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Abstract. In this paper, we solve an ICA problem where both source
and observation signals are multivariate, thus, vectorized signals. To de-
rive the algorithm, we define dependence between vectors as Kullback-
Leibler divergence between joint probability and the product of marginal
probabilities, and propose a vector density model that has a variance de-
pendency within a source vector. The example shows that the algorithm
successfully recovers the sources and it does not cause any permutation
ambiguities within the sources. Finally, we propose the frequency domain
blind source separation (BSS) for convolutive mixtures as an application
of IVA, which separates 6 speeches with 6 microphones in a reverberant
room environment.

1 Introduction

Independent component analysis (ICA) is proposed as a method to find statis-
tically independent sources from mixture observations by utilizing higher-order
statistics [1]. In its simplest form, the ICA model assumes linear, instantaneous
mixing without sensor noise, the number of sources being equal to the number
of sensors, and so on. Before considering these assumptions, there is more funda-
mental assumption, which is that every component is independent of the others.
Of course, it is. However, what if the sources are multivariate or vectorized sig-
nal? Let’s consider some examples such as complex-valued signal, time-frequency
representation of audio signal, color image signal, etc. Are the components still
independent? Usually not. Elements within a source vector are sometimes cor-
related or sometimes uncorrelated but dependent.

In this paper, we consider an algorithm for solving the following problem.

Independent Vector Analysis (IVA)
Given observations xi,

xi =
L∑

j

aij ◦ sj (1)

finding source vectors sj by
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si ≈ ŝi =
M∑

j

wij ◦ xj (2)

where ◦ denotes element-wise product, and L and M is the number of sources
and observations, respectively. Notation used in this paper is defined in the
footnote.1

Assumptions
1. Elements of a source vector are mutually independent of elements of the other
source vectors.
2. Within a source vector, the elements are highly dependent on the others.
3. The number of sources is less than or equal to the number of observations.

Easily, one can treat this problem as several numbers of ICA problems, because
(1) can be rewritten as

x(1) = A(1)s(1), x(2) = A(2)s(2), · · · , x(D) = A(D)s(D) (3)

However, once the ICA algorithm is separately applied to each element of a
vector, the elements of the recovered source vectors would be randomly ordered.
In this case, afterwards, it should be decided which component belongs to which
source vector. It causes another clustering problem, which is not easy to solve
when the number of sources is large. Instead of applying ICA separately, we
tackle the problem by defining dependence between multivariate components
and deriving an algorithm for the IVA problem directly.

2 Method

2.1 Objective Function

In order to separate multivariate components from multivariate observations, we
need to define the objective function for multivariate random variables. Here,
we define Kullback-Leibler divergence between two functions as the measure of
dependence. One is an exact joint probability density function, p (s1, · · · , sL) and
the other is a nonlinear function which is the product of approximated marginal
probability distribution functions,

∏
i q (si).

C = KL
(

p (s1, · · · , sL) ‖
∏

i

q (si)

)

= const. +
∑

d

log | detA(d)| −
∑

i

Esi log q (si) (4)

1 Notation. We use lower-cased, bold-faced letters to denote vector variables, up-
per cased letters to denote matrix variables, e.g. si = [s(1)

i , · · · , s
(D)
i ]T. xi =

[x(1)
i , · · · , x

(D)
i ]T, and aij = [a(1)

ij , · · · , a
(D)
ij ]T, where a

(d)
ij is the ith row, jth column

element of the dth mixing matrix A(d).
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Note that the random variables in above equations are multivariate. The inter-
esting parts of this objective function are that each source is multivariate and it
would be minimized when dependency between the source vectors is removed, but
dependency between the components of each vector does not need to be removed.
Therefore, the objective function preserves the inherent dependency within each
source vector, although it removes dependency between the source vectors.

