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Abstract. The case of sources that generate multidimensional signals, filling a
subspace of dimensionality K, is considered. Different coordinate axes of the
subspace (“subspace channels”) correspond to different signal portions generated
by each source, e.g., data from different spectral bands or different modalities
may be assigned to different subspace channels. The mixing system that gener-
ates observed signals from the underlying sources is modeled as superimposing
within each subspace channel the contributions of the different sources. This mix-
ing system is constrained as it allows no mixing of data that occurs in different
subspace channels. An algorithm based on second order statistics is given which
leads to a solution in closed form for the separating system. Correlations across
different subspace channels are utilized by the algorithm, whereas properties such
as higher-order statistics or spectral characteristics within subspace channels are
not considered. A permutation problem of aligning different sources’ subspace
channels is solved based on ordering of eigenvalues derived from the separating
system. Effectiveness of the algorithm is demonstrated by application to multidi-
mensional temporally i.i.d. Gaussian signals.

1 Introduction

The notion of multi-dimensional or subspace ICA has been developed in [3] and [6] to
account for the fact that not all sources may reasonably be modeled as one-dimensional
processes with mutual independence. Rather, some sources may generate signals that
fill a multi-dimensional subspace that resists decomposition into one-dimensional mu-
tually independent sources. This can occur both in situations where underlying sources
are unknown and rather a plausible model of the observed data is sought for, and in sit-
uations where analytical reasons dictate a multi-dimensional character of the sources,
such as separation of spectral domain speech, which has originally motivated this work.

The present work suggests a second-order approach to the separation of multidimen-
sional sources and considers a constrained version of the general linear mixing system.

2 Multidimensional Sources and Constrained Mixing

The multidimensional signal generated by source i (i = 1, . . . , N ) is denoted by sf
i (t).

The source is regarded as stationary and ergodic with respect to parameter t, t =
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t1, . . . , tL, i.e., expectation values can be estimated as sample means w.r.t. t. E.g., t
may denote time or spatial position in an image, provided stationarity may be assumed
w.r.t. these variables. Without loss of generality, we limit our treatment to zero mean
sources.

Index f spans the subspace of dimensionality K that is filled by the source, with
f = 1, . . . , K denoting the “subspace channels” (or “channels”) of the source. Source
statistics w.r.t. individual channels f �= f ′ may differ, hence, expectations cannot be
computed as sample averages across f . Subspace channels, e.g., may correspond to dif-
ferent frequency bands for which data of an audio source or multispectral image data
has been collected. More generally, subspace channels may also correspond to differ-
ent modalities of recorded data, e.g., audio and video data may be stored in different
channels. Another example would be data with non-constant mixing, e.g., image data
with position-dependent mixing parameters; here, different subspace channels could
correspond to different spatial positions.

As they are generated by the same source, data in different subspace channels f �= f ′

of a single source may in general covary,

E
{
sf

i (t) (sf ′

i (t))∗
}

�= 0. (1)

Data from different sources i �= j must be uncorrelated since the sources are assumed
to be independent systems. If correlations are computed from source components at two
subspace channels, the result is zero for all pairs of channels (f, f ′),

E
{
sf

i (t) (sf ′

j (t))∗
}

= 0 ∀i �= j, ∀f, f ′. (2)

Mixing of sources is assumed to be separable in the sense that the mixing system
only mixes data from corresponding subspace channels of different sources, but does
not mix data “across” different channels. Gathering data from the f -th subspace channel
of all N sources into a single vector sf (t) = [sf

1 (t), . . . , sf
N(t)]T , mixing is written as

xf
i (t) =

N∑
j=1

af
ij sf

j (t) ⇐⇒ xf (t) = Af sf (t) (3)

This model is compatible with the mixing scenarios in the examples mentioned above.
E.g., multimodal data may plausibly be explained by superposition of basis-patterns
within each modality. A-priori, intermingling of data from different subspace channels
may be regarded as a less significant process and may be ruled out completely in some
applications (e.g., frequency-domain separation of convolutive audio mixtures) on the
grounds of known physics.

From knowledge of the mixed signals xf (t), only, it is aimed to find an estimate Âf

of the mixing matrix so that unmixed signals

uf (t) = [Âf ]−1 xf (t) (4)

can be obtained which resemble the source signals.
The simplest approach to solve system (3) would be to perform ICA or second-order

source separation separately for each subspace channel f . For two reasons this approach
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might not be optimal. First, by neglecting information present in the across-channel cor-
relations (Eq.s 1, 2), the obtained separation quality may not be optimal, e.g., because
the data in individual channels might be lacking sufficient higher-order or spectral cues.
In the evaluation (Sec. 4), we demonstrate that across-channel correlations make it pos-
sible to separate data that have no spectral, higher-order or non-stationarity cues.

