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Abstract. In this paper, we address the convolutive blind source sep-
aration (BSS) problem with a sparse independent component analysis
(ICA) method, which uses ICA to find a set of basis vectors from the
observed data, followed by clustering to identify the original sources. We
show that, thanks to the temporally localised basis vectors that result,
phase information is easily exploited to determine the clusters, using an
unsupervised clustering method. Experimental results show that good
performance is obtained with the proposed approach, even for short ba-
sis vectors.

1 Introduction

The convolutive blind audio source separation problem arises when an array
of microphones records mixtures of a set of sound sources that are convolved
with the impulse response between each source and sensor. The problem is often
addressed in the frequency domain, through the short-time fourier transform
(STFT), where the statistics of the sources are sparser, so that ICA algorithms
achieve better performance [1], and the approximations of convolutions by mul-
tiplications yield reduced computational complexity. Source separation is then
performed separately at each frequency bin, resulting in the introduction of the
well-known problem of frequency permutations [2], whose solution amounts to
clustering the frequency components of the recovered sources, using additional
information about the mixing system or the sources. The most successful meth-
ods in this context have perhaps been beamforming approaches [2-5], which
exploit phase information contained in the de-mixing filters identified by the
source separation algorithm, but suffer from phase ambiguities in the upper fre-
quencies, since phase is defined exclusively up to 2π. An alternative approach to
convolutive BSS was proposed in [7], and is based on the use of sparse coding to
identify the mixing matrix from the observed data. No assumptions are required
on the number of microphones, or the type of mixing (eg. instantaneous or con-
volutive) in the underlying model, but the recovered matrix implicitly encodes
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these characteristics of the system. Thus, it could even potentially deal with
the more sources than sensors case. The subspaces corresponding to the original
sources are then identified using clustering techniques. In this paper we investi-
gate the performance of the frequency domain ICA (FD-ICA) and sparse coding
approaches. We find that the latter yields mostly temporally localised basis vec-
tors, that do not suffer from the phase ambiguity encountered in the frequency
domain. Hence, in contrast to the approach in [7], which uses manual clustering,
we propose an unsupervised clustering method that exploits phase information
to separate the sources. The structure of this paper is as follows: the convolutive
BSS problem is described in section 2, together with an overview of FD-ICA;
the sparse coding method is summarised in section 3. The clustering technique
proposed is discussed in section 4, where the performance of the sparse coding
and FD-ICA methods are also compared. Conclusions are drawn in section 5.

2 Problem Formulation

We consider the problem of separating 2 sampled real-valued speech signals,
s(n), from 2 convolutive mixtures, x(n), recorded from an array of microphones,
so that the signal recorded at the q-th microphone, xq(n), is

xq(n) =
2∑

p=1

L∑

l=1

aqp(l)sp(n − l), q = 1, 2 (1)

where sp(n) is the p-th source signal, aqp(l) denotes the impulse response from
source p to sensor q, and L is the maximum length of all impulse responses [2].
The aim of blind source separation is to find estimates for the unmixing filters
wqp(l), using only the sensor measurements, and to reconstruct the sources from

yp(n) =
2∑

q=1

L∑

l=1

wqp(l)xq(n − l), p = 1, 2 (2)

where yp(n) is the p-th recovered source. Typically, the N -point STFT is evalu-
ated, and the mixing and separating models in (1) and (2) become, respectively
X(f, t) = A(f)S(f, t) and Y(f, t) = W(f)X(f, t) where t denotes the STFT
block index. The resulting N instantaneous BSS problems, are addressed inde-
pendently in each subband with an ICA algorithm, and the problem of frequency
permutations that is introduced is solved essentially by clustering the frequency
components of the recovered sources. This is often done using beamforming tech-
niques, such as in [2-5], where the direction of arrival (DOA) of the sources are
evaluated from the beamformer directivity patterns

Fp(f, θ) =
2∑

q=1

W ICA
qp (f)ej2πfd sin θp/c, p = 1, 2 (3)

where W ICA
qp is the ICA de-mixing filter from the q-th sensor to the p-th output,

d is the spacing between two sensors, θp is the angle of arrival of the p-th source
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signal, and c ≈ 340m/s is the speed of sound in air. The frequency permutations
are then determined by ensuring that the directivity pattern for each beam-
former is approximately aligned along the frequency axis. There exists, however,
an ambiguity in the DOA estimation, due to the restriction on the phase differ-
ence to lie between −π and π, which results in the creation of additional nulls in
the directivity pattern of magnitude similar to that corresponding to the angle
of arrival [5]. The distance between two microphones should satisfy d ≤ c/2fmax,
in order to avoid spatial aliasing [2]; when this condition is not met, ambigu-
ities in the position of the nulls are introduced, resulting in inaccurate DOA
estimates, and the frequency, fM, above which multiple nulls are expected is
fM = c/2d.

