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Abstract. This paper studies a method for blind (input signals being
unknown) estimation of the row relative degrees of a system non invert-
ible at infinity. The proposed method uses a blind signal deconvolution
scheme: A system, called demixer, is applied to the observed signals and
is updated in order to minimize the mutual information. A key point
is that the demixer is constrained to be biproper whereas the system is
not invertible at infinity, consequently deconvolution is not achievable.
But, the row relative degrees can be obtained in two steps: i) minimizing
the mutual information at the output of the demixer. ii) using second
order statistics of the obtained outputs. Although convergence has not
yet been proved, extensive numerical simulation shows the effectiveness
of this method.

1 Introduction

Blind signal separation has recently attracted much attention, and many efficient
statistical methods have appeared in the last decade. In blind signal separation,
the focus is on the recovery of unknown signals using only observed mixtures
of these signals. During recovery, the dynamical system corresponding to the
mixture is also partially identified (see book [1] for details). This approach is
hence promising in control engineering too, because we often encounter the case
where some of the input signals are unavailable due to noise, saturation, or
failure; see, for example, [4].

Since control systems are often strictly proper, i.e. non invertible at infinity,
many theoretical developments assume that the degrees of the rational transfer
matrix representing the system are partially known. Some of the most impor-
tant parameters are the row relative degrees (see Sect.2.2 and [2, 5]). However
few methods enable the determination of these parameters, thus trial and error
scheme is often used in practical applications.

This paper studies a method that enables the blind estimation of the row
relative degrees of a system. However, the blind treatment has a cost in term of
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indeterminacy: Only the difference of relative degree among the rows is obtained.
The blind estimation is achieved in two steps:

i) Minimizing the mutual information with some structural constraints on the
demixer: It does not result in a blind deconvolution because of the con-
straints,

ii) exploiting the second order statistics of the output signals obtained after i).

Although convergence has not yet been proved, extensive numerical simulation
shows the effectiveness of this method.

The proposed method provides a good insight in the system’s structure be-
cause the approximate inverse of the system is factorized in two terms, one of
those corresponding to the row relative degrees information. Traditional blind
signal separation methods do not perform such a factorization because they fo-
cus on the recovery of sources. Since the use of blind deconvolution techniques
based on mutual information is not widespread yet in control community, this
paper is also an attempt to show their potential in this field.

Some notations below will be used in this paper: For a matrix A: A(i,:) denotes
the ith row of A and A(i,j) is the element of A in the ith row and the jth column.

Om×p is a null matrix of size m × p and Im is the identity matrix of size
m. δi,j is the Kronecker’s delta equal to 1 if i = j and 0 if i �= j. All transfer
matrices are assumed to be square of size m × m with m > 1.

2 Preliminaries

2.1 Blind Deconvolution

Throughout the paper we treat discrete-time signals. The goal of blind decon-
volution is to recover the unknown input signals, called source signals, s(t) =
[s1(t), . . . , sm(t)]T applied to an unknown transfer matrix H(z), called ”mixer”,
when only the observed signals v(t) = [v1(t), . . . , vm(t)]T = H(z)s(t) are avail-
able. Throughout the paper, H(z) is assumed to be stable rational, proper, and
of minimal phase with full normal rank.

A transfermatrixW (z), called ”demixer”, is applied to the observations in order
to obtain the estimates y(t) = [y1(t), . . . , ym(t)]T of the sources as illustrated in
Fig. 1. A common hypothesis used in blind signal deconvolution is to assume that
each source si(t) is an independent identically distributed (i.i.d.) process and that
all sources are mutually statistically independent. It is also necessary to assume
that atmost one of the sources has a Gaussiandistribution. With these hypotheses,
blind signal deconvolution can be achieved by adapting the demixer W (z) in order
to obtain signalsy(t)whose components are mutually statistically independent [3].

