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Abstract. This paper considers the problem of blind separation of sour-
ces mixed by a MIMO convolutive system. For both i.i.d. and non i.i.d.
sources, quadratic separation criteria previously designed for the extrac-
tion of a single source are extended to parallel extraction in the MIMO
case. These criteria are based on the use of so-called reference signals and
a condition is given under which we obtain MIMO contrast functions.
Simulations demonstrate that a particular choice of a set of reference
signals ensures the contrast property. The performance offered by these
criteria is investigated through simulations: it is shown that the pro-
posed contrast functions avoid accumulation errors, contrary to deflation
methods.

1 Introduction

We consider the problem of blind equalization of Linear Time Invariant (LTI)
Multi-Input / Multi-Output (MIMO) systems. Such a problem is of interest e.g.
in multi-user wireless communications where observed signals have to be equal-
ized both in space and time in order to eliminate both intersymbol and cochan-
nel interferences. These interferences are due to possible delays introduced by
multi-path propagation and to possible multi-users. Examples are found in Space
Division Multiple Access (SDMA) or Code Division Multiple Access (CDMA)
communication systems.

Our approach is based on the use of a contrast function [6, 4]. In particular, this
has the advantage to yield a sufficient condition for separation. In the context of
MIMO systems and parallel extraction of all sources, classical contrast functions
generally first require a pre-whitening stage on the observation signals in order
to constrain the searched system to be para-unitary [4, 5, 8]. On the other hand,
recent solutions have been shown to be very efficient when so-called reference
signals are considered, either for equalization of a SISO or SIMO systems [3]
or for extraction of one source [1] from a MIMO system. Our main goal in this
paper is to propose a generalization of the latter results to the case of parallel
extraction in convolutive MIMO systems. In particular notice that our results
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generalize the one in [2] and more importantly that we do not require any pre-
whitening stage. The usefulness of such a wide family of criteria is illustrated by
computer simulations.

2 Model and Problem Formulation

We consider a Q-dimensional (Q ∈ N, Q ≥ 2) discrete-time signal which is called
vector of observations and denoted by x(n) (in the whole paper, n stands for
any integer: n ∈ Z). It results from a linear time invariant (LTI) multichannel
system {M} described by the input-output relation:

x(n) =
∑

k∈Z

M(k)s(n − k) � {M}s(n), (1)

where M(n) is the sequence of (Q, N) impulse response matrices and s(n) is
an N -dimensional (N ∈ N

∗) unknown and unobserved column vector, which is
referred to as the vector of sources.

The multichannel blind deconvolution problem consists in estimating a mul-
tivariate LTI system {W} operating on the observations, such that the vector

y(n) =
∑

k∈Z

W(k)x(n − k) � {W}x(n) (2)

restores the N input sources. The problem is referred to as the blind source
separation (BSS) problem, where blind means that no information is available
on the mixing system and that the sources are unobservable. It is useful to define
the (N, N) global LTI filter {G} by the following impulse response:

G(n) =
∑

k∈Z

W(k)M(n − k). (3)

We have then:
y(n) =

∑

k∈Z

G(n − k)s(k) � {G}s(n). (4)

In order to be able to solve the BSS problem, we have to introduce some as-
sumptions on the source signals. The following one is known to play a key role:

A.1. The source vector components si(n), i ∈ {1, . . . , N} are mutually inde-
pendent, stationary and zero-mean processes with unit variance. Their re-
spective covariance functions are denoted by γi(k), k ∈ Z and are positive
definite functions (i.e the corresponding spectrum density is positive).

Since the sources are assumed to be unobservable, some inherent indetermi-
nations in their restitution remain: in the general case, their order cannot be
restored and each of them is only recovered up to a permutation and a scalar
filtering ambiguity. Consequently, the sources are said to be separated when the
global transfer matrix G(z) �

∑
k G(k)z−k reads:

G(z) = D(z)P (5)
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where P is permutation matrix and D(z) = Diag(d1(z), . . . , dN (z)) is a matrix
with scalar filters on its main diagonal. Whenever the sources are assumed to
be temporally i.i.d. (independent and identically distributed), the scalar filtering
ambiguity reduces to a scaling factor and time delay. In this case, the sources
are said to be separated when:

G(z) = D(z)ΛP (6)

where Λ is a constant diagonal matrix and D(z) = Diag(z−l1 , . . . , z−lN ) with
(l1, . . . , lN) ∈ Z

N . Naturally, we assume that the mixing filter is invertible (which
implies Q ≥ N) in the sense that it is possible to obtain (6) or (5).

