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Abstract. We focus on convolutive mixtures, expressed in time-domain. Sepa-
ration is known to be obtained by testing the independence between delayed 
outputs. This criterion can be much simplified and we prove in this paper that 
testing the independence between the contributions of all sources on the same 
sensor at same time index also leads to separability. We recover the contribu-
tion by using Wiener filtering (or Minimal Distorsion Principal) which is in-
cluded in the separation filters. The independence is tested here with the mutual 
information. It is minimized only for non-delayed outputs of the Wiener filters. 
The test is easier and shows good results on simulation and experimental sig-
nals for the separation of piston slap and combustion in diesel engine. 

1   Introduction 

Blind source separation (BSS) is a method for recovering a set of unknown source 
signals from the observation of their mixtures. Among open issues, recovering the 
sources from their linear convolutive mixtures remains a challenging problem. Many 
solutions have been addressed in the frequency-domain, particularly for the separation 
of non-stationary audio signals. In the BSS of stationary signals, two problems remain 
open in time domain. It has been proved [1] that convolutive mixtures are separable, 
that is, the independence of the outputs insures the separation of the sources, up to a 
few indeterminacies. However, the meaning of the independence is not the same in 
convolutive and instantaneous contexts. In the convolutive context, the outputs have 
to be independent in the sense of stochastic processes [2] which requires the inde-
pendence of the random variables yi(n) and yj(n-m) for all discrete times n and m. The 
independence criteria are therefore more complicated and computationally expensive. 
Several ideas are given in [3,4] to test the independence in function of time delays m, 
using the mutual information criterion. The second problem is coming from the inher-
ent indeterminacy of the definition of a source in the BSS model. Indeed, any linear 
transform of a source can also be considered as a source and there is an infinity of 
separators that can extract sources. Some constraints can be added either on the 
source signals (they are usually supposed to be normalized) or on the separator system 
(Minimal Distorsion Principal [5]). In [5], one proposition is to choose the separator 
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which minimizes the quadratic error between sensors and outputs, also known as 
Wiener filter. In this paper, we deal with convolutive mixtures and express the model 
in time-domain. The aim is to quantify the proportions of mechanical noise coming 
from piston slap or thermal noise and received on accelerometers, placed on one cyl-
inder of a diesel engine. We are only interested in the contribution of these two 
sources recorded on each sensor. These signals are uniquely defined, which removes 
the filter indeterminacy. It can also help to simplify the independence criterion and we 
prove in this paper that testing the independence between the contributions of all 
sources on the same sensor at same time index n also leads to separability. We re-
cover these contributions zi(n) by using Wiener filters which are included in the sepa-
ration filters. The independence criterion is therefore less complicated as it requires 
only the independence between the outputs zi(n) and zj(n) (and no more yi(n) and yj(n-
m)). The mutual information is used here and shows good results on simulation and 
experimental signals for the separation of piston slap and combustion noise in diesel 
engine. 

2   Modelization  of the Observations 

Let us consider the standard convolutive mixing model with M inputs and M outputs. 
Each sensor ( )jx n  (j=1, .., M) receives a linear convolution (noted *) of each source 

( )is n  (i=1,…,M) at discrete time n: 

1

( ) * ( )
M

j ji i
i

x n h s n
=

=∑     (1) 

where hij represents the impulse response from source i to sensor j. The inverse of 
mixing filters are not necessarily causal, so the aim of BSS is to recover non-causal 
filters with impulse responses gij between sensor i and output j, such that the output 
vector y(n) estimates the sources, up to a linear filter : 

1

( ) ( ) ( )
M L

j ji i
i k L

y n g k x n k
= =−

= −∑∑    (2) 

Any linear transform of a source can also be considered as a source and there is an 
infinity of separators gij that can extract sources. We focus here on the estimation of 
the signals hij * si(n), coming from source i on sensor j. These signals are uniquely 
defined, which removes the filter indeterminacy. Let be a 2 sources 2 sensors scheme. 
For sake of simplicity, we call here sources the two contributions on the first sensor. 
So, x1(n) is equal to : 1 1 2( ) ( ) ( )x n s n s n= + . Let be y1(n) and y2(n), two outputs :  

2

1

( ) ( ) ( )
L

j ji i
i k L

y n g k x n k
= =−

= −∑∑                                        (3) 

If yj(n) is any linear filtering of one source, than the contribution of this source on the 
first sensor is calculated by an (eventually non causal) Wiener filter Wj(z) such that 
the quadratic error between x1(n) and yj(n) is minimized. The two contributions on the 
first sensor are so given by: 
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1

( ) ( ) ( )
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= −∑∑                                 (4) 

where the discrete Fourier Transforms (DFT) of the Wiener filters wj(k) are computed 
in function of the cross-spectra of x1(n) and yj(n) : 

    1 1 2 1

1 2

1 2

( ) ( )
( ) ( )

( ) ( )
;Y X Y X

Y Y

f f
W f W f

f f

γ γ

γ γ
= =     (5) 

