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Abstract. For complex-valued multidimensional signals, conventional
decorrelation methods do not completely specify the covariance struc-
ture of the whitened measurements. In recent work [1,2], the concept
of strong-uncorrelation and its importance for complex-valued indepen-
dent component analysis has been identified. Few algorithms for esti-
mating the strong-uncorrelating transform currently exist. This paper
presents two novel algorithms for estimating and computing the strong
uncorrelating transform. The first algorithm uses estimated covariance
and pseudo-covariance matrices, and the second algorithm estimates the
strong uncorrelating transform directly from measurements. An analy-
sis shows that the only stable stationary point of both algorithms pro-
duces the strong uncorrelating transform when the circularity coefficients
of the sources are distinct and positive. Simulations show the efficacy of
the approach in a source clustering task for wireless communications.

1 Introduction

In most treatments of blind source separation and independent component anal-
ysis, the signals are assumed to be real-valued. In a number of practical appli-
cations, however, measurements are naturally represented using complex linear
models. In wireless communications, multiantenna or multiple-input, multiple-
output systems can be conveniently described using a complex-valued mixture
model. Multiple-sensor recordings in various biological signal processing applica-
tions are also well-represented in complex form [3]. These applications motivate
the study of m-dimensional complex-valued signal mixtures of the form

x(k) = As(k), (1)

where A is an arbitrary complex-valued (m × m) matrix and the source signal
vector sequence s(k) contains statistically-independent complex-valued elements.

Recently, work in complex ICA has uncovered a statistical structure that is
unlike the real-valued case [1,2]. In particular, it is possible in some cases to
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identify A in (1) using only second-order statistics from x(k) at time k, a situa-
tion that is distinct from the real-valued case. The key construct in these results
is the strong-uncorrelating transform, which we now describe. Without loss of
generality, assume that the source covariance and pseudo-covariance matrices
are E{s(k)sH(k)} = I and E{s(k)sT (k)} = Λ, respectively, where Λ is a diago-
nal matrix of ordered real-valued entries between zero and one called circularity
coefficients {λi}, i ∈ {1, . . . , m}. Define the covariance and pseudo-covariance
matrices of x(k) as

R = E{x(k)xH(k)} = AAH and P = E{x(k)xT (k)} = AΛAT , (2)

respectively. Then, the strong-uncorrelating transform W is a matrix satisfying

WRWH = I and WPWT = Λ. (3)

If the {λi} values are distinct, then a matrix W satisfying (3) is also a separating
matrix for the mixing model in (1). Additional results for the strong-uncorrelating
transform are in [1,2], and [9] uses the transform to derive kurtosis-based fixed-
point algorithms for complex signal mixtures.

In [1], a technique for computing the strong uncorrelating transform for given
values of R and P is described. This technique employs both an eigenvalue
decomposition of a Hermitian symmetric matrix and the Takagi factorization of
a complex symmetric matrix, the latter of which requires specialized numerical
code [5]. A Jacobi-type rotation method for the Takagi factorization is outlined
in [6], but its numerical and convergence properties are not established. Both
of these methods are computationally-complex and not amenable to situations
in which the second-order data statistics are slowly-varying. Since few methods
for computing the strong-uncorrelation transform currently exist, it is of great
interest to derive simple algorithms for the strong-uncorrelating transform that
could be employed in adaptive estimation and tracking tasks.

This paper describes two simple iterative procedures for computing the strong
uncorrelating transform adaptively. Both procedures can be viewed as extensions
of the method in [7]. The first procedure employs sample estimates of the covari-
ance and pseudo-covariance matrices and is equivariant with respect to the mix-
ing system A when sample-based averages of these matrices are used. The second
equivariant procedure estimates the strong-uncorrelating transform directly from
measurements. Both techniques have the significant advantage of not requiring
estimates of the circularity coefficients {λi} for their successful operation. Sim-
ulations show the abilities of the methods to perform strong-uncorrelation in a
source clustering task for wireless communications.

