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Summary. In probabilistic mobile robot localization, the development of the sensor
model plays a crucial role as it directly influences the efficiency and the robustness
of the localization process. Sensor models developed for particle filters compute the
likelihood of a sensor measurement by assuming that one of the particles accurately
represents the true location of the robot. In practice, however, this assumption
is often strongly violated, especially when using small sample sets or during global
localization. In this paper we introduce a novel, adaptive sensor model that explicitly
takes the limited representational power of particle filters into account. As a result,
our approach uses smooth likelihood functions during global localization and more
peaked functions during position tracking. Experiments show that our technique
significantly outperforms existing, static sensor models.

1 Introduction

Probabilistic mobile robot localization estimates a robot’s pose using a map of
the environment, information about the robot’s motion, and sensor measure-
ments that relate the robot’s pose to objects in the map. The sensor model
plays a crucial role as it directly influences the efficiency and the robustness of
the localization process. It specifies how to compute the likelihood p(z | z,m)
or short p(z | z) of a measurement z given the vehicle is at position z in the en-
vironment m. A proper likelihood function has to take various sources of noise
into account, including sensor uncertainty, inaccuracy of the map, and uncer-
tainty in the robot’s location. An improperly designed likelihood function can
make the vehicle overly confident in its position and in this way might lead
to a divergence of the filter. On the other hand, the model might be defined
in a too conservative fashion and this way prevent the robot from localizing
as the sensor information cannot compensate the uncertainty introduced by
the motion of the vehicle.

Monte Carlo localization (MCL) is a particle-filter based implementation
of recursive Bayesian filtering for robot localization [2, 6]. In each iteration of
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MCL, the likelihood function p(z | z) is evaluated at sample points that are
randomly distributed according to the posterior estimate of the robot location.
Sensor models developed for MCL typically assume that the vehicle location
x is known exactly; that is, they assume that one of the sampling points
corresponds to the true location of the robot. However, this assumption is only
valid in the limit of infinitely many particles. Otherwise, the probability that
the pose of a particle exactly corresponds to the true location of the robot is
virtually zero. As a consequence, these likelihood functions do not adequately
model the uncertainty due to the finite, sample-based representation of the
posterior. In practice, a typical solution to this problem is to artificially inflate
the noise of the sensor model. Such a solution is not satisfying, however,
since the additional uncertainty due to the sample-based representation is
not known in advance; it strongly varies with the number of samples and the
uncertainty in the location estimate.

In this paper we introduce a novel, adaptive sensor model that explic-
itly takes location uncertainty due to the sample-based representation into
account. In order to compute an estimate of this uncertainty, our approach
borrows ideas from techniques developed for density estimation. The goal of
density estimation is to extract an estimate of the probability density under-
lying a set of samples. Most approaches to density estimation estimate the
density at a point x by considering a region around x, where the size of the
region typically depends on the number and local density of the samples (for
instance, see Parzen window or k-nearest neighbor approaches [4]).

The density estimation view suggests a way for computing the additional
uncertainty that is due to the sample-based representation: When evaluating
the likelihood function at a sample location, we consider the region a density
estimation technique would take into account when estimating the density at
that location. The likelihood function applied to the sample is then computed
by integrating the point-wise likelihood over the corresponding region. As a
result, the likelihood function automatically adapts to the local density of
samples, being smooth during global localization and highly “peaked” during
position tracking. Our approach raises two questions.

1. How large should the region considered for a sample be?
2. How can we efficiently determine this region and integrate the observation
likelihood over it?

While our idea can be applied to arbitrary particle filter approaches, this
paper focuses on how to address these questions in the context of mobile
robot localization. In particular, we estimate the region associated to a particle
using a measure applied in k-nearest neighbor density estimation, in which
the region of a point grows until a sufficient number of particles lies within
it. We show that by considering the simple case of k¥ = 1 and learning the
appropriate smoothness of the likelihood function, we can effectively improve
the speed required for global localization and at the same time achieve high
accuracy during position tracking.
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This paper is organized as follows. After discussing related work in the
next section, we briefly describe Monte Carlo localization in Section 3. Our
approach to dynamically adapt the likelihood model is presented in Section 4.
Finally, in Section 5, we present experimental results illustrating the advan-
tages of our model.

