
Efficient Failure Detection for Mobile Robots
Using Mixed-Abstraction Particle Filters

Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

University of Freiburg
Georges-Koehler-Allee
79110 Freiburg, Germany
{plagem,stachnis,burgard}@informatik.uni-freiburg.de

Summary. In this paper, we consider the problem of online failure detection and
isolation for mobile robots. The goal is to enable a mobile robot to determine whether
the system is running free of faults or to identify the cause for faulty behavior. In
general, failures cannot be detected by solely monitoring the process model for the
error free mode because if certain model assumptions are violated the observation
likelihood might not indicate a defect. Existing approaches therefore use comparably
complex system models to cover all possible system behaviors. In this paper, we
propose the mixed-abstraction particle filter as an efficient way of dealing with
potential failures of mobile robots. It uses a hierarchy of process models to actively
validate the model assumptions and distribute the computational resources between
the models adaptively. We present an implementation of our algorithm and discuss
results obtained from simulated and real-robot experiments.

1 Introduction

Whenever mobile robots act in the real world, they are affected by faults and
abnormal conditions. Detecting such situations and allowing the robot to react
appropriately is a major precondition for truly autonomous vehicles. While
the applied techniques need to be able to reliably detect rare faults, the over-
all estimation process under error-free conditions should not be substantially
more complex compared to systems that are optimized for the normal oper-
ational mode. Separate monitoring processes that use more complex models
to cover all possible system behaviors introduce an unnecessary high compu-
tational load. In this paper, we introduce mixed-abstraction particle filters as
an effective means for adaptively distributing the computational resources be-
tween different system models based on the estimated validity of their specific
model assumptions.

The term ”fault detection” is commonly referred to as the detection of
an abnormal condition that may prevent a functional unit from performing a

H.I. Christensen (Ed.): European Robotics Symposium 2006, STAR 22, pp. 93–107, 2006.
© Springer-Verlag Berlin Heidelberg 2006

94 C. Plagemann, C. Stachniss, and W. Burgard

Fig. 1. The left image depicts a simulated robot before colliding with an obstacle
which is not detected by its sensors. The right photograph shows a real mobile robot
that collides with an undetected glass door while moving on its planned trajectory
to the neighboring room.

required function [11]. Most works in the fault detection and isolation litera-
ture deal with internal faults such as defects in hardware or software. For the
mobile robot domain, we apply the same nomenclature to external influences
like collisions or wheel slip since their effects are similar to those of internal
defects and the resulting models have the same structure.

As an illustrating scenario, consider a mobile robot equipped with wheel
encoders, a laser range finder, and a sufficiently accurate map of the environ-
ment. In the fault-free case, the position of the robot can be tracked using
a standard tracking algorithm such as a Kalman filter or a particle filter
with a simplistic odometry-based motion model, which is formally given in
Section 3.3. In odometry-based models, the next system state x is directlyt

predicted from the odometry, which is the measurement o obtained from thet

wheel encoders.
Although such models allow us to evaluate different state hypotheses by

weighting them using exteroceptive measurements, e.g., using a laser range
measurement l , they do not directly allow us to detect collisions with obstaclest

that cannot be perceived by the sensors of the robot. This is due to the
fact that when the robot stops moving, its wheel encoders do not record any
motion, which is perfectly consistent with the recorded laser measurements.
Therefore, no filter degradation occurs and there is no possibility to detect
such faults inside the filter. One typical solution to overcome such problems
is to compare the estimated trajectory with the planned one on a higher
system level. As major drawbacks of such an approach, one cannot infer the
actual cause for the deviation from the planned trajectory and the system
architecture is complicated by the stronger connection between the planning
and tracking module.