3 MIMO Separation Criteria

The concept of contrast function has been introduced in BSS so as to reduce
the problem to an optimization one: by definition, a contrast function is a crite-
rion which maximization leads to a separating solution. When a pre-whitening
procedure has been applied, and under certain conditions, one of the simplest
contrast [4, 5] in the context of a MIMO parallel extraction of all sources is
given by

CR{y(n)} �
N∑

i=1

|Cum{yi(n), yi(n), yi(n), . . . , yi(n)︸ ︷︷ ︸
R times, R≥3

}| (7)

where Cum denotes the cumulant. The main contribution of the paper consists
in using criteria based on R-th order cross-cumulants, where R − 2 variables
are fixed. This choice yields a quadratic dependence with respect to the opti-
mized parameter, which greatly simplifies the optimization task. We define the
following R-th order cumulant, where R ≥ 3:

κR,zi{yi(n)} = Cum{yi(n), yi(n), zi(n), . . . , zi(n)︸ ︷︷ ︸
R−2 times

} (8)

where zi(n) are given signals to be precisely defined later. In previous works [1],
they have been referred to as reference signals determined from prior informa-
tion, but we will see that they may be chosen as observations whitened. We now
define the following criterion:

CR,z{y(n)} �
N∑

i=1

|κR,zi{yi(n)}| . (9)

This criterion is a MIMO extension of the results in [1]: it will allow the parallel
extraction of all sources, contrary to [1] which allows the extraction of the sources
one after the other. (9) also generalizes a result in [2].
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3.1 Case of i.i.d. Sources

Main result. Since the sources have unit variance, one can restrict the multi-
plicative factors in (6) to |Λ| = I by imposing the constraint E{|yi(n)|2} = 1 for
all i ∈ {1, . . . , N}. For i.i.d. sources, this condition also reads:

∀i ∈ {1, . . . , N} ,
N∑

j=1

∑

k∈Z

|Gij(k)|2 = 1 (10)

We need to define the following supremum:

κmax
R,i � N

max
j=1

sup
k∈Z

|κR,zi{sj(n − k)}| (11)

The proof of Proposition 1 requires the following assumption:

A.2. ∀i ∈ {1, . . . , N}, there exits (ji, li) such that:

κmax
R,i = |κR,zi{sji(n − li)}| < +∞ (12)

We can then state:

Proposition 1. In the case of i.i.d. source signals and under the constraint
(10), the criterion CR,z is a contrast function if and only if each set

Ii � {(j, k) ∈ {1, . . . , N} × Z | |κR,zi{sj(n − k)}| = κmax
R,i }, (13)

where i ∈ {1, . . . , N}, contains a single element (σi, ki), where σ denotes a per-
mutation in {1, . . . , N}.
Proof: We can write: κR,zi{yi(n)} =

∑N
j=1

∑
k∈Z

Gij(k)2κR,zi{sj(n − k)}
and, using (11) and (10), it follows

CR,z{y(n)} ≤
N∑

i=1

N∑

j=1

∑

k∈Z

|Gij(k)|2|κR,zi{sj(n − k)}| (14)

≤
N∑

i=1

κmax
R,i

N∑

j=1

∑

k∈Z

|Gij(k)|2 =
N∑

i=1

κmax
R,i (15)

≤
N∑

i=1

|κR,zi{sσi(n − li)}| = CR,z{s(n − l)}. (16)

where s(n − l) = (sσ1(n − l1), . . . , sσN (n − lN))T is a vector of N source signals
delayed. If the above upper-bound is reached (which is possible according to
assumption A.2), then

N∑

i=1

N∑

j=1

∑

k∈Z

|Gij(k)|2
(
κmax

R,i − |κR,zi{sj(n − k)}|
)

= 0. (17)

