
J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 198 – 205, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Recursive Generalized Eigendecomposition
for Independent Component Analysis

Umut Ozertem1, Deniz Erdogmus1,2, and Tian Lan2

1 CSEE Department, OGI, Oregon Health & Science University, Portland, OR, USA
{ozertemu, deniz}@csee.ogi.edu

2 BME Department, OGI, Oregon Health & Science University, Portland, OR, USA
lantian@bme.ogi.edu

Abstract. Independent component analysis is an important statistical tool in
machine learning, pattern recognition, and signal processing. Most of these ap-
plications require on-line learning algorithms. Current on-line ICA algorithms
use the stochastic gradient concept, drawbacks of which include difficulties in
selecting the step size and generating suboptimal estimates. In this paper a re-
cursive generalized eigendecomposition algorithm is proposed that tracks the
optimal solution that one would obtain using all the data observed.

1 Introduction

Independent component analysis (ICA) has now established itself as an essential sta-
tistical tool in signal processing and machine learning, both as a solution to problems
(such as blind source separation) [1,2] and as a preprocessing instrument that com-
plements other pieces of a more comprehensive solution (such as dimensionality re-
duction and feature extraction) [3-5]. All of these applications of ICA require on-line
learning algorithms that can operate in real-time on contemporary digital signal
processors (DSP).

Currently, the on-line ICA solutions are obtained using algorithms designed using
the stochastic gradient concept (e.g., Infomax [6]), similar to the well-known least-
mean squares (LMS) algorithm [7]. The drawbacks of stochastic gradient algorithms
in on-line learning include difficulty in selecting the step size for optimal speed mis-
adjustment trade-off and suboptimal estimates of the weights given the information
contained in all the samples seen at any given iteration.

Recursive least squares (RLS) is an on-line algorithm for supervised adaptive filter
training, which has the desirable property that the estimated weights correspond to the
optimal least squares solution that one would obtain using all the data observed so far,
provided that initialization is done properly [7]. This benefit, of course comes at the
cost of additional computational requirements compared to LMS. Nevertheless, cer-
tain applications where an on-line ICA algorithm that tracks the optimal solution one
would have obtained using all samples observed up to that point in time would be
beneficial. To this end, we derive a recursive generalized eigendecomposition (GED)
based ICA algorithm that is similar to RLS in principle, but solves the simultaneous
diagonalization problem using second and fourth order joint statistics of the observed
mixtures.

 Recursive Generalized Eigendecomposition for Independent Component Analysis 199

The joint diagonalization of higher order statistics have been known to solve the
ICA problem under the assumed linear mixing model and have led to popular algo-
rithms (e.g., JADE [8]). The joint diagonalization problem in ICA is essentially a
GED problem, a connection which has been nicely summarized in a recent paper by
Parra and Sajda [9] for various signal models in linear instantaneous BSS; others have
pointed out this connection earlier as well. The algorithm we develop here is based on
the non-Gaussian independent sources assumption, with independent and identically
distributed samples of mixtures (the latter assumption eliminates the need for
weighted averaging for minimum bias estimation of the expectations).

In Section 2, we derive the recursive update equations for the required higher order
statistics and the corresponding optimal ICA solution. In Section 3, we demonstrate
using Monte Carlo simulations that the algorithm tracks the optimal ICA solution
exactly when all matrices are initialized to their ideal values and that the algorithm
converges to the optimal ICA solution when the matrices are initialized to arbitrary
small matrices (whose bias on the solution should diminish as more samples are ob-
served and utilized).

2 Recursive ICA Algorithm

The square linear ICA problem is expressed in (1), where X is the n×N observation
matrix, A is the n×n mixing matrix, and S is the n×N independent source matrix.

