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Summary. We present a framework for Simultaneous Localization and Map build-
ing of an unknown environment based on vision and dead-reckoning systems. An
omnidirectional camera gives a panoramic image from which no a priori defined
landmarks are extracted. The set of landmarks and their azimuth relative to the
north given by a compass defines a particular location without any need of an exter-
nal environment map. Transitions between two locations are explicitly coded. They
are simultaneously used in two layers of our architecture. First to construct, during
exploration (latent learning), a graph (our cognitive map) of the environment where
the links are reinforced when the path is used. And second, to be associated, on an
another layer, with the integrated movement used for going from one place to the
other. During the planning phase, the activity of transition coding for the required
goal in the cognitive map spreads along the arcs of this graph giving transitions
(nodes) an higher value to the ones closer from this goal. We will show that, when
planning to reach a goal in this environment is needed, the interactions of these two
levels can lead to the selection of multiple transitions corresponding to the most
activated ones according to the current place. Those proposed transitions are finally
exploited by a dynamical system (neural field) merging these informations. Stable
solution of this system gives a unique movement vector to apply. Experimental re-
sults underline the interest of such a soft competition of transition information over
a strict one to get a more accurate generalization on the movement selection.

1 Introduction

Path planning requires from the agent or the robot to select the appropriate
action to perform. This task might be complex when several actions are pos-
sible, and so different approaches have been proposed to choose what to do
next. Experiments carried out on rats have led to the definition of cognitive
maps used for path planning [21]. Most of cognitive maps models are based on
graphs showing how to go from one place to an other [2, 3]. They mainly differ
in the way they use the map in order to find the shortest path, in the way
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they react to dynamical environment changes, and in the way they achieve
contradictory goal satisfactions. One can refer to [9, 12] for a comparative
review of localisation and mapping models. Many methods rely on the com-
bination of different algorithms that have to be triggered appropriately (and
concurrently) when necessary. For instance, localisation may involve different
sensors (laser, ultra-sound, visual feature recognition ...) that have to be cho-
sen appropriately. Some works use ruled-based algorithms, classical functional
approach, that can exhibit the desired behaviors, we will not discuss them in
this paper, but one can refer to [8].
Instead, other works try to look at what the nature does by taking inspira-
tion from neurobiology to design control architectures. There are at least two
reasons for this:

• first, getting robust, adaptive, opportunistic and ready-made solutions for
control architecture.

• second, if robotic results can be compared to experimental results involving
several parts of the brain, which are generally difficult to study due to its
complexity, it can help neurobiologists to understand how a neurobiological
model behaves.

Hence we propose here a unified neuronal framework based on an hip-
pocampal and and prefrontal model where vision, place recognition and dead-
reckoning are fully integrated (see Fig. 4 for an overview of the architecture).
This model relies on a topological map: the environment is coded via a set of
distinctive nodes and by the way a robot can go from one node to another. In
our work, those nodes are not directly places of the environment but rather
the transition between two of them. No cartesian metric informations and
no occupancy grid are used to construct the map. Localisation is achieved
using a biomimetic model designed to emulate the neural activity of partic-
ular neurons found in the rat hippocampus named place cells. Those cells
learn direction and identity (recognition) of punctual landmarks leading to a
place definition. A key point for the understanding of this model is the dis-
tinction between transition coding for the succession of two place cells at the
recognition (visual) level and motor transition encoding, on a motor level, the
integrated movement performed to go from one place to the other. Whereas
these two kinds of transition are strongly dependent and linked in a unique
way, they do not have the same modality: one is related to vision coding and
the other is related to motor coding. Keeping this basic distinction in mind,
we can list the assets of this model:

• autonomous landmarks extraction based on characteristic points (sec-
tion 2)

• autonomous place building via place-cells-like neurons: there are no a priori
predefined squares, or world model (section 3)

• autonomous creation of transitions at recognition level (recognition transi-
tions). A neuron codes the succession of two recognized place cells without
any combinatorial explosion (section 4).
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• autonomous cognitive map building based on those recognition transitions
between places, giving topological informations like adjacency of two tran-
sitions linked (i.e: if transitions AB and BC are linked: adjacency of the
destination place cell AB with the place cell of origine of transition cell
BC). But, this map can also give a kind of metric via the value of the arc
of this graph. (section 5).

