have chosen the 
OWA because the orness-measure can be directly learned from the data. 

More formally, an OWA operator [30] of dimension n is a mapping : 

: nf R R→  (1) 

that has an associated weighting vector W 
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where bj is the j-th largest element of the collection of the aggregated objects a1, a2, 
…, an.  The function value f (a1, …, an) determines the aggregated value of arguments 
a1, a2, …, an.   

A fundamental aspect of the OWA operator is the re-ordering step, in particular an 
argument a1 is not associated with a particular weight wi but rather a weight wi is 
associated with a particular ordered position i of the arguments.  A known property of 
the OWA operators is that they include the Max, Min and arithmetic mean operators 
for the appropriate selection of the vector W. 

The operator has proven to be very useful because of its versatility and its measure 
that can quantify or express the nature of the behaviour of the evaluator like pessimis-
tic or optimistic. This measure, called the ‘orness measure’ of the aggregation, is 
defined as 

1

1
( ) ( )
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n

i
i

orness W n i W
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= −
−

 (5) 

As suggested by Yager [30] this measure, which lies in the unit interval, characterizes 
the degree to which the aggregation is like an or (Max) operation.  It can be shown 
that: 
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Therefore the Max, Min and arithmetic mean operators can be regarded as OWA 
operators with degree of orness, respectively, 1, 0 and 0.5.  The orness measure can 
be seen as the optimistic degree of the evaluator. The interested reader can find more 
information on the orness of an aggregation in [8]. 

Data was gathered by means of two surveys (one for Spain/Spanish products and 
one for Denmark/Danish products). These were distributed to respectively 616 and 
609 graduate students of Belgian nationality. The questionnaire was always adminis-
tered at the beginning of a regular classroom session. The use of student samples for 
studying coo-effects is encouraged by Baughn and Yaprak [1] because of their ho-
mogeneous composition. In addition, several meta-analyses [16, 27] report that there 
are no significant differences in the estimates of coo-effects sizes between student 
and non-student samples. The questionnaire consisted of 4 sections. First, subjects 
indicated sex and age. The second section included a multi-item measure of subjects’ 
feelings toward coo. The PANAS scale [28] served as a basis for operationalization. 
More in detail, it consists of 20 items that describe different emotional states. We 
limited ourselves to the 10 items referring to positive emotions. For each of these,  
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subjects had to indicate on a 7-point semantic differential scale how intensively they 
felt the item in question. The decision to limit ourselves to the use of items standing 
for positive feelings is based on our motivation to concentrate explicitly on the role 
of milder positive feelings toward coo. However, as will be pointed out later, after 
filling out the questionnaire, both samples were subdivided into a group of subjects 
expressing high positive feelings (137 cases for Spain vs. 194 cases for Denmark) 
toward coo and into another group of individuals showing less positive coo-specific 
feelings (134 cases for Spain vs. 74 cases for Denmark), based on the emotion 
scores.  

The third section contained two 4-item scales measuring subjects’ beliefs about 
DVD-player- and beer attributes. For each item, respondents had to indicate on a  
7-point Likert scale ranging from 1 [definitely not agree] to 7 [fully agree] whether 
they believed the product to possess the attribute in question. For both products, the 
items (i.e., reliability, durability, performance and easiness of use for DVD-players 
and taste, naturalness, aroma and prestige for beer) were extracted from the coo-
literature. Finally, subjects’ evaluative judgement of DVD-players and beer was 
measured by means of a single-item 7-point semantic differential scale probing for the 
quality of the product.  

Given are a collection of m respondents (observations) each comprised of an  
n-tuple of belief values (ak1, ak2, …, akn) called the arguments (i.e., reliability, durabil-
ity, performance and easiness of use for DVD-players and taste, naturalness, aroma 
and prestige for beer), and an associated single value called the aggregated value (i.e., 
the quality of the product), which we shall denote as dk.  

Our goal will be to obtain an OWA operator, a weighting vector W that models the 
process of aggregation and its associated orness measure.  We need a OWA operator, 
W, such that for a given group of respondents the following condition is satisfied as 
much as possible for any k: 

( )1 2, , ...,k k kn kf a a a d=  (7) 

We shall relax this formulation by looking for a vector of OWA weights W = 
[w1  w2 … wn]T  that approximates the aggregation operator by minimizing the instan-
taneous errors ek where 

( )21
1 1 2 22 ...k k k kn n ke b w b w b w d= + + + −  (8) 

The situation is complicated by the fact that the above minimization problem is a 
constrained optimization problem, since the OWA weights wi have to satisfy the  
following two properties: 

[ ] ( )
1

1;

0,1 , 1,..., .

n

i
i

i

w

w i n
=

=

∈ =
and 

(9) 
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Therefore, the following transformation is introduced: 

1

i

j
i n

j

e
W

e

λ

λ
=

=  (10) 

From the above transformation it becomes clear that for any values of the parameters 
λi the weights wi will be positive and will sum to 1.  Therefore, the constrained mini-
mization problem is transformed to the following unconstrained nonlinear program-
ming problem:  

Minimize the instantaneous errors ek: 

1 2

2

1 2
11 1

1
...

2

n

j j nk k k kn knn n
jj j

e e e
e b b b d

ee e

λλ λ

λ λ λ
== =

= + + + −  (11) 

with respect to the parameters λi . 
 
The gradient descent method was used to learn the weights [9].  See Torra [24] for 

an alternative estimation method. 

5   Statistical Inference  

The methodology described above measures the orness from a sample rather than a 
population and hence it is susceptible to random error. It would be interesting to infer 
statistically about the results based on a sample. Such inference could answer ques-
tions whether the orness (or any other similar measure) differs between different 
groups, to construct confidence intervals for the quantities under investigation and to 
test hypotheses for the population values. To our knowledge, however, there is no 
such technique for statistical inference available. Derivation of theoretical results is 
not simple because of the complicated nature of the measurements. For this reason, 
we base our statistical inference on resampling methods, namely non-parametric boot-
strap. We construct confidence intervals for the orness measure based on non-
parametric bootstrap. Bootstrap is a recently fashionable way for statistical inference 
for quantities for which theoretical and/or even asymptotic results are hard to derive. 
In these cases simulated inference based on bootstrap [7] is a key tool for inference. 
Each resample is analyzed exactly as if it were for the real data. To implement the 
non-parametric bootstrap, observations are sampled with replacement from the origi-
nal data set until sample size is equal to that for the real data. These observations 

comprise the first bootstrap resample, denoted as *
1X . The process is repeated a num-

ber of B times, and we end up with B resamples, denoted by **
2

*
1 ,...,, BXXX . The key 

idea is that all these resamples can be considered as samples from the unknown popu-
lation (or at least they look like the unknown population).  

Now, denote the orness measure based on sample *
iX  as *

iO . Hence if we calcu-

late the orness (or any other measure) for all the B resamples, we have B realizations 
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of the quantity of interest **
2

*
1 ,...,, BOOO , and in fact we have a random sample from 

the sampling distribution of this quantity. Hence, as the sample mean estimates the 
unknown population mean, we can estimate every quantity of interest based on those 
B values. By this approach, we can estimate variances, biases or any other quantity of 
interest including the construction of confidence intervals. The standard deviation for 

the orness will be simply the standard deviation of the values **
2

*
1 ,...,, BOOO , i.e. 

( )
=

−
−

=
B

i
i OO

B
Os

1

2*

1

1
)ˆ(  (12) 

where 
=

=
B

i
iO

B
O

1

*1 .  

There are several different ways to construct confidence intervals based on boot-
strap values. We adapt the simple quantile based confidence intervals and hence a 

95% confidence interval is constructed as ],[ 975.0025.0 kk ,where ak is the a% sample 

quantile of the bootstrap values **
2

*
1 ,...,, BOOO . 

In a similar fashion, one can construct confidence intervals for any quantity of  

interest as for example for the iw ’s. We emphasize that for the latter the standard 

approach to treat them as merely proportions is not correct as they are correlated  
proportions since they have to sum to one. Our bootstrap approach creates correct 
intervals in the sense that it takes into account the correlation structure that exists. 

6   Results 

Table 1-4 below present the results of the orness measure and the OWA weights (with 
standard errors between brackets) for Spanish/Danish DVD players and beer based on 
the outcome of the questionnaire.  More specifically, these tables show the results for 
three groups of respondents. The first group is always the entire sample (616 cases for 
Spanish survey vs. 609 cases for Danish survey), whilst the second and third group 
are those respondents expressing respectively high positive feelings toward coo (137 
cases for Spain vs. 194 cases for Denmark) and rather low positive feelings toward 
coo (134 cases for Spain vs. 74 cases for Denmark).  Standard errors are based on 
B=1000 bootstrap replications using the procedure described above. 

When comparing the group of respondents with high positive feelings toward coo 
(say group A) versus those expressing less positive feelings toward coo (say group B), 
table 1 (i.e., results for Spanish DVD-players) shows that the orness measure for 
group A is higher than for group B. When constructing 95% confidence intervals we 
found that for group A the interval is (0.439, 0.672), while for group B (0.347, 0.521), 
which implies a certain overlap. Statistically speaking, the differences between group 
A and B are not significant on a 5% level. According to our bootstrap results, it is 
however significant on the 10% although this decision depends on the bootstrap ex-
periment used. Qualitatively, however, it is clear that group A has a larger orness, 
which somehow confirms our hypothesis that people expressing high positive feelings 
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Table 1. Results for Spanish DVD players 

Data set Orness w1 w2 w3 w4 

All cases  (616) 0.4742 0.1338 0.2758 0.4695 0.1207 
 (0.0259) (0.0326) (0.0858) (0.0870) (0.0382) 

Group A: (137) 0.5499 
(0.0619) 

0.1931 
(0.0682) 

0.3866 
(0.2188) 

0.2971 
(0.2191) 

0.1230 
(0.0734) 

Group B: (134) 0.4061 
(0.0556) 

0.1495 
(0.0560) 

0.2065 
(0.1350) 

0.3567 
(0.1734) 

0.2871 
(0.1124) 

Significance S NS NS NS NS 

Table 2. Results for Spanish beer 

Data set Orness w1 w2 w3 w4 

All cases  (616) 0.4290 0.1554 0.3171 0.1866 0.3407 
 (0.0220) (0.0299) (0.0706) (0.0798) (0.0471) 

Group A: (137) 0.4489 0.2015 0.1483 0.4452 0.2047 
 (0.0521) (0.0620) (0.1568) (0.1983) (0.1038) 

Group B: (134) 0.3438 0.1824 0.1907 0.1023 0.5243 
 (0.0443) (0.0666) (0.1070) (0.1217) (0.0938) 

Significance NS NS NS S S 

Table 3. Results for Danish DVD players 

Data set Orness w1 w2 w3 w4 

All cases   (609) 0.5265 0.1901 0.3774 0.2544 0.1780 
 (0.0215) (0.0473) (0.07370 (0.0651) (0.0310) 

Group A: (194) 0.5336 0.2491 0.2712 0.3107 0.1688 
 (0.0504) (0.0919) (0.1652) (0.1670) (0.0595) 

Group B: (74) 0.5133 0.1727 0.3005 0.4207 0.1060 
 (0.0582) (0.1030) (0.1934) (0.1867) (0.0902) 

Significance NS NS NS NS NS 

Table 4. Results for Danish beer 

Data set Orness w1 w2 w3 w4 

All cases   (609) 0.4216 0.2099 0.1683 0.2983 0.3233 
 (0.0204) (0.0372) (0.0732) (0.0759) (0.0399) 

Group A: (194) 0.4166 0.2399 0.1223 0.2855 0.3522 
 (0.0357) (0.0699) (0.1116) (0.1205) (0.0780) 

Group B: (74) 0.3733 0.2266 0.0775 0.2849 0.4109 
 (0.0548) (0.07800 (0.1238) (0.1406) (0.0867) 

Significance NS NS NS NS NS 

toward coo tend to use a more optimistic evaluation function toward evaluating the 
quality of Spanish DVD-players. In other words, they tend to base their quality 
evaluation more on the more positively evaluated attributes.   
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Confirmation of the encoding-specificity principle should, however, also be re-
flected by the individual OWA weights (w1 to w4) such that for group A versus group 
B, the ordered weights w1 and w2 should show higher values and the ordered weights 
w3 and w4 should show lower values. Based on results depicted in table 1 it can be 
observed that indeed w1 and w2 are higher in group A compared to group B.  How-
ever, their individual differences are not statistically significant.  Similarly, it can be 
seen from the values for w3 and w4 that they are higher in group B compared to group 
A, although their individual differences are again not statistically significant. 

Table 2 presents the results obtained for Spanish beer. Also in this case, the orness 
measure for group A is surpassing that for group B, although in this case the differ-
ence is not statistically significant. The 95% confidence interval for group A is 
(0.351, 0.555) while for group B (0.262, 0.435). Yet, there is a clear indication that 
group A has a larger orness. This can again be seen as supportive evidence for our 
hypothesis. Thus, one could conclude that respondents with high positive coo-feelings 
tend to base their quality evaluation of Spanish beer rather on the more favourably 
evaluated attributes. However, in this case the results for the weight values are less 
convincing since the value of w2 is larger in group B than in group A, and the value 
of w3 is larger in group A than in group B. 

Table 3 and 4 show the results for Danish DVD-players and beer.  Although there 
is a tendency that the orness is again slightly higher for group A than for group B, the 
differences are much smaller compared to the results for Spain and not statistically 
significant.  For example, for Danish DVD-players, the 95% confidence interval for 
group A is (0.435, 0.626) and for group B (0.402, 0.641), showing a large overlap. 
With respect to the values of w1 to w4 the results are not consistent.   

Overall, it is interesting to observe that we can find much more evidence for our 
hypothesis in the case of Spanish products compared to Danish products. 

7   Conclusion 

From a practical point of view, our study shows how milder coo-specific feelings 
serve as a useful device for advertisers to direct consumers’ processing of attribute 
beliefs. More in detail, their functioning can be understood as some kind of encoding-
specificity mechanism. That is, consumers during their product evaluation ascribe 
most importance to those attribute beliefs which are closer in line with their internal 
affective state. Interestingly, support for our hypothesis was somewhat more substan-
tial for the Spanish than for the Danish survey. Thus, the type of country seems to 
play a role in determining to what extent the encoding-specificity mechanism mani-
fests itself.  

From a technical point of view, we opted for an alternative methodology in using 
the OWA-operator. In our opinion, this is a useful approach while the interpretation  
of the OWA-weights is more straightforward compared to the more complex 
LISREL-models as they have been traditionally used for instance by Han [12]. An 
additional advantage lies in the fact that the ‘orness measure’ gives us the needed 
quantification of the optimistic degree of an evaluation.  This aspect alone is already a 
huge advantage of the fuzzy set approach compared to the more traditional LISREL 
approaches where this degree of optimism cannot be extracted from the data.  Finally, 
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we introduced a bootstrap procedure to estimate the orness and the level of uncer-
tainty around it.  This enables us to construct confidence intervals and conduct hy-
pothesis tests. As far as we know, estimating this degree of uncertainty of the orness 
measure has never been introduced in the literature before. 
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Abstract. Non-monotonic fuzzy measures induced by an intuitinistic
fuzzy set are introduced. Then, using the Choquet integral with respect
to the non-monotonic fuzzy measure, the weighted distance between two
intuitionistic fuzzy sets is defined. As it will be shown here, under some
conditions, the weighted distance coincides with the Hamming distance.

Keywords: Fuzzy measure, Non-monotonic fuzzy measure, Choquet in-
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1 Introduction

The so-called intuitionistic fuzzy sets were proposed by Atanassov [1, 2, 3] to
have additional degrees of freedom when defining the membership values in a
fuzzy set. Since then, the theory has been developed. Several new concepts and
methods have been introduced and studied.

Fuzzy measures and fuzzy integrals are basic tools for decision modeling.
Fuzzy integrals can be used to combine the information supplied by different
information sources or to integrate the evaluation of different criteria. In this
setting, fuzzy measures are used to represent the basic information about the
sources (e.g., their importance).

Although fuzzy measures are, typically, monotonic set functions on the unit
interval, non-monotonic fuzzy measures have been also considered in the litera-
ture. See e.g. [8, 10, 11, 14]. In this paper we establish some relationships between
non-monotonic fuzzy measures and intuitionistic fuzzy sets.

We show that non-monotonic fuzzy measures can be defined from intuition-
istic fuzzy sets. Thus, given an intuitionistic fuzzy set, we will consider the fuzzy
measure induced by it. Then, we will study some properties that establish rela-
tionships between intuitionistic fuzzy sets and (non-monotonic) fuzzy measures.
The concept of bounded variation [4, 10, 11] (either positive or negative varia-
tion) plays a central role in such properties.

The structure of the paper is as follows. In Section 2, we present some prelimi-
naries that are needed later on in this paper. In Section 3, we review the concepts

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 150–160, 2006.
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of bounded variation and we present some results on the Choquet integrals of
non-monotonic fuzzy measures. In Section 4, we introduce non-monotonic fuzzy
measures induced by intuitionistic fuzzy sets. Using the Choquet integral with
respect to the non-monotonic fuzzy measure, the weighted distance between
two intuitionistic fuzzy sets is defined. We show that under some conditions, the
weighted distance coincides with the Hamming distance. The paper finishes with
some conclusions.

2 Preliminaries

In this section, we review some preliminary definitions and propositions on fuzzy
measures and intuitionistic fuzzy sets. In the following, we will use the following
notation. Let X be an universal set and let X be σ-algebra of X . That is, (X,X )
is a measurable space.

Definition 1. [12] Let (X,X ) be a measurable space. A fuzzy measure m is
a real valued set function, m : X −→ R+ with the following properties;

(1) m(∅) = 0
(2) m(A) ≤ m(B) whenever A ⊂ B, A, B ∈ X .

We say that the triplet (X,X , m) is a fuzzy measure space if m is a fuzzy
measure.

We will use F(X) to denote the class of non-negative measurable functions.
That is,

F(X) := {f |f : X → R+, f : measurable}

Definition 2. [5, 9] Let (X,X , m) be a fuzzy measure space. The Choquet
integral of f ∈ F(X) with respect to m is defined by

(C)
∫

fdm =
∫ ∞

0
mf (r)dr,

where mf (r) = m({x|f(x) ≥ r}).
Definition 3. [6] Let f, g ∈ F(X). Then, we say that f and g are comonotonic
if

f(x) < f(x′)⇒ g(x) ≤ g(x′)

for x, x′ ∈ X .

Proposition 4. [6, 7] Let (X,X , m) be a fuzzy measure space. If f, g ∈ F(X)
are comonotonic, then the Choquet integral is additive, that is,

(C)
∫

(f + g)dm = (C)
∫

fdm + (C)
∫

gdm.
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We say that the additivity of the Choquet integral, according to this property,
is comonotonic additivity.

Next, we define an intuitionistic fuzzy set by Attanassov (for conciseness, we
denote them by A-IFS).

Definition 5. [1, 2, 3] An A-IFS (intuitionistic fuzzy set by Attanassov) A in
X is defined by

A := {< x, μA(x), νA(x) > |x ∈ X}
where μA : X → [0, 1] and νA : X → [0, 1] with

0 ≤ μA(x) + νA(x) ≤ 1.

For each x, μA(x) and νA(x) represent the degree of membership and degree of
non-menbership of the element x ∈ X to A ⊂ X, respectively. For each A-IFS,
we define the intuitionistic fuzzy index by

πA(x) := 1− μA(x) − νA(x).

Suppose that X is a finite set, that is, X := {x1, x2, . . . , xn}. The Hamming
distance between two A-IFS are proposed by Szmidt and Kacprzyk.

Definition 6. [13] Let X := {x1, x2, . . . , xn} be a finite universal set and A :=
{< x, μA(x), νA(x) > |x ∈ X}, B := {< x, μB(x), νB(x) > |x ∈ X} be two
A-IFS sets. Then,

(1) The Hamming distance dIFS(A, B) between A and B is defined by

dIFS(A, B) :=
n∑

i=1

(|μA(xi)−μB(xi)|+ |νA(xi)−νB(xi)|+ |πA(xi)−πB(xi)|)

(2) The normalized Hamming distance lIFS(A, B) between A and B is defined
by

lIFS(A, B) :=
n∑

i=1

1
2n

(|μA(xi)−μB(xi)|+|νA(xi)−νB(xi)|+|πA(xi)−πB(xi)|)

3 Non-monotonic Fuzzy Measure and Integral

Now, we turn into non-monotonic fuzzy measures and we show that the Cho-
quet integral with respect to a non-monotonic fuzzy measure is comonotonically
additive.

Definition 7. [10, 11] Let (X,X ) be a measurable space. A non monotonic fuzzy
measure is a real valued set function on X with m(∅) = 0. We say that (X,X , m)
is a non monotonic fuzzy measure space when m is a non monotonic fuzzy mea-
sure.
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Definition 8. [4, 10] Let (X,X , m) be a non monotonic fuzzy measure space.
Then, the positive variation m+(A) of m on the set A ∈ X is given by

m+(A) = sup{
n∑

i=1

max{m(Ai)−m(Ai−1), 0}}

where the sup is taken over all non decreasing sequences

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A, Ai ∈ X , i = 1, 2, · · ·n,

the negative variation m−(A) of m on the set A ∈ X is given by

m−(A) = sup{
n∑

i=1

max{m(Ai−1)−m(Ai), 0}}

where the sup is taken over all non decreasing sequences

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A, Ai ∈ X , i = 1, 2, · · ·n

and the total variation |m|(A) of m on the set A ∈ X is given by

|m|(A) = m+(A) + m−(A).

It is obvious from the definition above that

m(A) = m+(A)−m−(A)

for A ∈ X .
We denote the variation |m|(X) by ‖m‖, and say that m is of bounded vari-

ation if ‖m‖ <∞.

Definition 9. The Choquet integral of a nonnegative measurable function f ∈
F(X) with respect to a non monotonic fuzzy measure m of bounded variation is
defined by

(C)
∫

fdm =
∫ ∞

0
m+({x|f(x) ≥ a})da−

∫ ∞

0
m−({x|f(x) ≥ a})da.

Since m = m+ −m−, the Choquet integral Cm(f) is written by

Cm(f) := (C)
∫

fdm =
∫ ∞

0
m({x|f(x) ≥ a})da.

Let f, g ∈ F(X) be comonotonic. Then, the Choquet integrals with respect to
m+ and m− are comonotonically additive. Therefore, the next proposition holds.

Proposition 10. The Choquet integral with respect to a non-monotonic fuzzy
measure m is comonotonically additive.
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Proof. Let (X,X , m) be a non monotonic fuzzy measure space and let f, g ∈
F(X) be comonotonic. Then,

(C)
∫

(f + g)dm = (C)
∫

(f + g)dm+ − (C)
∫

(f + g)dm−

= (C)
∫

fdm+ + (C)
∫

gdm+ − ((C)
∫

fdm− + (C)
∫

gdm−)

= (C)
∫

fdm+ − (C)
∫

fdm− + (C)
∫

gdm+ − (C)
∫

gdm−

= (C)
∫

fdm + (C)
∫

gdm.&'

Let A be a chain of subsets of X , that is,

A := {Ai|i = 1, 2, . . . , n, Ai ⊂ X, ∅ ⊂ A1 ⊂ · · · ⊂ An = X}.
Since 1Ai and 1Aj are comonotonic for every i, j = 1, 2, . . . n where 1A is a
characteristic function of A, we have

Cm(
n∑

i=1

ai1Ai) =
n∑

i=1

aim(Ai)

for ai ≥ 0.

4 Non-monotonic Fuzzy Measure Induced by
Intuitionistic Fuzzy Set

Let m be a non-monotonic fuzzy measure on X satisfying

0 ≤ m({x}) + m(X \ {x}) ≤ 1, m({x}) ≥ 0, m(X \ {x}) ≥ 0.

We can define an A-IFS A := {< x, μA(x), νA(x) > |x ∈ X} by μA(x) := m({x})
and νA(x) := m(X \ {x}). Conversely we can define a non-monotonic fuzzy
measure from an A-IFS.

Definition 11. Let A := {< x, μA(x), νA(x) > |x ∈ X} be an A-IFS. We define
a non-monotonic fuzzy measure mA : 2X → [0, 1] by

mA(B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if B = ∅
supy∈B μA(y) if B

⊂
�= X \ {x} for all x

ν(x) if for some x, B = X \ {x}
infx∈X supy∈X\{x} μA(y) if B = X,

and a non-monotonic fuzzy measure mA : 2X → [0, 1] by

mA(B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if B = ∅
supy∈B νA(y) if B

⊂
�= X \ {x} for all x

μ(x) if for some x, B = X \ {x}
infx∈X supy∈X\{x} νA(y) if B = X.



Non-monotonic Fuzzy Measures and Intuitionistic Fuzzy Sets 155

We say that mA is a positive non-monotonic fuzzy measure induced by an intu-
itionistic fuzzy measure A and mA is a negative non-monotonic fuzzy measure
induced by an intuitionistic fuzzy measure A.

Let A and B be an A-IFS. Then, we define the following non-monotonic fuzzy
measures for C ⊂ X :

(mA −mB)(C) := mA(C) −mB(C),

|mA −mB |(C) := |mA(C) −mB(C)|,

(mA −mB)(C) := mA(C) −mB(C),

|mA −mB |(C) := |mA(C) −mB(C)|.

The next lemma follows from the definition of a positive variation and a
negative variation.

Lemma 12. Let A := {< x, μA(x), νA(x) > |x ∈ X} be an A-IFS and mA be
the positive non-monotonic fuzzy measure induced by the A-IFS A.

m+
A(B) =

0 if B = ∅
supy∈B μA(y) if for some x ∈ X, B

⊂
�= X \ {x}

sup
y∈C,C

⊂
�= B

μA(y) if for some x ∈ X, B = X \ {x}
and sup

y∈C,C
⊂
�= B

μA(y) > νA(x)

νA(x) if for some x ∈ X, B = X \ {x}
and sup

y∈C,C
⊂
�= B

μA(y) ≤ νA(x)

νA(x) if B = X and for some x ∈ X

infx∈X supy∈X\{x} μA(y) ≤ νA(x)
infx∈X supy∈X\{x} μA(y) − νA(x)

+ sup
y∈C,C

⊂
�= X\{x}

μA(y) if B = X and for some x ∈ X,

sup
y∈C,C

⊂
�= X\{x}

μA(y) ≥ ν(x)

infx∈X supy∈X\{x} μA(y) if B = X and for some x ∈ X,

infx∈X supy∈X\{x} μA(y) ≥ ν(x)
and ν(x) ≥ sup

y∈C,C
⊂
�= X\{x}

μA(y)
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and

m−
A(B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if B
⊂
�= X \ {x} for all x

0 if for some x ∈ X, B = X \ {x}

and sup
y∈C,C

⊂
�= B

μA(y) ≤ νA(x)

sup
y∈C,C

⊂
�= B

μA(y) − νA(x) if for some x ∈ X, B = X \ {x}

and sup
y∈C,C

⊂
�= B

μA(y) ≥ νA(x)

νA(x) − inf x ∈ X supy∈X\{x} μA(y) if B = X, and for some x ∈ X,

infx∈X supy∈X\{x} μA(y) ≤ νA(x)
sup

y∈C,C
⊂
�= X\{x}

μA(y) − νA(x) if B = X, and for some x ∈ X,

sup
y∈C,C

⊂
�= X\{x}

μA(y) ≥ νA(x)

0 if B = X, and and and for some x ∈ X,

infx∈X supy∈X\{x} μA(y) ≥ ν(x)
and ν(x) ≥ sup

y∈C,C
⊂
�= X\{x}

μA(y)

Since ||mA|| = m+
A(X) + m−

A(X), we have the next proposition.

Proposition 13. Let A be an A-IFS. Then, a positive (resp. negative) non-
monotonic fuzzy measure induced by the A-IFS mA (resp. mA) is of bounded
variation.

Since

|mA −mB| = |m+
A −m−

A + m+
B −m−

B|
≤ |m+

A|+ |m−
A|+ |m+

B|+ |m−
B|,

we have the next corollary.

Corollary 14. Let A and B be intuitionistic fuzzy sets. Then, the fuzzy mea-
sures mA−mB, |mA−mB|, mA−mB and |mA−mB| are of bounded variation.

It follows from Proposition 13 that we can define the Choquet integral with
respect to a non-monotonic fuzzy measure induced by an A-IFS.

Definition 15. Let A and B be an A-IFS, and f ,g,h ∈ F(X). Then, the
weighted distance (wdistf,g,h) between A and B is defined by

wdistf,g,h(A, B) := C|mA−mB |(f) + C|mA−mB |(g) + C|(mA+mA)−(mB+mB)|(h)

The weighted distance can be defined not only when X is a finite set, but also
when X is infinite.

The next proposition immediately follows from this definition.
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Proposition 16. Let A, B and C be A-IFS, and f ,g,h ∈ F(X).

(1) wdistf,g,h(A, A) = 0
(2) wdistf,g,h(A, B) = wdistf,g,h(B, A)
(3) wdistf,g,h(A, B) + wdistf,g,h(B, C) ≤ wdistf,g,h(A, C)
(4) Suppose that f > 0, g > 0 and h > 0. Then, wdistf,g,h(A, B) = 0 if and only

if A = B

In the following suppose that X is a finite set, that is, X := {x1, x2, . . . , xn}.
The next lemma follows from the definition of comonotonicity.

Lemma 17. Let X := {x1, x2, . . . , xn}, and let f : X → R and g : X → R be
comonotonic functions and f is one to one.
(1) If f(xk) = maxx∈C f(x), then g(xk) = maxx∈C g(x) (k = argmaxx∈Cg(x))

for C ⊂ X.
(2) If f(xk)=minx∈X maxy∈X\{x} f(y) then g(xk) = minx∈X maxy∈X\{x} g(y).

Proof. (1) Let k = argmaxx∈Cf(x). Since |{f(x)|x ∈ C}| = n, if x �= xk then
f(x) < f(xk).
Since f and g are comonotonic, g(x) ≤ g(xk) for all x ∈ C.
Therefore g(xk) = maxx∈Cg(x).

(2) Since f(xk) = minx∈X maxy∈X\{x} f(y), there exists xi ∈ X such that f(xk)
= maxy∈X\{xi} f(y). Then applying (1) we have g(xk) = maxy∈X\{xi} g(y).
Therefore g(xk) ≥ minx∈X maxy∈X\{x} g(y).
Since for all x ∈ X

f(xk) ≤ max
y∈X\{x}

f(y),

there exists y ∈ X \ {xk} such that f(xk) < f(y) since y �= xk. Then we
have g(xk) ≤ g(y), that is g(xk) ≤ maxy∈X\{xk} g(y). Therefore g(xk) ≤
maxy∈X\{x} g(y) for all x ∈ X . that is, g(xk) ≤ minx∈X maxy∈X\{x} g(y).

�	
Choosing the classes C,D, E of subsets of X suitably, using the previous lemma,
we have the next proposition.

Proposition 18. Let A and B be two A-IFS defined as follows:

A := {< x, μA(x), νA(x) > |x ∈ X},
B := {< x, μB(x), νB(x) > |x ∈ X},

μA and μB , νA and νB, μA + νA and μA + νB are respectively comonotonic, and
μA, μB, μA + νA are one to one.

Then, there exists a class C := {Ci} ,D := {Di}, E := {Ei}, of subsets of X
such that

wdistf,g,h(A, B) =
n∑

i=1

(ai| sup
x∈Ci

μA(x)− sup
x∈Ci

μB(x)|+bi| sup
x∈Di

νA(x)− sup
x∈Di

νB(x)|

+ ci| sup
x∈Ei

πA(x)− sup
x∈Ei

πB(x)|)

where f, g, h are linear combinations of characteristic functions and coefficients
ai ≥ 0, bi ≥ 0, ci ≥ 0,that is, f :=

∑
i ai1Ci , g :=

∑
i bi1Di , f :=

∑
i ci1Ei.
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Proof. Let C′
i := {x1, x2, . . . , xi}, f :=

∑n
i=1 a′

i1C′
i
, g :=

∑n
i=1 b′i1C′

i
and h :=∑n

i=1 c′i1C′
i

with a′
i ≥ 0, b′i ≥ 0, ci ≥ 0.

Since each 1C′
i

and 1C′
j

are comonotonic,

C|mA−mB |(f) =
n

i=1

C|mA−mB |(a
′
i1C′

i
)

=
n

i=1

a′
i|mA − mB|(C′

i)

=
n

i=1

a′
i|mA(C′

i) − mB(C′
i)|

=
n−2

i=1

a′
i| sup

x∈C′
i

μA(x) − sup
x∈C′

i

μB(x)|

+ a′
n−1|νA(xn) − νB(xn)| + a′

n| min
x∈X

max
y∈X\{x}

μA(y) − min
x∈X

max
y∈X\{x}

μB(y)|

=
n−2

i=1

a′
i| sup

x∈C′
i

μA(x) − sup
x∈C′

i

μB(x)|

+ a′
n−1|νA(xn) − νB(xn)| + a′

n|μA(xn−1) − μB(xn−1)|,

Similarly, we have

C|mA−mB |(g) =
n∑

i=1

C|mA−mB |(b′i1Di)

=
n∑

i=1

b′i|mA −mB |(Di)

=
n∑

i=1

b′i|mA(Di)−mB(Di)|

=
n−1∑
i=1

b′i| sup
x∈Di

νA(x)− sup
x∈Di

νB(x)|

+ b′n−1|μA(x′
n)− μB(x′

n)|+ b′n|νA(x′
n−1)− νB(x′

n−1)|,

C|(mA+mA)−(mB+mB)|(f) =
n∑

i=1

c′iC|(mA+mA)−(mB+mB)|(1Ei)

=
n∑

i=1

c′i|(mA + mA)− (mB + mB)|(Ei)

=
n∑

i=1

c′i|(mA(Ei) + mA(Ei))− (mB(Ei) + mB(Ei))|.
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Changing coefficients ai and the menber of the class C,D, E suitably, we have
the concluding equality. �	
Using the previous Proposition, we have the next proposition.

Proposition 19. Let A := {< x, μA(x), νA(x) > |x ∈ X} be an A-IFS, and let
B be another A-IFS defined by B := {< x, μB(x), νB(x) > |x ∈ X} such that
μA, μB, νA, νB, μA + νA , μA + νB are comonotonic, and μA, νA, μA + νA are
one to one.

There exist functions f ,g,h on X such that

wdistf,g,h(A, B)=
n

i=1

ai(|μA(xi)−μB(xi)| + bi|νA(xi)| − νB(xi)| + ci|πA(x) − πB(xi)|)

where ai ≥ 0, bi ≥ 0, ci ≥ 0.

Define f, g, h such that ai = bi = ci = 1 for all i, we have the next corollary.

Corollary 20. Let A := {< x, μA(x), νA(x) > |x ∈ X} be an A-IFS, and let
B another A-IFS defined by B := {< x, μB(x), νB(x) > |x ∈ X} such that μA,
μB, νA, νB, μA + νA , μA + νB are comonotonic, and μA, νA, μA + νA are one
to one.

Then, there exist functions f ,g,h on X such that

wdistf,g,h(A, B) = dIFS(A, B),

that is, wdist coincides with the Hamming distance.

Proof. Let Ci := {x1, x2, . . . , xi}, i = 1, 2, . . . , n and let f :=
∑n

i=1 1Ci , g :=∑n
i=1 1Ci and h :=

∑n
i=1 1Ci .

Then, it follows from the proof of Proposition 12,

C|mA−mB |(f) =
n−2∑
i=1

|μA(xi)− μB(xi)|

+ |νA(xn)− νB(xn)|+ |μA(xn−1)− μB(xn−1)|,

C|mA−mB |(f) =
n−2∑
i=1

|νA(xi)− νB(xi)|

+ |νA(xn)− νB(xn)|+ |μA(xn−1)− μB(xn−1)|,
and

C|mA+mA−mB−mB |(f) =
n∑

i=1

|πA(xi)− πB(xi)|. �	

Define f, g, h such that the form of f is f :=
∑n

i=1(1/n)1Ci, then we have the
next corollary.
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Corollary 21. Let A := {< x, μA(x), νA(x) > |x ∈ X} be an A-IFS, and let
B be another A-IFS defined by B := {< x, μB(x), νB(x) > |x ∈ X}, and such
that defined by B := {< x, μB(x), νB(x) > |x ∈ X} such that μA, μB, νA, νB,
μA + νA , μA + νB are comonotonic, and μA, νA, μA + νA are one to one.

Then, there exist functions f ,g,h on X such that

wdistf,g,h(A, B) = lIFS(A, B).

5 Conclusions

In this paper we have proposed the definition of non-monotonic fuzzy measures
in terms of intuitionistic fuzzy sets. We have seen that the Choquet integral of
non-monotonic fuzzy measures permits to define the weighted distance between
two intuitionistic fuzzy sets. We have also shown that under some conditions the
weighted distance can be made equal to the Hamming distance.
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Abstract. An evaluation method of fuzzy numbers is presented from
the viewpoint of aggregation operators in decision making modeling. The
method is given by the quasi-arithmetic means induced from weighted
aggregation operators with a decision maker’s subjective utility. The
properties of the weighted quasi-arithmetic mean and its translation in-
variance are investigated. For the mean induced from the dual aggrega-
tion operators, a formula for the calculation is also given. The movement
of the weighted quasi-arithmetic means is studied in comparison between
two decision maker’s utilities, which are essentially related to their atti-
tude in decision making. Several examples are examined to discuss the
properties of this defuzzification method.

1 Introduction

The most popular methods to evaluate fuzzy numbers in decision making prob-
lems are the defuzzification and the ordering of fuzzy numbers/fuzzy quantities
([8],[15],[16],[18]), and many authors have examined defuzzification methods for
fuzzy numbers in various applications ([2],[9]). The aim of this paper is to present
a new evaluation method of fuzzy numbers for decision making modeling from
the viewpoint of aggregation operators. We deal with quasi-arithmetic means
induced from weighted aggregation operators with decision maker’s subjective
utility, and we estimate fuzzy numbers by the quasi-arithmetic means. It is
well-known that the weighted aggregation operation can be represented with a
continuous increasing function (Kolmogorov [11], Nagumo [13], Aczél [1]). Torra
and Godo [14] discussed a defuzzification method with weighted aggregation
operations and its applications. In this paper, taking the continuous increasing
function as a utility function in decision making, we discuss the decision maker’s
judgment by weighted means based on the utility. We analyze the properties of
the weighted quasi-arithmetic mean and we investigate its translation invariance.
We also introduce the weighted quasi-arithmetic mean induced from the dual ag-
gregation operators, and we give a formula for its calculation. The movement of
the weighted quasi-arithmetic means is studied in comparison between two de-
cision maker’s utilities, which are essentially related to their attitude in decision
making. In the next section, starting from the notion of weighted aggregation
operations of several variables on [0, 1], we construct a weighted quasi-arithmetic
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mean of intervals step by step. In Section 3, the weighted quasi-arithmetic
mean is applied to fuzzy numbers as a defuzzification method under the deci-
sion maker’s subjective utility. In Section 4, the weighted quasi-arithmetic mean
induced from the dual aggregation operators is discussed. In Section 5, the move-
ment of the weighted quasi-arithmetic means is studied in comparison between
two decision maker’s utilities. In Section 6, we examine several examples and give
formulae for triangle-type fuzzy numbers and trapezoidal-type fuzzy numbers.

2 Weighted Aggregation Operators

Weighted aggregation operators are given as follows. Let n be a fixed natural
number, and let ξn : [0, 1]n 
→ [0, 1] be a function. We represent the function as
ξn(x1, x2, · · · , xn) for (x1, x2, · · · , xn) ∈ [0, 1]n.

Definition 1. (n-ary weighted aggregation operator [3, 4]). A function ξn :
[0, 1]n 
→ [0, 1] is called an n-ary weighted aggregation operator if it satisfies the
following conditions (A.i) – (A.v):

(A.i) ξn(x1, x2, · · · , xn)≤ξn(y1, y2, · · · , yn) whenever xi ≤ yi for all i=1, · · · , n.
(A.ii) ξn(x1, x2, · · · , xn) < ξn(y1, y2, · · · , yn) whenever xi < yi for some i =

1, 2, · · · , n.
(A.iii) ξn is continuous on [0, 1]n.
(A.iv) ξn(x, x, · · · , x) = x for all x ∈ [0, 1].
(A.v) It holds that

ξn(ξn(x11, x12, · · · , x1n), ξn(x21, x22, · · · , x2n), · · · , ξn(xn1, xn2, · · · , xnn))
=ξn(ξn(x11, x21, · · · , xn1), ξn(x12, x22, · · · , xn2), · · ·, ξn(x1n, x2n,· · · , xnn)).

The condition (A.ii) together with (A.i) is called strictly monotone, and the
properties (A.iii), (A.iv) and (A.v) are called continuous, idempotent and bisym-
metrical respectively. The following well-known result regarding the weighted
aggregation operations is given by Aczél [1].

Lemma 1. (Aczél [1]). A function ξn : [0, 1]n 
→ [0, 1] satisfies (A.i) – (A.v) if
and only if there exists a continuous strictly increasing function f : [0, 1] 
→ [0, 1]
and weights {wi|i = 1, 2, · · · , n} such that wi > 0 (i = 1, 2, · · · , n),

∑n
i=1 wi = 1

and

ξn(x1, x2, · · · , xn) = f−1

(
n∑

i=1

f(xi)wi

)
(1)

for (x1, x2, · · · , xn) ∈ [0, 1]n.

Definition 2. (weighted aggregation operator [3, 4]). A function ξ :
⋃

n≥1[0, 1]n


→ [0, 1] is called a weighted aggregation operator if it is given by n-ary weighted
aggregation operators ξn such as ξ = ξn on [0, 1]n for each n = 1, 2, · · · .
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From Lemma 1, when a continuous strictly increasing function f : [0, 1] 
→ [0, 1]
and a continuous function w : [0, 1] 
→ (0,∞) are given, we can present n-ary
weighted aggregation operators ξn in the following form:

ξn(x1, x2, · · · , xn) = f−1

(
n∑

i=1

f(xi)w(xi)

/
n∑

i=1

w(xi)

)
(2)

for (x1, x2, · · · , xn) ∈ [0, 1]n and all n = 1, 2, · · · . Therefore, with a fixed contin-
uous strictly increasing function f and a fixed continuous function w : [0, 1] 
→
(0,∞), we give a weighted aggregation operator ξ :

⋃
n≥1[0, 1]n 
→ [0, 1] such

that

ξ(x1, x2, · · · , xn) = ξn(x1, x2, · · · , xn) = f−1

(
n∑

i=1

f(xi)w(xi)

/
n∑

i=1

w(xi)

)
(3)

for (x1, x2, · · · , xn) ∈ [0, 1]n and n = 1, 2, · · · . First, we construct a weighted
quasi-arithmetic mean under subjective decision-making from the viewpoint of
aggregation of every point in an interval. Let [a, b] be a closed interval satisfying
0 ≤ a < b ≤ 1. Let {[ci−1, ci]|i = 1, 2, · · · , n} be a partition of the interval [a, b]
such that

ci := a +
i(b− a)

n
for i = 0, 1, 2, · · · , n.

Take a temporary aggregated point xi of the interval [ci−1, ci] such that xi ∈
[ci−1, ci] for each i = 1, 2, · · · , n. From (3), we define a weighted quasi-arithmetic
mean as follows

M := lim
n→∞ ξ(x1, x2, · · · , xn) = lim

n→∞ f−1

(
n∑

i=1

f(xi)w(xi)

/
n∑

i=1

w(xi)

)
, (4)

where xi(∈ [ci−1, ci]) is a temporary aggregated point on [ci−1, ci] (i=1, 2, · · · , n).
By the definition of Riemann integral, we obtain

M = f−1

(∫ b

a

f(x)w(x) dx

/∫ b

a

w(x) dx

)
(5)

for [a, b](⊂ [0, 1]) such that 0 ≤ a < b ≤ 1 since we have

M = lim
n→∞ f−1

(
n∑

i=1

f(xi)w(xi)

/
n∑

i=1

w(xi)

)

= f−1

(
lim

n→∞

(
n∑

i=1

f(xi)w(xi)

/
n∑

i=1

w(xi)

))

= f−1

(
lim

n→∞

n∑
i=1

f(xi)w(xi)
b− a

n

/
lim

n→∞

n∑
i=1

w(xi)
b− a

n

)

= f−1

(∫ b

a

f(x)w(x) dx

/∫ b

a

w(x) dx

)
.
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Let D(⊂ (−∞,∞)) be an interval. Extending the domain from the closed interval
[0, 1] to D, in the next section we study a defuzzification of fuzzy numbers
induced from the weighted quasi-arithmetic mean value of closed subintervals of
D in the form

M = f−1

(∫ b

a

f(x)w(x) dx

/∫ b

a

w(x) dx

)
(6)

for [a, b] ⊂ D (a < b), where f : D 
→ (−∞,∞) is a continuous strictly increasing
function for utility and w : D 
→ (0,∞) is a continuous function for weighting.

3 A Defuzzification of Fuzzy Numbers Induced from
Weighted Aggregation Operators

Let R denote the set of all real numbers. A fuzzy number is denoted by its
membership function ã : R 
→ [0, 1] which is normal, upper-semicontinuous, fuzzy
convex and has a compact support. R denotes the set of all fuzzy numbers, and
Rc also denotes the set of fuzzy numbers with continuous membership functions.
Refer to Zadeh [21] regarding fuzzy set theory. In this paper, we identify fuzzy
numbers with their corresponding membership functions. The α-cut of a fuzzy
number ã(∈ R) is given by ãα := {x ∈ R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 :=
cl{x ∈ R | ã(x) > 0}, where cl denotes the closure of an interval. The α-cut is
also written by closed intervals ãα = [ã−

α , ã+
α ] (α ∈ [0, 1]). Hence we introduce a

partial order �, so called the fuzzy max order, on fuzzy numbers R: Let ã, b̃ ∈ R
be fuzzy numbers. ã � b̃ means that ã−

α ≥ b̃−α and ã+
α ≥ b̃+

α for all α ∈ [0, 1].
Then (R,�) becomes a lattice. An addition and a scalar multiplication for fuzzy
numbers are defined as follows: For ã, b̃ ∈ R and ζ ∈ R, the addition ã + b̃ of
ã and b̃ and the scalar multiplication ζã of ζ and ã are fuzzy numbers given by
their α-cuts (ã + b̃)α := [ã−

α + b̃−α , ã+
α + b̃+

α ] and (ζã)α := [ζã−
α , ζã+

α ] if ζ ≥ 0 and
(ζã)α := [ζã+

α , ζã−
α ] if ζ < 0, where ãα = [ã−

α , ã+
α ] and b̃α = [b̃−α , b̃+

α ] (α ∈ [0, 1]).
Let f : D 
→ R be a continuous strictly increasing function for utility, and

let ã ∈ Rc be a fuzzy number whose membership function is continuous. Define
the quasi-arithmetic mean Ẽ : Rc 
→ R, which is weighted with the membership
grades of the fuzzy number ã, by

Ẽ(ã) := f−1
(∫ ∞

−∞
f(x) ã(x) dx

/∫ ∞

−∞
ã(x) dx

)
, (7)

which we obtain putting w = ã and taking a and b as a < a−
0 and a+

0 < b in (6)
since a fuzzy number ã(∈ Rc) has a compact support. Next, for a fuzzy number
ã ∈ R whose membership function is upper-continuous, there exists a sequence
of fuzzy numbers {ãn} such that ãn ↓ ã as n → ∞. Therefore, through the
monotone convergence theorem, we can obtain the quasi-arithmetic mean (7)
for ã ∈ R. In the equation (7), we can understand that f(x) is a utility value of
each point x and the quotient of the integrands in (7) is an average weighted by
the membership grades ã(x) of the fuzzy number ã at each point x. We discuss
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a defuzzification of fuzzy numbers in the form of the quasi-arithmetic mean (7)
under a decision maker’s subjective utility f .

Theorem1. The quasi-arithmetic mean Ẽ(·) has the following properties (i)–(iii).

(i) Let ã ∈ R be a fuzzy number. Then it holds that Ẽ(ã) ∈ ã0. Especially if ã is a
singleton ã = 1{δ} for some δ ∈ R, then Ẽ(ã) = δ.

(ii) Let ã, b̃ ∈ R be fuzzy numbers. If ã � b̃, then Ẽ(ã) ≥ Ẽ(b̃) holds, where� is the
fuzzy max order.

(iii) The map Ẽ : R 
→ R is continuous, i.e. it holds that

lim
n→∞ Ẽ(ãn) = Ẽ(ã)

for ã ∈ R and ãn ∈ R(n = 1, 2, · · · ) such that limn→∞ ãn = ã in the sence of
the pointwise convergence.

The quasi-arithmetic mean Ẽ(·) also has the following properties regarding trans-
lation invariance.

Lemma 2. The following (i) and (ii) hold.

(i) Put a function f(x) = xγ on D with a positive constant γ. Then, it holds
that

Ẽ(r · ã) = r · Ẽ(ã)

for ã ∈ R, r ∈ R such that r > 0. More generally, if f satisfies f(xy) �
f(x)f(y) (x, y ∈ D), then it holds that Ẽ(r · ã) � r · Ẽ(ã).

(ii) Put a function f(x) = γx on R with a positive constant γ. Then, it holds
that

Ẽ(ã + 1{s}) = Ẽ(ã) + s

for ã ∈ R, s ∈ R, where 1{s} is the characteristic function and represents
the crisp number s. More generally, if f satisfies f(x + y) � f(x) + f(y)
(x, y ∈ D), then it holds that Ẽ(ã + 1{s}) � Ẽ(ã) + s.

4 Dual Weighted Quasi-arithmetic Means

In this section, we introduce weighted quasi-arithmetic means induced from
a dual weighted aggregation operator, and we discuss its corresponding
defuzzification.

Definition 3. (the dual weighted aggregation operator [3, 4]). For a weighted
aggregation operator ξ :

⋃
n≥1[0, 1]n 
→ [0, 1], the dual weighted aggregation op-

erator ξdual :
⋃

n≥1[0, 1]n 
→ [0, 1] is given by

ξdual(x1, x2, · · · , xn) := 1− ξ(1 − x1, 1− x2, · · · , 1− xn) (8)

for (x1, x2, · · · , xn) ∈ [0, 1]n and n = 1, 2, · · · .
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We can deal with a more general dual weighted aggregation operator ξdual with
any fixed κ ∈ R instead of 1 in (8). Now we introduce a weighted quasi-arithmetic
mean value induced from the dual weighted aggregation operator. Let f : D 
→
(−∞,∞) be a continuous strictly increasing function for utility, and let ã ∈ R
be a fuzzy number. Put a weighted quasi-arithmetic mean Ẽ : R 
→ D by (7).
Fix any κ ∈ R. Let a semi-linear strictly decreasing function ϕ : R 
→ R by
ϕ(x) := κ − x (x ∈ R). Let Rκ be the set of fuzzy numbers ã ∈ R satisfying
their support ã0 ⊂ {x|x ∈ D and κ− x ∈ D}. Then the mean induced from the
translation ϕ is called the weighted quasi-arithmetic mean Ẽdual : Rκ 
→ D, and
it is given by

Ẽdual(ã) := (f ◦ ϕ)−1
(∫ ∞

−∞
(f ◦ ϕ)(x)ã(x) dx

/∫ ∞

−∞
ã(x) dx

)
(9)

for ã ∈ Rκ, where the operation ◦ is the composition of maps. The following re-
sults imply that dual weighted quasi-arithmetic means have the same properties
as Theorem 1 and they can be calculated by the following equation (10).

Lemma 3. A dual weighted quasi-arithmetic mean Ẽdual : Rκ 
→ D defined
by (9) has the following formulae in (i) and the following properties (ii) – (iv)
similarly to Theorem 1.

(i) Let ã ∈ Rκ be a fuzzy number. Then it holds that

Ẽdual(ã) =κ− f−1
(∫ ∞

−∞
f(κ− x)ã(x) dx

/∫ ∞

−∞
ã(x) dx

)
=κ− Ẽ(−ã + 1{κ}). (10)

If the utility function f is neutral i.e. it is given by f(x) = γx (x ∈ R) with
a positive constant γ, then (10) is reduced to

Ẽdual(ã) = −Ẽ(−ã).

(ii) Let ã ∈ Rκ. Then it holds that Ẽdual(ã) ∈ ã0.
(iii) Let ã, b̃ ∈ Rκ such that ã � b̃. Then it holds that Ẽdual(ã) ≥ Ẽdual(b̃).
(iv) The map Ẽdual : Rκ 
→ D is continuous, i.e. it holds that

lim
n→∞ Ẽdual(ãn) = Ẽdual(ã)

for ã ∈ Rκ and ãn ∈ Rκ(n = 1, 2, · · · ) such that limn→∞ ãn = ã in the sence
of pointwise convergence.

5 Quasi-arithmetic Means and Utilities

Let ã ∈ R be a fuzzy number. Define an arithmetic weighted mean value C(ã)
by

C(ã) :=
∫ ∞

−∞
x ã(x) dx

/∫ ∞

−∞
ã(x) dx. (11)
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This defuzzification is well-known and is called the centroid, which is derived
from the center of gravity. The quasi-arithmetic mean (7) can be regarded as a
generalized form of (11). Now we discuss how quasi-arithmetic means Ẽf move
corresponding to utilities f . Let g : D 
→ R be another continuous strictly
increasing function for utility. Let Ẽg : R 
→ R be the weighted mean value
defined by g instead of f in the way of (7):

Ẽg(ã) := g−1
(∫ ∞

−∞
g(x) ã(x) dx

/∫ ∞

−∞
ã(x) dx

)
. (12)

The following results give relations among the quasi-arithmetic means Ẽf (ã)
and Ẽg(ã) and the center of gravity method C(a).