2 Related Work

In the literature, various techniques for computing the likelihood function
for Monte Carlo localization can be found. They depend mainly on the sen-
sors used for localization and the underlying representation of the map m. For
example, several authors used features extracted from camera images to calcu-
late the likelihood of observations. Typical features are average grey values [2],
color values [8], color transitions [10], feature histograms [17], or specific ob-
jects in the environment of the robot [9, 12, 13]. Additionally, several likeli-
hood models for Monte-Carlo localization with proximity sensors have been
introduced [1, 15]. These approaches either approximate the physical behavior
of the sensor [7] or try to provide smooth likelihood models to increase the
robustness of the localization process [14]. Whereas these likelihood functions
allow to reliably localize a mobile robot in its environment, they have the ma-
jor disadvantage that they are static and basically independent of the state
the localization process has.

In the past, is has been observed that the likelihood function can have a
major influence on the performance of Monte-Carlo Localization. For exam-
ple, Pitt and Shepard [11] as well as Thrun et al. [16] observed that more
particles are required if the likelihood function is peaked. In the limit, i.e., for
a perfect sensor, the number of required particles becomes infinite. To deal
with this problem, Lenser and Veloso [9] and Thrun et al. [16] introduced
techniques to directly sample from the observation model and in this way en-
sure that there is a critical mass of samples at the important parts of the state
space. Unfortunately, this approach depends on the ability to sample from ob-
servations, which can often only be done in an approximate, inaccurate way.
Alternatively, Pitt and Shepard [11] apply a Kalman filter lookahead step for
each particle in order to generate a better proposal distribution. While this
technique yields superior results for highly accurate sensors, it is still lim-
ited in that the particles are updated independently of each other. Hence, the
likelihood function does not consider the number and density of particles. An-
other way of dealing with the limitations of the sample-based representation
is to dynamically adapt the number of particles, as done in KLD sampling [5].
However, for highly accurate sensors, even such an adaptive technique might
require a huge number of samples in order to achieve a sufficiently high particle
density during global localization.

The reader may notice that Kalman filter based techniques do consider
the location uncertainty when integrating a sensor measurement. This is done
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by mapping the state uncertainty into observation space via a linear approx-
imation. However, Kalman filters have limitations in highly non-linear and
multi-modal systems, and the focus of this paper is to add such a capability
to particle filters. More specifically, in this paper we propose an approach that
dynamically adapts the likelihood function during localization. We dynami-
cally calculate for each particle the variance of the Gaussian governing the
likelihood function depending on the area covered by that particle.

3 Monte Carlo Localization

To estimate the pose x of the robot in its environment, we consider probabilis-
tic localization, which follows the recursive Bayesian filtering scheme. The key
idea of this approach is to maintain a probability density p(z) of the robot’s
own location, which is updated according to the following rule:

(@t | 212, U0ie—1) = - p2¢ | @) - /p(xt | ue—1,2¢—1) - p(xe—1) dre—y (1)

Here « is a normalization constant ensuring that p(z; | 21.¢, ug.t—1) sums up
to one over all x;. The term p(x; | us—1,2¢—1) describes the probability that
the robot is at position z; given it executed the movement u;_1 at position
x¢—1. Furthermore, the quantity p(z; | 2;) denotes the probability of mak-
ing observation z; given the robot’s current location is x;. The appropriate
computation of this quantity is the subject of this paper.

Throughout this paper we use a sample-based implementation of this fil-
tering scheme also denoted as Monte Carlo localization [2, 6]. In Monte-Carlo
localization, which is a variant of particle filtering [3], the update of the belief
generally is realized by the following two alternating steps:

1. In the prediction step, we draw for each sample a new sample according
to the weight of the sample and according to the model p(zy | ui—1,x1—1)
of the robot’s dynamics given the action u;_; executed since the previous
update.

2. In the correction step, the new observation z; is integrated into the
sample set. This is done by bootstrap re-sampling, where each sample is
weighted according to the likelihood p(z; | x;) of sensing z; given by its
position xy.

4 Dynamic Sensor Models

The likelihood model p(z | z) plays a crucial role in the correction step of
the particle filter. Typically, very peaked models require a huge number of
particles. This is because even when the particles populate the state space
very densely, the likelihoods of an observation might differ by several orders of
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magnitude. As the particles are drawn proportional to the importance weights,
which themselves are calculated as the likelihood of z; given the pose x; of
the corresponding particle, a minor difference in x; will result in a difference
of one order of magnitude in the likelihood and thus will result in a depletion
of such a particle in the re-sampling step. Accordingly, an extremely high
density of particles is needed when the sensor is highly accurate. On the other
hand, the sheer size of the state space prevents us from using a sufficiently
large number particles during global localization in the case that the sensor
is highly accurate. Accordingly the sensor model needs to be less peaked in
the case of global localization, when the particles are sparsely distributed over
the state space. This is essentially the idea of the approach proposed in this

paper.