An alternative solution is to consider the actual motion commands that
have been sent to the motors instead of just using the wheel encoder read-
ings. However, this makes the system model substantially more complex and

Efficient Failure Detection for Mobile Robots 95

the predictions, which are now based on motor currents and accelerations,
less accurate. In our experiments, we observed that such a model is around
32 times slower to compute than the odometry-based model. It is important to
note that the odometry-based model makes the implicit assumption, that the
wheel encoder measurements reflect the intended motion. If this assumption
is violated, the standard estimation technique cannot be used to estimate the
joint probability p(x, f) anymore, where x stands for the pose of the robot
and f indicates the failure state.

In this paper, we propose to make the model assumptions explicit and
to build a model abstraction hierarchy. We present the mixed-abstraction
particle filter algorithm that uses such a hierarchy to direct computational
resources to the most efficient model whose assumptions are met. In this way,
it minimizes the computational load while maximizing the robustness of the
system.

x
t-1

x
t

o
t

l
t

U
t-1

x
t-1

x
t

o
t

l
t

Fig. 2. Arbitrary model hierarchy (left) with an unrestricted model M0, several
restricted models M1, M2, M3 as well as the specific assumptions Ai→j that restrict
the state spaces respectively. Two models for the same physical process: the standard
odometry-based model (e.g. M1) that uses the odometry measurements ot as controls
(middle) and the laser measurements lt as sensor inputs. A less restricted model
(e.g. M0, on the right) that includes the actual motion commands ut as controls.

The paper is organized as follows. After the discussion of related work, we
present our mixed-abstraction particle filter algorithm and its application to
monitoring mobile robots in Section 3. Finally, Section 4 presents experimental
results.

2 Related Work

Model-based diagnosis has been approached from within the AI community
using symbolic reasoning with a focus on large systems with many interacting
components and from the control theory community concentrating on fewer
components with complex dynamics and higher noise levels [8]. With sym-
bolic approaches, the system is typically assumed to move between discrete

96 C. Plagemann, C. Stachniss, and W. Burgard

steady states [17]. Here, diagnosis is often based on system snapshots with-
out a history. Krysander [8] proposed a hybrid model consisting of discrete
fault modes that switch between differential equations to describe the system
behavior. The diagnosis system is designed for large systems with low noise
levels, where instantaneous statistical tests are sufficient to identify a faulty
component.

As Dearden and Clancy [3] pointed out, the close coupling between a mo-
bile system with its environment makes it hard to apply discrete diagnosis
models directly, because extremely complex monitoring components would
have to be used. A more robust and efficient way is to reason directly on the
continuous sensor readings. As a result, probabilistic state tracking techniques
have been applied to this problem. Adopted paradigms range from Kalman
filters [16] to particle filters in various modelings [1, 3, 12]. Particle filters
represent the belief about the state of the system by a set of state samples,
which are moved when actions are performed and re-weighted when sensor
measurements are integrated (see Dellaert et al. [4]). In particle filter based
approaches to failure diagnosis, the system is typically modeled by a dynamic
mixture of linear processes [2] or a non-linear Markov jump process [5]. Be-
nanzera et al. [1] combine consistency-based approaches, i.e. the Livingstone
system, with particle filter based state estimation techniques.

Verma et al. [15] introduce the variable resolution particle filter for failure
detection. Their approach is similar to ours in that they build an abstraction
hierarchy of system models. The models of consideration build a partition of
the complete state space and the hierarchy is defined in terms of behavioral
similarity. Our focus in contrast lies on switching between overlapping system
models for certain parts on the state space. Our model hierarchy is therefore
based on efficiency differences and explicit model assumptions about the sys-
tem state. The two approaches should therefore be seen as complementary
rather than alternatives.

Other approaches that deal with the time efficiency of particle filters in-
clude Kwok et al. [10] in which real-time constraints are considered for single
system models or techniques in which a Rao-Blackwellized particle filter is
used to coordinate multiple models for tracking moving objects [9].

