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Abstract. A multi-scale independent component analysis (ICA) ap-
proach is investigated for industrial process monitoring. By integrat-
ing the ability of wavelet on multi-scale analysis and that of ICA on
extracting independent components for non-Gaussian process variables,
the multivariate statistical monitoring techniques can obtain improved
performance. Contrastive tests have been carried out on the famous
benchmark chemical plant among ICA-like and PCA-like methods, which
reveals that multi-scale ICA approach has lower missed detection rate
of faults.

1 Introduction

Modern chemical processes, which are equipped with instrument and data col-
lector, contain thousands of measured variables, such as temperatures, pressures
and flow rates. The correlation among the process variables exists as a result
of either association or causation. Instead of univariable statistical process con-
trol (SPC), it is necessary and possible to apply multivariate statistical process
control (MSPC) to extract relevant information in the redundant process data,
and to detect if statistically significant abnormalities occur. As a methodology,
MSPC monitors whether the process is in control through the analysis of the
various control charts, such as T2 and SPE. While numerous procedures of uni-
variable SPC are available in manufacturing processes and are likely to be part of
a basic industrial training program, MSPC procedures are being used to monitor
chemical processes that are inherently multivariate [1].

Basically, as a mathematical tool, principal component analysis (PCA) can es-
sentially identifies important characteristics in multivariate redundant data and
has successfully been applied to performance monitoring and fault diagnosis for
industrial process [2], [3]. PCA makes variables de-correlated by means of maxi-
mizing the variance within the process data, which follows a Gaussian probabil-
ity distribution or independent identical distribution. Unfortunately, the process
variables and its statistical information are very complex in actual industrial
production, it is difficult to make certain about process variable’s probability
distribution [4].

As a blind source separation technique, independent component analysis
(ICA) has been founded wide applications in processing of medical signals, com-
pressing of images [5], and machine fault detection [6], etc. Compared with PCA,
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ICA represents a set of random variables as linear combination of statistically
independent component variables, and is less sensitive to process variable’s prob-
ability. Benefited from this, recently, ICA has been introduced to process mon-
itoring [7], [8], which can be more efficacious in a non-Gaussian context. In the
real-world stochastic processes, the energy or power spectrum of variables often
changes with time or frequency, as a result, almost all the industrial processes
are multi-scale in nature. Accordingly, while the existing ICA process monitor-
ing has been adopted at a single scale, it may be more significant to improve the
process monitoring by means of multi-scale ICA. In fact, the concept of multi-
scale analysis already exists in the project of image processing [9], multi-scale
PCA monitoring [10] and blind source separation [11].

In this paper, a multi-scale independent component analysis (MSICA) ap-
proach is investigated for process monitoring, which integrates the ability of
wavelet on multi-scale analysis and that of ICA on extracting independent com-
ponents for non-Gaussian variables. While the process is in control, the genuine
model is decided by the reconstructed signals from the selected wavelet coeffi-
cients, which violate the threshold of the ICA model at the significant scales. By
means of the presented MSICA, the statistical monitoring method is discussed on
the famous benchmark plant, Tennessee-Eastman (TE) chemical process. Com-
pared with traditional MSPC methods (including existing PCA and MSPCA),
MSICA reveals lower missed detection rate of faults.

2 Multi-scale ICA Monitoring

2.1 Wavelet-Based MSICA Model

For an original data set X = (x(1), x(2), · · · , x(m)) ∈ Rn×m with m measure
variables and n samples, the standardization is firstly performed to make mea-
sure variables have zero mean and unit variance. By applying l steps wavelet
decomposes to every measure variable x(i), i = 1, 2, · · · , m, there are l detail
coefficient vectors ak,i on scale k = 1, 2, · · · , l, and an approximate coefficient
vector bl,i. Assuming p is the sample length of ak,i and bl,i, on the kth scale,
there exist a detail coefficient matrix Ak = (ak,1, ak,2, · · · , ak,m)T ∈ Rm×p and
an approximate coefficient matrix Bl = (bl,1, bl,2, · · · , bl,m)T ∈ Rm×p. Moreover,
let Ak = C ˜S or ˜S = FAk, where ˜S ∈ Rp×m is source signal matrix, C ∈ Rp×p is
a nonsingular constant matrix, and F = C−1. In general, Ak may be whitened
by the transformation QAk, where Q = Λ−1/2UT , and Λ and U come from
the eigen-decomposition of the covariance, i.e. E(AkAT

k ) = UΛUT . To separate
statistical independent source signals from Ak, the notion of entropy is used,
which is a measure of uncertainty of a continuous stochastic variable. Under the
condition of the same variance, the smaller the differential entropy of a random
variable is, the greater non-Gaussianity it has. It is known that the Gaussian
random variable has maximal differential entropy and non-Gaussian implies in-
depedence [12]. This gives a way to judge the independent of stochastic variable
by comparing its differential entropy.
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Consider a continuous stochastic variable y with probability density function
f(y), its differential entropy is given by H(y) = −

∫

f(y)logf(y)dy. To avoid
estimating the probability density function f(y), the negentropy of H(y) is de-
fined as J(y) = H(yGauss) − H(y), where H(yGauss) is a Gaussian stochastic
variable with the same variance as y. As a fast algorithm,J(y) ≈ [E{G(y)} −
E{G(yGauss)}]2 is adopted here instead of negentropy definition [13], where G(·)
is a non-quadratic function.

