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This paper presents a bilateral control method for teleoperation systems where
the master and the slave are modeled by different order transfer functions. The
proposed methodology represents the teleoperation system on the state space
and it is based in the state convergence between the master and the slave. The
method allows that the slave follows the master, and it is able to establish
the dynamic behavior of the teleoperation system. The first results obtained
when the method is being applied to a commercial teleoperation system in
which the master and the slave are modeled by different order discrete transfer
functions are shown in this paper.

1 Introduction

Often, in a teleoperated system, the interaction force of the slave with the
environment is reflected to the operator to improve the task performance. In
this case, the teleoperator is bilaterally controlled [1]. The classical bilateral
control architectures are the position–position [2] and force–position archi-
tecture [3]. Additional control schemes have been proposed in the literature,
e.g. the bilateral control for ideal kinesthetic coupling [4] or the bilateral con-
trol based in passivity to overcome the time delay problem [5]. Usually the
proposed bilateral control schemes consider simple master and slave models
of the same order. They do not provide a design procedure to calculate the
control system gains when the master and the slave are modeled by different
order transfer functions.

In [6] we presented a bilateral control method of teleoperation systems
with communication time delay. In this method, the teleoperation system is
modeled on the continuous-time state space from nth-order linear differential
equations that represent the master and the slave. Through the state con-
vergence between the master and the slave, the control method achieves that
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the slave follows the master and it allows to establish the desired dynamics of
the teleoperation system. However, this control method considers only tele-
operation systems where the master and the slave are modeled by differential
equations of the same order.

This paper explains how the state convergence methodology can be used to
control teleoperation systems where the master and the slave are modeled by
different order discrete transfer functions. In addition, in this paper, different
from [6], the teleoperation system is modeled in the discrete-time domain,
and the communication time delay is not considered in order to simplify the
explanation. Clearly, the results presented in this paper could be directly
applied to continuous-time teleoperation systems with communication time
delay.

The paper is organized as follows. Section 2 describes the bilateral control
methodology of teleoperation systems based in the state convergence. The ap-
plication of this methodology to control different order teleoperation systems
is explained in section 3. Section 4 shows the results obtained when a mas-
ter and an slave with different order transfer functions have been controlled
using the method proposed in the paper. Finally, section 5 summarizes the
conclusions of this paper.

2 Bilateral Control by State Convergence

This section describes the bilateral control method of teleoperation systems
based in the state convergence [6]. However, different from [6], a teleoperation
system without communication time delay where the master and the slave are
modeled by nth-order discrete transfer functions is considered. The control
method is based on the state space formulation and it allows that the slave
follows the master through state convergence. The method is able also to
establish the desired dynamics of this convergence and the dynamics of the
slave manipulator.

2.1 Modeling of the Teleoperation System

The modeling of the teleoperation system is based on the state space formu-
lation, Fig. 1. The master system is represented in the state space like:

xm(k + 1) = Gmxm(k) + Hmum(k)
ym(k) = Cmxm(k) (1)

and the slave system is represented similarly.
The matrices that appear in the model are: G2, influence in the slave of

the operator force; Km and Ks, feedback matrices of the master and slave
state; and Rm and Rs, interaction slave - master, and interaction master -
slave.
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Fig. 1. Modeling of the teleoperation system

From the model shown in Fig. 1, the next state equation of the teleoper-
ation system is obtained:�

xs(k + 1)
xm(k + 1)

�
=

�
Gs + HsKs HsRs

HmRm Gm + HmKm

� �
xs(k)
xm(k)

�
+

�
HsG2

Hm

�
Fm(k)

(2)
where Fm represents the force that the operator applies to the master.

The master and the slave are modeled by nth-order discrete transfer func-
tions. The representation of the master is given by:

Gm(z) =
bmn−1z

n−1 + · · · + bm1z + bm0

zn + amn−1zn−1 + · · · + am1z + am0
(3)

and the representation of the slave is analogous. The master and the slave are
modeled in the state space using the controller canonical form.

Considering this master and slave represention, the matrices Km, Ks, Rm

and Rs are row vectors of n components, and G2 is a real number.
If the environment is modeled by means of a stiffness (ke), the matrix Ks

can be used to incorporate in the teleoperation system model the interaction
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of the slave with the environment. In the same way, the matrix Rm can be
used to consider force feedback from the slave to the master assuming a force
feedback gain kf .

2.2 Control Method Through State Convergence

In the teleoperation system model shown in Fig. 1, there are 3n + 1 control
gains that are necessary to obtain: Km (n components), Ks (n components),
Rs (n components) and G2 (one component). To calculate these control gains
it is necessary to get 3n + 1 design equations.