3 Overview of Sparse ICA

The aim of sparse coding is to find sparse dictionaries from the mixtures, so
that only a small number of coefficients, s(n), are needed to encode the observed
data, x(n) [6]. The convolutive BSS problem was first addressed within this
framework in [7], by finding a set of basis vectors for the observed data, followed
by clustering to identify the subspaces corresponding to the original sources.
The approach does not explicitly model the mixing process nor the number of
mixtures, but is based on the assumption that the recordings are generated by
signals that are sparse in the dictionary domain. Prior to estimating the ba-
sis vectors, the observed vector is reshaped into a K × kmax matrix on which
learning is performed. A frame of K/2 samples is taken from each mixture,
with an overlap of T samples. Thus, the (i, k)-th element of the new matrix,
X̃, is

X̃i,k =

{
x1

[
(k − 1)Z + i+1

2

]
: i odd

x2
[
(k − 1)Z + i

2

]
: i even

(4)

Fig. 1. Reshaping of the sensor vector prior to training with ICA
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Fig. 2. Examples of basis vectors extracted with the sparse ICA algorithm

where Z = K/2−T , and i ∈ {1, . . . , K/2}, and k ∈ {1, . . . , kmax}. The reshaping
of the sensor vector x(n) is illustrated in figure 1. The basis vectors are learned
from the resulting matrix, and with any ICA algorithm using a sparse prior.
Here we use [7]

∆W = η
(
I − E{f(y)yT }

)
W (5)

where η is the learning rate, and f(y) is the activation function. Details for its
choice can be found in [7]. The algorithm (5) operates upon y = WX̃, where
the time index n has been dropped for the sake of clarity, and W ∈ IRK×K .
The reshaping of x(n) into the matrix X̃(n) emphasises the correlations be-
tween the sources at the two microphones. Stacking the columns of x(n) ensures
that features relating to temporally correlated signals from each recording are
extracted, leading to basis pairs that encode information about the mixing chan-
nel, as can be seen from the basis pairs plotted in figure 2, where a time-delay is
clearly visible in several of the vector pairs. The strong directionality observed
indicates that each basis pair relates to a particular source, and thus the pro-
posed method is based on the property of spatial diversity. However, should
the sources be aligned along the same DOA, the technique cannot be used.

4 Frequency Domain Versus Sparse ICA

In this section, we consider the separation of two speech signals, one each from
a male and a female speaker, from two mixtures recorded in a university lecture
room, and sampled at 16kHz. Further details of the experimental set up can be
found in [10]. The sources were also recorded separately, so that they could be
used for performance evaluation. The performance of the sparse ICA approach is
compared to a representative FD-ICA method [10] (MD2003) since, due to their
inherent similarities, we expect other FD-ICA algorithms to have comparable
performance. The sparse ICA approach was first used to learn the basis vectors
from the real data; the mixtures were buffered into frames of 512 samples, so
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that 256 samples from each mixture were taken, as shown in figure 1, and the al-
gorithm (5) was used for training. The learned basis vector pairs are found in the
columns of W−1, examples of which are shown in figure 2. This figure illustrates
that the basis vector pairs encode how the extracted features are received at
the microphones and, therefore, they capture information about time-delay and
amplitude differences that characterise the mixing channel. Moreover, most of
the basis vectors have the additional property of being localised in time, which
implies that time delays can be estimated more accurately. Reconstruction of
the two original signals is achieved with ŝ1 = W−1H(1)y, and ŝ2 = W−1H(2)y
where H(1) is a diagonal matrix whose diagonal elements are ones or zeros de-
pending on whether a component belongs to the first source, and similarly for
H(2) [7]. We propose clustering the basis vector pairs, and therefore determine
the diagonal elements of H(1) and H(2), according to the following algorithm:

1 For each basis pair k find the time delay τk between the vectors
2 Form the histogram of τk, and use k-means to find the peaks, τk1 and τk2

corresponding to the sources

3 h
(p)
kk =

{
1, if (τkp

− τδ) ≤ τk ≤ (τkp
+ τδ),

0, otherwise

for p = 1, 2, where h
(p)
kk is the kk-th element of H(p). The inclusion of the τδ

allows the algorithm to perform a degree of de-noising. We estimate the time
delay between sensor pairs using the popular generalised cross-correlation with
phase transform (GCC-PHAT) algorithm, originally proposed in [9], Ra1a2(τ) =∫ ∞
−∞ A1(ω)A∗

2(ω)/(|A1(ω)A∗
2(ω)|)ejωτdω, where A1(ω), A2(ω) are the Fourier

transforms of the basis vectors. The function Ra1a2(τ), typically exhibits a sharp
peak at the lag corresponding to the time delay between the two signals. Figure
3(a) depicts the time-delay estimates obtained with GCC-PHAT, for all basis
vector pairs, and figure 3(b) shows their histogram; values of τk1 and τk2 were
obtained with k-means as 10.04 and −9.03 samples, and τδ was set to 2 samples.
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(a) Directivity pattern for source ŝ1.
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(b) Directivity pattern for source ŝ2.