Theorem 2. Let f : D 
→ R and g : D 
→ R be continuous strictly increasing
functions. Assume that f and g are C2-class functions on D. Let ã ∈ R be a
fuzzy number. Then the following (i) – (iii) hold.

(i) If f and g satisfy f ′′/f ′ < g′′/g′ on D, then it holds that Ẽf (ã) < Ẽg(ã).
(ii) If f and g satisfy f ′′/f ′ ≤ g′′/g′ on D, then it holds that Ẽf (ã) ≤ Ẽg(ã).
(iii) If f is semi-linear, i.e. f(x) = rx + s with r, s ∈ R such that r > 0, then it

holds that Ẽf (ã) = C(ã).

Corollary 1. Assume that f is a C2-class function on D. Let ã ∈ R be a fuzzy
number. Then the following (i) – (iv) hold.

(i) If f satisfies f ′′ < 0 on D, then Ẽf (ã) < C(ã).
(ii) If f satisfies f ′′ ≤ 0 on D, then Ẽf (ã) ≤ C(ã).
(iii) If f satisfies f ′′ > 0 on D, then Ẽf (ã) > C(ã).
(iv) If f satisfies f ′′ ≥ 0 on D, then Ẽf (ã) ≥ C(ã).

In Corollary 1, f ′′ = 0 means the decision maker’s neutral attitude, f ′′ < 0
means the decision maker’s risk averse attitude, and f ′′ > 0 means the decision
maker’s more risk tolerant attitude. Therefore, when we choose two functions f
and g as decision maker’s utilities, Theorem 2 implies that the utility f yields
more risk averse results than g if f ′′/f ′ ≤ g′′/g′ on D.

6 Examples

In this section, we examine the defuzzification methods in the previous sections
for triangle-type fuzzy numbers and trapezoidal-type fuzzy numbers (Fig.1). Let
ã ∈ Rc be a triangle-type fuzzy number (13) and let b̃ ∈ Rc be a trapezoidal-type
fuzzy number (14):

ã(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < c1
(x − c1)/(c2 − c1) if c1 ≤ x < c2
(x − c3)/(c2 − c3) if c2 ≤ x < c3
0 if x ≥ c3,

(13)

where c1, c2, c3 are real numbers satisfying c1 < c2 < c3.
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(a) A triangle-type fuzzy number ã (b) A trapezoidal-type fuzzy number b̃

Fig. 1. Fuzzy numbers and mean values

b̃(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < c1
(x − c1)/(c2 − c1) if c1 ≤ x < c2
1 if c2 ≤ x < c3
(x − c4)/(c3 − c4) if c3 ≤ x < c4
0 if x ≥ c4,

(14)

where c1, c2, c3, c4 are real numbers satisfying c1 < c2 < c3 < c4.

Example 1. Let κ be a positive real number. For a triangle-type fuzzy number
ã ∈ Rc given by (13) and a trapezoidal-type fuzzy number b̃ ∈ Rc given by
(14), we discuss examples of the mean values Ẽ(ã), Ẽ(b̃), Ẽdual(ã) and Ẽdual(b̃)
corresponding to several kinds of utility functions f .

(i) Take a function f(x) = cx + d on a domain D = (−∞,∞) with constants
c, d such that c > 0. Then, we have the centroid:

Ẽ(ã) =Ẽdual(ã) =
c1 + c2 + c3

3
, (15)

Ẽ(b̃) =Ẽdual(b̃) =
c2
1 + c1c2 + c2

2 − (c2
3 + c3c4 + c2

4)
3(c1 + c2 − c3 − c4)

. (16)

(ii) Take a function f(x) = xγ on D = (0,∞) with a nonzero constant γ. Then,
we can easily calculate

Ẽ(ã) =
(2

(
c1

2+γ(c2 − c3) + c2
2+γ(c3 − c1) + c3

2+γ(c1 − c2)
)

−(c1 − c2)(c2 − c3)(c3 − c1)(1 + γ)(2 + γ)

) 1
γ

, (17)

Ẽ(b̃) =
(2

(
(c1

2+γ − c2
2+γ)(c3 − c4)− (c3

2+γ − c4
2+γ)(c1 − c2)

)
(c1 − c2)(c1 + c2 − c3 − c4)(c3 − c4)(1 + γ)(2 + γ)

) 1
γ

. (18)

When γ = 1, we have the case (i) of the arithmetic mean. When γ = −1, we
also obtain the case of the harmonic mean:

Ẽ(ã) =
−(c1 − c2)(c2 − c3)(c3 − c1)

2
(
(c2 − c3)c1 log c1 + (c3 − c1)c2 log c2 + (c1 − c2)c3 log c3

) , (19)

Ẽ(b̃) =
(c1 − c2)(c1 + c2 − c3 − c4)(c3 − c4)

2
(
(c3 − c4)(c1 log c1 − c2 log c2)− (c1 − c2)(c3 log c3 − c4 log c4)

) .

(20)
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As letting γ → 0, we get the case of the geometric mean:

Ẽ(ã) =
(c2 − c3)c1

2 log c1 + (c3 − c1)c2
2 log c2 + (c1 − c2)c3

2 log c3

−(c1 − c2)(c2 − c3)(c3 − c1)
− 3

2
,

(21)

Ẽ(b̃) =
(c3 − c4)(c1

2 log c1 − c2
2 log c2)− (c1 − c2)(c3

2 log c3 − c4
2 log c4)

(c1 − c2)(c1 + c2 − c3 − c4)(c3 − c4)

− 3
2
. (22)

Fig.2 shows the the monotone movement of the quasi-arithmetic means Ẽ(ã)
and Ẽ(b̃) corresponding to the parameter γ. We can calculate the dual mean
values Ẽdual(ã) and Ẽdual(b̃) by (17), (18) and Lemma 3. If ã+

0 < κ and
b̃+
0 < κ, then we can easily check

Ẽdual(ã) =κ−
( 2d1

−(c1 − c2)(c2 − c3)(c3 − c1)(1 + γ)(2 + γ)

) 1
γ

, (23)

Ẽdual(b̃) =κ−
( 2d2

(c1 − c2)(c1 + c2 − c3 − c4)(c3 − c4)(1 + γ)(2 + γ)

) 1
γ

.

(24)

where d1 = (κ− c1)2+γ(c2− c3)+ (κ− c2)2+γ(c3− c1)+ (κ− c3)2+γ(c1− c2),
d2 = ((κ−c1)2+γ−(κ−c2)2+γ)(c3−c4)−((κ−c3)2+γ−(κ−c4)2+γ)(c1−c2).

(iii) Take a concave function f(x) = γ log x on D = (0,∞) with a positive
constant γ. Then, we obtain

Ẽ(ã) =e−3/2
(
c1

c1
2(c2−c3)c2

c2
2(c3−c1)c3

c3
2(c1−c2)

)1/d1

, (25)

Ẽ(b̃) =e−3/2
(
c1

c1
2(c3−c4)c2

−c2
2(c3−c4)c3

−c3
2(c1−c2)c4

c4
2(c1−c2)

)1/d2

, (26)

where d1 := −(c1 − c2)(c2 − c3)(c3 − c1) and d2 := (c1 − c2)(c1 + c2 − c3 −
c4)(c3 − c4).
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(a) Ẽ(ã) (c1 = 1, c2 = 4c3 = 5) (b) Ẽ(b̃) (c1 = 1, c2 = 3, c3 = 4, c4 = 5)

Fig. 2. The movement of quasi-arithmetic means corresponding to γ
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(iv) Take a convex function f(x) = eγx on D = (−∞,∞) with a positive con-
stant γ. Then, we also get

Ẽ(ã) =
1
γ

log
2
(
ec1γ(c2 − c3) + ec2γ(c3 − c1) + ec3γ(c1 − c2)

)
−(c1 − c2)(c2 − c3)(c3 − c1)γ2 , (27)

Ẽ(b̃) =
1
γ

log
2
(
(ec1γ − ec2γ)(c3 − c4)− (ec3γ − ec4γ)(c1 − c2)

)
(c1 − c2)(c1 + c2 − c3 − c4)(c3 − c4)γ2 . (28)

We give the following example as an application of Theorem 2, which shows a
comparison of the means based on the decision makers’ two different attitudes
f and g.

Example 2. Take concave functions f(x) = log x and g(x) =
√

x on D = (0,∞)
(Example 1(ii),(iii)). Then we have

f ′′(x)
f ′(x)

= − 1
x

< − 1
2x

=
g′′(x)
g′(x)

(29)

for x ∈ D. From Theorem 2, we obtain Ẽf (ã) < Ẽg(ã), where Ẽf (ã) is the
quasi-arithmetic mean given by f(x) = log x and Ẽg(ã) is the quasi-arithmetic
mean given by g(x) =

√
x. This shows that f(x) = log x is more risk averse than

g(x) =
√

x as utilities.

7 Concluding Remarks

We constructed a weighted quasi-arithmetic mean of intervals from the notion
of weighted aggregation operations of several variables on [0, 1]. The weighted
quasi-arithmetic mean is applied to fuzzy numbers as a defuzzification method
under the decision maker’s subjective utility. This approach is constructed based
on global properties of the utility. On the other hand, a local approach is found
in Yager[17], and Torra and Godo [14] also developed a defuzzification method
using ordered weighted aggregation operations. In this paper, we found several
examples and gave formulae for triangle-type fuzzy numbers and trapezoidal-
type fuzzy numbers. They will be applicable to many decision making problems
in the field of artificial intelligence.
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Abstract. Yager [1] introduced several families of ordered weighted averaging 
(OWA) operators, in which the associated weights depend on the aggregated 
arguments. In this paper, we develop a new dependent OWA operator, and 
study some of its desirable properties. The prominent characteristic of this de-
pendent OWA operator is that it can relieve the influence of unfair arguments 
on the aggregated results. Finally, we give an example to illustrate the devel-
oped operator. 

1   Introduction 

The ordered weighted aggregation (OWA) operator as an aggregation technique has 
received more and more attention since it’s appearance [2]. One important step of the 
OWA operator is to determine its associated weights. Many authors have focused on 
this issue, and developed some useful approaches to obtaining the OWA weights. For 
example, Yager [1] introduced some families of the OWA weights, including the 
ideal of aggregate dependent weights. Yager [2] introduced an approach to computing 
the weights of the OWA operator based on Zadeh’s [3,4] concept of linguistic quanti-
fiers. O’Hagan [5] established a mathematical programming model maximizing the 
entropy of the OWA weights for a predefined degree of orness. Xu and Da [6] ex-
tended O’Hagan’s model to the situations where the weight information is available 
partially. Filev and Yager [7] developed two procedures to obtain the OWA weights, 
the first one learns the weights from a collection of samples with their aggregated 
value, and the second one calculates the weights for a given level of orness. Xu and 
Da [8] established a linear objective-programming model for obtaining the weights of 
the OWA operator by utilizing the given arguments under partial weight information. 
Xu [9] developed a normal distribution based method. We classify all these ap-
proaches into the following two categories: argument-independent approaches [1,2,5-
7,9-12] and argument-dependent approaches [1,7,8,12-14]. The weights derived by 
the argument-independent approaches are associated with particular ordered positions 
of the aggregated arguments, and have no connection with the aggregated arguments, 
while the argument-dependent approaches determine the weights based on the input 
arguments. In this paper, we will pay attention on the second category, and develop a 
new argument-dependent approach to determining the OWA weights. 
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2   Dependent OWA Operators 

In [2], Yager defined the concept of an ordered weighted averaging (OWA) operator 
as follows: 

An OWA operator of dimension n  is a mapping, RROWA n →: , that has an 

associated n  vector T
nwwww ),...,,( 21=  such that ]1,0[∈jw  and 
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where ))(),...,2(),1(( nσσσ  is a permutation of ),...,2,1( n  such that 
)()1( jj aa σσ ≥−   for 

all nj ,...,2= . 
Clearly, the key point of the OWA operator is to determine its associated weights. 

Yager [1] introduced the ideal of aggregate dependent weights, which allows the 
weights to be a function of the aggregated arguments, in this case 
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The first family of the aggregate dependent weights that Yager [1] studied is as  
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where ),( +∞−∞∈α . In this case, it leads to a neat OWA operator: 

                                         

=

=

+

=
n

j
j

n

j
j

n

a

a

aaaOWA

1

1

1

21 ),...,,(
α

α

                                   (4) 

Note:  An OWA operator is called neat if the aggregated value is independent of the 
ordering [1]. 

Another interesting case of the aggregate dependent weights is 
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In this case, it follows that 
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which is also a neat aggregation. 
Yager [2] also considered a case where the aggregation is not neat, that is 
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in this case, it yields 
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In many actual situations, the arguments naaa ,...,, 21  are usually given by n  

different individuals. Some individuals may provide unduly high or unduly low pref-
erence arguments for their preferred or repugnant objects. In such a case, we shall 
assign very low weights to these “false” or “biased” opinions, that is to say, the closer 
a preference argument to the average value, the more the weight [9]. All the above 
argument-dependent approaches, however, should be unsuitable for dealing with this 
case. Therefore, it is worth paying attention to this issue, in the following we will 
develop a novel argument-dependent approach to determining the OWA weights. 

Definition 1.  Let naaa ,...,, 21  be a collection of arguments, and let μ  be the 

average value of these arguments, i.e., 
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the similarity degree of the j-th largest argument )( jaσ  and the average value μ . 

Let the T
nwwww ),...,,( 21=  be the weight vector of the OWA operator, then we 

define the following: 
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where ),( )( μσ jas  is defined by Eq.(9). Clearly, we have ]1,0[∈jw  and 
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    It is easy to see that this is a neat and dependent OWA operator. 
By Eq.(12), we can get the following results easily: 

Theorem 1.  Let naaa ,...,, 21  be a collection of arguments, and μ  be the ave- 

rage value of these arguments, ))(),...,2(),1(( nσσσ  is a permutation of ),...,2,1( n  

such that )()1( jj aa σσ ≥− , for all nj ,...,2= , and let ),( )( μσ jas  be the simila- 

rity degree of the j-th largest argument )( jaσ  and the average value μ , if 

),(),( )()( μμ σσ ji asas ≥ , then ji ww ≤ . 

Corollary 1.  Let naaa ,...,, 21  be a collection of arguments, if ji aa = , for all 

ji, , then ,
1

n
w j =  for all j . 

From Eq.(12) and Theorem 1, we know that a prominent characteristic of this de-
pendent OWA operator are that it can relieve the influence of unfair arguments on the 
aggregated results by assigning low weights to those “false” or “biased” ones. 

Yager [1,2] defined two important measures associated with an OWA operator. 
The first measure, called the dispersion of the weighting vector w  of an OWA opera-
tor is defined as 
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which measures the degree to which w  takes into account the information in the 
arguments during the aggregation. 
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The second measure, called orness measure, is defined as 
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which lies in the unit interval [0,1], and characterizes the degree to which the aggre-
gation is like an or operation. From Eqs.(12), (14) and (15), it follows that 
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Example 1.  Suppose that there are seven decision makers ( )7...,,2,1=jd j , these 
decision makers provide their individual preferences for a university faculty with 
respect to the criterion research. Assume that the given preference arguments are as 
follows: 

,801 =a ,752 =a ,1003 =a  ,404 =a  905 =a ,  ,956 =a  707 =a  

    Therefore, the re-ordered arguments )7,...,2,1( =ja j
 in descending order are 

,100)1( =σa  ,95)2( =σa  ,90)3( =σa  ,80)4( =σa  75)5( =σa  

,70)6( =σa   40)7( =σa  

then by Eqs.(9) and (12), we have  
 

13145.01 =w , 13967.02 =w , 14789.03 =w , 16432.04 =w  

16080.05 =w , ,15258.06 =w  10329.07 =w  

which are shown in Fig. 1.  
By Eqs. (16) and (17), we have 
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         )16432.0ln(16432.0 ×+ )15258.0ln(15258.0)16080.0ln(16080.0 ×+×+  

)]10329.0ln(10329.0 ×+  

9363.1=  
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Fig. 1. The weights jw  of )( jaσ )7,...,2,1( =j  

and 
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16080.0216432.0314789.0413967.0513145.06(
6

1 ×+×+×+×+××=

                    )10329.0015258.01 ×+×+  

5076.0=  

By Eq.(13), we have 

9014789.09513967.010013145.0),...,,( 21 ×+×+×=naaaOWA  

7516080.08016432.0 ×+×+ 4010329.07015258.0 ×+×+  
74155.79=  

hence, the collective preference argument is 74155.79 . 

To relieve the influence of unfair arguments on the aggregated results, in the above 
example, we assign low weights to those “false” or “biased” ones, that is to say, the 
closer a preference argument to the average value 57.78=μ , the more the weight. 

For example, we assign the lowest weight 10329.07 =w to the lowest preference 

value 404 =a , which has the biggest departure from the average value, and assign 

the second lowest weight 13145.01 =w  to the maximal preference value ,1003 =a  

which has the second biggest departure from the average value. We assign the most 
weight 16432.04 =w  to the preference value ,801 =a  which is closest to the average 

value, and assign the second most weight 16080.05 =w  to the preference value 

,75)5( =σa  which has the second least departure from the average value. We assign the 

value 0.5076 to the orness measure, and give the value 1.9363 to the dispersion  
measure. 
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3   Concluding Remarks   

In this paper, we have investigated the dependent OWA operators, and developed a 
new argument-dependent approach to determining the OWA weights, which can re-
lieve the influence of unfair arguments on the aggregated results. We have verified 
the practicality and effectiveness of the approach with a numerical example.  
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Abstract. Agent technology provides a new way to model many com-
plex problems like financial investment planning. With this observation
in mind, a financial investment planning system was developed from
agent perspectives with 12 different agents integrated. Some of the agents
have similar problem solving and decision making capabilities. The re-
sults from these agents require to be combined. Ordered Weighted Aver-
aging (OWA) operator was chosen to aggregate different results. Details
on how OWA was applied as well as appropriate evaluation are presented.

Keywords: Multi-Agent Systems, Intelligent Agents, Financial Invest-
ment Planning, Decision Aggregation, Ordered Weighted Averaging
Operator.

1 Introduction

An agent here is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet its
design objectives [1]. Multi-agent systems are systems composed of multiple
interacting agents. These agents work together to solve problems that are beyond
the capabilities or knowledge of individual agents. Agents offer a new and often
more appropriate route to the development of complex systems, especially in
open and dynamic environments.

Real-world applications such as financial investment planning are almost al-
ways made up of a large number of components that interact in varying and
complex ways. This leads to complex behaviour that is difficult to understand,
predict and manage. Take one sub-task of financial planning – financial portfo-
lio management – as an example. The task environment has many interesting
features, including [2]:

– the enormous amount of continually changing, and generally unorganized,
information available;
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– the variety of kind of information that can and should be brought to bear
on the task (market data, financial report data, technical models, analysts’
reports, breaking news, etc.); and

– the many sources of uncertainty and dynamic change in the environment.

It is obvious that financial planning is a typical complex problem. To de-
sign and develop systems that can solve such complex problems is not easy
due to a large number of parts or components involved with many interac-
tions. Fortunately, some researchers in agent research community have given
a qualitative analysis to provide the intellectual justification of precisely why
agent-based methodology is well suited to engineering complex software sys-
tems [3]. To this end, an agent-based system for financial investment planning
was developed. In the system, the following models/techniques were integrated
together: a client financial risk tolerance model and a client asset allocation
model, both are based on fuzzy logic [4]; two interest rate prediction models,
one based on neural networks, the other based on fuzzy logic and genetic al-
gorithms [5]; three portfolio selection models–Markowitz’s model [6], the fuzzy
probability model, and the possibility distribution model [7]; and expert systems
with explanation mechanisms. In addition to these models/techniques, an oper-
ations research software package called LINDO for solving quadratic program-
ming (http://www.lindo.com/) and a matrix software package called MatrixLib
for solving eigenvalues of matrices (http://www.mathtools.com/) were also inte-
grated. When developing the agent system, we used these models or software
packages and wrapped them as agents.

In the multi-agent system for financial planning, there are agents with sim-
ilar problem solving and decision making capabilities. When they are asked to
accomplish the same task, the results may be different. In such situations, we
need to aggregate the results to obtain a final one. Because there is much fuzzy
information in our application, we need an aggregation method that is able to
deal with fuzzy information. After we compared several kinds of fuzzy operators
for aggregation such as fuzzy averaging, weighted MIN, and Ordered Weighted
Averaging (OWA) (Of course, we did not compare all available averaging oper-
ators), we find out that OWA is more flexible. The OWA operator can take into
account as much information as possible in the aggregation process. For exam-
ple, the fuzzy averaging method can not take the decision maker’s attitude into
account, but the OWA operator can. This implies that the aggregated results
using OWA are more reliable. This is very important for our financial invest-
ment application. That is why OWA was chosen for our application. This paper
focuses on how OWA is applied and implemented in the system as well as how
the aggregated results are evaluated.

The rest of the paper is structured as follows: Section 2 is a brief introduction
to OWA operator. The architecture of the agent-based financial investment plan-
ning system is given in Section 3. Section 4 discusses the decision aggregation
in the system. Experimental results and evaluation are presented in Section 5.
Section 6 concludes the paper.
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2 Introduction to OWA Operators

Yager introduced the ordered weighted averaging (OWA) operator to provide
a family of aggregators having the properties of mean operators [8]. Here, we
will briefly provide an introduction to the ordered weighted averaging (OWA)
operator[8] [10] [11] [12] [15].

Definitions: A mapping F : Rn −→ R is called an OWA operator of dimen-
sion n if it has an associated weighting vector W of dimension n such that its
components satisfy

(1) wj ∈ [0, 1]
(2)

∑n
j=1 wj = 1

and

Fw(a1, a2, . . . , an) =
n∑

j=1

wjbj

where bj is the jth largest of the ai.
A fundamental feature of this operator is the reordering process which asso-

ciates the arguments with the weights. This process introduces a nonlinearity
into the aggregation process. It should be observed that we can express this
aggregation in a vector notation as

Fw(a1, a2, . . . , an) = WT B

In this expression, W is the OWA weighting vector associated with the aggrega-
tion, and B is the ordered argument vector; where the jth component in B, bj

is the jth largest of the ai.
This operator can easily be seen to be a mean operator in that it is commu-

tative, monotone, and is always bounded by the max and min of the arguments

Mini[ai] ≤ Fw(a1, a2, . . . , an) ≤ Maxi[ai]

It can be seen that this is idempotent, Fw(a1, a2, . . . , an) = a.
Expressing the OWA operator Fw(a1, a2, . . . , an) in its vector notation form

WT B makes very clear the distinct components involved in the performance of
this operation. First, we have a weighting vector W ; this is required to have
components wj which lie in the unit interval and sum to one. The second part of
the OWA aggregation is the vector B, called the ordered argument vector. This
vector is composed of the arguments of the aggregation.

To solve a specific problem using OWA operator, we need to find out the
appropriate weighting vector W and the ordered argument vector B.

There are two characterising measures associated with the weighting vector
W [8] [10] [19]. The first of these, the α value of an OWA operator, is defined as

α(W ) =
1

n− 1

n∑
j=1

wj(n− j) (1)

This measure, which takes its values in the unit interval, is determined by the
weighting used in the aggregation. The actual semantics associated with α are
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dependent upon the application in which it is being used. In our case, the α can
be the degree that the aggregation prefers decisions with high confidence, or the
attitude of the decision making agent.

The second measure is called the dispersion (or entropy) of W and is
defined as

H(W ) = −
n∑

j=1

wj ln(wj) (2)

Equation (2) helps measure the degree to which W takes into account all of the
information in the aggregation.

There are a few alternative ways to determine the weights [18]. One of the meth-
ods requires the solution of the following mathematical programming problem:

Maximise −∑n
j=1 wj ln(wj) subject to

(1) α(W ) = 1
n−1

∑n
j=1 wj(n− j);

(2) wj ∈ [0, 1];
(3)

∑n
j=1 wj = 1.

Generally, the process of obtaining the vector B can be seen as an assigning
operation[10]. It is an assigning operation in the sense that it assigns an argu-
ment element to a component value in W . There are three general approaches
for obtaining W . The first is based upon a learning of the weights from data.
An algorithm for learning the OWA weights from data is discussed in [13]. The
second approach, which is based upon the close connection between OWA oper-
ators and linguistic quantifiers, uses linguistic elements to generate the weight,
and is discussed in [9]. The third approach makes use of a single parameter, such
as the α measure [14], to obtain the OWA weights.

3 Agent Behaviors in the Agent-Based Financial
Planning System

The design and implementation of the agent-based financial planning system are
detailed in [17]. This paper focuses on the decision aggregation mechanism used
in the system. To facilitate the discussion of decision aggregation in the system,
the behaviors of each kind of agent in the system are briefly described below:

Interface Agent. This agent interacts with the user (or user agent). It asks
the user to provide his personal information and requirements, and provides the
user with a final decision or advice that best meets the user’s requirements.
Planning Agent. The planning agent is in charge of the activation and syn-
chronization of different agents. It elaborates a work plan and is in charge of
ensuring that such a work plan is fulfilled. It receives the assignments from the
interface agent.
Decision Making Agent. It is application-specific, i.e., it has its own knowl-
edge base; it must have some meta-knowledge about when it needs the help of
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intelligent technique agents (e.g., pre or post processing some data); it can ask
intelligent technique agents to accomplish some sub-tasks.
Serving Agent. The serving agent is a matchmaker – one kind of middle agent
[16]. It keeps track of the names, ontologies, and capabilities of all registered
intelligent technique agents in the system; it can reply to the query of a decision
making agent with appropriate intelligent technique agent’s name and ontology.
Service Provider Agent. Most of the service provider agents in the system are
intelligent technique agents (the agents based on different intelligent techniques
like fuzzy logic and neural networks are called intelligent technique agents).
Each intelligent technique agent can provide services for decision making agents
with one or some kind of combined intelligent techniques; it can send back the
processed results to decision making agents; it must advertise its capabilities to
the serving agent.
Decision Aggregation Agent. When decision making agents finish the
assigned tasks they return the results to the decision aggregation agent. The
aggregation agent chooses one of the alternative decisions, or performs an ag-
gregation of the different results into a final one. The behaviors of such agents
and the algorithm used for aggregation in the system are detailed in Section 4.
The empirical evaluation is given in Section 5.

4 OWA-Based Aggregation in the System

In the system, aggregation is required to determine the final investment policy
of a user and to provide the final portfolio for a user. In this section, we take
the investment policy determination as an example to discuss the aggregation
process, which was implemented in the system.

Suppose a user wants to know whether his investment policy (IP) should
be aggressive or conservative. First, the user gives his annual income(AI) and
total networth(TNW) to the decision making agents through the user interface
agents. The decision making agents use their own knowledge to evaluate user’s
risk tolerance (RT) ability using rules such as If user’s AI is low (L) and TNW
is L, then user’s RT is L. Here, AI, TNW , and RT are variables taking values
from {low(L), medium(M), high(H), . . . }; L, M , and H are fuzzy subsets of
[0, 1]. Please note that different decision making agents may have different rules
similar to this one.

Now suppose there are n decision making agents. Each agent has rules in its
knowledge base such as

If RT is H and P1 is B1 and . . . then IP is Ci (3)

where Ci(i = 1, 2, . . . , n) is a fuzzy subset indicating the aggression or conserva-
tion of the investment policy.

Because the knowledge of the decision making agents and their decision atti-
tudes may be different, the answers to the same question may also be different.
Usually they are either close or conflicting to various degrees. They have to be
combined or reconciled in order to produce one decision.
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Assume that the agents’ decisions are represented by trapezoidal numbers,
which aare widely used to represent fuzzy information. If Ci = (ai1, bi1, bi2, ai2),
i = 1, 2, . . . , n, are trapezoidal numbers, then

COWA = (Fw(a11, . . . , an1), Fw(b11, . . . , bn1), Fw(b12, . . . , bn2), Fw(a12, . . . , an2))
(4)

where Fw is an OWA operator. To aggregate different results using formula
(4), what we need to do is to decide the weighting vector W and the ordered
argument vector B in different situations.

Assume that three decision making agents DAi(i = 1, 2, 3) use their rules like
(3) and obtain their own decisions Ci(i = 1, 2, 3) independently. These decisions
are represented by trapezoidal numbers as follows:

C1 = (−100,−100,−50,−30), C2 = (−10, 10, 10, 30), C3 = (60, 90, 100, 100);
(5)

C1 indicates conservative, C2 slightly aggressive, and C3 aggressive. If all the
agents have equal importance in the decision making process, the weighting
vector can be obtained: W = [w1, w2, w3] = [1/3, 1/3, 1/3]. The arguments are
ordered by their values. It is easy to calculate the aggregated result using Formula
(4). The defuzzification value of the aggregated result according to the mean of
maximum method [4] is 10. It suggests a policy on the aggressive side of the scale
but a very cautious one.

Now consider the case when the opinions of the three conflicting agents have
different importance on a scale from 0 to 10. The ranking of agents DA1, DA2,
and DA3 is assumed to be r1 = 4, r2 = 6, and r3 = 10, correspondingly
(agents actually ranking is application dependent). We map the degrees of im-
portance into unit interval, and obtain U = [u1, u2, u3] = [0.2, 0.3, 0.5]. As
the ranking information reflects the importance of different agents opinions,
they can be treated as the weights in OWA. That is, the weights wi for DAi:
w1 = 0.2, w2 = 0.3, w3 = 0.5. In this case, the arguments are ordered using
the values of ri, i.e., let bj be the ai value which has the jth largest of ri, and
W = [w1, w2, w3] = [u3, u2, u1] = [0.5, 0.3, 0.2]. Formula (4) is then used to ag-
gregate. The defuzzification value of the aggregated result is 35.54. It indicates
that the investment policy should be cautiously aggressive.

In both cases above, the same results can be obtained by using fuzzy averaging.
The problem here is that the degrees of importance in aggregation were not used
directly. Actually in this case, the arguments which need to be aggregated are
pairs such as

(u1, a11), (u2, a21), . . . , (un, an1)
Here, the formula G(u, a) = ᾱū + ua is used to transform the tuple into a single
value [15] (pp. 41-49), where α is defined by (1). The following are the steps of
the procedure:
1. Calculate the α value of the OWA operator:

α =
3∑

j=1

3− j

3− 1
wj = w1 + w2/2 = 0.5 + 0.3/2 = 0.65
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2. Transform each of the argument tuples using G(uj , aj) = ᾱūj + ujaj , hence

G(u1, a11) = −49.72, G(u2, a21) = −2.755, G(u3, a31) = 30.175

G(u1, b11) = −49.72, G(u2, b21) = 3.245, G(u3, b31) = 45.175

G(u1, b12) = −9.72, G(u2, b22) = 3.245, G(u3, b32) = 50.175

G(u1, a12) = −5.72, G(u2, a22) = 9.245, G(u3, a32) = 50.175

3. Calculate COWA

COWA = (Fw(−49.72,−2.755, 30.175), Fw(−49.72, 3.245, 45.175),
Fw(−9.72, 3.245, 50.175), Fw(−5.72, 9.245, 50.175))
= (4.32, 13.62, 24.12, 26.72)

The defuzzification value is 18.87. This still indicates a very cautious investment
policy – much more cautious than one not using the degrees of importance.

The concept of agents’ decision making attitudes is also important. Because
the agents usually have different knowledge, this results in different attitudes
when making decisions. Some are aggressive, some conservative. Here, αi (αi ∈
[0, 1]) is used to indicate the agents’ attitudes. The bigger the value of αi, the
more aggressive the attitude of the decision making agent DAi.

Suppose there are still three agents, and their attitudes are α1 = 0.3, α2 = 0.5
and α3 = 0.8. The decisions they make, and their degrees of importance, remain
unchanged, as described above.

To aggregate, the first step is to decide the attitude α of all the agents (in this
case three). The OWA operator is still used. Degrees of importance are mapped
to unit interval as the weighting vector for combining αi, called W (α), and

W (α) = [w(α)1, w(α)2, w(α)3] = [0.5, 0.3, 0.2]

Then

α = FW (α)(α1, α2, α3) = α3 × w(α)1 + α2 × w(α)2 + α1 × w(α)3 = 0.61

By solving the mathematical programming problem with α = 0.61, the weighting
vector W is obtained for the final aggregation as follows:

W = [w1, w2, w3] = [0.45, 0.32, 0.23]

The arguments are ordered according to the values of ri. The final aggregation
using (4) gives COWA = (0.8, 20.7, 36.7, 47.3). The defuzzification value accord-
ing to the mean of maximum method in fuzzy averaging is 28.7 [4]. This suggests
a policy on the aggressive side of the scale, but a cautious one – more cautious
than that using fuzzy averaging. This is because the decision attitude of DA1 is
slightly conservative, but its decision is very conservative. Taking all the infor-
mation into account, the investment policy should be cautiously aggressive.

If the degrees of importance are used directly in the aggregation in this case,
COWA = (1.26, 9.93, 21.38, 24.22) is obtained. The defuzzification value is 15.66.



186 Z. Zhang

5 Experimental Results and Evaluation

The system can provide reasonable financial investment planning information
based on the user provided data and some relevant models. Figure 1 shows the
asset allocation results when the annual income is $100, 000, networth $700, 000,
age 40, investment amount $50, 000, and investment attitude is aggressive (level
3). By clicking the “explanation” button, the corresponding explanation of how
to get the results is displayed in the “result display” window (Figure 2).

If the growth part is invested in stock market, the system can provide a
portfolio for the user (Figure 1). The portfolio is the aggregated result of three
portfolios based on Markowitz’s portfolio selection model, the fuzzy probabil-
ity portfolio selection model, and the possibility distribution portfolio selection
model, respectively. The four portfolios are marked as Powa, Pmar, Pfuz, and
Ppos, respectively. The aggregation algorithm used is ordered weighted aver-
aging (OWA) aggregation algorithm. By clicking the “evaluation” button, the
system will provide the comparisons of the four portfolios (Figure 3). An empir-
ical evaluation of the aggregated results is given in the following.

At this stage, one important problem is how to verify the aggregated portfolio.
There is no systematic way available to answer this question. Instead, some
experiments were conducted.

The first experiment conducted was to use the first 12 years return data
described in [6] and produce three portfolios based on the three models. Based
on the analysis in [7], it is known that the fuzzy model is a direct extension of
Markowitz’s model, while the possibility model is more reasonable than the fuzzy
model. Thus the three portfolios are ordered as PPOS , PFUZ , and PMAR, and
α = 0.7 (the degree that the aggregation prefers decisions with high confidence)
is chosen when using OWA operator to aggregate the three portfolios. The weight
vector with α = 0.7 is W = [0.554, 0.292, 0.154]. The selected portfolios as well
as corresponding risks of investment are shown in Table 1. The portfolios in
Table 1 are also selected with an expected average return rs = 17%.

Fig. 1. Example Asset Allocation Results
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Fig. 2. Example Explanations

Fig. 3. Comparison of the Portfolios

Table 1. Portfolios and Variances Based on 12 Years Return Data

P S1 S2 S3 S4 S5 S6 S7 S8 S9 Variance
PPOS 5.15 13.95 19.53 39.75 21.62 0.30
PF UZ 23.05 46.55 30.40 0.04
PMAR 23.14 46.60 30.26 0.05
POWA 2.85 7.73 21.12 20.77 22.02 25.51 0.18

The last 6 years return data in [6] are used to verify the realized average
returns of the four portfolios. The realized average returns of the four portfolios
from one year to six years are listed in Table 2.

From Table 2, one can see that the average returns of POWA are better than
those of PFUZ and PMAR, and slightly less than those of PPOS . The variance
(risk or uncertainty degree of the investment) of POWA is greatly reduced (from
0.30 to 0.18) compared with that of PPOS .
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Table 2. Realized Average Returns of the Portfolios (%)

Year(s) PPOS PF UZ PMAR POWA

1 11.421 7.501 7.554 9.681
2 27.694 15.665 15.700 22.334
3 18.748 14.457 14.467 16.836
4 19.684 14.990 15.006 17.593
5 14.005 13.318 13.334 13.701
6 19.703 14.590 14.607 17.425

Table 3. Returns on Twelve Securities from ASX

Yr S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

86 .675 .33 .053 .946 .081 1.026 .42 .198 .405 .249 .75 .08
87 .648 .93 .864 1.097 .826 .897 .535 .207 1.023 .333 .994 .684
88 .248 .432 -.157 .656 .515 1.044 .623 .05 .132 .174 .338 .403
89 -.007 .405 .838 .698 .136 .544 .358 1.296 .468 .271 .355 .467
90 -.087 -.08 -.168 -.029 -.228 -.115 .243 -.233 -.203 -.251 -.208 .096
91 .314 .291 .787 .341 .37 .598 .577 .57 .037 .391 .382 .263
92 .246 .004 .025 -.161 .01 -.148 -.116 -.03 .018 -.127 -.177 -.138
93 .105 .126 .107 -.091 -.105 -.126 .133 -.013 .011 .005 -.164 -.03
94 .133 .135 .264 -.17 .058 .112 0 .292 .232 .129 .014 -.006
95 .385 .433 .543 .042 .167 .293 .675 .646 .55 .62 .42 .361
96 .053 .105 .319 -.947 .121 -.179 -.487 -.214 .226 -.046 -.299 -.265
97 -.2 .109 -.046 1.192 -.305 -.168 -.06 .259 -.213 -.088 -.111 0

Table 4. Portfolios and Variances Based on ASX 8 Years Return Data

P S1 S2 S3 S4-S6 S7 S8 S9 S10 S11 S12 Variance
PPOS 22.2 26.45 12.06 9.95 0.07 28.65 0.62 0.26
PF UZ 59.11 12.10 6.19 22.60 0.03
PMAR 43.10 33.77 12.58 10.55 0.04
POWA 36.20 14.66 6.68 14.25 3.78 15.87 8.56 0.15

To further verify the aggregated portfolio, 12 securities listed in Australian
Stock Exchange Limited (ASX) were selected and 12 years average returns (from
1986 to 1997) were collected (see Table 3). The ASX security codes of S1 to S12
are AKC, AFI, AGL, BPC, CSR, EML, GUD, SMI, HAH, OPS, PDP, and WYL,
respectively.

Similar to experiment one, the first 8 years (1986 to 1993) return data was used
to generate the portfolios, while the last 4 years (1994 to 1997) data was used
to verify. When the expected average return rs = 17%, the selected portfolios
based on the three models and the aggregated portfolio based on OWA with
α = 0.7 are listed in Table 4. Based on the four portfolios, the realized average
returns from one year to four years are shown in Table 5.
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Table 5. Realized Average Returns of the Portfolios Based on ASX Data (%)

Year(s) PPOS PF UZ PMAR POWA

1 13.432 9.556 9.351 11.672
2 30.833 25.035 28.315 28.752
3 19.584 11.304 8.524 15.463
4 12.644 4.887 3.919 9.035

The results in Table 5 are consistency with those in Table 2. Thus the same
conclusion can be reached. The average returns of POWA are better than those
of PFUZ and PMAR, and slightly less than those of PPOS . The variance (risk)
of POWA is greatly reduced (from 0.26 to 0.15) compared with that of PPOS .

Finally, different expected average return values (from 10% to 20%) were
used to test the four portfolios based on the two sets of return data, the same
conclusion was reached.

6 Concluding Remarks

Decision aggregation (including conflict resolution) is a considerable interest
issue in distributed systems such as multi-agent systems. We presented the ag-
gregation procedures by using OWA operator in the agent-based financial in-
vestment planning system. OWA aggregation is very flexible, and can take into
account as much information as possible. Thus, the aggregation results using
OWA are more accurate and reliable. Our work is another successful applica-
tion of OWA aggregation and extends the application fields of OWA aggregation
technique.
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Abstract. The concepts of generated universal fuzzy measures and of
basic generated universal fuzzy measures are introduced. Special classes
and properties of generated universal fuzzy measures are discussed, es-
pecially the additive, the symmetric and the maxitive case. Additive
(symmetric) basic universal fuzzy measures are shown to correspond to
the Yager quantifier-based approach to additive (symmetric) fuzzy mea-
sures. The corresponding Choquet integral-based aggregation operators
are then generated weighted means (generated OWA operators).

Keywords: aggregation operator, Choquet integral, fuzzy measure, gen-
erator, universal fuzzy measure.

1 Introduction

For a fixed number n ∈ IN of inputs (criteria score), commonly used aggregation
techniques are based on some fuzzy integral (Choquet integral, Sugeno integral,
etc. [2, 3, 5, 10, 13, 14, 21]) and a fuzzy measure mn acting on the space Xn =
{1, . . . , n} [3, 13, 21]. Recall that mn is a non-decreasing mapping from P(Xn)
to [0, 1] preserving the bounds, i.e., mn(∅) = 0 and mn(Xn) = 1. However, for
an apriori unknown (but still finite) number of inputs, though the applied fuzzy
integral is known, a system (mn)n∈IN of fuzzy measures acting on spaces Xn,
n ∈ IN, should be given.

As a measure counterpart of an extended aggregation function
A :

⋃
n∈IN

[0, 1]n → [0, 1] acting on any finite number of inputs [2, 7], we have

introduced in [11] the concept of universal fuzzy measures.

Definition 1. Denote A = {(n, A) | n ∈ IN, A ⊂ Xn}, where Xn = {1, . . . , n},
n ∈ IN. A mapping M : A → [0, 1] is called a universal fuzzy measure whenever
for each n ∈ IN, M(n, ·) is non-decreasing, M(n, ∅) = 0 and M(n, Xn) = 1.

Recall that for any fuzzy measure μ acting on IN, μ : P(IN) → [0, 1], such
that μ({1}) > 0, a universal fuzzy measure Mμ : A → [0, 1] can be introduced
putting [11]

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 191–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Mμ(n, A) =
μ(A)
μ(Xn)

. (1)

Standard properties of fuzzy measures (additivity, symmetry, maxitivity, sub-
modularity, subadditivity, belief, etc.) are extended to universal fuzzy measures
in a natural way, requiring the relevant property to be satisfied by any fuzzy
measure mn = M(n, ·), n ∈ IN. For more details we recommend [11] and [20].

Similarly as in the case of extended aggregation functions, formally the fuzzy
measures mn = M(n, ·) and mk = M(k, ·) for n �= k and a given universal fuzzy
measure M need not be related.

Two subsequent properties establish some connections between fuzzy mea-
sures mn = M(n, ·), n ∈ IN.

Definition 2. Let M : A → [0, 1] be a universal fuzzy measure. Then M is
called regular whenever for each n, k ∈ IN, A ⊂ Xn, it holds M(n, A) ≥ M(n +
k, A). Moreover, M is called proportional whenever for each n, k ∈ IN, A ⊂ Xn,
it holds M(n, A) ·M(n + k, Xn) = M(n + k, A).

Evidently, each proportional universal fuzzy measure M is also regular, but not
vice versa.

In decision making procedures based on fuzzy integrals determination of a
fuzzy measure m fitting given real data is the crucial task. Several approaches
trying to reduce the computational complexity were based on the idea of gener-
ated fuzzy measures [18, 19], but dealing with fixed number of inputs. The first
approach dealing with possibly different number of inputs (at least known to
authors) was presented recently in [1], including a free software tool available on
http://www.it.deakin.edu.au/˜gleb. However, in each of above mentioned refer-
ences two types of generated universal fuzzy measures are discussed only and a
general concept of generated (universal) fuzzy measures is still missing.

The aim of this paper is to fill this gap, introducing the concept of generated
universal fuzzy measures in the next section. Moreover, the concept of basic
generated universal fuzzy measures is also introduced. In Section 3, we discuss
special classes of generated universal fuzzy measures and of basic generated uni-
versal fuzzy measures. Especially, additive basic and symmetric basic generated
fuzzy measures are studied in detail (observe that exactly these two types of
generated fuzzy measures were discussed and applied in [1, 18, 19]).

2 Generated Universal Fuzzy Measures

Definition 3. Let g : [0, 1] → [0, 1] be a non-decreasing mapping satisfying
g(0) = 0, g(1) = 1, and let h : A → P(IN) be a mapping non-decreasing in the
second coordinate such that h(n, ∅) = ∅ and h(n, Xn) = Xn for all n ∈ IN. Then
the mapping g is called a generator, and a mapping Mh,g : A → [0, 1] given
by Mh,g(n, A) =

∑
i∈h(n,A)

(
g( i

n )− g( i−1
n )

)
(with convention Mh,g(n, A) = 0 if

h(n, A) = ∅) is called a generated universal fuzzy measure. We denote by G the
set of all generators and by H the set of all mappings h with above mentioned
properties.
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Remark. Mapping Mh,g given in the above definition is well-defined universal
fuzzy measure since for arbitrary n ∈ IN it holds:

(i) h(n, ∅) = ∅ and thus Mh,g(n, ∅) = 0
(ii) h(n, Xn) = Xn and thus Mh,g(n, Xn) = 1
(iii) for A ⊂ B ⊂ Xn we have h(n, A) ⊂ h(n, B) and thus M(n, A) ≤ M(n, B).

Example 1.

(i) Let h∗ : A → Xn be given by

h∗(n, A) =
{

Xn if A = Xn,
∅ else.

Then Mh∗,g is the weakest universal fuzzy measure. On the other hand, let
h∗ : A → Xn be given by

h∗(n, A) =
{∅ if A = ∅,

Xn else.

Then Mh∗,g is the strongest universal fuzzy measure. Independently on the
generator g, Mh∗,g(n, ·) = m∗n is the weakest fuzzy measure on Xn and
Mh∗,g(n, ·) = m∗

n is the strongest fuzzy measure on Xn. Evidently, for any
h ∈ H, n ∈ IN, A ⊂ Xn we have h∗(n, A) ⊆ h(n, A) ⊆ h∗(n, A).

(ii) Let h : A → Xn be given by h(n, A) = X|A|. Then Mh,g is a symmetric
universal fuzzy measure given by Mh,g(n, A) = g( |A|

n ).
(iii) Let h : A → Xn be given by h(n, A) = {σn(i) | i ∈ A}, where for each

n ∈ IN, σn is a permutation of Xn. Then Mh,g is an additive universal fuzzy
measure for any generator g. As a special case we can take permutation
σn(i) = n− i + 1 and then Mh,g(n, A) =

∑
i∈A

(
g(n−i+1

n )− g(n−i
n )

)
.

(iv) Let h : A → Xn be given by h(n, A) = Xmax A. Then Mh,g is a universal
fuzzy measure given by Mh,g(n, A) = g(max A

n ) (with convention max ∅ =
0).

(v) Let h : A → Xn be given by h(n, A) = {minA, . . . , n}. Then Mh,g is
a universal fuzzy measure given by Mh,g(n, A) = 1 − g(minA−1

n ) (with
convention min ∅ = n + 1 valid for each Xn, n ∈ IN).

(vi) Let h : A → Xn be given by h(n, A) = {min A, . . . ,maxA}. Then Mh,g

is a universal fuzzy measure given by Mh,g(n, A) = g(max A
n ) − g(min A−1

n )
(with the above conventions).

In the following lemma we can see two duality relations for generated universal
fuzzy measures. Note that for a given universal fuzzy measure M, its dual Md :
A → [0, 1] is given by Md(n, A) = 1−M(n, Xn \A).

Lemma 4. Let Md
h,g be a universal fuzzy measure dual to a generated universal

fuzzy measure Mh,g. Let hd(n, A) = Xn \ h(n, Xn \ A), n ∈ IN, A ⊂ Xn be the
dual mapping to mapping h, and gd(x) = 1 − g(1 − x), x ∈ [0, 1] be the dual
generator g. Then it holds
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(i) Md
h,g = Mhd,g,

(ii) Mh,gd = Mh,g, where h̃(n, A) = {n− i + 1 | i ∈ h(n, A)}, n ∈ IN, A ⊂ Xn.

The proof follows straightforwardly from Definition 3 and hence it is omitted.

Definition 5. Assume mapping h ∈ H which is independent of n (we will denote
it by γ, i.e., γ(A) = h(n, A) for all n ≥ max A). Then a generated universal fuzzy
measure Mγ,g(n, A) =

∑
i∈γ(A)

(
g( i

n )− g( i−1
n )

)
will be called a basic generated

universal fuzzy measure and the set of all set functions γ with the above property
will be denoted by Γ. Moreover, γ ∈ Γ will be called a basic set function.

Evidently, a set function γ : F → F , where F = {A ⊂ IN | A is finite }, is a
basic set function if and only if it is non-decreasing and γ(Xn) = Xn for all
n ∈ IN, γ(∅) = ∅. The class Γ is a complete lattice induced by a partial ordering
�, γ1 � γ2 if and only if γ1(A) ⊆ γ2(A) for all A ∈ F . The following result
shows that Γ is a bounded lattice.

Proposition 6. Let γ∗(A) = Xmax{k,Xk⊆A} = Xmin(IN\A)−1 and γ∗(A) =
Xmax A, with convention X0 = ∅. Then γ∗, γ∗ ∈ Γ and for each γ ∈ Γ it holds
γ∗(A) ⊆ γ(A) ⊆ γ∗(A), A ⊂ IN, i.e., γ∗ is the minimal basic set function and
γ∗ is the maximal basic set function.

3 Special Classes of Generated Universal Fuzzy Measures

Recall that a universal fuzzy measure M is called additive if and only if M(n, A∪
B) = M(n, A) + M(n, B) for all n ∈ IN, A, B ⊂ Xn, A ∩ B = ∅. Similarly, M
is called symmetric (maxitive) whenever M(n, A) = M(n, B) for A, B ⊂ Xn,
|A| = |B| (M(n, A ∪B) = max(M(n, A), M(n, B)) for all n ∈ IN, A, B ⊂ Xn).

For additive, symmetric and maxitive generated universal fuzzy measures we
have the following result.

Proposition 7. A generated universal fuzzy measure Mh,g is

(i) symmetric for each g ∈ G if and only if h(n, A) = h(n, X|A|) for all n ∈ IN,
A ⊂ Xn.

(ii) additive for each g ∈ G if and only if h(n, A) =
⋃

i∈A

h(n, {i}) and h(n, {i})∩
h(n, {j}) = ∅ for all n ∈ IN, A ⊂ Xn, i, j ∈ Xn, i �= j.

(iii) maxitive for each g ∈ G if and only if h(n, A ∪B) ∈ {h(n, A), h(n, B)} for
all n ∈ IN, A, B ⊂ Xn.

Proof. In the necessity parts of the proof for each item (i)-(iii) we will deal with
generators gn ∈ G, n ∈ IN, determined by gn( i

n ) = 2i−1
2n−1 for i ∈ {1, . . . , n − 1}

(for example each gn can be a continuous piecewise linear generator). Then
Mh,gn(n, A) = Mh,gn(n, B) imply h(n, A) = h(n, B).
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(i) Let h(n, A) = h(n, X|A|) for all n ∈ IN, A ⊂ Xn and let A1, A2 ⊂ Xn,
|A1| = |A2|. Then Mh,g(n, A1) = Mh,g(n, X|A1|) = Mh,g(n, A2).
Vice versa, let Mh,g be a symmetric generated universal fuzzy measure for
each generator g. Assume generator gn. Then the equality Mh,gn(n, A) =
Mh,gn(n, X|A|) implies h(n, A) = h(n, X|A|).

(ii) Let h(n, A) =
⋃

i∈A

h(n, {i}) and h(n, {i}) ∩ h(n, {j}) = ∅ for all n ∈ IN,

A ⊂ Xn, i, j ∈ Xn, i �= j. Then Mh,g(n, A) =
∑

i∈h(n,A)

(
g( i

n )− g( i−1
n )

)
=∑

i∈
j∈A

h(n,{j})

(
g( i

n )− g( i−1
n )

)
=

∑
j∈A

∑
i∈h(n,{j})

(
g( i

n )− g( i−1
n )

)
=

∑
j∈A

Mh,g(n, {j}).
Vice versa, let Mh,g be an additive generated universal fuzzy measure for
each generator g. Then Mh,g(n, A) =

∑
j∈A

Mh,g(n, {j}) for each generator g.

Let us assume generator gn and let A ⊂ Xn, |A| = 2, i.e., A = {k, j}, k �= j.
Then

Mh,gn(n, A) =
∑

i∈h(n,{k,j})

(
gn(

i

n
)− gn(

i− 1
n

)
)

=

∑
i∈h(n,{k})

(
gn(

i

n
)− gn(

i− 1
n

)
)

+
∑

i∈h(n,{j})

(
gn(

i

n
)− gn(

i− 1
n

)
)

(2)

Denote the sets h(n, {k, j}) = I, h(n, {k}) = K, h(n, {j}) = J. They can
be expressed as union of disjoint sets in the following manner:

I = (K \ J) ∪ (J \K) ∪ (K ∩ J) ∪ (I \ (K ∪ J)),
K = (K \ J) ∪ (K ∩ J),
J = (J \K) ∪ (K ∩ J).

