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Summary. In this paper, a large environment is divided into sub-areas to enable
a robot to apply precise localization technology efficiently in real time. Sub-area
features are represented in a feature information system so that conventional ma-
chine learning or data mining approaches can be applied to identify the sub-areas.
However, conventional representations with a single body of knowledge encounter
many problems when the sub-area features are changed. In order to deal with chang-
ing environments, the multi-knowledge approach is applied to the identification of
environments. Multi-knowledge is extracted from a feature information system by
means of multiple reducts (feature sets) so that a robot with multi-knowledge is
capable of identifying an environment with some changing features. A case-study
demonstrates that a robot with multi-knowledge can cope better with the identifi-
cation of an environment with changing features than conventional single body of
knowledge.

1 Introduction

Current robot localization techniques include position tracking techniques [1,
2, 3], global localization techniques [4], Markov localization [5, 6, 7], landmark
localization [8, 9, 10], and visual-based localization [11, 12, 13, 14]. These
techniques aim to estimate the position of a robot within a given environment
by means of sensor data and a map of environment. In order to estimate a
robot’s position with a high precision, a fine-grained discretization in the state
space is usually applied. The spatial resolution is usually between 5 cm and
50 cm and the angular resolution is usually 2 to 5 degrees. For a medium-
sized environment of 40 x 40 m2, an angular grid resolution of 2o, and a cell
size of 10 x 10cm2 the state space consists of 28,800,000 states. If a map of
an environment is very large, localization techniques encounter a high cost in
computation, and are very difficult to use in real time. In this paper, a strategy
is proposed to address this problem. A large map may be divided into area

H.I. Christensen (Ed.): European Robotics Symposium 2006, STAR 22, pp. 171–180, 2006.
© Springer-Verlag Berlin Heidelberg 2006



172 Q. Wu et al.

maps, and a robot can apply conventional machine learning approaches to
recognize area environment features, for example, in a building, in a room,
or in a car park. Therefore, the robot carries out a precise localization in a
small area using the specific information on the area environment such as an
electronic map. However, conventional single body of knowledge encounters
problems in a changing environment. A novel multi-knowledge approach is
proposed to solve this problem. In Section 2, an environment feature decision
system is used to divide a large map into sub-maps so that conventional
machine learning [15] and data mining methods [16, 17] can be applied to
identify the environment. The problems with conventional approaches are
analyzed in Section 3. In Section 4 the multi-knowledge representation is
defined and it is demonstrated that a robot with multi-knowledge has the
ability to identify its environment even if some features of the environment
changed. The conclusion is given in Section 5.

2 Representation of Environment Features

2.1 Environment Features

In order to illustrate the application of multi-knowledge to robot identifica-
tion of a changing environment, suppose that there is a robot in a building
with six rooms shown in Fig. 1. Rooms from No.1 to No.3 are offices. The
area marked 4 is the corridor and rooms No.5 and No.6 are laboratories. Fea-
tures of the environment are selected from those that can be detected by the
sensors in the robot. In this case, the features of the environment are Area,
GroundColour, WallColour, CeilingHeight, and Illumination. After the robot
had gone through all the rooms in the building, the environment feature infor-
mation system was obtained. The colours are obtained from a colour camera.
Illumination is detected by photosensitive sensors. Distances are detected by
distance detectors.

Fig. 1. A robot in a building with six rooms
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Fig. 2. A robot detects a room area

Area is calculated from the distance data. As shown in Fig. 2, let r(θ)
represent distance from the robot to a wall along the direction θ. The distance
r(θ) can be detected by distance detectors in the robot. The area can be
calculated as follows.

s =
1
2

2π

0

r2(θ)dθ (1)

For simplicity, r(θ) is represented by a set of distances r0, r1, r2, ..., rN

with angular interval Δθ = 2π/N . The area between rn and rn+1 can be
calculated by using the small triangle if Δθ is very small.

sn =
1
2
rnrn+1Δθ (2)

The room area can be calculated by

s =
N−1

n=0

sn =
N−1

n=0

1
2
rnrn+1Δθ (3)

where r0 = rN = r(θ = 0). Note that the robot can detect the area
with this formula at any point in the room. This is an approximate formula.
The error depends on the angular interval Δθ is. The other features can be
detected by the corresponding sensors in the robot. An example environment
information system is shown in Table 1.

