
A Multi-agent System Architecture for
Modular Robotic Mobility Aids

Georgios Lidoris and Martin Buss

Institute of Automatic Control Engineering
Technische Universität München
D-80290 Munich, Germany
Georgios.Lidoris@tum.de

Abstract
In this paper a multi-agent system architecture for a modular mobility

enhancement system is presented. The system consists of one or multiple
mobile robotic platforms and a set of user defined application modules, such as
chairs, tables multifunctional chairs etc. All these modules can be inexpensive
everyday life items, that become functional when a mobile platform is properly
attached to them. This way the system can act as a wheelchair, as a carrier
of objects, or even as a walker. ∗

1 Introduction

With the increase in the number of senior citizens, there is a growing demand
for mobility aids. Older people have problems moving themselves, handling or
moving objects and at the same time operating complicated devices. Therefore
mobility aids with intelligent capabilities become a necessity. Several robotic,
intelligent wheelchairs have been proposed demonstrating navigation, manip-
ulation and transportation capabilities. Examples include Rolland [1] , TAO
[2], OMNI [3], NavChair [4] and many other. However existing systems are
still difficult to operate, to adjust to the needs of the individual user and are
very costly.

At the same time research on multi-agent systems has provided both prin-
ciples for the construction of complex systems involving multiple agents and
mechanisms for the coordination of independent agent behaviours.

In this paper we intend to apply well-analysed concepts from multi-agent
and multi-robot systems research, to create a system architecture for a modu-
lar mobility enhancement aid. This is a new and very demanding application
∗ This work was partially supported by the Specific Targeted Research Project

MOVEMENT co-funded by INFSO DG of the European Commission (contract
number 511670)

H.I. Christensen (Ed.): European Robotics Symposium 2006, STAR 22, pp. 15–26, 2006.
© Springer-Verlag Berlin Heidelberg 2006

16 G. Lidoris and M. Buss

domain for multi-agent systems and besides presenting the proposed approach
we intend to expose its specific requirements.

The system can consist of one or multiple mobile robotic platforms and a
set of user defined application modules, such as chairs, tables, multifunctional
chairs etc. All these modules can be inexpensive everyday life items, that
become functional when a robotic mobile platform is properly attached to
them. This way the system can act as a wheelchair, as a carrier of objects,
or even as a walker. Also multiple levels of autonomy are supported by the
system architecture, from manual operation to autonomous functionality. Such
a modular system, addresses many diverse needs and can be used by people
with different mobility problems. Its scalable multi-agent architecture allows
it to be deployed for the home care of an individual, as well as in large health
care institutions.

2 Related Work

Several approaches have been proposed in the multi-agent community to co-
ordinate agent actions. Distributed behaviour-based architectures have been
developed, like ALLIANCE [5] and [6], which were capable of dealing with
complex tasks but lacked on scalability and robustness. Other approaches ad-
dress multi-robot cooperation through negotiation, such as M+[7], Traderbots
[8], MURDOCH [9] and numerous others. Market-based architectures are win-
ning popularity and already a large amount of literature relevant to the field
exists. An interesting survey of market based multi-robot coordination can be
found in [10].

Our approach uses a negotiation mechanism for task allocation, as well
as a behavioural-based layer for the execution of complex tasks. This way
the robustness of market-based mechanisms is combined with the ability of
behaviour-based approaches to deal with tasks of increased complexity.

A contribution to the challenges of multi-agent systems research as de-
scribed in [10] is made, by introducing a new real-world application domain
where long-term, reliable and robust operation of human, robot teams can be
demonstrated.

3 Concept of System Architecture

As we mentioned above our application domain introduces several special
requirements. We are dealing with a safety critical domain, where we have to
ensure the continuous functionality of our system. Direct task allocation and
supervision of system’s decisions by the user must be supported. Tasks arrive
in an unpredicted manner, from several user interfaces. Finally new modules
can be inserted to and removed from the system at any time.

A Multi-agent System Architecture for Modular Robotic Mobility Aids 17

The system architecture is responsible for the coordination of modules
consisting the system. It shall enable the user dependent usage of the mod-
ules and has the task of controlling the interconnection of modules and their
behaviour. More specifically we present a Multi-Agent System architecture
which is responsible for receiving high-level commands from the user inter-
face, decomposes them and delegates sub-tasks to the appropriate application
modules. These modules are dynamically selected according to utility func-
tions, which are created using performance indicators and task requirements.
In the formal multi-robot task allocation (MRTA) framework introduced in
[11], our system addresses ”Single-task robots, single robot tasks, instanta-
neous assignment” (ST-SR-IA). Furthermore our system continuously runs
background tasks such as managing module power levels, performing conflict
resolution between system modules during task executions and finally enabling
the system’s autonomous functionalities by making use of a behaviour-based
task model.

