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Abstract. The complex-valued signal model is useful for several prac-
tical applications, yet few algorithms for separating complex linear mix-
tures exist. This paper develops two algorithms for separating mixtures
of independent complex-valued signals in which statistical independence
of the real and imaginary components is assumed. The procedures ex-
tract sources assuming that the kurtoses of either the real or imaginary
components are non-zero. Simulations indicate the efficacy of the meth-
ods in performing source separation for wireless communications models.

1 Introduction

The goal of blind source separation is to find an (m × m) matrix B such that

y(k) = Bx(k) and x(k) = As(k), (1)

where y(k) contains estimates of the m sources in s(k), A is full rank, and
s(k) is typically assumed to contain independent signals. This paper focuses on
complex-valued source separation, in which all quantities in (1) are complex-
valued. Few algorithms have been developed for complex ICA [1, 2, 3, 4, 5]. The
complex FastICA procedure in [2] uses a circular contrast and may not perform
well with mixtures containing non-circular sources such as real-valued BPSK
signals.

In this paper, we consider algorithms for separating complex-valued signal
mixtures using fourth-moment contrasts, in which the sources in s(k) are as-
sumed to have independent real- and imaginary components. Such an assump-
tion is quite reasonable in some applications, particularly in multiple-input,
multiple-output (MIMO) wireless communications systems where higher-order
modulation schemes are used. We develop two procedures that employ modified
versions of the FastICA algorithm to extract each of the m complex sources
based on the statistics of either their real or imaginary component. Simula-
tions show the efficacy of the proposed methods for complex-valued source
separation.
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2 On Mixtures of Complex-Valued Signals

Without loss of generality, assume that the sources in s(k) = sR(k) + jsI(k) are
zero-mean and strong-uncorrelated [6, 7], such that the source covariance and
pseudo-covariance matrices are E{s(k)sH(k)} = I and E{s(k)sT (k)} = Λ, and
Λ is a diagonal matrix of real-valued circularity coefficients λi with 0 ≤ λi ≤ 1.

Consider an algorithm that adjusts a single row b = [b1 · · · bm]T of B in (1) to
extract a source si(k) based on the statistics of its real or imaginary component
sR,i(k) or sI,i(k). The output signal is y(k) = yR(k) + jyI(k) = bT x(k) =
cT s(k), where c = AT b = cR + jcI . Thus, yR(k) = cT

RsR(k) − cT
I sI(k) and

yI(k) = cT
I sR(k) + cT

RsI(k). The normalized kurtoses of sR,i(k) and sI,i(k) are

κR,i =
2E{s4

R,i(k)}
(1 + λi)2

− 3 and κI,i =

⎧
⎨

⎩

2E{s4
I,i(k)}

(1 − λi)2
− 3, if 0 ≤ λi < 1

0, if λi = 1
. (2)

The quantities κR,i and κI,i are related to the symmetric kurtosis of si(k) as

κi =
1
4

[
(1 + λi)2κR,i + (1 − λi)2κI,i

]
. (3)

Theorem 1. Under the above conditions, the real and imaginary components
yR(k) and yI(k) of y(k) have the following second moments and kurtoses:

E{y2
R(k)} =

1
2

m∑

i=1

(1 + λi)c2
R,i + (1 − λi)c2

I,i (4)

E{y2
I(k)}=

1
2

m∑

i=1

(1−λi)c2
R,i + (1+λi)c2

I,i, E{yR(k)yI(k)}=
m∑

i=1

λicR,icI,i(5)

κ[yR(k)] =
m∑

i=1

[κR,i

4
(1 + λi)2c4

R,i +
κI,i

4
(1 − λi)2c4

I,i

]

+
3
2

m∑

i=1

[

E{s2
R,i(k)s2

I,i(k)} − 1
4
(1 − λ2

i )
]

c2
R,ic

2
I,i

−4
m∑

i=1

c3
R,icI,iE{s3

R(k)sI(k)} + cR,ic
3
I,iE{sR(k)s3

I(k)} (6)

κ[yI(k)] =
m∑

i=1

[κR,i

4
(1 + λi)2c4

I,i +
κI,i

4
(1 − λi)2c4

R,i

]

+
3
2

m∑

i=1

[

E{s2
R,i(k)s2

I,i(k)} − 1
4
(1 − λ2

i )
]

c2
R,ic

2
I,i

+4
m∑

i=1

c3
I,icR,iE{s3

R(k)sI(k)} + cI,ic
3
R,iE{sR(k)s3

I(k)} (7)
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Corollary 1.1: Under the additional assumption that sR,i(k) and sI,i(k) are in-
dependent for all 1 ≤ i ≤ m,