Then from (2) we have:∑
i∈I\(K∪J)

(
gn(

i

n
)− gn(

i− 1
n

)
)

=
∑

i∈K∩J

(
gn(

i

n
)− gn(

i− 1
n

)
)

and from the properties of gn it follows I \ (K∪J) = K∩J. Since these two
sets are disjoint we get I \ (K ∪ J) = K ∩ J = ∅ and thus also I = K ∪ J.
Hence h(n, {k})∩ h(n, {j}) = ∅ and h(n, {k, j}) = h(n, {k})∪ h(n, {j}) for
all k, j ∈ Xn, k �= j. Proof for A ⊂ Xn, |A| > 2 can be done analogically
with the use of induction.

(iii) Let h(n, A ∪ B) ∈ {h(n, A), h(n, B)} for all n ∈ IN, A, B ⊂ Xn. Then
Mh,g(n, A ∪B) = Mh,g(n, A) or Mh,g(n, A ∪B) = Mh,g(n, B), i.e.,

Mh,g(n, A ∪B) = max(Mh,g(n, A), Mh,g(n, B)).

Vice versa, let Mh,g be a maxitive generated universal fuzzy measure for
each generator g. Then for the generator gn, A, B ⊂ Xn we have either
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Mh,gn(n, A ∪ B) = Mh,gn(n, A) resulting to h(n, A ∪ B) = h(n, A) or we
have Mh,gn(n, A ∪ B) = Mh,gn(n, B) resulting to h(n, A ∪ B) = h(n, B),
i.e., h(n, A ∪B) ∈ {h(n, A), h(n, B)}.

In the following proposition we describe three special types of basic set func-
tions γ.

Proposition 8. A basic generated universal fuzzy measure Mγ,g is

(i) symmetric for each generator g ∈ G if and only if γ(A) = X|A| for A ⊂ IN
(γ with this property will be denoted by γs).

(ii) additive for each generator g ∈ G if and only if γ(A) = A for A ⊂ IN (γ
with this property will be denoted by γa).

(iii) maxitive for each generator g ∈ G if and only if γ(A) = Xmax A, i.e., if
γ = γ∗.

The proof in all three cases is either a corollary of Proposition 7 or a modification
of its proof.

Remark. For any maxitive universal fuzzy measure Mh,g, and any n ∈ IN,
Mh,g(n, ·) = mn is a possibility measure on Xn, compare [4, 22, 6]. Thus such
universal fuzzy measure can be called a universal possibility measure. Evidently,
its dual universal fuzzy measure Md

h,g yields a necessity measure md
n = Md

h,g(n, ·)
for each n ∈ IN, see [4, 3, 13, 21], and thus Md

h,g can be called a universal neces-
sity measure. Note that the basic generated universal possibility measure Mγ∗,g

is given by Mγ∗,g(n, A) = g(max A
n ). Similarly as in Proposition 8 (iii) we can

show that the unique basic generated necessity measure is Mγ∗,g and it is given
by

Mγ∗,g(n, A) = g(
min Ac − 1

n
),

where Ac = IN \A.

Remark. A symmetric basic universal fuzzy measure generated by a genera-
tor g ∈ G is given by Mγs,g(n, A) = g( |A|

n ), and an additive basic univer-
sal fuzzy measure generated by a generator g ∈ G is given by Mγa,g(n, A)
=

∑
i∈A

(
g( i

n )− g( i−1
n )

)
. These two types of generated universal fuzzy measures

were exploited and discussed in [1, 18]. In the following proposition we describe
conditions for additive and symmetric basic universal fuzzy measures to be gen-
erated. First, let us note that for a universal fuzzy measure Mg generated by
a generator g ∈ G it is enough to know the values of the generator g only on
[0, 1]∩Q. Due to the required monotonicity of generator g, for irrational x ∈ ]0, 1[
we can always assume g(x) = sup{g(r) | r ∈ [0, x] ∩Q}.
Proposition 9. (i) A symmetric universal fuzzy measure M is a basic gener-

ated universal fuzzy measure if and only if for all n, k, t ∈ IN, t ≤ n it holds
M(n, Xt) = M(kn, Xkt).
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(ii) An additive universal fuzzy measure M is a basic generated universal fuzzy
measure if and only if for all n, k, t ∈ IN, t ≤ n it holds M(n, Xt) =
M(kn, Xkt) (or equivalently if M(n, {t}) = M(kn, Xkt \Xk(t−1))).

Proof. (i) Let a symmetric universal fuzzy measure M be a basic generated
universal fuzzy measure, i.e., M(n, A) = g( |A|

n ). Then M(n, Xt) = g( t
n ) =

g( kt
kn ) = M(kn, Xkt).

Vice versa, let a symmetric universal fuzzy measure M fulfils M(n, Xt) =
M(kn, Xkt) for all n, k, t ∈ IN, t ≤ n. Let us define a mapping g : [0, 1]∩Q →
[0, 1] by putting g(p

q ) = M(q, Xp). We will show that g is a generator of
universal fuzzy measure M. The mapping g is well-defined since for p

q = r
s

we have g(p
q ) = M(q, Xp) = M(sq, Xsp) = M(sq, Xqr) = M(s, Xr) = g( r

s).
Moreover, g(0

q ) = M(q, ∅) = 0 and g(1
1 ) = M(1, X1) = 1 and g is non-

decreasing since for p
q ≤ r

s we have g(p
q ) = M(q, Xp) = M(sq, Xsp) ≤

M(sq, Xqr) = M(s, Xr) = g( r
s ). Using the facts that [0, 1] ∩ Q is dense in

[0, 1] and that g is non-decreasing we can extend the mapping g to the whole
interval [0, 1]. We get M(n, A) = M(n, X|A|) = g( |A|

n ), i.e., g is a generator
of universal fuzzy measure M, i.e., M = Mγs,g.

(ii) First we will show that for n, k, t ∈ IN, t ≤ n conditions M(n, Xt) =
M(kn, Xkt) and M(n, {t}) = M(kn, Xkt \Xk(t−1)) are equivalent.
Let M be an additive universal fuzzy measure such that

M(n, Xt) = M(kn, Xkt).

Then because of additivity of M we have
t∑

i=1
M(n, {i}) = M(n, Xt) =

M(kn, Xkt) =
kt∑

j=1
M(kn, {j}).

For t = 1 we have M(n, {1}) =
k∑

j=1
M(kn, {j}).

For t = 2 we have

M(n, {1}) + M(n, {2}) =
k∑

j=1

M(kn, {j}) +
2k∑

j=k+1

M(kn, {j}),

i.e., we get M(n, {2}) =
2k∑

j=k+1
M(kn, {j}) and analogically M(n, {t}) =

tk∑
j=(t−1)k+1

M(kn, {j}).
Vice versa, let M be an additive universal fuzzy measure such that

M(n, {t}) = M(kn, Xkt \Xk(t−1)).

Then M(n, Xt) =
t∑

i=1
M(n, {i}) =

t∑
i=1

ik∑
j=(i−1)k+1

M(kn, {j})

=
kt∑

j=1
M(kn, {j}) = M(kn, Xkt).
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Let M be an additive basic universal fuzzy measure generated by a gen-
erator g ∈ G, i.e., M(n, A) =

∑
i∈A

(
g( i

n )− g( i−1
n )

)
. Then M(n, Xt) =

t∑
i=1

(
g( i

n )− g( i−1
n )

)
= g( t

n ) = g( kt
kn ) =

kt∑
i=1

(
g( i

kn )− g( i−1
kn )

)
=

M(kn, Xkt).
Vice versa, let M be an additive basic universal fuzzy measure such that
M(n, Xt) = M(kn, Xkt). Let us assume the mapping g from part (i)
of this proof. We will show that g generates M. We have M(n, A) =∑
i∈A

M(n, {i}) =
∑
i∈A

(M(n, Xi)−M(n, Xi−1)) =
∑
i∈A

(
g( i

n )− g( i−1
n )

)
, i.e.,

M = Mγa,g.

Similarly, we can show that a maxitive universal fuzzy measure M is a max-
itive basic generated universal fuzzy measure if M(n, A) = M(n, XmaxA) and
M(n, Xt) = M(kn, Xkt) for all n, k, t ∈ IN, t ≤ n, A ⊂ Xn. However, there
are maxitive basic generated universal fuzzy measures not fulfilling the above
conditions.

In the following propositions we describe the properties of a generator which
generates an additive (symmetric) universal fuzzy measure which is regular (pro-
portional).

Proposition 10. Each symmetric basic generated universal fuzzy measure
Mγs,g is regular.

Proof. Let Mγs,g be a symmetric basic universal fuzzy measure generated by the
generator g, n1 ≤ n2 and A ⊂ Xn1 . Then |A|

n1
≥ |A|

n2
and since g is non-decreasing

we get g( |A|
n1

) ≥ g( |A|
n2

), i.e., Mγs,g(n1, A) ≥ Mγs,g(n2, A), i.e., MγS,g is regular.

Proposition 11. Let g ∈ G be continuously differentiable on ]0, 1[ . Then the
following are equivalent:

(i) x · g′(x) is non-decreasing on ]0, 1[ .
(ii) The additive basic generated universal fuzzy measure Mγa,g is regular.
(iii) The basic generated universal fuzzy measure Mγ,g is regular for an arbitrary

γ ∈ Γ.

Proof. (i) ⇒ (ii) Let x·g′(x) be non-decreasing on ]0, 1[ . Then for all t ∈ [ i
n+1 , i

n ]
we have

t · g′(t) ≥ i

n + 1
g′(

i

n + 1
),

g′(t) ≥ i

n + 1
g′(

i

n + 1
)
1
t
,

i
n∫

i
n+1

g′(t)dt ≥ i

n + 1
g′(

i

n + 1
)

i
n∫

i
n+1

1
t
dt
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i
n∫

i
n+1

g′(t)dt ≥ i

n + 1
g′(

i

n + 1
) ln

n + 1
n

.

Similarly for all t ∈ [ i−1
n+1 , i−1

n ] we have

i− 1
n

g′(
i− 1

n
) ≥ t · g′(t),

i− 1
n

g′(
i− 1

n
) ln

n + 1
n

≥
i−1

n∫
i−1
n+1

g′(t)dt.

Since x · g′(x) is non-decreasing we have:

i

n + 1
g′(

i

n + 1
) ln

n + 1
n

≥ i− 1
n

g′(
i− 1

n
) ln

n + 1
n

,

and together we get
i
n∫

i
n+1

g′(t)dt ≥
i−1

n∫
i−1
n+1

g′(t)dt,

i.e,

g(
i

n
)− g(

i

n + 1
) ≥ g(

i− 1
n

)− g(
i− 1
n + 1

)

for all n ∈ IN, i = 1, . . . , n. Then Mγa,g(n, {i}) ≥ Mγa,g(n + 1, {i}) and from
additivity of Mγa,g it follows that Mγa,g is regular.

(ii) ⇒ (i) Let Mγa,g be regular. Then Mγa,g(n, A) ≥ Mγa,g(n+1, A) for all n ∈ IN
and A ⊂ Xn. For any x, y ∈ ]0, 1[∩Q, x > y there are n, i, j ∈ IN, j < i < n such
that x = i

n and y = j
n . Then also for all k ∈ IN we have x = ki

kn and y = kj
kn .

From the regularity of Mγa,g we have

Mγa,g(kn, Xki \Xkj) ≥ Mγa,g(kn + 1, Xki \Xkj),

i.e.,

g(
ki

kn
)− g(

kj

kn
) ≥ g(

ki

kn + 1
)− g(

kj

kn + 1
)

g(
ki

kn
)− g(

ki

kn + 1
) ≥ g(

kj

kn
)− g(

kj

kn + 1
)

g(x) − g(x− x

kn + 1
) ≥ g(y)− g(y − y

kn + 1
)

x
g(x)− g(x− x

kn+1 )
x

kn+1
≥ y

g(y)− g(y − y
kn+1 )

y
kn+1

.
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And since lim
k→∞

x
g(x)−g(x− x

kn+1 )
x

kn+1
= x · g′(x) and lim

k→∞
y

g(y)−g(y− y
kn+1 )

y
kn+1

= y · g′(y)

we get x·g′(x) ≥ y·g′(y). However, ]0, 1[∩Q is dense in ]0, 1[ and g is continuously
differentiable on ]0, 1[ and thus x · g′(x) ≥ y · g′(y) for all x, y ∈ ]0, 1[ , x > y, i.e.,
x · g′(x) is non-decreasing on ]0, 1[ .

(ii) ⇒ (iii) Let Mγa,g be regular and let γ ∈ Γ. Then Mγa,g(n, {i}) ≥ Mγa,g(n +
1, {i}) for all n ∈ IN and i ∈ Xn, i.e.,

g(
i

n
)− g(

i− 1
n

) ≥ g(
i

n + 1
)− g(

i− 1
n + 1

)

and thus ∑
i∈γ(A)

(
g(

i

n
)− g(

i− 1
n

)
)
≥

∑
i∈γ(A)

(
g(

i

n + 1
)− g(

i− 1
n + 1

)
)

for all n ∈ IN, A ⊂ Xn, i.e, Mγ,g(n, A) ≥ Mγ,g(n + 1, A), i.e., Mγ,g is regular.

(iii) ⇒ (ii) This implication is obvious.

Proposition 12. (i) A symmetric basic generated universal fuzzy measure
Mγs,g with the generator g ∈ G is proportional if and only if g is a power
function, i.e., g(x) = xr , r > 0.

(ii) An additive basic generated universal fuzzy measure Mγa,g with the genera-
tor g ∈ G is proportional if and only if g is a power function, i.e., g(x) = xr ,
r > 0.

Proof. (i) Let M be a symmetric basic universal fuzzy measure generated by a
generator g ∈ G, i.e., M = Mγs,g. Let g(x) = xr , r > 0. Then M(n+k, A) =
g( |A|

n+k ) = ( |A|
n+k )r = ( |A|

n )r( |Xn|
n+k )r = g( |A|

n )·g( |Xn|
n+k ) = M(n, A)·M(n+k, Xn),

i.e., Mγs,g is proportional.
Vice versa, let Mγs,g be proportional. Then M(n+k, A) = g( |A|

n+k ) = g( |A|
n ) ·

g( |Xn|
n+k ) = M(n, A) · M(n + k, Xn) for all k, n ∈ IN, A ⊂ Xn. This means

that the mapping g is a solution of the Cauchy functional equation g(ab) =
g(a)g(b) for all a, b ∈ [0, 1] ∩ Q. Since [0, 1] ∩ Q is dense in [0, 1] and g is
bounded and non-decreasing on [0, 1] we get g(x) = xr, r > 0.

(ii) Let M be an additive basic universal fuzzy measure generated by a gener-
ator g ∈ G, i.e., M = Mγa,g. Let g(x) = xr, r > 0. Then M(n + k, A) =∑
i∈A

(
g( i

n+k )− g( i−1
n+k )

)
=

∑
i∈A

(
( i

n+k )r − ( i−1
n+k )r

)
=

∑
i∈A

(
( i

n )r − ( i−1
n )r

) ·
( n

n+k )r =
∑
i∈A

(
g( i

n )− g( i−1
n )

) · n∑
i=1

(
g( i

n+k )− g( i−1
n+k )

)
= M(n, A) · M(n +

k, Xn), i.e., Mγa,g is proportional.
Vice versa, let Mγa,g be proportional. Then M(n+ k, A) = M(n, A) ·M(n+
k, Xn), i.e.,
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∑
i∈A

(
g(

i

n + k
)− g(

i− 1
n + k

)
)

=

∑
i∈A

(
g(

i

n
)− g(

i− 1
n

)
)
·

n∑
i=1

(
g(

i

n + k
)− g(

i− 1
n + k

)
)

,

∑
i∈A

(
g(

i

n + k
)− g(

i− 1
n + k

)
)

=
∑
i∈A

(
g(

i

n
)− g(

i− 1
n

)
)
· g(

n

n + k
).

Let A = Xn \Xn−t−1, t ∈ {0, 1, . . . , n− 1}. We get

g(
n

n + k
)− g(

n− t− 1
n + k

) =
(

1− g(
n− t− 1

n
)
)
· g(

n

n + k
),

i.e.,

g(
n− t− 1

n + k
) = g(

n− t− 1
n

) · g(
n

n + k
)

for all k, n ∈ IN. Hence, analogically as in part (i) g is a power function,
g(x) = xr , r > 0.

4 Conclusion

We have introduced generated universal fuzzy measures. Moreover, we have dis-
cussed several properties of these universal fuzzy measures. As a promising field
of applications of introduced concepts we can mention fuzzy integrals with re-
spect to universal fuzzy measures yielding extended aggregation functions. For
example, the Choquet integral [3, 13, 21] with respect to the additive basic gen-
erated universal fuzzy measure Mγa,g is just the weighted mean W related to
the weighting triangle � = (win | n ∈ IN, i ∈ {1, . . . , n}), win = g( i

n ) − g( i−1
n ).

Moreover, the Choquet integral with respect to the symmetric basic generated
universal fuzzy measure Mγs,g yields the OWA operator [17, 19] related to al-
ready mentioned weighting triangle �. Similarly, the Sugeno integral [13, 15, 21]
with respect to the maxitive basic generated universal fuzzy measure Mγ∗,g yields
a weighted maximum operator A :

⋃
n∈IN

[0, 1]n → [0, 1] given by A(x1, . . . , xn) =

max
i

(min(xi, g( i
n ))).

Another field of applications of (generated) universal fuzzy measures is the
problem of densities of subsets of IN, see, e.g., [12, 16]. Indeed, for any subset
E ⊂ IN, set functions d∗, d∗ : P(IN) → [0, 1] given by (for a fixed universal fuzzy
measure M) d∗(E) = lim sup

n
M(n, E ∩Xn) and d∗(E) = lim inf

n
M(n, E ∩Xn)

are densities in the sense of [12, 16].
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Abstract. One of the concerns of knowledge discovery in databases is
the production of association rules. An association rule A → B defines
a relationship between two sets of attributes A and B, caracterising the
data studied. Such a rule means that objects sharing attributes of A will
“likely” have those contained in B. Yet, this notion of “likeliness” depends
on the datamining context.

Many interestingness measures have been introduced in order to quan-
tify this likeliness. This panel of measures is heterogeneous and the rank-
ing of extracted rules, according to measures, may differ largely.

This contribution explores a new approach for assessing the quality of
rules: aggregating valued relations. For each measure, a valued relation is
built out of the numerical values it takes on the rules, and represents the
preference of a rule over another. The aim in using such tools is to take
into account the intensity of preference expressed by various measures,
and should reduce incomparability issues related to differences in their
co-domains. It also has the advantage of relating the numerical nature
of measures compared to pure binary approaches.

We studied several aggregation operators. In this contribution we dis-
cuss results obtained on a toy example using the simplest of them.

1 Basic Considerations

1.1 Association Rules

An aim of data mining concerns the extraction of informations (also called
“knowledge discovery”) from very large data bases (or data warehouses). In
this paper we shall restrict to the case where data are objects (or recordings,
according to the database terminology), described by q binary attributes (or
properties): either the object i has the property x, or not. We shall denote by
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of his Ph.D. thesis.

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 203–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



204 J.-P. Barthélemy et al.

N = {1, . . . , n} the set of considered objects and by Q = {a, b, . . .} the set of
properties. The searched information will be restricted to association rules [1].
The general idea when considering the association rule A→ B is that if a subset
of N significantly possesses the features of the set A ⊆ Q, then it significantly
possesses the features from the set B ⊆ Q. It is important to point out that such
rules, by construction, focus only on the expressed properties of the objects, i.e.
that a rule will never express the fact that a set of objects may not posses a set
of properties. Without assessing the notion of significance for the moment, these
considerations lead to the following formal definition:

Definition. An association rule is a 2-uple (A, B) of subsets of Q such that
A ∩ B = ∅.
The association rule (A, B) is usually denoted A→ B. There are, a priori, 3q−q−1
possible rules (each property either belonging to A, B or neither of them). Galois
lattices constitute a natural framework for this approach [17]. Comming back
to the notion of significance, not any A→ B is eligible as a realistic association
rule. An extreme case is pure implication, A⇒ B, which means that if an object
fulfils all the properties from A (head of the rule), then it definitely fulfils all
the properties from B (tail of the rule). Generaly speaking, eligible association
rules are filtered from their interestingness: a rule must be supported by enough
examples and may be contradicted by a small proportion of counter examples.
To make this precise we introduce the following quantities: for A, B ⊆ Q, nA is
the number of objects fulfilling all the properties from A and nAB denotes the
number of objects fulfilling all the properties from A ∪ B. While nAB involves the
notion of examples, nAB/nA relativizes it as a proportion of examples, and nA-nAB

involves the notion of counter-examples.
From these quantities, we deduce the probabilities pA = nA/n, pAB = nAB/n

and the conditional probability pB|A =pAB/pA. The quantities pAB and pAB/pA are
respectively called the support and the confidence of the rule A→ B.

In order to construct a set R of “interesting rules” we used Apriori [7], an
implementation of the Ais algorithm proposed by [1]. This implementation only
extracts rules of the form A → {b} (simply written as A → b). The arguments
for such a (classical) restriction are that in the first place, association rule mining
usually produces too many rules, even if one confines oneself to rules with only
one item in the consequent. Considering more complex rules makes the situation
even worse. This requirement decreases the maximal cardinality of R: there are
at most q.2q−1 rules when the tail is restricted to a single property. Secondly,
more complex rules add few to the insights about the data. Indeed, should a
complex rule be valid, then its simpler forms will be valid to, and thus extracted
from the database. Even if presenting to an end-user a set of simple rules or
its more complex form is not the same, the final gain is usually considered as
non-worthy. Apriori follows a two steps approach in order to generate all rules
having support and confidence values above some user-defined thresholds:

(i) Select the sets of “frequent properties”, i.e. the sets X ⊆ Q such that pX ≥ α,
where α is a given threshold (and will be the minimum support of each rule).
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(ii) For each frequent set X , generate all the rules of the form A → b, where
A = X\{b}, and select those whose confidence is largest than some threshold
β (which will hence be the minimum confidence of each rule).

1.2 A Toy Example

To illustrate the notions introduced above, we propose a small dataset (see ta-
ble 1) of 10 objects described by 7 properties. Table 2 lists the set of 21 rules
extracted by the Apriori algorithm [7], using a support threshold of .30 and a
confidence threshold of .60.

Table 1. Toy example

a b c d e f g
01 0 0 1 1 1 0 0
02 1 0 1 0 1 1 0
03 1 0 1 1 0 0 1
04 0 1 0 1 0 1 0
05 1 1 0 1 1 0 1
06 1 1 1 1 1 0 1
07 0 1 0 1 1 1 0
08 1 0 0 1 0 1 0
09 0 0 1 1 0 1 0
10 0 1 1 0 1 1 0

Table 2. Rules extracted by Apriori

id head → tail pA pAB pAB/pA

r1 {g} → a .30 .30 1
r2 {a} → g .50 .30 .60
r3 {g} → d .30 .30 1
r4 {b} → f .50 .30 .60
r5 {f} → d .60 .40 .67
r6 {b} → e .50 .40 .80
r7 {e} → b .60 .40 .67
r8 {b} → d .50 .40 .80
r9 {a} → c .50 .30 .60

r10 {a} → e .50 .30 .60
r11 {a} → d .50 .40 .80
r12 {c} → e .60 .40 .67
r13 {e} → c .60 .40 .67
r14 {c} → d .60 .40 .67
r15 {e} → d .60 .40 .67
r16 {g, a} → d .30 .30 1
r17 {g, d} → a .30 .30 1
r18 {a, d} → g .40 .30 .75
r19 {b, e} → d .40 .30 .75
r20 {b, d} → e .40 .30 .75
r21 {e, d} → b .40 .30 .75

1.3 Interestingness Measures

Support and confidence constitute the usual framework used to extract a set R
of rules, but they are not the only way of assessing the quality of a rule. On
the contrary, they are considered as having only very few good properties for
ranking a set of rules from the best to the lesser good ones, when compared to
other interestingness measures ([31, 34, 25]). Still, they remain frequently used
for algorithmic reasons and as references. We have selected and studied 20 more
or less usual measures from the literature (see table 3 and [23]). Properties of
these 20 measures have been thoroughly analysed, as in [34, 20] for example.
In [26], we propose a Multicriteria Decision Aid approach aiming at selecting an
interestingness measure, according to data and user expectations.

1.4 An Heterogeneous Landscape

At first glance, table 3 shows important variations between the formulae. This is
due to the fact that measures do not tell the same story. This is also due to the
fact that co-domains are quite different ([0, 1], [0, +∞[, ]-∞, 1] and others... with
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Table 3. Association rule quality measures

Definition Co-domain Reference

Conf confidence nab
na

[0, 1] [1]

CenConf centred confidence nnab−nanb
nna

[−nb
n

, nb̄
n

]

Conv conviction nanb̄
nnab̄

[nb̄
n

, +∞[ [9]

IG information gain log( nnab
nanb

) ]−∞, log n
nb

] [10]

-ImpInd implication index −nanb−nnab√
nnanb̄

[−
√

nanb√
nnb̄

, nanb̄
n

] [15]

IntImp intensity of implication P N (0, 1) ≥ ImpInd [0, 1] [15]

EII entropic intensity of implication [(1 − h1(
nab̄
n

)2)(1 − h2(
nab̄
n

)2)]1/4IntImp
1/2 [0, 1] [16]

Kappa Kappa 2 nnab−nanb
nna+nnb−2nanb

[−2 nanb
nanb̄+nānb

, 2 nanb̄
nanb̄+nānb

] [11]

Lap Laplace nab+1
na+2 [ 1

na+2 , na+1
na+2 ] [14]

Lift lift nnab
nanb

[0, n
nb

] [18]

Loe Loevinger nnab−nanb
nanb̄

[−nb
nb̄

, 1] [28]

BF Bayes factor nabnb̄
nbnab̄

[0, +∞[ [19]

PS Piatetsky-Shapiro nnab−nanb
n2 [−nanb

n2 , nanb̄
n2 ] [31]

PDI probabilistic discriminant index P N (0, 1) > ImpIndCR/B [0+, 1−] [27]

r linear correlation coefficient nnab−nanb√
nnanbnā.nb̄

[− nanb
nnānb̄

, nanb̄
nnānb

] [29]

Seb Sebag-Schoenauer nab
nab̄

[0, +∞[ [33]

Sup support nab
n

[0, na
n

] [1]

LC least contradiction nab−nab̄
nnb

[− na
nnb

, na
nnb

] [3]

ECR example and counter example rate nab−nab̄
nab

= 1 − 1
na
n

ab̄
−1 ]−∞, 1]

Zhang Zhang nnab−nanb
max{nabnb̄,nbnab̄} [−1, 1] [37]

ImpIndCR/B corresponds to ImpInd, centred reduced (CR) for a rule set B
h1(t) = −(1 − n·t

na
) log2(1 − n·t

na
) − n·t

na
log2(

n·t
na

) if t ∈ [0, na/(2 n)[; else h1(t) = 1

h2(t) = −(1 − n·t
nb̄

) log2(1 − n·t
nb̄

) − n·t
nb̄

log2(
n·t
nb̄

) if t ∈ [0, nb̄/(2 n)[; else h2(t) = 1

N (0, 1) stands for the centred and reduced normal repartition function

bounds depending on nA, nB and/or nAB). This heterogeneity is confirmed when
looking at the values (listed in table 4) taken by the measures for each of the 21
rules of table 2. Moreover, if we look at the rules ranked as the “best” for a given
measure and as the worst by others we see important variations. Table 5 gives
the different rankings (from 1 to at most 11) of the rules evaluated by our 20
measures. This can be highlighted by comparing complete preorders induced by
the measures on rule sets. In order to carry out such experimental campaigns, we
have developed Herbs, a tool designed for case-based studies of measures [36].
In [35] we produced an experimental classification of the measures using 10
datasets retrived from the Uci repository [4]. This experimental classification is
quite similar to a formal one, also presented in [35].

To attest of the variety of the different rankings we sorted the rules according
to the measures’ values in table 5: the “best ranked” (ranks close to 1) corre-
spond to rules for which the considered measure takes its largest values, the
“worth ranked” (ranks closest to 11) correspond to rules for which the consid-
ered measure takes its lowest values, and “medium ranked” (ranks in between).
Of course this kind of representation is quite arbitrary. For instance the mea-
sure Sup admits only two ranks: every rule becomes either a good or a bad one.
However, it is not surprising as Sup has for a long time been pointed out as
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Table 4. Evaluation of the rules by the quality measures

id Li
ft

C
en

C
on

f
C
on

f
Su

p
EI

I
In

tI
m
p

K
ap

pa
C
on

v
IG -I
m
pI

nd
PD

I

La
p

Lo
e

B
F

PS r Se
b

LC EC
R

Zh
an

g

1 2.00 0.50 1.00 0.30 0.94 0.89 0.60 +∞ 0.30 1.22 3.87 0.80 1.00 +∞ 1.50 0.65 +∞ 0.60 1.00 1.00
2 2.00 0.30 0.60 0.30 0.52 0.79 0.60 1.75 0.30 0.80 2.54 0.57 0.43 3.50 1.50 0.65 1.50 0.33 0.33 0.71
3 1.25 0.20 1.00 0.30 0.88 0.78 0.19 +∞ 0.10 0.77 2.45 0.80 1.00 +∞ 0.60 0.33 +∞ 0.38 1.00 1.00
4 1.00 0.00 0.60 0.30 0.00 0.50 0.00 1.00 0.00 0.00 0.00 0.57 0.00 1.00 0.00 0.00 1.50 0.17 0.33 0.00
5 0.83 −0.13 0.67 0.40 0.00 0.23 −0.36 0.60 −0.08 −0.73 −2.31 0.62 −0.67 0.50 −0.80 −0.41 2.00 0.25 0.50 −0.50
6 1.33 0.20 0.80 0.40 0.69 0.76 0.40 2.00 0.12 0.71 2.24 0.71 0.50 2.67 1.00 0.41 4.00 0.50 0.75 0.62
7 1.33 0.17 0.67 0.40 0.47 0.72 0.40 1.50 0.12 0.58 1.83 0.62 0.33 2.00 1.00 0.41 2.00 0.40 0.50 0.50
8 1.00 0.00 0.80 0.40 0.00 0.50 0.00 1.00 0.00 0.00 0.00 0.71 0.00 1.00 0.00 0.00 4.00 0.38 0.75 0.00
9 1.00 0.00 0.60 0.30 0.00 0.50 0.00 1.00 0.00 0.00 0.00 0.57 0.00 1.00 0.00 0.00 1.50 0.17 0.33 0.00

10 1.00 0.00 0.60 0.30 0.00 0.50 0.00 1.00 0.00 0.00 0.00 0.57 0.00 1.00 0.00 0.00 1.50 0.17 0.33 0.00
11 1.00 0.00 0.80 0.40 0.00 0.50 0.00 1.00 0.00 0.00 0.00 0.71 0.00 1.00 0.00 0.00 4.00 0.38 0.75 0.00
12 1.11 0.07 0.67 0.40 0.00 0.60 0.17 1.20 0.05 0.26 0.82 0.62 0.17 1.33 0.40 0.17 2.00 0.33 0.50 0.25
13 1.11 0.07 0.67 0.40 0.00 0.60 0.17 1.20 0.05 0.26 0.82 0.62 0.17 1.33 0.40 0.17 2.00 0.33 0.50 0.25
14 0.83 −0.13 0.67 0.40 0.00 0.23 −0.36 0.60 −0.08 −0.73 −2.31 0.62 −0.67 0.50 −0.80 −0.41 2.00 0.25 0.50 −0.50
15 0.83 −0.13 0.67 0.40 0.00 0.23 −0.36 0.60 −0.08 −0.73 −2.31 0.62 −0.67 0.50 −0.80 −0.41 2.00 0.25 0.50 −0.50
16 1.25 0.20 1.00 0.30 0.88 0.78 0.19 +∞ 0.10 0.77 2.45 0.80 1.00 +∞ 0.60 0.33 +∞ 0.38 1.00 1.00
17 2.00 0.50 1.00 0.30 0.94 0.89 0.60 +∞ 0.30 1.22 3.87 0.80 1.00 +∞ 1.50 0.65 +∞ 0.60 1.00 1.00
18 2.50 0.45 0.75 0.30 0.77 0.86 0.78 2.80 0.40 1.08 3.40 0.67 0.64 7.00 1.80 0.80 3.00 0.67 0.67 0.86
19 0.94 −0.05 0.75 0.30 0.00 0.41 −0.07 0.80 −0.03 −0.22 −0.71 0.67 −0.25 0.75 −0.20 −0.10 3.00 0.25 0.67 −0.25
20 1.25 0.15 0.75 0.30 0.63 0.68 0.23 1.60 0.10 0.47 1.50 0.67 0.38 2.00 0.60 0.25 3.00 0.33 0.67 0.50
21 1.50 0.25 0.75 0.30 0.69 0.76 0.40 2.00 0.18 0.71 2.24 0.67 0.50 3.00 1.00 0.41 3.00 0.40 0.67 0.67

poor measure in an knowledge discovery context. What is more, as the rules are
extracted from a toy example dataset, it was to be expected that such extreme
situations should happen, which hopefully is usually not the case when using
larger datasets, as in [35].

1.5 Aggregation as a Tool to Face the Heterogeneity of the
Measures

From the discussion of section 1.4 the following question arise: which rule(s)
should be considered as the best one(s), according to our interestingness mea-
sures? In that framework different possibilities can be looked upon:

(i) dictatorship: use only one (preferred) measure, and forget the others;
(ii) try to find a consensus within a set of measures, judged as worth considering.

In this paper we follow this second track. To achieve a consensus, two ways
appear as “natural”:
a) direct aggregation of the measures into a single one, using some kind of

generalised mean.
b) aggregation of the rankings involved by the various measures into a single

one.

A worry involved by the approach a) is the diversity of the induced scales. How
to aggregate measures whose co-domains are [0, 1], [0, +∞[, or ]-∞, 1]? Approach
b) has just the inverse drawback: rankings do not account for differences in
evaluations. Moreover ordinal aggregation involves perilous “logical” problems
(see, for example Arrow’s 1951 theorem [2]). Thus we have chosen to follow a
third, less straightforward, track: the aggregation of valued relations.

Rankings are complete preorders, i.e. special binary relations. We shall gen-
eralise them into valued relations. We recall that a valued relation (sometimes
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Table 5. Rankings induced by measures on the rules
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called a “fuzzy relation”) on a set S is just a map R from S × S to the unit
interval [0, 1]. Notice that an ordinary binary relation (sometimes “called crisp
relation”) is a particular instance of valued relation, whose values are 0 or 1.
Valued relations allow to escape from scale effects, with a preservation of scale
differences (because they are supposed to account for such differences). Aggre-
gation of valued relation has been intensively studied in [13].

2 Valued Relations
2.1 Properties of Valued Relations

The various properties of usual binary relations extend mutatis mutandis to
valued relations. For instance a valued relation R is said to be:

complete whenever R(s, t) + R(t, s) ≥ 1 , for t �= s,
reflexive whenever R(s, s) = 1,
irreflexive whenever R(s, s) = 0,
symmetric whenever R(s, t) = R(t, s),
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reciproqual whenever R(s, t) + R(t, s) = 1,
min-antisymmetric whenever min{R(s, t), R(t, s)} = 0, for s �= t.

The notion of transitivity admits a number of extensions. They can be sorted
in two categories:

(i) stochastic transitivities (see [12] for a review). In this case, R(s, t) is an
observed probability for s to be preferred to t, and R is reciprocal. Stochastic
transitivities are often related to stochastic utility models.

(ii) fuzzy transitivities (see [13] for a review). In this case, R(s, t) measures
an intensity of preference (of s over t). The general expressions of fuzzy
transitivities use the notions of “T-norm” and “T-co-norm”, that generalize
operators like min and max (and many others).

We shall use only three kinds of transitivities: the weak transitivity, the min-
transitivity and the max-transitivity. The reason of these choices is that they have
some properties of the relations are preservations under aggregation operators.

A valued preference R is said to be:

min-transitive whenever R(s, u) ≥ min{R(s, t), R(t, u)}
max-Δ-transitive whenever R(s, u) ≥ max{0, R(s, t) + R(t, u)− 1}
weakly transitive whenever {R(s, t) ≥ 1

2 and R(t, u) ≥ 1
2} ⇒ R(s, u) ≥ 1

2

It is easy to check that the min-transitivity implies both the max-Δ-transi- tiv-
ity and the weak-transitivity, and that there is no implication between the max-
Δ-transitivity and the weak-transitivity. [32] assessed thoroughly the preserva-
tion of transitivities in an aggregation operators context.

2.2 Construction of a Valued Relation on a Set of Measures

From now on, we are concerned by valued relations on a set R of rules. In that
purpose we denote by r1, . . . , rk the rules under consideration and by μ1, . . . ,
μm the selected measures. Each measure μj will induce a valued relation Rj

on R. The general idea is that Rj(ri, ri′) correspond to a normalized difference
between the rules ri and ri′ , according to the measure μj .

The simplest idea is to consider these differences as linear:

Rj(ri, ri′) =

⎧⎪⎨⎪⎩
0 if μj(ri)− μj(ri′ ) < 0
μj(ri)−μj(ri′)

σj
if 0 ≤ μj(ri)− μj(ri′ ) ≤ σj

1 if μj(ri)− μj(ri′ ) > σj

(1)

In formula 1, σj is a threshold beyond which the intensity of preference be-
comes maximum (i.e. equal to 1). A drawback is that the transitions between “no
preference” and “weak preference”, and between “weak preference” and “strong
preference” are rather “abrupt”. That is the reason why we have preferred a
smooth variant to formula 1, proposed by [8]:

Rj(ri, ri′) =

{
1− exp

(− (μj(ri)−μj(ri′ ))2

2σ2
j

)
if μj(ri)− μj(ri′ ) > 0

0 otherwise
(2)
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In formula 2, σj is the inflection point of the representative curve. It thus rep-
resents a threshold value between “weak preferences” and “strong preferences”.
The relation Rj of formula 2 is irreflexive (but can be made reflexive with an
easy change). What is more, the relations Rj are min-transitive.

The two valued relation 1 and 2 are strongly related to strict fuzzy order-
ings [6, 5], since one of our goal is to build a global ranking on the rules.

3 Aggregation

3.1 Generalities

An aggregation operator is a map C from I∗ = ∪m≥1[0, 1]m to [0,1]. If R∗ =
(R1, . . . , Rm) is a m-uple of valued relations, an aggregation operator C will
produce a consensus relation of R∗, abusively noted as C(R∗). Following the
notations of 2.2, the consensus of R∗ is defined by:

C(R∗)(ri, ri′ ) = C(R1(ri, ri′), . . . , Rm(ri, ri′))

Many aggregation operators, fulfilling different properties, have been designed
in the literature (see [13]): generalised means, OWA operators, Choquet and
Sugeno integrals, weighted maximum and minimum. . .

Amongst the large number of possibilities, we have chosen to focus on gener-
alised means. A generalised mean M is the aggregation operator defined by:

M(u1, . . . , um) = f−1(
∑

1≤j≤m

wjf(uj))

where f is a continuous monotonic function, f−1 its reciprocal function, and the
wj are non negative weights.

We shall look at some particular cases, in term of consensus relations (with
obvious notations).

Weighted arithmetic mean(WMean): f(u) = u

Weighted geometric mean (WGeom): f(u) = log(u)
Root-power mean (RPM): f(u) = uα, α ∈ R

Weighted harmonic mean (WHarm): f(u) = 1/u

3.2 Behavior Relatively to Transitivity and Other Properties

Table 6 (see [30]) summarizes the properties preserved by these four operators.
We have retained only properties that apply to preference modelling (and, hence,
eliminated various forms of dissimilarities). We focused mainly on transitivity
as it is the one closest to some user’s expectations (it guaranties that if a rule is
better evaluated than a set of others, the aggregation procedure will maintain it
above this set).
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Table 6. Properties preserved by some aggregation operators

Operator R∗ ⇒ R

WMean t2 + c ⇒ t3 + c

WGeom r + t1 ⇒ r + t2
r + a + t1 ⇒ r + a + t2

WHarm r + t1 ⇒ r + t2
RPM c ⇒ c′

r: reflexivity, c: reciprocity,
c′: lower reciprocity, a: min-asymetry,
t1: min-transitivity, t2: max-Δ-transitivity,
t3: weak transitivity

3.3 Experimental Results

Using the four proposed generalised means, we computed the aggregated prefer-
ence for each pair of rules. The valued relation retained to express the individual
preference of a rule over an other according to a measure requires that a σj pa-
rameter should be fixed (see formula 2). The strategy we choosed was to select
the value taken at a quantile of the absolute difference between the evaluation of
any two rules by a measure. For example, the value taken at a quantile of 0% of
the differences corresponds to the smallest absolute difference (which obviously
is 0, since the difference of evaluation between a rule and itself is null). The
value taken at a quantile of 100% is the highest absolute difference of evaluation
between any two rules, and the value at a quantile of 50% leads to the median
value of all absolute differences.
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Fig. 1. WHarm

In our example, this quantile is taken at 60% of all absolute
differences, which is a high value. We will explain latter on
why such a high value was needed. The weights choosen are
all equal to 1/20. Other weights have been proposed in [21],
through the analysis of what could be expected from some
expert user’s preferences [24].

Once these parameters are fixed, the aggregation procedure
produces a square matrix of values between 0 and 1, where
each value is the aggregated preference of a rule over another.
In order to produce an understandable (i.e. binary) output, a
common way of transforming this matrix is to fix a threshold
value, λ and compare the aggregated index to this threshold.
Values below λ are considered as being equal to 0, and values
above as equal to 1. Figures 1 to 4 are visual representations
of this binary matrix, an arrow being drown between the rules
(arrow pointing towards the preferred rule) when the prefer-
ence of a rule over an other is 1. Of course, no rule is preferred to itself. The
graph is automatically generated using Dot (http://www.graphviz.org/), and
is sometimes hard to produce, especially when the number of edges increases.

Clearly, rules which are always “good” according to all measures (such as r18)
remain good ones, and rules which were poorly rated (such as r19) end up on
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the right side of the graph. More controversial rules (such as r2) are less easy to
follow. This could be attributed to the limited size of our toy example.

Figures 1 and 2 highlight a veto side-effect of some aggregation operators.
Indeed, when a measure has the same value for two rules, the use of the log and
inverse function produces “infinite” values, thus all other differences in evalua-
tion by the measures are meaningless. As we already pointed out, the rules are
grouped in only two ranks by Sup. Hence, a large pair of rules will always remain
incomparable, in terms of aggregated preference.
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Fig. 2. WGeom

The fact that Sup splits the rules in only two groups
also accounts for the high value we selected in order
to fix σj : if we had choosen a value lower than 60%,
then the value for the quantile would have been null.
In such a situation, formulae (1) and (2) are equivalent.
A way of avoiding such a situation might be to add a
slight level of noise in the values taken by the measures.
This strategy -known as “jittering”- is commonly used
in visualisation tools in order to plot a large number of
possibly overlapping points. Note that the visualisation
of the results is not a requirement, but a practical way
of apprehending results on a toy example. Experiments
were carried out on more large datasets in [21], still the
automated plotting of preferences between rules needs
more sophisticated methods. This possibility has been
explored for example by [22] in visual data mining for
association rules extraction.
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4 Conclusion and Perspectives

In this study we were interested in the construction of aggregation operators
on valued relations for association rule interestingness measures. The under-
lying objects and user’s expectations constrained the available choices. Such
constraints could be expressed mathematically, as properties that should be ver-
ified. Amongst the classical tools, few of them respect such constraints, still
the generalised means comply with our requirements. A toy example study sup-
ported our approach. Experiments were also carried out on large datasets and
look promising, still we pointed out some possible visualisation issues. Even if
there are some conflictory points of view between the processing of very large
rule sets and readable graphical exploration of them, we think that a promising
way of solving such issues is to allow user-driven zooms on meaningful regions.
Scalability on large datasets yet has to be explored.

Also, an alternative track to the quantile approach we used to fix σj thresholds
would be to learn it automatically from tests in the presence of an expert. Such
an approach should also be considered in order to learn the weights wj of the
aggregation operator.
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Abstract. The OWA weighting vector and the fuzzy quantifiers are
strictly related. An intuitive way for shaping a monotonic quantifier, is
by means of the threshold that makes a separation between the regions
of what is satisfactory and what is not. Therefore, the characteristics of
a threshold can be directly related to the OWA weighting vector and
to its metrics: the attitudinal character and the entropy (or dispersion).
Generally these two metrics are supposed to be independent, although
some limitations in their value come when they are considered jointly.
In this paper we argue that these two metrics are strongly related by
the definition of quantifier threshold, and we show how they can be used
jointly to verify and validate a quantifier and its threshold.

1 Introduction

An Ordered Weighted Averaging (OWA) operator of dimension n is a mapping
defined as [1]

M[w](a1, . . . , an) =
n∑

i=1

wi · a(i) (1)

where (·) means a decreasing ordered permutation of arguments a1, . . . , an, so
that a(i) ≥ a(j)∀i < j. Weights are such that

n∑
i=1

wi = 1 (2)

The OWA weighting vector is characterized by two metrics: the attitudinal char-
acter and the dispersion (entropy). The attitudinal character (a.k.a. orness de-
gree) is defined as [1]

σ =
1

n− 1

n∑
i=1

(n− i)wi (3)
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Noteworthy cases are:

– w1 = 1, wi>1 = 0 ⇔ M[w](x1, . . . , xn) = max{x1 . . . , xn} ⇔ σ = 1

– wi = 1
n ⇔ M[w](x1, . . . , xn) = 1

n

n∑
i=1

ai ⇒ σ = 1
2

– wi<n = 0, wn = 1 ⇔ M[w](x1, . . . , xn) = min{x1, . . . , xn} ⇔ σ = 0

The entropy [2] of OWA operators is defined as

Hy = −
n∑

i=1

wi lnwi (4)

Special cases are:

– ∃i : wi = 1 ⇔ Hy(w) = 0 (minimum)
– wi = 1

n∀i ⇔ Hy(w) = lnn (maximum)

Generally, it is useful to adopt a normalized measure of entropy

Hy = − 1
lnn

n∑
i=1

wi lnwi (5)

Entropy has been generally adopted as a measure of weight dispersion for the
OWA operators. O’Hagan [3], in his ground-breaking work, suggests to select the
vector that maximizes the entropy of OWA weights (ME-OWA). Analytical solu-
tions to this problem have been proposed by Filev and Yager [4], and Fullér and
Majlender [5]. However, entropy is a strong characterization of OWA weights,
because it satisfies several additional properties that do not enrich the notion of
dispersion. More recently, Troiano and Yager [6] proposed a dispersion metric

ρ =
1

n− 1
1− w[1]

w[1]
(6)

where w[1] = max
i=1..n

wi. The main advantage of this metric consists in solving

analytically Eq.(6), given a level of dispersion. Moreover, the maximal weight
can be computed as

w[1] =
1

(n− 1)ρ + 1
(7)

Generally the attitudinal character and the entropy (or dispersion) are con-
sidered as two independent characterizations of the weighting vector, although
their values are not fully independent within the unit interval. For instance if
σ = 0 or 1 then Hy = 0; viceversa if Hy = 1 then σ = 1

2 .
In this paper we argue that the two metrics can be related to the definition of

fuzzy quantifiers, in particular to the definition of quantifier thresholds. Indeed,
an OWA operator implements the quantification semantics of at least t, where t
is a given threshold. The specification of t determines the OWA weighting vector
and its metrics. In particular, the position and fuzziness of t affect the attitu-
dinal character and the dispersion respectively. The remainder of this paper is
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organized as follows: Section 2 introduces basic concepts of fuzzy quantifiers and
how they are related to the semantics of OWA operators; Section 3 provides a
characterization of monotonic quantifier thresholds; Section 4 discusses the rela-
tionship between the threshold and the OWA weighting vector metrics; Sections
5 outlines conclusions.

2 Fuzzy Quantifiers in OWA Operators

The OWA operators satisfy the compensatory property so that

min(a1, . . . , an) ≤ M[w](a1, . . . , an) ≤ max(a1, . . . , an) (8)

When wn = 1 (wi=n = 0) we get

M[w](a1, . . . , an) = min(a1, . . . , an) (9)

Viceversa, when w1 = 1 (wi=1 = 0) we get

M[w](a1, . . . , an) = max(a1, . . . , an) (10)

More in general, the OWA operators build a continuum of aggregation operators
between the minimum and the maximum by varying the weighting vector.

The minimum and the maximum operators have a specific semantics. Let
a1, . . . , an be degrees, such as the satisfaction of criteria in decision making
problems, or the truth of predicates in logics. If they are boolean, so that ai ∈
{0, 1}, the result of the aggregation is boolean. In particular,

min(a1, . . . , an) = 1 ⇔ ai = 1∀i ∈ 1..n (11)
max(a1, . . . , an) = 1 ⇔ ∃i ∈ 1..n|ai = 1 (12)

Therefore, to be min(a1, . . . , an) = 1, it is required that all arguments are 1;
for instance all criteria have to be satisfied or all predicates have to be true.
Differently, to be max(a1, . . . , an) = 1, the maximum requires that at least one
argument is 1, that is at least one criterion is satisfied, or at least 1 predicate
is true. All and at least one are two special cases of quantification. They are
also respectively known as the universal quantifier and the existential quantifier.
Other choices are possible, for instance none or half. Quantification provides the
means for describing a collection of objects by counting the elements. Quantifiers
can be rigorously formalized.

Definition 1 (Two-valued quantifier). A two-valued quantifier is a mapping

Qb : 2U → {0, 1} (13)

such that

∀A1, A2 ∈ 2U | card(A1) = card(A2) ⇒ Qb(A1) = Qb(A2) (14)

where U �= ∅ is the domain, 2U is the powerset of U , and card(A) provides the
cardinality of the subset A ∈ 2U .
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Definition 2 (Fuzzy quantifier). A fuzzy quantifier is a mapping

Qf : 2U → [0, 1] (15)

such that

∀A1, A2 ∈ 2U | card(A1) = card(A2) ⇒ Qf (A1) = Qf(A2) (16)

Since quantifiers depend only on the subset cardinality, we can describe a quan-
tifier by its characteristic function

Q : [0, 1] → [0, 1] (17)

that assumes as input the normalized cardinality x = i
n , with i = card(A) and

n = card(U).
A quantifier is non-decreasing (non-increasing) monotonic if Q(·) is a non-

decreasing (non-increasing) function. Similarly, a quantifier is unimodal if Q(·)
is unimodal; it is regular if max

x∈[0,1]
Q(x) = 1. Quantifiers are inherently defined on

finite sets, whose cardinality is n. Therefore the function Q is defined on a finite
subset of rational numbers. More specifically it is defined on the set of equidistant
rational numbers, associated to the normalized cardinalities x = i

n , i = 0..n.
However, since their semantics keeps valid for any value n, it is convenient to
consider the extension of Q(·) to the unit interval of rational numbers. Thus, for
the sake of simplicity, we can consider the extension of Q(·) to the unit interval
or real numbers. Quantifiers are predicates associated to the cardinality of sets,
whose semantics is at least t for non-decreasing quantifiers, and no more than
t for non-increasing quantifiers. For instance, the quantifier depicted in Fig.1-(a)
means at least 40%, and the quantifier depicted in Fig.1-(b) means no more
than 60%. In Fig.1, the threshold has been precisely defined as 0.4 in (a) and
0.6 in (b). Therefore the degree of truth provided by Q(x) sharply moves from 0
to 1 when the threshold is passed, and viceversa. If the threshold is imprecisely
defined, then the quantifier becomes smoother, as depicted in Fig.2. A non-
decreasing quantifier can be regarded as a cumulative probability distribution.

(a) (b)

Fig. 1. Examples of non-decreasing (a) and non-increasing(b) quantifiers
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(a) (b)

Fig. 2. Examples of non-decreasing (a) and non-increasing(b) quantifiers

Its derivative provides a probability density function

w(x) =
d

dx
Q(x) (18)

For any finite n, the definition domain of the quantifier is finite, and the deriv-
ative defined by Eq.(18) becomes the 1-st finite backward difference

wi = ∇Q

(
i

n

)
= Q

(
i

n

)
−Q

(
i− 1

n

)
(19)

This equation is used by Yager [7, 8] to obtain the OWA weighting vectors from
quantifiers. On the other hand, the OWA weighting vectors can be used to de-
termine non-decreasing regular quantifiers.

In the continuous case, we have

σ = 1−
1∫

0

x∫
0

w(y)dydx (20)

and

Hy = 1−
1∫

0

w(x) ln w(x)dx (21)

Dispersion can be related to w(x), if we consider [6] that

ρ =

n∑
j=1

j−1
n−1

(
w[j] − w[j+1]

)
n∑

j=1

(
w[j] − w[j+1]

) (22)

where [·] is a decreasing permutation of weights so that w[j] ≥ w[l], ∀j < l. The
quantity j−1

n−1 is the number of weights but one whose values is at least w[j]. In
the continuous case, this quantity can be substituted by 1

1 It is possible to verify that the set {x ∈ [0, 1]|w(x) ≥ w} is always a finite union of
intervals.
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υ(w) = length{x ∈ [0, 1]|w(x) ≥ w} (23)

and Eq.(22) becomes 2

ρ =
1

wmax

1∫
0

υ(w)dw =
1

wmax

1∫
0

w(x)dx =
1

wmax
(24)

where
wmax = max

x∈[0,1]
w(x) (25)

These measures can be directly linked to the quantifier characteristic function
Q(·), by means of Eq.(18).