Even under the above conditions the blind identification of the transfer matrix
has indeterminacies: We can detect neither a permutation of the outputs, the
delay, nor the scale of each output. This is formulated by the relation:

W (z)H(z) = P Λ(z), (1)

where P is a permutation matrix and Λ(z) is a diagonal transfer matrix with
entries of the form αi z−λi .
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Fig. 1. Blind signal deconvolution scheme

2.2 Row Relative Degree

A transfer matrix H(z) is said to be biproper, i.e. invertible at infinity, if the
first matrix that appears in its power series expansion H(z) = H0 +H1z

−1 + . . .
is invertible. A transfer matrix H(z) of size m × m is said to be non invertible
at infinity if lim|z|→∞ H(z) = M is not an invertible matrix.

The relative degree of a rational polynomial fraction N(z)/D(z) is deg D(z)−
deg N(z). The matrix of relative degrees of a polynomial transfer matrix H(z) =
{Hij(z)}i,j∈[1,m] is {dij}i,j∈[1,m] with dij relative degree of Hij(z). The ith row
relative degree of H(z) is di = minj dij .

In the remainder of the paper, we assume that H(z) is non invertible at
infinity. We further assume that H(z) is such that

diag
(
zd1 . . . zdm

)
H(z) (2)

is invertible at infinity. Namely, shifting each output signal by a number of
samples equal to the row relative degree results in a biproper transfer matrix.

Considering the two transfer matrices H(z) and H̃(z) = H(z)Λ(z), where
Λ(z) = diag(z−αj)j∈[1,m], their row relative degrees are di = minj dij and d̃i =
minj (dij + αj), respectively, and are different. However, the row relative degree
differences rpq = dp−dq and r̃pq = d̃p−d̃q are same if either one of the conditions
below is fulfilled

i) αj = α for all j: r̃pq = minj (dpj) + α − minj (dqj) − α = rpq,
ii) dij = di for all j: r̃pq = dp + minj

(
ασp(j)

)
− dq − minj

(
ασq(j)

)
= rpq .

In the case ii), the indeterminacies of blind deconvolution in Eq.(1) do not pre-
vent to estimate the row relative degree differences (permutation of column has
no effect on the row relative degrees).

3 Main Results

3.1 Adaptation of W (z)

The proposed method exploits a classical blind deconvolution scheme. However
structures of the mixer and demixer are incompatible: The demixer is constrained
to be biproper and thus cannot be the inverse of the mixer which is non invertible
at infinity.
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The demixer W (z) is a finite impulse response (FIR) system

W (z) = W0 + W1z
−1 + . . . + Wlz

−l.

The matrices Wj are adapted with a batch algorithm based on the on-line
method proposed in [1]. The method minimizes the mutual information of the
outputs

MI[y(t)] = −H(y(t)) +
m∑

i=1

H(yi(t)),

where H(X) = −
∫

PX(X) lnPX(X)dX is the entropy. Adaptation rule is de-
rived from the relative gradient of MI[y(t)].

Let Wi(k) denote the matrix Wi at iteration k and µ(k) be the positive adap-
tation step used at iteration k. The adaptation law is

Wi(k + 1) = Wi(k) − µ(k)∆Wi(k),

with ∆Wi(k) =
i∑

j=0

(δj,0Im− < ψ(y(t))yT (t − j) >t)Wi−j(k)

∆W0(k) = (Im− < ψ(y(t))yT (t) >t) W0(k)

where < . >t denotes time average on the data block. ψ(.) = [ψ1(.) . . . ψm(.)]T

is a vector containing approximations of the score functions associated with the
source signals: ψreal(s) = −∂ln[Ps(s)]/∂s (see [1] for derivation and discussion
on approximation of score). In a single iteration k, the whole block of signal y(t)
has to be computed (hence this is a batch algorithm).

At initialization W (z) = Im. An important property of the adaptation law
is that when W (z) is initialized to a biproper filter, it remains biproper during
adaptation [1]. Hence blind deconvolution cannot be attained because H(z) is
not biproper and MI[y(t)] reaches a local minimum by the above adaptation.

For simplicity, we illustrate our discussion with 2×2 transfer matrices. Assume
that first and second rows of H(z) have relative degrees d1 = 0 and d2 = d > 0,
respectively. In this case, the power series expansion of H(z) is

H(z) =
[

H
(1,:)
0

O1×2

]
+ . . . +

[
H

(1,:)
d−1

O1×2

]
z−(d−1) + Hdz

−d + HT z−(d+1) + . . .