κ[yR(k)] =
m∑

i=1

[κR,i

4
(1 + λi)2c4

R,i +
κI,i

4
(1 − λi)2c4

I,i

]
(8)

κ[yI(k)] =
m∑

i=1

[κR,i

4
(1 + λi)2c4

I,i +
κI,i

4
(1 − λi)2c4

R,i

]
(9)

The fourth-order statistical structures of the real and imaginary components
of linearly-mixed, statistically-independent strong-uncorrelated, and possibly
non-circular complex sources is not as simple as in the real-valued case. If all
sR,i(k) and sI,i(k) are jointly statistically-independent, however, (8) and (9) are
similar in structure to the real-valued case, leading to the following theorem.

Theorem 2. Consider the single-unit extraction criterion

J (b) =
∣
∣
∣
∣

κ[yR(k)]
(E{|yR(k)|2})2

∣
∣
∣
∣ (10)

where y(k) = bT x(k) = cT s(k) = yR(k)+ jyI(k). Assume that all of the sources
are statistically-independent with statistically-independent real and imaginary
parts, and at least one of the sources has a real and/or imaginary part with
κR,i �= 0 and/or κI,i �= 0. Then, maximization of J (b) over b under the con-
straint E{y2

R(k)} = 1 yields one of the columns of A−1 for which κR,i �= 0 or
κI,i �= 0, up to a complex scaling factor ejπp/2, where p is an integer.

Proof: Define the (2m)-dimensional real-valued vector cR =
√

2[cT
R[I + Λ]−1/2

cT
I [I − Λ]+/2]T , with entries {ci}, where N+ denotes the pseudo-inverse of a

square matrix N. Let κi denote the (2m)-element sequence {κR,1, . . . , κR,m,
κI,1, . . . , κI,m}. Substituting these relations into (8) and and (4) yields

κR[yR(k)] =
2m∑

i=1

κic
4
i and E{y2

R(k)} =
2m∑

i=1

c2
i . (11)

The relations in (11) are identical to those in the 2m-dimensional real-valued
separation case. Thus, constrained maximization of J (b) results in an extracted
source with a non-zero-kurtosis real or imaginary component. The one non-zero
coefficient of bT A equals ejπp/2 because (i) absolute signs of the {ci} do not
matter, and (ii) the real or imaginary component of a source could be extracted.

3 FastICA Algorithms for Extracting a Single Source
with Independent Real and Imaginary Components

We now develop fast-converging single-unit procedures to extract one source from
mixtures of sources having independent real and imaginary components. Two
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methods are considered. The first algorithm relies on the strong-uncorrelating
transform G that diagonalizes both the sample covariance and pseudo-covariance
matrices RXX = E{x(k)xH(k)} and PXX = E{x(k)xT (k)}, respectively [7].
Let Γ = GA = Γ R + jΓ I and v(k) = Gx(k) = vR(k)+ jvI (k). Then, s(k) and
v(k) are related as

[
vR(k)
vI(k)

]

=
[
Γ R −Γ I

Γ I Γ R

] [
sR(k)
sI(k)

]

. (12)

The matrix premultiplying [sT
R(k) sT

I (k)]T on the right-hand side of (12) is real-
valued and orthogonal. Moreover, under strong-uncorrelation, E{vR(k)vT

R(k)} =
1
2 (I + Λ̂), E{vI(k)vT

I (k)} = 1
2 (I − Λ̂), and E{vR(n)vT

I (n)} = 0, where Λ̂ =
GPXXGT is diagonal. Since the elements of vR(k) and vI(k) are not unit vari-
ance as required by the real-valued FastICA algorithm, define

v(k) =
[

vR(k)
−vI(k)

]

=

[ √
2(I + Λ̂)−1/2vR(k)

−
√

2(I − Λ̂)+1/2vI(k)

]

. (13)

s(k) =
[

sR(k)
−sI(k)

]

=

[ √
2(I + Λ̂)−1/2sR(k)

−
√

2(I − Λ̂)+1/2sI(k)

]

. (14)

The scaling operations in (13)–(14) are not valid in the space of complex ma-
trices. Despite this fact, the orthonormal mixing properties between the sources
in s(k) and the prewhitened mixture v(k) are maintained with this scaling.

Theorem 3. Let v(k) = vR(k)+jvI(k) and s(k) = sR(k)+jsI(k). Then, under
strong-uncorrelation, the relationship between v(k) and s(k) is identical to that
between v(k) and s(k), i.e. v(k) = Γ s(k) with ΓΓ H = Γ T Γ ∗ = I.