3 The Quantifier Threshold

In both the semantics at least t and no more than t, the threshold t is a key
concept, and can be used to characterize or build the associated quantifier. From
comparing Fig.1 and Fig.2, we notice that the smoothness of the quantifier is
related to how precisely the threshold t is defined: less precise thresholds entail
smoother quantifiers. The threshold can be described by a distribution of values
t : [0, 1] → [0, 1], each x with a plausibility degree t(x). Thus, in this context the
fuzziness is associated to the plausibility of the threshold.

Describing a quantifier in terms of the threshold makes simpler to identify and
choose properly the quantifier that better models the concept, then to determine
the OWA weighting vector. Indeed, the decision maker can find more intuitive
to choose a nominal value for the threshold, spread on an interval according to
the value confidence, then to derive the related quantifier, instead of working
directly with the quantifier. An example, of this process is presented in Fig.3.
Similarly, given an OWA weighting vector, or a quantifier, it is possible to check
the semantics against the related threshold.

Fig. 3. Building the OWA weighting vector from the quantifier threshold

The first question to answer is about the relationship between the quantifier
and the associated threshold. The first idea for describing the fuzzy threshold is
to use the derivative of the quantifier, that it is a probability density function as
2 This equation is valid only if Q(·) is continuous. Q(·) may have a finite number of

discontinuities, entailing impulses in its derivative w(·). In this latter case, wmax = ∞
and ρ → 0.
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noted in the previous section. In particular, if we assume that the more probable
a threshold value is, the more plausible it is, we get

td(x) =
1

wmax

d

dx
Q(x) (26)

However, although this solution looks appealing for its simplicity, it can be mis-
leading. For example, let us consider the quantifier depicted in Fig.4-(a) whose
characteristic function is

Q(x) =

⎧⎪⎨⎪⎩
0.9x 0 ≤ x < 0.495
10.9(x− 0.495) + 0.4455 0.495 ≤ x ≤ 0.505
0.9x + 0.1 0.505 < x ≤ 1

(27)

The maximum value of derivation is wmax = 10.9. Therefore, the threshold given
by derivation is

td(x) =

⎧⎪⎨⎪⎩
0.083 0 ≤ x < 0.495
1 0.495 ≤ x ≤ 0.505
0.083 0.505 < x ≤ 1

(28)

Although the quantifier in Fig.4-(a) looks very similar to the linear quantifier in
Fig.4-(b), the thresholds are very different, as depicted by Fig.5. Indeed, even
for small deviation from linearity, the threshold could be dominated in truth
by some few values, as depicted in Fig.5-(a). Therefore, although computing
the threshold distribution by derivation is straightforward and would allow to
link the weighting vector of an OWA operator only by a constant, the result
is sometimes counter-intuitive. The intuitiveness of a threshold is important as
the decision maker is asked to define the threshold assigning to each value x a
plausibility degree t(x); conversely it is also important as the threshold can be
used to verify the consistency of a quantifier or OWA weighting vector.

Alternatively to derivation, it is possible to weigh the degree of plausibility in
terms of the degree of truth assigned to intervals of values. The quantifier Q(·),
defined by Eq.(27) and depicted by Fig.4-(a), is piecewise linear. In particular
it has been obtained as a composition of two quasi-linear quantifiers L1(·) and

(a) (b)

Fig. 4. Piecewise linear (a) and linear (b) quantifiers
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(a) (b)

Fig. 5. The threshold of the piecewise linear (a) and linear (b) quantifiers

L2(·). In particular,
Q(x) = 0.9L1(x) + 0.1L2(x) (29)

A quasi-linear quantifier is characterized by a function as

L(x) =

⎧⎪⎨⎪⎩
0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b

(30)

as depicted in Fig.6.
When the transition range [a, b] ≡ [0, 1], the quantifier is linear. A quasi-

linear quantifier has a threshold uniformly distributed over the transition range

h(x) =

{
1 x ∈ [a, b]
0 otherwise

(31)

In the example above, we can express the threshold plausibility as

t(x) = 0.9h1(x) + 0.1h2(x) (32)

Fig. 6. A quasi-linear quantifier Fig. 7. A threshold plausibility func-
tion
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where

h1(x) = 1, ∀x ∈ [0, 1] (33)

h2(x) =

{
1 x ∈ [0.495, 0.505]
0 otherwise

(34)

In this case, the threshold plausibility is almost everywhere equal to 0.9, with a
small peak within [0.495, 0.505], as depicted in Fig.7. This plausibility function
appears more intuitive than the function drawn in Fig.5-(a).

We can apply this approach to a generic piecewise linear quantifier, as that
one depicted in Fig.8. A piecewise linear quantifier can be always written as

Q(x) =
m∑

i=1

ηiLi(x) (35)

where Li are quasi-linear quantifiers varying on [ai, bi], and such that3

[ai, bi] ⊆ [aj , bj ], ∀i > j (36)

Fig. 8. A piecewise linear quantifier Fig. 9. A piecewise linear quantifier
threshold

The coefficients ηi can be computed by solving a system of linear equations.
Indeed,

d

dx
Q(x) =

m∑
i=1

ηi
d

dx
Li(x) (37)

Within the interval [ai, ai+1] (i = 1..m− 1), we have that

d

dx
Lj(x) =

{
1

bj−aj
∀j ≤ i

0 ∀j > i
(38)

3 This last condition is assured if the derivative d
dx

Q(x) is convex. Here convexity is
meant in the sense of fuzzy sets. A fuzzy set is convex, if all α-cuts are convex. In
the case of real numbers, convex α-cuts are intervals.
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and
d

dx
Q(x) =

Q(ai+1)−Q(ai)
ai+1 − ai

(39)

By varying i = 1..m − 1, we get m − 1 linear equations, each considering the
unknown η1, . . . , ηi. The last equation can be computed considering the interval
[am, bm]. In this interval, we have

d

dx
Lj(x) =

1
bj − aj

∀j (40)

and
d

dx
Q(x) =

Q(bm)−Q(am)
bm − am

(41)

The last equations considers all variables η1, . . . , ηm.
For instance, in the previous example, we get

η1 = 0.9
η1 + 100η2 = 10.9

(42)

whose solutions is
η1 = 0.9
η2 = 0.1

(43)

as expected. After we determine coefficients η1, . . . , ηm, we can build the thresh-
old plausibility function as

t(x) =
m∑

i=1

ηihi(x) (44)

where hi is associated to Li, then it is a threshold uniformly distributed in
[ai, bi], according to Eq.33. Therefore, the resulting plausibility function t(x) is
a step-wise function as depicted in Fig.9.

The problem can be also inverted: given a step-wise threshold, we can build
a piecewise quantifier. Indeed, Q(x) can be still computed by Eq.(35), where

ηi = t(ai)− t(ai−1) (45)

assuming t(a0) = 0. Although, the idea of composing a quantifier as sum of
quasi-linear quantifiers looks simple and intuitive, its application to the whole
class of regular quantifiers is not easy, involving integrals complicate to solve
analytically. Only in few simple cases, such as if the threshold is triangular, the
integral can be still solved. More in general the integral regards ratio of non
polynomial functions, and this can lead to equations hard to solve. However,
continuous quantifiers can be approximated by piecewise linear quantifiers; thus,
their threshold can be approximated by a stepwise threshold. The number m of
intervals, can be chosen in order to minimize the approximation error, for both
the quantifier and the threshold.
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4 The Quantifier Threshold and the Weighting Vector
Metrics

As we previously noticed, a fuzzy quantifier Q(·) is linked to the weighting vector
w by Eq.(19), and in the previous section we dealt with the relationship between
the threshold t(·) and the quantifier Q(·). Thus, it is convenient to establish a
direct link between the quantifier threshold and the metrics characterizing an
OWA weighting vector. The attitudinal character can be computed as

σ = 1−
1∫

0

x∫
0

w(y)dydx = 1−
1∫

0

Q(x)dx =

= 1−
1∫

0

m∑
i=1

ηiLi(x)dx =
m∑

i=1

ηi

⎛⎝1−
1∫

0

Li(x)dx

⎞⎠ =
m∑

i=1

ηiσi (46)

where σi is the attitudinal character of the quasi-linear quantifier Li. Therefore,
the attitudinal character of a piecewise linear quantifier is the weighted mean the
attitudinal character provided by the quasi-linear quantifiers that compose it.
The attitudinal character of a quasi-linear quantifier is easy to compute. Indeed,

σi = 1− ai + bi

2
(47)

Both information ηi and [ai, bi], are related to the definition of the quantifier
threshold. Indeed, from Eq.(45), we get ηi is the level increment of the α-cut
[ai, bi], as depicted in Fig.9.

According to Eq.(24), dispersion is

ρ = min
i=1..m

ρi = min
i=1..m

bi − ai = bm − am (48)

where ρi is the dispersion associated to the quasi-linear quantifier Li, thus

ρi = bi − ai (49)

If we consider that the piecewise quantifier Q(·) is composed by linear quan-
tifier, it is useful to consider the average dispersion, defined as

ρ =
n∑

i=1

ηiρi =
n∑

i=1

ηi(bi − ai) (50)

Therefore, the average dispersion is the area underlying t(·).

5 Conclusions

The OWA operators represent a way for implementing non-decreasing quanti-
fiers, and quantifiers provide a semantic interpretation for the OWA operators.
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Monotonic quantifiers can be fully characterized in terms of the the threshold
that separate the region of truth from the region of falsity. The threshold can
be imprecise, affecting the quantifier smoothness. Modeling a threshold is an in-
tuitive way for building a quantifier, then an OWA weighting vector. The OWA
weighting vector is characterized by metrics regarding the attitudinal character
and the dispersion. Although, they have been generally considered as indepen-
dent, they can jointly be used to verify and validate a quantifier threshold.
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Abstract. Subjective nature of system components makes the natural problems 
more complicated and harder to quantify. Thus, effective reflection of 
uncertainties, which is essential for generating reliable and realistic outcomes, 
has become a major concern for risk assessment. With the growing trend of 
fuzzy modeling and simulation of environmental problem, there is a need to 
develop a risk analysis approach which can use the fuzzy number output for 
characterization of risk. This study has been done to fulfil that need. Integration 
of system simulation and risk analysis using fuzzy approach allowed to 
incorporate system modelling uncertainty and subjective risk criteria. In this 
study, an integrated fuzzy relation analysis (IFRA) model is proposed for risk 
assessment involving multiple criteria. Model is demonstrated for a multi-
components groundwater contamination problem. Results reflect uncertainties 
presented as fuzzy number for different modelling inputs obtained from fuzzy 
system simulation. Integrated risk can be calculated at different membership 
level which is useful for comprehensively evaluating risks within an uncertain 
system containing many factors with complicated relationship. It has been 
shown that a broad integration of  fuzzy system simulation and fuzzy risk 
analysis is possible.  

Keywords: Fuzzy modeling, risk analysis, uncertainty analysis.  

1   Introduction 

A common approach for estimating and assessing environmental risks is to reduce the 
complicated systems into mathematical models. Unfortunately, real-world problems 
are often uncertain with associated risks of pollution impacts. Commonly 
environmental models are calibrated to field data to demonstrate their ability to 
reproduce contaminant behaviour at site. However, system modeling presents a big 
uncertainty due to the lack of reliable field data. On the other hand, specific field 
situations can not be extrapolated over larger distances, even in the same site [12]. 
Also many system components may not be known with certainty but can be stated  in 
linguistic terms. This makes the study problems more complicated and harder to 
quantify. Thus, effective reflection of uncertainties, which is essential for generating 
reliable and realistic outcomes, has become a major concern for risk assessment. 
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Also, in the process of environmental risk assessment, a number of chemical, 
physical, biological and socio-economic factors may have to be considered due to 
their direct or indirect relations to risk impacts. For example, factors of water 
treatment technologies, site remediation practices, and related capital/operating costs 
may be closely related to the levels of risk impacts. Thus, an integrated approach for 
risk assessment that incorporates multiple system components within a general 
framework rather than examines them in isolation would be valuable for internalizing 
intricate interrelationships among a variety of system components. 

Several risk assessment approaches in complicated environmental systems  have 
been developed. Among them probabilistic approach is quite common and have been  
commonly used in the treatment and processing of uncertainty, environmental 
modeling and risk assessment. This technique requires knowledge of parameter values 
and their statistical distribution. However generally site investigation are not detailed 
to determine values for some of the parameters and their distribution pattern and 
sufficient data may not be collected for calibrating a model. These approaches suffer 
from obvious lack of precision and specific site-characterization which make it 
difficult to determine how much error is introduced into the result due to assumptions 
and prediction.  Also Monte Carlo method for uncertainty propagation typically 
requires several model runs that use various combinations of input values, resulting in 
substantial computational demands.  

Another major approach for risk assessment is through fuzzy set theory, which is 
better representative of uncertainty and imprecision and also suitable for situations 
when probabilistic information is not available. Fuzzy set is a mathematical theory for 
the representation of uncertainty [13][15]. Given a degree of uncertainty in the 
parameters, fuzzy set theory makes possible to evaluate the uncertainty in the results 
without any knowledge of probability distribution functions, thereby avoiding the 
difficulties associated with stochastic analysis. Fuzzy set approach has been applied 
recently in various fields, including decision making, control and modeling [1].  

With the growing trend of fuzzy modeling and simulation of environmental 
problem, there is a need to develop a risk analysis approach which can use the fuzzy 
number output and integration of multiple risk criteria for characterization of risk. 
This study has been done to fulfil that need. Integration of  system simulation and risk 
analysis using fuzzy approach allowed to incorporate system modeling uncertainty 
and subjective risk criteria. In this study, an integrated fuzzy relation analysis (IFRA) 
model is proposed for the environmental risk assessment involving multiple criteria. 
Fuzzy transformation method has been used for the simulation of fate and transport 
model of contaminants in the subsurface. The fuzzy outputs from system simulation is 
used for integrated risk assessment using IFRA approach. At the end, some 
conclusions are drawn and recommendations are made for the future research. 

2   Fuzzy Alpha-Cut and Transformation Method 

An alpha cut is the degree of sensitivity of the system to the behavior under 
observation. At some point, as the information value diminishes, one no longer want 
to be "bothered" by the data. In many systems, due to the inherent limitations of the 
mechanisms of observation, the information becomes suspect below a certain level of 
reliability. 
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Fuzzy alpha-cut (FAC) technique is based on the extension principle, which 
implies that functional relationships can be extended to involve fuzzy arguments and 
can be used to map the dependent variable as a fuzzy set. In simple arithmetic 
operations, this principle can be used analytically. However, in most practical 
modeling applications, relationships involve complex structures (e.g. partial 
differential equations) that make analytical application of the principle difficult. 
Therefore, interval arithmetic can be used to carry out the analysis [1]. 

Membership functions define the degree of participation of an observable element in 
the set, not the desirability or the value of the information. The membership function is 
cut horizontally at a finite number of α-levels between 0 and 1. For each α-level of the 
parameter, the model is run to determine the minimum and maximum possible values 
of the output. This information is then directly used to construct the corresponding 
membership function of the output which is used as a measure of uncertainty. If the 
output is monotonic with respect to the dependent fuzzy variable/s, the process is 
rather simple since only two simulations will be enough for each -level (one for each 
boundary). Otherwise, optimization routines have to be carried out to determine the 
minimum and maximum values of the output for each α-level. The -sublevel 
technique consists of subdividing the membership range of a fuzzy number into -
sublevels at membership levels μj = j/m, for j = 0, 1, ...m [8]. This allows to 
numerically represent the fuzzy number by a set of m + 1 intervals [a(j), b(j)]. Figure 1 
shows a triangular fuzzy number, subdivided into intervals using m = 5. 

 

Fig. 1. A triangular fuzzy number with 5 α-level 

2.1   Transformation Method (TM) 

The TM presented by [9] uses a fuzzy alpha-cut approach based on interval 
arithmetic. The uncertain response reconstructed from a set of deterministic 
responses, combining the extrema of each interval in every possible way unlike the 
FAC technique where only a particular level of membership (α-level) values for 
uncertain parameters are used for simulation. The reduced TM used in the present 
study will be next explained. 

Given an arithmetic function f that depends on n uncertain parameters x1, x2, ..., xn, 
represented as fuzzy numbers, the function output q = f(x1, x2, ..., xn) is also a fuzzy 
number. Using the -level technique, each input parameter is decomposed into a set Pi 

of m + 1 intervals )( j
iX  , j = 0, 1, ...,m  where 
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The evaluation of function f is now carried out by evaluating the expression 
separately at each of the positions of the arrays using the conventional arithmetic. 
Result obtained is deterministic in decomposed and transformed form which can be 
retransformed to get fuzzy valued result using recursive approximation. 

3   Environmental Risk Assessment through Integrated Fuzzy 
Relation Analysis Method  

For the purpose of quantifying uncertainty more effectively and integrating the risk 
assessment process with system modelling in a fuzzy environment, Integrated Fuzzy 
Relation Analysis (IFRA) has been proposed. The concept of fuzzy relation was first 
applied to medical diagnosis by [13]. In a very general setting, the process of fuzzy 
relation analysis can be conveniently described by pointing out relationships between 
a collection of pattern features and their class membership vectors. This analysis is 
useful for multifactorial evaluation and risk assessment under imprecision and 
uncertainty [11], [14]. The axiomatic framework of fuzzy set operation provides a 
natural setting for constructing multiattribute value functions in order to sort a set of 
potential actions and make an effective assessment. IFRA method is a generalization 
and refinement of the interval based methods such as Interval Parameter Fuzzy 
Relation Analysis (IPFRA) proposed by [10].  In IFRA the bounds vary according to 
the level of confidence one has in the estimation. One can think of a fuzzy number as 
a nested stack of intervals, each at a different level of presumption or possibility 
which ranges from zero to one and risk assessment can be performed at each level of 
possibility. 

IFRA method for risk analysis will be explained in the context of multi-
contaminants problem in the groundwater. Assuming that chronic daily intake and 
average human life expectancy are constant, the relationship between the risk and the 
pollutant concentration can be expressed as follows: 
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×=
i ii KCI

,           (3.1) 

Where: 

I = Health Risk or Hazard Index; 
Ci = Concentration of pollutant i the groundwater (mg/L); 
Ki = Constant for the pollutant i (mg/L)-1 . 
Thus, the IFRA modeling computation can be initiated by first defining set U for 

pollutants and set V for risk levels as follows:  
U = { ui | ∀ i }             (3.2) 
V = { vj | ∀ j }           (3.3) 

where ui represent pollutant i, and vj is for risk level j.  
Fuzzy subsets of U and V can then be determined as follows:  

,/...//~
2211 mm uauauaA ++=         (3.4) 

,/...//~
2211 nn vbvbvbB +++=          (3.5) 

where ai represents membership grade of ui (for pollutant i) versus the multifactorial 
space, and bj denotes an integrated membership grade for risk level j. The ai value can 
be regarded as a weighting coefficient for pollutant i as follows:  

ii CW ˆa i ×= ,                  (3.6) 

where Wi is general weighting coefficient for pollutant i, which can be calculated 
using some multi-attribute decision-aiding model.  Here a general weight for each 
pollutants has been decided according to the relative risk of the pollutants based on 
different health and ecological risk criteria. This weight was assigned with Analytic 
Hierarchy Process (AHP)  using singular value decomposition (SVD). And iĈ is 

normalized concentration of pollutant i. 
 A fuzzy subset of U × V, which is a binary fuzzy relation from U to V, can be 

characterized through the following membership function:  
[ ]1,0:~ →×VUR           (3.7) 

Thus, we have fuzzy relation matrix:  
{ }njmirR ij ,...,1,0;,...,1,0~ ===         (3.8) 

where rij is the membership grade of pollutant i versus risk level j, which is a function 
of pollutant concentration and risk level criteria. 

With m pollutant under consideration, the pollutants concentration can be 
represented as follows: 

},...,2,1;,...,2,1{ kjmicC ij === ±±

        (3.9) 

where ±
ijc  denotes the lower and upper bound of the interval at the membership level 

μj for the ith uncertain parameter. 
For the problem of integrated risk assessment, the membership grade of fuzzy 

relation between given ±
ijc  at membership level μj for fuzzy number ±C and risk level 

j can be calculated as follows. 
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Case 1: when jiijji vcv ,1, ≤≤ ±
− : 

,,),/()( 1,,1, jivvvcr jijijiijij ∀−−= −−
++             (3.10) 

,,),/()( 1,,1, jivvvcr jijijiijij ∀−−= −−
−−                    (3.11) 

Case 2: when jiijji vcv ,1, ≤≤ +
−  and 1−

− ≤ ijij vc  

,,),/()( 1,,1, jivvvcr jijijiijij ∀−−= −−
++                    (3.12) 

,,,0 jirij ∀=−                                    (3.13) 

Case 3: when 1,, +
± ≤≤ jiijji vcv : 

,,),/()( ,1,1, jivvcvr jijiijjiij ∀−−= +
−

+
+                    (3.14) 

,,),/()( ,1,1, jivvcvr jijiijjiij ∀−−= +
+

+
−                    (3.15) 

Case 4: when 1, −
± ≤ jiij vc  or 1, +

± ≥ jiij vc : 

;,,0 jirij ∀=±                                    (3.16) 

Case 5: when jiij vc ,≤−  or jiij vc ,≥+ : 

;,,1 jirij ∀=+                           (3.17) 

;,)},/()(),/(){( ,1,1,1,,1, jivvcvvvvcMinr jijiijjijijijiijij ∀−−−−= +
+

+−−
−−        (3.18) 

where ijv  is the criterion for pollutant i at risk level j. Thus, we can obtain the 

following interval parameter fuzzy relation matrix:  
{ }njmirR ij ,...,1,0;,...,1,0~ === .             (3.19) 

Similarly, we have: 

},...,2,1;,...,2,1{~ kjmiaA ij === ±± .             (3.20) 

Thus, the integrated risk level can be determined as follows: 

,~~~ ±±± = RAB         (3.21) 
where  cab be a max-min or max-* composition [16]. 

Let ).,...,2,1max( njbb jk == ±±                     (3.22) 

Based on the principle of maximum membership degree [16], it can be determined 
that system has an integrated risk level k. 

4   Case Study 

4.1   Overview of the Study System 

A hypothetical problem is developed to illustrate integrated fuzzy modeling and risk 
analysis approach. The study site contains a leaking underground gasoline storage 
tank. About  600 m away from the tank area, there is a deep bore well used for rural 
drinking water supply. The recent groundwater monitoring data indicate high 
concentrations of several chemical stemming from petroleum products. The main 
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contaminants in leaked petroleum products are benzene, toluene, ethyl-benzene and 
xylenes (BTEX). What makes BTEX a topic of concern is the their toxic effects on 
human's health. All these compounds are acutely toxic and have noticeable adverse 
health effects at high concentrations. The BTEX can enter the human body through 
ingestion of contaminated crops, inhalation of vapour from the soil, intake of 
contaminated drinking water, and skin exposure. Drinking and bathing in water 
containing these contaminants can put one at risk of exposure.  

A multi-component transport problem, with a continuous point source of pollution 
in a porous media with uniform flow field has been studied. For this purpose, a finite 
element generated numerical solution has been used. Such solution generally requires 
extreme simplifications, but the results can be used for approximate solutions. They 
are also very useful to illustrate the sensitivity of different parameters in overall 
uncertainty.  

A numerical model consisting of 40x30 nodal grid with a uniform grid spacing of 
50 m in both direction was used to simulate the model. Zero concentration boundaries 
were placed at the left, upper and lower model boundaries with a constant source 
placed at 500 m from the surface and 750 m from the left boundary. Sample data 
contaminated water is collected from 600 m from the pollution point source on the 
longitudinal section.  

Characteristics of the uncertain parameters and other data used in the simulation 
are shown in Table 1 and Table 2 respectively. 

Table 1. Triangular fuzzy numbers for uncertain  Table 2. Other crisp input data used 
inParameters     simulation 

 
 
 

4.2   Solution Approach 

Fuzzy mathematical modelling using TM were used to gain insight into site 
conditions and to simulate fate and transport of pollutants in the subsurface. The 
simulation study can provide technical bases and solid support for in-depth risk 
assessment for subsurface contamination problems and give a detailed uncertainty 
analysis of the problem. Prediction results as fuzzy numbers will be directly used as 
inputs for risk-analysis models where issues of integration between numerical 
simulation and risk-analysis are to be addressed.  

 
Low 
 0 M-

value 

Medium 
1 M-

value 

High 
0 M-

value 

V(m/day) 0.3 0.6 1.0 

αL (m) 100 200 300 

αT (m) 20 40 60 

Parameters Value 

Thickness of flow, 
b 

50 m 

Source strength, M 120 kg/day 

Effective porosity, 
p 

0.17 

Grid distance (Δx) 50 m 

Grid distance (Δy) 50 m 

Time increment 1 day 
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4.2.1   Simulation of Flow and Transport System  
The procedures for solving the coupled multi-phase flow and multi-component 
transport problem are as follows:  

Step 1: Solve the fluid equations simultaneously for the current time-step using 
time- lagged phase densities and interphase mass transfer. The distributions of 
hydraulic head and Darcy’s velocity in space will be obtained.  
Step 2: Solve the phase-summed transport using current values of apparent 
partition coefficients, interphase mass transfer rates and phase densities.  
Step 3: Back-calculate new interphase mass transfer rates, update densities and 
apparent partition coefficients and repeat step 2 until transport solution converges.  
Step 4: Proceed to the next time-step.  

More detailed formulation and solution processes for the multi-phase and multi-
component transport model in porous media were provided by [5], [6]. And a detail 
discussion of simulation using Transport method has been discussed in [7]. 

4.2.2   Risk Assessment Using  IFRA 
The results of the fuzzy simulation along with other system components has been 
used for risk assessment using IFRA. General weight (Wi) for each pollutants has 
been decided according to the relative risk of the pollutants based on different health 
and ecological risk criteria. Weight has been assigned using AHP with SVD. Weight 
and source strength of different BTEX compounds has been shown in Table 3. Risk 
level criteria for all compounds under study has been shown in Table 4 which has 
been decided in consultation of experts,  EPA’s recommendation of Maximum 
Contaminant Level (MCL) for drinking water and documentation for Immediately 
Dangerous to Life or Health Concentrations (IDLHs). Weighting coefficient ai of each 
pollutants has been calculated using equation 4.6. Fuzzy subset V has been build as 
membership grade of ui (for pollutant i) versus the multifactorial space using  
 

Table 3. General weight and source strength of each pollutants 

Pollutant Weight Source Strength 
(kg/day) 

Benzene 0.45 13.2 
Toluene 0.2 31.2 

Ethyl Benzene 0.25 13.2 
Xylene (o,m,p) 0.1 62.4 

Table 4. Risk level criteria for all compounds under study (amount in mg/L) 

Risk level Benzene Toluene Ethyl Benzene Xylene(o,m,p) 
Low 0-0.005 0-1 0-0.7 0-10 

Moderate 0.005-0.05 1-5 0.7-3 10-20 
Moderately High 0.05-1 5-50 3-30 20-100 

High 1-50 50-250 30-150 100-400 
Very High 50-500 250-500 150-800 400-900 

Deadly >500 >500 >800 >900 
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normalised concentration of pollutants which are fuzzy numbers. The membership 

grade of fuzzy relation between given ±
ijc  at membership level μj for fuzzy number 

±C and risk level j can be calculated according to conditions set in equations 3.10-
3.18. And finally the integrated risk level has been determined using equation 3.21. 

5   Results and Discussion 

A common approach for estimating and assessing environmental risks is to reduce the 
complicated systems into mathematical models. Generally in a deterministic model, 
the model parameters have lot of associated uncertainty. The input data can not be 
determined precisely because the state of knowledge is not perfect or near perfect. 
Assessment of the parameters can be based on expert judgement and sometime 
expressed as linguistic terms. Crisp set is unable to express this sort of  uncertain data 
which can be best expressed by fuzzy numbers.  

In this study, integrated fuzzy environmental modelling and risk assessment has 
been used to show usability of fuzzy simulation technique. The fuzzy transformation 
method has been used for system modelling. A finite element generated numerical 
solution for multi-phase and multi-component transport problem, with a continuous 
point source of pollution in a porous media with uniform flow field has been used for 
predicting pollutants concentration in groundwater. The result of the simulations has 
been shown in Figure 2.  

 

Fig.2. Concentration of different pollutants obtained from Fuzzy system simulation 

Figure 3 is showing the concentration of solute at different time interval obtained 
from system simulation. The lower and upper bound of different membership level of 
fuzzy number has been mapped which show clear narrowing of width as it move to to 
higher lever of α-cut. Result has been compared with other fuzzy methods reported by 
[4]. The width of the concentration membership function obtained from 
Transformation method is narrower than other comparable fuzzy  methods like vertex 
method in the same case study. The difference in the concentration output is mainly 
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due to interaction of the concentration variable in space and time dimensions. 
Neglecting this dependency of input variables result in overestimation of the 
imprecision of solute concentration. A detailed discussion of the effect of fuzzy 
number dependence can be found in [3].   

For the purpose of quantifying uncertainty more effectively using fuzzy output, 
Integrated Fuzzy Relation Analysis has been used. The result of integrated risk 
analysis at different membership degree has been shown in Table 5. Degree of 
membership can be interpreted as confidence level. Uncertainty with the risk 
prediction is decreasing as level of confidence is increasing. Integrated risk at α-level 
0 is ‘Low to Moderately High’ which become narrower at α-level 0.5 as ‘Low to 
Moderate’  which further narrowed to become ‘Moderate’  at α-level 0.8 and above. 
Average risk perception at this contaminated site can be quantified as ‘Moderate’.  

 

Fig. 3. Comparison of solute concentration outputs of  solute transport at different α-levels 
obtained from Fuzzy Transformation method 

Table 5. Integrated Risk at different membership levels 

 
  

 

 
 
 

Membership level Integrated Risk 
0 Low to Moderately High 
0.1 Low to Moderately High 
0.2 Low to Moderately High 
0.3 Low to Moderately High 
0.4 Low to Moderate 
0.5 Low to Moderate 
0.6 Low to Moderate 
0.7 Low to Moderate 
0.8 Moderate 
0.9 Moderate 
1.0 Moderate 
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6   Conclusion  

Proposed IFRA approach presents a new model to integrated risk assessment which 
contribute to the area of environmental risk assessment under uncertainty. Integration 
of  system simulation and risk analysis using fuzzy approach allowed to incorporate 
system modelling uncertainty and subjective and inexact risk criteria. Case study from 
environmental domain has been considered in order to show its applicability in 
environmental engineering in general and environmental risk analysis in particular. 
Model can effectively incorporate different risk criteria and give an integrated 
assessment of risk at different confidence level. Assessment of risk at various 
confidence level present a comprehensive view of risk in uncertain environment and 
help decision maker with more choice.  

Further exploration based on the proposed approach would be beneficial. For 
example it can be easily extended to incorporate effects of different pollutants and 
different remediation techniques and the cost of remediation within in a general 
framework. Trade-offs between environmental and economic objectives can be 
analyzed. In general, IFRA approach can be effectively incorporated in an 
environmental management decision-support system for remediation and managing 
contaminated sites or aquifers.  

References 

1. Abebe A.J., Guinot, V., Solomatine, D.P.: Fuzzy alpha-cut vs. Monte Carlo techniques in 
assessing uncertainty in model parameters, Proc. 4th Int. Conf. Hydroinformatics. Iowa 
(2000). 

2. Dong W., Shah, H.C.: Vertex Method for Computing Functions of Fuzzy Variables, Fuzzy 
Sets and Systems, 24 (1987) 65-78. 

3. Dou, C., Woldt, W., Bogardi, I., Dahab, M.: Steady state groundwater flow and simulation 
with imprecise parameters, Water Resour. Res., 31(11)(1995) 2709-2719. 

4. Dou, C., Woldt, W., Bogardi, I., Dahab, M.: Numerical Solute Transport Simulation using 
Fuzzy Sets Approach, J. Contaminant Hydrology 27(1997) 107-126. 

5. Kaluarachchi, J.J., Parker, J.C.: Modeling multicomponent organic chemical transport in 
three-fluid-phase porous media, J. Contam. Hydrol., 5(1990) 349 - 374. 

6. Katyal, A.K., Parker, J.C.: An adaptive solution domain algorithm for solving multiphase 
flow equations, Computers & Geosciences, 18(1992) 1-9. 

7. Kumar V., Schuhmacher, M.: Fuzzy uncertainty analysis in system modeling, Proceeding  
of ESCAPE –15, Barcelona, Spain(2005), 391-396. 

8. Hanss, M., Willner, K.:  On using fuzzy arithmetic to solve problems with uncertain model 
parameters. In Proc. of the Euromech 405 Colloquium, Valenciennes, France(1999)  
85–92. 

9. Hanss, M.: The transformation method for the simulation and analysis of systems with 
uncertain parameters, Fuzzy Sets and Systems 130 – 3(2002) 277–289. 

10. Huang G. H., Chen Z., Tontiwachwuthikul P., Chakma A.: Environmental Risk 
Assessment for Underground Storage Tanks Through an Interval Parameter Fuzzy 
Relation Analysis", Energy Sources, in Vol. 21, No.1 (1999) 75-96 

11. Pedrycz, W.: Fuzzy sets in pattern recognition, Pattern Recognition, 23(1990) 121-146 



238 V. Kumar, M. Schuhmacher, and M. García 

12. Sauty, J. P.: An analysis of hydrodispersive transfer in aquifers, Water Resour. Res. 16-
1(1980) 145-158. 

13. Zadeh, L.: Fuzzy algorithms, Information and Control 12 (1968) 94–102.  
14. Zadeh, L. A.: Fuzzy Sets and Their Application to Pattern Classification And Clustering 

Analysis. In J. Van Ryzin (Ed.): Classification and Clustering. Academic Press (1977) 
251-299.  

15. Zadeh, L.: Fuzzy logic, IEEE Computer 1 , 14(1988) 83–93. 
16. Zimmermann, H. J.:  Fuzzy Set Theory and Its Applications, 2nd ed., Kluwer Academic 

Publishers, Boston, MA(1991). 



Watermarking Non-numerical Databases

Agusti Solanas and Josep Domingo-Ferrer

Rovira i Virgili University of Tarragona,
Dept. of Computer Engineering and Maths,
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Abstract. This paper presents a new watermarking method for
protecting non-numerical databases. The proposed watermarking system
allows the data owner to define a similarity function in order to reduce
the distortion caused by watermark embedding while, at the same time,
reducing the number of element modifications needed by the embedding
process. A mathematical analysis is provided to justify the robustness
of the mark against different types of malicious attacks. The usefulness
of this extensible and robust method is illustrated by describing some
application domains and examples.

Keywords: Private watermarking, Data hiding, Database security,
Non-numerical databases.

1 Introduction

Watermarking systems have been widely studied for intellectual property
protection (IPR) of multimedia data [1, 2, 3, 4]. It is common for watermarking
systems to make use of well-known cryptographic techniques such as digital
signatures [5] or signal processing techniques such as phase modulation [6] or
spread spectrum [7, 8]. Most methods designed for multimedia data rely on the
perceptual limitations of humans, e.g. our inability to distinguish between very
similar colors or sounds [9, 10]. However, over the last few years, researchers have
realized that these limitations cannot be exploited when trying to protect other
kinds of data, such as software [11] and databases [12].

Recent contributions on database IPR [12, 13] have clarified the main
differences and singularities of typical database content (alphanumeric data) vs
multimedia. Databases have very little redundancy as compared with multimedia
data and this fact makes it very difficult to find enough bandwidth in which
to embed the watermark. Moreover, databases can contain non-numerical or
categorical data like city names, drug names, hair colors, etc. Such non-numerical
data cannot be smoothly marked by increasing or reducing their value or
modifying some of their bits. A non-numerical element must be completely
altered in order to embed a mark and this limitation represents a great challenge
that is addressed in this paper.

Some authors have tackled this problem before ([13]), but their proposals have
some shortcomings regarding data distortion and watermark length. We present

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 239–250, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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here a watermarking system s for non-numerical data that: i) minimizes the
number of changes needed to embed the mark and; ii) reduces the distortion
produced by the mark by allowing the user to customize the watermark
embedding system through the definition of a similarity function related to the
data.

The rest of the paper is organized as follows. In Section 2, we describe our
model in detail and specify the notation and the assumptions used. Section 3
presents our watermarking system. Section 4 analyzes its properties of robustness
against different types of malicious attacks. In Section 5, the usefulness of the
similarity function is justified by presenting some examples and application
domains. Finally, conclusions are listed in Section 6.

2 The Model

We first state a model to which all subsequent solutions refer. We consider the
following elements to define our model: i) the data: what are we working with?
ii) our target: what do we want to achieve? and, iii) the enemy: what kind of
attacks are likely to be used by intruders to destroy our watermark? Moreover,
at the end of this section, some brief comments about notation and assumptions
are made.

2.1 The Data

The data we work with consist of a finite number T of non-numerical and discrete
elements E stored in a database. It is assumed that all elements in E are known
and can be ranked (e.g. alphabetic ordering would do). We easily find lots of
examples of this kind of data: for example, city names, carmaker names or drug
names. The main characteristic of non-numerical data is that they cannot be
smoothly modified, this is, any change is a complete change of value. If the data
we have are so critical that they cannot be modified at all then no watermark
system can be applied because –by its very nature– a watermarking system has
to change some elements in order to embed the mark. In this paper, we assume
that the data can be modified to a limited extent.

We consider a database organized in relations R, where each relation can
be viewed as the union of a primary key R.Pk and one or more attributes A.
The proposed watermarking system can be applied to any relation in which
modification of the primary key is not allowed: as argued in [12], we assume that
modification of the primary key results in an unacceptable loss of information.

Without loss of generality, we consider a relation R formed by the union of a
primary key R.Pk and a single attribute A, that is

R → {R.Pk, A}

2.2 Our Goal

We want to be able to hide a mark into the data without causing unacceptable
data modifications while, at the same time, making the mark as robust as possible
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against different types of malicious attacks. This challenging problem can be
broken down into two goals:

– Minimize the number of changes caused by the watermark embedding
system, while maintaining its robustness;

– Allow the user to extend the system by defining a specific similarity function
for minimizing the impact of the changes.

2.3 The Intruder

The intruder wants to get hold of data D and, after a malicious modification,
sell an unmarked version D′ for which the owners of D are unable to show
their intellectual property rights. Of course, data utility for D′ and D should
be similar for the attack to make sense (otherwise either D′ is useful but still
carries the mark or D′ has become useless as a result of mark removal attacks).
To destroy the mark embedded in D, the intruder can use different types of
malicious attacks.

– Horizontal sampling: In this attack, the intruder randomly selects a set
of tuples and discards the rest. Thus, if the mark depends on any kind of
spatial relation, it will be lost. The mark has to be resilient to this attack,
so that the intruder is forced to reduce the number of tuples selected from
D to an extent such that the resulting D′ is no longer very useful.

– Vertical sampling: Similar to the previous attack, this one is based on
randomly selecting attributes in a tuple that will be erased. In order to resist
this attack, the watermark should be recoverable from a single attribute.

– Perturbation of randomly chosen elements: Let a data element be the
value taken by a specific attribute in a specific tuple. Perturbing a randomly
selected subset of data elements is a very common attack for numerical data.
The main difference when applying this attack to non-numerical data is that
any modification is likely to be significant; it is not easy for the intruder to
perturb non-numerical data without substantial utility loss. In order for the
mark to be resilient against this attack, it should resist as many element
perturbations as needed to render D′ useless.

– Horizontal and vertical re-ordering: This attack consists of swapping
pairs of tuples or attributes without modifying them. If the mark has to
resist this attack, it cannot be based on any relative spatial position of the
data elements.

2.4 Notation and Assumptions

In this section, we briefly enumerate some assumptions and notation used in the
remainder of this article (see also Table 1).

– Hash function H . Secure one-way hash functions such as SHA [14] are used in
our algorithm. Given a value z′, we assume it is computationally unfeasible
to find z such that H(z) = z′.
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Table 1. Table of symbols

Symbols Meaning
E Set of all non-numerical elements
G A pseudo-random generator
N Number of markable elements
n Number of actually marked elements

K1 Secret key used for embedding the mark
K2 Secret key used for computing the mark
P One-dimensional table of products xisi

R A relation in the database
sf A similarity function
T Total number of elements in the data
t A tuple in the relation
V Binary vector of selected elements
γ Fraction of selected elements for embedding

– Pseudo-random number generator G. This generator must be seeded with a
combination of information taken from the data and a secret key only known
to the owner of the data. We assume that the pseudo-random generator
outputs numbers that are uniformly distributed between 0 and 1 Once the
pseudo-random generator is initialized, a new number is obtained by using
the next(G) function.

– Least significant bit lsb(e). This function returns the value of the least
significant bit of the elements e ∈ E and is mainly used in the mark recovery
process.

3 Our Watermarking System

The proposed watermarking system can be subdivided into two subsystems:
embedding and recovery.

3.1 The Embedding Subsystem

Embedding faces three main problems. First, it is necessary to decide where
the watermark has to be hidden, that is, the elements of the attribute A in
the relation R which will be considered candidates for a modification. Second, a
similarity function df can be defined by the user in order to minimize the impact
of embedding a watermark W into the data D and the watermark embedding
system must allow the user to do so. Third, the watermark W must be computed
and embedded into D, while meeting the previous restrictions.

Selection of the embedding positions. Similarly to [12] and [13], we make
the assumption that a primary key r.Pk exists in the relation which cannot be
modified without causing unacceptable damage to data. We want the selected
elements to be picked independently of their relative position in the relation.
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Algorithm 1. Selection of the elements to be modified

1) function GetElementsToModify(K1, R) return
→
V

2) for each tuple t ∈ R do
3) seed G with r.Pk||K1

4) if next(G) ≤ γ then
5) Vt = 1
6) else
7) Vt = 0
8) end if
9) end for

10) return
→
V

11) end function GetElementsToModify

To that end, we use the primary key that uniquely addresses an element. In
order to make this process secure, we use a secret key K1 and we concatenate
it with the primary key r.Pk to obtain a value that is used to seed a pseudo-
random generator G. The data elements for embedding are selected by using the
pseudo-random generator as described in Algorithm 1.

After running Algorithm 1, a one-dimensional table
→
V is obtained. The size

of this table equals the number T of tuples in the relation. Each position of
→
V contains a 0 or a 1 representing the selection result. All positions set to 1
represent the tuples in the relation that are selected for being modified in order
to embed the mark.

In order to control the impact of watermark embedding, the relation between
the selected elements and the total number of elements T is controlled through
the γ parameter. The expected number of selected elements is N = γT . Thus,
if γ = 0.25 then 25% of tuples can be expected to be selected for being marked.

The similarity function. When a mark has to be hidden into numerical data,
numerical data elements can be smoothly modified by slightly increasing or
decreasing their values. On the contrary, hiding a mark into a non-numerical
data element is often not smooth, as it implies substituting a categorical value for
another. Previous approaches [13] assume that the replacement of a categorical
value by another introduces the same distortion into the data independently of
the new categorical value that replaces the original one. Even if we agree that
changing the category of a non-numerical element is an important modification,
we claim that the amount of distortion caused by this replacement depends on
the similarity between the original category and the replacement category. In
order to minimize the impact of watermark embedding on the data, we propose
to resort to a user-defined similarity function, sf(e1, e2) → [0, 1]

Given two elements e1 and e2, the similarity function returns a similarity
value in [0, 1]. A 0 similarity is interpreted as “very different” and a 1 similarity
as “very similar”. Using such a similarity function, the distortion produced by
swapping two data elements can be quantified and minimized. In Section 5 some
example similarity functions applied to different domains are described.
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Hiding the mark. The last step in the embedding process consists of: i) finding
the elements that will replace the original ones in order to hide the watermark;
ii) carrying out the replacement. This process can be denoted as:

Embed(R, K2, sf, M) → R′

To hide the watermark in the relation R we need: i) a secret key K2 different
from the one used to select the embedding position 1; ii) a similarity function
sf to minimize the impact of watermark embedding (optionally defined by the
user); and iii) a security parameter M .

Once the elements that will be modified are selected using Algorithm 1, we
specify the constraint below to be met by the elements that will replace the
original ones:

N∑
i=0

sixi ≥ M (1)

where:
→
X= {xi} are pseudo-random numbers uniformly distributed in [−λ, λ],

where λ is a robustness parameter; S = {si} are the least significant bits of the
replacement data elements expressed as integers in {−1, 1}; M is a user-definable
security parameter that determines the robustness and the impact of the mark.
In the next paragraphs, details are given on the computation of xi and si.

Computation of the values
→
X. A value xi is computed for each selected tuple. that

is, for indexes i such that Vi = 1 (in terms of Algorithm 1). This computation is
performed by using a secret key K2 and the primary relation key R.Pk 2 to seed
a pseudo-random number generator G. Then a set of N pseudo-random numbers
are obtained using G and they are scaled in [−λ, λ]. In other words, we use a hash
function that receives the concatenation of the primary key and a secret key K2
as an input parameter and returns a number in [−λ, λ].

H(R.Pk|K2) → [−λ, λ]

We require G to be such that H(·) is a secure one-way hash function: inferring
the value of R.Pk|K2 from H(R.Pk|K2) should be infeasible.

Selection of the values
→
S . Once the values

→
X= {xi} are fixed, we must determine

values si satisfying Constraint (1). We want to minimize the impact of mark
embedding on data, which translates to reducing the number and magnitude of
changes to be made.

We initialize each si with the least significant bit lsb(ei) of the original element
ei to be marked. Specifically,

1 It is possible to compute the watermark by using only one secret key, but we prefer
to use two keys in order to avoid the risk of correlations between the generated
pseudo-random numbers[13].

2 Since we assume that the primary key cannot be modified, the values of X are only
obtainable by the data owner and cannot be modified.
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Algorithm 2. Computation of
→
S

1) procedure SetSElements(
→
S ,

→
X, M)

2) P =ComputeProducts(
→
S ,

→
X)

3) SortInIncreasingOrder(
→
P )

4) while M̂ < M do

5) i=ObtainIndexOfMostNegativeProduct(
→
P )

6) Swap(
→
S ,i)

7) RemoveIFromP(
→
P ,i)

8) M̂=ComputeMark(
→
S ,

→
X)

9) endwhile
10) end procedure SetSElements

si =

⎧⎨⎩
−1 if lsb(ei) = 0

1 if lsb(ei) = 1

After the initialization of
→
S , we compute

N∑
i=0

sixi = M̂

Next, if M̂ > M then Constraint (1) is met; so, we take M̂ as M and no
changes are introduced to the data (minimum distortion). When M̂ < M then
it is necessary to change some values of

→
S in order to satisfy the embedding

constraint. The way in which the values of
→
S are changed is described in

Algorithm 2. The algorithms called within Algorithm 2 are described in the
remainder of the Section (Algorithms 3 and 4).

Initially, the products
→
P of each xi and si are computed in order to find the

impact of the i-th element in the computation of M̂ . Then the one-dimensional
table

→
P is sorted in order of increasing magnitude. To satisfy Constraint (1) with

the minimum number of changes, the least significant bit si of the most negative
product is inverted; in that way, with a single bit inversion, we obtain a maximum
increase of M̂ . To perform the inversion of si, the element ei in the relation
R must be replaced by the most similar element of E with a different least
significant bit (see Algorithm 4). A similarity function sf is used to determine
the most similar element to ei. This similarity function should be defined by the
owner of the database. However, it is optional and when it is not given, a simple
alphabetical comparison could be made to obtain a similarity value.

Note 1 (On the role of λ). Note that the magnitude of the most negative product
is related to the range [−λ, λ] where the xi are chosen. Thus, a larger λ will reduce
the expected number of iterations of Algorithm 2 and therefore the expected
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Algorithm 3. Computation of the watermark from a given
→
S and

→
X

1) function ComputeMark(
→
S ,

→
X) return M̂

2) M̂ = 0
3) For i = 1 to N do
4) M̂ = M̂ + sixi

5) end for
6) return M̂
7) end function ComputeMark

Algorithm 4. Replacement of an original element by its most similar substitute

1) procedure Replace(
→
S , i)

2) lsb = 0 //Initialize the least significant bit
3) if si == 1 then //change the si value
4) si = −1
5) lsb = 0
6) else if si == −1 then
7) si = 1
8) lsb = 1
9) endif
10) newElement = getMostSimilarElement(ei, lsb, sf)
11) ei = newElement
12) end procedure Replace

number n ≤ N of actually marked elements. The drawback of taking λ too
big is that, the larger λ, the less elements will carry the mark, so that we gain
imperceptibility but lose robustness. Therefore, λ should be chosen so that the
resulting n is not much smaller than the number of markable elements N .

It is easy to see that, following Algorithm 2, the number of changes made to
satisfy Constraint (1) is minimal for a fixed value of λ. Using a similarity function
sf capturing the semantics of data allows each individual change (replacement)
to be minimal in magnitude; this is done by the getMostSimilarElement user-
definable function called in Algorithm 4. The result is minimal data alteration
in watermark embedding.

3.2 The Recovery Subsystem

Watermark recovery must determine whether a watermark is embedded in a
relation. To perform this task, the recovery subsystem receives as parameters:
the relation R̂ which presumably embeds the mark and may have been attacked;
the security parameter M ; and the secret keys K1 and K2 only known to the
data owner. Thus, this subsystem can be denoted as:

Recovery(R̂, K1, K2, M) → (yes/no)
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Similarly to the embedding process, it is first necessary to obtain the marked
elements using Algorithm 1. Note that is not necessary to know the original R in
order to apply Algorithm 1 because the primary key of R is supposed to remain
unmodified in R̂. Once the marked elements are located, the value of each xi

is computed in the same way as in the embedding process, using the secret key
K2. Finally, the value of each s′i is obtained from the least significant bit of the
elements by applying the lsb() function. Note that, in general it can happen that
s′i �= si, as a result of accidental/intentional distortion during the data lifecycle.
Once all the above information is recovered, the recovery subsystem computes∑N

i=0 s′ixi = M̂ ′

The recovery subsystem decides that the data contain a watermark when
M̂ ′ ≥ M

2 . Otherwise, no mark is recovered.

4 Robustness Analysis

The proposed watermarking system is robust against random alterations and
vertical and horizontal sampling. The intruder can perform a broad range of
different malicious attacks. We now describe how the watermark embedded by
our watermarking system tolerates these attacks.

– Vertical sampling: Our system can be applied to any relation R with at
least a primary key and an attribute A. The inserted mark does not depend
on any relationship between attributes and can be embedded individually
in as many attributes as desired. Thus, the attack based on selecting some
attributes and erasing the rest has no effect on our watermark because, at
least, one marked attribute remains.

– Horizontal and vertical re-ordering: The horizontal re-ordering attack
consists of swapping the positions of pairs of tuples without modifying them.
Our watermarking system is not vulnerable to this kind of attack because the
relative position of the elements in the relation R is not used to determine
whether they are marked.
Similarly, vertical re-ordering consists in swapping the positions of pairs of
attributes without modifying them. As argued in the previous sections, our
method is applied to an attribute and it does not depend on its relative
position in the relation.

– Perturbation of randomly chosen elements: The recovery system
detects the existence of a mark when M̂ ′ ≥ M

2 . The intruder wants to
destroy the mark by modifying the value of randomly chosen elements. If
the intruder is able to destroy enough marked elements then the mark will
not be recovered. Thus, a natural strategy that leads to arbitrary reduction
of the probability of mark destruction is to increase the number n of marked
elements, which can be done by decreasing λ and increasing the number N
of markable elements.

– Horizontal sampling: This malicious attack is based on a random selection
of a fraction of tuples of a relation R. This usually tricky attack is not
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effective against our method because the amount of non-selected tuples has to
be very big compared with the number of tuples modified by the watermark
in order to destroy it. Considering that a non-selected tuple is like an altered
tuple, the analysis is analogous to the one above for perturbation attack.

4.1 A Toy Example

To illustrate the robustness of our model against perturbation of randomly
chosen elements, we take a toy database that consists of a relation R with 250
tuples or elements. We embed a mark that modifies n ≤ N = 25 elements (10%)
and a mark that modifies n ≤ N = 30 elements (12%). We assume that, for
data to stay useful, up to 30% of elements can be modified. This is up to 75
element modifications, about three times the number of modifications caused by
watermark embedding. Also, we have chosen a value for M such that the mark
is destroyed if more than half of the N markable elements are modified. If the
intruder modifies P elements among the total T elements, the probability that
she destroys the mark by randomly hitting more than N/2 markable elements is

P [Destruction] =

∑N/2
i=0

(N

N
2 +i

)(T−N

P−( N
2 +i)

)
(T

P

)
Table 2 shows the probability of the intruder destroying the mark by modifying
less than 30% of the elements, that is, up to P = 75 elements. It can be seen that,
even if the intruder modifies three times as many elements as those modified by
the mark embedding algorithm (75 vs 25) her probability of success is no more
than 0.25.

Table 2. Destruction of the mark in the toy example

Modified elements P(Destroy |25 marked elem.) P(Destroy |30 marked elem.)
25 0.0000087 ≈ 0
30 0.000077 0.0000009
35 0.000422 0.00001
40 0.0016 0.00007
45 0.0051 0.00034
50 0.0132 0.0012
55 0.029 0.0038
60 0.057 0.0099
65 0.102 0.022
70 0.16 0.045
75 0.25 0.081

5 Application Domains

The main application of the presented watermarking system is to protect
non-numerical (i.e. categorical) databases from being copied and re-sold by
an intruder. These databases are sold to companies which want to obtain
information from the data, usually by applying data mining techniques.
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We next illustrate how a similarity function could be defined in a couple of
specific example databases.

