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Abstract. In this paper we propose to use an instantaneous ICA
method (BLUES) to separate the instruments in a real music stereo
recording. We combine two strong separation techniques to segregate
instruments from a mixture: ICA and binary time-frequency masking.
By combining the methods, we are able to make use of the fact that the
sources are differently distributed in both space, time and frequency. Our
method is able to segregate an arbitrary number of instruments and the
segregated sources are maintained as stereo signals. We have evaluated
our method on real stereo recordings, and we can segregate instruments
which are spatially different from other instruments.

1 Introduction

Finding and separating the individual instruments from a song is of interest
to the music community. Among the possible applications is a system where
e.g. the guitar is removed from a song. The guitar can then be heard by a
person trying to learn how to play. At a later stage the student can play the
guitar track with the original recording. Also when transcribing music to get
the written note sheets it is a great benefit to have the individual instruments
in separate channels. Transcription can be of value both for musicians and for
people wishing to compare (search in) music. On a less ambitious level identifying
the instruments and finding the identity of the vocalist may aid in classifying
the music and again make search in music possible. For all these applications,
separation of music into its basic components is interesting. We find that the
most important application of music separation is as a preprocessing step.

Examples can be found where music consists of a single instrument only, and
much of the literature on signal processing of music deals with these examples.
However, in the vast majority of music several instruments are played together,
each instrument has its own unique sound and it is these sounds in unison that
produce the final piece. Some of the instruments are playing at a high pitch and
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some at a low, some with many overtones some with few, some with sharp onset
and so on. The individual instruments furthermore each play their own part in
the final piece. Sometimes the instruments are played together and sometimes
they are played alone. Common for all music is that the instruments are not all
playing at the same time. This means that the instruments to some extent are
separated in time and frequency. In most modern productions the instruments
are recorded separately in a controlled studio environment. Afterwards the dif-
ferent sources are mixed into a stereo signal. The mixing typically puts the most
important signal in the center of the sound picture hence often the vocal part
is located here perhaps along with some of the drums. The other instruments
are placed spatially away from the center. The information gained from the fact
that the instruments are distributed in both space, frequency and time can be
used to separate them.

Independent component analysis (ICA) is a well-known technique to sepa-
rate mixtures consisting of several signals into independent components [1]. The
most simple ICA model is the instantaneous ICA model. Here the vector x(n)
of recorded signals at the discrete time index n is assumed to be a linear super-
position of each of the sources s(n) as

x(n) = As(n) + ν(n), (1)

where A is the mixing matrix and ν(n) is additional noise. If reverberations
and delays between the microphones are taken into account, each recording is a
mixture of different filtered versions of the source signals. This model is termed
the convolutive mixing model.

The separation of music pieces by ICA and similar methods has so far not
received much attention. In the first attempts ICA was applied to separation of
mixed audio sources [2]. A standard (non-convolutive) ICA algorithm is applied
to the time-frequency distribution (spectrogram) of different music pieces. The
resulting model has a large number of basis functions and corresponding source
signals. Many of these arise from the same signal and thus a postprocessing step
tries to cluster the components. The system is evaluated by listening tests by the
author and by displaying the separated waveforms. Plumbley et al. [3] presents a
range of methods for music separation, among these are an ICA approach. Their
objective is to transcribe a polyphonic single instrument piece. The convolu-
tive ICA model is trained on a midi synthesized piece of piano music. Mostly,
only a single note is played making it possible for the model to identify the
notes as a basis. The evaluation by comparing the transcription to the original
note sheets showed good although not perfect performance. Smaragdis et al. has
presented both an ICA approach [4] and a Non-negative Matrix Factorization
(NMF) approach [5] to music separation. The NMF works on the power spec-
trogram assuming that the sources are additive. In [6] the idea is extended to
use convolutive NMF. The NMF approach is also pursued in [7] where an arti-
ficial mixture of a flute and piano is separated and in [8] where the drums are
separated from polyphonic music. In [9] ICA/NMF is used along with a vocal
discriminant to extract the vocal.
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Time-Frequency (T-F) masking is another method used to segregate sounds
from a mixture (see e.g. [10]). In computational auditory scene analysis, the
technique of T-F masking has been commonly used for years. Here, source sep-
aration is based on organizational cues from auditory scene analysis [11]. When
the source signals do not overlap in the time-frequency domain, high-quality
reconstruction can be obtained [12]. However, when there are overlaps between
the source signals good separation can still be obtained by applying a binary
time-frequency mask to the mixture [12, 13]. Binary masking is also consistent
with constraints from auditory scene analysis such as people’s ability to hear
and segregate sounds [14]. More recently the technique has also become pop-
ular in blind source separation, where separation is based on non-overlapping
sources in the T-F domain [15]. T-F masking is applicable to source separation/
segregation using one microphone [10, 16] or more than one microphone [12, 13].
In order to segregate stereo music into independent components, we propose a
method to combine ICA with T-F masking in order to iterative separate music
into spatially independent components. ICA and T-F masking has previously
been combined. In [17], ICA has been applied to separate two signals from two
mixtures. Based on the ICA outputs, T-F masks are estimated and a mask is
applied to each of the ICA outputs in order to improve the signal to noise ratio.