Applying the next linear transformation to the system (2), the error state
equation between the master and the slave is obtained:�

xs(k)
Esxs(k) − Emxm(k)

�
=

�
I 0
Es −Em

� �
xs(k)
xm(k)

�
(4)

where Es = diag{bs0, · · · , bsn−1} and Em is similar to Es.
Let xe(k) be the error between the slave and the master, xe(k) = Esxs(k)−

Emxm(k). If the error converges to zero, the slave output will follow the master
output. From the error state equation, n+1 design equations can be obtained
to achieve that the error evolves as an autonomous system, and the slave
output follows the master output. In addition, n − 1 conditions between the
numerator coefficients of the master and slave discrete transfer functions can
be derived. If these conditions are not satisfied, there will be an error between
the master and slave output.

When the error evolves like an autonomous system, the characteristic poly-
nomial of the system can be calculated. From this polynomial, 2n design
equations can be obtained to establish the slave and the slave-master error
dynamics. These 2n equations plus the n + 1 previous equations, form a sys-
tem of 3n + 1 equations. Solving this equations system, it will be possible to
obtain the 3n + 1 control gains. With these control gains, the slave manipu-
lator will follow the master and the dynamics of the error and the slave will
be established.

3 Application to Teleoperation Systems 
of Different Order

The control methodology that considers teleoperation systems where the mas-
ter and the slave are modeled by discrete transfer functions (DTFs) of the
same order has been presented in the previous section. This section explains
how to use the design equations to control teleoperation systems where the
master and the slave are modeled by different order DTFs.

If the master and the slave are modeled by DTFs of the same order the
control method allows that the slave follows the master, and it is able also
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to establish the dynamics of the slave and the slave-master error (i.e. to fix
the n poles of the slave and the n poles of the error). If the master and the
slave are modeled by different order DTFs, there are two options to design
the control system: to increase the order of the smaller DTF, or to reduce the
order of the higher DTF. Next, each option is explained describing its effects
in the control system.

3.1 To Increase the Order of the Smaller DTF

In this option the order of the smaller DTF is increased to achieve that it
has the same order of the higher DTF. The order is increased adding the
necessary pole-zero pairs. Pole-zero pairs are added to avoid the increment of
the delay attached to the system. The pole is placed in such a way that it
does not affect to the system dynamics. The zero is placed near the pole, but
avoiding the exact cancellation, in order to increase really the DTF order. It
must be checked that the increased DTF has the same static gain that the
original DTF.

Below the effects of increasing the order of the smaller DTF in the control
are described. First, if a zero is added, the conditions to achieve the evolution
of the error as an autonomous system could not be verified, and a constant
error between the master and the slave could exist. This is not a problem, be-
cause, e.g., in a teleoperation system where the master dimensions are smaller
than the slave dimensions, and the output of both was the cartesian position,
it will not be desirable that both positions were the same. The effects of
increasing the master order are:

• The slave dynamics is completely established.
• All the desired error poles are fixed. However, because of the fact that

the error has the same number of poles that the slave order, and the
master order is smaller, part of the error depending on the master would
be artificially established.

On the other hand, the effects of increasing the slave order are:

• Additional poles of the slave dynamics are established because the slave
order has been increased. This is not a problem because all the poles of
the original slave dynamics are fixed.

• All the desired error poles are established. However, in a similar way to the
previous case, part of the error depending on the slave would be artificially
established

3.2 To Reduce the Order of the Higher DTF

In this option the order of the higher DTF is reduced to achieve that it has the
same order of the smaller DTF. That is, the same number of pole-zero pairs
that there are in the smaller DTF will be considered to design the control
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system. Therefore some pole-zero pairs of the higher DTF will be removed in
the design. In order to remove a pole-zero pair it would be desirable to select
the pole further from the dominant poles, and to select a zero near the pole
to consider a pole-zero cancellation.

Below the effects of reducing the order of the higher DTF in the control
are described. First, if a dominant pole is removed, or a zero that is not near
the pole selected is removed, the reduced DTF will be very different to the
original DTF and the control gains obtained could not be applied to the real
teleoperation system. In addition, when a zero is removed, the conditions to
achieve the evolution of the error as autonomous system could not be verified.
The effects of reducing the slave order are:

• The slave dynamics is not completely established, because fewer poles have
been considered in the design phase.

• Only the number of error poles fixed by the master order can be estab-
lished. Therefore, part of the error depending on the slave will not be
established.

On the other hand, the effects of reducing the master order are:

• The slave dynamics is completely established.
• Only the number of error poles fixed by the slave order can be estab-

lished. Therefore, part of the error depending on the master will not be
established.

3.3 Comparison of Options

If the order of the smaller DTF is increased, the control method can completely
establish the dynamics of the teleoperation system, i.e. the slave and the error
dynamics is fixed. On the other hand, if the order of the higher DTF is reduced,
the dynamics of the teleoperation system can not be completely established.
In this case, part of the error dynamics depending on the reduced DTF can not
be fixed. In addition, if the slave order is reduced, the slave dynamics will not
be completely established. In both options, when the DTF order is increased
or reduced, the conditions to achieve the evolution of the error as autonomous
system could not be verified, but this is not a problem. Therefore the best
option to design the control system of a teleoperator where the master and
the slave have different order is increasing the order of the smaller DTF.