Conjecture. If the demixer W (z) is initialized to identity and adapted with
the above adaptation law, then the cascade G(z) = W (z)H(z) (for an even d)
converges to

G(z)≈
[
G

(1,:)
0

O1×2

]

+

[
G

(1,:)
1

O1×2

]

z−1+. . .+

[
G

(1,:)
r−1

O1×2

]

z−(r−1)

+

[
G

(1,:)
r

G
(2,:)
r

]

z−r+

[
O1×2

G
(2,:)
r+1

]

z−r−1+. . .+

[
O1×2

G
(2,:)
d

]

z−d (3)

with the integer r = d/2 and the two rows of Gr being orthogonal.
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Let us explain a ground of this conjecture. First note that minimizing MI[y(t)]
is to force that G(z) = W (z)H(z) has statistically orthogonal outputs that have
non Gaussian distributions [3]. Namely, both of the following conditions are to
be fulfilled:

i) The two rows G
(1,:)
j and G

(2,:)
j of each matrix Gj are orthogonal.

ii) The vectors [G(i,:)
1 , . . . , G

(i,:)
l ] for i = 1, 2 have only one non null element.

Conditions i) and ii) cannot be satisfied completely because the demixer is
biproper, but the adaptation tries to attain them. In particular, the first matrix
W0 is solution of:

W0

[
H

(1,:)
0

O1×m

]

=

[
W

(1,1)
0 H

(1,:)
0

W
(2,1)
0 H

(1,:)
0

]

= G0.

At initialization W
(1,1)
0 = 1 and W

(2,1)
0 = 0, consequently i) implies that during

adaptation the second row of G0 remains null and the first row is proportional
to H

(1,:)
0 .

The second row of Gd is initialized to G
(2,:)
d = W

(2,2)
0 H

(2,:)
d . During adaptation,

W0 is constrained to be invertible and W
(2,1)
0 is null consequently W

(2,2)
0 cannot

be null. Therefore the second row of Gd remains non null during adaptation but
i) implies that the first row G

(1,:)
d converges to zero.

Ideally all the other matrices Gj should be set to zero during adaptation in
order to fulfill ”as well as possible” the condition ii). For j > d it is possible
to do so. But due to the constraints imposed by the non invertibility of H(z)
and biproperness of W (z), all the coefficients cannot be simultaneously set to
zero for j ∈ [1, d − 1]. However, because of the structure of H(z), most of the
Gj have one null row. Consequently i) is fulfilled: All Gj have orthogonal rows.
But ii) is not achieved and the algorithm obtains Eq.(3). Extensive numerical
simulation shows that the repartition of these non null coefficients is balanced
between the two rows. (Note: If d is odd with r = (d − 1)/2 then second row of
Gj for j ∈ [0, r] and first row for j ∈ [r + 1, d] are null.)

3.2 Row Relative Degree Difference Estimation

After minimizing the mutual information MI[y(t)], the row relative degree dif-
ference between the rows of H(z) are determined by using the off-diagonal terms
of the covariance Γ (y, τ). Considering the 2 × 2 case, the off-diagonal term is:

C12(y, τ) = E{y1(t)y2(t + τ)T }. (4)

By hypothesis the source signals are statistically independent and have unit
variance, as a result their covariance is: E{s1(p)s2(q)T } = δp,q. Since the transfer
from sources to output signals is of the form Eq.(3), thus Eq. (4) gives:

C12(y, τ) = G
(1,:)
0 G

(2,:)T
d δτ,d +

[
G

(1,:)
0 G

(2,:)T
d−1 + G

(1,:)
1 G

(2,:)T
d

]
δτ,d−1 + . . .

+
[
G

(1,:)
r−1G(2,:)T

r + G(1,:)
r G

(2,:)T
r+1

]
δτ,1 (5)
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The covariance is null if τ is not in [1, d]. Therefore after minimizing MI[y(t)], the
row relative degree difference d can be estimated by inspecting the covariance
of the output signals: d is equal to the largest delay τ for which C12(y, τ) is not
null. (Note: In the case of a negative relative degree difference d, the covariance
is null if τ is not in [d, −1].)

