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Abstract. A maximum likelihood blind source separation algorithm is
developed. The temporal dependencies are explained by assuming that
each source is an AR process and the distribution of the associated i.i.d.
innovations process is described using a Mixture of Gaussians (MOG).
Unlike most maximum likelihood methods the proposed algorithm takes
into account both spatial and temporal information, optimization is per-
formed using the Expectation-Maximization method, and the source
model is learned along with the demixing parameters.

1 Introduction

Blind source separation (BSS) involves the application of a linear transformation
to an observed set of M mixtures, x, in an attempt to extract the original M
(unmixed) sources, s. Two of the main types of BSS methods for stationary data
include decorrelation approaches and approaches based on Independent Compo-
nents Analysis (ICA). Methods based on decorrelation minimize the squared
cross-correlation between all possible pairs of source estimates at two or more
lags [1], [2], [3]. Methods based on ICA attempt to make the source estimates
statistically independent at lag 0 [4], [5], [6]. Herein it is assumed that the sources
are mutually statistically independent, the mixing matrix is invertible, and there
are as many sensors as there are sources. If, in addition, at most one source has
a Gaussian probability density function (pdf) then ICA methods are appropri-
ate for BSS even if all the sources have identical spectra, whereas this is not
the case for decorrelation methods. Similarly, if the M sources possess sufficient
spectral diversity then decorrelation methods are appropriate for BSS even if
all the sources are Gaussian-distributed, whereas this is not the case for ICA
methods. Consequently, the appropriate BSS algorithm for a given application
depends on the spatial and temporal structure of the sources in question.

The approach presented here, AR-MOG, differs from most ML methods [7],
[8], [9] in three important ways. First, the proposed criterion makes use of both
the spatial and temporal structure of the sources. Consequently, AR-MOG may
be used in situations for which either of the above two types of BSS algorithms
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are appropriate. Second, AR-MOG is formulated in terms of latent variables
so that it can be optimized using the Expectation-Maximization (EM) method.
Third, instead of assuming the target distributions are known, the proposed
method learns the target distributions directly from the observations.

2 Generative Model

It is assumed that there are M mutually statistically independent sources, each
of which are N samples in length. The variable s represents the (M x N) source
matrix, Spy, 1.N represents the (1 x N) vector of the m'™ row of s, and S1:M,n
represents the (M x 1) vector of the n'* column of s. Each source, s, », is as-
sumed to be an autoregressive (AR) process that is generated from a temporally
i.i.d. innovations process, y, ». The relationship between a given source and the
associated innovations process is assumed to be uy, , = Z,I::go Im. kSm,n—k, Where
gmo=1me {1,2,..., M}, gm is an element of the (M x K, + 1) matrix g of
AR coefficients, and K, is the order of each of the AR filters. The sources are

therefore given by
K

g
Sm,n = — ng,ksm,nfkr + Umn - (1)
k=1
The M observations at time n are assumed to be generated from the sources by
means of a linear, memory-less (M x M) mixing matrix, i.e., &, = As,.
The pdf of each innovations process is assumed to be parameterized by a
Mixture of Gaussians (MOG),

Kq

pUm,n(um,n) = Z pUm,n\Qm,n(um,n|Qm,n = Q)me,n(Qm,n =q)
q=1 9
- 2

:ZN(Um,nmmm Vm,g) Tm,q

q=1

which should not be confused with pg,, , (Um,n) (the target pdf of each innova-

n

tions process) or pg,, . (Gim,n) (the actual pdf of the estimate of the innovations),

and where py, i, . (Umn|@mn = q) has a normal distribution, g, , is the
th th

mean of the ¢"" component (or state) of the m"" source, vy, 4 is the correspond-
ing precision, 7, g = pq,, , (Qm,n = q) is the corresponding prior probability
(constrained such that Efj’l Tm,q=1VYm), and Q. € {1,2,...,Kq} repre-
sents the state (latent variable) of the m!" source at the n'* time point. This
particular generative model is able to describe both the non-Gaussianity and the
temporal dependencies of the sources.

