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Abstract. This paper describes blind source separation (BSS) problems
in the frequency domain using an eigenvector algorithm (EVA) with ref-
erence signals. The proposed EVA has such an attractive feature that all
source signals are separated simultaneously from their mixtures. This is
an advantage against the methods using deflation process (e.g., super-
exponential method), because those methods sometimes do not work so
as to converge to desired solutions, due to deflation failure. Computer
simulation demonstrates the validity of the proposed EVA.

1 Introduction

This paper deals with the blind source separation (BSS) problem for a multiple-
input multiple-output (MIMO) static system driven by independent source sig-
nals. To solve this problem, we draw on the ideas of eigenvector algorithms
(EVAs) with reference signals. Jelonnek et al. have proposed EVAs derived from
a criterion using a reference signal, in order to solve blind equalization of single-
input single-output (SISO) systems [12]. They have shown that the equalizer
can be derived from the eigenvectors of a fourth-order cumulant matrix. In this
paper, the EVA derived from a criterion with reference signals is used for solv-
ing the BSS problem of MIMO static systems. The proposed EVA has such an
attractive feature that all source signals are separated simultaneously from their
mixtures, while the other methods using deflation process extract signals one by
one. If the deflation process fails, all the signals cannot be separated. However,
the EVA with reference signals enables us to extract all the sources without any
deflation methods.

Through computer simulations and real environment experiments, we show
the effectiveness of the proposed methods.
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2 Problem Formulation

Throughout this paper, let us consider the following MIMO static system with
n inputs and m outputs, a convolutive mixture model with additive noise (See
figure [l );

reference signal

l tput si 1
so—s 1 >0 O

Fig. 1. The composite system of an unknown system and a filter, and reference system

y(t) =Y H(k)s(t — k) +n(1), (1)
k

where y(t) represents an m-column output vector called the observed signal, s(t)
represents an n-column input vector called the source signal, n(t) represents an
m-column noise vector and H (¢) is an m x n(m > n) mixing matrix.

To achieve the blind source separation for the system (II), a convolutive mix-
ture in the time domain is converted into instantaneous mixtures in the frequency
domain with the short-time Fourier transform (STFT),

Y(f’t) :H(f)S(f,t)-i-N(f,t) (2)

The following n filters, which are m-input single-output (MISO) static systems
driven by the observed signals, are used for each frequency bin:

Zl(fut):WlH(f)Y(fvt)v l=1,2,...,n, (3)

where superscript © denotes the conjugate transpose (Hermitian) of a ma-
trix or a vector and Z;(f,t) is the Ith output of the filter, w;(f) =
Wit (f), Wiz (f), - -, Wim]® is an m-column vector representing the m coefficients
of the filter in frequency bin f. Substituting () into (B]), we obtain

Zi(f.t) = wl' (HE()S(f.) + w{ (HN(S.1),
=g (NS(ft) +w/ (NIN(f.1), 1=1.2,....m, (4)
where gi(f) = [gu(f),gi2(f), - g (] = HI(f)wi(f) is an n-column
vector. The BSS problem considered in this paper can be formulated as follows:
Find n filters w;(f)’s denoted by w;(f)’s satisfying the following condition, with-

out the knowledge of H(f), even if the Gaussian noise N(f,t) is added to the
observed signal Y (f,1),

gl(f):HH(f)‘x"l(f):gl(f% I=12,...,n, (5)

where Sl(f) is an m-column vector whose elements Slr(f)(r =1,2,...,n) are
equal to zero except for p;(f)th element.
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To solve the blind separation problem, we put the following assumptions on
the system and the source signals.

A1) The matrix H(f) in (@) has full column rank.

A2) The input sequence {S(f,t)} is a zero-mean, non-Gaussian vector whose
element processes {S;(f,t)},7i =1,2,...,n, are mutually statistically inde-
pendent and have nonzero variance, afi (f) and nonzero fourth-order cumu-
lants, v;(f), i=1,2,...,n.

A3) The noise sequence {N(f,¢)} is stationary process vector, whose elements,
{N;(f,t)},i=1,2,...,m are Gaussian processes with zero mean.

A4) The two vector sequences {N(f,¢)} and {S(f,t)} are mutually independent.

3 Eigenvector Algorithms (EVAs)

3.1 Analysis of EVAs with the Reference Signal for MIMO Static
Systems

In this subsection we assume that there is no noise n(t) in the output y(t). Next
we propose the eigenvector algorithm with the reference signal. To solve the BSS
problem, the following cross-cumulant between Z;(f,t) and the reference signal

X(f,t) is defined:
CZX(.f) = Cum{zl(f’ t)v Z?(fv t)v X(fv t)7X*(f7 t)}’ (6)

where * denotes the complex conjugate and the reference signal X(f,t) is given
by E(/)Y(f,1) = 1 (FYH(N)S(f.1) = a (1)S(f,1) (al(f) = £7(f)H(f) is a
vector whose elements are aj(f),as(f),...,a,(f)), using an appropriate filter
f(f). The filter f(f) is called a reference system. Moreover we define the con-
strain o7 (f) = a%pl (f), where o7 (f) and J%pl (f) denote the variance of the
output Z;(f,t) and a source signal S,, (f,t), respectively. In the case of SISO sys-
tems, Jelonnek et al. [II2] have shown that the maximization of |Czx(f)| under
oy (f) = U%pl (f) leads to a closed-form expression as the following generalized
eigenvector problem:

Cyx(f)wi(f) = AR(f)wi(f)- (7)

Then they utilize the facts that Czx (f) and o7, (f) can be expressed in terms of
the vector w;(f) as, respectively,

Czx(f) = w/ (f)Cyx (f)wi(f), (8)
oz,(f) = wi' (HR()H)wi(f), 9)

where Cyx(f) is a matrix whose (4,7)th element is calculated by
Cum{Yi(f’ t)vY;(f’ t)?X(fv t)7 X*(fv t)}’ R(f) = E[Y(f7 t)YH(f7 t)] is the co-
variance matrix of m-column vector Y(f,t) and A is an eigenvalue of
RI(f)Cyx(f), where  denotes the pseudo-inverse operation of a matrix. More-
over they have shown that the eigenvector corresponding to the maximum eigen-
value of RT(f)Cyx(f) becomes the solution of the blind equalization problem in
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[112], which is referred to as an eigenvector algorithm (EVA). However, the algo-
rithm proposed by Jelonnek et al. is for SISO or SIMO infinite impulse response
channel. Therefore, we want to show how the eigenvector algorithm ([7]) works
for the BSS in the case of the MIMO static system in the frequency domain. To
this end, we use following equalities:

R(f) = H(H)Z(HHE"(f), (10)

Cyx(f) = H(/)A(HH(f), (11)

where X(f) is a diagonal matrix whose elements are o2 (f),i = 1,2,...,n and
A(f) is a diagonal matrix whose elements are |a;(f)[*v;(f),i = 1,2,...,n. Then

we obtain the following theorem.

Theorem 1. Suppose the values |a;(f)|*vi(f)/o2 (f),i = 1,2,...,n are all
nonzero and distinct. If the noise N(f,t) is absent in (@), the n eigenvectors
corresponding to n nonzero eigenvalues of RT(f)Cyx (f) become the the vectors

wi(f)’s satisfying (3).

Proof. Based on (), we consider the following eigenvector problem:

RI(f)Cyx (H)wi(f) = Awi(f). (12)
Then substituting (I0) and () into [I2)), we obtain
HY(HEH (OB (NBEOANBE (F)wi(f) = Awi(f). (13)

Since H(f) has full column rank, using a property of the pseudo-inverse
operation([3], p.433),

HY(HSTHHANB(fHwi(f) = Awi(f). (14)

Multiplying () by H(f) from left side and using a property of the pseudo-
inverse operation again, (I4)) becomes

STHHANB(Hwi(f) = B (f)wi(f). (15)

By noting that X7'(f)A(f) is a diagonal matrix whose elements,
la; (f)I*yi(f)/o2,(f),i = 1,2,...,n are all nonzero and distinct, if g;(f) =
HH (f)w;(f) # 0, then the eigenvector g;(f) obtained from (I5) becomes the
vector g;(f) satisfying (B). Namely, the n eigenvectors w;(f) corresponding to
n nonzero eigenvalues of R (f)Cyx(f) obtained from (I2)) become the vectors

wi(f) satistying (). O

3.2 Robust Eigenvector Algorithm (REVA)

In the previous subsection, we assume that there are no noises in the output
signals. In this subsection, we shall show such an eigenvector algorithm that the
solutions (Bl) can be obtained, even if the noise n(t) is present in the output
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y(t). To this end, we introduce fourth-order cumulants matrices of m-column
vector process {Y(f,t)}, which constitute a set of m x m matrices Cy ;(f),i =
1,2,...,m. The matrix Cy ;(f) is defined by

[CY,i(f)]q,r = cum {Yq(f? t)’Y:(.ﬂ t)aYi(fa t)vY;k (fa t)} ) (16)

where [-],,, denotes the (¢, 7)th element of the matrix Cy ;(f). Then we consider
an m X m matrix Q(f) expressed by

Q) - i Cv.i(1). (7)
Tt is shown by a simple calculation (see []) that (I7) becomes
Q(f) = H(HA(H (), (18)
where A(f) is a diagonal matrix defined by
() = dingln (D& (P (Daal) o Dan(D) (19
() = ihm)h;(f), r=12. o, (20)

and diag{---} denotes a diagonal matrix with the diagonal elements built from
its arguments, h;.(f) is the (¢,7)th element of H(f).
Here, as a constraint, we take the following value:

Czy ()] = Zcum{Zz(f,t),Zf(f,t)in(fvt%Yf(f,t)} = |wi (HQ()wi(f)]
= Zéz'(f)%(f)gn(f)gfi(f)‘~ (21)
i=1

Then, we consider solving the problem that the fourth-order cumulants |Czx (f)]
is maximized under the condition that |Czy (f)| = [8,,(f)7p, (f)|- Then by the
Lagrangian method, the following generalized eigenvector problem is derived
from the problem:

Cyx(f)wi(f) = AQ(f)wi. (22)

From the following theorem, by solving the eigenvector problem of the matrix
Qf(f)Cyx(f), the n eigenvectors w;(f)(l = 1,2,...,n) correspond to the vectors
w(HI=12,...,n) in @

Theorem 2. Suppose the values |a;(f)|?/a;(f),i = 1,2,...,n are all nonzero
and distinct. The n eigenvectors corresponding to n nonzero eigenvalues of

Q' (f)Cyx(f) become the the vectors wi(f)’s satisfying ().