2.2 Learning Algorithm: A Gradient Descent Method

Now that we have defined the objective function for IVA, derivation of the learn-
ing algorithm is straightforward. Here, we are using a gradient descent method to
minimize the objective function. By differentiating the objective function C with
respect to the coefficients of unmixing matrices w

(d)
ij , we can derive the learning

rule as follows.

∆w
(d)
ij = − ∂C

∂w
(d)
ij

= a
(d)
ji − Eϕ(d)

(
ŝ(1)
i , · · · , ŝ(D)

i

)
x(d)

j (5)

By multiplying scaling matrices, W (d)T
W (d), the natural gradient learning rule [2],

which is well known as a fast convergence method, can be obtained as

∆w
(d)
ij =

L∑

l=1

(
Iil − Eϕ(d)

(
ŝ(1)
i , · · · , ŝ(D)

i

)
ŝ(d)
l

)
w

(d)
lj (6)

where Iil is one when i = l, otherwise zero, and a multivariate score function is
given by

ϕ(d)
(
ŝ(1)
i , · · · , ŝ(D)

i

)
= −

∂ log q
(
ŝ(1)
i , · · · , ŝ(D)

i

)

∂ŝ
(d)
i

(7)

3 Vector Density Model

In order to minimize the objective function, defining an optimal form of the func-
tion q(·) as an approximated marginal probability density function is the most
critical part. Here, the function q(·) has to be characterized as a vector density
model that has dependency within a source vector. We define a vector density
model as a scale mixture of Gaussians distribution.

3.1 Scale Mixture of Gaussians Distribution

Suppose that there is a D-dimensional random variable, which is defined by

s =
√

v z + µ, (8)
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where v is a scalar random variable, z is a D-dimensional random variable, and µ
is a deterministic bias. Here, the random variable, z, has a Gaussian distribution
with mean 0 and covariance matrix Σ.

z ∼ N (0, Σ) =
1

(2π)D/2|Σ|1/2 exp
(

−zTΣ−1z
2

)
(9)

Obviously, the random variable, v, is non-negative. We assume that vhas a Gamma
distribution, which is a commonly used distribution for non-negative random
variables.

v ∼ G(α, λ) =
λαvα−1

Γ (α)
exp(−λv), (10)

where α and λ are the parameters of a Gamma distribution, and Γ (·) is a complete
Gamma function. Then, the random variable s given v has a Gaussian distribu-
tion. The mean and variance of this distribution are Es =

√
vEz + µ = µ and

E(s − µ)(s − µ)T =
√

vEzzT√
v = vΣ, respectively.

s|v ∼ N (µ, vΣ) =
1

(2πv)D/2|Σ|1/2 exp
(

− (s − µ)TΣ−1(s − µ)
2v

)
(11)

In this model, each component of s is not only correlated to others, but also has
variance dependency generated by v. Even though we assume the covariance ma-
trix Σ is identity, that is, each element of s is uncorrelated, it is dependent on
the others. We can obtain probability distribution function of variance dependent
random variable s, by integrating joint distribution of s and v over v.

p(s) =
∫ ∞

0
p(s|v)p(v)dv (12)

Let δ =
√

((s − µ)TΣ−1(s − µ)) and γ =
√

2λ. Now, we rearrange the joint p.d.f
as a form of Inverse Gaussian distribution [3] as follows.

(12) =
λα

(2π)D/2Γ (α)|Σ|1/2

(2π)1/2

δ
exp (−γδ)

×
∫ ∞

0
vα−(D−1)/2 δ

(2π)1/2 exp (γδ) v−3/2 exp
(

−1
2

(
δ2

v
+ γ2v

))

︸ ︷︷ ︸
Inverse Gaussian p.d.f.

dv (13)

Then, the integral in (13) is the (α − (D − 1)/2)-th order moment of Inverse Gaus-
sian. Therefore, the variance dependent source p.d.f is obtained as

p(s)=c
(
(s − µ)TΣ−1(s − µ)