The control gains that are obtained modifying the master or the slave
DTF in the design phase must be used to control the real teleoperation sys-
tem. The state convergence methodology allows that the control gains can be
directly applied to the real teleoperation system because of the robustness of
the control method to the uncertainty of the design parameters [7]. On the
other hand, state observers must be designed to apply the control. In the case
of the reduced DTF, the state observer must estimate the number of state
variables fixed by the higher DTF, so it must be designed using the increased
DTF.
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4 Experimental Results

The EL (Elbow Pivot) joint of the Grips teleoperation system has been bilat-
erally controlled in simulation mode using the state convergence methodology.
The Grips manipulator system from Kraft Telerobotics is a six DOF teleop-
erator with force-feedback. The slave is an hydraulic manipulator, and the
master is powered by electrical motors. The identified DTFs for the EL joint
of the master and the slave, considering a sample time of T = 0.0005s, are,
respectively:

Gm(z) =
3.79 × 10−7z2

z3 − 2.974z2 + 2.948z − 0.9741
(5)

Gs(z) =
1.357 × 10−5z

z2 − 1.9928z + 0.9928
=

1.357 × 10−5z

(z − 1)(z − 0.9928)
(6)

The process of identification has been done using the corresponding Matlab
Toolbox. Both DTFs have been identified considering the Box-Jenkins model.

As it has been previously explained, when the order of the master and slave
DTF is different, the best option to design the control system is increasing
the order of the smaller DTF. Therefore the order of the slave DTF must be
increased. A pole-zero pair has been added in the slave DTF. The pole has
been added far from the dominant poles to avoid that it affects to the system
dynamics. And the zero has been placed near the pole:

Gs(z) =
1.357 × 10−5z(z − 0.93)

(z − 1)(z − 0.9928)(z − 0.9302)
=

1.357 × 10−5z2 − 1.262 × 10−5z

z3 − 2.923z2 + 2.8465z − 0.9235
(7)

In order to solve the design equations of the control method, all the numer-
ator coefficients of (5) and (7) must not be null. In this case, the coefficients
{bm1, bm0, bs0} are null, i.e. there are some zeros placed in z = 0. For this
reason, the zeros placed in z = 0 have been slightly modified, and the DTFs
considered for the design are the following:

Gm(z) =
3.79 × 10−7z2 + 10−8z + 10−8

z3 − 2.974z2 + 2.948z − 0.9741
(8)

Gs(z) =
1.357 × 10−5z2 − 1.262 × 10−5z + 10−8

z3 − 2.923z2 + 2.8465z − 0.9235
(9)

In addition, to verify the conditions of the control method between the
numerator coefficients of Gm(z) and Gs(z), and to achieve the evolution of
the error as autonomous system, the numerator coefficients of Gs(z) in (9)
have been modified for the design in this way:

Gs(z) =
1.357 × 10−5z2 + 3.58 × 10−7z + 3.58 × 10−7

z3 − 2.923z2 + 2.8465z − 0.9235
(10)

The control gains have been obtained considering that the force feedback
gain is kf = 0.1, the slave interacts with a soft environment (ke = 10Nm/rad),
and that the poles of the error and the slave are placed in z = 0.95.
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If the control gains are applied to the teleoperation system considered for
the design, DTF (8) and (10), the slave follows the master without error, left
part of Fig. 2. However, if they are applied to the increased original system,
DTF (5) and (7), the slave follows the master, but there is a constant error
because the conditions to achieve the evolution of the error as autonomous
system are not verified, right part of Fig. 2. In both cases, a unitary constant
operator force has been considered.
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Fig. 2. Master and slave position considering DTF (8) and (10) (left part), and
DTF (5) and (7) (right part)

In order to verify the performance of the control over the original teleoper-
ation system, two state observers have been designed for the identified DTFs
of the EL joint (DTF (5) and (6)). Both state observers must estimate three
state variables. The design of the state observer for the DTF (5) is straight.
However, as the order of the DTF (6) is two, the observer has been designed
from the DTF (7). In the left part of Fig. 3 the position evolution of the
original teleoperation system using the designed observers is shown. It can be
verified that the results obtained are the same as the shown in the right part
of Fig. 2. The control signals applied to the master and the slave are shown
in the right part of Fig. 3. In this figure, the slave control signal has initial
values close to zero, but not null.

These results allow verify that the control method by state convergence
can be applied to teleoperation systems where the master and the slave are
modeled by different order DTFs.

5 Conclusions

This paper has presented a bilateral control method for teleoperation systems
where the master and the slave are modeled by different order transfer func-
tions. It has been verified that the order of the smaller DTF must be increased
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Fig. 3. Master and slave position (left part), and control signal (right part)

to design the control system. Then, state observers that estimate the number
of state variables fixed by the higher DTF must be designed in order to apply
the control. The control method allows that the slave follows the master, and
it is able to establish the dynamic behavior of the teleoperation system.

In the paper the performance of the control scheme has been tested in
simulation mode over the EL joint of the Grips teleoperation system. The
next work is controlling the real joint. The final aim is controlling all the
joints of the system applying the state convergence methodology.
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