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Abstract. It is common for data to be contaminated with artifacts,
interference, and noise. Several methods including independent compo-
nents analysis (ICA) and principal components analysis (PCA) have
been used to suppress these undesired signals and/or to extract the
underlying (desired) source waveforms. For some data it is known, or
can be extracted post hoc, how to partition the data into periods of
source activity and source inactivity. Two examples include cardiac data
and data collected using the stimulus-evoked paradigm. However, nei-
ther ICA nor PCA are able to take full advantage of the knowledge
of the partition. Here we introduce an interference suppression method,
partitioned factor analysis (PFA), that takes into account the data
partition.

1 Introduction

Raw data are corrupted by artifacts, interference, and sensor noise. When the
power of these undesired signals is large one of several signal processing tech-
niques may be applied to either reduce the level of interference or to extract
the underlying source waveforms directly (we use “denoising” and “interfer-
ence suppression” interchangeably). Linear denoising methods, including inde-
pendent components analysis (ICA), attempt to find the source subspace and
produce denoised signals by projecting intermediate lower-dimensional data back
into the space of the observations. Denoising is useful for spatio-temporal vi-
sualization and for source localization [1]. Furthermore, the intermediate data
produced by denoising methods can be used as the input to an ICA algo-
rithm when the desire is to extract the source waveforms. While ICA can be
applied directly to the observations to perform denoising and source extrac-
tion simultaneously, many ICA algorithms are too computationally intensive
to be used in this manner when there are many sensors. An alternative is
to reduce the dimensionality with a (non-ICA) denoising method and then
use ICA.
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Principal component analysis (PCA) is the most widely used method of
denoising. PCA is an ideal choice when either the power of the sources is
large relative to the power of all undesired signals or when the undesired sig-
nals are spatially uncorrelated and isotropic in sensor space [2]. Likewise, ICA
is ideal for denoising when the sources of interest are statistically indepen-
dent of all undesired signals, there are at least as many sensors as sources
(desired and undesired), and the subspace that contains the sources of inter-
est can be robustly determined automatically or with the aid of a human ex-
pert. However, these requisite conditions may not always be met. In addition,
both PCA and ICA are unable to take full advantage of additional informa-
tion that is available for some data, i.e., knowledge of when the sources are
active and when they are inactive. Data for which the timing of the source ac-
tivity is known or can be estimated include, e.g., cardiac data collected using a
magnetocardiogram (MCG) and stimulus-evoked data collected using a magne-
toencephalogram (MEG).

Here we introduce a denoising method, partitioned factor analysis (PFA), that
is based on what is thought to be a more realistic set of assumptions than PCA
or ICA and that is able to incorporate knowledge of the data partition.

2 Partitioned Factor Analysis

Generative model. The proposed method, PFA, is based on the following
generative model,

yn =
{

Bun + vn n=1, . . . , N0−1
Axn + Bun + vn n=N0, . . . , N

, (1)

where the (My × 1) vector vn is used to represent all signals that are spa-
tially uncorrelated in sensor space and that exist in the active and inactive
periods, the (Mu × 1) vector un represents all signals that are spatially corre-
lated in sensor space and that exist throughout, and the (Mx × 1) vector xn

represents all signals that exist only during the active period. We refer to xn

as the factors (which are an arbitrary linear combination of the sources of in-
terest, xn = Wsn), un as the interference, and vn as the noise. The inclusion
of the interference signals allow us to model signals of no interest that, unlike
the model commonly used for sensor noise, are spatially correlated in sensor
space, e.g., respiration, muscle artifacts, eye blinks, and ongoing neural activity.
Also, there is a common assumption that the spatial auto-correlation matrix
of the post-stimulus equals the auto-correlation of the pre-stimulus plus the
auto-correlation of the evoked response. This structure is directly reflected by
the model of (1), which provides a more complete representation of the data
than what is inherently assumed in PCA and the vast majority of ICA algo-
rithms (which combine xn and un into a single vector and assume that vn

is zero).
The proper choice for the active and inactive periods is problem-dependent.