Second, care has to be taken to reconstruct coherent subspaces, each pertaining to
one source process. When treating Eq. 3 as N individual source separation problems,
the permutation invariance inherent to blind source separation algorithm applies indi-
vidually to each one, so that gathering the subspace channels for each source process
is a non-trivial issue. A similar problem is frequently encountered in frequency-domain
approaches to convolutive blind source separation. It is shown that across-channel cor-
relations as in Eq.s 1, 2 can be exploited to this end.

3 Solution Based on Correlations Across Subspace Channels

Defining the sources’ cross-covariance matrix Rff ′

s computed from channels f and f ′

as
Rff ′

s = E
{
sf (t) (sf ′

(t))H
}

, (5)

equations (2) and (1) can be restated such that Rff ′

s is diagonal for all (ff ′),
[
Rff ′

s

]
ij

= δijE
{

sf
i (t) (sf ′

i (t))∗
}

, (6)

where δij is the Kronecker symbol.
Since the mixed signals are not independent, their covariance matrix Rff ′

x ,

Rff ′

x = E
{
xf (t) (xf ′

(t))H
}

, (7)

is not diagonal. It can be expressed in terms of the sources’ covariance matrix as

Rff ′

x = Af Rff ′

s

(
Af ′

)H

. (8)

If the mixing system was identical in both subspace channels, Af = Af ′
, then an

eigenvalue equation could be derived in exactly the same manner as presented by [7].
However, since in general Af �= Af ′

, the analog derivation is not possible.
It is observed that by forming the products

Qff ′

s = Rff ′

s [Rf ′f ′

s ]−1 Rf ′f
s (9)

Qff ′

x = Rff ′

x [Rf ′f ′

x ]−1 Rf ′f
x (10)

the algebraic relation between the sources’ Qff ′

s and the mixed signals’ Qff ′

x involves
matrix Af , but not Af ′

,

Qff ′

s = [Af ]−1 Qff ′

x [Af ]−H (11)
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Hence, [Af ]−1 diagonalizes Qff ′

x for all f ′.
An eigenvalue equation for Af can be derived from (11) by forming the product

Qff ′

x [Qff
x ]−1, (12)

yielding
Af Λff ′

= Qff ′

x [Qff
x ]−1 Af , (13)

where
Λff ′

= Qff ′

s [Qff
s ]−1 (14)

is diagonal and contains the eigenvalues of Qff ′

x [Qff
x ]−1.

Similarly, Af ′
is obtained from the Eigenvalue equation

Af ′
Λf ′f = Qf ′f

x [Qf ′f ′

x ]−1 Af ′
. (15)

3.1 Conditions for Identifiability

Equation (13) has a unique solution if all eigenvalues on the diagonal of Λff ′
are dif-

ferent. Similarly, for (15) it must hold that the diagonal elements of Λf ′f are different.
Since Rff ′

s is diagonal and Rff ′

s = [Rf ′f
s ]H , we obtain

Λff ′
= Λf ′f = (16)

Rff ′

s [Rff ′

s ]H [Rff
s ]−1 [Rf ′f ′

s ]−1.

Hence, together with (6) it follows that for Af and Af ′
to be identifiable it must be

fulfilled that ∀i �= j

∣∣∣E{
sf

i (t) (sf ′

i (t))∗
}∣∣∣

2

E
{∣∣∣sf

i (t)
∣∣∣
2}

E
{∣∣∣sf ′

i (t)
∣∣∣
2} �=

∣∣E{
sf

j (t) (sf ′

j (t))∗
}∣∣2

E
{∣∣∣sf

j (t)
∣∣∣
2}

E
{∣∣∣sf ′

j (t)
∣∣∣
2} . (17)

3.2 Solving the Permutation Problem

Since the eigenvectors corresponding to the solution of (13) are unambiguous only upto
their order and a scale factor, the mixing matrix Af cannot be determined uniquely.
Rather, any matrix Ãf which can be expressed as

Ãf = Af Df Pf , (18)

where Df is a diagonal matrix and Pf a permutation matrix, represents a solution
of (13). Hence, it is only possible to determine Af upto an unknown rescaling and
permutation of its columns by Df and Pf , respectively. This corresponds to the well-
known invariances inherent to all blind source separation algorithms.

