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Abstract. In this article, we consider high-dimensional data which contains a
low-dimensional non-Gaussian structure contaminated with Gaussian noise and
propose a new method to identify the non-Gaussian subspace. A linear dimension
reduction algorithm based on the fourth-order cumulant tensor was proposed in
our previous work [4]]. Although it works well for sub-Gaussian structures, the
performance is not satisfactory for super-Gaussian data due to outliers. To over-
come this problem, we construct an alternative by using Hessian of characteristic
functions which was applied to (multidimensional) independent component anal-
ysis [LO/11]]. A numerical study demonstrates the validity of our method.

1 Introduction

Recently enormous amount of data with a huge number of features have been stored
and are to be analyzed. In most real-world applications, the ‘signal’ or ‘information’ is
typically contained only in a low-dimensional subspace of the high-dimensional data,
thus dimensionality reduction is a useful preprocessing for further data analysis. Here
we make an assumption on the data: the high-dimensional data € R? is a sum of
low-dimensional non-Gaussian components (‘signal’) s € R™ (m < d) and a Gaussian
noise n ~ N (0, 1),

r=As+n (1)

where A is a d x m full rank matrix indicating the non-Gaussian subspace and s and
n are assumed to be independent. Under this modeling assumption, therefore, the tasks
are to estimate the relevant non-Gaussian subspace and to recover the low-dimensional
non-Gaussian structures by linear dimension reduction. Although our goal is dimension
reduction, we want to emphasize that we do not assume the Gaussian components to
be of smaller order of magnitude than the signal components. This setting therefore
excludes the use of common linear and non-linear dimensionality reduction methods
such as PCA, Isomap [9] and LLE [8].

If the non-Gaussian components s;’s are mutually independent, the model turns out
to be the under-complete noisy ICA, and there exist algorithms to extract the indepen-
dent components in the presence of Gaussian noise [7]. However, this is often a too
strict assumption on the practical data.

In contrast, Projection Pursuit (PP) [315)] or FastICA in the deflation mode [67]]
can also extract dependent non-Gaussian structures by maximizing a prefixed non-
Gaussianity index which contains higher order information. Recently two procedures
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have been developped in the same spirit of PP/FastICA. Non-Gaussian Component
Analysis (NGCA) [lL] was built upon a general semi-parametric framework in math-
ematical statistics, while the other [4] is a modification of an ICA algorithm (JADE
[2]) to the dimension reduction problem. In this paper, we will propose an alternative
of the second algorithm with Hessian of characteristic functions which was applied to
(multidimensional) independent component analysis [LO/11]]. In comparison with the
fourth-order cumulant, characteristic functions yield more robust and efficient method
when data contain super-Gaussian structures.

2 Mathematical Preliminaries

Since the decomposition (I) is not uniquely determined, we will further transform the
model to reduce indeterminacies. The noise term n can be decomposed into two inde-
pendent parts as n = nj + no, where n; = An € Range(A) and ny is restricted in
the (d — m)-dimensional complementary subspace s.t. Cov(ny, ng) = 0. Thus, we get
a representation with less indeterminacies

T = AS + no, 2)

where s := s + 7 and the noise term 1, distributes with a (d — m)-dimensional degen-
erated Gaussian. We remark that we can only recover s, the signal with contaminated
noise in the non-Gaussian subspace Range(A). By changing the symbols as A — Ay,
s — sy and ny — Agsqg, we will consider

xz=Ansn + Agsc 3)

as our model fomulation, where A¢ indicates the subspace and s¢ denotes a (d — m)-
dimensional Gaussian random vector. Independence of s and s implies that the non-
Gaussian subspace and the Gaussian noise components are orthogonal with the metric
Y1lie ALY tAg =0, where X := Cov(z).