For example, if the goal is to recover a cardiac signal the active period should
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correspond to all portions of the data that are near a QRS complex. Likewise, if
the goal is to recover an evoked response for data collected using the stimulus-
evoked paradigm, the active period corresponds to the post-stimulus period. To
simplify the notation the data are assumed to ordered so that the first N0−1
samples of the (My × N) matrix of observations y (where y corresponds to
the collection of yn∀n) correspond to the concatenation of all inactive peri-
ods and the remaining samples correspond to the concatenation of all active
periods.

PFA probabilistic graphical model. Each factor xm,n and each interference
um,n is modeled as having a Gaussian probability density function (pdf) with
zero mean and unit precision, where the precision is defined as the inverse vari-
ance and xm,n and um,n are the mth element of vectors xn and un, respectively.
Likewise, the noise at sensor m is modeled as having a Gaussian pdf with zero
mean and precision λm. We model the factors, interferences, and noises as mu-
tually statistically independent,

p(xn) = N (xn|0, I), p(un) = N (un|0, I), p(vn) = N (vn|0,Λ) , (2)

where 0 is a column vector of zeros, I is an identity matrix, and Λ is a diagonal
matrix. By inspection the data likelihood is

p(yn|xn,un,A,B) =
{

N (yn|Bun,Λ) n=1, . . . , N0−1
N (yn|Axn+Bun,Λ) n=N0, . . . , N

. (3)

We also assume that the signals are temporally i.i.d. so that

p(y|x,u,A,B)=
N∏

n=1

p(yn|xn,un,A,B), p(x)=
N∏

n=N0

p(xn), p(u)=
N∏

n=1

p(un) . (4)

The elements of the two mixing matrices are assumed to be independent zero-
mean Gaussians that have a precision that is proportional to the noise precision
of the corresponding sensor,

p(A) =
My∏

m=1

Mx∏
k=1

N (Am,k|0, λmαk), p(B) =
My∏

m=1

Mu∏
k=1

N (Bm,k|0, λmβk) , (5)

where the proportionality constants, αk, βk, are referred to as hyperparame-
ters. These priors are chosen so that they have the same functional form as the
posterior distribution (when this is true the prior is referred to as a conjugate
prior).

Inferring the PFA model from data. All three types of signals, xn,un,vn,
are unobserved, as are the (My × Mx) matrix A and the (My × Mu) matrix
B. Hence, PFA must use only y to infer the quantities of interest, which are
ỹn = Axn for denoising and xn for subsequent source extraction. To infer the
model from y we use an extended version of the Expectation-Maximization (EM)
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algorithm, which is known as the variational Bayesian EM method (VB-EM) [3].
Whereas standard EM computes the most likely parameter value given the data,
i.e., the maximum a posteriori (MAP) estimate, VB-EM computes full posterior
distributions. Furthermore, VB-EM provides a natural mechanism for inferring
the model order through hyper-parameter optimization [3], whereas standard
EM requires ad-hoc methods for model order selection.

Standard EM maximizes the log likelihood, which can be written as

log p(y) = log p(y)
∫

p(θ|y)dθ =
∫

p(θ|y) log
p(θ,y)
p(θ|y)

dθ , (6)

where θ = {x,u,A,B}. Since the exact posterior distribution is computationally
intractable, we approximate the posterior with a function that factorizes the
hidden variables given the data from the parameters given the data,

p(θ|y) ≈ q(θ|y) = q(x,u|y)q(A,B|y) . (7)

The result is that VB-EM adapts q(x,u|y) and q(A,B|y) to maximize an ap-
proximation of the log likelihood, which can be written as

F=
∫

q(x,u|y)q(A,B|y) log
p(x,u,A,B,y)

q(x,u|y)q(A,B|y)
dxdudAdB . (8)

It can be shown that maximizing F w.r.t. q(x,u|y), q(A,B|y) is equivalent to
minimizing the Kullback-Leibler divergence [4] between p(θ|y) and q(θ|y). Like
standard EM the VB-EM optimization method is an iterative algorithm where
each iteration is composed of an E-step and an M-step.