All terms in the above sum being positive, if Ii contains a single element and
σ is a permutation, one deduces, that {G} satisfies the equalization condition
(6). Conversely, one can see that if Ii contains several elements, there exist non
separating filters which maximize CR,z. �
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Comments and alternative results. One should notice that no prewhiten-
ing has been required to prove the validity of the contrast CR,z. This means
that the global filter {G} need not be para-unitary for the result to hold but
that (10) is sufficient. Incidently, one can notice that if (10) is replaced by:
∀j ∈ {1, . . . , N}

∑N
i=1

∑
k∈Z

|Gij(k)|2 = 1, a result similar to the one given
by Proposition 1 can be proved by changing the roles of i and j. Finally, one
should notice also that, although no assumption has been explicitly made on the
cumulants of the sources, no source should have vanishing R-th order cumulants
in order to satisfy the conditions of Proposition 1.

3.2 Case of Non i.i.d. Sources

Non i.i.d. sources can only be recovered up to a scalar filtering. It is hence
natural in this case to work on the scalar filters components which compose the
MIMO system. Thanks to the definite positiveness assumed in A.1 we define the
following j-norm:

‖h‖j �

⎛

⎝
∑

(k1,k2)∈Z2

h(k1)h∗(k2)γj(k2 − k1)

⎞

⎠

1
2

(18)

Similarly to (10) we will impose a variance constraint on the output, which
corresponds to a unit norm constraint on the row filters:

∀i ∈ {1, . . . , N}
N∑

j=1

‖Gij‖2
j = 1 (19)

Corresponding to (11) we define κ̃max
R,i � N

max
j=1

sup
‖{ �Gij}‖j=1

|κR,zi{{G̃ij}sj(n)}| and

corresponding to (12) we assume:

A.3. For all i ∈ {1, . . . , N} there exists ji ∈ {1, . . . , N} and a filter h�
i such that:

κ̃max
R,i = |κR,zi{{h�

i}sji(n)}| < +∞ (20)

We can then state:

Proposition 2. In the case of non i.i.d. sources and under the constraint (19),
the criterion CR,z is a contrast if and only if each set

Ii � {j ∈ {1, . . . , N} | sup
‖h‖j=1

|κR,zi{{h}sj(n)}| = κ̃max
R,i }, (21)

where i ∈ {1, . . . , N}, contains a single element σi, where σ denotes a permuta-
tion in {1, . . . , N}.

Proof: We have:yi(n) =
∑N

j=1{Gij}sj(n) =
∑N

j=1 ‖Gij‖j{G̃ij}sj(n) where {G̃ij}
is defined by {G̃ij} = {G̃ij}/‖G̃ij‖j if ‖G̃ij‖j �= 0 and {G̃ij} = 0 otherwise. Now
we easily obtain:
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CR,z{y(n)} ≤
N∑

i=1

N∑

j=1

‖Gij‖2
j |κR,zi{{G̃ij}sj(n)}| ≤

N∑

i=1

N∑

j=1

‖Gij‖2
j κ̃

max
R,i (22)

and by arguments similar to the proof in the i.i.d. case, one obtains that the
above upper-bound is reached if and only if the global filter is separating in the
sense of Equation (5). �

4 Simulations

4.1 Separation Procedure

Our MIMO contrast being quadratic, the optimization can be performed with
a similar method to the one presented in [1] for MISO contrasts. The reference
signals zi(n), i ∈ {1, . . . , n} must be chosen according to A.1. Interestingly, the
simulations have clearly demonstrated that it is practically a valid choice to
choose them as the output of a prewhitening operation on the observations.
This makes our method efficient and competitive compared to other methods.

By the optimization of CR,z, one can estimate the sources. As has been done
in [1], these estimation of the sources can in turn serve as reference signals: when
this procedure is repeated iteratively, the number of iteration is denoted by NI .

4.2 Results

Computer simulations are now presented to compare a deflation procedure to our
proposed MIMO contrast CR,z. We have used fourth order cumulants (R = 4). The
separation criteria are the mean square estimation error (MSE) on each source for

the PAM-4 i.i.d. source signals and τi � 1 − maxj ‖Gij‖2
j�N

j=1 ‖Gij‖2
j

(i ∈ {1, . . . , N}) for the

CPM (ContinuousPhaseModulation) non i.i.d source signals (modulation indices:
0.4, 0.7, 0.3 and 0.6). Note that 0 ≤ τi < 1 and τi = 0 if and only if yi(n) corre-
sponds perfectly to one source. The mixing filter coefficients have systematically
been randomly chosen according to a normal distribution.

