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Abstract. In this paper, we propose a fast and accurate approximation to the in-
formation potential of Information Theoretic Learning (ITL) using the Fast
Gauss Transform (FGT). We exemplify here the case of the Minimum Error
Entropy criterion to train adaptive systems. The FGT reduces the complexity of
the estimation from O(N°) to O(pkN) where p is the order of the Hermite ap-
proximation and k the number of clusters utilized in FGT. Further, we show that
FGT converges to the actual entropy value rapidly with increasing order p
unlike the Stochastic Information Gradient, the present O(pN) approximation to
reduce the computational complexity in ITL. We test the performance of these
FGT methods on System Identification with encouraging results.

1 Introduction

Information Theoretic Learning (ITL) is a methodology to non-parametrically esti-
mate entropy and divergence directly from data, with direct applications to adaptive
systems training [1]. The centerpiece of the theory is a new estimator for Renyi’s
quadratic entropy that avoids the explicit estimation of the probability density func-
tion. The argument of the logarithm of Renyi’s entropy is called the Information Po-
tential (IP), and since the logarithm is a monotonic function, it is sufficient to use the
IP in training [2]. ITL has been used in ICA [3], blind equalization [4], clustering [5],
and projections that preserve discriminability [6]. One of the difficulties of ITL is that
the calculation of the IP is O(N?), which may become prohibitive for large data sets. A
stochastic approximation of the IP called the Stochastic Information Gradient (SIG)
[7] decreases the complexity to O(N), but slows down training due to the noise in the
estimate. This paper presents an effort to make the estimation faster and more accu-
rate using the Fast Gauss Transform (FGT). The FGT is one of a class of very
interesting and important new families of fast evaluation algorithms that have been
developed over the past dozen years to enable rapid calculation of approximations at
arbitrary accuracy to matrix-vector products of the form Ad where a; = @ (Ix; — x; |)
and @ is a particular special function. These sums first arose in astrophysical observa-
tions where the function @ was the gravitational field. The basic idea is to cluster the
sources and target points using appropriate data structures, and to replace the sums
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with smaller summations that are equivalent to a given level of precision. We will use
here the FGT algorithm proposed by Greengard and Strain [8] and the farthest-point
clustering proposed by Gonzalez [9] for evaluating Gaussian sums.

The paper will be organized as follows. First we will briefly describe one of the
simplest ITL algorithms that minimize the error entropy between a desired response
and the adaptive filter output. Next, we present the FGT algorithm and its interaction
with the MEE criterion, followed by some simulation results and conclusions.

2 Minimum Error Entropy (MEE)

Suppose that the adaptive system is an FIR structure with a weight vector w. The
error samples are e, =d, —wiu,, where d, is the desired response, and u . is the

input vector. The error PDF is estimated using Parzen windows as
n 1 &
fo@ =132 kole=e) (1)
i=1

where k_(-)is kernel function with a kernel size o. So, Renyi’s quadratic entropy

estimator for a set of discrete data samples becomes:

Hy,(e)==log [ f*(e)de =—logV (e) 2

V(e) =N12§‘,Zk(,ﬁ<ej —e)- 3)

=1 i=l
Minimizing the entropy in (2) is equivalent to maximizing the information poten-

tial since the log is a monotonic function. Thus, the weight update of MEE is
Wi =W, +4VV(e) 4)

where for a Gaussian kernel the gradient is,
1 N N
VV(€)=WZZGUﬁ(e_i—ei){ej—ei}{uj—ui}- (5)
=1 i=1

j=1i

For online training methods, the information potential can be estimated using the
Stochastic Information Gradient (SIG) as shown in (6), where the sum is over the
most recent L samples at time k. Thus for a filter order of length M, the complexity of
MEE is equal to O(ML) per weight update,

1 k-1
Vier=_ Dk, (e —e) (©6)

i=k—L

where ¢ =d, —wiu,, for k—L<i<k.
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3 MEE Using the Fast Gauss Transform

For efficient computation of information potential, we use the principle of Fast Gauss
Transform. Direct evaluation of the information potential (3) requires O(NZ). We
apply the FGT idea by using the following expansions for the Gaussian in one dimen-
sion (the method can be easily extended to multiple dimensions):

(ej—el.)2 (e s\ (e —s
S AT LN Rl A
exp( ppe J Zn,( 20] ( = j+e(p) (7)

where the Hermite function £, (x) is defined by

n

- (exp(— x? )) (®)

In practice a single expansion about one center is not always valid or accurate over
the entire domain. A space subdivision scheme is applied in the FGT and the Gaussian
functions are expanded at multiple centers. To efficiently subdivide the space, we use a
very simple greedy algorithm, called farthest-point clustering that computes a data
partition with a maximum radius at most twice the optimum. The direct implementa-
tion of farthest-point clustering has running time O(kN), which k is the number of clus-

dx

ters. Thus, the information potential V' (e) is given as

V-, L =335t (

lenO

JCH (B) )

where B is a cluster with center s, and C, (B ) is defined by

C,I(B)=Z[e" _sﬂjn : (10)

eEeB 20.

From the above equation, we can see that the total number of operations required is
O(pkN) per data dimension. The truncation order p depends on the desired accuracy
alone, and is independent of N.