3 Particle Filters for Sequential State Estimation

A mobile robot can be modeled as a dynamic system under the influence
of issued control commands ut and received sensor measurements zt. The
temporal evolution of the system state xt can be described recursively using
the formalism of the so called Bayes filter

Efficient Failure Detection for Mobile Robots 97

Algorithm 1 Particle filter(Xt−1, ut−1, zt)
1: X t = Xt = ∅
2: for m = 1 to M do
3: sample x

[m]
t ∼ p(xt | ut−1, x

[m]
t−1)

4: w
[m]
t = p(zt | x

[m]
t)

5: X t = X t + �x[m]
t , w

[m]
t �

6: end for
7: for m = 1 to M do
8: draw particle i with probability ∝ w

[i]
t

9: add x
[i]
t to Xt

10: end for
11: return Xt

p(xt | z0:t, u0:t−1)

=
�

p(xt | zt, ut−1, xt−1) p(xt−1 | z0:t−1, u0:t−2) dxt−1 (1)

= ηt p(zt | xt)� �� �
observation model

�
p(xt | ut−1, xt−1)� �� �

motion model

p(xt−1 | z0:t−1, u1:t−2)� �� �
recursive term

dxt−1. (2)

The term ηt is a normalizing constant ensuring that the left-hand side sums
up to one over all xt. With Equation 1, we assume Markovian dependencies,
namely that xt only depends on the most recent measurement zt and control
command ut−1 given knowledge about the preceding state of the system xt−1.
Particle filters are an implementation of the Bayes filter and can be used to
efficiently estimate the posterior p(xt) in a sequential manner. Here, the pos-
terior is represented by a discrete set of weighted samples X = {�x[m]

t , w
[m]
t �}.

With the sampled representation, the integral in Equation 2 simplifies to a
finite sum over the samples resulting from the previous iteration. The motion
model and the observation model can be applied directly to move and weight
the individual samples respectively. Algorithm 1 formulates the standard par-
ticle filtering approach [14].

In Algorithm 1, the state of the system at time t is represented by a set Xt

of state samples x
[m]
t . In Line 3, we perform a state prediction step using

the external motion command ut−1 and the motion model p(xt | ut−1, x
[m]
t−1).

Line 4 incorporates the current sensor measurement zt by re-weighting the
state samples according to the measurement model p(zt | x

[m]
t). From Line 7

to 10, a resampling step is performed to concentrate the samples on high-
probability regions of the state space. We refer to Thrun et al. [14] for details
about the resampling step and its efficient implementation.

For the odometry-based model that treats the odometry measurements as
controls, we have ut−1 = ot and zt = lt, where ot is the odometry measurement
and lt is a perception of the environment. For the dynamic model depicted

98 C. Plagemann, C. Stachniss, and W. Burgard

in the right diagram of Figure 2, ut−1 is the actual control command and
zt = �ot, lt�. Both models are described in more detail in Section 3.3.

3.1 Process Model Hierarchy

A fundamental problem in science and engineering is choosing the right level
of abstraction for a modeled system. While complex and high-dimensional
models promise high estimation accuracy, models of less complexity are of-
ten significantly more efficient and easier to construct. In the area of mobile
robotics, the accuracy-efficiency trade-off is an important issue, since on the
one hand, computational resources are strictly limited in online problems and
on the other hand, estimation errors have to be avoided to prevent serious mal-
functioning. We therefore propose an online model selection algorithm with
adaptive resource allocation based on the Bayesian framework.

An abstraction hierarchy for process models is given by the specific as-
sumptions that the different models make about the world (compare Figure 2).
We define the model abstraction hierarchy as an acyclic directed graph with
the different system models Mi as nodes and their model assumptions Ai→j

as edges, leading from the more general model i to a more restricted one j. A
model assumption Ai→j is defined as a binary function on the state space of
the unrestricted model Mi.