2.2 Environment Feature Instance System

Following [17], let I =< U, A∪D > represent an instance system, where U =
u1, u2, ... ,ui, ..., u|U | is a finite non-empty set, called an instance space or
universe, and where ui is called an instance in U . A = a1, a2, a3, ..., ai, ...,
a|A|, also a finite non-empty set, is a set of attributes of the instances, where ai
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Table 1. Room Feature Decision System S:Area,GC:GroundColor, WC:WallColor,
CH:CeilingHeight, B:Illumination, R:Room

U S GC WC CH B R

1 9 yellow yellow 2.6 1 1
2 12 yellow white 2.6 2 2
3 9 blue white 2.6 1 3
4 13 gray white 2.8 2 4
5 15 gray yellow 3.0 3 5
6 15 yellow white 3.0 3 6

is an attribute of a given instance. D is a non-empty set of decision attributes,
and A ∩ D = 0.

For every a ∈ A there is a domain, represented by Va, and there is a
mapping a(u) : U → Va from U into the domain Va, where a(u) represents
the value of attribute a of instance u and is a value in the set Va.

Va = a(U) = a(u) : u ∈ Ufor a ∈ A (4)

For a decision system, the domain of decision attribute is represented by

Vd = d(U) = d(u) : u ∈ Ufor d ∈ D (5)

For example, Table 1 is regarded as an environment feature decision sys-
tem in which the information is detected by a robot that has gone through
all the rooms in the building shown in Fig 1. The attribute set A =Area,
GroundColor, WallColor, CeilingHeight, Illumination. The decision attribute
is D=Room. According to Equation ( 4), VArea = 9, 12, 13, 15. So |VArea| = 4.
By analogy, we have |VGround| = 3, |VWall| = 2.|VCeiling| = 2, |VLight| = 3,
and the size of decision attribute domain |VRoom| = 6.

2.3 Condition Vector Space

The condition vector space, which is generated from attribute domain Va, is
denoted by

V×A = ×
a∈A 

Va = Va1 × Va2 × ... × Va|A| (6)

and the size of the space is

|V×A| =
|A|

i=1

|Vai | (7)
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|A|
|V |

 
|V | |V | × |V | × |V | × |V | × |V= = | (8)×A Areaa Ground Wall Ceiling Lighti

i=1

|V | = 4 × 3 × 2 × 2 = 48 (9)×A

This means that there are 48 condition vectors in the condition vector
space |V |. Every condition vector corresponds to a combination of attribute×A

values. Every instance corresponds to a vector in the vector space by its at-
tribute values.

A(u) = (a (u), a ( ) ( )) (10)1 2 u , ...., a u|A|

For example, A(Room1) = (9, yellow, yellow, 2 6 1). If A(u) = A(v) for. ,
u ∈ U and v ∈ U , instance u and instance v have the same condition vector.
Instance u and instance v are indiscernible. A(U) represents a set of vectors
which exist in the decision system.

A(U) = {A(u) : u ∈ U} (11)

If |A(U)| V= | |A , the system is called a complete instance system or×
complete system. In the real world, training sets for decision-making or fea-
ture classification are rarely completed systems. Table 1 has only 6 existing
condition vectors, while the size of condition space is |V | = 48. Thus Table×A

1 is not a complete instance system.
The decision vector space is represented by

V = × V V V= × × × V (12)×D d d1 d2 ... d|D|
d∈D

V is equivalent to V in cases in which there is only one decision at-d ×D

tribute.

2.4 Conventional Knowledge Representations

Knowledge can be represented in many forms such as rules, decision trees,
neural networks, Bayesian belief networks and other methods [15]. In general,
knowledge can be defined as a mapping from condition vector space to decision
space.