Proof: The proof is obtained by considering the structure of linearly-mixed
strong-uncorrelated random variables as described in [5, 7] and is omitted for
brevity.

The above theorem allows us to proceed with the specification of the FastICA
algorithm in this case, as E{s(k)sT (k)} = I. All of the identifiability, uniqueness,
and separability results for complex-valued ICA are preserved [7].

Given the relationship wt = wR,t + jwI,t, let wt = [wT
R,t wT

I,t]
T , and define

the output of the single-unit extraction system as yt(k) = wT
t v(k). It can be

easily shown that yt(k) = �e[wT
t v(k)]. Since v(k) contains an orthogonally-

mixed set of (2m) independent, real-valued sources with zero means and unit
variances, we can use the standard real-valued FastICA procedure with kurtosis
contrast to adjust the coefficients in wt as

w̃t =

(
1
N

N∑

n=1

y3
t (n)v(n)

)

− 3wt, wt+1 =
w̃t√

w̃T
t w̃t

. (15)
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As has been shown in [8] for real-valued mixtures, this algorithm is guaranteed
to converge to an extracting solution, which for our data structure means that
one of the real or imaginary components of s(k) is obtained in yt(k) with unit-
variance scaling and (possibly) a sign change.

The algorithm in (15) requires the strong-uncorrelating transform, which re-
quires specialized code to compute in the general case. It is possible to design
a single-unit FastICA procedure to separate mixtures of complex-valued sources
using only ordinary prewhitening. In this version, find any prewhitening matrix
Ĝ satisfying ĜRXXĜH = I, and set v(k) = Ĝx(k). The pseudo-covariance
matrix, which is not needed here, is not diagonal. The relationship between v(k)
and s(k) is given in complex form by v(k) = Γ̂ s(k), or in real form as in (12)
with Γ = Γ̂ R+jΓ̂ I . Define the (2m)-dimensional vectors of real-valued elements
v(k) and s(k) as

v(k) =
[

vR(k)
−vI(k)

]

and s(k) =
[

sR(k)
−sI(k)

]

(16)

Then, the sample autocorrelation matrix of vR(k) is

R̂V V =
1
N

N∑

n=1

v(n)vT (n) (17)

=

[
Γ̂ R Γ̂ I

−Γ̂ I Γ̂ R

] (
1
N

N∑

n=1

[
sR(n)sT

R(n) sR(n)sT
I (n)

sI(n)sT
R(n) sI(n)sT

I (n)

])[
Γ̂

T

R −Γ̂
T

I

Γ̂
T

I Γ̂
T

R

]

(18)

In the limit at N → ∞, R̂V V is not diagonal. Moreover, the powers in the
(2m) real-valued sources in s(k) are not unity. Thus, a pair of fundamental
assumptions about the FastICA procedure do not hold. Even so, we can derive
a modified FastICA procedure to obtain one of the non-zero-kurtosis sources in
s(k); see [9] for a similar derivation of a different algorithm. Define wt as the
system vector, and let y

t
(k) = wT

t v(k). Define

ct =
[

cR,t

−cI,t

]

, Γ̂ =

[
Γ̂ R Γ̂ I

−Γ̂ I Γ̂ R

]

, and ΛS =
[
I + Λ 0

0 I − Λ

]

. (19)

Then, we set y
t
(k) = cT

t s(k) and ct = Γ̂
T
wt. Consider the fourth moment term

E{|y
t
(k)|4} = cT

t E{s(k)sT (k)ctc
T
t s(k)sT (k)}ct. (20)

It is straightforward to show that

E{s(k)sT (k)ctc
T
t s(k)sT (k)} = 2ΛSctc

T
t ΛS + ΛcT

t ΛSct + Kdiag[ctc
T
t ],(21)

such that the desired update is

c̃t = E{s(k)sT (k)ctc
T
t s(k)sT (k)}ct − 3ΛSctc

T
t ΛSct. (22)
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The power constraint changes to E{y2
t
(k)} = cT

t ΛSct = (1 ± λi), and it is
met when ct has only one non-zero unity-valued element, which is equivalent to
wT

t wt = 1. Transforming back to the coordinates wt, we obtain the update

w̃t =

(
1
N

N∑

n=1

y3
t
(n)v(n)

)

− 3R̂V Vwt

(
1
N

N∑

n=1

y2(n)

)

, wt+1 =
w̃t√

w̃T
t w̃t

(23)