• autonomous association of recognition transitions with integrated move-
ment giving motor transitions which can be used for planning (section 6).

• autonomous planning using both the cognitive map (graph of recognition
transitions) and the corresponding motor transitions (section 7)

• stable movement given by the stable fixed point solution of a dynamical
system (section 8)

Drawbacks will be left for conclusion.

2 Autonomous Landmark Extraction Based on
Characteristic Points

Images are taken by a panoramic camera at a low resolution. This allows
to handle lighter images that may be processed in a real time. In order to
eliminate problems induced by luminance variability, we only use the gradient
image as input of the system (a 1500 × 240 pixels image extracted from the
640 × 480 pixels panoramic image which is originally circular). Two processes
then occur in parallel:

• First, curvature points are extracted from this gradient image by Difference
Of Gaussian (D.O.G) filtering. Those curvature points are robust focal
points due to the low resolution. Each focal point is the center of a 32x32
pixels small image giving the local visual area extracted around it (cf.
circles on Fig. 1) . This image is binarized through a log-polar transform
[19, 11] and next it is learned on a neuron coding for this landmark. A soft
competition between landmark neurons, allowing several interpretations
of a given local snapshot, is then computed

• Second, each landmark is linked with its angular position relative to the
north given by a compass [20, 14].

In a panoramic image, 32 (landmark, azimuth) pairs are extracted (see Fig.
1). Thus, this visual system provides both a what and a where informations:
the recognition of a 32 × 32 pixels snapshot in log-polar coordinates, and the
azimuth of the focal point. What and where informations are then merged
in a product space that memorizes the incoming inputs during a given time.
The number of landmarks needed is a balance between the robustness of the
algorithm and the speed of the process. If all landmarks were fully recognized,
only three of them will be needed. But as some of them may not be recognized
in case of changing conditions (luminance; occlusion), taking a greater number
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Fig. 1. Image taken from a panoramic camera. Below are 15 examples of 32 × 32
log-polar transforms taken as landmarks and their corresponding position in the
image.

is enough to guarantee the robustness. Moreover the log-polar transform gives
some rotation and depth robustness.

3 Autonomous Place Building

Each set of (landmark, azimuth) pairs, merged in the product space, is learned
and thus characterizes one location. The neuron coding for this location is
called a “place cell” (PC) as the one found in the rat’s hippocampus [14].
Place cell’s activity is the result of a matching function computing the distance
between the learned set and the current set (the distance is computed only
on the recruited neurons). Thus, the activity of the kth PC can be expressed
as follows:

Pk = 
1
lk

�
NL*
i=1

ωik.fs(Li).gd(θL
ik − θi)

!
(1)

with lk =
+NL

i=1 ωik the number of landmarks used for the kth PC, where
ωik = {0, 1} expresses the fact that landmark i has been used to encode PC
k, with NL the number of learned landmarks, Li the activity of the landmark
i, fs(x) the activation function of the neurons in the landmark recognition
group, θL

ik the learned azimuth of the ith landmark for the kth PC, θi the
azimuth of the current local view interpreted as the landmark i. d is the
angular diffusion parameter which defines the shape of the function gd(x).
The purpose of fs(x) and gd(x) is to adapt respectively the dynamics of what
and where groups of neurons. They are defined as follow :
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|x|g ( 1d x) = −

+[x − s]1−s

where [ +x] = x if x > 0 , and 0 otherwise.
The s parameter rescales the activity of the landmark neuron over s be-

tween 0 and 1. The d parameter modulates the weight of the angular displace-
ment.