)α/2−D/4 Kα−D/2

(√
2λ(s − µ)TΣ−1(s − µ)

)
,(14)

where c is a normalization term and Kν(z) is the modified Bessel function of the
second kind, which is approximated as

Kν (z) ≈
√

π

2z
e−z

(
1 +

4ν2 − 1
8z

+
(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ · · ·

)
(15)
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3.2 Multivariate Score Function

So far, we have derived an algorithm and defined a vector density model. Finally
in the algorithm, one can notice that the only difference between IVA and the
conventional ICA is caused by the form of a score function. If we define the mul-
tivariate score function given in (7) as a single-variate score function, ϕ(d)

(
ŝ
(d)
i

)
,

which is a function of only one variable, the algorithm is converted to the same as
the conventional ICA such as InfoMax algorithm. According to the density model
we defined, we can obtain a form of a multivariate score function by differentiat-
ing log prior (14) with respect to each element of a source vector, because q (ŝi) in
the objective function is an approximated probability density function of a source
vector, that is, q (si) ≈ p (si). Therefore, we can obtain following form of a multi-
variate score function.

ϕ(k)
(
ŝ
(1)
i , · · · , ŝ

(D)
i

)
=

Kα−D/2−1 (δ)
Kα−D/2 (δ)

ŝ
(d)
i

δ
= ξ(δ)

ŝ
(d)
i

δ
(16)

where ξ(δ) ≈ 1 for large δ. To obtain a simplified score function, we may approx-
imate the Bessel function in (14) up to the 1st order, which results the following
function.

ϕ(k)
(
ŝ
(1)
i , · · · , ŝ

(D)
i

)
≈

(
D + 1 − 2α

2δ
+ 1

)
ŝ
(d)
i

δ
(17)

Although it is possible to estimate the mean vector µ and the covariance matrix
Σ while the algorithm learns. We would, in this paper, fix them to zero mean and
unit variance, and assume that the elements in a source vector are uncorrelated.

Thus, simply δ =

√
∑

d

∣∣∣ŝ(d)
i

∣∣∣
2
. Although we propose above 2 forms of multivariate

score functions, we believe that another form of a multivariate score function will
be still possible by choosing a different vector density model that has different
dependencies.

4 Example

We verified our algorithm with artificially generated signals. First, we generated
3 i.i.d. Gaussian random vector signals, which were 4 dimensional vectors. Then,
the same amplitude modulation was applied to the elements of each vector signal
as follows.

s2(t) = cos (2πt/3)z1(t) (18)
s1(t) = sin (2πt)z2(t) (19)

s3(t) = U (sin (2πt/3)) z3(t), (20)

where zi is 4 dimensional i.i.d. Gaussian random vector, and U(·) denotes a unit
step function. Mixing matrices were randomly generated. Fig. 1 shows the origi-
nal sources, observations signals, and recovered sources by both of ICA and IVA.
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(a) original sources (b) observations

(c) recovered sources by ICA (d) recovered sources by IVA

Fig. 1. The original sources, observations, and recovered sources by ICA and IVA. Each
row is corresponding to a single source vector, which is 4 dimensional in the example.
In contrast to ICA, IVA does not suffer the inter-element permutation problem as well
as it separates sources properly.

Each row is corresponding to a single source vector, which is 4 dimensional in the
example. As shown in the figure, ICA solution disorders elements in a source vec-
tor, whereas IVA does not suffer the inter-element permutation problem as well
as it separates the sources properly. Following matrices show the product of the
unmixing matrix and the mixing matrix, which should be identity matrix with
permutations. Those obtained by ICA was