Component selection for task allocation is performed by using a simple
distibuted first-price one round auction protocol, similar to the Contract-Net
protocol [12]. The progress of task execution is monitored by the winner and
if no progress is made, then the task is re-assigned through a new negotiation.
This is a very important fault-prevention functionality of the system.

3.1 Agent Model

Taking into account the distributed nature and complexity of the application
domain, we decided to split the control of our system amongst a number of de-
liberative agents. Each agent is capable of reasoning, according to the classical
hybrid architecture paradigm [13]. At the same time, by distributing control
to a number of agents, we achieve robustness and scalability gains. Therefore
our system can be considered as an extension of the layered approach [14],
[15], [16] to a multi-agent domain, exploiting advantages of both centralised
and distributed approaches.

The general internal structure of a system agent is illustrated in Figure
1. It consists of three parts. The first one is responsible for communicating
with other agents and handling communication requests. The second part is
a scheduler, which receives task requests, creates a queue and schedules their
execution from the third layer. The task execution layer is responsible for the
agent’s actions, which according to each agent’s role can vary from simple
communication acts to movements, for our physical agents.

By using such an internal organization, we are able to deal with coor-
dination and cooperation issues that arise between our agents. Our system
becomes capable of having physical agents that respond quickly to dynamic
events e.g. collisions, while at the same time producing and executing com-
plex strategies for achieving multiple goals. This is due to the fact that each
system component is able to schedule its own actions according to its internal
capabilities and state.

18 G. Lidoris and M. Buss

communication

scheduling

task execution

Fig. 1. Internal structure of a system agent

3.2 Overview of the Proposed Approach

The proposed system architecture consists of several software agents that
are responsible for performing task decomposition, task allocation through
negotiations as well as system monitoring and module management. It also
contains physical agents which represent the modules that are available to the
system at each time point.

No limitations exist to the number of possible modules that can be inserted
to the system, enabling it to be used in small setups with only one mobile
base and a few application modules, as well as in large care institutions with
an arbitrary number of mobile bases and application modules. In Figure 2
we present an overview of our architectural concept, for a setup where the
available modules that can be docked with the platforms are chairs, tables,
multifunctional chairs and walker modules.

When the user issues a command via the input hardware of the User
Interface, this command is integrated and preprocessed and then sent to a link
layer. This link layer between the Multi-Agent System and the User Interface
is responsible for transforming the issued command, into an appropriate form
in order to be transmitted to the control architecture. Important information
being encapsuled are:

• Level of autonomy in which the system is currently operating
• Type of operation to be performed by the system
• Which application module issues the command
• Command specific parameters e.g. goal position coordinates, in the au-

tonomous functionality or speeds to be executed by the mobile platform,
read by the input device for the manual functionality

This high-level command is transmitted from the user interface link layer, to
the system.

In order to make clear how a command is handled by the system, we have
to describe each agent’s role in more detail.

A Multi-agent System Architecture for Modular Robotic Mobility Aids 19

Task

Allocation

Agent

Mediator

Agent

System

State

Agent

Background

Tasks

Agent

High-level

commands / notifications

Component

Selection

Platforms Chairs Tables MF-Chairs
Lifter /

Walkers

User Interface

Sensors
Hardware /

Actuators

Link Layer

Fig. 2. Overview of the proposed approach

Mediator Agent This multi-purpose agent is responsible for accepting com-
mands from the user interface’s Link Layer, initiating task execution proce-
dures and querying for specific module information. Finally, after the task is
executed, it informs the interface for changes. It also receives safety notifi-
cations from the Background Tasks Agent and initiates actions accordingly,
giving them priority.

System State Agent It is responsible for providing management and naming
services for the rest of the system and monitoring the state of the system’s
application modules. It informs, upon request, the rest of the system about
the available modules and their state. The possible states of each application
module depend on its functionality. For each robotic platform its state is a
tuple < d, t > showing if its docked with an application module and which
task it is currently undertaking. For an application module its state shows if
it is docked with a platform.