5.1 Drugs Database

Imagine that we have a drugs database storing information about the drugs
taken by a set of patients. We may have information about the composition
of each drug and we can determine the similarity between them. In this case
of study, the similarity function defined by the user may be based in the next
considerations:

Similarity function: Coincidences in the number and proportion of
components in a given drug. Following this similarity function we can replace
the element “ASPIRIN 250g” by the generic element “acetylsalicylic acid 250g”
without any distortion. Note that the element “acetylsalicylic acid 250g” must
be in the database in order to be considered for replacing the element “ASPIRIN
250g”. Similarly, if we try to replace “ASPIRIN 250g” by “CHLORHEXIDINE
GLUCONATE 1g” the similarity function must return a value very close to 0.

5.2 Network Nodes Database

Let us consider a case where we have the database of an internet service provider.
This database contains a set of network nodes determined by a discrete label
(e.g. A2345-C, B3490-D). If we use alphabetical order and do not care about the
similarity between nodes, the impact produced by watermark embedding could
be important. However, if we consider a similarity function this impact could be
clearly reduced.

Similarity function: In this case, the similarity function can be defined as the
number of “hops” between nodes. This measurement gives a very concise idea
about the location of the nodes. Thus, if two nodes are nearby, the similarity
function will tend to 1. On the contrary, if the number of “hops” from one node
to another is large, the similarity function returns a number close to 0.

6 Conclusions and Further Work

We have presented a new watermarking system for protecting non-numerical
data. The system minimizes the number of modifications needed to embed
the mark and allows the data owner to define a similarity function to guide
each individual modification so that the utility loss it entails is minimal. The
robustness analysis demonstrates the resiliency of our mark against different kind
of malicious attacks. The similarity function is user-defined and depends on the
particular database to be protected; this has been illustrated with two examples.
Future work will involve a false positive rate analysis and extensive robustness
tests in large databases with a broader range of attacks. Also, the definition of a
similarity function that optimally (rather than reasonably) captures data utility
loss in a specific database is a nontrivial issue for future research in artificial
intelligence.
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Abstract. Schema and record matching are tools to integrate files or
databases. Record linkage is one of the tools used to link those records
that while belonging to different files correspond to the same individual.

Standard record linkage methods are applied when the records of both
files are described using the same variables. One of the non-standard
record linkage methods corresponds to the case when files are not de-
scribed using the same variables.

In this paper we study record linkage for non common variables. In
particular, we use a supervised approach based on neural networks. We
use a neural network to find the relationships between variables. Then,
we use these relationships to translate the information in the domain of
one file into the domain of the other file.

Keywords: Database integration, record linkage, re-identification algo-
rithms, neural networks, data mining, information fusion, information
privacy.

1 Introduction

Information systems are currently pervasive and information about individuals
is scattered in databases. Such information is normally distributed and stored
in an heterogeneous way.

In this scenario, database integration techniques (e.g., data cleaning and in-
formation fusion techniques) are crucial. Such techniques intend to make pos-
sible the retrieval of relevant information of a single individual even when the
required data for answering a query was distributed and represented in a non
homogeneous way.

Actually there are many techniques for doing these tasks. Re-identification al-
gorithms [17] are one of the most important methods for information fusion and
data cleaning. They are used to identify those objects that appear in more than
one file. For example, there are algorithms (record linkage / record matching
algorithms) used to identify e.g. those records that while found in different files
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correspond to the same individual [8]. Also, there are algorithms (schema match-
ing) that are used to identify variables that under different names correspond to
the same semantic concept [13].

In this work we will focus on record linkage algorithms. As said, the goal of
record linkage algorithms is to link the records that while belonging to different
files or databases correspond to the same individual.

Such algorithms are used for several different purposes. One of their uses is
information fusion (information integration or database integration). In this case,
record linkage permits to join two, or more, files putting in a common framework
all the individuals represented in the files. In this case, record linkage algorithms
are combined with other techniques for data consolidation. This is, techniques
to remove inconsistencies and improve data accuracy. So, the resulting database
has a better quality than the original ones.

Data integration and data consolidation can either be considered as a final
process (as in databases), or as one data preprocessing technique (as in multi-
database data mining).

Another use of record linkage tools is risk assessment in privacy preserving
data mining (PPDM) [1] and statistical disclosure control (SDC) [15]. In this
framework, the algorithms permit to evaluate whether a protection mechanism
provides an adequate protection to the providers of sensitive information (e.g.
to the respondents of an economic survey). This is, record linkage is a tool
that permits to evaluate whether disclosure is avoided when sensitive data is
perturbed before its public release.

Classical record linkage methods need that files to be joined have some vari-
ables in common, e.g. the age of an individual appears in both files. The diffi-
culties of this approach are caused by the fact that the files to be linked usually
contain errors. These errors may be accidental (e.g., due to an incorrect manip-
ulation of the data) or intentional (e.g. to protect sensitive information as in
PPDM).

The goal of advanced record linkage methods is the re-identification of records
when files are not described using common variables. In this case, standard record
linkage algorithms cannot be applied. So, alternative approaches are required.
One of the approaches is based on the so-called structural information [12].

In [8], [9] we show that record re-identification is possible using OWA opera-
tors [18] and twofold integrals [5], [6]. In such works, the structural information
corresponds to computing some numerical representatives of the data. Fuzzy in-
tegrals are used for extracting several representatives for each record, and then
standard re-identification algorithms can be applied.

Another approach for dealing with such problem is to study the relationship
or dependence among the variables in the different files. In this case, in the case
that only two files A and B are considered, the goal is to build a model between
the variables of A and the variables of B. In this way, it is latter possible to
translate the values on the domain of A into valuess on the domain of B. Then,
after such translation, re-identification is possible using standard record linkage.
This is done using the new translated file, say A′, and the original file B.
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In this work we consider that the construction of such model is done in a
supervised way. This is, we consider that there are a set of records of both files
A and B for which we know the correct re-identifications. Such records are used
to build the model between the two files.

In this paper we propose the use of neural networks (with a backpropagation
algorithm) for learning such model. We show that re-identification based on this
approach leads to good results for several problems. These results are significa-
tively better than previous approaches. So, the use of a supervised tool permits
to increase the accuracy and performance of record linkage, even in the case that
files do not share variables.

A related work for re-identification that also use neural networks is SEMINT
(SEMantic INTegrator). SEMINT, described in [4], is a tool based on neural net-
works, to identify relationships between attributes or classes in different database
schemas. [4] shows that it is possible, using schema information and data content,
to produce rules for matching corresponding attributes automatically. Although
this work is related in the sense of using neural networks for re-identification,
their goal is different from the one described in this paper. Here, we focus on
record matching (record linkage) instead of schema matching.

The structure of the paper is as follows. In Section 2 we describe some elements
that are needed latter on. Then, in Section 3 we introduce our approach to record
linkage. Section 4 describes some of the experiments performed. Then, the paper
finishes with some conclusions and description of future work.

2 Preliminaries

This section describes the backpropagation algorithm using gradient descent as
well as classical re-identification methods. These methods are used by our ap-
proach when we transform the problem of re-identification without non-common
variables into the standard problem of re-identification with common variables.

We start with the description of the backpropagation algorithm, and then, in
Section 2.2 we revise the re-identification methods.

2.1 The Backpropagation Algorithm

Neural networks are one of the most common pattern recognition techniques.
In some problems, when there is no clear method to establish a model, neural
networks are an alternative approach.

Neural networks can learn the relationships among attributes directly from its
instances/examples and empirically infer solutions from the data without prior
knowledge.

Unlike traditional computing, neural network are trained, not programmed.
One of the learning algorithm for training neural networks is the backpropagation
algorithm.

There are two ways for applying backpropagation algorithm, one of them is
using analytical derivations [3], and the other is using the method of gradient
descent [10]. We have used the second approach.
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The backpropagation algorithm using the method of the gradient descent
looks for the minimum of the error function in a weight space. So, the goal is
to find a combination of weights which minimizes the error function. Then, the
method computes for each example the gradient of the error function, and with
this gradient the weights are updated. This process is repeated several times for
all examples. A complete description of this method is given in e.g. [10].

To apply this algorithm we need to use the so-called activation function which
guarantees the continuity and differentiability. In our implementation we have
used the Sigmoid function (see Section 4.2 for details).

2.2 Re-identification Methods

The goal of classical re-identification methods is to link records that while belong-
ing to different files correspond to the same individual. In the classical approach
records are described using the same variables. E.g., we have one file with the
census of a city or country and another file with the income tax. Both files con-
tain the fields name, surname, address, driving licence, insurance number and
others. Besides both files contain other data specific to either census informa-
tion or income tax information. Record linkage algorithms permit to link specific
information about census and income taxes when they refer to the same indi-
vidual using the common variables. Difficulties in the re-identification process
are due to the errors in names, address, and so on. These errors can be due
to misspellings (e.g., John vs. Jonh) or changes of location (e.g., Clark Kent
previously living in Smallville has moved to Metropolis).

Two main approaches have been used for re-identification in the standard
case. See [11, 16, 17] for more details:

Distance-Based Record Linkage: Records of two files A and B are com-
pared, and each record in A is linked to the nearest record in B.

Probabistic Record Linkage: Conditional probabilities of coincidence (and
non-coincidence) of values among records given correct matching are ob-
tained. From these conditional probabilities an index is computed for each
pair of records (a,b) with a in A and b in B. This index is used to classify
pairs as linked (a and b correspond to the same individual).

2.3 Record Linkage Evaluation

The comparison of non-standard record linkage methods is not easy. The most
straightforward way is to compare the results of new approaches with existing
ones. We will use this approach in Section 4 to evaluate the results of our new
approach. In particular, we will compare with the results in [8], [9].

An alternative approach used in [8], [9] was to compare the performance with
a random strategy. This approach shows that the probability of correctly linking
more than one or two records in a file of more than 100 records is negligible.
We do not include such comparison here as the number of re-identified records
is clearly significant.
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3 Record Linkage Using Neural Networks

In this paper, as we have explained in the introduction, we consider the re-
identification problem when files do not share variables. We will consider the
case of only two files.

To deal with this problem, we reduce the non-standard situation into one in
which we have two files with common variables. So, we are able to apply the
methods described in Section 2.2. To do so, we use here a supervised approach,
following machine learning jargon. This is, we have a set of examples from which
we are able to learn some models.

Formally speaking, we will consider in our approach that we have two files A
and B, and that these files have different variables but that their records contain
information on the same individuals. Then, in order to apply traditional record
linkage methods we transform the original file A into a new file A′ that have
the same variables of file B. For achieving this, under the supervised learning
assumption, we construct a neural network for each variable in B in terms of
the variables in A. Then, using such networks we can calculate for each record
a in A a new record a′ that contains the same variables than the records in B.

Let Asl and Bsl be two files with the data for the supervised learning process,
and let A and B be the two files for re-identification. Let VA be the variables in
files A and Asl and let VB be the variables in files B and Bsl. As files Asl and
Bsl are used in the learning process, both files should contain the same number
of records and it is known the correct matches between records in Asl and the
records in Bsl.

Considering this notation, our approach can be defined as follows:

1. For each variable v in VB do:
(a) Define a neural network N with input variables VA and output variable

v. Let NN(a) denote the output of this neural network for inputs a.
(b) Apply the backpropagation algorithm to learn the parameters of the

model NN using the file Asl and a projection of the file Bsl on the
variable v.

(c) For each record a in A, find a′ = NN(a), and use these values to define
the projection of A′ on variable v.

2. Apply standard record linkage (either distance-based or probabilistic record
linkage) to files A′ and B. Note that the file A′ contains as much variables
as B.

The next section describes the experiments that we have performed to validate
our approach.

4 Experiments

To analyze our approach for record linkage, we have tested it using eight different
problems. These problems, that were previously studied in [8], [9], are defined us-
ing data obtained from the UCI repository [14] and the Data Extraction System
(DES) from the U. S. Census Bureau [2].
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To test record linkage in the case of non-common variables, we have split the
downloaded files into two different files in such a way that both files contained
exactly the same records but only some of the variables. The partition has been
done considering only the numerical attributes, and among them those with a
high correlation coefficient (greater than 0.7). All other attributes have been
discarded.

Below, we list the problems studied. For each problem, we give two lists of
attributes. They correspond to the attributes considered in each of the files.
All attributes are numerical, and detailed description of the meaning of the
attributes can be found in the original files.

Problems studied:

– Iris Plants Database: {sepal length, petal length}, {sepal width, petal width}
– Abalone Database: {Height, Whole weight, Viscera weight}, {Length, Diam-

eter, Shucked weight, Shell weight}
– Ionosphere Database: {V5, V7, V9, V11, V13, V20}, {V15, V17, V19, V21,

V23, V30}
– Dermatology Database: {polygonal papules, follicular papules, oral mucosal

involvement, knee and elbow involvement, scalp involvement, melanin incon-
tinence, exocytosis, focal hypergranulosis, follicular horn plug}, {clubbing of
the rete ridges, elongation of the rete ridges, thinning of the suprapapillary
epidermis, vacuolisation and damage of basal layer, saw-tooth appearance of
retes, perifollicular parakeratosis, band-like infiltrate}

– Boston Housing Data: {INDUS, RM, AGE, RAD}, {NOX, TAX, MEDV}
– Faults in a urban waste water treatment plant (Water-treatment): {PHE,

DBO-E, SS-E, SSV-E, SED-E, COND-E, DBO-D, SSV-D, DBO-S, RD-
DBO-S, RD-DQO-S}, {PH-P, DBO-P, SS-P, SSV-P, SED-P, CONDP, PH-D,
DQO-D, COND-D, SS-S, SED-S, COND-S, RD-DBO-G, RDDQO-G}

– Wisconsin Diagnostic Breast Cancer (WDBC): {V2-V4, V6-V8, V10, V12,
V13, V18, V20, V26, V29, V32}, {V5, V9, V15-V16, V19, V22-V25, V27-
V28, V30}

– 1995 - Current Population Survey (Census): {AFNLWGT, EMCONTRB,
PTOTVAL, TAXINC, POTHVAL, PEARNVAL, WSALVAL}, {AGI, FED-
TAX, STATETAX, INTVAL, FICA, ERNVAL}

The number of records in each file is not homogeneous. For example, the Iris
Plants Database contains only 150 records while the Abalone database contains
4177 records.

4.1 Defining the Re-identification Problem

For applying the supervised approach, we have splitted the files into two parts.
One for learning and the other for testing. Testing has been done using for all
cases, 100 records. Such records have been taken at random from the original
set. Then, the remaining records have been used for learning. For example, in
the case of the Iris Plants Database we have used 50 records for learning an 100
records for experiments, and in the case of the Census data (that contains 1080
records), we use 100 for test and 980 for learning.
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In order that the range of the variables do not affect the performance of record
linkage, we have included a pre-processing step consisting on the normalization
of the raw data. We have considered both ranging (translation of the values into
the [0, 1] range) and standardization (values are normalized using the mean and
the standard deviation).

4.2 The Neural Network

As it is known, a neural network has several parameters: number of hidden layers,
number of hidden neurons, learning coefficient, activation function, initial values
and number of iterations over the training set.

In our experiments we have fixed all of them as constants except for the
number of hidden neurons. For this latter parameter, we have considered different
values between 5 and 50.

The fix parameters are the next:

Initial values: The initial weights of the network are calculated using Nguyen-
Widrow method [7].

Number of iterations over the training set: 100 iterations.
Learning coefficient: It is constant in the whole learning process and equal

to 0.3.
Number of hidden layers: All neural networks have one single hidden layer.
Activation function: It is the sigmoid function (f(x) = 1/(1+e−x)) in all the

experiments.

Fig. 1. Graphical scheme of the neural networks array

As described in Section 3, we have one neural network for each output variable.
Each one has |VA| input variables (the number of variables in the files A and
Asl) and one output variable. Due to this, we have not one single neural network
in our experiments, but an array of them. The length of this array equals the
number of variables in files B or Bsl.
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4.3 Results

The experiments performed show that the supervised approach to record-linkage
for non-common variables lead to good results. Figures 2 and 3 represent the
rate of success (the percentage of hits) obtained for each problem and for each
configuration of hidden neurons. As the outcome of each experiment depends
on the random selection of some records, and to the randomness present in the
initialization of the neural network, we define the rate of success as the average
of 5 different executions with the same problem and the same parameters.

Results are given also comparing probabilistic (figures on the right) and
distance-based record linkage (left). Each chart in Figures 2 and 3 includes sev-
eral lines, each one representing the success obtained for a problem for different
sizes of the hidden layer. Two of the problems described in this section are not
included as only a few records were re-identified.

These figures show that the best configurations are obtained when the nor-
malization corresponds to ranging, and the record-linkage method selected is
distance-based record linkage. This configuration leads to the best results in half
of the tests: abalone with 14% hits using 45 hidden neurons, census with 47%
hits using 35 hidden neurons, water-treatment with 40% hits using 10 hidden
neurons and the wdbc problem with 80% hits using 15 hidden neurons.

The results obtained with the rest of configurations are not so good. Never-
theless, we obtain average results for the ionosphere problem with 12% hits using
standardization and distance-based record linkage with 25 hidden neurons.

We can also observe that the larger is the number of hidden neurons, it is not
true that the larger the success of the method. For example, the best result for

Fig. 2. Graphical results using ranging pre-processing, left results are using distance
based record linkage and right results are using Probability record linkage

Fig. 3. Graphical results using standardization pre-processing, left results are using
distance based record linkage and right results are using Probability record linkage
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the wdbc problem corresponds to 80% of hits while this solution was achieved
using 15 hidden neurons. This is probably due to an overfitting problem, when
the number of hidden neurons is too large. According to the figures, it seems
that an appropriate number of neurons is around 15.

Our method does not lead to good results for two different problems, derma-
tology and iris problem. From our point of view, there are different causes to
these bad results. One of them corresponds to the number of records as in both
cases the number of records are not much (150 records for the iris problem and
358 for the dermatology problem. Another cause seems to be a low number of at-
tributes, the iris problem has only two attributes. Finally, it can be observed that
the dermatology problem has a lot of missing values, that can distort the results.

Up to now, the study of record linkage for files with non-common variables
was focused on unsupervised approaches. Supervised methods have been used
in the case of common variables. In this setting, neural networks were used for
schema matching. This approach is not applicable here, as we assume that the
variables used to describe records in the two files are different. Thus, it is not
possible to find a one-to-one correspondence between them.

Then, when comparing the performance of our approach with respect to un-
supervised methods, we naturally obtain better performance. This is the case,
for example, when we compare the present approach with the ones based on
OWA operators [8] or fuzzy integrals [9]. In such situation, we observe that the
rate of success (number of re-identifications) of the new approach is larger than
in previous research.

For illustration, we can underline that in the wdbc problem we obtain now
80% of success over 26% with OWA operator, or 11% hits with the Twofold
integral; in the census problem we get 47% over 11% with OWA operator and
8% with the Twofold integral; and in the water-treatment problem we get 40%
over 17% with OWA operator and 9% with the Twofold integral.

4.4 Alternative Experiments

In the previous sections we have described the results when the splitting between
the files for learning and test was done considering a constant number of records
for the testing phase. Alternatively, we have also considered the same problem
but splitting the files having 80% of the records for learning and the remaining
20% for testing.

For some of the files the results do not change significantly. This is the case
of e. g., housing and wdbc. The last one changes from 80% to 78.5% while the
number of hits goes from 80 (over 100 records in the testing set) to 88.7 (over
113 records).

Some of the results are rather different. Significant differences are obtained for
iris and dermatology. Nevertheless they are caused by the fact that the number
of records in the training set has increased while the size of the testing set has
decreased. So, an increase of percentage is not of any interest here.

It is worth to mention the differences on the results obtained for the abalone
and census. While in relation to the proportion of hits, the abalone has 14%
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of hits in the first approach, now, in the second one the proportion is only
1.9%. Nevertheless, while the number of records is 100 in the first approach, this
number was much increased in the second approach to 836. So, in absolute value,
the number of records re-identified is slightly larger in the second approach (16
over 14 hits). Similarly, in the case of the census, the proportion of hits in the
first approach is 45% and in the second approach is only 28.3%. Nevertheless,
in the first approach the number of hits is 45 and in the second one is 61. This
increase was obtained when the number of records considered moved from 100
to 216. Note that this increment corresponds to a decrement of the number of
records considered in the learning process. Therefore, the results are still rather
significant for both files.

Now we summarize the best results obtained in the second set of experiments,
giving details on the record-linkage method used as well as the normalization
method (ranging and standardization) for the best results. Here PRL stands for
probabilistic record linkage, DBRL stands for distance based record linkage .

– Abalone: 15.6 hits or 1.9% (using ranging and DBRL, with 40 hidden neu-
rons)

– Census: 61.2 hits or 28.3% (using ranging and DBRL, with 25 hidden neu-
rons)

– Dermatology: 6.8 hits or 9.7% (using ranging and DBRL, with 30 hidden
neurons)

– Housing: 5 hits or 5% (using ranging and DBRL, with 15 hidden neurons)
– Ionosphere: 7 hits or 10% (using standardization and PRL, with 20 hidden

neurons)
– Iris: 2.6 hits or 8.7% (using standardization and PRL, with 35 hidden

neurons)
– Water-treatment: 37 hits or 48.7% (using ranging and DBRL, with 25 hidden

neurons)
– Wdbc: 88.7 hits or 78.5% (using ranging and DBRL, with 25 hidden neurons)

5 Conclusions and Future Work

In this paper, we have studied an alternative method for record linkage based
on neural networks when information is available for using supervised machine
learning techniques. The method is particularly suited for numerical information.

We have proved that the use of neural networks to model the relationships
between the variables is a suitable tool for such re-identification as they have
lead to good results in eight different problems.

In this paper, we have compared this new approach with others, based on
structural information. We show that when supervised approaches can be ap-
plied, this new approach is better than the previous existing ones. Nevertheless,
the application of this method requires a training record set.

As future work, we consider the realization of more experiments, and the
study of alternative types of neural networks. Finally, we consider the possibility
of extending this approach in the case that no learning data is available.
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Abstract. Genomewide analysis of linkage disequilibrium (LD) is com-
monly based in the maximum likelihood estimator. This estimator of LD
suffers of a well known bias toward disequilibrium that becomes partic-
ularly serious in small samples with SNPs that are not very common in
the population. Algorithms able to identify LD patterns, such as hap-
lotype blocks or LD decay maps do a non-random selection of SNPs to
be included in the analysis in order to remove this bias. However, they
introduce ascertainment bias that can mask the real decay of disequilib-
rium in the population, with several consequences on the validity and
reproducibility of genetic studies. In this work, we use a new Bayesian
estimator of LD that greatly reduces the effect of ascertainment bias
in the inference of LD decay. We also provide a software that use the
Bayesian estimator to compute pairwise LD from SNP samples.

1 Introduction

Variations in the DNA structure can help to determine genetic susceptibility to
disease, as well as to reconstruct the history of human populations, and natu-
ral selection [1]. Single nucleotide polymorphism (SNPs) — variations in human
DNA that occur in at least 1% of the population — have become nowadays an
invaluable resource to map the human genome. Each of the two possible variants
of an SNP on a chromosome pair, called here alleles, acts as a flag on the chro-
mosomal region. Evidence that consecutive alleles on the same chromosome are
inherited together in the same haplotype can help to discover DNA regions asso-
ciated with disease, and eventually to identify functional loci that, by themselves
or in groups, modulate disease risk. A key to this process is linkage disequilib-
rium (LD), defined as association between SNP variants that results in alleles
at two distinct loci being inherited together.

Several pairwise measures of LD to capture the strength of association be-
tween alleles of SNPs have been proposed [2], and are widely used because of their
simplicity. Among them, the measure D and its normalized version D′ are the
most popular [3], and are usually estimated in a sample by maximum likelihood.
The main problem of the maximum likelihood estimates (MLE) of D and D′ is
that they exhibit a strong bias toward disequilibrium that becomes particularly
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serious in small samples with SNPs that are not very common in the population
[4]. Several solutions have been proposed, including non-parametric approaches
[4, 5] but none of these solutions appears to be able to remove the bias without
imposing some “ad hoc” threshold on the minimum allele frequency (MAF) of
those SNPs that can be used to infer the pattern of LD in the population. For
example, the default setting of HaploView to identify haplotype blocks by using
confidence intervals imposes a lower bound of 0.05 on the MAF [6, 7].

However, imposing this threshold leads to a non-random selection of SNPs and
introduces a different type of bias called ascertainment bias. The ascertainment
bias can be introduced when SNPs identified in small samples —called SNP
panels— are typed in larger samples of chromosomes. In this case, SNPs with
small MAF are not typed in the larger samples, thus potentially biasing the
pattern of LD. Ascertainment bias is also introduced when SNPs are identified
and typed by direct sequencing but the information about invariant sites has
been lost [8, 9], or when not all the variant loci are chosen but only a non-
random selection of them for economic reasons. As an example, SNPs typed in
the International Hapmap Project[10] have an average density of one marker per
5 kb, and the SNP selection was previously done by using smaller samples. In
this situation, an ascertainment bias has been shown in [11, 12].

We have recently introduced a Bayesian measure of LD that finds a better
approximation of the real magnitude of LD in the population, and maintains the
same linear computational complexity of the maximum likelihood estimator of
D′ [13]. The main feature of our Bayesian estimator is to use a prior distribution
on pairwise associations between different SNPs that is a decreasing function of
their physical distance. The effect of the prior distribution is to drastically re-
duce the bias toward disequilibrium even in small samples, without imposing any
threshold on the MAF. In this paper we explore the efficacy of our Bayesian solu-
tion to determine robust maps of LD decay, and show the lack of ascertainment
bias compared to LD decay maps based on the traditional estimators of LD.

The remaining of this paper is as follow. We describe briefly the common
pairwise measures of LD and our Bayesian solution in Section 2. In Section 3,
we examine the effect of SNPs selection on real data taken from the Hapmap
Project[10]. Conclusions and future work are in Section 4.

2 Measures of Linkage Disequilibrium

Given two loci L1 and L2, with allele variants A/a and B/b, we define the
probability of transmission of the haplotype pair A = i, B = j by pij = p(L1 =
i, L2 = j), i = A, a, j = B, b. These probabilities can be displayed into a 2 × 2
table summarizing the transmission rates of the four possible haplotype pairs:

Locus Locus 2
1 B b
A pAB pAb pA

a paB pab pa

pB pb 1
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The margins of the table are the allele frequencies, and we assume A and B
denote the major alleles. Without loss of generality, we can also assume that
pA ≥ pB.

The two loci are in linkage equilibrium when all the allele variants are trans-
mitted independently so that pij = pipj for all i = A, a, j = B, b. On the
other hand, LD implies some form of stochastic dependency between the alleles
and hence some form of departure from independence of the probabilities pij . A
widely used measure of LD is the parameter D defined by D = pAB − pApB.

Because the magnitude of D is a function of the allele frequencies thus compli-
cating its interpretation, several authors have proposed different forms of normal-
ization [2]. The most common one is the measure D′ in [0, 1] that was suggested
by Lewontin [14] and is defined as |D|/ maxD:

D′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−pAB − pApB

papb
if D ≤ 0

pAB − pApB

papB
if D > 0

(1)

with D′ = 0 in linkage equilibrium, 0 < D′ < 1 measuring increasing magnitude
of disequilibrium, and D′ = 1 in perfect disequilibrium, when there is perfect
dependency between alleles.

Suppose now we have a data set of N individuals, that correspond to n = 2N
known haplotype pairs for the two loci (we assume here known phase for all
haplotype pairs):

Locus Locus 2
1 B b
A nAB nAb nA

a naB nab na

nB nb n

Then it is well known that the maximum likelihood estimate (MLE) of D is

D̂ = p̂(AB)− p̂(A)p̂(B)

where p̂AB = nAB/n, p̂A = nA/n, and p̂B = nB/n are the MLE of the parame-
ters pAB, pA and pB. The MLE of D′ is then obtained by replacing the parameter
values by their MLEs in (1). A critical feature of D̂′ is that it achieves the max-
imum value 1 whenever nab = 0 or naB = 0, even if the frequencies of haplotype
pairs are consistent with a situation of perfect equilibrium. This bias has been
shown to be particularly severe in small samples [4].

To reduce the bias without imposing thresholds on the MAF, in [13] we in-
troduced a Bayesian estimator of D′ that is defined by:

D̃′|p̃AB, p̃A, p̃B =
D̃

p̃ap̃B
I(D̃ ≥ 0)− D̃

p̃ap̃b
I(D̃ < 0) (2)
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where I(x ∈ X) is the Dirac function defined as I(x ∈ X) = 1 if x ∈ X and 0
otherwise and

D̃|p̃AB, p̃A, p̃B = p̃(AB)− p̃(A)p̃(B)
p̃AB = (nAB + αAB)/(n + αT )
p̃A = (nA + αAB + αAb)/(n + αT )
p̃B = (nB + αAB + αaB)/(n + αT )

for appropriate choices of the hyper-parameters αij , i = A, a; j = B, b and
αT =

∑
ij αij . In the original manuscript [13], we discuss several choices for the

hyper-parameters that encode prior knowledge about LD as a function of the
physical distance d between the two SNPs. In this paper, we focus on uniform
priors defined as:

αij = α(1 − exp(−d))

with α > 0 and d representing the physical distance between the two loci in 105

bases, or 100kb. This prior distribution imposes a correction on the transmission
rates of haplotype pairs that approach the uniform distribution for loci at very
large distance: essentially for loci that are far apart by more than 500kb the prior
distribution is uniform with hyper-parameters αij = α and prior transmission
rates pij = pipj. This correction is consistent for example with default settings of
HaploView [6], in which pairs of loci that are at a distance larger than 500kb are
not include in the LD analysis. It can be shown that the estimator in Equation
(2) is the maximum a posteriori (MAP) estimator of D′, conditional on MAP
estimates of pAB, pA and pB.

An implementation of this method, able to compute D̃ and D̃′ from SNPs
genotype data sets, can be downloaded from http:// bios.ugr.es / DB3. If family
trio genotypes instead of unrelated individuals are provided, the software in-
fers ambiguous haploypes from families using a modification of the method in
GeneHunter[15] or HaploView [16], which is based in the transmission disequi-
librium test (TDT) [17]. Following the TDT and assuming no recombination in
the transmission of haplotypes from parents to offspring, haplotypes with more
than 2 loci cannot be completely reconstructed if the other 2 members of the
trio are heterozygous[18]. However, when only bilocus haplotype counters are
required, there is a special condition without any ambiguity for the problem of
counting biloci haplotypes, which holds in a trio when both parents are het-
erozygous at both positions and the offspring is heterozygous at one position,
AB/Ab for example.

The software utilizes an iterative proportional algorithm in order to estimate
bi-locus haplotypes when the phase, even using pedigree data, is unknown. Al-
though there is a maximum number of iterations for this algorithm to end, it usu-
ally reach a stable maximum in a very little number of iterations. Once haplotype
frequencies are estimated by using the Bayesian approach, D̃ and D̃′ can be ob-
tained. Computational complexity for the algorithm to obtain D̃ and D̃′ for a pair
of loci is O(n), with n being the number of individuals in the sample. It is straight-
forward to show that it has the same computational complexity of the MLE.



266 M.M. Abad-Grau and P. Sebastiani

3 Evaluation

In the introduction, we identified three sources of ascertainment bias: the in-
clusion of invariant sites, imposing an “ad hoc” threshold on the MAF, and
non-random selection of SNPs to be typed. In this section, we describe data sets
that we generated to artificially reproduce these situations, and the effect on the
MLE and MAP estimators.

3.1 Evaluation Measures

In order to observe the effect of the ascertainment bias on the ML and MAP esti-
mators of D′, we create LD decay maps in different situations that are described
below. The feature of LD decay maps is that they can easily highlight variations
of the ascertainment bias as a function of the physical distance between SNPs.
Each point is the average estimation of D′ for all SNPs within a physical dis-
tance d ± 10 kb. Overlapping distances were used. Therefore, an average value
is plotted for each 10 kb. The maximum distance used was 500 kb, due to the
fact that no additional LD decay can be observed for larger distances [19, 20].

The original data are genotypes of 19120 SNPs uniformly distributed over chro-
mosome 22 from the 90 families of the CEPH population in the first phase of the
HapMap Project [10]. The data are publicly available from http://hapmap.org.
We have chosen this chromosome because it is the shortest one and then it has
been widely studied [21, 22, 23], and this population because the sample contains
genotypes from trios (both parents and one child) instead of unrelated individuals,
so that most of the transmitted haplotype pairs can be reconstructed using fam-
ilies. Once haplotype are reconstructed using familial information, only the data
from the 60 unrelated parents have been used.

We then created artificial samples from this data in order to assess the effect
of the ascertainment bias in the ML and MAP estimator under three different
scenarios.

Ascertainment bias due to invariant sites. In order to check the effect of this bias
on the estimators, we computed LD decay maps for the 60 unrelated individuals
using (i) all the SNPs in these samples (hence all the SNPs for which we observed
some allelic variation); (ii) the same SNPs augmented by those loci without
allelic variation. Therefore while in the former data we include only those SNPs
that have variability in the sample, in the second we are also using invariant
sites.

Ascertainment bias due to SNPs density. A common cause of ascertainment
bias is due to the use of a small sample, panel, to identify the SNPs[11] that
are then typed in a larger sample. Sometimes, several panels are used, as in
the HapMap Project [10]. The effect of this pre-selection is that rare alleles are
disregarded more frequently than less rare ones. We have randomly selected sub-
samples of 5, 20 and 25 family trios and then used SNPs with allelic variations
in those small samples to create the LD decay maps. To emphasize that the
bias is not due to lower SNPs density but to the non-random selection, we also
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created three sub-samples from the original data with 1/2, 1/3 and 1/4 of the
total number of SNPs. Although SNP density influences gene-scale patterns of
linkage disequilibrium and definition of blocks [24] so that the eventual utility
of the maps with sparse markers has been questioned [25], this is not a case of
ascertainment bias and no bias should be observed.

Ascertainment bias due to MAF thresholding. The bias effect of using a panel
sample should be equivalent to the non random selection of SNPs based on the
use of a threshold on the MAF. To support this conjecture, we generated three
sub-samples from the original data, with SNP selection determined by these
thresholds for the MAF: 0.05, 0.1 and 0.2. There is a well-known upward bias
for the MLE of D′ (see for example [4]).

3.2 Results

Figures 1 to 4 show the LD decay maps describing the effect of different patterns
of SNP selection. In each figure, the x-axis reports the distance between pairs of
SNPs. For each x value, the y-axis reports the estimate of the average D′ for all
SNPs within a distance x±10kb. We consider bias an average difference between
LD decay maps generated in different conditions of 0.05 or more. Results for each
experiment are described below.

Ascertainment bias due to invariant sites. The inclusion of invariant sites has
a high impact in the reconstructed pattern of LD decay (see Figure 1). If there
is not variation in a locus for a given sample, the MLE of D′ is 1, while the
MAP estimator is smaller than 1. Both estimators are biased although the bias
of the MAP estimator is much smaller. As expected, results are very different
depending on the estimator. While the upward bias of the MLE increases with
the distance (see Figure1(a)), the Bayesian estimator shows a smaller bias but
in different ways depending on distance (see Figure 1(b)). We conjecture that
invariant sites should not be used because there is a complete uncertainty in this
information.

Ascertainment bias due to SNPs density. Consider first the effect of SNPs iden-
tification in a small panel. In agreement with results published in [11], there is a
downward bias for the MLE of D′, see Figure 2 (a), whereas the MAP estimator
does not shown any significant bias, as can be observed in plot (b) of the same
Figure. On the other hand, the results displayed in Figure 3 show no bias in
either the MLE or the MAP estimator, and therefore suggest that the bias is
due to the non-random selection of SNPs induced by the identification of SNPs
in small samples.

Ascertainment bias due to MAF thresholding. Our results confirm the already
reported upward bias of the MLE of D′ (Figure 4(a)). On the other hand, the
MAP estimator is able to correct the bias for not very large distances –see Figure
4(b)–. Even for larger distances, the bias is significantly smaller than the one of
the MLE of D′.
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(a)

(b)

Fig. 1. Ascertainment bias due to invariant sites. LD decay maps for MLE(a) and
Bayesian estimator(b) of D′. Each plot shows the LD decay in two conditions: (1)
using only those those SNPs with allelic variations are retained in the analysis; (2) all
SNPs in the sample are retained in the analysis.
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(a)

(b)

Fig. 2. Ascertainment bias due to SNPs density: SNPs identification in small panels.
LD decay maps for MLE (a) and MAP estimator (b) of D′. Each plot shows the LD
decay for the sample with all the SNPs for the 60 unrelated individuals and 3 more
maps in which panel samples of 50, 40 and 30 individuals are used to select the SNPs.
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(a)

(b)

Fig. 3. Ascertainment bias due to SNPs density: Random selection of SNPs. LD decay
maps for MLE (a) and MAP estimator (b) of D′. Each plot shows the LD decay map
for the sample with all the SNPs for the 60 unrelated individuals and 3 more maps in
which a random selection of SNP has been generated, with 50%, 33% and 25% of the
original SNPs.
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(a)

(b)

Fig. 4. Ascertainment bias due to MAF thresholding. LD decay maps for MLE (a) and
MAP estimator (b) of D′. Each plot shows the LD decay map for the sample with all
the SNPs for the 60 unrelated individuals and 3 more maps in which only SNPs with
MAF greater than 5%, 10% and 20% are used.
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4 Conclusions

Although preliminary and limited to only one chromosome, our results suggest an
overall superiority of the use of our MAP estimator to infer pattern of LD decay.
The advantages of the Bayesian estimator is to avoid the use of thresholds on the
MAF so that all the SNPs with observed allelic variability can be used to infer
patterns of LD decay in the human population. However, there are other sources
of bias that are not controllable after the data collections (such as non-random
selection of SNPs to be genotyped). A reduction in the number of SNPs can
drastically influence gene-scale patterns of linkage disequilibrium and definition
of blocks based on MLE of D′[24]. However, our results show that the Bayesian
estimator of D′ produces patterns of LD decays that are essentially invariant
to SNP density or thresholds imposed on the MAF. We plan to extend this
preliminary study to all chromosomes from the CEPH and Yoruba populations
in the Hapmap project.
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Abstract. Because of the importance of companies’ financial distress predic-
tion, this paper applies support vector machine (SVM) to the early-warning of 
financial distress. Taking listed companies’ three-year data before special 
treatment (ST) as sample data, adopting cross-validation and grid-search tech-
nique to find SVM model’s good parameters, an empirical study is carried out. 
By comparing the experiment result of SVM with Fisher discriminant analysis, 
Logistic regression and back propagation neural networks (BP-NNs), it is con-
cluded that financial distress early-warning model based on SVM obtains a bet-
ter balance among fitting ability, generalization ability and model stability than 
the other models. 

1   Introduction 

Bankruptcy of enterprise not only makes stockholders, creditors, managers, employ-
ees, and other interest parts suffer individual economic loss, but also if many enter-
prises run into bankruptcy the economic development of the whole country will be 
greatly shocked. In general, most enterprises that ran into bankruptcy had experienced 
a condition of financial distress, but they could not detect financial distress at an early 
stage and timely take effective measures to prevent bankruptcy. Therefore, in the 
perspective of management, it is important to explore a more effective financial dis-
tress prediction model to signal early-warning for enterprises which will possibly get 
into financial distress, so that managers can take strategic actions to avoid deteriora-
tion of financial state and bankruptcy. Besides, from the view of financial institution, 
an effective financial distress prediction model can help them detect customers with 
high default risk at an early stage so as to improve their efficiency of commercial 
credit assignment [1]. 

Financially distressed enterprises usually have some characteristic symptoms, which 
generally can be indicated by the data in financial statements and the financial ratios 
derived from financial statements. With the development of all kinds of classification 
and prediction techniques, from univariate analysis to multi discriminate analysis 
(MDA), from statistical methods to machine learning methods, research literatures on 
enterprises’ financial distress prediction become more and more abundant. 
                                                           
* Sponsored by National Natural Science Foundation of China (No. 70573030). 
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Beaver (1966), one of the first researchers to study bankruptcy prediction, investi-
gated the predictability of the 14 financial ratios using 158 samples consisting of 
failed and non-failed firms [2]. Beaver’s study was followed by Altman’s model 
(1968) based on the MDA to identify the companies into known categories. Accord-
ing to Altman, bankruptcy could be explained quite completely by using a combina-
tion of five (selected from an original list of 22) financial ratios [3]. Logit model is 
widely used to deal with two classes classification problems, and Ohlson was the first 
to apply it to predicting financial distress in 1980 [4]. 

The most widely used machine learning method in the field of financial distress 
prediction is neural networks (NNs), which has strong capability of identifying and 
representing nonlinear relationships in the data set. Odom and Sharda (1990) made an 
early attempt to use NNs for financial distress prediction. He used the same financial 
ratios as Altman’s study and took MDA model as the benchmark [5]. From then on, 
many scholars (Fletcher and Goss, 1993; Carlos Serrano-Cinca, 1996; Parag C. P., 
2005; etc.) were dedicated to compare NNs with MDA and logit, which brought a lot 
of positive support for the conclusion that NNs can predict financial distress more 
accurate than those benchmarks [6][7][8]. 

Generally, statistical methods have the advantages of simple model structure and 
easiness to understand and use, but they have restrictive assumptions such as linearity, 
normality and independence of input variables, which limits the effectiveness and valid-
ity of prediction. In contrary, NNs is not constrained by those assumptions and have 
strong ability of fitting nonlinear relationships between descriptive variables and  
conclusive variables. But NNs also has the disadvantages such as unfixed structure, 
over-fitting, needing a lot of samples, and black-box effect. 

Support vector machine (SVM) is a relatively new machine learning technique, 
originally developed to resolve local minima and over-fitting problems which are the 
main sources of trouble to NNs [9], [10], [11]. Shin K.-S. (2005) and Min J. H. (2005) 
respectively made an attempt to use SVM to predict corporate bankruptcy with Ko-
rean data and got satisfying results [12], [13]. Other applications of SVM by Kim K. 
J. (2003) and Tay F. E. H. etc. (2001) also showed that it is a promising classification 
and prediction method [14], [15]. 

This paper attempts to apply SVM to predicting the financial distress of Chinese 
listed companies and compare the result of SVM with the results got by the methods 
of Fisher discriminant analysis, Logistic regression and NNs. The rest of the paper is 
divided into five sections. Section 2 is the brief description of SVM theory. Section 3 
is about data collection and preprocessing. Section 4 gives the modeling process and 
experiment results. Section 5 discusses and analyzes the experiment results. Section 6 
makes conclusion. 

2   Theory of SVM 

SVM, put forward by Vapnik in 1990’s, is a relatively new machine learning tech-
nique, which is developed on the basis of statistical learning theory [9]. Former re-
searches have shown that SVM has the following merits according to learning ability 
and generalization ability. 
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1) SVM is based on the principle of structural risk minimization, not on the 
principle of empirical risk minimization, so SVM can better avoid the prob-
lem of over-fitting. 

2) SVM algorithm is uneasy to get into local optimization, because it is a convex 
optimization problem and its local optimal solution is just the global optimal 
solution. 

3) In practice, when the number of samples is relatively small, SVM can often 
get better result than other classification and prediction techniques. 

A simple description of the SVM algorithm is provided as follows [9], [10], [11], 

[12], [13]. Suppose N
iii yxD 1},{ ==  is a training data set with input vectors 

nT)()2()1( R),,,( ∈= n
iiii xxxx L  and target labels }1,1{ +−∈iy , in which N is the 

number of training samples. In the condition that the training samples are linearly 
separable, SVM algorithm is to find an optimal separating plane 0=+• bxw , which 
can not only separate training samples without error but also make the margin width 
between the two parallel bounding planes at the opposite side of the separating plane 
get a biggest value.  

In the nonlinearly separable case, SVM firstly uses a nonlinear function )(x  to 

map input space to a high-dimensional feature space. Then a nonlinear optimal sepa-
rating hyperplane 0)( =+• bxw with the biggest margin width can be found by the 

same technique as linear model. Those data instances which are nearest to the separat-
ing hyperplane are called support vectors, and other data instances are irrelevant to 
the bounding hyperplanes. Because most problems are nonlinear separable and line-
arly separable case is the special situation of nonlinearly separable case, i.e. 

xx =)( , here only the SVM theory under nonlinearly separable case is stated. So 

according to Vapnik’s original formulation, the SVM classifier should satisfy the 
following conditions 
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where wT represents the weight vector and b is the bias. 
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in which iξ  are slack variables. Feature space generally can not be linearly separated, 

if the separating hyperplane is constructed perfectly without even one training error, it 
is easy to appear over-fitting phenomenon, so slack variables are needed to allow a 

small part of misclassification. +∈ RC  is a tuning parameter, weighting the impor-
tance of classification errors with the margin width. 

This problem is transformed into its dual problem because it is easier to interpret 
the results of the dual problem than those of the primal one. 
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In the optimization problem above, eT is the N-dimension vector of all ones.  
Q  is a NN ×  positive semi-definite matrix, and ),( jijiij xxKyyQ = , in which 

)()(),( T
jiji xxxxK =  is called kernel function. The three common types of 

kernel function are polynomial kernel function, radial basis kernel function and sig-
moid kernel function. i∂  are Lagrange multipliers. A multiplier exits for each training 

data instance and data instances corresponding to non-zero i∂  are support vectors. 

Do this optimization problem and the ultimate SVM classifier is constructed as fol-
lowing 

)),(sgn(
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N

i
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3   Data Collection and Preprocessing 

3.1   Data Collection 

The data used in this research was obtained from China Stock Market & Accounting 
Research Database. Companies that are specially treated (ST)1 by China Securities 
Supervision and Management Committee (CSSMC) are considered as companies in 
financial distress and those never specially treated are regarded as healthy ones. Ac-
cording to the data between 2000 and 2005, 135 pairs of companies listed in 
Shenzhen Stock Exchange and Shanghai Stock Exchange are selected as initial data-
set. Suppose the year when a company is specially treated as the benchmark year  

                                                           
1 The most common reason that China listed companies are specially treated by CSSMC is that 

they have had negative net profit in continuous two years. Of course they will also be  
specially treated if they purposely publish financial statements with serious false and mis-
statement, but the ST samples chosen in this study are all companies that have been specially 
treated because of negative net profit in continuous two years. 
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(t-0), then (t-1), (t-2) and (t-3) respectively represent one year before ST, two years 
before ST and three years before ST. After eliminating companies with missing and 
outlier data, the final numbers of sample companies are 75 pairs at year (t-1), 108 
pairs at year (t-2) and 91 pairs at year (t-3).  

3.2   Data Scaling 

To avoid features in greater numeric ranges dominating those in smaller numeric 
ranges and also to avoid numerical difficulties during the calculation [16], all data are 
scaled to the range [-1,1] according to the formula (6). 
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+=                                  (6) 

where minx and maxx are respectively the minimum and maximum value of feature x, 
and a and b are respectively the minimum and maximum value after scaling, here a= -
1, b=1. 

3.3   Choice of Financial Ratios 

Companies at the different stages before financial distress usually have different 
symptoms which are indicated by different financial ratios. Different from other re-
searches which use the same financial ratios set to construct predictive models for 
different years before financial distress, aiming at improving the predictive ability, 
this study use different financial ratios set respectively for the three years before ST. 
Each year’s financial ratios set are selected from 35 original financial ratios by the 
statistical method of stepwise discriminant analysis. According to the sample data, the 
chosen financial ratios sets for year (t-1), (t-2) and (t-3) are listed in Table1. 

From Table 1, it is known that financially distressed companies at the stage (t-3) 
mainly showed abnormality in activity ratios and debt ratios. At the stage (t-2) the 
profitability of financially distressed companies began to evidently differ from that of 
healthy ones. At the stage of (t-1) activity ratios, debt ratios, profitability and growth 
ability all start to further deteriorate. 

Table 1. Financial ratios sets of the three years before ST 

Year Financial ratios set 

(t-1) 
Total asset turnover                               Asset-liability ratio 
Earning per share                                  Total asset growth rate    

(t-2) 

Account payable turnover                      Current asset turnover 
Fixed asset turnover                              Asset-liability ratio 
Return on total asset                              Return on current asset 
Return on equity 

(t-3) 
Current asset turnover                           Fixed asset turnover 
The ratio of cash to current liability       Asset-liability ratio 
The proportion of current liability 
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4   Model Construction and Experiment Results 

4.1   Construction of SVM Model 

Construction of SVM model is to choose the kernel function and search for the values 
of model parameters. This study uses radial basis kernel function because it was the 
most widely used kernel function and usually got better result than other kernel func-
tions (see reference [13] for detailed reason). The radial basis kernel function is as 
formula (7). 

0)exp(),(
2

>−−= γγ jiji xxxxK                       (7) 

Then construction of SVM needs two parameters to be identified, the tuning pa-
rameter C  and the kernel parameter γ . Improperly setting these parameters will lead 

to training problems such as over-fitting or under-fitting. So aiming at searching for 
proper values for these parameters, this study follows the cross-validation and grid-
search techniques recommended by Chih-Wei Hsu etc. Trying exponentially growing 
sequences of C  and γ  ( C =2-5, 2-4, … , 215; γ =2-15, 2-14, …, 25), it is designed to 

find a good pair of parameter values which make the 5-fold cross-validation accuracy 
highest. Though grid-search is an exhaustive search method, its computational time is 
not much more than other advanced search methods, for example,  approximating  the 
cross-validation rate [16].Grid-search on C  and γ  for SVM model at year (t-1) is as 

Fig. 1. 

 

Fig. 1. Grid-search on C  and γ  for SVM model at year (t-1) 
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So the good pair of model parameters for year (t-1) is (25, 2-2), i.e. C =32, γ =0.25. 

By the same method, the model parameters for year ((t-2) and (t-3) are respectively 
defined as (0.5, 1) and (128, 0.0625). 

4.2   Experiment Results 

In order to make comparative study, Fisher discriminant analysis, Logistic regression 
and BP-NNs were also carried out in the experiment. Leave-one-out method was used 
to test the validity of different models, because leave-one-out accuracy can objec-
tively reflect the models’ ability to predict financial distress for companies outside the 
training samples. If the total number of samples is N, to calculate the leave-one-out 
accuracy, N times of training and testing are needed for each predictive method. SPSS 
11.5 was utilized for Fisher discriminant analysis and Logistic regression. MATLAB 
6.5 was used for BP-NNs, and its structure for year (t-1), (t-2) and (t-3) are respec-
tively 4-8-1, 7-11-1 and 5-8-1, and the learning rate was set as 0.1. LIBSVM software 
developed by Prof. Lin Chih-Jen in Taiwan University was used for SVM modeling 
and testing. The experiment results are list in Table 2. 

Table 2. The training and testing accuracy of different models at different years 

Models 
Year 

MDA 
(%) 

Logit 
(%) 

NNs 
(%) 

SVM 
(%) 

Training accuracy 89.5 87.6 92.2 91.5 
Leave-one-out 88.2 86.9 88.2 88.9 (t-1) 
Drop percentage 1.45 0.80 4.34 2.84 
Training accuracy 86.1 86.1 89.6 87.5 
Leave-one-out 85.2 84.7 84.3 85.6 (t-2) 
Drop percentage 1.05 1.63 5.92 2.17 
Training accuracy 77.5 79.1 80.9 80.2 
Leave-one-out 75.3 77.5 74.2 78.6 (t-3) 
Drop percentage 2.84 2.02 8.28 2.00 

5   Discussion and Analysis  

From table 2, it is clear that the predictive ability of each model declines from year  
(t-1) to year (t-3), which indicates that the nearer to the time when financial distress 
breaks out, the more information content the financial ratios contain, so that the more 
strong predictive ability each model has.  

Besides, whichever year it is, SVM has the highest leave-one-out accuracy. 
Whether from the perspective of training accuracy or leave-one-out accuracy, SVM 
performs better than Fisher discriminant analysis and Logistic regression. The training 
accuracy of SVM is a little lower than BP-NNs at each year, but its leave-one-out 
accuracy is higher than BP-NNs, which shows that SVM has better generalization 
ability than BP-NNs and can better avoid over-fitting phenomenon. 

Furthermore, from the point of view of model stability, Fisher discriminant analy-
sis, Logistic regression and SVM have better stability but BP-NNs has relatively 
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worse stability according to the drop percentage, which equals the difference between 
training accuracy and leave-one-out accuracy divides training accuracy. Compared 
with Fisher discriminant analysis and Logistic regression, SVM has worse model 
stability than them at year (t-1) and (t-2), but at year (t-3) SVM performs a little better 
than them. Compared with BP-NNs, SVM has much better model stability. 

So, SVM has a better balance among fitting ability, generalization ability and 
model stability. By finding out support vectors for financial distress prediction from 
training samples, SVM is suitable to predict financial distress for companies outside 
training sample, and it can keep the predictive accuracy relatively stable when the 
training samples change within a certain range. 