4.1 Likelihood Model for Range Sensors

The likelihood model used throughout this paper calculates p(z | z) based
on the distance d to the closest obstacle in the direction of the measurement
given z (and the map m). Accordingly, p(z | x) is calculated as

p(z | z) = p(z | d). (2)

To determine this quantity, we follow the approach described in Thrun et
al. [15] and Choset et al. [1]. The key idea of this sensor model is to use a
mixture of four different distributions to capture the noise and error charac-
teristics of range sensors. It uses a Gaussian ppit(z | d) to model the likelihood
in situations in which the beam hits the next object in the direction of the
measurement. Additionally, it uses a uniform distribution pyang(z | d) to rep-
resent random measurements. It furthermore models objects not contained in
the map as well as the effects of cross-talk between different sensors by an
exponential distribution pghort(z | d). Finally, it deals with detection errors,
in which the sensor reports a maximum range measurement, using a uniform
distribution pmax(z | d). These four different distributions are mixed by a
weighted average, defined by the parameters apit, Qshort, max, and Qrand-

p(z | d) (3)

= (ahita Qshort amaxaarand) : (phit(z | d)apshort(z | d)7pmax(z | d)aprand(z | d))T .

Note that these parameters need to satisfy the constraints that none of them
should be smaller than zero and that p(z | d) integrates to 1 over all z for a
fixed d. A plot of this sensor model for a given set of parameters is shown in
Figure 1. Also note that the exponential distribution is only used to model
measurements that are shorter than expected, i.e., for measurements z with
z < d. Therefore, there is a discontinuity at z = d (see Thrun et al. [15] for
details).
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Fig. 1. Sensor model given by a mixture of different distributions (left image)
and piecewise linear function used to calculate the standard deviation based on the
distance d = 2r to the closest particle.

4.2 Adapting the Variance

As already mentioned above, the particle set should approximate the true pos-
terior as closely as possible. Since we only have a limited number of particles,
which in practice is often chosen as small as possible to minimize the com-
putational demands, we need to take into account potential approximation
erTors.

The key idea of our approach is to adjust the variance of the Gaussian
governing ppit(z | d), which models the likelihood of measuring z given that
the sensor detects the closest obstacle in the map, such that the particle set
yields an accurate approximation of the true posterior. To achieve this, we
approximatively calculate for each particle ¢ the space it covers by adopting
the measure used in k-nearest neighbor density estimation [4]. For efficiency
reasons we rely on the case of K = 1, in which the spatial region covered
by a particle is given by the minimum circle that is centered at the particle
and contains at least one neighboring particle in the current set. To calculate
the radius r; of this circle, we have to take both, the Euclidean distance of
the positions and the angular difference in orientation, into account. In our
current implementation we calculate r; based on a weighted mixture of the
Euclidean distance and the angular difference

d(x,z") = \/(1 = (w1 —27)? + (w2 — 25)?) + € 6(ws — 23)%, (4)

where 27 and ) are the z-coordinates, x5 and xf are the y-coordinates, and
0(xs — %) is the differences in the angle of = and z’. Additionally, ¢ is a
weighing factor that was set to 0.8 in all our experiments. Figure 2 shows the
fraction of a map and a particle distribution. The circle around each particle
represents the radius r = %d(w, x') to the closest particle z’.

The next step is to adjust for each particle the standard deviation o of the
Gaussian in pyit(z | d) based on the distance r = 3d(x,z*), where z* is the
particle closest to  with respect to Equation 4. In our current implementation
we use a piecewise linear function o(r) to compute the standard deviation of

phit(2 | d):
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Fig. 2. Fraction of a particle set consisting of 10,000 particles during a global
localization run. The circles around the individual particles represent the radius
r= %d(m, x') calculated from the distance to the particle = closest to .

Fig. 3. Distribution of 1,000,000 particles after 0, 1 and 2 integrations of mea-
surements with the sensor model according to the specifications of the SICK LMS
Sensor.

o1 if ar < oy
or)y=4q o0y ifar>o, (5)
ar otherwise.