3 Criterion

Let py,, . (Um,n) denote the marginal pdf of a particular innovations process and
let py(u) and DY, v (u1:M,n) denote the order-M N and order-M joint pdf’s
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of the innovations, respectively. It is assumed that all variables are identically
distributed in time (although this is not valid for the outputs of the IIR filter s,,
until after the transients have died out). Using this notation and the preceding
generative model the data likelihood is given by

N M N
px(w): prl:M,n‘xl;M.Lnfl($1:M’n|w1:M’1:n71): |W‘NH HpUm’n (um,n) 5
n=1 ’ m=1ln=1

(3)
where W = A™! (hence, s, = Wz,), it is understood that the set of all pa-
rameters, {W,g,p,v, 7, Kg,K,}, is given for each pdf, and where u,,, =

ZkKiO Zl]\il Win i9m, k%1,n—k- Hence, the log likelihood is given by

M N
L=Nm[W[+ ) > lpy,, ()
m=1n=1
M & p (tm,1:Qm,n=q) W
Um,n Qm,n\ TN M,
:N1n|W|—|—Z ZZ%’“W In : 5 ,
m=1In=1¢=1 g

where the latter expression is given as a function of the posterior state probabili-
ties, Ym,n,qg = Pa,, .|x (@m,n=¢|z). Adaptation using EM, which is guaranteed to
converge (possibly to a local maximum), involves maximizing (4) by alternating
between the E-step and the M-step.

4 EM Algorithm for AR-MOG

In this section we present an EM algorithm for inferring the model from the data
and extracting independent sources.

4.1 E-Step

The E-step maximizes the log likelihood w.r.t. the posteriors, ¥, n, ¢, While keep-
ing the parameters fixed. The estimates of the posteriors are given by

. POl Bnn| Qi = @)msg
Yim,ng = ¢ ; (5)
m,n

where &, ,, ensures that fol Amon,qg =1V m,n, the true pdf’s (conditioned on
the state) have been replaced with the target pdf’s, and all other quantities have
been replaced with their estimates (denoted using the hat symbol).

4.2 M-Step

The M-step maximizes the log likelihood w.r.t. the parameter estimates {W, g,
[, 0,7} while keeping the posteriors fixed. The two parameters that are not
learned by AR-MOG, {K’Q, Kg}, are assumed to be known. The update of W
is performed using multiple iterations of gradient ascent where
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NRQKH
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m,l

i=1 n=1q=1k=0

which makes use of the natural gradient [10] (also known as the relative gradient
[11]). The solution for the matrix of AR coefficients is

N Ko

Pk = § § ﬁm,nyqﬁm,q(ﬂmyq - §m,n)§m,nfk‘

n=1gqg=1
N Kq (7)

mkk’ § § 'Ymnql/mqsmn ksmn k'

n=1q=1
A —1
9m,1:N = Spm,l:M(Wm,le,ch)

for m € {1,..., M}. The solutions for the parameters that constitute the target
distributions are

N ~ ~
2 n=1 Um,nYmnq

/’(‘m,q -

N .

> =1 Ymonng

N .
N 2 n=1 Ym,n,g ®)

m,q = SN . N "
21 (mn = fim,g)*Fm,n,q
N .
T Dn 1 Ym,n,q

Zn 12 17mnq

5 Experiments

Several different experiments are performed in order to assess the separation
performance of AR-MOG. Separation performance is gauged using the signal-
to-interference ratio (SIR), which is defined by

er]y 1(Wm 1 M141:M,msm7n)2

m’ 1 Zn 1( m,l:M141:M,m’Sm’,n)2

(m/!#

SIR = — Z 101log,, (dB) .

Unless otherwise specified the data is drawn from the same model that is used by
AR-MOG, the innovations are assumed to have the same distribution, M =2, and
N =10% The error bars represent one standard error. When they are included
the mean results represent the average of 10 Monte Carlo trials. Results from
JADE [12], which does not use temporal dependencies (K, = 0), and MRMI-
SIG [6], which essentially uses K. g=1, are also included as benchmarks.

Figure la shows the mean separation performance of AR-MOG as a function
of Kg, where K ;=10 and KQ = Kg=4. The means, precisions, and priors are not
adapted in this experiment or the next experiment so that the change in perfor-
mance due to the addition of the AR filters may be better quantified. For K. ¢=0
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Fig. 1. Separation performance as a function of K. (a) Experiment 1. The inset shows
PUpn.n (Um,n) and a Gaussian distribution (dashed line) having the same mean and
variance. (b) Experiment 2. The inset shows ps,, ,, (Sm.») and a Gaussian distribution
(dashed line) having the same mean and variance.

AR-MOG defaults to the case where no AR model is used, i.e., w =8§. When
no temporal dependencies are used the AR-MOG method performs similarly,
but slightly better, than JADE and MRMI-SIG. For K. ¢ > 4 the performance
improvement of AR-MOG is approximately 15-20 dB.

The separation results in Fig. 1a represent a best case scenario for AR-MOG
since the data are drawn from the model. The results shown in Fig. 1b use
(artificially-mixed) real speech data not drawn from the AR-MOG model. Per-
formance is shown as a function of K, where Kg = 3. The target distribution
Py (Um,n) is chosen to be unimodal and super-Gaussian since speech is known
to be approximately Laplacian. For the speech data the performance of both
AR-MOG and JADE are reduced by approximately 5-8 dB with respect to the
first experiment. Figure 1b shows that it is not strictly necessary for the sources
to be stationary processes for AR-MOG to perform well (speech is commonly
assumed to be stationary, but only for very short segments [13]).