More information on the neural model for place cell coding may be found
in [10, 7].

d.π

�+

fs(x) = 1
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Fig. 2. Idealised shape of a place cell (An) response, according to the distance to
the exact location where it has been learned. This cell has its maximal response in
this place.

Recruitment of a new place cell for encoding a new location is performed
autonomously, without any external signal. If the activities of all previously
learned place cells are below a given recognition threshold (R.T), then a new
neuron is recruited for coding this recently discovered location (see Fig. 2).
Hence, the density of location learned depends on the level of this threshold.
But it depends also on the position of the robot in the environment. Namely,
more locations are learned near walls or doors because a fast change in the
angular position of near landmarks, or in the (dis)appearance of landmarks
may occur. In other locations, small changes produce a small variation in the
place cell activity (see Fig. 2) . If at a given place, several cells responds with
an activity greater than the R.T, a competition takes place so that the most
activated cell wins and codes this location. These cells are created during the
exploration of the unknown environment. We use random exploration but
naturally other kind of algorithms can be used. At the end of this task, the
environment is fully covered by place cells, so that in any part of it a place
cell responds specifically for it (see Fig. 3.).
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Fig. 3. A simulated
environment fully ex-
plored. Each region rep-
resents the response do-
main for which a partic-
ular place cell win the
competition for recogni-
tion. After a full explo-
ration the entire envi-
ronment is covered by
the place cell popula-
tion.

4 Autonomous Building of Transitions 
at Recognition Level

Two successively reached places are coded by a transition cell (see Fig. 4).
Hence two successively reached places (A, then B) are coded by a transition
cell (AB). A relevant question is about the growth of the number of these cells.
Before to show the experimental results, we already can make two important
remarques about this growth.

• First, this growth is intimately linked with the number of place cells. This
last one mainly depends on two parameters:
– the value of R.T: the higher R.T is the bigger is the number of cell

created.
– the complexity of the environment: the number and the location of its

landmarks and the number of obstacles found inside.
• Second, we do not create all possible transitions but only physically feasible

transitions between “adjacent” place cells. And since the number of a place
cell neighbours is necessary limited (see Fig 3), the number of transition
created is also limited.

Hence, we have studied the ratio between created transition cells over created
place cells for three environments of increasing complexity according to their
obstacle configuration (a single, a two and a four room environment). The
tests have been performed in simulation using a virtual robot (or animat).
For each simulation, 10 animats have explored their environment for 50000
cycles. This number has been chosen high enough to be sure that the animat
has learned a complete cognitive map. The results shown here are the average
on these 10 animat results. The ratio remains stable around the mean value
5.45 for all environments (see table 1.).
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Table 1. Ratio of the number of place
cells (nbp) created over the number of
transitions created (nbt) according to
the number of room in the environ-
ment: with one room (top line), with two
rooms (middle line) and four rooms (bot-
tom line). Standard deviation is given
into brackets. This ratio remains stable.
There are five times more transition cells
than place cells.

Indeed, only a few transitions can be created from a given place cell,
since a transition is a link between “adjacent” place cells and since the
number of a place cell neighbours is necessary limited. So there is no
combinatorial explosion on the number of created transitions and we do
not need a ”full matrix” to create the transitions: a matrix of only M*N is
enough. With M the number of place cells, and N the maximal number of
possible neighbours.

Env / RT 0.97
nbp 133.8(2.85)
nbt 735.8(19.80)
ratio 5.49(0.06)
nbp 606.2(6.89)
nbt 3389.2(56.38)
ratio 5.59(0.08)
nbp 643.7(9,88)
nbt 3281,2(48,80)
ratio 5.09(0,04)

Transition map

...

...

One to all links − Learning

One to one links − No learning

Azimuth

Landmark

Motor command

...
......

Landmark − azimuth

Place recognition t

Place recognition t−1

Place recognition t−1

Cognitive map
Place recognition t

Recognition transitions

...

...