ϕA : V → V (13)×A ×D

Let B ⊂ A. We have

V × V V × V= = × × V (14)×B a a1 a2 ... a|B|
a∈B

and

For Table 1,
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|V×B | =
|B|

i=1

|Vbi
| (15)

|V×B | is called a subspace of |V×A|. The conventional approach in machine
learning or data mining is to select a “best” subset B to get a mapping ϕB

based on the subset B.

ϕB : V×B → V×D (16)

ϕB is then applied instead of ϕA to make decisions or in feature classi-
fication. Different mappings can be obtained because the training set is an
incomplete system. For example, the decision tree, which is shown in Figure
3, is obtained from Table 1 by means of information entropy.

Fig. 3. Knowledge ϕB represented by a decision tree

The advantage of this approach is that it enables a robot to identify the
rooms in the building with only two attributes – Area and Ground.

3 Problems with Single Knowledge

A single body of knowledge encounters problems in cases of dealing with
changing attributes, incomplete attributes, and unseen instances. Issues arise
when using a single body of knowledge in a changing environment. For ex-
ample suppose that the features of the rooms in Table 1 have been changed.
The new features are shown in Table 2.

Using the decision tree in Fig. 3 consider a robot that goes through
the rooms with the changed features as shown in Table 2. When the robot
enters room 1, it obtains the condition vector (9, yellow, yellow, 2.6, 2). As
the decision tree only tests Area and GroundColor, it does not care that
Illumination has changed.
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Table 2. Changed Room Feature Values S:Area,GC:GroundColor, WC:WallColor,
CH:CeilingHeight, B:Illumination, R:Room

U S GC WC CH B R

1 9 yellow yellow 2.6 2(1) 1
2 12 yellow white 2.8(2.6) 2 2
3 9 brown(blue) white 2.9(2.6) 3(1) 3
4 13 blue(gray) yellow(white) 2.8 2 4
5 14(15) gray yellow 3.0 3 5
6 13(15) yellow white 3.0 3 6

By using the decision tree, the robot can determine that it is in room 1.
For the other instances from U2 to U6, the results are listed as follows.

U2: (12, yellow, white, 2.8, 2) → decision tree → Room2.
U3: (9, black, white, 2.9, 3) → decision tree → Unknown.
U4: (13, blue, yellow, 2.8, 2) → decision tree → Room4.
U5: (14, gray, yellow, 3.0, 3) → decision tree → Unknown.
U6: (13, yellow, white, 3.0, 3) → decision tree → Room4.
In many cases, the decision tree will give a wrong answer or cannot give

any answer. This problem is not only encountered by decision trees, but other
methods as well when using single body representations.

4 Environment Identification Based on
Multi-knowledge

A multi-knowledge approach can be applied in the machine-learning domain
to solve different problems. For example a combination of multi-knowledge
and the Bayes Classifier have been used successfully to improve the accuracy
of a classification system [18]. Here we apply the concept of multi-knowledge
to a robot to identify the changed environment. A single body of knowledge
representation usually does not need all attributes in an instance system. For
example, the decision tree in Figure 3 contains only two attributes-Area and
GroundColor. This attribute set is called a reduct. In general, there are many
reducts in a decision system. In a conventional data mining method, firstly, a
good reduct(or a set of good features) is selected and then extracted to form a
single body of knowledge based on this reduct. The multi-knowledge approach
however encourages finding as many reducts as possible. Every reduct can
contribute to a single body of knowledge. A set of these single bodies of
knowledge is called the multi-knowledge. Definition: Given a decision system
I = < U, A ∪ D >. Multi-knowledge is defined as

Φ = {ϕB |B ∈ RED} (17)
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where ϕB is a mapping from the condition vector space V×B to the decision
space V×D. RED is a set of reducts from the decision system. Reducts RED
can be found by the algorithm in [18]. For Table 1, there are 5 reducts.
RED={{Area, Wall}, {Area, Ground}, {Ground, Illumination}, {Ground,
Ceiling, Wall}, {Wall, Illumination, Ceiling}}