6   Conclusion 

SVM is a relatively new machine learning and classification technique with strict 
theoretical basis. This paper applies SVM to companies’ financial distress prediction 
on the basis of stating its basic theory. In the empirical experiment, three years’ data 
of 135 pairs of Chinese listed companies were selected as initial sample data, and 
stepwise discriminant analysis method was used to select financial ratios set, and 
cross-validation and grid-search techniques are utilized to define good parameters for 
SVM model. By comparing the experiment results of SVM financial distress predic-
tion model with Fisher discriminant analysis, Logistic regression and BP-NNs, it is 
concluded that SVM gets a better balance among fitting ability, generalization ability 
and model stability than the other three models. So SVM, which is not only a theo-
retically good classifier but also has satisfying empirical application result, is a prom-
ising method in the practice of financial distress prediction and should be more widely 
used in the domain of financial decision. 
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Abstract. Verification of probabilistic systems is usually based on vari-
ants of Markov processes. For systems with continuous dynamics, Markov
processes are generated using discrete approximation methods. These
methods assume an exact model of the dynamic behavior. However, re-
alistic systems operate in the presence of uncertainty and variability and
they are described by uncertain models. In this paper, we address the
problem of probabilistic verification of uncertain systems using Bounded-
parameter Markov Decision Processes (BMDPs). Proposed by Givan,
Leach and Dean [1], BMDPs are a generalization of MDPs that allow
modeling uncertainty. In this paper, we first show how discrete approxi-
mation methods can be extended for modeling uncertain systems using
BMDPs. Then, we focus on the problem of maximizing the probability
of reaching a set of desirable states, we develop a iterative algorithm
for probabilistic verification, and we present a detailed mathematical
analysis of the convergence results. Finally, we use a robot path-finding
application to demonstrate the approach.

1 Introduction

Verification of probabilistic systems is usually based on variants of Markov pro-
cesses. For systems with continuous dynamics, Markov processes are generated
using discrete approximation methods. Probabilistic verification aims at estab-
lishing bounds on the probabilities of certain events. Typical problems include
the maximum and the minimum probability reachability problems, where the
objective is to compute the control policy that maximizes the probability of
reaching a set of desirable states, or minimize the probability of reaching an
unsafe set. Algorithms for verification of MDPs have been presented in [2, 3].
These methods assume an exact model of the dynamic behavior for defining the
transition probabilities. However, realistic systems operate in the presence of un-
certainty and variability and they are described by uncertain models. Existing
verification methods are insufficient for dealing with such uncertainty.

In this paper, we address the problem of probabilistic verification of uncertain
systems using Bounded-parameter Markov Decision Processes (BMDPs). Pro-
posed by Givan, Leach and Dean [1], BMDPs are a generalization of MDPs that
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allows modeling uncertainty. A BMDP can be viewed as a set of exact MDPs
(sharing the same state and action space) specified by intervals of transition
probabilities and rewards. Policies are compared on the basis of interval value
functions. Optimistic and pessimistic criteria for optimality are used to define
partial order relations between pairs of interval value functions.

Our approach is motivated by a robot path-finding application. Under un-
certainty, the motion of the robot can be described by a set of stochastic dif-
ferential equations with uncertain parameters. We show how discrete approx-
imation methods can be extended for modeling such uncertain systems using
BMDPs. Although we focus on a robotic example, the approach can be ex-
tended for probabilistic verification of stochastic hybrid (discrete-continuous)
systems [4].

The paper focuses on the problem of maximizing the probability of reaching a
set of desirable states. We develop a iterative algorithm for probabilistic verifica-
tion, and we present a detailed mathematical analysis of the convergence results.
The results presented in [1] are for dynamic programming methods assuming a
discounted reward criterion. A discount factor of less than 1 ensures the con-
vergence of the iterative methods for the interval value functions. Probabilistic
verification for BMDPs can be formulated based on the Expected Total Reward
Criterion (ETRC) for MDPs [5]. Under ETRC, the discount factor is set to 1,
and the convergence of the iterative algorithms for BMDPs is more involved be-
cause the iteration operators are no longer contraction mappings. Furthermore,
the interval value function may be not well defined unless proper restrictions on
the intervals of transition probabilities and rewards are applied. Based on the
ETRC, we solve the maximum probability reachability problems for BMDPs.
Finally, we demonstrate our approach using a robot path-finding application.

Variants of uncertain MDPs have been also studied in [6, 7, 8, 9]. These ap-
proaches consider a discounted reward. In addition, the work [10] considers an
average performance criterion. Probabilistic verification of uncertain systems is
a significant problem which requires an undiscounted criterion and cannot be
treated with these algorithms.

In the next section, we review the basic notions of BMDPs. In Section 3,
we explain how we can use BMDPs to model uncertain systems. In Section 4, we
formulate and solve the maximum probability reachability problem for BMDPs.
In Section 5, we present a robot path-finding application to demonstrate our
approach. We close with conclusions and some future directions in Section 6.

2 Bounded-Parameter Markov Decision Processes

We first review some basic notions of BMDPs, establish the notation that we
use in this paper, and briefly summarize the main results in [1].

A BMDP is a four tuple M = 〈Q,A, F̂ , R̂〉 1 where Q is a set of states, A
is a set of actions, R̂ is an interval reward function that maps each q ∈ Q to a

1 In this paper, we use X̂ to denote an interval, i.e. X̂ = [X, X ] ⊆ R.
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closed interval of real values [R(q), R(q)], and F̂ is an interval state-transition
distribution so that for p, q ∈ Q and α ∈ A,

F p,q(α) � Pr(Xt+1 = q|Xt = p, Ut = α) � F p,q(α).

For any action α and state p, the sum of the lower bounds of F̂p,q(α) over all
states q is required to be less than or equal to 1, while the sum of the upper
bounds is required to be greater than or equal to 1.

A BMDP M defines a set of exact MDPs. Let M = 〈Q′,A′, F ′, R′〉 be an
MDP. If Q = Q′, A = A′, R′(p) ∈ R̂(p) and F ′

p,q(α) ∈ F̂p,q(α) for any α ∈ A
and p, q ∈ Q, then we say M ∈ M. To simplify discussions, in the following para-
graphs the rewards are assumed to be tight, i.e. a single value. The approaches
in this paper can be easily generalized to the case of interval rewards.

A policy is a mapping from states to actions, π : Q → A. We use Π to denote
the set of stationary Markov policies. The policy in this paper is restricted to
be in Π . For any policy π and state p, the interval value function of π at p is a
closed interval defined as

V̂π(p) = [ min
M∈M

VM,π(p), max
M∈M

VM,π(p)]

where
VM,π(p) = R(p) + γ

∑
q∈Q

FM
p,q(π(p))VM,π(q)

where 0 < γ < 1 is called the discount factor.
An MDP M ∈ M is π-maximizing if for any M ′ ∈ M, VM,π ≥dom VM ′,π

2.
Likewise, M is π-minimizing if for any M ′ ∈ M, VM,π ≤dom VM ′,π. For any
policy π ∈ Π , there exist a π-maximizing MDP M(π) and a π-minimizing MDP
M(π) in M.

The interval policy evaluation operator ÎV Iπ for each state p is defined as

ÎV Iπ(V̂ )(p) = [IV Iπ(V )(p), IV Iπ(V )(p)]

where
IV Iπ(V ) = min

M∈M
V IM,π(V ) = V IM(π),π(V ),

IV Iπ(V ) = max
M∈M

V IM,π(V ) = V IM(π),π(V )

and V IM,π : V → V is the policy evaluation operator for the exact MDP M and
policy π

V IM,π(V )(p) = R(p) + γ
∑
q∈Q

FM
p,q(π(p))V (q).

To define the π-minimizing MDP M(π), we only need to compute its tran-
sition function FM(π). Let q1, q2, ..., qk (k = |Q|) be an ordering of Q so that
V (qi) � V (qj) for any 1 � i < j � k. Let r be the index 1 � r � k which

2 V ≥dom U if and only if for all q ∈ Q, V (q) � U(q).
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maximizes
∑r−1

i=1 F p,qi(α) +
∑k

i=r F p,qi
(α) without letting it exceed 1. Then the

transition function of the π-minimizing MDP M(π) is given by

F
M(π)
p,qj (α) =

{
F p,qj (α) if j < r
F p,qj

(α) if j > r
and F

M(π)
p,qr (α) = 1−

i=k∑
i=1,i=r

Fpqi (α).

The definition of the π-maximizing MDP is similar.
In order to define the optimal value function for a BMDP, two different or-

derings on closed real intervals are introduced: [l1, u1] ≤opt [l2, u2] ⇐⇒ (u1 <
u2∨(u1 = u2∧l1 � l2)) and [l1, u1] ≤pes [l2, u2] ⇐⇒ (l1 < l2∨(l1 = l2∧u1 � u2)).
In addition, Û ≤opt V̂ (Û ≤pes V̂ ) if and only if Û(q) ≤opt V̂ (q) (Û(q) ≤pes V̂ (q))
for each q ∈ Q. Then the optimistic optimal value function V̂opt and the pes-
simistic optimal value function V̂pes are given by

V̂opt = sup
π∈Π,≤opt

V̂π and V̂pes = sup
π∈Π,≤pes

V̂π ,

respectively. The value interation for V̂opt is used when the agent aims at maxi-
mizing the upper bound V while V̂pes is used when the agent aims at maximizing
the lower bound V . In the subsequent sections, we focus on the optimistic case
for the optimal interval value functions. Unless noted, results for the pessimistic
case can be inferred analogously.

The interval value iteration operator ÎV Iopt for each state p is defined as

ÎV Iopt(V̂ )(p) = max
α∈A,≤opt

[ min
M∈M

V IM,α(V )(p), max
M∈M

V IM,α(V )(p)]. (1)

Due to the nature of ≤opt, ÎV Iopt evaluates actions primarily based on the
interval upper bounds, breaking ties on the lower bounds. For each state, the
action that maximizes the lower bound is chosen from the subset of actions that
equally maximize the upper bound. Hence (1) can be rewritten as

ÎV Iopt(V̂ ) = [IV Iopt(V̂ ), IV Iopt(V )] (2)

where
IV Iopt(V̂ ) = IV Iopt,V (V )

and for any q ∈ Q,

IV Iopt(V )(q) = max
α∈A

max
M∈M

V IM,α(V )(q),

IV Iopt,V (V )(q) = max
α∈ρV (q)

min
M∈M

V IM,α(V )(q)

where
ρW (p) = argmax

α∈A
max
M∈M

V IM,α(W )(p). (3)

Methods similar to those used in proving the convergence of total discounted
reward optimality for exact MDPs can be used to prove that iterating ÎV Iopt

converges to V̂opt. Detailed proofs of convergence results can be found in [1].
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3 Modeling Uncertain Systems by BMDPs

In this section, we describe how BMDPs can be generated for uncertain systems
and we illustrate the approach using a robot-path finding application. Consider a
continuous system with dynamics described by a stochastic differential equation
(SDE) dx = f(x, u)dt+σ(x)dw where x ∈ X is the state of the system, u ∈ U is
the control action, σ(x) is a diffusion term of appropriate dimensions, and w(t) is
a Wiener process. The SDE is approximated by a controlled Markov process that
evolves in a state space that is a discretization of the state space X . The criterion
which must be satisfied by the approximating MDP is local consistency [11].
Local consistency means that the conditional mean and covariance of the MDP
are proportional to the local mean and covariance of the original process. An
approximation parameter h analogous to a “finite element size” parameterizes
the approximating Markov process. As h goes to zero, the local properties of the
MDP resemble the local properties of the original stochastic process.

The transition probabilities of the MDP can be computed systematically from
the parameters of the SDE (details can be found in [11]). If the diffusion matrix
a(x) = σ(x)σT (x) is diagonal and we consider a uniform grid with ei denoting
the unit vector in the ith direction, the transition probabilities are

Fx,x±hei(u) =
aii(x)/2 + hf±

i (x, u)
Q(x, u)

, (4)

where Δt(x, u) = h2/Q(x, u), Q(x, u) =
∑

i[aii(x) + h|fi(x, u)|] and a+ =
max{a, 0} and a− = max{−a, 0}.

The approximation described above assumes that the system model is known
exactly. For many practical systems, however, model parameters are not known
exactly. Uncertain continuous systems are usually modeled assuming that some
parameters take values in a pre-defined (usually convex) set. In this case, the
approximation outlined above will result in BMDPs where the transition prob-
abilities are replaced by interval transition probabilities.

In the following, we illustrate the approximation approach with a robot-path
finding example. For simplicity, we assume that mobile robots operate in pla-
nar environments and we do not model the orientation or any nonholonomic
constraints. The behavior of the robot is described by

dx = u1dt + σ1dw
dy = u2dt + σ2dw

where (x, y)T is the coordinate of the robot, (u1, u2)T is the control input rep-
resenting the command velocity, and w(t) is a Wiener process modeling noise.

Figure 1(a) shows the original model of the operating environment of the
robot. The robot is initially at the lower left corner and the destination is at
the upper right corner. We discretize the robot’s operating environment using a
uniform grid and we assume that there are only 4 control actions, {Up, Down,
Left, Right}. As shown in Figure 1(b), we also approximate the position of the
robot, the destination, and the obstacles as MDP states. Consider a fixed control
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(a) (b)

Fig. 1. Robot path-finding problem. (a) Original model of the path-finding problem.
(b) The approximated MDP model.

action denoted by u. Because of uncertainty in the system such as motor friction
or an unknown workload, it is reasonable to assume that the control action
corresponds to the command velocity u = (u1, u2)T where ui (i = 1, 2) is not
exact but takes values in the interval [ui, ui]. Define the set Ũ = {(u1, u2)T :
ui ∈ [ui, ui]}, then the interval transition probabilities can be computed by

F̂x,x±hei(u) =
[
min
u∈Ũ

Fx,x±hei(u), max
u∈Ũ

Fx,x±hei(u)
]

. (5)

Assuming that U is compact, the function F has well-defined extrema. The in-
tervals can be computed either analytically if the functions F are monotone
with respect to the uncertain parameters or using numerical optimization meth-
ods. Thus, for each state-action pair we obtain an interval for the transition
probabilities and by repeating for all state-action pairs we obtain a BMDP
model.

Note that in our approach, (4) and (5) are applied to one dimension of the
uncertain system at a time, so the approach is actually applicable to more general
systems in higher dimensions than the above robotic example.

4 Maximum Probability Reachability Problem

In this section, we formulate the maximum probability reachability problem, we
present a value iteration algorithm, and we analyze its convergence.

4.1 Interval Expected Total Reward for BMDPs

In this paper, we are primarily interested in the problem of maximizing the prob-
ability that the agent will reach a desirable set of states. By solving this problem,
we can establish bounds on the probabilities of reaching desirable configurations
used in probabilistic verification of discrete systems. This problem can be for-
mulated using the Expected Total Reward Criterion (ETRC) for BMDPs (see
Section 4.3). Under the ETRC, we compare policies on the basis of the interval
expected total reward V̂ = [V π, V π] where for any q ∈ Q.
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V π(q) = EM(π),π

{ ∞∑
t=1

R(Xt(q))

}
and V π(q) = EM(π),π

{ ∞∑
t=1

R(Xt(q))

}
.

We may regard these as the expected total discounted reward with a discount
factor γ = 1. However, for γ = 1 the convergence results in [1] no longer hold,
because the iteration operators ÎV Iπ, ÎV Iopt and ÎV Ipes are not contraction
mappings. Furthermore, the interval value function may not be well defined
unless proper restrictions on the intervals of the transition probabilities and
rewards are applied.

For simplicity, we use vector notation. For example, R and V are column
vectors, whose i-th element is respectively the scalar reward and value function
of the i-th state pi; FM is the transition probability function of MDP M and
FM,π is the transition probability matrix of the Markov Chain reduced from M
when given a policy π, whose (i, j)-th element is the probability of transitioning
from state pi to state pj when executing action π(pi).

Let R+(q) = max{R(q), 0} and R−(q) = max{−R(q), 0} and define

V
±
π (q) ≡ lim

N→∞
EM(π),π

{
N−1∑
t=1

R±(Xt(q))

}
.

Since the summands are non-negative, both of the above limits exist3. The limit
defining V π(q) exists whenever at least one of V

+
π (q) and V

−
π (q) is finite, in which

case V π = V
+
π (q) − V

−
π (q). V +

π (q), V −
π (q) and V π(q) can be similarly defined.

Noting this, we impose the following finiteness assumption which assures that
V̂π is well defined.

Assumption 1. For all π ∈ Π and q ∈ Q, (a) either V
+
π (q) or V

−
π (q) is finite,

and (b) either V +
π (q) or V −

π (q) is finite.

Consider the optimal interval value functions V̂opt defined in Section 2. The
following theorem establishes the optimality equation for the ETRC and shows
that the optimal interval value function is a solution of the optimality equation.

Theorem 1. Suppose Assumption 1 holds. Then (a) The upper bound of the
optimal interval value function V opt satisfies the equation

V = sup
π∈Π

max
M∈M

V IM,π(V ) = sup
π∈Π

{R + FM(π),πV } ≡ IV Iopt(V ),

(b) The lower bound of the optimal interval value function V opt,W satisfies the
equation

V = sup
π∈ρW

min
M∈M

V IM,π(V ) = sup
π∈ρW

{R + FM(π),πV } ≡ IV Iopt,W (V )

for any value function W and the associated action selection function (3)4.
3 This includes the case when the limit is ±∞.
4 Proofs are omitted due to length limitation, and can be found in [12].
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Based on Theorem 1, the value iteration operator ÎV Iopt can be defined as in
Equation (1). The following lemma establishes the monotonicity of the iteration
operators.

Lemma 2. Suppose U and V are value functions in V with U ≤dom V , then (a)
IV Iopt(U) ≤dom IV Iopt(V ), (b) IV Iopt,W (U) ≤dom IV Iopt,W (V ) for any value
function W and the associated action selection function (3).

Lemma 2 also suggests that the iteration operator ÎV Iopt has the following
property: for any Û ≤opt V̂ in V̂ , ÎV Iopt(Û) ≤opt ÎV Iopt(V̂ ). These properties
are essential in the proof of the convergence results of the interval value iteration
algorithm.

Clearly, Assumption 1 is necessary for any computational approach. In the
general case for the expected total reward criterion (ETRC), we cannot validate
that the assumption holds. However, in the maximum probability reachability
problem, the (interval) value function is interpreted as (interval) probability and
therefore Assumption 1 can be easily validated as shown in Section 4.3.

4.2 Interval Value Iteration for Non-negative BMDP Models

In order to prove convergence of the value iteration, we consider the following
assumptions in addition to Assumption 1:

Assumption 2. For all q ∈ Q, R(q) � 0.

Assumption 3. For all q ∈ Q and π ∈ Π, V
+
π (q) < ∞ and V +

π (q) < ∞.

If a BMDP is consistent with both Assumption 2 and 3, it is a non-negative
BMDP model, and its value function under the ETRC is called non-negative
interval expected total reward. Note that Assumption 3 implies Assumption 1,
so Theorem 1 and Lemma 2 hold for non-negative BMDP models. Lemma 3 sug-
gests that V̂opt is the minimal solution of the optimality equation, and Theorem 4
establishes the convergence result of interval value iteration for non-negative
BMDPs.

Lemma 3. Suppose Assumption 2 and 3 hold. Then (a) V opt is the minimal
solution of V = IV Iopt(V ) in V+, where V+ = V ∩ [0,∞], (b) V opt,W is the
minimal solution of V = IV Iopt,W (V ) in V+ for any value function W and the
associated action selection function (3).

Theorem 4. Suppose Assumption 2 and 3 hold. Then for V̂ 0 = [0, 0], the se-
quence {V̂ n} defined by V̂ n = ÎV I

n

opt(V̂
0) converges pointwise and monotoni-

cally to V̂opt.

It can be shown that the initial value of the interval value function is not re-
stricted to be [0, 0]. By choosing a V̂ 0 with 0 � V 0 � V opt and 0 � V

0 � V opt,
interval value iteration converges to V̂opt for non-negative BMDPs. For BMDP
models consistent with Assumption 2 and Assumption 3, convergence of the
iterative algorithm is guaranteed by Theorem 4 for V̂ 0 = [0, 0].
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4.3 Verification Based on Non-negative BMDP Models

An instance of the maximum probability reachability problem for BMDPs con-
sists of a BMDP M = 〈Q,A, F̂ , R〉 together with a destination set T ⊆ Q. The
objective of maximum probability reachability problem is to determine, for all
p ∈ Q, the maximum interval probability of starting from p and finally reaching
any state in T , i.e.

Ûmax
M,opt(p) = sup

π∈Π,≤opt

[UM,π(p), UM,π(p)]

where
UM,π(p) = min

M∈M
PrM,π(∃t.Xt(p) ∈ T ), (6)

UM,π(p) = max
M∈M

PrM,π(∃t.Xt(p) ∈ T ). (7)

UM,π and UM,π are probabilities and therefore by definition take values in [0, 1].
Thus, the interval value function satisfies Assumption 1. Note that UM,π(p) can
be computed recursively by

UM,π(p) =

⎧⎨⎩ min
M∈M

∑
q∈Q

FM
p,q(π(p))UM,π(q) if p ∈ Q− T

1 if p ∈ T
(8)

In order to transform the Maximum Probability Reachability Problem to a
problem solvable by interval value iteration, we add a terminal state r with
transition probability 1 to itself on any action, let all the destination states in
T be absorbed into the terminal state, i.e., transition to r with probability 1 on
any action, and set the reward of each destination state to be 1 and of every
other state to be 0. Thus we form a new BMDP model M̃ = 〈Q̃, Ã, F̃ , R̃〉, where
Q̃ = Q ∪ {r}, Ã = A and for any p, q ∈ Q̃, and α ∈ A

R̃(p) =
{

1 if p ∈ T
0 if p �∈ T ,

F̃p,q(α) =

⎧⎨⎩ F̂p,q(α) if p �∈ T ∪ {r}
[0, 0] if p ∈ T ∪ {r} and q �= r
[1, 1] if p ∈ T ∪ {r} and q = r

. (9)

Since R̃(r) = 0, by the structure of F̃p,q, it is clear that V M,π(r) will not be
affected by the values of any states. For any p ∈ Q

V M,π(p) = min
M∈M

⎧⎨⎩R̃(p) +
∑
q∈Q̃

FM
p,q(π(p))V M,π(q)

⎫⎬⎭ . (10)

Specifically, for p ∈ T

V M,π
(p) = min

M∈M

⎧⎨⎩R̃(p) +
∑
q∈Q̃

FM
p,q(π(p))V M,π(q)

⎫⎬⎭ = R̃(p) + V
M,π

(r) = 1.

(11)
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From (9), (10) and (11), it follows that UM,π is equivalent to V M,π
. Similarly,

UM,π is equivalent to V M,π
. Therefore

V̂
M,opt

= sup
π∈Π,≤opt

[V
M,π

, V
M,π

] = sup
π∈Π,≤opt

[UM,π, UM,π] = ÛM,opt. (12)

The BMDP M̃ constructed as described above is consistent with Assump-
tion 3, so the interval value function for each state exists, which suggests that
the MPRP for M can be solved using the algorithm presented in Section 4.1.
Further, M̃ satisfies Assumption 2, and therefore the convergence is character-
ized by Theorem 4.

Note that we don’t assume the existence of a proper policy. Convergence is
guaranteed without this assumption. In the case of the maximum probability
reachability problem, if there is not proper policy (for a particular state) then
the algorithm will simply compute the corresponding interval value function
(probability) as [0, 0]. The approach can be used to validate the existence of a
proper policy and actually this is one of the ways that probabilistic verification
algorithms can be used in practice.

5 Experimental Results

This section illustrates the approach using a robot path-finding application. In
our model, an action succeeds with interval probability [0.75, 0.9] and moves in
any other direction with interval probability [0.05, 0.1]. For instance, if the robot
choose the action “Up”, the probability of reaching the adjacent grid to its north
is within [0.75, 0.9], the probability of reaching each of the other adjacent grids is
within [0.05, 0.1]. We also assume the robot will stay where it is with a probability
in the same interval probability as if it is not out of bound. Obstacle grids are
treated as absorbing states, i.e. transition to itself with interval probability [1, 1]
on any action. The goal is to find a policy that maximizes the interval probability
that the robot will reach the destination from the initial position.

The layout of the gridworld used in our simulation is shown in Figure 2(a).
The (blue) cell in the lower left corner is the initial position of the robot. The
(red) grid in the upper right corner is the destination. The (grey) cells represent
obstacles. In order to evaluate the computational complexity and scalability of
our algorithm, the environment is made up of the same 3 × 3 tiles as shown in
Figure 2(b). For instance, the 9× 9 gridworld shown in Figure 2(c) is made up
of 9 such tiles, while the 6× 6 gridworld in Figure 1(b) in Section 2 is made up
of 4 such tiles.

Table 1 shows the interval maximum probabilities for the robot to reach the
destination from the initial position, number of iterations and time needed for the
iterative algorithm to converge. For example, the optimistic maximum reachabil-
ity probability for the 9×9 gridworld is [0.2685, 0.6947], the pessimistic maximum
reachability probability for the 18× 18 gridworld is [0.1067, 0.4806]. We can see
that the larger the size of the gridworld, the lower the reachability probability.
This is because larger gridworld suggests a longer path for the robot to reach
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(a) (b) (c)

Fig. 2. Robot path-finding problem. (a) The operating environment of the robot. b)
3 × 3 tile – the basic component of the environment model. c) The 9 × 9 environment
model that is made up of the 3 × 3 tiles.

Table 1. Interval maximum reachability probabilities (Ûmax
opt , Ûmax

pes ) for the robot
path-finding problem, Number of iterations (Iopt, Ipes) and time (topt, tpes, in seconds)
needed for the iterative algorithms to converge

Size States Ûmax
opt Iopt topt Ûmax

pes Ipes tpes

9 × 9 81 [0.2685, 0.6947] 43 3.98 [0.4156, 0.6947] 43 3.98
12 × 12 144 [0.1707, 0.6145] 54 15.04 [0.2645, 0.6145] 54 14.94
15 × 15 225 [0.1083, 0.5435] 63 42.10 [0.1681, 0.5435] 63 41.84
18 × 18 324 [0.0686, 0.4807] 71 98.34 [0.1067, 0.4806] 71 98.54
21 × 21 441 [0.0434, 0.4251] 79 201.49 [0.0434, 0.4251] 79 201.55
24 × 24 576 [0.0275, 0.3760] 87 374.92 [0.0275, 0.3760] 87 375.95

the destination, and greater chance to collide with obstacles. All the simulations
are carried out on a Windows XP laptop, 1.60GHz, with 768 MB of RAM, using
MATLAB 7.0. Our experimental results suggest that the time complexity of the
interval value iteration is polynomial. The exact complexity characterization is
a subject of current work.

6 Conclusions

The results described in this paper show that BMDPs can be used for proba-
bilistic verification of uncertain systems. With proper restrictions on the reward
and transition functions, the interval value function is well defined and bounded.
We also analyze the convergence of iterative methods for computing the interval
value function. These results allow us to solve a variety of new problems for
BMDPs. The paper focuses on the maximum reachability probability problem.
Additional verification problems are subject of current and future work.

Acknowledgments. This work was partially supported by the NSF CAREER
grant CNS-0448554.



294 D. Wu and X. Koutsoukos

References

1. Givan, R., Leach, S., Dean, T.: Bounded-parameter Markov decision process. Ar-
tificial Intelligence 122 (2000) 71–109

2. Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.
IEEE Transaction on Automatic Control 43 (1998) 1399–1418

3. de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: CONCUR ’99: Proceedings of the 10th International Conference
on Concurrency Theory, London, UK, Springer-Verlag (1999) 66–81

4. Koutsoukos, X.D.: Optimal control of stochastic hybrid systems based on locally
consistent Markov decision processes. International Journal of Hybrid Systems 4
(2004) 301–318

5. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA (1994)

6. Satia, J.K., Lave, R.E.: Markovian decision processes with uncertain transition
probabilities. Operations Research 39 (1953) 1095–1100

7. White, C.C., Eldeib, H.K.: Parameter imprecision in finite state, finite action
dynamic programs. Operations Research 34 (1986) 120–129

8. White, C.C., Eldeib, H.K.: Markov decision processes with imprecise transition
probabilities. Operations Research 43 (1994) 739–749

9. Tang, H., Liang, X., Gao, J., Liu, C.: Robust control policy for semi-Markov deci-
sion processes with dependent uncertain parameters. In: WCICA 04’: Proceedings
of the Fifth World Congress on Intelligent Control and Automation. (2004)

10. Kalyanasundaram, S., Chong, E.K.P., Shroff, N.B.: Markovian decision processes
with uncertain transition rates: Sensitivity and robust control. In: CDC ’02: Pro-
ceedings of the 41th IEEE Conference on Decision and Control. (2002)

11. Kushner, H.J., Dupuis, P.: Numerical Methods for Stochastic Control Problems in
Continuous Time, 2nd ed. Springer-Verlag, New York, NY, USA (2001)

12. Wu, D., Koutsoukos, X.D.: Probabilistic verification of bounded-parameter Markov
decision processes. Technical Report ISIS-05-607, Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN, USA (2005)

13. Dean, T., Givan, R., Leach, S.: Model reduction techniques for computing ap-
proximately optimal solutions for Markov decision processes. In: Proceedings of
the 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), San
Francisco, CA, Morgan Kaufmann Publishers (1997) 124–131

14. Rudin, W.: Real and Complex Analysis, 3rd Edition. McGraw-Hill, New York,
NY, USA (1994)



Modality Argumentation Programming

Juan Carlos Nieves and Ulises Cortés
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Abstract. This work is focus in the following critical questions:
1. How to incorporate modalities in the process of argumentation rea-

soning?
2. Is it possible to build arguments faced with incomplete information?

Our proposal is based in a specification language which has the fol-
lowing properties: a) it permits to give specifications of modalities in a
natural way; b) it defines a process of argumentation reasoning consid-
ering modalities; and c) it permits to build arguments from incomplete
information.

Keywords: Decision-Making, Argumentation, Logic Programming, Ra-
tional Agents.

1 Introduction

Argumentation has proved to be a useful tool for representing and dealing with
domains in which rational agents are not able to decide by themselves about
something, and may encounter other agents with different preference values.
The ability to reason effectively about what is the best or most appropriate
course of action to take in a given situation is an essential activity for a rational
agent. A simple rational agent may also use argumentation techniques to perform
its individual reasoning as it needs to make rational decisions under complex
preferences policies, or to reason about its commitments, its goals, etc.

A critical question about how to carry out argumentation theory to imple-
mentation systems still exists. For instance, one of the main objectives of the
EU funded project ASPIC1 is to provide a strong foundation for the design and
implementation of a set of generic argument software components which can be
used by 3rd party applications.

1.1 Motivation

Since Aristotle, modalities have been an object of study for logicians especially in
relation with the construction of arguments. Modalities are terms which indicate
the level of certainty with which a claim can be made. One possible definition
of modality is [3]:
1 Consortium for argumentation technology. http://www.argumentation.org/

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 295–306, 2006.
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“The classification of logical propositions according to their asserting or
denying the possibility, impossibility, contingency, or necessity of their
content”.

Research on rational agents has raised further questions about modalities in
the context of argumentation, and the roles that arguments play in the pursuit
of an agent’s goals and plans.

In our own work on medical decision-making we have very different sources
of examples of argumentation [1, 13]. The main objective is to discover the ac-
ceptable set of arguments that support a given claim in a given context. This
is a purposeful and purposed process where the validity of arguments and the
evidence of premises are both approached. One import point of our particular
medical domain (organ transplant) is that there is small amount of information
available w.r.t. the viability criterions which are applied whether a particular
organ is viable to be transplanted. However, we have a hight-level of detail and
quality information w.r.t. each medical case. Usually, the medical information
(in our particular medical domain) is supported by a set of clinal tests.

Lattices have been used to model a wide range of problems. For instance,
lattice domains are useful to perform aggregate operations which are a great
tool for modeling decision-making in Artificial Intelligence. The use of lattice
domains in declarative programming have shown high level of expressiveness.
For example, the use of partial-order clauses and lattice domains in partial-order
programming is particularly useful for expressing concise solutions to problems
for graph theory, program analysis, and database querying [8, 10].

Osorio et. al [7] showed how to perform aggregate operations using negation
as failure, also Nieves et al [6] showed how to perform relaxation in optimization
problems using aggregate operations and negations as failure.

In this paper, we introduce a declarative language to handle arguments with
modalities like possible, probable, plausible, supported and open. Modality is a
category of linguistic meaning having to do with the expression of possibility
and necessity. In [16] a study of the kinds of modal meaning can be found.

In §2 we put forward the syntax to be used and give a brief introduction to
lattices and order. In §3 we introduce our framework and present some examples.
In §4, we present the declarative semantics of our framework. Finally, in §5 we
offer our conclusions.

2 Background

2.1 Syntax

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...

(ii) connectives : ∨,∧,←,¬,⊥,#
(iii) auxiliary symbols : ( , ).
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Where ∨,∧,← are 2-place connectives, ¬ is 1-place connective and ⊥,# are 0-
place connectives. The proposition symbols and ⊥ stand for the indecomposable
propositions, which we call atoms, or atomic propositions. A literal is an atom,
a, or the negation of an atom ¬a. The complement of a literal is defined as
(a)c = ¬a and (¬a)c = a.

A general clause, C, is denoted:

l1 ∨ . . . ∨ lm ← l1, . . . , lj , not lj+1, . . . , not ln
2

where m ≥ 0, n ≥ 0, each li is a literal. When n = 0 and m > 0 the clause is an
abbreviation of l1 ∨ . . .∨ lm ← #3, where # is ¬⊥. When m = 0 the clause is an
abbreviation of ⊥ ← l1, . . . , ln

4. Clauses of theses forms are called constraints
(the rest, non-constraint clauses). A logic program is finite set of general clauses.

A signature L is a finite set of elements that we call atoms. By LP we
understand it to mean the signature of P , i.e. the set of atoms that occurs in P.
Given a signature L, we write ProgL to denote the set of all programs defined
over L. A general semantics SEM is a function on ProgL which associates with
every program a partial interpretation.

We point out that we understand the negation ¬ as the classical negation
and the negation not as the negation as failure [5].

2.2 Lattices and Order

In this section, we present some fundamental definitions of lattice theory in order
to make this paper self contained (see [2] for more details).

Definition 1. [2] Let P be a set. An order (or partial order) on P is a binary
relation ≤ on P such that, for all x, y, z ∈ P ,

(i) x ≤ x
(ii) x ≤ y and y ≤ x imply x = y
(iii) x ≤ y and y ≤ imply x ≤ z

These conditions are referred to, respectively, as reflexivity, antisymmetry and
transitivity.

A set P equipped with an order relation ≤ is said to be an order set (or partial
ordered set).

Definition 2. [2] Let P be an ordered set and let S ⊆ P . An element x ∈ P is
an upper bound of S if s ≤ x for all s ∈ S. A lower bound is defined dually. The
set of all upper bounds of S is denoted by Su (read as ‘S upper’) and the set of
all lower bounds by Sl (read as ‘S lower’).

If Su has a least element x, then x is called the least upper bound (LUB) of S.
Equivalently, x is the least upper bound of S if
2 l1, . . . , lnrepresents the formula l1 ∧ . . . ∧ ln.
3 Or simply l1 ∨ . . . ∨ lm.
4 In fact ⊥ is used to define ¬A as A → ⊥.
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(i) x is an upper bound of S, and
(ii) x ≤ y for all upper bound y of S.

The least upper bound of S exists iff there exists x ∈ P such that

(∀y ∈ P )[((∀s ∈ S)s ≤ y) ⇐⇒ x ≤ y],

and this characterizes the LUB of S. Dually, if Sl has a greatest element, x, then
x is called the greatest lower bound (GLB) of S. Since least element and greatest
elements are unique, LUB and GLB are unique when they exist.

The least upper bound of S is called the supremum of S and is denoted by
sup S; the greatest lower bound of S is also called the infimum of S is denoted
by inf S.

Definition 3. [2] Let P be a non-empty order set.

(i) If sup{x, y} and inf{x, y} exist for all x, y ∈ P , then P is called lattice.
(ii) If sup S and inf S exist for all S ⊆ P , then P is called a complete lattice.

Example 1. Let us consider the set of labels S := { Certain, Confirmed, Probable,
Plausible, Supported, Open } and let � be a partial order such that the following
set of relations holds :

{Certain � Confirmed, Confirmed � Probable,
Confirmed � Plausible, Probable� Support,
P lausible � Supported, Supported � Open}

A graphic representation of S according to � is showed in Figure 1. It is not
difficult to see that S is a lattice and even more it is complete lattice.

Fig. 1. A lattice

The labels given in Example 1 could be qualifiers of a knowledge base.
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3 Modality Argumentation Programming

In this section, we are going to present our framework. We start by defining the
syntax.

Definition 4 (Modality clause). Let Q be a complete lattice. A modality
clause is a clause of the form:

Modality : C.

Where Modality ∈ Q and C is a general clause.

Notice that by using a complete lattice Q, a modality clause categorizes the
sentence expressed in the general clause C. This means that a modality clause
locates a sentence in Q.

We understand a modality as a category of certain meaning having to do with
the expression of possibility. Therefore, a set of possibilities could be categorized
by a complete lattice. For instance, let S := { Certain, Confirmed, Probable,
Plausible, Supported, Open } be a set of labels where each label is a possible
category of believes, so this set could be categorized as it is shown in Figure 1.

Definition 5 (Modality logic program). A modality logic program P is a
tuple of the form 〈Q, Modality Clauses〉, where Q is a complete lattice and
Modality Clauses is a set of modality clauses such that for all Modality : C ∈
Modality Clauses, Modality ∈ Q.

Example 2. Let Q be the lattice presented in Example 1 and let us consider
the following propositions atoms which represent medical knowledge for organ
transplantation.

– dsve = ‘donor has streptococcus viridans endocarditis’.
– risv = ‘recipient infected with streptococcus viridans’.
– nv = ‘non viable’.

One possible modality logic program with its intuitive meaning could be de-
scribed as follows:

Confirmed : dsve. (It is confirmed that the donor has been
infected by streptococus viridas)

Plausible: risv ←dsve. (If the donor has been infected by streptococus viridas,
then it is plausible that the recipient could be infected too.)

Probable : nv←risv. (If it is plausible that the recipient could be infected by
streptococus viridas, then it is probable that his
organs are not viable for transplanting)

Following the definition of argument presented in [11], we are going to define
our concept of argument.
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Definition 6 (Argument). Let P := 〈Q, Modality Clauses〉 be a modality
logic program, an argument Arg w.r.t. P is a tuple of the form

Arg = 〈Claim, Support, Modality Qualifier〉
where Claim is a literal, Support is a finite set of modalities clauses such that:

1. Support is consistent;
2. Support |=I Claim;
3. Support is minimal, so no subset of Support satisfying both 1. and 2. exists.

and Modality Qualifier ∈ Q.

Remark 1. The symbol |=I denotes logic consequence in Intuitionistic Logic (see
[14] for details). Intuitionistic Logic has studied in the context of logic program-
ming, specially in Answer Set Programming, with two kinds of negations [12, 9].
Notice that Support is minimal w.r.t. set inclusion and is not unique.

By definition, an argument has a modality qualifier. The modality qualifier has
the objective of quantify the level of certainty of an argument. There are two
kinds of quantifiers: Pessimistic, and Optimistic. So, we can define two kinds of
arguments.

Definition 7 (Pessimistic argument). Let Arg be an Argument of the form
〈Claim, Support, Modality Qualifier〉. Arg is a pessimistic argument if

Modality Qualifier := GLB{Modality Qualifier|
(Modality Qualifier : formula) ∈ Support}

Definition 8 (Optimistic argument). Let Arg be an argument of the form
〈Claim, Support, Modality Qualifier〉. Arg is an optimistic argument if

Modality Qualifier := LUB{Modality Qualifier|
(Modality Qualifier : formula) ∈ Support}

Example 3. Let us consider again the lattice of Example 1 and the modality
logic program presented in Example 2. One possible argument is:

〈nv, {(Confirmed :dsve), (Plausible : risv←dsve.),(Probable :nv←risv.)}, ?〉
So, a pessimistic argument is:

〈nv, {(Confirmed : dsve), (Plausible :risv ← dsve.), (Probable : nv ← risv.)},
Supported〉
an optimistic argument:

〈nv, {(Confirmed : dsve), (Plausible : risv←dsve.), (Probable : nv←risv.)},
Confirmed〉
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Fig. 2. A lattice of modalities

In the Figure 2 is presented the lattice with the levels of certainty that an
argument could be defined.

Two arguments constructed from two different knowledge bases (two different
rational agents) could be in conflict. We are going to define two well known kinds
of conflicts: attack and undercutting.

Definition 9. Let Arg1 = 〈Claim1, Support1, Modality Qualifier1〉 and Arg2
= 〈 Claim2, Support2, Modality Qualifier2 〉. Arg1 attacks Arg2, if Claim1 =
l and Claim2 = (l)c.

Definition 10. Let Arg1 = 〈Claim1, Support1, Modality Qualifier1〉 and
Arg2 = 〈 Claim2, Support2, Modality Qualifier2 〉. Arg1 undercuts Arg2, if
Claim1 = li and there is a modality clause

(Modality : l1 ∨ . . . ∨ lm ← l1, . . . , lj , not lj+1, . . . , not li, . . . , ln) ∈ Support2

By considering the concepts of attack and undercut, we define our concept of
defeat.

Definition 11. Let Arg1 = 〈 Claim1, Support1, Modality Qualifier1 〉 and
Arg2 = 〈 Claim2, Support2, Modality Qualifier2 〉. Arg1 defeats Arg2, if Arg1
attacks/undercuts Arg2 and LUB{Modality Qualifier1, Modality Qualifier2}
= Modality Qualifier1.

Notice that, if Arg1 defeats Arg2, then Arg1’s claim has a support with more
evidence/certainty that Arg2.

In order to illustrate those definitions, let us consider the following example.

Example 4. Let us consider the lattice presented Example 1, and the following
proposition atoms:
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– a = ‘donor is HIV positive’.
– b = ‘organ is viable for transplanting’.
– c = ‘organ has correct functions and correct structure ’.
– q = ‘positive clinical test’.

Let P1 be the following modality logic program:

Probable: a. (It is probable that donor is HIV positive)
Probable: ¬b ← a, not c. (If donor is HIV positive and there is not evidence

that the organ has correct functions and correct structure,
then the organ is not viable for transplanting )

One possible argument Arg1 from P1 is :

〈¬b, {(Probable : a.), (Probable : ¬b ← a, not c.)}, P robable〉

This argument suggests that the organ is not viable for transplanting (¬b). Now,
let P2 be the following modality logic program:

Confirmed : q. (It is confirmed that the organ has positive clinical tests)
Plausible: c ← q. (If the organ has positive clinical tests, then it is plausible

that the organ has correct functions and correct structure.)

One possible argument Arg2 from P2 is :

〈c, {(confirmed : q.), (Plausible : c ← q)}, Confirmed〉

One can see that Arg2 undercuts Arg1 and even more Arg2 defeats Arg1 because
LUB{Probable, Confirmed} = Confirmed. So, one can not say explicitly that
an organ is not viable for transplanting (¬b).

This example is controversial in the medical domain, because usually an organ
from a donor who is HIV positive is not viable for transplanting. However, there
are cases where the recipient is also HIV positive then he could be receptor of
an acceptable organ from a donor HIV positive.

4 Declarative Semantics

In this section, we are going to present the declarative semantics for our frame-
work. This semantics is characterized in two parts. The first part determines the
models of the modality logic program without considering the modality qualifier
and the second one determines the modality qualifiers of the arguments using
aggregate operations which are implemented by negation as failure.

Definition 12. Let P be a modality logic program, Δ(P ) is a logic program
defined as follows:

Δ(P ) := {C|(Modality : C) ∈ P}.
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Definition 13. Let S be a set of modality clauses, Γ (S) is a set of clauses
defined as follows:

Γ (S) := {Qualifier(Modality)|(Modality : C) ∈ S}
The following two definitions are similar to Definition 4.11 of [7].

Definition 14 (GLB basic ext). Given a complete lattice Q with the partial
order � and a modality logic program P where the modality clauses of P are
defines under Q. We definite GLB basic ext as the set of the following set of
clauses:

1. f�(X) ← Qualifier(X).
2. f�(X) ← f�(X1), X1 ≺ X.
3. f≺(X) ← f�(X1), X1 ≺ X.
4. f=(X) ← f�(X),¬f≺(X).
5. f�(Z) ← f�(X), f�(Y ), GLB�(X, Y, Z).

Definition 15 (LUB basic ext). Given a complete lattice Q with the partial
order � and a modality logic program P where the modality clauses of P are
defines under Q. We define LUB basic ext as the set of the following set of
clauses:

1. f�(X) ← Qualifier(X).
2. f�(X) ← f�(X1), X1 % X.
3. f≺(X) ← f�(X1), X1 % X.
4. f=(X) ← f�(X),¬f≺(X).
5. f�(Z) ← f�(X), f�(Y ), LUB�X, Y, Z).

Now, we present how to build arguments from a modality logic program consid-
ering its models.

Definition 16. Let P be a modality logic program and M(P ) := SEM(Δ(P )).
Arg := 〈Claim, Support, Modality Qualifier〉 is an argument from P iff Claim
∈ M(P ) and Modality Qualifier := modality where if Arg is a pessimistic
argument

f=(modality) ∈ WFS(Γ (Support) ∪GLB basic ext)

or if Arg is optimistic argument

f=(modality) ∈ WFS(Γ (Support) ∪ LUB basic ext)

WFS(P) is a function which infers the well-founded model of the program P5.

In order to illustrate the above definitions, we present the following example.

Example 5. Let us consider again the lattice of Example 1 and the following
proposition atoms which represent, like in Example 2, medical knowledge.
5 See [4] for a formal definition of the well-founded semantics.
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– dbd = ‘donor is brain-dead’
– dma = ‘discard metastatic abscess’
– dbce = ‘determine bacteria causing endocarditis’
– bsv = ‘bacteria is streptoccocus viridians’

Let Π be the following modality logic program:

Confirmed : dbd. (The donor is brain-dead)
Probable: dma ∨ dbce ← dbd. (It is probable that if a donor is brain-dead,

then it is discarded a metastatic abscess or
there is a bacteria causing endocarditis)

Confirmed : dbce ← bsv. (It is confirmed that if a donor has been infected
by streptoccocus viridians, then it is diagnosed endocarditis)

Then
Δ(Π) := {(dbd.), (dma ∨ dbce ← dbd.), (dbce ← bsv)}

In this example, we consider SEM(P) as the stable models semantics [5]. Let
us consider the stable models of Δ(Π) which are {dbd, dma},{dbd, dbce}. This
means that we can construct three different arguments:

1. 〈dbd, {(Confirmed : dbd.)}, Qualifier1〉
2. 〈dbce, {(Confirmed : dbd.), (Probable : dma ∨ dbce ← dbd)}, Qualifier2〉
3. 〈dma, {Confirmed : dbd.}, (Probable : dma ∨ dbce ← dbd)}, Qualifier3〉

These arguments have not defined their modality quantifiers yet. Let us consider
the support of Argument 2. S := {(Confirmed : dbd.), (Probable : dma∨dbce ←
dbd)}, so

Γ (S) := {(Qualifier(Confirmed).), (Qualifier(Probable).)}

By considering WFS(Γ (S)∪GLB basic ext), we can infer the pessimist modal-
ity qualifier of Argument 2, it is not difficult to see that f=(Probable) ∈ WFS
(Γ (S) ∪GLB basic ext), this means that Qualifier2 := Probable.

〈dbce, {(Confirmed : dbd.), (Probable : dma ∨ dbce ← dbd)}, P robable〉

This means, that in this context, we have an argument that suggests that if an
donor is brain-dead, then it is probable that he could be infected by a bacteria
which is causing endocarditis.

Notice that, the use of disjunctive clauses allows to build arguments under in-
complete information and also the quantification of the knowledged base permits
to quantify the arguments. By using this kind of arguments, it is possible to sup-
port decisions taken under incomplete information.
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5 Conclusions and Future Work

In this work we introduced an argumentation framework which allows to incor-
porate modalities during the process of argumentation reasoning. We understand
a modality as a category of certain meaning having to do with the expression of
possibility. Therefore, a set of possibilities could be categorized by a complete
lattice.

Our argumentation framework is based in a specification language which per-
mits to provide specifications with levels of certainty in a natural way. Also, the
specification language allows to use disjunctive clauses, so it allows specifications
in situations where the available information is incomplete, as in the medical do-
main showed in the examples. The declarative semantics of our language permits
to build arguments such that any argument is supported by a set of modality
clauses and the argument’s claim is quantified w.r.t. its support. We present a
couple of examples from our real application to manage the assignation process
of human organs for transplantation [1, 13], although the examples are simple
they permit to see the potential of our framework.

Among the future work, we have planned to deploy this framework in the
context of multi-agent systems, in particular to our real multi-agent system called
CARREL [15].
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Abstract. Feature selection is a well-researched problem, which can improve 
the network performance and speed up the training of the network. In this  
paper, we proposed an effective feature selection scheme for SVM using the 
hybrid of enhanced genetic algorithm and mutual information, in which mutual 
information between each input and each output of the data set is employed in 
mutation in evolutionary process to purposefully guide search direction based 
on some criterions. In order to avoid the noise fitness evaluation, in evaluating 
the fitness of an input subset, a SVM should adaptively adjust its parameters to 
obtain the best performance of network, so an enhanced GA is used to simulta-
neously evolve the input features and the parameters of SVM. By examining 
two real financial time series, the simulation of three different methods of fea-
ture selection shows that the feature selection using the hybrid of GA and MI 
can reduce the dimensionality of inputs, speed up the training of the network 
and get better performance. 

1   Introduction 

Unlike most of the traditional methods, support vector machine (SVM) implements 
the Structural Risk Minimization Principal which seeks to minimize an upper bound 
of the generalization error rather than minimize the training error [1]. This eventually 
results in remarkable characteristics such as good generalization performance, the 
absence of local minima and the sparse representation of solution.  

In the modeling, all possible inputs to a SVM, include relevant features and irrele-
vant features, can be quite large. According to the definitions of John, Kohavi and 
Pfleger [2], irrelevant features do not participate in defining the unknown concepts, 
weakly relevant features possess redundant information and can be eliminated if other 
features subsuming this information are included, and strongly relevant features are 
indispensable. So selecting significant features from all candidate features as an opti-
mum input subset (feature selection) is necessary to decrease the size of network, 
speed up the training and improve the generalization performance of a SVM. In the 
framework of SVM, several approaches for feature selection are available [3,4,5,6]. In 
[3, 4], feature selection using mutual information between input and output to select 
features for SVM, in which 1) it assumes that the inputs are essentially independent 
and that no output is in fact a complex function of two or more of the input variables; 
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2) the objective function disregards SVM with which the selected features are to be 
used. So there is no guarantee that the optimal subset of features will be processed in 
the optimal way by the learning algorithm and by the operating SVM [7]. In [5, 6], 
genetic algorithms are proved to be useful for selecting important features in SVM, in 
which the objective function for selection is a measure of SVM performance.  
Although it is considered superior because they incorporate the inductive bias of the 
SVM, they typically involve expensive search routines. 

In this paper, we address both these shortcomings simultaneously. The proposed 
method employs the mutual information (MI) between input and output in mutation in 
GA to purposefully guide the evolutionary search direction based on some criterions 
for SVM, which can suggest substantial gains in efficiency. In order to avoid the 
noise fitness evaluation [14], in evaluating the fitness of an input subset, a SVM 
should adaptively adjust its parameters to obtain the best performance of network, 
which represents the fitness of this input subset, so an enhanced GA is used to simul-
taneously evolve the input features and the parameters of SVM. By examining two 
real financial time series, the simulation of three different methods of feature selection 
shows that the feature selection using the hybrid of the enhanced GA and MI can 
improve the network performance, reduce the network complexity, and speed up the 
training of the network. 

The rest of this paper is organized as follows. Section 2 describes SVM, mutual in-
formation (MI) and GA. Section 3 the hybrid of enhanced GA and MI is used to 
evolve an optimum input subset for a SVM. Section 4 presents experimental results in 
two financial time series problem. The paper is concluded in Section 5. 

2   Background 

2.1   The Description of SVM 

Support vector machine (SVM) can trace their roots back to statistical learning theory, 
as introduced by Vapnikin the late 1960s [8]. On the basis of the VC dimension con-
cept, constructive distribution-independent bounds on the rate of convergence of 
learning processes can be obtained and the structural risk minimization principle has 
been found. SVM has high generalization ability and is capable of learning in high-
dimensional spaces with a small number of training examples.  

SVM nonlinearly maps inner product of feature space to the original space via a 
kernel. Training SVM is equivalent to solving a linearly constrained quadratic pro-
gramming, the solution of SVM is unique global, and it is only dependent on a small 
subset of training data points which are referred to as support vectors.  

