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Abstract. There are numerous algorithms available for blind signal separation 
(BSS) of multiple signals, but most of these are optimised for short blocks of 
data, stationary signals and time invariant mixing matrices. As such, they are 
unsuitable for real-world applications, which often require tracking BSS carried 
out in real time with as small a lag as possible. This paper looks at the problems 
encountered in applying BSS to real data sets and addresses the issue of 
computationally efficient tracking BSS based on well-understood two-stage 
block-based approaches. An example is included where the technique is applied 
to a five-minute section of twin foetal electrocardiogram (ECG) data.  

1   Introduction 

A commonly desired objective of signal processing is to recover a signal of interest 
from sensor recordings in which it may be masked by noise and by other, interfering, 
signals. Often there will be a large number of signals present, and any individual 
sensor can only receive a mixture of these signals: in general, only limited 
information about the signals of interest can be recovered from such a mixture. Blind 
signal separation (BSS) aims to separate signals by utilizing multiple sensors, 
commonly using the assumption that the signals are independent (Independent 
Component Analysis). BSS has been successfully used in many different application 
areas, e.g. artefact suppression in electroencephlogram (EEG) recordings [8], foetal 
electrocardiogram (ECG) analysis [10] and image enhancement [5].  

The term 'blind' is used to indicate that no prior information, either concerning the 
individual signals (other than the independence assumption), or the manner in which 
they combine at the sensors is available. Unknown factors generally include the 
number of signals, the locations of the signal sources and the sensor locations. 

Many different techniques have been developed for carrying out BSS. Some of the 
best performing, or best known, are JADE [3], FastICA [6], BLISS [7], EASI [4], 
InfoMax [2] and kernelICA [1]. All of these have been developed to solve the BSS 
problem in the theoretical case, so without modification they are not necessarily 
suitable for processing real data sets, especially over long periods of time. Although 
the difficulties arising in processing real data sets are often unique to the type of data, 
there are many common problems. In this paper we describe some of these common 
problems.  

Most real data sets contain non-stationary signals and time-varying mixing, 
especially if they are recorded over long periods of time. We describe how to extend 
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single block-based BSS algorithms to produce an efficient tracking BSS approach. 
We provide a demonstration of this technique, applied to a twin foetal ECG data set 
over five minutes. This shows the utility of the technique. 

In section 2 we introduce the basic BSS model, investigate the two-stage approach 
to solving it and observe some of the difficulties encountered when using it on real 
data. Our tracking BSS approach is developed in section 3, and is demonstrated on 
foetal twin ECG data in section 4. Conclusions are drawn in section 5.  

2   Basic BSS 

2.1   Data Model 

The basic linear BSS data model, assuming m sensors and T samples is: 

X = AS + N (1) 

The (m x T) matrix X denotes the observed sensor data, so the rows of X contain the 
sensor outputs. The (m x m) matrix A denotes the time-invariant mixing matrix and 
the rows of the (m x T) matrix S contain the independent signals, assumed to be 
stationary. The (m x T) matrix N contains the sensor noise, usually assumed to be 
white Gaussian noise, uncorrelated between the sensors. For the sake of simplicity we 
assume that the number of signals is equal to the number of sensors (m), although for 
most techniques it is only necessary for there to be at least as many sensors as signals. 
The following conditions also apply to the data model: 

• The mixing process is assumed to be linear and instantaneous (time delays between 
sensors can be represented as phase shifts);  

• The mixing process is assumed to be time invariant; 
• At most one of the signals has a Gaussian distribution (only required for complete 

signal separation). 

2.2   Algorithms 

Many of the basic BSS algorithms operate on the whole data block at once, using a 
two-stage approach to achieve signal separation. Firstly, in the second-order stage, 
the sensor outputs are decorrelated and normalised using a method such as the 
singular value decomposition (SVD) as shown in equation (2). Here, the columns of 
the (m x m) matrix U contain the orthonormal steering (spatial) vectors. The 
estimated orthonormal signals are contained in the rows of the (m x T) matrix VT. The 
(m x m) diagonal matrix α contains the singular values. The orthonormal signals are 
related to the independent signals by a (m x m) 'hidden' rotation matrix R. The higher-
order stage of separation determines R, as shown in equation 3. The matrix 

SRV ˆT = contains the estimates of the signals and UαRT denotes the estimated 
mixing matrix. 