Applying these 5 reducts, 5 single bodies of knowledge can be obtained.
For example, let reduct B={Area, Wall}. The existing condition vector space
is

A{Area,Wall}(U) = {(9, yellow), (12, white), (9, white),
(13, yellow), (15, yellow), (15, white)} (18)

Extracting rules in this condition vector space from Table 1 and general-
izing the rules, we have

ϕ(Area,Wall) =





Room1 if(Area, Wall) = (9, yellow)
Room2 if(Area) = (12)
Room3 if(Area, Wall) = (9, white)
Room4 if(Area) = (13)
Room5 if(Area, Wall) = (15, yellow)
Room6 if(Area, Wall) = (15, white)
Unknown for other cases

(19)
where ϕ(Area,Wall) is presented by using the existing condition vector space
A(Area,Wall) instead of V×(Area,Wall) because the decision system is not a
complete system. ϕ(Area,Ground), ϕ(Ground,Illumination), ϕ(Ground,Ceiling,Wall)

and ϕ(Illumination,Ceiling,Wall) can be obtained by analogy. Every instance
may get multiple decisions from multi-knowledge. In order to merge these
decisions, a decision support degree, which is denoted by Sup(di), is defined
by a probability as follows.

Sup(di) = P (di|di = ϕB) for ϕB ∈ Φ (20)

where di ∈ Vd is a decision in the decision space, ϕB is a single body of
knowledge among the multi-knowledge Φ. The final decision is made by

dFinal = arg max
di∈Vd

Sup(di) (21)

Now consider a robot has multi-knowledge Φ extracted from Table 1 and
it enters the changed environment shown in Table 2. For instance U3 in Table
2,

ϕ(Area,Wall) = ϕ(9,white) = Room3
ϕ(Area,Ground) = ϕ(9,brown) = Unknown

ϕ(Ground,Illumination) = ϕ(brown,3) = Unknown
ϕ(Ground,Ceiling,Wall) = ϕ(brown,2.9,white) = Unknown

ϕ(Illumination,Ceiling,Wall) = ϕ(3,2.9,white) = Unknown

(22)
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So Sup(Room1) = 0, Sup(room2) = 0, Sup(Room3) = 1, Sup(Room4) =
0, Sup(Room5) = 0, Sup(Room6) = 0. The final decision is as follows.

dFinal = arg max
di∈Vd

Sup(di) = Room3 (23)

It is possible, according to this algorithm, to calculate dFinal for all the
instances in Table 2, The results are shown in Table 3. The results show that
multi-knowledge can cope with a changing environment much better than any
single body of knowledge.

Table 3. Results for multi-knowledge to identify the changed environment

Φ U1 U2 U3 U4 U5 U6

ϕ(Area,Wall) Room1 Room2 Room3 Room4 Unknown Unknown
ϕ(Area,Ground) Room1 Room2 Unknown Room4 Unknown Unknown
ϕ(Ground,Illum) Room2 Room2 Unknown Unknown Room5 Room6

ϕ(Ground,Ceiling,Wall) Room1 Unknown Unknown Unknown Room5 Room6
ϕ(Illum,Ceiling,Wall) Unknown Unknown Unknown Unknown Room5 Room6

dFinal Room1 Room2 Room3 Room4 Room5 Room6

5 Conclusion

In this paper the problem of a robot identifying its location in a changing en-
vironment has been considered. A large environment is divided into small area
environments. An instance information system is applied to represent envi-
ronment features of the sub area environments. Conventional machine leaning
approaches are applied to identify sub area environments. The problem for
identifying a changing environment was analyzed, where a robot using con-
ventional machine leaning mechanisms finds it difficult to solve the problem.
In contrast a multi-knowledge approach was proposed to solve the problem. A
case-study was presented to demonstrate that a robot with multi-knowledge
copes with a changing environment much better than a conventional single-
body knowledge representation.
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