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Abstract. We develop a super-fast kernel density estimation algorithm
(FastKDE) and based on this a fast kernel independent component anal-
ysis algorithm (KDICA). FastKDE calculates the kernel density estima-
tor exactly and its computation only requires sorting n numbers plus
roughly 2n evaluations of the exponential function, where n is the sam-
ple size. KDICA converges as quickly as parametric ICA algorithms such
as FastICA. By comparing with state-of-the-art ICA algorithms, simula-
tion studies show that KDICA is promising for practical usages due to its
computational efficiency as well as statistical efficiency. Some statistical
properties of KDICA are analyzed.

Keywords: independent component analysis, kernel density estimation,
nonparametric methods.

1 Introduction

Independent component analysis (ICA) has been a powerful tool for blind source
separation inmany applications such as image andacoustic signal processing, brain
imaging analysis (Hyvarinen, Karhunen and Oja 2001). Suppose that an observ-
able signal, say X, can be modeled as an unknown linear mixture of m mutually
independent hidden sources (S1, · · · , Sm). Denote S ≡ (S1, · · · , Sm)T , so

X = AS (1)

for some matrix A. Assume that {X(t) : 1 ≤ t ≤ n} are n i.i.d. observations of
X, where t is the time index. That is, at time t the hidden sources produce signals
S(t) ≡ (S1(t), · · · , Sm(t))T that are observed as X(t) = AS(t). The problem is
to recover {S(t) : 1 ≤ t ≤ T } without knowing either A or the distributions of
S. In order to solve this problem, it is necessary that dim(X) ≥ m. Without loss
of generality, we may assume that the dimension of X is the same as S and that
A is an m × m nonsingular matrix. It is well-known that W = A−1 (called the
unmixing matrix) is identifiable up to permutation and scale transformations of
the rows of A if S has at most one Gaussian component (Comon, 1994). The
order and scale can be controlled such that W is unique. The ICA problem
becomes to estimate W.

Classical ICA algorithms such as FastICA fit parametric models for the
hidden sources and thus are limited to particular families of hidden sources
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(Cardoso 1998). It has been realized that the unknown distributions of hidden
sources can be estimated by nonparametric methods, which can be applied to a
wide range of distribution families. For example, Hastie and Tibshirani (2002)
proposed penalized maximal likelihood based on log-spline density estimation.
Miller and Fisher (2003) proposed the RADICAL algorithm based on the neigh-
borhood density estimator. Vlassis & Motomura (2001), Boscolo et al. (2004) and
recently Shwartz et al. (2005) used kernel density estimation to deal with the
unknown source distributions. These nonparametric algorithms are in general
more accurate and more robust but on the other side are computationally much
heavier than classical parametric ICA algorithms such as FastICA. The compu-
tational bottleneck is the nonparametric density estimators1. There exists other
nonparametric ICA algorithms such as KCCA, KGV (Bach & Jordan 2002),
CFICA (Eriksson & Koivunen 2003), PCFICA (Chen & Bickel 2005) and kernel
mutual information (Gretten et al 2005), which do not deal with the source den-
sity functions directly. Among different nonparametric density estimators, the
kernel density estimator (KDE) is most popular. But naive implementation re-
quires O(n2) complexity, where n is the sample size. In the statistical literature,
the binning and clustering techniques have been used to reduce the complexity,
see Silverman (1986). For example, Pham (2004) applied the binning technique
in the ICA literature. Fast Gauss transform (Greengard & Strain 1991) and
the dual-tree algorithm by Gray & Moore (2003) are alternative fast algorithms
for KDE. All these KDE algorithms are based on different approximation tech-
niques and are faster than O(n2). But these techniques require careful choices
of certain tuning parameters in order to balance computational speed-up and
approximation errors, and occasionally are as slow as O(n2) in order to achieve
good performance.