X=UαVT (2) 

X=UαRTRVT (3) 
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Many of the block-based BSS algorithms differ only in the method used for 
computing R. JADE, BLISS, FastICA and KernelICA all use this two-stage 
approach, with the same second-order stage but different methods for the higher-
order stage. 

Whichever BSS algorithm is used, certain difficulties tend to arise when they are 
applied to real data sets. Some of the commonest of these are: 

• Computational Cost: In general the computational cost associated with applying 
BSS to a data block is high, at least O(m2) and much higher in the case of some 
algorithms such as KernelICA. This leads to two, more specific, problems: 
− Real Time Processing: In many cases real time processing is required, so 

computationally expensive procedures require high processing power, which is 
expensive and possibly unobtainable; 

− Small Processing Lag: Even if processing power is available to process data in 
real time, computationally expensive procedures lead to a large lag between the 
data arriving at the sensors and the processed data being available; 

• Time variation: Although short sections of many real data sets are sufficiently 
time-invariant for the basic BSS algorithms to run, longer sections of such data sets 
are time-varying, e.g. foetal ECG recordings are often time-invariant over 10 
second blocks, but the mixing is time-varying and the signals are non-stationary 
over 1 hour blocks. Three types of time variation are commonly seen: 
− Non-Stationary Signals: Usually the signal power varies, this includes the 

onset of interfering (jamming) signals and signal births and deaths; 
− Non-Stationary Noise Levels: Can lead to portions of the data where the 

signals are swamped by noise and signal separation may not be possible. Such 
events should not be allowed to bias the overall tracking process; 

− Time-Varying Steering Vectors: The relative locations of the signals and 
sensors can change during the data collection.  

In this paper we develop a tracking BSS algorithm for data with significant time 
variation, and wherever possible try to reduce the computational costs involved. 

3   Tracking BSS 

We present a method for extending two-stage BSS techniques to time-varying data 
sets. The basic principle is to use a moving data window, where the signals are 
separated in each window using a block-based approach. However, the use of a 
moving window technique alone is not sufficient for many real applications; here we 
address the following issues: 

• Computational Load: Processing the individual windows in isolation is 
inefficient; 

• Signal Swapping: In each window the signals may be separated in a different 
order. This is due to both the inherent signal ordering indeterminacy in the higher-
order stage, and to the second-order stage ordering the signals by their powers. 
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Our tracking BSS technique uses two techniques based on second and higher-order 
statistics, but for the purposes of tracking, these are first initialised using past 
information and then updated using small rotations. This is similar in concept to the 
EASI algorithm [4], but unlike EASI this approach seeks to utilize the fast 
convergence of block-based approaches, albeit in a tracking context. 

The tracking BSS technique we present here can be implemented using either 
overlapping or contiguous data windows. The first window defines the acquisition 
phase; in this window the data is processed by a normal two-stage BSS technique. It 
is inefficient to process the remaining windows in isolation. The use of the SVD, 
equation (2), in the remaining windows can be problematic. It successfully 
decorrelates the signals, but also orders the signals according to their power. This can 
lead to signals being ordered differently in adjacent windows if their powers vary 
(signal swapping). Similarly, even if initialised near one solution, most higher-order 
techniques are not guaranteed to converge to this solution, but instead will find a 
permuted version of this solution. 

The tracking BSS technique presented here can overcome these problems by using 
information estimated from the previous window to initialise the current one and then 
applying small updates for both the second and higher-order stages. 

3.1   Second-Order Stage 

Consider the second-order stage in a given tracking window. The signals can be made 
orthonormal by combining an initialisation process (using the second-order 
information from the previous window), a decorrelation method (via a Jacobi 
diagonalisation) for updating the orthogonality of the signals and a new normal-
ization step. 