2 An Adaptive Algorithm for the Strong Uncorrelating
Transform

The simple algorithms described in this paper adapt a row-scaled version of W,
termed W(k), to compute the strong uncorrelating transform. In the interest of



Equivariant Algorithms for Estimating the Strong-Uncorrelating Transform 59

algorithm simplicity, and because overall output signal scaling is often not an
issue, we define the space of allowable solutions for W(k) as

lim
k→∞

W(k)RWH(k) = D̃ and lim
k→∞

W(k)PWT (k) = D̃Λ, (4)

where D̃ is an arbitrary diagonal matrix of positively-valued diagonal entries. If
R is available or can be estimated, then a W(k) satisfying (4) can be turned
into a W satisfying (3) using W = D̃− 1

2 W(k).
Our first proposed algorithm for adaptively computing the strong-

uncorrelating transform is

W(k+1)=W(k)+µ
(
I−W(k)R̂(k)WH(k)−tri[W(k)P̂(k)WT (k)]

)
W(k), (5)

where R̂(k) and P̂(k) are sample estimates of R and P and tri[M] denotes
a matrix whose lower triangular portion is identical to that of M and whose
strictly-upper triangular portion is zero.

The following three theorems describe important theoretical and practical
convergence properties of this algorithm, the proofs of which are in the Appendix.

Theorem 1. The algorithm in (5) is equivariant with respect to the mixing matrix
A under the data model in (1).

Remark. Although the algorithm is equivariant with respect to the mixing
matrixA, its performance is affected by the values in Λ that depend on the sources.
Thus, convergence of the algorithm may be fast or slow depending on Λ.

Theorem 2. The space of stationary points for the algorithm in (5) are W = 0
and the set of matrices that satisfy

WRWH = I − D and WPWT = D, (6)

where D is a diagonal matrix of real-valued unordered entries that are all less
than or equal to one.

Theorem 3. Suppose the diagonal entries of Λ are distinct and positive. Then,
the only locally-stable stationary point of the algorithm in (5) is the unique matrix
W that yields the solution

WRWH = (I + Λ)−1 and WPWT = (I + Λ)−1Λ. (7)

Remark. We could have λi = 0 or λi = λj for some diagonal entries of Λ.
In such cases, there is not one unique stationary point for the algorithm. This
situation is similar to that for the strong uncorrelated transform, in which a
unique solution is not guaranteed. Experience shows that the algorithm still
accurately computes a strong uncorrelating transform satisfying (4) despite the
fact that this transform may not be unique.
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3 A Simple Algorithm for Tracking the Strong
Uncorrelating Transform

In many applications, tracking versions of algorithms are desired. We seek a
simpler version of (5) for tracking a strong-uncorrelating transform solution given
a measured sequence x(k). Our second proposed algorithm replaces R̂(k) and
P̂(k) in (5) with their instantaneous values x(k)xH(k) and x(k)xT (k) to yield

y(k)=W(k)x(k) (8)

W(k + 1)=W(k) + µ(k)[W(k)−y(k)yH(k)W(k)−tri[y(k)yT (k)]W(k)]. (9)

This algorithm is particularly simple, requiring approximately 5m2 complex-
valued multiply/adds at each iteration if an order-recursive procedure is used
to compute tri[y(k)yT (k)]W(k). As in all similar adaptive algorithms, the step
size sequence µ(k) controls both the data-averaging of the x(k) terms and the
convergence performance of W(k). Care must be taken in choosing µ(k).

The algorithm in (8)–(9) is equivariant with respect to the mixing matrix A
in (1). Moreover, because the discrete-time and differential averaged versions
of (8)–(9) are the same as those for the updates in (5) and (17), respectively,
Theorems 2 and 3 also apply to (8)–(9). Provided a suitably small step size is
chosen and x(k) is a stationary input signal with distinct non-zero circularity
coefficients, the only stable stationary point of (8)–(9) satisfies (7).

Eqns. (8)–(9) are closely related to simple decorrelation methods for real-
valued signals [8]. One could view (8)–(9) as the complex extension of the nat-
ural gradient method in [8], with the additional feature that it computes the
strong uncorrelating transform if P �= 0. In situations where x(k) is circularly-
symmetric (i.e. P = Λ = 0), then E{tri[y(k)yT (k)]} ≈ 0, such that (8)–(9)
becomes a natural gradient algorithm for ordinary whitening of complex signals.

For source separation or clustering based on non-circularity, both (5) and
(8)–(9) have the nice property that the sources {si(k)} are grouped in y(k) in
the order of their decreasing circularity coefficients. This property is maintained
despite the fact that the algorithm does not estimate the circularity coefficients
of the sources explicitly. A similar feature was noted for the algorithm in [7].