In this paper, we develop a super-fast kernel density estimation algorithm
(FastICA) and based on this a fast kernel ICA algorithm (KDICA). The remain-
ing of the paper is structured as follows. In Section 2, the FastKDE algorithm is
developed. In Section 3, the KDICA algorithm is described. In Section 4, some
simulation studies are used to show both computational and statistical efficiency
of KDICA. In Section 4, some statistical properties of KDICA are analyzed. Sec-
tion 5 concludes the paper. From now on, vectors and matrices are in bold and
capital. Wk denotes the kth row vector of W.

2 The FastKDE Algorithm

Let {xi : 1 ≤ i ≤ n} ⊂ R be from a density function p(·). The kernel density
estimator of p(·) is defined by

p̂(x) =
1

nh

n∑

i=1

K(
xi − x

h
), (2)

1 The neighborhood density estimator used by RADICAL only requires n log n com-
plexity, but it does not produce a continuous objective function w.r.t. W.
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where K(·) is a kernel density function and h is the bin width, usually h =
O(n−1/5). Popular choices of K(·) are symmetric density functions such as Gaus-
sian kernel, Laplacian kernel, Uniform, Epanechnikov, etc. We need to evaluate
p̂(x) for x ∈ {xi : i = 1, · · · , n}. Direct evaluation requires O(n2) complexity, and
alternative algorithms based on approximation are available with complexity less
than O(n2), but are not fast enough for ICA.

It is known that the choice of K is not crucial for KDE. Here we use the
Laplacian kernel and develop a simple fast algorithm. The Laplacian kernel is
K(x) = 1

2e−|x|, x ∈ R. Although K(x) is not differentiable at x = 0, p̂(x) ≈∫
p(x + th)K(t)dt is differentiable wherever p(x) is.
First the sample points {xi} are sorted. Sorting n numbers can be performed

very quickly, for example the quick sort algorithm has complexity in the worst
case O(n log n) and the bucket sort algorithm requires linear time only. Without
loss of generality, let x1 ≤ · · · ≤ xn. It is not hard to show that for k = 1, · · · , n,

p̂(xk) =
1

2nh
{exp(

xk

h
)

n∑

i=k+1

exp(−xi

h
) + exp(−xk

h
)

k∑

i=1

exp(
xi

h
)}.

Then FastKDE can now be described as follows.

Algorithm. FastKDE (given h and x1 ≤ · · · ≤ xn)

1. Initialize s1 = ex1/h and sn = 0, then calculate for i = 2, · · · , n,

si = si−1 + exp(
xi

h
) and sn−i+1 = sn−i+2 + exp(−xn−i+2

h
).

2. For i = 1, · · · , n, compute

p̂(xi) =
1

2nh
{si exp(−xi

h
) + si exp(

xi

h
)}.

The exponential values {(exp(xi/h), exp(−xi/h)) : 1 ≤ i ≤ n} only need to be
computed once and saved for both Step 1 and Step 2. Then Step 1 and Step 2
require about 3n summations in total. Thus the total complexity of FastKDE is
about 2n exponential evaluations. The bin width h is chosen for simplicity by the
reference method which minimizes

∫
(p̂(x) − p(x))2dx and gives h = O(n−1/5)

(Silverman 1986). We recommend to use

ĥ = 0.6σ̂n−1/5 (3)

where σ̂ is the sample standard deviation of {xi}.

3 The KDICA Algorithms

In this section we develop the KDICA algorithm, for which the FastKDE al-
gorithm as the key technology is implemented. We use the maximum profile
likelihood and later establish its relationship with criteria derived from informa-
tion theory in Section 5.
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3.1 Maximum Profile Likelihood

Suppose each Sk has a density function rk(·), for k = 1, · · · , m. Then the
density function of X can be expressed as pX(x) = | det(W)|