W (1)A(1)=

⎡

⎢⎢⎢⎣

0.031 −0.034 1.557
0.012 1.3695 0.039
1.395 −0.081 0.019

⎤

⎥⎥⎥⎦ W (2)A(2)=

⎡

⎢⎢⎢⎣

1.360 −0.065 0.060
0.054 -1.399 0.013

−0.005 0.021 -1.536

⎤

⎥⎥⎥⎦

W (3)A(3)=

⎡

⎢⎢⎢⎣

0.018 1.422 −0.019
-1.391 0.058 0.075
0.013 −0.054 -1.538

⎤

⎥⎥⎥⎦
W (4)A(4)=

⎡

⎢⎢⎢⎣

0.011 1.357 0.018
−0.002 0.001 -1.557
-1.428 −0.047 0.029

⎤

⎥⎥⎥⎦

In contrast to ICA, IVA provided a well-ordered solution, which has the same per-
mutations in a source vector as follows.

W (1)A(1)=

⎡

⎢⎢⎢⎣

−0.006 -2.388 −0.048
−0.011 0.099 -2.592
2.370 −0.079 0.092

⎤

⎥⎥⎥⎦
W (2)A(2)=

⎡

⎢⎢⎢⎣

0.022 -2.395 0.036
0.015 0.066 2.610
-2.306 0.1270 −0.076

⎤

⎥⎥⎥⎦

W (3)A(3)=

⎡
⎢⎢⎢⎣

−0.009 2.409 0.007
−0.011 −0.077 -2.609
-2.386 0.033 0.103

⎤
⎥⎥⎥⎦

W (4)A(4)=

⎡
⎢⎢⎢⎣

−0.003 -2.338 −0.009
0.027 −0.083 2.587
2.421 −0.012 0.013

⎤
⎥⎥⎥⎦
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In the above matrices, the values covered by rectangles to the other values ratio
was used to calculate the performance measure. ICA and IVA result 28.5dB and
30dB, respectively.

5 Application to the Frequency Domain BSS

We applied the proposed IVA algorithm to separate convolutive mixture in the
frequency domain, because the convolution is equivalent to multiplication at each
frequency bin, which is the same as the model given by (1). Although one can
use the conventional ICA algorithm to separate each frequency bin separately,
it causes another problem which is called the frequency permutation problem.
Thus, the permutations of separating matrices at each frequency should be cor-
rected so that the separated signal in the time domain is reconstructed properly.
Various algorithms have been proposed to solve the permutation problem, e.g.
method that limits the filter length in the time domain [4], uses direction of ar-
rival estimation [5], and uses inter-frequency correlation [6]. Although these
algorithms perform well in some cases, they are sometimes very sensitive to the
parameters or mixing conditions. However, IVA algorithm we proposed in this pa-
per does not suffer the permutation problem at all as well as it separates sources
properly.

We tested the proposed algorithm to separate 6 speeches with 6 microphones
in a reverberant room environment. In this experiment, we used 8kHz sampling
rate, a 2048 point FFT and a hanning window to convert time domain signal to the
frequency domain. The length of window was 2048 samples and shift size was 512
samples. The condition of the room was illustrated in Fig. 2(a), and the separated
sources are shown in Fig. 2(b). The improvement of signal to interference ratio
(SIR) was 18dB. More intensive experiments are included in our web site 2 and
another work [7].

(a) Reverberant room environment. A case
of 6 mics and 6 sources
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(b) Separated speeches in the time domain

Fig. 2. Room environment and the separated speeches. 2048 sample sized hanning win-
dow and 2048 FFT point was used. SIR improvement was approximately 18dB.

2 http://ergo.ucsd.edu/∼taesu/source separation.html
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6 Conclusions

We have extended the conventional ICA problem to multivariate components,
which we termed IVA. While ICA algorithm has a single-variate score function,
IVA algorithm has a multivariate score function, which is caused by higher-order
dependency within source vectors. To model a vector density, we have used scale
mixture of Gaussians distribution, which models variance dependency. The re-
sults have shown that the proposed algorithm successfully recovers the sources
not only in a simple example but also real world problem such as frequency do-
main BSS. Further, researches on various kinds of higher-order dependency mod-
els and multivariate score functions would be important to separate multivariate
components.
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