For ˜S = FAk, single source signal can be expressed as s̃(i) = f ·Ak, where f is
a row vector in matrix F . In the setting of entropy, the modeling of independent
component is translated to following optimization problem: find an optimal f
satisfying E{fAk · (fAk)T } = ‖f‖2 = 1 to make J(f · Ak) maximum. Keep in
mind negentropy definition, the optimization problem is equivalent to following:

min
f

E{G(f · Ak)}

s.t.E{fAk · (fAk)T } = ‖f‖2 = 1 (1)

Based on the Kuhn-Tucker conditions, that E{G(f · Ak)} is optimal while
E{Akg(f · Ak)} − βf = 0 where β = E{f0Akg(f0 · Ak)} with optimum f0,
Newton’s method is borrowed to solve above optimization problem (1), and here
is omitted. Obviously, all the row vectors of F can be estimated in the same way.
And then constant matrix C and source signal matrix ˜S can be computed via
˜S = FAk.

Retaining d independent source signals, Ak = Q−1Fd
˜Sd is the reconstruction

of detail coefficients matrix Ak, where Fd ∈ Rm×d, ˜Sd ∈ Rd×p are the corre-
sponding retained de-mixing matrix and source signal matrix, respectively [8].
Simultaneously, a threshold is set based on the median of serial signal ak,i for
removing residual of signals and acquiring information of significant events [14].
Similarly, Bl is reconstructed as Ak is done.

Applying reverse wavelet transformation on the retained detail coefficient at
every scale and approximate coefficient at the coarsest scale [9], the reconstructed
process data Y ∈ Rn×m is obtained and then modeled in ICA form, Y T =
TS + E, where S = (s(1), s(2), · · · , s(d))T ∈ Rd×n is independent components
matrix of process, T ∈ Rm×d is coefficient matrix, and E ∈ Rm×n is residual.
For mathematical convenience, assume E = 0, d = m, then S = T−1 · Y T =
W · Y T . Based on above multi-scale ICA model, in next subsection, the process
monitoring technique is investigated.

2.2 Statistical Monitoring

Two universal statistics, I2 or T 2 (I2 used in ICA-based monitoring method,
while T 2 in PCA-based method) and Q (i.e. Square Prediction Error, SPE),
have been employed in real-time process monitoring. At the tth sample, I2(t) =
ST

d (t)Sd(t), where Sd(t) is the tth column vector of the projection of the original
data in the directions of independent components, and SPE = eT (t) · e(t),
where e(t) = x(t) − x̂(t) is the residual between sample x(t) and prediction of
model x̂(t).
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Because independent components may not follow normal distribution, the con-
trol limit of statistic can not be decided by a special probability function, as done
in PCA. Instead, kernel density estimation is introduced, in which the univariate
kernel estimator is defined as f(x) = 1

nh

∑n
i=1 K{(x − xi)/h}, where K(·) is the

kernel function, x is the data point under consideration, xi is the sample data,
i = 1, 2, · · · , n, and h is the smoothing parameter. In practice, Gaussian function
is usually chosen as the kernel function. To get the point z, which occupies the
99% area of density function f(x), the following equation is used,

∫ z

−∞
f(x)dx =

∫ z

−∞

1
nh

n
∑

i=1

K{(x − xi)/h}dx

=
∫ z

−∞

1
nh

n
∑

i=1

{exp[(x − xi)2/(2h2)]/
√

2π}dx = 0.99 (2)

The detailed selection of h may be found in [15]. The control limits of process
normal operation are then easily obtained.

3 Cases Study

3.1 Missed Detection Rate Comparison

The TE process is a realistic industrial plant for evaluating process control and
monitoring methods, which consists of five major units: reactor, condenser, com-
pressor, separator, stripper. It contains eight components: reactants A, C, D, E,
inert B fed to the reactor, products G, H and by-product F formed in the reac-
tor. The process contains 41 measured variables and 11 manipulated variables,
which are sampled per 3 minutes. All the process measurements involved faults
are introduced at sample 301. The reader may refer to [16] for details.