4 Simulations

We now explore the behaviors of the two proposed algorithms via simulations.
The first set of simulations illustrate the algorithms’ convergence behaviors when
A is identifiable through the strong-uncorrelating transform. Let s(k) contain six
zero-mean, unit-variance, uncorrelated, and non-circular Gaussian sources with
distinct circularity coefficients {λ1, λ2, λ3, λ4, λ5, λ6}={1, 0.8, 0.6, 0.4, 0.2, 0.1}.
One hundred simulations are run, in which A is generated as a random mixing
matrix with jointly-Gaussian real and imaginary elements. Both exponential
(α = 0.999), denoted by ’exp’, and growing-window, denoted by ’lin’, averaging
of the sequences x(k)xH(k) and x(k)xT (k) with R̂(0) = P̂(0) = 0.01I were
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Fig. 1. Convergence of E{γP(k)} and E{γs(k)} in the first simulation example showing
the proposed algorithms’ successful estimation of the strong-uncorrelating transform

used to estimate R̂(k) and P̂(k) for two versions of (5). The combined system
coefficient vector C(k) = W(k)A is computed and used to evaluate two metrics:

1. Pseudo-covariance Diagonalization: This cost verifies that the algorithms
diagonalize the pseudo-covariance and is given by

γP(k) =
||C(k)ΛCT (k) − diag[C(k)ΛCT (k)]||2F

||diag[C(k)ΛCT (k)]||2F
. (10)

2. Source Separation Without De-rotation: This cost is the average of the
inter-channel interferences of the combined system matrices C(k) and CT (k), as

γs(k) =
1

2m

(
n∑

i=1

n∑
l=1

|cil(k)|2
max1≤i≤n |cil(k)|2 +

|cil(k)|2
max1≤l≤n |cli(k)|2

)
− 1. (11)

Shown in Figure 1(a) and (b) are the evolutions of E{γP(k)} and E{γs(k)} for
the various algorithms with their associated data averaging methods, where µ =
µ(k) = 0.007 for (5) and (8)–(9). As can be seen, all versions of the algorithms
diagonalize the pseudo-covariance matrix over time, and they also perform source
separation for this scenario.

We now illustrate the behaviors of the simple algorithm in (8)–(9) in a more-
practical setting. Let s(k) contain two BPSK and one 16-QAM source signals.
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Fig. 2. Output signal constellations obtained by (8)–(9) for a source clustering task in
wireless communications

The circularity coefficients in this situation are {λ1, λ2, λ3} = {1, 1, 0}. The
strong-uncorrelating transform applied to mixtures of these sources creates a
combined system matrix C(k) = W(k)A in which the first two rows (resp.
columns) are nearly orthogonal to the third row (resp. column). Thus, y1(k)
and y2(k) largely contain mixtures of the two real-valued BPSK sources, and
y3(k) largely contains the 16-QAM source. Shown in Figure 2 are the output
signal constellations from yi(k), i ∈ {1, 2, 3}, 20000 ≤ n ≤ 25000, obtained by
applying (8)–(9) with µ = 0.0001 to noisy mixtures of these sources, in which
A contains jointly circular Gaussian entries with variance 2 and the (complex
circular Gaussian) additive noise has variance 0.001. The first two outputs clearly
show mixtures of the two real BPSK sources, whereas the last output contains
the 16-QAM source.

5 Conclusions

The strong-uncorrelating transform is an important linear transform in complex
independent component analysis. This paper describes two simple algorithms for
adaptively estimating the strong-uncorrelating transform from known covariance
and pseudo-covariance matrices and from measured signals, respectively. The al-
gorithms are equivariant to the mixing system, and local stability analyses verify
that they perform strong-uncorrelation reliably. Simulations illustrate their per-
formances in separation and source clustering tasks.
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Appendix

Proof of Theorem 1. Substituting the expressions for R and P in (2) for R̂(k)
and P̂(k) in (5) and defining C(k) = W(k)A, an equivalent expression for (5) is

C(k + 1) = C(k) + µ
(
I − C(k)CH(k) − tri[C(k)ΛCT (k)]

)
C(k), (12)

which does not depend on W(k) or A individually.