Experiment 1. In Figure 1 (resp. Figure 2), we have plotted the cumulative
distribution of the empirical values of the MSE (resp. values of τi) over 1000
Monte-Carlo runs. We have considered N = 3 source signals mixed on Q = 4
sensors with a filter of length L = 3, using K = 10000 samples and NI = 3
iterations. We clearly notice that in all Monte-Carlo runs, the proposed method
succeeded particularly well to separate the three different sources. This illustrates
that choosing the output of a whitening filter for the references is a successful
method. In addition, the proposed approach has an equal performance for the
extraction of the three sources. As classically observed in deflation separation
methods, the performance is worse for the last extracted source signals than for
the first ones.

Experiment 2. We have considered N = 3 source signals mixed on Q = 4
sensors with a filter of length L = 3. The number of iterations for each source
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Fig. 1. Empirical cumulative distribu-
tion function of the MSE
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Fig. 2. Empirical cumulative distribu-
tion function of τi

Table 1. MSE for PAM-4 i.i.d sources and τi for CPM non i.i.d sources versus number
of samples

K 5000 10000 15000 20000 25000
PAM-4 sources s1 6.20 10−4 2.92 10−4 1.92 10−4 1.42 10−4 1.17 10−4

proposed MIMO contrast s2 6.08 10−4 3.01 10−4 1.97 10−4 1.45 10−4 1.17 10−4

s3 6.07 10−4 3.01 10−4 1.94 10−4 1.43 10−4 1.17 10−4

PAM-4 sources s1 6.22 10−4 2.94 10−4 1.97 10−4 1.46 10−4 1.1710−4

deflation appoach + s2 6.87 10−3 2.73 10−3 2.21 10−3 1.20 10−3 9.68 10−4

quadratic MISO contrast s3 1.17 10−2 4.35 10−3 4.35 10−3 2.80 10−3 1.71 10−3

CPM sources τ1 5.76 10−6 2.24 10−6 1.21 10−6 1.04 10−6 7.5110−7

proposed MIMO contrast τ2 4.82 10−6 1.97 10−6 1.44 10−6 8.47 10−7 7.9 10−7

τ3 5.69 10−6 2.29 10−6 1.07 10−6 8.72 10−7 8.27 10−7

CPM sources τ1 5.37 10−6 2.67 10−6 1.44 10−6 1.08 10−6 5.2310−7

deflation appoach + τ2 5.03 10−3 3.09 10−3 4.06 10−3 2.27 10−3 2.16 10−3

quadratic MISO contrast τ3 1.03 10−2 8.51 10−3 7.30 10−3 6.75 10−3 4.22 10−3

extraction was NI = 5. In Table 1 we report both the average MSE of each
source and τi for i = 1, 2, 3 on 100 Monte-Carlo runs for the three estimated
sources versus the number of samples K. As intuitively expected, using the
proposed MIMO contrast, a constant performance has been obtained for the
three sources, contrary to the deflation procedure for which the performance is
degraded for the extraction of s2 and s3.

Experiment 3. We now compare a deflation approach combined with the kur-
tosis based contrast |Cum{y(n), y(n), y(n), y(n)}|2 with our quadratic contrast.
The kurtosis contrast has been optimized using a gradient ascent method. We
have considered N = 3 source signals mixed on Q = 4 sensors with a fil-
ter of length L = 3. The number of samples is K = 10000. We plotted in
Figure 3 the cumulative distribution of the empirical values of τi for the three
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Fig. 3. Comparison of MIMO results by using the kurtosis based contrast and the
proposed contrast CR,z

CPM estimated sources on 100 Monte-Carlo runs for both contrasts. One can
see that the quadratic approach outperforms the results obtained by the kurtosis
contrast. Besides, the optimization of our contrast is much quicker than gradient
optimization of the kurtosis.
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