To control generalization capability of SVM, there are a few free parameters like 
limiting term C  and the kernel parameters like RBF width σ . Before training the 
network, these parameters should be decided. The numerical implementation of SVM 
is mainly based on QP with options of decomposing a large-scale QP problems into a 
series of smaller-size QP problems [9]. In the present work, the SVM is trained using 
an adapted version of decomposition methods and working set selection strategies 
similar to that of Joachims [10]. 
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2.2   Mutual Information 

In the information theory founded by Shannon [11], the uncertainty of a random vari-
able C  is measured by entropy )(CH . For two variables X  and C , the condi-

tional entropy )|( XCH  measures the uncertainty about C  when X  is known, 

and MI, );( CXI , measures the certainty about C  that is resolved by X . Appar-

ently, the relation of )(CH , )|( XCH  and );( CXI  is: 

                                 );()|()( CXIXCHCH +=                                      (1) 

or, equivalently, 

           )|()();( XCHCHCXI −= , 

As we know, the goal of training classification model is to reduce the uncertainty 
about predictions on class labels C  for the known observations X  as much as pos-

sible. In terms of the mutual information, the purpose is just to increase MI );( CXI  

as much as possible, and the goal of feature selection is naturally to achieve the higher 
);( CXI  with the fewer features.  

With the entropy defined by Shannon, the prior entropy of class variable C  is ex-
pressed as 

                                     
∈

−=
Cc

s cPcPCH )(log)()(                                        (2) 

where )(cP  represents the probability of C , while the conditional entropy is 

)|( XCH  is 

                  
∈
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x
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The MI between X  and C  is 

                            
∈
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Mutual information can, in principle, be calculated exactly if the probability density 
function of the data is known. Exact calculations have been made for the Gaussian 
probability density function. However, in most cases the data is not distributed in a 
fixed pattern and the mutual information has to be estimated. In this study, the mutual 
information between each input and each output of the data set is estimated using 
Fraser & Swinney’s method [12]. 

The mutual information of independent variables is zero, but is large between two 
strongly dependent variables with the maximum possible value depending on the size 
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of the data set. And this assumes that all the inputs are independent and that no output 
is in fact a complex function of two or more of the input variables.  

Although the MI-based feature selection techniques are widely used [3,4,13], they 
suffer from many limitations. Firstly, their objective functions disregard the classifier 
with which the selected features are to be used. So there is no guarantee that the opti-
mal subset of features will be processed in the optimal way by the learning algorithm 
and by the operating classifier. Secondly, the selected feature subset cannot be guar-
anteed optimal. For example, selecting a fixed number of inputs from a ranked list 
consisting of combinations along with single entries is somewhat problematical, and 
once a feature is added at an early step, it cannot be removed although it may not 
constitute the best subset of features in conjunction with the later selected features. 
Finally, there are a number of parameters that need to be set a priori. For example, the 
number of features added or removed, the significance level for selecting features and 
the final feature size. 

2.3   Genetic Algorithm 

GA is an efficient search method due to its inherent parallelism and powerful capabil-
ity of searching complex space based on the mechanics of natural selection and 
population genetics. Because the problem of feature selection can be formulated as a 
search problem to find a nearoptimal input subset, so the artificial intelligence tech-
niques, such as genetic algorithm (GA), is used to selects the optimal subset of  
features.  

The method of using GA to select input features in the neural network is straight-
forward. In GA, every candidate feature is mapped into individual (binary chromo-
somes) where a bit “1” (gene) denotes the corresponding feature is selected and a bit 
of “0” (gene) denotes the feature is eliminated. Successive populations are generated 
using a breeding process that favors fitter individuals. The fitness of an individual is 
considered a measure of the success of the input vector. Individuals with higher fit-
ness will have a higher probability of contributing to the offspring in the next genera-
tion (‘Survival of the Fittest’).  

There are three main operators that can interact to produce the next generation. In 
replication individual strings are copied directly into the next generation. The higher 
the fitness value of an individual, the higher the probability that that individual will be 
copied. New individuals are produced by mating existing individuals. The probability 
that a string will be chosen as a parent is fitness dependent. A number of crossover 
points are randomly chosen along the string. A child is produced by copying from one 
parent until a crossover point is reached, copying then switching to the other parent 
and repeating this process as often as required. An N bit string can have anything 
from 1 to N-1 crossover points. Strings produced by either reproduction or crossover 
may then be mutated. This involves randomly flipping the state of one or more bits. 
Mutation is needed so new generations are more than just a reorganization of existing 
genetic material. After a new generation is produced, each individual is evaluated and 
the process repeated until a satisfactory solution is reached. The procedure of GA for 
feature selection is expressed as follows: 



 Feature Selection in SVM Based on the Hybrid of Enhanced Genetic Algorithm 311 

 Procedure of genetic Algorithm for feature selection 
 Initialization 
     N     →     Population size 

     P      →     Initial population with N  subsets of Y 

     cP     →     Crossover probability 

     mP    →     Mutation probability 

     T     →     Maximum number of generations 

     k      →     0 
 Evolution 
     Evaluation of fitness of P   
     while ( k  < T  and P  does not converge)  do 
  Breeder Selection 

  Crossover with cP  

  Mutation with mP  

  Evaluation of fitness of P  Replication 
  Dispersal 
  1+k →  k  

In contrast with MI, GA is more attractive, because it incorporate the inductive 
bias of the SVM and the search process involves no user selectable parameters, such 
as the final feature size and the signification level etc.. In addition, it has the potential 
to simultaneously evolve the input features and the parameters of SVM. But GA typi-
cally involves expensive search routines. 

3   The Proposed Method 

3.1   The Feature Selection Problem for a SVM 

We consider the general feature selection problem for a SVM:  

                      2/1
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where ry  is the desired target value, and y  is the output of network. G  is a subset 

of features, i.e. },...,,{ 21 NxxxG ∈ . f  is a function YXf →: . GH  denotes 

the restriction of H  on G , i.e. the class of function in H  that map G  to Y , here 

},...,,{ 21 NyyyY = . The SVM learning framework aims to 1) discover a function 

YXf →: , from a hypothesis H  class of functions; 2) select K  features out of 

N . In this paper, we choose the RBF kernel function in SVM. 
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3.2   The Hybrid of GA and Mutual Information 

In the proposed method, we use mutual information between each candidate input and 
each output to guide the mutation in GA. First, using Fraser & Swinney’s method, the 

mutual information ix  between each candidate input and each output is estimated. In 

order to reduce time of calculating the mutual information between single input and 
output in the whole data set, we randomly select some data from data set with prob-
ability 0.5 to construct a data set named MI set, and then calculate mutual information 

in this data set. So data set },...,1,{ NixD i ==  is constructed, where ix  represents 

the mutual information of i th candidate input, and N  means there are N  candidate 
inputs. 

    Then calculate the mathematical statistics of ix : the mean 
_

x  and standard devia-

tion Ns  
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In GA, we use mutual information between each candidate input and each output to 
guide the mutation based on some criterions, as follows: 
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where ig  represents i th gene in a binary chromosome, it means i th candidate input. 

If the mutual information ix  of i th candidate input belongs to 1D , it means it is a 

strongly relevant input for each output, so include it into input feature subset; if the 

mutual information ix  of i th candidate input belongs to 2D , it means it is a weakly 
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relevant input for each output, so randomly include it into input feature subset; If the 

mutual information ix  of i th candidate input belongs to 3D , it means it is almost 

irrelevant input for each output, so exclude it from input feature subset.  

3.3   An Enhanced GA 

In order to avoid the noise fitness evaluation [14], in evaluating the fitness of an input 
subset, a SVM should adaptively adjust its parameters to obtain the best performance 
of network, which represents the fitness of this input subset. In order to accurately 
evaluate the fitness of the candidate input subset, the candidate input subset and the 
parameters of SVM should not be synchronously adjusted. Here, we propose an en-
hance GA to select the most suitable features and the parameters related to SVM as 
follows: 

 

Fig. 1. The enhance GA  

 
In an enhanced GA, the parameter F  reperesents the iterative number of only 

evolving the parameters of SVM with no change of input features.  
    In a training run, needing K different inputs to be selected from a set of N possible 
inputs, the genome string would consist of (K+1) bits. The first K bits 

( id , Ki ,...,2,1= ) in the genome represent the candidate inputs for SVM which are 

constrained to be in the range {0, 1}; the 1+Kd  is a real number which represents a 

parameter of SVM, the RBF kernel width (σ ) which has to be within the range 

max1min ldl K ≤≤ + . The parameters maxl  and minl  represent, respectively, the lower 

and the upper bounds on the SVM parameter.  
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4   Experimental Studies 

Two financial futures contracts collated from the Chicago Mercantile Market are 
examined, which are the Standard&Poor 500 stock index futures (CME-SP) and 
United Sates 30-year government bond (CBOT-US) [5]. The daily closing prices are 
used as the data set. The original closing price is transformed into a five-day relative 
difference in percentage of price (RDP). The input variables are constructed from 14 

lagged RDP values based on 5-day periods ( 1754 ,...,, xxx ) and 3 lagged transformed 

closing prices which is obtained by subtracting a 15-day exponential moving average 

from the closing price ( 321 ,, xxx ). All the data points are scaled into the range of 

[−0.9, 0.9] as the data points include both positive values and negative values. There 
are a total of 907 data patterns in the training set, and 400 data patterns in the test set 
in all the data sets.  

The RBF kernel is used for SVM, and the kernel parameters σ  should be evolved  
due to different features of the input subsets.  

Three different methods of feature selection: SA, GA and the proposed method, are 
respectively applied in CBOT-SP and CBOT-US. In GA and the proposed method, 

N =50, T  =60, cP =0.6, mP =0.02 and F =5. And a SVM with K inputs is trained 

using an adapted version of decomposition methods and working set selection strate-
gies similar to that of Joachims [10]. And the fitness function is defined to be 

RMSE/1 , and the root mean square error (RMSE) is calculated by 

                                    2/12 ))(( −= rYYRMSE                                        (9) 

where rY  is the desired target value, and Y   is the output of network. And the fitness 

value is defined to be RMSE/1 . 
After selecting an optimal input subset using one of the above techniques, these in-

puts were assessed by means of an evaluation SVM whose architecture was chosen 
based on initial experiments. And a SVM with K inputs is trained using an adapted 
version of decomposition methods and working set selection strategies similar to that 
of Joachims [10]. The overall performance of this testing network was assumed to 
reflect the appropriateness of this particular selection of inputs.  

The performance of SVM using the selected features is present in table 1. And the 
input subsets of features selected by SA, GA and the proposed method are indicated 
in table 2. 

Table 1. Result of feature selection in CME-SP and CME-US 

CBOT-SP CBOT-US Method 
RMSE TIME(s) RMSE TIME(s) 

Full features 0.9778 * 1.1620 * 
GA 0.8931 933 1.0685 274 
SA 0.8410 425 1.0422 341 

The proposed method 0.8297 392 1.0316 179 
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Table 2. Selected features in CME-SP and CME-US 

Method Features (CBOT-SP) Features (CBOT-US) 
GA 1716143112976531 ,,,,,,,,,, xxxxxxxxxxx 1611108321 ,,,,,, xxxxxxx
SA 127321 ,,,, xxxxx 161210321 ,,,,, xxxxxx

The proposed method 12321 ,,, xxxx 1210321 ,,,, xxxxx
 

Table 1 indicates that the proposed method exhibited better performance than the 
other techniques at RMSE and training time. In addition, it was found that there was 
very little increase in performance after 51 generations for the proposed method in  
CME-SP and 39 generations for the proposed method in CME-US, but 79 generations 
for GA in CME-SP and 48 generations for GA in CME-US. 

Table 2 indicates that although there is considerable similarity between GA and the 
proposed method there are differences between the inputs selected, and GA and the 
proposed method selected the different number of inputs, which explains the effect of 
mutual information. In contrast to SA, the proposed method get small number input 
features, which explains the better performance at RMSE and training time. In addi-

tion, it was found that there are common inputs 1231 ,, xxx  in CME-SP and 

10321 ,,, xxxx  in CME-US for three techniques, it means that they are strongly rele-

vant to the output.  

5   Conclusion 

We proposed an effective feature selection scheme for SVM using the hybrid of the 
enhanced genetic algorithm and mutual information, in which mutual information 
between each input and each output of the data set is employed in mutation in evolu-
tionary process to purposefully guide search direction based on some criterions. In 
order to avoid the noise fitness evaluation, in evaluating the fitness of an input subset, 
a SVM should adaptively adjust its parameters to obtain the best performance of net-
work, so an enhanced GA is proposed to simultaneously evolve the input features and 
the parameters of SVM. By examining a real financial time series forecasting, the 
simulation of three different methods of feature selection shows that the feature selec-
tion using the hybrid of GA and MI can reduce the dimensionality of inputs, speed up 
the training of the network and get better performance. 
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Abstract. The use of knowledge-based systems can represent an ef-
ficient approach for system management, providing automatic control
strategies with Artificial Intelligence capabilities. By means of Artificial
Intelligence, the system is capable of assessing, diagnosing and suggest-
ing the best operation mode. One important Artificial Intelligence tool
for automatic control is the use of fuzzy logic controllers, which are fuzzy
rule-based systems comprising the expert knowledge in form of linguistic
rules. These rules are usually constructed by an expert in the field of in-
terest who can link the facts with conclusions. However, this way to work
sometimes fails to obtain an optimal behavior. To solve this problem,
within the framework of Machine Learning, some artificial intelligence
techniques could be applied to enhance the controller behavior.

In this work, a post-processing method is used to obtain more com-
pact and accurate fuzzy logic controllers. This method combines a new
technique to perform an evolutionary lateral tuning of the linguistic vari-
ables with a simple technique for rule selection (that removes unnecessary
rules). To do so, the tuning technique considers a new rule representa-
tion scheme by using the linguistic 2-tuples representation model which
allows the lateral variation of the involved linguistic labels.

1 Introduction

The use of knowledge-based systems can represent an efficient approach for sys-
tem management, providing automatic control strategies with Artificial Intelli-
gence capabilities. By means of Artificial Intelligence, the system is capable of
assessing, diagnosing and suggesting the best operation mode. One important
Artificial Intelligence tool for automatic control is the use of Fuzzy Logic Con-
trollers (FLCs). FLCs are Fuzzy Rule-Based Systems (FRBSs) comprising the
expert knowledge in form of linguistic rules. These rules are usually constructed
by an expert in the field of interest who can link the facts or evidence with
conclusions. When a real-world situation is presented to the computer, it can
� Supported by the Spanish Ministry of Science and Technology under Project TIC-
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use these rules to draw conclusions based on different situations in the way an
expert would. However, this way to work sometimes fails to obtain an optimal
behavior. To solve this problem, within the framework of Machine Learning,
some Artificial Intelligence techniques could be successfully applied to enhance
the controller behavior.

Recently, to improve the behavior of FRBSs, a new linguistic rule represen-
tation model was proposed to perform a genetic lateral tuning of Membership
Functions (MFs) [2]. This new approach was based on the linguistic 2-tuples rep-
resentation [10], that allows the symbolic translation of a label by considering
an unique parameter per label. It involves a reduction of the search space that
eases the derivation of optimal models respect to the classical tuning.

On the other hand, rule selection methods directly select a subset of rules
from a given fuzzy rule set in order to minimize the number of rules, maintain-
ing the system performance [9, 12, 13, 14]. The combination of the lateral tuning
with rule selection methods can present a positive synergy, reducing the tun-
ing search space, easing the system readability and even improving the system
accuracy.

In this work, we present a study of how this new tuning approach can be com-
bined with a rule selection method to improve fuzzy rule-based decision models
obtained from the experts’s experience. To do that, we propose an evolutionary
method combining these two approaches to obtain more compact and accurate
FLCs. Additionally, we analyze the positive synergy between both techniques,
showing its behavior by solving a real-world problem for the control of a Heating,
Ventilating and Air Conditioning (HVAC) system.

This paper is arranged as follows. The next section presents the lateral tuning
and rule selection techniques. Section 3 describes the evolutionary algorithm for
the global lateral tuning and rule selection. Section 4 presents the HVAC system
control problem. Section 5 shows an experimental study of the method behavior
applied to the HVAC problem. Finally, Section 6 points out some conclusions.

2 Lateral Tuning and Rule Selection

This section introduces the global lateral tuning of MFs and presents the basics
and characteristics of the rule selection technique.

2.1 Lateral Tuning of Membership Functions

In [2], a new model of tuning of FRBSs was proposed considering the linguistic
2-tuples representation scheme introduced in [10], which allows the lateral dis-
placement of the support of a label and maintains the interpretability associated
to the obtained linguistic FRBSs. This proposal also introduces a new model for
rule representation based on the concept of symbolic translation [10].

The symbolic translation of a linguistic term is a number within the interval [-
0.5, 0.5), expressing this interval the domain of a label when it is moving between
its two adjacent lateral labels (see Figure 1.a). Let us consider a set of labels S
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(s  , - 0.3)

α = -0.3

0.5- 0.5

0.5- 0.5

0.5- 0.5
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0.5- 0.5

0 1 2 3 4

- 0.3

1.7

(s  ,-0.3)2
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a) Simbolic Translation of a label b) Lateral Displacement of a Membership function

s0 s1 s2 s3 s4

2

Fig. 1. Symbolic Translation of a Linguistic Label and Lateral Displacement of the
involved MF

representing a fuzzy partition. Formally, to represent the symbolic translation
of a label in S we have the 2-tuple,

(si, αi), si ∈ S, αi ∈ [−0.5, 0.5).

Actually, the symbolic translation of a label involves the lateral displacement of
its associated MF. As an example, Figure 1 shows the symbolic translation of a
label represented by the pair (s2,−0.3) together with the lateral displacement
of the corresponding MF.

In the context of the FRBSs, we are going to see its use in the linguistic rule
representation. Let us consider a control problem with two input variables, one
output variable and a Data Base (DB) defined from experts determining the
MFs for the following labels:

Error, &Error → {N, Z, P}, Power → {L, M, H} .

Based on this DB definition, an example of classical rule and linguistic 2-tuples
represented rule is:

Classical Rule,
If error is Zero and �Error is Positive then Power is High.

Rule with 2-Tuples Representation,
If error is (Zero, 0.3) and �Error is (Positive, -0.2) then Power is (High, -0.1).

In [2], two different rule representation approaches were proposed, a global
approach and a local approach. In our particular case, the learning is applied
to the level of linguistic partitions (global approach). In this way, the pair (Xi,
label) takes the same α value in all the rules where it is considered, i.e., a
global collection of 2-tuples is considered by all the fuzzy rules. For example, Xi

is (High, 0.3) will present the same value for those rules in which the pair
”Xi is High” was initially considered. Since the 3 parameters usually considered
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per label are reduced to only 1 symbolic translation parameter, this proposal de-
creases the learning problem complexity easing indeed the derivation of optimal
models. Other important issue is that, from the parameters α applied to each
label, we could obtain the equivalent triangular MFs, by which a FRBS based
on linguistic 2-tuples could be represented as a classical Mamdani FRBS.

2.2 The Rule Selection Technique

Rule set reduction techniques try to minimize the number of rules of a given
FRBS while maintain (or even improve) the system performance. To do that,
erroneous and conflicting rules that degrade the performance are eliminated,
obtaining a more cooperative fuzzy rule set and therefore involving a potential
improvement of the system accuracy. Furthermore, in many cases the accuracy
is not the only requirement of the model but also the interpretability becomes
an important aspect. Reducing the model complexity is a way to improve the
system readability, i.e., a compact system with few rules requires a minor effort
to be interpreted.

Fuzzy rule set reduction is generally applied as a post-processing stage, once
an initial fuzzy rule set has been derived. One of the most known fuzzy rule set
reduction techniques is the rule selection. This approach involves obtaining an
optimal subset of fuzzy rules from a previous fuzzy rule set by selecting some
of them. We may find several methods for rule selection, with different search
algorithms that look for the most successful combination of fuzzy rules [9, 12, 13].
In [14], an interesting heuristic rule selection procedure is proposed where, by
means of statistical measures, a relevance factor is computed for each fuzzy rule
composing the FRBSs to subsequently select the most relevant ones.

These kinds of techniques for rule selection could be easily combined with
other post-processing techniques to obtain more compact and accurate FRBSs.
In this way, some works have considered the selection of rules together with
the tuning of MFs by coding all of them (rules and parameters) in the same
chromosome [5, 7]. In this work, we propose the combination of the rule selection
with the lateral tuning of MFs.

3 Algorithm for the Lateral Tuning and Rule Selection

To perform the lateral tuning together with the rule selection we consider a
Genetic Algorithm (GA) based on the well-known steady-state approach. The
steady-state approach [15] consists of selecting two of the best individuals in
the population and combining them to obtain two offspring. These two new
individuals are included in the population replacing the two worst individuals if
the former are better adapted than the latter. An advantage of this technique
is that good solutions are used as soon as they are available. Therefore, the
convergence is accelerated while the number of evaluations needed is decreased.

In the following, the components needed to design this process are explained.
They are: coding scheme and initial gene pool, chromosome evaluation, the ge-
netic operators and a restarting approach to avoid premature convergence.
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3.1 Coding Scheme and Initial Gene Pool

To combine the rule selection with the global lateral tuning, a double coding
scheme for both rule selection (CS) and lateral tuning (CT ) is used:

– For the CS part, the coding scheme generates binary-coded strings of length
m (with m being the number of fuzzy rules in the existing FRBS, obtained
from expert knowledge). Depending on whether a rule is selected or not,
the alleles ‘1’ or ‘0’ will be respectively assigned to the corresponding gene.
Thus, the corresponding part Cp

S for the p-th chromosome will be a binary
vector representing the subset of rules finally obtained,

Cp
S = (cp

S1, . . . , c
p
Sm) | cp

Si ∈ {0, 1} .

– For the CT part, a real coding is considered, i.e., the real parameters are the
GA representation units (genes). This part is the joint of the α parameters
of each fuzzy partition. Let us consider the following number of labels per
variable: (m1, m2, . . . , mn), with n being the number of system variables.
Then, a chromosome has the following form (where each gene is associated
to the tuning value of the corresponding label),

CT = (c11, . . . , c1m1 , c21, . . . , c2m2 , . . . , cn1, . . . , cnmn).

Finally, a chromosome Cp is coded in the following way:

Cp = Cp
SCp

T .

To make use of the available information, the FRBS previously obtained from
expert knowledge is included in the population as an initial solution. To do so,
the initial pool is obtained with first individual having all genes with value ‘1’ in
the CS part and having all genes with value ‘0.0’ in the CT part. The remaining
individuals are generated at random.

3.2 Evaluating the Chromosome

The fitness function depends on the problem being solved (see Section 4.1).

3.3 Genetic Operators

The crossover operator will depend on the chromosome part where it is applied:

– For the CT part, the BLX-α crossover [6] and a hybrid between a BLX-α
and an arithmetical crossover [8] are considered. In this way, if two parents,
Cv

T = (cv
T1, . . . , c

v
Tk, . . . , cv

Tg) and Cw
T = (cw

T1, . . . , c
w
Tk, . . . , cw

Tg), are going to
be crossed, two different crossovers are considered,
1. Using the BLX-α crossover [6] (with α being a constant parameter chosen

by the GA designer), one descendent Ch
T = (ch

T1, . . . , c
h
Tk, . . . , ch

Tg) is ob-
tained, with ch

Tk being randomly generated within the interval [ILk
, IRk

] =
[cmin − I · α, cmax + I · α], cmin = min(cv

Tk, cw
Tk), cmax = max(cv

Tk, cw
Tk)

and I = cmax − cmin.
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2. The application of the arithmetical crossover [8] in the wider interval
considered by the BLX-α, [ILk

, IRk
], results in the next descendent:

Ch
T with ch

Tk = aILk
+ (1− a)IRk

,
with a ∈ [0, 1] being a random parameter generated each time this
crossover operator is applied. In this way, this operator performs the
same gradual adaptation in each gene, which is a good characteristic.

– In the CS part, the standard two-point crossover is used.

Finally, four offspring are generated by combining the two ones from the
CS part with the two ones from the CT part. The mutation operator flips the
gene value in the CS part and no mutation is considered in CT part, in order
to improve the algorithm convergence. In this way, once the mutation opera-
tor is applied over the four offspring obtained from the crossover, the resulting
descendents are the two best of these four individuals.

3.4 Restarting Approach

Finally, to get away from local optima, this algorithm uses a restart approach.
Thus, when the population of solutions converges to very similar results (prac-
tically the same fitness value in all the population), the entire population but
the best individual is randomly generated within the corresponding variation
intervals. It allows the algorithm to perform a better exploration of the search
space and to avoid getting stuck at local optima.

4 The HVAC System Control Problem

In EU countries, primary energy consumption in buildings represents about 40%
of total energy consumption and more than a half of this energy is used for indoor
climate conditions. On a technological point of view, it is estimated that the
consideration of specific technologies like Building Energy Management Systems
(BEMSs) can save up to 20% of the energy consumption of the building sector,
i.e., 8% of the overall Community consumption. With this aim, BEMSs are
generally applied only to the control of active systems, i.e., HVAC systems.

An HVAC system is comprised by all the components of the appliance used
to condition the interior air of a building. The HVAC system is needed to provide
the occupants with a comfortable and productive working environment which
satisfies their physiological needs. In Figure 2, a typical office building HVAC
system is presented. This system consists of a set of components to be able to
raise and lower the temperature and relative humidity of the supply air.

The energy consumption as well as indoor comfort aspects of ventilated and
air conditioned buildings are highly dependent on the design, performance and
control of their HVAC systems and equipments. Therefore, the use of appropriate
automatic control strategies, as FLCs, for HVAC systems control could result in
important energy savings when compared to manual control [1, 11].

Some artificial intelligence techniques could be successfully applied to en-
hance the HVAC system capabilities [4, 11]. However, most works apply FLCs
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Fig. 2. Generic structure of an office building HVAC system

to individually solve simple problems such as thermal regulation (maintaining a
temperature setpoint), energy savings or comfort improvements. On the other
hand, the initial rule set is usually constructed based on the operator’s control
experience using rules of thumb, which sometimes fail to obtain satisfactory re-
sults [11]. Therefore, the different involved criteria should be optimized for a
good performance of the HVAC System. Usually, the main objective is to reduce
the energy consumption maintaining a desired comfort level.

In our case, five criteria should be optimized improving an initial FLC ob-
tained from human experience (involving 17 variables) by the application of the
proposed technique for the lateral tuning of the MFs and rule selection. To do
so, we consider the calibrated and validated models of a real test building. Both,
the initial FLC and the simulation model were developed within the framework
of the JOULE-THERMIE programme under the GENESYS 1 project. From now
on, this test building will be called the GENESYS test site.

In the following subsections the five different objectives and the final fit-
ness function to be optimized will be presented together with the initial FLC
architecture and variables (see [1] for more information on this problem).

4.1 Objectives and Fitness Function

Our main optimization objective is the energy performance but maintaining the
required indoor comfort levels. In this way, the global objective is to minimize
the following five criteria:

O1 Upper thermal comfort limit: if PMV > 0.5, O1 = O1 + (PMV − 0.5),
where PMV is the more global Predicted Mean Vote thermal comfort index
7730 selected by the international standard organization ISO, incorporating
relative humidity and mean radiant temperature2.

O2 Lower thermal comfort limit: if PMV < −0.5, O2 = O2 + (−PMV − 0.5).
O3 Indoor air quality requirement: if CO2 conc. > 800ppm, O3 = O3 +(CO2−

800).
1 GENESYS Project: Fuzzy controllers and smart tuning techniques for energy effi-

ciency and overall performance of HVAC systems in buildings, European Commis-
sion, Directorate-General XII for Energy (contract JOE-CT98-0090).

2 http://www.iso.org/iso/en/ISOOnline.frontpage
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O4 Energy consumption: O4 = O4+ Power at time t.
O5 System stability: O5 = O5+ System change from time t to (t − 1), where

system change states for a change in the system operation, e.g., a change in
the fan speed or valve position.

These criteria are combined into one overall objective function by means
of a vector of weights. When trustworthy weights are available, this approach
reduces the size of the search space providing the adequate direction into the
solution space and its use is highly recommended. In our case, trusted weights
were obtained by the experts for the objective weighting fitness function: wO

1 =
0.0083022, wO

2 = 0.0083022, wO
3 = 0.00000456662, wO

4 = 0.0000017832 and wO
5

= 0.000761667. Finally, the fitness function to be minimized was computed as:

F =
5∑

i=1

wO
i ·Oi .

4.2 FLC Variables and Architecture

A hierarchical FLC architecture considering the PMV, CO2 concentration, pre-
vious HVAC system status and outdoor temperature was proposed by the BEMS
designer for this site. This architecture, variables and initial Rule Base (RB) are
presented in Figure 3.

The DB is composed of symmetrical fuzzy partitions with triangular-shaped
MFs labeled from L1 to Lli (with li being the number of labels of the i-th
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Fig. 3. Initial RB and generic structure of the GENESYS FLC
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variable). The initial DB is depicted in Figure 4 together with the tuned DB.
Figure 3 represents the decision tables of each module of the hierarchical FLC
in terms of these labels. Each cell of the table represents a fuzzy subspace and
contains its associated output consequent(s), i.e., the corresponding label(s). The
output variables are denoted in the top left square for each module. Both, the
initial RB and the DB, were provided by the BEMS designer.

5 Experiments

To evaluate the goodness of the approach proposed (global lateral tuning with
rule selection), the HVAC problem is considered to be solved. The FLCs ob-
tained from the proposed approach will be compared to the performance of a
classic On-Off controller and to the performance of the initial FLC (provided by
experts). The goals and improvements will be computed with respect to this clas-
sical controller as done in the GENESYS 3 project. The intention from experts
was to try to have 10% energy saving (O4) together with a global improvement
of the system behavior compared to On-Off control. Comfort parameters could
be slightly increased if necessary (no more than 1.0 for criteria O1 and O2). The
methods considered in this study are shown in Table 1.

Table 1. Methods Considered for Comparison

Method, Ref. Year Description
S, [3] 2005 Rule Selection (CS part of GL-S)
CL, [1] 2003 Classical Tuning
GL, [2]∗ 2004 Global Lateral-Tuning (CT part of GL-S)
CL-S, – – Classical Tuning (CL) + Rule Selection (S)
GL-S, – – The proposed method

∗ The global lateral tuning proposed in [2] adapted to this problem

The values of the parameters used in all of these experiments are presented
as follows: 31 individuals, 0.2 as mutation probability per chromosome (except
for the lateral tuning which has no mutation), 0.3 for the factor α in the hybrid
crossover operator and 0.35 as factor a in the max-min-arithmetical crossover
in the case of CL. The termination condition will be the development of 2000
evaluations, in order to perform a fair comparative study. In order to evaluate
the GA good convergence, three different runs have been performed considering
three different seeds for the random number generator.

The results presented in Table 2, where % stands for the improvement rate
with respect to the On-Off controller for each criterion and #R for the number
of fuzzy rules, correspond to averaged results obtained from the three different
runs. The results obtained with the On-Off and the initial FLC controller are also
included in this table. No improvement percentages have been considered in the
table for O1 . . . O3, since these objectives always met the experts requirements
and the On-Off controller presents zero values for these objectives.
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Table 2. Comparison among the different methods

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

S 160 0.1 0 0 2886422 9.98 1312 -15.52
C 172 0.0 0 0 2586717 19.33 1081 4.84

GL 172 0.9 0 0 2325093 27.49 1072 5.66
C − S 109 0.1 0 0 2536849 20.88 1057 6.98

GL − S 113 0.7 0 0 2287993 28.64 800 29.58

A good trade-off between energy and stability was achieved for all the mod-
els obtained from GL-S, maintaining the remaining criteria within the optimal
values. GL-S presents improvement rates of about a 28.6% in energy and about
a 29.6% in stability, with the remaining criteria for comfort and air quality
within the requested levels. Moreover, the proposed algorithm presents a good
convergence and seems to be independent of random factors.
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Fig. 4. Initial and Tuned DB of a Model Obtained with GL-S (Seed 1)

Figure 4 represents the initial and the final DB of the FLC obtained by GL-S
with seed 1. It shows that small variations in the MFs cause large improvements
in the FLC performance. Figure 5 represents the decision tables of the FLC
obtained from GL-S1 (see Section 4.2). In this case, a large number of rules have
been removed from the initial FLC, obtaining much simpler models (more or less
59 rules were eliminated). This fact improves the system readability, and allows
us to obtain simple and accurate FLCs.
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Fig. 5. RB and final structure of a FLC Obtained with GL-S (seed 1)

6 Concluding Remarks

In this work, we propose the use of a global lateral tuning together with the
rule selection to obtain FRBSs to aid the BEMS expert in the control of HVAC
Systems. The techniques based on lateral tuning, specially that including rule
selection, have yielded much better results than the remaining approaches show-
ing their good behavior on these kinds of complex problems. It is due to the
following reasons:

– The search space reduction that the lateral tuning involves in complex prob-
lems. It allows to these techniques to obtain more optimal FLCs.

– The complementary characteristics that the use of the tuning approaches
and the rule selection approach present. The ability of the rule selection to
reduce the number of rules by only selecting the rules presenting a good
cooperation is combined with the tuning accuracy improvement, obtaining
accurate and compact FLCs.

As further work, we propose the use of multiobjective GAs in order to obtain
even simpler FLCs and maintaining a similar accuracy.
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Abstract. The path-based indexing methods such as the three-dimensional bit-
map indexing have been used for collecting and retrieving the similar XML 
documents. To do this, the paths become the fundamental unit for constructing 
index. In case the document structure changes, the path extracted before the 
change and the one after the change are regarded as totally different ones  
regardless of the degree of the change. Due to this, the performance of the  
path-based indexing methods is usually bad in retrieving and clustering the 
documents which are similar. A novel method which can detect the similar 
paths is needed for the effective collecting and retrieval of XML documents. In 
this paper, a new path construction similarity which calculates the similarity be-
tween the paths is defined and a path bitmap indexing method is proposed to ef-
fectively load and extract the similar paths. The proposed method extracts the 
representative path from the paths which are similar. The paths are clustered us-
ing this, and the XML documents are also clustered using the clustered paths. 
This solves the problem of existing three-dimensional bitmap indexing. 
Through the performance evaluation, the proposed method showed better clus-
tering accuracy over existing methods. 

1   Introduction 

XML is positioned as a core element in modern research and technologies. Therefore, 
storing, retrieving, and using the XML documents effectively have important meaning 
as fundamental technology. The XML researches are classified into two generally. 
The first focuses on predefining the data structure so that it prevents the XML docu-
ments from having different structures. The second stores and retrieves documents 
having different structures [1, 2, 3]. The existing RDBMS vendors already proposed 
the methods to retrieve the XML documents inside their systems [4, 5, 6] and many 
XML retrieval systems have been proposed [7, 8, 9]. The existing bitmap indexing 
methods [10, 11] maps the XML into three-dimensional bitmap index which consists 
of documents, paths, and words. It showed good performance by extracting the infor-
mation very fast using bit-wise operation.  

The existing methods, however, have problems that cannot detect the similar paths 
by using the entire path as fundamental index unit to collect and retrieve the similar 
documents. Consequently, the retrieval of similar documents using bitmap indexing 
only covers the cases that the paths are exactly matched. Therefore a new indexing 
method to detect the similar paths is needed. In the paper, a path construction similar-
ity to measure the similarity of paths is defined. A new path bitmap indexing method 
is proposed also using the path construction similarity. The proposed method extracts 
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the representative path from the similar paths loaded. Using the representative path 
extracted, the clustering is performed over the similar paths and then clustering of 
XML documents is done. This solves the problem of existing three-dimensional bit-
map indexing. 

This paper is organized as follows. Section 2 introduces the three-dimensional bit-
map indexing which is a representative path-based indexing method. Its problems are 
also discussed. A new path similarity measure is defined in Section 3 and a new path 
bitmap indexing method is proposed using the measure. Section 4 discusses the ex-
traction of representative path from similar paths. Section 5 describes the XML docu-
ment clustering using the proposed method. Section 6 discusses the performance of 
XML document clustering using the proposed method. Finally Section 7 presents the 
conclusion and further research. 

2   Related Work 

BitCube, a three-dimensional indexing method, is a technique which effectively ex-
tracts information from XML documents. BitCube constructs three-dimensional index 
by using documents, paths, and words as three axis. The index has one-bit field where 
the bit-wise operations are possible. BitCube clusters the similarly structured  
documents based on the paths of the documents. The criterion which determines the 
similarities of documents is that how evenly the documents contain the same path. 
BitCube demonstrated outstanding performance by showing fast retrieval speed [10, 
11] through the systems such as XQEngine [8] and XYZFind [9].  

The three-dimensional index of BitCube has the problem of memory usage and  
operation speed when large number of documents are loaded. xPlaneb solved this 
problem by reconstructing index using the linked lists instead of BitCube’s three-
dimensional array index. xPlaneb, however, has performance degradation in memory 
usage when small amount of documents are loaded in single cluster [12]. X-Square, 
which selectively employs the two methods mentioned above, has better performance 
in memory usage. The operation speed, however, is worse than xPlaneb [13].  

The three-dimensional bitmap indexing is a path-based method to collect and re-
trieve similar documents. In other words, the documents sharing many same paths are 
saved in the same cluster because they have the similar structures. Since the three-
dimensional bitmap indexing extracts the paths as it is, it can detect the documents 
with same paths but cannot detect the documents with similar paths. Therefore, if a 
document undergoes structural change, the path which is extracted before the change 
and the path which is extracted after the change are regarded as totally different ones. 
Due to this, the three-dimensional bitmap indexing suffers significant performance 
problem in clustering and retrieving similar documents.  

Figure 1 shows two XML documents and the list of their paths which have similar 
structures. The two documents have four paths respectively. Path 1 and 5, path 2 and 
path 6, path 3 and path 7, and path 4 and path 8 are similar paths, respectively. The 
existing three-dimensional bitmap indexing treats these as different paths because 
they are not exactly the same. Consequently, the similarity of two documents be-
comes 0 and they are loaded in different clusters. This causes a significant problem in 
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PID Path PID Path 
1 A_B_E 5 A_H_B_E 
2 A_B_F 6 A_H_B_F 
3 A_C 7 A_H_C 
4 A_D_G 8 A_H_D_G 

Fig. 1. Similarly structured documents and the extracted paths 

clustering similarly structured documents. The same is applied to the retrieval of simi-
lar documents.  

3   Path Bitmap Indexing 

3.1   Path Bitmap Index 

The path bitmap index is the index to cluster the similar paths. The existing three-
dimensional bitmap indexing uses three-dimensional index consisting of documents, 
paths, and words. The path bitmap indexing, however, uses two-dimensional index 
consisting of paths and nodes which constructs the paths. The index collects the simi-
lar paths and then loads into the same index. One system has multiple indexes where 
similar paths are collected into one index. These indexes are called clusters. The new 
index differs from the existing index in that the new index contains the order informa-
tion of nodes that consists of path. This is because the new index clusters based on  
the nodes while the existing index clusters based on the paths. The order between the 
paths has no meaning. For the nodes, however, the order of nodes has significant 
meaning. 

Figure 2 shows the structure of the path bitmap index. The path bitmap index has 
the path name list and the node name list since it consists of the paths and their nodes. 
The paths loaded in the index become true-and-false one-dimensional Boolean array 
according to the existence of the nodes. They form the base bitmap index. Each path 
records its order information of the nodes using the next node pointer. The center of 
the clusters becomes true-and-false one-dimensional Boolean array. The decision  
of true and false depends on how many paths include the node. The nodes that have 
true values are called the representative nodes and they form the representative paths. 
The representative paths, as in the path, use the next node pointer to record the order 
information of the nodes. 
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Fig. 2. The path bitmap index 

Each index where the similar paths are collected should maintain the information 
that represents the index. The existing bitmap index achieves this by keeping the 
center of the clusters. The path bitmap index also keeps the information of the repre-
sentative nodes through the center of the cluster. However, as mentioned above, since 
the order of nodes is important in the case of paths, the order information between the 
nodes should be included in addition to the simple node information. Consequently, 
the information that represents one cluster can be extracted through the representative 
nodes and the order information. This information is called the representative path of 
the cluster. The election of the representative node and representative path is dis-
cussed in the next section. 

3.2   Path Construction Similarity 

In order to cluster the similar paths in the path bitmap index which is proposed in the 
previous section, some new criteria to measure the degree of similarity of paths is 
needed. This section discusses the path construction similarity. A path is actually the 
set of nodes which construct the path. The nodes have some particular order. The 
paths are similar if the sets of nodes are similar. But more importantly, the orders of 
nodes should be similar for the paths to be similar. The path construction similarity 
measures the degree of similarity of node sequences that construct the paths. More 
specifically, the path construction similarity is measured as follows: among the two 
paths, the path that has more nodes is selected; the average of the node values in the 
path is calculated. 

 
Definition 1. The node value NodeValue(P, N) of the node N which constructs the 
path P is defined as follows. d is the number of nodes that are not matched sequen-
tially). 

d
NPNodeValue

2

1
),( =  
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Definition 2. The path construction similarity P.C.Sim(P1, P2) of the two different 
paths P1 and P2 is defined as follows. NodeNum(P) is the number of all nodes that the 
path P contains. NodeNum(P1) is always less than or equal to NodeNum(P2). 
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Figure 3 shows how the path construction similarity is measured between the path 1 
in Figure 1 and the two paths A_H_I_B_E and A_H_I_B_J_E. The node values of A, 
B, E in the path A_H_I_B_E become 1 because the nodes A, B, and E match the path 
1 sequentially. Since the nodes H and I do not exist in the path 1 and appear sequen-
tially, the node values are 0.25. The path construction similarity between the path 
A_H_I_B_E and the path 1 become ((1+0.25+0.25+1+1)/5=0.7). In the same way the 
path construction similarity between the path A_H_I_B_J_E and the path 1 become 
((1+0.25+0.25+1+0.5+1)/6=0.67). 

 
 

 
Fig. 3. Calculation of the path construction similarity 

4    Extraction of the Representative Path 

4.1   The Election of Representative Nodes 

In order to extract the representative path, the nodes that have common paths are 
elected. These nodes are called the representative nodes. The representative nodes are 
determined through the representativeness and it is defined in Definition 3. 

 
Definition 3. The node representativeness Rep(C, N) of the node N in the cluster C is 
defined as follows. PathNum(C, N) is the number of paths in the cluster C that con-
tains the node N and PathNum(C) is the number of all paths in the cluster C. 
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For instance, compared with the path 1 in Figure 1, since the path construction  
similarity of the paths 2, 5, and 6 are 0.83, 0.87, and 0.87 respectively, they are  
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determined as similar paths. Therefore, if the paths 1, 2, 5, and 6 exist in the cluster 
C1, the node representativeness of the nodes A, B, E, F, and H that construct the paths 
are (4/4=1), (4/4=1), (2/4=0.5), (2/4=0.5), (2/4=0.5) respectively. If the threshold 0.4 
is assumed, all nodes are elected as the representative nodes. If the threshold is 0.8, 
only the node A and B are elected as the representative nodes. 

To elect the representative nodes, the nodes that construct similar paths should be 
checked. If the checking and counting is progressed from the lower level nodes to the 
upper level nodes, an ordered set of nodes is obtained. This is called the temporary 
representative path. 

Table 1. Accumulated counting for electing the representative nodes 

Node Level 
Node Name 

0 1 2 3 

A 4 - - - 
B 0 2 4 - 
E 0 0 1 2 
F 0 0 1 2 
H 0 2 - - 

 
In the example above, the threshold is assumed 0.4. In order to elect the representa-

tive node from the cluster C1, all the nodes that construct the paths 1, 2, 5, and 6 
should be checked. Here the level 0 nodes from the paths 1, 2, 5, and 6 are checked 
first and then the level 1 nodes are checked. In the same way level 2 or 3 nodes are 
checked sequentially while the accumulated counts of nodes are recorded. During the 
count, when a node exceeds the threshold, the node is declared as a representative 
node. If the nodes are arranged as the order of election, an ordered set of nodes is 
obtained. Table 1 shows the count values and their change to elect the represent- 
tative nodes. The table shows that the paths 1, 2, 5, and 6 elect all the nodes  
as representative nodes. Since the nodes are elected in the order of A, B, H, E, and  
F, the temporary representative path is A_B_H_E_F. If the threshold is set to 0.8, 
since the representative nodes are A and B, and the order is also A and then B, the 
temporary representative path is A_B. 

4.2   The Determination of Order for Representative Nodes 

In order to elect the representative path, the order of elected representative nodes 
should be determined. The order is determined through the relationship between the 
nodes. The relationship is defined in Definition 4. 

 
Definition 4. The relativeness Rel(C, N1, N2) between the nodes N1 and N2 in the 
cluster C is defined as follows. In the formula, PostNodesNum(C, N1, N2) is the num-
ber of node N2 appearing after the node N1 in the cluster C. PathNum(C, N1, N2) is the 
number of paths in all the paths in the cluster C that contain the node N1 or N2. 
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If the relativeness between the two nodes is high, the order of nodes has significant 
meaning. If the relativeness is low, however, ordering the nodes may be harmful to 
the representativesness of the representative path. Generally, the relativensss between 
the nodes become low in two cases. The first case is when a node A seldom appears in 
the paths in which another node B appears. In this case, the node A cannot be a repre-
sentative node for the paths that contain B.  

The second case is that the nodes A and B appear in the same paths but the number 
of cases of the node A after the node B and that of node B after the node A are nearly 
the same. In this case, the representative path in which the node A appears before  
the node B cannot represent the path in which the node B appears before the node A. 
The reverse is true also. The representative path in which the node B appears before 
the node A cannot represent the path in which the node A appears before the node B. 
Therefore, if Rel(C, N1, N2) is lower than some threshold, the election of the represen-
tative node is cancelled even though the representativeness of the nodes N1 and N2 is 
higher than the threshold. If Rel(C, N1, N2) is higher than some threshold, the order of 
two nodes is determined. If PostNodesNum(C, N1, N2) – PostNodesNum(C, N2, N1) is 
positive, it is determined that N1 precedes N2. In the contrary, if PostNodesNum(C, N1, 
N2) – PostNodesNum(C, N2, N1) is negative, it is determined that N2 precedes N1. In 
this way the orders of all the representative nodes are determined.  

The post node table is used to measure the relativeness of the representative nodes 
and to determine the order of the representative nodes fast. The table records how 
many times a node appears after another node. In other words, the table keeps Post-
NodesNum(C, N1, N2) values for all the representative nodes. Table 2 shows the post 
node table for the representative nodes A, B, E, F, and H in the cluster C1 when the 
threshold is 0.4. Using the table, the relativeness of the representative nodes is meas-
ured that construct the temporary representative path that was extracted in Section 
4.1. Then the order of nodes is adjusted using PostNodesNum(C, N1, N2) – Post-
NodesNum(C, N2, N1). The adjustment is similar to the insertion sort. 

Table 2. The post node table for the representative nodes of the paths 1, 2, 5, and 6 

Post Node Name 
Node Name A B E F H 

A - 4 2 2 2 
B 0 - 2 2 0 
E 0 0 - 0 0 
F 0 0 0 - 0 
H 0 2 1 1 - 

 
For instance, when the threshold 0.4 for the node relativeness is assumed, the order 

of temporary representative path A_B_H_E_F that was extracted from the cluster C1 
is adjusted as follows. The temporary representative path is scanned from the second 
node to the last node while searching the position for the node to be inserted. First the 
representative node B measures the relativeness with the node A which exists in front 
of B. Since Rel(C1, A, B) is (|4 - 0| / 4=1), it is determined to be meaningful. If Post-
NodesNum(C1, A, B) – PostNodesNum(C1, B, A) is negative, the representative node B 
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is inserted before the node A. Since PostNodesNum(C1, A, B) – PostNodesNum(C1, B, 
A) is positive, however, the order remain the same.  

Next, the representative node H measures the relativeness with the nodes A and B, 
respectively. Since Rel(C1, B, H) is (|0 - 2| / 4=0.5), it is determined to be meaningful. 
PostNodesNum(C1, B, H) – PostNodesNum(C1, H, B) is negative. Since Rel(C1, A, H) 
is (|2 - 0| / 4=0.5), it is determined to be meaningful. Since PostNodesNum(C1, A, H) – 
PostNodesNum(C1, H, A) is positive, the representative node H is inserted between 
the nodes A and B. The same applies up to the last node F and a complete representa-
tive path is obtained. One thing to be noticed is the relativeness on the representative 
nodes E and F. Since Rel(C1, E, F) is (0 – 0 / 4=0), the election of representative 
nodes for the two nodes is cancelled during the order adjustment. Consequently, the 
representative path A_H_B is obtained after the order adjustment for the temporary 
representative path A_B_H_E_F. 

5   Clustering Similar XML Documents Using Path Bitmap Index 

Sections 3 and 4 discussed the path bitmap indexing which clusters the similar paths. 
The existing three-dimensional bitmap indexing uses the documents, paths, and word 
IDs to cluster the XML documents. The new method, however, uses the index ID of 
the corresponding path instead of the path ID. This solves the problem of the existing 
three-dimensional bitmap indexing that it cannot detect the similar paths. 
 

 

 
 

Fig. 4. The architecture of xPlaneb+ 

Figure 4 shows the architecture of xPlaneb+ that clusters XML documents using 
the path bitmap indexing. A new XML document is converted into the set of paths 
through the XML document analysis module and then transferred to the bitmap in-
dexing module for similar paths. The bitmap indexing module for similar paths 
searches the index ID of the most similar representative path and then transfers the 
result to the bitmap indexing module for similar XML documents. The bitmap index-
ing module for similar XML documents performs the clustering using the transferred 
index ID. 

Bitmap Indexing Module 
for Similar Paths 

Bitmap Indexing Module 
for Similar XML Documents 

XML Documents 
Analysis Module 

Database XML Documents 
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6   Performance Evaluation 

This section shows the clustering of similar XML documents using the representative 
paths which are extracted through the proposed method, and also the performance 
evaluation is done. The proposed method was implemented under the MS Windows 
2000 Server and MS Visual C#.NET. MS SQL Server was employed for the database 
management system. 

The total number of clusters is measured after the clustering is done on a group of 
similar documents using an existing method and the proposed method. The transfor-
mation rate measures how a document or a group of documents differ from some 
target document structurally. This is defined in Definition 5. 

 

Definition 5. The transformation rate TransRate(D1, D2) between the documents D1 
and D2 is defined as follows. The Nodenum(D1,D2) is the number of the nodes which 
are in the union of the documents D1 and D2, and the Transnodenum(D1,D2) is that 
of the nodes which are exclusively in one of D1 and D2. 
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The number of clusters is measured on a group of the similar documents with the 
transformation rates 0.1 and 0.4. Figure 5 shows the result of the performance evalua-
tion. The existing three-dimensional bitmap indexing generates large number of clus-
ters as the transformation rate increases. When the transformation rate reaches 40%, 
the number of clusters is almost the same as the number of documents. The proposed 
method, however, generates a lot less number of clusters as the transformation rate 
increase which can be said to be more accurate clustering. This is because the pro-
posed method detects the similar paths so that the similar documents go to less num-
ber of clusters. 
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7   Conclusion 

The paths are the basic units for the index construction in the path-based indexing 
such as the existing three-dimensional bitmap indexing for the similar XML docu-
ment retrieval. When the structure of a document changes, the extracted paths before 
the change and after the change are regarded totally different one. Consequently, the 
path-based indexing suffers from the significant performance degrade in the retrieval 
and clustering of similar documents. Therefore, a new method to detect the similar 
paths is needed for the effective storage and retrieval of XML documents. 

The paper defines the path construction similarity which becomes the basis for 
measuring the similarity of the paths. Using this, the path bitmap indexing is proposed 
which enables effective load and retrieval of the similar paths. The method extracts 
the representative nodes and the temporary representative paths from the similar paths 
loaded. Using the post node table, the order of representative nodes is adjusted which 
construct the representative paths, and then the representative paths are extracted. 
Through the extracted representative paths, the clustering is performed for the similar 
paths and XML documents. This solves the problem of the existing three-dimensional 
bitmap indexing. 

The performance evaluation shows that the existing three-dimensional bitmap in-
dexing generates large number of clusters as the transformation rate increases. When 
the transformation rate reaches 40%, the number of clusters is almost the same as the 
number of documents. The proposed method, however, generates a lot less number of 
clusters as the transformation rate increase which can be said to be more accurate 
clustering. 

The proposed method has some problem in the condition that the similar words or 
synonyms exist. The further research includes the solution for the problem and more 
accurate clustering. 
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Abstract. In this paper we propose an algorithm, called the modified suppressed 
fuzzy c-means (MS-FCM), that simultaneously performs clustering and parame-
ter selection for the suppressed FCM (S-FCM) proposed by Fan et al. [2].  
Numerical examples illustrate the effectiveness of the proposed MS-FCM  
algorithm. Finally, the S-FCM and MS-FCM algorithms are applied in the seg-
mentation of the magnetic resonance image (MRI) of an ophthalmic patient. In 
our comparisons of S-FCM, MS-FCM and alternative FCM (AFCM) proposed 
by Wu and Yang [14] for these MRI segmentation results, we find that the MS-
FCM provides better detection of abnormal tissue than S-FCM and AFCM when 
based on a window selection. Overall, the MS-FCM clustering algorithm is more 
efficient and is strongly recommended as an MRI segmentation technique. 