Let (B, BL)T be the inverse matrix of (Ay, Ag). Then, the submatrices By and
B¢ extract the non-Gaussian and the Gaussian parts of the data x, i.e. Byx = sy
and Bgx = s¢. The primal goal of dimension reduction in this paper is estimating the
linear mapping B onto the non-Gaussian subspace in order to project out the irrelevant
Gaussian components s and obtain the non-Gaussian signals sy = By x. We remark
that other matrices B, Ay and Ag can also be determined automatically, once By is
derived. From independence of sy and s¢, the density function of & can be expressed
as a product of the non-Gaussian and the Gaussian components

p(x) = g(Byx)pL(Bax), 4

where ¢ is an unknown function describing the density of sy and ¢, is the Gaussian
density with covariance L.
There still remain trivial indeterminacies in the model ()

x = (AnNC1)(C 'sn) + (AgC2)(Cy ' sq), 5)
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where C; and Cs are m- and (d — m)-dimensional square invertible matrices, re-
spectively. Because of the indeterminacies (3) we should evaluate the results by Z =
Range(B}) (called non-Gaussian index space here) rather than By itself. We recently
proved that the decomposition (@) is unique up to this indeterminacies, if we assume
that the dimension m of the non-Gaussian subspace is correct [12].

3 Joint Low-Rank Approximation Method

3.1 Dimension Reduction by Using Fourth-Order Cumulant Tensor

In our previous work [4], we propose a procedure for estimating the non-Gaussian sub-
space Z based on the fourth-order cumulant tensor

cum(z;, £, T, 1)

= E[z;zzpz] — Elxix|Elege] — Elrzx]Elz,z) — Elzz)Elx o).

The method was inspired by the JADE algorithm [2] for ICA which uses this tensor.
As is used in the JADE algorithm, we also apply the whitening transformation z =
V —1/2g as preprocessing, where V' = Cov|x]. Let us define the matrices

Wy = ByVY2,  Wg = BgV'/?,

which are the linear transformations from the sphered data to the factors s =

(x> 8&) . We remark that the non-Gaussian index space can be expressed as

7 = Range(By) = V~/?Range(Wy,).

and therefore, it is enough to estimate the matrix Wy . Without loss of generality, we
can assume that Cov(s] = I. Then, (W}, W ) becomes an orthogonal matrix.

The method proposed in [4] rests on the fact that the cumulant tensor of the sources
(sn, 8g) has simple structure. Let us order the sources as sy = (s1,...,Sm,) and
8¢ = (Sm+1,---,54). The cumulant tensor cum(s;, s;, s, 5;) takes 0, unless 1 <
i,7,k,1 < m (i.e. all components should belong to the non-Gaussian part). Let Q(¥")
be the matrix whose (¢, j) element is cum(z;, z;, 2, 2;) forall 1 < k,! < d and W° be
a d-dimensional orthogonal matrix which recovers the sources, i.e. s = W°z. Then, it
can be proven that, for all (k, 1),

o o * 0
wearry - ()

holds, that is, all components which are not contained in the m x m submatrix * van-
ish after the similar transformation by W°. This fact implies that we can estimate the
transformation Wy, to the non-Gaussian components s by maximizing the Frobenius
norms of the m X m submatrices corresponding to the non-Gaussian subspace

d d m
ﬁ(WN) - Z ||WNQ(M)W]—V|—H12:<‘1FO = Z Z Cum(yi’7yj'7zk7zl)2 (6)

k=1 k=14 j'=1
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wrt. Wy s.t. WyWy, = I,,,, where y 5 = (y1,...,ym) = Wz denotes the recon-
structed non-Gaussian components by Wy and || - ||, is Frobenius norm of matrices.
The contrast function (6) was optimized by iterative eigenvalue decomposition in [4]],

d
W ST QU WM — aw (Y, )
k=1

where Q) is the empirical correspondent of the matrix Q0 and W ! is the ¢-step
estimator.

The algorithm works well for sub-Gaussian structures. However, due to outliers it
performs worse when the data contains heavy-tailed structures. In the remaining of this
section, we will introduce joint low-rank approximation (JLA) of matrices by general-
izing this method and show its global consistency. A novel algorithm using Hessian of
the characteristic function will be proposed as an example.