Proof. We omit the proof because it is easily proved as well as Theorem 1.
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Remark 1. Since the matrix Qf(f)Cyx(f) consists of only the fourth-order cu-
mulants, the eigenvector derived from the matrix can be obtained with as little
influence of Gaussian noises as possible, which is referred as a robust eigenvector
algorithm (REVA).

4 Adaptive Version of REVA

REVA can be implemented adaptively. To this end we must specify the depen-
dency of each time ¢ and omit frequency bin f for simplicity. We show the update
procedure in the case of 2-input 2-output static system.

Q(t), which is the estimator of Q at time ¢ is calculated by

Q(t) =aQ(t - 1)
+1=a){(Ci() = C1(1) - r{C1(1)}) Ca(t) - C2()C3(D)}, (23)

where « is a forgetting factor close to, but less than 1 and tr{X} denotes the
trace of matrix X.

Here C;(t) and Co(t) in (Z3)) are defined by C;(t) = Y(#)Y#(¢) and Cy(t) =
Y*(t)Y (1), respectively. C1(t) and Ca(t) are the moving averages of Cy(t) and
Cy(t), respectively, which are calculated by

Ci(t) = BCi(t — 1) + (1 = B)C(t), (24)
Ca(t) = BCa(t — 1) + (1 — B)Cal(t), (25)
where (3 is also a forgetting factor close to, but less than 1 and a > 3.
Cyx(t), which is the estimator of Cyx at time ¢ is calculated by
Cyx(t) = aCyx(t —1) + (1 — ){Y®)YZ ()X ()X*(t) — Y (&)Y () Vx ()
=Y (HX(t)Vy, (t) = YO X (1) Vv, (D)}, (26)
where Vx(t) and Vy,(t),i = 1,2 are the moving averages of Vx(t) and Vi, (t)
defined by
Vx(t) = BVx(t = 1) + (1 = B)Vx(t), (27)
Vy,(t) = BVy,(t —1)+ (1 - B)Vy,(t), i=1,2, (28)

where Vx(t) = X(¢)X*(t), Vy, (t) = YH (£)X*(t) and Vv, (t) = Y (#)X(¢).
Then the separator w;(t) is calculated by solving eigenvector problem ().

5 Experiments

5.1 Simulation

We conducted a simulation experiment. H(z), which is z-transform of the mixing
matrix H (t), is defined as:

_ -1 -1 _ -2
1—-04z 0.5z 0.2z > (29)

H(z) = (0.52:_1 ~02z72  1-04z7"
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Fig. 2. MISIs of EVA Fig. 3. MISIs of SEM

The BSS problem is solved by adaptive REVA. To measure the separation
performance, multichannel intersymbol-interference (MISI) was used, which is
defined as

i—1 \ max; |gij‘ max; |gu‘

2 2 2
MISI = 3 (Zj—l Byl _ ) +Z ( i8] 1) . (30)

The MISI becomes zero if g;’s satisfying (Bl are obtained. The smaller the
MIST value is, the closer the obtained solution is to the desired one. Figure
shows the MISIs of some frequency bins using EVA with the reference signal and
Figure [ shows those of SEM [5], which uses the deflation process. Obviously

L

) source signal 1 (b) source signal 2
c) separated signal 1 (d) separated signal 2
) enhanced signal 1 (f) enhanced signal 2

Fig. 4. Waveforms of source, separated and enhanced signals
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using SEM the deflation process failed in a frequency bin, while EVA with the
reference signal could converge to the desired solution in all frequency bins.

Remark 2. REVA utilizes the fourth-order cumulants. To estimate the fourth-
order cumulants accurately a large number of samples are generally needed.
Therefore it takes a rather long time to converge using REVA.

5.2 Real Environment

In an office room, we conducted separation experiments using REVA. Because
the reference signal is needed, the number of microphones is three, while the
number of source is two, one of the observed signals is used as a reference signal.
Manually 5dB Gaussian noises are added to the observed signals to show that
the proposed REVA works in a noisy environment. Figure @ shows a set of
waveforms of the source signals, the separated signals and the enhanced signals
which were given by the ES 202 050 software [6]. In the enhanced signals additive
Gaussian noises were reduced. We can see that REVA can extract independent
but distorted source signals.

6 Conclusion

We described the BSS problem in the frequency domain. We proposed the eigen-
vector algorithm (EVA) with reference signals. The proposed method has such
an attractive property that all source signal are extracted simultaneously with-
out the deflation process. EVA can be robust to Gaussian noises using only the
higher-order cumulants (REVA). We have also shown the adaptive version of
REVA.

The computer simulations and real environment experiments have clarified
the validity of the proposed methods.
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