1   Introduction 

In real data analysis, the large data sets are unavoidable. In this situation, the compu-
tation time of the FCM algorithms will grow rapidly and the  issue of slow convergence 
has been dealt with by various authors ([1], [4], [9], and [15]). Recently, Wei and Xie 
[13] proposed the rival checked FCM (RCFCM) clustering algorithm to speed up FCM 
algorithm. But the RCFCM algorithm only pays attention to the largest and next largest 
degree of membership. To overcome this shortcoming, Fan et al. [2] proposed the S-
FCM clustering algorithm which established a relationship between the hard c-means 
(HCM) and FCM clustering algorithms. However, the problem of selecting a suitable 
parameter α  in S-FCM constitutes an important part of implementing the S-FCM algo-
rithm for real applications. It is therefore important to select a suitable α  such that the 
S-FCM algorithm can take on the advantages of the fast convergence speed of the HCM 
as well as the superior partition performance of the FCM. Fan et al. [2] failed to provide 
a selection method for the parameter α  in S-FCM. 

Based on the concept of machine learning with the capability of learning to im-
prove the performance of a task on the basis of the previous experience, we propose a 
modified S-FCM (MS-FCM) algorithm that performs clustering and selects the pa-
rameter α  in S-FCM simultaneously. Numerical experiments illustrate the effective-
ness of the proposed MS-FCM with the ability of performing clustering and also  
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selecting the parameter α  with a prototype-driven learning. Finally, we use the MS-
FCM algorithm to an MRI segmentation in ophthalmology. 

2   A Modified S-FCM Algorithm Based on Prototype-Driven 
Learning 

Let },,{ 1 nxxX =  be a data set in an s -dimensional Euclidean space sR  with 

its ordinary Euclidean norm •  and let c  be a positive integer greater than one. The 

FCM algorithm is an iterative algorithm using the necessary conditions for a mini-

mizer of the objective function FCMJ  with 

                             
= =

−=
c

i

n

j
ij

m
ijFCM xJ

1 1

2
),( υμυμ , 1>m , 

where },{ 1 cμμμ =  is a fuzzy c -partition with )( jiij xμμ = , },,,{ 21 cυυυυ =  

is the c   cluster centers and the weighting exponent m  has an influence on the clus-
tering performance of FCM (cf. [8]).  The necessary conditions for a minimizer ),( υμ  

of FCMJ  are the following update equations: 
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Recently, these FCM clustering algorithms have found frequent use in segmenting 
MRI ([5], [10], [11], [17]). The convergence speed of FCM becomes important as 
MRI data sets are generally large. To speed up FCM algorithm, Fan et al. [2] proposed 
the S-FCM clustering algorithm based on the idea of RCFCM, which magnifies the 
largest membership degree and suppresses the second largest membership degree. The 

main change from FCM is to modify memberships ijμ  as follows: 

If the data point jx  has membership in the p th cluster and the p th is the largest of 

all c  clusters, the value is noted as pjμ . (Annotate: If there are two or more largest 

memberships, randomly choose one.) The memberships are then modified as: 
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11  and ijij αμμ = , pi ≠ , 10 ≤≤ α .        (3) 

But the selection of α  was not addressed in their paper. Next, we will provide a sim-
ple method that can perform clustering and also select the parameter α  in S-FCM 
with a prototype-driven learning approach. 

The idea of selecting α  is based on the separation strength given by 
2

min kiki υυ −≠ . We make note that the term 2
min kiki υυ −≠ was used in the valid-

ity index proposed by Xie and Beni [16], defined as 
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We know that 2
min kiki υυ −≠  indicates the separation strength between clusters. If 

the value of 2
min kiki υυ −≠  is large, the result is a lower degree of overlapping and 

a greater separation between the clusters is produced. In this case, HCM is superior to 
FCM. That is, a small value of α  will be a better selection for S-FCM. On the other 
hand, FCM should outperform HCM when the borders between clusters are not sharp. 

That is, clusters are not clearly separated. In this case, the value of 2
min kiki υυ −≠  is 

small and a large value of α  will be a better selection for S-FCM. According to the 
above, we know that α  is better assigned as a monotone decreasing function of 

2
min kiki υυ −≠ . The problem here is how to select a useful and suitable function. 

Adopting the Cauchy distribution concept, we propose an Cauchy-type function to 
select α  with 
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where β  is a normalized term so that we choose β  as a sample variance. That is, we 

define β  as 
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Therefore, we propose the modified S-FCM (MS-FCM) algorithm as follows: 

MS-FCM algorithm 

S1: Fix 1>m  and 12 −≤≤ nc  and give c  initial cluster centers iυ . 
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REPEAT 

S2: Compute α  with iυ  by equation (5). 

S3: Compute ijμ  with iυ  by equation (2). 

S4: Modify ijμ  by equation (3). 

S5: Update iυ  with the modified ijμ  by equation (1). 

UNTIL(cluster centers stabilized) 

Note that the differences between S-FCM and MS-FCM are : (i) In S-FCM, the pa-
rameter α  is prior given but the value of α  in MS-FCM is updated at each iteration 
using Eq. (5); (ii) The update of α  in MS-FCM is a prototype- driven learning ap-
proach to match the cluster behavior of the given data set. 

Next, we compare the performance of MS-FCM to S-FCM with 5.0=α  according 
to the normal mixtures of two classes under the accuracy and computational effi-
ciency criteria. The accuracy of an algorithm is measured by the mean squared error 
(MSE) that is the average sum of squared error between the true parameter and the 
estimated in N  repeated trials. The computational efficiency of an algorithm is 

measured by the average numbers of iterations (NI) in N  repeated trials. We also 
design various normal mixture distributions shown in Table 1. Algorithms are proc-
essed with the same specifying initial values, 0001.0=ε  and 2=m  (cf. [7], [12]). 
The MSE is calculated using 

                                             
Nc

uu
N

k i i
k

i= =
−

1

2

1

2)( )ˆ(
                                              (6) 

where )(ˆ k
iu  is the estimated subpopulation mean of the k th trial, iu  is the true sub-

population mean and 50=N . 

Table 1. Normal mixtures for the numerical experiments 

)1,2()1()1,0( NN γγ −+         Test A     A1     A2     A3 

                              γ       0.1    0.3    0.5 

)1,(5.0)1,0(5.0 uNN +         Test B     B1     B2     B3 

                              u        1      2      3 

),2(5.0)1,0(5.0 2σNN +       Test C     C1     C2     C3 

                              2σ      0.5     1      2 

),()1()1,0( 2σγγ uNN −+       Test D     D1     D2     D3 

                              γ       0.1    0.3    0.5 

                              u        2      1      3 

                              2σ       2      1     0.5 
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We analyze Tests A, B and C with an acceptable sample size 100=n  and large 
sample size 500=n . The results for 100=n  and 500 are shown in Table 2, respec-
tively. From Table 2, SFCM has good accuracy in all tests. Although the average 
number of iterations of MS-FCM is larger than other algorithms in some cases, the 
difference is small. 

As supported by the above experiments, the MS-FCM algorithm is 
computationally simple and produces satisfactory results. In the next section, we will 
apply the S-FCM and MS-FCM clustering algorithms to an ophthalmological MRI 
segmentation. 

Table 2. Accuracy and computational efficiency for the normal mixtures 

100=n  500=n  Test 

FCM 
MSE   NI 

S-FCM 
MSE   NI 

MS-FCM 
MSE   NI 

FCM 
MSE   NI 

S-FCM 
MSE   NI 

MS-FCM 
MSE   NI 

A1 
A2 
A3 

0.7386  7.20 
0.1714  5.82 
0.0606  3.42 

0.7084  6.28 
0.1604  5.70 
0.0590  3.12 

0.4624  6.78 
0.1298  5.16 
0.0569  3.14 

0.6825  7.24 
0.1626  6.56 
0.0421  3.04 

0.6684  6.12 
0.1539  5.88 
0.0435  2.64 

0.3946  5.04 
0.1180  6.36 
0.0346  2.68 

B1 
B2 
B3 

0.1909  4.06 
0.0650  3.54 
0.0285  3.06 

0.1896  3.54 
0.0607  3.26 
0.0293  2.80 

0.1696  3.22 
0.0559  3.20 
0.0275  3.00 

0.1701  4.02 
0.0417  3.04 
0.0155  2.48 

0.1803  3.06 
0.0417  2.70 
0.0131  2.20 

0.1605  2.80 
0.0324  2.54 
0.0068  2.20 

C1 
C2 
C3 

0.0484  3.44 
0.0564  3.42 
0.1405  3.94 

0.7325  5.96 
0.0527  3.26 
0.1289  3.80 

0.0342  3.06 
0.0504  3.34 
0.1254  3.04 

0.0362  2.92 
0.0451  3.00 
0.0451  3.00 

0.0304  2.44 
0.0432  2.84 
0.0432  2.84 

0.0208  2.70 
0.0332  2.76 
0.0332  2.76 

D1 
D2 
D3 

0.8076  6.36 
0.2211  4.76 
0.0240  2.60 

0.7325  5.96 
0.2227  4.12 
0.0200  2.28 

0.3738  5.80 
0.2144  4.02 
0.0156  3.10 

0.7850  6.00 
0.2602  4.74 
0.0159  2.50 

0.6136  5.98 
0.1993  4.34 
0.0113  2.00 

0.3248  5.60 
0.1672  3.48 
0.0063  3.02 

3   Application to Ophthalmological MRI Segmentation 

Segmentation of the medical images obtained from MRI is a primary step in most 
applications of computer vision to medical image analysis. Yang et al. [17] applied 
AFCM, proposed by [14], in a real case study of MRI segmentation to differentiate 
between normal and abnormal tissue in ophthalmology. Here we also use S-FCM and 
MS-FCM algorithms to analyze these MRI data sets (cf. [17]). The first MRI data set is 
illustrated in Figs. 1 and 2. The second MRI data set is shown in Fig. 3. We first attempt 
to cluster the full size images (Figs. 1 and 2) into the same five clusters used by [17]. We 
also apply S-FCM and MS-FCM to a window segmentation illustrated in Fig. 3. 
    From the red circle on the full size two dimensional MRI in Fig. 1, we can clearly 
detect white tumor tissue at the chiasma. Since we have no information on the struc-
ture of the first data set, we set 5.0=α  in S-FCM. The segmentation results by 
AFCM with 2=m   (Fig. 1.1), S-FCM with 2=m  and 5 (Figs. 1.2 and 1.5) and MS-
FCM with 2=m  and 5 (Figs. 1.3 and 1.6) are able to distinguish the tumor from the 
healthy tissue. However, AFCM with 5=m  (Fig. 1.4) yields incorrect segmentation. 
It means that the performance of AFCM is sensitive to m  that may cause a bad seg-
mentation result when m  is not properly chosen. We mention that this phenomenon 
of AFCM with 5=m  was not observed and studied in [17]. 
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Fig. 1. Original MR image 

 

Fig. 1.1. Segmentation result of AFCM (m=2, 
S=1) 

 

    Fig. 1.2. Segmentation result of S-FCM 
(m=2, S=0.9073, FN=0.0927, FP=0) 

 

Fig. 1.3. Segmentation result of MS-FCM 
(m=2, S=0.9073, FN=0.0927, FP=0) 

 

    Fig. 1.4. Segmentation result of AFCM 
(m=5, S=0.5633, FN=0, FP=0.0024) 

 

Fig. 1.5. Segmentation result of S-FCM 
(m=5, S=0.9073, FN=0.0927, FP=0 ) 

 

    Fig. 1.6. Segmentation result of MS- FCM 
(m=5, S=1, FN=0, FP=0) 
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Fig. 2. Distorted MR image 

 

Fig. 2.1. Segmentation result of AFCM (m=2, 
S=1) 

 

    Fig. 2.2. Segmentation result of S-FCM 
(m=2, S=0.7374, FN=0.2626, FP=0) 

 

Fig. 2.3. Segmentation result of MS-FCM (m=2, 
S=0.7374, FN=0.2626, FP=0) 

 

    Fig. 2.4. Segmentation result of AFCM 
(m=5, S=0, FN=1, FP=0) 

 

Fig. 2.5. Segmentation result of S-FCM (m=5,
S=0.7374, FN=0.2626, FP=0) 

 

    Fig. 2.6. Segmentation result of MS- FCM 
(m=5, S=1, FN=0, FP=0) 
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Fig. 3. Original MR image and its window selection 

        

Fig. 3.1. Segmentation result of AFCM 
(m=2, S=1) 

  

    Fig. 3.2. Segmentation result of S-FCM (m=2, 
S=0.7685, FN=0.2315, FP=0) 

        

Fig. 3.3. Segmentation result of MS-FCM 
(m=2, S=0.8981, FN=0.1019, FP=0) 

  

    Fig. 3.4. Segmentation result of AFCM (m=5, 
S=0, FN=1, FP=0) 
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Fig. 3.5. Segmentation result of S-FCM 
(m=5, S=0.6759, FN=0.3241, FP=0) 

 

    Fig. 3.6. Segmentation result of MS-FCM 
(m=5, S=0.8981, FN=0.1019, FP=0) 

Table 3. Computational performance of MS-FCM and S-FCM for Fig. 1-3 

 2=m  5=m  
criterion dataset AFCM S-FCM MS-

FCM 
AFCM S-FCM MS-

FCM 
Iteration 
number 

Fig. 1 
Fig. 2 
Fig. 3 

130 
140 
141 

23 
19 
23 

21 
22 
22 

339 
360 
199 

25 
26 
29 

29 
26 
24 

CPU time(s) Fig. 1 
Fig. 2 
Fig. 3 

3535.6 
3795.1 
1656.5 

255.9 
264.7 
107.9 

249.9 
264.7 
107.9 

9638.4 
10258.0 
2452.9 

292.9 
307.1 
149.6 

349.9 
354.7 
127.1 

Table 4. Final output values of α  from MS-FCM and S-FCM for Fig. 1-3 

m  Fig. 1 Fig. 2 Fig. 3 
2 0.817 0.817 0.402 
5 0.830 0.830 0.399 

A distorted MR image, shown in Fig. 2, is used here to illustrate how an algorithm 
is able to detect tumorous tissue, despite uncertainty. With the use of the AFCM with 

2=m  (Fig. 2.1) and S-FCM with 2=m  and 5 (Figs. 2.2 and 2.5) and MS-FCM with 
2=m  and 5=m  (Figs. 2.3 and 2.6), we are still able to detect the tumorous tissue. 

But, AFCM with 5=m  (Fig. 2.4) yields incorrect segmentation. Table 3 shows the 
computational performance of these three clustering algorithms. One can see that the 
number of iterations and the CPU time for MS-FCM in Figs. 1 and 2 are less than for 
AFCM but slightly larger than for S-FCM ( 5.0=α ) in some cases. However, the MS-
FCM provides more accurate segmentation results than S-FCM for Figs. 1 and 2. 
From Table 4, it is seen that these output values of α  are stable and robust to m . 

From Fig. 3, one lesion was clearly seen in the MR image. Since we have not any 
information on the structure of the second data set, we set 5.0=α  in S-FCM. First, 
we applied AFCM, S-FCM and MS-FCM with 2=m  and 5 to the window selection 
as illustrated in Figs. 3.1-3.6. We can see occult lesions (red circles) clearly enhanced 
with AFCM ( 2=m  ) in Fig. 3.1 and MS-FCM in Figs. 3.3 and 3.6. However, AFCM 
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( 5=m  ) in Fig. 3.4 fails to indicate these occult lesions. And S-FCM in Figs. 3.2 and 
3.5 does not clearly show these occult lesions. This indicates a poor performance on 
the parts of AFCM ( 5=m  ) and S-FCM ( 5.0=α ). 

To evaluate detection of abnormal tissue, it is necessary to make a quantitative 
comparison of the image, segmented by each algorithm, with a reference image.  
Because the segmentation results with AFCM ( 2=m ) in Figs. 1-3 can successfully 
differentiate the tumor from the normal tissues (cf. [17]), Figs. 1.1, 2.1 and 3.1 are 
considered as reference images. The comparison score S  (cf. [6], [18]) for each  
algorithm is defined as 

ref

ref

AA

AA
S

∪

∩
=  

where A  represents the set of pixels belonging to the tumor tissue found by the i th 

algorithm and refA represents the set of pixels belonging to the tumor tissue in the 

reference segmented image. Moreover, adopting the similar idea of false negative and 
false positive from [3], we may also define the following two error types based on A  

and refA : 

           False Negative (FN) 
ref

c
ref

A

AA ∩
= , False Positive (FP) 

c
ref

c
ref

A

AA ∩
= ,  

where c
ref AA ∩  represents the set of pixels in refA  has not been detected to be 

tumor tissue by the i th algorithm and AAc
ref ∩ represents the set of pixels in c

refA  

has been detected to be tumor tissue by the i th algorithm and cA  and c
refA  represent 

the complements of A  and refA , respectively. From the values of S , FN and FP 

corresponding to Figs. 1.2-1.6, 2.2-2.6 and 3.2-3.6, we can see that the overall per-
formance of MS-FCM is better than the others. Furthermore, the performance of MS-
FCM is also robust to the weighting exponent m . 

4   Conclusion 

In this paper we use a learning technique to search for the parameter α  in S-FCM and 
then created the MS-FCM clustering algorithm. The advantage of MS-FCM algorithm 
is to perform clustering and select the parameter α  simultaneously. Though each 
learning iteration in MS-FCM would take slightly more computation time than  
S-FCM, the MS-FCM could provide more accurate clustering results than S-FCM. 
Finally, the MS-FCM algorithm is applied in the segmentation of the MRI of an oph-
thalmic patient. The results show that the MS-FCM provides better detection of  
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abnormal tissue than S-FCM and AFCM. The MS-FCM is actually a good algorithm 
for real applications. Overall, we recommend those concerned with applications in 
cluster analysis try the proposed MS-FCM algorithm. 
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Abstract. This paper presents two new clustering algorithms which are
based on the entropy regularized fuzzy c-means and can treat data with
some errors. First, the tolerance which means the permissible range of the
error is introduced into optimization problems which relate with cluster-
ing, and the tolerance is formulated. Next, the problems are solved using
Kuhn-Tucker conditions. Last, the algorithms are constructed based on
the results of solving the problems.

1 Introduction

Fuzzy c-means(FCM) [1] is one of the known fuzzy clusterings and many FCM
variants has been proposed after FCM. In this variants, FCM algorithm with
based on the concept of the regularization by entropy has been proposed by one
of the authors [2]. This algorithm is called regularized entropy FCM(eFCM) and
discussed not only its usefulness but also the mathematical relations of other
techniques.

In general, any data that is represented by numeric have some errors. We
quote three examples as follows.

1. The error which is introduced when the object is mapped the real space to
the pattern space.

2. The uncertainty which is introduced in real space.
3. The original range with data.

In this paper, we assume that such errors have some bound and we call the errors
tolerance. In addition, we assume that the bound is given preliminarily. In the
past, many clustering algorithms which classify the data with the tolerance are
examined and one of the authors also proposed one of such algorithms [3, 4]. In
these algorithms, the tolerance of the data is represented by a interval value and
the nearest distance or Hausdorff are introduced to calculate the dissimilarity
between the data with the tolerance. In the case to use these distances as dissim-
ilarity, only the boundary of the interval value which represents the tolerance is
needed for calculation of the value of the dissimilarity. On the other hand, when
the usual distances, e.g. Euclidean or L1, are used, the methods to calculate the

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 351–361, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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representative values of the data with the tolerance are determined in advance,
for example, average or center. But we consider that not only the boundary but
also all the region of the tolerance should be considered and the tolerance should
be formulated in the frame of the optimization.

In this paper, we consider new optimization problems and we construct new
clustering algorithms based on standard FCM and eFCM for the data with
the tolerance through the derivation of the optimal solutions for these problems.
Alternatively, we consider two constraint conditions and proposed two algorithms
in relation to these conditions.

1.1 Optimization Problem

We define some symbols at the beginning. X = {x1, . . . , xn} is a subset of p
dimensional vector space Rp and we write xk = (x1

k, . . . , xp
k)T ∈ Rp. We classify

the data set X into c clusters Ci(i = 1, . . . , c). Let vi = (v1
i , . . . , vp

i )T ∈ Rp be
the center for cluster Ci and V = {v1, . . . , vc} be the set of centers for clusters.
In fuzzy clustering, the result for clustering is decided on the membership grade.
We denote the partition matrix U = [uik]. In addition, E = {ε1, . . . , εn} is the
set of the tolerance. We assume that ε1, . . . , εn have the upper bound of the
tolerance κ1, . . . , κn, respectively.

We consider the objective functions :

The version of standard FCM:

Js(U, E, V ) =
n∑

k=1

c∑
i=1

um
ik‖xk + εk − vi‖2. (1)

The version of entropy regularized FCM:

Je(U, E, V ) =
n∑

k=1

c∑
i=1

uik‖xk + εk − vi‖2 + λ−1
n∑

k=1

c∑
i=1

uik log uik. (2)

In (1), m is the parameter of power which satisfies the condition m > 1. In (2),
secondly term in the right side is called by the term for regularization by entropy
[2]. In this paper, ‖ · ‖ stands for the Euclidean norm. Now, we introduce two
constraint conditions :

Constraint conditions:
c∑

i=1

uik = 1. (3)

‖εk‖2 ≤ κ2
k (κk > 0). (4)

In the following subsections, we will derive the solutions uik, εk and vi which
optimize the objective functions Js and Je under the constraint conditions (3)
and (4).
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1.2 The Version of Standard FCM

In this subsection, we derive the solutions which optimize the objective func-
tion Js under the constraint conditions (3) and (4). We introduce the Lagrange
function to solve the optimization problem :

L1(U, E, W ) = Js(U, E, W ) +
n∑

k=1

γk(
c∑

i=1

uik − 1) +
n∑

k=1

δk(‖εk‖2 − κ2
k)

=
n∑

k=1

c∑
i=1

um
ik‖xk + εk − vi‖2 +

n∑
k=1

γk(
c∑

i=1

uik − 1)

+
n∑

k=1

δk(‖εk‖2 − κ2
k). (5)

From the Kuhn-Tucker condition, the necessary conditions are as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L1

∂vi
= 0,

∂L1

∂uik
= 0,

∂L1

∂εk
= 0,

∂L1

∂γk
= 0,

∂L1

∂δk
≤ 0,

δk
∂L1

∂δk
= 0, (6)

δk ≥ 0.

First, the optimal solution vi has no constraint condition. So, from

∂L1

∂vi
= −

n∑
k=1

2um
ik(xk + εk − vi) = 0, (7)

we have

vi =
∑n

k=1 um
ik(xk + εk)∑n

k=1 um
ik

. (8)

In the next place, we consider the optimal solution uik. From

∂L1

∂uik
= mum−1

ik ‖xk + εk − vi‖2 + γk = 0, (9)

we have

uik =
(
− γk

m‖xk + εk − vi‖2

) 1
m−1

. (10)

In addition, from the constraint condition (3), we have

c∑
j=1

(
− γk

m‖xk + εk − vj‖2

) 1
m−1

= 1, (11)
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where we replace i by j to keep from the duplication of symbols. From (9), we
have

−γk = mum−1
ik ‖xk + εk − vi‖2. (12)

When we assign (12) to (11), we obtain

c∑
j=1

(
mum−1

ik ‖xk + εk − vi‖2

m‖xk + εk − vj‖2

) 1
m−1

= 1. (13)

The transformation of this equation is

uik =

⎛⎝ c∑
j=1

( ‖xk + εk − vi‖2

‖xk + εk − vj‖2

) 1
m−1

⎞⎠−1

. (14)

In general, the uik is not the optimal solution because it is derived from the
necessary solution. However, in this case, as the objective function is convex
with respect to U , the uik becomes the optimal solution.

Finally, we derive the optimal solution εi. We have

∂L1

∂εk
=

c∑
i=1

2um
ik(xk + εk − vi) + 2δkεk = 0. (15)

The transformation of (15) is

εk =
−∑c

i=1 um
ik(xk − vi)∑c

i=1 um
ik + δk

. (16)

On the contrary, from (6), we have

δk(‖εk‖2 − κ2
k) = 0. (17)

So, we have to consider two cases, δk = 0 and ‖εk‖2 = κ2
k from this equation.

First, let’s consider the case of δk = 0. In this case, the optimization problem
does not have the constraint condition (4). In fact, as ∂L1

∂εk
= ∂Js

∂εk
, we have

∂Js

∂εk
=

c∑
i=1

2um
ik(xk + εk − vi) = 0. (18)

Notice
∑c

i=1 uik = 1, then we obtain

εk =
−∑c

i=1 um
ik(xk − vi)∑c

i=1 um
ik

. (19)

Next, let’s consider the case of ‖εk‖2 = κ2
k. When we assign (16) to ‖εk‖2 = κ2

k,
we have

‖εk‖2 =
∥∥∥∥−∑c

i=1 um
ik(xk − vi)∑c

i=1 um
ik + δk

∥∥∥∥2

= κ2
i . (20)
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We deform this equation :

c∑
i=1

um
ik + δk = ±‖

∑c
i=1 um

ik(xk − vi)‖
κk

. (21)

When we assign this equation to (16), we have

εk = ±κk

∑c
i=1 um

ik(xk − vi)
‖∑c

i=1 um
ik(xi − vi)‖ . (22)

(22) correspond to (19) in the case of ‖εk‖2 = κ2
k. Because κk and numerator of

(22) are positive, the sign of εk is negative. So we obtain

εk =
−κk

∑c
i=1 um

ik(xk − vi)
‖∑c

i=1 um
ik(xk − vi)‖ . (23)

From the mentioned, we obtain the following optimal solutions :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi =
∑n

k=1 um
ik(xk + εk)∑n

k=1 um
ik

, (24)

uik =

⎛⎝ c∑
j=1

( ‖xk + εk − vi‖2

‖xk + εk − vj‖2

) 1
m−1

⎞⎠−1

, (25)

εk = −αk

c∑
i=1

um
ik(xk − vi), (26)

where

αk = min
{

κi

‖∑c
i=1 um

ik(xk − vi)‖ ,
1∑c

i=1 um
ik

}
. (27)

1.3 The Version of Entropy Regularized FCM

In this subsection, we derive the solutions which optimizes the objective function
Je under the constraint conditions (3) and (4) as same as the above subsection.
To solve the optimization problem, we introduce the Lagrange function :

L2(U, E, V ) = J(U, E, V ) +
n∑

k=1

γk(
c∑

i=1

uik − 1) +
n∑

k=1

δk(‖εk‖2 − κ2
k)

=
n∑

k=1

c∑
i=1

uik‖xk + εk − vi‖2 + λ−1
n∑

k=1

c∑
i=1

uik log uik

+
n∑

k=1

γk(
c∑

i=1

uik − 1) +
n∑

k=1

δk(‖εk‖2 − κ2
k). (28)
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From the Kuhn-Tucker condition, the necessary conditions are as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L2

∂vi
= 0,

∂L2

∂uik
= 0,

∂L2

∂εk
= 0,

∂L2

∂γk
= 0,

∂L2

∂δk
≤ 0,

δk
∂L2

∂δk
= 0, (29)

δk ≥ 0.

First, the solution vi has no constraint condition. So, from

∂L2

∂vi
= −

n∑
k=1

2uik(xk + εk − vi) = 0, (30)

we obtain the optimal solution:

vi =
∑n

k=1 uik(xk + εk)∑n
k=1 uik

. (31)

In the next place, we consider the optimal solution uik. From

∂L2

∂uik
= ‖xk + εk − vi‖2 + λ−1(log uik + 1) + γk = 0, (32)

we obtain
uik = eλ(−γk−‖xk+εk−vi‖2)−1. (33)

In addition, from the constraint condition (3), we have

c∑
i=1

uik =
c∑

i=1

eλ(−γk−‖xk+εk−vi‖2)−1 = 1. (34)

The transformation of this equation is

e−λγk =
1∑c

j=1 e−λ‖xk+εk−vj‖2−1 , (35)

where we replace i by j to keep from the duplication of symbols. When we assign
(35) to (33), we obtain

uik =
e−λ‖xk+εk−vi‖2∑c

j=1 e−λ‖xk+εk−vj‖2 . (36)

Last, we derive the optimal solution εk. We have

∂L2

∂εk
=

c∑
i=1

2uik(xk + εk − vi) + 2δkεk = 0. (37)
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Notice
∑c

i=1 uik = 1, then we obtain

εk = −
∑c

i=1 uik(xk − vk)
δk + 1

. (38)

From the same discussion in the above subsection, we have

εk =
κk(xk −

∑c
i=1 uikvi)

‖xk −
∑c

i=1 uikvi‖ . (39)

From the mentioned, we obtain the optimal solutions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi =
∑n

k=1 uik(xk + εk)∑n
k=1 uik

, (40)

uik =
e−λ‖xk+εk−vi‖2∑c

j=1 e−λ‖xk+εk−vj‖2 , (41)

εk = −αk(xk −
c∑

i=1

uikvi), (42)

where

αk = min
{

κk

‖xk −
∑c

i=1 uikvi‖ , 1
}

. (43)

2 Algorithms

In this section, we construct new clustering algorithms called sFCM-T and
eFCM-T. Two algorithms correspond with the discussions of the subsection 1.2
and 1.3 respectively. These algorithms work out clustering by the alternative
optimization procedure.

Algorithm 1 (sFCM-T).

Step 1 Set values for m and κk (k = 1, . . . , n). Moreover, generate initial values
of E and V .

Step 2 Calculate the partition matrix U by

uik =

⎛⎝ c∑
j=1

( ‖xk + εk − vi‖2

‖xk + εk − vj‖2

) 1
m−1

⎞⎠−1

.

Step 3 Calculate the E by

εk = −αk

c∑
i=1

um
ik(xk − vi),

where

αk = min
{

κi

‖∑c
i=1 um

ik(xk − vi)‖ ,
1∑c

i=1 um
ik

}
. (44)
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Step 4 Calculate the V by

vi =
∑n

k=1 um
ik(xk + εk)∑n
k=1 um

ik

.

Step 5 If (U, E, V ) is convergent, Stop this algorithm. Otherwise, go back to
Step 2.

Algorithm 2 (eFCM-T).

Step 1 Set values for λ and κk (k = 1, . . . , n). Moreover, generate initial values
of E and V .

Step 2 Calculate the partition matrix U by

uik =
e−λ‖xk+εk−vi‖2∑c

j=1 e−λ‖xk+εk−vj‖2 .

Step 3 Calculate the E by

εk = −αk(xk −
c∑

i=1

uikvi),

where

αk = min
{

κk

‖xk −
∑n

i=1 uikvi‖ , 1
}

.

Step 4 Calculate the V by

vi =
∑n

k=1 uik(xk + εk)∑n
k=1 uik

.

Step 5 If (U, E, V ) is convergent, stop this algorithm. Otherwise, go back to
Step 2.

3 Numerical Examples

In this section, we show some examples of classification by using sFCM-T and
eFCM-T. A classified data set is the star chart of the Polaris and its neighboring
stars[1]. This data set is constructed by 51 elements in the two dimensional
Euclidean space(Fig.1), that is, the data set is

X = {xk | k = 1, . . . , 51} ⊂ R2.

We assume that ε1, . . . , ε51 have the upper bound of tolerances κ1, . . . , κ51, re-
spectively :

E = {εk | k = 1, . . . , 51} ⊂ R2.
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Fig. 1. The star chart of the Polaris and its neighboring stars

We classify the data set into three groups Ci (i = 1, 2, 3) :

V = {vi | i = 1, 2, 3} ⊂ R2,

U = [uik], i = 1, 2, 3, k = 1, . . . , 51.

In the following subsections, we show the results by using sFCM-T and
eFCM-T. We classify the data set in the following two cases :

Case 1. The upper bound of tolerances κ1 = · · · = κ51 = 0.01,
Case 2. The upper bound of tolerances κ1 = · · · = κ51 = 0.05.

In each algorithm, we generate random initial clusters and classify the data set
into three clusters. We run this trail 1000 times and show the most frequently
pattern of result.

3.1 sFCM-T

In this subsection, we show two examples of classification using sFCM-T. We set
m = 2 in all algorithms. First we show the result of classification by using sFCM
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 0.8
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 0  0.2  0.4  0.6  0.8  1

Fig. 2. This pattern is the result by using sFCM
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Fig. 3. This pattern is the result
by using sFCM-T in the case of
the data set have the tolerance
κ = 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 4. This pattern is the result
by using sFCM-T in the case of
the data set have the tolerance
κ = 0.05
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Fig. 5. This pattern is the result by using eFCM

to compare sFCM with sFCM-T(Fig.2). This pattern of result is obtained 1000
out of 1000 trials.

Fig.3 and Fig.4 shows results of the case of κk = 0.01 and κk = 0.05, respec-
tively. The pattern of Fig.3 is obtained 1000 out of 1000 trials. This pattern is
the same as Fig.2. On the other hand, the pattern of Fig.4 is obtained 474 out
of 1000 trials.

3.2 eFCM-T

In this subsection, we show two examples of classification using eFCM-T. We
set λ = 25 in all algorithms. First we show the result of classification by using
sFCM(Fig.5). This pattern of result is obtained 1000 out of 1000 trials.

Fig.6 and Fig.7 shows results of the case of κk = 0.01 and κk = 0.05, respec-
tively. The pattern of Fig.6 is obtained 1000 out of 1000 trials. This pattern is
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Fig. 6. This pattern is the result
by using eFCM-T in the case of
the data set have the tolerance
κ = 0.01
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Fig. 7. This pattern is the result
by using eFCM-T in the case of
the data set have the tolerance
κ = 0.05

the same as Fig.5. On the other hand, the pattern of Fig.7 is obtained 582 out
of 1000 trials.

4 Conclusion

In this paper, we formulated the optimization problems for the data with tol-
erance and derivate the optimal solutions for two object functions. From these
results, we have constructed two clustering algorithms.

The proposed techniques are essentially different from the past techniques
which treat the interval value as the tolerance. Specifically, we introduced the
inequality constraint for the tolerance and formulated it in the frame of
the optimization.

We have a lot of problems to discussion : changing the tolerance to the
probability or fuzzy by addition of the grade, expanding the functions of
the algorithms by some kernel functions and so on.
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Abstract. Hard c-means can be used for building classifiers in super-
vised machine learning. For example, in a n-class problem, c clusters are
built for each of the classes. This results into n · c centroids. Then, new
examples can be classified according to the nearest centroid.

In this work we consider the problem of building classifiers using fuzzy
clustering techniques. In particular, we consider the use of fuzzy c-means,
as well as some variations. Namely, fuzzy c-means with variable size and
entropy based fuzzy c-means.

Keywords: Clustering, Classification, Fuzzy c-means, Variable-size fuzzy
c-means, entropy-based fuzzy c-means.

1 Introduction

Clustering [6] and classification [3] are common tools in machine learning [8].
In both cases, sets of examples are considered. In supervised machine learning
there is a highlighted attribute that classifies the examples into categories. This
attribute determines the class of the examples. This is not the case of unsu-
pervised machine learning. In such framework, all attributes are considered as
equal, when knowledge is extracted.

Then, in supervised machine learning, tools have been developed for finding
models for the relevant attribute. That is, models are built that permit to assign
a class (i.e., assign a value to the relevant attribute) to each new example for
which such class is not known. Several different types of models exist based
on different assumptions. Examples include, neural networks, (fuzzy) rule-based
systems, statistical models, etc.

In unsupervised machine learning, methods have been developed to extract
knowledge from the data. Clustering is one of the tools used for extracting such
knowledge, as it permits to build structures in which similar objects are put
together in clusters.

Besides of this use of clustering as an unsupervised machine learning tool. Clus-
tering can also be used for supervised learning. For example, clustering has been

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 362–371, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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used for building models based on the k-means [5] and for building fuzzy rules. In
this latter case, clustering is used to build (fuzzy) partitions of the examples.

In this paper we will consider the use of some fuzzy clustering techniques
[6, 11] and their use in a classification tool. We propose a method to be used
with fuzzy c-means [2] and then we develop variations for the case of entropy-
based c-means and their variations with variable size.

The approach presented here includes the advantages that, from the concep-
tual view, present the alternative clustering methods against fuzzy c-means, and
this one with respect to k-means [11].

The structure of the paper is as follows. In Section 2 we review some clustering
techniques and an approach to build classification models. Then, in Section 3 we
introduce our approach for using fuzzy clustering techniques. Then, in Section 4
we present an application and the experiments performed.

2 Clustering and Classification

In this section we give a review of some aspects of clustering and classifica-
tion that will be used later on in this work. First we consider a few clustering
algorithms, and then we show how to build classifiers using clustering methods.

Here, we consider n examples in a given p dimensional space. We will denote
these examples by xk ∈ R

p for k = 1, . . . , n. When the class of each example is
known, we will denote this information as follows: κ = {κ1, . . . , κ|κ|} corresponds
to the classes; |κ| is the number of classes and κ(xk), or simply κk, denotes the
class for example xk.

2.1 Fuzzy Clustering

As explained in the introduction, clustering methods are to obtain a set of clus-
ters from a set of examples. In this case, the only information considered is a set
of examples xk in a p dimensional space. Therefore, no information on the class
of xk is required here (although, as we will show latter, this information might
be available).

Some of the most well-known algorithms for clustering are the hard c-means
(also known as k-means) and the fuzzy c-means.

Both methods assume that we know a priori the number of clusters to be built.
Such number will be denoted here by the parameter c. Then, the algorithms find
a partition of the set of examples (the set {xk}) into c different clusters. In hard
c-means the partition is a classical one. That is, examples are assigned to only
one cluster. Instead, in fuzzy c-means the partition is fuzzy. That is, examples
can belong at the same time to different clusters. In this case, the membership
to the clusters is not complete but only partial. This situation is modelled using
the so-called fuzzy sets and fuzzy memberships.

Here we will use uik to denote the membership of element xk to the i-th
cluster. In the case of hard c-means as elements are either in the cluster or not
in the cluster, we have that uik is either 0 or 1 (boolean membership). Moreover,
as the elements can only belong to one cluster, we have that

∑n
i=1 uik = 1.
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Instead, in fuzzy clustering we have that as membership is partial we have that
uik is in the interval [0, 1]. In this latter case, uik = 0 corresponds to non-
membership and uik = 1 corresponds to full membership to cluster i. Values
in-between correspond to partial membership (the largest the value, the greatest
the membership). Nevertheless, in this latter case, the constraint

∑n
i=1 uik = 1 is

maintaned. If this equality holds for all examples k, and we have that uik ∈ [0, 1]
for all i and k, we say that u defines a fuzzy partition.

In this section we will review first the fuzzy c-means (FCM) algorithm. Then,
we will consider one of its variations: fuzzy c-means with variable size (VFCM).
And finally, we will also describe an alternative method for fuzzy clustering
known as entropy-based fuzzy c-means (EFCM).

Most fuzzy clustering algorithms are defined in terms of a minimization prob-
lem with some constraints. In the case of fuzzy c-means [2, 9], the minimization
problem is the following one:

JFCM (U, V ) =
c∑

i=1

n∑
k=1

(uik)m||xk − vi||2 (1)

with constraints:

– uik ∈ [0, 1]
–
∑c

i=1 uik = 1 for all k

For conciseness, we will denote the values u that satisfy these two constraints
by M .

With respect to the notation used above, we have that vi is recalled as the
centroid of the i-th cluster (cluster center/cluster representative), and that m
is a parameter (m ≥ 1) that expresses the desired level of fuzziness. This is, m
determines the degree of fuzziness in the membership functions. With values of
m near to 1, solutions tend to be crisp (with the particular case that m = 1
corresponds to the crisp c-means). Instead, larger values of m yield to clusters
with increasing fuzziness in their boundaries.

Local optimal solutions of the fuzzy c-means problem are obtained using an
iterative process, that interleaves two steps. The first one that estimates the
optimal membership functions of elements to clusters (considering the centroids
as fixed) and another that estimates the centroids for each cluster (having the
memberships as constant). This process is defined as follows:

Step 1: Generate an initial U and V
Step 2: Solve minU∈MJ(U, V ) computing:

uik =
( c∑

j=1

( ||xk − vi||2
||xk − vj ||2

) 1
m−1

)−1

Step 3: Solve minV J(U, V ) computing:

vi =
∑n

k=1(uik)mxk∑n
k=1(uik)m

Step 4: If the solution does not converge, go to step 2; otherwise, stop



On the Use of Variable-Size Fuzzy Clustering for Classification 365

As the method leads to a local optimal, different initial values can lead to
different solutions.

The so-called entropy-based fuzzy c-means (EFCM) is an alternative fuzzy
clustering method (proposed in [10], see also [11]). The main difference between
fuzzy c-means and entropy-based fuzzy c-means is the way in which fuzziness is
introduced. In this case, a parameter λ (λ ≥ 0) is used to force a fuzzy solution.
Formally speaking, the method is defined in terms of the optimization of the
following objective function:

JEFCM(U, V ) =
n∑

k=1

c∑
i=1

{uik||xk − vi||2 + λ−1uikloguik} (2)

Again, the objective function is subject to the constraints uik ∈ [0, 1] and∑c
i=1 uik = 1 for all k.
The parameter λ plays a role similar to m in fuzzy c-means. Here, the smaller

the λ, the fuzzier the solutions. Instead, when λ tends to infinity, the second
term becomes negligible and the algorithm yields to a crisp solution.

The way to solve EFCM is an iterative process, as for the FCM, but with
different expressions for computing the memberships uik and the centroids vi.
More concretely, the following expressions are considered:

uik =
e−λ||xk−vi||2∑c

j=1 e−λ||xk−vj ||2 (3)

vi =
∑n

k=1 uikxk∑n
k=1 uik

(4)

FCM and EFCM lead to different solutions. A relevant difference is that the
centroids have a membership equal to one in the FCM while in the EFCM it
might have a lower membership. It can be easily observed that given a unique
set of centers, the memberships and the shape of the clusters would be different
in both cases due to the way memberships uik are computed.

A variation of these clustering methods was introduced [12] so that the size
of each cluster is variable. The variation consists on a variable for each cluster
roughly corresponding to its size. The rationale of such introduction was to
reduce misclassification when there are clusters of different size. In standard
FCM, two adjacent clusters have equal membership function (equal to 0.5) in
the mid-point between the two centroids.

Formally speaking, the size of the i-th cluster is represented with the param-
eter αi (the largest is αi, the largest is the proportion of elements that belong
to the i-th cluster). A similar approach was given by Ichihashi, Honda and Tani
in [7].

When such parameters for variable size are considered, the expressions to
minimize for FCM and EFCM are as follows:

JFCM (α, U, V ) =
c∑

i=1

αi

n∑
k=1

(α−1
i uik)m||xk − vi||2
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JEFCM(α, U, V ) =
n∑

k=1

c∑
i=1

{uik||xk − vi||2 + λ−1uiklog(α−1
i uik)}

Both objective functions are minimized considering the constraints given
above for the membership values uik, and adding additional constraints for αi.
The new constraints are the following ones:

–
∑c

i=1 αi = 1
– αi ≥ 0 for all i = 1, . . . , c

These fuzzy clustering algorithms are also solved by an iterative process, but
now including an additional step for estimating the parameters αi. In the case
of the FCM, the values of α are estimated by (this corresponds to [Step 3.1] in
the algorithm for FCM):

αi =
[ c∑

j=1

(∑n
k=1(ujk)m||xk − vj ||2∑n
k=1(uik)m||xk − vi||2

)m]−1

In such algorithm, the expression for uik in Step 2 should be replaced by (the
expression for vi in Step 3 is valid):

uik =
( c∑

j=1

(αj

αi

)( ||xk − vi||2
||xk − vj ||2

) 1
m−1

)−1
(5)

In the case of variable-size EFCM, the expression of vi is still valid but the
following expressions are required for uik and αi:

uik =
αie

−λ||xk−vi||2∑c
j=1 αje−λ||xk−vj ||2 (6)

αi =
∑n

k=1 uik

n

2.2 Classification

In this section we review the use of hard c-means for building classifiers. For this
purpose, we consider a set of examples xk in a p dimensional space, and for each
example its class κ(xk).

Then, given a set of examples xk, the classification model is built considering
the following two steps:

1. For each κi ∈ κ, define Xκ as those xk such that its class is κ (i.e., κ(xk) = κ):

Xκ := {x|κ(xk) = κ}
2. Apply hard c-means to each Xκ, and construct for each Xκ c different clus-

ters. Therefore, we obtain c · |κ| centroids. We will use vr
κ for r = 1, . . . , c to

denote the c centroids obtained for class κ.
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Then, using the centroids (vr
κ for r = 1, . . . , c) obtained in the previous step,

the classification of new examples ex into the classes κ in κ is done applying the
following algorithm:

minDist = ∞
For all r do

For all κ do
minDist = min(minDist, d(ex, vr

κ)) (distance between ex and the
centroid vr

κ)
end loop

end loop
Assign ex to the class κ if minDist = vr

κ for some r.

This method corresponds to building a voronoi map in two steps. First, the ex-
amples of each class are partitioned and, second, their centroids are put together
to define the map.

3 Classification Model Based on Fuzzy Clustering

We have extended the model described in Section 2.2 to incorporate fuzziness.
Now, as in the case of crisp partitions, we start grouping the objects according
to its class. This is, computing Xκ := {x|κ(xk) = κ}. Then, the fuzzy clustering
algorithm is applied to each class Xκ. This leads to a set of centroids for each
class. We will use vr

κ for r = 1, . . . , c to denote the c centroids obtained for class
κ. As in the case of the c-means, we obtain c · |κ| centroids.

The computation of the class of new objects in the p dimensional space differs
from the case of the c-means. In that case, the nearest centroid was considered
as the most rellevant issue. Now, we will consider the membership value of the
object into each class. Then, for testing we will select the class with the largest
membership.

Nevertheless, the consideration of membership functions is not straightfor-
ward. As fuzzy c-means (and its variations) results into a fuzzy partition for
each class κ, we have that the membership of a new object into the classes can
be computed in, at least, two different ways. The two alternatives are described
below. We use ex, as in the previous section, to denote the new example to be
classified.

1. Consider the c fuzzy partitions as separated partitions. Then, compute for
each class κ, and for each cluster r (r = 1, . . . , c), the membership of ex to
vr

κ. Compare memberships and assign to ex the cluster and class with the
largest membership.

2. Consider the c fuzzy partitions as a single partition (combined partition).
This is, put all centroids together and compute a new fuzzy partition that
encompass all the existing clusters. Then, determine the membership of ex
to all the clusters and assign to ex the cluster and the class with the largest
membership.
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The computation of the new fuzzy partition in the second alternative is simple
in the case of FCM. In this case, we can compute the fuzzy partition inferred
from any set of centroids using the expression uik in Step 2 (Section 2). Thus,
defining the set V := ∪r=1,...,c ∪κ vr

κ and then using:

u(ex, vi) =
( c∑

v∈V

( ||ex− vi||2
|ex− v||2

) 1
m−1

)−1

for all vi ∈ V we can determine the membership of ex to the new partition.
Similarly, when the clustering algorithm used is the EFCM, a similar process

can be applied. In this case, Expression 3 should be used for computing the new
memberships. So, the membership of ex to clusters vi in V is defined as:

u(ex, vi) = uik =
e−λ||ex−vi||2∑c
v∈V e−λ||ex−v||2

Instead, when variable size fuzzy c-means is considered, it is not enough to
define the union of the centroids and apply the corresponding expressions for
computing the membership values. As can be observed in Expressions 5 and 6,
these expressions depend on the values of α (the size of the clusters), and when
merging the two sets of centroids, the values of α are no longer valid. To solve
this drawback we have defined a new vector of α′ in terms of the previous values
of α. These new values are computed as follows:

α′
κ,i := ακ,i ∗ |learningSetClass(κ)|/|learningSet|

where i is for all i ∈ 1, . . . , c.
This definition of α′ satisfies the constraints that αi ≥ 0 and

∑
αi = 1.

3.1 Analysis

Methods based on k-means assume that clusters are crisp and that in the result-
ing model the region under study is splitted (in a crisp way) following a Voronoi
tessellation. This tessellation is based on the centroids of the clusters obtained
by the k-means.

When fuzzy clustering algorithms are used, these assumptions are changed.
First of all, we soften the crisp constraint on the boundaries of each region.
Thus, objects can belong at the same time to different clusters. Nevertheless,
when for a given point only the largest membership value is considered, the
resulting tessellation is still the Voronoi one.

Variable-size fuzzy clustering permits clusters to have different size. Roughly
speaking, the larger the number of objects associated to a centroid, the larger
the region of the corresponding cluster. In this case, the tessellation changes its
shape and not only the centroids come into consideration but also the dimension
of the cluster (the parameter α using the notation given above).

Thus, using other fuzzy clustering methods than the k-means for building a
classifier, the differences on the clustering model are exported to the classifier.
This is for example the case of using a fuzzy clustering method that considers
variable size.
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4 Experiments

We have applied our approach to the classification of gene expressions in the bud-
ding yeast Saccharomyces cerevisiae. In particular, we used the data downloaded
from [13] and described in [4]. Each gene is described in terms of numerical val-
ues, and most of them include a label with its name and function. The file contains
information on 6221 genes. This data has been used in several studies as in [1].

In our case, we have used these data to compare the four approaches described
in Section 3. This is, the classification based on the FCM and the EFCM, with
and without variable size.

Some preprocessing was applied to the data as there are missing values. First,
data was normalized to avoid scaling problems among variables. Normalization
was achieved substracting the mean of each variable and dividing by the corre-
sponding deviation. After normalization, missing values have been replaced by
zero (this corresponds to replace the original data by its mean).

In this paper we report the results obtained for the case of the gene labels
equals to “mitosis” and “protein degradation”.

For testing, we have splitted the data into two sets: one for learning the model
and the other for testing. Given a label, we have considered two classes: (i) those
genes belonging to the class (positive examples) and (ii) those that do not belong
to the class. Then, we selected at random 20% of the records of each class for
learning and the rest was used for testing.

For each training/test pair, we have tested the four algorithms FCM and
EFCM with and without variable size. Also, in each case we have compared the
two alternatives of constructing the membership function (considering the parti-
tions as separated entities or putting them together). For each of the algorithms,
several values of m, λ and c were considered. In particular, we have considered
the following values for m and λ: m = {1.05, 1.2, 1.4}, λ = {40, 20, 10}. With
respect to c, we have considered two cases, one with c = 3 for both positive and
negative examples and another with c = 3 for positive examples and c = 8 for
negative examples. The consideration of a larger number of clusters for negative
examples was due to the fact that the number of negative examples is much
larger than those for positive examples.

Table 1. Rate of success considering separated partitions and combined partitions. In
the upper part of the table results corresponds to the “mitosis” problem and the lower
part corresponds to the “protein degradation” problem.

Clustering parameter c Separated Combined
FCM m = 1.05 3 0.5163 0.8426
VFCM m = 1.05 3 0.6355 0.9430
ENT λ = 40.0 3 0.0176 0.8117
FCM m = 1.05 3 0.5439 0.8099
VFCM m = 1.05 3 0.5417 0.9639
ENT λ = 40.0 3 0.0262 0.7966
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Table 2. The rate of success for FCM and variable size fuzzy c-means (FCM) for the
“mitosis” and the “protein degradation” problem, for several executions

c FCM-mitosis VFCM-mitosis FCM-P.D. CFCM-P.D.
3 0.823 0.99051 0.806 0.98392
8 0.867 0.99051 0.845 0.98392
3 0.823 0.99051 0.884 0.98408
8 0.882 0.99051 0.926 0.98408
3 0.851 0.99035 0.808 0.98408
8 0.828 0.99051 0.836 0.98408
3 0.841 0.99035 0.854 0.98424
8 0.914 0.99051 0.829 0.98424
3 0.900 0.99019 0.784 0.98392
8 0.920 0.99019 0.823 0.98408
3 0.832 0.99051 0.864 0.98408
8 0.856 0.99051 0.910 0.98408
3 0.878 0.99067 0.837 0.98392
8 0.889 0.99051 0.877 0.98408
3 0.842 0.99051 0.875 0.98408
8 0.848 0.99051 0.900 0.98408

Each combination of algorithm/parameters was executed 8 times, selecting
each time the 20% of the records at random using a different seed.

The results show that considering a single partition lead to better results
than considering two separated partitions. Table 1 shows the number of records
classified correctly for the algorithms considered for some of the tests. It can be
seen that the difference between separated and combined partitions is significant,
being the combined partitions better than the separated ones.

Additionally, we can see that when the partitions are combined, the FCM with
variable size is the method that obtains better results. These results are valid
for both the experiments on “mitosis” and “protein degradation”. The results
of the 8 executions (with m = 1.2 and c either 3 or 8) are given in Table 2.

5 Conclusions and Future Work

In this paper we have studied the use of fuzzy c-means and some of its variations
for building classifiers. We have proposed a way to deal with fuzziness and fuzzy
partitions when several classes are present. We have analysed the characteristics
of our method with respect to the one based on k-means. We have underlined the
differences between them. The approach has been applied to data from bioinfor-
matics. In particular, we have applied our method to classify gene expressions
from the yeast Saccharomyces cerevisiae.

Although the results obtained by our approach are significant for the two
problems studied, the use of fuzzy clustering is not necessarily better than crisp
clustering for all sets of examples. The appropriateness of the method depends on
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the data and its structure. Nevertheless, we consider that the better performance
of variable-size fuzzy c-means with respect to standard fuzzy c-means is rellevant.

As future work we consider the implementation of new experiments, and the
study of new methods to combine the fuzzy sets resulting from several fuzzy
clustering algorithms (or several executions of the same clustering method with
different objects).
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Alcalá-Fdez, J. 317
Alonso, S. 34
Arieli, Ofer 22
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Dujmović, Jozo J. 1

Endo, Yasunori 351

Far, Behrouz Homayoun 46

Gacto, M.J. 317
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