Proof of Theorem 2. The stationary points of the algorithm are defined by(
I − WRWH − tri[WPWT ]

)
W = 0. (13)

Clearly, W = 0 defines one stationary point. The other stationary points are
determined by the solutions of M = 0, where

M = tri[WPWT ] + WRWH − I. (14)

Consider the symmetric and anti-symmetric parts of M separately. The anti-
symmetric part of M is

Ma =
1
2
(M − MH) =

1
2

(
tri[WPWT ] − tri[WPWT ]H

)
. (15)

For Ma = 0, we must have that WPWT = D, where D has real-valued but
potentially-unordered entries. Under this condition, the symmetric part of M is

Ms =
1
2
(M + MH) = WRWH − I + D. (16)

For Ms = 0 to hold, we must have WRWH = I−D, which verifies (6). Moreover,
since R is non-negative definite, the diagonal entries of I − D are non-negative,
and the diagonal entries of D must satisfy 0 < di ≤ 1.
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Proof of Theorem 3. Consider the differential form of the update in (5):

dW
dt

= W − WRWHW − tri[WPWT ]W. (17)

Substituting the expressions for R and P in (2) into (17) and post-multiplying
both sides of (17) by A, we re-write (17) in the combined matrix C = WA as

dC
dt

= C − CCHC − tri[CΛCT ]C. (18)

First, assume that C is near a stationary point corresponding to W = 0, and
let C = ∆, where ∆ is a matrix of small complex-valued entries. Then, we can
rewrite the update in (18) in the entries of ∆ as

d∆

dt
= ∆ + O(∆2

ij) (19)

where O(∆2
ij) denotes terms that are second and higher-order in the entries of

∆. Eq. (19) is exponentially unstable; W = 0 is not a stable stationary point.
Now, assume that C is near a stationary point such that CsCH

s = I − D and
CsΛCT

s = D, where D is a diagonal matrix of real-valued scaling factors {di}
satisfying 0 < di ≤ 1, and let C = (I + ∆)Cs, where ∆ is a matrix of small
complex-valued entries. Then, we can rewrite the update in (18) in the entries
of ∆ as

d∆

dt
= −∆(I − D) − (I − D)∆H − tri[∆D + D∆T ] + O(∆2

ij). (20)

Ignoring second and higher-order terms, the diagonal entries of ∆ evolve as

d∆ii

dt
= −2∆ii, (21)

and they are exponentially convergent. The off-diagonal entries of ∆ evolve in a
pairwise coupled manner and for i < j satisfy

d∆ij

dt
= (−1 + dj)∆ij + (−1 + di)∆∗

ji (22)

d∆ji

dt
= −∆ij + (−1 + di)∆∗

ji − di∆ji (23)

Considering the real and imaginary parts of ∆ij = ∆R,ij + j∆I,ij and ∆ji =
∆R,ji + j∆I,ji jointly, we have

d

dt

⎡⎢⎢⎣
∆R,ij

∆R,ji

∆I,ij

∆I,ji

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1 + dj −1 + di 0 0

−1 −1 0 0
0 0 −1 + dj 1 − di

0 0 −1 1 − 2di

⎤⎥⎥⎦
⎡⎢⎢⎣

∆R,ij

∆R,ji

∆I,ij

∆I,ji

⎤⎥⎥⎦ . (24)

For these terms to be convergent, the (2×2) dominant sub-matrices in the above
transition matrix must have negative real parts. Recall that 0 < dl ≤ 1 for all
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1 ≤ l ≤ m by the stationary point condition. Then, the eigenvalue of the first
dominant (2 × 2) matrix with the largest real part is

r(1)
max =

2 − dj

2

(
−1 +

√
1 − 4

di − dj

(2 − dj)2

)
. (25)

For �e[r(1)
max] < 0, we require that di > dj . With this result, the eigenvalue of

the second dominant (2 × 2) matrix with the largest real part is

r(2)
max =

2di − dj

2

(
−1 +

√
1 − 4

di + dj − 2didj

(2di − dj)2

)
, (26)

which for di > dj is guaranteed to satisfy �e[r(2)
max] < 0. Thus, the only stable

stationary point of the algorithm is when d1 > d2 > · · · > dm.
Now, consider the only stable stationary point solution in (6). Define W =

(I − D)−1/2W such that

WRWH = I and WPWT = (I − D)−1D. (27)

It is straightforward to show that di > dj implies di/(1−di) > dj/(1−dj), such
that (I−D)−1D has ordered entries. Eqn. (27) is exactly the strong uncorrelating
transform, such that (I−D)−1D = Λ, or D = (I+Λ)−1Λ and I−D = (I+Λ)−1.
This proves the theorem.
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