Section 2 provides a review of ICA on stereo signals. In section 3 it is described
how to combine ICA with masking in the time frequency domain. In section 4
the algorithm is tested on real music. The result is evaluated by comparing the
separated signals to the true recordings given by the master tape containing the
individual instruments.

2 ICA on Stereo Signals

In stereo music, different music sources (song and instruments) are mixed so
that the sources are located at spatially different positions. Often the sounds
are recorded separately and mixed afterwards. A simple way to create a stereo
mixture is to select different amplitudes for the two signals in the mixture.
Therefore, we assume that the stereo mixture x at the discrete time index n can
be modeled as an instantaneous mixture as in eqn. (1), i.e.

[
x1(n)
x2(n)

]
=

[
a11 · · · a1N

a21 · · · a2N

] ⎡
⎢⎣

s1(n)
...

sN (n)

⎤
⎥⎦ +

[
ν1(n)
ν2(n)

]
. (2)

Each row in the mixing matrix [a1i a2i]T contains the gain of the i’th source in
the stereo channels. The additional noise could e.g. be music signals which do
not origin from a certain direction. If the gain ratio a1i/a2i of the i’th source is
different from the gain ratio from any other source, we can segregate this source
from the mixture. A piece of music often consists of several instruments as well
as singing voice. Therefore, it is likely that the number of sources is greater
than two. Hereby we have an underdetermined mixture. In [18] it was shown
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Fig. 1. The two stereo responses a1(θ) and a2(θ) are shown as function of the direction
θ. The monotonic gain ratio is shown as function of the direction θ.

how to extract speech signals iteratively from an underdetermined instantaneous
mixture of speech signals. In [18] it was assumed that a particular gain ratio
a1i/a2i corresponded to a particular spatial source location. An example of such
a location-dependant gain ratio is shown in Fig 1. This gain ratio is obtained by
selecting the two gains as a1(θ) = 0.5

(
1 − cos(θ)

)
and a2(θ) = 0.5

(
1 + cos(θ)

)
.

2.1 ICA Solution as an Adaptive Beamformer

When there are no more sources than sensors, an estimate s̃(n) of the original
sources can be found by applying a (pseudo) inverse linear system, to eqn. (1).

y(n) = Wx(n) = WAs(n) (3)

where W is a 2 × 2 separation matrix. From eqn. (3) we see that the output
y is a function of s multiplied by WA. Hereby we see that y is just a different
weighting of s than x is. If the number of sources is greater than the number of
mixtures, not all the sources can be segregated. Instead, an ICA algorithm will
estimate y as two subsets of the mixtures which are as independent as possible,
and these subsets are weighted functions of s. The ICA solution can be regarded
as an adaptive beamformer which in the case of underdetermined mixtures places
the zero gain directions towards different groups of sources. By comparing the
two outputs, two binary masks can be found in the T-F domain. Each mask
is able to remove the group of sources towards which one of the ICA solutions
places a zero gain direction.

3 Extraction with ICA and Binary Masking

A flowchart of the algorithm is presented in Fig. 2. As described in the previous
section, a two-input-two-output ICA algorithm is applied to the input mixtures,
disregarding the number of source signals that actually exist in the mixture. As
shown below the binary mask is estimated by comparing the amplitudes of the
two ICA outputs and hence it is necessary to deal with the arbitrary scaling
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Fig. 2. Flowchart showing the main steps of the algorithm. From the output of the ICA
algorithm, binary masks are estimated. The binary masks are applied to the original
signals which again are processed through the ICA step. Every time the output from
one of the binary masks is detected as a single signal, the signal is stored. The iterative
procedure stops when all outputs only consist of a single signal. The flowchart has been
adopted from [18].

of the ICA algorithm. As proposed in [1], we assume that all source signals
have the same variance and the outputs are therefore scaled to have the same
variance. From the two re-scaled output signals, ŷ1(n) and ŷ2(n), spectrograms
are obtained by use of the Short-Time Fourier Transform (STFT):

y1 → ŷ1 → Y1(ω, t) (4)
y2 → ŷ2 → Y2(ω, t), (5)

where ω is the frequency and t is the time index. The binary masks are then
found by a bitwise amplitude comparison between the two spectrograms:

BM1(ω, t) = τ |Y1(ω, t)| > |Y2(ω, t)| (6)
BM2(ω, t) = τ |Y2(ω, t)| > |Y1(ω, t)|, (7)

where τ is a threshold that determines the sparseness of the mask. As τ is
increased, the mask is sparser. We have chosen τ = 1.5. Next, each of the two
binary masks is applied to the original mixtures x1 and x2 in the T-F domain,
and by this non-linear processing, some of the music signal are removed by one
of the masks while other parts of music are removed by the other mask. After
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the masks have been applied to the signals, they are reconstructed in the time
domain by the inverse STFT and and two sets of masked output signals (x̂11, x̂21)
and (x̂12, x̂22) are obtained.

In the next step, it is considered whether the masked output signals consists
of more than one signal. The masked output signals are divided into three group
defined by the selection criterion in section 3.1. It is decided whether there is one
signal in the segregated output signal, more than one signal in the segregated
output, or if the segregated signal contains too little energy, so that the signal
is expected to be of too poor quality.

There is no guarantee that two different outputs are not different parts of
the same separated source signal. By considering the correlation between the
segregated signals in the time domain, it is decided whether two outputs con-
tains the same signal. If so, their corresponding two masks are merged. Also the
correlation between the segregated signals and the signals with too poor quality
is considered. From the correlation coefficient, it is decided whether the mask
of the segregated signal is extended by merging the mask of the signal of poor
quality. Hereby the overall quality of the new mask is higher.

When no more signal consist of more than one signal, the separation procedure
stops. After the correlation between the output signals have been found, some
masks still have not been assigned to any of the source signal estimates. All these
masks are then combined in order to create a background mask. The background
mask is then applied to the original two mixtures, and possible sounds that
remain in the background mask are found. The separation procedure is then
applied to the remaining signal to ensure that there is no further signal hidden.
This procedure is continued until the remaining mask does not change any more.
Note that the final output signals are maintained as stereo signals.

3.1 Selection Criterion

It is important to decide whether the algorithm should stop or whether the
processing should proceed. The algorithm should stop separating when the signal
consists of only one source or when the mask is too sparse so that the quality of
the resulting signal is unsatisfactory. Otherwise, the separation procedure should
proceed. We consider the covariance matrix between the output signals to which
the binary mask has been applied, i.e. Rxx = 〈xxH〉. If the covariance matrix
is close to singular, it indicates that there is only one source signal. To measure
the singularity, we find the condition number of Rxx. If the condition number
is below a threshold, it is decided that x contains more than one signal and the
separation procedure continues. Otherwise, it is assumed that x consists of a
single source and the separation procedure stops.

4 Results

The method has been applied to different pieces of music. The used window
length was 512, the FFT length was 2048. The overlap between time frames
was 75%. The sampling frequency is 10 kHz. Listening tests confirm that the
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Fig. 3. Correlation coefficients between the extracted channels and the original stereo
channels. The coefficients has been normalized such that the columns sum to one. The
last row shows the percentage of power of the tracks in the mixture.

method is able to segregate individual instruments from the stereo mixture. We
do not observe that correlations can be heard. However, musical artifacts are
audible. Examples are available on-line for subjective evaluation [19]. In order
to evaluate the method objectively, the method has been applied to 5 seconds
of stereo music, where each of the different instruments has been recorded sep-
arately, processed from a mono signal into a stereo signal, and then mixed. We
evaluate the performance by calculating the correlation between the segregated
channels and the original tracks. The results are shown in Fig. 3 As it can be
seen from the figure, the correlation between the estimated channels and the
original channels is quite high. The best segregation has been obtained for those
channels, where the two channels are made different by a gain difference. Among
those channels is the guitars, which are well segregated from the mixture. The
more omnidirectional (same gain from all directions) stereo channels cannot be
segregated by our method. However, those channels are mainly captured in the
remaining signal, which contains what is left when the other sources has been
segregated. Some of the tracks have the same gain difference. Therefore, it is
hard to segregate the ‘bass’ from the ‘bass drum’.

5 Conclusion

We have presented an approach to segregate single sound tracks from a stereo
mixture of different tracks while keeping the extracted signals as stereo signals.
The method utilizes that music is sparse in the time, space and frequency do-
main by combining ICA and binary time-frequency masking. It is designed to
separate tracks from mixtures where the stereo effect is based on a gain dif-
ference. Experiments verify that real music can be separated by this algorithm



BLind Underdetermined Extraction of Sources from Music 399

and results on an artificial mixture reveals that the separated channel is highly
correlated with the original recordings.

We believe that this algorithm can be a useful preprocessing tool for annota-
tion of music or for detecting instrumentation.
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