 ASX = (1)

Each column of X and S represents one sample of data. If we consider each column as
a sample in time, (1) becomes:

 tt Asx = (2)

The joint diagonalization of higher order cumulant matrices can be compactly for-
mulated in the form of a generalized eigendecomposition problem that gives the ICA
solution in an analytical form [9]. According to this formulation, under the assump-
tion of independent non-Gaussian source distributions the separation matrix W is the
solution to the following generalized eigendecomposition problem:

 WΛQWR xx = (3)

where Rx is the covariance matrix and Qx is the cumulant matrix estimated using
sample averages. While any order of cumulants could have been employed, lower
orders are more robust to outliers and small sample sizes, therefore we focus on the
fourth order cumulant matrix: Qx=E[xTxxxT]-Rxtr(Rx)-E[xxT]E[xxT]-RxRx. Given the
sample estimates for these matrices, the ICA solution can be easily determined using
efficient generalized eigendecomposition algorithms (or the eig command in Mat-
lab®). With the assumption of iid samples, expectations reduce to simple sample
averages, and the estimates of covariance and cumulant matrices are given by (for
real-valued mixtures)

 () 22)(xxxxx RRRxxxxQxxR −−== ∑∑ tr
i

T
iii

T
i

i

T
ii (4)

200 U. Ozertem, D. Erdogmus, and T. Lan

2.1 The Update Equations

Given the estimates in (4), one can define recursive update rules for the estimates of
the covariance and cumulant matrices R and Q, as well as R-1 and R-1Q for further
computational savings. The recursive update for the covariance matrix is

 T
tttt tt

t
xxRR

11
1 +−= − (5)

and the update rule for the cumulant matrix is given by

 22)(ttttt tr RRRCQ −−= (6)

where the matrix C is defined as }{ TTE xxxxC = , and estimating the expectation

using sample averages as before, it becomes

 ()∑=
i

T
iii

T
i xxxxC (7)

Now, we can define the update rules for C and R2
 to obtain the recursive update for

the cumulant matrix. The update rule for C is given by

 () T
ttt

T
ttt tt

t
xxxxCC

11
1 +−= − (8)

The recursive update of R2 can be derived from (5) by squaring both sides. Hence, the
update rule for R2 becomes

 () () ()
][

111
22

2
12

2
2 T

tt
T
tt

T
ttt

T
ttt

t

t

tt

t
vxxvxxxxRR +−++−= − (9)

where for further computational savings we introduce the vector vt as

 ttt xRv 1−= (10)

Finally, the update rule for the cumulant matrix Q can be obtained by substituting (5),
(8), and (9) into (6). Further computational savings can be obtained by iterating R-1
and R-1Q to avoid matrix multiplications and inversions, each having an O(n3) com-
putational load. The reason why we need these two matrices will be clear as we pro-
ceed to the fixed-point algorithm that solves for the generalized eigendecomposition.
Employing the matrix inversion lemma, the recursion rule for R-1 becomes

 ()
T
tt

t
tt t

t

t

t
uuRR

α11
1
1

1

−
−

−
= −

−
−

 (11)

where αt and ut are defined as

 () tttt
t
tt t xRuux 1

11 −
−=+−=α (12)

Here we define the matrix D, the update equation of whom can easily be defined by
substituting the previously given update equations for R-1 and Q, using (11) and (6).

 ttt QRD 1−= (13)

 Recursive Generalized Eigendecomposition for Independent Component Analysis 201

2.2 Deflation Procedure

Having the update equations, the aim is to find the optimal solution for the eigende-
composition for the updated correlation and cumulant matrices in each iteration. Re-
call the original problem given in (3); we need to solve for the weight matrix W. We
will employ the deflation procedure to determine each generalized eigenvector se-
quentially. Every generalized eigenvector wd that is a column of the weight matrix W
is a stationary point of the function

wQw

wRw
w

T

T
J =)(. (14)

This fact can be easily seen by taking the derivative and equating it to zero:

() ()
()

Qw
wQw

wRw
Rw

wQw

wQwRwwRwQw
w
w

T

T

T

TTJ

=

=−=
∂

∂
0

22)(
2

 (15)

This is nothing but the generalized eigenvalues equation where the eigenvalues are
the values of the objective criterion J(w) given in (14) evaluated at its stationary
points. Hence, the fixed-point algorithm becomes