∏m
k=1 rk(Wkx),

where Wk is the kth row of W. The classical maximum likelihood estimator
(MLE) maximizes the likelihood of observations of X with respect to all the
parameters (W, r1, · · · , rm). However, since (r1, · · · , rm) are unknown functions,
model (1) is called semiparametric (Bickel et al. 1993) and direct implemen-
tation of MLE does not work by using finite samples. In this scenario, maxi-
mum profile likelihood (MPLE) can serve as an alternative of MLE (see Murphy
and van der Vaart 2000). If W is known, then rk is identical to the density
function of WkX. Thus rk can be estimated by the kernel density estimator
r̂Wk

(x) = (nh)−1 ∑n
t=1 K((WkX(t) − x)/h), where for the KDICA algorithm

the Laplacian kernel is used for K. The profile likelihood, say lp, is to modify
the likelihood function by replacing rk by r̂Wk

, that is,

lp(W) =
1
n

n∑

t=1

m∑

k=1

log r̂Wk
(WkX(t)) + log | det(W)|. (4)

Since lp(W) is just a function of W, the maximum profile likelihood estimator
(MPLE) is defined by

Ŵ = argmax lp(W). (5)

Obviously the computational bottleneck of MPLE is to evaluate {r̂Wk

(WkX(t)) : t = 1, · · · , n}m
k=1. By using the FastKDE algorithm developed above,

the complexity of MPLE is reduced to O(mn).

3.2 Algorithm

This subsection describes the KDICA algorithm which implements the estimator
(5). Since prewhitening can reduce computational complexity while keeps statisti-
cal consistency (Chen & Bickel 2005), we use this technique to preprocess the data.
That is, let X̃(t) = Σ̂

−1/2
x X(t) for t = 1, · · · , n, where Σ̂x is the sample variance-

covariancematrix ofX(t).By assuming unitary variances forS, X̃canbe separated
by a rotation matrix. Then we seek for a rotation matrix Ô, such that

Ô = arg min
O∈O(m)

F (O), (6)

where F (O) = −
∑m

k=1
1
n

∑n
t=1 log r̃Ok

(OkX̃(t)), and r̃Ok
(s) = 1

nh

∑n
t=1

K((OkX̃(t) − s)/h) is the Laplacian kernel density estimator for OkX̃. O(m)
is the set of m × m rotation matrices. Since OkX̃ has unitary variance, by (3),
h = 0.6n−1/5.

The optimization of (6) can be done efficiently by using the gradient algorithm
on the Stiefel manifold (Edelman, Arias & Smith 1999). We refer to Bach &
Jordan (2002) for how to implement it. The KDICA algorithm then has three
steps as follows. Note that the KDICA does not need any tuning parameters.
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Algorithm. KDICA (hn = 0.6n−1/5)

1. Prewhiten : X̃(t) = Σ̂
−1/2
x X(t) for t = 1, · · · , n, where Σ̂x is the sample

variance-covariance matrix of {X(t) : 1 ≤ t ≤ n}.
2. Optimize Ô = arg maxO∈O(m) F (O) using the gradient algorithm.
3. Output Ŵ = ÔΣ̂

−1/2
x .

4 Simulation Studies

We compare KDICA with several well-known ICA algorithms such as the gen-
eralized FastICA (Hyvarinen 1999), JADE (Cardoso 1999) and KGV (Bach and
Jordan 2002). Some recent algorithms such as NPICA (Boscolo et al 2004) and
EFFICA (Chen 2004) are also included for comparison. FastICA is used to
initialize KGV, NPICA, EFFICA and KDICA. We used m = 4 and m = 8
sources with different sample sizes 1000 and 4000. The 8 sources were gener-
ated from: N (0, 1), exp(1), t(3), lognorm(1,1), t(5), logistic(0,1), Weibull(3,1),
and exp(10)+N (0, 1). When m = 4, the first four distributions were used for
hidden sources. Each experiment was replicated 100 times and the boxplots
of Amari errors were reported. Figure 1 shows that KDICA is comparable to
EFFICA which has been proven to be asymptotically efficient under mild con-
ditions, and like other nonparametric algorithms, KDICA performs much better
than FastICA and JADE. The right panel of Figure 1 reports the average run-
ning time of all algorithms. The plot shows that KDICA is more than 20 times
faster than NPICA which uses the FFT based KDE algorithm and 50 times
faster than KGV. KDICA is about 10 times slower than but comparable to
FastICA and JADE. The KDICA algorithm exhibits very good simulation per-
formance. But due to space limitation, we are not allowed to report further simul-
ation studies.