As an example, consider the process model for a mobile robot that should
be able to continuously localize itself in a given map. A general model M0

would include the the pose of the robot x and additionally take physical fac-
tors like ground friction, tire pressure, load balance, motor characteristics,
etc. into account and treat those as additional state variables in a state vec-
tor f . In most situations, however, it is quite common and reasonable to
assume a simpler model M1, where these additional variables are constant
and do not need to be estimated during operation. Formally, the state space
of M1 is therefore {x, f | f = const}, which is a projection of the more general
space {x, f} of model M0. The assumption A0→1 would in this case be defined
as

A0→1(x, f) :=
�

true : f = const
false : f �= const .

It is important to note that the validity of an assumption can only be tested
in a less restricted state space, where this assumption is not made. In practice,
this means that we have to test for every edge in the model abstraction graph
the associated assumption using the more general model. As a measure for
the validity of an assumption Ã at time t, we use the ratio

vt(Ã) :=

+
A p(zt | x[m]) 1

|A|+
p(zt | x[m]) 1

|X |
, (3)

where A is defined as the subset {x[m] | Ã(x[m])} of all particles X for which
Ã is valid. More informally, we compute the amount of evidence in favor of

Efficient Failure Detection for Mobile Robots 99

Algorithm 2 Mixed-Abstraction Particle filter
1: Calculate samples for the unrestricted model Mi until the assumption Ai→j(x̃t)

is valid for a minimal number of samples x̃t

2: Build a first estimate of vt(Ai→j) according to Equation 3
3: repeat
4: if vt(Ai→j) >= Θ then
5: Calculate samples for Mj

6: else
7: Calculate samples for Mi

8: end if
9: until either Mi received enough samples or (vt(Ai→j) >= Θ and Mj received

enough samples)

˜a restricted state space relative to the unrestricted case. The quantity (Av)t

is based on the current approximation of the posterior distribution by the
particle filter.

3.2 Adaptive Model Selection

To adaptively switch between alternative system models, the validity of the
model assumptions have to be estimated online and computational resources
have to be distributed among the appropriate models. The distribution of
resources is done by increasing or decreasing the number of particles for the
different models. To achieve this, we apply the following algorithm that takes
as input the model abstraction hierarchy graph defined in the previous section.
When a new measurement z is obtained, the mixed abstraction particle filtert

algorithm draws samples from the particle set representing the current poste-
irior X for all system models i, incorporates the measurement, and buildst 1−

inew posterior distributions X . The key question in this update step is whicht
imodel posterior X should receive how many samples. We base this decisiont

on the estimated validity of the model assumptions A . If the estimatedi→j

quantity (Av) drops below a predefined threshold Θ, we sample into thet i→j

more complex model M and otherwise prefer the more efficient one M . Thisi j

decision is made repeatedly on a per particle basis until a model has received
enough samples and all its assumptions are validated. In each iteration, we
start with the most unrestricted model M and perform the following stepsi

for each of its outgoing edges Ai→j .
In the update steps mentioned above, the samples are taken from the

previous posterior distributions X j
t−1, if assumption Ai→j was valid in the

previous step and from X i
t−1 otherwise. When all outgoing edges Ai→j of

model Mi have been processed in the described manner, the same update
is applied to models Mj further down in the hierarchy until either the leaf
nodes have been processed or one of the assumptions did not receive enough
evidence to justify further model simplifications.

Several quantities like the numbers of samples necessary for each model
(Line 9) or the validity threshold Θ (Line 4) have to be determined in an offline

100 C. Plagemann, C. Stachniss, and W. Burgard

learning step. For the experimental results reported below, we optimized these
values on a set of representative trajectories, recorded from real and simulated
robots.

To recapitulate, the mixed abstraction particle filter estimates the system
state by running several particle filters in parallel, each using a different sys-
tem model. Samples are assigned applying the following rule. For each two
alternative system models, the simpler one is prefered as long as there is pos-
itive evidence for the validity of the corresponding model assumption.