For some typical statistical control methods and statistics, the missed detec-
tion rates for all 20 faults are shown in Table 1. Because the variables in Fault
3, 9 and 15 have no remarkable mean and standard deviation changing, their
missed detection rates are high for all the statistics. It is conjectured that any
statistic based on data-driven methods will result in high missed detection rates
for these faults [2], thus in Table 1 they are marked by asterisk. Besides the
three faults, the minimum missed detection rates of all faults are denoted by
bold style. As a whole, it maybe true that MSICA has superiority in process
monitoring and detection.

3.2 Monitoring and Detection Tests

Introduce fault 4 to TE process, which is a step change in the reactor cooling
water inlet temperature. This leads a step change of the cooling water flow rate as
shown in Fig. 1(Left), and a sudden jump of the reactor temperature as shown in
Fig. 1(Right). The other 50 measure and manipulated variables retain steady, the
variance of the mean and the standard deviation of each variable is inapparent.



380 F. Liu and C.-Y. Wu

Table 1. Missed detection rates for the testing set

Fault T 2(PCA) Q T 2(MSPCA) Q I2(MSICA) Q

1 0.0076 0.0045 0.0106 0.0061 0.0030 0.0030
2 0.1515 0.0136 0.0258 0.0152 0.0061 0.0045
3∗ 0.9682 0.9394 0.9652 0.9788 0.7242 0.8833
4 0.7833 0.0091 0.9061 0.2485 0.0515 0.0318
5 0.7015 0.6485 0.7242 0.6227 0 0
6 0.0106 0 0 0 0 0
7 0.4364 0 0 0 0 0
8 0.0227 0.0258 0.0545 0.0242 0.0303 0.0167
9∗ 0.9680 0.9409 0.9621 0.9758 0.8318 0.8788
10 0.5240 0.4273 0.6277 0.4318 0.1985 0.1621
11 0.6680 0.2440 0.8076 0.0403 0.1682 0.2289
12 0.0260 0.0227 0.0394 0.0167 0.0030 0.0136
13 0.0772 0.0651 0.0924 0.6515 0.0606 0.0470
14 0.1773 0.0015 0.0015 0.0030 0.0014 0.0015
15∗ 0.9970 0.9030 0.9545 0.9610 0.7575 0.9000
16 0.7591 0.6455 0.7515 0.5954 0.0742 0.1379
17 0.3197 0.0727 0.1682 0.1848 0.0379 0.1000
18 0.1318 0.0969 0.0985 0.1091 0.0818 0.0758
19 0.9878 0.6091 0.7864 0.9136 0.1303 0.5424
20 0.7727 0.4379 0.7848 0.5530 0.0970 0.1970

All these make the detection and diagnosis of fault 4 more challenging than other
faults. The T 2 statistic charts based on PCA, multi-scale PCA (MSPCA) are
shown in the Fig. 2. It is obvious that T 2 statistics are not beyond the threshold
after sample 301. However, I2 statistic chart of MSICA gives an exciting result
as shown in the Fig. 3. After sample 300, it can be seen that I2 statistic goes
beyond the control limit distinctly, its ability to detect fault 4 is better than
that of other methods.

Based on the process monitoring, furthermore, the fault detection and diagno-
sis is carried out to identify the observation variables most closely related to the
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Fig. 1. Cooling water flow rate (Left) and reactor temperature (Right)
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Fig. 2. The T 2 statistics of PCA (Left) and MSPCA (Right) powered by fault 4
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Fig. 3. The I2 statistic of MSICA powered by fault 4
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Fig. 4. The average contribution of fault 4 for the MSICA-based SPE

faults. As a basic tool, the average contribution of fault 4 at sample 301 is shown
in Fig. 4. Obviously, variable 9 (Reactor temperature) and variable 51(Reactor
cooling water flow rate) correlate with the fault 4 deeply. In fact, the two control
loops of reactor cooling water flow rate and reactor temperature are cascade.
This is consistent with the fault description.

Another interesting test is carried out by introducing fault 10, which involves
a random change in the temperature of stream 4 (C feed). Even though this
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Fig. 5. The T 2 statistic of MSPCA (Left) and the I2 statistic MSICA (Right) powered
by fault 10

fault has no some effect on product quality by the titer of product in the stream
11, it is a hidden trouble on the safety of the process because of its effect on
the pressure of the reactor. The T 2 statistic chart based on MSPCA and the I2

statistic chart based on MSICA are shown in Fig. 5. It is obvious that PCA-
like methods do not give an alarm in time, in which T 2 statistic is beyond the
threshold after sample 500. Contrastively, the monitoring response of MSICA is
acceptable.

4 Conclusion

By integrating the advantage of wavelet transform and independent component
analysis, a MSICA approach is introduced to the process monitoring. The ap-
plication results on TE plant illuminate some advantage over traditional MSPC
methods. The ICA-based monitoring methods can give some compellent outcome
in actual process operation.
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