For one-dimensional source signals this is usually not a problem. With multidimen-
sional sources, the components belonging to a single source are reconstructed with
disparate (unknown) order and scale in different subspace channels f �= f ′ if the corre-
sponding channel-specific permutation and diagonal matrices differ, i.e.,
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Pf �= Pf ′
Df �= Df ′

. (19)

Thus, a coherent picture of each source’s activity cannot be obtained.
No solution is given for the invariance with respect to varied scaling in different

channels. Instead, each row of the estimated unmixing matrix [Âf ]−1 is rescaled to
have unit norm.

The solution to the permutation problem is based on the observation that transforma-
tion (18) results in rearranged eigenvalues Λ̃ff ′

,

Λ̃ff ′
= [Pf ]T Λff ′

Pf . (20)

That is, the column permutation of Af results in a corresponding permutation of the
eigenvalues’ order on the diagonal of Λ̃ff ′

.
Denote by Âf and Âf ′

the estimates of the true mixing matrices Af and Af ′
, re-

spectively. Without loss of generality, we assume

Âf = Af Âf ′
= Af ′

P, (21)

so that the estimates Λ̂ff ′
and Λ̂f ′f of the true eigenvalue matrices Λff ′

and Λf ′f ,
respectively, are

Λ̂ff ′
= Λff ′

(22)

Λ̂f ′f = PT Λf ′fP (23)

Since, according to (16) we have Λf ′f = Λff ′
, it follows

Λ̂f ′f = PT Λff ′
P = PT Λ̂ff ′

P. (24)

Therefore, the permutation matrix P can be directly read from the relative ordering
of the eigenvalues on the diagonals of Λ̂ff ′

and Λ̂f ′f . Permutations are corrected by
replacing Âf ′

by Âf ′
PT whose columns are ordered in accordance with Âf .

3.3 More Than Two Subspace Channels

Separation. If channels f = 1, . . . , K , K ≥ 2, are to be used for separation, the
mixing matrix Af is obtained as the matrix which simultaneously solves the K diago-
nalization equations

Qf,1
s = [Af ]−1 Qf,1

x [Af ]−H (25)

Qf,2
s = [Af ]−1 Qf,2

x [Af ]−H

...

Qf,K
s = [Af ]−1 Qf,K

x [Af ]−H .

The solution can be obtained by using numerical techniques for simultaneous diagonal-
ization [4].
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Identifiability. Equations (25) have a unique solution (up to rescaling and permutation)
if, analogous to Eq. (17), for each f = 1, . . . , K there exists at least one subspace
channel f ′ for which it is fulfilled that ∀i �= j

∣∣∣E{
sf

i (t) (sf ′

i (t))∗
}∣∣∣

2

E
{∣∣∣sf

i (t)
∣∣∣
2}

E
{∣∣∣sf ′

i (t)
∣∣∣
2} �=

∣∣E{
sf

j (t) (sf ′

j (t))∗
}∣∣2

E
{∣∣∣sf

j (t)
∣∣∣
2}

E
{∣∣∣sf ′

j (t)
∣∣∣
2} . (26)

Permutations. The permutations must be sorted for each pair of subspace channels
(f, f ′) by using the method outlined in section 3.2.

4 Evaluation

A synthetic data set of Gaussian i.i.d. noise in two channels is separated. Since the data
in each subspace channel is purely Gaussian, these data cannot be separated by looking
at a single channel only.

The data consisted of four sources sf
1 (t), . . . , sf

4(t), each containing a two-
dimensional subspace with channels, f = 1, 2, and time-points t = 1, . . . , 10000.
Within each subspace channel of each source, the data was chosen to be i.i.d. noise
with Gaussian distribution. To enable separation by the proposed algorithm, correlations
were introduced between the data in different channels of each source by composing the
signals as the sum

sf
i (t) = ξf

i (t) + ζi(t) (27)

of channel-dependent and channel-independent Gaussian random variables ξf
i (t) and

ζi(t), respectively.
Since the data within each subspace channel contained neither cues related to higher-

order statistics, nor cues related to auto-correlation information or non-stationarity, it is
inseparable for any algorithm looking at isolated channels. Only integrating information
across different channels makes separation feasible.

The correlations within each source and the independence of the different sources
are reflected by the covariance matrices Rff ′

s ,

R1,1
s =

⎛
⎜⎜⎝

1.99 0.00 0.00 0.00
0.00 0.89 0.00 0.00
0.00 0.00 0.20 0.00
0.00 0.00 0.00 0.04

⎞
⎟⎟⎠ R1,2

s =

⎛
⎜⎜⎝

1.00 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.04

⎞
⎟⎟⎠ (28)

R2,1
s =

⎛
⎜⎜⎝

1.00 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.04

⎞
⎟⎟⎠ R2,2

s =

⎛
⎜⎜⎝

2.00 0.00 0.00 0.00
0.00 0.89 0.00 0.00
0.00 0.00 0.20 0.00
0.00 0.00 0.00 0.04

⎞
⎟⎟⎠ . (29)