3.3 Motion Models for Mobile Robots

The standard odometry-based motion model for a wheeled robot estimates the
posterior p(xt | xt−1, ot) about the current pose xt based on the previous
pose xt−1 and the wheel encoder measurement ot. A popular approach [6] to
represent the relative movement is to use three parameters, an initial rotation
α, a translation d, and a second rotation β as illustrated in Figure 3. Typically,
one uses a Gaussian distribution for each of these parameters to model the
noise.

α’

β’

d’

final pose

α

d

measured pose
β

initial pose

path

Fig. 3. Parameters of the standard odometry-based motion model.

Under the influence of events like the collision with an obstacle or wheel
slippage, the odometry-based model is not applicable anymore since the wheel
encoder measurements do not provide useful information about the actual
motion. To handle such situations, we construct an alternative model, termed
dynamic motion model, that depends on the actual motion commands that
were sent to the motors of the robot. This model includes the geometry of
the robot and its physical attributes like mass and moment of inertia. For
each wheel, we compute the influence of the velocity command on the trans-
lational and rotational energy of the robot. In this representation, we can
directly incorporate the effects of collisions, slippage, and deflating tires. We
then convert the energy state of the system to its speed and obtain a state
prediction for the next time step.

It is important to note that the dynamic motion model is not designed
for the failure states only. Rather it is able to deal with normal conditions

Efficient Failure Detection for Mobile Robots 101

as well. It is therefore considered as more general as the standard odometry-
based model in our model abstraction hierarchy. The assumption placed on
the system state by the odometry-based model is, that there are no external
influences like collisions, slippage, etc.

4 Experiments

4.1 Quantitative Evaluation Using a Simulator

To quantitatively evaluate our system, we performed several simulation ex-
periments and compared the results to the known ground truth. We used the
high-fidelity simulator Gazebo [7], in which physics and motion dynamics are
simulated accurately using the Open Dynamics Engine [13]. In several prac-
tical experiments carried out with real robots, we experienced the Gazebo
simulator as well suited for studying the motion dynamics of robots even
under highly dynamic events like collisions. For example, we did not have to
change any system parameters when we ported our system from the simulator
to the real robot.

To demonstrate how the proposed algorithm coordinates multiple particle
filters that have been designed independently, we confronted the system with
two different faults within one scenario. A simulated ActivMedia Pioneer 2DX
robot (see the left image of Figure 1) was placed in the corridor of a 3D office
environment. We manually steered the robot through this environment. On
its path, it encountered a collision with an undetectable object. After that, its
left tire started to deflate. Four filters were used independently to track the
state of the system. The first filter was based on the standard odometry-based
motion model described in Section 3.3. The second filter used the dynamic
motion model described in the previous section and also included a model for
collision faults. The third model was also based on the dynamic motion model
but was capable of dealing with deflating tires. Finally, the forth filter was
the proposed mixed-abstraction filter that combined all of the filters described
above.

Figure 4 depicts the true trajectory as well as the tracking results obtained
with the individual filters overlayed on a map built from laser measurements
in a real building. The three arrows in the diagram mark the following three
events: a collision with an undetected glass door (1), a point where the robot
stopped backing off and turned around (2), and a point where the left tire of
the robot started losing air (3).

As can be seen from the figure, the filter that is able to deal with deflating
tires diverges immediately after the collision at point 1. Since the filter able
to deal with collisions cannot deal with deflating tires, it diverges at point 3.
The odometry-based model keeps track of the robot despite the collision at
point 1, however it is not aware of any fault at this point. The combined filter
in contrast succeeds in tracking the robot despite of both incidents.

102 C. Plagemann, C. Stachniss, and W. Burgard

The middle and lower image of Figure 4 plot the internal states of the
specialized detectors within the mixted-abstraction filter. These values reflect
the belief of the system about the presence of certain faults. The middle image
plots the relative number of particles in the fault mode of the collision detector
over time. As can be seen, this number raises significantly shortly after the
collision as well as after the full stop at point 2. After the robot had been
intenionally stopped there, the system cannot know whether an obstacle is
in its way or not. The lower image of Figure 4 shows the evolution of the
relative number of particles in the fault mode of the deflation detector. Since
the collision at point 1 has been handled by the collision detection within
the mixed-abstraction filter, this filter does not switch to a failure mode until
point 3. At that point, the filter switches into its failure mode and in this way
enables the mixed-abstraction filter to keep track of the pose of the robot.