E-step. Maximization of F with respect to the posterior over hidden variables
is accomplished by setting the derivative of F to zero and solving for q(x,u|y)
while keeping q(A,B|y) fixed. This produces

q(x,u|y) =
1
z1

exp[
∫

q(A,B|y) log p(x,u,A,B,y)dAdB] , (9)

where the joint pdf, due to the previous assumptions, simplifies to

p(x,u,A,B,y) = p(y|x,u,A,B)p(x)p(u)p(A)p(B) , (10)

and where z1 is the normalizing constant (normalization of this posterior and
the posterior over parameters is enforced by adding two Lagrange multipliers
to F). The quantities in (10) are given by (2)-(5). The posterior over hidden
variables factorizes over time so that

q(x,u|y) =
N0−1∏
n=1

q(un|yn)
N∏

n=N0

q(xn,un|yn) , (11)



PFA for Interference Suppression and Source Extraction 193

where

q(un|yn) = N (un|ūn,Φ−1)

q(xn,un|yn) = N (
[

xn

un

]
|
[

x̄n

ūn

]
,Γ−1)

x̄n = (Γ xxĀ
T + Γ xuB̄

T )Λyn

ūn = ΦB̄
T
λyn n ∈ {1, . . . , N0−1}

ūn = (Γ T
xuĀ

T + Γ uuB̄
T )Λyn n ∈ {N0, . . . , N}

Φ = (B̄T
ΛB̄ + I + MyΨBB)−1

Γ = (
[

Ā
B̄

]
Λ

[
Ā B̄

]
+ I + MyΨ)−1 =

[
Γ xx Γ xu

Γ T
xu Γ uu

]
,

(12)

and where Ā, B̄,λ,Ψ are computed in the M-step.

M-step. Similarly, maximization of F with respect to the posterior over pa-
rameters is accomplished by setting the derivative of F to zero and solving for
q(A,B|y) while keeping q(x,u|y) fixed. This produces

q(A,B|y) =
1
z2

exp[
∫

q(x,u|y) log p(x,u,A,B,y)dxdu] , (13)

where z2 is the normalizing constant.
It follows from (13) that the posterior over parameters factorizes over the rows

of the two mixing matrices. Hence,

q(A,B|y) =
My∏

m=1

N (
[

AT
m

BT
m

]
|
[

Ā
T
m

B̄
T
m

]
, λmΨ−1) , (14)

where Am is the mth row of A and

Ā =

(
N∑

n=N0

ynx̄T
n

)
Ψ , B̄ =

(
N∑

n=1

ynūT
n

)
Ψ

Ψ =
[

Rxx + α Rxu

RT
xu Ruu + β

]−1

=
[

ΨAA ΨAB

ΨT
AB ΨBB

]

Rxx =
N∑

n=N0

(
x̄nx̄T

n + Γxx

)
, Rxu =

N∑
n=N0

(
x̄nūT

n + Γxu

)

Ruu =
N0−1∑
n=1

(
ūnūT

n + Φ
)

+
N∑

n=N0

(
ūnūT

n + Γuu

)
,

(15)

and α,β are diagonal matrices that contain αk, βk, respectively.
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The solutions for the noise precision matrix and the hyperparameters are
found by computing the derivative of F and equating the result with zero,

α−1 = diag
(

1
My

Ā
T
ΛĀ + ΨAA

)

β−1 = diag
(

1
My

B̄
T
ΛB̄ + ΨBB

)

Λ−1 =
1
N

diag
(
Ryy − ĀRT

yx − B̄RT
yu

)
,

(16)

where

Ryy =
N∑

n=1

ynyT
n , Ryx =

N∑
n=N0

ynx̄T
n , Ryu =

N∑
n=1

ynūT
n . (17)

3 Results

Denoising performance is measured using the output signal-to-noise/interference
ratio (SNIR),

SNIR=
1
M

M∑
m=1

10 log10

∑N
n=1(Ax)2m,n∑N

n=1((Ax)m,n−(Āx̄)m,n)2
(dB) .