To learn the values of the parameters oy, 0o, and « of this function, we
performed a series of localization experiments on recorded data, in which
we determined the optimal values by minimizing the average distance of the
obtained distributions from the true posterior. Since the true posterior is
unknown, we determined a close approximation of it by increasing the number
of particles until the entropy of a three-dimensional histogram calculated from
the particles did not change anymore. In our experiment this turned out to
be the case for 1,000,000 particles. Throughout this experiment, the sensor
model corresponded to the error values provided in the specifications of the
laser range finder used for localization. In the remainder of this section, we
will denote the particle set representing the true posterior by S*. Figure 3
shows the set S* at different points in time for the data set considered in this

paper.
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To calculate the deviation of the current particle set S from the true poste-
rior represented by S*, we evaluate the KL-distance between the distributions
obtained by computing a histogram from S and S*. Whereas the spatial res-
olution of this histogram is 40cm, the angular resolution is 5 degrees. For
discrete probability distributions, p = p1,...,pn and ¢ = q1, ..., qn, the KL-
distance is defined as

Pi
KL(p,q) = Y _pilog, o (6)

Whenever we choose a new standard deviation for phit(z | d), we adapt the
weights anit, Qshorts Qmax, and Qrand to ensure that the integral of the resulting
density is 1.

Note that in principle puit(z | d) should encode also several other aspects
to allow for a robust localization. One such aspect, for example, is the depen-
dency between the individual measurements. For example, a SICK LMS laser
range scanner typically provides 361 individual distance measurements. Since
a particle never corresponds to the true location of the vehicle, the error in the
pose of the particle renders the individual measurements as dependent. This
dependency, for example, should also be encoded in a sensor model to avoid
the filter becoming overly confident about the pose of the robot. To reduce
potential effects of the dependency between the individual beams of a scan,
we only used 10 beams at angular displacements of 18 degrees from each scan.

5 Experimental Results

The sensor model described above has been implemented and evaluated using
real data acquired with a Pioneer PII DX8+ robot equipped with a laser range
scanner in a typical office environment. The experiments described in this
section are designed to investigate if our dynamic sensor model outperforms
static models. Throughout the experiments we compared our dynamic sensor
model with different types of alternative sensor models:

1. Best static sensor model. This model has been obtained by evaluating
a series of global localization experiments, in which we determined the
optimal variance of the Gaussian by maximizing the utility function

I

U(I,N) :Z(I—Hl)%, (7)

where [ is the number of integrations of measurements into the belief
during the individual experiment, N is the number of particles, and P; is
the number of particles lying in a 1m range around the true position of
the robot.
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2. Best tracking model. We determined this model in the same way as the
best static sensor model. The only difference is that we have learned it
from situations in which the filter was tracking the pose of the vehicle.

3. SICK LMS model. This model has been obtained from the hardware spec-
ifications of the laser range scanner.

4. Uniform dynamic model. In our dynamic sensor model the standard de-
viation of the likelihood function is computed on a per-particle basis. We
also analyzed the performance of a model in which a uniform standard
deviation is used for all particles. The corresponding value is computed
by taking the average of the individual standard deviations.
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Fig. 4. Distribution of 10,000 particles after 1, 2, 3, 5, and 11 integrations of mea-

surements with our dynamic sensor model (left column) and with the best static
sensor model (right column).

[t d

5.1 Global Localization Experiments

The first set of experiments is designed to evaluate the performance of our
dynamic sensor model in the context of a global localization task. In the par-
ticular data set used to carry out the experiment, the robot started in the
kitchen of our laboratory environment (lower left room in the maps depicted
in Figure 3). The evolution of a set of 10,000 particles during a typical global
localization run with our dynamically adapted likelihood model and with the
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Fig. 5. Evolution of the distance d(z,z’) introduced in Equation (4). Distribution
of 10,000 particles after 1, 3, 4 and 5 integrations of measurements with our dynamic

sensor model.

dynamic sensor model
uniform dynamic sensor model
best slanc sensor, model

' dynamlc sensor model
uniform dynamic sensor mode\
100 - besl static sensor. m,

100 -

80 -

60

40

20

particles closer than 1m to ground thruth [%]

particles closer than 1m to ground thruth [%]

0 5 10 15 20 25 20 25

iteration iteration
Fig. 6. Percentage of particles within a 1m circle around the true position of the
robot with our dynamic sensor model, the uniform dynamic model, and the best
static model. The left image shows the evolution depending on the number of iter-
ations for 10,000 particles. The right plot was obtained with 2,500 particles.

best static sensor model is depicted in Figure 4. As can be seen, our dynamic
model improves the convergence rate as the particles quickly focus on the true
pose of the robot. Due to the dynamic adaptation of the variance, the like-
lihood function becomes more peaked so that unlikely particles are depleted
earlier.