4.2 Analyzing the Gain in Efficiency

In this experiment, we quantatively evaluate the gain in efficiency that we
achieve by dynamically distributing samples between the individual filters.
In the modeled scenario, a simulated robot follows a trajectory and collides
twice with an obstacle, which is too small to be detected by its laser range
finder. After the collisions, the robot backs off and continues its task. The
top diagram of Figure 5 shows the trajectory of the vehicle and the locations
where the algorithm correctly detected a collision. The other two diagrams
illustrate the failure detection process of the same simulation run. The bar
at the bottom indicates the true time stamps of the faults. Whereas the plot
in the second row depicts the relative likelihood for a collision as defined in
Equation 3, the curve plotted in the third row gives the times needed for the
individual iterations of the particle filter.

Table 1 gives the results of a comparison of our adaptive model-switching
approach to three other implementations, where only single models were used
for state estimation and fault detection. The results are averaged over the full
trajectories of 100 runs per implementation. The implementations considered
here are realized on the basis of two models. Whereas model M0 is the com-
plex model that considers the actual motion commands and therefore is able
to track the position as well as the failure state, model M1 is the standard
odometry-based system model, which is able to track the position of the robot
reliably with low time requirements, but cannot detect the collisions. The first
implementation is based on model M1 with 20 particles, the second is model
M1 with 200 particles. While the third implementation is based on model
M0 with 300 particles, the forth one is the mixed-abstraction particle filter
combining implementation one and three. The common task of all implemen-
tations was to track the position of the robot along a trajectory on which
the robot encountered two undetected collisions after 8.2 and 28.9 seconds.
A typical estimate of the trajectory generated by the mixed-abstraction filter
including markings for detected collisions is depicted in the left diagram of

Efficient Failure Detection for Mobile Robots 103

 0
 0.5

 1

 22 24 26 28 30 32 34 36 38 40

Simulation time [sec]

1 2 3

Collision Detector

 0
 0.5

 1

 22 24 26 28 30 32 34 36 38 40

Simulation time [sec]

1 2 3

Deflation Detector

Fig. 4. Results of an experiment with two fault-events (top). The collision of the
robot with a glass door is marked with the arrow “1”, the point where it stopped
backing of and turned is marked with “2”, and at point “3” the left tire of the
robot started losing air. The diagram in the middle plots the relative number of the
particles in the fault mode of the collision detector. The lower diagram shows the
corresponding number for the deflation detector.

Figure 5. The lower right image of Figure 5 plots the value of vt(A) over time.
As can be seen from the figure, the evidence for a fault substantially increases
at the time of the incidences. The upper right image in the same figure plots
the CPU time used by the mixed-abstraction filter. It nicely shows that the
computation time is only high when the evidence of a failure has increased.

Table 1 shows average values obtained from the 100 test runs for each
implementation. Whereas model M1 was never able to detect a failure, M0

104 C. Plagemann, C. Stachniss, and W. Burgard

 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 7 8 9 10 11 12 13 14

E
st

im
at

ed
 y

-p
os

iti
on

Estimated x-position

t=0.0 sec

t=8.2 sec

t=28.9 sec

t=50.0 sec

Collision detected
Estimated trajectory

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50

R
el

. l
ik

el
ih

oo
d

Simulation time [sec]

Relative likelihood: collision

 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50T
im

e
pe

r
ite

ra
tio

n
[m

s]

Simulation time [sec]

Time per iteration

Fig. 5. A trajectory followed by a simulated robot (first row) with marks at positions
where the evidence for a collision was high. The plot in the second row depicts the
relative likelihood for collisions. The plot also shows the ground truth (the bar at
the bottom). The last plot shows the time needed for each iteration (third row).

as well as our adaptive switching algorithm detected all failures equally well.
However, our adaptive model required substantially less computation time
compared to M0 alone using 300 particles.