3.2 Joint Low-Rank Approximation of Matrices

Let us consider the ideal situation as the discussion with the expected cumulant tensor
in the previous section. Suppose that K complex matrices M1, ..., Mg can be simul-
taneously transformed into

WeM,(W°)T = <;8> k=1,..., K, (8)

that is, all components of all the transformed matrices vanish except for those in m x m
submatrices indicated by *, where WW° is a d-dimensional orthogonal matrix. Let Wy, be
the m x d matrix composed of the first m rows of W°. We remark that W§ (W) " = L.
The goal here is to estimate the mapping Wy, as before.

Let us consider the contrast function

K
LOVN) =Y W MW 1o, 9)

k=1

where Frobenius norm ||C||%,, = tr(CC*) in complex case. We can show that the
desired mapping Wy, can be obtained up to an orthogonal matrix by maximizing the
contrast function £L(Wy).

Theorem 1. The objective function L(W ) is maximal at Wy = UWR,, where W,
is the first m x d submatrix of W° defined by Eq. (8) and U is an m-dimensional
orthogonal matrix.

Proof. We remark that Frobenius norm ||[W MW T||2_ is unchanged for any orthog-
onal matrix W, i.e. |[WMW |2 = [|Mi||3,, = [[W°M(W°)T|2,,. From the
property (8) of the matrix W°, we get

2

o o\ T
WML (W) T [ = H (WNM’“(WN) 0)

S = IR M) T

Fro
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where we divided W° into two submatrices W5, and W§. On the other hand, for a
general orthogonal matrix W,

2

T T
WA T = | (WAEA Wearn )

Wa MWy WaMiWi )|,

= |[WN MWy 7o + IWNMWG |70
HWe MWy 7o + [WaMeWe 5o

> [|[Wy MWy |12

where W was also divided into two submatrices Wy and W¢. Since the inequality is
strict if and only if one of the three terms is non-zero, we notice that all global maxima
were already found. Therefore, for all orthogonal matrices U, finally we get

IUWRME(WR) U o = IWRMe(WR) o > IWN MWy [l O

For simplicity, we further assume that M,” = My, as is the case with our algorithms.
By differentiating the criterion £ under the constraint Wx Wy, = I,,,, we get

K
Wy > Mi(Wy) = AWy, (10)
k=1
where
My, (W) := MWy Wy M+ MWy Wy My, (11

is a d x d matrix depeding on Wy and Lagrange multipliers /A is assumed to be diagonal
without loss of generality. As the algorithm with the cumulant tensor, the maximization
of the contrast function (@) can be solved by iterating the eigenvalue problem

K
WSS M) = Aaw Y (12)
k=1

where M, is the empirical correspondent of the matrix M and WI(\;) is the t-step
estimator.

3.3 Dimension Reduction by Using Characteristic Functions

In [10] and [11]], Hessians of the characteristic function were used for (multidimen-
sional) independent component analysis. Since they satisfy the property (8] under our
model assumption as we will show, they can also be used as the matrices M}, in the joint
low-rank approximation procedure. The characteristic function of the random variable
z can be defined by Z(¢) := E[exp(i¢ ' 2)]. Let W° = ((W)T,(Wg)™)T be an
orthogonal matrix s.t. s = W°z. Then, the characteristic function can be expressed as

2(0) = 8(w°¢) = S (W) exp (-3 IWECI?) (13)
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where A§ and S v are the characteristig functions of s and sy, respectively. Therefore,
if log Z(¢) exists, the Hessian of log Z(¢) becomes

2

Hlogf(C) = 8C8CT

o Q o
_ (WO)T ( 6£N8§; IO%SN(WNC) IO ) WO, (14)
—4d—m

log Z(C)

where £ = WgC. For K selected vectors (y,...,(x € R? each matrix M, :=
H,,, 7(Cx) + 14 satisfies the property (8).

Suppose that samples @1, ..., x, are given. The algorithm with Hessians of the
characteristic function is summarized as follows.

Algorithm

1. Sphere the data {x;}_, by 2; = V-12g,, where V = Covlx].

2. Calculate the Hessian M, = H,,, 7(Ck) + 1a at selected vectors ¢, from the

empirical characteristic function Z,mp(c y=1 > i exp(i€ z)).

3. Compute m eigenvectors with largest absolute eigenvalues.
K
WS {Re(Mk) + Im(Mk)} = Aw®
k=1
4. Solve the following eigenvalue problem until the matrix W](\f) converges.