Since the different sources are independent, the off-diagonal terms of all covariance
matrices are zero. The diagonals of R1,2

s and R2,1
s are non-zero due to the correlations

across channels within each source subspace.
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The eigenvalues of equation (16) are computed as

diagΛ1,2 = (Λ1,2
1 , . . . , Λ1,2

4 ) = ( 0.25, 0.51, 0.64, 1.00 ). (30)

Since all eigenvalues are different, the condition for identifiability (17) is fulfilled.
The 4 × 4 mixing matrices A1 and A2 were chosen at random. Covariance matrices

of the mixed signals were processed by the proposed algorithm using the eigenvalue
method, yielding the combined mixing-unmixing system [Âf ]−1Af

[Â1]−1A1 =

�
���

−3.11 −0.03 0.01 −0.02
0.00 0.01 −2.43 −0.02

−0.01 2.39 0.04 −0.01
0.00 0.00 0.00 2.23

�
��� [Â2]−1A2 =

�
���

0.00 0.00 0.00 −1.50
1.69 0.01 −0.03 −0.02

−0.01 1.49 0.02 0.02
0.00 0.00 −1.43 −0.01

�
���

Since each row of the combined system contains only one significant non-zero ele-
ment, the algorithm has successfully separated the signals. The increase in signal-to-
interference ratio from before to after separation amounts to 37.8 dB.

Sources’ components are reconstructed in a different order in the two frequency
channels, as can be seen from the different positions of the non-zero elements of
(Â−1A)(1) and (Â−1A)(2). Therefore, the method for sorting permutations described
in section 3.2 must be employed. To this end, the estimated eigenvalue matrices Λ̂(1, 2)
and Λ̂(2, 1) obtained from solving the eigenvalue problems (13) and (15), respect-
ively, are

Λ̂(1, 2) =

�
���

0.25 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.51 0.00
0.00 0.00 0.00 1.00

�
��� Λ̂(2, 1) =

�
���

1.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00
0.00 0.00 0.51 0.00
0.00 0.00 0.00 0.64

�
��� . (31)

By permuting the eigenvalues on the diagonals of Λ̂(1, 2) and Λ̂(2, 1) to occur in the
same order in both matrices, and by performing the same permutations for the rows
of Â−1(1) and Â−1(2), respectively, it is ensured that the sources’ components are
reconstructed in the same order in both frequencies.

5 Discussion

We have proposed a solution to the BSS problem when sources generate subspaces
with second-order dependencies within each source subspace. Under the assumption of
a constrained mixing system, that can be separated into one linear instantaneous mixing
system per subspace channel, an eigenvalue/joint diagonalization based approach has
been developed for source identification and correct assignment of subspace dimensions
across different sources.

Under additional assumptions, existing second-order separation methods are recov-
ered as special cases of our method. If different subspace channels are derived from
underlying one-dimensional sources by temporal shifting, approaches like SOBI [2],
Molgedey-Schuster [7] and TDSEP [8] are recovered. In this case, the signal sf

i (t)
would be constructed from a one-dimensional signal si(t) as sf

i (t) = si(t + τf ), for
time-shifts τ1, . . . , τK , and constant mixing matrices Af = A would be assumed.



Second-Order Separation of Multidimensional Sources 23

In the two-input-two-output (TITO) case with a whitening preprocessing step, the
separation equations of our algorithm boil down to the TITO identification of FIR chan-
nels proposed by [5] (while the permutation alignment step of both algorithms remains
different).

It is straight-forward to combine the techniques outlined here with standard second-
order separation techniques that can employ spectral cues or non-stationarity of vari-
ance within each source subspace channel. Such a combination approach yields a large
number of equations for simultaneous diagonalization that are expected to lead to de-
cent signal separation.

The developed method may be useful in two applications. For the separation of data
with multiple spectral bands, e.g., spectrogram sound data or spectral image data, cor-
relations across different frequency-channels constitute a criterion for source separation
that can be used on its own, or in addition to existing methods of decorrelation with re-
spect to time- or spatial shifts. By using this additional source of information, it should
be possible to improve on the performance of source separation algorithms in a similar
way as, e.g., decorrelation with multiple time-delays can improve over decorrelation
with only a single time-delay.

Concerning separation of time-varying mixtures, present approaches average over
short time segments to estimate the averaged unmixing system. The presented method
may improve the quality of separation since it allows to estimate the unmixing system
for time t taking into account data from time t + τ even though the unmixing system
at both times is different, and without necessarily averaging over the entire temporal
range t . . . t + τ .
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