4.3 Evaluation on a Real Robot

We also tested our system on a real ActivMedia Pioneer 2DX robot in an of-
fice environment. The right image of Figure 1 depicts the experimental setup.
Three positions of the robot were manually cut from a recorded video and
overlayed on one image to illustrate the process. The robot planned a path
to the neighboring room on the right-hand side of the corridor. While exe-
cuting the planned trajectory, the robot could not detect the glass door that

Efficient Failure Detection for Mobile Robots 105

System model Failure Detection Average time Average estimation error
rate per iteration Position Orientation

M1: standard odometry 0 % 0.67 ms 0.13 m 3.6◦

20 particles

M1: standard odometry 0 % 5.83 ms 0.13 m 3.4◦

200 particles

M0: dynamic 100 % 10.10 ms 0.11 m 5.8◦

300 particles

adaptive-switching: 100 % 3.42 ms 0.12 m 3.9◦

M1: 20 particles
M0: 300 particles

Table 1. Results of a series of simulation runs using different system models for
state estimation. The results are averaged over the complete trajectories of 100 runs
per model.

blocked its path and thus collided with the wooden part of the door. In this
situation, the standard odometry-based system model used for localization
does not indicate a defect, because the wheel encoders report no motion,
which is perfectly consistent with the laser measurements. The left diagram
of Figure 6 gives the evolution of the observation likelihoods for the standard
model, which stays nearly constant. In contrast to this, the proposed mixed
abstraction particle filter detects that the model assumption of the standard
model is not valid anymore after the collision with the door and switches to
the more complex system model. The right diagram of Figure 6 visualizes
this process. For the sake of clarity, we plotted the estimated validity of the
negated model assumption, which can be interpreted as the evidence against
the assumption that no collision has occurred. The upper curve corresponds
to the time needed per iteration. Note that the required computational re-
sources only slightly exceed those of the standard odometry-based model (see
left diagram for a comparison). Only in the failure case, the runtime increases
seriously since the more complex model requires substantially more particles.
Please also note, that the runtime goes back to the original value after the
robot has backed off and the model assumption of the simplified model is valid
again.

5 Conclusion

This paper presents an efficient approach to estimate the state of a dynamic
system including its failures. Complex models with high computational re-
quirements are needed in order to detect and track unusual behaviors. We
therefore proposed a mixed-abstraction particle filter which distributes the
computational resources in a way that failure states can be detected and
tracked but at the same time allows us an efficient estimation process in case

106 C. Plagemann, C. Stachniss, and W. Burgard

Fig. 6. In an experiment with a real robot, the observation likelihood of the standard
system model (lower left) does not indicate the collision with a glass door at time
t = 22 seconds. The mixed-abstraction particle filter (right) detects the fault without
needing substantially more computational resources in the fault-free case (upper
diagrams).

the systems runs free of faults. To achieve this, we apply a process model
hierarchy which allows us to model assumptions that hold for the fault-free
case but not in general.

In several experiments carried out in simulation and with real robots,
we demonstrated that our technique is well-suited to track dynamic systems
affected by errors. Our approach allows us to accurately track different failure
states and at the same time is only marginally slower in case the system is
running free of faults. We believe that our approach is not limited to the failure
detection problem and can also be advantageous for various state estimation
tasks in which different system models have to be used to correctly predict
the behavior of the system under varying conditions.

Acknowledgments

This work has partly been supported by the EC under contract number FP6-
004250-CoSy, by the German Science Foundation (DFG) under contract num-
ber SFB/TR-8 (A3) and the German Federal Ministry of Education and Re-
search (BMBF) under contract number 01IMEO1F.