The Jacobi method for diagonalisation can be used as the decorrelation method, 
where each pairwise rotation is constrained to choose the smallest of the possible 
angles to rotate the signals by [9]. For example, if x and y represent the (1 x T) i’th 
and j’th vectors the pairwise orthogonalisation step of Jacobi diagonalisation can be 
done by diagonalising their symmetric correlation matrix, i.e. by finding a rotation 
matrix Q, parameterised by θ, that zeros the off-diagonal elements of the matrix B: 
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where c=cos(θ) and  s=sin(θ).  The correct θ therefore satisfies:  

( ) ( )iijjij aaa22tan −=θ  (5) 

The LHS of equation (5) can be expressed as 2t/(1-t2), where t=tan(θ). Thus, there are 
two solutions for θ in the range [–π/2, π/2]. The orthogonality of two vectors has been 
initialised using information from the last window, so x and y are nearly orthogonal to 
begin with. Thus the two solutions for θ are close to 0 and π/2. A normal SVD 
chooses between these by ordering the outputs according to their power; this can 
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cause the vectors to be rotated by approximately π/2 and hence introduce signal 
swapping. In our tracking BSS technique we avoid this by insisting on the solution 
closest to 0 being used. 

A mathematical summary of the second-order update stage is shown in equations 
(7) to (10), where subscript k denotes values belonging to the k’th data window, e.g. 
Xk denotes the data in the k’th window. We first note that the symmetric 
(unnormalised) correlation matrix of the data has as its eigenvalue decomposition 

T
kkk

T
k

2
kk

T
kk UλUUαUXX == , (6) 

where Uk contains the eigenvectors and λk contains the eigenvalues.  
In equation (7) the eigenvectors for the last window Uk-1 are used to initialise the 

eigenvalue decomposition of the current covariance matrix; for a slowly changing 
mixing matrix, λk' will be nearly diagonal. Thus λk' can be simply diagonalised by Uz, 
equation (8), found by the Jacobi method with the small rotation constraint described 
above. The updated eigenvectors are found via equation (9) and the estimated 
orthonormal vectors are given by equation (10). 

Equation (9) shows how Uk is calculated as the product of an initialisation 
process, Uk-1, and a small update, Uz.  
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3.2   Higher-Order Stage 

The higher-order stage is carried out in a similar way to the second-order stage. The 
independence of the orthonormal vectors Vk

T can be initialised by the rotation matrix 
Rk-1 derived from the last window, equation (11). For a slowly changing mixing 
matrix, and where signal swapping has been avoided in the second-order stage, then 

IRR ≈− k1k . Then the initialized signal estimates, '
kŜ , are nearly separated and need 

to be updated using small angle rotations to avoid introducing signal swapping. Most 
two-stage BSS algorithms can be easily modified so they find a rotation matrix, zR , 

only using small angles. Equations (12) and (13) show how zR  is used to find the 

independent signal estimates and to update the rotation matrix. 
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4   Demonstration of Concept 

In this section the results of applying the tracking BSS technique using the BLISS 
algorithm [7] for the higher-order stage to foetal ECG recordings are presented. It is 
possible to monitor single or multiple foetuses by placing ECG sensors on the 
mother’s abdomen and analysing the signals. It is hard to observe the weak foetal 
signals in the outputs from a single sensor due to maternal signals and other electrical 
interference. BSS offers a way to separate out the weak foetal signals, but this 
analysis needs to be carried out over long periods of time where the stationarity 
hypothesis is not valid. 

Figure 1 shows the first 10 seconds of the 12 sensor recordings, sampled at 512Hz, 
demonstrating the small magnitude of the foetal signals in the sensor outputs. This 
data set is relatively time-invariant has very few interfering signals e.g. muscle noise; 
this means that the signals are clear and good separation should be achievable. 
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Foeta l 
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Fig. 1. Section of the sensor recordings 
 

As in many real data analysis problems, qualitative performance measures are hard 
to find, so qualitative assessments on the quality of the separation must be made. 