3   Separability of the Source Contributions on One Sensor 

In specific cases, testing the independence between y1(n) and y2(n) is sufficient [6] to 
ensure the separation. For example, for i.i.d. normalized sources, the sum of fourth-
order cumulants of the outputs is a contrast function [7] under a condition on separat-
ing filters [6]. For linear filtering of i.i.d. signals, the same result is obtained after a 
first step of whitening of the data. However, in a general case, delays must be intro-
duced in the contrast function and the separability of convolutive mixtures is obtained 
only when the components of the output vector y(n) are independent in the sense of 
stochastic variables : y1(n) and y2(n-m) have to be independent for all discrete time 
delays m.  For example, a solution is to minimize the criterion J : 

( )1 2( ), ( )
m

J I y n y n m= −∑    (6) 

where I represents the mutual information (7). I is nonnegative and equal to zero if 
and only if the components are statistically independent. 
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∫
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   (7) 

The delays m can be taken in an a priori set [-K, .., K], which depends on the degree 
of the filters corresponding to the whole mixing-separating system. The criterion (6) 
is computationally expensive. In [3], a gradient-based algorithm minimizes (6): at 
each time iteration, a random value of delay m is chosen and I(y1(n), y2(n-m)) is used 
as the current separation criterion. 

We propose to study here the separability of z1(n) and z2(n) (4) versus y1(n) and 
y2(n). We show that it is simpler and that no time delay (n-m) is needed. Suppose 
now any outputs y1(n) and y2(n). To ensure the separation, it is necessary (but not 
sufficient) that the mutual information I(y1(n), y2(n)) is zero. Two cases can happen. 
If each output yj(n) only depends on one source, the outputs are also independent in 
the sense of stochastic processes (the separation has been effected) and it will be 
also verified for z1(n) and z2(n). So I(z1(n), z2(n))=0. In the second case, the outputs 
yj(n) can be independent (I(y1(n), y2(n))=0 at time delay 0) but remain mixtures of 
sources. For example, in the case of i.i.d sources, the two following outputs yj(n) are 
independent (8): 
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1 1 2

2 1 2

( ) ( ) ( )

( ) ( 1) ( 1)
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= +

= − + −
                       (8) 

It occurs (typically for i.i.d. sources) when one source is common in the two outputs 
but with two different time index (n-n0) and (n-n1). In that case, yj(n) are independent 
but surely not the components of zj(n)=Wi(z) yj(n), as common time index can appear 
after linear filtering. It can be seen intuitively, since Wiener filtering aims at the 
maximization of the correlation between z1(n) and x1(n) (respectively z2(n) and x1(n)). 
We will prove theoretically that indeed I(z1(n), z2(n)) is not equal to zero. As a conse-
quence, testing the cancellation of I(y1(n), y2(n)) and I(z1(n), z2(n)) will ensure the 
separability.   

Suppose that y1(n) and y2(n) are mixtures of the sources (even if I(y1(n), y2(n))=0). 
So are z1(n) and z2(n) after Wiener filtering. Let be Z1(f) and Z2(f), their DFT’s. They 
are of the form (10). The transfer functions W1(f) and W2(f) (5) of the Wiener filters 
are expressed in function of the DFT of filters gij(k), Gji(f), and the source spectra: 
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zj(n) are linear filtering of s1(n) and s2(n) as y1(n) and y2(n). Call uij(k), the new 
mixing filters: uij(k)=[wj * gij](k) where * stands for the linear convolution. zj(n) are 
expressed as : 

2

1

( ) ( ) ( )
L

j ij i
i k L

z n u k s n k
= =−

= −∑∑                                            (11) 

The two signals z1(n) and z2(n) cannot be independent (I(z1(n), z2(n)) is not zero) if 
some coefficients u11(k) and u12(k) are non zero for common time delays k. And, at 
least, we prove that one coefficient, uij(k)(0), is non zero. Suppose that the DFT is 
computed on N time samples : 
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If the third term of the sum is positive or null, then u11(k)(0) cannot be null. If it is 
negative, (u11(k)(0))2 is always superior to a strictly positive value (14). Similar com-
putations can be done with u12(k)(0), u21(k)(0) and u22(k)(0). 
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So, for any outputs yj(n) which verify I(y1(n), y2(n))=0, then after Wiener filtering 
projected on the same sensor (here the first one) I(z1(n), z2(n)) is non zero. The only 
exception concerns the outputs yj(n) which depend on one source and it means that the 
separation has been achieved. Same results can also be obtained with M sources. 

As a consequence, testing I(y1(n), y2(n))=0 and I(z1(n), z2(n))=0, ensures the sepa-
rability. The criterion is much more easier to test than the mutual information of  
delayed outputs as it can be verified in an iterative way. Moreover the outputs are 
directly the contribution of the sources on the processed sensor.  

4   Separating Algorithm and Simulations 

The final separating algorithm for convolutive mixtures is based here on the miniza-
tion of the mutual information as in [3] but the previous proof of separability could be 
exploited with another independence test.  
 