References

1. E. Benazera, R. Dearden, and S. Narasimhan. Combining particle filters and
consistency-based. In 15th International Workshop on Principles of Diagnosis,
Carcassonne, France, 2004.

2. N. de Freitas, R. Dearden, F. Hutter, R. Morales-Menendez, J. Mutch, and
D. Poole. Diagnosis by a waiter and a mars explorer. In Invited paper for
Proceedings of the IEEE, special issue on sequential state estimation, 2003.

 0

 0.5

 1

 0 5 10 15 20 25 30T
im

e
pe

r
ite

ra
tio

n
[m

s]

Timestamp [sec]

Time per iteration [ms]

 0

 10

 20

 30

 40

 0 5 10 15 20 25 30T
im

e
pe

r
ite

ra
tio

n
[m

s]

Timestamp [sec]

Time per iteration [ms]

 0

 0.01

 0.02

 0.03

 0 5 10 15 20 25 30O
bs

er
va

tio
n

lik
el

ih
oo

d

Timestamp [sec]

Observation likelihood

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30

R
el

. l
ik

el
ih

oo
d

Timestamp [sec]

Relative likelihood (collision)

Efficient Failure Detection for Mobile Robots 107

3. R. Dearden and D. Clancy. Particle filters for real-time fault detection in plan-
etary rovers. In Proceedings of the Thirteenth International Workshop on Prin-
ciples of Diagnosis, pages 1–6, 2002.

4. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for
mobile robots. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), Leuven, Belgium, 1998.

5. J.N. Driessen and Y. Boers. An efficient particle filter for nonlinear jump markov
systems. In IEEE Sem. Target Tracking: Algorithms and Applications, Sussex,
UK, 2004.

6. J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental compar-
ison of localization methods. In Proc. of the IEEE/RSJ InternationalConference
on Intelligent Robots and Systems, 1998.

7. N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. technical report. Technical report, USC Center
for Robotics and Embedded Systems, CRES-04-002, 2004.

8. M. Krysander. Design and Analysis of Diagnostic Systems Utilizing Structural
Methods. PhD thesis, Linköping University, Sweden, 2003.

9. C. Kwok and D. Fox. Map-based multiple model tracking of a moving object.
In RoboCup 2004: Robot Soccer World Cup VIII, pages 18–33, 2004.

10. C. Kwok, D. Fox, and M. Meila. Real-time particle filters. In Suzanna Becker,
Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Informa-
tion Processing Systems 15 (NIPS), pages 1057–1064. MIT Press, 2002.

11. N. Leveson. Safeware : System Safety and Computers. Addison-Wesley Pub
Co., Reading, Mass., 1995.

12. B. Ng, A. Pfeffer, and R. Dearden. Continuous time particle filtering. In Pro-
ceedings of the 19th IJCAI, Edinburgh, 2005.

13. R. Smith. Open dynamics engine. http://www.q12.org/ode/ode.html, 2002.
14. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
15. V. Verma, S. Thrun, and R. Simmons. Variable resolution particle filter. In

Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence, Acapulco, Mex-
ico, August 9-15, 2003, pages 976–984. Morgan Kaufmann, 2003.

16. R. Washington. On-board real-time state and fault identification for rovers. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 1175–1181, 2000.

17. B.C. Williams and P.P. Nayak. A model-based approach to reactive self-
configuring systems. In Jack Minker, editor, Workshop on Logic-Based Arti-
ficial Intelligence, Washington, DC, College Park, Maryland, 1999. University
of Maryland.

	1 Introduction
	2 Related Work
	3 Particle Filters for Sequential State Estimation
	3.1 Process Model Hierarchy
	3.2 Adaptive Model Selection
	3.3 Motion Models for Mobile Robots

	4 Experiments
	4.1 Quantitative Evaluation Using a Simulator
	4.2 Analyzing the Gain in E.ciency
	4.3 Evaluation on a Real Robot

	5 Conclusion
	References