Task Allocation Agent If it is assigned a task by the Mediator Agent, then
decomposes it, so that the necessary components are chosen and initiates a
negotiation procedure similar to Contract Net Protocol, in order to find the
best module to perform the task. After it receives bids from the Component
Agents it chooses a winner (the highest bidder) and assigns it the task. When it
receives information from the Component Agent that the task was performed

20 G. Lidoris and M. Buss

it informs the Mediator. In the case of passive modules like tables and chairs
we don’t have a task assignment but the winner is the module that is more
appropriate for a given task. For example if we want a given platform to go
and bring a table, then the negotiation finds the most suitable one (e.g. the
one that is closer) and the Mediator is informed, so that it can assign the task
to the platform.

Background Tasks Agent Monitors system components and issues commands
to the Mediator Agent, in order to deal with safety issues. For example, we
want to avoid the risk of power failure of our mobile robotic platforms during
task execution. Therefore the Background Tasks Agent constantly checks the
power level of all mobile platforms. If a platform’s power level is found less than
an acceptable minimum, then a Charge command is issued to the Mediator
and the platform in question charges its batteries. It also can be used for
setting out alerts for pre-programmed system maintenance operations, module
failures etc. Generally the commands issued by this agent to the Mediator
Agent have higher-priority as normal commands.

Component Agents Each of these agents is created when a new hardware
module is inserted to the system and it represents this module to the MAS.
They are involved in the component selection negotiation procedure. If they
are assigned a task they initiate a pre-programmed set of behaviours in order
to accomplish it. The task description must contain information about its type
and also other specific information regarding possible parts of the task. These
agents have control over the hardware they embody and pass appropriate
commands to it, by sequencing high level movement descriptions into low
level commands. When the level of autonomy is set to manual, they just pass
low level commands that are received from the UI to the hardware.

Passive modules such as chairs, tables, etc, do not perform tasks themselves
but need to be docked with a platform. They take part to the negotiations
initiated by the Task Allocation Agent when we need to find the most suitable
module, in order to minimize resource usage. For example let’s suppose that
the user wants a given platform to bring a table. Table Component Agents
compute their utilities based on their distance from the platform. This is useful
especially for home use scenarios, where only one platform exists but many
tables and chairs, which are really inexpensive.

Platform Component Agents rely on a behaviour based system. Behaviours
are seen as condition / action pairs where conditions are logical expressions
over the inputs and actions are themselves behaviours. In both cases, a be-
haviour is a directed acyclic graph of arbitrary depth. The leaves of the graphs
are the behaviour type’s respective outputs.

This notion of behaviour is also consistent with that laid out in [17] and
[18]. Behaviours are nested at different levels: selection among lower-level be-
haviours can be considered a higher-level behaviour, with the overall agent
behaviour considered a single ”do-the-task” behaviour. These resulting high-
level tasks are also interconnected with each other and all together consist

A Multi-agent System Architecture for Modular Robotic Mobility Aids 21

our architecture’s task model. Figure 3 illustrates the interconnection between
these tasks and how they are decomposed to simpler behaviours.

platform

localization

path

planning

user

confirmation

path

execution

target

reached

path

tracking

obstacle

detection

stop

obstacle

avoidance

yes

no

yes

no

no

yes

robot to

target

robot+

module

to target

docked

with module

dock

with module ...

target

reached

no

stop

yes

no

..
.

Fig. 3. Task model

When a robotic platform is assigned a task, it becomes unavailable for
further tasks. This means that it does not take part in negotiations. Instead
it monitors task execution and if no progress is made, it contacts the Task Al-
location Agent to re-assign the task. Monitoring of task execution can simply
be made by recalculating the utility of the task, in a given time space. If the
utility remains unchanged or decreases below a given threshold, task execu-
tion must be terminated and the task has to be re-allocated. In the following
section we will give a definition of task utility.

4 Utility for Task Assignment

Component selection based on performance measures and task requirements is
of great importance for our system. Imagine use cases where multiple modules
of the same functionality exist. For example a user may have more than one
table modules, which are really inexpensive, in his house. The system must
then be in position to choose the best module for a given task e.g. in a fetch
and carry scenario, where the mobile platform has to dock with a table, reach
a goal location and return to the user, the best module in order to minimize
resource usage would be the one closer to the goal location. We are dealing here
with an instance of the Optimal Assignment Problem (OAP) [19] that was

22 G. Lidoris and M. Buss

originally studied in game theory. A formulation of this problem for robotics
can be found in [20].