K
WYY ST Me(W) = AawgtY
k=1

The symbols with hat denote the empirical versions of the corresponding quantities, for
example, Cov is the sample covariance. Re(M) and Im (M) are the real and the imaginary
parts of a matrix M. The matrix My, (Wy) is calsulated from M}, by Eq. (I1).

4 Numerical Results

For testing our algorithm, we performed numerical experiments using various synthetic
data used in [1]. Each data set includes 1000 samples in 10 dimension. Each sample
consists of 8-dimensional independent standard Gaussian and 2 non-Gaussian compo-
nents as follows.

(A) Simple: 2-dimensional independent Gaussian mixtures with density of each com-
ponent given by $¢_31(z) + 3¢3.1(2).

(B) Dependent super-Gaussian: 2-dimensional isotropic distribution with density
proportional to exp(—||z||).

(C) Dependent sub-Gaussian: 2-dimensional isotropic uniform with constant posi-
tive density for ||z|| < 1 and 0 otherwise.
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(D) Dependent super- and sub-Gaussian: 1-dimensional Laplacian with density pro-
portional to exp(—|x Lqp|) and 1-dimensional dependent uniform U (¢, c+1), where
¢ =0for |xpqp| <log2and c = —1 otherwise.

The profiles of the density functions of the non-Gaussian components in the above data
sets are described in Fig.[Il The mean and standard deviation of samples are normalized
to zero and one in a component-wise manner.

Besides the proposed algorithm, we applied for reference the following four meth-
ods in the experiments: FastICA with ‘pow3’ or ‘tanh’ index (denoted by FIC3 and
FICt, respectively), JADE and joint low-rank approximation (JLA) algorithms with the
fourth-order cumulant tensor and Hessian of the characteristic function (denoted by
JLA4 and JLAH, respectively). In JLA with Hessian, 1000 vectors ¢ were randomly
chosen and 10% of them with high norm || M} ||, were taken in the contrast function.
We remark that we did not include the better method [|L], because the main purpose of
the experiments is compareing the two JLA algorithm. Further research is necessary to
improve the algorithm. In FastICA and JLA with the cumulant tensor, additionally 9
runs from random initial matrices were also carried out and the optimum among these
10 solutions were chosen to avoid local optima.

Fig. 2l shows boxplots of the error criterion

EZ,T) = —|(Ia — H7) I3, (15)

al
m

(A) B) © (D)
Fig. 1. Densities of non-Gaussian components. The datasets are: (a) 2D independent Gaussian
mixtures, (b) 2D isotropic super-Gaussian, (c) 2D isotropic uniform and (d) dependent 1D Lapla-
cian + 1D uniform.
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Fig. 2. Boxplots of the error criterion £ (j , ). Algorithms are FIC3, FICt, JADE, JLA4 and JLAH
(from left to right).
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obtained from 100 runs, where II7 (resp. II3) is the projection matrix onto the true

non-Gaussian subspace Z (resp. the estimated one f).

Although we did not prove theoretically, JADE could find the non-Gaussian sub-
space 7 in all these examples. Unfortunately, the performance of the proposed algo-
rithm JLAH was worse than that of the previous version JLA4 for the simple data (A)
and was on par for the sub-Gaussian data (C). However, for data (B) and (D) which con-
tain super-Gaussian structures, the Hessian version JLAH outperformed the cumulant
one JLA4. Moreover, JLAH was much more robust than JLA4. The proposed algorithm
(JLAH) missed only one case, while the latter (JLA4) failed to estimate the index space
7 many times ((B)7%, (C)21% and (D)30%).

5 Conclusions

In this paper, we proposes a new linear method to identify the non-Gaussian subspace
based on Hessian of the characteristic function. In our numerical experiments, the pro-
posed algorithm was more robust and efficient than the previous version with the cu-
mulant tensor when data contain super-Gaussian structures. Global consistency of the
method was also proved in a more general framework. Further research should be done
on selection of the vectors ¢, to improve its performance. Other examples of joint low-
rank approximation procedure can also be interesting.
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