In figure 2, the first ten seconds of the signals separated by the EASI algorithm 
(learning rate 0.001) are shown. Note a larger learning rate caused the EASI algorithm 
to introduce signal swapping. The convergence problems of the EASI algorithm can 
be seen; signal breakthrough occurs up to 4000 samples into the data set. This effect 
will follow any sudden change in signal powers or steering vectors. The EASI 
algorithm did provide good separation on the remaining 290 seconds of this data set. 

Figure 3 shows the first ten seconds of the signals separated by the tracking BSS 
technique (block size 5120 samples, 50% block-to-block overlap); the separation is 
clearer as no breakthrough is visible, and the F2 is more clearly separated. The time 
taken to process 1 second of input data by the tracking BSS algorithm was 0.04 
seconds – demonstrating that the algorithm can lead to real-time processing. The 
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algorithm was coded in C++ and run on a Dell Latitude 1.2GHz computer, and the 
figure quoted is for the average of 30 trials. Other experiments have shown that the 
tracking BSS technique can work on heavily artifact-corrupted data sets. 
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time (seconds)
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Fig. 2. First ten seconds extracts of the signals separated by EASI. The signals are denoted by 
M – maternal, F1 – foetus 1 and F2 – foetus 2. 
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Fig. 3. First ten seconds extracts of the signals separated by the tracking BSS technique 
developed at QinetiQ. The signals are denoted by M - maternal, F1 - foetus 1 and F2 - foetus 2. 
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5   Conclusions 

In this paper it has been shown that block-based blind signal separation (BSS) 
methods, combined with a moving window approach, can in principle be used for 
tracking real, non-stationary signals. However, the use of the moving window 
principle alone is not sufficient due to the introduction of signal swapping. We 
overcome this problem and show how past estimates can be efficiently used in the 
tracking process, to reduce the overall computational cost. 

A demonstration of this tracking BSS approach is shown, where it is applied to a 
five-minute recording of twin foetal ECG data. 

References 

1. Bach, F., Jordan, M.: Kernel Independent Analysis. Report No UCB/CSD-01-1166, UCSE 
Berkerley, Presented at ICA2001, November 2001.  

2. Bell, A., Sejnowski, T.: An Information-maximisation approach to blind separation and 
blind deconvolution, Neural Computation 7, 6, 1004-1034, 1995. 

3. Cardoso, J., Souloumiac, A.: Blind beamforming for non-Gaussian signals, IEE proc-F, 
Vol. 140, no. 6, pp. 362-370, Dec 1993. 

4. Cardoso, J., Laheld, B.: Equivariant adaptive source separation, IEEE Trans. on Signal 
Processing, vol. 44, no 12, pp. 3017-3030, Dec. 1996. 

5. Haykin, S., Unsupervised adaptive filtering, John Wiley and sons, 2000. 
6. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, Wiley, 2001. 
7. McWhirter, J., Clarke, I., Spence, G.: Multi-linear algebra for independent component 

analysis, SPIE’s 44th Annual meeting, The international symposium on Optical Science, 
Engineering and Instrumentation, Denver USA, 18-23rd July, 1999.  

8. Romero, S., Mananas, M., Clos, S., Gimenez, S., Barbanoj, M.: Reduction of EEG 
artifacts by ICA in different sleep stages, 25th annual conference of the IEEE EMBS, 
September 2003. 

9. Spence, G., Clarke, I., McWhirter, J.: Dynamic Blind Signal Separation, UK Patent 
Application No.  0326539.4, Patent application filed 14th November 2003. 

10. Taylor, M., Smith, M., Thomas, M., Green, A., Chenga, F., Oseku-Affula, S., Wee, L.: 
Non-invasive fetal electrocardiography in singleton and multiple pregnancies, BJOG: an 
International Journal of Obstetrics and Gynaecology, Vol. 110, pp. 668–678, July 2003. 


	Introduction
	Basic BSS
	Data Model
	Algorithms

	Tracking BSS
	Second-Order Stage
	Higher-Order Stage

	Demonstration of Concept
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