 QwR
wQw

wRw
w 1−←

T

T

. (16)

This fixed-point optimization procedure converges to the largest generalized eigenvec-
tor1 of R and Q, and the deflation procedure is employed to manipulate the matrices
such that the obtained matrices have the same generalized eigenvalue and eigenvector
pairs except the ones that have been determined previously. The larger eigenvalues are
replaced by zeros in each deflation step. Note that in this subsection the time index is
implicit and omitted for notational convenience. While d represents the dimension
index, the deflation procedure employed while iterating the dimensions is given by

 11
111

111
−−

−−−

−−− =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ddd

dd
T
d

T
ddd

d RRQ
wQw

wwQ
IQ . (17)

The deflated matrices are initialized to Q1=Q and R1=R. Obtaining the new matrices
using deflation, we will employ the same fixed-point iteration procedure given in (16)
to find the corresponding eigenvector.

Investigating the fixed-point algorithm in (16), it is clear that iterating R-1 and D as
suggested earlier will result in computational savings. The deflation rules for these
matrices can be deduced from (17) easily. The deflation of R-1 is

 1
1

1 −
−

− = dd RR . (18)

1 The largest eigenvector is the one that corresponds to the greatest eigenvalue.

202 U. Ozertem, D. Erdogmus, and T. Lan

Similarly, the deflation rule for D can be obtained by combining (17) and (18) as

 1111][−−−−−= dd
T
ddd DQwwID (19)

For each generalized eigenvector, the corresponding fixed-point update rule then
becomes as follows:

 dd
dd

T
d

dd
T
d

d wD
wQw

wRw
w ← (20)

Employing this fixed-point algorithm for each dimension and solving for the eigen-
vectors sequentially, one can update the W matrix and proceed to the next time update
step. In the following section we will present results comparing the original GED-ICA
algorithm [9] with the results of the proposed recursive GED-ICA algorithm.

3 Experimental Results

In this section, the results provided by the proposed recursive algorithm will be com-
pared with those of the original GED-ICA algorithm. The experiments are done on a
synthetic dataset, which is simply generated by a linear mixture of independent uni-
form sources. Experiments using mixing matrices with varying condition numbers are
employed to test the dependency of the tracking performance on the mixture
conditioning.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

source
1

sour
ce

2

-5 -4 -3 -2 -1 0 1 2 3 4
-6

-4

-2

0

2

4

6

data1

da
ta

2

 (a) (b)

Fig. 1. An illustration of the samples (a) from independent uniform sources (b) after the
linear mixing

The joint distribution of the sources is presented in Figure 1 for a two-dimensional
case. Mixing matrices with condition numbers 10 and 100 are employed for the mix-
ing and the corresponding results are presented for two cases. In the first case, the
original GED-ICA is employed on a small initialization data set to obtain ideal initial
values for all matrices involved, including the eigenvectors. The expected result for
the first simulation is to observe that the recursive algorithm is capable of tracking the
result of the original algorithm within a range of small numerical error. In second
case, these values are initialized to arbitrary small matrices. As increasing number of

 Recursive Generalized Eigendecomposition for Independent Component Analysis 203

samples are utilized for the matrix updates, the bias of these arbitrary initial condi-
tions is expected to decay. The second experiment will allow us to investigate this
decay process by comparing the biased solution to that of the original GED-ICA
procedure.

0 500 1000 1500 2000
0

10

20

30

40

of samples
S

IR
 (

in
 d

B
)

0 500 1000 1500 2000
-2

0

2

4

6

8

10

12

of samples

S
IR

 (
in

 d
B

)

0 500 1000 1500 2000
0

10

20

30

40

of samples

S
IR

 (
in

 d
B

)

0 500 1000 1500 2000
-0.5

0

0.5

of samples

S
IR

 (
in

 d
B

)

condition number=10

0 500 1000 1500 2000
0

10

20

30

40

of samples

S
IR

 (
in

 d
B

)

0 500 1000 1500 2000
-0.5

0

0.5

of samples

S
IR

 (
in

 d
B

)

0 500 1000 1500 2000
0

10

20

30

40

of samples

S
IR

 (
in

 d
B

)

0 500 1000 1500 2000
-2

0

2

4

6

8

10

12

of samples

S
IR

 (
in

 d
B

)

condition number = 100

Fig. 2. The performances of recursive and the original methods are compared for a mixing of
condition numbers 10 and 100. Performances and performance differences for exact initialization
(top and bottom left, accordingly) and random initialization (top and bottom right) are shown.