...transitions
Motor

Fig. 4. Sketch of the model. From left to the right: merging landmarks and their
azimuth in a product space, then learning of the corresponding set on a place cell.
Two successive place cells (the one at time t and the previous one at t − 1) define
a transition cell. They are used to build up the cognitive map and are also linked
with the corresponding motor transition that integrated the movement performed.
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5 Autonomous Cognitive Map Building

Since our robotic model is inspired from the animat approach [13] we use
three contradictory animal like motivations (eating, drinking, and resting).
Each one is associated with a satisfaction level that decreases over time and
increases when the robot is on the proper source. When a level of satisfaction
falls bellow a given threshold, the corresponding motivation is triggered so
that the robot has to reach a place allowing to satisfy this need. Hence this
place becomes the goal to reach. More sources can be added and one can
increase the number of sources associated with a given motivation. Each time
a new transition is created, a new node is recruited in the cognitive map. This
node is then linked with the previous transition used. When a transition leads
to a place cell where a source can be found, a link between the corresponding
motivation and the most active node on the map is created and set to one
(latent learning), otherwise this link is set to zero. After some time, exploring
the environment leads to the creation of the cognitive map (see Fig. 5). This
map may be seen as a graph where each node is a transition and the arcs
the fact that the path between these two transitions was used. We can give
a fixed value (lower than one) to each link at the creation time. This value
is increased if the link is used, and decreased if it is not. After some time
passed in the environment, some links are reinforced. These links correspond
to paths that are often used. In particular, this is the case when some par-
ticular locations have to be reached more often than others (see section 7) [15].

Fig. 5. Cognitive map (in
red) build by exploration
of the environment. The
triangles give the succes-
sive robot positions starting
from the right to the goal
(on the left). Landmarks are
represented by blue crosses.
The blue rectangle are ob-
stacles.
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6 Autonomous Motor Transitions Creation

Each of these cells is linked with the direction used to go from the starting
location to the ending location. For instance, going from place A to place B
creates a recognition transition cell AB and the corresponding node on the
map. In the same time another transition cell is created on the motor level.
This motor transition associates the direction (relative to the north) for going
from A to B with the node AB on the map. This direction integrates all di-
rection changes performed between A and the creation of B using robot wheel
encoders to compute elementary displacement vectors. Direction changes are
induced by a new movement vector generated by the exploration mechanism
(random exploration) or due to the obstacle avoidance mechanism. Hence
the integrated vector (I.V) takes care of all these movement changes. Each
time this transition is performed, the I.V. is averaged with the corresponding
learned direction. The I.V is then reset when entering a different place cell.
The norm of this vector is also computed in the same way.

7 Autonomous Planning Using the Cognitive Map and
Motor Transitions

When a goal has to be reached, the transitions leading to it are activated via
the links learned during exploration between those transitions and the cor-
responding motivation. This activation is then diffused on the cognitive map
graph, each node taking the maximal incoming value which is the product
between the weight on the link (lower than one) and the activity of the node
sending the link. After stabilization, this diffusion process gives the shortest
path between all nodes and the goal nodes. This is a neural version of the
Bellman-Ford algorithm [5, 17] (see Fig.6).
When the robot is in a particular location A, all possible transitions beginning
with A are possible. The top-down effect of the cognitive map is to bias the
possible transitions such that the ones chosen by the cognitive map have a
higher value. This value reflects a topological distance measure: the number
of intermediate node to get in touch with to actually reach the goal. This
small bias is enough to select/filter the appropriate transitions via a com-
petition mechanism (however see section 8). This mechanism realizes a soft
competition: several motor transitions are proposed at this level. They allow
to compute a more accurate direction than a strict competition since transi-
tions starting only from places really close to the current one and topologically
close to the goal (on the graph) are selected. Final selection of the motor ac-
tion results from the merging of these global decisions with local constraints
such as obstacle avoidance, robot inertia...
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8 Movement and neural field dynamics

As seen in section 7, after planning, different movements are proposed. a
simple competition mechanism selects the neuron with the higher value. But
how may these informations be used ? We have first tested strict competi-
tion between them, but why do not also use other transitions that contains
interesting informations about the agent location context ? So we now have
several transitions to be taken into account for the movement. The solution
used for having a stable continuous direction to follow is to define a dynamical
system where the stable fixed point solution is the direction to follow. This is
achieved using a neural field [1, 18, 16].