4 Designing Multiple-Component Extraction Procedures

For either of our single-source extraction procedures in (15) or (23) , we now
develop extensions that employ multiple parallel systems to extract each of the
source components within the mixture. We exploit the structure of the com-
plex prewhitened mixing system as indicated in (12) to make this task easier.
Suppose that wt = wR,t + jwit of either algorithm has converged such that
�e[wT

t v(k)] = dR,isR,i(k) for some real-valued scalar dR,i. Then, �m[wT
t v(k)] =

dI,isI,i(k) for some real-valued scalar dI,i. Similarly, if �e[wT
t v(k)] = dI,isI,i(k),

then �m[wT
t v(k)] = dR,isR,i(k). In other words, extracting any real (or imagi-

nary) component of a source in the mixture gives the corresponding imaginary
(or real) component of that source via the complex conjugate of the complex-
valued system output. We only need to run m single-unit real-valued extraction
procedures and employ each extracted coefficient vector twice to deflate the sig-
nal space as sources are extracted. If Gram-Schmidt deflation is employed, the
multi-source extension of the algorithm in (23) for the ith separation stage is

y
it
(k) = wT

itv(k) (24)

w̃it =

(
1
N

N∑

n=1

y3
it
(n)v(n)

)

− 3

(
1
N

N∑

n=1

y2
it
(n)

)

R̂V V wit (25)

for n = 1 to i − 1 do
wit = w̃it − wnwT

n w̃it (26)
wit = wit − mnmT

nwit (27)
end

wi(t+1) =
wit√

wT
itwit

(28)

where the vectors wn = [wT
R,n wT

I,n]T and mn = [−wT
I,n wT

R,n]T are the
coefficient vectors from the previous extraction steps. After convergence of all
units,

W =

⎡

⎢
⎣

wT
R,1 + jwT

I,1
...

wT
R,m + jwT

I,m

⎤

⎥
⎦ , y(k) = Wv(k). (29)
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The following theorem describes the separating capabilities of this algorithm.

Theorem 4. Suppose x(k) contains a mixture of m complex-valued statistically-
independent sources that all have statistically-independent real and imaginary
parts in which all but one of the sources has either a real or an imaginary com-
ponent with a non-zero kurtosis. Then, either of the algorithms in (15) or (23)
combined with (26)–(29) extracts all complex-valued sources in s(k).

Remarks: The above theorem allows for each source to have a zero-kurtosis real
or imaginary part that could be Gaussian-distributed. Thus, our algorithms can
extract several BPSK sources measured in Gaussian noise in a complex base-
band representation of an array processing system in wireless communications.
In addition, note that our techniques are more powerful than a general (2m)-
dimensional FastICA procedure applied to a set of prewhitened signal mixtures
generated from the real and imaginary parts of x(k). The latter procedure would
require all but one of the 2m total real and imaginary parts of the complex sources
to have a non-zero kurtosis.

5 Simulations

We now explore the numerical performances of the proposed algorithms. All
evaluations are performed on synthetic data using the MATLAB technical com-
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Fig. 1. Convergence of E{ICIt} for the various algorithms in a noiseless six-source
separation task
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Fig. 2. Convergence of E{ICIt} for the various algorithms in a noisy seven-source
separation task

puting environment. Three BPSK and three 16-QAM sources were mixed using
A = UΣVH , where U and V are random complex orthogonal and the com-
plex diagonal elements of Σ have amplitudes in the range [0.2, 1]. The average
inter-channel interference (ICI) is used to measure performance, as given by

ICI =
1
m

m∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

m∑

l=1

|cil|2 − max
1≤k≤m

|cik|2

max
1≤k≤m

|cik|2

⎞

⎟
⎟
⎟
⎟
⎠

, (30)

where cil = [WĜA]il. Shown in Figure 1 are the performances of the multi-unit
versions of the algorithms in (15) and (23) along with those of two different
versions of JADE using m and m2 cumulant matrices [1], and the circular com-
plex FastICA algorithm [2] with asymmetric deflation and G(|y|2) = 0.5|y|2.
The proposed methods outperform the algorthm in [2], and they also perform
better than JADE(m) for N ≤ 200. Figure 2 shows a more-realistic situation
in which an additional Gaussian was included in the m = 7-source mixtures
and additive circular uncorrelated Gaussian noises with variances σ2

ν = 0.001
was used as measurement interference. In this case, the proposed methods per-
form as well as or better than both JADE versions for N ≤ 500 snapshots.
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Per-unit convergence of the proposed algorithms is as fast as the original real-
valued FastICA algorithm; only a few iterations of (15) and (23) are required at
each stage.

6 Conclusions

In this paper, we have derived two novel algorithms for extracting independent
sources from complex-valued mixtures using the fourth-moment properties of
their real or imaginary components. The algorithms are computationally-simple
and converge quickly. Simulations on mixtures of complex-valued signals typi-
cally found in wireless communications applications show the methods’ efficacies.
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