To address this problem we use the concept of utility. The idea is that each
individual can internally estimate the value of executing an action. This esti-
mation results a utility function which is highly domain and task dependent.
An instructive definition of utility follows [11]. It is assumed that each agent /
hardware module is capable of estimating its fitness for every task of which it
is capable. This estimation takes into account two task- and robot-dependent
factors:

• expected quality of task execution, given the method and equipment to be
used

• expected resource cost, given the spatio-temporal requirements of the task
(e.g. the length of the path to a target etc)

So given a module M and a task T, if M is capable of executing T, then we can
define QMT (p) and CMT (d) as the quality and cost, respectively, expected to
result from the execution of T by M. Quality of task execution can be seen as a
function of application module specific parameters, denoted by p. An example
can be the power level of the battery of a robotic mobile platform. If the power
levels are low then the platform will have to charge soon, therefore becoming
temporary unavailable to execute tasks. Cost can be seen as a function of the
path length from the goal position. A non-negative utility measure can now
be defined.

UMT =
�

QMT (p) − CMT (d) if M is capable of executing T and QMT (p) > CMT (d)
0 otherwise

Each agent’s objective is to maximize utility. Utility maximization is equiv-
alent in our case with effective resource usage and therefore better system
performance. We can incorporate learning into utility estimation, therefore
adapting the system’s performance to the user behaviour and needs.

5 Experimental Design

To validate our system’s functionality and take some first simulation results,
we have created an experimental testbed. For the implementation of our agents
we decided to use JADE (Java Agent Development Framework) as a mid-
dleware. JADE is a software development framework aimed at developing
multi-agent systems and applications conforming to FIPA (Foundation for
Intelligent Physical Agents) standards for intelligent agents. Using JADE as
a middleware basically means that we take advantage of its communication
structures and naming directory services, in order to develop our experimen-
tal set-ups effectively and with respect to the standards of the agent research
community. This way we are able to analyse interactions between agents, as
well as decision-making procedures. For the simulations we have used the

A Multi-agent System Architecture for Modular Robotic Mobility Aids 23

Player/Stage simulator. The structure of our experimental implementation is
illustrated in Figure 4.

From the discussion above it has been made evident that a large number
of possible system states and setups can exist, making it almost impossible
to simulate all of them. For that reason we had to choose some scenarios
to be simulated which would test the task allocation and fault prevention
mechanisms of our architecture. The following three were chosen:

• one mobile robotic platform, two different types of application modules
and multiple tasks to be performed autonomously

• multiple mobile robotic platforms, two different types of application mod-
ules and one single task to be performed autonomously, with robot mal-
function and task reallocation

• multiple mobile robotic platforms, two different types of application mod-
ules and multiple tasks to be performed autonomously

Results from the simulations are very encouraging, with the system assing-
ing tasks to modules in an efficient manner. Even when task execution was
interrupted on purpose by us, tasks were re-allocated succesfully. Agent com-
munication is optimal posing almost no communication overhead. More specif-

Task

Deocomposition

Agent

Mediator

Agent

System

State

Agent

Background

Tasks

Agent

UI-Agent

JADE Platform

Chairs

PlayerClient

PositionPlayerDevice

LaserPlayerDevice

Platforms

PlayerClient

PositionPlayerDevice

LaserPlayerDevice

.....

Stage

Player GUI

Fig. 4. Experimental implementation

24 G. Lidoris and M. Buss

ically, agent interactions are shown in Figure 5 for the task of driving an
initially undocked chair (ch1) to a given destination (target). FIPA Agent
Communication Language performatives are used.

inform(ch1,auto,goto(target))

Background

Tasks

Agent

Task

Allocation

Agent

System

State

Agent

UI-C /

Link Layer

Component

Agents
Mediator

Agent

query-if(ch1,”docked”)

inform(ch1,null)

inform(”performing docking”)

request(ch1,dock)

cfp(ch1,dock)

propose(bid)

accept(pl1)

inform(”done”)

inform(”done”,pl1)

inform(”done docking”)

request(pl1,goto(target))

inform(”done”)

inform(”done”)

Fig. 5. Agent interactions while performing a complex task

At first Mediator Agent checks with the System State Agent whether the
requested chair is docked with a mobile platform or not. The answer is nega-
tive, so a module selection procedure is iniated by the Task Allocation Agent
in order to find the most suitable platform (pl1 in Figure). When it is found, it
is ordered to dock with the chair and then reach the defined destination. The
User Interface is appropriately updated by the Mediator while task execution
is progressing. We can see that only few messages are used to accomplish a
complicated task.