The gradient of the information potential with respect to the weights is given as

VV(e)= ZZZ { H( % J{;]Q(B)M"[e’;YBJ-VC”(B)} (11)

/anO 20— o

where Ve, (B) is defined by

Ve, (B)= zn[ei _SBJH[— et } : (12)




Estimating the Information Potential with the Fast Gauss Transform 85

4 Simulations

4.1 Entropy Estimation Using Fast Gauss Transform

We start by analyzing the accuracy of the FGT in the calculation of the IP for the
Gaussian and Uniform distributions, using the original definition (3), the SIG (6) and
the FGT approximation (9) for two sample sizes (100 and 1,000 samples). For a com-
parison between SIG and FGT we use p = L in all our simulations. We fix the radius
of the farthest point clustering algorithm atr = ¢ . This radius is related to the number
of clusters, i.e., as the radius increases, the number of clusters (hence the computation

time) decreases, but the approximation accuracy may suffer. Results are depicted in
Fig. 1 and 2.
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Fig. 1. Plot of the absolute error for SIG and FGT with respect to the IP estimated using Parzen
window for a Gaussian distribution with 100 and 1000 samples
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Fig. 2. Plot of the absolute error for SIG and FGT with respect to the IP estimated using Parzen
window for a uniform distribution with 100 and 1000 samples

As can be observed in Fig.1 and 2, the absolute error between the IP and the FGT
estimation decreases with the order p of the Hermite expansion to very small values,
while that of the SIG fluctuates around 0.005 (100 samples) and 0.001 (1000 sam-
ples). We can conclude that from a strictly absolute error point of view, a FGT with
order p >3 outperforms the SIG method for all cases.
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Fig. 3. Plot of the average number of clusters in FGT when estimating the IP for the Gaussian
and uniform distribution with 100 and 1000 samples (40 times Monte Carlo)
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Fig. 4. Plot of the absolute error for a given p (=2, 4, 8 and 16) as the radius of the farthest-point

clustering algorithm ( r = h X ¢ ) for Gaussian and uniform distribution with 1000 samples

Fig. 3 shows the relation between FGT estimation and the number of clusters. Ac-
cording to data size, the number of clusters does not vary for the uniform distribution,
while for the Gaussian distribution the number of cluster is larger as the number of
data samples increases.

We also fix the number of points to N=1000 and vary the radius 7 for clustering
from 0.10 to 20 and plot the absolute error for a given p (= 2, 4, 8 and 16) in Fig. 4.
The results show that the error of the FGT is reduced as the radius decreases, as ex-
pected such that the user can control the approximation error to IP.

However, for our ITL application, the accuracy of the IP is not the primary objec-
tive. Indeed, in ITL we would like to train adaptive systems using gradient informa-
tion, so the smoothness of the cost function is perhaps more important.

4.2 System Identification

We next consider the system identification of a moving-average model with a 9" order
transfer function given by

H(z)=0.1+02z"+03z7+04z7 +0.5z"*

(13)
+0.4z7°+03z°4+02z7 +0.17°
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using the minimization of the error entropy [10]. Although the true advantage of MEE
is for nonlinear system identification with nonlinear filters, here the goal is to com-
pare adaptation accuracy and speed so we elected to use a linear plant and a FIR adap-
tive filter with the same plant order (zero achievable error). A standard method of
comparing the performance in system identification problems is to plot the weight
error norm since this is directly related to misadjustment. In each case the power of
the weight noise was plotted versus the number of epochs performed. In this simula-
tion, the inputs to both the plant and the adaptive filter are also white Gaussian or
uniform noise. We choose a proper kernel size by using Silverman’s rule (¢ = 0.707)
the radius of the farthest point clustering algorithm r=o.
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Fig. 5. Comparison of different methods for system identification with Gaussian and uniform
noise, using (S) = 1000 samples

As can be observed in Fig. 5, all the versions of IP produce converging filters.
However, the speed of convergence and the actual value of the final error are differ-
ent. The FGT method performs better in training the adaptive system as compared to
SIG. A SIG with 16 samples approaches the FGT with p=2, and the FGT with p=16 is
virtually identical to the true IP. The case of the uniform input noise does not change
the conclusions.

Fig. 6. shows the plot of the number of clusters during adaptation. Since the error is
decreasing at each epoch, the number of clusters gets progressively smaller. In this case,
where the achievable error is zero, the number reduces to one cluster after 5 epochs.
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Fig. 6. Plot of the average number of clusters during adaptation in system identification
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5 Conclusions

Information Theoretic Learning and in particular the Minimum Error Entropy crite-
rion has been recently proposed as a more principled approach for training adaptive
systems. But, a major bottleneck in this method is the high computational complexity
of O(N°) per epoch, thus limiting its use for many practical applications in signal
processing, communications and machine learning. The method of the Fast Gaussian
Transform helps alleviate this problem by accurate and efficient computation of en-
tropy using the Hermite series expansion in O(pN) operations. Furthermore, since this
series converges rapidly, a small order p gives a very good approximation of the IP
and can therefore provide accurate and fast converging optimal filters. Indeed we
have shown that the FGT has a performance virtually identical to the exact informa-
tion potential for p=16. The FGT seems therefore to be preferable to the SIG algo-
rithm we have been using.

We still need to quantify the performance of FGT for training MIMO (multiple in-
put multiple output) systems such in ICA or discriminative projections. In these cases
ITL algorithms will be applied to multidimensional signals and the computation be-
comes prohibitive. A straight application of the algorithm presented in this paper will
raise p to the number of dimensions in the complexity calculation. However, recent
results show that it is possible to avoid the multiplicative factor in complexity brought
by the dimensionality of the space of interactions [11]. If further testing corroborates
these initial results, the class of FGT algorithms may very well take away the compu-
tational drawback of ITL versus the MSE criterion to adapt nonlinear models both in
Adaptive Systems and Pattern Recognition applications.
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