We next apply the KDICA algorithm for blind separation of mixtures of im-
ages. Two natural images and a Gaussian noise image are given in the first row
of Figure 2, each of size 80 × 70 pixels (black/white). First, each pixel matrix
is reshaped into a column and each column is normalized by its sample stan-
dard deviation. Second, a random 3 × 3 matrix W ∈ Ω is inverted to obtain
three columns {X(t) ∈ R3 : 1 ≤ t ≤ 5600} and each column is reshaped into a
matrix of size 80 × 70. This gives three contaminated images, as shown in the
second row of Figure 2. Third, {X(t)} is separated into three vectors by using
KDICA, and each vector is reshaped into an image with 80 × 70 pixels. Three
random restarting points were used in KDICA. It is surprising that human eyes
can hardly tell the difference between natural images and separated images. This
type of experiments have also been done by several different researchers in the
ICA literature (e.g. Yang and Amari 1997).

We ran this experiment 10 times with random W by using KDICA and several
other ICA algorithms. The average running times for the generalized FastICA,
JADE, and KDICA are 0.05, 0.03 and 1.82 seconds separately. Other nonpara-
metric algorithms such as NPICA and KGV take more than one minute.
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Fig. 1. Left panel: Comparison of KDICA and other ICA algorithms in terms of the
Amari errors, where the numbers below the x-labels are the average running time
(seconds/per experiment) of the corresponding algorithms. Right panel: Comparison
of running time of different ICA algorithms.

Fig. 2. Face identification by KDICA, where the three original, mixed and separated
images are given in the three rows separately

5 Statistical Consistency and Efficiency of KDICA

In this Section, we study the statistical properties of the estimator (5). Obviously
as n ↑ ∞, r̂Wk

→ rWk
, the density function of WkX . Thus for n = ∞, the

profile likelihood is equal to lp(W) = E
∑m

k=1 log rWk
(WkX) + log | det(W)|.

Let pW(·) be the joint density function of (W1X, · · · , WmX), then pW(Wx) =
pX(x)/| det(W)|. Thus the mutual information of (W1X, · · · , WmX) is equal to
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I(W) = E log
pW(WX)∏m

k=1 rWk
(WkX)

= E log pX(X) − lp(W).

Notice that E log pX(X) does not depend on the parameter W. The above equa-
tion implies that the profile likelihood criteria is equivalent to the mutual infor-
mation criteria which has been popularly used in the ICA literature. Thus we
would expect the statistical performance of KDICA to be similar to or better
than other nonparametric ICA algorithms. General connection between likeli-
hood inference and information theory criteria has been studied by Lee, Giro-
lami, Bell & Sejnowski (2000). We obtain statistical consistency of the KDICA
algorithm as summarized in Theorem 1, whose technical conditions and proof
are omitted here due to space limitation but refer to Chen (2004).

Theorem 1. Suppose that W is identifiable and the density functions of the hidden
sources are continuous and satisfy mild smoothness conditions. If hn = O(n−1/5).
Then the estimator Ŵ given by (5) is consistent, that is, ||Ŵ − WP || = oP (1),
where WP is the true unmixing matrix.

6 Concluding Remarks

In this paper, we have presented the FastKDE and KDICA algorithms. Due to
its computational and statistical efficiency, KDICA makes nonparametric ICA
applicable for large size problems of blind source separation. We conjecture that
FastKDE will make it convenient to deal with nonlinear independent component
analysis (Jutten et. al, 2004) in a truly nonparametric manner.
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