Initialization : y(n)= x(n) 
Repeat until convergence :  

- Estimate the score function difference between y1(n) and y2(n): β(y1(n),y2(n)) 
- Update : y(n)      y(n)- µ β( y1(n),y2(n)) 
- Compute the Wiener filters Wi(z), and the contributions : zj(n)=Wi(z) yj(n) 
- Replace : y(n)   z(n) 

 
The performances are shown in figures 1 and 2 with simulations results. Each source 
(of 1500 samples) is constituted of the sum of a uniform random signal and a sinu-
soid. They are mixed with filters :  
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H z
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=
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                         (15) 

The mutual information (between z1(n) and z2(n)) and the quadratic error between 
z1(n) and the exact contribution are plotted in fig.1 and 2 with marks, for each itera-
tion. They are averaged on 50 realizations of the sources. It shows good results for the 
convergence speed and the residual quadratic error. The results can still be improved 
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by adding some constraints. Indeed, four contributions must be computed in this 
scheme by projecting y1(n) (respectively y2(n)) on the two sensors: z11(n), z21(n) (re-
spectively z12(n), z22(n )). The convergence speed is increasing by adding the mutual 
information between the projections on the second sensor I(z21(n), z22(n)) to I(z11(n), 
z12(n)) (as previously) in the minimization. The results are displayed in figures 1 and 2 
in solid line and show the increasing of the convergence. So, the new algorithm is: 

Initialization : y(n)= x(n) 
Repeat until convergence :  

- Estimate the score function differences: β(z11(n), z12(n)), β(z21(n), z22(n)) 
- Update : y(n)      y(n)- µ [β(z21(n), z22(n))+β(z11(n), z12(n))] 
- Compute the Wiener filters Wij(z), and the contributions : zij(n)=Wij(z) yj(n) 
- Replace : y(n)   [z11(n), z12(n))] 

 
Fig. 1. Mutual information versus iterations 

 

 
Fig. 2. Quadratic error between the contribution of one source on the first sensor and its esti-
mate, versus iterations 

5   Separation of Piston Slap and Combustion in Diesel Engine 

The aim is to characterize the relative noise given out by a diesel engine by quantify-
ing the proportions of mechanical noise coming from piston slap and thermal noise or 
combustion. Signals are issued of ten accelerometers, placed on a four-stroke and four 
cylinder diesel engine. They record thermal and mechanical phenomena that are tem-
porally superposed around the TDC, as well as spectrally overlapping. Some sensors 
respond to vertical moves or horizontal ones, according to their positions. Therefore, 
some accelerometers are more sensitive to combustion noise whereas the other ones 
receive more mechanical noise as piston-slap. Nevertheless, all accelerometer signals 
are convolutive mixtures of thermal and mechanical sources. Signals have been  
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sampled at 25600Hz. In figure 3, we show the power measured by one sensor in the 
angular window [-40°, 80°] of the crankshaft (in green). This sensor responded to 
horizontal moves as it was placed on one side of the liner and received more piston-
slap. The figure 3 includes the measured pressure and the injection control pulses. The 
contributions of the two sources on the sensor have been estimated by the algorithm 
proposed in section 4 and their powers are shown in figures 4 and 5. 

degree

Measured 
pressure  

control pulses  
of injection 

 
 

Fig. 3. Power of one sensor versus the crankshaft angle in degree 
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Fig. 4. Power of the first separated source versus the crankshaft angle 
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Fig. 5. Power of the second separated source versus the crankshaft angle 
 

A first experiment has been done without injection and therefore no combustion 
noise is present. It helps to know the exact localization of the mechanical and thermal 
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phenomena. This experiment (not presented here) shows that the sensor registers three 
mechanical shocks, at 20°5, 23° and 27°. By difference, we can conclude that the 
combustion is present between 10° and 20°, including the position of the main shock 
and around 0° for the pre-combustion. The two phenomena are well noticeable in 
figure 3. After separation, we can see that the first contribution is really the most 
important. It can be correctly attributed to mechanical shocks as they take place at 
21°, 23°8 and  28°8. Besides no pre-combustion is seen around 0° and the main com-
bustion (between 10° and 20°) is well separated. The second contribution is a good 
estimation of the thermal noise as we recover the pre-combustion and the main com-
bustion. Moreover, the position of the pre-combustion is validated by the localization 
of the control pulses of injection (seen in figure 3). 

6   Conclusion 

We focus on the separability of convolutive mixtures, expressed in time-domain. In 
the convolutive context, the outputs yi(n) have to be independent in the sense of sto-
chastic processes which requires the independence of yi(n) and yi(n-m) for all discrete 
times n and m. The independence criteria are therefore complicated and computation-
ally expensive. The criterion has been simplified as we recover only the contribution 
of all sources on all sensors, by using Wiener filtering (or Minimal Distorsion Princi-
pal). It has been proved that testing the independence between these contributions on 
the same sensor also leads to separability, without testing an independence test of 
delayed outputs. The criterion is easier to test and is implemented here by minimizing 
the mutual information of the outputs after Wiener filtering. It shows good results on 
simulation and experimental signals for the separation of piston slap and combustion 
in diesel engine. 
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