3.3 Proposed Method

In practice, a threshold β, function of estimation variance, is chosen and the
largest delay τ0 such that C12(y, τ) > β is the row relative degree difference
estimation r̂12 = τ0. But finding such a threshold β is not an easy task.

However, a nice property appears when a relatively hight threshold β is chosen
in order to avoid selecting delay out of [1, d]. The estimated row relative degree
difference is r̂12 = r12 − ε with 0 ≤ ε < r12 an integer representing the error.
Then consider the shifted observations:

[
v1(t + r̂12)

v2(t)

]
=

[
zd1−d2−ε 0

0 1

]
H(z)s(t) =

[
zd1−ε 0

0 zd2

]
H(z)s(t − d2)

– When ε = 0, diag(zd1 zd2)H(z) is biproper. Consequently, using the same
adaptation rule to adapt W (z) after shifting the observation results in a
blind deconvolution. Thus C12(y, τ) is null for all τ because output signals
are statistically independent.

– When ε �= 0 the row relative degree difference of the system whose outputs
are the shifted observations is ε ∈ [1, r12−1]. Thus using the same adaptation
rule to adapt W (z) after shifting the observation leads again to a cascade of
the form Eq.(3) and C12(y, τ) still presents non null values.

Thus iterating the same procedure ensures that ε → 0. In order to exploit this
property, the proposed method is iterative:

1. initialization r̂12 := 0,
2. adapt the biproper demixer to minimize the mutual information,
3. compute C12(y, τ) for delay in [−τmax, τmax],
4. if C12(y, τ) < β for all τ ∈ [−τmax, τmax] then stop iteration,
5. otherwise: Select τ0 the largest delay such that C12(y, τ) > β, update the esti-

mation r̂12 := r̂12 + τ0, shift the first observation v1(t) := v1(t + τ0) and go to
step 2.,

4 Numerical Simulation

Consider the system H(z) =
[ 1

z+0.7
0.9

z−0.6−0.5
(z−0.3)(z+0.7)(z+0.4)

1
(z+0.2)(z−0.4)(z+0.6)

]
, whose

impulse response is given in Fig.2-(a). The row relative degrees are d1 = 1
and d2 = 3. Unknown source signals are i.i.d. processes uniformly distributed
with zero mean and unit variance. The number of samples used in this example
was T = 10000. 100 experiments were performed. The FIR filter has l = 20
coefficients.
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Fig. 2. Impulse response of H(z) (a) and mean (variances are all less than 2.5e−4) of
the impulse response of W (z)H(z) after: First, second and third iterations respectively
in (b), (c) and (d) (the subplot ij is the transfer from input j to output i)
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Fig. 3. C12(y, τ ) for: First (a)(b), second (c)(d) and third (e)(f) iterations. The upper
row shows results for all experiments (index n) and the bottom row shows the mean,
the minimum and the maximum of the covariance computed on all experiments.

The evolution of the impulse response of the cascade is presented in
Fig.2-(b), (c) and (d). After adapting W (z), the impulse response has the form
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of Eq.(3) in Fig.2-(b) and (c) but finally after the row relative degree difference
was estimated the cascade is equal to identity because the blind deconvolution
is achieved, Fig.2-(d).

The evolution of the covariance is depicted in Fig.3: First, second and third
iterations (in left, middle and right column respectively). Fig.3-(a), (c) and (e)
show C12(y, τ) versus the delay τ for all the 100 experiments. The mean, mini-
mum and maximum value of C12(y, τ) are also plotted in Fig.3-(b), (d) and (f).
During first iteration, the largest values are obtained for τ = 1, 2 as expected
from Eq.(5). But a threshold β such that τ = 2 is selected for all experiments
does not exist, see Fig.3-(b). For second iteration (after shifting first observation
by one sample for all experiments: r̂12 = 1), the value τ = 1 is selected in all
experiments. Thus the true row relative degree difference of two, i.e. r̂12 +1 = 2,
is correctly estimated for all experiments. Consequently, after shifting again of
one sample the first observation for all experiments and minimize the mutual
information, the covariance has only very small values and the algorithm stops.

5 Conclusion

In this paper we show how to blindly estimate the row relative degree difference
of a class of transfer matrices non-invertible at infinity by means of an iterative
method based on a blind signal deconvolution setting.
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