204 U. Ozertem, D. Erdogmus, and T. Lan

In the simulations, the 20 samples have been used for initialization the ideal solu-
tion, and for the arbitrary initialization identity matrices with a small variances are
employed (note that once R and C are initialized to values at the order of 10-6 all other
matrices can be determined consistently with the equations). The corresponding aver-
age tracking results for 2000 samples are shown in Figure 2 for mixing matrix condi-
tion numbers of 10 and 100. These results are averaged over 100 Monte Carlo runs
keeping the condition number of the mixture and the joint source distribution fixed
and randomizing the right and left eigenvectors of the mixing matrix as well as the
actual source samples using in the sample averages.

4 Conclusions

On-line ICA algorithms are essential for may signal processing and machine learning
applications, where the ICA solution acts as a front-end preprocessor, a feature ex-
tractor, or a major portion of the solution itself. Stochastic gradient based algorithm
motivated by various ICA criteria have been utilized successfully in such situations
and they have the advantage of yielding computationally simple weight update rules.
On the other hand, they are not able to offer optimal solutions at every iteration.

In this paper, we derived a recursive ICA algorithm based on the joint diagonaliza-
tion of covariance and fourth order cumulants. The derivation employs the use of the
matrix inversion lemma and the sample update rules for expectations approximated by
sample averages. Since the proposed method is the recursive version of the algorithm
proposed in [9], and it is tracking the optimal solution given by this algorithm in a
recursive manner, the experimental results section is limited to the comparisons be-
tween the proposed recursive method and the original algorithm.

The resulting algorithm, of course, is computationally more expensive than its sto-
chastic gradient counterpart. However, it has the ability to converge to and track the
optimal solution based on this separation criterion in a small number of samples, even
when initialized to arbitrary matrices.

Acknowledgments

This work was supported by DARPA under contract DAAD-16-03-C-0054 and by
NSF under grant ECS-0524835.

References

1. Hyvarinen A., Karhunen J., Oja E.: Independent Component Analysis, Wiley, New York
(2001)

2. Cichocki A., Amari S.I.: Adaptive Blind Signal and Image Processing: Learning Algorithms
and Applications, Wiley, 2002.

3. Hyvärinen A., Oja E., Hoyer P., Hurri J.: Image Feature Extraction by Sparse Coding and
Independent Component Analysis, Proceedings of ICPR’98, (1998) 1268-1273

 Recursive Generalized Eigendecomposition for Independent Component Analysis 205

4. Lan T., Erdogmus D., Adami A., Pavel M.: Feature Selection by Independent Component
Analysis and Mutual Information Maximization in EEG Signal Classification, Proceedings
IJCNN 2005, Montreal, (2005) 3011-3016

5. Everson R., Roberts S.: Independent Component Analysis: A Flexible Nonlinearity and
Decorrelating Manifold Approach, Neural Computation, vol. 11. (2003) 1957-1983

6. Bell A., Sejnowski T.: An Information-Maximization Approach to Blind Separation and
Blind Deconvolution, Neural Computation, vol. 7. (1195) 1129-1159

7. Haykin S.: Adaptive Filter Theory, Prentice Hall, Upper Saddle River, New Jersey, (1996)
8. Cardoso J.: Bind signal separation: Statistical principles, Proc. of the IEEE, vol. 86. (1998)
9. Parra L., Sajda P.: Blind Source Separation via Generalized Eigenvalue Decomposition,

Journal of Machine Learning Research, vol. 4. (2003) 1261-1269

	Introduction
	Recursive ICA Algorithm
	The Update Equations
	Deflation Procedure

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