Fig. 4. Directivity patterns for the outputs of FD-ICA, after permutation alignment

Frequency domain separation was performed with the algorithm in [10] using
the 256 and 2048-point STFT, and permutations were aligned as in [3]. MD2003
with the latter frame length has been shown to successfully achieve separation on
this data in [10]. Figure 4 shows a plot of the directivity pattern of the outputs
evaluated at all frequencies with (3), following permutation alignment. The plots
show that permutations are correctly aligned in the low frequency bands, while
the behaviour of the algorithm is less clear in the higher frequencies, where time
delay estimation is less accurate. The DOAs estimated from the plots were found
to be 12◦ and −11◦, corresponding to time delays of approximately 10 and −9
samples. The sample delay at a frequency f is estimated from the directions of
arrival by τ = 2πf sin θfs/c, where fs is the sampling frequency.

Tables 1 and 2 show the global performance of the two methods, as evaluated
from [11]. The evaluation criteria allows for the recovered sources to be mod-
ified by a permitted distortion. In Table 1, we consider a time-invariant gain
distortion, and the sources recovered at the two channels are compared to the

Table 1. Global performance measures when a gain distortion is allowed. SDR, SIR,
and SAR measures are respectively the signal-to-distortion, signal-to-interference, and
signal-to-artifact ratios.

Channel 1

Method SDR (dB) SIR (dB) SAR (dB)
ŝM ŝF ŝM ŝF ŝM ŝF

MD2003256 −5.13 −8.61 2.73 1.83 −2.49 −6.01

MD20032048 −5.24 −6.26 4.69 6.17 −3.50 −5.07

Sparse ICA −8.69 −10.09 1.59 2.74 −5.98 −8.00

Channel 2

MD2003256 −8.29 −6.09 −0.81 2.64 −4.00 −3.58

MD20032048 −6.94 −3.42 3.86 7.24 −5.06 −2.28

Sparse ICA −6.76 −11.61 −0.41 7.40 −2.40 −10.83
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Table 2. Global performance measures when a filter distortion is allowed

Channel 1

Method SDR (dB) SIR (dB) SAR (dB)
ŝM ŝF ŝM ŝF ŝM ŝF

MD2003256 −7.12 −8.25 2.47 2.01 −4.66 −5.69

MD20032048 −6.27 −7.07 7.82 9.26 −5.43 −6.48

Sparse ICA −7.77 −10.50 3.94 3.55 −6.00 −8.74

Channel 2

MD2003256 −10.33 −8.03 −0.37 2.21 −6.67 −5.55

MD20032048 −8.15 −5.62 6.52 9.99 −7.12 −5.08

Sparse ICA −8.27 −9.40 1.29 12.00 −5.35 −9.10

original sources recorded at the microphones. Negative SIR values indicate that
the interfering source is larger than the target source, and the algorithm has
failed to recover the target. Large negative SAR values, with SAR ≈ SDR, in-
dicate that large artifacts are present, and dominate distortion [11]. The results
suggest that sparse ICA and MD2003256 have similar performance, and both fail
to recover the source ŝM at channel 2. An informal listening test indicates, how-
ever, that the objective assessment in Table 1 is not a good guide to the audible
performance. The test reveals that MD2003 separates the sources with a frame of
2048 samples, while it fails with a short frame of 256 samples. This is in contrast
to sparse ICA which uses a frame of 256 samples, and whose outputs are clearly
separated, although the interfering source is still audible. Interestingly, the algo-
rithm seems also to have performed some de-reverberation, which is particularly
audible for the female source, ŝF, at the second channel. Moreover, the outputs
sound quite natural and large artifacts do not appear to be present. This is in
disagreement with the large negative SAR values which suggest that sparse ICA
introduces large artifacts. To obtain a more meaningful objective assessment, a
time-invariant filter distortion is allowed, with a 64 taps filter. The results are
shown in Table 2, where the recovered sources are compared to the original sig-
nals at the speakers. In this case, it was found that the objective assessment is
more closely in agreement with the informal listening test, but still overcritical
of sparse ICA. The results in this section also show how the STFT length is a
crucial parameter for FD-ICA. Since modeling of real room transfer functions
typically requires long frame sizes, better separation is achieved with a frame
size of 2048 samples. Sparse ICA, on the other hand, provides good separation
even with a very short frame size.

5 Conclusions

In this paper, we have shown that most of the basis vectors extracted with sparse
coding are temporally localised functions that do not suffer from phase ambi-
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guities encountered in the frequency domain. A simple unsupervised clustering
technique that exploits this property has been proposed. The performance of the
algorithm with real data has been investigated, and informal listening tests have
suggested that it separates the signals with short basis vectors, in contrast to
FD-ICA, which requires long basis vectors. Currently available objective testing
methods fail to verify this, so further subjective listening tests are planned to
formally substantiate this performance.
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