6 Conclusions

We have defined a Multi-Agent System architecture for modular mobility
aids in terms of software architecture, modelling and requirements. We have
shown how components interact with each other in order to achieve effective
functionality of the whole system. A quantification of each module’s ability to
undertake a task was also presented and used in a negotiation based module
selection mechanism. Throughout this effort, our main concern was simplicity

A Multi-agent System Architecture for Modular Robotic Mobility Aids 25

and functionality, given the safety critical nature of the application domain.
Finally, a complete experimental testbed has been presented which has been
used to validate our concepts.

Since this is a new and demanding application domain much work remains
on the architecture. We need to develop complete performance measures and
enhance the system with learning mechanisms that will allow it to adapt its
performance to the user’s behaviour. We also have to look deeper into mech-
anisms for fault prevention and system recovery. Finally, tests on physically
embodied robots will be made.

References

1. Mandel C, Huebner K, Vierhuff T (2005) Towards an Autonomous Wheelchair:
Cognitive Aspects in Service Robotics. In Proceedings of Towards Autonomous
Robotic Systems (TAROS 2005): 165-172

2. Gomi T, Griffith A (1998) Developing intelligent wheelchairs for the hand-
icapped. In: Assistive Technology and Artificial Intelligence: Applications in
Robotics, User Interfaces and Natural Language Processing

3. Hoyer H (1999) The OMNI-Wheelchair - State of the Art. In: Proceedings of
Conference on Technology and Persons with Disabilities, Los Angeles

4. Simpson R et al (1998) Navchair: An assistive wheelchair navigation system
with automatic adaptation. In: Assistive Technology and Artificial Intelligence:
Applications in Robotics, User Interfaces and Natural Language Processing

5. Parker L (1998) Alliance: An architecture for fault tolerant multirobot cooper-
ation. In: IEEE Transactions on Robotics and Automation, 14(2): 220-240

6. Simmons R, Smith T, Dias M B, Goldberg D, Hershberger D, Stentz A, Zlot R
(2002) A layered architecture for coordination of mobile robots. In: Multi-Robot
Systems: From Swarms to Intelligent Automata

7. Botelho S, Alami R (1999) M+: A schema for multi-robot cooperation through
negotiated task allocation and achievement. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation: 1234-1239

8. Zlot R, Stentz A, Dias M B, Thayer S (2002) Multi-robot exploration controlled
by a market economy. In: Proceedings of the IEEE International Conference on
Robotics and Automation: 3016-3023

9. Gerkey B, Mataric M J (2002) Sold!: Auction methods for multi-robot coordi-
nation. In: IEEE Transactions on Robotics and Automation, 16(5):758-768

10. Dias M B, Zlot R M, Kalra N, Stentz A (2005) Market-Based Multirobot Co-
ordination: A Survey and Analysis. Tech report CMU-RI-TR-05-14, Robotics
Institute, Carnegie Mellon University

11. Gerkey B, Mataric M J (2004) A formal analysis and taxonomy of task alloca-
tion in multi-robot systems. In: Intl. Journal of Robotics Research, 23(9):939-
954

12. Smith R G (1980) The Contract Net Protocol: high level communication and
control in a distributed problem solver. In: IEEE Transactions on Computers,
C-29(12)

13. Gat E (1997)On three-layer architectures. In: Artificial Intelligence and Mobile
Robots. MIT AAAI Press

26 G. Lidoris and M. Buss

14. Bonasso P, Kortenkamp D (1995) Characterizing an architecture for intelli-
gent, reactive agents. In: Working Notes, AAAI Spring Symposium on Lessons
Learned from Implemented Software Architectures for Physical Agents: 29-34

15. Gat E. (1991) Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for mobile robots. In: SIGART Bulletin 2

16. Connell J (1992) A hybrid architecture applied to robot navigation. In: Pro-
ceedings of IEEE ICRA ’92, Nice France

17. Stone P (1998) Layered learning in multi-agent systems. Phd Thesis, Carnegie
Mellon University

18. Mataric M (1994) Interaction and intelligent behavior. Phd Thesis, MIT AI
Lab

19. Gale D (1960) The theory of linear economic models. McGraw-Hill Book Com-
pany, New York

20. Gerkey B (2003) On multi-robot task allocation. Phd Thesis, University of
South California, Los Angeles

	1 Introduction
	2 Related Work
	3 Concept of System Architecture
	3.1 Agent Model
	3.2 Overview of the Proposed Approach

	4 Utility for Task Assignment
	5 Experimental Design
	6 Conclusions
	References