Figure 5 shows the evolution of the distance d(z,z’) introduced in Equa-
tion (4). The individual images illustrate the distribution of 10,000 particles
after 1, 2, 3, and 5 integrations of measurements with our dynamic sensor
model. The circle around each particle represents the distance r = %d(a:,x’ )
to the next particle 2’

Figure 6 shows the convergence of the particles to the true position of the
robot. Whereas the x-axis corresponds to the time step, the y-axis shows the
number of particles in percent that are closer than 1m to the true position.
Shown are the evolutions of these numbers for our dynamic sensor model,
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Fig. 7. Success rates for different types of sensor models and sizes of particle sets.
The shown results are computed in extensive global localization experiments.

a uniform dynamic model, and the best fixed model for 10,000 and 2,500
particles. Note that the best static model does not reach 100%. This is due
to the fact that the static sensor model relies on a highly smoothed likelihood
function, which is good for global localization but does not achieve maximal
accuracy during tracking. In the case of 10,000 particles, the variances in
the distance between the individual particles are typically so small, that the
uniform model achieves a similar performance. Still, a t-test showed that both
models are significantly better than the best fixed model. In the case of 2,500
particles, however, the model that adjusts the variance on a per-particle basis
performs better than the uniform model. Here, the differences are significant
whenever they exceed 20.

Figure 7 shows the number of successful localizations after 35 integrations
of measurements for a variety of sensor models and for different numbers of
particles. Here, we assumed that the localization was achieved when the mean
of the particles differed by at most 30cm from the true location of the robot.
First it shows that our dynamic model achieves the same performance as the
best static model for global localization. Additionally, the figure shows that
the static model that yields the best tracking performance has a substan-
tially smaller success rate. Additionally, we evaluated a model, denoted as the
SICK LMS model, in which the standard deviation was chosen according to
the specifications of the SICK LMS sensor, i.e., under the assumption that
the particles in fact represent the true position of the vehicle. As can be seen,
this model yields the worst performance. Furthermore, we evaluated, how the
models perform when only one beam is used per range scan. With this ex-
periment we wanted to analyze whether the dynamic model also yields better
results in situations in which there is no dependency between the individual
beams of a scan. Again, the plots show that our sensor model outperforms
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Fig. 8. Evolution of the average standard deviation during global localization with
different numbers of particles and our dynamic sensor model.
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Fig. 9. Average localization error of 10,000 (left image) and 2,500 (right image)
particles during a position tracking task. Our dynamic sensor model shows a similar
performance as the best tracking model.

the model, for which the standard deviation corresponds to the measuring
accuracy of the SICK LMS scanner.

Finally, Figure 8 plots the evolution of the average standard deviations
of several global localization experiments with different numbers of particles.
As can be seen from the figure, our approach uses more smoothed likelihood
functions when operating with few particles (2,500). The more particles are
used in the filter, the faster the standard deviation converges to the minimum
value.

5.2 Tracking Performance

We also carried out experiments, in which we analyzed the accuracy of our
model when the system is tracking the pose of the vehicle. We compared our
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dynamic sensor model to the best tracking model and evaluated the average
localization error of the individual particles. Figure 9 depicts the average local-
ization error for two tracking experiments with 10,000 and 2,500 particles. As
can be seen from the figure, our dynamic model shows the same performance
as the tracking model whose parameters have been optimized for minimum
localization error. This shows, that our dynamic sensor model yields faster
convergence rates in the context of global localization and at the same time
achieves the best possible tracking performance.

6 Conclusions

In this paper we presented a new approach for dynamically adapting the sensor
model for particle filter based implementations of probabilistic localization.
Our approach learns a function that outputs the appropriate variance for
each particle based on the estimated area in the state space represented by
this particle. To estimate the size of this area, we adopt a measure developed
for density estimation.

The approach has been implemented and evaluated in extensive experi-
ments using laser range data acquired with a real robot in a typical office
environment. The results demonstrate that our sensor model significantly out-
performs static and optimized sensor models with respect to robustness and
efficiency of the global localization process.
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