For real data we replace Axn with the sensor signals due to the 5 principal
components (representing 97% of the energy) of the average sensor data, where
the average is taken over 525 trials. The metric for source extraction performance
is the source-to-distortion ratio (SDR),

SDR =
1

Ms

Ms∑
m=1

10 log10
1

Ms

Ms∑
m′=1

⎛
⎜⎜⎜⎝

1

2− 2
N−N0+1 |

N∑
n=N0

sm,ns̄m′,n|

⎞
⎟⎟⎟⎠ (dB) ,

where the distortion for source estimate m includes noise, interference, and all
sources other than source m, sn = W−1xn, W is found using ICA, and both
sm,n and s̄m,n (the estimate of source m at time n) are normalized to have unit
variance. For simulated data the SNIR and SDR are shown as a function of the
input signal-to-interference ratio (SIR) for a fixed value of input signal-to-noise
ratio (SNR). The former is defined as the ratio of the power of the factors to
the power of the interferences measured in sensor space. The latter is defined in
a similar fashion.

Simulated data. For the simulations N =1000 data points/trial, N0 =631, My =
132, Mx = Ms = 2, Mu = 1000, SNR= 0 dB, and the number of trials is 10. The
results represent the mean over 10 Monte Carlo experiments (per trial) and error



PFA for Interference Suppression and Source Extraction 195

Fig. 1. Left subplot (1a): Output SNIR as a function of input SIR for 10 trials, input
SNR = 0 dB, and the ICA method is TDSEP. Right subplot (1b): SDR as a function
of input SIR for 10 trials, input SNR = 0 dB, and the ICA method is FastICA.

bars are used to indicate one standard error. The comparison includes the proposed
method (PFA), PCA [2], Wiener [5], ICA (TDSEP [6] or FastICA [7]), and the
mean over trials. For ICA, the source subspace is determined as the components
having the largest ratio of active power to inactive power.

Figure 1a shows the denoising performance as a function of input SIR. All of
the methods perform better than the trial mean. PFA performs the best across
all values of input SIR. The performances of both PCA and Wiener approach
that of PFA as the input SIR increases.

Figure 1b shows the SDR as a function of input SIR. In this figure PFA, PCA,
and Wiener are all combined with ICA. Also shown is the result for ICA without
dimension reduction. PFA produces the best overall results and is the least sen-
sitive to input SIR. The results for ICA (with no dimension reduction) indicate
that for this dataset dimension reduction should be used when the input SIR is
low and is not needed if the input SIR is > 10 dB.

Real data. Figure 2a shows the denoising performance as a function of the
number of trials for a real MEG dataset, which uses a somatosensory stimu-
lus (My = 274, Mx is assumed to be 2, Mu is assumed to be 50, N = 361,
N0 = 121). PFA performs the best and both PCA and Wiener (which per-
forms almost identically to PCA and is not shown here) outperform the trial
mean.

Figure 2b shows the sensor signals before and after PFA denoising is applied
to real fetal MCG data, which is a mixture of both fetal and maternal cardiac
sources (My =51, Mx is assumed to be 10, Mu is assumed to be 50, N =4000,
N0 = 501). Since the goal is to recover the fetal cardiac factors, the inactive
period is chosen such that it contains minimal activity of the fetal heart (two
250-length portions) and the active period is chosen such that it contains both
maternal and fetal cardiac activity. Notice that QRS complexes of the mother
are effectively suppressed and several fetal QRS complexes that were previously
obscured, e.g., at 1.3 sec and 3.1 sec, are now visible.
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Fig. 2. Left subplot (2a):Output SNIR as a function of number of trials for real MEG
data. Right subplot (2b): Observations before (upper subplot) and after (lower subplot)
PFA denoising for real fetal MCG data.

4 Conclusions

The PFA graphical model for denoising and dimension reduction is introduced.
This model takes into account additional information that is available for sev-
eral types of data, including cardiac data and data collected using the evoked-
response paradigm. The results of simulated and real data indicate that PFA
may be a viable alternative to ICA for interference suppression and may, when
used as a preprocessor, improve the performance of ICA for source extraction.
This appears to be true especially when the power of the noise/interference is
large or there are only a few trials available.
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