τ.
df(x, t)

dt
= −f(x, t) + I(x, t) + h +

�
z∈Vx

w(z).f(x − z, t)dz (2)

Where f(x, t) is the activity of neuron x, at time t. I(x, t) is the input to
the system. h is a negative constant. τ is the relaxation rate of the system. w
is the interaction kernel in the neural field activation. A difference of Gaussian
(DOG) models these lateral interactions that can be excitatory or inhibitory.
Vx is the lateral interaction interval that defines the neighbourhood. Without
inputs the constant h ensures the stability of the neural field homogeneous
pattern since f(x, t) = h. In the following, the x dimension is an angle (direc-
tion to follow according to the north).
This equation allows the computation of attractors corresponding to fixed
points of the dynamics and to local maxima of the neural field activity. A sta-
ble direction to follow is reached when the system is on any of the attractors.
The angle of a candidate transition is used as input. The intensity of this input
depends on the corresponding goal transition activity, but also on its origin
place cell recognition activity (see Fig 7). If only one transition is proposed,
there will be only one input with an angle xtarg = x∗ and it erects only one
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Fig. 7. The merging mechanism allows to get a better direction (global movement) 
than the use of the single information obtained from current transition (BD). It takes 
into  account  the  previous  movement  performed  and  the  transitions  predicted  from 
close enough place cell (C).

attractor x∗ = xtarg on the neural field. If xc is the current orientation of the
robot, its rotation speed will be proportional to w = ẋ = df(x,t)

dt |xc .
Merging of several transition informations depends on the distance between
them. Indeed if the inputs are spatially close, the dynamics give rise to a single
attractor corresponding to the average of them. Otherwise, if we progressively
amplify the distance between inputs, a bifurcation point appears for a critical
distance, and the previous attractor becomes a repellor and two new attrac-
tors emerge.
Obstacles are detected by 12 infra-red sensors. A reflex behavior is triggered
by a Braitenberg-like architecture [6]. When an obstacle is detected on a given
direction, the reflex system will generate a negative input in this orientation.
Hence the bubble of the neural field activity will move. Consequently the
computed direction will reflect this change and allow to avoid this obstacle
(see Fig 8). Oscillations between two possible directions are avoided by the
hysteresis property of this input competition/cooperation mechanism.
It is possible to adjust this distance to a correct value by calibrating the two
elements responsible for this effect: spatial filtering is obtained by the convo-
lution of the Dirac like signal coming from motor transition information with
a Gaussian and taking it as the input to the system. This combined with the
lateral interactions allows the fusion of distinct input as a same attractor. The
larger the curve, the larger the merging will be.

9 Conclusion

Our model currently running on robots (Koala robots and Labo3 robots)
has interesting properties in terms of autonomous behavior. However, this
autonomy has some drawbacks:
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• we are not able to build a cartesian map of the environment because all
location learned are robot centered. However, the places in the cognitive
map and the directions used give a skeleton of the environment.

• we have no information about the exact size of the rooms or corridors.
Again, the cognitive map only gives a sketch of the environment.

• some parameters have to be set: the recognition threshold (section 3) and
the diffusion size of the interaction kernel of the neural field (section 8). The
first one determines the density of build places. The higher the threshold,
the more places are created. The second parameter has to be tuned for each
robot depending on its size and on the position of the infra-red sensors for
obstacle avoidance. For instance, a too high diffusion value prevents the
robot from going through the doors.

The transition used in this model may also be the elementary block of a
sequence learning process. Thus, we are able to propose a unified vision of the
spatial (navigation) and temporal (memory) functions of the hippocampus
[4].
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