The third experiment shows the sensitivity of the three BSS algorithms to
an increase in the temporal correlation of the sources. For this experiment N =
3%10%, KQ =Kq=3, Kg =4, and each s, 1. is related to the associated u,, 1.5
by means of a moving average (MA) filter, by, 1., +1. Performance is shown in
Fig. 2a as the order of this filter, K, is varied (increasing K, increases the overall
correlation at an exponentially decreasing rate). Unlike the previous experiments
the means and variances are adapted. For this dataset increasing the temporal
correlation (i.e., K}) causes the separation performance of JADE and MRMI-
SIG to decrease by roughly 30 dB and 6 dB, respectively. The performance of
AR-MOG is not affected by the change in temporal correlation.

The fourth experiment attempts to measure the separation performance as a
function of the initialization of pg, . (tm n). For each case considered the separa-
tion performance is given when the parameters that constitute P (Um,n) are
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Fig.2. (a) Separation performance as a function of Kj; (the length of each hy,)
for Experiment 3. (b) Initial (dashed line) and final pg,, , (4m,») distributions and
PUpm.n (Um,n) for Experiment 4. Upper-left: Case 1. Upper-right: Case 2. Lower-left:
Case 3. Lower-right: Case 4.

adapted and when they are fixed. The resulting SIR values are shown in Table I,
where the left column corresponds to when pg,, . (4m,n) is adapted, whereas the
right column keeps pg,, , (um,n) fixed at the distribution used for initialization
of the left column results. The initial and final pg,, , (Um,n) distributions and
the true distribution, py,, ,, (m,n), are shown in Fig. 2b. For Cases 1 & 2 the ini-
tial innovations distribution and the true distribution are similar and for Cases 3
& 4 the assumed (initial) innovations distribution is far from correct. Likewise, for
Cases 1 & 3 Kg = K,=0 and for Cases 2 & 4 Kg = K,=4. When the initial inno-
vations distribution is similar to the true distribution the separation performance
is excellent independent of whether or not pg,, , (4m ) is adapted. When they are
not similar, based on these results, it is advantageous to adapt pg,, , (4m,n). No-
tice that pg,, ,, (um,n) gets trapped in a local maximum for Cases 3 and 4. This
is indicated by the fact that the target distribution converges to a bimodal solu-
tion for Case 3 and a unimodal solution for Case 4. If AR-MOG is initialized with
the true distribution the final SIR is 62.9 and 67.7 dB, respectively, and the target
distributions for both cases converge to a trimodal solution. The fact that the fi-
nal target distribution is incorrect does not necessarily preclude the possibility of

Table 1. Final SIR separation performance for Experiment 4

Case |Adapt Fixed
P (Umin) PO (Umn)
1 45.6 dB 46.3 dB
2 59.5 dB 47.1 dB
3 44.2 dB 0.0 dB
4 51.0 dB 39.5 dB
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achieving good separation performance, as indicated in Table I, because it is neither
sufficient nor necessary for good separation performance that the final pg,, ., (U n)
approximates py,, . (tm,n). What is necessarily required (but is not sufficient, e.g.,
for Gaussian distributions) is that pg  (sm,n) approximates ps,,, , (Sm,n) for each
m (and allowing for possible permutafions). The ability of AR-MOG to separate
sources even if pg,, . (Um,n) is incorrect is identical to the well-known fact that ML
methods that assume the cumulative density function (cdf) is sigmoidal are often-
times able to separate sources even if the cdf of each source is not sigmoidal [4],
[11], [14], [15], [16], [I7]. There is no assurance that AR-MOG will be able to find
a solution for pg,, , (um,n) that allows for good separation, but Table I indicates
that it may be advantageous to try to improve on the original assumptions.

6 Conclusions

This paper develops a BSS algorithm that is based on maximizing the data
likelihood where each source is assumed to be an AR process and the innovations
are described using a MOG distribution. It differs from most ML methods in that
it uses both spatial and temporal information, the EM algorithm is used as the
optimization method, and the parameters that constitute the source model are
adapted to maximize the criterion. Due to the combination of the AR process
and the MOG model, the update equations for each parameter has a very simple
form. The separation performance was compared to several other methods, one
that does not take into account temporal information and one that does. The
proposed method outperforms both. Future work will focus on incorporating
noise directly into the model in a manner similar to that used for the Independent
Factor Analysis method [I8].
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